

Getting Started

P A R T 1

James Gardner

The Definitive Guide
to Pylons

The Definitive Guide to Pylons

Copyright © 2009 by James Gardner

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

ISBN-10 (pbk): 1-59059-934-9

ISBN-13 (pbk): 978-1-59059-934-1

ISBN-13 (electronic): 978-1-4302-0534-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Steve Anglin, Matt Wade
Technical Reviewer: Michael Orr
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Lisa Hamilton
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Dedicated to my brother, Ian,
and my parents, John and Maggie,

whom I love very much.

Contents at a Glance

About the Author. xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Source Code and Updates . xxv

PART 1 ■ ■ ■ Getting Started
■CHAPTER 1 Introducing Pylons . 3

■CHAPTER 2 Installing Pylons . 13

■CHAPTER 3 Exploring Pylons . 29

■CHAPTER 4 Tracking Down and Handling Problems . 55

■CHAPTER 5 Using View Templates . 63

■CHAPTER 6 Working with Forms and Validators . 91

■CHAPTER 7 Introducing the Model and SQLAlchemy . 127

■CHAPTER 8 Starting the SimpleSite Tutorial . 165

PART 2 ■ ■ ■ Advanced Pylons
■CHAPTER 9 URLs, Routing, and Dispatch . 195

■CHAPTER 10 Unicode . 217

■CHAPTER 11 Internationalization and Localization . 227

■CHAPTER 12 Testing . 245

■CHAPTER 13 Documentation . 263

■CHAPTER 14 SimpleSite Tutorial Part 2 . 279

■CHAPTER 15 CSS, JavaScript, and Ajax. 325

iv

PART 3 ■ ■ ■ Expert Pylons
■CHAPTER 16 The Web Server Gateway Interface (WSGI) . 369

■CHAPTER 17 Pylons’ Internal Architecture . 389

■CHAPTER 18 Authentication and Authorization. 415

■CHAPTER 19 SimpleSite Tutorial Part 3 . 433

■CHAPTER 20 Logging . 471

■CHAPTER 21 Deployment . 487

■APPENDIX Licenses . 503

■INDEX . 513

v

Contents

About the Author. xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Source Code and Updates . xxv

PART 1 ■ ■ ■ Getting Started
■CHAPTER 1 Introducing Pylons . 3

The Old Way: CGI Scripts . 3

The Pylons Way . 5

Model View Controller Architecture . 5

Convention Over Configuration. 6

Loose Coupling and Clean Separation . 7

Other Features . 7

The Python Language . 8

Python 3.0 . 8

The Pylons Community . 9

Pylons Components . 9

What’s Coming Up . 10

Summary . 11

■CHAPTER 2 Installing Pylons. 13

Quick Start to Installation for the Impatient. 13

Installation in Detail . 14

Using the Python Package Index . 14

Setting Up a Virtual Python Environment. 14

Working with Easy Install . 16

Installing Pylons . 17

Understanding Eggs. 18

vii

Advanced Topics . 18

Activating and Deactivating a Virtual Python Environment 18

Setting Virtualenv Options. 19

Choosing Package Versions with Easy Install . 19

Installing with a Proxy Server . 20

Troubleshooting Easy Install . 21

Working on the Bleeding Edge . 22

Platform-Specific Notes . 22

Linux and BSD . 23

Mac OS X . 24

Windows . 24

Summary . 28

■CHAPTER 3 Exploring Pylons. 29

Exploring Pylons’ Dependencies. 29

Creating a Pylons Project . 31

Serving a Pylons Application. 33

Configuration Files . 33

The Paste HTTP Server . 34

Static Files . 35

A Word About IP Addresses, Hosts, and Security . 36

Exploring a Pylons Project’s Directory Structure . 36

Creating a Controller and Modifying the Routes . 38

Understanding How HTTP Works . 39

Exploring the Environment . 42

Understanding the Pylons Request and Response . 44

Request. 44

Response . 46

Understanding Pylons Globals . 46

Helpers . 48

Context Object . 49

App Globals Object. 50

Configuring Pylons . 51

Controller Imports . 52

Summary . 53

■CHAPTER 4 Tracking Down and Handling Problems . 55

Using the Pylons Interactive Debugger . 55

Production Use . 59

E-mail Options . 59

Summary . 61

■CONTENTSviii

■CHAPTER 5 Using View Templates . 63

Using the Template Context c Global. 65

Basic Template Syntax . 66

Default Pylons Template Variables. 69

Mako Runtime Built-Ins. 70

Separation of Logic and View . 72

Security Considerations and WebHelpers . 73

Writing Your Own Helpers . 74

Applying Filters in Templates . 75

Structuring Template Code . 76

Using <%def> Blocks . 76

The Mako Cache . 77

Capturing Output . 79

Namespaces. 80

The body() Def . 81

Template Inheritance Chains . 81

Simple Inheritance. 82

Next Namespace . 83

Parent Namespace . 85

Behind the Scenes . 85

Caching. 87

Alternative Template Languages . 88

Multiple Template Languages . 89

Working with Your Own Templating Language. 90

Summary . 90

■CHAPTER 6 Working with Forms and Validators . 91

The Basics . 91

POST vs. GET . 93

The Resubmitted Data Problem . 95

Building Forms with Helpers. 96

Uploading Files . 98

Handling Forms Manually . 101

Introducing FormEncode . 103

Configuring Validators . 107

Using HTML Fill . 108

Error Message Formatting . 110

Render Arguments. 110

Doing Validation the Quick Way . 111

Using Custom Validators . 112

■CONTENTS ix

Solving the Repeating Fields Problem . 115

Creating the Form . 116

Summary . 126

■CHAPTER 7 Introducing the Model and SQLAlchemy . 127

Storing Data in the Filesystem . 127

Storing Data in Amazon S3 . 129

Exploring Database Approaches. 130

Object Databases. 131

XML Databases . 131

Relational Database Management Systems . 132

Object-Relational Mappers . 132

Setting Up SQLAlchemy. 133

Installing the DB-API Driver . 134

Installing SQLAlchemy. 135

Creating a Database . 135

Exploring SQLAlchemy’s Architecture . 135

Engine API. 136

Metadata and Type APIs . 138

SQL Expression API . 141

Exploring the Object-Relational API . 146

Object-Relational Principles . 146

More Metadata. 148

Classes and Mappers . 150

Understanding the Session . 152

Exploring the Session . 153

Queries . 157

Working with Objects . 159

Declarative API . 160

Maintaining Performance . 162

Summary . 163

■CHAPTER 8 Starting the SimpleSite Tutorial. 165

Getting Started with SimpleSite . 166

Exploring the Template Structure. 168

Using SQLAlchemy in Pylons . 170

Configuring the Engine . 171

Creating the Model . 171

Creating the Database Tables . 173

Querying Data. 175

Understanding the Role of the Base Controller. 176

Using a SQLAlchemy Session in Pylons. 177

■CONTENTSx

Updating the Controller to Support Editing Pages. 177

view(). 178

new() . 178

create() . 180

edit() and save() . 183

list() . 185

delete() . 185

Updating the Footer . 186

Using Pagination . 186

Formatting Dates and Times. 189

Using Sessions and a Flash Message . 190

Summary . 192

PART 2 ■ ■ ■ Advanced Pylons
■CHAPTER 9 URLs, Routing, and Dispatch . 195

Pylons Routing in Detail. 196

Pylons Dispatch . 198

Routes in Detail . 199

Route Parts . 199

Default Variables . 201

Generating URLs . 202

Named Routes . 203

Static Named Routes. 204

Internal Static Routes . 204

Choosing Good URLs . 204

Unnecessary Routes Features . 207

Route Minimization . 207

Route Memory . 207

Implicit Defaults . 209

Best Practice . 209

Advanced URL Routing . 211

Requirements . 211

Conditions. 212

Filter Functions. 215

Summary . 216

■CHAPTER 10 Unicode . 217

A Brief History. 217

Introducing Unicode. 218

■CONTENTS xi

Unicode in Python 2. 219

Unicode Literals . 219

Handling Errors . 220

Decoding Unicode . 221

Encoding Unicode . 222

Python Source Code Encoding . 222

Unicode and Files. 223

Unicode Considerations in Pylons Programming . 224

Request Parameters . 224

Templating . 225

Output Encoding. 225

Databases. 225

A Complete Request Cycle . 226

Summary . 226

■CHAPTER 11 Internationalization and Localization. 227

Understanding the Process . 228

Marking Strings for Internationalization . 228

Extracting Messages and Handling Translations . 229

Seeing It in Action . 229

Using Babel. 230

Supporting Multiple Languages . 232

Updating the Catalog . 234

Translations Within Templates . 235

Babel Extractors. 236

Setting the Language in the Config File. 237

Using a Session to Store the User’s Language. 238

Advanced Internationalization Techniques . 239

Fallback Languages. 239

Lazy Translations . 240

Plural Forms . 241

Search Engine Considerations . 243

Summary . 243

■CHAPTER 12 Testing . 245

Types of Testing and the Development Process. 246

Unit Testing with nose . 247

Introducing nose . 247

Search Locations . 251

■CONTENTSxii

Functional Testing . 252

How Does the Test Setup Work? . 254

Testing the save() Action. 257

Testing Your Own Objects. 260

Interactive Shell . 261

Summary . 262

■CHAPTER 13 Documentation . 263

Python’s Documentation Tools . 263

Comments . 263

Docstrings. 264

The Built-In help() Function. 265

Doctests . 266

Introducing reStructuredText . 268

Introducing Sphinx . 270

Using Sphinx. 270

Documenting Python Source Code . 273

Automatically Generating Documentation . 276

Syntax Highlighting . 277

Summary . 278

■CHAPTER 14 SimpleSite Tutorial Part 2 . 279

Comments System: One-to-Many Mappings . 279

Planning the Controller . 280

Modifying the Routes. 280

Creating the Controller . 281

Updating the Controller to Handle Comments. 282

Setting the Page ID Automatically . 285

Updating the Page View . 288

Handling Deleted Pages . 289

Tags: Many-to-Many Mappings . 290

Creating the tag Controller . 291

Constraining Tag Names. 293

Adding Tags to Pages . 295

Deleting Tags and Pages . 298

Creating a Navigation Hierarchy . 299

Using Inheritance in SQLAlchemy . 299

Setting Up Initial Data . 301

Creating the Controllers . 303

The Page Controller . 311

■CONTENTS xiii

Changing the Routing . 313

Adding the Navigation Elements. 319

Adding Some Style. 321

Summary . 323

■CHAPTER 15 CSS, JavaScript, and Ajax . 325

Adding YUI to Your Project . 325

Resetting the Browser CSS . 326

Fonts . 327

Grids . 328

Template Preset Grids . 329

Nested Grids. 331

Special Nested Grids . 331

Updating SimpleSite to Use CSS Grids . 332

Introducing Firebug . 336

Introducing JavaScript. 338

JavaScript Essentials. 339

Operators of Interest . 340

Types. 341

Functions . 343

Function Scope and Closures . 343

Objects . 344

this. 345

Namespaces. 346

Inheritance . 347

Prototypes. 348

JavaScript in HTML . 349

The Document Object Model . 349

Navigating the DOM. 351

Manipulating the DOM. 352

The Event Model . 352

Same Origin Policy. 354

Browser Detection vs. Feature Detection . 354

Adding Animation to the SimpleSite Flash Message . 354

Ajax . 356

Debugging Ajax Requests . 360

JSON . 361

Reducing Page Load Time . 365

Summary . 366

■CONTENTSxiv

PART 3 ■ ■ ■ Expert Pylons
■CHAPTER 16 The Web Server Gateway Interface (WSGI) 369

Introducing WSGI . 369

WSGI Applications . 370

WSGI in Pylons Controllers . 372

WSGI Servers . 374

WSGI Middleware. 378

Writing WSGI Middleware . 379

Modifying the Environment . 380

Changing the Status and Headers . 381

Handling Errors . 381

Altering the Response . 383

Testing the Gzip Middleware . 387

Summary . 388

■CHAPTER 17 Pylons’ Internal Architecture . 389

A Bit of History . 389

Egg Entry Points . 391

Entry Points and websetup.py . 391

The Pylons Config File . 392

Default Config Options. 393

Constructing a Server . 393

Constructing an Application . 394

Composite Applications. 395

Pipelines and Filters . 396

Understanding Factories . 397

Alternative Ways of Specifying Factories . 400

Configuration Inheritance . 400

Accessing the Pylons WSGI Application and
Other Objects Programmatically . 401

Accessing the Server, Application, and Filters . 401

Accessing Configuration Options . 402

Creating a Pylons Application with Paste Deploy . 402

The Pylons Middleware Stack. 403

Application State vs. Request State . 404

■CONTENTS xv

Creating an Application . 405

Loading the Pylons Environment . 405

The PylonsApp Instance . 406

The Middleware Chain. 406

Handling a Request . 407

The Cascade. 408

The Registry Manager, StackedObjectProxy, and Pylons Globals 409

Returning to the Middleware Chain . 410

The Role of PylonsApp. 410

The Role of WSGIController. 411

Handling the Response . 411

abort(), redirect_to(), and HTTPException . 412

Exception Handling . 412

Error Documents . 412

Streaming Content. 412

Returning Unicode from an Action . 413

Summary . 413

■CHAPTER 18 Authentication and Authorization . 415

Private Data . 415

A Homegrown Solution . 416

AuthKit. 417

Authentication Middleware . 418

Authorization and Permissions . 421

The Authorization Decorator . 421

The Authorization Middleware . 422

The Authorization Function . 423

Protecting a Controller. 424

Groups, Roles, and Permissions. 424

User Management API . 426

Cookie Options . 427

Alternative Methods. 427

Functional Testing . 428

General Security Considerations . 429

Secure Sockets Layer . 429

Encrypted Passwords . 431

Summary . 432

■CONTENTSxvi

■CHAPTER 19 SimpleSite Tutorial Part 3 . 433

Authentication and Authorization . 433

Setting Up the Middleware . 433

Adjusting websetup.py . 434

Protecting Controller Actions . 436

Changing Templates Based on Permissions. 438

Signing In and Signing Out . 439

Styling the Sign-in Screen . 441

Protecting the Rest of the Actions . 443

Using the AuthKit User Management API . 445

Error Documents . 445

Customizing the Error Documents for SimpleSite 447

Adding a WYSIWYG Interface . 449

Configuring the setup.py File . 452

Choosing a Version Number . 453

Configuring Dependencies . 453

Extra Dependencies. 454

Extra Dependency Links . 455

Specifying Metadata . 455

Customizing the Long Description . 456

Customizing the Production Config File Template 457

Packaging a Pylons Project for Distribution . 459

Building an Egg File . 459

Publishing an Egg on the Python Package Index . 460

Making SimpleSite into a Paste Project Template . 462

Introducing Project Template Variables. 465

Using Project Template Variables. 466

Completing the Cycle. 468

Summary . 469

■CHAPTER 20 Logging . 471

Getting Started with Pylons Logging . 471

Understanding the logging Module . 472

Understanding Log Levels. 473

Logging Variables . 474

Logging in Templates . 474

Introducing Logging Configuration . 475

Logger Sections . 475

Handler Sections . 476

Formatter Sections . 476

■CONTENTS xvii

Redirecting Log Output Using Handlers. 477

Logging to a File . 478

Logging to wsgi.errors . 479

Configuring Which Messages Are Logged. 480

Controlling Propagation with Loggers . 480

Using Propagation to Filter Messages . 482

Summarizing Propagation Options. 483

Capturing Log Output from Other Software. 483

Capturing SQLAlchemy Log Messages Using Propagation 483

Capturing AuthKit Messages Using a Handler . 484

Production Configuration. 485

Summary . 485

■CHAPTER 21 Deployment . 487

Choosing or Setting Up a Python Environment . 487

Using the System Python Environment . 488

Platform Packages or Easy Install? . 488

Using Buildout . 488

Setting Up a Virtual Python Environment. 489

Dealing with Activate. 490

Installing the Required Software into the Environment . 490

Creating a Config File for the Application . 491

Setting Up the Application Instance . 491

Serving the Application from the Installed Environment 492

Deployment Options . 492

Embedding . 493

Proxying . 494

Using Apache to Proxy Requests to Pylons . 494

Setting Up Log Files. 496

Creating init Scripts . 496

Restarting Stopped Applications . 497

Embedding Pylons in Apache with mod_wsgi . 497

Setting Up a Virtual Host . 499

Troubleshooting . 501

Deployment on Windows. 502

Summary . 502

■APPENDIX Licenses . 503

■INDEX . 513

■CONTENTSxviii

About the Author

■JAMES GARDNER is an Oxford University graduate in physics; cofounder of
the Pylons web framework; and founder of 3aims Ltd, a knowledge inter-
action technology consultancy based in London. The majority of his profes-
sional experience has been in the development and support of R&D systems
for three different National Health Service organizations in the United King-
dom, and he also coded the popular “What Should I Read Next?” book recom-
mendation service.

James has been writing computer programs since he was a small boy
when he first got his hands on a Sinclair ZX Spectrum and was very proud to

show his grandmother the flashing colored shapes he had managed to get to appear on a black
background on the TV. The excitement and satisfaction of being able to create something extra-
ordinary from a series of carefully ordered characters in a file and a little bit of logical thinking has
never left him.

James is heavily involved in open source software, and in addition to his involvement in Pylons,
he wrote the Python web modules AuthKit and FormBuild and has a keen interest in authentication
and single sign-on systems such as OpenID. He is an advocate of building web applications with the
Web Server Gateway Interface APIs that you’ll learn about in this book.

While not traveling to London or Oxford, James enjoys nothing more than discussing ideas with
challenging and like-minded individuals or sitting down with a cup of tea, a pile of blank paper, a
pen, and an Internet connection to think about better ways to solve complex problems using web
technology.

In his spare time, James enjoys everything to do with the outdoors from cycling to climbing
and from astronomy to scuba diving. In fact, he recently went on a dive trip to the Farne Islands
off the coast of Northumbria in the United Kingdom where he thoroughly enjoyed having his
equipment nibbled by inquisitive seals. James is lucky enough to have traveled widely and enjoys
meeting new people and learning about the different ways people see the world.

James’ company’s web site is at http://3aims.com, and he maintains a personal blog docu-
menting his experiments with Python and Linux, amongst other things, at http://jimmyg.org.

xix

About the Technical Reviewer

■MICHAEL ORR is one of the Pylons developers and has been writing Python web applications on
several frameworks for the past ten years. Michael is the release manager for the WebHelpers com-
ponent in Pylons. Previously he was the editor of Linux Gazette, a web-based ezine. Mike lives in
Seattle, and his other interests include MMA fight sports, languages, and vegetarian cooking.

xxi

Acknowledgments

Thanks must go primarily to Ben Bangert and Philip Jenvey for their work on Pylons. Ben in par-
ticular is the rock of the Pylons community and should take huge credit for its success. Thanks
also go to Ian Bicking who is responsible for Paste, FormEncode, and other Pylons-related proj-
ects and who was kind enough to let me use a couple of examples from the FormEncode docu-
mentation in the book. Thanks to Mike Bayer for his work on SQLAlchemy and Mako and for
reading the SQLAlchemy chapter alpha online and giving his comments at an early stage. Thanks
also to Graham Higgins for all his help, particularly when the idea of writing a book was first
being discussed.

Thanks to all the visitors to the http://pylonsbook.com site who read the online alpha and gave
comments. The following people in particular provided detailed feedback for which I am especially
grateful: Chris AtLee, Christine Simms, Harri Vartiainen, Henry Miller, Mike Coyle, Nick Daly, and
Krzysiek Tomaszewski. This Pylons book wouldn’t be what it is without all your efforts, and I apolo-
gize if not all of your suggestions made it into the final text.

I’d like to thank Apress for sharing the vision for this book and allowing me to release it under
an open source license so that it can be improved and built upon by the Pylons community, and I’d
like to thank everyone at Apress who helped me with this book for their time and energy.

Thanks too have to go to Mike Orr, the technical reviewer. He did an excellent job of reviewing
the first draft and pushed me toward making this book more about Pylons and less about the tools
and techniques I use in my own web development projects, and that can only be a good thing for
you, the reader.

I’d also like to thank some less obvious people. Thanks to all the people who work at the Hub in
Islington, London, on social enterprise projects. Thanks to Luke, Stephen, Chris, Tom, Holly, Maria,
Fred, and everyone else I’ve discussed this book with. You’ve been an inspiration and enormously
fun to share a workspace with.

Thanks to Richard Noble for giving me the space and support I needed to work on the book
when we were both keen to start our new business venture together and for being great company
when I was working on the book.

Finally, I’d like to thank Beth Christmas, the project manager for this book. She, more than any-
one else, can take credit for this book ever reaching the publishing stage. I haven’t made her life
easy, but she was always there to support me when I needed support and push me when I needed
pushing. I appreciate her efforts enormously and hope they are repaid to some small extent by you
all knowing how grateful I am to her.

xxiii

Source Code and Updates

This book contains many source code examples as well as the code for a complete hierarchical wiki
application called SimpleSite. All the source code is available to download from the Apress web site
at http://www.apress.com or from http://pylonsbook.com. The source code includes a README.txt
file that outlines what each example demonstrates. The examples were all tested in early November
2008 with Pylons 0.9.7 and SQLAlchemy 0.5 release candidates.

This book is released under the GNU Free Documentation License (the same license used by
Wikipedia), so I have also been able to publish the text online. You can find the online versions of
the chapters at http://pylonsbook.com.

The Pylons community is always dynamic and constantly improving, so if you find a problem in
the text or source code with the version of Pylons you are using, I encourage you to report it via the
http://pylonsbook.com web site so that the online chapters can be updated. It is my hope that, with
your help and the help of the Pylons community, this book will continue to be a useful resource for
a long time to come. If you are interested in contributing to the online version of this book or in help-
ing me review the updates or contributions that other readers send in, I’d love to hear from you. My
address is feedback@pylonsbook.com.

I very much hope you enjoy the book and find it a useful resource to help you learn and fully
understand Pylons. I’m sure you’ll find working with Pylons very liberating, and I look forward to
meeting you online if you choose to take part in the Pylons community to share your thoughts
and ideas.

xxv

Installing Pylons

Pylons is written in the Python language and is designed to run on any platform that supports a
modern version of Python. It can therefore be used on Windows, Mac OS X, Linux, BSD, and many
other platforms. Because Python is an interpreted language, Pylons applications you write for one
platform will be able to run on other platforms without any modification.

You can install Pylons in quite a few different ways depending on your needs, but the three
main tools most Pylons developers use are as follows:

• A virtual Python environment

• The easy_install program

• The Python Package Index

In this chapter, you’ll look at what a virtual Python environment is before turning your atten-
tion to the Python Package Index and the easy_install program. Once you have a thorough under-
standing of the install processes used by Pylons, you’ll turn your attention to Python itself and look
at any subtleties you need to be aware of on your particular platform, including how to install pack-
ages that include C and C++ extensions.

■Note If you don’t have a copy of Python installed yet, you might want to jump ahead to the platform-specific
notes later in this chapter to learn how to install a recent version of Python such as 2.5 or 2.6 on your platform.
However, since almost all platforms apart from Windows already come with a recent version of Python, you’ll
probably be able to create a virtual Python environment straightaway.

Quick Start to Installation for the Impatient
Pylons is actually very easy to install. If you are not so interested in the details but just want to get
up and running with a Pylons installation on Linux as quickly as possible, the following steps show
you how. You’ll find steps specific to Windows and Mac OS X later in the chapter.

13

C H A P T E R 2

1. Download the virtualenv.py script from http://pylonsbook.com/virtualenv.py.

2. Create a virtual Python environment in a directory called env so that packages you install for
Pylons do not affect any other programs using Python on your system:

python virtualenv.py --no-site-packages env

3. Windows users would use Scripts instead of bin in the above command but full details are
explained later in the Windows-specific instructions. Use the easy_install program (which
was automatically installed into your virtual Python environment by the previous com-
mand) to install Pylons:

env/bin/easy_install "Pylons==0.9.7"

Once the installation has finished, you should always use the programs in env/bin rather than
the scripts in your system Python installation. For example, where examples in the book specify
something like this:

$ paster serve --reload development.ini

you would actually need to type the following to have the command run from your virtual Python
environment:

$ env/bin/paster serve --reload development.ini

If you don’t quite understand the implications of the setup described here, please read the rest
of the chapter for the full details.

Installation in Detail
Now that you’ve seen the commands used to install Pylons, let’s take a detailed look at the installa-
tion process and what the commands actually do. In the following sections, you’ll learn about how
packages are stored in a format known as an egg, how Easy Install searches online to find the pack-
ages you require, and how to install and work with a virtual Python environment.

Using the Python Package Index
You can download all Python packages from a special part of the Python web site known as the
Python Package Index (PyPI) at http://pypi.python.org. As well as providing the packages, the
Python Package Index also contains information about each package such as the author, the pro-
ject’s home page, and a description of the project. Python packages can contain Python source
code, configuration files, data files, C or C++ extensions, and metadata about the package.

In Part 3 of the book, you’ll learn how you can package up your Pylons applications and auto-
matically upload them to PyPI, but for the moment you need to know only that PyPI is the main
place where you can find Python software.

Setting Up a Virtual Python Environment
A virtual Python environment is an isolated Python installation set up in such a way that the
libraries it contains do not affect programs outside it, making it a good choice for experimenting
with new packages or deploying different programs with conflicting library requirements. You can
also create a virtual Python environment and install software to it without requiring root or admin-
istrator privileges, making it a very useful technique for installing Pylons in a shared environment.
It is highly recommended you install Pylons this way if it’s your first time using it.

CHAPTER 2 ■ INSTALLING PYLONS14

A number of tools are available in the Python community for creating a virtual Python environ-
ment, but the two most popular are Buildout and virtualenv.py. Buildout is popular in the Zope
community because it has a lot of features that help you manage all aspects of a deployment, but it
can be rather complicated. virtualenv.py is a lighter solution designed to handle just the creation
of a virtual Python environment, which makes it perfect for most use cases involving Pylons.

To create a virtual Python environment, you need the virtualenv.py bootstrapping script. The
current version of this script at the time of writing this book is available at http://pylonsbook.com/
virtualenv.py, and many Linux distributions provide a python-virtualenv package, but you will
probably want to use the most recent version instead. To obtain the latest version, visit the Python
Package Index, and search for virtualenv. Download the .tar.gz version of the software, and
extract the virtualenv.py file from the distribution.

You can do so with commands similar to the following, but be sure to update them for the ver-
sion you want to download:

$ wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.1.tar.gz
$ tar zxfv virtualenv-1.1.tar.gz
$ cp virtualenv-1.1/virtualenv.py ./

You can now remove the old files if you like:

$ rm -r virtualenv-1.1
$ rm virtualenv-1.1.tar.gz

Windows users will need to download the file manually because wget is not available, and they
will need to use a tool such as 7-zip from http://www.7-zip.org to extract the files. Mac users and
some Linux users will need to use curl -O instead of wget to download the file.

■Note If you are using a system that already has the easy_install program installed, you could instead install
virtualenv automatically like this:

$ easy_install "virtualenv==1.1"

The virtualenv.py script will then be available in your Python installation’s bin or Scripts directory.

Whichever way you choose to obtain the virtualenv.py script, you can now use it to create an
isolated virtual Python environment to keep your Pylons libraries separate from other libraries on
your system.

You are now ready to create a virtual Python environment. Here’s how it looks on Windows:

C:\>C:\Python25\python.exe "C:\Documents and Settings\Administrator\Desktop\virt
ualenv-1.1\virtualenv.py" C:\env
New python executable in C:\env\Scripts\python.exe
Installing setuptools...............................done.

Windows users shouldn’t create the virtual Python environment in a path with a space. Other-
wise, you may see an error similar to this:

ValueError: The executable 'C:\\Documents and Settings\\Administrator\\Desktop\\
env\\Scripts\\python.exe' contains a space, and in order to handle this issue
you must have the win32api module installed

As the error suggests, installing the win32api module from http://sourceforge.net/project/
showfiles.php?group_id=78018 fixes this issue.

On Linux platforms, you should ensure you have the python-dev package for your Python ver-
sion installed; otherwise, the virtualenv.py script might complain about include files.

It is also worth noting for advanced users that a virtual Python environment is not necessarily
compatible with a customized distutils.cfg file.

CHAPTER 2 ■ INSTALLING PYLONS 15

Working with Easy Install
Now that the virtual Python environment is set up, you can turn your attention to easy_install,
which is a Python program that automatically fetches packages from PyPI as well as any depen-
dencies it has. It then installs them to the same Python environment where the easy_install
program is installed.

The easy_install program is actually part of a module called setuptools and is installed auto-
matically by the virtualenv.py script you just ran.

■Tip If you did not use a virtual Python environment, you can still use easy_install. Download the
ez_setup.py file from http://peak.telecommunity.com/dist/ez_setup.py, and then run this command:

$ python ez_setup.py

You can find full documentation for Easy Install at http://peak.telecommunity.com/DevCenter/
EasyInstall, and although it is a powerful tool with many options for advanced users, its basic use
is very straightforward. To give you a flavor of the common ways to use it, I will run through some
examples.

To install the latest version of the PasteDeploy package used by Pylons and its dependencies,
you would simply run this command:

$ easy_install PasteDeploy

When you run this command, Easy Install will visit the Python Package Index and the Pylons
download page to find the most appropriate version of each of the required packages and install
them each in turn. The PasteDeploy package doesn’t have any dependencies, but if it did, Easy
Install would search the Python Package Index for the most appropriate versions of the dependent
packages and automatically download them too.

If you are using a virtual Python environment, you have to add the path to the virtual environ-
ment’s bin directory before the easy_install command. If you installed your virtual Python
environment to the env directory as described earlier, the command would be as follows:

$ env/bin/easy_install PasteDeploy

On Windows, commands such as easy_install are often real Windows applications, so you can
add the .exe extension to them if you prefer. A virtual Python environment on Windows installs pro-
grams to the Scripts directory rather than to the bin directory, so on Windows the command would
be as follows:

$ env/Scripts/easy_install.exe PasteDeploy

■Caution The rest of the chapters in the book assume you will always add the correct path to your virtual
Python environment scripts and the .exe extension if it is necessary on your platform.

You can install virtually all packages on the Python Package Index in the same way as you
installed the PasteDeploy package here, simply by specifying the package name as the argument
to the easy_install command.

CHAPTER 2 ■ INSTALLING PYLONS16

Installing Pylons
Now that you know how to use easy_install on your platform, it is time to install Pylons.

Pylons consists of lots of different packages that all need to be installed for Pylons to work.
Pylons itself is distributed under the open source license listed in the preface of the book. All its
dependencies are also open source too, but if you are concerned about the details of the licenses,
you should check each package.

Rather than leaving you to install each package separately, Pylons uses the Easy Install system
you’ve just learned about to download and install all its dependencies automatically.

At a command prompt, run this command to install Pylons 0.9.7 and its dependencies:

$ easy_install "Pylons==0.9.7"

At the end of the process, you should have the latest version of Pylons and all its dependencies
installed and ready to use.

■Tip If you are a Windows user and are using Python 2.3, you will also need to install a package called
subprocess, which you can download from http://www.pylonshq.com/download/subprocess-0.1-
20041012.win32-py2.3.exe. Python 2.4 (and newer) users already have this package.

Incidentally, Pylons may not support Python 2.3 for very much longer because of its lack of decorator support,
so you would be wise to upgrade to a more recent version like Python 2.5 or 2.6.

If you want to make sure you have the latest version of Pylons, you can use this command:

$ easy_install -U Pylons

This will install the latest version if it is not already present or upgrade Pylons to the latest ver-
sion if an old version has already been installed.

If you are using a virtual Python environment, you will see that the pylons module has been
installed into the virtual environment:

C:\>C:\env\Scripts\python.exe
Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pylons
>>>

However, if you try to do the same with the system Python executable, you’ll get an error
because the virtual Python installation has isolated the packages from the main system Python as
expected:

C:\>C:\Python25\python.exe
Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pylons
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named pylons
>>>

Now that you have successfully installed Pylons and all its dependencies, you are able to move
on to Chapter 3, but if you really want a thorough understanding, read on!

CHAPTER 2 ■ INSTALLING PYLONS 17

Understanding Eggs
Most new Python software including Pylons and all its dependencies are distributed as eggs. Eggs,
a new package format, have many extra features over the old distutils packages, including the
addition of dependency information used by the easy_install program installed with your virtual
Python environment.

■Tip If you haven’t come across the egg format before, you can think of eggs as being similar to .jar files in
Java or .gem files in Ruby.

Python eggs are simply ZIP files of Python modules with a few metadata files added, and if you
rename them to .zip, you can explore their contents. Module ZIP files have been supported in
Python since version 2.3, so using a ZIP file instead of a directory structure is nothing new.

In Part 3 of the book, you’ll look at how you can create your own egg files from a Pylons appli-
cation, and I’ll discuss more advanced features of eggs such as entry points.

Advanced Topics
You’ve now seen how to set up a virtual Python environment and how to use Easy Install to auto-
matically install Python packages such as Pylons from eggs on the Python Package Index. Before
you move on to learning about platform-specific issues, I’ll cover a few advanced topics that are
worth being aware of to help get the most from your installation.

Activating and Deactivating a Virtual Python Environment
If you are working regularly with the files in a virtualenv virtual Python environment, it can
become tedious to have to type the path/to/env/bin/ part in front of every script you want to exe-
cute. You can solve this problem by activating the environment in which you are currently working.
This puts the virtual Python environment executables first in your PATH environment variable so
that you can run them without typing the full path to the virtual Python environment.

Here’s how to do it on Windows:

C:\Test>..\env\Scripts\activate.bat
(env) C:\Test>python
Python 2.5 (r25:51908, Sep 19 2006, 09:52:17) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pylons
>>>

Once you’ve activated a virtual Python environment with activate.bat, the scripts in the vir-
tual Python environment take precedence over the normal system ones. In the previous example,
you can see that entering python actually runs the version in your virtual Python environment
where Pylons is installed, not the main system Python. The same is true for the other available
scripts.

You can deactivate it by typing deactivate.bat, and things go back to normal:

(env) C:\Test>..\env\Scripts\deactivate.bat
C:\Test>

On Linux and Mac OS X, you activate the environment using a Bash script like this:

$ source env/bin/activate

CHAPTER 2 ■ INSTALLING PYLONS18

This script works in Bash and zsh and probably most other Bourne-compatible shells. It will
not work on csh or tcsh. If it doesn’t work in your non-Bash shell, you’ll have to modify it to con-
form to your shell’s syntax. Don’t forget the word source! That makes it execute in the current shell
rather than starting a new process so that it can modify the current shell’s PATH and other variables.
After a shell is activated, notice that the prompt changes to (env) to remind you which environ-
ment you’re in. This is handy if you end up working in multiple virtual environments in different
windows.

If you want to deactivate a shell, you would enter this command on Linux and Mac OS X:

deactivate

The paths will then return to normal, and the prompt will disappear.

■Caution There is one potential problem to keep in mind with activate/deactivate. The shell keeps the path
of each command in memory so it doesn’t have to look it up again when the command is reexecuted. This by-
passes activate’s changes to the environment, so activate and deactivate try to clear this cache, but some-
times they fail. The result is that you type the command name and get the “wrong” one. To make 100 percent sure
you’re getting the right command, run which python (or which easy_install, and so on) to see the full path of
the command that would have executed. If it’s the wrong one, execute it once by typing the full path, and it will
update the memory cache to use that version of the command.

If in doubt, it is probably worth using the executables directly without the activate/deactivate magic.

Setting Virtualenv Options
The virtualenv.py script has two interesting command-line options that you can use when creating
your virtual Python environment:

--no-site-packages: Don’t make the global site-packages directory accessible in the virtual
environment.

--clear: Delete any previous install of this virtualenv and start from scratch.

The examples so far have used the --no-site-packages option, but you can leave this option
out if you prefer your virtual Python environment to also have access to all the packages already
installed into the system Python environment.

Choosing Package Versions with Easy Install
Easy Install allows you to be very specific about the version of a particular piece of software you
want to install. Let’s use the PasteDeploy package again as an example.

To install the latest version of the PasteDeploy package used by Pylons and its dependencies,
you would simply run this command, as you’ve already seen:

$ easy_install PasteDeploy

To install the PasteDeploy package version 1.7, you would use this:

$ easy_install "PasteDeploy==1.7"

You can also have more complicated version requirements. For example, to install a version of
the PasteDeploy package between 1.5 and 1.7 inclusive, you could do this:

$ easy_install "PasteDeploy>=1.5,<=1.7"

CHAPTER 2 ■ INSTALLING PYLONS 19

You can also use Easy Install to upgrade packages. You use the easy_install command in a
similar way but specify the -U flag to tell Easy Install to upgrade the package. Notice how you can
still specify version requirements even when upgrading:

$ easy_install -U "PasteDeploy>=1.5,<=1.7"

Of course, you can also use Easy Install to directly install eggs that exist on your local system.
For example, to install the Python 2.5 egg for the PasteDeploy package, you could issue this
command:

$ easy_install PasteDeploy-1.7-py2.5.egg

You can use Easy Install to install source distributions that were created with the old distutils
module that forms part of the Python distribution and that Easy Install is designed to replace:

$ easy_install PasteDeploy-1.5.tar.gz

In this case, Easy Install first creates the .egg file from the source distribution and then installs
it. Easy Install is also equally happy taking URLs as arguments as well as package names or paths to
local files on the filesystem.

■Tip Easy Install works by maintaining a file in your Python installation’s lib/site-packages directory called
easy_install.pth. Python looks in .pth files when it is starting up and adds any module ZIP files or paths spec-
ified to its internal sys.path. Easy Install simply maintains the easy_install.pth file so that Python can find the
packages you have installed with Easy Install.

If you ever want to remove a package, the easiest way is to remove its entry from the easy_install.pth file.
You shouldn’t ever need to remove a package, though, because Easy Install will always use the last one you
installed by default.

One really useful option for use with easy_install is --always-unzip. This forces Easy Install
to extract all files from the egg packages so that you can browse their source files on the filesystem
to see how the packages they contain actually work. That’s very handy if you are an inquisitive
developer!

Installing with a Proxy Server
If you try to install Pylons using easy_install and get a message such as error: Download error:
(10060, 'Operation timed out'), it might be because your computer is behind an HTTP proxy and
so easy_install cannot download the files it needs.

For easy_install to be able to download the files, you need to tell it where the proxy is. You can
do this by setting the HTTP_PROXY environment variable. On Linux, you would type this:

$ export HTTP_PROXY="http://yourproxy.com:port"

or if you need proxy authentication, you would type this:

$ export HTTP_PROXY="http://user:password@yourproxy.com:port"

On Windows you would set the following:

> set HTTP_PROXY=http://your.proxy.com:yourPort

You should then be able to run easy_install Pylons again, and this time the program will be
able to find the files. See the next section for installing Pylons offline if you still have difficulties.

CHAPTER 2 ■ INSTALLING PYLONS20

Troubleshooting Easy Install
On rare occasions, the Python Package Index goes down but it is still possible to install Pylons and
its dependencies in these circumstances by specifying Pylons’ local package directory for installa-
tion instead. You can do so like this:

$ easy_install -f http://pylonshq.com/download/ Pylons

This command tells Easy Install to first check the Pylons web site before going to PyPI. If it
finds links to everything it needs on the specified page, it won’t have to go to PyPI at all.

■Note If you’re using an older version of Pylons, you can get the packages that went with it at the time it was
released by specifying the version desired and the Pylons version-specific download site:

$ easy_install -f http://pylonshq.com/download/0.9.6.2/ "Pylons==0.9.6.2"

You can use the same technique to install any of Pylons’ dependencies too. The -f option here tells Easy Install to
search the URL specified as well as the Python Package Index when looking for packages.

If you can’t connect to the Internet at all, you will need to install Pylons offline. Download all
of Pylons’ dependencies, and place them in a directory called downloads. Then use Easy Install to
install the software from the directory using this command:

$ easy_install -f downloads/ "Pylons==0.9.7"

Occasionally Easy Install fails to find a package it is looking for on the Python Package Index.
If this situation occurs, you should first ensure you have the latest version of setuptools by issuing
this command (the -U flag means upgrade, as you saw earlier):

$ easy_install -U setuptools

You will need to do this in Ubuntu 7.04, for example, if you obtained Easy Install via the
python-setuptools*.deb file rather than as part of your virtual Python environment setup because
the version in the .deb file is too old for Pylons and its dependencies.

After upgrading, try to install Pylons again, and if one of the dependencies still fails, you will
need to manually install that dependency first before attempting the Pylons installation once again.

Another error message you may occasionally encounter when using Easy Install is a
pkg_resources.ExtractionError error that reads as follows:

Can't extract file(s) to egg cache The following error occurred while
trying to extract file(s) to the Python egg cache: [Errno 13] Permission
denied: '/var/www/.python-eggs' The Python egg cache directory is currently set
to: /var/www/.python-eggs Perhaps your account does not have write access to
this directory? You can change the cache directory by setting the
PYTHON_EGG_CACHE environment variable to point to an accessible directory.

As the error message suggests, an egg containing a module being imported by pkg_resources
(another module installed with setuptools and easy_install) needs to have its contents extracted
before the module can be used, but the running script doesn’t have permission to extract the egg to
the default location. You can change the place the eggs are extracted to by setting the environment
variable PYTHON_EGG_CACHE to somewhere the application has permission to write to. One way of
doing this is as follows:

import os
os.environ['PYTHON_EGG_CACHE'] = '/tmp'

CHAPTER 2 ■ INSTALLING PYLONS 21

You would need to add this line before the module import that is failing, and you would usually
use a more appropriate location than /tmp.

If you are still having problems, you’ll need to look online or contact the Pylons mailing list at
pylons-discuss@googlegroups.com. Two good places to start are the Easy Install documentation at
http://peak.telecommunity.com/DevCenter/EasyInstall and the TurboGears install troubleshoot-
ing guide at http://docs.turbogears.org/1.0/InstallTroubleshooting. TurboGears 1.0 uses the
same install system as Pylons, so the problems encountered are often similar.

Working on the Bleeding Edge
If you want to use the development version of Pylons—or even contribute to Pylons development—
you can install the bleeding-edge latest version directly from the Pylons Mercurial at http://
pylonshq.com/hg.

Mercurial is a popular open source revision control system written in Python that many proj-
ects including Pylons are choosing instead of Subversion because of its distributed nature and more
powerful feature set. Mercurial is documented in detail in the Mercurial Book at
http://hgbook.red-bean.com/hgbook.html, but if you just want to get started quickly, you will find
this guide on the Pylons wiki very useful: http://wiki.pylonshq.com/display/pylonscookbook/
Mercurial+for+Subversion+Users.

Once Mercurial is installed, you will need to clone the development versions of Pylons and all
its dependencies. It can be quite a time-consuming process to track down all the repositories and
clone the source files, so the Pylons developers created a go-pylons.py script to set up a virtual
Python environment and automate the process.

Download the program for Pylons 0.9.7 from http://www.pylonshq.com/download/0.9.7/
go-pylons.py, and then run this command:

$ python go-pylons.py --no-site-packages devenv

The script whirs away and sets up a development virtual Python environment. The
go-pylons.py script is being improved all the time and might not always be used only to install
development packages. It is likely a future version might also be capable of installing a release ver-
sion of Pylons.

■Caution Although the Pylons development team always tries to ensure the code in the Pylons trunk is function-
ing and up-to-date, there is no guarantee it will be stable. If you choose to use the development version instead of
the official release, you should be aware that Pylons may not behave as you expect and is more likely to contain
some bugs as new features are introduced.

Platform-Specific Notes
Pylons works with all versions of Python since 2.3, but it is recommended that you use Python 2.4 or
newer because some of the third-party packages you are likely to use when developing a Pylons
application are less likely to support the older versions. Python 2.5 or 2.6 are ideal.

The following sections describe how to install Python on Linux/BSD, Windows, and Mac OS X
platforms. They also go into some detail about other tools and software you are likely to need on
your platform as well as any extra steps you need to take or platform-specific issues you need to
know.

CHAPTER 2 ■ INSTALLING PYLONS22

■Note Python supports the use of C or C++ extensions to facilitate integration with other libraries or to speed up
certain sections of code. Although you are unlikely to ever need to write your own extensions when developing a
Pylons application, you may find some third-party packages, particularly database drivers, do contain extensions.

Unlike pure Python packages, packages containing extensions need to be compiled for each platform on which
they are run. Most of the time a binary version of a particular package will already exist for your platform (particu-
larly if you run Windows), but if not, the extension may need to be compiled. The compilation step will happen
automatically, but in order for it to work, you will need to set up a suitable development environment. The installa-
tion sections for Linux/BSD and Mac OS X platforms will describe how to do this.

Linux and BSD
Most modern Linux and BSD platforms include Python as part of their standard installation. You
can find out which version of Python you have on your platform by typing python at a prompt and
reading the information that is displayed. If the python command loads an old version of Python,
you might find that the command python2.5 or python2.4 loads more recent versions.

If your platform doesn’t have a recent version of Python, you will need to install a binary ver-
sion in whichever way is appropriate for your platform. For example, on Debian you would use the
apt-get command, on Fedora or Red Hat you would use RPM, and on FreeBSD you would use the
packages system.

Compiling Python directly from source is also straightforward, and you’re free to do so if you
prefer. First download the source distribution from http://www.python.org/download/source/, and
then extract all the files. One of the extracted files is a README file, which includes build instructions
for various platforms. You should follow the instructions for your particular platform.

If you want to be able to compile Python packages with C or C++ extensions, you will also
need to install a build environment that includes the same version of the GNU Compiler Collec-
tion (GCC) as Python and its dependencies were compiled with. Some platforms also require you
to install a python-dev package as well.

For example, to set up Debian 4.0 to be able to compile Python extensions, you would need to
install these development packages:

$ sudo apt-get install python-dev libc6-dev

Sometimes particular packages need to be compiled with a version of GCC older than the
default on the platform. On Debian you can install GCC 2.95 with this command:

$ sudo apt-get install gcc-2.95

To use this older version, you would set the CC environment variable before trying to build a
package. The way you do this depends on your shell, but for Bash, you would run this command:

$ export CC=/usr/bin/gcc-2.95

Once the required version of GCC has been set up, Easy Install should be able to automatically
compile any dependencies from the same shell. If you need to open another shell, you will need to
check the CC variable is still set and set it again if necessary:

$ echo $CC
/usr/bin/gcc-2.95

CHAPTER 2 ■ INSTALLING PYLONS 23

Mac OS X
Python 2.5 comes preinstalled on Mac OS X Leopard complete with Easy Install, so Leopard users
can get started creating a virtual Python environment and installing Pylons straightaway.

Older versions of Mac OS X also include Python, but the version included is sometimes either
one or two years old because of Apple’s release cycle. The overwhelming recommendation of the
“MacPython” community is for users of old versions of Mac OS X to upgrade Python by download-
ing and installing a newer version. Visit http://www.python.org/download/mac/ for more details.

■Caution It is worth being aware that if you install packages to /Library/Python/2.5/site-packages and
then use virtualenv to install Pylons to a local directory, any applications you run from the local directory won’t
be able to find those in the /Library/... path, so it is always best to install everything locally.

If you encounter this problem, you can fix it by running Easy Install from your virtual Python environment for
each of the packages that appear to be missing. Easy Install will then find them and add them to virtual Python
environment's easy-install.pth file.

Windows
If you are using Windows 95, 98, NT, 2000, ME, XP, 2003 Server, or Vista, you can download the
Python installer from http://python.org/download/. Once you have downloaded the correct ver-
sion for your platform (which will usually be the x86 version), you simply double-click the installer
file and follow the installation instructions (see Figure 2-1).

Figure 2-1. The Python 2.5 Installer running on Windows XP

CHAPTER 2 ■ INSTALLING PYLONS24

■Note To use the installer, the Windows system must support Microsoft Installer (MSI) 2.0. Just save the installer
file to your local machine, and then run it to find out whether your machine supports MSI. Windows XP and newer
already have MSI, but many older machines will already have MSI installed too.

If your machine does not have the Microsoft Installer, you can download it:

Windows 95, 98, and ME platforms use this version: http://www.microsoft.com/downloads/
details.aspx?FamilyID=cebbacd8-c094-4255-b702-de3bb768148f&displaylang=en.

Windows NT 4.0 and 2000 use this version: http://www.microsoft.com/downloads/
details.aspx?FamilyID=4b6140f9-2d36-4977-8fa1-6f8a0f5dca8f&DisplayLang=en.

On Windows, any scripts that are installed by Easy Install will be put in the Scripts directory of
your Python installation. By default neither this directory nor your main Python executable are on
your PATH, so you will not be able to run Python itself or any Python scripts from a command
prompt unless you first navigate to the correct directory or specify the full path each time.

To fix this and save yourself a lot of typing in the future, you should add some directories to
your PATH environment variable. Luckily, this is straightforward to do, so the examples in this book
will assume you have set up your path correctly.

Of course, if you are using a virtual Python environment, you should specify the Scripts direc-
tory within the virtual Python environment rather than the system Python, or you could activate
your virtual Python environment instead as described earlier in the chapter.

If you are using Windows 2000 or Windows XP, you can do the following:

1. From the desktop or Start menu, right-click My Computer, and click Properties.

2. In the System Properties window, click the Advanced tab.

3. In the Advanced section, click the Environment Variables button.

4. Finally, in the Environment Variables window, highlight the path variable in the Systems
Variable section, and click Edit (see Figure 2-2). Add the text C:\Python25\;C:\Python25\
Scripts to the end of the path. Each different directory should be separated by a semicolon,
so the end of your path might look something like this:

C:\Program Files;C:\WINDOWS;C:\WINDOWS\System32➥
;C:\Python25\;C:\Python25\Scripts

5. You might need to restart your computer for the change to take effect.

CHAPTER 2 ■ INSTALLING PYLONS 25

Figure 2-2. Configuring your PATH on Windows XP

To test your installation has worked and your path is configured correctly, you should select
Start ➤ Run and enter the text cmd in the input field. When you click OK, a Windows command
prompt will load. You can then run Python by typing python at the prompt. You should see some-
thing similar to what is shown in Figure 2-3.

Figure 2-3. Windows command prompt running Python

If so, the installation has worked. To exit the Python interactive interpreter, you can press
Ctrl+Z followed immediately by pressing the Enter key.

CHAPTER 2 ■ INSTALLING PYLONS26

■Tip When you develop Pylons applications, you will find you frequently need access to a Windows command
prompt. It can quickly become quite tedious to load a command prompt from the Run option on the Start menu and
then manually navigate to the directory containing your Pylons application. To make life easier, Microsoft has
released an extension called the Open Command Window Here PowerToy, which allows you to right-click a direc-
tory and load a command prompt at that location by choosing Open Command Window Here from the menu. You
can download the extension from http://www.microsoft.com/windowsxp/downloads/powertoys/xppower-
toys.mspx.

There are two slight complications to be aware of when developing Python applications on
Windows. The first is that paths on Windows use the \ character as a path separator rather than the
/ character used on the Linux and Mac OS X platforms. The \ character is treated as an escape char-
acter in strings within Python source code, so you cannot use Windows paths in source code strings
without first escaping the \ characters. You can do this by adding an extra \ character before each \
in the string. For example, a Windows path might be written like this:

my_path = "C:\\Documents and Settings\\James\\Desktop\\Pylons"

Luckily, Python also treats / characters in paths on the Windows platform as path separators,
so you can also write the same path like this:

my_path = "C:/Documents and Settings/James/Desktop/Pylons"

■Note Rather than writing different versions of commands for Windows, Linux, and Mac OS X platforms
throughout this book, I will instead assume you have set up the C:\Python25\Scripts directory to be on your
PATH. Also, I will write any paths using / characters rather than \ characters, so please be aware that you may
have to interpret these slightly differently on Windows.

The second slight complication is the way Windows treats line-end characters. On Unix-like
platforms, the newline character \n is treated as the line end, whereas on Windows the characters
\r\n are used. If you have ever loaded a file in Notepad and wondered why it shows an entire para-
graph as one long line, it is likely that the file was written on a Unix-like platform and Notepad
simply didn’t understand the line-end characters.

Luckily, Python understands line-end issues and will work equally well regardless of the line-
end characters used, but not all software does. It is generally easiest to stick to one type of line-end
character. If you are going to deploy your software on a Unix-like platform, you should strongly con-
sider writing all your Python source files with Unix-style line ends even if you are using Windows.
Although FTP software frequently tries to translate Windows line ends to Unix-style line ends, you
can save yourself the complication by simply using Unix line ends to start with.

CHAPTER 2 ■ INSTALLING PYLONS 27

■Tip Python comes with a built-in editor called IDLE for editing Python source files that you can read about at
http://www.python.org/idle/doc/idle2.html. IDLE is a very powerful IDE, but unfortunately it doesn’t have
an option for choosing which line-end characters to use.

One free editor that does allow you to choose which line ends to use is called SciTE and can be downloaded
from http://scintilla.sourceforge.net/SciTEDownload.html. You can choose your line-end characters
from the menu by selecting Options ➤ Line End Characters. The options are CR+LF, CR, and LF (see Figure 2-4).
LF stands for Line Feed and is the Unix line-end character written \n in Python strings, and CR stands for carriage
return. Windows uses carriage returns and line feeds represented as \r\n in Python strings. If you want to convert
from one type of line end to another, you can use the Convert Line End Characters option in the Options menu.

Figure 2-4. SciTE line endings menu

Summary
You should now have a very good understanding of all the different tools and techniques used for
setting up Python and Pylons, and you should have a virtual Python environment set up and ready
to go. With everything in place, it’s time to move on to the next chapter and get started learning
Pylons.

CHAPTER 2 ■ INSTALLING PYLONS28

Introducing Pylons

This book is about Pylons, an exciting, modern web development framework that puts the devel-
oper firmly in control and makes building complex web applications as easy as possible.

Pylons has grown hugely in popularity in recent years because of its careful balance of power-
ful development features and its modular internal architecture, which help developers to quickly
create sophisticated web applications without hiding what is really going on behind the scenes.
Pylons gives you the power you need to efficiently create web sites and web applications while also
being flexible enough to allow you to do things differently when you really need to. Best of all,
Pylons is an open source project with a great community behind it to offer help and support when
you need it.

The first part of this book will give you all the knowledge you need to start using Pylons’ default
configuration to build high-quality production web sites. In Part 2, you’ll learn about some of
Pylons’ more advanced features, such as Unicode and internationalization support, Ajax, and URL
routing, before moving on to Part 3 to learn about expert topics such as the Web Server Gateway
Interface, authentication and authorization, deployment, and logging.

Each chapter will serve as a complete guide to each of the topics covered and will contain links
to areas you can go for further information. Throughout the book, I will also be taking you through
how to develop a simple web site application called SimpleSite so that you can see how the princi-
ples described in each of the chapters apply in a real Pylons application.

The Old Way: CGI Scripts
In the past, developers typically wrote web applications as a series of simple scripts, each of which
would be responsible for accessing the database for the data it needed and generating HTML to
produce the pages it output. Each individual script was quick to write and easy for an experienced
developer viewing the code for the first time to understand, because everything relevant to the gen-
eration of a particular page would be in one script. Developers had direct access via SQL to the
database they were using and had the power and flexibility to write their code in whichever way
was appropriate for their needs.

Here’s a simple example of the way CGI scripts used to be written:

#!/usr/bin/env python

Get the configuration for the script
import ConfigParser
config = ConfigParser.ConfigParser()
config.read('/path/to/config.ini')

3

C H A P T E R 1

If debugging is enabled, set up the cgitb module
if config.get('general', 'debug') == 'on':

import cgitb; cgitb.enable()

Begin the non-configuration-dependent imports
import cgi
import MySQLdb
import os

Output the HTTP headers
print "Content-type: text/html\n\n"

Output the head of the HTML page
print "<html><head><title>Example</title></head>"
print "<body><h1>Example</h1><p>Here are the comments:</p>"

Get the ID from the URL based on the QUERY_STRING environment
variable using the cgi module
fields = cgi.FieldStorage()
page = int(fields['page'].value)

Fetch data from the database
connection = MySQLdb.connect(

db=config.get('database', 'database'),
user=config.get('database', 'user'),
passwd=config.get('database', 'password'),
host=config.get('database', 'host')

)
cursor = connection.cursor()
cursor.execute("SELECT id, data FROM comment WHERE page=%s", (page,))
results = cursor.fetchall()
cursor.close()
connection.close()

Output the comments
for id, data in results:

print "<p>Commment #%s: %s</p>"%(id, cgi.escape(data))

Output the rest of the HTML page
print "</body></html>"

This script would display a list of comments when a URL such as /cgi-bin/test.cgi?page=1
was entered. You would also need a config file, which looked something like this:

[general]
debug = off

[database]
database = dbname
host = localhost
user = james
password = somepassword

CHAPTER 1 ■ INTRODUCING PYLONS4

The CGI script code isn’t as elegant as it could be, but it does have some benefits. Let’s look at
the pros and cons. First, here are the pros:

• Someone who understands HTTP and SQL will probably be able to understand most of this
code because it uses standard web development techniques.

• Coding in this manner gives the developer a huge amount of power because they have con-
trol over every aspect of the HTTP response and can write SQL queries that are as complex
as they like.

Now, here are some of the cons:

• Every script in the site needs the same code to load the config file and to handle the errors.

• Writing database access code is very repetitive, and the data structures from the database
don’t necessarily represent the objects your application wants to deal with.

• CGI scripts can be slow because the whole Python interpreter as well as the modules the
script uses need to be loaded into memory on each request.

• Designers will find it difficult to change the theme of the site because the HTML-generating
code is interspersed with Python code.

There are also some more subtle problems with creating a whole application as a series of
scripts:

• Code is frequently duplicated in multiple scripts so over time the code can become difficult
to maintain as developers change the database or the code in certain files but aren’t aware
that other scripts also rely on the way the database or code used to work.

• It can be difficult to understand how the whole application is structured because each script
can behave fairly autonomously.

• URLs in the form /cgi-bin/path/to/script.cgi?controller=page&action=view&id=3 do not
readily reflect the structure of your web application and are not as natural to a user as a URL
such as /page/view/3.

The Pylons Way
To address these problems, Pylons (as well as other popular frameworks such as Django, Turbo-
Gears, and Ruby on Rails) use two main techniques:

• A Model View Controller (MVC) architecture

• Convention over configuration

Pylons also puts particular emphasis on loose coupling and clean separation. You’ll learn about
each of these ideas in the following sections.

Model View Controller Architecture
The Model View Controller architecture is a result of the recognition that, at their heart, most web
applications:

CHAPTER 1 ■ INTRODUCING PYLONS 5

• Store and retrieve data in a way that is natural to the programming language involved (the
model)

• Represent the data in various ways, most commonly as HTML pages (the view)

• Execute logic code to manipulate the data and control how it is interacted with (the
controllers)

In Pylons, each of these components is kept separate. Requests are dispatched to a controller,
which is an ordinary Python class with methods called actions that handle the application logic. The
controller then interacts with the model classes to fetch data from the database. Once all the neces-
sary information has been gathered, the controller passes the key information to a view template
where an HTML representation of the data is generated and returned to the user’s browser. The user
then interacts with the view to create a new request, and the process starts again. The model and
controller don’t contain code for generating HTML, and the view templates shouldn’t interact
directly with the model.

This architecture is useful because it not only reflects what happens in most web applications,
but it also keeps your application easy to maintain because you always know where the code han-
dling a particular aspect of your application can be found. For example, Pylons uses a templating
language called Mako to help you generate HTML and recommends the object-relational mapper
SQLAlchemy to help you with your model. You’ll learn much more about models, controllers, and
view templates in the following chapters.

■Caution Those of you coming to Pylons from Django might be accustomed to Django’s approach to the MVC
architecture, which it refers to as MTV (which stands for model/template/view). Although conceptually quite similar
to Pylons’ traditional approach to MVC, there are two key terminology differences:

Django’s template is equivalent to Pylons’ view.

Django’s view is equivalent to Pylons’ controller.

The model is treated similarly in Django and Pylons. You can find a discussion of Django’s reasons for its terminol-
ogy on the Django web site at http://tinyurl.com/3mwwhf.

Convention Over Configuration
A lot of the complexity of web development can be removed by assuming that the developer wants
to do the most obvious thing. For example, almost every time a user requests a page from your site,
you will want to return a simple HTML page. Sometimes you may want to return an image or
perhaps stream some custom binary data, but most of the time, a simple HTML page is all that’s
required.

With this in mind, the Pylons developers designed Pylons to automatically assume data you
return is HTML unless you specify otherwise. This means that for the common cases you don’t have
to configure the Content-type because the convention is that it will be text/html unless you want to
do things differently.

CHAPTER 1 ■ INTRODUCING PYLONS6

Loose Coupling and Clean Separation
Web frameworks such as Django and Ruby on Rails have become extremely popular in recent years
because they provide a structure that allows you to quickly create good-looking web sites by defin-
ing the way the data is structured. The tools they provide then work on that data either to automati-
cally generate code (scaffold in the case of Ruby on Rails) or to create form interfaces at runtime (as
is the case with Django).

Although these frameworks maintain a clean separation between the model, view, and con-
troller layers of code, they aren’t loosely coupled in the way that Pylons is because the ability of the
application as a whole to work relies heavily on the glue code found in the framework itself. Although
it can be easy to write a simple application with these frameworks, it can also be harder to customize
their behavior later in a project because doing so frequently involves understanding how the code
provided by the framework itself works before you can change its behavior. To make the framework
itself easy to use, the framework code sometimes has to be quite complex, and as a result, customiza-
tion can sometimes be rather difficult.

Pylons, on the other hand, is much more loosely coupled. Because it doesn’t provide tools to
automatically generate a nearly finished site for you from the definition of the model, it doesn’t
need complicated glue code holding everything together. Instead, it provides sensible low-level
APIs and methodologies that allow you to quickly and easily glue together the component parts
you choose to use for yourself.

This loosely coupled approach doesn’t mean you have to code absolutely everything for your-
self either. Pylons uses convention over configuration and assumes you will want to use a standard
setup when you create a new project. If you don’t want a standard setup, it is easy to customize the
way Pylons works. For example, by default Pylons uses a templating framework called Mako to
help you generate the templates for your views, but you are under no obligation to use it. By cus-
tomizing your Pylons project, you can easily use any of the other major Python templating
languages including Genshi, Jinja, or even TAL or Breve.

Other Features
In addition to handling a model, views, and controllers, modern web frameworks also have to pro-
vide tools to facilitate each of the following processes:

• Mapping the URL a user visits to the code to be run

• Reading data such as form posts that are sent via HTTP

• Validating and repopulating forms

• Dealing with user accounts

• Storing session information, perhaps using a cookie

They also often provide the following:

• A server component to run the application

• Automatic documentation generation tools

• Systems for packaging, distribution, and deployment

• Testing tools

• Internationalization tools and Unicode support

CHAPTER 1 ■ INTRODUCING PYLONS 7

• Interactive debugging tools

• Logging facilities

Pylons is no exception and provides tools and methodologies for handling all of these things.
You’ll learn about each of them during the course of the book.

The Python Language
Python is a fantastic language for a huge range of programming problems. It is easy to learn and yet
powerful and expressive enough to handle all manner of tasks. It is also great for web programming
(there are good reasons it is one of the three official languages at Google). Perhaps its key benefit is
that Python has a great deal of support across all popular platforms including BSD, Linux, Mac OS
X, and Windows, as well as a huge range of software libraries already available for it, so the majority
of the time you will be able to find a suitable tool for the task you are trying to achieve without hav-
ing to write it yourself.

If you haven’t yet learned Python, now would be a good time to read the Python Tutorial at
http://docs.python.org/tut/tut.html, which will give you all the knowledge you need to get
started developing applications with Pylons.

Another good source of information for learning Python is Mark Pilgrim’s book Dive Into
Python published in 2004. It is freely available online at
http://www.diveintopython.org/toc/index.html and goes into a bit more detail about Python.

Python 3.0
Python 3.0 is a new version of the Python programming language that is currently in alpha release
(as of this writing). Unlike recent upgrades to the Python programming language, Python 3.0 will
not be fully backward compatible with previous versions, so it is likely that code written for Pylons
at the moment will not automatically work with Python 3.0.

Luckily, this isn’t a problem you need to be too worried about for three reasons:

• The changes in Python 3.0 are fairly small, so it is going to be fairly easy to upgrade your
code.

• The Python language team will continue to release 2.x versions of Python after the 3.0
release.

• A tool will be available to automatically translate Python source files from 2.x to 3.x, and it
will handle the vast majority of the conversions necessary. If you are interested, the current
development version is at http://svn.python.org/projects/sandbox/trunk/2to3/.

Once there is enough demand for a Python 3.0 version of Pylons and enough of the Pylons
dependencies have been updated, the Pylons team plans to release a pair of feature-identical
Pylons versions, one for Python 2.6 and one for Python 3.0, in line with the Python community’s
current recommendation.

Python 2.6 includes a feature to print warning messages about any code that is not compatible
with Python 3.0, so you will be able to run your code on Pylons for Python 2.6 to find out where any
problems might be and then, after making changes or running the 2to3 refactor tool, you will be
able to run your code on Pylons for Python 3.0.

CHAPTER 1 ■ INTRODUCING PYLONS8

The Pylons Community
A key benefit of choosing Pylons is that there is a thriving and helpful community built around it.
Getting active in the Pylons community is easy, and we’re always looking to increase community
participation.

Besides the official documentation, there is also a Pylons Cookbook that contains user-
contributed documentation as part of the Pylons wiki. The community always welcomes new
contributions to the Cookbook or comments on existing articles, and if you register on the wiki,
you can even export to PDF by clicking the PDF icon in the top right of the pages to take them on
the road with you.

Pylons wiki: http://wiki.pylonshq.com/

Official documentation: http://wiki.pylonshq.com/display/pylonsdocs/

Cookbook: http://wiki.pylonshq.com/display/pylonscookbook/

For more direct help, the Pylons Discuss mailing list on Google Groups is always active, and
usually quite a few people on the Pylons freenode channel on IRC are happy to help too.

IRC: #pylons on irc.freenode.net

Mailing list: http://groups.google.com/pylons-discuss

Pylons Components
Unlike other web frameworks where each component has been custom built for the framework and
then tightly integrated into its other components. Pylons is more like a collection of very carefully
chosen third-party software. Rather than starting from scratch on each of the components making
up Pylons, the developers instead worked with existing software teams to develop standards and
APIs that would allow their software to work with Pylons.

This approach turns out to be hugely useful and has three core benefits:

• The APIs and methodologies that allow Pylons to work with one class of component—say,
templating languages—also mean that when newer and better software comes along, it is a
simple task to use the same APIs and methodologies to allow Pylons to work with the new
software.

• From the individual software project’s point of view, the APIs that have been developed to
allow the software to work with Pylons also mean the software is much easier to integrate
into other frameworks since the required APIs already exist.

• Because many of the components weren’t initially designed just to be used in Pylons, it also
means you are much more likely to be able to use them in ways you wouldn’t normally
expect web framework components to be used. For example, FormEncode is also an excel-
lent general-purpose conversion library, and SQLAlchemy is used in many projects entirely
unrelated to the Web. This means that as your applications grow or if your requirements
change, Pylons is much more likely to be able to keep pace.

One of the problems for newcomers to Pylons is that it can be difficult to know how all the
components fit together, particularly because the individual projects’ documentation isn’t neces-
sarily web-focused. That’s where this book comes in.

CHAPTER 1 ■ INTRODUCING PYLONS 9

What’s Coming Up
Over the next 20 chapters, you’ll learn everything you need to know to create a simple web site with
a navigation hierarchy, editable sections and pages, a comment system, and tags support. The
application will serve as a very good starting point for any Pylons-based web site you create.

The book is divided into three parts: “Getting Started,” “Advanced Pylons,” and “Expert Pylons.”
In the first part, you’ll learn the following:

• How to install Pylons on Linux, Mac, or Windows in a way that doesn’t interfere with other
software on your system

• How to use project templates to create customizable project skeletons to get you up and run-
ning quickly

• The basics of HTTP and how Pylons’ request and response objects make working with it
much easier

• The basics of the Pylons architecture and what each of the Pylons globals is for

• How to use Pylons’ industry-leading interactive debugger, as well as email reporting tools

• How to create view templates with Mako including how to take advantage of features such as
inheritance to apply consistent themes across multiple pages as well as how to use compo-
nents to generate common structures such as navigational elements

• How to create forms using the Pylons helpers and how to validate and repopulate them as
necessary using FormEncode and HTML Fill

• How to deal with file uploads and repeating validation structures involving one-to-many
mappings in your model

• The various software options for your model, whether it be an XML database, an Amazon S3
store, or a traditional relational database management system

• How you can use SQLAlchemy to model your database, saving you time and effort

At the end of Part 1, you’ll also get started with the example application called SimpleSite so
that you see how the techniques you’ve learned apply in a real application.

Once you’ve mastered the basics, you’ll move on to Part 2 to take a look at some of the more
advanced features and techniques that can be used in Pylons applications. These include the
following:

• How to use Routes to allow complex mappings between the URLs your application handles
and the code that powers them as well as best practices for URL design and how URLs can
be used as simple state stores

• What Unicode is and how to use it throughout your Pylons application

• How to write a Pylons application that supports multiple languages and displays non-
Western characters such as Japanese or Arabic

• The YUI library and how it can be used to simplify your client-side CSS and layouts

• The basics of the JavaScript language including the areas where it differs from Python

• How to use Ajax and animation to improve your web applications

• How to write effective unit and functional tests

• How to use docstrings and reStructuredText to quickly and easily write good documentation
for your Pylons project

CHAPTER 1 ■ INTRODUCING PYLONS10

You’ll then return to the SimpleSite example and add a navigation hierarchy, CSS, and
JavaScript to the example application as well use some advanced SQLAlchemy features such as
inheritance.

Once you’ve mastered these techniques, you’ll learn all about Pylons’ internal structure and
how you can easily use a specification called the Web Server Gateway Interface to extend or change
the way Pylons itself works. in Part 3, you’ll cover the following:

• The Web Server Gateway Interface specification and the details of how to program various
types of Web Server Gateway Interface components

• A bit about the history of Pylons and how it influences the design methodology

• How Pylons uses the PasteDeploy package and egg entry points to allow easy customization
of middleware and applications in configuration files

• How Pylons uses the egg format and setuptools to allow easy packaging and distribution of
Pylons applications and dependencies on the Python Package Index

• How to use AuthKit to implement authentication and authorization appropriate to your
application’s needs

• The principles of various ways web applications can be written including multithreaded,
multiprocess, and asynchronous web applications and why most deployment options for
Pylons are multithreaded

• How to deploy a Pylons application using Apache or Nginx proxying to a Paster server, how
to use mod_wsgi to embed a Pylons applications in an Apache server, and where to learn
about the many other ways to deploy Pylons applications

• How to use Python’s powerful logging system with a Pylons application

You’ll then take a final look at the SimpleSite application and see how to turn the project back
into a project template so that other people can use it as a starting point for their own applications.

By the end of the book you should have a thorough understanding of how to use Pylons as well
as a good knowledge of the technologies Pylons uses and the underlying reasons for their inclusion
in the Pylons framework so that you are empowered to make your own choices about which com-
ponents to use in your own Pylons applications.

Pylons is a framework that is designed to work with you and not to enforce its view of the world
on your project. This book will give you the skills you need to use Pylons’ default options but also to
know when to break the rules.

Summary
This chapter gave you a broad understating of some of the design philosophies of Pylons and what
makes it slightly different from other frameworks you might have used.

There’s clearly a lot to learn, so let’s get started!

CHAPTER 1 ■ INTRODUCING PYLONS 11

Exploring Pylons

Now that you have seen how to set up a Python environment and have used Easy Install to install
Pylons and its dependencies, it is time to create your first Pylons project. In time-honored tradition,
I’ll start with an example that outputs the words Hello world! to the web browser.

In this chapter, you’ll also learn the basics of the Hypertext Transfer Protocol, learn about
Pylons’ request and response objects, and begin learning how Pylons works and about the other
objects Pylons sets up for you.

Exploring Pylons’ Dependencies
As you learned in Chapter 1, Pylons is more like a collection of very carefully chosen separate com-
ponents than a tightly integrated framework, but it can often be difficult to work out exactly how
each of the components fits together. You’ll learn this over the course of the book, but let’s take a
quick look at the packages that were installed along with Pylons so that you can get an idea of the
big picture.

If you followed the installation instructions from the previous chapter, take a look at the
lib/python2.5/site-packages directory in your virtual Python environment. You will see all of
Pylons’ dependencies as well as the easy-install.pth and setuptools.pth files, which Easy Install
uses to keep track of the installed eggs. If you’ve installed other packages too, you will also see them.

The following list contains the components relevant to Pylons 0.9.7. Of course, the version
numbers might change slightly over time and future versions of Pylons might have slightly different
dependencies, but the following list is correct at the time of this writing:

Beaker-0.9.5-py2.5.egg: Beaker is a piece of software used internally by Pylons to implement
its caching and session functionality. The Pylons session global described later in the chapter
uses Beaker, as does Pylons’ caching functionality described in the Pylons Cookbook at http://
wiki.pylonshq.com/display/pylonsdocs/Caching+in+Templates+and+Controllers, but you
would never normally interact with Beaker yourself directly.

decorator-2.2.0-py2.5.egg: This is a simple tool used by Pylons to create the @validate and
@jsonify decorators. You’ll learn about @validate in Chapter 6, and you’ll learn about @jsonify
in Chapter 15. Once again, you won’t normally use decorator in your own programs because
you’ll usually use the decorators provided by Pylons.

FormEncode-1.0.1-py2.5.egg: FormEncode is a library for validating form submissions from
web sites. Although Pylons doesn’t use it internally, Pylons users work with it so often that it
is considered an essential part of Pylons. The FormEncode package also includes a module
named formencode.htmlfill that can be used to populate a string containing HTML fields with
values and error messages. Together FormEncode and HTML Fill make an ideal tool set for
handling forms in a Pylons application. Chapter 6 is dedicated to explaining how to use
FormEncode and HTML Fill in a Pylons application.

29

C H A P T E R 3

Mako-0.2.0-py2.5.egg: Mako is one of the three template languages that Pylons 0.9.7 sup-
ports out of the box. The others are Genshi (an XML template language) and Jinja (based on
Django’s template system). You have to install Genshi and Jinja separately if you want to use
them, whereas Mako is included in the default Pylons installation because it is the recom-
mended template language to use. Using Mako to generate your views is described in detail
in Chapter 5.

nose-0.10.3-py2.5.egg: This provides tools to help you write and run automated unit tests.
Testing is described in Chapter 12.

Paste-1.6-py2.5.egg, PasteDeploy-1.3.2-py2.5.egg, and PasteScript-1.6.3-py2.5.egg: Paste
comes in three packages for the benefit of framework developers who require only one part of
its functionality. Pylons uses all three packages for a wide variety of things throughout the
framework, but once again, as a Pylons application developer, you won’t normally directly
interact with the Paste components yourself.

Over time, the functionality in the Paste modules has been split up into custom packages.
For example, the paste.wsgiwrappers module, which provided the pylons.request and pylons.
response objects in Pylons 0.9.6, is now replaced by WebOb, which provides the Pylons 0.9.7
versions of those Pylons objects. The paste.eval_exception module, which provided the 0.9.6
error handling, is replaced by WebError in Pylons 0.9.7, and even the paste.auth functionality
has been built upon and improved in AuthKit, which you’ll learn about in Chapter 18. Don’t be
surprised if future versions of Pylons include even more projects spun out from their roots in
Paste.

Despite the gradual shift to separate packages, Pylons still relies on Paste for its configuration
files, registry manager, development HTTP server, project template creation, test fixtures, error
documents, and more. The various parts of Paste are described throughout the book as they are
encountered.

Pylons-0.9.7-py2.5.egg: This is where everything needed to glue together the other compo-
nents of Pylons is found. Pylons itself is relatively small, so if you are the curious type, feel free
to look at its code to get a feel for how everything works.

Routes-1.9-py2.5.egg: Pylons uses a system called Routes that allows you to map a URL to
a set of variables usually including controller and action. These variables are then used to
determine which Pylons controller class and method should be used to handle the request. At
the same time, Routes allows you to specify a set of variables and have a URL generated from
them so that you never need to hard-code URLs into your application. I’ll introduce Routes in
this chapter, but you will learn the details of all of Route’s powerful features in Chapter 9.

setuptools-0.6c8-py2.5.egg: This contains the methods used by the easy_install script to
provide all of its features and allow the use of egg files.

simplejson-1.8.1-py2.5-linux-x86_64.egg: This package converts data back and forth
between JSON and Python formats and is used by the @jsonify decorator mentioned earlier.
Pylons application developers also occasionally use simplejson directly in their controllers.

Tempita-0.2-py2.5.egg: Tempita is a small template language that is a dependency of Paste.
It is used only behind the scenes for simple variable substitutions when you create a new
Pylons project directory with the paster create command described later in this chapter.

WebError-0.8-py2.5.egg: WebError provides Pylons’ powerful interactive debugging and trace-
back functionality described in Chapter 4.

CHAPTER 3 ■ EXPLORING PYLONS30

WebHelpers-0.6-py2.5.egg: WebHelpers is a collection of stand-alone functions and classes
that provide useful functionality such as generating common HTML tags and form fields, han-
dling multiple pages of results, and doing much more.

WebOb-0.9.2-py2.5.egg: This provides the new pylons.request and pylons.response objects in
Pylons 0.9.7.

You might have noticed that SQLAlchemy, a database toolkit you’ll learn about in Chapter 7,
and AuthKit, a toolkit you’ll learn about in Chapter 18, are not included in the list of packages
installed automatically with Pylons. This is because Pylons can be used perfectly well without them,
and although most users will choose to install them, some developers will want to choose alterna-
tives instead.

Installing Pylons also installs some scripts. If you look in your virtual Python environment’s bin
directory (or the Scripts directory on Windows), you will see the following:

activate (or activate.bat on Windows): This is an optional script described in Chapter 2 for
activating a virtual Python environment to make the other scripts available automatically on
the current shell or command prompt without having to type the full path to the virtual
Python environment.

nosetests: This is a script used for running your Pylons tests; it is provided by the nose package,
which was mentioned earlier and will be described in Chapter 12.

python: This is the Python executable you should use for all work within the virtual Python
environment.

easy_install: This is the Easy Install program for installing software into your virtual environ-
ment described in Chapter 2. mako-render: This is a simple script installed with Mako that takes
a single file containing Mako template markup as an argument and outputs the rendered tem-
plate to the standard output on your console. This isn’t very useful for Pylons development.

paster: This is a very useful script that uses the Paste Script package and has a number of sub-
commands including paster create and paster serve, which you’ll see later in this chapter,
that are for creating a new Pylons project and serving a Pylons application, respectively. You’ll
also see paster make-config and paster setup-app, which are for handling the creation of a
config file from a distributed Pylons project and for setting it up. These are advanced features
you’ll learn about in the SimpleSite tutorial throughout the book.

Your bin (or Scripts) directory might also see a file such as easy_install-2.5, which is simply
a Python 2.5 version of the easy_install script, or a python2.5 script, which is a Python 2.5 version
of the python script if you are using multiple versions of Python on your system. You should gener-
ally use the easy_install and python versions because they match the version of Python you used
when you ran the python virtual_python.py env command in Chapter 2.

Don’t worry if you don’t understand everything I’ve mentioned in this section; it will all become
clear as you get more familiar with Pylons.

Creating a Pylons Project
Now that you’ve seen a quick overview of all the Pylons components, it’s time to create your first
Pylons project.

Let’s get started by using Paste’s paster create command to automatically generate a Pylons
project directory structure for you. You are completely free to create all the files and directories
yourself if you prefer, but the Pylons project template provides a useful starting point that most
people prefer to use.

CHAPTER 3 ■ EXPLORING PYLONS 31

■Caution In Pylons terminology, there are two different types of template, and it is important not to get con-
fused between the two. View templates are text files that contain a mixture of Python and HTML and are used to
generate HTML fragments to return to the browser as the view component of the MVC architecture. Any template
written with Mako is a view template. Project templates are sets of files and directories that are used by the
paster create command to generate a complete project directory structure to use as a basis for a new Pylons
application.

Create a new project named HelloWorld based on the Pylons default project template with this
command:

$ paster create --template=pylons HelloWorld

The --template option tells the paster create command which project template to use to cre-
ate the HelloWorld project. You will also see examples using -t instead of --template, but both have
the same effect:

$ paster create -t pylons HelloWorld

■Note If you have problems running the previous paster create command, it is likely you have forgotten to
include the full path to the paster script (or the paster.exe executable in the case of Windows). You might see
a message such as paster: command not found or 'paster' is not recognized as an internal or
external command, operable program or batch file.

Remember that if you are using a virtual Python environment, you will need to type the full path to the exe-
cutable (for example, env/bin/paster or C:\env\Scritps\paster) or modify your PATH as described in
Chapter 2, either directly or by using the activate or activate.bat script. The examples in this book assume
you have read Chapter 2 and will type whatever is appropriate for your installation.

The project template used in the previous paster create command is called pylons, which
is the default for Pylons. You can always see which project templates are available with the
--list-templates option shown here, but bear in mind that because Paste is a general-purpose
library, not all the templates available will be for generating Pylons projects. In Chapter 19, you’ll
learn how to create your own Pylons project template to add to this list:

$ paster create --list-templates
Available templates:
basic_package: A basic setuptools-enabled package
paste_deploy: A web application deployed through paste.deploy
pylons: Pylons application template
pylons_minimal: Pylons minimal application template

Advanced users might like to experiment with the pylons_minimal application template, which
leaves you to do more configuration yourself.

Now let’s return to the HelloWorld example. Once you have run the paster create
--template=pylons HelloWorld command, you will be asked some questions about how you want
your project set up. You can choose which view template language you want to use for the project
and whether you want SQLAlchemy support built in. For this example, choose the defaults of
Mako for the view template language and no SQLAlchemy support since you haven’t installed
SQLAlchemy yet anyway. Just press Enter at each of the prompts, and the script will quickly gener-
ate your new project.

CHAPTER 3 ■ EXPLORING PYLONS32

Serving a Pylons Application
Now that you have a sample project application, it is a good idea to run it with a web server to see
what the default project provides; however, before you can serve the Pylons application you’ve just
created, you need to learn about configuration files.

Configuration Files
Configuration files enable you to set up the same Pylons application on different servers with differ-
ent settings and for different purposes without having to change the source code for the project.

The project template you have used creates two configuration files for you in the HelloWorld
directory, one named development.ini and one named test.ini. The development.ini file contains
settings to run the Pylons application in a development environment such as your local worksta-
tion, whereas the test.ini file contains the settings you want to use when testing the application.
You create a new configuration file called production.ini when you are ready to serve the applica-
tion file in production.

The following code is the top part of the development.ini file generated as part of the applica-
tion template. There is also some logging configuration, which you’ll learn about in Chapter 20.

#
helloworld - Pylons development environment configuration
#
The %(here)s variable will be replaced with the parent directory of this file
#
[DEFAULT]
debug = true
Uncomment and replace with the address which should receive any error reports
#email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 5000

[app:main]
use = egg:helloworld
full_stack = true
cache_dir = %(here)s/data
beaker.session.key = helloworld
beaker.session.secret = somesecret
If you'd like to fine-tune the individual locations of the cache data dirs
for the Cache data, or the Session saves, un-comment the desired settings
here:
#beaker.cache.data_dir = %(here)s/data/cache
#beaker.session.data_dir = %(here)s/data/sessions

WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
#set debug = false

CHAPTER 3 ■ EXPLORING PYLONS 33

As you can see, the configuration file is in three parts. The [DEFAULT] section contains global
configuration options that can be overridden in other sections. The [server:main] part contains
information for the server used to serve the Pylons application, and the [app:main] section contains
configuration options for the Pylons application. All the option values can contain the string
%(here)s, which gets replaced with the location of the config file, enabling you to easily specify rela-
tive paths.

Let’s discuss the options available:

debug: This can be true or false. If true, the Pylons interactive debugger is enabled to allow
you to track down problems, as you’ll learn about in the next chapter. You should always dis-
able the interactive debugger in production environments by setting debug to false.

email_to, smtp_server, error_email_from: These options specify where error reports should be
sent if the interactive debugger is disabled, but they could potentially be used by third-party
components too since they are specified in the [DEFAULT] section and are therefore available
to all components using the configuration file.

host, port: These specify the IP address and port the server should listen on for requests. Only
the server uses them.

full_stack: You can set this to false to disable Pylons interactive debugging, error report
support, and error documents support, but you’ll usually leave this set to true.

cache_dir: This is the directory where components can store information on the filesystem.
Session information from Beaker and cached view templates from Mako are stored in this
directory. You can manually override where Beaker stores its session information with the
beaker.cache.data_dir and beaker.session.data_dir options, but you won’t usually need
to do so.

beaker.session.key: This should be something unique to your application so that other appli-
cations using Beaker can’t access your application’s data.

beaker.session.secret: This is a random string of letters and numbers used to make the
cookie value representing the session harder to guess to reduce the risk of a malicious user
trying to gain access to someone else’s session information. You should always change this to
something other than somesecret if you are using Pylons session functionality.

The Paste HTTP Server
To run your application for development purposes, it is recommended you use the Paste HTTP
server from the Paste package that was installed as one of Pylons’ dependencies. The Paste HTTP
server does for Pylons applications what Apache does for PHP and other languages; it listens for
HTTP requests and dispatches them to the running application, returning the result via HTTP to
the user’s browser.

The Paste HTTP server has two features that make it more suitable for Pylons development
than most web servers:

• It can be made to automatically reload when you change the source code.

• It understands the configuration files used by Pylons, so they can be used directly. As you’ll
see in Chapter 19, other servers require the assistance of the Paste Deploy package to turn
a Pylons config file into an application.

CHAPTER 3 ■ EXPLORING PYLONS34

You can start the server with your development configuration with this command:

$ cd HelloWorld
$ paster serve --reload development.ini
Starting subprocess with file monitor
Starting server in PID 17586.
serving on 127.0.0.1:5000 view at http://127.0.0.1:5000

If you are Windows user, you may be prompted to unblock Python on port 5000 depending on
your firewall settings.

The --reload option puts the Paste HTTP server into a very useful mode where the server care-
fully monitors all Python modules used by your application as well as the development.ini configu-
ration file. If any of them change, the server is automatically reloaded so that you can immediately
test your changes. This is useful during development because it saves you from having to manually
stop and start the server every time you make a change.

To stop the server, you can press Ctrl+C (or Ctrl+D if you’re running Windows), but don’t stop it
yet. If you visit http://127.0.0.1:5000/ in your web browser when the server is running, you will
see the welcome page shown in Figure 3-1.

Figure 3-1. The Pylons default page

Static Files
Now that the server is running, try creating a new file named hello.html in the HelloWorld/
helloworld/public directory with the following content:

<html>
<body>

Hello world!
</body>

</html>

CHAPTER 3 ■ EXPLORING PYLONS 35

If you visit http://127.0.0.1:5000/hello.html, you will see the Hello world! message.
A Pylons project’s public folder is a bit like an htdocs directory in Apache. Any files in the

public directory are treated as static files and are served treating the URL as the path to the file to
serve. If the URL represents a directory and that directory contains an index.html file, it will be
served instead; however, for security reasons, Pylons does not provide a directory index facility, so
if no index.html file is present in a directory, a “404 File Not Found” response is returned.

Pylons automatically provides E-Tag caching for static files in the public directory. This allows
browsers that support E-Tag caching to check to see whether a file has changed since the last time
they fetched it. If it hasn’t changed, the browser won’t download the file a second time.

A Word About IP Addresses, Hosts, and Security
The numbers 127.0.0.1 in the URL you have been using to test your HelloWorld application repre-
sent the IP address on which the Paste HTTP server is serving the Pylons application. The IP address
127.0.0.1 is a special IP address that references your own computer. This means your Pylons appli-
cation can be accessed only from the computer on which you are running the Paste HTTP server.
This is actually very important because, as you will learn in the next chapter, Pylons comes with a
powerful interactive debugging tool that is enabled by default when using the development.ini con-
figuration file. If people could access your running development instance and an error occurred,
they might be able to use the interactive debugger to enter malicious commands, so this is why as
of Pylons 0.9.7 the default configuration file instructs the Paste HTTP server to bind to 127.0.0.1 so
it answers requests only from the local computer.

If you want to test how the application works from a different computer, you can change the
IP address the Paste HTTP server uses by editing the host option in the [server:main] section of the
development.ini file. You can also change the port on which the server runs by changing the port
variable. If you don’t want :5000 in your URLs, you should set the server to run on port 80. Browsers
will connect to port 80 by default for HTTP requests if no port is specified in the URL. Most produc-
tion systems run on port 80 for this reason, but for development it is fine to run your application on
port 5000.

The IP address 0.0.0.0 is also worth knowing about. Setting the host option to 0.0.0.0 will
cause the Paste HTTP server to respond to requests on all IP addresses on your server. This is the
setting normally used in production configurations when the Pylons interactive debugger has
been disabled.

Servers frequently have hostnames mapped to particular IP addresses, and you can specify a
server’s hostname instead of the IP address if you prefer. It is a convention on most platforms that
the hostname localhost will refer to the IP address 127.0.0.1, so for the majority of the time, you
can use localhost rather than the IP address 127.0.0.1. With the Paste HTTP server still running, try
visiting http://localhost:5000/hello.html; chances are you will still see the same Hello World!
message you did before.

Exploring a Pylons Project’s Directory Structure
Now that you’ve seen a simple Pylons application serving static files from the public directory, I’ll
take the opportunity to show you the rest of the files and directories that the paster create com-
mand generated for you from the default pylons application template.

CHAPTER 3 ■ EXPLORING PYLONS36

The main HelloWorld directory contains the following files and directories:

docs: This directory is where you can keep documentation for your project. Pylons applications
are often documented in a language called reStructuredText. The reStructuredText files can
then be converted to HTML using tools such as Sphinx. Both reStructuredText and Sphinx are
discussed in Chapter 13.

helloworld: This is the main application directory, but its name depends on the package name
you gave as the argument to the paster create command when the project was generated.
Pylons applications are usually given a package name in CamelCase, but the application direc-
tory itself is the lowercase version of the package name. In this case, you specified the package
name as HelloWorld, so the main Pylons application directory is named helloworld. If you were
to write import helloworld, it would be this directory’s files that are imported. I’ll return to this
directory in a moment to explore the subdirectories it contains.

HelloWorld.egg-info: This is a special directory that contains metadata about your project in
a format that is used by setuptools when you treat the application as an egg.

development.ini and test.ini: These are the configuration files I discussed in the previous
section.

ez_setup.py: Your Pylons application relies on some features provided by the setuptools mod-
ule, but not every Python installation comes with the setuptools module already installed,
because it isn’t an official part of the Python distribution. The ez_setup.py file is therefore
included to automatically install setuptools if someone without it tries to install your Pylons
application.

MANIFEST.in: Your Pylons application contains various files that aren’t Python modules such
as the templates and static files. These files are included in a Python package only if they are
specified in a MANIFEST.in file. The MANIFEST.in file in your project’s directory forces these
files to be included.

README.txt: Having a README file in a project’s root directory is standard practice, so this file is
simply there for you to describe your project to anyone looking at its source code. You can cus-
tomize it as you see fit.

setup.cfg and setup.py: The setup.py and setup.cfg files control various aspects of how your
Pylons application is packaged when you distribute it. They also contain metadata about the
project. You’ll see them being used as you read the SimpleSite tutorial chapters.

You may also notice a data directory that contains cached session and template information. It
is created the first time you run a Pylons application that needs it to be present. The location of this
directory can be configured with the cache_dir option you saw a moment ago when I discussed
configuration file options.

Now let’s take a look at the main Pylons application directory. As mentioned a moment ago,
this will have a name based on the package name, so it will be different in each Pylons project. In
this case, it is called helloworld and contains the following files and directories:

config: The config directory is where most Pylons functionality is exposed to your application
for you to customize.

controllers: The controllers directory is where your application controllers are written. Con-
trollers are the core of your application. They allow you to handle requests, load or save data
from your model, and pass information to your view templates for rendering; they are also
responsible for returning information to the browser. You’ll create your first controller in the
next section.

CHAPTER 3 ■ EXPLORING PYLONS 37

lib: The lib directory is where you can put Python code that is used between different con-
trollers, third-party code, or any other code that doesn’t fit in well elsewhere.

model: The model directory is for your model objects; if you’re using an object-relational mapper
such as SQLAlchemy, this is where your tables, classes, and relations should be defined. You’ll
look at using SQLAlchemy as a model in Chapter 7.

public: You’ve already seen the public directory. It is similar to the htdocs directory in Apache
and is where you put all your HTML, images, JavaScript, CSS, and other static files.

templates: The templates directory is where view templates are stored.

tests: The tests directory is where you can put automated unit tests for your application.

__init__.py: The __init__.py file is present so that the helloworld directory can be imported
as a Python module within the egg.

websetup.py: The websetup.py contains any code that should be executed when an end user
has installed your Pylons application and needs to initialize it. It frequently contains code to
create the database tables required by your application, for example. We’ll discuss this in
Chapter 8.

Creating a Controller and Modifying the Routes
It’s now time to learn how to generate the message dynamically using a Pylons controller. Con-
trollers are the basic building blocks of Pylons applications. They contain all the programming logic
and can be thought of as mini-applications. Controllers are implemented as Python classes. Each
method of the class is known in Pylons as an action. On each request Pylons routes the HTTP infor-
mation to a particular controller action based on the URL that was requested. The action should
return a response, which Pylons passes back to the server and on to the browser.

Let’s see this in practice by creating a controller. Once again you can use a paster command
to help you get started quickly:

$ paster controller hello

This command creates a skeleton controllers/hello.py file for you as well as a helloworld/
tests/functional/test_hello.py file that is used for running some of the functional tests of the
controller discussed in Chapter 12. If you are using the Subversion revision control system to man-
age the source files in a Pylons project, the paster controller command will also automatically
add both files to your working copy.

Modify the index() action of the HelloController to look like this:

class HelloController(BaseController):
def index(self):

return 'Hello from the index() action!'

Let’s test this code. With the server still running, visit http://127.0.0.1:5000/hello/index, and
you should be greeted with the Hello from the index() action! message.

Let’s look closely at that URL. If you have used ASP, PHP, or CGI scripts, you’ll know that the
URL the user visits directly represents the path on the filesystem of the script the server should exe-
cute. Pylons is much more flexible than this; it uses a system called Routes to map sets of URLs to
particular controllers. This means your URLs don’t always have to directly represent the controllers
that handle them. By default, Routes is set up so that the first URL fragment after the hostname and

CHAPTER 3 ■ EXPLORING PYLONS38

port represents the controller and the second part represents the action. In this case, /hello/index
means use the index action of the hello controller, and so the URL you just visited results in the
index() method of HelloController being called to display the response.

One very common requirement is the ability to map the root URL http://localhost:5000/ to
a controller action. After all, you wouldn’t want to be limited to having a static file as the root URL.
To do this, you need to add a line to the routes configuration. Add a new line to the top of the main
route map in helloworld/config/routing.py just after the # CUSTOM ROUTES HERE comment so that
the routes are defined like this:

CUSTOM ROUTES HERE

map.connect('/', controller='hello', action='index')
map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')

This tells Routes that the root URL / should be mapped to the index action of HelloController.
Otherwise, Routes should look for URLs in the form /controller/action/, and /controller/
action/id. This, along with other details of Routes, is described in detail in Chapter 9.

Since you have made changes to a Python file used by the project, you would need to restart
the server for the changes to be picked up. Because you started the server with the --reload option,
though, this will happen automatically.

If you visit http://127.0.0.1:5000/ again, you will notice that the static welcome page is still
there. This is because Pylons looks in the public directory for files to serve before attempting to
match a controller. Because the public/index.html file still exists, Pylons serves that file.

If you delete the public/index.html file, you should see the Hello from the index() action!
message you were expecting.

Understanding How HTTP Works
At this point it is worth taking a step back from Pylons to understand what is actually going on to
display the Hello from the index() action! message.

At its heart, web development is all about the Hypertext Transfer Protocol (HTTP). Any web
page you visit that starts with http:// is using HTTP to communicate between the browser and the
server. Other protocols are used on the Internet too, such as the File Transfer Protocol (FTP), but for
creating data-driven web sites with Pylons, HTTP is the only one you need to understand.

■Note If you’re new to web development, it is important not to get confused between HTTP and HTML. HTTP is
the protocol with which the browser communicates with a server, whereas HTML is a markup language used to
create web pages.

To understand exactly what is going on when you create a web page, it is useful to be able to
see the HTTP information being sent back and forth between a web browser and a Pylons applica-
tion. One good tool for doing this is the LiveHTTPHeaders extension for the Firefox web browser,
which you can download from http://livehttpheaders.mozdev.org/. Once you have installed it,
you can select View ➤ Sidebar ➤ LiveHTTPHeaders from the menu to load the extension in the
sidebar, and it will display all the HTTP information sent and received on each request.

CHAPTER 3 ■ EXPLORING PYLONS 39

■Tip You can download the Firefox web browser from http://mozilla.com/products/firefox. It will run on
the Windows, Mac OS X, Linux, and BSD platforms. It is particularly useful for web development because of the
extensions available that give you fuller access to the processes going on within the web browser.

Another particularly useful extension is the Web Developer toolbar available from https://addons.mozilla.
org/en-US/firefox/addon/60, which offers facilities for managing cookies and style sheets as well as for out-
lining block-level elements and tables.

Firefox also has powerful extensions such as Firebug, which in addition to its JavaScript and DOM manipula-
tion facilities allows you to analyze page load times. I will discuss Firebug in Chapter 15 when I cover Ajax.

When you request a page, the browser sends an HTTP request to the server. When the server
receives that request, it will calculate an HTTP response. Depending on the request, it may retrieve
information from a database or read a file from the filesystem to prepare the response.

HTTP supports different types of requests. You are probably already familiar with the GET
method used to retrieve information from a URL and the POST method used primarily to send form
data, but there are other less well-known methods such as HEAD, OPTIONS, PUT, DELETE, TRACE,
and CONNECT.

Figure 3-2 shows a simple HTTP GET request where you can see the HTTP information sent
when visiting http://127.0.0.1:5000/.

Figure 3-2. An HTTP request in LiveHTTPHeaders

Figure 3-3 shows the response returned.

CHAPTER 3 ■ EXPLORING PYLONS40

Figure 3-3. An HTTP response in LiveHTTPHeaders

As you can see, the browser sends quite a lot of information to the server. The application then
processes this information and performs any necessary operations before returning a status and
any HTTP headers it wants to send back. Of particular note is the Content-type header that tells the
browser what sort of content is going to be sent (in this case text/html). Finally, the application
returns the content that will be displayed by the browser (in this case the HTML that makes up the
page). The server may add extra HTTP headers or perform other modifications before the response
is returned.

In this example, the HTTP status code is 200, which means everything went fine and no error
occurred. The application and server can use many other status codes to tell the browser what hap-
pened while processing the request. Table 3-1 describes some of the most commonly used codes.

Table 3-1. Commonly Used HTTP Status Codes

Status Code Description

200 OK The request has succeeded.

401 Unauthorized The request requires user authentication.

403 Forbidden The server won’t let the user access what was requested, perhaps
because the user doesn’t have the appropriate permissions.

404 Not Found The server has not found anything matching the request URI.

500 Internal Server Error The server encountered an unexpected condition that prevented it
from fulfilling the request.

For the vast majority of web development situations, the areas of the protocol I have discussed
are all you need to know, but if you are interested in the details of HTTP, you can find the full specifi-
cation at http://www.w3.org/Protocols/rfc2616/rfc2616.txt, including an explanation of all the
request methods and status codes.

CHAPTER 3 ■ EXPLORING PYLONS 41

Exploring the Environment
Information about the HTTP request as well other information is presented to your Pylons appli-
cation through environment variables. These are a set of dynamic values set by the web server on
each request. Exactly which variables are set depends on the web server, the browser, and the
action the user is trying to perform. Once Pylons receives these variables from the environment,
they are passed to the Pylons request object for use in your controllers. You wouldn’t usually
access environment variables directly, but it is useful to know where the Pylons request object
gets its information from.

If you have ever written CGI scripts or used PHP, you will most likely be familiar with using
environment variables already, in which case many of the variables mentioned in this section will
be familiar. It is worth remembering, though, that Pylons controllers aren’t executed in the same
way as CGI or PHP scripts, so consequently some of these variables have slightly different meanings
in the Pylons context.

The following variable is set for all requests and are not request specific:

SERVER_NAME: The server’s hostname, DNS alias, or IP address as it would appear in self-
referencing URLs.

The following are specific to the request:

SERVER_PORT: This is the number of the port to which the request was sent.

SERVER_PROTOCOL: This is the name and revision of the protocol used in the request. Usually it is
HTTP/1.1.

REQUEST_METHOD: This is the method with which the request was made, such as GET, HEAD,
POST, and so on.

REMOTE_HOST: This is the hostname making the request (set only if the server has this
information).

REMOTE_ADDR: This is the IP address of the remote host making the request.

REMOTE_USER: This is the username of an authenticated user but is set only if a user is signed in.

AUTH_TYPE: If the server supports user authentication, this is the authentication method used to
validate the user.

CONTENT_TYPE: If the request was an HTTP POST or PUT, then there could be content sent by
the client. This is the content type of the data.

CONTENT_LENGTH: If a CONTENT_TYPE is specified, this is the length of that content.

QUERY_STRING: This is the part of the URL after a ?, such as foo1=bar1&foo2=bar2.

SCRIPT_NAME and PATH_INFO: In a Pylons application, SCRIPT_NAME is the part of the URL before
the URL the Pylons application would treat as its site root, and PATH_INFO is the part of the URL
after it. If you are serving the application, normally SCRIPT_NAME will be '' and PATH_INFO will be
the part of the URL before the query string. If you were to mount the Pylons application at, say,
/myapp, then SCRIPT_NAME would be /myapp and PATH_INFO would be the part of the URL after it
and before the query string.

In addition to these environment variables, any HTTP headers that are sent in the request and
not dealt with by previous environment variables are also included after being prefixed with HTTP_
and having any - characters replaced with _ characters. Since these are set by the user’s browser,
they warrant more suspicion than the previous environment variables. Here are some of the more
familiar ones as examples:

CHAPTER 3 ■ EXPLORING PYLONS42

HTTP_HOST: This is the hostname and domain name portion of the URL, such as
www.pylonshq.com.

HTTP_COOKIE: This is the content of the client’s cookie(s).

HTTP_USER_AGENT: This is the user-agent string to identify the browser type and version.

Although you would normally access these variables through the more convenient request
object, Pylons is all about giving power to the developer, so you can still access environment vari-
ables directly in your controllers if you choose. They are available as the request.environ dictionary.
You’ll see how to use the request object in a few moments.

In addition to the CGI-style variables listed earlier, the server running your Pylons application
also adds extra information to the environment called WSGI variables, which can sometimes be
useful to know about for use in your Pylons application.

■Tip WSGI stands for the Web Server Gateway Interface, and although you don’t need to know anything about it
to develop Pylons applications, it is actually a very powerful API on which much of Pylons is based, so I’ll cover it in
detail in Chapters 16 and 17.

Here are the WSGI variables you will also find in the Pylons request.environ dictionary:

wsgi.version: This is a tuple, (1,0), representing WSGI version 1.0.

wsgi.url_scheme: This is a string representing the “scheme” portion of the URL at which the
application is being invoked. Normally, this will have the value http or https, as appropriate.

wsgi.input: This is an input stream (a file-like object) from which the HTTP request body can
be read for PUT and POST requests.

wsgi.errors: This is a text mode output stream (a file-like object) to which error output can be
written. Applications should use \n as a line ending and assume it will be converted to the cor-
rect line ending. For many servers, wsgi.errors will be the server’s main error log.

wsgi.multithread: This evaluates to true if the application object can be simultaneously
invoked by another thread in the same process; it evaluates to false otherwise. It typically
takes the value 0 or 1.

wsgi.multiprocess: This evaluates to true if an equivalent application object can be simultane-
ously invoked by another process, and it evaluates to false otherwise. It typically takes the
value 0 or 1.

wsgi.run_once: This evaluates to true if the server or gateway expects that the application will
be invoked only this one time during the life of its containing process. Normally, this will be
true only if your Pylons application is being run from a CGI script.

Once again, you will rarely need to access WSGI variables directly because the components in
Pylons that add them also present a clean API for their use, but it is useful to know they are there.

To see all the environment variables that Pylons sets up for you, add another action called
environ() to the HelloController you created earlier so that it looks like this:

class HelloController(BaseController):

def index(self):
return 'Hello from the index() action!'

CHAPTER 3 ■ EXPLORING PYLONS 43

def environ(self):
result = '<html><body><h1>Environ</h1>'
for key, value in request.environ.items():

result += '%s: %r
'%(key, value)
result += '</body></html>'
return result

If you visit http://127.0.0.1:5000/hello/environ, you will see all the keys and values dis-
played, including the WSGI variables and the traditional CGI-style environment variables.

Understanding the Pylons Request and Response
Now that you have learned about the fundamentals of HTTP and the environment, let’s return to
learning about Pylons, specifically, the request and response objects.

The request and response objects together represent all the information Pylons receives about
the HTTP request and all the information Pylons is going to send in the response. Let’s start by look-
ing at the request object.

Request
The Pylons request object is actually a subclass of the webob.Request class provided by the WebOb
package, which was automatically installed as one of Pylons’ dependencies. A new instance of the
class is created on each request based on the HTTP information Pylons receives via the environ-
ment. The object is available as the pylons.request object and is automatically imported at the top
of any controllers you create with the paster controller command.

You can look at the API reference on the WebOb web site at http://pythonpaste.org/webob/ for
full details of the Webob.Request object’s API and on the Pylons web site at http://docs.pylonshq.
com/modules/controllers_util.html#pylons.controllers.util.Request for details of the subclass,
but there are a few methods and attributes that are particularly worth mentioning now:

request.environ: You’ve already seen this when I discussed the environment. It is a dictionary
that contains CGI-style environment variables, WSGI variables, and request header informa-
tion, but it is not normally used directly. Instead, other attributes of the request global are used
to obtain Python representations of the information it contains.

request.headers: This is a dictionary representing all the HTTP request headers. The dictionary
is case insensitive.

request.method: This is the HTTP method used to request the URL; typically, it is GET or POST
but could be PUT, DELETE, or others.

request.GET: This is a dictionary-like object with all the variables in the query string.

request.POST: This is a dictionary-like object with all the variables in the request body. This has
variables only if the request was a POST and it is a form submission.

request.params: This is a dictionary-like object with a combination of everything in request.
GET and request.POST. You will generally use request.params rather than request.GET or
request.POST, although they all share the same API. I’ll cover request.params more closely in
a minute because it is the main object you will use to deal with form submissions.

request.body: This is a file-like object representing the body of a POST request.

request.cookies: This is a dictionary containing the cookies present.

request.url: This is the full request URL, with the query string, such as http://localhost/
app-root/doc?article_id=10. There are also other attributes and methods for obtaining differ-
ent parts of the URL and even for generating URLs relative to the current URL.

CHAPTER 3 ■ EXPLORING PYLONS44

The request object also has attributes for most of the common HTTP request headers, such
as request.accept_language, request.content_length, and request.user_agent. These properties
expose the parsed form of each header for whatever parsing makes sense. For instance,
request.if_modified_since returns a datetime object (or None if the header was not provided).

Although the request object has plenty of useful attributes and methods, the one you are likely
to use the most is request.params. This contains a MultiDict object representing all the GET and
POST parameters of the request. Of course, you can access the GET and POST parameters sepa-
rately via the request.GET and request.POST attributes, but most of the time you are unlikely to be
trying to obtain GET and POST parameters at once, so you can just use request.params that com-
bines the data from each.

■Note A MultiDict object is a dictionary-like object defined in the WebOb package that allows multiple values
with the same key.

The request.params object can be treated in a number of ways. Imagine you’ve visited the URL
http://localhost:5000/hello/index?a=1&a=2; you could then use the request.params object in the
following ways:

>>> request.params
MultiDict([('a', '1'), ('a', '2')])
>>> request.params['a']
'1'
>>> request.params.get('a', 'Not present')
'1'
>>> request.params.get('b', 'Not present')
'Not present'
>>> request.params.getall('a')
['1','2']

■Caution If you are used to programming with Python’s cgi module, the way request.params works might
surprise you because if the request has two parameters with the same name, as is the case with our example
variable a, using request.params['a'] and request.get('a') returns only the first value rather than return-
ing a list. Also, the methods described return the actual value, not an object whose .value attribute contains the
value of the parameter.

There is also one other method, request.params.getone(), which returns just one value for the
parameter it is getting. In this case, calling request.params.getone('a') raises an error because
there is more than one value for a:

>>> request.params.getone('a')
Traceback (most recent call last):
...

raise KeyError('Multiple values match %r: %r' % (key, v))
KeyError: "Multiple values match 'a': ['1', '2']"

To avoid problems obtaining just one value for a parameter when you expected many or
obtaining many when you expected just one, you are encouraged to use the request.params.
getone() and request.params.getall() methods in your own code rather than the dictionary-like
interface.

CHAPTER 3 ■ EXPLORING PYLONS 45

Response
Now that you’ve looked in detail at the request object, you can turn your attention to the response
object. You have actually been implicitly using the response object already if you’ve been following
the examples in this chapter. Any time you return a string from a controller action, Pylons auto-
matically writes it to the response object for you. Pylons then uses the response object to generate
the HTTP information it returns to the browser, so any changes you make to the response object
affect the HTTP response returned. Let’s look at the response object in more detail.

The response object is also a subclass of webob.Response, and once again you can find full
details on the WebOb web site and the Pylons documentation web site at the same URLs as men-
tioned for the request object, but there are some features worth drawing your attention to here.

The response object has three fundamental parts:

response.status: This is the response code plus message, like '200 OK'. To set the code without
the reason, use response.status_int = 200.

response.headerlist: This is a list of all the headers, like [('Content-Type', 'text/html')].
There’s a case-insensitive dictionary-like object in response.headers that also allows you to
access these headers as well as add your own.

response.app_iter: This is an iterable (such as a list or generator) that will produce the content
of the response. You rarely need to access this in a Pylons application, though, because Pylons
automatically uses this to produce the content of the response for you.

Everything else derives from this underlying state. Here are the highlights:

response.content_type: This is the content type not including the charset parameter.

response.set_cookie(key, value, max_age=None, path='/', domain=None, secure=None,
httponly=False, version=None, comment=None): This sets a cookie. The keyword arguments
control the various cookie parameters. The max_age argument is the length for the cookie to live
in seconds (you can also use a datetime.timedelta object). The Expires key will also be set
based on the value of max_age.

response.delete_cookie(key, path='/', domain=None): This deletes a cookie from the client.
This sets max_age to 0 and the cookie value to ''.

Looking at the HelloWorld example from earlier in the chapter, you might have noticed that
although the Content-type header sent to the browser was text/html, the message you returned
was actually plain text, so the Content-type header should have been set to text/plain. Now that
you have learned about the response object, you can correct this. Update the index() action of the
hello controller so that it uses this response:

def index(self):
response.content_type = 'text/plain'
return 'Hello from the index() action!'

The server will reload when you save the change, and you can test the example again by visit-
ing http://localhost:5000/. This time, the browser treats the message as plain text instead of
HTML. If you are using the Firefox browser, you may notice it uses a different font to display the
message this time.

Understanding Pylons Globals
The request and response objects you learned about in the previous section are referred to as
Pylons globals because Pylons takes great care behind the scenes to make sure they can be used

CHAPTER 3 ■ EXPLORING PYLONS46

throughout your application including in your project’s controllers and its templates. In this sec-
tion, I’ll cover all the other Pylons globals you can use in your application. Let’s start by looking at
the objects made available by default in your controllers.

If you look at the controllers/hello.py file in the HelloWorld project I’ve been using as an
example, you will see the following imports at the top:

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

These lines are for importing the core Pylons globals, but in addition to these globals, there
are also some other imports Pylons developers can add to their controllers to import optional
Pylons globals:

import helloworld.lib.helpers as h
from helloworld.lib import app_globals
from pylons import config

You’ve already learned about the request and response globals, and I’ll cover h, app_globals,
and the template context object c in detail in the following sections, so let’s just concentrate on
session, abort, redirect_to, and config for the time being:

abort(status_code=None, detail="", headers=None, comment=None): Occasionally you might
want to immediately stop execution of the request and return a response bypassing the normal
flow of execution of your application. You can do this with the abort() function, which is used
like this:

def test_abort(self):
username = request.environ.get('REMOTE_USER')
if not username:

abort(401)
else:

return"Hello %s"%username

In this example, if no REMOTE_USER environment variable is set, it means that no user has
signed in, so the request is immediately aborted and returns a 401 status code (the correct
HTTP status code for when a user has not been authenticated and is therefore not author-
ized to see a particular resource).

The function also allows you to add some text to form part of the status as well as any extra
headers that should be set. If you use a 300 status code, the detail option should be the
location to redirect to, but you would be better using the redirect_to() function in such
circumstances.

Internally, the abort() function uses WebOb HTTPExceptions, which you’ll learn about in
Chapter 17.

config: This contains configuration information about the running application. It is
described at http://docs.pylonshq.com/modules/configuration.html.

redirect_to(*args, **kwargs): This function takes the same arguments as the url_for()
function you will learn about in the next section. It allows you to specify a URL to redirect to
by stating the routing variables that you want the URL to produce once it is called.

It is also possible to specify the HTTP status code you want to use with the _code argument.

CHAPTER 3 ■ EXPLORING PYLONS 47

For example:

redirect_to(controller='hello', action='other_action', _code=303)

session: This is a proxy to the Beaker session object that can be used as a session store with
various back ends. By default, the session information is stored in your project’s data directory,
and cookies are used to keep track of the sessions. You’ll learn how to use sessions in Chapter 8
when you implement a flash message system.

In Chapter 11, you will also learn about four more Pylons globals named translator,
ungettext(), _(), and N_(), but these are too advanced for now.

Helpers
Helper functions (or helpers as they are known) are a concept borrowed from Ruby on Rails and
are simply useful functions that you will find yourself using over and over again to perform com-
mon tasks such as generating form fields or creating links. Helper functions are all kept in the
lib/helpers.py module in your project directory structure, but you must manually import them
into your controllers if you want to use them. Since helpers are used frequently, it is common to
import them using the shortened module name h rather than the full name helpers to save on
typing:

import helloworld.lib.helpers as h

One of the most useful helpers is h.url_for(), which is a function that comes from the Routes
package to help you generate URLs. You’ve already seen how the Routes system maps a URL to a
particular controller action. Well, the h.url_for() helper does the reverse, mapping a controller and
action to a URL. For example, to generate a URL for the environ action of the hello controller, you
would use the following code:

h.url_for(controller='hello', action='environ')

In Pylons it is generally considered bad practice to ever write a URL manually in your code
because at some point in the future you might want to change your URL structure, or your Pylons
application might be mounted at a different URL. By using h.url_for() to generate your URLs, you
avoid these problems since the correct URL is always generated automatically.

The Routes system is actually extremely powerful, and you will see some of the details of the
way it works in Chapter 9. One aspect worth mentioning now is that you can also specify extra vari-
ables in your route maps. For example, if you wanted URLs in the format
/calendar/view/2007/06/15, you might set up a map that treats calendar as the controller and view
as the action and then assigns 2007 to a variable year, 06 to a variable month, and 15 to a variable
called day. When Pylons called your controller action, it would pass in year, month, and day as the
parameters, so your action would look like this:

def view(self, year, month, day):
return "This is the page for %s/%s/%s"%(year, month, day)

In this way, the URL itself can contain important information about what the page should dis-
play, and this both saves you having to pass such variables around your application as hidden fields
and means your URL structure much better matches what is actually going on in your application.

You can use many other useful helpers to make your programming easier, but one of the great
things about Pylons is that you can easily add your own too. Adding a new helper to the h object is
as simple as importing a new function into your project’s lib/helpers.py module or defining a new
object in it. As an example, let’s refactor the code you wrote earlier to print the environment into a
useful helper. At the end of your project’s lib/helpers.py file, add the following function:

CHAPTER 3 ■ EXPLORING PYLONS48

def format_environ(environ):
result = []
keys = environ.keys()
keys.sort()
for key in keys:

result.append("%s: %r"%(key, environ[key]))
return '\n'.join(result)

Then after importing the helpers as h, you can update your action to look like this:

def environ(self):
response.content_type = 'text/plain'
return h.format_environ(request.environ)

■Tip In this case, the helper function needed access to the environment that formed part of the request, so if you
are a keen object-oriented programmer and had wanted to refactor the environment formatting code, you might
have been tempted to add a private method to the controller rather than create a helper function that needs the
request information passed in. Generally speaking, it is a lot better to add useful code that you intend to use a lot
as a simple helper object than to add methods to controller classes because then they can easily be accessed
throughout your Pylons application rather than just in controller actions.

You’ll see more of the built-in Pylons helpers when I cover form handling in Chapter 6.

Context Object
When you develop a real Pylons application, you will quickly find you need to pass request-specific
information to different parts of your code. For example, you might need to set some variables to be
used in a template or in a form validator.

Because Pylons is designed to work in a multithreaded environment, it is important that this
information is passed around your application in a thread-safe way so that variables associated
with one request don’t get confused with variables from any other requests that are being executed
at the same time.

Pylons provides the context object tmpl_context for precisely this purpose, and again, since it
is used so frequently, it is imported by default into your controllers as the c object. The c object is
a StackedObjectProxy that always returns the correct data for the current request.

You can assign attributes to the c object like this, and they will be available throughout the
application:

c.my_data = 'Important data'

You can choose any attribute name you want to assign variables to as long as they don’t start
with the _ character and are a valid Python name. They will then be available throughout your
templates and application code and will always contain the correct data for the thread that is han-
dling a particular request.

As was mentioned in the discussion about helpers, the Routes system Pylons uses allows you to
use parts of the URL as variables in your application. Since you frequently need to access these vari-
ables in templates and other areas of your code, Pylons automatically sets up the c object to have
any of the Routes variables that your action specified attached to it. You could therefore modify the
helpers example from earlier to look like this, and it would still work in the same way:

def view(self, year, month, day):
return "This is the page for %s/%s/%s"%(c.year, c.month, c.day)

CHAPTER 3 ■ EXPLORING PYLONS 49

There is one more important aspect to learn about the c variable that you might not expect
at first. If you access an attribute that doesn’t exist, the value returned will be the empty string ''
rather than an AttributeError being raised as you might expect. This enables you to write code
such as this without needing to test each part of the statement to check that the attribute exists:

data = c.some_value or c.some_other_value or "Not specified"

This code will set data to be c.some_value if it exists and otherwise c.some_other_value if that
exists; if neither exist, the value will be set to "Not specified".

This style of code can be useful occasionally, but if you are not used to writing code like this,
I strongly recommend you stick to explicitly testing values of attributes you are not sure about to
avoid the risk of errors. You can do this with the Python functions hasattr() and getattr(), which
are used like this:

if hasattr(c, "foo"):
x = c.foo

else:
x = 'default'

y = getattr(c, "bar", "default")

To use the strict version of the c global, edit your project’s config/environment.py file, and add
the following line just before the lines to customize your templating options:

config['pylons.strict_c'] = True
Customize templating options via this variable

With the strict_c option enabled, c will raise an AttributeError as you would expect. It is
strongly recommended you set the strict_c option if you are a Pylons beginner.

■Caution If you come across an error you can’t quite understand when performing some operation on an
attribute of c, it is possible that you have forgotten to specify the attribute and that the empty string is being
returned instead. Trying to perform an operation on the string when you expected it to be a different object may
be what is causing the error.

App Globals Object
Sometimes you might want information to be available to all controllers and not be reset on
each request. For example, you might want to set up a database connection pool when the
application is loaded rather than creating a connection on each request. You can achieve this
with the app_globals object.

■Note In previous versions of Pylons, the app_globals global was simply named g. New Pylons applications
should use the full name app_globals instead.

The app_globals variable is actually just an instance of your Globals class in your application’s
lib/app_globals.py file. It gets set up in the config/environment.py file of your project.

Any attributes set to self in the __init__() method of the Globals class will be available as
attributes of app_globals throughout your Pylons application. Any attributes set on app_globals
during one request will remain changed for all subsequent requests, so you have to be very careful
not to accidentally change any global data by mistake.

CHAPTER 3 ■ EXPLORING PYLONS50

Here is a simple counter example that demonstrates how the app_globals object works. First
modify your lib/app_globals.py Globals class so that the __init__.py method looks like this:

def __init__(self):
self.visits = 0

You will now be able to access the visits attribute as app_globals.visits in your controllers.
First import the global from Pylons:

from pylons import app_globals

Next add a new action to the end of the HelloController:

def app_globals_test(self):
app_globals.visits += 1
return "You are visitor number %s." % app_globals.visits

If you restart the Paste HTTP server and visit http://localhost:5000/hello/app_globals_test,
you should see the message You are visitor number 1. If you visit the page again, the message will
be changed to You are visitor number 2. On each subsequent request, the counter will increase.

If you restart the server, you will see that the value of app_globals.visits is reset to 0 because a
new instance of the helloworld.lib.app_globals.Globals class is created when the server starts.

■Caution Because the app_globals object is persistent across requests, it can be modified by any thread.
This means it is possible that a value attached to app_globals might be different at the start of a request than at
the end if another thread has changed its value in between. This doesn’t matter in our example, but it is something
to be aware of if you aren’t used to working in multithreaded environments.

Configuring Pylons
You configure Pylons applications in two places. The first is the configuration file you saw earlier in
the chapter when you looked at the HelloWorld project’s development.ini file. The configuration file
is where any per-instance configuration options should be put. For example, the port and hostname
might vary between a production deployment of your Pylons application and a development instal-
lation, so these are options that are set in the configuration file.

Any configuration that should affect the whole application and should not be customizable on
a per-instance basis is set in Python code in one of the files in your project’s config directory. These
are the following:

middleware.py: This is where the Pylons application is constructed and where you can change
the Pylons middleware stack itself. Middleware is considered an advanced topic and is dealt
with in Part 3 of the book.

routing.py: This is where you define your application’s routes. You saw a simple example ear-
lier in the chapter and will look at routing in much more detail in Chapter 9.

environment.py: This is where you configure most of Pylons’ internal options, although you
generally don’t need to because the defaults are very sensible. One time when you might need
to set some options in this file is if you want to use a different templating language to the
Pylons default, which is Mako. You’ll learn about this in Chapter 5.

Once you have configured your application, whether in the configuration file or the config/
environment.py file, you will want to be able to access that configuration in your Pylons application.
All configuration is contained in the config global, which can be imported into a controller like this:

CHAPTER 3 ■ EXPLORING PYLONS 51

from pylons import config. The config object has a number of attributes representing different
aspects of Pylons configuration. These are described in detail at http://docs.pylonshq.com/
modules/configuration.html, but these are two that you are likely to use frequently:

config.app_conf: This is a dictionary of all the application options set in the [app:main] part of
the config file being used including any custom options used by your application. For example,
to access the location of the cache directory, you could use config.app_conf['cache_dir'].

config.global_conf: This is very similar to config.app_conf, but rather than providing a dic-
tionary interface to the [app:main] section of the config file, this attribute represents the global
options specified in the [DEFAULT] section.

There are also attributes for the package name, default character set, paths to look for tem-
plates, and more. See the documentation for full details.

Controller Imports
In addition to the Pylons globals I’ve described, there are a number of other useful objects that
Pylons provides for you to use in your controllers. Each of these objects is described in detail in
the Pylons module documentation, which you can browse online at http://docs.pylonshq.com/
modules/index.html, but they are worth mentioning here so that you are aware of them.

First let’s look at the available decorators:

pylons.decorators.jsonify(func): Given a function that will return content, this decorator will
turn the result into JSON, with a content type of text/javascript, and output it.

pylons.decorators.validate(...): This validates input either for a FormEncode schema or for
individual validators. This is discussed in detail in Chapter 6.

pylons.decorators.secure.authenticate_form(func): This decorator uses an authorization
token stored in the client’s session for prevention of certain cross-site request forgery (CSRF)
attacks.

pylons.decorators.secure.https(*redirect_args, **redirect_kwargs): This decorator redi-
rects to the SSL version of a page if not currently using HTTPS.

pylons.decorators.rest.dispatch_on(**method_map): This dispatches to alternate controller
methods based on the HTTP method.

pylons.decorators.rest.restrict(*methods): This restricts access to the function depending
on the HTTP method. You’ll see it used in Chapter 8.

pylons.decorators.cache.beaker_cache(...): This cache decorator utilizes Beaker. This caches
the action or other function that returns a “pickleable” object as a result.

Pylons also provides two different types of controllers:

pylons.controllers.core.WSGIController: This is the controller that your project’s
BaseController is inherited from and is the only controller you will use in this book.

pylons.controllers.xmlrpc.XMLRPCController: This controller handles XML-RPC responses
and complies with the XML-RPC specification as well as the XML-RPC Introspection speci-
fication. It is useful if you want to build XML-RPC web services in Pylons.

CHAPTER 3 ■ EXPLORING PYLONS52

Finally, it is worth mentioning three more objects you are likely to use a lot in your controllers,
but each of these has their own chapter and will be dealt with later in the book:

render: This is used for rendering templates and is discussed in Chapter 5.

model: This is used for the model component of your application and is discussed in Chapter 7.

log: This is used to output log messages.

In its simplest form, you can simply write log.error('Log this message') in a controller, and
the message will be logged to the console of the Paste HTTP server. Logging is described in detail in
Chapter 20.

Summary
This chapter covered quite a lot of ground, including using static files, understanding HTTP and the
environment, using the request and response objects, and understanding the basics of Routes. In
the next chapter, you’ll take a detailed look at how to track down problems when they occur and
how to handle them so that the user is presented with an appropriate error message. After that,
you’ll be ready to get properly stuck into Pylons development, so you’ll learn how to use templates
before looking at how forms are handled.

CHAPTER 3 ■ EXPLORING PYLONS 53

Tracking Down and
Handling Problems

One of the factors that most affects how quickly you can develop an application is your ability to
track down and fix problems. Pylons provides three sets of tools to help you in this regard:

• A world-class web-based interactive debugger

• A console-based interactive testing shell

• A powerful set of logging tools

You’ll learn about the interactive debugger in this chapter, but I’ll leave the discussion of the
interactive shell until Chapter 12 and the discussion of logging until Chapter 20.

You’ll also learn about how to present a page to the user when an error occurs using Pylons’
error documents support.

It is also worth remembering that the --reload option from the Paste HTTP server described in
the previous chapter can also help speed up the debugging process. When the --reload option is
used, the server keeps track of all the Python files your application uses, and if any of them should
change, the server gets automatically restarted so that you can test your changes straightaway.

Using the Pylons Interactive Debugger
When you create a new Pylons application and keep the full_stack config option set to its
default value of true, Pylons will include a special component called the ErrorHandler middle-
ware in your application. You’ll learn more about how the ErrorHandler middleware actually
works in Chapter 17, but you don’t need to know the details of how the ErrorHandler middleware
works in order to use the Pylons interactive debugger.

If an exception occurs when debug mode is set to true in the config file, the ErrorHandler
middleware catches the exception and triggers the Pylons interactive debugger, which is a web page
that provides various means of debugging the application, including an interactive Ajax-based
Python console (see Figure 4-1).

55

C H A P T E R 4

Figure 4-1. The Pylons interactive debugger

The interactive debugger screen has four main tabs, three of which are particularly useful:

Traceback tab: This tab provides the raw exception trace and allows you to see the local vari-
ables at each part in the traceback. If you click >>, you will be able to see the source code
around the area where the code was called. Clicking + next to a particular part of the traceback
will open an interactive Ajax Python prompt, which allows you to enter Python commands to
debug the application at that point in the call stack. It also provides a view of all the local vari-
ables at that point in the stack. You can, of course, open many interactive Ajax Python prompts
at different parts of the traceback to debug different parts of the call stack.

Extra Data tab: This tab displays the CGI environment and WSGI variables at the time of the
exception as well as information about the global and application-level configuration options
that are set in your development.ini config file.

Template tab: If the exception occurred while rendering a Mako template, this tab will be dis-
played by default and will contain Mako’s HTML representation of what went wrong. This can
often be a lot more useful than the main traceback information because the syntax error that
occurred can be displayed visually, enabling you to go straight to the template code to correct
the error. If the exception that triggered the interactive debugger was not triggered in a tem-
plate, the Template tab will be empty.

Let’s modify the HelloWorld application created in the previous chapter to re-create the excep-
tion shown in Figure 4-1. Add another action to the HelloController:

def debugger(self):
value = "Some value"
raise Exception('Just testing the interactive debugger!')

If you visit http://localhost:5000/hello/debugger, an exception will occur, and this will trig-
ger the interactive debugger.

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS56

Try clicking the >> link by the words raise Exception, and you will see a representation of the
code near where the error occurred. If you click the + icon after the word debugger on the previous
line, you will be shown the local variables list and the interactive Ajax Python prompt. Try entering
the following line:

print value

You should see the value Some value displayed, just like you would in a normal Python prompt
(see Figure 4-2). Try entering some other Python commands, and you will see the prompt behaves
exactly as a normal prompt. You can even use the up and down arrow keys to scroll through the
command history.

Figure 4-2. The interactive debugger in use

A new feature of the interactive debugger in Pylons 0.9.7 is the Online Assistance box shown in
Figure 4-3. Clicking Search Mail Lists will present a search box with the exception prepopulated to
allow you to search the Pylons mailing list for the error that occurred. You can also search related
mailing lists such as the Python, Mako, and SQLAlchemy lists.

Figure 4-3. The online assistance tools

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS 57

If you can’t find a discussion of the error that has occurred, you can post the complete trace-
back online. You can then send an e-mail to the mailing list referencing your traceback post or talk
to other Pylons users directly in the IRC channel.

■Caution When posting traceback information online, be sure to check that you don’t post any private infor-
mation such as usernames and passwords. All the information you post is publically accessible.

Occasionally it is even handy to deliberately put an exception into your code like this during
development to act a bit like a breakpoint and allow you to see what is happening at that point in
the code.

You can even use the interactive debugger to debug Ajax requests. Every time an error occurs,
the interactive debugger will log an error message containing a URL at which the error traceback
can be accessed. You simply need to visit that URL in a web browser to be able to interactively
debug that particular request. Each request that results in an error is given a slightly different URL
so that you can be sure you are debugging the correct request.

In addition to printing the debug URL to the error log, an HTTP header named X-Debug-URL
containing the debug URL will also be added to the HTTP response headers, so you can read the
URL from there too. In Figure 4-4, you can see that the exception just raised will also be available to
debug at http://localhost:5000/_debug/view/1217245745. The number at the end of the URL will
be different on each request, though.

Since the interactive debugger is accessed at the URL /_debug, it is important that you don’t
design any URLs into your application to start with /_debug, or the interactive debugger is likely to
interfere with them.

Figure 4-4. The HTTP response including an X-Debug-URL header

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS58

Production Use
If you haven’t realized it already, leaving the interactive debugger enabled in production environ-
ments represents a major security risk because in the same way that you can enter any Python
command you like in order to track down a potential problem when an exception occurs, a
malicious visitor to your web site could use the same tool to enter malicious Python commands to
do damage to your system or, worse, to use your system to launch attacks on other people’s systems.

For this reason, it is important you disable the interactive debugger when running a Pylons
application in any environment where a page containing the interactive debugger might be shown
to someone other than yourself if an error occurs.

To disable debugging, uncomment the following line in the [app:main] section of your
development.ini file:

#set debug = false

so that it reads as follows:

set debug = false

You have been warned!

■Caution Do not leave the interactive debugger enabled on production systems.

E-mail Options
Once you have disabled the interactive debugger for production use, you will be able to set up
your application to send error reports to your e-mail address should an exception occur. The
error reports will contain the full traceback as well as the information that would normally appear
on the Extra Data tab.

To enable Pylons’ error reporting, you need to ensure you have disabled interactive debug-
ging as described earlier, but you also need to set your e-mail address in the email_to variable in
the [DEFAULT] section at the top of the config file. The e-mail will be sent via SMTP, so you must
also specify an SMTP server you have access to and choose an e-mail address that the e-mail
should appear to come from:

[DEFAULT]
debug = true
Uncomment and replace with the address which should receive any error reports
email_to = feedback@pylonsbook.com
smtp_server = smtp.pylonsbook.com
error_email_from = server.error@pylonsbook.com

The error reports look something like Figure 4-5 and will help you identify the problem that
caused the exception.

If an error report is sent, a 500 Internal Server Error response is displayed using Pylons error
documents support. You’ll learn how to customize error documents in Chapter 19, when you put
the finishing touches on SimpleSite, the example application you will develop throughout the book.

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS 59

Figure 4-5. An e-mail error report

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS60

Summary
Now that you know how to use the interactive debugger, you can move on and start looking at indi-
vidual topics involved in Pylons development. If you are following along with the examples in the
book, feel free to explore the traceback any time an exception occurs. The interactive debugger is a
very useful tool that will help you track down problems quickly as well as give you better insight into
what is going on beneath the surface of your Pylons application.

CHAPTER 4 ■ TRACKING DOWN AND HANDLING PROBLEMS 61

Using View Templates

Real web applications require the generation of a lot of HTML pages. In the HelloWorld example
from Chapter 3, you saw how to generate a string in Python code and return it from a controller
action to the user’s browser to produce some visible output.

If you tried to generate a whole web application with lots of different HTML pages by generat-
ing strings in Python code, it would quickly become rather cumbersome because the Python lan-
guage was not specifically designed to make it easy to generate HTML. Instead, it is often helpful to
use a templating system.

Rather than writing Python code containing HTML strings, templating systems typically allow
you to write HTML directly and embed Python code in your HTML when you need to do so. Since
most of your template is likely to be HTML rather than Python, this is often a lot quicker. Templat-
ing languages typically also offer simple constructs for substituting variables or repeating certain
sections of HTML.

Here is a simple template written using Pylons’ default templating language, Mako. It simply
prints a personalized greeting:

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>
<p>Hello ${name}!</p>

</body>
</html>

As you can see, most of the template consists of HTML. Areas of the template that represent
Python expressions that add to the content of the template are written inside ${}. In this example,
the value of name would replace the ${name} text when the template was rendered.

Let’s see how to use this template in Pylons. Throughout this chapter, you’ll create a new
Pylons application that demonstrates various features of Mako, and by the end of the chapter, you
will have created a complete set of templates you can use in your own Pylons application.

Start by creating a new project. Once again, you will be asked some questions; you can choose
the defaults:

$ paster create --template=pylons TemplateDemo
Selected and implied templates:
Pylons#pylons Pylons application template

63

C H A P T E R 5

Variables:
egg: TemplateDemo
package: templatedemo
project: TemplateDemo

Enter template_engine (mako/genshi/jinja/etc: Template language) ['mako']:
Enter sqlalchemy (True/False: Include SQLAlchemy 0.4 configuration) [False]:
Enter google_app_engine (True/False: Setup default appropriate for Google App Engine)
[False]:
Creating template pylons
Creating directory ./TemplateDemo
Recursing into +package+
Creating ./TemplateDemo/templatedemo/
Copying __init__.py_tmpl to ./TemplateDemo/templatedemo/__init__.py
Recursing into config
... etc

Remember that the --template option in the previous command refers to project templates
used to create a project directory structure for you, whereas this chapter is about view templates
used to help render the HTML for a view.

Pylons projects store view templates in the project’s templates directory, but if you want to
store them somewhere else, you can configure where Pylons should tell Mako to look to find your
view templates by editing your project’s config/environment.py file. By default, it looks like this:

Create the Mako TemplateLookup, with the default autoescaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(

directories=paths['templates'],
...

)

You can replace paths['templates'] with a list of the places that Mako should search for view
templates. Mako searches the directories in order.

Now that the project has been created, let’s test the greeting example you saw earlier. Save the
greeting template in the TemplateDemo/templatedemo/templates/ directory as greeting.html.

You’ll also need a controller to test the template. Create a new controller in your TemplateDemo
project named greeting:

$ cd TemplateDemo
$ paster controller greeting

Update the index() action of the greeting controller so that it looks like this:

def index(self):
name = 'Pylons Developer'
return render('/greeting.html', extra_vars={'name': name})

The render() function is imported at the top of the controller from your project’s lib/base.py
file. Within that file you’ll find the import below so the render() function in your controller is really
just an alias for Pylons’ render_mako() function:

from pylons.templating import render_mako as render

You’ll look at how to use other templating languages later in the chapter. Also notice that the
template paths have to start with a slash (/). This requirement was introduced in Pylons 0.9.6.

If you start the server with the paster serve --reload development.ini command and visit
http://localhost:5000/greeting/index, you should see the Hello Pylons Developer! greeting in
your browser (see Figure 5-1).

CHAPTER 5 ■ USING VIEW TEMPLATES64

Figure 5-1. The output produced by the greeting.html template

Using the Template Context c Global
Although passing the name argument directly as an extra argument to render() works perfectly well,
it is usually considered a better practice to assign template variables to Pylons via the template con-
text global c, which you learned about in Chapter 3. Here is the updated controller:

def index(self):
c.name = 'Pylons Developer'
return render('/greeting.html')

Before you can use the c global, it needs importing into your controller:

from pylons import tmpl_context as c

You might prefer to assign template variables to c rather than pass them in directly as argu-
ments to render() for two reasons:

• There is less chance you will accidentally assign a variable that has the same name as either
one of the Pylons globals or one of the global names set up by Mako.

• If a particular variable is useful in a template, there is a good chance it will be useful
elsewhere in your application too. Since the c object is a Pylons global, you can also use
objects assigned as attributes of c elsewhere in your application during a request.

Here’s the updated greeting.html template:

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>
<p>Hello ${c.name}!</p>

</body>
</html>

Notice that this time the call to render() doesn’t include the c global explicitly. Pylons automat-
ically passes this and other globals to Mako anyway, so you don’t need to do so yourself.

If you test this updated example, you will see the same output as before.

CHAPTER 5 ■ USING VIEW TEMPLATES 65

■Caution Be careful when setting c attributes that begin with an underscore (_) character. c and other global
variables are really a StackedObjectProxy, which reserve the attribute names _current_obj, _push_object,
and _pop_object for their internal methods.

You’ll learn about how these objects actually work under the hood in Chapter 17.

The c global is reset on each request so that you don’t need to worry about a controller still
having old values set from a previous request.

One issue you learned about in Chapter 3 is that the c object doesn’t raise an AttributeError
when you attempt to access an attribute that doesn’t exist and instead returns an empty string. This
behavior is confusing for new Pylons developers (as well as more experienced ones), so it is recom-
mended you disable it by specifying the strict_c option in config/environment.py. Add a new line
after the Pylons configuration options:

CONFIGURATION OPTIONS HERE (note: all config options will override
any Pylons config options)
config['pylons.strict_c'] = True

The template context global c makes it easy to pass information around your application, but
it is available only during a request. As a result, you should be very careful about creating libraries
that explicitly rely on it; otherwise, your code might quickly become quite tangled.

As an example, imagine you had assigned the variables name and age to the c object and then
created a function that performed some simple formatting. You might be tempted to write it like
this:

from pylons import c

def format_age():
return "Name: %s, Age: %s"%(c.name, c.age)

Although this works perfectly well, it is bad practice—your function can be used only when
Pylons is processing an HTTP request because this is the only time the c global is available. It is
much better to write your function like this:

def format_age(name, age):
return "Name: %s, Age: %s"%(name, age)

and then to use it like format_age(c.name, c.age) so that the function itself does not rely on the
presence of the c global. This will make it much more obvious how your code works and will make
refactoring later much easier.

For the same reason, it is better to avoid using other Pylons globals such as request and
response where possible. Being explicit is usually a good idea.

Basic Template Syntax
Now that you’ve seen how a very simple template works, it is time to look in more detail at the tem-
plate syntax you’ll frequently use when working with Mako templates.

If you’d like to follow along with any of the examples in this section, create a new template
called basic.html, and then create a new action in the controller to render it, because you will
return to the greeting.html example later in the chapter so shouldn’t change that template now.

def basic(self):
return render('/basic.html')

CHAPTER 5 ■ USING VIEW TEMPLATES66

Let’s get started. You’ve already seen basic expression substitution using the ${} construct. You
can use any valid Python expression that would be suitable as a function argument within the
brackets. Here is an example:

The value of 3 + 5 is: ${3 + 5}
A string representation of 3 to the power 4 is ${pow(3, 4)}

You can add comments to your templates by starting a line with the ## characters. A single # is
used quite a lot in templates for CSS selectors and output for various programming languages, so it
was decided ## should be used for comments rather than adopting the Python comment format of
a single # character.

Make sure the ## characters are at the very start of the line with no whitespace. For example:

This is a comment which will not be rendered
This will be rendered ## and so will this.

You can also use multiline comments using <%doc> tags. For example:

<%doc>
This is a multiline comment which will not be rendered. This style of
comment is particularly useful for documentation as well as situations where
you want to comment out a large region of your template temporarily during
testing.

</%doc>

Related to the <%doc> tag is the <%text> tag, which simply outputs verbatim whatever text is
specified without treating it as Mako markup. This is very handy for documenting Mako. For exam-
ple, the following:

<%text>
This is some Mako syntax which will not be executed: ${variable}
Neither will this <%doc>be treated as a comment</%doc>

</%text>

produces the unchanged output, as you would expect:

This is some Mako syntax which will not be executed: ${variable}
Neither will this <%doc>be treated as a comment</%doc>

You might need to view the HTML source code to see that this is indeed the output produced
because some web browsers, including Internet Explorer, don’t handle tags containing % characters
such as the <%doc> and </%doc> tags in this example.

Mako also supports the full range of control structures supported by Python, including if,
elif, else, while, and for. These structures are very useful in templates. For example, to control
which information is displayed, you might use an if statement:

% if c.name == 'Pylons Developer':
Welcome Pylons Developer

% else:
Welcome guest

% endif

These statements work in the same way they would in Python, including the need for a colon
(:) at the end of the line. The only difference is that because templates don’t have to conform to the
strict indentation rules that Python source code follows, you have to specify the point at which the
control structure ends. In this case, you used an % endif line, but if you were using a while loop, for
example, you would use % endwhile.

CHAPTER 5 ■ USING VIEW TEMPLATES 67

You can, of course, combine control structures too. For example, you might want to generate
an HTML list from a data structure that looks like this:

c.links = [
('James','http://jimmyg.org'),
('Ben','http://groovie.org'),
('Philip',''),

]

The template might look like this:

% for item in c.links:

\
% if item[1]:

${item[0]}\
% else:

${item[0]}\
% endif

% endfor

This would generate a list that looked like this:

James
Ben
Philip

Notice how the variable item specified in the for loop can still be used as an expression in the
${} construct even though it is generated in a loop and was not directly passed into the template
as a namespace argument.

Also, if the bottom % endif statement was not in line with the % if statement, the template
would have worked equally well. Mako doesn’t require the same indentation that Python does,
although it is usually good practice to properly structure your templates anyway.

The final thing to point out about this example is that it has made extensive use of the \ char-
acter, which, when placed at the end of a line, consumes the newline character that follows it to
prevent Mako from adding a line break at the end of the line.

Sometimes it is useful to be able to directly write Python code in templates. This can be done
with Python blocks, although as has already been described, Python code is really best kept to the
controllers where possible to provide a clean interface between your controllers and view. You can
use a Python block like this:

<%
title = 'Pylons Developer'
names = [x[0] for x in c.links]

%>

Any variables you declare in Python blocks are then available to be used in control statements
or in ${} constructs. For example, this code:

% for i, value in enumerate(names):
${i+1}. ${value}

% endfor

CHAPTER 5 ■ USING VIEW TEMPLATES68

produces the following output:

1. James
2. Ben
3. Philip

Any code within Python blocks must be properly indented in the same way normal source
code is. The block itself can have any level of indentation. For example, although this code looks
messy, it is perfectly valid:

Your title is ${title}
<%

This block can have any indentation as long as the Python
code within it is properly indented
if title == 'Pylons Developer':

msg = 'You must program in Python!'
else:

msg = ''
%>

An optional message: ${msg}

The code within these blocks is executed each time the template is rendered.
Because you can put Python expressions in a line containing a Mako control structure such as

% if, you might be tempted to think you can write any expression after a % sign, for example, like
this:

The line below is NOT allowed:
% a = 3

Instead, any expressions should be written in blocks.
A variation of the <% %> block places the Python code within it at the top of the cached Python

file Mako generates, making it very useful for import statements. Notice the ! character after the
start of the first bracket in the following example:

<%!
import datetime

%>

This is called a module-level block, and when used in the context of a multithreaded Pylons
application, the code it contains is executed only the first time a template is executed. Module-level
blocks, as the name suggests, are good places for putting module imports, in this case, to make the
datetime module available throughout the template. Module-level blocks don’t have access to the
usual Mako environment and cannot be used for outputting content. We’ll discuss module-level
blocks again when you learn how Mako caches templates later in the chapter.

■Tip So far, all the templates have been designed to generate HTML, but of course you can use templates to
generate any sort of text-based file, be it an e-mail, a rich-text document, a configuration file, or a file format
specific to your application.

Default Pylons Template Variables
The template context global c is not the only object Pylons passes to Mako for you automatically via
the render() function. In addition, the following are set up by default:

CHAPTER 5 ■ USING VIEW TEMPLATES 69

tmpl_context and its alias c: This is the template context object you have already seen.
Although it is usually accessed as c, you can also access it within templates as tmpl_context.

config: This is the Pylons config global described in Chapter 3.

app_globals and its alias g: This is the project application globals object you learned about in
Chapter 3, usually accessed as g but available as app_globals in templates.

h: This is the project helpers module. In this case, this is templatedemo.lib.helpers, which is
the place you should put all your helper functions. Again, these are described in Chapter 3.

request: This is the Pylons request object for this request.

response: This is the Pylons response object for this request.

session: This is the Pylons session object (unless sessions are removed).

translator, ungettext(), (), and N_(): These are objects to help you with internationalization.
You will learn about these in Chapter 11, so you don’t need to worry about them now.

As an example, to add the current URL to the greeting.html template you have been using, you
might use the h object and update the template like this:

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>

<p>Hello ${c.name}! You are visiting ${h.url_for()}</p>
</body>
</html>

You also need to import the url_for() function into the templatedemo/lib/helpers.py file with
this import:

from routes import url_for

Later in the chapter when you look at custom render() functions, you will see how you can
customize which variables are used by default. For more information about template variables, see
http://docs.pylonshq.com/views.html#default-template-variables.

Mako Runtime Built-Ins
In addition to the Pylons default template variables that the Pylons render() global sets up for you,
it is worth being aware that Mako sets up a number of runtime built-ins for you. I’ll mention most
of these in the course of this chapter, but for full information about each, you should consult the
Mako documentation at http://www.makotemplates.org/docs/documentation.html#runtime_
builtins.

Here’s a quick summary so that you can make sure you don’t accidentally use any of these as
names of your own variables in templates:

CHAPTER 5 ■ USING VIEW TEMPLATES70

context: This context is the central object that is created when a template is first executed and
is responsible for handling all communication with the outside world. It includes the output
buffer and a dictionary of the variables that can be freely referenced within a template; this
includes the other Mako runtime built-ins, the Pylons default variables, and any extra variables
passed by the extra_variables argument to render(). As such, the context object is very
important. You can learn more about it at http://www.makotemplates.org/docs/documentation.
html#runtime.

local, self, parent, and next: These are all namespaces and have particular meanings in the
context of template inheritance chains. You’ll look at these later in the chapter.

capture: This is a function that calls a given def and captures its resulting content into a
string, which is returned. A def is Mako terminology for a reusable block of template code
wrapped in a <%def> tag that behaves a bit like a function in Python. You’ll learn about defs
and the capture() function later in the chapter.

caller: This is a “mini” namespace created when using the <%call> tag to define a “def call with
content.” You don’t deal with caller in this book, but it is well documented at http://www.
makotemplates.org/docs/documentation.html#defs_defswithcontent if you are interested.

UNDEFINED: This is an instance of mako.runtime.Undefined that raises an exception when its
__str__() method is called. It is used when you use a variable in a template without assigning
it a value. If you see an UNDEFINED, it is likely that you mistyped a variable name or forgot to
pass a particular variable to a template.

pageargs: This dictionary can be specified with the <%page> tag and tells templates the argu-
ments that the body() def takes. You’ll look at the body() def and its use in template inheritance
chains later in the book, but for details of pageargs, consult the Mako documentation at
http://www.makotemplates.org/docs/documentation.html#namespaces_body.

Three very useful methods of the context object are get(), keys(), and write(). Here’s an
example demonstrating how they are each used:

<html>
<body>
<%

context.write('<p>Here is an example:</p>')
%>
<p>
% for key in context.keys():
The key is <tt>${key}</tt>, the value is ${str(context.get(key))}.

% endfor
</p>
</body>
</html>

Create a new template called context.html, and add a new action to the controller to test it
like this:

def context(self):
return render('/context.html')

If you visit http://localhost:5000/greeting/context, a long list of output is produced, includ-
ing all the variables that can be used in templates. The source starts like this:

CHAPTER 5 ■ USING VIEW TEMPLATES 71

<html>
<body>
<p>Here is an example:</p>
<p>
The key is <tt>all</tt>, the value is <built-in function all>.

The key is <tt>help</tt>, the value is Type help() for interactive help, or ➥
help(object) for help about object..

The key is <tt>vars</tt>, the value is <built-in function vars>.

The key is <tt>SyntaxError</tt>, the value is <type ➥
'exceptions.SyntaxError'>.

The key is <tt>session</tt>, the value is {}.

The key is <tt>unicode</tt>, the value is <type 'unicode'>.

The key is <tt>sorted</tt>, the value is <built-in function sorted>.

...

The two important things to realize are that writing output with context.write() has the same
effect as using ${} and that any variables that can be used in a template can be accessed with
context.get().

Separation of Logic and View
The greeting example you have been using so far is rather artificial because you could have just put
your name directly into the template. Real web applications respond to data from various sources,
so let’s make our example slightly more realistic by retrieving the name of the visitor from the query
string on each request. If no query string is present, you’ll just use Visitor as the name.

def index(self):
c.name = request.params.get('name', 'Visitor')
return render('/greeting.html')

If you were now to visit http://localhost:5000/greeting/index?name=Pylons+Developer, you
would see the same greeting as the first example.

This is a much more realistic example. Here the controller does some processing based on
some logic and then passes relevant information to the template to display. In this setup, the tem-
plate represents a view of the data in the Model View Controller architecture, and in line with this
architecture, it is generally considered best practice to keep logic code in your controller and use
Python only in your template to assist with rendering the information passed by the controller.

Some templating languages take the separation of logic code and view code to extremes and
actively prohibit any sort of data processing in the template. Although this might be good practice,
it can be sometimes be terribly frustrating when you want to do something simple if the templating
language prevents you from doing it. Mako takes the view that the developer knows best and there-
fore provides some powerful templating tools and the ability to embed Python code in the template.
It is then up to you as a developer to decide how much to use the tools Mako provides.

Here is the same example written slightly differently just to demonstrate that you can put sim-
ple logic in templates if you really need to do so. Here’s the action:

def index(self):
return render('/greeting.html')

and here’s the new template:

<html>
<head>

<title>Greetings</title>
</head>

CHAPTER 5 ■ USING VIEW TEMPLATES72

<body>
<h1>Greetings</h1>
<p>Hello ${request.params.get('name', 'Visitor')}!</p>

</body>
</html>

Security Considerations and WebHelpers
One point to watch out for when you are using any data from the Web in a template is that a mali-
cious user might put HTML characters in the data. If, for example, you visit the URL http://
localhost:5000/greeting/index?name=Ja%3Cb%3Em%3C%2Fb%3Ees, the value of request.params
['name'] would be James, and if Mako didn’t apply any special escaping, this value would
be rendered, resulting in the m being made bold in the HTML rendered by the browser.

In itself this might not seem like a big problem, but actually it opens your web application up
to so-called cross-site scripting (XSS) attacks. For example, a malicious user could insert JavaScript
into your page to replace some of your own content to trick the user of the page into giving away
information or visiting a site they didn’t intend to because they thought the content on the page
was generated by you.

This is a real risk for many websites today, so it is well worth being aware of. Pylons protects
you from making this mistake by automatically escaping all values rendered by Mako. If you look
at your project’s config/environment.py again, you will see that the full configuration for Mako
looks like this:

Create the Mako TemplateLookup, with the default autoescaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(

directories=paths['templates'],
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', output_encoding='utf-8',
imports=['from webhelpers.html import escape'],
default_filters=['escape'])

The last argument, default_filters, means that all output is filtered through the
webhelpers.html.escape function, which automatically applies HTML escaping to make the content
safe.

Of course, sometimes you want to pass data to Mako and have it treated as HTML. To do this,
you have to wrap the content in a webhelpers.html.literal() object. A literal is a special type
derived from Python’s built-in unicode type. When the escape() function finds a literal, it doesn’t
escape it.

To demonstrate these features, update the greeting.html template so it looks like this:

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>

<p>${c.greeting} ${c.name}!</p>
</body>
</html>

CHAPTER 5 ■ USING VIEW TEMPLATES 73

Rather than using the webhelpers.html.literal object directly, most Pylons developers pre-
fer to import it into their project’s lib/helpers.py file so that it can be accessed as h.literal in
controllers.

Update the lib/helpers.py file to include this import:

"""Helper functions

Consists of functions to typically be used within templates, but also
available to Controllers. This module is available to both as 'h'.
"""
Import helpers as desired, or define your own, ie:
from webhelpers.html.tags import checkbox, password

from webhelpers.html import literal

Now import the helpers module into your controller as h by adding this at the top of
controllers/greeting.py:

import templatedemo.lib.helpers as h

Finally, change the index() action of the controller to look like this:

def index(self):
c.greeting = h.literal('Welcome')
c.name = request.params.get('name', 'Visitor')
return render('/greeting.html')

Now visit http://localhost:5000/greeting/index?name=Ja%3Cb%3Em%3C%2Fb%3Ees, and you
will see that the HTML wrapped in literal() is rendered as an HTML literal, whereas the data
passed to Mako from the request object is correctly escaped and the < and > characters are ren-
dered correctly.

Writing Your Own Helpers
As of WebHelpers 0.6, all the HTML helper functions automatically return literal() objects,
described earlier, so that their return values are treated as HTML. If you have created your own
helper functions for a previous version of Pylons and try to use them with a Pylons 0.9.7 application,
you will probably be surprised to find that all the output is escaped. You can solve this problem by
modifying the helper functions to return an HTML literal object instead of a Python unicode or
str object.

When writing or upgrading helper functions to use HTML literals, you should be careful that
you don’t accidentally introduce security holes. For example, consider this function:

from webhelpers.html import literal

def emphasize(value):
return literal(''+value+'')

Imagine you used this in your greeting action like this:

c.name = emphasize(request.params.get('name', 'Visitor'))

You have introduced a security hole because the James string is concatenated with the
 and strings in the emphasize() helper, and the whole string James is
marked as a literal. The and tags now pass through the escape() function and through to
the HTML document. This is not the behavior you want. Instead, the emphasize() function should
be written like the following so the value itself isn’t accidentally marked as an HTML literal:

CHAPTER 5 ■ USING VIEW TEMPLATES74

def emphasize(value):
return literal('') + value + literal('')

To avoid the problem, WebHelpers 0.6 introduced an HTML object that can be used for generat-
ing HTML fragments in a safe way. Here is the emphasize helper written using the HTML object:

def emphasize(value):
return HTML.em(value)

You can also nest HTML objects; the following would also wrap the value in a tag:

def emphasize(value):
return HTML.span(HTML.em(value))

You can also add HTML attributes as keyword arguments to HTML. Where an attribute name is a
reserved word in Python, you should add _ to the end of the argument. For example, here is a
tag with an id attribute of first and a class attribute of highlight:

def emphasize(value):
return HTML.span(HTML.em(value), id='first', class_='highlight')

Calling emphasize('James') would return a literal object representing the Unicode
string u'Ja<m>es' with the HTML
characters from the argument correctly escaped.

See the WebHelpers documentation for more information at http://docs.pylonshq.com/
thirdparty/webhelpers/html/html.html.

Applying Filters in Templates
The escape() function set up as a default filter in config/environment.py is applied to all Mako out-
put, but you can also apply filers to specific Mako output by using Mako’s | operator within a ${}
expression in a template.

The built-in escape functions are as follows:

u: This produces URL escaping, provided by urllib.quote_plus(string.encode('utf-8')).

h: This produces HTML escaping, provided by cgi.escape(string, True). Note that this is not
the same as the helpers module object h, which is also available in templates. Mako knows
when you are using h as a filter and when it is supposed to refer to your project’s helpers
module.

x: This produces XML escaping.

trim: This produces whitespace trimming, provided by string.strip().

entity: This produces HTML entity references for applicable strings, derived from the
htmlentitydefs module in the standard library.

unicode: This produces a Python Unicode string (this function is applied by default).

decode.<some encoding>: This decodes input into a Python Unicode string with the specified
encoding.

n: This disables all default filtering; only filters specified in the local expression tag will be
applied.

You can also use the escape function because Mako is configured by the following line to
automatically import into all templates:

imports=['from webhelpers.html import escape'],

CHAPTER 5 ■ USING VIEW TEMPLATES 75

Here’s an example of how filtering works:

${ c.test | trim,entity }

If c.test had the value u" It will cost £5 ", the spaces would be stripped by trim, the £
sign would be converted to the HTML entity £, and the output would simply be It will cost
£5.

If you have an HTML string that is not wrapped in literal() but that shouldn’t be escaped, you
can disable the default escape filter with n. For example, if c.test contained the Unicode string
u'Hello', you could have this passed through unescaped like this:

${ c.test | n}

Structuring Template Code
The ability to substitute variables, control program flow, and execute small snippets of Python are
all very useful, but what gives templates their real value is the ability to define template blocks
and call them from other templates to produce complex page layouts with as little duplication of
effort as possible. In the following sections, you’ll learn about some of the ways Mako allows you
to do this.

Using <%def> Blocks
A def block is rather like a Python function in that each def block has a name, can accept arguments,
and can be called. As an example, let’s update the list-generating code you used earlier to be a
reusable def block:

<%
items = [

('James', 'http://jimmyg.org'),
('Ben', 'http://groovie.org'),
('Philip', ''),

]
%>

${navigation_links('James', items)}

<%def name="navigation_links(selected, links)">
<%def name="link(label, url)">

% if url:
${label}

% else:
${label}

% endif
</%def>

% for item in links:

\
% if item[0] == selected:

${link(item[0], item[1])}\
% else:

${link(item[0], item[1])}\

CHAPTER 5 ■ USING VIEW TEMPLATES76

% endif

% endfor

</%def>

There’s quite a lot going on in this example, so let’s take it piece by piece. You can see you have
two functions. The first is called navigation_links() and takes two arguments: selected is the label
of the currently selected navigation link, and links is the list of links.

Within the navigation_links() function, there is another function called link() that generates
an HTML link if a URL is associated with the navigation link.

Finally, there is a definition of the links defined in Python block at the top and some code to
call the navigation_links() function at the bottom. Save this template code as navigation.html.
You can then test it by adding a new action to the controller:

def navigation(self):
return render('/navigation.html')

The template generates the following HTML source:

James

Ben

Philip

The extra whitespace is because you have concentrated on making your template look neat
rather than concentrating on the HTML output. To remove all the whitespace, your HTML state-
ments would have to begin at the start of the line because by default Mako does not strip out
whitespace.

Notice that you have controlled some of the line endings, though. Leaving a trailing \ character
at the end of the line tells Mako not to insert a line end character, so you can see there is no line end
after the tag even though there is some whitespace, which comes from the following line in the
template before the tag.

Defs in Mako behave very similarly to functions in Python and have access to their parent
scope. This means you would be able to use the selected and links variables within the link() def.

You might also have noticed that the navigation_links() function was called before its defini-
tion. All top-level functions are loaded into memory before the main body of the template is
rendered, so this is perfectly acceptable too.

The link() def is called from within navigation_links(). Just like in Python, the link()
function would not be callable from outside navigation_links() because it is local to the
navigation_links() scope.

The Mako Cache
It can sometimes be difficult to remember exactly what rules apply to defs, particularly when you
get involved with more complex examples such as the inheritance chains you’ll see later in the
chapter. Luckily, there is an easy way to find out what is going on behind the scenes.

CHAPTER 5 ■ USING VIEW TEMPLATES 77

Mako works by compiling the templates you write into ordinary Python code the very first time
it is executed or any time it is executed after it has been changed. Any subsequent times the tem-
plate is rendered, the Python file is simply executed, and the output is returned.

Mako caches these templates according to the value of the cache_dir variable in your project’s
development.ini file. By default, this is set to the value %(here)s/data. The %(here)s value gets
replaced with the location of the development.ini file, so Mako will cache the files in your project’s
data/templates directory by default.

Let’s have a look at the cached template for the navigation.html template you’ve just created.
Its cached counterpart is in TemplateDemo/data/templates/navigation.html.py. Let’s look at each
part of the file in turn starting with the top:

from mako import runtime, filters, cache
UNDEFINED = runtime.UNDEFINED
__M_dict_builtin = dict
__M_locals_builtin = locals
_magic_number = 4
_modified_time = 1219507190.1808441

_template_filename='/Users/james/TemplateDemo/templatedemo/templates/➥
navigation.html'
_template_uri='/navigation.html'
_template_cache=cache.Cache(__name__, _modified_time)
_source_encoding='utf-8'
from webhelpers.html import escape
_exports = ['navigation_links']

Here Mako defines various variables related to your template. You can see the import of the
escape function that was specified as an argument to the TemplateLookup in your project’s config/
environment.py file. If you had defined any module-level blocks, their contents would also be
placed in this part of the cache.

Next is the render_body() function that represents the main body of each template:

def render_body(context,**pageargs):
context.caller_stack._push_frame()
try:

__M_locals = __M_dict_builtin(pageargs=pageargs)
def navigation_links(selected,links):

return render_navigation_links(context.locals_(__M_locals)➥
,selected,links)

__M_writer = context.writer()
SOURCE LINE 1

items = [
('James', 'http://jimmyg.org'),
('Ben', 'http://groovie.org'),
('Philip', ''),

]

__M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin()➥
[__M_key]) for __M_key in ['items'] if __M_key in __M_locals_builtin()]))

SOURCE LINE 7
__M_writer(u'\n\n')
SOURCE LINE 9
__M_writer(escape(navigation_links('James', items)))
__M_writer(u' \n\n')

CHAPTER 5 ■ USING VIEW TEMPLATES78

SOURCE LINE 31
__M_writer(u'\n\n\n\n')
return ''

finally:
context.caller_stack._pop_frame()

In this case, you can see the items list being defined and the call to navigation_links() being
made. This in turn calls the render_navigation_links() function, which is rather long, so I won’t
repeat it here.

Each part of the cached template is simply normal Python code even though some of the vari-
ables start with __M_ to avoid the risk of naming conflicts. You can also see the escape() function
being used, so it is clear which variables are escaped and which aren’t.

If you look carefully at the render_body() method, you’ll notice context.caller_stack.push_
frame() is called at the start of the rendering and context.caller_stack.pop_frame() is called at the
end. These two calls help Mako keep track of where it is in the inheritance chains you will learn
about later in the chapter.

Although you would never use the cached Mako templates directly, it is helpful to realize they
are there. If you ever run into difficulties, looking at the cached version can sometimes shed light on
a problem.

Capturing Output
Something to be aware of when calling defs is that their output is rendered straight to the context
output buffer—it isn’t actually returned.

If you look at the cached template example again, it should be clear why. Each line of source
template is wrapped in an __M_writer() call, which has the effect of calling context.write(). If you
want to actually capture the output of a def to a variable rather than to the output buffer, you have
to use capture().

For example, consider this:

<%def name="add(num1, num2)">
${num1+num2}
</%def>

<%def name="display(num1, num2, result)">
The result of ${num1} + ${num2} is ${result}
</%def>

${display(1, 2, add(1,2))}

Running this example produces the following HTML source (although you won’t see the line
breaks in a web browser):

3

The result of 1 + 2 is None

What happens here is that the output of the add() def is written to the output buffer, not cap-
tured and passed to the display() def. The add() def actually returns None, which is the value
returned by ordinary Python functions if no value is explicitly returned. Instead, you want to cap-
ture the output from the add() def. You can do this by modifying the line that calls it to look like this:

${display(1, 2, capture(add, 1, 2))}

CHAPTER 5 ■ USING VIEW TEMPLATES 79

The capture function is one of Mako’s built-in template variables. It takes the def to capture as
the first argument and the values to pass to the def as the subsequent arguments. The new output is
as follows:

The result of 1 + 2 is 3

If you are interested, you can read more about Mako’s output buffering in the Mako
documentation.

Namespaces
In a real web application, it is likely that most of the pages will need navigation links, so it would be
useful if you could import the navigation_links() function you have just created into other tem-
plates. You can do this using the <%namespace> tag.

Update the greeting.html template so that it imports and uses the navigation_links() func-
tion from the template you just created.

<%namespace name="nav" file="/navigation.html" />

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>

${nav.navigation_links('Ben', links=[
(not)'James','http://jimmyg.org'),
('Ben','http://groovie.org'),
('Philip',''),

])}

<p>${c.greeting} ${c.name}!</p>
</body>
</html>

The <%namespace> tag takes a file argument to specify the template you want to import and
a name argument to specify the namespace under which the defs should be imported.

You can then use the nav namespace to generate navigation links in the greetings template.
Sometimes it is useful to have the components imported directly into the local namespace

rather than a namespace of their own. This is possible too using this alternative syntax:

<%namespace file="navigation.html" import="navigation_links" />

${navigation_links('James', type='list', links=[
['James','http://jimmyg.org'],
['Ben','http://groovie.org'],
['Philip',''],

])}

When the import attribute is used, the name attribute is optional.
You can also just use import="*" to import everything from another template or import=

"component1, component2" to specify specific components you want to import. The names
imported by the import attribute take precedence over any names that exist within the current
context.

CHAPTER 5 ■ USING VIEW TEMPLATES80

Namespaces can also import regular Python functions from modules as long as they accept an
argument named context as their first argument. As an example, a module file my/module.py might
contain the following callable:

def write_greeting(context):
context.write("hello world")

A template can then use this module as follows:

<%namespace name="my" module="my.module" />

${my.write_greeting()}

Note that the context argument is not needed in the call. When Mako generates the cached
Python version, it creates a locally scoped callable, which is responsible for passing the context
object in for you.

The body() Def
There is one other important <%def> you will need to know about called the body() def. The body()
def represents the whole of the body of the template, that is, any template code not wrapped in its
own def. For example, if you had a template that looked like this, the 12:00pm line would be in the
body() def.

<%def name="test()">Hello World!</%def>

12:00pm

You can see this in action by using this template in another one. Imagine the previous template
was saved as greeting_and_time.html. You could create another template like this to use its func-
tionality under the namespace other:

<%namespace name="other" file="/greeting_and_time.html" />

The greeting is ${other.test()}
The time is ${other.body()}

Notice how the calling body method is effectively just like a normal <%def> but without the
opening and closing <%def> tags needing to be specified. The output is as you would expect:

The greeting is Hello World!
The time is 12:00pm

Being able to access the body of a template is really useful when you are using template chains
in an inheritance structure. Let’s look at this in the next section.

Template Inheritance Chains
The real value of templating languages isn’t so much that they help you mix and match Python
and plain text in a more efficient manner but that so much of their functionality can be reused
effectively in other pages. You’ve already seen how you can create reusable components using
<%def> blocks and then import them into other templates using the <%namespace> tag, but Mako
also provides facilities to enable you to structure your templates so that derived templates can
inherit functionality from a base template.

CHAPTER 5 ■ USING VIEW TEMPLATES 81

Simple Inheritance
Using a template chain in Mako is best explained with an example. The following is a base template
named base.html, which defines some HTML and a footer but also has two defs, self.title() and
self.body(). Save this template as base.html in templatedemo/templates:

<html>
<head>

<title>${self.title()}</title>
</head>
<body>

${self.body()}
<div class="footer">

<p>This is a simple page footer</p>
</div>

</body>
</html>

Let’s modify the greeting example to use this template. Let’s ignore the namespace code you
added earlier in the chapter for the minute and just concentrate on inheriting the base template.
Here’s how it looks:

<%inherit file="/base.html"/>\
<%def name="title()">Greetings</%def>
<h1>Greetings</h1>

<p>${c.greeting} ${c.name}!</p>

Save this new version of greeting.html. The index() action of the greeting controller should
still look like this:

def index(self):
c.greeting = h.literal('Welcome')
c.name = request.params.get('name', 'Visitor')
return render('/greeting.html')

If you visit http://localhost:5000/greeting/index in your browser again, you will see the fol-
lowing HTML rendered:

<html>
<head>

<title>Greetings</title>
</head>
<body>

<h1>Greetings</h1>

<p>Welcome Visitor!</p>

<div class="footer">
<p>This is a simple page footer</p>

</div>
</body>

</html>

CHAPTER 5 ■ USING VIEW TEMPLATES82

Let’s think about what is going on to produce this HTML. Because greeting.html inherits from
the base.html control for rendering passes directly to the base.html body() def. The <html> line is
rendered first, followed by all the other characters until ${self.title()} is called.

In the context of rendering a normal template, self would refer to the template itself, but in the
context of an inheritance chain like this one, self always refers to the template at the bottom of the
inheritance chain, which is always the template that was originally specified in the call to render(),
in this case, greeting.html. This means that although you are rendering the base.html body() def,
${self.title()} refers to the title() def in greeting.html. This renders the Greeting text, which
appears in the page title.

Once the title is rendered, control passes back to the base.html template, and more HTML is
rendered until ${self.body()} is reached. Once again, self refers to greeting.html, so the body()
def of greeting.html is rendered. Finally, control passes back to base.html to render the footer, and
the whole page is rendered.

As you can imagine, being able to structure your templates like this is really useful because it
means you can now create multiple templates based on base.html without having to duplicate its
content in each child template. By using defs in the way you used title(), you can create regions
that can be replaced in child templates. These don’t just have to contain static text; they can also
contain navigation elements, CSS, JavaScript, section headings, or any other content you like. When
you start the SimpleSite tutorial, you’ll use inheritance chains to create a full-featured site.

■Caution If you are following the Mako documentation, you should be aware that Mako describes the template
at the top of the chain (base.html in our example) as being the bottom-most template and the template at the
bottom as being the top-most template, so you need to be aware of the slightly confusing terminology.

In the previous example, you used the self namespace to effectively mean “use the def from
the template furthest down the inheritance chain.” Mako also provides two related namespaces
called next and parent, which are especially useful if you have more than two templates involved in
an inheritance chain.

Next Namespace
Imagine the greeting template you’ve been using is actually part of the user administration section
of a site. This site might also need some section links to allow the user to navigate around the sec-
tion, but if these links were put in the base.html template, they would appear on all pages in the
site, not just in the user administration section. You could put the links in the greeting.html tem-
plate, but then you would also have to duplicate them in other templates in the same section. You
could do this by keeping the links in a namespace and simply calling the def in each template rather
than duplicating the code each time, but Mako provides a better solution.

It turns out that you aren’t limited to two templates in an inheritance chain; you can have as
many templates as you like. Rather than inheriting the greeting.html template from the base.html
template, let’s create a new template specifically for the user administration section; call it section.
html, and save this file in the templatedemo/templates directory with the following content (there is
a deliberate mistake in this template, though, so you might want to read on first):

<%inherit file="/base.html"/>
<%namespace file="/navigation.html" import="navigation_links" />

CHAPTER 5 ■ USING VIEW TEMPLATES 83

${navigation_links('Admin Home', links=[
('Admin Home', '/admin'),
('Settings', '/admin/settings'),
('Sign Out', '/admin/signout'),

])}

${self.body()}

<%def name="title()">User Administration</%def>

Notice that this template inherits from base.html and that you are still using the navigation.
html template you created earlier to do the hard work of creating the links.

For the greeting.html template to use this template, you need to change its <%inherit> tag to
look like this:

<%inherit file="/section.html"/>\

If you refresh the browser, you will see that the content hasn’t changed! This might surprise
you, so let’s think about what’s happened. You call render() to render greeting.html, and control is
passed to the section.html body() def, but this template is inherited from base.html, so control
passes to the base.html body() def. Once again, HTML is rendered until ${self.title()} is reached.
Remember that self refers to the last template in the chain, in this case, greeting.html, so it is the
greeting.html title() def and body() def that are rendered, not the ones in section.html.

To solve this problem, you need to use Mako’s next namespace. next is similar to self but refers
to the next template in the chain, not the last one. To use next, you’ll need to change all the refer-
ences to ${self.title()} and ${self.body()} in base.html and section.html to use ${next.
title()} and ${next.body()}, respectively.

Once you’ve updated the templates, they behave as you expect. When ${next.title()} is
reached, the title() def from section.html is rendered. Control is passed back to base.html until
${next.body()} is reached; then the body() def of section.html is rendered, producing the naviga-
tion links. When ${next body()} is reached in section.html, the body() def from greeting is
rendered. When it is finished, control passes back to section.html and then back to base.html to
finish off the rendering.

Figure 5-2 shows the result.

Figure 5-2. Greeting produced with a template inheritance chain

CHAPTER 5 ■ USING VIEW TEMPLATES84

If the section.html template didn’t have a title() def, the call to ${next.title()} in base.html
would have rendered the title() def in greeting.html instead.

Middle templates such as section.html are normally used for sections of the site in this way
with base templates such as base.html containing content that applies to every page and child tem-
plates such as greeting.html containing only page-specific information. Of course, if you have a
large site, it might make sense to have more than one middle template so that you can implement
subsections or different page layouts within a section. The inheritance technique is very flexible.

Parent Namespace
In the same way that the next namespace allows you to refer to a def in the namespace of the child
template immediately below it, Mako also provides a parent namespace that allows a child template
to refer to a def in the parent template immediately above it. This is useful if you want a child tem-
plate to be able to control where in a parent template its content is inserted.

■Note Using the parent namespace might remind you of using super in a derived class to access a method in
a base class in a normal Python inheritance structure. The two are similar, but in Python there is no equivalent to
the next namespace; that is, you cannot access a child method from a parent class.

Let’s change the way the title() def works so that greeting.html can decide whether to
include the content from the section.html body() def. The first thing you need to do is change
base.html so that it calls ${self.title()} rather than ${next.title()}. This means that when the
title is rendered, control for rendering the def will pass to greeting.html, bypassing section.html.

<html>
<head>

<title>${self.title()}</title>
...

If you tested the example, you will see that the page title now displays Greetings again. Now
let’s change greeting.html so that the title also includes the section title. You’d like the title to read
“User Administration > Greetings.” Update the title() def in greeting.html to look like this:

<%def name="title()">${parent.title()} > Greetings</%def>

Now when control for rendering the title() def passes from base.html to greeting.html, the
greeting.html title() def calls its parent template title() def where the User Administration
string is rendered as expected.

Using the parent namespace in this way is particularly useful when working with sections con-
taining JavaScript or CSS, because you’ll often find that it is useful to be able to control whether the
JavaScript and CSS for the child template is rendered before or after that of the parent.

In summary, the rule of thumb is that if the base template should have control of where the
child content should be placed, use next. If the child template needs control of where its own con-
tent is placed, use parent.

Behind the Scenes
Now that you have a good idea of how to use Mako templates within Pylons, you can turn your
attention to how Pylons links the render() function you call to the template engine code as well as
how it adds default variables. Once you understand the basic principles, you’ll look at how to use

CHAPTER 5 ■ USING VIEW TEMPLATES 85

the alternative template languages Pylons supports, as well as how to add support for your own
template languages.

If you intend to use only Mako in your Pylons applications and are not interested in under-
standing what is going on behind the scenes, you might prefer to jump ahead to the next chapter
to begin learning about forms.

Let’s start by looking at the definition of the pylons.templating.render_mako() function that
you imported as render() in the greeting controller. It looks something like this:

def render_mako(template_name, extra_vars=None, cache_key=None,
cache_type=None, cache_expire=None):

def render_template():
globs = extra_vars or {}
globs.update(pylons_globals())
template = globs['app_globals'].mako_lookup.get_template(template_name)
return template.render(**globs)

return cached_template(template_name, render_template, cache_key=cache_key,
cache_type=cache_type, cache_expire=cache_expire)

The first thing you should notice is that the function supports caching with a call to cached_
template(). You’ll look at the caching options in a minute, but let’s start by looking at what happens
in the render_template() function.

First, a dictionary is set up called globs, which contains any values you specified in the
extra_vars keyword. This dictionary is then updated with all the Pylons globals that I described
earlier in the “Default Pylons Template Variables” section. These are returned automatically by the
pylons_globals() function.

One of the globals returned is the app_globals object, which you’ll remember from Chapter 3,
is an instance of your project’s templatedemo.lib.app_globals.Globals class. This class has an
attribute called mako_lookup, but if you look at your project’s templatedemo/lib/app_globals.py file,
you’ll see that mako_lookup isn’t defined there. It is actually added dynamically when the application
is first loaded by the configuration code in config/environment.py. Here are the relevant lines. You’ll
recall that you looked at the options to TemplateLookup earlier in the chapter:

def load_environment(global_conf, app_conf):
...
config['pylons.app_globals'] = app_globals.Globals()
...
config['pylons.app_globals'].mako_lookup = TemplateLookup(...)
...

Once the template has been returned, the final act of the render_template() function is to
return the rendered template, passing in the variables you have specified as keyword arguments.

As you can see, although it takes a careful look through the code, the templating setup is
actually easy to understand. This is typical of the way most of Pylons works. With a little digging
through the source code, you can usually work out what is going on and customize the behavior
you want in your own Pylons application.

■Tip Don’t be afraid to look at the Pylons source code. It is available online at http://pylonshq.com/hg.

CHAPTER 5 ■ USING VIEW TEMPLATES86

Caching
Sometimes it is useful to be able to cache template calls to speed up performance. As you’ve seen,
the render_mako() function has a number of options to support this, each of which defaults to None
if it is not specified:

cache_key: This is the key to cache this copy of the template under.

cache_type: This is the cache type. Valid options are dbm, file, memory, database, or memcached.

cache_expire: This is the time in seconds to cache this template with this cache_key. Or use
never to designate that the cache should never expire.

These options are then used, along with the template name, to cache the result of the call to
the render_template() function I’ve just described. The caching functionality comes from the
Beaker package and is described in detail at http://docs.pylonshq.com/caching.html. Pylons also
supports sophisticated caching options to cache other types of data and supports other types of
caching, but these are beyond the scope of the book; have a look at the previously mentioned link
for the full information.

To test the caching, let’s modify the base.html template to add the current date and time to the
footer of every page. Change the template to look like this:

<%!
import datetime

%>
<html>

<head>
<title>${self.title()}</title>

</head>
<body>

${next.body()}
<div class="footer">

<p>Page generated at ${str(datetime.datetime.now())}</p>
</div>

</body>
</html>

When you visit http://localhost:5000/greeting/index this time, the footer will show the exact
time the page was generated. For example:

Page generated at 2008-08-24 15:40:10.568216

Now modify the controller to add some caching:

def index(self):
c.greeting = h.literal('Welcome')
c.name = request.params.get('name', 'Visitor')
return render('/greeting.html', cache_expire=5)

Now the first time you visit the page, the current time will be displayed, but every subsequent
visit will result in the page being returned from the cache until five seconds have passed. After five
seconds, a new page will be rendered with a new date and time, but once again, this new page will
be returned from the cache only after five seconds have passed.

If no cache_type is specified, the default used is dbm, which stores the cached pages in a simple
database within your cache directory. Have a look at data/cache, and you will see the data folders
present where the cache has been stored on disk. If you don’t specify a cache_key, the key default is
used. Specifying never as the cache_expire argument will mean the cache won’t expire. Obviously,
though, if you are using the memory cache type, restarting the server will cause the cache to be
emptied.

CHAPTER 5 ■ USING VIEW TEMPLATES 87

Alternative Template Languages
As well as supporting Mako, Pylons supports these template languages out of the box:

Jinja 1 (http://jinja.pocoo.org/): This describes itself as a state-of-the-art, general-purpose
template engine. It was originally inspired by Django’s template syntax.

Genshi (http://genshi.edgewall.org/): This is an XML templating language designed to make
generating valid XHTML and XML straightforward. Genshi is very popular with Pylons pro-
grammers and is used as the default templating language in TurboGears.

All three template engines are very different, but they each have one thing in common: they
are all written as improvements to existing template engines. Genshi is the formal successor of
Kid, Mako replaced Myghty, and Jinja was inspired by Django templates. This means all three are
well-thought-out and production-ready template systems. They all use Unicode internally and
have an API that is easy to use with Pylons.

Deciding between them is really a matter of preference. If you are primarily writing an applica-
tion that outputs XML or XHTML, then you might find Genshi useful because it guarantees that
your output is well formed. On the other hand, Mako and Jinja are much faster than Genshi and
allow much more flexibility in the output they produce. Genshi requires a completely different syn-
tax for text-based output, but if you are writing a predominantly XHTML-based application, this
may not be a problem. All three handle the escaping of data correctly with Pylons thanks to the use
of the HTML literals I described earlier.

If you are fairly new to templating languages and are trying to pick a templating language to
use with Pylons, Mako is a good choice, and that is why it was chosen to be the default templating
language for Pylons. Of course, Pylons doesn’t restrict you to using a single templating language.
If you think it would be helpful in your application, you can use multiple templating languages at
the same time. You’ll see how to do this later in the chapter.

To use an alternative template language, you will need to first install it:

$ easy_install Genshi
$ easy_install Jinja

If you want to use one of the alternative templating languages in your project but don’t need
Mako support, the easiest thing to do is to specify the templating language you want when you run
the paster create command. For example, to get a Genshi project, you might do this, specifying
genshi when prompted:

$ paster create --template=pylons GenshiTemplateDemo
Selected and implied templates:

Pylons#pylons Pylons application template

Variables:
egg: GenshiTemplateDemo
package: genshitemplatedemo
project: GenshiTemplateDemo

Enter template_engine (mako/genshi/jinja/etc: Template language) ['mako']: genshi
...

This will set up config/environment.py with the following lines:

Create the Genshi TemplateLoader
config['pylons.app_globals'].genshi_loader = TemplateLoader(

paths['templates'], auto_reload=True)

CHAPTER 5 ■ USING VIEW TEMPLATES88

Then in your lib/base.py file, rather than importing the render_mako() function, you would
import render_genshi() like this:

from pylons.templating import render_genshi as render

Genshi doesn’t generate output directly; instead, it generates a stream of nodes. Genshi
streams can be serialized using one of four methods: xml, xhtml, html, or text. The render_genshi()
function takes an extra argument named method that you can use to specify the output method. It
defaults to xhtml, but you can choose a different value if you want a different type of output.

You can follow a similar process to set up a project to work exclusively with Jinja, specifying
jinja when prompted by paster create and using the render_jinja() function in your controllers.

Multiple Template Languages
As was mentioned a moment ago, nothing is stopping you from using more than one templating
language in your Pylons application. This requires a little more work because you must add the
template lookup code to config/environment.py yourself. This isn’t difficult, though.

Let’s modify the TemplateDemo example you’ve been using to add Jinja support too. First install
Jinja:

$ easy_install "Jinja==1.2"

Now open config/environment.py, and change the end of the load_environment() function to
look like this:

CONFIGURATION OPTIONS HERE (note: all config options will override
any Pylons config options)

Import the jinja components we need
from jinja import ChoiceLoader, Environment, FileSystemLoader

Create the Jinja Environment
config['pylons.app_globals'].jinja_env = Environment(loader=ChoiceLoader(

[FileSystemLoader(path) for path in paths['templates']]))

Jinja's unable to request c's attributes without strict_c
config['pylons.strict_c'] = True

Jinja will look in the same location as Mako for its files. If you wanted to keep the templates for
each in different directories, you could specify different paths for each.

Let’s create a simple Jinja template:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html lang="en">
<head>

<title>Jinja Greeting</title>
</head>
<body>

<h1>Jinja Greeting</h1>
{{ c.greeting }}

</body>
</html>

CHAPTER 5 ■ USING VIEW TEMPLATES 89

Save this in the templates directory as jinja.html. Now you need a new action in the greeting
controller:

def jinja(self):
c.greeting = 'Hi from Jinja!'
return render_jinja('/jinja.html')

You’ll need to import the Jinja render function:

from pylons.templating import render_jinja

If you test the example, you’ll see the Hi from Jinja! greeting.

Working with Your Own Templating Language
One of the great benefits of choosing a web framework based on Python is the sheer breadth of
software available for you to use, including a large number of templating languages. If you’ve
come from a background of Cheetah, Tal, Stan, Myghty, Kid, Breve, or any of the other templating
languages available, you can easily integrate them into your Pylons application. The integration
requires two steps:

1. Create a template lookup object attached to the app_globals object in config/
environment.py.

2. Create a render function, using the pylons_globals() and cached_template() functions if
necessary, and use the template lookup attached to app_globals to render the template.

Use the render_mako() function and config/environment.py listings from earlier in this chapter
as a basis for your own code. If you need a further example, the Pylons documentation includes an
example of how to integrate Kid via a custom render() function. You can read it at http://docs.
pylonshq.com/views.html#custom-render-functions.

■Note Previous versions of Pylons implemented template plug-in support via the TurboGears Buffet API. This API
is deprecated in Pylons 0.9.7, although you can still use the API for legacy purposes if you need. See http://
docs.pylonshq.com/modules/templating.html#legacy-buffet-templating-plugin-and-render-
functions for more information.

Summary
This chapter was a fairly in-depth guide to the main aspects of templating in Pylons. You learned
how to pass variables to templates via the template context variable c, how to avoid security prob-
lems through automatic escaping, and how to use HTML literals. You also learned the main features
of Mako, from its template syntax to its inheritance chains, and you saw how to use its next and
parent namespaces. You also learned all about what goes on behind the scenes to make templating
in Pylons work from the Mako cache to the render() function setup.

There has clearly been a lot to take in. Don’t worry if you didn’t understand every detail on the
first read. You’ll be using Mako templates throughout the book, particularly in the SimpleSite tuto-
rial chapters, so you’ll get plenty of practice working with them to build real applications.

Next up you will learn how to create forms with Pylons, how to validate their content, and how
to present error messages to the user if they enter invalid data.

CHAPTER 5 ■ USING VIEW TEMPLATES90

Working with Forms and Validators

Form handling is one of those areas that at first glance appears very simple but in real applications
can quickly become rather complicated. There are generally two approaches to dealing with forms.
The first is to code all your forms, validation, and logic manually to give you complete control over
how your forms work. The alternative approach is to use a form framework where ready-made
classes exist for each of the field types you might want to use. The form framework then automates
the generation of HTML, the validation of data, and the display of error messages for you.

At first glance, it might appear that a form framework would save you a lot of time, but in real-
ity, form frameworks are rarely flexible enough to deal with all the situations you might want to
develop, and in the long run you can sometimes find yourself spending more time creating custom
fields for your form framework than it would have taken if you had coded all your forms manually.

Because of this, Pylons encourages you to do a lot of the work of generating forms yourself, but
it does provide four sets of tools to make form handling as painless as possible:

• Form helpers to generate the HTML for common field types

• Validators to validate form data and convert between HTML and Python representations of
particular data types

• HTML Fill to take an HTML form and automatically populate it with values and error mes-
sages for redisplaying the form data

• The @validate decorator to automate the process of validating a form and redisplaying it if it
contains invalid data

These four tools can help make handling forms much simpler without in any way constraining
your creativity as a developer. Pylons does support an alternative approach with a tool, called
ToscaWidgets, although it won’t be covered in this chapter. ToscaWidgets is a full form framework
developed from the original widgets code in TurboGears that automates every aspect of form han-
dling. ToscaWidgets is still officially in prerelease, but if you are interested in its approach, you
should visit http://toscawidgets.org to find out more. The majority of developers prefer the flexi-
bility of the approach you’ll use in this chapter.

The Basics
When a user submits a form on a web site, the data is submitted to the URL specified in the action
attribute of the <form> tag. The data can be submitted either via HTTP GET or POST as specified by
the method attribute of the <form> tag. If your form doesn’t specify an action, then it’s submitted to
the current URL, but generally you’ll want to specify an action attribute.

91

C H A P T E R 6

This is a simple form coded in HTML and without any Pylons-specific features:

<form name="test" method="get" action="/formtest/submit">
Email Address: <input type="text" name="email" />

<input type="submit" name="submit" value="Submit" />
</form>

If your form contains a file upload field such as <input type="file" name="myfile" />, you
will also need to specify an enctype="multipart/form-data" attribute, and you have to choose the
post method.

Many people put the value of the method attribute in uppercase. If your HTML page uses
XHTML, the method attribute value is supposed to be lowercase, which is why in this example it is
specified as method="get", not method="GET", as many examples will show.

Later in the chapter, you’ll see how you can improve this example by using the h.url_for()
helper in the form action and by using Pylons’ field helpers to generate most of the HTML for the
form automatically. First, though, let’s create a new Pylons project to test this example as it stands:

$ paster create --template=pylons FormDemo

Accept the default options by pressing Enter to choose Mako as the template engine and no
SQLAlchemy or Google App Engine support.

Once the project has been created, let’s create a simple template in FormDemo/formdemo/
templates/base.html to use as a basis for the examples in this chapter:

<html>
<head>
<title>FormDemo</title>
</head>
<body>
${next.body()}
</body>
</html>

Create a new template called simpleform.html with the following content to test the example
form:

<%inherit file="/base.html" />
<h1>Enter Your Email Address</h1>

<form name="test" method="get" action="/formtest/submit">
Email Address: <input type="text" name="email" />

<input type="submit" name="submit" value="Submit" />
</form>

You’ll remember from the previous chapter that the <%inherit> tag allows the body of a tem-
plate to be inserted into a parent template.

Now create a new controller called formtest:

$ cd FormDemo
$ paster controller formtest

Add two actions to the controller that look like this:

def form(self):
return render('/simpleform.html')

def submit(self):
return 'Your email is: %s' % request.params['email']

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS92

Start the server:

$ paster serve --reload development.ini

Visit http://localhost:5000/formtest/form, and you will see the form. In this case, the gener-
ated HTML looks like this:

<html>
<head>
<title>FormDemo</title>
</head>
<body>

<h1>Enter Your Email Address</h1>

<form name="test" method="get" action="/formtest/submit">
Email Address: <input type="text" name="email" />

<input type="submit" name="submit" value="Submit" />
</form>

</body>
</html>

Try entering the e-mail address test@example.com and clicking Submit. The URL should change
to http://localhost:5000/formtest/submit?email=test%40example.com&submit=Submit, and you
should see the text Your email is: test@example.com.

Pylons has parsed and decoded the query string and set up the request.params object you saw
in Chapter 3. As you’ll recall, this object behaves a bit like a dictionary where the keys are the names
of the fields in the form, and their corresponding values are Unicode strings, with all the characters
in the query string properly decoded ready for you to use. If you have two fields with the same name
in the form, then using the dictionary interface will return the first string. You can get all the strings
returned as a list by using the .getall() method. If you expect only one value and want to enforce
this, you should use .getone(), which raises an error if more than one value with the same name is
submitted. By default, if a field is submitted without a value, the dictionary interface returns an
empty string. This means that using .get(key, default) on request.params will return a default
only if the value was not present in the form.

POST vs. GET
Forms can be submitted using either GET or POST HTTP methods depending on the value you set
for the method attribute of the <form> tag. The GET method results in the form data being sent to
the server via the URL query string, and the POST method sends the data as part of the HTTP body.
Figure 6-1 and Figure 6-2 show the LiveHTTPHeaders information for both types of requests.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 93

Figure 6-1. A GET request in LiveHTTPHeaders

Figure 6-2. A POST request in LiveHTTPHeaders

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS94

As you can see, the request method (in the first line of both figures) is different in each. You’ll
also see that the POST request has the e-mail address sent as extra content in the body rather than
as part of the URL. It is possible to send very large amounts of data in the request body, but most
browsers and servers can cope only with URLs that are less than 1,024 characters in length. This is
why if you are using a file upload field, you should use the POST method, because the data is then
sent in the body of the request.

You can test the POST method by editing the simpleform.html template so that the method is
changed to post. If you rerun the example, you will see the same message is displayed as before, but
the URL displayed in the browser after you submit the form is simply
http://localhost:5000/formtest/submit without the query string. If you are writing forms that
contain password fields, you should usually use POST to prevent the password from being visible to
anyone who might be looking at the user’s screen. If you are ever in any doubt as to which method
to use in a particular circumstance, it is normally safer to use POST.

Regardless of whether the form data is submitted as a GET or a POST request, Pylons still
makes the values available in your controllers using the same interface through request.params.

You might be wondering how Pylons copes if you submit a form with a POST method to a URL
containing a query string. The answer is that both sets of values get merged into the request.params
object. Occasionally you might want to access the query string data separately from the POST data,
so Pylons also provides two other MultiDict objects that behave in the same way as request.params
to allow you to do just that. They are accessed as request.GET and request.POST, respectively.

The Resubmitted Data Problem
When writing form-based applications, you will occasionally find that users will press Refresh
immediately after submitting a form. This has the effect of repeating whatever actions were per-
formed the first time the form was submitted, but this might not always be the behavior your users
expect.

If your form was submitted with a POST, most browsers will display a message to the user ask-
ing them whether they want to resubmit the data (see Figure 6-3). This will not happen with a GET,
so POST is preferable to GET in those circumstances.

Figure 6-3. The dialog box displayed by Firefox when you click Refresh on a page where POST data has
been submitted

Of course, the best way to solve this issue is to structure your code in such a way that if the
user refreshes the page, the data isn’t resubmitted. Here’s one way of achieving this with an HTTP
redirect:

in the controller

def form(self):
return render('/simpleform.html')

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 95

def submit(self):
Code to perform some action based on the form data
...
h.redirect_to(controller='formtest', action='result')

def result(self):
return 'Your data was successfully submitted.'

This code requires the use of the redirect_to() helper. Add the following import to the pro-
ject’s lib/helpers.py file:

from pylons.controllers.util import redirect_to

Then in the controller, import the helpers module by adding this line at the top:

import formdemo.lib.helpers as h

Now you can test the controller. In this case, once the form is submitted, the data is saved, and
an HTTP redirect occurs so that the browser redirects to http://localhost:5000/hello/result. If
the user then refreshes the page, it simply redisplays the message rather than reperforming the
action.

One issue with this approach is that if you want to display some of the submitted data, you will
need to load it again in the result() action because the request that calls that action doesn’t con-
tain any of the submitted data. In Chapter 8, I’ll cover how these sorts of messages can be displayed
by storing information in a session store.

Building Forms with Helpers
Forms can also be created with Pylons’ built-in helpers. You’ve already seen the helpers in Chapter 3
and learned about how they escape data to avoid security problems in Chapter 5; in this section,
you’ll learn how to use the HTML helpers to create forms.

■Note The WebHelpers package from which the Pylons helpers are imported changed significantly in ver-
sion 0.6. All the old helpers from Rails were deprecated in favor of the new-style literal approach documented in
Chapter 5. All the JavaScript integration with Prototype and Script.aculo.us was also removed because the majority
of developers preferred to use their own JavaScript framework. You’ll learn more about Pylons integration with
JavaScript frameworks in Chapter 15.

Let’s update the form you’ve been working on to use some of the HTML form helpers. Change
the simpleform.html file to look like this:

<%inherit file="/base.html" />
<h1>Enter Your E-mail Address</h1>

${h.form(h.url_for(controller='formtest', action='submit'), method='get')}
Email Address: ${h.text('email')}

${h.submit('submit', 'Submit')}
${h.end_form()}

You can see that you are using the form(), url_for(), text(), and submit() helpers. The
url_for() helper actually comes from Routes, but the other helpers come from the
webhelpers.html.tags module. You’ll need to add all these helpers to your sample project’s
lib/helpers.py file too in order for this example to work:

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS96

from routes import url_for
from webhelpers.html.tags import *

The built-in form helpers simply generate fragments of HTML to help you build forms. There
are no built-in checks to ensure that you have closed an open form tag, so it is up to you to ensure
that you produce valid HTML. Of course, this is actually very useful because it gives you a lot of flex-
ibility. For example, you are free to mix and match HTML and helpers in whichever way you see fit,
or you could even define the start of a form in one template and the end of a form in another with-
out the helpers getting in your way. The helpers do correctly escape any string or Unicode values
you pass them, but they don’t modify any values that have already been escaped with literal().

It is worth becoming familiar with the form helpers available because using them can save a lot
of time (particularly with more complex fields such as selects), and they will also ensure all your
data is properly escaped. The HTML helpers are well documented at
http://docs.pylonshq.com/thirdparty/webhelpers/html/html.html#webhelpers-html-tags, so you
can always refer to the documentation for the details of how a particular helper works.

Let’s take a look at the definition of the text() helper as an example:

text(name, value=None, **attrs)

This creates a standard text field. value is a string, the content of the text field. The following are the
options:

disabled: If set to True, the user will not be able to use this input.

size: This is the number of visible characters that will fit in the input.

maxlength: This is the maximum number of characters that the browser will allow the user
to enter.

The remaining keyword options are standard HTML options for the tag.
All form helpers start with a name argument, which should be a string representing the name of

the field, and they also have an **attrs argument. In Python, ** is a notation that means that any
extra keyword arguments passed to the function should be put in a dictionary called attrs where
the keys are the parameter names and the values are their corresponding values.

Any extra parameters you pass to any of these helpers are treated as extra attributes to be
added to the HTML tag generated. Here’s an example where you specify an attribute that isn’t part
of the HTML specification to an <input> field. Again, the helpers won’t flag this as an error; it is up
to you to decide what is right for your application and be responsible for the attributes you set.

>>> h.text('test', 'Welcome', myattribute='myvalue')
'<input type="text" value="Welcome" myattribute="myvalue" />'

One common use for this functionality is to specify the CSS class the field should have. The
problem is that class is a reserved word in Python, so to specify the class attribute, you need to
pass in the parameter class_ with a trailing _ character.

>>> h.text('test', 'Welcome', class_='wide')
'<input type="text" value="Welcome" class="wide" />'

The text() helper has a special behavior for the attributes disabled, size, and maxlength. All
the single value field helpers behave in a similar way. They are checkbox(), file(), hidden(),
image(), password(), radio(), submit(), and textarea().

There is also a select() helper, and it behaves slightly differently. If you look at the documenta-
tion for select(), you’ll see it is defined like this:

select(name, selected_values, options, **attrs)

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 97

Instead of taking a value, it has a selected_values argument and an options argument:

selected_values: A string or list of strings or integers giving the value(s) that should be prese-
lected.

options: An iterable of (value, label) pairs. The value is what is returned to the application if
this option is chosen; the label is what is shown in the form. You can also pass an iterable of
strings, in which case the labels will be identical to the values.

If you are used to the select() helper from an earlier version of WebHelpers, you might expect
to be able to use options_for_select(). This has been deprecated and is not available in
Pylons 0.9.7. Instead, you just pass in the list of tuples directly via options. You’ll also notice
that the order of items in the tuple is reversed. options_for_select() expects arguments in the
form (label, value), but this isn’t how most Python objects are generated.

The following shows select() in action:

>>> select("currency", "$", [["$", "Dollar"], ["DKK", "Kroner"]])
literal(u'<select name="currency">\n<option selected="selected" value="$">➥
Dollar</option>\n➥
<option value="DKK">Kroner</option>\n</select>')
>>> select("cc", "MasterCard", ["VISA", "MasterCard"], id="cc", class_="blue")
literal(u'<select class="blue" id="cc" name="cc">\n➥
<option value="VISA">VISA</option>\n<option selected="selected"➥
value="MasterCard">MasterCard</option>\n</select>')
>>> select("cc", ["VISA", "Discover"], ["VISA", "MasterCard", "Discover"])
literal(u'<select name="cc">\n➥
<option selected="selected" value="VISA">VISA</option>\n➥
<option value="MasterCard">MasterCard</option>\n➥
<option selected="selected" value="Discover">Discover</option>\n</select>')

Uploading Files
File upload fields are created by using the file input field type. The file() helper provides a short-
cut for creating these form fields:

${h.file('myfile')}

To use the file field, you need to import it into the project’s lib/helpers.py file:

from webhelpers.html.tags import file

The HTML form must have its enctype attribute set to multipart/form-data to enable the
browser to upload the file. The form helper’s multipart keyword argument provides a shortcut for
setting the appropriate enctype value. You don’t need to explicitly mark the form to use a POST
because the helper automatically sets the method attribute to post when you specify the enctype
for a file upload.

Let’s add a new controller to the form named upload:

$ paster controller upload

Change the index() action so it looks like this:

def index(self):
return render('/uploadform.html')

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS98

Then add this new template to the templates directory as uploadform.html:

<%inherit file="/base.html" />
<h1>Upload a File</h1>

${h.form(h.url_for(controller='upload', action='upload'), multipart=True)}
Upload file: ${h.file('myfile')}

Description: ${h.text('description')}

${h.submit('submit', 'Submit')}
${h.end_form()}

If you visit http://localhost:5000/upload/index, you should see the form.
Now let’s think about how to handle the upload. When a file upload has succeeded, the

request.POST (or request.params) MultiDict will contain a cgi.FieldStorage object as the value of
the field.

FieldStorage objects have three important attributes for file uploads:

filename: This is the name of the file uploaded as it appeared on the uploader’s filesystem.

file: This is a Python tempfile object from which the file can be read. For example:

data = request.params['myfile'].file.read()

value: This is the content of the uploaded file, eagerly read directly from the file object.

The easiest way to gain access to the file’s data is via the value attribute, which returns the
entire contents of the file:

def upload(self):
myfile = request.POST['myfile']
return "Successfully uploaded: %s, size: %i, description: %s" % (

myfile.filename,
len(myfile.value),
request.POST['description']

)

However, reading the entire contents of the file into memory is undesirable, especially for large
file uploads. A common means of handling file uploads is to store the file somewhere on the file-
system. The FieldStorage instance already reads the file onto the filesystem; however, it’s to a
nonpermanent location, via a Python tempfile object.

Here’s an example that uses shutil.copyfileobj to perform an efficient copy of the temp file’s
data to a permanent location specified by the permanent_store variable in the config file:

def upload(self):
myfile = request.POST['myfile']
permanent_file = open(

os.path.join(
config['app_conf']['permanent_store'],
myfile.filename.replace(os.sep, '_')

),
'wb'

)
shutil.copyfileobj(myfile.file, permanent_file)
myfile.file.close()
permanent_file.close()

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 99

return 'Successfully uploaded: %s, description: %s' % (
myfile.filename,
request.POST['description']

)

For this example to work, you’ll need to add some imports at the top of the file:

import os
from pylons import config
import shutil

You’ll also need to edit the development.ini config file and add this to the end of the
[app:main] section:

permanent_store = %(here)s/data/uploads

You’ll remember from the discussion of config files in Chapter 3 that %(here)s is replaced with
the location of the config file, so this example would upload files to the project’s data directory used
as a cache for templates and sessions. You’ll need to create the uploads directory within the data
directory because it won’t exist yet.

■Caution This basic example allows any file uploaded to overwrite any file in the permanent_store directory
to which your web application has permissions.

Also note the use of myfile.filename.replace(os.sep, '_') to ensure that the file name doesn’t start
with a / character. This is a simple security measure to help prevent specially crafted file names resulting in other
files on your system being overwritten. You should always be suspicious of all data coming from a user’s web
browser and take appropriate steps to try to ensure that the data is safe.

Now that you can handle files being uploaded to the server, you might also want to provide a
way for your users to download those files again.

First you’ll need to import the mimetypes module to guess the content type of the file, so you
should add the following import to the top of your controller:

from mimetypes import guess_type

You can then provide the download with an action like this:

def download(self):
requested_filename = request.params['requested_filename']
filename = os.path.join(

config['app_conf']['permanent_store'],
requested_filename.replace(os.sep, '_')

)
if not os.path.exists(filename):

return 'No such file'
permanent_file = open(filename, 'rb')
data = permanent_file.read()
permanent_file.close()
response.content_type = guess_type(filename)[0] or 'text/plain'
return data

You can test this by uploading a text file called somefile and then visiting the URL
http://localhost:5000/upload/download?requested_filename=somefile. The example so far will
correctly send the file to the browser, but the browser will try to display it if it is a type it recognizes
such as a JPEG or a PNG file. If you want to force the browser to download the file as an attachment,
you can add another HTTP header to the response like this just before you return the data:

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS100

response.headers['Content-Disposition'] = 'attachment; filename="%s"'%(
requested_filename

)

This time the browser will treat the file as an attachment and prompt the user to ask how the
file should be handled (see Figure 6-4).

Figure 6-4. The Firefox attachment download dialog box

Notice how in this example because the name given for the file name in the Content-
Disposition HTTP header was somefile, the browser automatically tried to name the file somefile
on the user’s computer.

■Caution Internet Explorer 6 has trouble downloading certain files as attachments over sites using a secure
connection (see http://support.microsoft.com/default.aspx?scid=kb;en-us;812935).

If you are writing a secure application that will be accessed by users with Internet Explorer, you should also
add the following headers to the response to correct the problem:

response.headers['Content-Length'] = len(data)
response.headers['Pragma'] = 'public'
response.headers['Cache-Control'] = 'max-age=0'

Note that this an issue with Internet Explorer 6, not with Pylons!

Handling Forms Manually
In the initial example in this chapter, I described how to create a simple form that enables a user to
enter their e-mail address and to redisplay the value that was entered in a Pylons application. In
most situations, it is important to be able to validate the information the user has entered. If you
were asking for an e-mail address with an intention to use it to contact someone, it is important the
e-mail address is a real address, so you would want to run some basic checks to ensure the e-mail
wasn’t obviously entered incorrectly. For example, the e-mail address should contain two strings
separated by an @ character, and the domain name portion should contain a . character that should
be followed by at least two characters representing the top-level domain. There are even more

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 101

checks you could make, including ensuring the domain portion of the e-mail was a real domain
name, but this probably isn’t necessary for most situations.

If a user did enter an invalid e-mail, you would need to redisplay the form together with the
e-mail address entered and an error message explaining what was wrong so that the user could cor-
rect their mistake. Let’s create a controller to demonstrate this process manually. Later in the
chapter, you’ll learn how the Pylons tools make this process a lot simpler.

Let’s update the formtest controller from earlier in the chapter to demonstrate this. Update the
submit() action to look like this, and remove the result() action:

def submit(self):
c.email_msg = ''
email = request.params.get('email')
if not email:

c.email_msg = "Please enter a value"
elif '@' not in email:

c.email_msg = "An email address must contain at least one '@' character."
else:

domain = email.split('@')[1]
if '.' not in domain:

c.email_msg = "An email address domain must contain "
c.email_msg += "at least one '.' character."

if not domain.split('.')[-1]:
c.email_msg = "Please specify a domain type after the '.' character"

if c.email_msg:
c.email_value = email
return render('/simpleform.html')

return 'Your email is: %s' % request.params['email']

Update the simpleform.html template to look like this:

<%inherit file="/base.html" />
<h1>Enter Your E-mail Address</h1>

${h.form(h.url_for(controller='formtest', action='submit'), method='get')}
% if c.email_msg:

${c.email_msg}

% endif
E-mail Address: ${h.text('email', value=c.email_value)}

${h.submit('submit', 'Submit')}
${h.end_form()}
</form>

You’ve used the Pylons’ helpers to generate the fields in this example; remember, you are free
to use the helpers or to code your own HTML.

If you visit http://localhost:5000/formtest/form, you will see that it achieves the desired
result. If a user enters an invalid e-mail address, it will result in the form being redisplayed to show
the error with the incorrect value still present in the text field ready to be corrected.

To make the error show up better, it would be sensible to add some Cascading Style Sheets
(CSS) so that the error appears in red. The <head> of the page is defined in the base.html template,
so you better add the CSS there.

Edit base.html so that you include the following line in the <head> section:

<link rel="stylesheet" type="text/css"
href="${h.url_for('/style/style.css')}" />

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS102

Then create a style directory in your project’s public directory, and create a file called
style.css with the following content:

span.error-message {
font-weight: bold;
color: #f00;

}

You should find that all the error messages now appear in red, which will make the error much
more obvious to your users (see Figure 6-5).

Figure 6-5. The error message highlighted in red

Although the approach you’ve used here to manually validate the form works perfectly well, it
would quickly become very complex if you were to also write code to handle many other types of
fields in the same way. Luckily, Pylons comes with tools to make the processes you have just used
much simpler.

Introducing FormEncode
The recommended tool for validating forms in Pylons is FormEncode. FormEncode has two parts:

• A set of validators used together to create schemas, which convert form data back and forth
between Python objects and their corresponding form values

• A tool called HTML Fill that takes an HTML form and parses it for form fields, filling in val-
ues and error messages as it goes from Python objects

Pylons provides a @validate decorator, which can make the process of validating form data
and redisplaying the form if necessary very easy, but in order to really understand what is going
on during the validation process, I’ll first explain the process in full.

For each form you create, you also create a validation schema. Here is the validation
schema for the form you’ve been using so far. The example also includes a date field so I can
later demonstrate how you can use schemas to convert data from one type to another as well
as just validate input.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 103

import formencode

class EmailForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
email = formencode.validators.Email(not_empty=True)
date = formencode.validators.DateConverter(not_empty=True)

Although the form now has three fields—an e-mail text field, a date validator, and a submit
button—you are interested only in validating the e-mail address and the date. If extra fields are sub-
mitted, FormEncode’s default behavior is to consider the form invalid, so you specify allow_extra_
fields = True so that the value of the submit button is not validated. Since you don’t want to use
the value of the submit button, you also specify filter_extra_fields = True so that the value is
ignored completely.

The third line specifies that the e-mail field should be validated with an Email() validator. In
creating the validator, you also specify not_empty=True so that the e-mail field will require input.
The final line specifies your date field and also that this particular date field should not be empty
either.

Table 6-1 outlines the options that can be used in a schema in addition to the validators
themselves.

Table 6-1. Additional Options That Can Be Used in a FormEncode Schema

Attribute Name Default Value Description

pre_validators [] These validators will be applied before the schema.

chained_validators [] These validators will be applied after the schema.

allow_extra_fields False If True, then it is not an error when keys that aren’t
associated with a validator are present.

filter_extra_fields False If True, then keys that aren’t associated with a validator are
removed.

if_key_missing NoDefault If this is given, then any keys that aren’t available but are
expected will be replaced with this value (and then vali-
dated). This does not override a present .if_missing
attribute on validators. NoDefault is a special FormEncode
class to mean that no default values have been specified
and therefore missing keys shouldn’t take a default value.

ignore_key_missing False If True, then missing keys will be missing in the result, if
the validator doesn’t have .if_missing on it already.

It is usually best to keep form schemas together so that you have a single place you can go to
update them. It’s also convenient for inheritance since you can make new form schemas that build
on existing ones. If you put your forms in a model/form.py file, you can easily use them throughout
your controllers. However, if you are creating a schema that is going to be used in only one con-
troller, it is often more convenient to keep the schema with the controller. This is what you’ll do
here. Add the EmailForm schema to the top of the controller.

Now that you have added the schema, you need to be able to use it in your controller to vali-
date the submitted form data that comes in via request.params and to convert the validated values
from the format in which they are submitted to Python objects that can be used in the controller.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS104

This is very straightforward because each Schema base class (and therefore the EmailForm class)
has a to_python() method to handle the validation and conversion. If any of the validators fail to be
able to convert the data, they raise a special exception type called a formencode.Invalid exception,
which contains information about why the validation and conversion failed. Let’s see it in practice.
Be sure you’ve added the EmailForm schema and import formencode line to the top of the controller
file, and then update the submit() action to look like this:

def submit(self):
schema = EmailForm()
try:

form_result = schema.to_python(dict(request.params))
except formencode.Invalid, error:

response.content_type = 'text/plain'
return 'Invalid: 'unicode(error)

else:
return 'Your email is: %s'%form_result.get('email')

You’ll also need to update the simpleform.html template to add the date field:

<%inherit file="/base.html" />
<h1>Enter Your E-mail Address</h1>

${h.form(h.url_for(controller='formtest', action='submit'), method='get')}
<p>E-mail Address: ${h.text('email')}</p>
<p>Date: ${h.text('date')}</p>
<p> ${h.submit('submit', 'Submit')}</p>
${h.end_form()}
</form>

This new template is much simpler, but you’ll notice that it doesn’t contain any logic for setting
the value of the e-mail field or displaying an error message. This will be handled separately using
HTML Fill, which I’ll discuss later in the chapter.

If the values entered in the form are valid, the schema’s to_python() method returns a diction-
ary of the validated and coerced data, in this case assigned to form_result. This means you can
guarantee that the form_result dictionary contains values that are valid and correct Python objects
for the data types desired.

In this case, the e-mail address is a string, so request.params['email'] happens to be the same
as form_result['email'], but for the date field, request.params['date'] is a string in the form
"mm/dd/yyyy", whereas form_result['date'] is a Python datetime.date object representing the date
the user entered. For even more complex data types, this ability of FormEncode to coerce data
becomes very valuable.

Try entering some dates and e-mail addresses, both valid and invalid, and see the error mes-
sages FormEncode produces. As an example, if you entered the e-mail address james.example.com
and the date 01/40/2008, you would get the following errors:

Invalid: date: That month only has 31 days
email: An email address must contain a single @

Now try entering some valid data such as james@example.com and 01/15/2006 and change the
end of the submit() action to look like this:

...
else:

raise Exception(form_result)
return 'Your email is: %s'%form_result.get('email')

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 105

From the exception that occurs, you can see that form_result actually contains the following:

{'date': datetime.date(2006, 1, 15), 'email': u'james@example.com'}

As you can see, FormEncode has done more than simply validate the data; it has also converted
it to the appropriate Python type so that you can easily work with it. The DateConverter validator
has converted the text entered in the form into a Python date object, and the Email validator has
returned a Unicode string. This is useful if you want to convert Python objects from your database
to display in a table as part of your web application, for example. It is also used by HTML Fill to
automatically repopulate form data if your form contains errors.

Here are some of the most frequently used FormEncode validators. For the full list, see the
Available Validators documentation on the FormEncode web site:

MaxLength: The submitted value is invalid if it is longer than the maxLength argument. It uses
len(), so it can work for strings, lists, or anything with length.

MinLength: The submitted value is invalid if it is shorter than the minLength argument. It uses
len(), so it can work for strings, lists, or anything with length.

Regex: The submitted value is invalid if it doesn’t match the regular expression regex. This is
useful for matching phone numbers or postal codes, for example.

PlainText: This validator ensures that the field contains only letters, numbers, underscores,
and hyphens. It subclasses Regex.

DateConverter: This validates and converts a date represented as a string, such as mm/yy,
dd/mm/yy, dd-mm-yy, and so on. By using the month_style argument you can support
mm/dd/yyyy or dd/mm/yyyy. Only these two general styles are supported.

TimeConverter: This converts times in the format HH:MM:SSampm to (h, m, s). Seconds are
optional.

StringBool: This converts a string such as "true" or "0" to a boolean.

Int: This converts a value to an integer.

Number: This converts a value to a float or integer. It tries to convert it to an integer if no infor-
mation is lost.

String: This converts things to string but treats empty things as the empty string.

UnicodeString: This converts things to Unicode strings. This is a specialization of the String
class.

URL: This validates a URL, either http:// or https://. If check_exists is True, then you’ll actu-
ally make a request for the page.

Email: This validates an e-mail address with the facility to check that the domain entered actu-
ally exists.

OneOf: This tests that the value is one of the members of a given list. This is particularly useful
when validating an option from a select field because you can use it to check that the value
submitted was one of the original values.

FieldsMatch: This tests that the given fields match, that is, are identical. It is useful for
password+confirmation fields. Pass the list of field names in as field_names.

ForEach: Use this to apply a validator/converter to each item in a list.

All: This class is like an and operator for validators. All validators must work, and the results
are passed in turn through all validators for conversion.

Any: This class is like an or operator for validators. The first validator/converter that validates
the value will be used.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS106

It can sometimes be difficult to work out the arguments that each validator will accept. The
best way to find out is to look at the example usage for each type of validator on the FormEncode
site. In addition to these arguments, validators also accept common arguments to configure their
error messages and behavior. You’ll learn about these next.

Configuring Validators
Each of the validators will have a number of messages as well as a number of configuration options.
Here are some examples of the sorts of messages available; these are for the ConfirmType validator:

badType: "The input must be a string (not a %(type)s: %(value)r)"

empty: "Please enter a value"

inSubclass: "%(object)r is not a subclass of one of the types %(subclassList)s"

inType: "%(object)r must be one of the types %(typeList)s"

noneType: "The input must be a string (not None)"

subclass: "%(object)r is not a subclass of %(subclass)s"

type: "%(object)r must be of the type %(type)s"

To override the default value for an error message, you pass a msgs argument to the validator’s
constuctor. For example:

name = String(msgs={'empty':'Please enter a name'})

In each of these examples, constructs such as %(object)r and %(type)s are standard Python
string-formatting terms. They are replaced by a string representation of the value to which they are
referring. Terms ending in s result in the object being converted to a string with str(), and terms
ending in r result in the objects being converted to a string with the repr() function that displays a
Python representation of the value. You can use these same terms in your own custom messages if
you like.

You don’t need to specify messages for every error; FormEncode will use its defaults for any
you don’t specify. Messages often take arguments, such as the number of characters, the invalid
portion of the field, and so on. These are always substituted as a dictionary (by name). So, you will
use placeholders like %(key)s for each substitution. This way you can reorder or even ignore place-
holders in your new message.

Later you’ll see how to create your own validator. When you are creating a validator, for maxi-
mum flexibility you should use the message function:

messages = {
'key': 'my message (with a %(substitution)s)',
}

def validate_python(self, value, state):
raise Invalid(self.message('key', substitution='apples'),

value, state)

Most validators support the following options (including your own validators, if you subclass
from FancyValidator):

if_empty: If set, then this value will be returned if the input evaluates to false (an empty list,
empty string, None, and so on), but not a 0 or False objects. This applies only to .to_python().

not_empty: If True, then if an empty value is given, this raises an error (both with .to_python()
and also .from_python() if .validate_python is True).

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 107

strip: If True and the input is a string, strip it (occurs before empty tests).

if_invalid: If set, then this validator will raise Invalid during .to_python(); instead, return
this value.

if_invalid_python: If set, when the Python value (converted with .from_python()) is invalid,
this value will be returned.

accept_python: If True (the default), then .validate_python() and .validate_other() will not
be called when .from_python() is used.

The values of the configuration options are stored as class attributes. As an example, look at
the DateConverter you used earlier. It is documented at http://formencode.org/class-formencode.
validators.DateConverter.html, where you can see that the class has a number of attributes
including month_style, which defaults to mm/dd/yyyy. There are two ways to set these attributes.
The first is to pass the name of the attribute as an argument to the validator’s constructor when you
create it. You’ve already seen an example of this technique when you passed not_empty=True to the
DateConverter and EmailValidator validators in your schema.

The other way to configure a validator is by using inheritance. You can create a new validator
derived from the old one but with different default values for the attributes. As an example, here is
a UKDateConverter, which uses the U.K. format for the date by default:

class UKDateConverter(DateConverter):
month_style = 'dd/mm/yyyy'

You could then update your schema to look like this:

class EmailForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
email = formencode.validators.Email(not_empty=True)
date = UKDateConverter(not_empty=True)

You’ll learn more about creating your own validators later in this chapter.

Using HTML Fill
Now that you have learned how to use FormEncode to validate and coerce data, you will still
need to display error messages along with a repopulated form should the user have entered any
invalid data.

This is from the HTML Fill documentation:

htmlfill is a library to fill out forms, both with default values and error messages. It’s like a
template library, but more limited, and it can be used with the output from other templates.
It has no prerequesites and can be used without any other parts of FormEncode.

The basic usage looks something like this:

>>> from formencode import htmlfill
>>> form = '<input type="text" name="fname">'
>>> defaults = {'fname': 'Joe'}
>>> htmlfill.render(form, defaults)
'<input type="text" name="fname" value="Joe">'

The parser looks for HTML input elements (including select and textarea) and fills in the
defaults. HTML Fill is therefore very useful in processing forms because you can return the form to
the user with the values they entered, in addition to errors.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS108

Let’s update the controller to use HTML Fill. Change the submit() action to look like this:

def submit(self):
schema = EmailForm()
try:

c.form_result = schema.to_python(dict(request.params))
except formencode.Invalid, error:

c.form_result = error.value
c.form_errors = error.error_dict or {}
html = render('/simpleform.html')
return htmlfill.render(

html,
defaults=c.form_result,
errors=c.form_errors

)
else:

return 'Your email is: %s and the date selected was %r.' % (
c.form_result['email'],
c.form_result['date'],

)

You’ll also need to import HTML Fill. Add this import to the top of the controller:

from formencode import htmlfill

In this example, when an error occurs, you use Pylons’ render() function to render the HTML
of the original form as it was before the user submitted it. You then pass the HTML, as well as the
form result values and the error messages dictionary, into HTML Fill’s render() method. HTML Fill
then parses the HTML, adding any error messages and field values for you automatically. The filled
HTML is then returned so that the user can correct the errors as before.

Notice that you don’t need the template code for the error messages and that none of the fields
have values specified directly. HTML Fill populates the fields with the correct values and inserts any
error messages automatically.

■Tip Being able to use plain HTML in this manner is actually very useful because it means any designers work-
ing on your project are able to use visual tools such as Dreamweaver (or the open source Nvu program based on
Mozilla project code) and HTML Fill will still work perfectly, whereas these tools are not designed to visually display
fields generated in templates with the helper functions. The decision as to whether you should use the field
helpers or code HTML fields directly will depend largely on whether you want to use such tools.

If you run the example, you will see that the result is very similar to what was generated when
you handled the form manually earlier in the chapter. The HTML generated for the error messages
is slightly different, though. It includes some comments added by HTML Fill.

This is the generated HTML:

<html>
<head>
<title>FormDemo</title>
<link rel="stylesheet" type="text/css"

href="/style/style.css" />
</head>
<body>

<h1>Enter Your E-mail Address</h1>

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 109

<form action="/formtest/submit" method="get">
<p>E-mail Address: <!-- for: email -->
An email address must contain a single @

<input name="email" type="text" class="error" value="test_example.com" /></p>

<p>Date: <!-- for: date -->
That month only has 31 days

<input name="date" type="text" class="error" value="1/40/2008" /></p>
<p> <input name="submit" type="submit" value="Submit" /></p>
</form>
</form>

</body>
</html>

Error Message Formatting
The error message formatting might not be quite what you were after, so HTML Fill defines two spe-
cial tags that can be used to customize how the error messages are displayed:

<form:error name="field_name" format="formatter">: This tag is eliminated completely if
there is no error for the named field. Otherwise, the error is passed through the given formatter
("default" if no format attribute is given).

<form:iferror name="field_name">...</form:iferror>: If the named field doesn’t have an
error, everything between the tags will be eliminated. Use name="not field_name" to invert the
behavior (in other words, include text only if there are no errors for the field).

Formatters are functions that take the error text as a single argument and return a string that is
inserted into the template. Formatters are specified as arguments to the htmlfill.render() func-
tion, which I will describe next. The default formatter returns the following:

(message)

where (message) is replaced with the error message concerned. Most of the time it is best to use a
formatter because the second form displays the static HTML you’ve specified, not the actual error
message generated.

If any errors are generated for fields that don’t exist, they are added at the top of the form.

Render Arguments
HTML Fill’s render() function has the following arguments that you can use to customize how the
form is rendered:

def render(form, defaults=None, errors=None, use_all_keys=False,
error_formatters=None, add_attributes=None,
auto_insert_errors=True, auto_error_formatter=None,
text_as_default=False, listener=None)

It is important to note that HTML Fill’s render() function has nothing to do with the render()
function you’ve been using to render templates; it is just unfortunate that both have the same
name.

The example so far has used the form, defaults and errors arguments, but other options can
be useful too:

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS110

use_all_keys: If this is True, if there are any extra fields from defaults or errors that couldn’t be
used in the form, it will be an error.

error_formatters: This is a dictionary of formatter names to one-argument functions that for-
mat an error into HTML. Some default formatters are provided if you don’t provide this.

add_attributes: This is a dictionary of field names to a dictionary of attribute name/values. If
the name starts with +, then the value will be appended to any existing attribute (for example,
{'+class': ' important'}).

auto_insert_errors: If this is True (the default), then any errors for which <form:error> tags
can’t be found will be put just above the associated input field, or at the top of the form if no
field can be found.

auto_error_formatter: This is used to create the HTML that goes above the fields. By default, it
wraps the error message in a span and adds a
.

text_as_default: If this is True (the default is False), then <input type=unknown> will be treated
as text inputs.

listener: This can be an object that watches fields pass; the only one currently is in
formencode.htmlfill_schemabuilder.SchemaBuilder.

Doing Validation the Quick Way
Now that you’ve seen in detail how to use FormEncode and HTML Fill, you’ll be pleased to know
that Pylons provides an even simpler way of using the same functionality that is suitable for the
majority of use cases you are likely to encounter.

You can use it like this:

def form(self):
return render('/simpleform.html')

@validate(schema=EmailForm(), form='form', post_only=False, on_get=True)
def submit(self):

return 'Your email is: %s and the date selected was %r.' % (
self.form_result['email'],
self.form_result['date'],

)

You’ll need to import the @validate decorator at the top of the controller:

from pylons.decorators import validate

What this says is that if the data submitted to the submit() action contains any errors, then the
request should be rerun as a GET request to the form() action. The result of calling the form() action
is then passed through HTML Fill to render the errors and repopulate the form with the values that
were submitted.

■Note Python 2.3 doesn’t support decorators, so rather than using the @validate() syntax, you need to put
email = validate(schema=EmailForm(), form='form', post_only=False, on_get=True)(email)
after the e-mail function’s declaration.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 111

By default, if you don’t specify post_only=False and on_get=True to the @validate decorator,
validation would occur only on POST requests, so you would need to alter your form definition so
that the method is a POST:

<% h.form(h.url_for(action='submit'), method='post') %>

■Caution If you do this, calling an action wrapped by @validate using a GET request will bypass the validation
and call the action anyway. You need to make sure this doesn’t pose a security risk in your application. You could
prevent this by testing whether a GET or a POST is being used in the body of the action. The request method can
be determined using request.method.

You can customize the way HTML Fill is called by passing any of the arguments accepted by
htmlfill.render() as keyword arguments to validate(). For example, to specify a custom error for-
matter, you can do this:

from formencode import htmlfill

def custom_formatter(error):
return '%s
\n' % (

htmlfill.html_quote(error)
)

Update the submit() action to look like this:

@validate(schema=EmailForm(), form='form', post_only=False, on_get=True,
auto_error_formatter=custom_formatter)

def submit(self):
return 'Your email is: %s and the date selected was %r.' % (

self.form_result['email'],
self.form_result['date'],

)

With this in place, the error messages will be wrapped in tags.
If you run the example, you will notice that the error messages are no longer highlighted in red
because there is no style set up for the new error class.

You can pass other options to the HTML Fill render() function in the same way via the
@validate decorator.

The @validate decorator is documented at
http://docs.pylonshq.com/modules/decorators.html#module-pylons.decorators.

Using Custom Validators
FormEncode comes with a useful set of validators, but you can also easily create your own. One
common reason for wanting to do this is if you are populating a select field with values from a data-
base and you want to ensure the value submitted is one of the values in the database.

For this example, imagine you have a function called get_option_values() that interacts with
a database every time it is called and returns a list of valid integers.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS112

Here’s a potential implementation:

class ValidOption(formencode.validators.FancyValidator):

def validate_python(self, value, state):
valid_values = get_option_values()
if value not in valid_values:

raise formencode.Invalid("Invalid value", value, state)

When the validator is used in a schema and checked, an error message will be displayed if the
value submitted isn’t one of the options returned by get_option_values().

You might use it like this:

class EmailForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
email = formencode.validators.Email(not_empty=True)
date = formencode.validators.DateConverter(not_empty=True)
option = ValidOption()

Let’s have a look at the implementation in more detail. Notice that the validate_python()
method also takes a state argument. It’s used for very little in the validation system but provides a
mechanism for passing information from Pylons to any custom validators you write. The c global is
used in Pylons for storing per-request state information, so it makes sense to also use it as the state
argument to your validators, although you are free to use other objects if you prefer.

As an example, let’s imagine that get_option_values() relied on a database connection that
was set up on each request. You couldn’t pass the connection as an argument to ValidOption
because the connection wouldn’t exist at the point Python created the schema. The connection
exists only during the request, so you would attach it to the c global during the request and pass the
c global as the state argument when instantiating the schema. Here’s how the start of the submit()
action might look from the full FormEncode and HTML Fill example earlier:

def submit(self):
Imagine we have a connection object now:
c.connection = connection
schema = EmailForm(state=c)
... same as before

You could now update the example like this:

class ValidOption(formencode.validators.FancyValidator):

def validate_python(self, value, c):
valid_values = get_option_values(c.connection)
if value not in valid_values:

raise formencode.Invalid("Invalid value", value, c)

In this way, the validator can use request-specific information even though it is defined before
the request starts.

The previous implementation uses the validate_python() method, which simply raises an
exception if it needs to do so. This is useful in this example because the conversion needs to be
done by the validator when converting to and from Python. This won’t be the case for all the valida-
tors you create, though. The _to_python() and _from_python() methods are provided for you to
implement any conversion code to convert to or from Python, respectively.

The validate_python() method is called after _to_python() so that the value argument will be
a normal Python object by the time it comes to being validated. validate_python() is called before
_from_python(). Both _to_python() and _from_python() take the same arguments as validate_
python().

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 113

You’ll remember from earlier in the chapter that validators can be customized when you
instantiate them in a schema. At the moment, the validator you’ve created always displays the mes-
sage Invalid value. Let’s update the validator to allow it to be customized:

class ValidOption(formencode.validators.FancyValidator):

messages = {
'invalid': 'Invalid value',

}

def validate_python(self, value, c):
valid_values = get_option_values(c.connection)
if value not in valid_values:

raise formencode.Invalid(
self.message("invalid", c),
value,
c

)

You can also include values in the message itself like this:

class ValidOption(formencode.validators.FancyValidator):

messages = {
'invalid': 'Invalid value %(invalid)s',

}

def validate_python(self, value, c):
valid_values = get_option_values(c.connection)
if value not in valid_values:

raise formencode.Invalid(
self.message("invalid", c, invalid=value),
value,
c

)

The message string specified gets interpolated with a dictionary made from the keyword
arguments you pass to the self.message() function. This system is designed to make the mes-
sages easy to format for different environments or replaceable for different languages.

You’ll also notice that you use a special exception class, formencode.Invalid, to raise an error.
This is the same exception class you catch in the controller action and use to obtain the values to
pass to htmlfill.render(). Besides the string error message, Invalid exceptions have a few other
instance variables:

value: This is the input to the validator that failed.

state: This is the associated state.

msg: This is the error message (str(exc) returns this).

error_list: If the exception happened in a ForEach (list) validator, then this will contain a list
of Invalid exceptions. Each item from the list will have an entry, either None for no error or an
exception.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS114

error_dict: If the exception happened in a Schema (dictionary) validator, then this will contain
Invalid exceptions for each failing field.

.unpack_errors(): This method returns a set of lists and dictionaries containing strings for
each error. It’s an unpacking of error_list, error_dict, and msg. If you get an Invalid excep-
tion from a Schema, you probably want to call this method on the exception object.

If you are interested in writing your own validators, it is useful to see the source code for the
FancyValidator class. It is in the formencode.api module and explains all the options and methods
validators have. There are other types of validators too such as compound validators and chained
validators. Generally speaking, the best way to implement your own validator is to look at the
source code of an existing validator that behaves in a similar manner and implement your own
validator in the same way.

Solving the Repeating Fields Problem
In real-world examples, you rarely just need a form that can be populated from a flat dictionary
structure. Forms that contain subforms or repeating sets of fields are actually very common.

Let’s imagine a situation where you are writing a form to allow a researcher to add informa-
tion about a research project they are conducting. They might need to provide the following
information:

• The title of the study

• When it is going to start and end

• The contact details of the people who are participating

Contact details consist of the following information:

• Title

• First name

• Surname

• Role in the project

Let’s also imagine that a research project requires at least one person to be added and also that
there can be only one person with the role of chief investigator.

You can easily provide a form to enter the study title, start date, and end date, but providing a
form to allow an unknown number of people’s contact details to be entered is slightly trickier. You
can take one of two approaches:

• Design the form in a wizard format. The user enters the title, start date, and end date on the
first screen and clicks Submit. The data is saved, and the second screen is displayed, allowing
the user to add the contact details of the first person. Once they have submitted the form,
they are asked whether they want to add another person. This continues until they have
added all the necessary data.

• Display a single form containing the title, start date, and end date as before but with a button
to allow the user to add fields to add a person. When the user clicks the Add New Person but-
ton, a set of fields to enter the first person are shown. The user can submit the form or click
the Add New Person button again to add another set of fields. Finally, once they have com-
pleted the whole form containing the study and person data, they click Save, and the data is
validated and saved in one go.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 115

The advantage of the first approach is that at any one time you are dealing with only one set
of fields that can be submitted as simple name/value pairs, so the data structure is very straight-
forward. The disadvantage is that at each step in the wizard you need to store the data that has
already been submitted, and this has its own problems. Imagine, for example, you save the study
information in the first step but the user changes their mind and never completes the second step
of adding a person. One of the requirements was that studies should have at least one person asso-
ciated with them, but now you have saved a study that doesn’t have any people. Say, instead, that
the user does add a person and gives them a role of chief investigator. Now let’s imagine they add
another person and give them a role of chief investigator too. You can’t have more than one chief
investigator, so the validation code will display an error explaining the problem. Imagine, though,
that the user really does want the second person to be the chief investigator and made a mistake in
giving the first person the chief investigator role. The user has no choice but to start the form again.

Obviously, all the problems with the wizard approach can be solved. You can store the data in
a temporary location or a session store and save it properly only at the end of the wizard, or you can
provide Back buttons so the user can go back through the wizard and make changes, but it can be a
surprising amount of work to program the logic and validation code for this sort of workflow.

The major advantage of the second approach is that all the required data is stored client-side
throughout the submission and validation cycles, which means your Pylons controller needs to
store the data only once, after all the input has been validated. This can greatly reduce the complex-
ity of your controller logic. FormEncode provides the necessary tools to help you with this.

Creating the Form
The first thing you need to do is define the schema. Here’s what the main study schema might look
like:

class Study(Schema)
title = String(not_empty=True)
start_date = DateConverter()
end_date = DateConverter()
people = ForEach(Person())

As you can see, the schema has title, start_date, and end_date fields, which use ordinary
validators as you would expect, but there is also a people field that takes a ForEach() validator.
The ForEach() validator takes a single argument, which is another validator or schema it should
validate. In this case, you want it to validate people, so you’ve specified an instance of a Person
schema. The Person schema looks like this:

class Person(Schema):
title = String()
firstname = String(not_empty=True)
surname = String(not_empty=True)
role = OneOf(['1', '2', '3'])

The role field will be a select drop-down that takes the values in Table 6-2.

Table 6-2. Possible Values for Role

Name Value

Chief investigator 1

Assistant 2

Student 3

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS116

The OneOf validator checks that the value submitted for the role is one of the values specified.
Now turn your attention to the template defs to produce the fields. You’ll create a working

example as you go through this chapter, so let’s create a project for it (accept the default values
when prompted):

$ paster create --template=pylons FormExample
$ cd FormExample
$ paster controller study

Create two directories named base and derived in the templates directory, and add a base/
index.html file that looks like this:

<html>
<head>
<title>FormsExample</title>
<style type="text/css">
span.error-message{

font-weight: bold;
color: #c00;

}
</style>
</head>
<body>
${next.body()}
</body>
</html>

Then create a new template called derived/form.html with the following content:

<%inherit file="/base/index.html" />

<%def name="study()">
<fieldset><legend>Study</legend>

<label for="title">Title</label>

${h.text(name="title", id="title")}

<label for="start_date">Start Date</label>

${h.text(name="start_date", id="startdate")}

<label for="end_date">End Date</label>

${h.text(name="end_date", id="enddate")}

</fieldset>

% for id in range(c.number_of_people):

${person(id=id)}
% endfor

</%def>

<%def name="person(id)">
<fieldset><legend>Person</legend>

<label for="person-${id}.title">Title</label>

${h.text(name="person-%s.title"%(id), id="person-%s.title"%(id))}

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 117

<label for="person-${id}.firstname">First Name</label>

${h.text(

name="person-%s.firstname"%(id),
id="person-%s.firstname"%(id

))}

<label for="person-${id}.surname">Surname</label>

${h.text(name="person-%s.surname"%(id), id="person-%s.surname"%(id))}

<label for="person-${id}.role">Role</label>

${h.select(

"person-%s.role"%(id),
[],
[

['1', 'Chief Investigator'],
['2', 'Assistant'],
['3', 'Student'],

],
id="person-%s.role"%(id),

)}

${h.submit(name="action", value="Remove %s"%(id))}

</fieldset>

</%def>

<h1>Create a Study</h1>

${h.form(h.url_for(controller='study', action='process'))}
${study()}
${h.submit(name="action", value="Save")}
${h.submit(name="action", value="Add New Person")}
${h.end_form()}

Rendering this template would result in the study() def being called, and this in turn would
call the person() def to create a set of fields for the number of people specified in c.number_of_
people, which you will set in the controller in a minute.

■Tip The template you’ve created uses <fieldset> and <label> HTML tags to create the form rather than
creating a layout with tables or other HTML structures. This is considered best practice because the for attributes
of the <label> tags clearly associate the text of the label with the field itself so that people who use screen read-
ers will still be able to fill in your form. Using this technique also makes your forms much easier to style using CSS.

The Study schema expects nested data structures, but HTML forms produce flat structures
with keys (field names) and their associated values. To solve this problem, FormEncode provides
a NestedVariables class in the nestedvariables module that provides a way of converting nested
data structures to and from a flat set of field names. To do this, it uses keys with "." for nested
dictionaries and "-int" for (ordered) lists. A structure like this:

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS118

{
'people': [

{'fname': "John", 'lname': "Doe"},
{'fname': "Jane", 'lname': 'Brown'},
"Tim Smith"

],
'action': {

None: "save",
'option': "overwrite",
'confirm': "yes"

},
}

can therefore be mapped to form fields with the names and values in Table 6-3.

Table 6-3. Field Names Used in the Example and Their Corresponding Values

Names Value

people-0.fname John

people-0.lname Doe

people-1.fname Jane

people-1.lname Brown

people-2 Tim Smith

action save

action.option overwrite

action.confirm yes

Notice how the value save is associated directly with action rather than action.None. This
is so that if the dictionary contained a key "None" and a key None, they could both be handled
correctly.

Returning to the example, notice how in the person def you just created the field names that
make up each person follow this naming convention so that FormEncode can automatically con-
vert the values submitted from the HTML form into the nested data structure the Study schema
requires.

To make this conversion happen automatically, you need to add a NestedVariables prevalida-
tor to the Study schema so it looks like this:

class Study(Schema):
pre_validators = [NestedVariables()]
title = String(not_empty=True)
start_date = DateConverter()
end_date = DateConverter()
person = ForEach(Person())

Prevalidators are validators that are run on the values before the values are passed to each
of the other validators for validation and conversion. Schemas also take a chained_validators
attribute, which you’ll see later is for performing validation on the whole form after the pre-
validators and individual field validators have been run.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 119

The form also includes buttons for adding new people and removing ones the user added by
mistake. These fields aren’t part of the schema and don’t need to be included in the validated and
converted output, so you can also add the attributes allow_extra_fields=True and filter_extra_
fields=True to the Study schema.

At this stage, you can start adding content including the finished schemas to the study con-
troller you created earlier. At the top of the file after log is set up, add the following:

from formencode.schema import Schema
from formencode.validators import Invalid, FancyValidator
from formencode.validators import Int, DateConverter, String, OneOf
from formencode import variabledecode
from formencode import htmlfill
from formencode.foreach import ForEach
from formencode.api import NoDefault

class Person(Schema):
title = String()
firstname = String(not_empty=True)
surname = String(not_empty=True)
role = OneOf(['1', '2', '3'])

class Study(Schema):
allow_extra_fields = True
filter_extra_fields = True
pre_validators = [variabledecode.NestedVariables()]
title = String(not_empty=True)
start_date = DateConverter()
end_date = DateConverter()
person = ForEach(Person())

One of the requirements was that a study should have at least one person. The ForEach valida-
tor you are using to validate people takes the same not_empty argument that validators such as
String take, so you might think that adding not_empty=True to the validator constructor would be
all you had to do. Unfortunately, this isn’t the case; the ForEach validator is set up to return the value
[] if the field is missing, so FormEncode doesn’t notice the problem. There are two ways to fix this
depending on what you want to achieve:

• Use not_empty=True, but always specify a hidden field such as <input type="hidden"
name="person" value="" /> so that a value is always submitted and FormEncode is forced
to validate the field. When the value "" is received, the not_empty=True argument means the
standard empty message Please enter a value gets displayed and the user is aware of the
problem. When people are added, the hidden field still gets submitted, but variabledecode
overwrites the value with the decoded people values, so everything works as it should.

• Use if_missing=NoDefault to tell FormEncode not to return an empty list, [], if no people
are submitted (which is the default behavior). Instead, because there is no default, the Study
schema will display its missing message Missing value.

You can also customize the Missing value message using the second approach like this:

ForEach(
Person(),
if_missing=NoDefault,
messages={'missing':'Please add a person'}

)

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS120

Another requirement is that there should be only one chief investigator. You can check this
condition by creating a custom validator to check for the presence of the one chief investigator. You
could implement this as a normal validator, but here you are going to implement it as a chained val-
idator. Chained validators are slightly different from normal validators because they are checked
only once all the individual fields have been validated. They are usually used when a validation rule
depends on more than one field.

Ordinary validators are passed the raw unconverted value from the field they are validating.
Chained validators are passed the validated and converted dictionary of data generated after all the
other validators have been run.

Here’s what the validator looks like:

from formencode.validators import FancyValidator

class OneChiefInvestigator(FancyValidator):

messages = {
'too_many_cis':"Only one Chief Investigator is allowed, not %(number)s"

}

def validate_python(self, values, c):
chief_investigators_found = 0
for person in values['person']:

if person['role'] == u'1':
chief_investigators_found += 1

if chief_investigators_found > 1:
raise Invalid(

self.message("too_many_cis", c, number=chief_investigators_found),
values,
c

)

Add this validator to the schema like this:

class Study(Schema):
...
chained_validators = [OneChiefInvestigator()]

The schema and templates are now in place, so turn your attention to the controller code that
will tie everything together. The first thing to notice is that the user will expect very different behav-
ior depending on the button that is clicked. There are buttons to do the following:

• Save the form

• Add a new set of person fields

• Remove a particular set of person fields

To rerender the form after any of these actions, you need to calculate the number of people
so that the form is regenerated with the correct number of sets of person fields. Here’s a function
to do that:

def number_of_people(values):
people_count = 0
for key in values.keys():

if key.startswith('person-') and key.endswith('title'):
people_count += 1

return people_count

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 121

You’ll also need a function to render the template and fill it with the correct values and error
messages:

def render_form(values=None, errors=None, number_of_people=0):
c.number_of_people = number_of_people
html = render('/derived/form.html')
return htmlfill.render(html, defaults=values, errors=errors)

You can add these two functions beneath the schema definitions in your controller.
All the buttons have the same name, action, so the process() action you’ll create can deter-

mine which button has been pressed by looking at the value of the action URL parameter.
Here is the complete code including the schemas, validators, and controller:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

from formexample.lib.base import BaseController, render
#from formexample import model

log = logging.getLogger(__name__)
from formencode.schema import Schema
from formencode.validators import Invalid, FancyValidator
from formencode.validators import Int, DateConverter, String, one of
from formencode import variabledecode
from formencode import htmlfill
from formencode.foreach import ForEach
from formencode.api import NoDefault

class OneChiefInvestigator(FancyValidator):

messages = {
'too_many_cis':"Only one Chief Investigator is allowed, not %(number)s"

}

def validate_python(self, values, c):
chief_investigators_found = 0
for person in values['person']:

if person['role'] == u'1':
chief_investigators_found += 1

if chief_investigators_found > 1:
raise Invalid(

self.message("too_many_cis", c, number=chief_investigators_found),
values,
c

)

class Person(Schema):
title = String()
firstname = String(not_empty=True)
surname = String(not_empty=True)
role = OneOf(['1', '2', '3'])

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS122

class Study(Schema):
allow_extra_fields = True
filter_extra_fields = True
pre_validators = [variabledecode.NestedVariables()]
title = String(not_empty=True)
start_date = DateConverter()
end_date = DateConverter()
person = ForEach(

Person(),
if_missing=NoDefault,
messages={'missing':'Please add a person'}

)
chained_validators = [OneChiefInvestigator()]

def render_form(values=None, errors=None, number_of_people=0):
c.number_of_people = number_of_people
html = render('/derived/form.html')
return htmlfill.render(html, defaults=values, errors=errors)

def number_of_people(values):
people_count = 0
for key in values.keys():

if key.startswith('person-') and key.endswith('title'):
people_count += 1

return people_count

class StudyController(BaseController):

def index(self):
return render_form()

def process(self):
action = request.params.getone('action')
values = dict(request.params)
Don't use the values field for repopulation
del values['action']
if action == 'Add New Person':

Render the form with one extra set of person fields
return render_form(

values=values,
number_of_people = number_of_people(values) + 1

)
elif action.startswith('Remove'):

Get the ID of the set of person fields to remove
id = int(action.split(' ')[-1])
Create a new set of values without those fields
new_values = {}
for k, v in values.items():

if not k.startswith('person-'+str(id)+'.'):
new_values[k] = v

Render the form with the new values
return render_form(

values=new_values,
number_of_people = number_of_people(new_values)

)

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 123

elif action=='Save':
Assume we are trying to save the form
schema = Study()
try:

result = schema.to_python(dict(request.params), c)
except Invalid, e:

return render_form(
values=values,
errors=variabledecode.variable_encode(

e.unpack_errors() or {},
add_repetitions=False

),
number_of_people=number_of_people(values)

)
else:

You would save the data here before redirecting
values will be a Python nested data structure
which shouldn't need any further conversion.

In this case we just display the result
return str(result)

else:
raise Exception('Invalid action %s'%action)

Since this is a new project, you’ll need to add some helpers to the lib/helpers.py file before
this example will work. Add these lines:

from webhelpers.html.tags import *
from routes import url_for

To test this example, start the development server with the paster serve --reload
development.ini command, and visit http://localhost:5000/study/index.

If the Add New Person button is clicked, the form is rerendered with its submitted values and
an extra set of person fields. No validation takes place at this stage, so the values redisplayed are the
same as those entered.

If the user clicks one of the Remove Person buttons, the ID of the set of person fields to be
removed is obtained from the button value, and that set of fields is manually removed from the dic-
tionary of values that is used to repopulate the form when it is rendered.

If the action isn’t recognized, it is assumed the user clicked the Save button. The Study schema
is used to validate and convert the data. The NestedVariables prevalidator converts the flat HTML
form data into a nested data structure. Each of the fields in turn is then checked against its valida-
tor. In the case of person, this means each of the sets of person fields is itself validated against the
Person schema. If there are no errors, the OneChiefInvestigator chained validator is run to ensure
there is only one chief investigator.

If any of the validation checks fail, the form errors are encoded into a flat data structure using
the variabledecode.encode() function so that each of the keys associated with the errors can be
understood by htmlfill.render() and redisplayed next to the fields to which they refer.

Finally, if all the validation checks pass, the schema.to_python() method returns the decoded,
validated, and converted values ready for your program to handle the data in whichever way it sees
fit. Ordinarily, this would most likely be to save the data to a database before using h.redirect_to()
to redirect the user to a page confirming the data had been saved. This example simply prints a
message and displays the converted data structure.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS124

Figure 6-6 shows the example during validation and with only one set of person fields added.

Figure 6-6. The repeating fields example in action

If you were to add some valid data, the result would be structured as shown here (although I’ve
added some whitespace for clarity):

{
'person': [

{'surname': u'Gardner', 'role': u'2', 'firstname': u'James', 'title': u'Mr'}
],
'start_date': datetime.date(2008, 5, 23),
'end_date': datetime.date(2012, 2, 3),
'title': u'Cancer Trial 3449'

}

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS 125

Summary
Form handling can be a complex area, but in this chapter you learned the key principles involved
in creating HTML forms, populating fields, validating complex data structures, and displaying
error messages. By dealing with these processes individually, Pylons gives you the flexibility to
create any sorts of forms your application needs.

In Chapter 15, you’ll revisit forms and see how you can use Ajax to make certain aspects of
form handling slicker.

CHAPTER 6 ■ WORKING WITH FORMS AND VALIDATORS126

Introducing the Model and
SQLAlchemy

When people think about a model layer, they often immediately think of using a relational data-
base management system (RDBMS) such as PostgreSQL or MySQL. In fact, there are many different
ways to store your data in a Pylons application, so there are many different ways to model that data.
It is important to decide on the correct approach for your particular needs. Some approaches might
include these:

• Storing data in files in the filesystem

• Storing data via a web service such as Amazon S3

• Storing data in an object database

• Storing data in an XML database

• Storing data in an RDBMS

Pylons supports all of these approaches, but each has its advantages and disadvantages.
If you are heavily relying on XML data, then an XML database makes sense. If you want to be
able to manipulate and store Python objects that don’t need to be indexed quickly, an object
database might suit your needs. If you are storing lots of binary data such as photographs or
videos that don’t need to be searchable, you might store them in a third-party storage solution
such as Amazon S3. And if you have large amounts of related data that needs to be quickly
indexed, an RDBMS might be best.

In this chapter, I’ll cover these different approaches to storing information and then give you
an in-depth look at how to use RDBMSs with SQLAlchemy in Pylons.

Storing Data in the Filesystem
There isn’t a great deal of point in storing data types such as photos, videos, and other binary data in
a database because they take up a lot of space, which will slow down queries. It is much better to
store binary data on the filesystem and store only key properties such as the filename or the cre-
ation date in a database.

You might be tempted to store your application’s data in your project’s data directory since
it is already present and can be customized in your application’s config file. The disadvantage is
that because it is already used to store temporary session, cache, and template information,
other Pylons developers working on your project might be used to deleting it when they want to
clear this temporary information. To avoid this problem, it is better to keep the data directory for
cached information and to add a new directory for your user’s data. Let’s call ours attachments,
but the location will be customizable in the config file too.

127

C H A P T E R 7

You could write code like this to load one of the files in this directory:

import os
from pylons import config

def load_file(filename):
path = os.path.join(config['app_conf']['attachments'], filename)
fp = open(path, 'rb')
data = fp.read()
fp.close()
return data

You can save a file to the directory with a function like this:

def save_file(filename, data):
path = os.path.join(config['app_conf']['attachments'], filename)
fp = open(path, 'wb')
fp.write(data)
fp.close()

You can list all the files like this:

def list_files():
path = os.path.join(config['app_conf']['attachments'])
return os.listdir(path)

For this example, you’ll need to add a new variable in your project config file’s [app:main] sec-
tion:

You could customize this to specify something like /var/lib/myapp/attachments
if you prefer
attachments = %(here)s/attachments

Each Pylons project has a model directory, which is where code for interacting with the applica-
tion’s data should be stored so you can define the previous functions in model/__init__.py, for
example.

You can get information about a particular file like this:

path = os.path.join(config['app_conf']['attachments'], filename)
size = os.path.getsize(path)

The os.path module documented at http://docs.python.org/lib/module-os.path.html has
other similar methods for accessing other information about files such as getmtime(path), which
returns the modification time.

For additional filesystem information, see the os.stat() function, which returns an object
whose attributes correspond to the members of the stat structure, namely, st_mode (protection bits),
st_ino (inode number), st_dev (device), st_nlink (number of hard links), st_uid (user ID of owner),
st_gid (group ID of owner), st_size (size of file, in bytes), st_atime (time of most recent access),
st_mtime (time of most recent content modification), and st_ctime (platform dependent; time of
most recent metadata change on Unix or the time of creation on Windows). It can be used in two
ways, as described in the module documentation at http://docs.python.org/lib/os-file-
dir.html:

>>> import os
>>> statinfo = os.stat('somefile.txt')
>>> statinfo
(33188, 422511L, 769L, 1, 1032, 100, 926L, 1105022698,1105022732, 1105022732)
>>> statinfo.st_size
926L
>>> statinfo[7]
1105022698

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY128

You might want to turn the access and modification times into Python datetime objects and
then format them in a different way:

>>> import datetime, time
>>> modified = datetime.datetime.fromtimestamp(statinfo[7])
>>> modified
datetime.datetime(2005, 1, 6, 14, 44, 58)
>>> modified.strftime("%Y-%m-%dT%H:%M:%S")
'2005-01-06T14:44:58'

It is sometimes useful to express in words when something happens. You can do so like this
using the time_ago_in_words() function included with WebHelpers:

>>> from webhelpers.date import time_ago_in_words
>>> time_ago_in_words(modified)
'over 2 years'

It is also useful to express a file size in human-readable terms. Here’s a helper that does just
that, which you can add to your project’s lib/helpers.py file and use as h.size_to_human():

def size_to_human(size, unit=1024, round=True):
unit_name = 'bytes'
size=int(size)
if size > unit:

size = size/float(unit)
unit_name = 'KB'

if size > unit:
size = size/float(unit)
unit_name = 'MB'

if size > unit:
size = size/float(unit)
unit_name = 'GB'

size = str(size)
if round:

if len(size)>4:
size = "%d" % float(size)

return size+' '+unit_name

Here is some further reading on filesystem use:

• http://docs.python.org/lib/bltin-file-objects.html

• http://docs.python.org/lib/os-file-dir.html

• http://docs.python.org/lib/module-shutil.html

The shutil module’s copytree() function can be particularly useful on occasion.

Storing Data in Amazon S3
If you are building a web application to store very large amounts of information, it is possible that
you might prefer to use a third-party storage service to look after your data rather than using your
own hard disk space. Amazon S3 is one such service, but there are many others, including CacheFly.
The basic principle of these services is that you pay for the bandwidth and storage used. If you have
a startup and can’t predict in advance how popular it will be, you may struggle to predict how many
servers you will need for storage. By using a third-party service, the storage problem is largely solved
because you can just order more storage without needing to buy any more machines.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 129

Amazon S3 works via an XML web services API, but a number of Python libraries provide a
Python interface to these services. Here’s how you would upload and retrieve a file from Amazon S3
using a package called boto from http://code.google.com/b/boto:

from boto.s3.connection import S3Connection
from boto.s3.key import Key
conn = S3Connection('<aws access key>', '<aws secret key>')
bucket = conn.create_bucket('pylonsbook')
k = Key(bucket)
k.key = 'foobar'
k.set_contents_from_filename('foo.png')
k.get_contents_to_filename('bar.png')

In S3, bucket names are not unique to individual users, so you will have to find a bucket name
that hasn’t yet been used rather than using pylonsbook. You can install boto using Easy Install like
this:

$ easy_install "boto==1.4c"

Once the file is uploaded, your users will be able to access it directly without you needing to
download it again every time it is requested, because it has a publicly accessible URL. You can visit
a file uploaded with the previous code at http://s3.amazonaws.com/pylonsbook/foobar.

Amazon S3 also allows you to store metadata about files you upload. As long as you don’t need
to be able to search this metadata, you might find Amazon S3 provides all the tools you need for
your particular application. Here’s how you would set some metadata associated with the file:

k.set_metadata('meta1', 'This is the first metadata value')
k.set_metadata('meta2', 'This is the second metadata value')

This code associates two metadata key/value pairs with the key k. To retrieve those values later,
you’d use this code:

>>> k.get_metadata('meta1')
'This is the first metadata value'
>>> k.get_metadata('meta2')
'This is the second metadata value'

■Tip To test this example, you would need to sign up for an Amazon web services account and replace the
example values <aws access key> and <aws secret key> with your real Amazon keys. You will be charged for
any data you store on Amazon, although for a simple test like this, the charge is very low. Just remember to delete
your data if you don’t want to be continually charged for its storage each month.

Exploring Database Approaches
Storing data structures in files or via third-party storage solutions clearly isn’t the right approach for
all data storage needs. Often the key requirement is to be able to search or select related sets of
information. In that case, a database is a sensible way to go.

I’ll discuss the different types of databases you can use in your Pylons application.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY130

Object Databases
If most of the data in your Pylons applications is in the form of classes, one very sensible way of
storing that data is in an object database. An object database looks like a Python dictionary that is
automatically saved to disk. You can store strings, numbers, dates, class instances, or even nested
dictionaries and lists to create arbitrarily deep data structures. Compared to a regular Python dic-
tionary, you have to call a few extra commands to open the database and commit changes, but
reading/setting values works exactly like the normal Python operations. This avoids the complexity
of converting a Python data structure to a non-Python medium (XML or RDBMS tables), and it
allows you to quickly prototype a model because you can easily change and extend it.

Two object databases are available for Python: Durus and ZODB. Durus is smaller and simpler,
while ZODB is the database used in large Zope applications. Durus is recommended only for data-
bases with fewer than 1 million records.

Durus and ZODB can store only “pickleable” data types, in other words, those that can be seri-
alized with Python’s pickle module. This includes all the standard data types including lists and
dictionaries and instances of classes defined at the top level of their module. It does not include
objects tied to external resources (an open file object or a database connection) or classes defined
inside another class or inside a function. The Python standard library lists exactly which types can
be pickled; see http://docs.python.org/lib/node317.html. Some users choose to store only built-in
Python types (for example, dicts instead of class instances) to guarantee the data can always be
unpickled on any Python system.

Both Durus and ZODB have a “persistent” class. Any object subclassing this will be saved and
loaded separately rather than with its parent object.

The main disadvantage of object databases is that all searching is done in Python code, in for
loops you write, while an RDBMS such as PostgreSQL has heavily optimized C routines for search-
ing very quickly and with low memory overhead. Depending on the nature of your data and the
types of searches you do, an RDBMS may or may not have a significant performance advantage. If
you are considering using an object database, you should weigh this against the programming con-
venience of using the familiar and flexible Python types an object database provides.

Some users unfamiliar with object databases wonder how stable they are. Of course, this is a
question you should ask about any database engine before trusting your data to it. Durus and ZODB
use an append-only strategy with a simple filesystem layout to minimize the possibility of errors.
Rather than overwriting objects, new versions are simply appended to the end of the file, and the
old versions are abandoned. Backing up the data is a simple matter of copying the file. If the latest
transaction at the end of the file gets corrupted or incompletely written, Durus and ZODB will sim-
ply truncate the file to return to the state that existed before the last transaction. Periodically the
administrator runs a “pack” operation to rewrite the file without the abandoned sections, shrinking
the file size.

Since the majority of Pylons developers use an RDBMS for their model, documentation on
using ZODB or Durus is very thin. If an object database is an approach you’d like to consider, then
these links might help:

Durus: http://www.mems-exchange.org/software/durus/, http://sluggo.scrapping.cc/
python/pylons/pylons-durus.html

ZODB: http://pypi.python.org/pypi/ZODB3, http://en.wikipedia.org/wiki/ZODB (links to
tutorials)

XML Databases
XML databases use XML documents as the unit of data they store and manipulate. If your Pylons
application uses a lot of XML, it might make sense to store that information directly as XML in an

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 131

XML database rather than storing it in another type of database. The following are the advantages of
this approach:

• You don’t need to do any conversion between the data store and the document format your
application uses.

• You can use query languages such as XPath and XQuery to quickly perform searches on doc-
uments in an optimized way.

Two XML databases you can use with Pylons are eXist and Berkeley DB XML:

eXist XML database (http://exist.sourceforge.net/): The eXist server is written in Java but
has XML-RPC and REST-style HTTP APIs that can be used from a Pylons application. Some
parts of the main pylonshq.com web site currently use an eXist back end.

Oracle Berkeley DB XML (http://www.oracle.com/database/berkeley-db/xml/index.html): This
is an open source, embeddable XML database with XQuery-based access to documents stored
in containers. DB XML has a Python binding that could be used to integrate it into a Pylons
application. One thing to be aware of with DB XML is that the license would require that your
Pylons application be released under the source license too unless you bought a commercial
license from Oracle.

Relational Database Management Systems
Despite the advantages of object databases and XML databases for certain situations, the vast
majority of people choose to use an RDBMS for the data persistence layer of their applications.
Most of the time when people refer to a database, they mean an RDBMS such as MySQL,
PostgreSQL, and many others. In the relational model, data and relationships can be represented
in tables, rows, and columns that are defined and manipulated using a special language called
Structured Query Language (SQL; pronounced “sequel”).

RDBMSs can be used in small, personal applications or in huge, multinational projects.
Although the basic principles of how to use an RDBMS remain broadly the same in both cases, you
will need a much greater understanding of how relational database management systems actually
work in order to use them effectively in larger-scale projects because issues such as replication,
failover, and partitioning become more important. These topics are beyond the scope of this book,
but if you are interested, plenty of information is available online and in specialist books.

Object-Relational Mappers
Object-relational mappers (ORMs) are tools that map the data structures in your database, namely,
the rows in each table to objects in your Pylons application. As you manipulate the objects in the
application, they automatically generate the SQL necessary to manipulate the underlying data.

Using an object-relational mapper has a number of advantages:

• They make it much easier and more convenient to work with the underlying data.

• Your Pylons application will work on any of the database engines supported by the object-
relational mapper you use.

• They usually deal with some of the complications such as connection pools and thread
safety for you.

• They’re often easier to learn for newcomers than learning SQL.

Although object-relational mappers have major advantages, they are not without their
weaknesses:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY132

• By abstracting away the SQL, you generally have less control over the database than you
would have had. Tools such as SQLAlchemy make up for this by also providing you with raw
SQL access for the occasions when it is needed.

• If you don’t understand how object-relational mappers work, it is easy to write inefficient
code that requires many SQL statements to be executed. (Careful reading of this chapter
should prevent that problem, though.)

• Object-relational mappers can sometimes contain quite complex code that is necessary to
make the interfaces they expose so easy to use. This means that if you run into a problem, it
can be hard to track it down in the source code. By choosing a popular ORM such as
SQLAlchemy, the chances are that there are a very few bugs, and any you find are likely to be
dealt with quickly by the community.

Overall then, the benefits of object-relational mappers outweigh their disadvantages for the
vast majority of Pylons developers.

Quite a few object-relational mappers are available for Python:

• SQLAlchemy (http://sqlalchemy.org) is a modern object-relational mapper and Python SQL
toolkit with powerful features, excellent documentation and support, and a full-featured API.
It provides a full suite of well-known enterprise-level persistence patterns, is designed for
efficient and high-performing database access and exposes a simple and Pythonic API.

• Storm (https://storm.canonical.com/) is a new object-relational mapper from Canonical,
the company behind Ubuntu Linux. It is simpler than SQLAlchemy with thorough unit tests.
Storm is particularly designed to feel very natural to Python programmers and exposes mul-
tiple databases as stores in a clean and easy-to-use fashion.

• SQLObject (http://sqlobject.org) is a popular object-relational mapper for providing an
object interface to your database, with tables as classes, rows as instances, and columns as
attributes. SQLObject is fairly old now, and although it is still used in TurboGears 1 and some
other older frameworks, most users now choose SQLAlchemy instead.

By far the most popular tool for use as a model in a Pylons application is SQLAlchemy, and
with good reason. It is a very powerful tool that handles the vast majority of cases you are ever likely
to need, has a large and helpful community behind it, and has extensive and accurate documenta-
tion. That’s not to say it is always the right tool for the job, and as you’ve seen so far in this chapter,
Pylons is flexible enough to work with many different tools as a model. For the majority of cases,
SQLAlchemy is a really good choice.

Setting Up SQLAlchemy
In this section, you’ll look at everything you need to install and set up in order to use SQLAlchemy.

SQLAlchemy relies on various DB-API 2.0 drivers to handle the actual connections to the
RDBMS software. Before you can use SQLAlchemy in earnest, you need to download and install the
DB-API 2.0 driver for the RDBMS software you want to use. Not all RDBMSs have a Python DB-API
2.0 driver, and not all Python DB-API drivers can be used with SQLAlchemy.

Table 7-1 outlines the major RDBMSs used by Pylons developers and the Python driver you
need in order to be able to use them from Pylons. Other drivers are available for these RDBMSs, but
at the time of writing, these are the drivers supported by SQLAlchemy.

It is worth noting that if you are using Python 2.5 or newer, you don’t need to install pysqlite,
because it is already included as part of the Python standard library.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 133

Table 7-1. Popular RDBMSs and the Corresponding DB-API Drivers

RDBMS Engine Python DB-API 2.0 Driver

PostgreSQL http://postgreql.org psycopg2 http://initd.org/projects/
psycopg2

MySQL http://mysql.org MySQLdb module packaged as mysql-python
http://sourceforge.net/projects/
mysql-python

SQLite http://sqlite.org pysqlite http://initd.org/tracker/pysqlite

Oracle http://www.oracle.com/technology/ cx_Oracle http://www.python.net/crew/
products/database/oracle10g/index.html atuining/cx_Oracle/

Microsoft SQL Server http://microsoft.com/sql/ pyodbc (recommended), adodbapi, or pymssql
default.aspx http://pyodbc.sourceforge.net/

Firebird http://www.firebirdsql.org/ kinterbasdb http://kinterbasdb.
sourceforge.net/

Informix http://www.ibm.com/software/data/ informixdb http://informixdb.sourceforge.
informix/ net/

If you are just looking to get started quickly, SQLite is a good choice. You can download the lat-
est SQLite 3 binary for your platform from http://www.sqlite.org/download.html. Once you have
installed it, you will be able to run the sqlite3 command to get an interactive prompt:

$ sqlite3
SQLite version 3.4.0
Enter ".help" for instructions
sqlite>

You can type .help for help or .quit to quit.
I’ll use SQLite for the examples because it is so easy to set up, but you could equally well use

any of the systems in Table 7-1. SQLite also has the advantage that the Python modules it needs are
already included with Python 2.5 and newer.

Installing the DB-API Driver
Once you have installed, configured, and started the RDBMS you want to use, you need to install
the appropriate DB-API 2.0 driver. In the case of SQLite, this is very easy because the software is
automatically included with Python 2.5 or newer. If you are using Python 2.4 or older, you will need
to install the driver in the same way you would for any RDBMS.

The driver you will need for your RDBMS is listed in Table 7-1 along with the URL where you
can obtain it. Most Pylons-related software is available on the Python Package Index and can be
installed with the easy_install command, but if you are not running on Windows, it is usually nec-
essary to have a build environment set up with the Python development package and appropriate
client library for the RDBMS you want to use already installed so that easy_install can compile the
C or C++ libraries it needs to compile. For example, with MySQL, you might run this:

$ easy_install mysql-python

This would download the source for the MySQLdb module (this is a rare example when the pack-
age name is significantly different from the module name) and compile it. To compile it success-
fully, you will need the client library. For example, on Debian Etch, you would need to install the
libmysqlclient15-dev package and the python-dev package.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY134

Most commonly used software that isn’t on the Python Package Index will be available through
your platform’s software repository. For example, versions of MySQLdb are available for Windows that
you can install with its installer, and MySQLdb is available through the repositories for Debian,
Ubuntu, Fedora, and other platforms. Mac OS X users can typically download a binary for the ver-
sion of their operating system too.

If you are compiling a driver from source, it is always a good idea to read the software’s README
or INSTALL files and to follow the instructions carefully. Bear in mind that you might need to use an
older compiler than the one that comes with your platform.

Although installing a Python database driver sounds like it might be difficult, in practice it is
normally easy because you can usually find a binary version.

If you are following along using SQLite and are using Python 2.4 or older, let’s install pysqlite2:

$ easy_install pysqlite

This installs the pysqlite2 module to use in your application, but note that the package name
is pysqlite even though you need to import pysqlite2 to use the module.

Installing SQLAlchemy
Installing SQLAlchemy is easy. You simply specify the version you require with Easy Install, and it
will be downloaded and installed for you. At the time of this writing, the latest version is 0.5, so the
examples in this book are likely to work with any version above 0.5 and below 0.6. It is always wise
to read the release notes for each new version, though:

$ easy_install "SQLAlchemy>=0.5,<=0.5.99"

If you want to ensure that your application uses only the version of SQLAlchemy you tested
your application on, you should specify the version explicitly:

$ easy_install "SQLAlchemy==0.5.0"

Creating a Database
Now that you have the RDBMS software up and running, an appropriate DB-API driver, and
SQLAlchemy itself, you will want to create a database.

Creating a database on the command line with SQLite is a simply a matter of connecting to it.
The database is created if it doesn’t already exist:

$ sqlite3 test.db

You don’t actually need to create a database on the command line with SQLlite because a data-
base will automatically be created for you when you connect from SQLAlchemy.

With other databases, things are a little more complex. PostgreSQL uses the createdb com-
mand, and MySQL uses a CREATE DATABASE SQL statement. Refer to your RDBMS documentation for
the correct approach.

With everything in place, let’s take a look at SQLAlchemy’s architecture.

Exploring SQLAlchemy’s Architecture
SQLAlchemy’s architecture contains a complete set of APIs, each representing one aspect of what is
actually going on. Conceptually you can think of these APIs in three layers, each building on top of
the previous one:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 135

The abstraction layer consists of the SQL Expression API and the Metadata and Type APIs,
which help isolate your Python code from the details of the underlying database engine.
SQLAlchemy also includes a Declarative API, which you’ll learn about later in this chapter.

You’ll learn about each of these components in this chapter and see many of the key ways in
which they are used.

Engine API
The lowest-level API you are likely to use is the Engine API. This represents a low-level abstraction of
a database engine, allowing you to use the same API to create connections to different RDBMSs for
sending SQL statements and for retrieving results.

In this section, I’ll show an example of how you might use an engine to directly execute some
SQL. Let’s test this example using SQLite. Create a file called engine_test.py with the following
content:

from sqlalchemy.engine import create_engine

engine = create_engine('sqlite:///:memory:')
connection = engine.connect()
connection.execute(

"""
CREATE TABLE users (

username VARCHAR PRIMARY KEY,
password VARCHAR NOT NULL

);
"""

)
connection.execute(

"""
INSERT INTO users (username, password) VALUES (?, ?);
""",
"foo", "bar"

)
result = connection.execute("select username from users")
for row in result:

print "username:", row['username']
connection.close()

To work with an engine, you need to have a connection to it. The connection in the example is
an instance of a SQLAlchemy Connection object, and result is a SQLAlchemy ResultProxy object
(very much like a DB-API cursor) that allows you to iterate over the results of the statement you
have executed.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY136

If you run this example, you’ll see the following output:

username: foo

When using create_engine(), you can specify different data source names (DSNs) to connect
to different databases. For example, with SQLite, you can use sqlite:///relative/path to specify a
file relative to the current working directory. You can use sqlite:////absolute/path to specify an
absolute path. SQLite also has a memory mode that doesn’t use the filesystem at all and loses all its
information when the program exits. This can be very useful for testing. To use it, specify
sqlite:///:memory: as the argument to create_engine(). The create_engine() function can also be
used in a similar way with other RDBMSs. For example, to connect to the database my_database on a
MySQL server at some.domain.com with the username foo and the password bar, you could use
mysql://foo:bar@some.domain.com/my_database .

You’ll also notice that the values you inserted were passed as separate arguments to
connection.execute() rather than as part of the SQL string. This is so that the values can be auto-
matically encoded to the correct SQL types, which helps avoid the risk of SQL injection attacks,
something you’ll learn more about later in the chapter.

Notice also that you were able to access the username column using dictionary-like access to
the row object. This is a feature of the SQLAlchemy ResultProxy object that was returned.

SQLAlchemy engines have a number of features over and above the Python DB-API connec-
tions you might be used to, not least the ability to automatically use pools of connections. Here’s a
representation of the structure:

Let’s look at each part of this diagram. You’ve already seen how to use a connection to execute
SQL statements and retrieve results, and you’ve seen how to create an engine object to represent the
particular database you want to connect to within the underlying RDBMS. You also know that
SQLAlchemy uses the underlying DB-API 2.0 driver behind the scenes to communicate with the
RDBMS, so let’s look at dialects and pools.

Instances of Dialect objects tell SQLAlchemy how to deal with the subtleties of the different
implementations of the DB-API 2.0 drivers to make some of SQLAlchemy’s internal code a little
simpler, but you wouldn’t usually interact with them directly.

Pools, on the other hand, are more interesting. Aside from SQLite, most RDBMSs run as servers
that the client connects to over a network. Each request that comes to the server and that needs to
interact with a database will need its own database connection. Creating a connection can often be
quite a costly exercise, and if you have a lot of requests, you will need to open and close lots of con-
nections, which could impact the performance of your application. One solution to this problem is
to have SQLAlchemy manage a pool of connections for you. When Pylons loads, SQLAlchemy can
make a number of DB-API 2.0 connections to the underlying RDBMS and keep them open. When
your application calls engine.connect() to obtain a connection, SQLAlchemy can return one of the
connections from the pool rather than creating a new one. When you close the SQLAlchemy

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 137

connection, it can return the DB-API connection to the pool ready to be used again the next time
you call engine.connect(). This enables you to write your Pylons application in the same way you
would if you were creating and closing lots of connections but have SQLAlchemy reuse connections
from its internal pool.

You can configure pool options as arguments to the create_engine() function:

pool_size: The number of connections to keep open inside the connection pool.

pool_recycle: The length of time to keep connections open before recycling them. If not speci-
fied, the connections will stay open forever. This should be specified for MySQL in particular
because servers typically close connections after eight hours, resulting in a “MySQL server has
gone away” error.

pool_timeout: The number of seconds to wait before giving up on getting a connection from
the pool.

Connection pools can quickly become quite complex, so if you are interested in using them,
you should read the SQLAlchemy documentation for further information:

• http://www.sqlalchemy.org/docs/05/dbengine.html#dbengine_options

• http://www.sqlalchemy.org/docs/05/pooling.html

In the following sections, you’ll learn about other APIs you can use with SQLAlchemy including
the Metadata, SQL Expression, and Object-Relational APIs. These APIs abstract away the engine and
connections so that you don’t need to work with them directly. Behind the scenes, they will all use
connections and engines to perform their work, so it is useful to understand how they work and, in
particular, to know how to create engines with the appropriate options.

The flipside of this is that SQLAlchemy engines will work without any of the other SQLAlchemy
infrastructure being in place so that even if you want to work directly with SQL rather than using the
rest of SQLAlchemy’s powerful feature set, it makes sense to use an SQLAlchemy connection rather
than a DB-API connection so that you get all of SQLAlchemy’s other benefits such as connection
pools and result proxies.

You can find full information about engines and connections as well as threading implications
in the excellent SQLAlchemy engine documentation at
http://www.sqlalchemy.org/docs/05/dbengine.html.

Metadata and Type APIs
Now that you’ve seen how the Engine API has abstracted how SQL queries are executed and how
results are returned, you can turn your attention to how SQLAlchemy abstracts the tables and other
schema-level objects of the database itself. It does this with database metadata.

To represent the various different data types that table columns can store, SQLAlchemy uses its
types system. Together the types system and metadata can completely describe the database schema
in an RDBMS-independent manner.

The following is part of a table to store information about a page. Add this code to a new file
called metadata_test.py.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY138

from sqlalchemy import schema, types

metadata = schema.MetaData()

page_table = schema.Table('page', metadata,
schema.Column('id', types.Integer, primary_key=True),
schema.Column('name', types.Unicode(255), default=u''),
schema.Column('title', types.Unicode(255), default=u'Untitled Page'),
schema.Column('content', types.Text(), default=u''),

)

Here you’ve created a metadata object from schema.MetaData, which will hold all the informa-
tion about the tables, columns, types, foreign keys, indexes, and sequences that make up the
database structure. You’ll see more about how these are used later in the chapter.

You’ve then created a schema.Table object to describe the page table and passed it the metadata
object. This is so that the table object can add information about the table to the metadata object.
SQLAlchemy is then able to access the table information via the metadata object. Add the following
to the end of the metadata_test.py file too:

for t in metadata.sorted_tables
print "Table name: ", t.name
print "t is page_table: ", t is page_table

If you run this example, you will see the following output:

$ python metadata_test.py
Table name: page
t is page_table: True

As you can see, the metadata object contains information about the tables, and the table object
assigned to t in this example is the same as the page_table object.

Each of the columns that makes up the tables has its own type. SQLAlchemy supports the fol-
lowing built-in types:

• String

• Unicode

• Text/UnicodeText

• Numeric

• Float

• Datetime/Date/Time

• Interval

• Binary

• Boolean

In addition to the types listed here, there is a PickleType that is based on SQLAlchemy’s Binary
type. PickleType uses Python’s pickle.dumps() to “pickle” objects being saved to the database, and
it uses pickle.loads() to unpickle objects being retrieved. It therefore allows you to store any pick-
leable Python object as a serialized binary field. The same rules about which Python objects can be
pickled apply whether you are using the PickleType field with SQLAlchemy or whether you are
using an object database such as Durus or ZODB. Have a look at the Python documentation at
http://docs.python.org/lib/node317.html for more information.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 139

SQLAlchemy also supports some dialect-specific types to handle columns that occur only in
particular databases. You can even create your own types if you need to do so. For full information,
look at the SQLAlchemy types documentation at http://www.sqlalchemy.org/docs/05/types.html.

You can get information about the columns used in a table via the table’s .columns attribute.
Add the following to the end of the metadata_test.py example:

for column in page_table.columns:
print "Column Table name: ", column.type

If you run it again, you’ll see this output including the column information:

$ python metadata_test.py
Table name: page
t is page_table: True
Column: Integer()
Column: Unicode(length=255)
Column: Unicode(length=255)
Column: Text(length=None, convert_unicode=False, assert_unicode=None)

At this stage, the metadata is just information; it doesn’t relate to any properties of a real data-
base. To connect the metadata to a real database, you need to bind the metadata object to an engine.

Add the following to the end of the metadata_test.py example:

from sqlalchemy.engine import create_engine

engine = create_engine('sqlite:///:memory:')
metadata.bind = engine

At this point, the metadata is connected to the database via the engine. Once again, I’ve chosen
to use an in-memory SQLite database for the example, but you are free to use different parameters
to create_engine() if you prefer.

■Tip It is worth being aware that you can have SQLAlchemy automatically convert all string types to handle
Unicode automatically if you set up the engine like this:

create_engine('sqlite:///:memory:', convert_unicode=True)

In this book, you will instead use the Unicode type explicitly when you want to work with Unicode strings, but
some Pylons developers prefer to take this shortcut.

SQLAlchemy now has enough information to allow you to start manipulating the database
with the SQL Expression API, but the metadata object has a few more tricks. If the tables described
by the metadata don’t actually exist in the database, the metadata object can be used to create them.
Add this line to the end of the metadata_test.py file:

metadata.create_all(checkfirst=True)

The checkfirst=True argument means it will create the table only if it doesn’t already exist.
You’ll notice that you didn’t need a connection in order to create the tables. This is because the

metadata object creates and closes a connection automatically from the engine.
If tables exist in the database that have not yet been defined in the metadata object, you can

have SQLAlchemy automatically reflect the information like this:

comment_table = schema.Table('comment', metadata, autoload=True)

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY140

There are plenty of other things you can do to specify information about the schema. The fol-
lowing are all supported:

• Overriding some of the metadata for columns obtained by reflection

• Specifying the schema name for databases that support the concept of multiple schemas

• Cascading updates and deletes for databases supporting them

• Handling database-specific options such as MySQL’s table back ends including InnoDB or
MyISAM

• Default values

• Dropping tables

• Adding constraints, indexes, sequences, and more

These are all described in detail at http://www.sqlalchemy.org/docs/05/metadata.html.

SQL Expression API
Once you have set up all the database metadata, SQLAlchemy has all the information it needs for
you to be able to use its SQL Expression API.

The SQL Expression API enables you to build SQL queries programmatically using Python
objects and operators. This can take a lot of the pain out of SQL because you don’t have to worry
about converting Python values to safe SQL strings.

Let’s create a new file called sqlexpression_test.py and add the following to it:

from metadata_test import engine, page_table

You can now use the page table to perform simple operations. Here’s how you might perform
a simple insert operation. Add the following to sqlexpression_test.py too:

print "\nSQL Expression Example\n"

connection = engine.connect()

ins = page_table.insert(
values=dict(name=u'test', title=u'Test Page', content=u'Some content!')

)
print ins
result = connection.execute(ins)
print result

connection.close()

If you run this example, the output from metadata_test.py will be displayed first because you
imported that file; then it will be followed by the output from sqlexpression_test.py, which looks
like this:

SQL Expression Example

INSERT INTO page (name, title, content) VALUES (?, ?, ?)
<sqlalchemy.engine.base.ResultProxy object at 0x58c3f0>

The ins object automatically generates the correct SQL to insert the values specified, and an
instance of a ResultProxy object (which you saw in the Engine API description) is returned to allow
you to iterate over the results. Since this is an insert statement, there won’t be any interesting values
returned.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 141

As an alternative, you could have written the same code like this:

print "\nSQL Expression Example\n"

ins = page_table.insert(
values=dict(name=u'test', title=u'Test Page', content=u'Some content!')

)
print ins
result = ins.execute()
print result

In this case, the opening/closing of the connection is handled by the metadata object associ-
ated with the page_table object. It is usually better to execute SQL Expression objects like ins via
connection.execute() so that you always know precisely which connection is being used. This
becomes particularly important when you are using the Object-Relational API within Pylons with
a scoped session when you probably want to use the connection used by the session rather than
letting the metadata object create a connection for you. You’ll see how this works in Chapter 8.

■Note Because you are still using a SQLite in-memory database, each time this code is run, the database is
created, the table is created, and the data is inserted. Once the code is executed, everything is lost so that when
the code is run again, no errors occur. If you were to use a permanent database, you would need to drop the page
table before rerunning the code.

SQL Injection Attacks
The most important point about the sqlexpression_test.py code is that SQLAlchemy handles any
type conversion of the values you specified to insert() using its types system. This is important
because if you build the SQL strings yourself using values that a user has submitted, there is a
chance you might not perform the conversions quite correctly. This can expose your application
to a particular type of attack called a SQL injection attack.

As an example, consider this action:

This is really BAD, don't do it!
def create(self):

name = request.params['name']
title = request.params['title']
sql = "INSERT INTO page (name, title) VALUES ('%s', '%s')" % (name, title)
connection.execute(sql)
return "Page added"

If the user submits the values NewPage for the name variable and New Page for the
title, everything works perfectly well. An attacker might instead submit the values NewPage and
New Page'); DROP TABLE page; --. At first sight this just looks very odd, but consider the SQL string
your application now builds; it actually looks like this:

INSERT INTO page (name, title) VALUES ('NewPage', 'NewPage'); DROP TABLE page; --')

In SQL, -- comments out the rest of the line, so the following statements would be executed
without a syntax error, dropping the page table and removing all its data:

INSERT INTO page (name, title) VALUES ('NewPage', 'NewPage');
DROP TABLE page;

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY142

This clearly isn’t what you wanted, which is why it is so important to let SQLAlchemy handle
conversions for you using the SQL Expression API rather than writing SQL strings yourself, because
the variables would have been correctly escaped and the page would just have had a very odd-
looking title.

Selecting Results
Here’s a simple select statement that explicitly uses the connection object from the engine. Add it to
the end of the sqlexpression_test.py file before the connection.close() line:

print "\nSelecting Results\n"

from sqlalchemy.sql import select

s = select([page_table])
result = connection.execute(s)
for row in result:

print row

Before you test this example, it is useful to know about SQLAlchemy’s echo option, which tells
the engine object to log all the SQL it executes to sys.stdout so you can see what SQLAlchemy is
doing behind the scenes. Edit metadata_test.py, and add echo=True to the create_engine() func-
tion so it looks like this:

engine = create_engine('sqlite:///:memory:', echo=True)

Now when you run the example, you’ll be able to see the SQL SELECT statement SQLAlchemy
will actually use without needing to manually add print statements. This can be useful when run-
ning test scripts to try different aspects of SQLAlchemy’s functionality but shouldn’t be enabled
when you are using Pylons, because depending on the server and logging configuration you are
using, it might result in messages going either to the error log or being sent to the browser. Instead,
you can use Pylons’ logging system to log SQLAlchemy messages in a much more structured way.
This is described in Chapter 20.

If you run this example now, you will see the following at the end of the output:

Selecting Results

2008-09-04 16:01:22,294 INFO sqlalchemy.engine.base.Engine.0x..90➥
SELECT page.id, page.name, page.title, page.content
FROM page
2008-09-04 16:01:22,294 INFO sqlalchemy.engine.base.Engine.0x..90 []
(1, u'test', u'Test Page', u'Some content!')

As you can see, this results in the SQL statement SELECT page.id, page.name, page.title,
page.content FROM page being executed.

You can also specify WHERE clauses using a similar construct. For example, to specify pages that
have an id greater than 1, you would write this:

s = select([page_table], page_table.columns.id>1)
result = connection.execute(s)
print result.fetchall()

You’ll remember from the the “Metadata and Type APIs” section earlier in the chapter that table
objects have a .columns attribute. The object returned contains a Column instance for each column
in the table and these can be accessed as attributes based on the column name. In the example the
id column can therefore be accessed as page_table.columns.id. SQLAlchemy knows how the stan-
dard Python operators should interact with the column objects to generate the appropriate SQL.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 143

If you added this to the example, the extra output printed as a result of setting echo=True would
be as follows:

2008-09-04 16:16:10,891 INFO sqlalchemy.engine.base.Engine.0x..b0➥
SELECT page.id, page.name, page.title, page.content
FROM page
WHERE page.id > ?
2008-09-04 16:16:10,891 INFO sqlalchemy.engine.base.Engine.0x..b0 [1]
[]

As you can see, the SQL WHERE page.id > ? has been added to the query, and the [1] shows
that the value 1 will be substituted into the query in place of the ? character to execute the correct
query.

Once again, a ResultProxy object is returned, but this time you use its fetchall() method to
return all the results in one go. Since there is only one page and its id is not greater than 1, there are
no results, so an empty list is returned. The ResultProxy object also has fetchone() and
fetchmany(), which are similar to their DB-API 2.0 counterparts.

If you have a complex WHERE clause, it can be cumbersome to keep typing page_table.columns,
so SQLAlchemy also allows you to write page_table.c. The .c attribute is just an alias to the same
object you access using .columns but is shorter to type.

SQLAlchemy overloads most of the Python operators for use in WHERE clauses so that they
behave the way you would expect when used in SQL. You’ve seen how to use > in the previous exam-
ple, but the operators ==, <, <=, >=, and != have similar results.

SQLAlchemy also provides operators for AND, OR, and NOT in the form of the Python operators &,
|, and !. If you use these, you have to be careful to correctly add parentheses to all the expressions
you are operating on because Python operator precedence is slightly different from that of SQL.
Here’s an example:

s = select([page_table], (page_table.c.id<=10) & (page_table.c.name.like(u't%')))

Notice that you were able to use a LIKE clause too as a method of the name column.
If you don’t want to use the &, |, and ! operators, SQLAlchemy also provides and_(), or_(), and

not_() functions that you can use instead:

from sqlalchemy.sql import and_, or_, not_
s = select([page_table], and_(page_table.c.id<=10, page_table.c.name.like(u't%')))
result = connection.execute(s)
print result.fetchall()

This has the same effect. If you add this to the end of the sqlexpression_test.py file before
connection.close() and run the program, the corresponding output is as follows:

2008-09-04 16:34:27,014 INFO sqlalchemy.engine.base.Engine.0x..b0➥
SELECT page.id, page.name, page.title, page.content
FROM page
WHERE page.id <= ? AND page.name LIKE ?
2008-09-04 16:34:27,015 INFO sqlalchemy.engine.base.Engine.0x..b0 [10, u'%t']
[(1, u'test', u'Test Page', u'Some content!')]

As you can see, the WHERE clause has been generated correctly, and this time the values 10 and
t% replace the two question marks in the SQL query. This time the query results in the row being
returned again.

One operator that behaves slightly differently from the others is the + operator. If + is operating
on two strings, it generates the appropriate SQL for concatenation. If it operates on two integers, it
produces the SQL to add them together:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY144

>>> print page_table.c.name + user_table.c.title
page.name || user.title
>>> print page_table.c.id + comment_table.c.id
page.id + comment.id

The SQL builder assembles chunks of SQL, and printing them displays the SQL. Notice that it
has correctly added the || operator, which causes the strings to be concatenated in most RDBMSs.
MySQL is slightly different, though. It requires strings to be concatenated with the concat() func-
tion. SQLAlchemy even does the right thing with MySQL. On MySQL you get this:

>>> print page_table.c.name + user_table.c.title
concat(page.name, user.title)

Once you have generated a select object, you can still add extra clauses to it. For example, if
you wanted to add an ORDER_BY clause, you could write this:

s = select([page_table], and_(page_table.c.id<=10, page_table.c.name.like(u't%')))
s = s.order_by(page_table.c.title.desc(), page_table.c.id)

This would run the same query as before but order by title descending and then by id.
You can write update statements like this:

print "\nUpdating Results\n"

from sqlalchemy import update

u = update(page_table, page_table.c.title==u'New Title')
connection.execute(u, title=u"Updated Title")

If you add the previous to the sqlexpressions_test.py file before connection.close() and
execute it again, the corresponding UPDATE statement looks like this:

Updating Results

2008-09-04 17:00:58,673 INFO sqlalchemy.engine.base.Engine.0x..d0➥
UPDATE page SET title=? WHERE page.title = ?
2008-09-04 17:00:58,673 INFO sqlalchemy.engine.base.Engine.0x..d0➥
[u'Updated Title', u'New Title']
2008-09-04 17:00:58,674 INFO sqlalchemy.engine.base.Engine.0x..d0 COMMIT

Notice that SQLAlchemy automatically sent a COMMIT message to save the changes.
Finally, let’s look at deleting rows. The pattern should be getting very familiar now. You can

write delete statements like this:

print "\nDeleting Row\n"

from sqlalchemy import delete

d = delete(page_table, page_table.c.id==1)
connection.execute(d)

If you add the previous to the sqlexpressions_test.py file before connection.close() and
execute it again, the corresponding DELETE statement looks like this:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 145

Deleting Row

2008-09-04 17:04:34,460 INFO sqlalchemy.engine.base.Engine.0x..f0➥
DELETE FROM page WHERE page.id = ?
2008-09-04 17:04:34,460 INFO sqlalchemy.engine.base.Engine.0x..f0➥
[1]
2008-09-04 17:04:34,461 INFO sqlalchemy.engine.base.Engine.0x..f0➥
COMMIT

The important thing to note about all these examples is that the code you write with the SQL
Expression API will have the same effect on any of the RDBMSs that SQLAlchemy supports without
you having to change any of your code. The only thing you need to change is the URI string to the
create_engine() function. This automatic abstraction is a huge advantage if you are trying to write
Pylons applications to work on multiple database back ends.

This has been a taste of the SQL Expression API, but there is a lot more too. It is extremely pow-
erful, allowing you to do complex joins, aliases, group bys, functions, unions, other set operations
and more, all through natural-feeling Python code based on information defined through the meta-
data in your tables and columns.

Once again, the SQLAlchemy documentation is the best place to go to learn about all the fea-
tures: http://www.sqlalchemy.org/docs/05/sqlexpression.html

Exploring the Object-Relational API
The highest-level API SQLAlchemy provides is the Object-Relational API, which is the one you will
spend the majority of your time using in your Pylons applications. The API allows you to work
directly with Python objects without needing to think too much about the SQL that would normally
be required to work with them.

Before you learn about the details of how the API works, I’ll cover some key concepts about
relational databases.

Object-Relational Principles
As you learned earlier in the chapter, object-relational mappers (ORMs) map rows from tables in
relational databases to the objects used in your Pylons application.

The difficulty is that Python objects don’t always easily map to rows in tables. Before you look
at SQLAlchemy’s Object-Relational API, let’s take a few moments for a very quick overview of the
core ideas of relational databases that you need to know to use SQLAlchemy effectively.

Let’s consider a wiki application that allows the creation of pages, has a comments system, and
allows pages to be tagged. Each of the items mentioned in the previous sentence are known as enti-
ties in relational database terminology. They are the main things that exist in the real world. Ordi-
narily, each entity in the real world is represented by a table in the database, and each row in the
table represents one instance of the entity. In our example, you would therefore need three tables:
page, comment, and tag.

Each row in each of the tables must have something unique about it that differentiates it from
other rows in the table. In the case of wiki pages, this might be the page title or the URL of the page.
A unique identifier of this type is called the primary key of the table. In the case of a wiki, you might
choose to the use the page title as the primary key if each page title is different. This could cause a
problem if the page title was able to change. To avoid this problem, all modern databases can assign
an ID to a row automatically when the row is inserted into the table. By using an automatically
assigned ID, you can be sure that all rows in a table have a different ID and that if any of the other
properties change, the record will still be able to be accessed via a primary key lookup.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY146

If you are designing a database structure for use with SQLAlchemy, it is a good idea to add
an id column to each table as a primary key. The rest of the examples in this book will use this
approach.

Once the primary entities have been represented in tables with each row having a primary key,
you need to think about how the different entities are related. There are three common ways they
might be related:

One to one: Data items in two tables both represent the same entity; it is just that you have
chosen to store the fields in different tables. Most of the time, you will avoid one-to-one rela-
tionships because they are an indication that you might not have properly understood the key
entities in your data structure.

One to many: One entity has zero or more instances of another entity associated with it.

Many to many: Zero or more instances of one entity are associated with zero or more instances
of another entity.

Thinking about entities and mappings can be a bit abstract, so I’ll show a wiki comments
system as a concrete example.

Each wiki page can have lots of different comments, but the same comment won’t appear on
more than one page. This means there is a one-to-many mapping between pages and comments.

The best way to represent a one-to-many mapping is by adding what is known as a foreign
key to the comments table to store the id of the page to which the comment has been added. An
appropriate name for the column to hold the foreign key might be pageid. This means that to find
all the comments on, say, page 5, you would select all the comments in the comments table where
pageid is 5.

So far so good. Now let’s think about the tags that are a little more complicated. Once again,
pages can have multiple tags, but this time the same tag can also be used on multiple pages. You
have a many-to-many relationship. This time the relationship can’t be modeled by adding a foreign
key to the tag table because although this would allow you to work out the tags used on a particular
page, it wouldn’t allow you to work out which pages used a particular tag unless you had duplicate
tags in the tags table.

Creating duplicates of primary entities is often bad practice, so the only way to model the rela-
tionship between tags and pages is with a third table. We’ll call it pagetag. The pagetag table will
have three columns, a foreign key to the page table, a foreign key to the tag table, and a primary key
of its own. Here’s an example of the data the tables might contain:

page table
+-----+------------------+-------------+---------------+
| id | content | posted | title |
+-----+------------------+-------------+---------------+
| 1 | When I was... | 2007-05-08 | The Other Day |
| 2 | Databases are... | 2007-07-13 | Databases |
+-----+------------------+-------------+---------------+

tag table
+-----+------------+-------------+
| id | name | created |
+-----+------------+-------------+
1	databases	2007-07-13
2	life	2007-03-10
3	fun	2007-04-28
4	news	2008-03-30
+-----+------------+-------------+

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 147

pagetag table
+-----+-------+----------+
| id | tagid | pageid |
+-----+-------+----------+
1	1	2
2	2	1
3	3	1
4	3	2
+-----+-------+----------+

In this example, the tags databases and fun are associated with page 2, and life and fun are
associated with page 1. Looking at the same data from the tags perspective, you can see that the fun
tag is used on two pages, whereas the others are only associated with one page each. You can also
see that the news tag hasn’t been used on any pages yet.

To find out the tag names associated with page 2, you would use a SQL JOIN to find all the rows
in the pagetag table with a pageid of 2 and then use the corresponding tagid to look up the name of
the tag from the tag ID.

Writing SQL joins of this type isn’t complicated, but it can be time-consuming. Wouldn’t it be
nice if you could just have a page object and get the tag names like this?

for tag in page.tags:
print tag.name

This is precisely what you can do with SQLAlchemy’s Object-Relational API. In the next sec-
tions, you’ll look at how to set up the table, class, and mapper objects necessary to make this sort
of API access possible.

More Metadata
The first step toward setting up the Object-Relational API is to describe the database metadata. The
Object-Relational API and the SQL expression language described earlier both use the same meta-
data. After all, both need to know how the database is structured in order to work. Let’s see how you
would model the tables described earlier for the wiki system. Save the following in a file called
model.py:

import datetime
from sqlalchemy import schema, types

metadata = schema.MetaData()

def now():
return datetime.datetime.now()

page_table = schema.Table('page', metadata,
schema.Column('id', types.Integer,

schema.Sequence('page_seq_id', optional=True), primary_key=True),
schema.Column('content', types.Text(), nullable=False),
schema.Column('posted', types.DateTime(), default=now),
schema.Column('title', types.Unicode(255), default=u'Untitled Page'),
schema.Column('heading', types.Unicode(255)),

)

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY148

comment_table = schema.Table('comment', metadata,
schema.Column('id', types.Integer,

schema.Sequence('comment_seq_id', optional=True), primary_key=True),
schema.Column('pageid', types.Integer,

schema.ForeignKey('page.id'), nullable=False),
schema.Column('content', types.Text(), default=u''),
schema.Column('name', types.Unicode(255)),
schema.Column('email', types.Unicode(255), nullable=False),
schema.Column('created', types.TIMESTAMP(), default=now()),

)

pagetag_table = schema.Table('pagetag', metadata,
schema.Column('id', types.Integer,

schema.Sequence('pagetag_seq_id', optional=True), primary_key=True),
schema.Column('pageid', types.Integer, schema.ForeignKey('page.id')),
schema.Column('tagid', types.Integer, schema.ForeignKey('tag.id')),

)

tag_table = schema.Table('tag', metadata,
schema.Column('id', types.Integer,

schema.Sequence('tag_seq_id', optional=True), primary_key=True),
schema.Column('name', types.Unicode(20), nullable=False, unique=True),

)

There are some features in this example you haven’t seen before:

• The comment and pagetag tables use schema.ForeignKey() so that SQLAlchemy knows how
the tables are related. Notice that the foreign keys are represented by a string in the format
table.column

• The content column in the page table and the name column in the tag table are specified as
nullable=false, which means SQLAlchemy will raise an exception if rows are inserted with-
out values for those columns.

• The id columns are all specified with primary_key=True so that SQLAlchemy knows to treat
those columns as primary keys.

• The primary key columns also specify an optional Sequence object. This allows
SQLAlchemy to use sequences on databases that support them such as PostgreSQL and
Oracle but to use autoincrementing fields on databases such as MySQL. If you haven’t
come across sequences before, they are a bit like separate tables that keep track of the
next available ID for a table. You don’t need to know about sequences to use SQLAlchemy;
they are an advanced feature that SQLAlchemy can use if it is available, but your objects
will behave in the same way whether or not sequences are used. See http://www.
sqlalchemy.org/docs/05/documentation.html#metadata_defaults_sequences for more
information.

• The DateTime columns all have a default value of now. This means that if a value isn’t specified
when a row is inserted, SQLAlchemy will call the now() function to generate a default value.
The now() function is defined at the top and in turn uses the datetime module to get the cur-
rent time. In this example, you could just have specified datetime.datetime.now as the
default, but in other circumstances you will have to define your own function, so the exam-
ple is written the way it is to demonstrate this.

• The tag table’s name column uses unique=True to enforce the constraint that no two tags
should have the same name.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 149

It is worth noting that although database-level constraints are useful to ensure data integrity,
your Pylons application should be validating data it passes to the database using FormEncode to
ensure it doesn’t break any database-level constraints. After all, an Internal Server Error page result-
ing from an exception raised by SQLAlchemy or the underlying engine won’t help your users know
what was wrong. You’ll learn how to combine FormEncode and SQLAlchemy in a Pylons application
in the next chapter.

Classes and Mappers
Now that you have defined the table structures, turn your attention to the classes and mappers.
Here’s what the Page class looks like; add it to the end of the model.py file:

class Page(object):
pass

Similar classes would need to be created for comments and tags; add them to the end of
model.py too:

class Comment(object):
pass

class Tag(object):
pass

■Tip Although I’ve chosen to create the classes you need without any extra methods, one popular way of setting
up the classes is to have an __init__() method that takes arguments for each of the required fields in the table
and sets them as class attributes. This setup helps you remember to always set all the required attributes because
you can’t create objects without them.

You might also like to add a customized __repr__() method to each of your classes that includes representa-
tions of key attributes such as the primary key. This can make it clearer which objects you are looking at if you
interact with your model from the command line or via the Pylons interactive shell, which you’ll see used for test-
ing in Chapter 12 and used to interact with your model in Chapter 19.

So far, the Page class is still just a class and has nothing to do with the page table. To map the
class to the table, you use a mapper. A simple mapper for Page might look like this (you’ll need a
more complex one, though):

orm.mapper(Page, page_table)

The mapper() function creates a new Mapper object and stores it away for future reference. It
also adds the column names of the page table as attributes of the Page class so that class attributes
correspond to table column names. SQLAlchemy keeps track of any changes to those attributes so
the database can be automatically updated.

The Page class actually has a relationship to the comments table as well as the page table because
pages can have multiple comments. You can specify this relationship like this:

orm.mapper(Page, page_table, properties={
'comments':orm.relation(Comment, backref='page')

})

This tells SQLAlchemy that the Page class is mapped to the page_table table but that page
objects should have an extra property called comments, which should return all the Comment objects

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY150

related to that page when you read its .comments property. The relation() function also takes a
backref argument, which means that all comment objects should also have a property named page
that returns the page object to which a particular comment is related.

By using this single definition, you have therefore been able to define the relationship between
pages and comments and also specify the properties on each, which will return instances of the
other.

In fact, pages are related to tags as well as to comments, so you need a slightly more sophisti-
cated call to orm.mapper().

Add this import to the top of the model.py file:

from sqlalchemy import orm

Add this version of the mapper code to the end of model.py:

orm.mapper(Page, page_table, properties={
'comments':orm.relation(Comment, backref='page'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

This is the same as the previous example but also specifies a tags property to relate the page to
the tag objects associated with it. This call to relation() specifies a secondary table, pagetag_table,
to be used to handle the many-to-many relationship between pages and tags. Once again,
SQLAlchemy can work out the details from the metadata definitions of the tables and columns. All
many-to-many relations should have the secondary argument to specify how the tables are related.

Now that you’ve mapped the Page class, let’s look at the mappers for Tag and Comment. They look
like this and are the last lines you’ll need to add to model.py:

orm.mapper(Comment, comment_table)
orm.mapper(Tag, tag_table)

The mapper for Comment doesn’t need the page property specified because the mapper for
Page has already specified it via the backref. The mapper for Tag doesn’t need to have the relation
to Page specified because SQLAlchemy can already work it out via the secondary argument.

In this example, the Comment and Tag mappers actually need to be specified before the mapper
for Page because the classes are used in the properties of the Page mapper. You sometimes have to
think quite carefully about the order mappers are defined in order to be able to specify all the rela-
tionships correctly in Python code.

One point to note is that this setup doesn’t provide a way to get a list of pages that share one
tag because you haven’t specified a backref on the tags property in the Page mapper, but you can
always use a query if you need that information. When designing your mappers, there is a trade-
off between adding relational structure to express an important structure or to simplify accessing
data that is frequently used vs. the simplicity of using queries for things that might only occasion-
ally be used.

Once again, SQLAlchemy has many more features than can be described here including lazy
and eager loading, mapping to joins, and more. The SQLAlchemy documentation is very good and
has all the details.

■Tip When you are thinking about naming table columns, it is a strongly recommended that you don’t start any
of the column names with _. SQLAlchemy adds certain objects to mapped class instances, and each of these
starts with _, so you won’t want to create names that conflict with SQLAlchemy objects.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 151

Understanding the Session
There is one problem I haven’t discussed yet, and that is how SQLAlchemy manages objects in
memory. After all, it wouldn’t be efficient for it to contact the database every time you accessed an
attribute of an object. SQLAlchemy handles this problem by keeping track of objects in memory in
what it calls a session.

■Caution The SQLAlchemy session is completely unrelated to the Beaker session, which provides session
management between requests using a cookie. It’s unfortunate that two different pieces of software chose the
term session to mean completely different things.

SQLAlchemy provides different configuration options for the session depending on the type
of application you are writing. You can read all about the various options in the SQLAlchemy docu-
mentation, but in this section you’ll use the same configuration options used by Pylons. You’ll also
use the model.py you’ve just created.

Create a new file called object_test.py in the same directory as model.py, and add the follow-
ing content:

import model
from sqlalchemy import orm
from sqlalchemy import create_engine

Create an engine and create all the tables we need
engine = create_engine('sqlite:///:memory:', echo=True)
model.metadata.bind = engine
model.metadata.create_all()

Set up the session
sm = orm.sessionmaker(bind=engine, autoflush=True, autocommit=False,

expire_on_commit=True)
session = orm.scoped_session(sm)

Let’s look at this in detail. First you have a number of imports including the model module you
created earlier. Next you create an engine as you’ve done before using the echo=True argument so
that the SQL being generated behind the scenes gets output to the console (remember that you
shouldn’t use this argument in a Pylons application and instead should use the logging technique
described in Chapter 20). Finally, you get into the interesting part and create the session itself.

In this example, the session is created in two parts. First you use a sessionmaker() function
to return an object for building the particular type of session you want. To understand what the
options mean, you need to know a little terminology. In SQLAlchemy, flushing is the process of
updating the database with the changes made to the objects you have been working with, and
committing is the process of sending a COMMIT statement to the database to make those flushes
permanent. If you were to roll back some changes after they had been flushed but before the
changes were committed, then the changes would be lost. With these definitions in mind, let’s
look at the arguments.

Let’s look at the arguments being used:

bind=engine: This ensures that the session is bound to the same engine to which the metadata
object is bound. The session will automatically create the connections it needs.

autoflush=True: If you commit your changes to the database before they have been flushed,
this option tells SQLAlchemy to flush them for you before the commit goes ahead. This ensures
changes aren’t lost because you forgot to flush them.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY152

autocommit=False: This tells SQLAlchemy to wrap all changes between commits in a trans-
action so that the commit and rollback behavior just described works correctly in RDBMSs that
support this feature. If you specified autocommit=True, SQLAlchemy would automatically com-
mit any changes after each flush, which normally isn’t what you want. If a problem happens
halfway through a Pylons request, it is usually important that all uncommitted changes made
up to that point are not saved so that the database isn’t left in a half-changed state. If you’ve
used SQLAlchemy in earlier versions of Pylons such as 0.9.6, you may have noticed that the
argument transactional=True was used. autocommit=False in SQLAlchemy 0.5 is the same as
transactional=True in earlier versions, so the two arguments do the same thing.

expire_on_commit=True: This happens to be the default value anyway, but it means that all
instances attached to the session will be fully expired after each commit so that all attribute/
object access subsequent to a completed transaction will load from the most recent database
state.

The second part of the session creation code is the call to scoped_session(). As you’ve already
learned, Pylons is a multithreaded framework. If you were to use an ordinary SQLAlchemy session
in Pylons, different requests would change the session at the same time, which would result in some
users seeing other people’s data, other users not seeing data they’d entered, and frequent applica-
tion crashes. The scoped_session() object ensures that a different session is used for each thread so
that every request can have its own access to the database. Although you don’t need this to run the
test examples in this chapter, you will need to understand it to work with SQLAlchemy in a Pylons
application, so it is worth learning the details now.

Exploring the Session
Now that you’ve seen how the session is configured, let’s run through some examples of how it is
used and see the effects the configuration options chosen actually have. For this part of the chapter,
I’ll use an interactive Python prompt to execute commands so that you can see when SQLAlchemy
actually generates the SQL. Start a prompt in the same directory where you’ve been writing the
modules:

$ python
Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Now import the session object from the object_test module you just created:

>>> from object_test import session

A load of output will fly by as SQLAlchemy sets up the tables. Now let’s start by importing the
model module and creating a new page:

>>> import model
>>> test_page = model.Page()
>>> test_page.title = u'Test Page'
>>> test_page.content = u'Test content'
>>> test_page.title
u'Test Page'

The first step toward persisting the test_page object is adding it to the session so that
SQLAlchemy is aware of it:

>>> session.add(test_page)

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 153

If you were creating lots of pages at once, you could use session.add_all([test_page1,
test_page2, test_page3]) instead. SQLAlchemy 0.4 used session.save() instead but session.add()
is the correct method to use for SQLAlchemy 0.5 and above.

At this stage, objects added to the session are still pending, and no SQL has been issued or
echoed to the console. Let’s see what happens when you access the test_page object’s .id attribute:

>>> print test_page.id
None

As you can see, it returns None. You’ll remember from the table definition that id is the page
table’s primary key column and that an id value is automatically assigned by the underlying RDBMS
when the row is created. At this stage, although test_page has been added to the session, its data
hasn’t been sent to the underlying RDBMS. You can force this to happen by flushing the session.
Once the session has been flushed, the SQL is sent, and SQLAlchemy finds out the id of the page:

>>> session.flush()
2008-09-04 20:53:55,191 INFO sqlalchemy.engine.base.Engine.0x..90 BEGIN
2008-09-04 20:53:55,193 INFO sqlalchemy.engine.base.Engine.0x..90➥
INSERT INTO page (content, posted, title, heading) VALUES (?, ?, ?, ?)
2008-09-04 20:53:55,194 INFO sqlalchemy.engine.base.Engine.0x..90➥
[u'Test content', '2008-09-04 20:53:55.193033', u'Test Page', None]

As you can see, SQLAlchemy has now sent the INSERT statement to the SQLite database, but the
interesting thing is that it also sent the SQL keyword BEGIN before it sent the INSERT statement. This
starts a transaction within the RDBMS so that any changes can still be rolled back until they are
committed. It also means that the changes won’t yet be visible to other users.

■Caution Some RDBMSs don’t support transactions and therefore cannot roll back data or hide it from other
users after it has been flushed. MySQL’s default MyISAM tables don’t support transactions, so if you need this
functionality, you should use InnoDB tables instead. If you are using MySQL, you can specify this by adding
mysql_engine='InnoDB' to your Table classes. See http://www.sqlalchemy.org/docs/05/
documentation.html#metadata_tables_options for more information.

Let’s see whether the test_page has an id now that the test page has been flushed:

>>> test_page.id
1

As you can see, id has now been assigned. Notice that SQLAlchemy didn’t need to query the
database again to tell you. Now let’s commit the changes:

>>> session.commit()
2008-09-04 20:54:13,189 INFO sqlalchemy.engine.base.Engine.0x..90 COMMIT

SQLAlchemy sends the COMMIT statement that permanently commits the flushed changes and
ends the transaction.

Let’s access the test page’s id again and see what happens:

>>> test_page.id
2008-09-04 21:08:19,024 INFO sqlalchemy.engine.base.Engine.0x..30 BEGIN
2008-09-04 21:08:19,027 INFO sqlalchemy.engine.base.Engine.0x..30
SELECT page.id AS page_id, page.content AS page_content, page.posted➥
AS page_posted, page.title AS page_title, page.heading AS page_heading
FROM page
WHERE page.id = ?
2008-09-04 21:08:19,027 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
1

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY154

This time, SQLAlchemy reads the data from the database again. This might surprise you, but if
you look back at the session creation code, you’ll recall that the expire_on_commit option was set to
True, causing SQLAlchemy to automatically expire all objects attached to the session. Notice that
SQLAlchemy actually fetched all the attributes, not just the id. If you access the id or any of the
page’s other attributes, they will now be loaded from the session without access to the database:

>>> test_page.id
1
>>> test_page.title
u'Test Page'

The default values for the columns will also have been applied, so you can now also access the
page’s posted attribute:

>>> test_page.posted
datetime.datetime(2008, 9, 4, 21, 3, 34, 975799)

Let’s now delete this object:

>>> session.delete(test_page)

Once again, no SQL is sent until you flush the session:

>>> session.flush()
008-09-04 21:39:13,247 INFO sqlalchemy.engine.base.Engine.0x..30 SELECT ➥
comment.id AS comment_id, comment.pageid AS comment_pageid,➥
comment.content AS comment_content, comment.name AS comment_name,➥
comment.email AS comment_email, comment.created AS comment_created➥
FROM comment
WHERE ? = comment.pageid
2008-09-04 21:39:13,248 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
2008-09-04 21:39:13,255 INFO sqlalchemy.engine.base.Engine.0x..30➥
SELECT tag.id AS tag_id, tag.name AS tag_name
FROM tag, pagetag
WHERE ? = pagetag.pageid AND tag.id = pagetag.tagid
2008-09-04 21:39:13,255 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
2008-09-04 21:39:13,258 INFO sqlalchemy.engine.base.Engine.0x..30
DELETE FROM page WHERE page.id = ?
2008-09-04 21:39:13,258 INFO sqlalchemy.engine.base.Engine.0x..30 [1]

As you can see, quite a few SQL statements are sent. SQLAlchemy is checking to ensure that
there aren’t any comments or tags associated with the page you are deleting.

At this stage, you could commit the changes, but this time let’s try a rollback:

>>> session.rollback()
2008-09-04 21:41:42,989 INFO sqlalchemy.engine.base.Engine.0x..30 ROLLBACK

SQLAlchemy sends a ROLLBACK statement, causing the RDBMS to undo the changes. It is now
as if the delete never happened. Once again, you can try to access the test page’s id. Once again,
SQLAlchemy fetches the data from the database because the old session was automatically expired
after the rollback:

>>> test_page.id
2008-09-04 21:40:30,281 INFO sqlalchemy.engine.base.Engine.0x...55cc ➥
BEGIN
2008-09-04 21:40:30,282 INFO sqlalchemy.engine.base.Engine.0x...55cc ➥
SELECT page.id AS page_id, page.content AS page_content, page.posted AS ➥
page_posted, page.title AS page_title, page.heading AS page_heading

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 155

FROM page
WHERE page.id = ?
2008-09-04 21:40:30,283 INFO sqlalchemy.engine.base.Engine.0x...55cc [1]
1

As you can see, the page clearly still exists, so the rollback was successful. Of course, if you exit
the Python interactive prompt, all the data will be lost because you are still using an in-memory
database, so don’t be surprised if the row is not there if you fire up another Python interactive shell.

You should now have a good understanding of the inner working of the session in the same
configuration as you would find in a Pylons application, but there is one complication you
haven’t yet dealt with. How do you use the SQL Expression API in the same transaction as a par-
ticular session?

Start a new Python interactive prompt, and type the following to set up the tables and session
and create a test_page object as before:

>>> from object_test import session
>>> import model
>>> test_page = model.Page()
>>> test_page.title = u'Test Page'
>>> test_page.content = u'Test content'
>>> session.add(test_page)
>>> session.flush()
2008-09-04 21:59:29,852 INFO sqlalchemy.engine.base.Engine.0x..30 BEGIN
2008-09-04 21:59:29,854 INFO sqlalchemy.engine.base.Engine.0x..30
INSERT INTO page (content, posted, title, heading) VALUES (?, ?, ?, ?)
2008-09-04 21:59:29,855 INFO sqlalchemy.engine.base.Engine.0x..30
[u'Test content', '2008-09-04 21:59:29.854464', u'Test Page', None]

I’ve already discussed all the output from this code, so I’ll just say that at this point a transac-
tion has been started and the test page has been flushed to the database within that transaction.

Now let’s write a SQL expression to select that row from the database, even though the changes
haven’t been committed. The only way you can do this is if you make sure you use the same transaction
as the session. The session has an execute() method for precisely this purpose. Let’s see it in action:

>>> from sqlalchemy.sql import select
>>> s = select([model.page_table])
>>> result = session.execute(s)
2008-09-04 21:59:29,868 INFO sqlalchemy.engine.base.Engine.0x..30
SELECT page.id, page.content, page.posted, page.title, page.heading
FROM page
2008-09-04 21:59:29,868 INFO sqlalchemy.engine.base.Engine.0x..30 []
>>> result.fetchall()
[(1, u'Test content', datetime.datetime(2008, 9, 4, 21, 59, 29, 854464), ➥
u'Test Page', None)]

Using session.execute() ensures that the same connection (and hence the same transaction)
is used by both the session and the SQL expression object s. For this reason, it is always best to use
session.execute() when working with SQL expressions in Pylons rather than creating a separate
connection via the engine metadata.

Now that you’ve seen how to create objects and how to use the session to save their data to
their corresponding tables, it’s time to look at how to query the database to get data back out using
the Object-Relational API instead of the SQL Expression API. Commit the page that has just been
flushed, and you will continue the example as you look at queries:

>>> session.commit()

In a Pylons application, if you don’t call session.commit(), any changes you make will be
discarded at the end of the request.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY156

Queries
All SQLAlchemy Object-Relational API queries are performed with query objects that are created
from the session. The simplest way to create and use a query object is like this:

>>> page_q = session.query(model.Page)
>>> for page in page_q:
... print page.title
...
2008-09-04 22:13:03,885 INFO sqlalchemy.engine.base.Engine.0x..30➥
SELECT page.id AS page_id, page.content AS page_content, page.posted➥
AS page_posted, page.title AS page_title, page.heading AS page_heading
FROM page
2008-09-04 22:13:03,885 INFO sqlalchemy.engine.base.Engine.0x..30 []
Test Page

In this example, you have iterated over every page in the database, and SQLAlchemy has created a
page object for each so that you can access its .id attribute and print its title. You can see the SQL used
and that the title of the test page, being the only page in the database at the moment, is correctly printed.

Let’s take a closer look at some of the properties of the query object. You can use the same
query object more than once, so let’s use its all() method to get all the pages in one go as a list of
Page objects:

>>> page_q.all()
[<model.Page object at 0x72670>]

Query objects also have a one() method that returns just one object, raising an exception if
there are zero or more than one results. Another useful method on query objects is first(), which
returns the first result or None if there are no results, again the log output isn't included:

>>> page = page_q.first()
>>> page.title
u'Test Page'

Query objects also allow you to set a LIMIT and OFFSET by treating the query object as a list that
can be sliced. For example, to retrieve results only from 2 to 5, you would write this:

>>> page_q[2:5]
2008-09-04 22:23:49,556 INFO sqlalchemy.engine.base.Engine.0x..30
SELECT page.id AS page_id, page.content AS page_content, page.posted➥
AS page_posted, page.title AS page_title, page.heading AS page_heading
FROM page
LIMIT 3 OFFSET 2
2008-09-04 22:23:49,556 INFO sqlalchemy.engine.base.Engine.0x..30 []
[]

Of course, you have only one page, so this returns an empty list, but you can see from the
logged SQL that LIMIT and OFFSET were applied correctly.

Most of the time, you will want to be more specific about the results you return. SQLAlchemy
allows you to do this in a number of ways. First, if you know the primary key of the row you are look-
ing for, you can use the page query’s get() method:

>>> page_q.get(1)
<model.Page object at 0x72670>

Notice this time that SQLAlchemy didn’t need to send any SQL to retrieve this object because it
was already in the session from the queries you have already run. Query objects also have filter()
and filter_by() methods. Both are similar, but filter() takes an expression of the type you saw
earlier, whereas filter_by() takes keyword arguments representing attributes on the class you are
querying. Their use is best demonstrated with examples:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 157

>>> titles1 = [page.title for page in page_q.filter(model.Page.id==1)]
2008-09-04 22:40:24,236 INFO sqlalchemy.engine.base.Engine.0x..30 SELECT ➥
page.id AS page_id, page.content AS page_content, page.posted AS page_➥
posted, page.title AS page_title, page.heading AS page_heading
FROM page
WHERE page.id = ?
2008-09-04 22:40:24,236 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
>>> titles2 = [page.title for page in page_q.filter_by(id=1)]
2008-09-04 22:40:40,098 INFO sqlalchemy.engine.base.Engine.0x..30 SELECT ➥
page.id AS page_id, page.content AS page_content, page.posted AS page_posted, ➥
page.title AS page_title, page.heading AS page_heading
FROM page
WHERE page.id = ?
2008-09-04 22:40:40,101 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
>>> titles1 == titles2
True

The same results are obtained whether the filter() or filter_by() syntax is used.

■Tip You might not have seen the notation used in the previous example to generate both the title lists. It is
called a list comprehension and is a handy way of quickly iterating over an object to produce a new list.

It is also possible to use table columns as an argument to filter() rather than object attri-
butes. Here’s an example:

>>> filtered_page_q = page_q.filter(model.page_table.c.title.like(u'%page%'))
>>> page = filtered_page_q.first()
2008-09-04 23:23:33,128 INFO sqlalchemy.engine.base.Engine.0x..30 SELECT ➥
page.id AS page_id, page.content AS page_content, page.posted AS page_➥
posted, page.title AS page_title, page.heading AS page_heading
FROM page
WHERE page.title LIKE ?
LIMIT 1 OFFSET 0
2008-09-04 23:23:33,136 INFO sqlalchemy.engine.base.Engine.0x..30 [u'%page%']
>>> page.title
u'Test Page'

Notice that the return value from filter() or filter_by() is another query object, so you can
further manipulate the results or apply more filters. You can also create more complex expressions
using AND, OR, and NOT:

>>> from sqlalchemy.sql import and_
>>> page = page_q.filter(and_(model.Page.title.like(u'%page%'), ➥
model.page_table.c.id==1)).first()
2008-09-04 23:24:51,196 INFO sqlalchemy.engine.base.Engine.0x..30 ➥
SELECT page.id AS page_id, ➥
page.content AS page_content, page.posted AS page_posted, page.title ➥
AS page_title, page.heading AS page_heading
FROM page
WHERE page.title LIKE ? AND page.id = ?
LIMIT 1 OFFSET 0
2008-09-04 23:24:51,196 INFO sqlalchemy.engine.base.Engine.0x..30 [u'%page%', 1]
>>> page.title
u'Test Page'

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY158

Notice that you can use either attributes of the class or columns of the table in the query. Using
this technique you can even use SQL strings, bind parameters, or complex statements built using
the SQLAlchemy expression language select() function. See the SQLAlchemy documentation for
details.

Working with Objects
The great thing about using the SQLAlchemy Object-Relational API is that you get actual Python
objects returned from the queries rather than values. Any changes you make to the objects are then
automatically reflected in the underlying database when you commit changes to the session. This
means that working with the database becomes just like working with ordinary Python objects.

Let’s start by changing the title of the page object you’ve just selected:

>>> page.title = u'New Title'
>>> session.commit()
2008-09-04 23:27:13,893 INFO sqlalchemy.engine.base.Engine.0x..30 ➥
UPDATE page SET title=? WHERE page.id = ?
2008-09-04 23:27:13,893 INFO sqlalchemy.engine.base.Engine.0x..30 [u'New Title', 1]
2008-09-04 23:27:13,896 INFO sqlalchemy.engine.base.Engine.0x..30 COMMIT

As you can see, SQLAlchemy automatically generated an UPDATE statement to update the col-
umn and then committed the change.

Now let’s think about how you could add a comment to the page. One approach would be to
insert a new row into the comment table using the SQL Expression API, ensuring that the pageid field
contained the value 1 so that the comment was associated with the correct page via a foreign key.
This would work perfectly well, but the Object-Relational API provides a better approach:

>>> comment1=model.Comment()
>>> comment1.name = u'James'
>>> comment1.email = u"james@example.com"
>>> comment1.content = u'This page needs a bit more detail ;-)'
>>> comment2=model.Comment()
>>> comment2.name = u'Mike'
>>> comment2.email = u'mike@example.com'
>>> page.comments.append(comment1)
>>> page.comments.append(comment2)
>>> session.commit()
2008-09-04 23:38:52,900 INFO sqlalchemy.engine.base.Engine.0x..30 ➥
INSERT INTO comment (pageid, content, name, email, created) VALUES ➥
(?, ?, ?, ?, ?)
2008-09-04 23:38:52,901 INFO sqlalchemy.engine.base.Engine.0x..30 [1, u'This ➥
page needs a bit more detail ;-)', u'James', u'james@example.com', '2008-09-04 ➥
22:12:24.775929']
2008-09-04 23:38:52,903 INFO sqlalchemy.engine.base.Engine.0x..30 INSERT INTO ➥
comment (pageid, content, name, email, created) VALUES (?, ?, ?, ?, ?)
2008-09-04 23:38:52,904 INFO sqlalchemy.engine.base.Engine.0x..30 [1, u'', ➥
u'Mike', u'mike@example.com', '2008-09-04 22:12:24.775929']
2008-09-04 23:38:52,907 INFO sqlalchemy.engine.base.Engine.0x..30 COMMIT

You have created the comment objects in a similar way as you created the test_page object
earlier in the chapter, assigning various attributes appropriate values. The interesting thing here is
that rather than having to manually set the .pageid attribute on each of the columns with the id of
the page, you simply appended the comments to the page’s .comments attribute. Really, the com-
ments should have been added to the session with session.add_all([comment1, comment2]), but
SQLAlchemy was smart enough to realize that if they had been appended to an object that was

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 159

already in the session, then they needed to be added too. When session.commit() was called, the
autoflush=True option to the session caused the session to be flushed, and the SQL for the two
required INSERT statements to be sent to the database before being committed.

This behavior is possible only because of the relationships that were defined when the tables
and mappers were created in the model.py file earlier in the chapter. If you recall, the mapper for the
page table looks like this:

orm.mapper(Page, page_table, properties={
'comments':orm.relation(Comment, backref='page'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

Notice that you specified a backref called page on the Comments class. This means you should
be able to access the page object from a comment’s .page attribute as well as accessing a list of
comments from a page’s .comments attribute. Let’s see:

>>> comment_q = session.query(model.Comment)
>>> comment = comment_q.get(2)
2008-09-04 23:53:21,084 INFO sqlalchemy.engine.base.Engine.0x..30 BEGIN
2008-09-04 23:53:21,085 INFO sqlalchemy.engine.base.Engine.0x..30 SELECT ➥
comment.id AS comment_id, comment.pageid AS comment_pageid, comment.content ➥
AS comment_content, comment.name AS comment_name, comment.email AS comment_➥
email, comment.created AS comment_created
FROM comment
WHERE comment.id = ?
2008-09-04 23:53:21,086 INFO sqlalchemy.engine.base.Engine.0x..30 [2]
>>> page = comment.page
2008-09-04 23:53:28,047 INFO sqlalchemy.engine.base.Engine.0x..30 ➥
SELECT page.id AS page_id, page.content AS page_content, page.posted ➥
AS page_posted, page.title AS page_title, page.heading AS page_heading
FROM page
WHERE page.id = ?
2008-09-04 23:53:28,048 INFO sqlalchemy.engine.base.Engine.0x..30 [1]
>>> page
<model.Page object at 0x72670>
>>> page.id
1
>>> page.title
u'New Title'

As you can see, it is the same page with the updated title. You’ll see a lot more of the Object-
Relational API as you read the SimpleSite tutorial chapters. As well as seeing how SQLAlchemy
works in the context of a Pylons application, you’ll see how to work with tags as an example of a
many-to-many relationship, how to use ORDER BY clauses with query objects, and how to hook
SQLAlchemy up to FormEncode to validate data.

Declarative API
SQLAlchemy 0.5 also has a Declarative API that offers a higher-level API to allow you to define on
one go the same classes, tables, and mappers you added to your model.py file earlier in the chapter.
For many applications, this is the only style of configuration needed.

Let’s rewrite the model.py file using the Declarative API:

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY160

import datetime
from sqlalchemy import schema, types, orm

metadata = schema.MetaData()

def now():
return datetime.datetime.now()

from sqlalchemy.ext.declarative import declarative_base

Assign the same metadata object we created earlier.
Base = declarative_base(metadata=metadata)

We still need the pagetag table because we don't want to explicitly define a
Pagetag class but still
need to specify the table in the relation between pages and tags.
pagetag_table = schema.Table('pagetag', metadata,

schema.Column('id', types.Integer,
schema.Sequence('pagetag_seq_id', optional=True), primary_key=True),

schema.Column('pageid', types.Integer, schema.ForeignKey('page.id')),
schema.Column('tagid', types.Integer, schema.ForeignKey('tag.id')),

)

class Page(Base):
__tablename__ = 'page'

id = schema.Column(types.Integer,
schema.Sequence('page_seq_id', optional=True), primary_key=True)

content = schema.Column(types.Text(), nullable=False)
posted = schema.Column(types.DateTime(), default=now)
title = schema.Column(types.Unicode(255), default=u'Untitled Page')
heading = schema.Column(types.Unicode(255))
comments = orm.relation("Comment", backref="page")
tags = orm.relation("Tag", secondary=pagetag_table)

class Comment(Base):
__tablename__ = 'comment'

id = schema.Column(types.Integer,
schema.Sequence('comment_seq_id', optional=True), primary_key=True)

pageid = schema.Column(types.Integer,
schema.ForeignKey('page.id'), nullable=False)

content = schema.Column(types.Text(), default=u'')
name = schema.Column(types.Unicode(255))
email = schema.Column(types.Unicode(255), nullable=False)
created = schema.Column(types.TIMESTAMP(), default=now())

class Tag(Base):
__tablename__ = 'tag'

id = schema.Column(types.Integer,
schema.Sequence('tag_seq_id', optional=True), primary_key=True)

name = schema.Column(types.Unicode(20), nullable=False, unique=True)

page_table = Page.__table__

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 161

As you can see, this example uses many of the same principles you’ve already learned about
but in a more compact form. The table name has to be specified via a __tablename__ attribute, but
SQLAlchemy can infer the column names from the attribute names you’ve specified. When setting
up the relationships, you can pass a string to relation() rather than a class because you might need
to map a relationship before the class has been defined.

Classes that are mapped explicitly using mapper() can interact freely with declarative classes,
and table definitions created explicitly can be used too, as you can see with the pagetag table in the
previous example.

Declarative classes get access to the underlying metadata object, and hence the underlying
engine, because they are inherited from Base, and Base has access to metadata because it is passed
as an argument to the declarative_base() function.

The underlying Table object created by the declarative_base() version of each of these classes
is accessible via the class’s __table__ attribute, as you can see from the last line in the example.

If you save the updated model.py, you will find that all the examples using the object_test
module still work in the same way, even with the new model.

Although the Declarative API can be more approachable to newcomers, most Pylons develop-
ers at the moment still choose to use the more explicit APIs you saw earlier, which is the approach
you’ll follow for the rest of the book. If you are interested in using the Declarative API, you should
read the SQLAlchemy documentation at http://www.sqlalchemy.org/docs/05/plugins.html#
plugins_declarative.

Maintaining Performance
SQLAlchemy is a well-designed package, and although it isn’t ever going to be as fast as using the
DB-API 2.0 directly, it should perform extremely well as long as you use it correctly.

One thing you should avoid at all costs is writing a query like this:

for page in session.query(model.Page):
if page.id == 1:

print page.title

This would select every page from the database and create a new page object from the Page
class for each row in the table, just so that you can find the page with an id of 1. Since there is only
one page in the database, this code isn’t too bad, but if you had 10,000 pages, that is 10,000 objects
that need to be created and checked in Python rather than in the underlying RDBMS.

Iterating over results as Python objects is obviously a very inefficient way of searching
through data in a table, because each row has to be loaded into memory as a Python object.
SQL databases are designed to be very fast at performing complex queries, so it is much better
to use one of SQLAlchemy’s filter methods to generate the SQL necessary to make the under-
lying database do all the hard work, or in this case, you can just use the get() method you saw
earlier, which might not even have to contact the database if the page is already in memory
in the session:

page = session.query(model.Page).get(1)

The final thing to remember is that the Object-Relational API isn’t always the best tool for the
job. If you are updating or deleting multiple rows at once, for example, you are much better off
using the SQL Expression API to allow SQLAlchemy to build a SQL statement that the underlying
RDBMS can use to change the rows using its efficient C code. Remember that you can always mix
and match the Object-Relational API code and the SQL Expression API code within the same

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY162

transaction using the session’s execute() method. For example, to update a set of rows in one go,
you might write the following:

from sqlalchemy.sql import update
u = update(model.page_table, model.page_table.c.title==u'New Title')
session.execute(u, params={'title': u"Updated Title"})

Summary
So, that was a whistle-stop tour of SQLAlchemy’s architecture. You’ll be using SQLAlchemy through-
out the book, and it will all become much clearer as you use it. In the next chapter, you’ll begin
creating a real application, and you’ll see how to use SQLAlchemy’s Object-Relational API to per-
form queries on the database.

If you haven’t quite understood everything yet, it really is worth returning to this chapter and
reading it again once you’ve read the rest of the book just to make sure everything is clear. A good
understanding of SQLAlchemy will really help you write effective code in Pylons.

CHAPTER 7 ■ INTRODUCING THE MODEL AND SQLALCHEMY 163

Starting the SimpleSite Tutorial

■Note You can download the source code for this chapter from http://www.apress.com.

You’ve now learned about many of the most important components of an application. The previous
chapters have been fairly detailed, so don’t worry if you haven’t understood everything you’ve read
or if you’ve skipped over one or two sections. Once you have used Pylons a little more, you will
appreciate having all the information on a particular topic in one place, even if it seems a lot to take
in on the first reading.

In this chapter, I’ll recap many of the important points as I show how to create a simple web
site from scratch so that you can see how all the components you’ve learned about in the preceding
chapters fit together. The example will be created in a way that will also make it a really good basis
for your own Pylons projects.

You’ll use SQLAlchemy to store the individual pages in the site in such a way that users can
add, edit, or remove them so that the application behaves like a simple wiki. Each of the pages will
also support comments and tags, so you can use some of the knowledge gained in the previous
chapter to help you create the application. You’ll also use FormEncode and HTML Fill to handle the
forms.

Later in the book you’ll return to SimpleSite and add authentication and authorization facili-
ties, and you’ll add a navigation hierarchy so that pages can be grouped into sections at different
URLs. You’ll implement some JavaScript to animate messages and use some Ajax to populate one of
the form fields. The application will also have a navigation hierarchy so that you can see how to cre-
ate navigation components such as breadcrumbs, tabs, and navigation menus using Mako.

Figure 8-1 shows what the finished application will look like after the SimpleSite tutorial chap-
ters (this chapter, Chapter 14, part of Chapter 15, and Chapter 19).

165

C H A P T E R 8

Figure 8-1. The finished wiki with a customized front page

Getting Started with SimpleSite
The first thing you need to do is create a new Pylons project called SimpleSite. You’ll remember
from Chapter 3 that the command to do this is as follows:

$ paster create --template=pylons SimpleSite

You’ll use Mako and SQLAlchemy in this chapter, so in particular note that you need to answer
True to the SQLAlchemy question so that SQLAlchemy support is included for you:

Selected and implied templates:
Pylons#pylons Pylons application template

Variables:
egg: SimpleSite
package: simplesite
project: SimpleSite

Enter template_engine (mako/genshi/jinja/etc: Template language) ['mako']:
Enter sqlalchemy (True/False: Include SQLAlchemy 0.4 configuration) [False]: True
Creating template pylons

All these options are configurable later, but it is easier to have Pylons configure them for you
when you create the project.

Once the application template has been created, start the server, and see what you have:

$ cd SimpleSite
$ paster serve --reload development.ini

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL166

■Note Notice that the server is started with the --reload switch. You’ll remember that this means any changes
you make to the code will cause the server to restart so that your changes are immediately available for you to test
in the web browser.

If you visit http://127.0.0.1:5000, you will see the standard Pylons introduction page served
from the application’s public/index.html file as before.

Pylons looks for resources in the order applications are specified in the cascade object in
config/middleware.py. You’ll learn more about the cascade object in Chapter 17, but it causes static
files such as the introduction page to be served in preference to content generated by your Pylons
controllers for the same URL. You will want the SimpleSite controllers to handle the site’s home
page, so remove the welcome page HTML file:

$ cd simplesite
$ rm public/index.html

If you now refresh the page, the Pylons built-in error document support will kick in and display
a 404 Not Found page to tell you that the URL requested could not be matched by Pylons.

You’ll now customize the controller so that it can display pages. Each of the pages is going to
have its own ID, which the controller will obtain from the URL. Here are some example URLs that
the controller will handle:

/page/view/1
/page/view/2
... etc
/page/view/10

You’ll also recall that Pylons comes with a routing system named Routes, which you saw in
Chapter 3 and will learn about in detail in the next chapter. The default Routes setup analyzes the
URL requested by the browser to find the controller, action, and ID. This means that to handle
the URLs, you simply need a controller named page that has an action named view and that takes
a parameter named id.

Let’s create the page controller. Once again, Pylons comes with a tool to help with this in the
form of a plug-in to Paste. You create the controller like this (notice that the command doesn’t
include the create part, which is used when creating a project template):

$ paster controller page
Creating /Users/james/Desktop/SimpleSite/simplesite/controllers/page.py
Creating /Users/james/Desktop/SimpleSite/simplesite/tests/functional/test_page.py

This creates two files—one for any tests you are going to add for this controller (see Chapter 12)
and the other for the controller itself. The command would also add these files to Subversion auto-
matically if your Pylons application were already being managed in a Subversion repository.

The controllers/page.py file that is added looks like this:

import logging

from pylons import request, response, session, tmpl_context as c
from pylons.controllers.util import abort, redirect_to

from simplesite.lib.base import BaseController, render
#import simplesite.model as model

log = logging.getLogger(__name__)

class PageController(BaseController):

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 167

def index(self):
Return a rendered template
return render('/template.mako')
or, Return a response
return 'Hello World'

This is a skeleton controller that you’ll customize to handle pages. The first few lines import
some of the useful objects described in Chapter 3 so that they are ready for you to use. The con-
troller itself has one action named index(), which simply returns a Hello World message.

Replace the index() action with a view() action that looks like this:

def view(self, id):
return "Page goes here"

The Paste HTTP server should reload when you save the change (as long as you used the
--reload option), so you can now visit the URL http://localhost:5000/page/view/1. You should see
the message Page goes here.

The page isn’t very exciting so far and isn’t even HTML, so now I’ll cover how to create some
templates to generate real HTML pages.

Exploring the Template Structure
Most web sites have the following features:

• Header and footer regions

• Sign-in and sign-out regions

• Top-level navigation tabs

• Second-level navigation tabs

• A page heading

• Breadcrumbs

• Content

• A head region for extra CSS and JavaScript

The SimpleSite application will need all these features too, so the template structure needs to
be able to provide them.

You’ll remember from Chapter 5 that Pylons uses the Mako templating language by default,
although as is the case with most aspects of Pylons, you are free to deviate from the default if you
prefer. This is particularly useful if you are building a Pylons application to integrate with legacy
code, but since you are creating a new application here, you are going to use Mako.

Because you are going to need a few templates that will all look similar, you can take advantage
of Mako’s inheritance chain features you learned about in Chapter 5 and use a single base template
for all the different pages. You’ll also need to create some derived templates and some templates
containing the navigation components.

You’ll structure these templates as follows:

templates/base: All the base templates.

templates/derived: All the templates that are derived from any of the base templates. There is
likely to be a subdirectory for every controller you create. Since Pylons has already created an
error controller, you’ll create a subdirectory for it, and you’ll need a subdirectory for the page
controller templates too.

templates/derived/error: Templates for the error controller to render error documents.

templates/component: Any components that are used in multiple templates.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL168

This structure is useful because it keeps templates that serve different purposes in different
directories. If you are following along by creating the application yourself, you should create these
directories now.

Let’s start by creating the base template. Save the following template as
templates/base/index.html:

-*- coding: utf-8 -*-

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>

<title>${self.title()}</title>
${self.head()}

</head>
<body>

${self.header()}
${self.tabs()}
${self.menu()}
${self.heading()}
${self.breadcrumbs()}
${next.body()}
${self.footer()}

</body>
</html>

<%def name="title()">SimpleSite</%def>
<%def name="head()"></%def>
<%def name="header()"></%def>
<%def name="tabs()"></%def>
<%def name="menu()"></%def>
<%def name="heading()"><h1>${c.heading or 'No Title'}</h1></%def>
<%def name="breadcrumbs()"></%def>
<%def name="footer()"><p>Top ^</p></%def>

This template should be fairly self-explanatory. It is a simple HTML document with eight defs
defined. Each of the calls to ${self.somedef()} will execute the def using either the definition in
this base template or the definition in the template that inherits from it. The ${next.body()} call
will be replaced with the body of the template that inherits this one.

You’ll also see that the header() and footer() defs already contain some HTML, allowing the
user to quickly click to the top of the page. The title() def contains some code that will set the title
to SimpleSite, and the heading() def will obtain its content from the value of c.heading or will just
use 'No title' if no heading has been set.

-*- coding: utf-8 -*- has been added at the top of the file so that Unicode characters can be
used when the template is saved as UTF-8 (you’ll learn more about Unicode in Chapter 10).

■Note If you prefer using the strict_c option to ensure that accessing an attribute of the template context
global raises an exception if that attribute doesn’t exist, you should change the content of the heading def to look
like this:

<h1>${hasattr(c, 'heading') and c.heading or 'No Title'}</h1>

This ensures that the heading attribute exists before testing its value.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 169

Now that the base template is in place, you can start creating the templates for the web site
content. Create a new template in the templates/derived/page directory called view.html. This will
be the template used by the page controller’s view action. Add the following content to it:

<%inherit file="/base/index.html"/>

${c.content}

You’ll now need to update the view() action in the controller to use this template:

def view(self, id):
c.title = 'Greetings'
c.heading = 'Sample Page'
c.content = "This is page %s"%id
return render('/derived/page/view.html')

Now when you visit http://localhost:5000/page/view/1, you should see the page shown in
Figure 8-2.

Figure 8-2. A basic page being rendered from a template

Using SQLAlchemy in Pylons
Now that you have the project’s templates and controller set up, you need to start thinking about
the model. As you’ll recall from Chapter 1, Pylons is set up to use a Model View Controller architec-
ture, and SQLAlchemy is what is most often used as the model. Chapter 7 explained SQLAlchemy in
detail, but now you’ll see how to apply that theory to a real Pylons project. If you haven't already
done so you'll need to install SQLAlchemy 0.5 which is the version used in this book. You can do so
with this command:

$ easy_install "SQLAlchemy>=0.5,<=0.5.99"

Let’s begin by setting up the engine. Open your project’s config/environment.py file, and after
from pylons import config, you’ll see the following:

from sqlalchemy import engine_from_config

You learned about engines in Chapter 7 when you created one directly. Pylons uses the
engine_from_config() function to create an engine from configuration options in your project’s
config file instead. It looks for any options starting with sqlalchemy. in the [app:main] section of
your development.ini config file and creates the engine based on these options. This means that all
you need to do to configure SQLAlchemy is set the correct options in the config file.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL170

Configuring the Engine
The main configuration option you need is sqlalchemy.url. This specifies the data source name
(DSN) for your database and takes the format engine://username:password@host:port/
database?foo=bar, where foo=bar sets an engine-specific argument named foo with the value bar.
Once again, this is the same setting you learned about in Chapter 7 during the discussion of
engines.

For SQLite, you might use an option like this to specify a database in the same directory as the
config file:

sqlalchemy.url = sqlite:///%(here)s/databasefile.sqlite

Here databasefile.sqlite is the SQLite database file, and %(here)s represents the directory con-
taining the development.ini file. If you’re using an absolute path, use four slashes after the colon:
sqlite:////var/lib/myapp/databasefile.sqlite. The example has three slashes because the value
of %(here)s always starts with a slash on Unix-like platforms. Windows users should use four slashes
because %(here)s on Windows starts with the drive letter.

For MySQL, you might use these options:

sqlalchemy.url = mysql://username:password@host:port/database
sqlalchemy.pool_recycle = 3600

Enter your username, your password, the host, the port number (usually 3306), and the name
of your database.

It’s important to set the pool_recycle option for MySQL to prevent “MySQL server has gone
away” errors. This is because MySQL automatically closes idle database connections without
informing the application. Setting the connection lifetime to 3600 seconds (1 hour) ensures that the
connections will be expired and re-created before MySQL notices they’re idle. pool_recycle is one
of many engine options SQLAlchemy supports. Some of the others are listed at
http://www.sqlalchemy.org/docs/05/dbengine.html#dbengine_options and are used in the same
way, prefixing the option name with sqlalchemy..

For PostgreSQL, your DSN will usually look like this:

sqlalchemy.url = postgres://username:password@host:port/database

The options are the same as for MySQL, but you don’t generally need to use the pool_recycle
option with PostgreSQL.

By default, Pylons sets up the DSN sqlalchemy.url = sqlite:///%(here)s/development.db,
so if you don’t change it, this is what will be used. Whichever DSN you use, you still need to make
sure you have installed SQLAlchemy along with the appropriate DB-API driver you want to use;
otherwise, SQLAlchemy won’t be able to connect to the database. Again, see Chapter 7 for more
information.

Creating the Model
Once you have configured the engine, it is time to configure the model. This is easy to do; you sim-
ply add all your classes, tables, and mappers to the end of model/__init__.py. The SimpleSite
application will use the structures you worked through in the previous chapter, so I won’t discuss
them in detail here.

Change model.__init__.py to look like this:

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 171

"""The application's model objects"""
import sqlalchemy as sa
from sqlalchemy import orm

from simplesite.model import meta

Add these two imports:
import datetime
from sqlalchemy import schema, types

def init_model(engine):
"""Call me before using any of the tables or classes in the model"""
Reflected tables must be defined and mapped here
#global reflected_table
#reflected_table = sa.Table("Reflected", meta.metadata, autoload=True,
autoload_with=engine)
#orm.mapper(Reflected, reflected_table)

We are using SQLAlchemy 0.5 so transactional=True is replaced by
autocommit=False
sm = orm.sessionmaker(autoflush=True, autocommit=False, bind=engine)

meta.engine = engine
meta.Session = orm.scoped_session(sm)

Replace the rest of the file with the model objects we created in
chapter 7

def now():
return datetime.datetime.now()

page_table = schema.Table('page', meta.metadata,
schema.Column('id', types.Integer,

schema.Sequence('page_seq_id', optional=True), primary_key=True),
schema.Column('content', types.Text(), nullable=False),
schema.Column('posted', types.DateTime(), default=now),
schema.Column('title', types.Unicode(255), default=u'Untitled Page'),
schema.Column('heading', types.Unicode(255)),

)

comment_table = schema.Table('comment', meta.metadata,
schema.Column('id', types.Integer,

schema.Sequence('comment_seq_id', optional=True), primary_key=True),
schema.Column('pageid', types.Integer,

schema.ForeignKey('page.id'), nullable=False),
schema.Column('content', types.Text(), default=u''),
schema.Column('name', types.Unicode(255)),
schema.Column('email', types.Unicode(255), nullable=False),
schema.Column('created', types.TIMESTAMP(), default=now()),

)

pagetag_table = schema.Table('pagetag', meta.metadata,
schema.Column('id', types.Integer,

schema.Sequence('pagetag_seq_id', optional=True), primary_key=True),
schema.Column('pageid', types.Integer, schema.ForeignKey('page.id')),
schema.Column('tagid', types.Integer, schema.ForeignKey('tag.id')),

)

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL172

tag_table = schema.Table('tag', meta.metadata,
schema.Column('id', types.Integer,

schema.Sequence('tag_seq_id', optional=True), primary_key=True),
schema.Column('name', types.Unicode(20), nullable=False, unique=True),

)

class Page(object):
pass

class Comment(object):
pass

class Tag(object):
pass

orm.mapper(Comment, comment_table)
orm.mapper(Tag, tag_table)
orm.mapper(Page, page_table, properties={

'comments':orm.relation(Comment, backref='page'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

As I mentioned, this will look very familiar because it is a similar setup to the one you used in
the previous chapter. There are some points to note about this code, though:

• The MetaData object Pylons uses is defined in model/meta.py so is accessed here as
meta.metadata, whereas in the previous chapter the examples just used metadata.

• Pylons generated the init_model() function when the project was created. It gets called after
the engine has been created each time your application starts from config/environment.py
to connect the model to the database.

■Caution Pylons generates a project to use SQLAlchemy 0.4, but many users will want to use the newer
SQLAlchemy 0.5 described in Chapter 7. They are very similar, but the transactional=True argument to orm.
sessionmaker() in init_model() is deprecated. Instead, you should specify autocommit=False. This has the
same behavior but will not generate a deprecation warning.

Creating the Database Tables
Pylons has a built-in facility to allow users who download your application to easily set it up. The
process is described in detail in the later SimpleSite tutorial chapters (Chapters 14 and 19), but
you’ll use it here too so that you can easily set up the tables you need.

The idea is that users of your application can simply run paster setup-app development.ini to
have the database tables and any initial data created for them automatically. You can set up this
facility through your project’s websetup.py file.

The default websetup.py file for a SQLAlchemy project looks like this:

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 173

"""Setup the SimpleSite application"""
import logging

from simplesite.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
"""Place any commands to setup simplesite here"""
load_environment(conf.global_conf, conf.local_conf)

Load the models
from simplesite.model import meta
meta.metadata.bind = meta.engine

Create the tables if they aren't there already
meta.metadata.create_all(checkfirst=True)

When the paster setup-app command is run, Pylons calls the setup_app() function and loads
the Pylons environment, setting up a SQLAlchemy engine as it does so. It then binds the engine to
the metadata and calls metadata.create_all(checkfirst=True) to create any tables that don’t
already exist.

Binding the metadata in this way connects the engine to the metadata object used by the
classes, tables, and mappers in the model. You can think of it as a shortcut to set up the model with-
out the complexity of a session.

You’ll now customize the default code so that it also adds a home page to the database. Add the
following to the end of the setup_app() function:

log.info("Adding homepage...")
page = model.Page()
page.title=u'Home Page'
page.content = u'Welcome to the SimpleSite home page.'
meta.Session.add(page)
meta.Session.commit()
log.info("Successfully set up.")

You’ll also need to add this import at the top:

from simplesite import model

■Note The recommended way of adding an object to the SQLAlchemy session in SQLAlchemy 0.4 was to call
the session's save() method. The session in SQLAlchemy 0.5 provides the add() method instead. Since this book
covers SQLAlchemy 0.5, the examples will use the add() method.

To test this functionality, you should first make SimpleSite available in your virtual Python
environment. Rather than installing SimpleSite as you would install a normal Python package, you
can instead use a special feature of the setuptools package used by Easy Install called development
mode. This has the effect of making other Python packages treat your Pylons project’s source direc-
tory as if it were an installed Python egg even though it is actually just a directory structure in the
filesystem.

It works by adding a SimpleSite.egg-link file to your virtual Python installation's site-pack-
ages directory containing the path to the application. It also adds an entry to the easy_install.pth
file so that the project is added to the Python path. This is very handy because it means that any
changes you make to the SimpleSite project are instantly available without you having to create and

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL174

install the package every time you make a change. Set up your project in development mode by
entering this command:

$ python setup.py develop

If you haven’t specified sqlalchemy.url in your development.ini config file, you should do so
now. Then you are ready to run the paster setup-app command to set up your tables:

$ paster setup-app development.ini

If all goes well, you should see quite a lot of log output produced, ending with the following
lines and the message that everything was successfully set up:

12:37:36,429 INFO [simplesite.websetup] Adding homepage...
12:37:36,446 INFO [sqlalchemy.engine.base.Engine.0x..70] BEGIN
12:37:36,449 INFO [sqlalchemy.engine.base.Engine.0x..70]➥
INSERT INTO page (content, posted, title, heading) VALUES (?, ?, ?, ?)
12:37:36,449 INFO [sqlalchemy.engine.base.Engine.0x..70]➥
[u'Welcome to the SimpleSite home page.', '2008-09-12 12:37:36.449094',➥
u'Home Page', None]
12:37:36,453 INFO [sqlalchemy.engine.base.Engine.0x..70] COMMIT
12:37:36,460 INFO [simplesite.websetup] Successfully set up.

Querying Data
Now that the home page data is in SQLAlchemy, you need to update the view() action to use it.
You’ll recall that you query SQLAlchemy using a query object. Here’s how:

def view(self, id):
page_q = model.meta.Session.query(model.Page)
c.page = page_q.get(int(id))
return render('/derived/page/view.html')

Notice that since the heading is optional, you are using the title as the heading if the heading
is empty.

To use this, you need to uncomment the following line at the top of the controller file:

#import simplesite.model as model

Now add some more imports the controller will need:

import simplesite.model.meta as meta
import simplesite.lib.helpers as h

Finally, you’ll need to update the templates/derived/page/view.html template to use the page
object:

<%inherit file="/base/index.html"/>

<%def name="title()">${c.page.title}</%def>
<%def name="heading()"><h1>${c.page.heading or c.page.title}</h1></%def>

${c.page.content}

The new heading def will display the heading if there is one and the title if no heading has been
set.

Visit http://localhost:5000/page/view/1 again, and you should see the data loaded from the
database (Figure 8-3). You’ll need to restart the server if you stopped it to run paster setup-app.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 175

Figure 8-3. A basic page being rendered with data from the database

■Caution Generally speaking, it is a good idea to try to keep your model and templates as separate as possible.
You should always perform all model operations in your controller and never in a template. This is so that you, and
other people working on your project, always know where changes to your model are happening so that code is
easy to maintain.

To avoid the risk of a lazy programmer performing operations on the model from within a template, you might
prefer not to pass model objects directly to the controller and instead pass the useful attributes. In this case, rather
than passing c.page, you might instead pass c.title, c.content, and other useful attributes rather than the
whole object. In this book, I’ll be strict about only using model objects for read-only access in templates, so it is
OK to pass them in directly.

Understanding the Role of the Base Controller
Every Pylons project has a base controller in the project’s lib/base.py file. All your project’s con-
trollers are by default derived from the BaseController class, so this means that if you want to
change the behavior of all the controllers in your project, you can make changes to the base con-
troller. Of course, if you want to derive your controllers directly from pylons.controllers.
WSGIController, you are free to do so too.

The SimpleSite base controller looks like this:

"""The base Controller API

Provides the BaseController class for subclassing.
"""
from pylons.controllers import WSGIController
from pylons.templating import render_mako as render

from simplesite.model import meta

class BaseController(WSGIController):

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL176

def __call__(self, environ, start_response):
"""Invoke the Controller"""
WSGIController.__call__ dispatches to the Controller method
the request is routed to. This routing information is
available in environ['pylons.routes_dict']
try:

return WSGIController.__call__(self, environ, start_response)
finally:

meta.Session.remove()

All the individual controllers that you create with the paster controller command also import
the render() function from this file, so if you want to change the templating language for all your
controllers, you can change the render() import in this file, and all the other controllers will auto-
matically use the new function. Of course, you will have to set up the templating language in your
project’s config/environment.py file too. This was described in Chapter 5.

Using a SQLAlchemy Session in Pylons
You’ve learned about SQLAlchemy sessions in some detail in Chapter 7, but now let’s take a brief
look at how sessions are used in Pylons.

The relevant lines to set up the session are found in your model/__init__.py file’s init_model()
function and look like this:

sm = orm.sessionmaker(autoflush=True, autocommit=False, bind=engine)

meta.engine = engine
meta.Session = orm.scoped_session(sm)

The meta.Session class created here acts as a thread-safe wrapper around ordinary
SQLAlchemy session objects so that data from one Pylons request doesn’t get mixed up with data
from other requests in a multithreaded environment. Calling meta.Session() returns the thread’s
actual session object, but you wouldn’t normally need to access it in this way because when you
call the class’s meta.Session.query() method, it will automatically return a query object from the
correct hidden session object. You can then use the query object as normal to fetch data from
the database.

Since a new session is created for each request, it is important that sessions that are no longer
needed are removed. Because you chose to use a SQLAlchemy setup when you created the project,
Pylons has added a line to remove any SQLAlchemy session at the end of the BaseController class’s
__call__() method:

meta.Session.remove()

This simply removes the session once your controller has returned the data for the response.

Updating the Controller to Support Editing Pages
To quickly recap, you’ve set up the model, configured the database engine, set up the templates,
and written an action to view pages based on their IDs. Next, you need to write the application logic
and create the forms to enable a user to create, list, add, edit, and delete pages.

You’ll need the following actions:

view(self, id): Displays a page

new(self): Displays a form to create a new page

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 177

create(self): Saves the information submitted from new() and redirects to view()

edit(self, id): Displays a form for editing the page id

save(self, id): Saves the page id and redirects to view()

list(self): Lists all pages

delete(self, id): Deletes a page

This structure forms a good basis for a large number of the cases you are likely to program with
a relational database.

view()
The existing view() method correctly displays a page but currently raises an error if you try to dis-
play a page that doesn’t exist. This is because page_q.get() returns None when the page doesn't
exist so that c.page is set to None. This causes an exception in the template when c.page.title is
accessed.

Also, if a URL cannot be found, the HTTP specification says that a 404 page should be returned.
You can use the abort() function to immediately stop the request and trigger the Pylons error docu-
ments middleware to display a 404 Not Found page. You should also display a 404 page if the user
doesn’t specify a page ID. Here’s what the updated code looks like. Notice that the action arguments
have been changed so that id is now optional.

def view(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
c.page = page_q.get(int(id))
if c.page is None:

abort(404)
return render('/derived/page/view.html')

■Tip When you are testing a condition that involves None in Python, you should use the is operator rather than
the == operator.

new()
You also need a template for pages that don’t already exist. It needs to display a form and submit it
to the create() action to create the page. Most of the functionality to display the form will take
place in the templates. Here’s what the action looks like; add this to the controller:

def new(self):
return render('/derived/page/new.html')

Thinking ahead, the edit() action will also display a form, and it is likely to have many of the
same fields. You’ll therefore implement the fields in one template where they can be shared and cre-
ate the form itself in another.

First let’s create the fields in templates/derived/page/fields.html. Here’s what the file looks
like:

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL178

${h.field(
"Heading",
h.text(name='heading'),
required=False,

)}
${h.field(

"Title",
h.text(name='title'),
required=True,
field_desc = "Used as the heading too if you didn't specify one above"

)}
${h.field(

"Content",
h.textarea(name='content', rows=7, cols=40),
required=True,
field_desc = 'The text that will make up the body of the page'

)}

Remember that h is simply another name for your project’s simplesite.lib.helpers module
and that it is available in both the templates and the controllers. In this case, you’re using a helper
called field() that generates the HTML for a row in a table containing a label for a field and the
field itself. It also allows you to specify field_desc, which is a line of text that appears immediately
below the HMTL field, or label_desc, which is for text appearing immediately below the label.
Specifying required=True adds an asterisk (*) to the start of the label, but it doesn’t affect how the
controller handles whether fields are actually required.

To use the field helper, you need to first import it into the helpers module. You’ll also use
form_start() and form_end(), so let’s import them at the same time. At the top of lib/helpers.py,
add the following:

from formbuild.helpers import field
from formbuild import start_with_layout as form_start, end_with_layout as form_end
from webhelpers.html.tags import *

Notice that you are using a package called FormBuild here. You could equally well code all your
field structures in HTML, but FormBuild will help create a structure for you. FormBuild actually
contains some extra functionality too, but you will use it only for its field(), start_with_layout(),
and end_with_layout() helpers in the book. At some point in the future, these helpers are likely to
be added to the Pylons WebHelpers package. Install FormBuild like this:

$ easy_install "FormBuild>=2.0,<2.99"

You should also add it as a dependency to your project by editing the setup.py file and adding
FormBuild to the end of the install_requires argument, and updating the SQLAlchemy line to look
like this:

install_requires=[
"Pylons>=0.9.7",
"SQLAlchemy>=0.5,<=0.5.99",
"Mako",
"FormBuild>=2.0,<2.99",

],

Next you need the form itself. Like the view.html page, this can be based on the /base/
index.html page using Mako’s template inheritance. Here’s how /derived/page/new.html looks:

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 179

<%inherit file="/base/index.html" />
<%namespace file="fields.html" name="fields" import="*"/>

<%def name="heading()">
<h1 class="main">Create a New Page</h1>

</%def>

${h.form_start(h.url_for(controller='page', action='create'), method="post")}
${fields.body()}
${h.field(field=h.submit(value="Create Page", name='submit'))}

${h.form_end()}

This template imports the defs in the fields.html file into the fields namespace. It then calls
its body() def to render the form fields. h.form_start() and h.form_end() create the HTML <form>
tags as well as the <table> tags needed to wrap the rows generated by each call to h.field().

You’ll also need to add the url_for() helper to lib/helpers.py. This is a function from Routes
that you’ll learn about in Chapter 9. For the time being, it is enough to know that it takes a con-
troller, action, and ID and will generate a URL that, when visited, will result in the controller and
action being called with the ID you specified. Routes is highly customizable and is one of the central
components Pylons provides to make building sophisticated web applications easier. Add this line
to the import statements in lib/helpers.py:

from routes import url_for

You can now test the form by visiting http://localhost:5000/page/new.
When the user clicks the Create Page button, the information they enter is submitted to the

create() action, so you need to write that next.

create()
The create() action needs to perform the following tasks:

• Validate the form

• Redisplay it with error messages if any data is invalid

• Add the valid data to the database

• Redirect the user to the newly created page

Let’s start by creating a FormEncode schema to validate the data submitted. You need to
import formencode at the top of the page controller and then import htmlfill, which will be used
by the edit() method later in the chapter:

import formencode
from formencode import htmlfill

Next define the schema, which looks like this:

class NewPageForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
content = formencode.validators.String(

not_empty=True,
messages={

'empty':'Please enter some content for the page.'
}

)
heading = formencode.validators.String()
title = formencode.validators.String(not_empty=True)

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL180

Setting the allow_extra_fields and filter_extra_fields options to True means that
FormEncode won’t raise Invalid exceptions for fields such as the Create Page button, which aren’t
listed in the schema, but will filter them out so that they don’t affect the results.

You’ll notice that title and content are required fields because they have not_empty=True
specified. You’ll also notice that the content field has a customized error message so that if no text
is entered, the error Please enter some content for the page. will be displayed. Notice also that
although you specified not_empty=True in the formencode.validators.String validator, the key cor-
responding to the message is the string 'empty'. This might catch you out if you expected the key to
be 'not_empty'.

To handle the validation and redisplay of the form if there are any errors, you’ll use the
@validate decorator you learned about in Chapter 4. This requires another import:

from pylons.decorators import validate

You want it to redisplay the result of calling the new() action if an error occurs, so this is how
you use it:

@validate(schema=NewPageForm(), form='new')
def create(self):

...

Calling an action wrapped by @validate using a GET request will bypass the validation and
call the action anyway. You need to make sure this doesn’t pose a security risk in your applica-
tion. You could prevent this by testing whether a GET or a POST is being used in the body of the
action. You can determine the request method using request.method, or Pylons provides another
decorator called @restrict that you can use.

Let’s use the new decorator and add the body of the action to create the page:

@restrict('POST')
@validate(schema=NewPageForm(), form='new')
def create(self):

Add the new page to the database
page = model.Page()
for k, v in self.form_result.items():

setattr(page, k, v)
meta.Session.add(page)
meta.Session.commit()
Issue an HTTP redirect
response.status_int = 302
response.headers['location'] = h.url_for(controller='page',

action='view', id=page.id)
return "Moved temporarily"

You’ll also need another import:

from pylons.decorators.rest import restrict

If the data entered is valid, it will be available in the action as the dictionary self.form_result.
Here you’re using a trick where you can iterate over the dictionary and set one of the page attributes
for each of the values in the schema. Finally, you save the page to the session and then commit the
changes to the database. You don’t need to explicitly call meta.Session.flush() because the Pylons
session is set to automatically flush changes when you call meta.Session.commit() (this was the
autoflush=True argument to sessionmaker() in the model). Once the page has been flushed and
committed, SQLAlchemy assigns it an id, so you use this to redirect the browser to the view() action
for the new page using an HTTP redirect.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 181

Issuing an HTTP redirect to the view() action is preferable to simply returning the page
because if a user clicks Refresh, it is the view() action that is called again, not the create() action.
This avoids the possibility that the user will accidentally add two identical pages by mistake by
resubmitting the form.

This can cause other problems; for example, how do you pass information obtained during the
call to create() to the view() action called next? Because the two pages are generated in two sepa-
rate HTTP requests, you need to use a session to store information that can be used across the
requests. You’ll learn about this later in the chapter.

This is a good point to test your new application. If the server isn’t already running, start it with
the paster serve --reload development.ini command. Visit http://localhost:5000/page/new, and
you should see the form. If you try to submit the form without adding any information, you will see
that the validation system repopulates the form with errors.

The errors don’t show up too well, so let’s add some styles. Create the directory public/css, and
add the following as main.css:

span.error-message, span.required {
font-weight: bold;
color: #f00;

}

You want to be able to use this style sheet in all the templates, so update the head() def of the
/templates/base/index.html base template so that it looks like this:

<%def name="head()">
${h.stylesheet_link(h.url_for('/css/main.css'))}

</%def>

Once again, you’ll need to import the stylesheet_link() helper into your lib/helpers.py file:

from webhelpers.html.tags import stylesheet_link

The helper takes any number of URLs as input and generates link tags for each. Any keyword
arguments are added as attributes to each tag. For example:

>>> print stylesheet_link('style.css', 'main.css', media="print")
<link href="/stylesheets/style.css" media="print" rel="stylesheet"

type="text/css" />
<link href="/stylesheets/main.css" media="print" rel="stylesheet"

type="text/css" />

You should find that all the error messages appear in red, which will make any mistakes much
more obvious to your users (see Figure 8-4). Why not go ahead and create a test page? If you enter
any characters such as <, >, or &, you will find they are correctly escaped by Mako because they
haven’t been created as HTML literals. This means you can be confident that users of your applica-
tion can’t embed HTML into the page that could pose a cross-site scripting (XSS) attack risk, as
explained in Chapter 4.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL182

Figure 8-4. The error message in red

If you save the page with valid data, you’ll see you are correctly redirected to the page you have
created at the URL http://localhost:5000/page/view/2.

edit() and save()
Now that you’ve implemented the code to create new pages, let’s look at the very similar code
required to edit them. Once again, you’ll have an action to display the form (in this case edit())
and an action to handle saving the code (in this case save()). The edit() action will need to load
the data for the page from the model and then populate the form with the page information. Here’s
what it looks like:

def edit(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
values = {

'title': page.title,
'heading': page.heading,
'content': page.content

}
return htmlfill.render(render('/derived/page/edit.html'), values)

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 183

Notice how this example uses FormEncode’s htmlfill module to populate the form fields with
the values obtained from the page object. The call to render('/derived/page/edit.html') generates
the HTML, and the call to htmlfill.render() populates the values.

The /derived/page/edit.html template can also use the same fields you used in the new.html
template. It looks very similar:

<%inherit file="/base/index.html" />
<%namespace file="fields.html" name="fields" import="*"/>

<%def name="heading()">
<h1 class="main">Editing ${c.title}</h1>

</%def>

<p>Editing the source code for the ${c.title} page:</p>

${h.form_start(h.url_for(controller='page', action='save',
id=request.urlvars['id']), method="post")}
${fields.body()}
${h.field(field=h.submit(value="Save Changes", name='submit'))}

${h.form_end()}

The only difference is that the form action points to save instead of new.
The save() action is also slightly different from the create() action because it has to update

attributes on an existing page object. Here’s how it looks:

@restrict('POST')
@validate(schema=NewPageForm(), form='edit')
def save(self, id=None):

page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
for k,v in self.form_result.items():

if getattr(page, k) != v:
setattr(page, k, v)

meta.Session.commit()
Issue an HTTP redirect
response.status_int = 302
response.headers['location'] = h.url_for(controller='page', action='view',

id=page.id)
return "Moved temporarily"

Notice how this time attributes of the page are set only if they have changed. Remember when
using FormEncode in this way, when the form is valid, the converted results get saved as the
self.form_result dictionary, so you should get the submitted content from there rather than from
request.params. Also, in this instance, the FormEncode schema for creating a new page is the same
as the one needed for editing a page, so you are using NewSchemaForm again in the @validate decora-
tor. Often you will need to use a second schema, though.

Why not try editing a page? For example, to edit the home page, you could visit http://
localhost:5000/page/edit/1.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL184

list()
Add the list() action:

def list(self):
c.pages = meta.Session.query(model.Page).all()
return render('/derived/page/list.html')

The list() action simply gets all the pages from the database and displays them. Notice the
way you use the template context object c to pass the page data to the template. Create a new file
named templates/derived/page/list.html to display the list of pages:

<%inherit file="/base/index.html" />

<%def name="heading()">
<h1 class="main">Page List</h1>

</%def>

<ul id="titles">
% for page in c.pages:

${page.title} [${h.link_to('visit', h.url_for(controller='page', action='view',
id=page.id))}]

% endfor

The h.link_to() helper is a tool for generating a hyperlink, of course you can also write the <a>
tag out yourself if you prefer. To use it add the following import to the end of lib/helpers.py:

from webhelpers.html.tags import link_to

If you visit http://127.0.0.1:5000/page/list, you should see the full titles list, and you should
be able to visit each page.

delete()
Users of the application might want to be able to delete a page, so let’s add a delete() action.

Add the following action to the page controller:

def delete(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
meta.Session.delete(page)
meta.Session.commit()
return render('/derived/page/deleted.html')

This page searches for the page to be deleted and aborts with a 404 Not Found HTTP status if
the page doesn’t exist. Otherwise, the page is deleted using the Session object, and the changes are
committed.

Add the templates/derived/page/deleted.html template with the following content to display
a message that the page has been deleted:

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 185

<%inherit file="/base/index.html" />

<%def name="heading()">
<h1 class="main">Page Deleted</h1>

</%def>

<p>This page has been deleted.</p>

Later in the chapter you’ll see how you can use a session and a flash message to display a sim-
ple message like this on a different page rather than needing to create a template for it.

At this point, you have a very simple (yet perfectly functional) web site for creating pages and
editing their content. There is clearly more that could be done, though, so now it’s time to turn your
attention to other aspects of the SimpleSite application you are creating.

Updating the Footer
Now that the basic structure of the controller is in place, the users of SimpleSite will need a quick
and easy way of adding, editing, and deleting the pages without having to enter the appropriate
URLs in the browser address bar.

Modify the derived/page/view.html template so that it includes some links in the page footer:

<%inherit file="/base/index.html"/>

<%def name="title()">${c.page.title}</%def>
<%def name="heading()"><h1>${c.page.heading or c.page.title}</h1></%def>

${c.page.content}

<%def name="footer()">
Then add our page links
<p>
All Pages

| New Page
| <a href="${h.url_for(controller='page', action='edit',

id=c.page.id)}">Edit Page
| <a href="${h.url_for(controller='page', action='delete',

id=c.page.id)}">Delete Page
</p>
Include the parent footer too
${parent.footer()}
</%def>

Notice that the h.url_for() call for both a new page and to list all pages has id=None specified.
You’ll learn about Routes in Chapter 9, but for now you simply need to know that by default Routes
automatically fills in values for routing variables based on the ones that were used to route the
request to the current controller and action. This is not a recommended behavior, and you’ll learn
how to change it in Chapter 9. The new() and list() actions don’t take an id, but unless you specify
id=None, Routes fills in the id of the current page.

If you view a page, you will now see the links you need are present.

Using Pagination
If you want to display large numbers of items, it isn’t always appropriate to display them all at
once. Instead, you should split the data into smaller chunks known as pages (not to be confused

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL186

with the web site pages I’ve been talking about) and show each page of data one at a time. This is
called pagination, and providing an interface for the user to page through the results is the job of
a paginator.

As an example, imagine what would happen if lots of people started adding pages to the site.
You could quickly get, say, 27 pages, which might be too many to display comfortably in a single list.
Instead, you could use a paginator to display the web site pages ten at a time in each page in the
paginator. The first page of results would show web site pages 1–10, the second would show 11–20,
and the last would display 21–27.

The user also needs some way of navigating through the different pages of results. The Pylons
WebHelpers come with a webhelpers.paginate module to make pagination easier, and it provides
two solutions to allow the user to navigate the pages of data. The first is called a pager, and it pro-
duces an interface like the one shown here. The single arrows take you backward or forward one
page of results at a time, and the double arrows take you straight to the first or last page.

<< < 11-20 of 27 > >>

The second navigation tool is called the navigator and produces an interface that looks like
this:

[1] [2] [3]

This allows you to click directly on the page of results you want to view.
Let’s update the list() action to use the paginator. First import the paginator module into the

page controller:

import webhelpers.paginate as paginate

Then update the list() action to look like this:

def list(self):
records = meta.Session.query(model.Page)
c.paginator = paginate.Page(

records,
page=int(request.params.get('page', 1)),
items_per_page = 10,

)
return render('/derived/page/list.html')

There is also a subtlety in this example which you could easily miss. The paginate.Page
class has built-in support for SQLAlchemy so in this case, rather than simply providing the pagi-
nator with a standard list of Python objects, we are passing in an SQLAlchemy query object. This
allows the paginator to only select the records it needs from the database for the page of results
it is displaying.

It is unfortunate that the records you are paginating here are pages when the word page is also
used to describe a set of records displayed by the paginator. In this case, the page variable retrieved
using request.params is referring to the paginator page, not the id of a page record.

The list.html template also needs updating to use the paginator. Here’s what it looks like:

<%inherit file="/base/index.html" />

<%def name="heading()"><h1>Page List</h1></%def>

<%def name="buildrow(page, odd=True)">
%if odd:

<tr class="odd">
%else:

<tr class="even">

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 187

% endif
<td valign="top">

${h.link_to(
page.id,
h.url_for(

controller=u'page',
action='view',
id=unicode(page.id)

)
)}

</td>
<td valign="top">

${page.title}
</td>
<td valign="top">${page.posted.strftime('%c')}</td>
</tr>

</%def>

% if len(c.paginator):
<p>${ c.paginator.pager('$link_first $link_previous $first_item to $last_item of➥
$item_count $link_next $link_last') }</p>
<table class="paginator"><tr><th>Page ID</th><th>Page Title</th><th>Posted</th></tr>
<% counter=0 %>
% for item in c.paginator:

${buildrow(item, counter%2)}
<% counter += 1 %>

% endfor
</table>
<p>${ c.paginator.pager('~2~') }</p>
% else:
<p>

No pages have yet been created.
Add one.

</p>
% endif

As you can see, the paginator is set up at the bottom of the template, but for each record the
buildrow() def is called to generate a representation of the page.

When you click any of the navigation components in the paginator, a new request is made to
the list() action with the ID of the paginator page. This is sent via the query string and passed as
the page argument to paginate.Page to generate the next set of results.

The nice thing about the Pylons paginator implementation is that it can be used to page any
type of information, whether comments in a blog, rows in a table, or entries in an address book.
This is because the rendering of each item in the page can be handled in your template so that you
have complete control over the visual appearance of your data.

To test the paginator, you might need to create a few extra pages and try setting the
items_per_page option to paginate.Page() to a low number such as 2 so that you don’t have to
create too many extra pages.

Here are the variables you can use as arguments to .pager() in the template:

$first_page: Number of first reachable page

$last_page: Number of last reachable page

$current_page: Number of currently selected page

$page_count: Number of reachable pages

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL188

$items_per_page: Maximum number of items per page

$first_item: Index of first item on the current page

$last_item: Index of last item on the current page

$item_count: Total number of items

$link_first: Link to first page (unless this is the first page)

$link_last: Link to last page (unless this is the last page)

$link_previous: Link to previous page (unless this is the first page)

$link_next: Link to next page (unless this is the last page)

Because these variables look a bit like Mako variables, you might be tempted to think you
can put other template markup in the format string to .pager(), but in fact you can use only
these variables.

Figure 8-5 shows a page generated with the paginator-enhanced code.

Figure 8-5. The paginator in action

Formatting Dates and Times
To get the date to display in the way it does in the paginator column, you made use of the fact that
Python datetime.datetime objects have a strftime() method that turns a date to a string based on
the arguments specified. You used %c, which tells the strftime() method to use the locale’s appro-
priate date and time representation. The display format is highly customizable, though, and takes
the options documented in Table 8-1.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 189

Table 8-1. Python Date and Time Formatting Directives

Directive Meaning Notes

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either a.m. or p.m.

%S Second as a decimal number [00,61]. The range really is 0 to 61; this
accounts for leap seconds
and the (very rare) double
leap seconds.

%U Week number of the year (with Sunday as the first
day of the week) as a decimal number [00,53]. All
days in a new year preceding the first Sunday are
considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (with Monday as the first
day of the week) as a decimal number [00,53]. All
days in a new year preceding the first Monday are
considered to be in week 0.

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (no characters if no time zone exists).

%% A literal % character.

Using Sessions and a Flash Message
One of the problems with the setup you have so far is that no notification is displayed to confirm
that changes have been successfully saved after you’ve edited a page. As was hinted at earlier in the
chapter, you can solve this problem by using Pylons’ session-handling facilities to display a flash
message.

Session handling is actually provided in Pylons by the Beaker package set up as middleware,
and it can be configured in your development.ini file. By default, session information is stored in a
sessions directory within the directory specified by the cache_dir option. This means that by
default sessions are stored in your project’s data/sessions directory.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL190

Start by importing the session object into the page controller:

from pylons import session

The session object exposes a dictionary-like interface that allows you to attach any Python
object that can be pickled (see http://docs.python.org/lib/module-pickle.html) as a value against
a named key. After a call to session.save(), the session information is saved, and a cookie is auto-
matically set. On subsequent requests, the Beaker middleware can read the session cookie, and you
can then access the value against the named key.

In the save() action, you simply need to add the following lines before the redirect at the end
of the action:

session['flash'] = 'Page successfully updated.'
session.save()

Now the message will be saved to the flash key. Then in the base template, you’ll need some
code to look up the flash key and display the message if one exists. Add the following to the end of
templates/base/index.html:

<%def name="flash()">
% if session.has_key('flash'):
<div id="flash"><p>${session.get('flash')}</p></div>
<%

del session['flash']
session.save()

%>
% endif

</%def>

Now add this in the same template before the call to ${next.body()}:

${self.flash()}

Let’s also add some style so the message is properly highlighted. Add this to the
public/css/main.css file:

#flash {
background: #ffc;
padding: 5px;
border: 1px dotted #000;
margin-bottom: 20px;

}
#flash p { margin: 0px; padding: 0px; }

Now when the save() action is called, the message is saved in the session so that when the
browser is redirected to the view() page, the message can be read back and displayed on the screen.

Give it a go by editing and saving a page (see Figure 8-6).

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL 191

Figure 8-6. The flash message in action

You can find more information about Pylons sessions at http://docs.pylonshq.com/
sessions.html.

Summary
That’s it! You have created a very simple working web page editor. Now, although the site so far does
everything you set out for it to do and forms a very good basis for any application you might create
yourself, you’ll probably agree it isn’t overly exciting. In the rest of the book, you’ll change that by
adding a comment system, a tagging facility, a navigation hierarchy, a hint of Ajax, and a set of navi-
gation widgets. By the end of the book, you’ll have a template project that will serve very well as a
basis for many of your own projects, and you will understand many of the key principles you will
need to write your own Pylons applications.

CHAPTER 8 ■ STARTING THE SIMPLESITE TUTORIAL192

Advanced Pylons

P A R T 2

195

C H A P T E R 9

URLs, Routing, and Dispatch

All web applications and frameworks need some mechanism for mapping the URL that a user
enters in the browser to the code that should be executed when the server receives the request.
Different languages and frameworks take different approaches to this. In PHP- or CGI-based sys-
tems, the URL represents a path on the hard disk to the file that should be executed. In Zope, URLs
are treated as paths in an object hierarchy, and in Django, URLs are matched to code based on regu-
lar expressions.

Pylons doesn’t use any of these approaches. Instead, it uses a very powerful and flexible system
called Routes, which is an improved version of the Ruby on Rails routing system. Routes allows you
to quickly and easily specify how groups of similar URLs map to your controllers; in turn, this allows
you to create whatever URL structure you prefer for your application. Unlike other lookup systems,
the URL is completely decoupled from the code that handles it. This also makes it easier to change
your URL structure if you need to do so.

You’ve already seen Routes in action in previous chapters. For example, in Chapter 3 you saw
a route that looked like this:

map.connect('/{controller}/{action}/{id}')

Each of the labels between curly brackets represents dynamic parts of a route. When a route is
matched, the corresponding URL parts are matched, and their values are assigned to routing vari-
ables corresponding to the labels of the dynamic parts within the curly brackets. In this way, the one
route can be used to match a large range of URLs.

You can also use Routes to generate URLs with h.url_for(). To do this, you need to import the
Routes url_for() function into your project’s lib/helpers.py file:

from routes import url_for

Here’s an example of how to use h.url_for(), which results in the URL /page/view/1 being
generated:

h.url_for(controller='page', action='view', id=1)

As you can see, the arguments to h.url_for() correspond to the routing variable names used
when defining the route.

When a user visits this URL, the same route used for generating the URL will also be used for
matching it. In this case, the URL generated by the earlier call to h.url_for() will also generate the
routing variables controller='page', action='view', and id=1 when the URL is visited, and this
results in the page controller’s view() action being called with the ID 1.

You can also give individual routes a name by specifying a string as the first argument to
map.connect(). This reduces the amount of typing you have to do when generating URLs. For exam-
ple, you might define this route:

map.connect('blog_entry', '/blog/view/{id}')

You could then generate a URL to the entry with ID 1 like this:

h.url_for('blog_entry', id=1)

Now that you have a rough feel for how Routes works, let’s dive in straightaway and look at how
Routes is set up and used in Pylons and how Pylons uses information from Routes to dispatch
requests.

■Caution One problem with Routes is that because it was originally ported from the Ruby on Rails implemen-
tation, it still contains a number of features that you might have used when developing a Pylons 0.9.6 project that
are no longer considered good practice. In the section “Unnecessary Routes Features” later in this chapter, I’ll
explain why these features are no longer recommended. It is likely they will be removed in a future version of
Routes, so it is important you avoid using them.

Pylons Routing in Detail
At its heart Routes is all about two things: analyzing a URL to produce a list of variables and being
able to re-generate that URL from the same variables. These variables are known as routing vari-
ables, and they are used by Pylons to determine which controller action should be called and the
arguments it should be called with. The URL matching is done by comparing the URL to a series of
strings known as route paths, which, together with a set of options, define how a particular set of
URLs can be turned into routing variables and back to URLs again. The route paths and options
together are known as a route, and a set of routes is known as a route map.

Let’s see how these concepts are applied in a Pylons application. You can find your project’s
route map in its config/routing.py file. Let’s use the SimpleSite route map as an example. It looks
like this:

def make_map():
"""Create, configure and return the routes Mapper"""
map = Mapper(directory=config['pylons.paths']['controllers'],

always_scan=config['debug'])
map.minimization = False

The ErrorController route (handles 404/500 error pages); it should
likely stay at the top, ensuring it can always be resolved
map.connect('/error/{action}', controller='error')
map.connect('/error/{action}/{id}', controller='error')

CUSTOM ROUTES HERE

map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')

return map

Here you can see that the make_map() function is responsible for creating a route map object
called map and returning it. The routes are added to the map via the map.connect() function, which
takes a route path such as '/{controller}/{action}/{id}' and some optional arguments called the
route options. Each of the labels for the dynamic parts between the { and } characters specify the
positions of routing variables that are matched against any value in the corresponding position

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH196

within a URL. When a URL is entered, Pylons tries to match it by calling map.match(url). Routes
then searches each of the routes in the route map from top to bottom until it finds a route that
matches the URL. Because matching is done from top to bottom, you are always advised to put your
custom routes below the ones that Pylons provides to ensure you don’t accidentally interfere with
the default behavior of Pylons. More generally speaking, you should always put your most general
routes at the bottom of the route map so that they don’t accidentally get matched before a more
specific route lower down in the route map.

To demonstrate the behavior of the route map as it stands, let’s consider some example URLs
and the routing variables that are produced when the URL is matched. Let’s start with the site root
URL, which is /:

URL: /
Result: None

As you can see, there are no routes with just one / character in them, so the URL / is not cur-
rently matched. If you visited this URL, you would see the index.html file served from your project’s
public directory or a 404 Not Found error page. You’ll add a route to handle the root URL in the sec-
ond part of the SimpleSite tutorial in Chapter 14.

URL: /page/view/1
Result: {'action': 'view', 'controller': 'page', 'id': '1'}

As you already know from having tested the SimpleSite application in Chapter 8, this URL is
matched by the last route in the route map and results in a page being displayed. The URL fragment
page is matched to {controller}, view is matched to {action}, and 1 is matched to {id}.

Now consider the URL /error/img:

URL: /error/img/logo.png
Result: {'action': 'img', 'controller': 'error', 'id': 'logo.png'}

This is matched by the second route, map.connect('/error/{action}', controller='error'),
because the first part of the URL begins with /error/. The img part is matched to {action}, and
logo.png is matched to {id}. Notice that the route path doesn’t contain a {controller} part, though,
so you might wonder how the controller routing variable gets assigned a value. You’ll see in the
route map that the error route definition also takes a default argument of controller='error'. This
means that if the route is matched, the controller routing variable will be automatically added to
the results with a value of 'error'. You’ll learn about how Pylons uses this route in its internal han-
dling of error documents in Chapter 19.

So far, this should all seem fairly intuitive; URLs are matched against static text or dynamic
parts representing routing variables in the route path, and default values can be added when
needed. Let’s try another example:

URL: /section/view/1
Result: None

This time the URL isn’t matched even though at first glance it looks like it should be. To under-
stand why, you need to know a little bit more about how Routes works.

The Mapper object takes a number of arguments, including the following:

controller_scan: This takes a function that will be used to return a list of valid controllers dur-
ing URL matching. If the directory argument is also specified, it will be passed into the
function when it is called.

directory: This is passed into controller_scan for the directory to scan. It should be an
absolute path if using the default controller_scan function.

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 197

always_scan: This specifies whether the controller_scan function should be run during every
URL match. This is typically a good idea during development so the server won’t need to be
restarted when a controller is added, but you might want to disable it on production systems
to avoid the small overhead of the check. After all, you are unlikely to have specified routes to
controllers that don’t exist in production code.

explicit: This has a default value of False, but when it is set to True, some of the features of
Routes such as route memory and implicit defaults are disabled. You’ll learn about these fea-
tures and why you should usually set this option to True in the “Unnecessary Routes Features”
section.

Pylons uses the Routes default controller_scan() function, which will scan the directory spec-
ified by the directory argument to check for controllers. If a particular route matches a URL but the
controller resulting from the match doesn’t exist, the route will be ignored, and the next route will
be tried. In this case, the directory argument is set to config['pylons.paths']['controllers'],
which contains the path to your project’s controllers directory. Since no section controller exists
yet, the route in the previous example didn’t match. For production use, you don’t need to have
Routes scan the controller directory on each match because the controllers aren’t likely to change,
so the always_scan variable is automatically set to the same value as the value of the debug option in
the config file, enabling the scan in development mode and disabling it in production mode.

■Note You are very unlikely to want to customize the controller_scan() function in your own application,
but I’ve mentioned it here so that you are aware of its behavior when you see it crop up in some of the examples
in this chapter.

By carefully defining routes and specifying their order in the route map, it is possible to quickly
and easily map quite complex URL structures into simple sets of routing variables that can be used
in your application. Before you go on to look at the details of how to write your own routes, let’s take
a brief look at how Pylons uses the routing variables to call a particular controller action.

Pylons Dispatch
Once a URL has been matched against a route and the controller has been verified to exist, Pylons
checks to see whether it can find the action.

Pylons is set up so that any controller methods that start with an _ character are not considered
actions at all and cannot be called as a result of a URL dispatch. If the action specified in the routing
variables doesn’t exist or it starts with an _ character, then the check fails. In debug mode for devel-
opment, this raises an exception to explain the mistake; in production mode, it simply results in a
404 Not Found error page being displayed.

If the controller and action both exist, then Pylons looks for a __before__() method attached to
the controller class. If the method exists, it is executed. The __before__() method can therefore be
used to set up per-request objects or perform other processing to be carried out before each action
in the controller is called.

Next, Pylons inspects the action to see what arguments it takes and calls it in such a way that
any arguments that have the same names as the routing variables are called with the value of the
routing variable as the argument. Here are some examples:

No routing variables used in the action
def no_routing_variables(self):

return 'No routing variables used'

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH198

Populate the ``id`` with the value of the ``id`` routing variable
def id_present(self, id):

return 'The id is %s' % id

■Tip You’ve already seen routing variables being used in this way in the page controller from the SimpleSite
tutorial in Chapter 8, and you’ll recall from Chapter 3 that you can also retrieve the controller name and action
in the same way. All the routing variables that are passed to the action are also automatically added as attributes
to the template context global c.

In addition to routing variables, you can also specify both environ and start_response as
arguments in your actions. The environ argument will get populated with the same WSGI environ-
ment dictionary you can access via the Pylons request global as request.environ, and the start_
response() callable is a WSGI callable you’ll learn about in Chapter 16. Both environ and
start_response get added as attributes to the template context global c in the same way as the
routing variables do if you use them in an action. To see all these features in action, consider the
following example. When the test() action is called, the browser will display True, True, True,
True:

def __before__(self, id):
c.id_set_in_before = id

def test(self, environ, start_response, controller, id):
w = c.id_set_in_before == id
x = c.environ == environ == request.environ
y = c.start_response == start_response
z = c.controller == controller
request.content_type = 'text/plain'
return "%s %s, %s, %s"%(w, x, y, z)

After an action is called, Pylons looks for an __after__() method attached to the controller,
and if it exists, it is called too. You can use __after__() for performing any cleanup of objects you
created in the __before__() method.

Both the __before__() and __after__() methods can also accept any of the routing variable
names as arguments in exactly the same way as the controller action can.

Of course, there are occasions where it is useful to be able to access the routing variables out-
side your controller code. All the routing variables are available in the request.urlvars dictionary
and are also available in request.environ["wsgiorg.routing_args"].

Routes in Detail
Now that you have seen some examples of routes being matched against URLs and understand how
Pylons uses the routing variables to dispatch to your controller actions, it is time to learn the details
of how you can construct individual routes.

Route Parts
As you’ve already seen, a route is specified by arguments to map.connect() that include a route path
and a number of options. The route path itself can consist of a number of different types of parts
between / characters:

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 199

Static parts: These are plain-text parts of the URL that don’t result in any route variables being
defined. In the default Pylons setup, the string error in the route path /error/{action} is a
static part.

Dynamic parts: The text in the URL matching the dynamic part is assigned to a routing variable
of that name. Dynamic parts are marked in the route path as the routing variable name within
curly brackets. In the default Pylons setup, the string {action} in the route path
/error/{action} is a dynamic part. Dynamic parts can also be specified by the routing variable
name preceded by a colon, which is the style used in earlier versions of Routes. For example,
you could change the first error route path from /error/{action} to /error/:action, and it
would still work.

Wildcard parts: A wildcard part will match everything (including / characters) except the other
parts around it. Wildcard parts are marked in the route path by preceding them with the * char-
acter. The default Pylons setup doesn’t include any routes that use wildcard parts, but you can
use them in your own routes if you need to do so.

To demonstrate the different types of route parts, consider the following URL:

/wiki/page/view/some/variable/depth/file.html

and a route path to match it, which includes a wildcard part:

/wiki/{controller}/{action}/*url

In this case, wiki is treated as a static part, and page is a dynamic part that is assigned to the
controller route variable. In Routes, / characters separating dynamic or wildcard parts are not
treated as static parts, so the next / is ignored. view is a dynamic part assigned to the action route
variable. The following / is also ignored, and the whole of the rest of the URL is considered a wild-
card part and assigned to the url route variable.

Any URL starting with /wiki/ followed by two sets of characters, each followed by a / character,
will be matched by this route path as long as the controller exists.

Let’s test this with a simple example. Rather than modifying the SimpleSite project, you can set
up your own route map directly. You just have to specify a dummy controller_scan function to
return a list of valid controllers. In the example, map.minimization is set to False so that the route
map is set up in the same way it would be in a Pylons application. The controller_scan() function
will just return ['error', 'page'] to simulate that only the page and error controllers exist. Here’s
what the route map looks like:

>>> def controller_scan(directory=None):
>>> return ['error', 'page']
...
>>> from routes import Mapper
>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/wiki/{controller}/{action}/*url')
>>> print map.match('/wiki/page/view/some/variable/depth/file.html')
{'action': u'view', 'url': u'some/variable/depth/file.html', 'controller': u'page'}

The URL is matched as expected. Let’s try to match some different URLs:

>>> print map.match('/some/other/url')
None
>>> print map.match('/wiki/folder/view/some/variable/depth/file.html')
None

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH200

Notice that if the URL doesn’t match or if the matched controller doesn’t exist, the route is not
matched, and the map.match() function returns None.

The Pylons implementation of Routes doesn’t require the dynamic and wildcard portions of
the route path to be separated by a / character. Here you’re using a . character as a separator. Note
that you need to create a new Mapper to set this new route because you have already called map.
connect() on the previous one. Once again, you use the dummy controller_scan() function and
set map.minimization = False to turn off minimization in the same way as the Pylons setup:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/blog/{controller}.{action}.*url')
>>> print map.match('/blog/page.view.some/variable/depth/file.html')
{'action': u'view', 'url': u'some/variable/depth/file.html', 'controller': u'page'}

As these examples have demonstrated, you can think of wildcard parts as being very much like
dynamic parts but also matching / characters.

Although wildcard parts are a powerful tool, they generally aren’t used very often and can be
a sign that you haven’t designed your routes very well. The risk is that because they match any
character including /, they will match very many URLs. If you were to have a wildcard route near
the top of your route map, it could easily match URLs for which there was a more specific route
later in the route map. The vast majority of the time you will just use static and dynamic parts in
your route paths, but if you do use wildcard routes, they should always be placed near the bottom
of the route map to avoid them accidentally matching URLs when there is a more specific route
later in the map.

These are three cases when you might choose to use wildcard routes:

• When an entire portion of the URL is going to be passed to another application (for example,
Paste’s static file server)

• When you are trying to match a string ID that might include / characters

• When you want to pass the entire request URL to a particular action to handle an error
condition, rather than allowing a 404 Not Found error page to be returned

Default Variables
With the knowledge you’ve already gained, you will be able to create most of the routes you are
likely to need, but there is one problem. Every route matched must result in at least the routing vari-
ables controller and action being assigned a value, but URLs such as / don’t contain enough
characters to be able to deduce the controller and action names from them.

To solve this problem, Routes allows you to specify default values for any routing variables as
part of the routing map’s connect() function. You’ve already seen default variables in action during
the discussion of Pylons’ error route, but let’s look at another example:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/archives/by_eon/{century}', controller='page', action='list')

In this example, the controller and action both have default values, so they are called default
variables. You’ll notice that you can’t create a URL that will affect the value of the controller and
action variables since they aren’t present in the route path, so their default values of ‘archives' and
'list' will always be used. Such variables are known as hard-coded variables.

The value assigned to the century routing variable will depend on the URL with which it is
matched:

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 201

>>> print map.match('/archives/by_eon/')
None
>>> print map.match('/archives/by_eon')
None
>>> print map.match('/archives/by_eon/1800')
{'action': u'aggregate', 'controller': u'page', 'century': u'1800'}

■Caution One thing you have to be aware of when choosing names for routing arguments is that the
map.connect() method also accepts certain keyword arguments including requirement, _explicit,
_encoding, and _filter. If you choose a routing variable with the same name as one of these arguments, then
you will not be able to specify a default value because Routes will not interpret the argument as a default value. To
prevent this potential problem, future versions of Routes will not allow any routing variable names starting with an
_ character, so you would be wise to avoid starting your routing variables with an _.

You should avoid using two other names as routing variables; these are the WSGI objects environ and
start_response. Both can be passed automatically to controller actions when they are called. If you choose rout-
ing variables with the same names as these, you won’t be able to access the routing variables as arguments to the
controller actions because the Pylons dispatch mechanism will assume you want the WSGI objects themselves
rather than the routing variables of the same name.

It is possible to take the use of default variables to an extreme. A route where the controller and
action are hard-coded is known as an explicit route. Here’s an example:

map.connect('/blog/view/1', controller='blog', action='view', id=1)

Here the whole route path is made only from static parts, and all the routing variables are hard-
coded as default variables. The benefit of this approach is that only one URL will ever match this
route, but the drawback is that defining all your URLs this way requires adding an awful lot of
routes to your application.

Generating URLs
Now that you have seen how Pylons uses Routes and you understand the details of how URLs are
matched, you can turn your attention once again to how to generate URLs.

Routes includes two functions for use in your web application that you will find yourself using
frequently:

• h.url_for()

• redirect_to()

You’ve already seen the h.url_for() function a few times, and you’ll recall that to make it avail-
able in your controllers and templates, you need to import it into your project’s lib/helpers.py file
from the routes module.

The redirect_to() function is automatically imported into your controllers from the
pylons.controllers.util module. It is used to redirect a controller to a different URL within your
application. If you look at the page controller in the SimpleSite project you’ve been developing,
you’ll see that up to now redirects have been coded manually by specifying the correct HTTP status
code for a redirect and setting a Location HTTP header using the response global. Here’s the save()
action as an example:

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH202

@restrict('POST')
@validate(schema=NewPageForm(), form='edit')
def save(self, id=None):

page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
for k,v in self.form_result.items():

if getattr(page, k) != v:
setattr(page, k, v)

meta.Session.commit()
session['flash'] = 'Page successfully updated.'
session.save()
Issue an HTTP redirect
response.status_int = 302
response.headers['location'] = h.url_for(controller='page', action='view', I

id=page.id)
return "Moved temporarily"

You could instead replace the last five lines to use redirect_to() like this:

Issue an HTTP redirect
return redirect_to(controller='page', action='view', id=page.id)

As you can see, this is much neater, so it is a good idea to use redirect_to() in your con-
trollers rather than writing out the long version of the code. redirect_to() is commonly used
after a form submission to redirect to another URL so that if the user clicks Refresh, the form
data isn’t sent again.

One of the major benefits of using h.url_for() and redirect_to() rather than generating your
own URLs manually is that Pylons can automatically take account of the URL at which your appli-
cation is deployed and adjust the URLs automatically.

As an example, imagine you have created a new Pylons project to manage application forms.
You might choose to deploy the Pylons application at a URL such as /forms so that it appears to be
part of an existing site. This means that when a user visits /forms, the Pylons application needs to
know that they are really requesting a URL, which would be / if the Pylons application was running
on a stand-alone server. This also means that any time the application creates a URL, it has to start
/forms; otherwise, the links wouldn’t point to the Pylons application. In this setup, the SCRIPT_NAME
environment variable would be set to /forms so Pylons can work out that the URLs needed to be
adjusted. Any time you call any of the Pylons URL generation functions, the URL generated is modi-
fied to take account of the SCRIPT_NAME environment variable, so all the URLs get generated
correctly without needing any manual modification.

Named Routes
If you are regularly using the same route in your application, it can quickly become tedious to type
all the routing variables every time you want to use h.url_for(). This is where named routes come
in. A named route is like an ordinary route, but you access it directly via a name.

Here’s an example:

map.connect('category_home', 'category/{section}', controller='blog', action='view',
section='home')

Then in your Pylons application you might use this:

h.url_for('category_home')

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 203

This is equivalent to generating the URL using the routing variables in full, both generate the
URL /category/home:

h.url_for(controller='blog', action='view', section='home')

As you can see, this saves a bit of typing. You can also specify keyword arguments, and it will
override defaults associated with the route name. The following:

h.url_for('category_home', section='admin')

generates the URL /category/admin and is equivalent to this:

h.url_for(controller='blog', action='view', section='admin')

Static Named Routes
Routes also supports a feature called static named routes. These are routes that do not involve
actual URL generation but instead allow you to quickly alias common URLs that are external to your
site. To make a route static, you add _static=True as an argument. For example, if your route map
contained this:

map.connect('google_search', 'http://www.google.com/search', _static=True)

you could now reference http://www.google.com/search by typing this in your application:

h.url_for('google_search')

This is especially useful if you are accessing resources throughout your application that you
think might change because it means you have to change the URL in only one place. Static named
routes are ignored entirely when matching a URL.

Internal Static Routes
You can also use h.url_for() to reference static resources in your project’s public directory. Routes
will automatically prepend the URL you give it with the proper SCRIPT_NAME so that even if you are
running your Pylons application under a different URL, the correct URL will be generated. For
example, if your Pylons application was mounted at /forms and you used this in your application,
the URL /forms/css/source.css would be correctly generated with this code:

h.url_for('/css/source.css')

For portable web applications, it’s highly encouraged that you use h.url_for() for all your
URLs, even those that are static resources and images. This will ensure that the URLs are properly
handled in any of the possible deployment setups you could use for your application.

Choosing Good URLs
Now that you’ve seen some of the ways you can use Routes to match and generate URLs, let’s take a
look at what actually makes a good URL structure.

First here’s a definition of the parts of a URL:

http://jimmyg.org:80/some/url#fragment?foo=bar
|--| |---------|--|--------|--------|------|
| | | | | |
protocol | port | fragment |

domain name path info query string

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH204

Now here are some tips:

Describe the content: An obvious URL is a great URL. If a user can glance at a link in an email
and know what it contains, you have done your job. This means choosing URL parts that accu-
rately describe what is contained at that level of the URL structure. It’s usually better to use a
descriptive word rather than an ID in the URL wherever possible. For example, if you were
designing a blog, you should try to use apr instead of 04 to represent April, and you should use
the name of a category rather than its ID if that is appropriate. Choosing URLs that describe
their content makes your application intuitive to your users and gives search engines a better
chance of accurately ranking the page.

■Tip Edward Cutrell and Zhiwei Guan from Microsoft Research conducted an eye-tracking study of search
engine use that found people spend 24 percent of their “gaze time” looking at the URLs in the search results. If
your URLs accurately describe their content, users can make a better guess about whether your content is rele-
vant to them.

Keep it short: Try to keep your URLs as short as possible without breaking any of the other tips
here. Short URLs are easier to type or to copy and paste into documents and emails. If possible,
keeping URLs to less than 80 characters is ideal so that users can paste URLs into email with-
out having to use URL-shortening tools such as tinyurl.com.

Hyphens separate best: It is best to use single words in each part of a URL, but if you have to use
multiple words, such as for the title of a blog post, then hyphens are the best characters to use
to separate the words, as in /2008/nov/my-blog-post-title/. The - character cannot be used in
Python keywords, so if you intend to use the URL fragments as Python controller names or
actions, you might want to convert them to _ characters first. Incidentally, using hyphens to
separate words is also the most readable way of separating terms in CSS styles.

Static-looking URLs are best: Regardless of how your content is actually generated, it is worth
structuring URLs so that they don’t contain lots of &, =, and ? characters that most visitors won’t
properly understand. If you can write a URL like ?type=food&category=apple as /food/apple,
then users can see much more quickly what it is about. Routes makes this sort of transforma-
tion easy, so there is no need to make extensive use of variables in query strings when they
could form part of the URL.

Keeping URLs lowercase makes your life easier: The protocol and domain name parts of a
URL can technically be entered in any case, but the optional fragment part after the # char-
acter is case sensitive. How a particular server treats anything between the two depends on
the server, operating system, and what the URL resolves to. Since Pylons applications can
be deployed on many different servers, you have to be aware of the potential problems.
Unix filesystems are usually case sensitive, while Windows ones aren’t. Mac OS X systems
can be case sensitive or case insensitive depending on the filesystem. This means that if the
URL resolves to a file, Windows servers will generally allow any case, while Unix ones won’t.
Query string parameters are also case sensitive. You can generally save yourself a headache
by keeping everything lowercase and issuing a 404 for anything that isn’t. Of course, if you
are writing a wiki application where the page names depend on the capitalization, then
you’ll need to make the URLs case sensitive.

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 205

Keep the underlying technology out of the URL: Your users aren’t likely to care which specific
technology you are using to generate your pages or whether they are generated as HTML or
XHTML, so the basic rule is don’t use a file extension for dynamically generated pages unless
you are doing something clever in your application internally like determining the format to
represent the content based on the extension. It is generally best to choose names that repre-
sent what the URL is rather than its technology.

Never change a URL: Otherwise, your users won’t be able to find the page they bookmarked,
and any page rank you built up in social bookmarking sites or search engines will be lost. If
you absolutely have to change a URL, ensure you set up a permanent 301 redirect to the new
one so that your users don’t get 404 errors. The W3C put it best: “Cool URLs don’t change.”

Only use disambiguated URLs: Any piece of content should have one and only one definitive
URL, with any alternatives acting as a permanent redirect. In the past, features such as
Apache’s DirectoryIndex have meant that if you entered a URL that resolved to a folder, the
default document for that folder would be served. This means that two URLs would exist for
one resource. To make matters worse, servers are often configured so that http://www.
example.com/someresource and http://example.com/someresource both point to the same
resource. This means there can easily be four URLs for the same resource.

There are three good reasons why this is bad:

• Search engines and social bookmarking sites give pages with the most links the highest
rank. If you have four different URLs for the same page, different people are likely to
link to different versions, so you are effectively dividing your rank by 4.

• Browser or server caches will have to cache four versions of the page. Put another way,
this means they can’t improve performance if a user visits a different version of the
same URL the second time.

• All versions of the page will be treated by web browsers as different resources, so the
user’s browsing history won’t be accurate.

The only time you might want to have more than one URL for the same resource is if all but
one of the URLs redirects to the other one so that users of your site who have already book-
marked links can still find them.

Treat the URL as part of the UI: Navigation links, sidebars, and tabs are all well and good, but if
you have a good URL structure, your users should be able to navigate your site by changing
parts of the URL. There are a few rules about how best to do this:

• Ensure that for every part of the path info part of a URL that a user might remove,
a useful page is returned. For example, if the URL /2007/nov/entry gives a blog entry,
2007/nov might list all the November entries, and /2007 might list all entries from 2007.

• Never have a URL on your domain that gives a 500 error. It doesn’t take a genius to real-
ize that you don’t want any URL in your web site to crash and cause a server error, but
developers don’t always think about what will happen if a user starts hacking the URL
to contain different values. For example, if you have a URL /food/apple and a user
changes it to /food/pizza when the application is set up only to deal with fruit, it should
give a 404 Page Not Found error, not a 500 Internal Server error. Users are much more
likely to stop trying to guess URLs if they get a 500 page because they’ll be worried
either that they might be breaking something or that the site is of low quality. The
moment they stop hacking the URL, it has lost its usefulness as a UI component.

The most important tip is that you should use common sense when designing a URL structure.
Don’t apply any of the tips too rigidly; after all, you know your application and your users’ require-
ments, so you can use your judgment about what will work best for you.

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH206

Unnecessary Routes Features
Because Routes was originally ported from the Ruby on Rails version, a few “features” have been
added that in hindsight aren’t necessary and are best to disable. In the following sections, you’ll look
at these features, what they do, and how to disable them.

■Note It is highly likely that all these features will be completely removed in a future release of Routes.

Route Minimization
Previous versions of Pylons had a feature called route minimization enabled by default. Route mini-
mization allowed you to specify optional default variables for a particular route. To demonstrate
route minimization, let’s look at the previous example again but this time with minimization
enabled and with an optional default variable, century:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = True
>>> map.connect('/archives/by_eon/{century}', controller='page',
... action='aggregate', century=1800)
>>> print map.match('/archives/by_eon/')
{'action': u'aggregate', 'controller': u'page', 'century': u'1800'}
>>> print map.match('/archives/by_eon')
{'action': u'aggregate', 'controller': u'page', 'century': u'1800'}
>>> print map.match('/archives/by_eon/1800')
{'action': u'aggregate', 'controller': u'page', 'century': u'1800'}

Notice this time that all three URLs result in a match, even though two of them don’t have a
part of the URL that could correspond to the century dynamic part. This is because with minimi-
zation enabled, Routes assumes you want to use the optional default variables automatically if they
aren’t specified in the URL.

Here are some of the reasons why route minimization is a bad idea:

• It means multiple URLs serve the same page, which as explained earlier is bad for caches
and search engine rankings.

• It makes it difficult to choose which URL should be generated for a particular action when
using h.url_for(), so Routes always generates the shortest URL with minimization enabled.

• Complex routes and many defaults can make it hard to predict which route will be matched.

It is recommended that you leave route minimization disabled by keeping map.minimization
set to False at the top of your route map.

Route Memory
One feature of Routes that was designed to make your life as a developer easier was called route
memory. When your controller and action are matched from the URL, the routing variables that are
set get remembered for the rest of that request. This means that when you are using h.url_for(),
you actually only need to specify routing variables, which are different from the ones matched in
the current request.

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 207

Consider this route:

map.connect('/archives/{year}/{month}/{day}', controller='page', action='view')

If the URL /archives/2008/10/4 was entered, this route would match the following variables:

{'controller': 'page', 'action': 'view', 'year': '2008', 'month': '10', 'day': '4'}

With these routing variables matched, h.url_for() would generate the following results:

h.url_for(day=6) # => /page/2008/10/6
h.url_for(month=4) # => /page/2008/4/4
h.url_for(year=2009) # => /page/2009/10/4

The majority of times you use h.url_for() will be in view templates. Since the same template
is often called from multiple different controllers and actions, you can’t always rely on h.url_for()
generating the same URL in the same template, and this can introduce unexpected bugs, so it is
usually much better to specify all your routing arguments explicitly.

There is another problem with route memory. Consider a route map set up with the following
routes:

map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')

With route memory enabled, let’s imagine someone visited the URL /page/view/1. Here are the
routing variables that would be matched:

{'controller': 'page', 'action': 'view', 'id': '1'}

Now try to work out which URL would be generated with this code:

h.url_for(controller='page', action='new')

The result is /page/new/1 even though the new() action might not take an id argument. This
means that in order to have this matched by the first route to generate the URL /page/new, you
would have to explicitly specify id=None like this:

h.url_for(controller='page', action='new', id=None)

You may not have noticed, but this is exactly what you did in the footer for the SimpleSite
view.html template in Chapter 8. If route memory was disabled globally, you would not have had to
specify id=None for the new(), list(), or delete() action routes.

As well as explicitly setting a routing variable to None, you can also disable route memory on a
per-call basis by specifying the controller starting with a / character. For example:

h.url_for(controller='/page', action='new')

This is not ideal either, though. To avoid this complication, it is highly recommended that
you disable route memory completely and always specify all arguments to h.url_for() explicitly.
You can do this by passing explicit=True to the Mapper() constructor in your project’s
config/routing.py. This will ensure route memory isn’t used, and you will have to explicitly
specify each routing variable in every call to h.url_for():

map = Mapper(directory=config['pylons.paths']['controllers'],
always_scan=config['debug'], explicit=True)

If you should choose not to disable the route memory feature, you should be aware that it
works only with h.url_for() and not with its counterpart redirect_to().

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH208

Implicit Defaults
Routes has a surprising legacy feature that means that if you don’t specify a controller and an action
for a particular route, the implicit defaults of controller='content' and action='index' will be
used for you. This can be demonstrated very simply:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/archives/')
>>> print map.match('/archives/')
{'action': u'index', 'controller': u'content'}

It is highly unlikely you want Routes to make up action and controller variables for you, so it’s
strongly recommended that you disable this feature. You can do this by passing _explicit=True as
an argument to the individual routes you want implicit defaults to be disabled for:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/archives/', _explicit=True)
>>> print map.match('/archives/')
None

In reality, it is likely you will want these implicit defaults disabled for all your routes. Luckily,
the explicit=True option you passed to the Mapper() object to disable route memory also disables
implicit defaults, which is another reason to use it.

Best Practice
With route minimization, route memory, and implicit defaults disabled, the way you use Routes
in your application might be quite different from the way you used it in previous versions of
Pylons. To demonstrate this, let’s look at an old routing structure that you might have used
in Pylons 0.9.6:

>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimize = True
>>> map.connect(':controller/:action/:id', controller='blog', action='view', id=1)

Here minimization is enabled as well as implicit routes and route memory. Look how many dif-
ferent URLs match the same controller, action, and ID. This clearly breaks the URL disambiguation
rule listed earlier in the “Choosing Good URLs” section:

>>> print map.match('/blog/view/4/')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/blog/view/4')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/blog/view/')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/blog/view')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/blog/')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/blog')
{'action': u'view', 'controller': u'blog', 'id': u'1'}
>>> print map.match('/')
{'action': u'view', 'controller': u'blog', 'id': u'1'}

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 209

With route minimization, route memory, and implicit defaults disabled, you would have to add
the following routes to achieve the same effect:

>>> map = Mapper(controller_scan=controller_scan, explicit=True)
>>> map.minimize = False
>>> map.connect('/', controller='blog', action='view', id=1)
>>> map.connect('/{controller}', action='view', id=1)
>>> map.connect('/{controller}/', action='view', id=1)
>>> map.connect('/{controller}/{action}', id=1)
>>> map.connect('/{controller}/{action}/', id=1)
>>> map.connect('/{controller}/{action}/{id}')
>>> map.connect('/{controller}/{action}/{id}/')

Of course, as has been mentioned, it is generally a bad idea to have more than one URL map to
the same resource, so you are unlikely to want to do this in most applications. Even if you did want
to do this, the explicit approach requires a lot more typing, but it is also much clearer what is hap-
pening. Although using explicit routes can sometimes mean more typing, being explicit about what
you expect to happen makes life much easier when you have more complicated route setups.

Disabling route memory, implicit defaults, and route minimization also requires you to do
more work when generating URLs, but once again, this will prevent you from finding obscure URL
generation problems later in a project. To generate the URL to view the blog post with ID 1 and with
the explicit argument set to True, you would always have to type the following, no matter which
routing variables were generated for the request that calls the code:

h.url_for(controller='blog', action='view', id=1)

This would generate the URL / because this is the first route to match. Since routes are
matched from top to bottom, if you wanted this to generate the URL /blog/view/1 instead you
could move the second-to-last route to the top so that it was matched first. This would affect the
way URLs were generated for other controllers too, though:

>>> map = Mapper(controller_scan=controller_scan, explicit=True)
>>> map.minimize = False
>>> map.connect('/{controller}/{action}/{id}')
>>> map.connect('/', controller='blog', action='view', id=1)
>>> map.connect('/{controller}', action='view', id=1)
>>> map.connect('/{controller}/', action='view', id=1)
>>> map.connect('/{controller}/{action}', id=1)
>>> map.connect('/{controller}/{action}/', id=1)
>>> map.connect('/{controller}/{action}/{id}/')

Alternatively, you could add an explicit route as the first route. You’ll remember from the dis-
cussion of default variables earlier in the chapter that an explicit route matches only one URL:

>>> map = Mapper(controller_scan=controller_scan, explicit=True)
>>> map.minimize = False
>>> map.connect('/blog/view/1', controller='blog', action='view', id=1)
>>> map.connect('/', controller='blog', action='view', id=1)
>>> map.connect('/{controller}', action='view', id=1)
>>> map.connect('/{controller}/', action='view', id=1)
>>> map.connect('/{controller}/{action}', id=1)
>>> map.connect('/{controller}/{action}/', id=1)
>>> map.connect('/{controller}/{action}/{id}')
>>> map.connect('/{controller}/{action}/{id}/')

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH210

Some people would argue that you should always specify the controller and action for every
URL as hard-coded default variables using an explicit or named route. There are some other advan-
tages to this approach:

• Temporarily blocking access to a particular controller can be difficult with nonexplicit routes
because it isn’t always obvious whether another route you have specified will also resolve the
URL to the controller. If you have named or explicit routes, you can just comment out the
routes that point at the controller in question, and you’re all set.

• Imagine you have a Pylons application that is a couple of years old and has an established
group of users who have bookmarked various parts of your site. If you were to refactor the
application, moving controllers around or putting certain actions in different controllers,
you would find it difficult to maintain the existing URL structure if you were using implicit
routes. With explicit or named routes, you could simply update where the URL pointed to so
that the old URLs would still work.

I hope what is clear from the discussion in this section is that you should always set
explicit=True in your Mapper to disable route memory and implicit defaults and that you should
disable route minimization with map.minimization=False, but it is up to you whether you choose to
go further and be even more explicit about your routes with hard-coded defaults for the controller
and action or named routes.

Only you can decide whether ordinary, explicit, or named routes are the correct choice for your
application. Ordinary routes that use the “convention over configuration” philosophy don’t result in
disambiguated URLs. Named and explicit routes give you complete control over how your URLs are
generated but are more effort to set up. The nice thing about Routes is, of course, that you can use
all three techniques together.

Advanced URL Routing
It is now time to learn about some of the really advanced features of Routes that, when used effec-
tively, can very much simplify your route maps or enable your Pylons application to deal with any
number of complex legacy URL structures you might have inherited from an old application.

Requirements
Any route you specify can have a requirement argument specified as a keyword to the map’s
connect() method. The requirement argument should be a dictionary of routing variable names
for any dynamic or wildcard parts and a corresponding regular expression to match their values
against. Regular expressions are documented in the Python documentation for the re module.
Any valid Python regular expression can be used.

Here’s an example:

map.connect('archives/{year}/{month}/{day}', controller='archives', action='view',
year=2004,requirements={'year': '\d{2,4}', 'month': '\d{1,2}'})

One particularly useful regular expression used in the previous example is \d, which matches
a digit. In this case, the year can be either two or four digits long, and the month can be one or two
digits long.

Here’s another example; this time we are ensuring the theme is one of the allowed themes:

theme_map = 'admin|home|members|system'
map.connect('users/{theme}/edit', controller='users',

requirements={'theme': theme_map})

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 211

Conditions
Conditions specify a set of special conditions that must be met for the route to be accepted as a
valid match for the URL. The conditions argument must always be a dictionary and can accept
three different keys:

method: The request must be one of the HTTP methods defined here. This argument must be
a list of HTTP methods and should be uppercase.

function: This is a function that will be used to evaluate whether the route is a match. This
must return True or False and will be called with environ and match_dict as arguments. The
match_dict is a dictionary with all the routing variables for the request. Any modifications your
function makes to the match_dict will be picked up by Routes and used as the routing variables
from that point on.

sub_domain: If this is present, it should be either True (which will match any subdomain) or a
Python list of subdomain strings, one of which must match the subdomain used in the request
for the route to match.

These three types of conditions can all be used together in the same route by specifying each
argument to the conditions dictionary, but I’ll discuss them each in turn.

Let’s deal with the method option first. This allows you to match a URL based on the HTTP
method the request was made with. One problem with testing examples using the method condi-
tion is that the match depends on information from the WSGI environment, which is usually set
during a request. Since there isn’t a real HTTP request for this test code, you have to emulate it, so
in the following examples you set map.environ with fake environment information to test how the
matching works. Obviously, you wouldn’t do this in your own code. The example also sets up a new
controller_scan() function which only accepts the value user for the controller:

>>> from routes import Mapper
>>> def controller_scan(directory=None):
>>> return ['user']
...
>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.connect('/user/new/preview', controller='user', action='preview',
... conditions=dict(method=['POST']))
>>> # The method to be either GET or HEAD
>>> map.connect('/user/list', controller='user', action='list',
... conditions=dict(method=['GET', 'HEAD']))
>>> map.environ = {'REQUEST_METHOD':'POST'}
>>> print map.match('/user/new/preview')
{'action': u'preview', 'controller': u'user'}
>>> print map.match('/user/list')
None
>>> map.environ = {'REQUEST_METHOD':'GET'}
>>> print map.match('/user/new/preview')
None
>>> print map.match('/user/list')
{'action': u'list', 'controller': u'user'}

As you can see, the method condition works as expected, allowing the routes to match only
when the request contains the correct request method.

Now let’s look at the function condition. This condition is extremely powerful because it effec-
tively allows you to write custom code to extend Routes’ functionality. The function can return True
to indicate the route matches or False if it doesn’t. The function also has full access to the WSGI

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH212

environment and the dictionary of routing variables, which have already been matched, so the
function is free to modify or add to them as well.

Here’s an example of a function that extracts the action to be called from the X-ACTION HTTP
header in the request and compares it to allowed values:

from webob import Request
def get_action(environ, result):

Create a Pylons-style request object from the environment for
easier manipulation
req = Request(environ)

action = req.GET.get('X-ACTION')
if action in ['call', 'get', 'view']:

result['action'] = action
return True

return False

You wouldn’t often design this sort of functionality into your routes if you were creating your
own application from scratch, but having such low-level access to the underlying details of the
request is very powerful and can be useful when writing a Pylons application to replace legacy code.

Here is another use that might be useful in your application, this time to treat the referrer as an
ordinary routing variable:

def referals(environ, result):
result['referer'] = environ.get('HTTP_REFERER')
return True

You could use this function in a route like this to add the referrer to the matched routing vari-
ables:

map.connect('/{controller}/{action}/{id}', conditions=dict(function=referals))

Now let’s think about subdomains. These are easiest to demonstrate with examples, and once
again you have to create a fake HTTP request environment for your examples to emulate requests
coming from different subdomains.

First let’s set up the map object. Notice that you specify map.sub_domains=True to enable subdo-
main support:

>>> from routes import Mapper
>>> def controller_scan(directory=None):
... return ['user']
...
>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> map.sub_domains = True

Now let’s set up two routes. The first will accept any subdomain and produce an action routing
variable with a value any, and the second will accept only the subdomains foo and bar and will pro-
duce an action routing variable certain:

>>> map.connect('/user/any', controller='user', action='any',
... conditions={'sub_domain':True})
>>> map.connect('/user/certain', controller='user', action='certain',
... conditions={'sub_domain': ['foo', 'bar']})

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 213

Now let’s attempt some matches, emulating different requests by setting different environ dic-
tionaries. First let’s emulate a domain foo.example.com and test two URLs. The first will test what
happens when sub_domain is set to True, and the second will test what happens when it is restricted
to ['foo', 'bar']:

>>> map.environ = {'HTTP_HOST':'foo.example.com'}
>>> print map.match('/user/any')
{'action': u'any', 'controller': u'user', 'sub_domain': 'foo'}
>>> print map.match('/user/certain')
{'action': u'certain', 'controller': u'user', 'sub_domain': 'foo'}

As you can see, both the routes match because foo is a valid subdomain for either condition.
Notice how 'sub_domain': 'foo' is added to the matched routing variables.

Now let’s try the domain not.example.com:

>>> map.environ = {'HTTP_HOST':'not.example.com'}
>>> print map.match('/user/any')
{'action': u'any', 'controller': u'user', 'sub_domain': 'not'}
>>> print map.match('/user/certain')
None

This time, since not is not one of the allowed domains for the second route, only the first exam-
ple works. Let’s see what happens if no subdomain is specified in the request:

>>> map.environ = {'HTTP_HOST':'example.com'}
>>> print map.match('/user/any')
None
>>> print map.match('/user/certain')
None

As you can see, neither of the routes matches.

■Caution To be able to use matching based on subdomain, you must set the map’s sub_domains attribute to
True. Otherwise, none of the routes checking the subdomain conditions will match.

To avoid matching common aliases to your main domain like www, the subdomain support can
be set to ignore certain specified subdomains. Here’s an example:

>>> from routes import Mapper
>>> def controller_scan(directory=None):
... return ['user']
...
>>> map = Mapper(controller_scan=controller_scan)
>>> map.minimization = False
>>> # Remember to turn on sub-domain support
... map.sub_domains = True
>>> # Ignore the ``www`` sub-domain
... map.sub_domains_ignore = ['www']
>>> map.connect('/user/any', controller='user', action='any',
... conditions=dict(sub_domain=True))
>>> map.connect('/user/certain', controller='user', action='certain',
... conditions=dict(sub_domain=['www', 'foo']))
>>> map.environ = {'HTTP_HOST':'foo.example.com'}
>>> print map.match('/user/any')
{'action': u'any', 'controller': u'user', 'sub_domain': 'foo'}

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH214

>>> print map.match('/user/certain')
{'action': u'certain', 'controller': u'user', 'sub_domain': 'foo'}
>>> map.environ = {'HTTP_HOST':'www.example.com'}
>>> print map.match('/user/any')
None
>>> print map.match('/user/certain')
None

You can see that requests to the www subdomain are not matched even if one of the conditions
specifies that the subdomain www should be matched. Now let’s look at how h.url_for() handles
subdomains.

When subdomain support is on, the h.url_for() function will accept a sub_domain keyword
argument. Routes then ensures that the generated URL has the subdomain indicated. For example:

h.url_for(controller='user', action='certain', sub_domain='foo')

would generate the following URL but it will only work during a Pylons request, not from the inter-
active Python session we've been using so far in this chapter:

http://foo.example.com/user/certain

Filter Functions
Named routes can have functions associated with them that will operate on the arguments used
during generation. Filter functions don’t work with implicit or explicit routes because the filter func-
tion itself can affect the route that actually gets chosen, so the only way to be explicit about which
route to use is to specify it with a name.

To highlight the problem filter functions solve, consider this route:

map.connect('/archives/{year}/{month}/{day}', controller='archives',
action='view', year=2008,
requirements=dict(year='\d{2,4}', month='\d{1,2}'))

Generating a URL for this will require a month and day argument and a year argument if you
don’t want to use 2008. Imagine this route links to a story and that your model has a story object
with year, month, and day attributes. You could generate a URL for the story like this:

h.url_for(year=story.year, month=story.month, day=story.day)

This isn’t terribly convenient and can be brittle if for some reason you need to change the story
object’s interface. It would be useful to be able to pass the story object directly to h.url_for() and
have Routes extract the information it requires automatically. You can do this with a filter function.

Here’s what the filter function for the story object might look like:

def story_expand(result):
Only alter args if a story keyword arg is present
if 'story' not in result:

return result

story = result.pop('story')
result['year'] = story.year
result['month'] = story.month
result['day'] = story.day

return result

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH 215

You can then create a named route with a _filter argument like this:

m.connect('archives', '/archives/{year}/{month}/{day}',
controller='archives', action='view', year=2004,
requirements=dict(year='\d{2,4}', month='\d{1,2}'),
_filter=story_expand)

This filter function will be used when using the named route archives. If a story keyword argu-
ment is present, it will use that and alter the keyword arguments used to generate the actual route.

If you have a story object with those attributes, you would now be able to generate a URL like
this:

h.url_for('archives', story=my_story)

As well as making it substantially easier to generate the URL, you can also easily change how
the arguments are pulled out of the story object simply by changing the filter function if the story
object interface were ever to change.

Although filter functions can be very powerful, you might decide against using them in your
application because they can also make it less obvious what is happening to generate your URLs.

Summary
You’ve now seen all the main features of Routes and how you can take advantage of them to per-
form some very complex URL mappings as simply as possible or to integrate with legacy systems.
You also saw how some of Routes legacy features such as route minimization, route memory, and
implicit defaults can cause problems you might not have expected, and you now know how to avoid
using these features in your application. Although route minimization is disabled by default in new
Pylons applications, route memory and implicit defaults are not, so it is recommended you set
explicit=True as an argument to Mapper() in your project’s config/routing.py file.

In Chapter 14, you’ll look at Routes again to see how you can use its features to improve the
SimpleSite application.

CHAPTER 9 ■ URLS, ROUTING, AND DISPATCH216

217

C H A P T E R 1 0

Unicode

If you’ve ever come across text in a foreign language that contains lots of question mark characters
in unexpected positions or if you’ve written Python code that causes an exception such as the fol-
lowing one to be raised, then chances are you have run into a problem with character sets,
encodings, and Unicode:

UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 6:➥
ordinal not in range(128)

Many developers try to avoid getting involved with Unicode because these error messages
seem obscure and difficult to fix, but the good news is that Python has great Unicode support, so
with a little effort, you will be able to banish these problems from your applications entirely as well
as properly support languages other than English. This chapter and the next will show you how.

■Note All the libraries that come with Pylons have Unicode support, so it is always best to use Unicode in a
Pylons application. The Python 3.0 language will treat all strings as Unicode by default, so Unicode support will
become even more standard across all Python libraries in the future.

A Brief History
As I’m sure you are aware, computers operate on binary numbers that can be thought of as a collec-
tion of 1s and 0s. For example, the binary number 1110 represents the decimal number 14. Each
1 or 0 in the binary number is called a bit. A binary number made up from seven 1s and 0s is called
a 7-bit number and can represent all the decimal numbers from 0 to 127.

In the early days of computers, people wanted to be able to represent characters as well as
binary numbers, and at the time, the most important characters were unaccented English letters,
numbers, and punctuation, which could all be represented by a number between 0 and 127. These
numbers can therefore all be stored in binary with just seven 1s and 0s (in other words, in 7 bits).
The character set defined by these numbers eventually became standardized as ASCII. In the ASCII
character set, P is represented by 80, and y is represented by 121. Python understands ASCII, so you
can find out the codes for characters with the built-in ord() function like this:

>>> print ord("P"), ord("y"), ord("l"), ord("o"), ord("n"), ord("s") ➥
80 121 108 111 110 115

You can also find out a character from its ASCII representation with chr() like this:

>>> ''.join([chr(80), chr(121), chr(108), chr(111), chr(110), chr(115)]) ➥
'Pylons'

Computers of the day used 8-bit bytes in their calculations. These can represent the decimal
numbers 0 to 255, so people quickly realized that an extra 128 characters were available. Different
people assigned these extra numbers to different characters, and before long, these different collec-
tions of extra characters were also standardized into sets known as code pages. As an example, code
page 857 is for Turkish characters, and code page 861 is for Icelandic characters. The code page sys-
tem was adequate for representing most Western languages as long as you used the correct code
page for the language you wanted to represent and as long as you didn’t want to work on a docu-
ment that contained two different languages at once.

It quickly became apparent, though, that code pages would not be suitable for representing
every language. Asian languages in particular can contain many more than 256 characters, so a sys-
tem was needed that represented a much wider set of characters. This is where Unicode came in.

The origins of Unicode date back to 1987 when Joe Becker, Lee Collins, and Mark Davis started
investigating the practicalities of creating a universal character set. In the following year, Joe Becker
published a draft proposal for an “international/multilingual text character encoding system, tenta-
tively called Unicode.” In this document, entitled “Unicode 88,” he outlined a model where every
script and character in modern usage could be represented in 16 bits. It soon became clear that
people would also want to be able to represent scripts and characters that weren’t in modern-day
use, and over successive releases of the Unicode standard more scripts and characters were added
until the most recent version, Unicode 5.1, was released in April 2008 with more than 100,000 char-
acters. As you can imagine, this requires more than the 16 bits of Joe Becker’s original draft of
Unicode 88.

Introducing Unicode
Unicode is an industry standard allowing computers to consistently represent and manipulate text
expressed in most of the world’s writing systems. Unlike ASCII, where each character is represented
in 7 bits, Unicode characters are represented by something called a code point, which is effectively
an abstract integer ID for that character. For example, the characters in Pylons could be represented
by the Unicode code points U+0050, U+0079, U+006C, U+006F, U+006E, and U+0073.

If you’ve worked with hexadecimal numbers, you might notice that the last two characters of
each code point correspond to the decimal representation of the corresponding character in the
ASCII character set for the word Pylons shown in the previous paragraph. This is because the first
256 Unicode code points were made identical to the numbers representing the characters in the ISO
8859-1 encoding of the Latin alphabet (less formally known as Latin-1). This in turn shares the first
128 characters and their respective codes with the ASCII character set. I’ll return to the significance
of this backward compatibility in a moment.

Unicode also has the concept of an encoding. One way of encoding Unicode code points into
binary numbers on a disk would be to store each code point as a 32-bit (4-byte) number (since a
32-bit number is more than capable of storing every possible Unicode code point). This might seem
sensible at first, but representing Unicode code points on disk in this way would take up a lot of
space, especially if you used only those characters with low code points such as those also repre-
sented in ISO 8859-1 and ASCII because each character would be using 4 bytes when it really
needed only one.

Another way of storing the values would be to use a variable number of bytes for each charac-
ter. Those with low code points such as the unaccented English characters could be stored in 1 byte,
and those with much higher code points such as Arabic or Chinese characters would use more than
1 byte. This would mean that all the Unicode characters could be represented if necessary, but the
most commonly used ones (the unaccented English characters) could be represented in just 1 byte.
This is exactly what happens in the UTF-8 encoding, which you will probably have come across.

CHAPTER 10 ■ UNICODE218

UTF-8 is one of the most popular encodings for Python programmers, so much so that Python 3.0
will assume that files you open are encoded in UTF-8 unless you say otherwise.

Encoding Unicode characters with a variable number of bytes for each character as UTF-8 has
an interesting side effect. It means that UTF-8 encoded Unicode for the characters represented by
the ASCII character set has the same binary representation as ASCII itself. This means computers
can treat UTF-8 encoded Unicode as ASCII without any errors being raised as long as characters
used are in the first 128 Unicode code points. This explains why your application might already be
working perfectly well with certain Unicode strings even though you haven’t made a special effort to
work with any character set except ASCII. This is also why as soon as a character such as £ or é is
entered, the application will break because these are not ASCII characters; therefore, treating their
UTF-8 encoded versions as ASCII will cause the kind of UnicodeDecodeError shown at the start of
the chapter.

Luckily, working properly with Unicode is very straightforward, so you shouldn’t need to rely on
the backward compatibility of the UTF-8 encoding for the ASCII characters.

Before you look at Unicode in Python, I’ll recap the important points:

• Unicode can represent pretty much any character in any writing system in widespread use
today as well as some historical characters.

• Unicode uses code points to represent characters, and the way these map to bits on disk
depends on the encoding.

• The most popular encoding is UTF-8, which has several convenient properties:

• It can handle any Unicode code point.

• A string of ASCII text is also valid UTF-8 encoded Unicode.

• UTF-8 doesn’t use much storage space; the majority of code points are turned into 2
bytes, and values less than 128 occupy only 1 byte.

Unicode in Python 2
In Python 2, Unicode strings are expressed as instances of the built-in unicode type. Under the
hood, Python represents Unicode strings as either 16-bit or 32-bit integers, depending on the way
the Python interpreter was compiled. Python 3 will treat all strings as Unicode automatically, but
the discussion in this chapter relates only to the Unicode handling of recent Python 2 releases such
as Python 2.4, 2.5, and 2.6.

Unicode Literals
In Python source code, Unicode literals are written as strings prefixed with the u or U character
(although you will hardly ever see the uppercase version used).

>>> u'abcd'
>>> U'efgh'

You can also use ", """, or ''' versions too. For example:

>>> u"""This
... is a multiline
... Unicode string"""

Individual code points can be written using the escape sequence \u followed by four hex digits
specifying the code point. You can also use \U followed by eight hex digits instead of four. Unicode
literals can also use the same escape sequences as 8-bit strings including \x, but this takes only two

CHAPTER 10 ■ UNICODE 219

hex digits, so it can’t express many of the available code points. You can add characters to Unicode
strings using the unichr() built-in function, and you can find out what the ordinal is with ord(),
which you also saw earlier in the chapter when it was used with ASCII characters.

Here is an example demonstrating the different alternatives:

>>> s = u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais"
>>> for c in s:
... print ord(c),
...
97 102 114 97 110 231 97 105 115

Here \x66 is a two-digit hex escape, \u0072 and \u0061 are four-digit Unicode escapes, and
\u0000006e is an eight-digit Unicode escape. The example also demonstrates the use of unichr().
The word made in this is as follows:

>>> print s
français

■Note If you are working with Unicode in detail, you might be interested in the unicodedata module, which can
be used to find out Unicode properties such as a character’s name, category, numeric value, and the like.

Handling Errors
Now that you have seen how to write Unicode literals, let’s look at how you can create Unicode
strings with the unicode() constructor. Here is an example:

>>> cost = unicode('50.00')
>>> cost
u'50.00'
>>> type(cost)
<type 'unicode'>

Let’s see what happens if you try to concatenate the cost Unicode string with a normal ASCII
string:

>>> '$' + cost
u'$50.00'

Python decodes the string '$' from ASCII to Unicode, concatenates the two Unicode strings,
and returns the result.

Now let’s try to use a £ sign instead of a $. The £ character is not an ASCII character, so you have
to represent it by its ordinal, which is 163. Let’s see what happens:

>>> chr(163) + u'50.00'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

UnicodeDecodeError: 'ascii' codec can't decode byte 0xa3 in ➥
position 0: ordinal not in range(128)

In this case, because £ is not an ASCII character, when Python internally calls
unicode(chr(163)) to try to decode it from ASCII to Unicode, an error occurs.

Python’s unicode() constructor takes three arguments, including an errors argument that
determines what should happen in a situation like this:

CHAPTER 10 ■ UNICODE220

string: This is the Python string to decode to Unicode.

encoding: This is an optional encoding to specify how the string is currently encoded. If you
don’t specify an encoding, ASCII will be used, so characters with code points greater than 127
will be treated as errors.

errors: This specifies how to handle any errors. This can be one of the following: the string
"strict" (the default), which results in a ValueError being raised if an invalid character is
found; "ignore", which simply results in any errors being silently ignored; or "replace",
which causes the official Unicode replacement character, U+FFFD (usually displayed), to
be inserted instead.

Let’s explore what happens if you perform the conversion explicitly and use the errors option:

>>> unicode(chr(163), errors='ignore') + u'50.00'
u'50.00'
>>> unicode(chr(163), errors='replace') + u'50.00'
u'\ufffd50.00'

As you can see, using 'ignore' silently ignores the problem, and using 'replace' results in the
Unicode character U+FFFD being inserted in place of the pound sign. Neither of these is quite what
you want. The solution to the problem lies in understanding the encoding option. Let’s look at
encoding and decoding Unicode data next.

Decoding Unicode
Unicode strings are simply a series of Unicode code points. When you are converting an ASCII or
UTF-8 string to Unicode, you are actually decoding it; when you are converting from Unicode to
UTF-8 or ASCII, you are encoding it. This is why the error in the example said that the ASCII codec
could not decode the byte 0xa3 from ASCII to Unicode. You might be used to thinking of ASCII as the
“natural” representation of characters and anything else to be an encoding, but this is not the way
you should think with Unicode. You should always think of the Unicode code point as the “natural”
representation and anything else as being a particular encoding.

The 0xa3 characters that appeared in the UnicodeDecodeError message are hex for 163, which
represents the £ sign. The error occurred because this is outside the ASCII range. However, this
character is present in the ISO 8859-1 character set. If you tell Python that the data it is decoding is
encoded with the 'iso_8859_1' character set, you get the result you expected:

>>> unicode(chr(163), encoding='iso_8859_1') + cost
u'\xa350.00'

Notice that because 163 can be represented in just two hex digits, Python chose to use the \x
representation rather than its \u or \U representation of Unicode characters.

Let’s print the result:

>>> print u'\xa350.00'
£50.00

Be aware that not all terminals will be able to display all Unicode characters when printed like
this; it will depend on the encoding of the terminal and the fonts available on the system.

CHAPTER 10 ■ UNICODE 221

Encoding Unicode
Now that you’ve seen how to decode to Unicode, let’s see how to encode it. All Python Unicode
objects have an encode() method that takes the encoding you want to use as its argument. It is used
like this:

>>> u'$50.00'.encode('utf-8')
'$50.00'
>>> u'$50.00'.encode('ascii')
'$50.00'

As you can see, u'$50.00', when encoded to UTF-8, is the same as the ASCII representation.
The same cannot be said for u'£50.00' because this isn’t an ASCII character, as I’ve already
explained:

>>> u'\xa350.00'.encode('utf-8')
'\xc2\xa350.00'
>>> print '\xc2\xa350.00'
£50.00
>>> u'\xa350.00'.encode('ascii')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

UnicodeEncodeError: 'ascii' codec can't encode character u'\xa3' in ➥
position 0: ordinal not in range(128)

Once again, you get the familiar UnicodeEncodeError, this time specifying that the encoding
failed as you would expect.

■Note Python supports many more character encodings besides the ones mentioned in this chapter; you can
find the full list at http://docs.python.org/lib/standard-encodings.html.

Python Source Code Encoding
If you are working with non-ASCII characters in your application, you are likely to also want to be
able to use them in your Python source code. Although you could manually escape each character
you use in a Unicode literal, Python 2.4 and newer let you define the encoding you are using at the
top of the source file like this:

-*- coding: utf-8 -*-

This special setting tells Python to treat the source code as UTF-8 encoded Unicode. This
allows you to use Unicode characters in the source code itself as long as you remember to set your
editor to save the file in UTF-8. Windows users who use the SciTE editor can specify the encoding of
their file from the menu using the File ➤ Encoding menu option. Vim users can set the encoding
with set encoding=utf8.

If you use a non-ASCII character, which is still part of the ISO 8859-1 character set, in your
source file (such as the £ character) but fail to specify an encoding, versions of Python newer than
2.4 will assume that you are using the ISO 8859-1 character set but will still issue a warning:

sys:1: DeprecationWarning: Non-ASCII character '\xe9' in file testas.py on line
2, but no encoding declared; see http://www.python.org/peps/pep-0263.html for de
tails

CHAPTER 10 ■ UNICODE222

You can correct this by specifying the correct encoding at the top of your source file. If you use
other characters but fail to specify an encoding or if you forget to save the file in the encoding you
have specified, Python will give an error.

If you look back at Chapter 8, you’ll see that the base template you created for the SimpleSite
tutorial starts with this line:

-- coding: utf-8 --

When Mako creates a Python version of the template in the Mako cache, the ## characters get
converted to a single # character. This results in the Python file having the correct encoding defini-
tion at the top, which allows you to use Unicode characters within the template source file as long
as your editor encodes the file to UTF-8 when you saves it.

Unicode and Files
To write Unicode data to a file, you will need to encode it first. Likewise, when reading encoded
Unicode from a file, it will need to be decoded. The easiest way to handle this in Python is to use
the codecs module. Here is an example of how to read Unicode from a UTF-8 encoded file:

import codecs
f = codecs.open('unicode.txt', encoding='utf-8', mode='r')
for line in f:

print repr(line)

Each line will have been automatically decoded to a Unicode string. Here’s an example of writ-
ing Unicode to a file encoded in ISO 8859-1:

f = codecs.open('unicode.txt', encoding='latin-1', mode='w')
f.write(u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais")
f.close()

I’ve used latin-1 here to demonstrate that Python will accept a number of different descrip-
tions if an encoding has multiple names in common use. Reading/writing files in different
encodings is almost as easy as normal Python file operations.

It is also possible to use Unicode strings as file names if the underlying filesystem supports
Unicode file names. For example:

filename = u"\x66\u0072\u0061\U0000006e" + unichr(231) + u"ais"
f = open(filename, 'w')
f.write('Bonjour!\n')
f.close()

Other functions such as os.listdir() will return Unicode if you pass them a Unicode argu-
ment and will try to return strings if you pass an ordinary 8-bit string. Add the previous code to a file
called test.py, and then add the following afterward:

import os
print os.listdir('.')
print os.listdir(u'.')

If you ran python test.py, you would see the following output:

['Fran\xcc\xa7ais', 'test.py']
[u'Fran\u0327ais', u'test.py']

As you can see from the second line, when os.listdir() is given a Unicode argument, it
returns Unicode strings.

CHAPTER 10 ■ UNICODE 223

Unicode Considerations in Pylons Programming
There are three main rules when dealing with using Unicode in a Pylons application:

The main rule is that your application should use Unicode for all strings internally, decoding
any input to Unicode as soon as it enters the application and encoding the Unicode to UTF-8 or
another encoding only on output. If you perform all the decoding right at the edge of your
application, as soon as it is passed any encoded Unicode data, then it will be obvious where
any problems are caused. If you fail to do this and some of the data your application receives
is badly encoded, it is possible your application will crash in an obscure place or, worse, that
the badly encoded data poses a security risk.

The second rule is to always test your application with characters greater than 127 wherever pos-
sible. If you fail to do this, you might think your application is working fine, but as soon as your
users do put in non-ASCII characters, you will have problems. Using Arabic is always a good
test, and http://www.google.ae is a good source of sample text.

The third rule is to always do any checking of a string for illegal characters once it’s in the form
that will be used or stored; otherwise, the illegal characters might be disguised.

For example, let’s say you have a content management system that takes a Unicode file name
and you want to disallow paths with a / character. You might write this code:

DO NOT DO THIS
def read_file(filename):

if '/' in filename:
raise ValueError("'/' not allowed in filenames")

unicode_name = filename.decode('base64')
f = open(unicode_name, 'r')
... return contents of file ...

This is incorrect because the check was performed before the actual data to be used was
decoded. An attacker could have passed the data L2V0Yy9wYXNzd2Q=, which is the base-64 encoded
form of the string '/etc/passwd'. The previous code would have resulted in this file being opened
and returned to the browser, which wasn’t what you expected. Instead, decode the data first and
then perform the check. Although this is obvious advice when using the base-64 encoding where
the encoded version looks very different from the original, it is less obvious when using UTF-8
where you could easily forget you are not using a decoded string.

Those are the three basic rules, so now I will cover some of the places you might want to per-
form Unicode decoding in a Pylons application.

Request Parameters
Pylons automatically decodes incoming form parameters into Unicode objects so that when you
access request.POST, request.GET, or request.params in your application, the values are already
Unicode strings. Only parameter values (not their associated names) are decoded to Unicode by
default. Since parameter names commonly map directly to Python variable names (which are
restricted to the ASCII character set), it’s usually preferable to handle them as strings.

You can change the encoding used to decode the request information by setting the
request.charset attribute.

CHAPTER 10 ■ UNICODE224

Templating
Pylons uses Mako as its default templating language. Mako handles all content as Unicode inter-
nally. It only deals in raw strings upon the final rendering of the template just before it returns a
value from the render() function. The encoding of the rendered string can be configured; Pylons
sets the default value to UTF-8. To change this value, edit your project’s config/environment.py file,
and update the output_encoding argument to TemplateLookup:

Create the Mako TemplateLookup, with the default auto-escaping
config['pylons.app_globals'].mako_lookup = TemplateLookup(

directories=paths['templates'],
module_directory=os.path.join(app_conf['cache_dir'], 'templates'),
input_encoding='utf-8', output_encoding='utf-8',
imports=['from webhelpers.html import escape'],
default_filters=['escape'])

The input_encoding argument specifies the encoding that Mako expects the templates to have
if they don’t have an explicit ## -*- coding: utf-8 -*- comment at the top of the file. You can find
more information about Unicode in Mako at http://www.makotemplates.org/docs/unicode.html.

Output Encoding
Web pages should always be generated with a specific encoding, most likely UTF-8. At the very
least, that means you should specify the following in the <head> section of your HTML:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

You can specify the character set for the HTTP response from within a controller action using
the Pylons response global:

response.charset = 'utf8'

This will automatically add the character set to the end of the Content-type header, and most
browsers will trust this over the value in the <meta> tag. When you return a Unicode string from the
controller action, it will be encoded using the character specified by response.charset, but if you
return a non-Unicode string, it will be passed directly to the browser without being encoded again
because it is assumed you have already encoded it.

The web browser will usually submit form data back to the server using the same character set
as that used in the page containing the form. You should therefore try to make sure you are using
the same character set in request.charset and response.charset. The defaults of UTF-8 are a good
choice, though.

Databases
Another place where you will have to think about encoding and decoding is the database. You
should encode to whichever encoding the database expects immediately before executing a query
and decode to Unicode immediately after receiving results from the database.

SQLAlchemy has a Unicode column type that you can use to store Unicode characters. If you
use this column type, SQLAlchemy will be responsible for handling the encoding and decoding
for you so that you don’t need to worry about it yourself. If you look back at the model for the
SimpleSite application, you’ll see that you have already been using Unicode columns. This is good
practice because you never know when a user of your application might place a non-ASCII char-
acter in a form field, and it is best to be able to handle that situation.

CHAPTER 10 ■ UNICODE 225

A Complete Request Cycle
Now that you’ve seen the various places your Pylons applications might have to deal with Unicode,
I’ll take you through an example request cycle and explain exactly what happens in terms of encod-
ing and decoding Unicode.

Start the SimpleSite application, and edit a page by visiting http://localhost:5000/page/
view/1. Try copying and pasting some Chinese or Arabic text into the content field. (Just search
Google for the words Arabic or Chinese characters, and some of the results are bound to contain
suitable sample text.) When you save the page, the text will be sent to your application as UTF-8
(since this is the encoding of the page). Pylons will then receive the request, and the form fields will
be decoded to Unicode in the Pylons request global. The code within the view() action then
retrieves the value of the content field from request.params where it has already been decoded to a
Unicode string. It then sets the .content attribute of the page object using the Unicode value. When
the session is committed, the page object is automatically flushed. SQLAlchemy takes over and per-
forms the necessary encoding before sending the content to the underlying database engine.

When the saved page is redisplayed, SQLAlchemy will issue a query to fetch the content and
decode the results it fetches to Unicode. The page’s content data is passed as a Unicode string to a
Mako template where it is rendered. The render() function will obtain the result from Mako and
return the entire template as a UTF-8 encoded string, which is then returned from the view()
action. Pylons assembles the response using the UTF-8 encoded response from the action and any
settings in the response global. Because response.charset is set to 'utf-8', Pylons adds the follow-
ing header to the response:

Content-Type: text/html; charset=utf-8

Pylons then returns the response to the browser. The browser knows to expect UTF-8 because
of the charset=utf=8 part of the previous header and decodes the content that follows to its Uni-
code representation so that it can correctly display the text.

Summary
You should now understand the history of Unicode, how to use it in Python, and where to apply
Unicode encoding and decoding in a Pylons application. You should also be able to use Unicode
in your web app; remember that the main rule is to use UTF-8 to talk to the world, performing
the necessary encoding and decoding at the very edge of your application (or letting Pylons do it
for you!).

Now that you know how to handle multiple different characters and scripts, it is time to turn
your attention to how to write a Pylons application that is designed to be able to be used by people
from different countries at the same time, customizing the language used on each request for each
user. You’ll learn this in the next chapter.

CHAPTER 10 ■ UNICODE226

227

C H A P T E R 1 1

Internationalization and Localization

Internationalization and localization are means of adapting software for non-native environments,
especially for other nations and cultures.

The following are the parts of an application that might need to be localized:

• Language

• Date/time format

• Numbers such as decimal points, positioning of separators, and characters used as
separators

• Time zones (UTC in internationalized environments)

• Currency

• Weights and measures

The distinction between internationalization and localization is subtle but important. Interna-
tionalization is the adaptation of products for potential use virtually everywhere, while localization
is the addition of special features for use in a specific locale.

For example, in terms of language used in a Pylons application, internationalization is the
process of marking up all strings that might need to be translated, and localization is the process
of producing translations for a particular locale.

Pylons provides built-in support to enable you to internationalize language but leaves you to
handle for yourself any other aspects of internationalization that might be appropriate for your
application. In this chapter, you’ll concentrate on how to internationalize and localize the strings
used in your Pylons application.

■Note Internationalization is often abbreviated as I18N (or i18n or I18n) where the number 18 refers to the num-
ber of letters omitted. Localization is often abbreviated L10n or l10n in the same manner. These abbreviations also
avoid picking one spelling (internationalisation vs. internationalization) over the other.

To represent characters from multiple languages, you will need to utilize Unicode. By now you
should have a good idea of what Unicode is, how to use it in Python, and in which areas of your
application you need to pay specific attention to decoding and encoding Unicode data. If not, you
should read the previous chapter.

Understanding the Process
Internationalizing a Pylons application involves marking every string in your application that
needs to be available in more than one language with a function that will perform the necessary
translation.

Localizing an application involves the following steps:

1. Running a tool to extract the strings you’ve marked

2. Creating a translation of the strings for each language your application will support

3. Displaying the correct translation for the current user

Before you learn how this works in a real application, I’ll discuss some of the background infor-
mation you will need to understand.

Marking Strings for Internationalization
Marking the strings that will need to be internationalized is actually very simple. You wrap them in
a function to tell Pylons that they need to be translated. For example, if you had a controller action
that looked like this:

def hello(self):
return u'Hello!'

and you wanted to internationalize the string Hello!, you would do so by wrapping it in one of the
Pylons translation functions. You import them like this:

from pylons.i18n.translation import _, ungettext

and use them like this:

def hello(self):
return _(u'Hello!')

Strings to be internationalized are known as messages in internationalization terminology. The
correct translation function to use depends on the situation. Pylons currently provides the following
functions in the pylons.i18n.translation module:

ugettext() and its alias _(): These mark and translate a Unicode message. Developers usually
choose to use _() rather than ugettext() because as well as being a well-understood conven-
tion it also saves on keystrokes.

ungettext(): This marks and translates a Unicode message that might have a slightly different
form for the singular and the plural. You’ll learn about this in the “Plural Forms” section later in
the chapter.

Pylons also provides gettext() and ngettext() functions, which are equivalent to ugettext()
and ungettext(), respectively, but take an ordinary Python string as their argument rather than a
Unicode string. There is really no reason to use the non-Unicode versions if you have read the previ-
ous chapter and understand what Unicode is, so I won’t cover the non-Unicode versions further.

When wrapping strings in the _() (or ugettext()) function, it is important not to piece sen-
tences together manually because certain languages might need to invert the grammar. Instead,
you should try to specify whole strings in one go. For example, you shouldn’t do this:

BAD!
msg = _("Starbug was built to last sir; this old baby's crashed ")
msg += _("more times than a ZX81.")

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION228

But the following is perfectly acceptable because the whole string is passed as an argument to
_():

GOOD
msg = _("Starbug was built to last sir; this old baby's crashed "

"more times than a ZX81.")

Python will automatically concatenate adjacent strings, so having two shorter strings on sepa-
rate lines like this is a perfectly acceptable way to pass a long string to a function. This is surprising
behavior if you haven’t seen it before, but it is quite useful in this situation.

Extracting Messages and Handling Translations
As you might have guessed from the names of the functions you’ve already seen, Pylons inter-
nationalization support is based on GNU gettext (http://www.gnu.org/software/gettext/). The
idea is simple: you run a tool on your source code that searches for times when you have used
any of the Python I18N functions such as _(), ungettext(), and others. The tool extracts the Uni-
code strings passed as arguments to the functions and places them in a portable object template
(.pot) file.

You would then generate a portable object (.po) file based on the portable object template for
each language you wanted to support. You send these to a translator, and they will return the
portable object file together with the translations of the messages for a particular locale.

Finally, the .po files are compiled by a tool to a machine object (.mo) file, which is an optimized
machine-readable binary file that the Pylons internationalization tools can understand.

You can use a few different tools to extract messages from your source files and to compile
the .mo files, but by far the most popular for use with Pylons applications is Babel (http://babel.
edgewall.org/). Unlike the GNU gettext tool xgettext, Babel supports extracting translatable
strings from Python templating languages (including Mako and Genshi) and has a plug-in archi-
tecture to allow it to extract messages from other types of Python source files.

Babel is comprised of two main parts:

• Tools to build and work with gettext message catalogs

• A Python interface to the Common Locale Data Repository (CLDR), providing access to vari-
ous locale display names, localized number and date formatting, and so on

In the next section, you’ll look at a real example that uses Babel to help in the internationaliza-
tion/localization process.

Seeing It in Action
Now that you’ve seen the theory and understand the process, it’s time to see it in action in a Pylons
application. The application you’ll write will simply display the greeting “Hello” in three different
languages: English, Spanish, and French. The default language will be English. I’ll show how to use
the Pylons translator functions together with Babel to create the application.

Let’s call the project TranslateDemo and choose to use Mako but not SQLAlchemy:

$ paster create --template=pylons TranslateDemo

Now let’s add the controller:

$ cd TranslateDemo
$ paster controller hello

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 229

Edit controllers/hello.py, and import the _() function:

from pylons.i18n.translation import _, set_lang

Then update the index() action to look like this:

class HelloController(BaseController):

def index(self):
set_lang('es')
return _(u'Hello!')

Notice that the example uses the _() function everywhere the string Hello! appears. Start the
Paste HTTP server with the --reload option, and visit http://localhost:5000/hello/index:

$ paster serve --reload development.ini

You will see the following error:

LanguageError: IOError: [Errno 2] No translation file found for➥
domain: 'translatedemo'

Although the controller has been internationalized, no message catalogs are yet in place. You’ll
create the necessary translations next.

Using Babel
You’ll need to install Babel using Easy Install:

$ easy_install "Babel==0.9.4"

You’ll use Babel to extract messages to a .pot file in your project’s i18n directory. First, the
directory needs to be created. Don’t forget to add it to your revision control system if you’re using
one:

$ mkdir translatedemo/i18n

Be sure to use the number 1 in the word i18n and not a lowercase l. Next, extract all the mes-
sages from the project with the following command:

$ python setup.py extract_messages
extract_messages
running extract_messages
extracting messages from translatedemo/__init__.py
extracting messages from translatedemo/websetup.py
extracting messages from translatedemo/config/__init__.py
extracting messages from translatedemo/config/environment.py
extracting messages from translatedemo/config/middleware.py
extracting messages from translatedemo/config/routing.py
extracting messages from translatedemo/controllers/__init__.py
extracting messages from translatedemo/controllers/error.py
extracting messages from translatedemo/controllers/hello.py
extracting messages from translatedemo/lib/__init__.py
extracting messages from translatedemo/lib/app_globals.py
extracting messages from translatedemo/lib/base.py
extracting messages from translatedemo/lib/helpers.py
extracting messages from translatedemo/model/__init__.py
extracting messages from translatedemo/tests/__init__.py

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION230

extracting messages from translatedemo/tests/test_models.py
extracting messages from translatedemo/tests/functional/__init__.py
extracting messages from translatedemo/tests/functional/test_hello.py
writing PO template file to translatedemo/i18n/translatedemo.pot

As you can see, Babel searches your project for Python files looking for strings marked with the
translation functions. The strings are extracted, and a new file is created called translatedemo.pot
in your project’s translatedemo/i18n directory. It looks like something like this:

Translations template for TranslateDemo.
Copyright (C) 2008 ORGANIZATION
This file is distributed under the same license as the TranslateDemo project.
FIRST AUTHOR <EMAIL@ADDRESS>, 2008.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: TranslateDemo 0.1\n"
"Report-Msgid-Bugs-To: EMAIL@ADDRESS\n"
"POT-Creation-Date: 2008-09-26 11:07+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 0.9.4\n"

#: translatedemo/controllers/hello.py:18
msgid "Hello!"
msgstr ""

As you can see, after the heading information, it has found the one internationalized string in
the hello.py controller. The :18 means that this string was found on line 18 of the file.

Next you’ll need to create a .po file for the Spanish language. You can do so with this command:

$ python setup.py init_catalog -l es
running init_catalog
creating catalog 'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'

The new translatedemo.po file looks similar, but some of the content has been updated slightly
for the Spanish language:

Spanish translations for TranslateDemo.
Copyright (C) 2008 ORGANIZATION
This file is distributed under the same license as the TranslateDemo
project.
FIRST AUTHOR <EMAIL@ADDRESS>, 2008.
#
msgid ""
msgstr ""
"Project-Id-Version: TranslateDemo 0.1\n"
"Report-Msgid-Bugs-To: EMAIL@ADDRESS\n"
"POT-Creation-Date: 2008-09-26 10:35+0100\n"
"PO-Revision-Date: 2008-09-26 10:49+0100\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: es <LL@li.org>\n"

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 231

"Plural-Forms: nplurals=2; plural=(n != 1)\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 0.9.4\n"

#: translatedemo/controllers/hello.py:18
msgid "Hello!"
msgstr ""

Update the .po file with the correct details including your name, your e-mail address, and the
revision date.

Edit the last line to specify the Spanish translation for the greeting Hello!, and save the
changes, making sure you set the encoding in your editor to UTF-8 if you are using Unicode charac-
ters. (Don't worry if you can’t find the ¡ character on your keyboard; this is only an example, so you
can leave it out if you prefer):

#: translatedemo/controllers/hello.py:18
msgid "Hello!"
msgstr "¡Hola!"

Now that the translation is in place, you need to compile the .po file to a .mo file. Once again,
Babel has a tool to help, and you access it via your project’s setup.py file:

$ python setup.py compile_catalog
running compile_catalog
1 of 1 messages (100%) translated in ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po'
compiling catalog ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' to ➥

'translatedemo/i18n/es/LC_MESSAGES/translatedemo.mo'

Now is a good time to test the application. Start the server with the following command:

$ paster serve --reload development.ini

Test your controller by visiting http://localhost:5000/hello/index. You should see the follow-
ing output:

¡Hola!

Congratulations, you’ve internationalized and localized a Pylons application!

Supporting Multiple Languages
Supporting one language is useful, but Pylons can support multiple languages at once. To do so, you
simply repeat the process of generating the .po and .mo files for the other languages. You don’t need
to extract the messages again, though, because the existing .pot file already contains all the infor-
mation you need.

As an example, let’s also create French and English translations:

$ python setup.py init_catalog -l fr
running init_catalog
creating catalog 'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION232

$ python setup.py init_catalog -l en
running init_catalog
creating catalog 'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'

Modify the last lines of the fr catalog to look like this:

#: translatedemo/controllers/hello.py:18
msgid "Hello!"
msgstr "Bonjour!"

Since the original messages are already in English, the en catalog msgstr string can stay blank
because gettext will fall back to the original.

Once you’ve edited the two new .po files, compile them to .mo files like this:

$ python setup.py compile_catalog
running compile_catalog
0 of 1 messages (0%) translated in ➥
'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po' compiling catalog ➥
'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/en/LC_MESSAGES/translatedemo.mo'
1 of 1 messages (100%) translated in ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' compiling catalog ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.mo'
1 of 1 messages (100%) translated in ➥
'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po' compiling catalog ➥
'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.mo'

By the end of the process, your i18n directory will contain these files:

i18n/translatedemo.pot
i18n/en/LC_MESSAGES/translatedemo.po
i18n/en/LC_MESSAGES/translatedemo.mo
i18n/es/LC_MESSAGES/translatedemo.po
i18n/es/LC_MESSAGES/translatedemo.mo
i18n/fr/LC_MESSAGES/translatedemo.po
i18n/fr/LC_MESSAGES/translatedemo.mo

If you look at your project’s setup.py file, you’ll see the following line:

package_data={'translatedemo': ['i18n/*/LC_MESSAGES/*.mo']},

This line ensures that all the binary message catalogs your application relies on are automati-
cally included in any packages or egg files produced from your Pylons project.

With the changes in place, add a new action to the controller to test the different languages.
First import the get_lang() function, which retrieves the current language being used:

from pylons.i18n.translation import get_lang

Now add the following action to the controller:

def multiple(self):
resp = 'Default: %s
' % _(u'Hello!')
for lang in ['fr','en','es']:

set_lang(lang)
resp += '%s: %s
' % (get_lang(), _(u'Hello!'))

return resp

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 233

Start the server, and visit http://localhost:5000/hello/multiple. You should see the following
output:

Default: Hello!
['fr']: Bonjour!
['en']: Hello!
['es']: ¡Hola!

This correctly outputs the three different languages you have prepared. The set_lang() func-
tion is called for each language, this changes the message catalog used so that the correct trans-
lation is produced when the _() function is called. Now that you know how to set the language used
in a controller on the fly, let’s look at how to update the message catalogs.

Updating the Catalog
You’ll notice that the previous example worked even though Hello! is marked for translation in multi-
ple places and not just on the line specified in the .po and .pot files. The Pylons translation functions
don’t use the line number a message is defined on, only the message itself, so as long as a translation
of the message for the particular language exists somewhere, the message can be translated every-
where. The line numbers are used by Babel to keep track of which strings have been translated.

If you want to add a new message to the catalog, you’ll need to update the .po and .pot files.
Once again, Babel provides a tool to help. To demonstrate this, update the original index() action
to look like this:

def index(self):
set_lang('es')
return _('Goodbye!')

You’ll need to run the extract command again (I’ve omitted some of the output for brevity):

$ python setup.py extract_messages
running extract_messages
...
extracting messages from translatedemo/controllers/hello.py
...
writing PO template file to translatedemo/i18n/translatedemo.pot

The last lines of the file look like this:

#: translatedemo/controllers/hello.py:19
msgid "Goodbye!"
msgstr ""

#: translatedemo/controllers/hello.py:22 translatedemo/controllers/hello.py:25
msgid "Hello!"
msgstr ""

Notice that both of the lines the Hello! message are found on have been noted and that the
Goodbye! message is also included.

Now run the command to update the catalogs:

$ python setup.py update_catalog
running update_catalog
updating catalog 'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'
updating catalog 'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'
updating catalog 'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po' ➥
based on 'translatedemo/i18n/translatedemo.pot'

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION234

You’d then update all the .po files and compile them to .mo files again, but since you are using
only the Spanish language in the action in this example, you’ll just edit the Spanish .po file. Its last
few lines now look like this:

#: translatedemo/controllers/hello.py:19
msgid "Goodbye!"
msgstr ""

#: translatedemo/controllers/hello.py:22 translatedemo/controllers/hello.py:25
msgid "Hello!"
msgstr "¡Hola!"

Notice that Babel added the entry for the Goodbye! message but kept the existing translation for
Hello!, updating the line numbers to reflect those in the new .pot file.

Update the msgstr line for Goodbye! to read as follows:

msgstr "¡Adiós!"

and recompile the catalog:

$ python setup.py compile_catalog
running compile_catalog
0 of 2 messages (0%) translated in ➥
'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po'
compiling catalog 'translatedemo/i18n/en/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/en/LC_MESSAGES/translatedemo.mo'
2 of 2 messages (100%) translated in ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po'
compiling catalog 'translatedemo/i18n/es/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/es/LC_MESSAGES/translatedemo.mo'
1 of 2 messages (50%) translated in ➥
'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po'
compiling catalog 'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.po' to ➥
'translatedemo/i18n/fr/LC_MESSAGES/translatedemo.mo'

If you start the Paste HTTP server and visit http://localhost:5000/hello/index, you will see
the message updated to read ¡Adiós!. You have successfully updated the message catalog without
losing any of the existing translated messages.

Translations Within Templates
Although some of the messages you will want to internationalize will appear in controllers, most of
them are likely to be found in your project’s templates. Luckily, the internationalization and local-
ization tools work in templates too.

Let’s change the multiple() action to use a template instead. Update it to look like this:

def multiple(self):
return render('/hello.html')

Then create hello.html in your project’s template directory with this content:

<%!
from pylons.i18n.translation import set_lang, get_lang

%>
<html>
<head>

<title>Multiple Translations</title>
</head>

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 235

<body>
<h1>Multiple Translations</h1>
<p>

Default: ${_(u'Hello!')}

% for lang in ['fr','en','es']:

<% set_lang(lang) %>
${get_lang()}: ${_(u'Hello!')}

% endfor
</p>

</body>
</html>

The statement at the top is used to import the get_lang() and set_lang() functions, but Pylons
automatically puts the translator, ungettext(), _(), and N_() functions into the template name-
space, so you don’t need to import the _() function in this case.

If you test the example again, you will see that the same output is produced, only this time in
an HTML template with a title.

It turns out that using messages that have already been translated in a template file is easy
because the Pylons translation functions are called in the same way they would be from within a
controller. What is much harder is extracting the strings that need to be internationalized from a
template in the first place because the extraction tools won’t necessarily understand the syntax of
the templating language.

One approach that was recommended in very early versions of Pylons was to run a standard
tool such as xgettext on the Mako (or Myghty as it was then) cache directory, which, after heavy
development testing, would contain a cached Python version of every template. The extraction tool
will then run on the cached templates in the same way it runs on ordinary Python files. Although
this process worked adequately, it was rather cumbersome. Babel provides a much better solution,
which you’ll learn about next.

Babel Extractors
Babel supports the concepts of extractors. These are custom functions that, when called by Babel,
will perform the work of extracting internationalizable messages from a particular source file.
Babel currently supports extracting gettext messages from Mako and Genshi templates as well as
from Python source files.

If you look at your project’s setup.py files, you will see the following lines commented out:

#message_extractors = {'translatedemo': [
('**.py', 'python', None),
('templates/**.mako', 'mako', None),
('public/**', 'ignore', None)]},

If you uncomment them, Babel will know that any .py files should be treated as Python source
code, any .mako files should be treated as Mako templates, and everything in the public directory
should be ignored. You’ll also want .html files in the templates directory treated as Mako source, so
update these lines to look like this:

message_extractors = {'translatedemo': [
('**.py', 'python', None),
('templates/**.mako', 'mako', None),
('templates/**.html', 'mako', None),
('public/**', 'ignore', None)]},

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION236

For a project using Genshi instead of Mako, the Mako lines might be replaced with this:

('templates/**.html, 'genshi', None),

Similar options can also be set in the setup.cfg file if you prefer. See
http://babel.edgewall.org/wiki/Documentation/cmdline.html#extract for details.

Once you’ve changed the setup.py file, you may need to run this command again to reinstall
the package in development mode so that the changes are recognized:

$ python setup.py develop

With the changes made, you can use Babel to extract messages from the templates as well as
the Python source files in your project:

$ python setup.py extract_messages
running extract_messages
extracting messages from translatedemo/__init__.py
extracting messages from translatedemo/websetup.py
extracting messages from translatedemo/config/__init__.py
extracting messages from translatedemo/config/environment.py
extracting messages from translatedemo/config/middleware.py
extracting messages from translatedemo/config/routing.py
extracting messages from translatedemo/controllers/__init__.py
extracting messages from translatedemo/controllers/error.py
extracting messages from translatedemo/controllers/hello.py
extracting messages from translatedemo/lib/__init__.py
extracting messages from translatedemo/lib/app_globals.py
extracting messages from translatedemo/lib/base.py
extracting messages from translatedemo/lib/helpers.py
extracting messages from translatedemo/model/__init__.py
extracting messages from translatedemo/templates/hello.html
extracting messages from translatedemo/tests/__init__.py
extracting messages from translatedemo/tests/test_models.py
extracting messages from translatedemo/tests/functional/__init__.py
extracting messages from translatedemo/tests/functional/test_hello.py
writing PO template file to translatedemo/i18n/translatedemo.pot

Notice this time that the templates/hello.html file is included in the extraction process.

■Tip If you want to create a Babel extractor for a template language you use or another source file type, you
should read the documentation at http://babel.edgewall.org/wiki/Documentation/messages.html#
writing-extraction-methods.

Setting the Language in the Config File
Pylons supports defining the default language to be used in the config file. Set a lang variable to the
desired default language in your development.ini file, and Pylons will automatically call set_lang()
with that language at the beginning of every request.

For example, to set the default language to French, you would add lang = fr to your
development.ini file:

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 237

[app:main]
use = egg:translatedemo
lang = fr

If you are running the server with the --reload option, the server will automatically restart if
you change the development.ini file. Otherwise, restart the server manually, and the output would
this time be as follows:

Default: Bonjour!
fr: Bonjour!
en: Hello!
es: ¡Hola!

Using a Session to Store the User’s Language
In a real application, the language to be used is likely to be set on each request so that each user
sees pages in their own language. In this section, I’ll show you one way of setting this up.

You’ll remember from Chapter 9 that each controller can have a __before__() method, which
is run before each controller action. This is a great place to set the language to be used for that
controller. You can also use Pylons’ session global to store the language to be used when the user
signs in. Replace the index() action with this:

def signin(self):
Place your sign in code here
Replace this with code to set the language for the signed in user
session['lang'] = request.params.getone('lang')
session.save()
return 'Signed in, language set to %s.'%request.params.getone('lang')

def __before__(self):
if 'lang' in session:

set_lang(session['lang'])

def index(self):
return _(u'Hello!')

When a user signs in, their language is set and saved in the session. On each subsequent
request, the language is looked up in the session and set automatically before each action is called.

To test this, visit http://localhost:5000/hello/signin?lang=es. You’ll see the message telling
you have been signed in. Now visit http://localhost:5000/hello/index, and you’ll see the message
in the language you signed in with, which in this case is Spanish.

If you want to set the language for each request in every controller rather than dealing with
each controller individually, you could write some similar code at the top of the lib/base.py
BaseController class’s __call__() method instead of in an individual controller’s __before__()
method:

def __call__(self, environ, start_response):
"""Invoke the Controller"""
WSGIController.__call__ dispatches to the Controller method
the request is routed to. This routing information is
available in environ['pylons.routes_dict']

if 'lang' in session:
set_lang(session['lang'])

return WSGIController.__call__(self, environ, start_response)

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION238

You’ll need to import the set_lang() function and the session global into that module, though:

from pylons.i18n.translation import set_lang
from pylons import session

If you delete the page controller’s __before__() method and visit http://localhost:5000/
hello/multiple again, notice that the default language is still the language you signed in with.

Advanced Internationalization Techniques
Now that you’ve seen how internationalization and localization work in practice in a Pylons appli-
cation, I can show you some of the more advanced techniques that will make your
internationalization and localization work easier.

Fallback Languages
You’ve already seen that if your code calls _() with a string that doesn’t exist in the language catalog
already being used, then the string itself will be returned. This is how the English version of the
Hello! message has been produced in the examples so far despite that the English .po file doesn’t
contain the translation explicitly. Although this is useful, Pylons also provides a much more sophis-
ticated mechanism that allows you to specify the order in which other message catalogs should be
searched for a message if the primary language doesn’t have a suitable translation.

If you have been following along with the examples so far, then French will be set as the default
language in the config file, and Spanish is set as the default language in the session. Set the default
language in the session to be French too by visiting http://localhost:5000/hello/signin?lang=fr.
Now change the index() action to use the word 'Goodbye!':

def index(self):
return _('Goodbye!')

You’ll remember that you didn’t add a translation for the Goodbye! message to the French mes-
sage catalog, but you did add it to the Spanish one.

With the current language set to French, visit http://localhost:5000/hello/index, and you
will see Goodbye! as the original text passed to the function is used because no French translation is
available.

Now change the example to add Spanish as a fallback language like this (if you are using the
__call__() version of the example, you will need to make the change in lib/base.py):

def __before__(self):
add_fallback('es')
if 'lang' in session:

set_lang(session['lang'])

This tells Pylons to look for messages in the Spanish catalog if there are no translations in the
French catalog. You'll need to import the add_fallback()function at the top of the file:

from pylons.i18n.translation import add_fallback

■Caution It is important that the call to add_fallback() happens before the call to set_lang(), or the fall-
back will not be used.

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 239

If you run the example again, you will see the message ¡Adiós!.
You can add as many fallback languages with the add_fallback() function as you like, and they

will be tested in the order you add them.
One case where using fallbacks in this way is particularly useful is when you want to display

content based on the languages requested by the browser in the HTTP_ACCEPT_LANGUAGE header. Typ-
ically the browser may submit a number of languages, so it is useful to add fallbacks in the order
specified by the browser so that you always try to display words in the language of preference of the
user, searching the other languages in order if a translation cannot be found. The languages defined
in the HTTP_ACCEPT_LANGAUGE header are available in Pylons as request.languages and can be used
like this:

def __before__(self):
for lang in request.languages:

add_fallback(lang)
if 'lang' in session:

set_lang(session['lang'])

You must be sure you have the appropriate languages supported if you are going to use this
approach, or you should test their existence before calling add_fallback().

Lazy Translations
Occasionally you might come across a situation when you need to translate a string when it is
accessed, not when the _() or other functions are called.

Consider this example:

set_lang('en')
text = _(u'Hello!')

class HelloController(BaseController):

def lazy(self):
resp = ''
for lang in ['fr','en','es']:

set_lang(lang)
resp += u'%s: %s
' % (get_lang(), _(u'Hello!'))

resp += u'Text: %s
' % text
return resp

If you run this, you get the following output:

['fr']: Bonjour!
['en']: Hello!
['es']: ¡Hola!
Text: Hello!

Notice that the text line shows Hello! even though the current language at the time the text
was generated was Spanish. This is because the function _(u'Hello') just before the controller
definition and after the imports is called when the default language is en, so the variable text gets
the value of the English translation, even though when the string was used, the default language
was Spanish.

The rule of thumb in these situations is to try to avoid using the translation functions in situa-
tions where they are not executed on each request. For situations where this isn’t possible, perhaps
because you are working with legacy code or with a library that doesn’t support internationaliza-
tion, you need to use lazy translations.

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION240

Modify the code to use lazy translations. Notice that the text variable is assigned its message
with the lazy_ugettext() function:

from pylons.i18n import get_lang, lazy_ugettext, set_lang

set_lang('en')
text = lazy_ugettext(u'Hello!')

class HelloController(BaseController):

def lazy(self):
resp = ''
for lang in ['fr','en','es']:

set_lang(lang)
resp += u'%s: %s
' % (get_lang(), _(u'Hello!'))

resp += u'Text: %s
' % text
return resp

This time you get the output expected:

['fr']: Bonjour!
['en']: Hello!
['es']: ¡Hola!
Text: ¡Hola!

There is one drawback to be aware of when using the lazy translation functions: they are not
actually strings. This means that if our example had used the following code, it would have failed
with the error cannot concatenate 'str' and 'LazyString' objects:

u'Text: ' + text + u'
'

For this reason, you should use the lazy translations only where absolutely necessary. Always
ensure they are converted to strings by calling str() or repr() before they are used in operations
with real strings.

Plural Forms
One thing to keep in mind when you are internationalizing an application is that other languages
don’t necessarily have the same plural forms as English. Although English has only two forms, sin-
gular and plural, Slovenian, for example, has singular, dual, and plural, which means that in
Slovenian one thing, two things, and three things would all be treated differently! That means that
the following will not work:

BAD!
if n == 1:

msg = _("There is one person here")
else:

msg = _("There are %(num)d people here") % {'num': n}

Pylons provides the ungettext() function internationalizing plural words. It can be used as fol-
lows:

translated_string = ungettext(
u'There is %(num)d person here',
u'There are %(num)d people here',
4

)

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 241

If you use 1 in the call to ugettext(), the first form will be used; if you use 0 or a number greater
than 1, then the second form will be used. Table 11-1 lists the options.

Table 11-1. The Results from the Original Message Catalog

Number Result

0 There are %(num)d people here

1 There is %(num)d person here

2 There are %(num)d people here

As you can see, no matter which translation is used, the result still contains the text %(num)d, so
you can use standard Python string formatting to substitute the correct value into the translation
after the correct form has been chosen for you:

final_string = translated_string % {'num': 4}

If you added the previous code to the sample project and reran the extract_messages tool, you
would find some lines similar to these in your .pot file:

#: translatedemo/controllers/hello.py:27
#, python-format
msgid "There is %(num)d person here"
msgid_plural "There are %(num)d people here"
msgstr[0] ""
msgstr[1] ""

The msgstr[0] and msgstr[1] lines give you the opportunity to customize the plurals for differ-
ent languages. You could then run update_catalog to update the .po files. Looking at the Spanish
.po file, you would see this (some lines have been omitted for brevity):

...
"Plural-Forms: nplurals=2; plural=(n != 1)\n"
...
...
#: translatedemo/controllers/hello.py:27
#, python-format
msgid "There is %(num)d person here"
msgid_plural "There are %(num)d people here"
msgstr[0] ""
msgstr[1] ""
...

The Plural-Forms definition at the top describes which plural version to use. In Spanish there
are two plurals, and the plural form should be used whenever the number of items isn’t 1. The trans-
lation for the singular form should go next to msgstr[0], and the translation for plural should go
next to msgstr[1]. When you recompile the message catalog, the ungettext() function will return
the correct form of the translation for the number passed to it.

You can find further details about how plural forms should be dealt with in the “The Format
of PO Files” section of GNU gettext’s manual (http://www.gnu.org/software/gettext/manual/
html_chapter/gettext_10.html#PO-Files).

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION242

Search Engine Considerations
One issue to be aware of when using a session to determine which version of a site to display, and
dynamically generating that page based on the language of the user, is that search engines will be
able to search the site in the default language only. This can be a problem if you want search
engines to be able to index all the pages on your web site, including the foreign-language versions.
In these situations, it can be better to use a different URL for each language.

To implement this, you might set up your URLs so that the first part of the URL path represents
the language to be used. For example, the English version of your site might be at /en, and the
Japanese version might be at /ja. You can then use Routes to extract the first part of the URL and
treat the rest of the URL as the page being requested, using the internationalization tools to pro-
duce the correct language version based on the language specified as the first part of the URL.

■Note The makers of the Opera web browser used a similar technique for the Pylons-based website at
http://widgets.opera.com. You can read more about the details of this implementation at
http://my.opera.com/WebApplications/blog/2008/03/17/search-engine-friendly.

Summary
This chapter covered the basics of internationalizing and localizing a web application. GNU gettext
is an extensive library, and the GNU gettext manual is highly recommended for more information.
Although the Pylons internationalization tools don’t support all the features of gettext, they do sup-
port the most commonly used ones, as you’ve seen in this chapter. The Babel package is also
improving all the time and includes tools not covered in this chapter for providing access to various
locale display names, localized number and date formatting, time zones, and more.

CHAPTER 11 ■ INTERNATIONALIZATION AND LOCALIZATION 243

245

C H A P T E R 1 2

Testing

Testing is the process of ensuring that the code you write performs in the way it was intended.
Testing encompasses many different aspects that are relevant to a Pylons application. For example,
it is important the libraries do what they are supposed to, that the controllers return the correct
HTML pages for the actions they are performing, and that the application behaves in a way that the
users find intuitive.

Here are some of the many reasons why writing effective tests is a very good idea when devel-
oping a Pylons application:

Fast refactoring: Over the course of most software development projects you’ll find that a lot of
the code you wrote at the very start of the project is modified before the final release. This isn’t
necessarily because the code contains bugs; it could be because requirements have changed or
because you’ve spotted a better way of implementing the same functionality. If you have
already written tests for the code you need to refactor and the tests pass after you’ve updated
the code, then you can be confident that the changes you made are unlikely to have introduced
any unexpected bugs.

Ensuring simple design: If writing unit tests for a particular set of classes, methods, or functions
turns out to be a difficult process, it is likely that the code is too complicated and not ade-
quately exposing the API that another developer interacting with your code might eventually
need. The fact you are able to write a unit test for a piece of code goes some way to ensuring it
is correctly designed.

Use case documentation: A set of tests serves to define the use cases for the code that is being
tested. This means the tests also form very effective documentation of how the code should
work.

At its heart, testing is about having confidence in the code you have written. If you have writ-
ten good tests, you can have a good degree of confidence that your code works as it should. Having
confidence is especially important if you are using beta or prerelease code in your application. As
long as you write tests to ensure the features of the product you are using behave as you require,
then you can have a degree of confidence that it is OK to use those particular features in your
application.

Although writing effective tests does take time, it is often better to spend time writing tests
early in the project than debugging problems later. If you have written tests, every time you make a
change to the code, then you can run the tests to see whether any of them fail. This gives you instant
feedback about any unforeseen consequences your code change has had. Without the tests, bugs
that are introduced might not be picked up for a long time, allowing for the possibility that new
code you write might depend on the code working in the incorrect way. If this happens, fixing the
bug would then break the new code you had written. This is why later in a project fixing minor bugs
can sometimes create major problems. By failing to write effective tests, you can sometimes end up
with a system that is difficult to maintain.

It is worth noting that Pylons and all the components that make up Pylons have their own
automated test suites. The Pylons tests are run every night on the latest development source using
a tool called Buildbot, and the results are published online. Without these extensive test suites, the
Pylons developers would not be able to have the confidence in Pylons that they do.

Types of Testing and the Development Process
In this chapter, I’ll describe three types of testing you can use to help avoid introducing bugs into
your Pylons project during the course of development:

• Unit testing

• Functional testing

• User testing

If you are interested in reading more about other types of software testing, the Wikipedia page
is a good place to start: http://en.wikipedia.org/wiki/Portal:Software_Testing.

The most common form of testing is unit testing. A unit test is a procedure used to validate that
individual units of your source code produce the expected output given a known input. In Python,
the smallest testable parts of a library or application are typically functions or methods. Unit tests
are written from a programmer’s perspective to ensure that a particular set of methods or functions
successfully perform a set of tasks. In the context of a Pylons application, you would usually write
unit tests for any helpers or other libraries you have written. You might also use a unit test to ensure
your model classes and methods work correctly. Your Pylons project has a test_models.py file in the
tests directory for precisely this purpose.

While unit tests are designed to ensure individual units of code work properly, functional tests
ensure that the higher-level code you have written functions in the way that users of your Pylons
application would expect. For example, a functional test might ensure that the correct form was dis-
played when a user visited a particular URL or that when a user clicked a link, a particular entry was
added to the database. Functional tests are usually used in the context of a Pylons application to
test controller actions.

Some people would argue that the best time to write unit and functional tests is before you
have written the code that they would test, and this might be an approach you could take when
developing your Pylons application. The advantages of this approach are the following:

• You can be confident the code you have written fulfils your requirements.

• It is likely the code you have written is not overengineered, because you have concentrated
on getting the test suite to pass rather than future-proofing your code against possible later
changes.

• You know when the code is finished once the test suite passes.

Another approach that helps you write code that meets your requirements without being
overengineered is to write the documentation for your Pylons project first and include code sam-
ples. Python comes with a library called doctest that can analyze the documentation and run the
code samples to check that they work in the way you have documented. You’ll learn more about
doctest in Chapter 13.

The final type of testing you should strongly consider integrating into your development
process is user testing. User testing doesn’t involve writing any automated tests at all but instead
typically involves getting together a willing and representative group of the intended users of your
product and giving them tasks in order to watch how they interact with the system. You then make
notes of any tasks they struggle with or any occasions where the software breaks because of their

CHAPTER 12 ■ TESTING246

actions and update your Pylons application accordingly, attributing any problems to deficiencies in
your software rather than the incompetence of your users.

The end users of your product are often very good people to test your application on because
they will have a similar (or greater) knowledge of the business rules for the tasks they are trying to
use the system for, but they might not have the technical knowledge you do. This means they are
much more likely to do unusual things during the course of their interaction with your applica-
tion—things you have learned from experience not to do. For example, they might use the Back
button after a POST request or copy unusual characters from software such as Microsoft Word that
might be in an unexpected encoding. This behavior helps highlight deficiencies in your software
that you may not have noticed yourself.

If you are developing a commercial product for a specific set of users, then there is a secondary
reason for involving them in the testing of your prototype. It can help familiarize them with the sys-
tem and give them a chance to highlight any gaps in the software as you are developing it; this in
turn vastly reduces the chance of the software not being accepted at the end of the development
process because the users have been involved all along the way. Ultimately, if the users of your
application are happy with the way your Pylons application works, then it fulfils its goal.

■Note Of course, user testing is a topic in its own right, and I won’t go into it further here. User testing is also an
important part of many software development methodologies that can be used with Pylons.

If you are interested in development methodologies, the Wikipedia articles on agile and iterative development
are good places to start and are often useful methodologies to choose for a Pylons project. You might also be inter-
ested to read about the Waterfall method, which is a methodology frequently used in larger IT projects but that
many people argue often doesn’t work in practice.

http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Waterfall_model

Unit Testing with nose
Writing unit tests without a testing framework can be a difficult process. The Python community is
fortunate to have access to many good quality unit testing libraries including the unittest module
from the Python standard library, py.test, and nose. Pylons uses nose to run the test suite for your
Pylons application because it currently has a slightly more advanced feature set than the others.
nose is installed automatically when you install Pylons, so it is ready to go.

Before you learn about how to write unit tests specifically for Pylons, let’s start by writing some
simple tests and using nose to test them.

Introducing nose
Here’s what a very simple unit test written using nose might look like:

def test_add():
assert 1+1 == 2

def test_subtract():
a = 1
b = a + 1
c = b-1
assert b-a == c

CHAPTER 12 ■ TESTING 247

The example uses the Python keyword assert to test whether a particular condition is True or
False. Using the assert statement in this way is equivalent to raising an AssertionError but is just a
little easier to write. You could replace the test_add() function with this if you prefer:

def test_add():
if not 1+1 == 2:

raise AssertionError()

nose differentiates between assertion errors and other exceptions. Exceptions as a result of
a failed assertion are called failures, whereas any other type of exception is treated as an error.

To test the example code, save it as test_maths.py, and run the following command:

$ nosetests test_maths.py

You’ll see the following output:

..
--
Ran 2 tests in 0.001s

OK

For every test that passes, a . character is displayed. In this case, since there are only two tests,
there are two . characters before the summary. Now if you change the line a = 1 to a = 3 in the
test_subtract() function and run the test again, the assertion will fail, so nose tells you about the
failure and displays F instead of the . for the second test:

.F
==
FAIL: test_maths.test_subtract
--
Traceback (most recent call last):
File "/home/james/lib/python2.5/site-packages/nose-0.10.3-py2.4.egg/➥

nose/case.py", line 182, in runTest
self.test(*self.arg)

File "/home/james/Desktop/test_maths.py", line 8, in test_subtract
assert b-a == c

AssertionError

--
Ran 2 tests in 0.002s

FAILED (failures=1)

This isn’t too helpful because you can’t see the values of a, b, or c from the error message, but
you can augment this result by adding a message after the assert statement to clarify what you are
testing like this:

assert b-a == c, "The value of b-a does not equal c"

which results in the following:

CHAPTER 12 ■ TESTING248

.F
==
FAIL: test_maths.test_subtract
--
Traceback (most recent call last):
File "/home/james/lib/python2.4/site-packages/nose-0.10.3➥

-py2.5.egg/nose/case.py", line 182, in runTest
self.test(*self.arg)

File "/home/james/Desktop/test_maths.py", line 8, in test_subtract
assert b-a == c

AssertionError: The value of b-a does not equal c

--
Ran 2 tests in 0.002s

FAILED (failures=1)

This is better but still not particularly helpful because you still can’t tell the values of a, b, or c
from the output. nose has three different ways to help you solve this problem, covered in the follow-
ing three sections.

Debug Messages
Any print statements you add to your tests are displayed only if the test fails or results in an error.
Try modifying the test_subtract() function so that it looks like this:

def test_subtract():
a = 3
print "a is %s"%a
b = a + 1
print "b is %s"%b
c = b-1
print "c is %s"%c
assert b-a == c

If you run the test again, you’ll see the following extra information displayed after the
AssertionError:

-------------------- >> begin captured stdout << ---------------------
a is 3
b is 4
c is 3

--------------------- >> end captured stdout << ----------------------

From this you can easily see that 4-3 != 3, but the test output wouldn’t be cluttered with these
debug messages unless the test failed. If you would prefer nose to always print debug messages like
these, you can use the -s option so that it doesn’t capture the standard output stream.

Detailed Errors
If you run nose with the -d flag, it will try to display the values of the variables in the assert
statement:

$ nosetests -d test_maths.py

CHAPTER 12 ■ TESTING 249

In this case, the output also contains the following line, so you can immediately see the
mistake:

>> assert 4-3 == 3

Command-Line Debugging
If you want even more flexibility to debug the output from your tests, you can start nose with the
--pdb and --pdb-failures options, which drop nose into debugging mode if it encounters any
errors or failures, respectively. As the option names suggest, nose invokes pdb (the Python debug-
ger), so you can use the full range of commands supported by the pdb module.

Let’s give it a try—start by running the test again with the new flags set:

$ nosetests --pdb --pdb-failures test_maths.py

Now when the failure occurs, you’ll see the pdb prompt:

.> /home/james/Desktop/test_maths.py(11)test_subtract()
-> assert b-a == c
(Pdb)

You can display a list of commands with h:

Documented commands (type help <topic>):
==
EOF break condition disable help list q step w
a bt cont down ignore n quit tbreak whatis
alias c continue enable j next r u where
args cl d exit jump p return unalias
b clear debug h l pp s up

Miscellaneous help topics:
==========================
exec pdb

Undocumented commands:
======================
retval rv

Of these, some of the most important are l, which lists the code nearby, and q, which exits the
debugger so that the tests can continue. The prompt also works a bit like a Python shell, allowing
you to enter commands. Here’s an example session where you print some variables, obtain help on
the l command, and then exit the debugger with q:

(Pdb) print b-a
1
(Pdb) print c
3
(Pdb) h l
l(ist) [first [,last]]
List source code for the current file.
Without arguments, list 11 lines around the current line
or continue the previous listing.
With one argument, list 11 lines starting at that line.
With two arguments, list the given range;
if the second argument is less than the first, it is a count.
(Pdb) l

CHAPTER 12 ■ TESTING250

6 print "a is %s"%a
7 b = a + 1
8 print "b is %s"%b
9 c = b-1
10 print "c is %s"%c
11 -> assert b-a == c
12
[EOF]
(Pdb) q;

The pdb module and all its options are documented at http://docs.python.org/lib/
module-pdb.html.

Search Locations
nose uses a set of rules to determine which tests it should run. Its behavior is best described by the
text from the nose documentation:

nose collects tests automatically from python source files, directories and packages found
in its working directory (which defaults to the current working directory). Any python
source file, directory or package that matches the testMatch regular expression (by default:
(?:^|[\b_\.-])[Tt]est) will be collected as a test (or source for collection of tests). In addi-
tion, all other packages found in the working directory will be examined for python source
files or directories that match testMatch. Package discovery descends all the way down the
tree, so package.tests and package.sub.tests and package.sub.sub2.tests will all be
collected.

Within a test directory or package, any python source file matching testMatch will be exam-
ined for test cases.Within a test module, functions and classes whose names match testMatch
and TestCase subclasses with any name will be loaded and executed as tests.

To specify which tests you want to run, you can pass test names on the command line. Here’s
an example that will search dir1 and dir2 for test cases and will also run the test_b() function in
the module test_a.py in the tests directory. All these tests will be looked for in the some_place
directory instead of the current working directory because the code uses the -w flag:

$ nosetests -w some_place dir1 dir2 tests/test_a.py:test_b

When you are developing a Pylons application, you would normally run nosetests from the
Pylons project directory (the directory containing the setup.py file) so that nose can automatically
find your tests.

■Note For more information about nose, see the wiki at http://code.google.com/p/python-nose/wiki/
NoseFeatures.

CHAPTER 12 ■ TESTING 251

Functional Testing
Pylons provides powerful unit testing capabilities for your web application utilizing paste.fixture
(documented at http://pythonpaste.org/testing-applications.html#the-tests-themselves) to
emulate requests to your web application. Pylons integrates paste.fixture with nose so that you
can test Pylons applications using the same techniques you learned for nose in the previous
section.

■Note It is likely that at some point Pylons will switch to using the newer WebTest package, but since WebTest
is simply an upgrade of paste.fixture with some better support for Pylons’ newer request and response
objects, the upgrade shouldn’t introduce huge changes, and therefore the contents of this section should still
largely apply.

To demonstrate functional testing with paste.fixture, let’s write some tests for the SimpleSite
application. If you look at the SimpleSite project, you’ll notice the tests directory. Within it is a
functional directory for functional tests that should contain one file for each controller in your
application. These are generated automatically when you use the paster controller command to
add a controller to a Pylons project. To get started, update the tests/functional/test_page.py file
that was generated when you created the page controller so that it looks like this:

from simplesite.tests import *

class TestPageController(TestController):

def test_view(self):
response = self.app.get(url_for(controller='page', action='view', id=1))
assert 'Home' in response

The page controller doesn’t have an index() action because you replaced it as part of the tuto-
rial in Chapter 8, so the previous example tests the view() action instead.

The self.app object is a Web Server Gateway Interface application representing the whole
Pylons application, but it is wrapped in a paste.fixture.TestApp object (documented at http://
pythonpaste.org/modules/fixture.html). This means the self.app object has the methods get(),
post(), put(), delete(), do_request(), encode_multipart(), and reset(). Unless you are doing
something particularly clever, you would usually just use get() and post(), which simulate GET
and POST requests, respectively.

get(url, params=None, headers=None, extra_environ=None, status=None,
expect_errors=False): This gets the URL path specified by url using a GET request and returns
a response object.

• params: A query string, or a dictionary that will be encoded into a query string. You may
also include a query string on the url argument.

• headers: A dictionary of extra headers to send.

• extra_environ: A dictionary of environmental variables that should be added to the
request.

CHAPTER 12 ■ TESTING252

• status: The integer status code you expect (if not 200 or 3xx). If you expect a 404
response, for instance, you must give status=404, or an exception will be raised. You
can also give a wildcard, like '3*' or '*'.

• expect_errors: If this is not True, then if anything is written to wsgi.errors, an excep-
tion wlll be raised. You’ll learn about wsgi.errors in Chapters 16 and 20. If the value is
set to True, then non-200/3xx responses are OK.

post(url, params='', headers=None, extra_environ=None, status=None, upload_files=
None, expect_errors=False): This is very similar to the get() method, but it performs a POST
request, so params are put in the body of the request rather than the query string. It takes simi-
lar arguments and returns a response object.

• upload_files: Should be a list of [(fieldname, filename, file_content)] representing
files to upload. You can also use just [(fieldname, filename)], and the file content will
be read from disk.

The example you’ve just added to tests/functional/test_page.py uses the get() method to
simulate a GET request to the URL /page/view/1. Because a fully configured Pylons environment is
set up in the simplesite.tests module, you are able to use url_for() to generate the URL in the
same way you would in a Pylons controller. The get() method returns a paste.fixture response
object. You can then use this to check the response returned was the one you expected. In this case,
you check that the home page contains the text 'Home' somewhere in the response.

In addition to the methods on the self.app() object, Pylons also gives you access to some of
the Pylons globals that have been created during the request. They are assigned as attributes of the
paste.fixture response object:

response.session: Session object

response.req: The Pylons request object based on the WebOb Request

response.c: The template context global containing variables passed to templates

response.g: The Pylons app globals object

response.response: The Pylons response global

To use them, just access the attributes of the response after you’ve used a get() or post()
method:

def test_view(self):
response = self.app.get(url_for(controller='page', action='view', id=1))
assert 'Home' in response
assert 'REQUEST_METHOD' in response.req.environ

■Note The paste.fixture response object already has its own request object assigned to it as the .request
attribute, which is why the Pylons request global is assigned to the .req attribute instead.

For simple cases, it is fine to work with the paste.fixture response object, but for more com-
plicated cases, you will probably prefer to work with the more familiar Pylons response global
available as response.response.

Before you test the previous method, you really need to understand exactly how the test setup
works because, as it stands, it could damage your development setup. Let’s see why in the next
section.

CHAPTER 12 ■ TESTING 253

How Does the Test Setup Work?
To run the test, you would execute the nosetests command, but before you do, let’s consider what
this command actually does.

When the nosetests command is executed, it reads some of its configuration from the project’s
setup.cfg file. This file contains a section that looks like this:

[nosetests]
with-pylons=test.ini

This tells nose to use the test.ini file to create a Pylons application rather than the
development.ini file you’ve been using so far.

■Note You can also choose the config file to use for the tests by specifying the --with-pylons option on the
command line. Likewise, you can also put other nosetests command-line options in the setup.cfg file if that is
more convenient. Here are some examples of options you could set:

[nosetests]
verbose=True
verbosity=2
with-pylons=test.ini
detailed-errors=1

The test.ini file is specifically for your testing configuration and (if properly configured)
allows you to keep your testing and development setups completely separate. It looks like this:

#
SimpleSite - Pylons testing environment configuration
#
The %(here)s variable will be replaced with the parent directory of this file
#
[DEFAULT]
debug = true
Uncomment and replace with the address which should receive any error reports
#email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[app:main]
use = config:development.ini

Add additional test specific configuration options as necessary.

This should seem very familiar, but notice the line marked in bold in the [app:main] section.
This causes the test.ini [app:main] section to use exactly the same configuration as the
development.ini file’s [app:main] section. Although this can save you some effort in some circum-
stances, it can also cause your tests to interfere with your development setup if you are not careful.

CHAPTER 12 ■ TESTING254

Once nosetests has correctly parsed the test.ini file, it will look for available tests. In doing
so, it imports the tests/__init__.py module, which executes this line:

SetupCommand('setup-app').run([config['__file__']])

Although it looks fairly innocuous, this results in the equivalent of this command being
executed:

$ paster setup-app test.ini

You’ll recall from Chapter 8 that this will run the project websetup.py file’s setup_app() func-
tion with the configuration from test.ini, but because the test.ini file currently uses the
configuration from the [app:main] section of the development.ini file, it will be called with the
same sqlalchemy.url as your development setup. If your websetup.py was badly written, this
could damage the data in your development database.

To make matters worse, the test.ini file doesn’t come with the development.ini file’s logging
configuration, so you can’t even see what is happening behind the scenes. Copy all the logging lines
from the development.ini file to the end of test.ini starting with # Logging configuration and
ending at the end of the file. If you run nosetests again, you will see what has been happening
behind the scenes:

$ nosetests
20:14:02,807 INFO [simplesite.websetup] Adding home page...
20:14:02,918 INFO [simplesite.websetup] Successfully set up.
.
--
Ran 1 test in 0.347s

OK

As you can see, every time the test suite was run, a new home page was accidentally added to
the database. You can confirm this by starting the Paste HTTP server and visiting http://localhost:
5000/page/list to verify that an extra home page has been added.

Now that you understand what is happening, update the test.ini file with its own configura-
tion so the [app:main] section looks like this:

[app:main]
use = egg:SimpleSite
full_stack = true
cache_dir = %(here)s/data
beaker.session.key = simplesite
beaker.session.secret = somesecret

SQLAlchemy database URL
sqlalchemy.url = sqlite:///%(here)s/test.db

Notice that sqlalchemy.url has been changed to use test.db. This still doesn’t prevent a new
home page from being added each time the tests run, so you should update websetup.py too. Ide-
ally, you want a completely fresh database each time the tests are run so that they are consistent
each time. To achieve this, you need to know which config file is being used to run the tests. The
setup_app() function takes a conf object as its second argument. This object has a .filename attri-
bute that contains the name of the file used to invoke the setup_app() function.

Update the setup_app() function in websetup.py to look like this. Notice the import of os.path
as well as the code to drop existing tables if using the test.ini file.

CHAPTER 12 ■ TESTING 255

"""Setup the SimpleSite application"""
import logging
import os.path
from simplesite import model

from simplesite.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
"""Place any commands to setup simplesite here"""
load_environment(conf.global_conf, conf.local_conf)
Load the models
from simplesite.model import meta
meta.metadata.bind = meta.engine
filename = os.path.split(conf.filename)[-1]
if filename == 'test.ini':

Permanently drop any existing tables
log.info("Dropping existing tables...")
meta.metadata.drop_all(checkfirst=True)

Continue as before
Create the tables if they aren't there already
meta.metadata.create_all(checkfirst=True)
log.info("Adding home page...")
page = model.Page()
page.title=u'Homepage'
page.content = u'Welcome to the SimpleSite home page.'
meta.Session.save(page)
meta.Session.commit()
log.info("Successfully set up.")

With these changes in place, let’s run the test again:

$ nosetests
14:02:58,646 INFO [simplesite.websetup] Dropping existing tables...
... some lines of output ommitted ...
14:02:59,603 INFO [simplesite.websetup] Adding homepage...
14:02:59,617 INFO [sqlalchemy.engine.base.Engine.0x...26ec] BEGIN
14:02:59,622 INFO [sqlalchemy.engine.base.Engine.0x...26ec] INSERT INTO page ➥
(content, posted, title, heading) VALUES (?, ?, ?, ?)
14:02:59,623 INFO [sqlalchemy.engine.base.Engine.0x...26ec] [u'Welcome to ➥
the SimpleSite home page.', '2008-11-04 14:02:59.622472', u'Home Page', None]
14:02:59,629 INFO [sqlalchemy.engine.base.Engine.0x...26ec] COMMIT
14:02:59,775 INFO [simplesite.websetup] Successfully set up
.
--
Ran 1 test in 0.814s

OK

This time the setup_app() function can determine that it is being called with the test.ini con-
fig setup, so it drops all the tables before performing the normal setup. Because you updated the
test.ini file with a new SQLite database, you’ll notice the test database test.db has been created in
the same directory as test.ini.

CHAPTER 12 ■ TESTING256

Testing the save() Action
The page controller’s save() action currently looks like this:

@restrict('POST')
@validate(schema=NewPageForm(), form='edit')
def save(self, id=None):

page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
for k,v in self.form_result.items():

if getattr(page, k) != v:
setattr(page, k, v)

meta.Session.commit()
session['flash'] = 'Page successfully updated.'
session.save()
Issue an HTTP redirect
response.status_int = 302
response.headers['location'] = h.url_for(controller='page', action='view',

id=page.id)
return "Moved temporarily"

Let’s write a test to check that this action behaves in the correct way:

• GET requests are disallowed by the @restrict decorator.

• The action returns a 404 Not Found response if no ID is specified.

• The action returns a 404 Not Found response for IDs that don’t exist.

• Invalid data should result in the form being displayed.

• The action saves the updated data in the database.

• The action sets a flash message in the session.

• The action returns a redirect response to redirect to the create action.

You could write the tests for each of these in a single method of the TestPageController class,
but if one of the tests failed for any reason, nose would not continue with the rest of the method. On
the other hand, some of the tests are dependent on other tests passing, so you cannot write them all
as separate methods either. For example, you can’t test whether a flash message was set if saving the
page failed. To set up the tests correctly, let’s create the following methods:

def test_save_prohibit_get(self):
"""Tests to ensure that GET requests are prohibited"""

def test_save_404_invalid_id(self):
"""Tests that a 404 response is returned if no ID is specified
or if the ID doesn't exist"""

def test_save_invalid_form_data(self):
"""Tests that invalid data results in the form being returned with
error messages"""

def test_save(self):
"""Tests that valid data is saved to the database, that the response redirects
to the view() action and that a flash message is set in the session"""

CHAPTER 12 ■ TESTING 257

These tests will require some imports, so add the following lines to the top of tests/
functional/test_page.py:

from routes import url_for
from simplesite.model import meta
from urlparse import urlparse

Now let’s implement the test methods starting with test_save_prohibit_get(), which looks
like this:

class TestPageController(TestController):

def test_save_prohibit_get(self):
"""Tests to ensure that GET requests are prohibited"""
response = self.app.get(

url=url_for(controller='page', action='save', id='1'),
params={

'heading': u'Updated Heading',
'title': u'Updated Title',
'content': u'Updated Content',

},
status = 405

)

As you can see, the example uses the get() method of self.app to simulate a GET request to
the save() action with some sample params, which will be sent as part of the query string. By
default, the get() and post() methods expect either a 200 response or a response in the 300s and
will consider anything else an error. In this case, you expect the request to be denied with a 405
Method Not Allowed response, so to prevent paste.fixture from raising an exception, you have to
specify the status parameter explicitly. Because paste.fixture checks that the status will be 405,
you don’t have to add another check on the response object.

Now let’s look at the test_save_404_invalid_id() method:

def test_save_404_invalid_id(self):
""Tests that a 404 response is returned if no ID is specified
or if the ID doesn’t exist"""
response = self.app.post(

url=url_for(controller='page', action='save', id=''),
params={

'heading': u'Updated Heading',
'title': u'Updated Title',
'content': u'Updated Content',

},
status=404

)
response = self.app.post(

url=url_for(controller='page', action='save', id='2'),
params={

'heading': u'Updated Heading',
'title': u'Updated Title',
'content': u'Updated Content',

},
status=404

)

As you can see, this code is similar but uses the post() method and performs two tests rather
than one. In the first, no ID is specified, and in the second the ID specified doesn’t exist. In both
cases, you expect a 404 HTTP response, so the status parameter is set to 404.

CHAPTER 12 ■ TESTING258

The test_save_invalid_form_data() method is more interesting. Once again a POST request is
triggered, but this time the title is empty, so the @validate decorator should cause the page to be
redisplayed with the error message Please enter a value:

def test_save_invalid_form_data(self):
"""Tests that invalid data results in the form being returned with
error messages"""
response = self.app.post(

url=url_for(controller='page', action='save', id='1'),
params={

'heading': u'Updated Heading',
title is required so this next entry is invalid
'title': u'',
'content': u'Updated Content',

}
)
assert 'Please enter a value' in response

As you can see from the last line, the presence of the error message in the response is tested.
Because you expect a 200 HTTP response, there is no need to specify the status argument, but you
can if you like.

Finally, let’s look at the test_save() method:

def test_save(self):
"""Tests that valid data is saved to the database, that the response redirects
to the view() action and that a flash message is set in the session"""

response = self.app.post(
url=url_for(controller='page', action='save', id='1'),
params={

'heading': u'Updated Heading',
'title': u'Updated Title',
'content': u'Updated Content',

}
)

Test the data is saved in the database (we use the engine API to
ensure that all the data really has been saved and isn't being returned
from the session)
connection = meta.engine.connect()
result = connection.execute(

"""
SELECT heading, title, content
FROM page
WHERE id=?
""",
(1,)

)
connection.close()
row = result.fetchone()
assert row.heading == u'Updated Heading'
assert row.title == u'Updated Title'
assert row.content == u'Updated Content'

Test the flash message is set in the session
assert response.session['flash'] == 'Page successfully updated.'

CHAPTER 12 ■ TESTING 259

Check the respone will redirect to the view action
assert urlparse(response.response.location).path == url_for(

controller='page', action='view', id=1)
assert response.status == 302

The first part of this test generates a paste.fixture response after posting some valid data to the
save() action. A SQLAlchemy connection object is then created to perform a SQL SELECT operation
directly on the database to check the data really has been updated. Next you check the session con-
tains the flash message. You’ll remember from earlier in the chapter that certain Pylons globals
including session are available as attributes of the response object. In this example, response.
session is tested to ensure the flash message is present. Finally, you want to check the HTTP
response headers contain the Location header with the correct URL to redirect the browser to the
view() action. Here we are using the Pylons response object because it has a .location attribute
specifying the location header rather than the paste.fixture response object. The location header
contains the whole URL, so you use urlparse() to just compare that the path component matches
the path to the view() action.

Once you’ve implemented the tests, you can check they pass by running nosetests in your
main project directory:

$ nosetests simplesite/tests/functional/test_page.py
... log output omitted ...
..
--
Ran 4 tests in 0.391s

OK

The tests all pass successfully, so you can be confident the save() action functions as it is sup-
posed to function.

■Tip The TestPageController is derived from the TestController class, which itself subclasses the
standard Python unittest.TestCase class. This means you can also use its helper methods in your tests. The
unittest.TestCase object is documented at http://docs.python.org/lib/testcase-objects.html.
This is well worth a read if you plan to write anything more than simple tests.

Testing Your Own Objects
As you saw earlier in the chapter, Pylons adds certain objects to the response object returned by
paste.fixture when you call the self.app object with one of the HTTP methods such as get() or
post(). You can also set up your own objects to be added to the response object. If a test is being
run, Pylons makes available a paste.testing_variables dictionary in the request.environ diction-
ary. Any objects you add to this dictionary are automatically added as attributes to the paste.
fixture response object. For example, if you had a custom Cache object that you wanted to make
available in the tests, you might modify the __call__() method in the BaseController in your pro-
ject’s lib/base.py file to look like this:

CHAPTER 12 ■ TESTING260

class BaseController(WSGIController):

def __call__(self, environ, start_response):
Add the custom cache object
if 'paste.testing_variables' in environ:

environ['paste.testing_variables']['cache'] = CustomCacheObj()
try:

return WSGIController.__call__(self, environ, start_response)
finally:

meta.Session.remove()

In the TestPageController you would now find the response object has a .cache attribute:

def test_cache(self):
response = self.app.get(url(controller='page', action='view', id='1'))
assert hasattr(response, 'cache') is True

For more details on running tests using paste.fixture, visit http://pythonpaste.org/
testing-applications.html#the-tests-themselves.

Interactive Shell
Sometimes it is useful to be able to test your application from the command line. As you saw earlier
in the chapter, one method for doing this is to use the --pdb and --pdb-failures options with nose
to debug a failing test, but what if you want to quickly see how a particular part of your Pylons
application behaves to help you work out how you should write your test? In that case, you might
find the Pylons interactive shell useful.

The Pylons interactive shell enables you to use all the tools you would usually use in your tests
but in an interactive way. This is also particularly useful if you can’t understand why a particular test
is giving you the result it is. The following command starts the interactive shell with the test setup,
but you could equally well specify development.ini if you wanted to test your development setup:

$ paster shell test.ini

Here’s the output you receive:

Pylons Interactive Shell
Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)]

All objects from simplesite.lib.base are available
Additional Objects:
mapper - Routes mapper object
wsgiapp - This project's WSGI App instance
app - paste.fixture wrapped around wsgiapp

>>>

As you can see, the shell provides access to the same objects as you have access to in the
actions of your functional test classes.

You can use the Pylons interactive shell in the same way you would usually use a Python shell.
Here are some examples of its use:

CHAPTER 12 ■ TESTING 261

>>> response = app.get('/page/view/1')
13:24:31,824 INFO [sqlalchemy.engine.base.Engine.0x..90] BEGIN
13:24:31,828 INFO [sqlalchemy.engine.base.Engine.0x..90] ➥
SELECT page.id AS page_id, page.content AS page_content, ➥
page.posted AS page_posted, page.title AS page_title,➥
page.heading AS page_heading
FROM page
WHERE page.id = ?
LIMIT 1 OFFSET 0
13:24:31,828 INFO [sqlalchemy.engine.base.Engine.0x..90] [1]
>>> assert 'Updated Content' in response
>>> print response.req.environ.has_key('REMOTE_USER')
False
>>>

Notice that you receive the same logging output because of the logging configuration you
added to test.ini earlier in the chapter. Also notice that because you’ve already run the nosetests
command, the database currently has the text Updated Content for the content rather than the mes-
sage Welcome to the SimpleSite home page., which was the original value.

Summary
In this chapter, you saw how nose, paste.fixture, and the Pylons interactive shell work together to
allow you to test Pylons applications. You’ve seen how to use some of the more common options
available to nose to customize the output from the tests and how to debug failures and errors with
Python’s pdb module. You also learned the difference between unit testing, functional testing, and
user testing and saw why all of them are important. You also now know exactly how Pylons sets up
your tests so that you can customize their behavior by changing the websetup.py file or adding new
objects to the paste.fixture response object.

In the next chapter, you’ll look at some of the recommended ways to document a Pylons proj-
ect, and you’ll learn about one more type of testing known as a doctest, which allows examples from
within the documentation to be tested directly.

CHAPTER 12 ■ TESTING262

263

C H A P T E R 1 3

Documentation

In this chapter, you’ll learn about the tools you can use to document your Pylons applications.
Documentation can take a number of forms:

• Source code documentation (comments and docstrings)

• API documentation

• User guides

• Developer guides

The combination of approaches you choose to use for your project will depend on who will be
using it and in what manner. For example, if you are developing an application on your own for
your home page, you might decide that source code documentation is sufficient. If you are writing
a library to support a Pylons application and you hope other developers will use it, then API docu-
mentation will be important. If you are creating an application like the SimpleSite tutorial
application that might eventually be distributed on the Internet, then a user guide explaining how
to install the application and what functionality it contains will be important. Finally, if you are
developing a Pylons application or library that you hope other developers will contribute to or if
you are working in a larger team, you will need developer guides that explain the structure of the
code, the conventions being used, and any particular code styles that the application uses.

The tools you’ll learn about in this chapter will help you with each of these types of
documentation.

Python’s Documentation Tools
The Python language has very good support for source code documentation. In the following sec-
tions, I’ll cover some of the language features that facilitate writing documentation as well as some
of the tools available in the Python standard library for extracting documentation from Python
source code.

Comments
Source code comments are a great way to leave information about your programs that will be read
at a later time by people (possibly yourself) who need to know what you were thinking at the time
you wrote them. They should be used anywhere you are doing something nonstandard or anywhere
you think someone coming fresh to the code might misunderstand your intentions.

Luckily, Python code is generally fairly easy to read and understand, so a lot of the time you
won’t need to write detailed comments about the code itself because it should be self-illuminating.
Comments like the following one, for example, add no value and are best avoided:

set i to 1
i = 1

As you’ll see next, a feature of Python known as a docstring is ideal for more detailed source
code descriptions.

Docstrings
Python treats certain strings as documentation. If a bare string appears immediately at the begin-
ning of a module, class, method, or function definition, with nothing but whitespace or comments
before it, it will be considered the object’s docstring.

Here are some examples of docstrings:

>>> def test():
... "This is a test function"
...
>>> class Test:
... """
... This is a test class
... """
... def test(self):
... '''
... This is a test method
... which is defined on more than one line.
... '''
...
>>>

Internally, Python assigns each docstring to a variable named __doc__ attached to the object
being documented, and in fact you can access this directly:

>>> print test.__doc__
This is a test function
>>> print Test.__doc__

This is a test class

>>> print Test().__doc__

This is a test class

>>> print Test.test.__doc__

This is a test method
which is defined on more than one line

>>>

Docstrings enable you to write detailed documentation describing the object they represent.
That documentation can then be read by anyone looking at the source code to understand what the
code does. In addition, thanks to Python’s introspection abilities and various tools that can extract
the docstring itself, detailed documentation can be produced in a variety of formats. You’ll learn
about some of these tools in this chapter, starting with the built-in help()function.

CHAPTER 13 ■ DOCUMENTATION264

The Built-In help() Function
The Python language has built-in support for help messages via the help() function. The best way
to see how it works is to load an interactive Python prompt and test it. Let’s try to get help on the
integer 1:

>>> help(1)
Help on int object:

class int(object)
| int(x[, base]) -> integer
|
| Convert a string or number to an integer, if possible. A floating point
| argument will be truncated towards zero (this does not include a string
| representation of a floating point number!) When converting a string, use
| the optional base. It is an error to supply a base when converting a
| non-string. If the argument is outside the integer range a long object
| will be returned instead.
|
| Methods defined here:
|
| __abs__(...)
| x.__abs__() <==> abs(x)
|
| __add__(...)
| x.__add__(y) <==> x+y
|
| __and__(...)
| x.__and__(y) <==> x&y
|

As you can see, detailed help on the behavior of Python integers is returned (I’ve shown only
the first few lines for brevity).

The information help() displays comes from a combination of introspection of the object
passed to it and any docstrings associated with the object itself or any related objects. For help()
to work effectively, you need to write good docstrings.

The help() function will reformat docstrings to remove whitespace and allow them to be better
displayed on the command line. If you look at the example in the previous section, you’ll notice that
the whitespace in the string was maintained in each of the .__doc__ variables themselves, but as
you’ll see from the following example, unnecessary whitespace is removed by help():

>>> help(Test.test)
Help on method test in module __main__:

test(self) unbound __main__.Test method
This is a test method
which is defined on more than one line

This allows you to write multiline docstrings with the same indentation as the module, class,
function, or method that they describe, which helps keep your source code neater.

■Note Many tools that operate on docstrings will treat the first line of a multiline string as having special signifi-
cance. For example, nose, which you learned about in the previous chapter, will add the first line of the docstring
on a test method to the error output if that test fails. You should therefore make sure the first line contains an
appropriate summary if you are using a multiline docstring.

CHAPTER 13 ■ DOCUMENTATION 265

The whole Python standard library makes extensive use of docstrings as does Pylons. In fact, all
the API documentation for Pylons is currently generated directly from docstrings using a tool called
Sphinx, which you’ll learn about later in the chapter. Here is an example of the first few lines of out-
put you’ll see if you use the help() function on the pylons module:

>>> import pylons
>>> help(pylons)
Help on package pylons:

NAME
pylons - Base objects to be exported for use in Controllers

FILE
/Users/james/pylons-dev/pylons/__init__.py

PACKAGE CONTENTS
commands
config
configuration
controllers (package)
database
decorator
decorators (package)
error
helpers
i18n (package)
legacy
log
middleware
templates (package)
templating
test
testutil
util
wsgiapp

Documentation generated by help() is very useful at the Python console but less useful if you
are coding an application. Luckily, the same docstrings can also be used to generate browseable
documentation in HTML.

Doctests
From the previous chapter you’ll recall that one method for testing code was to use Python’s doctest
module, which runs the Python code specified in the documentation to check that it works cor-
rectly. A doctest is simply a piece of sample code within a docstring but written as if it were typed at
a Python interactive prompt.

Chapter 5 contained a simple emphasize() function in one of the examples that simply
wrapped some HTML in and tags, escaping the HTML if it isn’t a literal. Let’s add a doc-
string to the function and add a doctest to the docstring. Save this as emphasize_helper.py:

CHAPTER 13 ■ DOCUMENTATION266

from webhelpers.html import literal, HTML

def emphasize(value):
"""\
Emphasize some text by wrapping it in and tags

Any value passed to this function is HTML escaped if it is not
an instance of a webhelpers.html literal().

Here is an example that demonstrates how the helper works:

>>> emphasize('Greetings')
literal(u'Greetings')
>>> print emphasize('Greetings')
Greetings

"""
return HTML.em(value)

I think you’ll agree this is a lot of documentation for such a simple function, but it illustrates
the point. The idea is that if you were to start a Python interactive prompt and import everything
contained in the file and then if you copied the lines starting with >>> into the interactive prompt,
the lines following them would be exactly what was produced. The doctest module can perform
this check automatically.

The following Python script could then be used to extract the docstring and run the test. Save it
as run_doctest.py:

import emphasize_helper
import doctest
doctest.testmod(emphasize_helper)

Run the test like this:

$ python run_doctest.py

If the test passes, no output will be generated. Now try introducing an error, perhaps by remov-
ing the final tag from the second example. If you run the test again, you’ll get the following
output:

**
File "/Users/james/emphasize_helper.py", line 13, in emphasize_helper.emphasize
Failed example:

print emphasize('Greetings')
Expected:

Greetings
Got:

Greetings
**
1 items had failures:

1 of 2 in emphasize_helper.emphasize
Test Failed 1 failures.

Docstrings aren’t the only place you might want to write Python interactive prompt examples.
You might also write them in standard documentation. The doctest module can also be used to
extract doctests from ordinary text files like this:

import doctest
doctest.testfile('docs.txt')

CHAPTER 13 ■ DOCUMENTATION 267

Now that you’ve seen how to use doctests, you might consider incorporating them into the
tests you learned about in the previous chapter. Generally speaking, doctests are more appropriate
for testing functions and methods without a large number of dependencies. This makes them great
for testing helpers but less suited to testing Pylons controller actions where you would also have to
find some way of setting up the Pylons globals as part of the test.

For more information on doctests, take a look at the doctest module documentation at
http://docs.python.org/library/doctest.html#module-doctest.

Introducing reStructuredText
Now that you’ve learned about doctests, let’s return to the business of writing documentation.
As you’ll recall, tools like the help() function can introspect objects and extract docstrings, but
one problem with this approach is that it doesn’t allow for any formatting. For example, you can’t
mark code blocks or make certain words bold or italic. To solve this problem, a language called
reStructuredText has become standard in the Python and Pylons communities, and it can be used
within docstrings too.

reStructuredText is a lightweight markup language intended to be highly readable in source
format and yet is full featured enough to produce sophisticated documentation. Here’s a sample
reStructuredText document; save this as test.txt, and you’ll use it as an example for generating
the various output types reStructuredText can be converted to:

Hello World
+++++++++++

This is a sample paragraph followed by a bulleted list:

* Item 1
* Item 2
* Item 3

reStructuredText documents tend to have file extensions of .rst or .txt. When you are packag-
ing a Pylons project into egg format, setuptools will check for the presence of a README.txt file, so
for the purposes of documenting a Pylons project, it is usually best to use a .txt extension if you
want to use reStructruedText in any of the standard files that make up a Pylons project.

The tools to work with reStructuredText are found in a package called docutils. You can install
docutils with Easy Install:

$ easy_install "docutils==0.5"

To create documentation using reStructuredText, you can use one of the conversion tools that
comes with the docutils package. These tools are named as follows:

rst2html.py rst2newlatex.py rst2s5.py
rst2latex.py rst2pseudoxml.py rst2xml.py

As a Pylons developer, most of the time you’ll be interested in HTML output, which can be
generated like this:

$./rst2html.py test.txt > test.html

Here’s what the test.html file contains:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

CHAPTER 13 ■ DOCUMENTATION268

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.5: http://docutils.sourceforge.net/" />
<title>Hello World</title>
<style type="text/css">

... styles excluded for brevity
</style>
</head>
<body>
<div class="document" id="hello-world">
<h1 class="title">Hello World</h1>

<p>This is a sample paragraph followed by a bulleted list:</p>
<ul class="simple">
Item 1
Item 2
Item 3

</div>
</body>
</html>

Figure 13-1 shows what the HTML looks like in a browser.

Figure 13-1. The generated HTML displayed in a browser

Although this might look plain, you are free to apply your own style sheet to the output pro-
duced, and because the HTML is well constructed, you can do a lot with the generated output.

■Tip You might be interested to know that this book is written entirely in reStructuredText and that many of the
articles on the Pylons wiki are written in reStructuredText as well.

You can also generate HTML output from reStructuredText source programmatically. The fol-
lowing demonstrates this:

CHAPTER 13 ■ DOCUMENTATION 269

from docutils import core

def rstify(string):
result = core.publish_parts(string)['html_body']
return result['html_body']

To generate HTML from a string containing reStructuredText, you use the
docutils.core.publish_pars() function. This returns a dictionary containing different parts of the
HTML document. In most cases where you are generating HTML programmatically, it is likely you’ll
want only the html_body part because you will make up the rest of the HTML yourself. The previous
rstify() function does just that. The docutils package is actually very modular, and with a little
effort you can create some very powerful customizations.

Rather than trying to explain the reStructuredText syntax in the book, I’ll refer you to some
excellent resources online that will teach you everything you need to know:

reStructuredText primer: This is an excellent introduction to reStructuredText. It forms part of
the Sphinx documentation; you can find it at http://sphinx.pocoo.org/rest.html.

reStructuredText home page: You can find the authoritative reStructruredText documentation at
http://docutils.sourceforge.net/rst.html. Of particular value is the Quick reStructuredText
guide at http://docutils.sourceforge.net/docs/user/rst/quickref.html.

Introducing Sphinx
Although using reStructedText as a stand-alone documentation tool is very useful, reStructuredText
can also be used within docstrings to document individual functions, classes, and methods.

This functionality brings with it certain possibilities. Wouldn’t it be handy, for example, if there
were a tool for extracting module documentation but that also understood reStructuredText for for-
matting that documentation? Well, there is just such a tool; I’ve mentioned it a number of times
already, and it is called Sphinx.

Sphinx is a tool that translates a set of reStructuredText source files into various output formats
including HTML and LaTeX (which can then be used to produce a PDF), automatically producing
cross-references and indexes. The focus of Sphinx is handwritten documentation, but as you’ll see
shortly, Sphinx can also be used to automatically generate documentation from source code.

You can install Sphinx with Easy Install like this (it requires Python 2.4 or newer to run):

$ easy_install "Sphinx==0.4.2"

Sphinx uses Jinja for its templating support, so Easy Install will install Jinja too if you didn’t
install it in Chapter 5. Jinja currently expects a compiler to be present if you install it from source, so
Mac OS X users will need to have Xcode installed (it includes GCC) or use a binary version.

Using Sphinx
Let’s use Sphinx to document the SimpleSite project. You’ll notice that the source directory already
contains a docs directory. This is a great place to set up Sphinx. It already contains an index.txt file,
but you’ll replace this with one generated by Sphinx, so delete it because it currently contains
instructions about how to generate documentation with a tool called Pudge, which Sphinx
supercedes.

Create a new Sphinx build like this, and answer the questions:

$ cd SimpleSite/docs
$ rm index.txt
$ sphinx-quickstart

CHAPTER 13 ■ DOCUMENTATION270

Enter SimpleSite as the project name, and choose 0.1.0 as the version number. Use .txt as the
file extension. Accept the defaults for everything else except autodoc. You do want to use Sphinx’s
autodoc extensions, which will pick up documentation from docstrings in your Pylons project’s
source code, so enter y to that question.

The docs directory will contain these files once the utility has finished:

Makefile: Generated on non-Windows platforms if you answered y to the makefile question at
the end of the wizard. I won’t describe it here because all the functionality it contains can be
reached via the command line directly.

conf.py: Contains all the Sphinx configuration for your project. There are quite a few options,
but they are well commented in the conf.py file and documented on the Sphinx web site at
http://sphinx.pocoo.org.

index.txt: This file represents your entire documentation for the project.

Here’s index.txt:

.. SimpleSite Documentation documentation master file, created by ➥
sphinx-quickstart on Thu Oct 2 14:16:47 2008.

You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.

Welcome to SimpleSite Documentation's documentation!
==

Contents:

.. toctree::
:maxdepth: 2

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

Now that Sphinx is configured, let’s build the documentation. The sphinx-build command
takes the source directory and output directory commands. In this case, the source directory is the
current directory (docs), and the output directory is a new subdirectory called .build. The -b html
option tells Sphinx you want HTML output (the default). Run the command like this:

$ sphinx-build -b html . ./.build
Sphinx v0.4.2, building html
trying to load pickled env... not found
building [html]: targets for 1 source files that are out of date
updating environment: 1 added, 0 changed, 0 removed
reading... index
pickling the env... done
checking consistency...
writing output... index
finishing...
writing additional files... genindex modindex search
copying static files...
dumping search index...
build succeeded.

CHAPTER 13 ■ DOCUMENTATION 271

After the build has succeeded, the subdirectories .build, .static, and .templates will be pres-
ent in the docs directory.

■Note Unix and Mac OS X users should note that folders beginning with . are often hidden in the file browser
software, so you may not see these directories unless you use the command line.

The .build directory contains the HTML output. Open the index.html file in a web browser;
Figure 13-2 shows what you’ll see.

Figure 13-2. The initial output generated by Sphinx

You can easily customize the look and feel of the generated documents using templates. See
the Sphinx documentation for the details.

Now let’s add two files to the docs directory. These will form the basis for our user and devel-
oper documentation, respectively. Add user_guide.txt with this content:

User Guide
==========

This will contain instructions for end users of the application.

CHAPTER 13 ■ DOCUMENTATION272

Add developer_guide.txt with this content:

Developer Guide
===============

This software is documented in detail in the SimpleSite tutorial
chapters of the book *The Definitive Guide to Pylons* available
under an open source license at http://pylonsbook.com. You should
read those chapters to discover how SimpleSite is developed.

The reStructuredText format doesn’t have any option for linking documents, so Sphinx pro-
vides its own called toctree. The toctree directive should have a list of all the documents you want
included in the documentation. Update the toctree directive in the index.txt file to look like this
(notice that the file names shouldn’t contain the .txt extensions and that there is a blank line
before the document list):

.. toctree::
:maxdepth: 2

user_guide
developer_guide

When choosing names for your documents, you should avoid using genindex, modindex, and
search and instead choose names that don’t start with an _ character.

Now rebuild the documentation by running the sphinx-build command again:

$ sphinx-build -b html . ./.build

If you add a file to the directory structure but forget to include it in the toctree, Sphinx will
show you a warning like this when you try to build the documentation:

checking consistency...
WARNING: /Users/james/SimpleSite/docs/developer_guide.txt:: document ➥
isn't included in any toctree

Once the build completes successfully, you will see that the new index.html file has two links
in the Contents section. Sphinx automatically uses the titles from the documents themselves
rather than using their file names. If you click the links, you will see the guides have been cor-
rectly generated. What is more, you’ll also find the search box to the left side also works. Sphinx
compiles a search index in .build/searchindex.json as part of the build process, and it uses this
to search your documentation.

Documenting Python Source Code
Although being able to write paragraphs of text is very useful a lot of the time, you will want to be
able to document Python source code directly. To facilitate this, Sphinx adds a number of markup
constructs to the standard ones supported by reStructuredText.

Let’s add a new file called api.txt to contain some API documentation. You’ll also need to add
it to the toctree directive in index.txt.

Let’s start by adding a title and a brief summary to the file:

API Documentation
=================

This page contains some basic documentation for the SimpleSite project. To
understand the project completely please refer to the documentation on the
Pylons Book website at http://pylonsbook.com or read the source code directly.

CHAPTER 13 ■ DOCUMENTATION 273

Now let’s add some information about the simplesite and simplesite.controllers modules.
To do this, you might write the following:

The :mod:`simplesite` Module

.. module:: simplesite

Contains all the controllers, model and templates as sub-modules.

The :mod:`controllers` Module

.. module:: simplesite.controllers

Contains all the controllers. The most important of which is
:class:`PageController`.

Let’s also document the page controller since so far it contains the majority of the application’s
logic. You might add this:

.. class:: PageController

The :class:`PageController` is responsible for displaying pages as well as
allowing users to add, edit, delete and list pages.

.. method:: PageController.view(self[, id=None])

When a user visits a URL such as ``/view/page/1`` the :class:`PageController`
class's :meth:`view` action is called to render the page.

If you rebuild the documentation this time, the API documentation page will look like
Figure 13-3.

CHAPTER 13 ■ DOCUMENTATION274

Figure 13-3. The API Documentation page

More interestingly, Sphinx has understood that the page documents the simplesite and
simplesite.controllers modules, and it has recognized that PageController is in the
simplesite.controllers module. With this knowledge, it has been able to produce both a Global
Module Index and a general Index page. Figure 13-4 shows the Index page.

CHAPTER 13 ■ DOCUMENTATION 275

Figure 13-4. The Index page

■Tip All the current Python documentation is written in reStructuredText and generated in this manner by
Sphinx. You can see it online at http://docs.python.org.

Automatically Generating Documentation
If you have a lot of modules, classes, methods, and functions to document, it can become very
tedious to document them all manually, particularly if you also duplicate much of the documenta-
tion in the docstrings themselves. Sphinx provides the sphinx.ext.autodoc extensions for this
purpose. The autodoc extension automatically extracts docstrings from the objects you tell it about
and includes them as part of your Sphinx documentation.

Let’s use it to extract the docstring from the SimpleSite lib/helpers.py module. Add the follow-
ing to the end of api.txt:

The :mod:`helpers` Module

.. automodule:: simplesite.lib.helpers

For autodoc to work, it must be able to import the simplesite.lib.helpers module. This
means the SimpleSite application must be installed in the same virtual Python environment you

CHAPTER 13 ■ DOCUMENTATION276

are running Sphinx with. Run this command to install it in develop mode so that any changes you
make are immediately available to Sphinx:

$ python setup.py develop

Now you can build the documentation again:

$ sphinx-build -b html . ./.build

You’ll see that autodoc has found the correct docstring and used it to generate the necessary
documentation. In addition to the .. automodule:: construct, there are others to handle classes,
functions, and methods. There is also a range of options for each of the constructs.

Syntax Highlighting
Sometimes it is useful to show code examples. In reStructuredText, you would normally just use an
empty :: directive to tell reStructuredText to display the following text verbatim, but Sphinx allows
you to be slightly more sophisticated. If you install a package called Pygments, Sphinx will be able
to automatically highlight source code.

It is usually installed along with Sphinx, but you can also install Pygments directly like this:

$ easy_install "Pygments==0.11.1"

You then mark blocks of code in your source by using a .. code-block:: directive. The
Pygments short name for the type of code the block represents should be added immediately
after the :: characters and the code itself in an indented block after that. Pygments can highlight
many different types of code including HTML, Mako templates, a Python interactive console,
and more. A full list of the different lexers for source code highlighting, as well as their corres-
ponding short names, is available at http://pygments.org/docs/lexers/.

Let’s add some documentation about the FormEnocde schema being used in the page con-
troller as an example. Add this to api.txt just before the heading for the helpers module. The
Pygments short name for Python code blocks is python, so this is what you add after the
.. code-block::` directive:

The page controller makes use of a FormEncode schema to validate the page
data it receives. Here is the schema it uses:

.. code-block:: python

class NewPageForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
content = formencode.validators.String(

not_empty=True,
messages={

'empty':'Please enter some content for the page. '
}

)
heading = formencode.validators.String()
title = formencode.validators.String(not_empty=True)

As you can see the schema includes validators for the title, heading
and content.

If you save this and rebuild the documentation, you will see the example syntax nicely high-
lighted (see Figure 13-5).

CHAPTER 13 ■ DOCUMENTATION 277

Figure 13-5. Highlighted source code

Sometimes the code you are demonstrating will contain a mixture of two different types of
source code. For example, it might be Mako syntax that also contains HTML or Mako that also con-
tains CSS. In these cases, Pygments provides lexers that you can use via their short names, which
are html+mako and html+css, respectively.

As you can see, Sphinx is a powerful and useful tool. It is well worth reading the documentation
at http://sphinx.pocco.org to find out exactly what it can do. Two areas that are beyond the scope
of this chapter but are nonetheless worth investigating for yourself are Sphinx’s extensive cross-
referencing and indexing tools and its ability to generate LaTeX output that can be used to produce
high-quality book-style PDF documents.

Summary
In this chapter, you saw every aspect of documenting a Pylons project from using docstrings to
learning reStructuredText and building documentation with Sphinx. You’ve even learned how tests
can be integrated into documentation.

Documenting a project properly can really help other users of your code. This chapter has
given you the knowledge and tools you need to create really good documentation for your Pylons
project.

In the next chapter, you’ll return to the SimpleSite tutorial to add a range of new features and
learn more about Pylons development as you do.

CHAPTER 13 ■ DOCUMENTATION278

279

C H A P T E R 1 4

SimpleSite Tutorial Part 2

■Note You can download the source for this chapter from http://www.apress.com.

Now that you’ve seen a bit more of Pylons and are more familiar with how it works, I’ll continue the
SimpleSite tutorial. Here are the topics I’ll cover in this chapter:

• Adding a comments system to demonstrate how to deal with one-to-many mappings

• Adding a tags system to demonstrate many-to-many mappings as well as how to deal with
forms containing multiple check boxes

• Adding a navigation hierarchy involving sections and pages to demonstrate SQLAlchemy’s
inheritance features as well as a custom Routes setup

Then in Chapter 15, I’ll cover JavaScript, Ajax, and YUI to show some improvements that you
can make to both the visual appearance of the site and the usability.

There's a lot to cover in this chapter and you might not want to tackle it all in one go. If not feel
free to continue with the other chapters and come back to this one later.

Comments System: One-to-Many Mappings
You’d like visitors to the web site to be able to leave comments about each page. The comments
will consist of the date they were posted, the name of the poster, their e-mail address, and the
comment itself.

I discussed one-to-many mappings in Chapter 7. Situations where one entity (in this case, a
page) can have one or more instances of another entity associated with it (in this case, comments)
are known as one-to-many mappings, and they can all be dealt with in the same way, which in this
case is by having a foreign key in the comments table represent the ID of the page with which the
comment is associated.

Here is the table:

comment_table = schema.Table('comment', meta.metadata,
schema.Column('id', types.Integer,

schema.Sequence('comment_seq_id', optional=True), primary_key=True),
schema.Column('pageid', types.Integer,

schema.ForeignKey('page.id'), nullable=False),
schema.Column('content', types.Text(), default=u''),
schema.Column('name', types.Unicode(255)),
schema.Column('email', types.Unicode(255), nullable=False),
schema.Column('created', types.TIMESTAMP(), default=now()),

)

You’ll recall that the table contains an id field so that each comment can be uniquely identified
and that it contains a pageid field, which is a foreign key holding the id of the page to which the
comment is associated.

The class definition for the comment looks like this:

class Comment(object):
pass

The mapper for the page already takes into account that each page could have multiple com-
ments:

orm.mapper(Page, page_table, properties={
'comments':orm.relation(Comment, backref='page'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

You’ll recall that this mapper sets up a .comments property on Page instances for accessing a list
of comments, and it also sets up a .page property on Comment instances for identifying the page
associated with a comment. If you’ve been following the tutorial, you already added these to your
model in Chapter 8.

Planning the Controller
Let’s think about the requirements for the controller. You would need the following actions:

view(self, id): Displays a comment for a page

new(self): Displays a form to create a new comment on a page

create(self): Saves the information submitted from new() and redirects to view()

edit(self, id): Displays a form for editing the comment id on a page

save(self, id): Saves the comment id and redirects to view()

list(self): Displays all comments on a page

delete(self, id): Deletes a comment from a page

The comment controller actions need to know which page the comment is associated with
(or will be associated with in the case of new() and create()) so that they deal with the comments
for a particular page only. This means in addition to the ID of the comment the actions are chang-
ing, they will also need to know the ID of the page the comment is associated with.

With other frameworks, you might have to use hidden fields in your forms and query parame-
ters in your URLs to keep track of the page ID, but Pylons provides a better method: modifying the
routes to keep the page ID as part of the URLs used to route requests to the comment controller's
actions.

Modifying the Routes
The URLs you will use will be in this form:

/page/1/comment/view/4

This URL would result in the comment with ID 4 being viewed on page 1. By setting up Routes
to understand this URL and map it to the comment controller you will create in a minute, the issue
of how to keep track of the page id goes away because it will automatically be added when you use
url_for() and can always be accessed via request.urlvars.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2280

To make this work, you need to add the following routes to config/routing.py immediately
after # CUSTOM ROUTES HERE and before the existing map.connect('/{controller}/{action}') route:

map.connect(
'/page/{pageid}/{controller}/{action}',
requirements=dict(pageid='\d+')

)
map.connect(

'/page/{pageid}/{controller}/{action}/{id}',
requirements=dict(pageid='\d+', id='\d+')

)

These routes require that both the pageid and id routing variables are integers. Checking this
here saves you from having to perform the check in each of the controller actions.

Now that you’ve learned about the explicit=True option to Routes’ Mapper object, let’s use this
option in the SimpleSite project to disable route memory and implicit defaults as recommended in
Chapter 9. Change the Mapper() lines in config/routing.py to look like this, ensuring minimization
is also disabled by setting map.minimization = False:

map = Mapper(directory=config['pylons.paths']['controllers'],
always_scan=config['debug'], explicit=True)

map.minimization = False

With this change in place, you’ll also need to update the section links because when using
explicit=True, you no longer need to override the route memory value for id. Edit
templates/derived/page/view.html so that the first two links are changed from this:

All Pages
| New Page

to the following:

All Pages
| New Page

There’s one more subtle place where the change to explicit routing has a consequence: inside
the paginator. Luckily, additional keyword arguments passed to the Page constructor are also passed
to any calls the paginator makes to h.url_for(). This means you just have to specify controller and
list explicitly as keyword arguments to the Page() constructor. Replace the current list() action
with this, renaming the records variable to page_q at the same time to reflect that it is really a query
object:

def list(self):
page_q = meta.Session.query(model.Page)
c.paginator = paginate.Page(

page_q,
page=int(request.params.get('page', 1)),
items_per_page = 2,
controller='page',
action='list',

)
return render('/derived/page/list.html')

Creating the Controller
Rather than creating the controller from scratch, let’s reuse the page controller you wrote in Chapter
8. Make a copy of it named comment.py in the controllers directory, and then replace every instance
of the string page with comment and every instance of the string Page with Comment. If you are on a
Linux or Unix platform, these commands will do it for you:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 281

$ cd simplesite/controllers
$ cp page.py comment.py
$ perl -pi -w -e 's/page/comment/g; s/Page/Comment/g;' comment.py

Now let’s do the same with the templates:

$ cd ../templates/derived
$ cp -r page comment
$ cd comment
$ perl -pi -w -e 's/page/comment/g; s/Page/Comment/g;' *.html

You’ll need to correct the new comment controller’s list() action because some of the vari-
ables will have been accidentally renamed. Change it to look like this:

def list(self):
comments_q = meta.Session.query(model.Comment)
c.paginator = paginate.Page(

comments_q,
page=int(request.params.get('page', 1)),
items_per_page = 10,
controller='comment',
action='list'

)
return render('/derived/comment/list.html')

You’ll actually use this basic controller template again later in the tutorial when you create
a controller to handle tags and sections, so take a copy of the comment controller and call it
template.py.txt so that you can use it later (you are using a .py.txt extension so that the
template isn’t accidentally treated as a controller):

cd ../../../
$ cp comment.py template.py.txt

Updating the Controller to Handle Comments
Now that the basic structure of the comment controller is in place, it needs to be updated to cor-
rectly handle the fields and relationships of the comment table. Comment objects have a .content
property for the comment text itself, a .name property to hold the name of the person who left the
comment, and an .email property for their e-mail address. You’ll need fields for each of these so
that a user can leave a comment. Let’s start by creating a FormEncode schema. Update the
NewCommentForm schema to look like this:

class NewCommentForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
name = formencode.validators.String(not_empty=True)
email = formencode.validators.Email(not_empty=True)
content = formencode.validators.String(

not_empty=True,
messages={

'empty':'Please enter a comment.'
}

)

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2282

The example uses the allow_extra_fields = True option so that the form’s submit button isn’t
validated and uses the filter_extra_fields = True option so that it isn’t included in the results
returned when the schema converts the form input to a Python dictionary. A custom error message
is used if the user forgets to enter a comment, and the e-mail address uses an Email validator to
make sure the user enters a string that looks like an e-mail address.

You’ll also need to update the /templates/derived/comment/fields.html file so it represents
the correct fields you’d like users to enter:

${h.field(
"Name",
h.text(name='name'),
required=True,

)}
${h.field(

"Email",
h.text(name='email'),
required=True,
field_desc = 'Use to help prevent spam but will not be published',

)}
${h.field(

"Comment",
h.textarea(name='content', rows=7, cols=40),
required=True,

)}

Notice that although the field name is called content, it is labeled Comment. This is to make it
more obvious to the users of the application. After all, they don’t need to know that the comment
text they enter is actually stored in the content column of the table.

Next update the edit() action so that the correct values are prepared for the call to htmlfill.
render():

values = {
'name': comment.name,
'email': comment.email,
'content': comment.content,

}

Let’s also update the view.html template to display the comment information to look more like
a comment. Update it to look like this:

<%inherit file="/base/index.html"/>

<%def name="title()">Comment</%def>
<%def name="heading()"><h1>Comment</h1></%def>

${c.comment.content}

<p>Posted by ${c.comment.name} on ${c.comment.created.strftime('%c')}.</p>

<p><a href="${h.url_for(controller='page', action='view', ➥
id=c.comment.pageid)}">Visit the page this comment was posted on.</p>

Finally, you’ll need to update the list.html template so that the pager() method of the pagina-
tor is named pager() rather than commentr() after the automatic rename and so that the paginator
displays information relevant to the comments rather than pages. Here’s the updated version:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 283

<%inherit file="/base/index.html" />

<%def name="heading()"><h1>Comment List</h1></%def>

<%def name="buildrow(comment, odd=True)">
<tr class="${odd and 'odd' or 'even'}">

<td valign="top">
${h.link_to(

comment.id,
h.url_for(

controller=u'comment',
action='view',
id=unicode(comment.id)

)
)}

</td>
<td valign="top">

${h.link_to(
comment.name,
h.url_for(

controller=u'comment',
action='edit',
id=unicode(comment.id)

)
)}

</td>
<td valign="top">${comment.created.strftime('%c')}</td>

</tr>
</%def>

% if len(c.paginator):
<p>${ c.paginator.pager('$link_first $link_previous $first_item to $last_item ➥
of $item_count $link_next $link_last') }</p>
<table class="paginator"><tr><th>Comment ID</th><th>Comment Title</th>➥
<th>Posted</th></tr>
<% counter=0 %>
% for item in c.paginator:

${buildrow(item, counter%2)}
<% counter += 1 %>

% endfor
</table>
<p>${ c.paginator.pager('~2~') }</p>
% else:
<p>

No comments have yet been created.
Add one.

</p>
% endif

At this point, you would be able to perform all the usual actions on comments such as add,
edit, and remove if it weren’t for the fact they also need a pageid.

Now you can start the server and see what you have:

$ paster serve --reload development.ini

Visit http://localhost:5000/comment/new, and you should see the comment form shown in
Figure 14-1.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2284

Figure 14-1. The create comment form

Setting the Page ID Automatically
If you try to create a comment at the URL you’ve just visited, an IntegrityError will be raised
specifying comment.pageid may not be NULL because no page ID has been specified. As I men-
tioned earlier in the chapter, you’ll obtain the page ID from the URL. To set this up, you are going
to use the __before__() method that gets called before each of the Pylons actions. Add it right at
the top of the controller before the view() action:

class CommentController(BaseController):

def __before__(self, action, pageid=None):
page_q = meta.Session.query(model.Page)
c.page = pageid and page_q.filter_by(id=int(pageid)).first() or None
if c.page is None:

abort(404)

This code causes the variable c.page to be set before any actions are called. If the page ID is not
included in the URL or the page doesn’t exist, a 404 Not Found response is returned. With this code
in place, visiting http://localhost:5000/comment/new results in a 404 Not Found response; visiting
http://localhost:5000/page/1/comment/new correctly displays the new comment form, but the
comment will still not save because the form does not yet submit to
http://localhost:5000/page/1/comment/create. Let’s fix that by editing the new.html template to
change the h.url_for() call to include the page ID:

<%inherit file="/base/index.html" />
<%namespace file="fields.html" name="fields" import="*"/>

<%def name="heading()">
<h1 class="main">Create a New Comment</h1>

</%def>

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 285

${h.form_start(h.url_for(pageid=c.page.id, controller='comment', action='create'), ➥
method="post")}

${fields.body()}
${h.field(field=h.submit(value="Create Comment", name='submit'))}

${h.form_end()}

You’ll also need to change the edit.html template so that the form also includes the page ID:

<%inherit file="/base/index.html" />
<%namespace file="fields.html" name="fields" import="*"/>

<%def name="heading()">
<h1 class="main">Editing ${c.title}</h1>

</%def>

<p>Editing the source code for the ${c.title} comment:</p>

${h.form_start(h.url_for(pageid=c.page.id, controller='comment', action='save', ➥
id=request.urlvars['id']), method="post")}

${fields.body()}
${h.field(field=h.submit(value="Save Changes", name='submit'))}

${h.form_end()}

Let’s consider each of the actions of the comment controller in turn to decide how they should
behave and how they will need to be modified:

view(): The view method needs to be updated to ensure that the comment requested is actu-
ally a comment from the page specified in the URL. You can do this by updating the query used
in the view() action from this:

c.comment = comment_q.get(int(id))

to the following:

c.comment = comment_q.filter_by(pageid=c.page.id, id=int(id)).first()

new(): This action needs no change since it is responsible only for displaying the form for
adding a new comment.

create(): This action needs to know the page to which the comment is being added. Just before
the comment is added to the session, add the following line to set the page ID:

comment.pageid = c.page.id

You’ll also need to include the page ID in the URL to which the browser is redirected. Since you
already learned about the redirect_to() function in Chapter 9, let’s use it here. Replace the
redirect lines with these:

Issue an HTTP redirect
return redirect_to(pageid=c.page.id, controller='comment', action='view', ➥
id=comment.id)

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2286

edit(): The edit action needs a similar modification to the one made to the view() method.
Although you know which page a comment is associated with, you want to make sure the URL
requested has the same page ID as the comment. Change the query from this:

comment = comment_q.filter_by(id=id).first()

to the following:

comment = comment_q.filter_by(pageid=c.page.id, id=id).first()

save(): Again, you’ll want to check that the page ID in the URL is the same as the one in the
comment. Since the form doesn’t allow you to change the page ID, this can once again be
ensured by adding c.page.id to the query:

comment = comment_q.filter_by(pageid=c.page.id, id=id).first()

Replace the redirect lines with this:

Issue an HTTP redirect
return redirect_to(pageid=c.page.id, controller='comment', action='view', ➥
id=comment.id)

list(): Only comments associated with the current page should be listed, so once again the
query is modified to include the page ID. In this case, though, we also have to pass the pageid
argument, which will in turn get passed to any h.url_for() calls in the paginator.

def list(self):
comments_q = meta.Session.query(model.Comment).filter_by(pageid=c.page.id)
comments_q = comments_q.order_by(model.comment_table.c.created.asc())
c.paginator = paginate.Page(

comments_q,
page=int(request.params.get('page', 1)),
items_per_page=10,
pageid=c.pageid,
controller='comment',
action='list'

)
return render('/derived/comment/list.html')

Notice the use of order_by() to ensure that the earliest comments are displayed first. I’ve used
the comment_table column metadata in the order_by() method just to remind you that you can
use table metadata as well as class attributes when specifying query arguments, and I’ve used
the .asc() method to specify that the results should be specified in ascending order.

delete(): Again, this requires only a check that the page ID in the URL is the same as the one in
the comment. Since the form doesn’t allow you to change the page ID, this can once again be
ensured by adding c.page.id to the query:

comment = comment_q.filter_by(pageid=c.page.id, id=id).first()

Now that all the changes have been made, let’s test the new controller. Start by adding a new
comment to the home page by visiting http://localhost:5000/page/1/comment/new and filling in
the form. When you click Create Comment, you will see Figure 14-2.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 287

Figure 14-2. The first comment

Finally, let’s update the comment view template derived/comment/view.html so that edit and
delete links are added to the footer. Add the following at the end of the template:

<%def name="footer()">
Add our comment links
<p>
<a href="${h.url_for(pageid=c.page.id, controller='comment', action='edit', ➥

id=c.comment.id)}">Edit Comment
| <a href="${h.url_for(pageid=c.page.id, controller='comment', action='delete', ➥
id=c.comment.id)}">Delete Comment
</p>
Include the parent footer too
${parent.footer()}
</%def>

Make sure you followed the instructions earlier in the chapter to update the values variable in
the edit() action; you will then find you can easily edit or delete comments. There are still no links
to display or add comments from the bottom of individual pages. You’ll fix that in the next section.

Updating the Page View
SimpleSite will not display a list of comments on the page itself (although you could set it up to do
so if you preferred) but will instead display a link at the bottom of each page of the form that says,
for example, “Comments (8)” where the number in parentheses is the current number of comments
on that page. Users can click this link to view the list of comments. There will also be an Add Com-
ment link so that users can add a comment directly. Figure 14-3 shows what the updated screen will
look like.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2288

Figure 14-3. The updated page view screen

For this to work, you need to modify both the page controller’s view() action and the template.
Let’s start with the view() action. You need to add a SQLAlchemy query to count the number of
pages associated with the page. Add this to the end of the action just before the return statement:

c.comment_count = meta.Session.query(model.Comment).filter_by(pageid=id).count()

Then modify the templates/derived/page/view.html template so the footer() def looks like this:

<%def name="footer()">
Then add our page links
<p>
All Pages

| New Page
| <a href="${h.url_for(controller='page', action='edit', ➥
id=c.page.id)}">Edit Page
| <a href="${h.url_for(controller='page', action='delete', ➥
id=c.page.id)}">Delete Page
</p>
Comment links
<p>
<a href="${h.url_for(pageid=c.page.id, controller='comment', ➥

action='list')}">Comments (${str(c.comment_count)})
| <a href="${h.url_for(pageid=c.page.id, controller='comment', ➥
action='new')}">Add Comment
</p>
Include the parent footer too
${parent.footer()}
</%def>

Now when you view a page, you will also be able to list or add comments, and by viewing com-
ments individually, you can edit or delete them.

Handling Deleted Pages
Now that comments are related to pages, you need to think about what to do with comments once a
page is deleted. Since a comment without the page it is commenting on isn’t very useful, you can
automatically delete all comments associated with a page when the page itself is deleted.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 289

You could program this code manually in the delete() action of the page controller, but there
is actually a better way. SQLAlchemy mappers support the concept of configurable cascade behav-
ior on relations so that you can specify how child objects are dealt with on certain actions of the
parents. The options are described in detail at http://www.sqlalchemy.org/docs/05/documentation.
html#unitofwork_cascades, but we are simply going to use the option all so that the comments are
updated if the page ID changes and are deleted if the page they are for is deleted.

Modify the page mapper in model/__init__.py so that the comments relation has
cascade='all' specified like this:

orm.mapper(Page, page_table, properties={
'comments':orm.relation(Comment, backref='page', cascade='all'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

Try creating a page, adding some comments, and then deleting the page. If you looked at the
database table, you’d find that the comments are automatically deleted too.

If you are following along with a SQLite database named development.db, you could check this
by connecting to the database with the sqlite3 program:

$ sqlite3 development.db

Then by executing this SQL:

SELECT id, pageid FROM comment;

you’d find that there were no comments for the page you just deleted because the SQLAlchemy
cascade rules you specified led to SQLAlchemy deleting them for you.

Tags: Many-to-Many Mappings
Now that you’ve seen how to handle a one-to-many mapping (sometimes called a parent-child rela-
tionship) between pages and comments, you can turn your attention to the many-to-many map-
ping between tags and pages. Once again, tags can be created, viewed, updated, or deleted. So, the
controller that manipulates them would need the same actions as the page and comment con-
trollers you’ve created so far. In addition, each page can have multiple tags, and each tag can be
used on multiple pages so that tags can’t be considered children of pages any more than pages can
be considered children of tags.

The way you’ll implement this is by once again starting with a simple controller and renaming
the core variables with the word tag. You’ll then tweak the controller so that it correctly handles the
columns of the tag table.

After you’ve done this, users will be able to add, edit, remove, and list tags. I’ll then cover how
to associate tags with pages. Ordinarily, you would need to create a second controller for handling
the adding, editing, listing, and deleting of the associations between the page table and the tag table.
In this case, though, you’ll take a shortcut. Rather than having a second controller to handle the
interactions, you will simply display a check box group of all the available tags on each page. Users
can then select the tags they want associated with the page, and SQAlchemy will handle how to
store those associations in the pagetag table for you automatically.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2290

Creating the tag Controller
Let’s start by creating the tag controller from the template copied earlier:

$ cd simplesite/controllers
$ cp template.py.txt tag.py
$ perl -pi -w -e 's/comment/tag/g; s/Comment/Tag/g;' tag.py

You’ll need to correct the new tag controller’s list() action too because some of the variables
will have been accidentally renamed. Change it to look like this:

def list(self):
tag_q = meta.Session.query(model.Tag)
c.paginator = paginate.Page(

tag_q,
page=int(request.params.get('page', 1)),
items_per_page = 10,
controller='tag',
action='list'

)
return render('/derived/tag/list.html')

Now let’s do the same with the templates, but let’s use the page templates as a basis:

$ cd ../templates/derived
$ cp -r page tag
$ cd tag
$ perl -pi -w -e 's/page/tag/g; s/Page/Tag/g;' *.html

Once again, you’ll need to update list.html to use c.paginator.pager(), not
c.paginator.tagr().

Now restart the server if you stopped it to make these changes, and let’s get started with the
updates:

$ cd ../../../../
$ paster serve --reload development.ini

Tags have a name only, so update the NewTagForm schema to look like this:

class NewTagForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
name = formencode.validators.String(not_empty=True)

Change the edit() action so that the values passed to htmlfill.render() look like this:

values = {
'name': tag.name,

}

Next, change the fields.html template so that it looks like this:

${h.field(
"Name",
h.text(name='name'),
required=True,

)}

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 291

Update the tag view.html template so it looks like this:

<%inherit file="/base/index.html"/>

<%def name="title()">Tag</%def>
<%def name="heading()"><h1>Tag</h1></%def>

${c.tag.name}

<%def name="footer()">
Add our tag links
<p>
Edit Tag

| <a href="${h.url_for(controller='tag', action='delete', ➥
id=c.tag.id)}">Delete Tag
</p>
Include the parent footer too
${parent.footer()}
</%def>

Finally, update the tag/list.html template so it looks like this:

<%inherit file="/base/index.html" />

<%def name="heading()"><h1>Tag List</h1></%def>

<%def name="buildrow(tag, odd=True)">
<tr class="${odd and 'odd' or 'even'}">

<td valign="top">
${h.link_to(

tag.id,
h.url_for(

controller=u'tag',
action='view',
id=unicode(tag.id)

)
)}

</td>
<td valign="top">

${tag.name}
</td>

</tr>
</%def>

% if len(c.paginator):
<p>${ c.paginator.pager('$link_first $link_previous $first_item to $last_item ➥
of $item_count $link_next $link_last') }</p>
<table class="paginator"><tr><th>Tag ID</th><th>Tag Name</th></tr>
<% counter=0 %>
% for item in c.paginator:

${buildrow(item, counter%2)}
<% counter += 1 %>

% endfor
</table>

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2292

<p>${ c.paginator.pager('~2~') }</p>
% else:
<p>

No tags have yet been created.
Add one.

</p>
% endif

That’s it—the tag controller is complete, so you could now start creating tags by visiting http://
localhost:5000/tag/new; however, before you do, let’s add a few restrictions to what can be used as
a tag name.

Constraining Tag Names
You’ll put a restriction on tag names to ensure they can be made only from letters, numbers, and
the space character and can consist of 20 characters or less. Also, you don’t want users to add a tag
with a name that already exists. Of course, because of the constraints you set up when defining the
model, you know that an exception will be raised if a nonunique tag name is added, but the 500
Internal Server Error page that will be generated doesn’t provide a way to let the user fix the error,
so you need a FormEncode validator to check for the error before it occurs and to display an
appropriate error message if necessary.

First let’s create a validator to check for unique tags and update the NewTagForm schema to use
it. Add this to the top of the tag controller instead of the current NewTagForm schema:

import re

class UniqueTag(formencode.validators.FancyValidator):
def _to_python(self, value, state):

Check we have a valid string first
value = formencode.validators.String(max=20).to_python(value, state)
Check that tags are only letters, numbers, and the space character
result = re.compile("[^a-zA-Z0-9]").search(value)
if result:

raise formencode.Invalid("Tags can only contain letters, ➥
numbers and spaces", value, state)

Ensure the tag is unique
tag_q = meta.Session.query(model.Tag).filter_by(name=value)
if request.urlvars['action'] == 'save':

Ignore the existing name when performing the check
tag_q = tag_q.filter(model.Tag.id != int(request.urlvars['id']))

first_tag = tag_q.first()
if first_tag is not None:

raise formencode.Invalid("This tag name already exists", value, state)
return value

class NewTagForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
name = UniqueTag(not_empty=True)

There’s quite a lot going on in the UniqueTag validator, so let’s go through what it does. When
the validator is called, the first thing that happens is a check to ensure the tag name is a valid string
with 20 characters. If the check passes, a regular expression is used to ensure that only alphanumer-
ics and the space character are used in the name. Next, a SQLAlchemy query object is set up to
query any tags with a name equal to the name being validated. What happens next depends on
whether the validator is used in the save() action decorator or the create() action decorator. You’ll

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 293

recall that request.urlvars contains all the routing variables matched by Routes, so in this case the
action is stored in request.urlvars['action']. If this is equal to 'save', the save() action is being
called, and the tag query is filtered to exclude the tag with the same ID as the current request. This
prevents the tag save from failing when someone saves a tag without changing its name. If a tag
with the same name exists after the query has been set up and filtered, then an Invalid exception is
raised, which results in an error message above the form field.

With these changes in place, you can visit http://localhost:5000/tag/new to test the new tag
functionality. If you try to create two tags with the same name, you’ll see the error message shown in
Figure 14-4.

Figure 14-4. The error message shown when you create two tags with the same name

That’s it! SimpleSite now supports tags, but you can’t yet add them to pages. Let’s look at this in
the next section.

■Caution Sharp-eyed readers might not be too happy with the validator I’ve just described. In this case, the
validator uses model.Session and request, both of which are request-specific and should ordinarily be passed
via the state argument to a schema’s to_python() method, as you’ll recall from Chapter 6. In this case, though,
all the validation happens behind the scenes in Pylons’ @vailidate decorator, so there isn’t an opportunity to
specify a state argument. Luckily, both model.Session and request are special objects that Pylons ensures
behave correctly during each request, even in a multithreaded environment, so this example is perfectly OK in this
case.
If your validator accessed an object that wasn’t thread-safe, you could do the following:

• Assign the non-thread-safe object to the template context global c in the controller’s __before__() method to
make it available in the validator’s _to_python() method before the validator is called.

• Handle the entire validation process manually, explicitly passing a state object to the to_python() method as
demonstrated in the process() action of the example in the “Solving the Repeating Fields Problem” section of
Chapter 6 where the template context global c is itself used as the state argument.

• Use a StackedObjectProxy object to give Pylons the responsibility of using the correct version of the object
for the particular request that is running.

The first two alternatives are the preferred approaches, but see the section “The Registry Manager,
StackedObjectProxy, and Pylons Globals” in Chapter 17 if you want to investigate the StackedObjectProxy
approach.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2294

Adding Tags to Pages
Now that you have a system for adding and editing tags, you need a way of associating tags with
pages. As was mentioned earlier, you can choose to do this in two ways. The first is with the
pagetag controller to provide an interface to allow users to manually add entries to the pagetag
table to create the associations. If the tag table contained more fields or didn’t have a column that
could be used naturally as a primary key, then this would be a good option. In this case, though,
the tag name provides a unique way to specify the tag, so you can simply provide a list of all avail-
able tags on each page with a check box next to each, and users can simply select the boxes of the
tags they want to use.

Figure 14-5 shows what a page will look like when you’ve finished this section and saved the
tags associated with a page.

Figure 14-5. A page containing the tag list

Let’s start by editing the page controller’s view() action to obtain a list of all the available tag
names. Update it to look like this (the lines to add are in bold):

def view(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
c.page = page_q.filter_by(id=int(id)).first()
if c.page is None:

abort(404)
c.comment_count = meta.Session.query(model.Comment).filter_by(pageid=id).count()

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 295

tag_q = meta.Session.query(model.Tag)
c.available_tags = [(tag.id, tag.name) for tag in tag_q]
c.selected_tags = {'tags':[str(tag.id) for tag in c.page.tags]}
return render('/derived/page/view.html')

In the templates/derived/page/view.html template, add a new form for the tags just before the
footer() def. The code is wrapped in a def block because later in the section you’ll need to capture
its output to use with HTMLFill to populate the fields:

<%def name="tags(available_tags)">
<h2>Tags</h2>
${h.form_start(h.url_for(controller='page', action='update_tags', ➥

id=c.page.id), method='post')}
${h.field(

"Tags",
h.checkbox_group('tags', selected_values=None, align="table", ➥

options=available_tags)
)}
${h.field(field=h.submit(value="Save Tags", name='submit'))}

${h.form_end()}
</%def>

For this to work, you’ll need to add the check box_group() helper to lib/helpers.py:

from formbuild.helpers import checkbox_group

This form will submit to the page controller's update_tags() action which you'll create in a
minute. Once again though, you'll need to validate the result of any form submission. Since the
check boxes are effectively a set of repeating fields, you could use a ForEach validator like this:

class ValidTagsForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
tags = formencode.foreach.ForEach(formencode.validators.Int())

Although this schema checks that the tags have integer values, it doesn’t actually check that the
values are actually valid for the tags. To do this, you could derive your own validator from the Int
validator and override its _to_python() method to check the value using a similar technique to the
one used in UniqueTag, but then a separate database call would need to be made for each tag that
needed to be validated. Instead, you’ll create a chained validator that will take the list of integers
and validate them all in one go. It looks like this:

class ValidTags(formencode.FancyValidator):
def _to_python(self, values, state):

Because this is a chained validator, values will contain
a dictionary with a tags key associated with a list of
integer values representing the selected tags.
all_tag_ids = [tag.id for tag in meta.Session.query(model.Tag)]
for tag_id in values['tags']:

if tag_id not in all_tag_ids:
raise formencode.Invalid(

"One or more selected tags could not be found in the database",
values,
state

)
return values

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2296

Add the ValidTags validator to the top of the page.py controller after the existing schema, then
add the the ValidTagsForm schema to look like this:

class ValidTagsForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
tags = formencode.foreach.ForEach(formencode.validators.Int())
chained_validators = [ValidTags()]

Now we can write the update_tags() action. Add this to the page controller:

@restrict('POST')
@validate(schema=ValidTagsForm(), form='view')
def update_tags(self, id=None):

if id is None:
abort(404)

page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
tags_to_add = []
for i, tag in enumerate(page.tags):

if tag.id not in self.form_result['tags']:
del page.tags[i]

tagids = [tag.id for tag in page.tags]
for tag in self.form_result['tags']:

if tag not in tagids:
t = meta.Session.query(model.Tag).get(tag)
page.tags.append(t)

meta.Session.commit()
session['flash'] = 'Tags successfully updated.'
session.save()
return redirect_to(controller='page', action='view', id=page.id)

This code iterates over the real tags twice, deleting any unselected boxes first and adding any
new associations from boxes that have just been selected.

Now that the tags are correctly saving, you need to ensure that their values are correctly popu-
lated when the page is displayed. To do this, you’ll call the tags() def with Mako’s special capture()
function to capture the HTML from the form and then pass the HTML through HTMLFill to popu-
late the tags. This is a lot like the method you’ve been using for populating forms, but rather than
calling htmlfill.render() in the controller with the whole output from the template, you are just
calling it in the template with the form output from the tags() def.

Update the page view.html template to call the tags() def you added earlier in this section.
Add this just after the tags() def and before the footer() def:

<%!
from formencode import htmlfill
from webhelpers.html import literal

%>

% if c.available_tags:
${literal(htmlfill.render(capture(self.tags, c.available_tags), c.selected_tags))}
% endif

In this case, it should be safe to use literal() here since the output from self.tags will already
be escaped and htmlfill.render() correctly escapes the values passed in. Notice that Mako’s
capture() function takes the def to capture as the first argument and any arguments to pass to that

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 297

function as subsequent arguments. If you were to call capture(self.tags(c.available_tags)), the
tags() def would be called, outputting its content to the buffer, and capture() would try to call
the return value from the def instead of the def itself.

There is one last change you need to make. Let’s add a link in the footer to enable users to add
new tags:

<%def name="footer()">
Then add our page links
<p>
All Pages

| New Page
| <a href="${h.url_for(controller='page', action='edit', ➥
id=c.page.id)}">Edit Page
| <a href="${h.url_for(controller='page', action='delete', ➥
id=c.page.id)}">Delete Page
</p>
Comment links
<p>
<a href="${h.url_for(pageid=c.page.id, controller='comment', ➥

action='list')}">Comments (${str(c.comment_count)})
| <a href="${h.url_for(pageid=c.page.id, controller='comment', ➥
action='new')}">Add Comment
</p>
Tag links
<p>All Tags
| Add Tag</p>
Include the parent footer too
${parent.footer()}
</%def>

Deleting Tags and Pages
When a tag is deleted, it can no longer be used on a page, so all references to that tag need to be
removed from the pagetag table. Likewise, when a page is deleted, there is little point in keeping
track of which tags used to be associated with it, so all references to that page should be removed
from the pagetag table too.

Add the following line just before meta.Session.delete(page) in the delete() action in the
page controller:

meta.Session.execute(delete(model.pagetag_table, ➥
model.pagetag_table.c.pageid==page.id))

Now add this just before meta.Session.delete(tag) in the delete() action of the tag controller:

meta.Session.execute(delete(model.pagetag_table, ➥
model.pagetag_table.c.tagid==tag.id))

Both controllers will require the following import:

from sqlalchemy import delete

If you visit the home page at http://localhost:5000/page/view/1 and create some tags, you’ll
now be able to tag pages. The application should look like it did in Figure 14-5.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2298

Creating a Navigation Hierarchy
Now that the basic functionality of the web site is in place, I’ll cover how to add a navigation struc-
ture to turn the application into a full (albeit simple) content management system. In this second
part of the chapter, you’ll learn about table inheritance and how to structure hierarchical data in
SQLAlchemy.

Let’s start by thinking about how pages are typically structured on web sites. Pages can usually
be thought of as being divided into sections, with each section containing pages and other sections.
You will need top-level tabs for the top-level sections and then a navigation menu so that the pages
within each section can be displayed. You’ll also need a breadcrumb trail so that the user can always
navigate to a section higher up in the hierarchy.

The URL for each page will be determined by the URL path info part. If a URL resolves to a
section rather than to a page, you need to render the index page for that section. The index page
will simply be the page in the section named index. You’ll also set up the URLs such that those with
a trailing slash (/) at the end always resolve to sections and those without resolve to a page. Thus,
/dev will display a page, and /dev/ will display the index page in the dev section. Some people find
it a little strange to have pages without file extensions, but if you would prefer your pages to have
URLs that end in .html, feel free to update the code as you work through the examples.

The following is the URL structure to create. The first part represents the URL, the second is the
name of the page, and the third part explains whether it is a page or a section:

/ Home (Section)
home Home (Page)
dev/ Development (Section)

home Development Home (Page)
SVN Details (Page)

Contact (Page)

The top-level tabs will therefore show the text Home, Development, and Contact.

Using Inheritance in SQLAlchemy
If you think about how pages and sections might work, you’ll notice that both pages and sections
will need the following attributes:

• Unique ID

• Display name in the navigation structure

• URL path fragment (for example, /dev or dev.html)

• Parent section ID

• The ID of the sibling node that this node appears before (or None if this is the last node in the
section)

Because both the pages and the sections share the same attributes, it makes sense to store
them both in the same table. This table will also need a Type column to describe whether the record
represents a page or a section.

You can also imagine a situation where other content types are supported, perhaps Word
documents or PNG images. Although you won’t implement them, you can imagine that any such
objects would also need these same attributes. The characteristic that pages, sections, and other
types of objects share is that they can all be accessed via a URL and should appear in the naviga-
tion structure of the site. In effect, they all can be navigated, so let’s name the table that will store
this information nav. The new nav table looks like this:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 299

nav_table = schema.Table('nav', meta.metadata,
schema.Column('id', types.Integer(),

schema.Sequence('nav_id_seq', optional=True), primary_key=True),
schema.Column('name', types.Unicode(255), default=u'Untitled Node'),
schema.Column('path', types.Unicode(255), default=u''),
schema.Column('section', types.Integer(), schema.ForeignKey('nav.id')),
schema.Column('before', types.Integer(), default=None),
schema.Column('type', types.String(30), nullable=False)

)

You will still want to be able to work with page and section objects in the model, so you’ll need
to use SQLAlchemy’s powerful inheritance tools so that the Page and Section classes inherit infor-
mation from a Nav class. Replace the existing Page class with these three classes:

class Nav(object):
pass

class Page(Nav):
pass

class Section(Nav):
pass

You’ll also need a new mapper for the Nav class, and you’ll need to tell SQLAlchemy that Page
and Section will inherit from Nav and therefore should also have all the same properties a Nav object
would have. Here’s what the updated mappers look like:

orm.mapper(Comment, comment_table)
orm.mapper(Tag, tag_table)
orm.mapper(Nav, nav_table, polymorphic_on=nav_table.c.type, ➥
polymorphic_identity='nav')
orm.mapper(Section, section_table, inherits=Nav, polymorphic_identity='section')
orm.mapper(Page, page_table, inherits=Nav, polymorphic_identity='page', properties={

'comments':orm.relation(Comment, backref='page', cascade='all'),
'tags':orm.relation(Tag, secondary=pagetag_table)

})

The important points to notice are that the Nav mapper specifies that Nav is polymorphic on
nav_table.c.type, in other words, that the type column will contain a string to specify whether the
record is a page or a section. The Section and Page mappers then specify that they inherit from Nav
and specify the text to be used in the nav table’s type column to identify them. Now would be a good
time to make these changes to your model if you haven’t already done so.

With the class and mapper changes set up, let’s think about how you need to modify the page
table and what fields you’d like the section table to contain.

In SimpleSite, the section table doesn’t need to hold any data other than an ID because all the
attributes it needs are already inherited from the nav table. The ID for a section has to be the same
as the corresponding ID in the nav table so that SQLAlchemy knows how sections and navs are
related. This means the ID should be a foreign key. Add the section table like this:

section_table = sa.Table('section', meta.metadata,
schema.Column('id', types.Integer,

schema.ForeignKey('nav.id'), primary_key=True),
)

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2300

■Note In this particular case, the attributes required suggest you could have simply created a Section object
and had the Page inherit from it rather than having a separate Nav object and choosing that Section and Page
inherit from it. The important point to be aware of is that you should also look at how objects you are modeling
relate to each other in the real world as well as looking at how their attributes suggest they could be related.
Pages aren’t really like sections because they can’t contain other pages and sections, so it is not wise to structure
your model in a way that assumes they are.

The page table remains unchanged because you still want page-specific data stored in the page
table and navigation information about the page stored in the nav table. Once again, though, the
page’s ID field needs to be a foreign key representing the ID of the record in the nav table from
which it inherits. Change the definition for the id column of the page table to this:

schema.Column('id', types.Integer, schema.ForeignKey('nav.id'), primary_key=True),

With these changes in place, our Page and Section objects will automatically have all the attri-
butes of Nav objects even though the information is physically stored in a different table.

Setting Up Initial Data
Now that the new model structure is in place, you’ll need to update the websetup.py file so that the
project contains more appropriate initial data. Update websetup.py so that it looks like this (notice
that you drop all the tables first if the function is being called with configuration from test.ini as
described in Chapter 12):

"""Set up the SimpleSite application"""
import logging
import os.path
from simplesite import model

from simplesite.config.environment import load_environment

log = logging.getLogger(__name__)

def setup_app(command, conf, vars):
"""Place any commands to setup simplesite here"""
load_environment(conf.global_conf, conf.local_conf)

Load the models
from simplesite.model import meta
meta.metadata.bind = meta.engine
filename = os.path.split(conf.filename)[-1]
if filename == 'test.ini':

Permanently drop any existing tables
log.info("Dropping existing tables...")
meta.metadata.drop_all(checkfirst=True)

Continue as before
Create the tables if they aren't there already
meta.metadata.create_all(checkfirst=True)

log.info("Adding home page...")
section_home = model.Section()
section_home.path=u''
section_home.name=u'Home Section'
meta.Session.add(section_home)
meta.Session.flush()

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 301

page_contact = model.Page()
page_contact.title=u'Contact Us'
page_contact.path=u'contact'
page_contact.name=u'Contact Us Page'
page_contact.content = u'Contact us page'
page_contact.section=section_home.id
meta.Session.add(page_contact)
meta.Session.flush()

section_dev = model.Section()
section_dev.path=u'dev'
section_dev.name=u'Development Section'
section_dev.section=section_home.id
section_dev.before=page_contact.id
meta.Session.add(section_dev)
meta.Session.flush()

page_svn = model.Page()
page_svn.title=u'SVN Page'
page_svn.path=u'svn'
page_svn.name=u'SVN Page'
page_svn.content = u'This is the SVN page.'
page_svn.section=section_dev.id
meta.Session.add(page_svn)
meta.Session.flush()

page_dev = model.Page()
page_dev.title=u'Development Home'
page_dev.path=u'index'
page_dev.name=u'Development Page'
page_dev.content=u'This is the development home page.'
page_dev.section=section_dev.id
page_dev.before=page_svn.id
meta.Session.add(page_dev)
meta.Session.flush()

page_home = model.Page()
page_home.title=u'Home'
page_home.path=u'index'
page_home.name=u'Home'
page_home.content=u'Welcome to the SimpleSite home page.'
page_home.section=section_home.id
page_home.before=section_dev.id
meta.Session.add(page_home)
meta.Session.flush()

meta.Session.commit()
log.info("Successfully set up.")

Now that you have updated the model and written a new websetup.py, you need the changes to
be reflected in the underlying database. The easiest way of doing this is to create a new database
from scratch. Once you’ve done this, you’ll continue with the tutorial.

$ mv development.db development.db.old
$ paster setup-app development.ini

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2302

With these changes in place, IDs are shared between pages and sections. This means that nav
ID 1 represents a section, whereas nav ID 2 represents a page. Visiting
http://localhost:5000/page/view/1 will therefore give a 404 Not Found response because there is
no page with an ID of 1. In fact, the home page now has an ID of 6.

Creating the Controllers
Now that the model correctly supports the navigation structure, you’ll need to think again about the
controllers.

I mentioned before that you generally need a controller for every table in your database, but in
this case you might think that there isn’t a lot of point in having a controller for the navigation table
because the Section and Page objects in the model handle all the functionality for that table any-
way. It turns out that it can be useful to have a navigation controller as long as it can’t be accessed
directly because both the page and section controllers can inherit any functionality that affects only
the nav table, such as the ability to move pages or sections. Create the navigation controller and a
directory for its templates:

$ paster controller nav
$ cd simplesite/templates/derived
$ mkdir nav

Now change the NavController class. Delete the index() action, and add a __before__()
method that prevents any of the actions you’ll add later being called directly as a result of a URL
being entered:

def __before__(self):
abort(404)

You’ll also need to add the following imports:

from simplesite import model
from simplesite.model import meta

With the nav controller in place, let’s start by thinking about the section controller.
Your users will need to be able to add, edit, and remove sections just as they can with pages,

but they probably won’t need to list all the sections. Let’s use the template.py.txt file you created
earlier in the chapter as a starting point for the new controller:

$ cd simplesite/controllers
$ cp template.py.txt section.py
$ perl -pi -w -e 's/comment/section/g; s/Comment/Section/g;' section.py

Now let’s also create a set of templates:

$ cd ../templates/derived
$ cp -r page section
$ cd section
$ perl -pi -w -e 's/page/section/g; s/Page/Section/g;' *.html

Delete the section/list.html template because you won’t need it. Now restart the server if you
stopped it to make these changes:

$ cd ../../../../
$ paster serve --reload development.ini

As usual, let’s start by thinking about the FormEncode schema you’re going to need. You’ll need
validators for each of the columns in the nav table. To validate the value of the before column
(which is used to determine the order of pages and sections within a subsection), you’ll need a cus-
tom validator. Since pages also have a value of before, they will need the same validator, so rather

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 303

than defining the custom validator in the section controller, let’s create the validators in the nav
controller. Add this to the nav controller after the existing imports:

import formencode

class ValidBefore(formencode.FancyValidator):
"""Checks the ID specified in the before field is valid"""
def _to_python(self, values, state):

nav_q = meta.Session.query(model.Nav)
Check the value for before is in the section
if values.get('before'):

valid_ids = [nav.id for nav in nav_q.filter_by(
section=values['section']).all()]

if int(values['before']) not in valid_ids:
raise formencode.Invalid("Please check the section "

"and before values", values, state)
return values

class NewNavForm(formencode.Schema):
allow_extra_fields = True
filter_extra_fields = True
name = formencode.validators.String(not_empty=True)
path = formencode.validators.Regex(not_empty=True, regex='^[a-zA-Z0-9_-]+$')
section = formencode.validators.Int(not_empty=True)
before = formencode.validators.Int()
chained_validators = [ValidBefore()]

The NewNavForm schema handles each of the fields but uses the ValidBefore chained validator
to also check that the navigation node specified in before is either None (which means add the new
section at the end of the existing section) or is the ID of a navigation node, which does exist in that
section. You’ll recall that chained validators are run only once after all the individual validators for
each of the fields have been checked. The schema also uses a Regex validator to ensure that only
allowed characters are used on the path.

Let’s now use the NewNavForm schema as a basis for creating a schema for new sections. Add this
to the section controller in place of the existing NewSectionForm schema:

from simplesite.controllers.nav import NewNavForm, ValidBefore

class UniqueSectionPath(formencode.validators.FancyValidator):
"Checks that there isn't already an existing section with the same path"
def _to_python(self, values, state):

nav_q = meta.Session.query(model.Nav)
query = nav_q.filter_by(section=values['section'],

type='section', path=values['path'])
if request.urlvars['action'] == 'save':

Ignore the existing ID when performing the check
query = query.filter(model.Nav.id != int(request.urlvars['id']))

existing = query.first()
if existing is not None:

raise formencode.Invalid("There is already a section in this "
"section with this path", values, state)

return values

class NewSectionForm(NewNavForm):
chained_validators = [ValidBefore(), UniqueSectionPath()]

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2304

The UniqueSectionPath validator ensures there isn’t another subsection with the same path in
the section to which this section is being added. Although this code works well for adding a new
section, there are some different constraints when editing a section. Sections cannot be moved to
sections that are children of the section being moved. This means you need another validator to
ensure that if the section is being edited, the new section is in a valid position. Here’s the new val-
idator and an EditNavForm that uses it. Add them to the section controller after the NewSectionForm
you just added:

class ValidSectionPosition(formencode.FancyValidator):
def _to_python(self, values, state):

nav_q = meta.Session.query(model.Nav)
if values.get('type', 'section') == 'section':

Make sure the section we are moving to is not already
a subsection of the current section
section = nav_q.filter_by(id=int(values['section'])).one()
current_section = nav_q.filter_by(id=request.urlvars['id']).one()
while section:

if section.section == current_section.id:
raise formencode.Invalid("You cannot move a section to "

"one of its subsections", values, state)
if section.section == 1:

break
section = nav_q.filter_by(id=section.section).first()

return values

class EditSectionForm(NewNavForm):
chained_validators = [

ValidBefore(),
UniqueSectionPath(),
ValidSectionPosition()

]

The ValidSectionPosition validator iterates through each of the parent sections of the section
to which you are trying to move the section you are editing. If it reaches the top of the navigation
tree without finding the section you are moving, then you are allowed to move the section.

At this point, all the validators that will be shared between pages and sections are in the nav
controller, and all the validators that the section needs are in the section controller, but they inherit
from those in the navigation controller. You’ll make the necessary changes to the page controller
later in the chapter, so now let’s think about the templates.

Both the page and the section will need the extra fields from the nav table, so create a new file
called fields.html in the templates/derived/nav/ directory to be shared by the page and section
templates. Add the following content:

${h.field(
"Name",
h.text(name='name'),
required=True,

)}
${h.field(

"Path",
h.text(name='path'),
required=True,

)}

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 305

${h.field(
'Section',
h.select(

"section",
id='section',
selected_values=[],
options=c.available_sections,

),
required=True

)}
${h.field(

"Before",
h.text(

"before",
id='before',

),
)}

These fields will be used by both the page controller and the section controller. Update the
derived/section/fields.html file to import and use the fields you’ve just created:

<%namespace file="/derived/nav/fields.html" name="fields" import="*"/>
Nav fields
${fields.body()}
Section fields would go here if there were any

Because of the way the templates are set up, these fields will be used in both the derived/
section/new.html and derived/section/edit.html templates. You’ll notice that the section field
relies on the value of c.available_sections. You haven’t set this up yet, so let’s do that now by
adding the following __before__() method to the section controller:

def __before__(self, id=None):
nav_q = meta.Session.query(model.Nav)
if id:

nav_q=nav_q.filter_by(type='section').filter(model.nav_table.c.id!=int(id))
else:

nav_q = nav_q.filter_by(type='section')
c.available_sections = [(nav.id, nav.name) for nav in nav_q]

Notice that you are using a query based on model.Nav here and specifying type='section' in
the filter rather than querying model.Section. This is because the nav table contains the name col-
umn you need access to, but the section table doesn’t.

At this point you’ll be able to see the form for creating a new section by visiting http://
localhost:5000/section/new. This is shown in Figure 14-6, but the section won’t save correctly yet.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2306

Figure 14-6. The create section form

Simply adding the section to the table isn’t enough. Because this is a hierarchy, you also need to
modify the node this node appears before to update its value of before to point to the ID of the sec-
tion the user is adding so that the ordering is correct. You could add a function to perform this task
as a helper, but in this case the work mainly has to do with the model, so it would be better to add it
there.

Rather than simply adding the function to the model module itself, you’re going to add it as a
static method to the Nav class. A static method in Python is one that is associated with the class itself
and not the instance of a class. As such, it doesn’t have a self argument. Update the Nav class in
model/__init__.py to look like this:

class Nav(object):
@staticmethod
def add_navigation_node(nav, section, before):

nav_q = meta.Session.query(Nav)
new_before = nav_q.filter_by(section=section, before=before).first()
if new_before is not None and new_before.id != nav.id:

new_before.before = nav.id

You can now access this functionality as model.Nav.add_navigation_node() in your controllers
without needing any additional imports, and it is clear what the functionality does. The Section and
Page classes will also inherit this method, although you’ll use the version attached to Nav to keep
what is happening more explicit.

Update the section controller’s create() action so that the navigation structure is correctly
updated when a section is added by calling model.Nav.add_navigation_node(). Since a section isn’t
a lot of use on its own, let’s also generate an index page for the section. To do this, you need to flush
the session so that the section object gets assigned an ID. You can then use the ID to help create the
index page. The finished code looks like this with the new lines bold:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 307

@restrict('POST')
@validate(schema=NewSectionForm(), form='new')
def create(self):

Add the new section to the database
section = model.Section()
for k, v in self.form_result.items():

setattr(section, k, v)
meta.Session.add(section)
model.Nav.add_navigation_node(section, self.form_result['section'],

self.form_result['before'])
Flush the data to get the session ID.
meta.Session.flush()
index_page = model.Page()
index_page.section = section.id
index_page.path = 'index'
index_page.title = 'Section Index'
index_page.name = 'Section Index'
index_page.content = 'This is the index page for this section.'
meta.Session.add(index_page)
meta.Session.commit()
Issue an HTTP redirect
return redirect_to(controller='section', action='view', id=section.id)

Since you can’t actually see a section, there isn’t a lot of point in having the create() action
redirect to a view of it. For this reason, delete the view() action and the view.html template because
you won’t use them. For the time being, after you create a new section, you’ll get the error "Action
u'view' is not implemented". You’ll fix this later in the chapter.

Now that you can create sections, let’s think about editing them. First you’ll need to update the
edit() action so that the values reflect those of a section. It should look like this:

values = {
'name': section.name,
'path': section.path,
'section': section.section,
'before': section.before,

}

When you save a section, there is a chance you are moving it to another section. If this is the
case, you need to formally remove it from the node hierarchy before adding it in the new location.
You already have an add_navigation_node() method, so here’s the remove_navigation_node() static
method. Add this to the Nav class in model/__init__.py too:

@staticmethod
def remove_navigation_node(nav):

nav_q = meta.Session.query(Nav)
old_before = nav_q.filter_by(section=nav.section, before=nav.id).first()
if old_before is not None:

old_before.before = nav.before

Update the section controller’s save() action to look like this. Make sure you update the
redirect code and change the schema in the @validate decorator to use the EditSectionForm you
created earlier.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2308

@restrict('POST')
@validate(schema=EditSectionForm(), form='edit')
def save(self, id=None):

section_q = meta.Session.query(model.Section)
section = section_q.filter_by(id=id).first()
if section is None:

abort(404)
if not(section.section == self.form_result['section'] and \

section.before == self.form_result['before']):
model.Nav.remove_navigation_node(section)
model.Nav.add_navigation_node(section, self.form_result['section'],

self.form_result['before'])
for k,v in self.form_result.items():

if getattr(section, k) != v:
setattr(section, k, v)

meta.Session.commit()
session['flash'] = 'Section successfully updated.'
session.save()
Issue an HTTP redirect
return redirect_to(controller='section', action='view', id=section.id)

Once again, when you save a section after editing, you will be redirected to the nonexistent
view() action. You’ll fix this later too.

Next you’ll need to look at the delete() action. Ideally you should not be able to delete a sec-
tion while it still contains pages or subsections. However, if you deleted all the pages a section
contained, then there would be no page on which to display a link to delete the section. Instead,
you will set things up so that deleting a section also deletes its index page, but you can’t delete a
section if any other pages or sections exist within the section you’re deleting. Update the delete()
action so that it looks like this:

def delete(self, id=None):
if id is None:

abort(404)
section_q = meta.Session.query(model.Section)
section = section_q.filter_by(id=id).first()
if section is None:

abort(404)
nav_q = meta.Session.query(model.Nav)

existing = nav_q.filter_by(section=id, type='section').filter(
model.Page.path != 'index').first()

if existing is not None:
return render('/derived/section/cannot_delete.html')

index_page = nav_q.filter_by(section=id, path='index', type='page').first()
if index_page is not None:
model.Nav.remove_navigation_node(index_page)
meta.Session.delete(index_page)

model.Nav.remove_navigation_node(section)
meta.Session.delete(section)
meta.Session.commit()
return render('/derived/section/deleted.html')

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 309

You’ll need to create the derived/section/cannot_delete.html file with this content:

<%inherit file="/base/index.html"/>

<%def name="heading()"><h1>Cannot Delete</h1></%def>

<p>You cannot delete a section which still contains pages or subsections
other than the index page. Please delete the pages and subsections
first.</p>

That’s it—now you can also delete sections, but before we move on, let’s add the section links
to the page footer so that users can access the functionality you’ve just implemented without hav-
ing to type the URL directly. Edit templates/derived/page/view.html so that the footer() def looks
like this:

<%def name="footer()">
Then add our page links
<p>
All Pages

| <a href="${h.url_for(controller='page', action='new', ➥
section=c.page.section, before=c.page.before)}">New Page
| <a href="${h.url_for(controller='page', action='edit', ➥
id=c.page.id)}">Edit Page
| <a href="${h.url_for(controller='page', action='delete', ➥
id=c.page.id)}">Delete Page
</p>
Comment links
<p>
<a href="${h.url_for(pageid=c.page.id, controller='comment', ➥

action='list', id=None)}">Comments (${str(c.comment_count)})
| <a href="${h.url_for(pageid=c.page.id, controller='comment', ➥
action='new', id=None)}">Add Comment
</p>
Section links
<p>
<a href="${h.url_for(controller='section', action='new', ➥

section=c.page.section, before=c.page.before)}">New Section
| <a href="${h.url_for(controller='section', action='edit', ➥
id=c.page.section)}">Edit Section
| <a href="${h.url_for(controller='section', action='delete', ➥
id=c.page.section)}">Delete Section and Index Page
</p>
Tag links
<p>All Tags
| Add Tag</p>
Include the parent footer too
${parent.footer()}
</%def>

You’ll notice that the call to h.url_for() to the section controller’s new() action contains some
extra arguments, section and before. When Routes’ h.url_for() function gets passed arguments,
and it doesn’t recognize them; it will simply add them as parameters to the query string. In this case,
the arguments represent information about the current page that can be used on the new() action
to automatically populate some of the values. The URL generated might look like /section/
new?section=1&before=7. To take advantage of these arguments, you will have to update the section
controller’s new() action to look like this:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2310

def new(self):
values = {}
values.update(request.params)
if values.has_key('before') and values['before'] == u'None':

del values['before']
return htmlfill.render(render('/derived/section/new.html'), values)

The h.url_for() call to create a new page has also had a similar change. It now takes both the
section and the before value of the current page as arguments too, so now you can turn your atten-
tion to updating the page controller.

The Page Controller
Let’s start by updating the page controller’s new() action to accept the variables that will be passed
to it when a user clicks the New Page link now that you’ve updated the arguments to h.url_for() in
the page view template footer. The new action should look like this:

def new(self):
values = {}
values.update(request.params)
if values.has_key('before') and values['before'] == u'None':

del values['before']
return htmlfill.render(render('/derived/page/new.html'), values)

The page controller also needs the same fields and functionality as the section controller. This
is not surprising since both sections and pages inherit from the Nav class. Edit the derived/page/
fields.html file to include fields from the derived/nav/fields.html file. Add the following at the
top of the before the existing fields:

<%namespace file="/derived/nav/fields.html" name="fields" import="*"/>
Nav fields
${fields.body()}
Page fields

Now that the extra fields are in place, let’s change the NewPageForm schema in the page con-
troller to inherit from NewNavForm instead of formencode.Schema so that it has all the validators of
NewNavForm as well as its own. You’ll also need a UniquePagePath validator to ensure there isn’t
already a page with the same name in the current section. Add this to the top of page.py replacing
the existing NewPageForm schema:

from simplesite.controllers.nav import NewNavForm, ValidBefore

class UniquePagePath(formencode.validators.FancyValidator):
def _to_python(self, values, state):

nav_q = meta.Session.query(model.Nav)
query = nav_q.filter_by(section=values['section'],

type='page', path=values['path'])
if request.urlvars['action'] == 'save':

Ignore the existing id when performing the check
query = query.filter(model.Nav.id != int(request.urlvars['id']))

existing = query.first()
if existing is not None:

raise formencode.Invalid("There is already a page in this "
"section with this path", values, state)

return values

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 311

class NewPageForm(NewNavForm):
allow_extra_fields = True
filter_extra_fields = True
content = formencode.validators.String(

not_empty=True,
messages={

'empty':'Please enter some content for the page. '
}

)
heading = formencode.validators.String()
title = formencode.validators.String(not_empty=True)
chained_validators = [ValidBefore(), UniquePagePath()]

Notice that the NewPageForm schema also has the same ValidBefore() chained validator as the
NewSectionForm.

Now modify the page controller’s create() action so that new pages are added in the correct
place in the hierarchy and the redirect code is updated.

@restrict('POST')
@validate(schema=NewPageForm(), form='new')
def create(self):

Add the new page to the database
page = model.Page()
for k, v in self.form_result.items():

setattr(page, k, v)
meta.Session.add(page)
model.Nav.add_navigation_node(page, self.form_result['section'],

self.form_result['before'])
meta.Session.commit()
Issue an HTTP redirect
return redirect_to(controller='page', action='view', id=page.id)

And just as with the section controller, update the redirect code and change the lines in the
save() action before the line for k,v in self.form_result.items():

@restrict('POST')
@validate(schema=NewPageForm(), form='edit')
def save(self, id=None):

page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
if not(page.section == self.form_result['section'] and \

page.before == self.form_result['before']):
model.Nav.remove_navigation_node(page)
model.Nav.add_navigation_node(page, self.form_result['section'],

self.form_result['before'])
for k,v in self.form_result.items():

if getattr(page, k) != v:
setattr(page, k, v)

meta.Session.commit()
session['flash'] = 'Page successfully updated.'
session.save()
Issue an HTTP redirect
return redirect_to(controller='page', action='view', id=page.id)

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2312

Now you’ll need to update the edit() method so that it also populates all the new values:

values = {
'name': page.name,
'path': page.path,
'section': page.section,
'before': page.before,
'title': page.title,
'heading': page.heading,
'content': page.content,

}

For this to work, you’ll need a similar __before__() action used in the section controller to set
c.available_sections:

def __before__(self):
nav_q = meta.Session.query(model.Nav)
c.available_sections = [(nav.id, nav.name) for nav in ➥

nav_q.filter_by(type='section')]

You’ll also need to update the delete() action. This is much easier than it is for sections; simply
add the following line:

def delete(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
meta.Session.execute(delete(model.pagetag_table,

model.pagetag_table.c.pageid==page.id))
model.Nav.remove_navigation_node(page)
meta.Session.delete(page)
meta.Session.commit()
return render('/derived/page/deleted.html')

Changing the Routing
At this point you now have all the functionality necessary for a fully working web site. These are the
only missing elements:

• The ability to enter a proper URL rather than the ID of the page you want to view

• Navigation controls such as tags, a menu, and breadcrumbs

Before I get into too much detail about the code, I’ll discuss exactly how these things will be
implemented. You want a setup where the URL appears as if it is mapping to a directory structure
of sections and subsections. So, rather than visiting /page/view/4 to view the SVN page in the
development section, you will be able to access it as /dev/svn. To do this, you need to get Routes to
understand your alternative URL structure. You’ll also want some navigation components. You’ll
use a set of tabs for the main navigation. Any page or section that is in the home section will be
displayed on these tabs. For any page that isn’t in the home section, a navigation menu will be also
generated to display the links in that section. Finally, you’ll have a breadcrumb trail so that users
can see where they are in the navigation hierarchy. There’s a lot to do, so let’s get started.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 313

You’ll implement both these elements, but you’ll start with the routing. Ideally, you want to be
able to specify a route that will handle a URL not already matched by the other routes. You can do
this by using a wildcard part, as you learned in Chapter 9. One approach could be to add a route like
this as the last route in SimpleSite’s config/routing.py file:

map.connect('*url', controller='page', action='nav')

This would redirect any URL not already matched by the other routes to the page controller’s
nav() action from where the appropriate dispatch can be performed; however, there is also a
slightly neater solution that involves having the page or section ID calculated as part of the match-
ing process. This avoids needing to use a controller action for dispatch.

Create a named route called path as the last route in the route map, and specify a function
condition on the route called parse() and a filter on the route named build(). Conditions and fil-
ters are advanced Routes functionality that I discussed in Chapter 9. Here’s how the route map
should look, with the new route shown in bold:

def make_map():
"""Create, configure and return the routes Mapper"""
map = Mapper(directory=config['pylons.paths']['controllers'],

always_scan=config['debug'], explicit=True)
map.minimization = False

The ErrorController route (handles 404/500 error pages); it should
likely stay at the top, ensuring it can always be resolved
map.connect('/error/{action}', controller='error')
map.connect('/error/{action}/{id}', controller='error')

CUSTOM ROUTES HERE

map.connect(
'/page/{pageid}/{controller}/{action}',
requirements=dict(pageid='\d+'),

)
map.connect(

'/page/{pageid}/{controller}/{action}/{id}',
requirements=dict(pageid='\d+', id='\d+'),

)
map.connect('/{controller}/{action}')
map.connect('/{controller}/{action}/{id}')
map.connect('path', '*url', conditions={'function':parse}, _filter=build)
return map

Add the parse() and build() functions to the top of the config/routing.py file before the
make_map() function:

from simplesite import model

def parse(environ, result):
url = result.pop('url')
try:

environ['simplesite.navigation'] = navigation_from_path(url)
except NoPage, e:

result['controller'] = 'nav'
result['action'] = 'nopage'
result['section'] = e.section
result['path'] = e.path

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2314

except NoSection, e:
result['controller'] = 'nav'
result['action'] = 'nosection'
result['section'] = e.section
result['path'] = e.path

except NotFound, e:
This causes the route to not match
return False

else:
result['controller'] = 'page'
result['action'] = 'view'
result['id'] = environ['simplesite.navigation']['page'].id

return True

def build(routing_variables):
controller = routing_variables.get('controller')
action = routing_variables.get('action')
id = routing_variables.get('id')
del routing_variables['id']
routing_variables['url'] = model.Nav.nav_to_path(id)
return routing_variables

When Routes can’t match any URL against the other routes, the 'path' named route you’ve
just added gets tested. This causes the parse() condition to be called, which in turn calls the
navigation_from_path() function with the current URL as its argument.

I’ll show you the navigation_from_path() function in a moment, but let’s think about what it
has to do. Its main job is to match the URL entered against a section or page that already exists so
that the correct routing variables can be set up. If the URL doesn’t match an existing section or a
page, the function should ideally determine whether it is possible to create a page or section at that
URL. If it is possible, you’ll need some mechanism to let the user know they can create a section or
page. If it isn’t, a 404 Not Found response should be returned.

It turns out that performing these checks requires the navigation_from_path() function to look
up each part of the URL to check that it exists and to determine whether it is a section or page. Since
these checks are already being performed, it makes sense for the same function to also gather the
information that will be required to generate the navigation components you’d like to use in the site
including top-level tabs, a menu, and breadcrumbs. This is precisely what the function does,
returning a dictionary with the following keys:

breadcrumbs: A list of all the sections in the navigation hierarchy up to the current node, fol-
lowed by the final page or section. Each item in the list has an attribute added called path_info,
which is the full URL PATH_INFO to that page or section that can be used to help generate links.

menu: A list of all the pages and sections in the section to which the URL resolves.

tabs: The pages and sections in the topmost section. Used in the main navigation tabs.

page: The page object for the page the URL resolves to or the index page if the URL resolves to a
section.

This dictionary returned is then added to the environ dictionary as the simplesite.navigation
key so that it can be accessed in the rest of the application.

■Note Some people would argue that this sort of functionality is better implemented as Web Server Gateway
Interface middleware. You’ll learn about middleware in Chapter 16 and are free to reimplement the previous func-
tionality a different way if you prefer.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 315

The navigation_from_path() function is shown here together with the menu() function it relies
on and three Exception classes that are used as part of the process. The code looks like this and
should be added to the top of config/routing.py after the build() function:

class NoPage(Exception):
pass

class NoSection(Exception):
pass

class NotFound(Exception):
pass

def navigation_from_path(path_info):
result = {}
nav_q = model.meta.Session.query(model.Nav)
path_parts = path_info.split('/')
result['breadcrumbs'] = []
if path_info.endswith('/'):

path_info += 'index'
path_parts = path_info.split('/')
for path in path_parts[:-1]:

s = nav_q.filter_by(type='section', path=path).first()
if s:

result['breadcrumbs'].append(s)
else:

if path_info.endswith('/index') and \
len(result['breadcrumbs']) == len(path_info.split('/'))-2:
exception = NoSection('No section exists here')
exception.section = result['breadcrumbs'][-1].id
exception.path = path_parts[-2]
raise exception

else:
raise NotFound('No section can be created here')

result['page'] = nav_q.filter_by(type='page',
section=result['breadcrumbs'][-1].id, path=path_parts[-1]).first()

if result['page'] is None:
if len(result['breadcrumbs']) == len(path_info.split('/'))-1:

exception = NoPage('No page exists here')
exception.section = result['breadcrumbs'][-1].id
exception.path = path_parts[-1]
raise exception

else:
raise NotFound('No page can be created here')

result['breadcrumbs'].append(result['page'])
Add the path_info
cur_path = ''
for breadcrumb in result['breadcrumbs']:

cur_path +=breadcrumb.path
breadcrumb.path_info = cur_path
if isinstance(breadcrumb, model.Section):

breadcrumb.path_info = cur_path + '/'
cur_path += '/'

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2316

result['menu'] = menu(nav_q, result['breadcrumbs'][-2].id,
result['breadcrumbs'][-2].path_info)

result['tabs'] = menu(nav_q, result['breadcrumbs'][0].id,
result['breadcrumbs'][0].path_info)

return result

def menu(nav_q, sectionid, path_info):
There might also be child sections
last = None
navs = [nav for nav in nav_q.filter_by(section=sectionid).order_by(

model.nav_table.c.before.desc()).all()]
for nav in navs:

if nav.before is None:
This is our last node
last = nav
break

menu_dict = dict([[nav.before, nav] for nav in navs])
if not last:

raise Exception('No last node found')
Iterate over the nodes building them up in the correct order
menu = [last]
while len(menu) < len(navs):

id = menu[0].id
if not menu_dict.has_key(id):

raise Exception("This section doesn't have an item %s to go "
"before %r id %s"%(id, menu[0].name, menu[0].id))

item = menu_dict[menu[0].id]
menu.insert(0, item)

f_menu = []
for menu_item in menu:

menu_item.path_info = path_info + menu_item.path
if isinstance(menu_item, model.Section):

menu_item.path_info += '/'
elif menu_item.path_info.endswith('/index'):

menu_item.path_info = menu_item.path_info[:-5]
f_menu.append(menu_item)

return f_menu

As you can see, the navigation_to_path() function looks at each part of path to check that it
exists, building up a list of breadcrumbs as it does. If it matches a page or section, it will also gener-
ate data structures for top-level tabs and a navigation menu containing links to other sections and
pages in the same section as the section to which the URL resolves.

If the URL entered can’t be matched, the function checks to see whether it could represent a
section if that section was created. If it does, a NoSection exception is raised. This is caught in the
parse() function and results in the nav controller’s nosection() action being called. A similar thing
happens if the URL resolves to a page that could exist if it were created, only a NoPage exception is
raised, eventually resulting in a call to the nav controller’s nopage() action.

If the URL doesn’t resolve to a page or section and the component above it doesn’t exist either,
then a NotFound exception is raised, causing the parse() function to return False, which in turn tells
Routes that the 'path' named route hasn’t matched. This results in a 404 Not Found page being dis-
played as normal.

Let’s implement the nosection() and nopage() actions. Replace the NavController class with
this (you don’t need the __before__() method anymore):

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 317

class NavController(BaseController):

def nopage(self, section, path):
return render('/derived/nav/create_page.html')

def nosection(self, section, path):
return render('/derived/nav/create_section.html')

You’ll also need to create the templates on which these actions rely. Create derived/nav/
create_page.html like this:

<%inherit file="/base/index.html"/>

<%def name="heading()"><h1>Create Page</h1></%def>
<p><a href="${h.url_for(controller='page', action='new',

section=c.section, path=c.path)}">Create a new page here.</p>

and create derived/nav/create_section.html like this:

<%inherit file="/base/index.html"/>

<%def name="heading()"><h1>Create Section</h1></%def>
<p><a href="${h.url_for(controller='section', action='new',

section=c.section, path=c.path)}">Create a new section here.</p>

Now when you visit a URL that doesn’t exist but for which a page or a section could be created,
you will be shown a page with a link allowing you to create it.

To view the page, the attributes c.menu, c.tabs, and c.breadcrumbs must be set. Add the lines
in bold to the end of the page controller’s view() method to obtain the values calculated during the
processing of the routes and set them for use in the template.

def view(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
c.page = page_q.filter_by(id=int(id)).first()
if c.page is None:

abort(404)
c.comment_count = meta.Session.query(model.Comment).filter_by(pageid=id).count()
tag_q = meta.Session.query(model.Tag)
c.available_tags = [(str(tag.id), tag.name) for tag in tag_q]
c.selected_tags = {'tags':[tag.id for tag in c.page.tags]}
c.menu = request.environ['simplesite.navigation']['menu']
c.tabs = request.environ['simplesite.navigation']['tabs']
c.breadcrumbs = request.environ['simplesite.navigation']['breadcrumbs']
return render('/derived/page/view.html')

For this to work, you need to use the named route 'path' when generating URLs to the page or
section controller’s view() actions so that the build() filter function can generate the correct URL.

Update all the calls to redirect_to() in the page controllers to this:

return redirect_to('path', id=page.id)

Update all the calls to redirect_to() in the section controller to look like this:

return redirect_to('path', id=section.id)

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2318

This build() function relies on a nav_to_path() static method that you should add to the Nav
class in your model after the existing static methods:

class Nav(object):

... existing methods ...

@staticmethod
def nav_to_path(id):

nav_q = meta.Session.query(Nav)
nav = nav_q.filter_by(id=id).one()
path = nav.path
if nav.type=='section':

path += '/'
while nav.section is not None:

nav = nav_q.filter_by(type='section', id=nav.section).one()
path = nav.path+'/'+path

return path

There are two other places that need updating to use the new route. Edit
templates/derived/page/list.html, and replace these lines:

h.url_for(
controller=u'page',
action='view',
id=unicode(page.id)

)

with the following:

h.url_for('path', id=page.id)

Then edit templates/derived/comment/view.html, and update the link back to the page the
comment was posted on to look like this:

<p>➥
Visit the page this comment was posted on.</p>

At this point, everything is in place to test the new code, but you are advised to create a new
database because the navigation structure is fairly fragile if the validators aren’t in place and
because it is possible that as you’ve been building and testing the functionality you may have
introduced some errors.

Delete the database and run this:

$ paster setup-app development.ini

Start the server again, visit http://localhost:5000/, and you should see the home page exactly
as if you had visited http://localhost:5000/page/view/6 before making the routing changes.

Adding the Navigation Elements
Now all you need to do is add the navigation elements to the pages. Start by editing
templates/base/index.html to add this import to the top:

<%namespace name="navigation" file="/component/navigation.html" import="*" />\

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 319

Then add templates/component/navigation.html with the following content:

<%!
import simplesite.model as model
%>
<%def name="breadcrumbs()">

% if c.page and c.page.id != 1:
<div id="breadcrumbs"><p>${render_breadcrumbs(c.breadcrumbs)}</p></div>
% endif

</%def>

<%def name="tabs()">
% if c.tabs:
<div id="maintabs">

<ul class="draglist">
${render_list(c.tabs, c.breadcrumbs[1].path,

type_=c.breadcrumbs[1].type, id='li1_', class_='list2')}

</div>
% endif

</%def>

<%def name="menu()">
% if len(c.breadcrumbs) > 2:

<div id="menu">
<h2>Section Links</h2>
<ul class="draglist">

${render_list(c.menu, c.breadcrumbs[-1].path,
type_=c.breadcrumbs[1].type, id='li1_', class_='list2')}

</div>

% endif
</%def>

<%def name="render_list(items, current, id, class_)">
% for item in items:

% if item.path == current and item.type == type_:
<li class="${class_} active" id="${id}${str(item.id)}">${item.name}\
% else:

<li class="${class_}" id="${id}${str(item.id)}"
onclick="document.location ='${item.path_info}'"

>${item.name}\
% endif

% endfor
</%def>

<%def name="render_breadcrumbs(breadcrumbs)">
% for i, item in enumerate(breadcrumbs):
% if i < len(breadcrumbs) - 1:

${item.name} >
% elif isinstance(c.breadcrumbs[-1], model.Section):

${item.name} >
% else:

${item.name}
% endif
% endfor

</%def>

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2320

Finally, edit templates/base/index.html again to replace the following defs:

<%def name="tabs()"></%def>
<%def name="menu()"></%def>
<%def name="heading()"><h1>${c.heading or 'No Title'}</h1></%def>
<%def name="breadcrumbs()"></%def>

with the following versions:

<%def name="tabs()">${navigation.tabs()}</%def>
<%def name="menu()">${navigation.menu()}</%def>
<%def name="heading()"><h1>${c.heading or 'No Title'}</h1></%def>
<%def name="breadcrumbs()">${navigation.breadcrumbs()}</%def>

With these changes in place, as shown in Figure 14-7, you can test the navigation components
you’ve created.

Figure 14-7. The breadcrumbs, main links, and section links

Adding Some Style
Now that all the functionality for the SimpleSite is in place, let’s add some style to
public/css/main.css. It would be good if the navigation tabs looked like tabs rather than a bulleted
list. These styles will fix this; add them to the end of the file:

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 321

#maintabs ul {
margin: 0px;
padding: 0px;
height: 23px;

}
#maintabs {

background: #87AFD7;
border-bottom: 3px solid #113958;
margin: 0;
padding: 10px 0 0px 17px;

}
#maintabs li {

list-style: none;
margin: 0;
display: inline;

}
#maintabs li a {

padding: 6px 10px;
margin-left: 3px;
border-bottom: none;
text-decoration: none;

}
#maintabs li a:link { color: #113958; }
#maintabs li a:visited { color: #113958; }
#maintabs li a:hover {

color: #000;
background: #fff;
border-color: #227;

}
#maintabs li a#current
{

background: #113958;
color: #fff;
font-weight: bold;
border-right: 2px solid #468AC7;

}

■Tip If you find yourself frequently styling bulleted lists in this way, a useful site is listamatic at
http://css.maxdesign.com.au/listamatic/; it provides quite a few different styles to apply to the same
style sheet.

At this point, all the core functionality of SimpleSite is in place. You can add comments, tag
pages, create sections and subsections, and move pages and sections around. Now is a good time
to test the application to check that it behaves as you expect it to and that you haven’t made any
mistakes.

Figure 14-8 shows what the application looks like with some tags added.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2322

Figure 14-8. CSS and tags

Summary
You accomplished an awful lot in this chapter. You implemented a full comment and tag system,
used SQLAlchemy’s sophisticated inheritance features, shared code between different validators
and templates, and built some sophisticated extensions to Routes.

In the next chapter, you’ll learn about JavaScript and CSS. You’ll then update SimpleSite to use
a CSS grid. You’ll add some Ajax so that the before text field is implemented as a select field whose
values change when you select a different section, and you’ll add some animation to the flash
message.

CHAPTER 14 ■ SIMPLESITE TUTORIAL PART 2 323

325

C H A P T E R 1 5

CSS, JavaScript, and Ajax

One of the definitive technologies of Web 2.0 is Ajax, which means Asynchronous JavaScript and
XML and allows the browser to communicate with a server without needing to refresh the page the
user is viewing. Interestingly, Ajax doesn’t necessarily need to use JavaScript or XML, so it is only the
Asynchronous part of the name that is the truly important aspect of the technology.

The world of JavaScript web frameworks is changing as fast now as the world of Python web
frameworks was five years ago. Early versions of Pylons officially supported the Prototype and
Script.aculo.us libraries used by Ruby on Rails, but despite this, Pylons users actually used a range
of JavaScript frameworks. Two things quickly became apparent:

• Pylons users choose whichever framework best provides the tools they need, rather than
going with the official library.

• JavaScript frameworks for the most part actually operate quite independently from the web
framework that is using them. After all, one set of code runs on the server, and the other runs
on the client.

The latest versions of Pylons (and in particular, WebHelpers) do not integrate any JavaScript
framework, and as a result, you are free to choose whichever framework you prefer.

At the time of writing, the following three JavaScript frameworks are the most popular with
Pylons developers:

• JQuery

• YUI

• ExtJS

One of the main benefits of YUI is that it is more than just a JavaScript framework. It also has
tools for managing CSS and for creating user interface requirements.

Adding YUI to Your Project
You can use YUI in your project in two ways; the first is to copy the YUI library to your project’s
public directory and have Pylons serve the files, and the second is to use the files that Yahoo serves
directly from its content delivery network (CDN).

Because Yahoo has servers all over the world, it is more likely that it will have a server physically
near the person using your application, which should mean that users a long way from the server
serving your Pylons application might get a small performance improvement.

I don’t know about you, but when I’m responsible for a web site, I like to be in control of as
many of the dependencies as possible; therefore, despite the possible benefits, I recommend
installing YUI into your public directory. That way, if someone should trip over a wire and discon-
nect a server at Yahoo, your application won’t be affected.

You can download the latest version of YUI from http://developer.yahoo.com/yui/download/.
This book describes version 2.6.0.

To add YUI to a Pylons project, unzip the download into the project’s public directory:

$ cd public
$ unzip yui_2.6.0.zip

You need to serve files from the build directory only, although the other folders contain useful
documentation and examples you might want to browse. Remove the files you don’t need with this:

$ cd yui
$ rm -r as-docs as-src assets docs examples tests index.html README

I usually also rename the build directory with the version number of the YUI library I’m using
so that I can later use a different version alongside the current one:

$ mv build 2.6.0

The examples in this chapter will assume you have set up YUI in this way.

Resetting the Browser CSS
Anyone who has ever created a web site for one browser only to find that it looks completely differ-
ent on another will understand this problem: different browsers interpret the same CSS in different
ways. Fixing the broken style on one browser then makes it look different in the first, and before
long you are tearing your hair out.

YUI has a fairly effective solution to this problem: reset browser styles across all browsers
before you start coding your CSS; then, since the styles you add don’t rely on the styles the browser
implementation has decided to add by default, your styles stand a much greater chance of being
consistent across different browsers.

You can add the YUI reset.css style sheet by adding the following lines to the <head> section of
your HTML page:

<link rel="stylesheet" type="text/css" href="/yui/2.6.0/reset/reset-min.css">

To add the style sheet to a Pylons application with the YUI files in the public directory as you
added earlier, you would use this in the head of your HTML in your base template:

${h.stylesheet_link(h.url_for('/yui/2.6.0/reset/reset-min.css'))}

Always make sure the reset.css style sheet is defined before any others; otherwise, you might
find that your carefully coded styles are reset when you didn’t expect them to be. You'll need to add
this import to your lib/helpers.py file:

from webhelpers.html.tags import stylesheet_link

■Tip It is much easier to use the YUI reset.css style at the beginning of a project before you define any styles
rather than trying to apply it after other styles are already in place, so I strongly recommend you use it in all your
projects from the beginning.

You can find more information about the reset.css style sheet at http://developer.yahoo.
com/yui/reset/.

Once you have reset all the styles, there’s a good chance you’ll want some common ones back.
For example, <p> tags usually have a margin, and the various headings should be different sizes.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX326

Once again, the YUI team has thought of this, and common styles are defined in the base.css file.
You can add the base.css file by adding this line to the head of your HTML document:

${h.stylesheet_link(h.url_for('/yui/2.6.0/base/base-min.css'))}

Notice that for both the base and reset style sheets, I have included minimized versions (they
have -min added just before the file extension). These have all the unnecessary whitespace removed
so that they are faster for a browser to download and parse. If you ever want to take a look at the
styles they contain, you can look at the nonminimized versions, which are identical except for the
whitespace.

Fonts
Another area developers sometimes struggle with is fonts. Typically you want the fonts to display at
a particular size across all browsers, but you don’t want to specify those sizes explicitly using px
units because that would prevent certain browsers from adjusting the font size based on the size a
user has chosen from a browser menu.

Once again, YUI has a style sheet that comes to the rescue, this time named fonts.css, which
sets up font families and sizes so that they render consistently across browsers as 13-pixel Arial with
16-pixel line spaces. The <pre> and <code> elements render in monospace.

You can then specify any font sizes you want to use as a percentage of the default sizes, as
shown in Table 15-1.

Table 15-1. Pixels to Percent Translation

If You Want This Size in Pixels (px) Declare This Percent (%)

10 77

11 85

12 93

13 100

14 108

15 116

16 123.1

17 131

18 138.5

19 146.5

20 153.9

21 161.6

22 167

23 174

24 182

25 189

26 197

Be sure to always use percentages in your application, not the corresponding pixel size.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 327

You can include fonts support in a Pylons application by adding the following after the reset
CSS import in the <head> section of your HTML:

${h.stylesheet_link(h.url_for('/yui/2.6.0/fonts/fonts-min.css'))}

■Tip The sharp-eyed amongst you might have spotted that you could achieve similar font standardization using
ems, but the percentage technique described here results in more consistent rendering across browsers.

If you want to change the font family, you need to provide only the specific font you’re inter-
ested in and not any fallbacks. When your font is missing, YUI provides a fallback for you.

For example, you would write this:

font-family: "Times New Roman";

and not this:

font-family: "Times New Roman", serif;

Grids
Another frequent problem in web development is the creation of grid layouts. Of course, you can
always use tables to lay out your HTML content, but this is considered bad practice and is heavily
frowned upon by CSS experts because table-based designs don’t degrade gracefully. For example,
with a table layout, if your screen resolution is too small, your users will be forced to scroll. CSS lay-
outs, on the other hand, can cause one column of information to appear below another when the
browser width is too small, which is generally considered better.

Sites such as Amazon still use table-based layout for some aspects of their pages, so the impor-
tance of always using CSS layouts all the time is debatable. Of course, you could also detect the
screen resolution with JavaScript and provide a different layout for small screens, but this requires
extra work and will not work if the browser doesn’t support JavaScript or has it disabled.

Using a CSS grid framework makes setting up a CSS layout much easier. First you should declare
your doctype as HTML 4 strict to force browsers into standards mode for rendering. You can do this
by making sure the top of your HTML file looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

You also need to include the YUI grids.css file, but using grids also requires the reset and fonts
CSS files to be used. Rather than including three separate files, YUI also provides a combined and
minified file called reset-fonts-grids.css that you can use instead like this:

<link rel="stylesheet" type="text/css"
href="/yui/2.6.0/reset-fonts-grids/reset-fonts-grids.css">

Although the file doesn’t have -min as part of the file name, this is a fully minified CSS file.
You could also include this in a template with this line:

${h.stylesheet_link(h.rul_for('/yui/2.6.0/reset-fonts-grids/reset-fonts-grids.css))}

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX328

YUI assumes you will want a header, body, and footer in your HTML page, so to use the YUI grid,
you need to set up your page’s HTML like this with a <div> tag containing three other <div> tags:

<div id="doc">
<div id="hd"><!-- header --></div>
<div id="bd"><!-- body --></div>
<div id="ft"><!-- footer --></div>

</div>

The id attribute of the inner <div> elements must be as shown earlier, but the id of the outer
<div> element can be customized to determine the width of the page. You have the following
options:

<!-- #doc = 750px width, centered-->
<div id="doc"></div>

<!-- #doc2 = 950px width, centered -->
<div id="doc2"></div>

<!-- #doc3 = 100% width -->
<div id="doc3"></div>

<!-- #doc4 = 974px width, centered -->
<div id="doc4"></div>

It’s also possible to create your own page widths, but for the vast majority of cases, the YUI
defaults are fine.

As an example, to create a content area with a 100 percent width, you would use an id of doc3
on the outer <div> element, as shown here:

<div id="doc3">
<div id="hd"><!-- header --></div>
<div id="bd"><!-- body --></div>
<div id="ft"><!-- footer --></div>

</div>

Once you’ve set up your template with the correct ID to specify the width of the content, you
can think about how content within the header, body, and footer is arranged. YUI provides three
types of grids you can use separately or combine to achieve a huge variety of different layouts:

• Template presets

• Nesting grids

• Special nesting grids

Template presets give you common configurations for two-column layouts with a column on
the left or the right, and nesting grids and special nesting grids give you more control to produce
more complex layouts, as you’ll see in the following sections.

Template Preset Grids
Template preset grids are used after you have chosen the overall width of the content to subdivide
either the header, body, or footer into two columns, one of which has a fixed width. To achieve, this
you need to add some extra markup to either the header, body, or footer <div>. In this example we
are splitting the body into two columns. The extra markup is shown in bold:

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 329

<div id="bd">
<!-- body -->
<div id="yui-main">

<div class="yui-b"></div>
</div>
<div class="yui-b"></div>

</div>

You then choose which template preset to use by adding a class to the same outer <div> ele-
ment that was used earlier to specify the width. Table 15-2 lists the options.

Table 15-2. Template Class Presets

Template Class Preset Description

.yui-t1 160px on left

.yui-t2 180px on left

.yui-t3 300px on left

.yui-t4 180px on right

.yui-t5 240px on right

.yui-t6 300px on right

As an example, to have a 240-pixel column on the right of the same layout that you saw in the
previous example with a 100 percent width, you would use this:

<div id="doc3" class="yui-t5">
<div id="hd"><!-- header --></div>
<div id="bd">

<!-- body -->
<div id="yui-main">

<div class="yui-b"></div>
</div>
<div class="yui-b"></div>

</div>
<div id="ft"><!-- footer --></div>

</div>

This will produce the desired layout. What is more, you can also use a similar structure in the
header and footer divs, but because it is the class of the outer div that defines the layout, the header,
footer, and body all use the same layout with the template preset approach.

Sometimes you might want the content in the second <div class="yui-b"> element to appear
in the HTML before the first, perhaps for search engine optimization reasons or perhaps to put your
navigation before your content for accessibility reasons. If you are using a YUI template preset, you
can change the order of the two columns in the HTML without changing how they are displayed.
For example, this markup will produce the same results:

<div id="doc3" class="yui-t5">
<div id="hd"><!-- header --></div>
<div id="bd">

<!-- body -->
<div class="yui-b"></div>
<div id="yui-main">

<div class="yui-b"></div>

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX330

</div>
</div>
<div id="ft"><!-- footer --></div>

</div>

Notice that the naked <div class="yui-b"> element now comes before the one wrapped in
<div id="yui-main">.

Nested Grids
Within the basic templates you can nest further grids so that each grid you nest divides the content
area in two, with each area taking up 50 percent of the available space. Here’s an example of how to
do this:

<div class="yui-g">
<div class="yui-u first"> </div>
<div class="yui-u"> </div>

</div>

The important point to notice is that the first child of the grid has to be marked with the class
first to ensure the grids work in all the main browsers. You can also nest nested grids within other
nested grids to create more complex layouts.

Special Nested Grids
It isn’t always particularly useful to subdivide areas in half, so YUI provides five special nested grids
that subdivide grids in the ratios given in Table 15-3.

Table 15-3. Grid Class Ratios

Special Grid Class Ratios

.yui-gb 1/3, 1/3, 1/3

.yui-gc 2/3, 1/3

.yui-gd 1/3, 2/3

.yui-ge 3/4, 1/4

.yui-gf 1/4, 3/4

Let’s extend the example from the “Template Presets” section to use the yui-gf class in the
header so that you can have a logo on the left taking up 1/4 of the page and the main navigation
tabs on the right taking the remaining 3/4 of the space, while the body remains split in two with a
240-pixel column on the right.

Here’s what the updated HTML looks like:

<div id="doc3" class="yui-t5">
<div id="hd">

<div class="yui-gf"> <!-- the "special grid" -->
<div class="yui-u first"></div>
<div class="yui-u"><!-- Navigation tabs here --></div>

</div>
</div>

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 331

<div id="bd">
<!-- body -->
<div id="yui-main">

<div class="yui-b"></div>
</div>
<div class="yui-b"></div>

</div>
<div id="ft"><!-- footer --></div>

</div>

Notice that although in this example you are using a special nested grid directly in the header,
you can also put them within template preset regions and nested grids too.

Updating SimpleSite to Use CSS Grids
Now that you’ve seen the theory of how to use YUI’s CSS reset style sheet, fonts, and grids, you can
update the SimpleSite project to use them too.

Start by preparing the YUI source code as described at the beginning of the chapter:

$ cd public
$ unzip yui_2.6.0.zip
$ cd yui
$ rm -r as-docs as-src assets docs examples tests index.html README
$ mv build 2.6.0

Make sure the first HTML in the templates/base/index.html file looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>

Then edit the head() def to add the YUI combined reset-fonts-grids.css file, which includes
the grid styles:

<%def name="head()">
${h.stylesheet_link(h.url_for➥

('/yui/2.6.0/reset-fonts-grids/reset-fonts-grids.css'))}
${h.stylesheet_link(h.url_for('/css/main.css'))}

</%def>

For this example, you’re going to have a two-column layout with a header and footer. You’d
like the right column to be 240-pixels wide and contain the menu navigation and the list of tags
that can be used on the page. You’ll put the main navigation tabs in the header and style the
footer to match it.

Replace the <body> part of the base/index.html file that currently looks like this:

<body>
${self.header()}
${self.tabs()}
${self.menu()}
${self.heading()}
${self.breadcrumbs()}
${self.flash()}
${next.body()}
${self.footer()}

</body>

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX332

with the YUI grids version that looks like the following. Notice the id=doc3 attribute on the outer
<div> element to make the content use 100 percent of the width. The self.heading() def is now also
called in the header, not the body:

<body>
<div id="doc3">

<div id="hd">
${self.heading()}
${self.header()}
${self.tabs()}

</div>
<div id="bd">

${self.breadcrumbs()}
${self.flash()}
${self.menu()}
${next.body()}

</div>
<div id="ft">

${self.footer()}
</div>

</div>
</body>

Next, add the markup to use a template preset for a 240-pixel column on the right. Notice the
class="yui-t5" attribute and the two extra <div class="yui-b"> elements with the content for
the two columns:

<body>
<div id="doc3" class="yui-t5">

<div id="hd">
${self.heading()}
${self.header()}
${self.tabs()}

</div>
<div id="bd">

<div id="yui-main">
<div class="yui-b">

${self.breadcrumbs()}
${self.flash()}
${next.body()}

</div>
</div>
<div class="yui-b">

${self.menu()}
</div>

</div>
<div id="ft">

${self.footer()}
</div>

</div>
</body>

Finally, modify the header to contain a logo or title on the left and space for some additional
links on the right using a special nested grid:

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 333

<body>
<div id="doc3" class="yui-t5">

<div id="hd">
<div class="yui-gc">

<div class="yui-u first">${self.heading()}</div>
<div class="yui-u"></div>

</div>
${self.header()}
${self.tabs()}

</div>
<div id="bd">

<div id="yui-main">
<div class="yui-b">

${self.breadcrumbs()}
${self.flash()}
${next.body()}

</div>
</div>
<div class="yui-b">

${self.menu()}
</div>

</div>
<div id="ft">

${self.footer()}
</div>

</div>
</body>

You’ll use Arial in SimpleSite for the body text, but you’ll use Georgia for the headings. Since all
the font styles have also been reset, you’ll need to specify the heading size too. Add this to the end of
the public/css/main.css file:

body{
font-family: Arial;

}
#hd {

background: #87AFD7;
border-bottom: 3px solid #113958;

}
h1 {

font-family: Georgia;
color: #003;
font-size: 197%;
margin: 15px 20px 10px 20px;

}
h2 {

font-family: Georgia;
color: #003;
font-size: 138.5%;
margin-top: 1.5em;

}
#menu {

padding-top: 20px;
}

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX334

#breadcrumbs {
margin-bottom: 20px;

}
#doc3 {margin:auto;}
#bd, #ft {

padding: 20px;
}
form {

margin-top: 20px;
}
form table td {

padding-bottom: 3px;
}

This particular grid template has a 10-pixel margin that you don’t need. The earlier #doc3 style
removes it. You’ll also need to tweak two of the #maintabs styles. They should now look like this:

#maintabs ul {
margin: 0px;
padding: 0px;
height: 21px;

}
#maintabs {

margin: 0;
padding: 10px 0 0px 17px;

}

Now that you have two columns, let’s move the tags to the right column. Edit the
templates/derived/page/view.html file so that the lines relating to the tags look like this:

<%def name="tags(available_tags)">
<h2>Tags</h2>
${h.form_start(h.url_for(controller='page', action='update_tags', ➥

id=c.page.id), method='post')}
${h.checkbox_group(name='tags', selected_values=None, align="vert",➥

options=available_tags)}
${h.submit(value="Save Tags", name='submit')}

${h.form_end()}
</%def>

<%!
from formencode import htmlfill
from webhelpers.html import literal

%>

<%def name="menu()">
${parent.menu()}
% if c.available_tags:
${literal(htmlfill.render(capture(self.tags, c.available_tags), c.selected_tags))}
% endif
</%def>

With these changes in place and with one Pylons tag added, the development home page now
looks like Figure 15-1. You might need to force a browser refresh before the new styles are noticed. If
the section links and tags aren't on the right, check you have added the yui-t5 class to the outer div.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 335

Figure 15-1. The SimpleSite development page with the CSS styles applied

Now that you have a good understanding of modern CSS techniques and have seen how they
are applied with the YUI framework, it’s time to investigate another tool of the modern web devel-
oper: JavaScript. Before you do that, though, I’ll introduce a very useful plug-in called Firebug that
will help you greatly when using JavaScript in the browser.

Introducing Firebug
When you are working with client-side code in the browser, you should consider using a tool that
many developers find invaluable called Firebug. If you haven’t come across Firebug yet, it is a plug-
in for the Firefox browser that contains a range of useful tools for client-side web development,
including a JavaScript console, Document Object Model (DOM) inspector, debugger, profiler, CSS
display, HTTP request and response analysis tool, and a CSS visualization and manipulation tool.

If you don’t have Firebug installed already, you should install it now. First download Firefox
from http://www.mozilla.com/firefox, and after installing it, install the Firebug plug-in from
http://getfirebug.com/. Firebug is available only for Firefox, but if you aren’t already using Firefox
for development, the Firebug plug-in is a good reason to consider switching.

Let’s use the Firebug console to test some JavaScript. Start the SimpleSite application, and then
visit http://localhost:5000/. Open Firefox, and select Tools ➤ Firebug ➤ Open Firebug in New
Window from the menu. (Alternatively, you can press Ctrl+F12 or Command+F12 on a Mac to open
Firebug from within Firefox.) Select the boxes for Console, Script, and Net, and click the Enable
Selected Panels for Localhost button, as shown in Figure 15-2.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX336

Figure 15-2. Enabling the Firebug add-on

Once you’ve enabled Firebug, you will be able to test the JavaScript examples from the previous
section in Firebug. Click the red square button on the bottom right of Firebug to put Firebug into
multiline input mode. You can then enter JavaScript statements more than one line a time and click
the Run button. In Figure 15-3, I’ve entered alert('Hello reader!') and clicked Run. Firebug
copies the input to the console on the left and executes the JavaScript as if it were being executed in
the scope of the browser window. This means you have access to all the DOM functions you would
have if you were writing JavaScript for the browser normally.

Figure 15-3. Using the JavaScript console

Firebug has a huge amount of useful functionality, some of which you’ll see over the course of
this chapter. It’s well worth visiting http://getfirebug.com and clicking each of the pictures on the
home page to get a full idea of what Firebug can do.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 337

Introducing JavaScript
Although Python programmers can typically get a long way by copying and tweaking JavaScript
examples, if you want to write any serious code to run on the browser, you need to learn JavaScript
properly.

JavaScript is a language in its own right, and although it is frequently used for DOM manipula-
tion (changing HTML within a browser), the JavaScript language shouldn’t be confused with the
DOM API.

■Note JavaScript isn’t actually based on Java at all but was given its name for political reasons between Sun
and Netscape early in the history of web browsers. Microsoft also had an implementation called JScript, but today
the standard is defined as ECMA-262, so JavaScript should really be known as ECMAScript.

At first glance, JavaScript appears fairly familiar to Python programmers; it has functions, hash
tables (dictionaries), objects, and arrays as well as string, number, boolean, and date types. It also
has all the standard control statements such as if, while, else, try, catch, and so on. Apart from
curly braces and semicolons, JavaScript seems very approachable. Once you start using the lan-
guage, though, you quickly realize that things aren’t quite as simple as they seem. Consider this
example (I’m using js> here to differentiate a JavaScript prompt from a traditional Python prompt
>>>):

js> var a = [1,2,3,4];
js> a.length;
4
js> delete a[1];
js> a
[1, undefined, 3, 4]
js> a.length
4

As you can see, the Array type doesn’t behave much like the Python equivalent. In JavaScript an
Array behaves more like a Python dictionary where all the keys are consecutive numbers than a tra-
ditional array.

Let’s look at functions:

js> function b(c, d) {
alret(c);
alert(d);

}
js> b(1)

This doesn’t look a million miles from Python, but when you run it, you are shown two alert
boxes with the values 1 and undefined. No error is thrown even though the function appears to take
two parameters and you have specified only one. Try calling b() with three parameters, and you’ll
find it appears to just ignore the third, again without an error. That’s not what you would expect
from Python, although it’s perfectly rational once you understand how JavaScript works. As you’ll
see later, functions in JavaScript also have a local variable called arguments that behaves a bit like an
array of all the arguments passed.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX338

Perhaps the most obvious difference is in the way JavaScript handles inheritance. Unlike
Python, JavaScript doesn’t have the concept of a class. Instead, it uses something called prototypal
inheritance where objects inherit directly from other objects. This is quite different from Python and
will cause you a good deal of confusion if you don’t understand it. As you’ll learn shortly, though, it
is really rather simple.

Another difference to be aware of is the way variables are defined. Consider this example:

js> var a = function() {
b = 1;
var c = 2;

}
js> a()
js> b
1
js> c
undefined

In this case, the variable c was declared using the var keyword so is considered local to the
scope of function a(). Because b wasn’t declared using the var keyword, it was assigned to global
scope. This is potentially a very bad thing because if a programmer forgot to use var when declaring
another variable called b in another library you are using, both would refer to the same global b,
which could cause problems that are difficult to track down.

In web browsers you can actually access the global scope directly because it is aliased as
window. Continuing with the previous example, because b was declared without the var keyword,
you could write this:

js> window.b
1

All the issues highlighted so far are simply meant to demonstrate that JavaScript is different
from Python; it isn’t worse, but if you expect it to work like Python without learning its differences,
you are likely to quickly get confused, particularly because JavaScript often returns the value
undefined in situations where Python would raise an exception. I’ve seen many Python program-
mers curse JavaScript when their code doesn’t work the way it is supposed to, but if you take the
time to learn it properly, you will quickly come to appreciate the language.

JavaScript Essentials
This isn’t a book on JavaScript, so I don’t intend to go through the whole language in detail; I’ll give
you enough of an understanding to start writing your own code and to highlight one or two traps
Python programmers might fall into.

■Tip If you want to learn JavaScript, I highly recommend you invest the time in watching Douglas Crockford’s
JavaScript videos. In them he talks you through all aspects of the language, inheritance, namespace issues, scope,
closures, and more. Although the talks are fairly long, they are by far the most time-effective way to learn
JavaScript properly. You’ll struggle to understand JavaScript without them. Douglas has also written a book
recently called JavaScript: The Good Parts, which I can strongly recommend for teaching you the important princi-
ples of the JavaScript language while avoiding the traps. It isn’t focused on web development, though, but there
are plenty of other books that are.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 339

Operators of Interest
The full list of operators is defined in the ECMAScript specification at http://www.ecma-
international.org/publications/standards/Ecma-262.htm, but certain equality operators, such as
the + and / operators, are of particular interest to Python programmers because their behavior is
slightly different.

JavaScript has two types of equality operators:

• === compares the type and value of the object. If they are different types or are the same
type but with different values, the comparison will return false. Its inverse is !==.

• == tries to coerce one of the operands into the type of the other in order to make the com-
parison. Its inverse is !=.

If you don’t realize that == and != could be changing the types of the values you are compar-
ing, you could run into trouble. The vast majority of the time you will want to use === and !==
since they are the conceptual equivalents of == and != in Python. Using == and != in JavaScript is
usually a mistake.

The + operator is used for adding numbers together as you would expect, but it is also used
for string concatenation. Python has this behavior too, but the difference between JavaScript and
Python is that in JavaScript if any of the operands are not strings, it will silently convert them to
strings and then concatenate them:

js> 4+"2"
"42"

Python would raise a TypeError if you try to concatenate objects that aren’t strings or Unicode
in Python, so it can be slightly unexpected. This also means you can do operations such as this in
JavaScript to convert a string to a number:

js> +"42"
42

In Python the / operator doesn’t always mean a traditional divide operation. When the oper-
ands are integers, Python performs a floor divide operation. That is, it performs a division and
discards the remainder. When one of the operands is a float, it performs a traditional division. For
example:

Python:
>>> 10/3
3
>>> 10/3.0
3.3333333333333335

In JavaScript, all numbers are 64-bit floating-point numbers (JavaScript doesn’t differentiate
between floats and integers in the way Python does), so / always behaves like a Python operation on
floats:

// JavaScript
js> 10/3
3.3333333333333335

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX340

Types
JavaScript technically has nine types, although you’ll only ever use the data types: Undefined, Null,
Boolean, String, Number, and Object. You will also come across the value NaN, and you will use arrays
(which are objects) and functions.

You’ll learn about objects a bit later in this chapter, so let’s start by looking at booleans.
Booleans take the values true and false and behave as you would expect. In JavaScript, true==1 is
true, but true===1 is false because a boolean is not the same as a number type.

Strings consist of 16-bit characters (technically the UCS-2 character set if you are interested),
although there is no character type as such. You represent a character as a string of length 1. Strings
can be declared with either single or double quotes and are immutable, which means if you want to
perform some operation on a string, it will create a new one rather than change the existing one.

There is only one number type in JavaScript, and it is a 64-bit floating-point number. This can
cause some problems because it means arithmetic is approximate. For example, 10/3 is not 31⁄3 but
is 3.3333333333333335. Normally the small difference won’t be a problem, but in some circum-
stances it might be, so it is worth being aware of. There is a special value NaN that means “Not a
Number,” which is the result of undefined or erroneous operations such as dividing by 0. This is
unlike Python, which would raise an exception when an error occurred. Any arithmetic operation
with NaN as an input will have NaN as a result, so it can sometimes be a little tricky to work out where
the actual error occurred. NaN is not equal to anything, including NaN.

null is a value that isn’t anything, analogous to None in Python. Many of the DOM operations
such as document.getElementById() return null when a data structure cannot be found.

The final value you will run into is undefined. It’s the default value for variables that haven’t
been assigned a value yet and for parameters that are passed to a function. It is also the value of
missing members in objects. Python doesn’t have anything equivalent to undefined because the
same circumstances that would lead to an undefined value in JavaScript either aren’t possible or
would cause an exception to be raised in Python. For example, Python is strict about the arguments
passed to a function, and you would get a KeyError if you tried to access a member that didn’t exist.
Python programmers tend to rely on these features of the language and are surprised when errors
don’t occur in their JavaScript code. Once you understand JavaScript’s behavior in this regard, you
are much less likely to be confused.

It can sometimes be a bit tricky to remember how to check the type of objects or whether
objects are null or undefined, so the YUI library defines some functions in YAHOO.lang that make it
easier. Here are some examples from the YUI documentation::

// true, an array literal is an array
YAHOO.lang.isArray([1, 2]);

// false, an object literal is not an array
YAHOO.lang.isArray({"one": "two"});

// however, when declared as an array, it is true
function() {

var a = new Array();
a["one"] = "two";
return YAHOO.lang.isArray(a);

}();

// false, a collection of elements is like an array, but isn't
YAHOO.lang.isArray(document.getElementsByTagName("body"));

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 341

// true, false is a boolean
YAHOO.lang.isBoolean(false);

// false, 1 and the string "true" are not booleans
YAHOO.lang.isBoolean(1);
YAHOO.lang.isBoolean("true");

// null is null, but false, undefined and "" are not
YAHOO.lang.isNull(null); // true
YAHOO.lang.isNull(undefined); // false
YAHOO.lang.isNull(""); // false

// a function is a function, but an object is not
YAHOO.lang.isFunction(function(){}); // true
YAHOO.lang.isFunction({foo: "bar"}); // false

// true, ints and floats are numbers
YAHOO.lang.isNumber(0);
YAHOO.lang.isNumber(123.123);

// false, strings that can be cast to numbers aren't really numbers
YAHOO.lang.isNumber("123.123");

// false, undefined numbers and infinity are not numbers we want to use
YAHOO.lang.isNumber(1/0);

// true, objects, functions, and arrays are objects
YAHOO.lang.isObject({});
YAHOO.lang.isObject(function(){});
YAHOO.lang.isObject([1,2]);

// false, primitives are not objects
YAHOO.lang.isObject(1);
YAHOO.lang.isObject(true);
YAHOO.lang.isObject("{}");

// strings
YAHOO.lang.isString("{}"); // true
YAHOO.lang.isString({foo: "bar"}); // false
YAHOO.lang.isString(123); // false
YAHOO.lang.isString(true); // false

// undefined is undefined, but null and false are not
YAHOO.lang.isUndefined(undefined); // true
YAHOO.lang.isUndefined(false); // false
YAHOO.lang.isUndefined(null); // false

You might think that the results described here are obvious, but in fact performing the tests
yourself can be quite tricky because there are often subtleties that can catch you out. It is much
safer to use the YUI library’s functions when performing these tests.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX342

Functions
You can declare a function in two ways. The first is to give the function a name when you declare it
as was done in the "Introducing JavaScript" section for the function b(). The second is to create an
anonymous function and assign it to a variable, as shown here:

js> var change = function(a){ a = 2; }

Both methods are equivalent, but anonymous functions can be very useful in their own right.
There are actually four different ways to invoke functions, but in this chapter you’ll stick to the
method that is most similar to Python.

As with Python, any objects passed into functions as parameters are passed by reference to
functions. This means that if (within a function) you modify an object passed as a parameter
to that function, you are actually modifying the object itself, not a copy of it:

js> var change = function(a) { a = 2; }
js> var a = 1;
js> change(a);
js> a;
2

There is actually a subtlety going on when you call a function. In addition to the parameters
you’ve passed in, you will find two other variables in the function’s scope: this and arguments.
You’ll learn about this later, but arguments is an array-like object mentioned earlier that contains
the values of each of the parameters passed to the function regardless of how many parameters
the function is defined to accept. It is array-like because although it has a .length property, it is
not formally a JavaScript Array. You can use it like this to create a function which multiplies all its
arguments together:

js> function multiply() {
js> var i;
js> var n = arguments.length;
js> var result = 1;
js> for (i = 0; i < n; i += 1) {
js> result *= arguments[i];
js> }
js> return result;
js> }
js> multiply(2, 3);
6

Function Scope and Closures
In JavaScript, variables exist in the scope of the function in which they were defined. This means
that even if you put some variables within a block (using curly braces), the variables will have the
same scope as they would before or after the block. For example:

function a() {
var a = 1;
{

a = 2;
var b = 3;

}
alert(a); // will have the value 2
alert(b); // will have the value 3

}
a();

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 343

Because variables have function scope, it makes sense to just declare them all at the start
of the function rather than when you first use them. This helps avoid the problem of assigning
a value to a variable that hasn’t been declared with the var keyword and then finding it has acci-
dentally been assigned to the global scope.

If a function in JavaScript is defined within another function, the inner function will still have
access to the variables in the scope of the outer function, even after the outer function has returned.

As an example, think about how you would add an event handler to a button so that when it
was clicked, an alert with a message would appear. Consider the following example where there are
two buttons. The msg variable is assigned a value, and this is used as both an argument to the
add_alert_handler() function and to show_alert(). Then the value of the message is changed.

var add_alert_handler = function (message) {
return function(e) {

alert(message);
};

};

var show_alert(message) {
alert(message);

};

var msg = 'Alert button clicked';
document.getElementById('alert_button1').onclick = add_alert_handler(msg);
document.getElementById('alert_button2').onclick = show_alert(msg);
msg = 'The message has changed';

When alert button 1 is clicked, the message displayed is “Alert button clicked,” but when alert
button 2 is clicked, the message is “The message has changed.” The reason for this is simple. The
function show_alert() has access to the msg variable’s value directly so that when msg gets changed,
so does the value it displays. Alert button 1, on the other hand, uses a closure, so the value of
message that the function defined within add_alert_handler() has access to is a copy defined only
in the scope of the returned add_alert_handler() function. When the msg variable is changed, the
message variable in the closure remains unchanged.

If you are working with event handlers, you should always use closures or use a tool such as the
YUI event library.

Objects
In JavaScript, objects are similar to dictionaries in Python. For example, suppose you want an object
with two attributes, name and age. You could write this in two ways:

var object = new Object();
object.name = 'James';
object.age = 28;

object = {
name: "James",
age: 28

};

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX344

Both of these are identical because in JavaScript objects and dictionaries (or hash tables as they
are called) are the same thing, but it is generally recommended you use the object literal notation to
define objects (the example using the curly brackets) because it is clearer what is happening.

Regardless of how you create your objects, you can add new members or access existing mem-
bers using either . or [].

js> object['name'] = 'Mike';
js> object.name;
'Mike'
js> object.name = 'Ben';
js> object['name'];
'Ben'

One point to be aware of is that quite a few words in JavaScript are reserved even though they
aren’t used. You can access object members whose names are not reserved words using the
. notation. You can access any member regardless of the name using the [] notation.

As well as assigning strings and numbers to objects, you can also assign functions:

var simpleMaths = {
add: function(a,b){

return a+b;
},
subtract: function(a,b){

return a-b;
}

};

You can now use your object for calculations:

js> simpleMaths.add(1+1);
2

You can probably already see that this object is beginning to behave a bit like Python objects
with methods.

this
this is available in any function; its value is bound at runtime, and what it refers to depends on
the calling form of the function that was called. For ordinary functions that are not members of
an object, this refers to the global namespace, that isn’t particularly useful but when the function
is bound to an object, this refers to the object itself. This is useful because it allows you to access
the other members of the object from within the function. In the context of a method, this
behaves like an implicit version of Python’s self. Here’s an example:

var simpleMaths = {
_value: 0
add: function(a){

return this._value + a;
},
subtract: function(a){

return this._value - b;
}

};

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 345

This time the functions use a member variable to store a value, and then the methods add and
subtract from that value. In Python any class member that starts with an _ character is considered
private, and although the programmer is asked politely not to modify private members, the lan-
guage itself doesn’t prevent you from doing so.

In JavaScript, you can use closures to create member variables that genuinely are private:

var singleton = function () {
var privateVariable;
function privateFunction(x) {

// do something with privateVariable
}

return {
firstMethod: function (a, b) {

// do something with privateVariable, privateFunction(),
// this.firstMetod() or this.secondMethod()

},
secondMethod: function (c) {

// do something with privateVariable, privateFunction(),
// this.firstMetod() or this.secondMethod()

}
};

}();

In this example, privateVariable and privateFunction() are declared in the scope of the func-
tion, so because of closure, firstMethod() and secondMethod() have access to them even after the
function returns. The brackets after the final curly brace call the function, so singleton is assigned
the object returned by the function, but with each of the methods still having access to the private
variable and function. This means you can do this to call firstMethod() or secondMethod():

js> singleton.firstMethod();

but you can’t access singleton.privateVariable or singleton.privateFunction(). They are truly
private in this case, unlike in Python.

Namespaces
Because variables in JavaScript are declared in the global namespace if they are not declared with
the var keyword inside a function, it is fairly easy for programs that use the same names in the
global namespace to change each other’s variables accidentally.

One solution to this problem is to set up a single object as global for your application and take
special care to create all your application’s other objects and variables as members of that object.
This is exactly what happens in YUI where all the functionality of the library is contained within the
YAHOO namespace.

YUI recommends you choose an all-uppercase name for your namespace to minimize the
chance of your name conflicting with an application that is already using that name. Say you
wanted to create one called SIMPLESITE. You could do this:

var SIMPLESITE = {};

Now when you want to create objects global to your application, you can add them as mem-
bers of the SIMPLESITE object like this:

SIMPLESITE['test'] = 1;

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX346

and access the test variable like this:

SIMPLESITE.test;

If you are writing a YUI component, you might like to use the YAHOO.namespace() function that
sets up a namespace for you under the YAHOO namespace. You can also use it to set up nested name-
spaces if you specify the namespaces you want separated by a . character. For example:

// Creates a namespace for "myproduct2", and for "mysubproject1"
YAHOO.namespace("myproduct1.mysubproject1");
YAHOO.myproduct1.mysubproject1.Class1 = function(info) {

// do something here...
};

Closures and anonymous functions can also be used to wrap an entire application in a func-
tion, keeping its namespace localized:

function() {
// local namespace declarations here.
}()

The last () invokes the function.

Inheritance
Inheritance is object-oriented code reuse, which is a useful pattern. In the classical model, objects
are instances of classes, and classes inherit from other classes. In the prototypal model, objects
inherit directly from other objects, and there are no classes. They do this with a secret link to the
object being inherited from. In Mozilla browsers, you can actually access this secret link with
__proto__, but this is nonstandard and shouldn’t be used.

JavaScript actually has a third way to create an object that I didn’t mention earlier: via an
object() function. The function isn’t part of JavaScript, but you can write it easily enough yourself
like this:

function object(o) {
function F() {}
F.prototype = o;
return new F();

}

When you use this function, you can specify which object your object should be linked to:

var oldObject = {
firstMethod: function () {...},
secondMethod: function () {...}

};

// create a new instance of the object
var newObject = object(oldObject);

// augment it
newObject.thirdMethod = function () {...};

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 347

// create a new instance of the augmented object
var thirdObject = object(newObject);

// this object has all three methods we've defined.
thirdObject.firstMethod();

This is very simple and doesn’t need traditional classes. If you try to access a property of the
object and the object lacks that property, each object in the inheritance chain will be tested, and
if it has the property, that property will be used. Finally, if the member can’t be found in any of the
objects, then undefined will be returned. The name for this pattern is linkage.

This model has a few interesting consequences. For example, if you were to change the
firstMethod() of oldObject, the change would be immediately visible in newObject and
thirdObject. Changes to thirdObject will have no effect on oldObject or newObject because
when their members are accessed, it is only the objects they are linked to that are searched.

If you were to change the thirdMethod() method of thirdObject, then thirdObject.
thirdMethod() would behave differently from newObject.thirdMethod() because they now point
to different functions. In this circumstance, deleting thirdMethod() from thirdObject won’t actually
delete the method entirely; it will just delete the function assigned to the name thirdMethod for
thirdObject, but because thirdObject is still linked to newObject when you access
thirdObject.thirdMethod(), the thirdMethod() from newObject will be called instead. This might
surprise you if you don’t understand that linkage works in only one direction. Incidentally,
JavaScript doesn’t impose any limits on the lengths of the inheritance chains you can create, but
bear in mind that deep nested object hierarchies require lots of lookups so aren’t as efficient as
shallow hierarchies.

The process of adding new methods and members to an object is called augmentation.

Prototypes
You might be wondering what an object’s secret link points to if you create an object that isn’t
explicitly linked to anything else. The answer is that it points to Object.prototype that contains
a number of methods that all objects therefore inherit.

Similar prototypes exist for other types:

• Object.prototype

• Array.prototype

• Function.prototype

• Number.prototype

• String.prototype

• Boolean.prototype

and these can be used to modify how all objects of their type behave.
It isn’t considered particularly good practice to modify the prototype, though, because it’s

possible that modifications made by one JavaScript application will affect how another application
behaves.

When you iterate over an object in a for loop, you get all of its members, all of its parent’s
members, all of its parent’s parent’s members, and so on, right down to all the members of Object.
prototype. This isn’t always what you want, so JavaScript has a hasOwnProperty() function used
like this:

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX348

for (var name in object) {
if (object.hasOwnProperty(name)) {

// within the loop, name is the key of the current member
// object[name] is the current value

// only names associated with members of the current object
// will be available here

}
}

This enables you to distinguish between the object you want to iterate over and its parent
members.

JavaScript in HTML
It is generally not a good idea to include too much JavaScript in the body of an HTML document
because it is harder to version control, compress, or validate with external tools. A much better way
is to write JavaScript in a separate text file and include it in the HTML document like this:

<script src="/yourscript.js" />

You don’t need to use language="javascript"; it is a leftover from a time when Microsoft
wanted people to be able to use VBScript in browsers, and you don’t actually need to use type=
"text/javascript" because the correct MIME type for JavaScript is application/javascript or
application/ecmascript and because the browser trusts the MIME type set by the server that serves
the document over what you specify in the <script> tag. That being said, if you want your XHTML
to be valid, you should add the type="text/javascript" attribute.

Another leftover from the past is the way developers use comments to hide JavaScript embed-
ded in HTML from old browsers. They might do this:

<script>
<!--

alert("Script goes here.");
// -->
</script>

If browsers come across tags they don’t understand, they are supposed to ignore the tag but
continue processing other nested tags. This means very old browsers that didn’t understand
JavaScript would print the JavaScript as text, and the comments would force them to ignore the
JavaScript instead. Nowadays, there are so few of these browsers left that you might just as well
ignore the comments. If you include your JavaScript from separate files (as advised earlier), you
avoid this problem anyway.

The Document Object Model
As well as understanding the basics of the JavaScript language, it is useful to understand a little bit
about how browsers work and how they deal with web pages returned from Pylons using the
Document Object Model (DOM).

The DOM is an API for HTML and XML documents. It provides a representation of the docu-
ment, enabling you to modify its structure and content as well as the way the HTML elements are
rendered. All the properties, methods, and events from the DOM are organized into objects so that

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 349

they can be accessed from JavaScript. In fact, some of the functions you might use quite frequently
when programming JavaScript actually come from the DOM and not the JavaScript language itself.
For example, setTimeout(), alert(), confirm(), and prompt(text, default) are all DOM functions.

The vast majority of coding you will do for the web browser will use the DOM APIs, and
although the JavaScript language itself is similar across browsers, the DOM APIs that different
browsers expose can still be different in some frustrating ways. It is these differences more than
anything else that make client-side web development in JavaScript difficult, and it is why you are
strongly advised to use a framework such as YUI or JQuery to abstract away the complications.

The basis of the DOM is the parse tree generated when the browser parses the HTML. The top
of the parse tree is the #document element. Beneath it the individual nodes are available, and any
text between HTML tags is stored in a #text node. Internet Explorer ignores whitespace, whereas
the W3C DOM standard includes it as text nodes. It’s worth noting that the HTML elements are
named with the uppercase version of their tag name, so node.tagName for the <body> node will be
BODY.

The #document node can be accessed from JavaScript as the global document. The element rep-
resenting the <body> tag is accessed as document.body, and the element representing the <html> tag
is document.documentElement. This arguably isn’t the best naming convention, but it is the one we
are stuck with. It’s worth noting that the browser might add elements such as <head> to the DOM
tree even if they weren’t present in the original HTML, so the DOM tree doesn’t always exactly
match the HTML source.

■Tip Try entering document.documentElement into a Firebug console to double-check this. If you click the
<html> object displayed as the return value in the console, Firebug will open its HTML view at that element. From
there you can click the DOM tab to see all properties associated with that element. This is typical of the sort of
useful functionality Firebug contains.

Each HTML element in the tree can be given an ID to uniquely identify it, which means the
same ID cannot be used by two elements in the page. You can then access the DOM element for that
node with this:

document.getElementById(id)

Notice that the last part of the method is Id and not ID as you might have expected. You can
also access elements that have a name attribute like this:

document.getElementsByName(name)

Because there can be more than one element with the same name in the DOM tree, this func-
tion uses the plural Elements and returns an array. The name attribute should be used for form fields
and for the names of windows and frames, and the id attribute should be used everywhere else.

You can also access the nodes beneath a particular node by the name of their tags like this:

node.getElementsByTagName(tagName)

It is also possible to access certain collections of DOM elements as properties of the document
object, such as document.forms, document.images, and the Microsoft-specific document.all. Gener-
ally speaking, it is better to give the elements you are interested in a name or id attribute and just use
the methods mentioned earlier rather than using the collections.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX350

Navigating the DOM
Each element in the DOM beneath #document holds a number of references to other DOM elements
so that you can easily navigate the DOM:

.firstChild: The first child element in the DOM structure

.lastChild: The last child element in the DOM structure

If there are no children, these properties will return null. If there is only one child node, they
will both reference that child element:

.childNodes: Returns an array of all the child nodes or an empty array [] if there are no chil-
dren

.parentNode: References the parent node

There are also properties for finding the next and previous sibling elements at the same level
of the DOM; unsurprisingly, these are as follows:

.nextSibling: The next sibling node at the same level

.previousSibling: The next sibling node at the same level

Once again, these return null if there is no next or previous sibling.
With these properties in place, it is possible to define a function to walk the DOM tree and

apply a particular function to each node. This is a handy pattern to use for DOM manipulation:

function walkTheDOM(node, func) {
func(node);
node = node.firstChild;
while (node) {

walkTheDOM(node, func);
node = node.nextSibling;

}
}

Once you’ve obtained the DOM element you want to manipulate, you will want to know what
you can change. The short answer is that you are likely to be able to set using JavaScript anything
that can be set as an HTML attribute. If you have installed Firebug, you can click the Inspect button
and select the element you want to inspect with the mouse. Right-clicking the element in the HTML
view and clicking Inspect in DOM Tab will show you all the properties available to edit. These
include things such as title, alt, value, src, className (which couldn’t be called class because it is
a reserved word in JavaScript), and others. You can edit them directly in Firebug to see their effect.
Rather than learning all the available attributes or trawling through the DOM specifications, it is
generally easiest to look up available DOM properties in Firebug in this way, although bear in mind
other browsers might be slightly different.

You can also easily change the CSS style of elements by changing the node’s .style. This is
another JavaScript object whose properties map to CSS styles. The only complication is that
although CSS styles have names like font-family or background-color, their DOM counterparts
are named in CamelCase, so the two examples become fontFamily and backgroundColor. As an
example, here’s how you would write a function using the earlier walkTheDOM() function to change
the CSS border-style and border-width of all images that have an <a> tag as their parents, starting
at the #document node:

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 351

walkTheDOM(document, function(node) {
if (node.tagName === 'IMG' && node.parentNode.tagName === 'A'){

node.style.borderStyle = 'dotted';
node.style.borderWidth = '3px';

}
})

Notice that the node names were uppercase; that we used the === comparison operator, which
is the one that doesn’t coerce types; and that the CSS border-style was set with the borderStyle
member and the border-width was set with borderWidth.

Manipulating the DOM
The DOM also provides methods for manipulating the DOM. If you’ve ever done any XML DOM
work using Python’s xml.dom.minidom module, these methods will be familiar to you.

These methods create new DOM nodes that won’t yet be linked to the DOM:

document.createElement(tagName): Creates a tag of type tagName.

document.createTextNode(text): Creates a text node.

node.cloneNode(): Clones an individual element on its own.

node.cloneNode(true): Clones an element and all of its descendents.

These methods manipulate the DOM:

node.appendChild(new): Adds the new node or tree of nodes as the last child of node

node.removeChild(child): Removes the child node child from node and returns it

node.insertBefore(new, sibling): Adds the new node or tree of nodes as a child of node but
before the node sibling

old.parentNode.replaceChild(new, old): Replaces the node old with the node or node tree new

Notice the syntax of the replaceChild() method is a little messy because it requires access to
the parent node of the node being replaced. This is how the API works, though.

It can be quite cumbersome to programmatically build DOM structures using the methods
outlined earlier, so most modern browsers also provide an .innerHTML attribute to each node. Any
value set as the value of .innerHTML is parsed by the browser’s HTML parser and converted into
DOM nodes, replacing the node’s existing children. This is really handy because you can generate
complex fragments of HTML using Pylons, fetch them with the browser using Ajax, and then simply
set the .innerHTML value of the node whose HTML should be changed. This is a technique you’ll see
later in this chapter.

The Event Model
The final piece of the JavaScript puzzle to learn about is the event model. As with the language itself
and the DOM, Python programmers can usually guess what is going on enough to make their code
work but then get very frustrated on the odd occasion when the code they’ve written doesn’t behave
in the way they expect.

There are two models for event handling in browsers: trickling down and bubbling up. In the
trickling-down model, when an event occurs, it is passed to the #document node, and then it works

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX352

its way down the DOM tree until finally it gets to the node where something happened. In the
bubbling-up model, the event is first passed to the node at which something happened and then on
to each of the parents in turn until the top of the DOM tree is reached. If you have many child nodes
for which something might happen (say a load of images that might change in some way as the
mouse moves over them), it would be expensive to add a handler to each image. Instead, using the
bubbling-up approach, you could add just the one handler to the parent node of all the images, and
it could respond to the event instead.

Whether tricking down or bubbling up is the best event model is a somewhat academic discus-
sion because Microsoft supports only bubbling up, so if you want to write portable code, this is the
event model you have to use. The differences between the browsers don’t stop there. There are three
different ways of adding an event to a node:

• node["on"+type] = function() {}

• node.attachEvent("on"+type, f);

• node.addEventListener(type, f, false);

All the browsers support the first method, but only Microsoft supports the second, and the
W3C standard suggests the third method. The third method here always takes false as the third
argument because this specifies that the handler should use the bubbling-up method, which is
what you’d need for cross-browser code.

Unfortunately, the differences don’t end there. In Microsoft browsers, the event itself is
accessed as the global event object, whereas in the others it is passed as the first argument to the
event handler.

Because of these differences, it is highly recommended you use a third-party JavaScript library
for event handling because it will abstract away these differences. Here’s a simple example using
YUI events to attach a simple onclick handler to an element:

var elm = document.getElementById("button-1");
function fnCallback(e) {

alert("Button 1 was clicked.");
}
YAHOO.util.Event.addListener(elm, "click", fnCallback);

Once you have written an event handler, you’ve installed it, and it has been fired, you might
want to prevent the event from bubbling up to nodes higher up the DOM tree. Again, the way to do
this differs across browsers, so it’s best to do it with a framework like YUI. In the YUI case, you’d call
YAHOO.util.Event.stopPropogation(e) where e is the event passed to the handler.

Despite that the event is no longer bubbling up, you might also want to prevent the default
behavior. For example, clicking a link would navigate the user to a different page, and you might like
to prevent this too. You can do so with YAHOO.util.Event.preventDefault(e) where again e is the
event passed to the handler. YUI also provides a convenience method
YAHOO.util.Event.stopEvent(e), which stops the bubbling and prevents the default.

■Caution One point to be aware of is that in Internet Explorer 6 if you remove a DOM node without removing all
the event handlers attached to it, a memory leak might occur, so you should always remove event listeners (by
setting them to null) before you remove a DOM node so that the garbage collector can clean them up. Better still,
use a JavaScript framework to handle this for you.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 353

Same Origin Policy
An important point to be aware of when writing JavaScript code is the same origin policy, which is
a security measure implemented by browsers to prevent a document or script loaded from one
“origin” from getting or setting properties of a document from a different “origin.” This means a
script loaded from Example.com can’t change variables in a script loaded from Example.org. The
purpose of this is to prevent one site maliciously reading or modifying data presented to a user
from another domain.

An origin in this context is a domain name accessed on a particular port with a particular pro-
tocol. If any of these is different, most browsers will treat them as different origins except Internet
Explorer, which ignores the port and will thus treat two domain names with the same protocol as
the same origin regardless of the port.

You can sometimes work around the same origin policy; one method is this: if the two ori-
gins you want to be able to communicate with each other are on the same second-level domain,
you can change the JavaScript variable document.domain for both documents to that second-level
domain. For example, if scripts from some.example.com and other.example.com both set
document.domain='example.com', they will be able to communicate. This works only if the two
documents have a common sub-domain.

Browser Detection vs. Feature Detection
Because browsers often behave differently, it can be useful to try to work out which browser the user
is using to visit a site and to write different JavaScript depending on the browser being used. There
is, however, one very serious problem with this approach: browsers lie.

Browser manufacturers have found that lots of old code already exists to try to detect which
browser is being used. As a result, when they release new browsers, much of this code wouldn’t
work correctly if the browser correctly identified itself because it wasn’t coded for the new browser.
As a result, browser manufacturers frequently identify themselves as other browsers. For example,
Internet Explorer 7 identifies itself as Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 6.0).

A much better approach is to simply test whether a browser has a particular feature you want
to use and, if it does, to use it. That way, the code will work for any browser that has the feature, not
just ones that pass your browser detection tests.

Of course, by using a JavaScript framework like YUI or JQuery, you isolate yourself from
browser differences because they are handled by the framework, so you are less likely to need either
browser or feature detection code.

Now that you’ve seen how JavaScript works in the browser, let’s return once more to the
SimpleSite application and use some YUI JavaScript to spruce up the application.

Adding Animation to the SimpleSite
Flash Message
Although the flash message system you created in Chapter 8 works perfectly well, you can draw the
users’ attention to it better by adding some animation. In this section, you’ll learn how to animate
the message so that it appears after the page has loaded and fades away after the user clicks it. To
achieve this, you’ll need to use YUI’s animation facilities.

YUI provides a number of animation classes. You’ll need the following:

YAHOO.util.Anim: For animating any numeric attributes of an HTMLElement

YAHOO.util.ColorAnim: For animating attributes related to color

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX354

Since the animation appears only on the view pages, you need to add the JavaScript imports
to the derived/pages/view.html template. Animation functionality requires both the YUI animation
JavaScript file and the combined yahoo-dom-event.js JavaScript file. Add this def at the end of the
view.html template:

<%def name="js()">
<script src="/yui/2.6.0/yahoo-dom-event/yahoo-dom-event.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/animation/animation-min.js" ➥

type="text/javascript"></script>
</%def>

You’ll also need to update base/index.html with a new js() def so that this code gets called.
At the top of the template, add the line in bold:

-*- coding: utf-8 -*-

<%namespace name="navigation" file="/component/navigation.html" import="*" />\

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>

<title>${self.title()}</title>
${self.head()}
${self.js()}

</head>
<body>

At the bottom of the template, add this so that child templates that don’t have a js() def will
inherit an empty one:

<%def name="js()"></%def>

The flash element will start out invisible, so update the styles in public/css/main.css so the
#flash style looks like this:

#flash {
background: #ffc;
padding: 5px;
border: 1px dotted #000;
margin-bottom: 20px;
height: 0px;
overflow: hidden; /* so we can animate from zero height */

}

Next you need to write the JavaScript function to make the flash message appear. Add this to
the bottom of the js() def you just created in the view.html template after the <script> tags:

% if session.has_key('flash'):
<script type="text/javascript">
YAHOO.util.Event.onAvailable(

'flash',
function() {

var a = new YAHOO.util.Anim(
YAHOO.util.Dom.get('flash'), {

height: {
to: 16

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 355

}
},
0.4,
YAHOO.util.Easing.easeIn

);
a.animate();
YAHOO.util.Event.on('flash', 'click', function() {

var b = new YAHOO.util.Anim(
YAHOO.util.Dom.get('flash'), {

opacity: {
to: 0

},
},
0.4

);
b.onComplete.subscribe(function(){

YAHOO.util.Dom.setStyle('flash', 'display', 'none');
});
b.animate();

}
)

}
);
</script>
% endif

Notice that you use the onAvailable event that is triggered as soon as the HTML element is
available to start the animation as soon as possible. As the animation is running, you also install
an event handler to make the flash message gracefully disappear by changing the CSS opacity
until it is 0.

Now that the code is in place, try editing and saving a page. You should see the yellow flash box
appear gradually with its height growing until it reaches its full size. Then, when you click the mes-
sage, it fades out and disappears. Unfortunately, Internet Explorer doesn’t understand the CSS
opacity tag, so the fading out won’t work on Internet Explorer.

Ajax
By now you should have a good understanding of JavaScript, the DOM, and event handling and
have some understanding of how to use YUI. Turn your attention to one of the most useful
JavaScript techniques: Ajax.

Ajax is a technique that allows the browser to communicate asynchronously with the server.
This means you can fetch data from the browser and use JavaScript to update part of a web page
without needing to refresh the page.

Using Ajax would be useful in one area of the SimpleSite application in particular: the edit
form. At the moment when you edit a page or section, it is possible to enter a value into the before
field for a page that isn’t in that section. The FormEncode validation picks up the error, but it would
be better if the before field was a drop-down list containing values automatically populated with
pages or subsections of the section currently selected in the section drop-down list. Figure 15-4
shows how this would look.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX356

Figure 15-4. The Before drop-down list, populated using Ajax

This pattern of populating one drop-down list from the values of another using Ajax applies to
any situation where you have hierarchical data. First you need to listen for any onchange events from
the parent drop-down list. Then you need to contact the server to fetch the HTML for a new before
field and replace the old one.

Let’s get started. First you need a function that will return the appropriate values of before for a
given section ID. Add this as a static method to model.Nav in model/__init__.py. The exclude option
allows you to exclude the current page; after all, it wouldn’t make a lot of sense to have a page or
section appear before itself:

class Nav:

.. existing methods

@staticmethod
def get_before_options(section, exclude=None):

nav_q = meta.Session.query(Nav)
query = nav_q.filter_by(section=section)
if exclude is not None:

query = query.filter(Nav.id != exclude)
return [(nav.id, nav.name) for nav in query.all()]

In the page controller’s edit method, set the value of c.before_options:

def edit(self, id=None):
if id is None:

abort(404)
page_q = meta.Session.query(model.Page)
page = page_q.filter_by(id=id).first()
if page is None:

abort(404)
values = {

'name': page.name,
'path': page.path,
'section': page.section,
'before': page.before,
'title': page.title,
'heading': page.heading,
'content': page.content

}
c.before_options = model.Nav.get_before_options(page.section, page.id)
c.before_options.append(['', '[At the end]'])
return htmlfill.render(render('/derived/page/edit.html'), values)

Notice the second line in bold where an extra option is added. This allows a user to specify that
the page should be at the end of the section.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 357

You’ll also need to make a similar change to the section controller’s edit() method:

def edit(self, id=None):
if id is None:

abort(404)
section_q = meta.Session.query(model.Section)
section = section_q.filter_by(id=id).first()
if section is None:

abort(404)
values = {

'name': section.name,
'path': section.path,
'section': section.section,
'before': section.before,

}
c.before_options = model.Nav.get_before_options(section.section, section.id)
c.before_options.append(['', '[At the end]'])
return htmlfill.render(render('/derived/section/edit.html'), values)

Of course, the page and section controller new() actions also require a similar change. Notice
that this time the before key isn't deleted from the values dictionary, just set to contain an empty
string. Update the page controller’s new() action to look like this:

def new(self):
values = {}
values.update(request.params)
if values.has_key('before') and values['before'] == u'None':

values['before'] = ''
c.before_options = model.Nav.get_before_options(values.get('section', 0))
c.before_options.append(['', '[At the end]'])
return htmlfill.render(render('/derived/page/new.html'), values)

Update the section controller’s new() action to look like this:

def new(self):
values = {}
values.update(request.params)
if values.has_key('before') and values['before'] == u'None':

values['before'] = ''
c.before_options = model.Nav.get_before_options(values.get('section', 0))
c.before_options.append(['', '[At the end]'])
return htmlfill.render(render('/derived/section/new.html'), values)

Now update the derived/nav/fields.html template to replace the existing before field with
this:

${h.field(
"Before",
h.select(

"before",
id='before',
options = c.before_options,
selected_values=[],

),
)}

The before field now correctly displays the possible options for the section selected when the
form is rendered, but you still need to add the JavaScript to detect when the section value changes
and trigger the Ajax calls.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX358

You’ll write a JavaScript function called callAjax() that takes the URL for the Ajax call as the
first argument, the ID of the field containing the value you want to submit as the second, and the
name of the element to take the result as the third. Add this to the bottom of the
derived/nav/fields.html file:

<%def name="js()">
<script src="/yui/2.6.0/yahoo-dom-event/yahoo-dom-event.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/connection/connection-min.js" ➥

type="text/javascript"></script>

<script type="text/javascript">
function callAjax(url, field, replace){

var callback = {
success: function(o) {

YAHOO.util.Dom.get(replace).innerHTML = o.responseText;
},
failure: function(o) {

alert("Failed to retrieve required information.");
}

}
url = url +'?selected='+YAHOO.util.Dom.get(field).value;
var transaction=YAHOO.util.Connect.asyncRequest('GET', url, callback, null);

}
</script>

</%def>

Notice that this code relies on the connection JavaScript library being in place before it is
parsed. It also requires the yahoo-dom-event library. Sometimes you will need to access objects
from the calling function’s scope in the success() and failure() callbacks. You can do this in
YUI by specifying an argument list as a member of the earlier callback object, in addition to the
success and failure callbacks used in the previous example. The arguments you specify can
then be accessed as o.argument in the callback functions. See the YUI Event documentation for
an example.

Add an onchange argument to the h.select() helper for the section field in
derived/nav/fields.html so it looks like this:

${h.field(
'Section',
h.select(

"section",
id='section',
selected_values=[],
options=c.available_sections,
onchange="callAjax('%s', 'section', 'before'); return false;"%(

h.url_for(controller="nav", action="before_field_options")
),

),
required=True

)}

This code triggers an Ajax call to the before_field_options() action. If the call is successful,
the before field’s options are replaced with the HTML fragment from the Pylons controller; other-
wise, a JavaScript alert box displays an error message.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 359

Next you need to add the before_field_options() action to the nav controller to return the
new options with the correct values for the section ID sent in the Ajax call. The new action requires
the following import:

from webhelpers.html.tags import HTML

and looks like this:

def before_field_options(self):
result = []
for id, label in model.Nav.get_before_options(request.params.getone➥

('selected')):
result.append(HTML.option(label, value=id))

result.append(HTML.option('[At the end]', value=''))
return u''.join(result)

Finally, you need to update the edit.html and new.html templates for both the section and the
page. Update derived/page/edit.html, derived/section/edit.html, derived/page/new.html, and
derived/section/new.html by adding the following import and def at the end of the files:

<%namespace file="/derived/nav/fields.html" name="navfields" import="js"/>

<%def name="js()">
${parent.js()}
${navfields.js()}

</%def>

This pulls in the js() def from the derived/nav/fields.html file and adds the contents of its
head() def.

At this point, you are ready to test the updated application. Try to edit a page or section; as you
change the section you want the item to appear in, an Ajax call is made, and the correct values of
before for that section are set automatically.

Debugging Ajax Requests
You can use two tools to debug Ajax requests. The first is the Pylons interactive debugger. If you
refer to Chapter 4, you’ll recall that any time an error occurs during a request when Pylons is in
debug mode, a header called X-Debug-URL is added to the response containing a URL. The URL is
also printed on the console if you are using the paster serve command to serve the Pylons appli-
cation. If you visit that URL, you will be able to interactively debug the request that caused the error
in the same way you debug normal problems in a Pylons application.

On the client side, Firebug is once again the tool of choice. Its console can help you determine
any errors that occurred. As an example, the Net tab in Figure 15-5 shows the requests occurring
when I edit page 2. The first GET request is to load page 2. The second request is the Ajax request
that occurred when I change the section select field. It also shows you how long each request took;
this can be very useful in determining how to optimize your Pylons applications, as you’ll see later
in the chapter. When you hover your mouse over a request (as I have done on the second request),
Firebug shows you the whole request URL. Clicking the + icon shows you the HTTP headers for the
request and response, so if an error occurs on an Ajax call, you can also find out the debug URL
from the headers displayed by Firebug.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX360

Figure 15-5. The Net tab in Firebug showing an Ajax request

JSON
Although returning HTML from a Pylons controller and using a node’s .innerHTML property to
update its content is a perfectly acceptable way of using Ajax, you should be aware of another useful
technique.

Instead of taking the approach just described, you could have simply returned the labels and
values for the before field from the Pylons controller action and assembled the HTML nodes using
DOM manipulation with JavaScript in the browser. If you chose to take this approach, you would
have to decide what format you are going to use to send the data in, and the most sensible choice
would be a format known as JSON.

JSON stands for JavaScript Object Notation and is quite simply just a string of text written in
the same way you would define a JavaScript object using the object literal notation you saw ear-
lier. For example, a JSON data structure representing the before field’s values might look like this:

{
options: [

{id: 4, value: "SVN Page"},
{id: 5, value: "Development Page"},
{id: "", value: "[At the end]"}

]
}

You’ll notice that this looks like the type of data structure you might create in Python, so much
so that Pylons provides an @jsonify decorator that you can use on a controller action, which will
turn an ordinary Python data structure made up of lists, dictionaries, strings, and numbers into a
JSON string.

Add a new action to the nav controller to return a JSON data structure for the before field.
You’ll need to import the @jsonify decorator at the top of the file:

from pylons.decorators import jsonify

Now add the controller action like this:

@jsonify
def before_field_json(self):

result = {
'options': [

dict(id=id, value=value) for value, id in model.Nav.get_before_options(
request.params.getone('selected'))

]
}
result['options'].append({'id': u'[At the end]', 'value': u''})
return result

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 361

When the Ajax call is made to this action, the Python dictionary returned is converted to JSON
by the @jsonify decorator (which itself uses the simplejson package installed with Pylons), and this
is made available in the JavaScript success() callback as o.responseText. Let’s use Firebug to log its
value to the console. Update the derived/nav/fields.html file’s js() def so that the callAjax()
function looks like this. Lines that have changed are in bold.

function callAjax(url, field, replace){
var callback = {

success: function(o) {
console.log(o.responseText);

},
failure: function(o) {

alert("Failed to retrieve required information.");
}

}
url = url +'?selected='+YAHOO.util.Dom.get(field).value;
var transaction = YAHOO.util.Connect.asyncRequest('GET', url, callback, null);

}

The console object is provided by Firebug so won’t be present on browsers without Firebug.
This means using the console object is appropriate only for debugging, and you should always
remove all references to it in production code.

Also, update the onchange argument for the select field so that when its value changes, it calls
the new before_field_json() action:

${h.field(
'Section',
h.select(

"section",
id='section',
selected_values=[],
options=c.available_sections,
onchange="callAjax('%s', 'section', 'before'); return false;"%(

h.url_for(controller="nav", action="before_field_json")
),

),
required=True

)}

If you edit a page or section, enable Firebug, and change the section field to Home Section, you
should see this in the Firebug console:

{"options": [{"id": "Contact Us Page", "value": 2}, {"id": "Development Section",➥
"value": 3}, {"id": "Home", "value": 6}, {"id": "[At the end]", "value": ""}]}

This is the string the @jsonify decorator returned, but to be useful, it needs to be turned into a
JavaScript object. The safest way to do this is with a JSON parser like the one included with YUI, but
since JSON is also valid JavaScript source code, you can also use JavaScript’s eval() function to sim-
ply evaluate it. As you’ll see later, though, using eval() has some potential security implications.

Update the js() def in the derived/nav/fields.html file to look like this:

<%def name="js()">
<script src="/yui/2.6.0/yahoo-dom-event/yahoo-dom-event.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/connection/connection-min.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/json/json-min.js" type="text/javascript"></script>

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX362

<script type="text/javascript">
function callAjax(url, field, replace){

var callback = {
success: function(o) {

var parsed_options = YAHOO.lang.JSON.parse(o.responseText);
var evaluated_options = eval('('+o.responseText+')');
console.log(parsed_options);
console.log(evaluated_options);

},
failure: function(o) {

alert("Failed to retrieve required information.");
}

}
url = url +'?selected='+YAHOO.util.Dom.get(field).value;
var transaction = YAHOO.util.Connect.asyncRequest('GET', url, ➥

callback, null);
}
</script>

</%def>

Once again, the lines that have changed are in bold. If you refresh the page and change the
section, you’ll see something like this in the Firebug console:

Object id=Contact Us Page value=2
Object id=Contact Us Page value=2

Both methods produce the same result.
You might be wondering why when evaluating the JSON string with the eval() function you

had to add a bracket to the beginning and end of the string. The answer is that it forces JavaScript
to unconditionally treat the string as an expression. If you try to call eval() with an empty object
string, as in "{}", it returns undefined, which clearly isn’t what you want. Adding the parentheses
fixes the problem. As it happens, array literals such as "[]" work fine even without the parenthe-
ses, but it is best to use them. Here’s an example demonstrating these effects:

js> eval("{}")
js> YAHOO.lang.isUndefined(eval("{}"))
true
js> eval("({})")
Object
js> eval("[]")
[]

The reason you should always use a JSON parser rather than eval() is that you never quite
know whether someone might have found a way to compromise your application to get some ille-
gal characters into the JSON your application has generated. For example, imagine that if instead
of the JSON it does generate, the before_field_json() action returned "{options: alert
(document.cookies)}". With the eval('('+o.responseText+')') technique, the alert() function
gets called, and any cookies the application uses appear in an alert window. Now imagine that
rather than calling alert(), a hacker calls a different function. They could potentially get hold of
your user’s cookies and set up their own browsers with their cookies. The Pylons application would
think that the hacker was actually the real user. Of course, lots of other exploits are possible, but
the point is that if a hacker can compromise your JSON, an attack is possible.

js> eval("({options: alert(document.cookies)})")
[The alert window is displayed]

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 363

On the other hand, if you use a JSON parser, the JSON will not pass as valid, and a simple
JavaScript error will be raised without doing any damage except causing the code that updates the
before field not to be called.

js> YAHOO.lang.JSON.parse("{options: alert(document.cookies)}")
SyntaxError: parseJSON

For this reason, you should always use a JSON parser, just to be safe. With this firmly estab-
lished, let’s remove the lines that refer to the Firebug console object and finish updating the js()
def in the derived/nav/fields.html file so that it looks like this:

<%def name="js()">
<script src="/yui/2.6.0/yahoo-dom-event/yahoo-dom-event.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/connection/connection-min.js" ➥

type="text/javascript"></script>
<script src="/yui/2.6.0/json/json-min.js" type="text/javascript"></script>

<script type="text/javascript">
function callAjax(url, field, replace){

var callback = {
success: function(o) {

var parsed_options = YAHOO.lang.JSON.parse(o.responseText);
var before = document.getElementById(replace);
// Remove current options
while(before.hasChildNodes() === true)
{

before.removeChild(before.childNodes[0]);
}
// Add new options
for (var i=0; i<parsed_options.options.length; i++) {

var new_option = document.createElement('option');
new_option.text = parsed_options.options[i].id;
new_option.value = parsed_options.options[i].value;
before.appendChild(new_option);

}
},
failure: function(o) {

alert("Failed to retrieve required information.");
}

}
url = url +'?selected='+YAHOO.util.Dom.get(field).value;
var transaction = YAHOO.util.Connect.asyncRequest('GET', url, ➥

callback, null);
}
</script>

</%def>

If you test the example, you should find it works exactly as it did when you used the .innerHTML
technique instead. Which technique you choose to use in your own applications is up to you.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX364

Reducing Page Load Time
If you are including a large number of CSS or JavaScript files in your pages, the length of time it
takes to load a page can begin to become significant. The vast majority of the time it isn’t the speed
of your Pylons application that affects how fast your application appears to your users. Much more
important usually is the speed with which the browser can pull in and process all the files that will
need to be loaded and rendered to display the finished web page.

You can generally reduce page load times fairly easily in the following ways:

Compressing text files: Transmitting less data takes less time. In Chapter 16, I’ll show how you
can write some middleware to compress text data automatically.

Concatenating text files: An overhead is involved in each HTTP request made, so the fewer
requests the browser makes, the better.

Putting multiple icons or image fragments in a single image: You can then use the same image
lots of times throughout the page and use CSS to choose which part of the image you display
in each place. Again, the fewer images you have to fetch, the fewer HTTP requests are needed,
and the faster the page should load.

Cache data: If the browser can fetch a file from its cache, it doesn’t have to fetch it from the net-
work, so that will be faster. Pylons automatically supports E-Tag caching for the static files it
serves, which means that browsers should fetch a new copy only if the E-Tag changes. This can
speed things up a little, but since the browser has to make a request to see whether the E-Tag
has changed, this isn’t as effective for small files as it is for large ones.

Some other less obvious things can affect page load time too:

Number of DNS queries: The more different domains (or subdomains) that your page loads
information from, the more DNS lookups the browser will have to do to discover the IP
addresses associated with those domains. Depending on the number of name servers involved,
it can take up to a second or more for each DNS lookup. Of course, the browser will cache the
DNS information, but it is worth remembering that the first page load will be quicker if all the
resources are served from the same domain. This is particularly worth remembering for appli-
cations using Routes’ subdomain feature because you probably wouldn’t want to serve static
resources from lots of different subdomains if you could serve them all from the same domain.

Minimizing JavaScript: Writing JavaScript usually involves adding quite a lot of whitespace. If
you use a JavaScript minification tool, it can strip whitespace and comments and also rename
local variables to ones that use fewer characters. Again, fewer characters means faster transfer
time. One JavaScript minifier is the YUI compressor written in Java and available from
http://developer.yahoo.com/yui/compressor/.

Positioning of CSS and JavaScript within HTML: CSS files should be included with the <link>
tag as close to the top of the <head> as possible. This gives browsers all the information they
need about the styles as early as possible, which in turn means they can start rendering the
page sooner. By contrast, JavaScript <script> tags should go as close to the bottom of the
<body> as possible because browsers typically won’t start downloading other resources like
images while script downloads are in place, so it makes sense to have them later.

Knowing which of these problems is affecting your site the most is very tricky without a
detailed analysis of how long each component takes to load. Luckily, there are tools to help with
this. As you saw earlier in the chapter, Firebug’s Net tab displays the time taken for each request as

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX 365

well as the overall page load time, so this will give you a good indication of where files are being
requested more than they need to be. If you need detailed information to optimize page load
performance, you should download another Firefox plug-in called YSlow which can give you a
detailed performance analysis. YSlow relies on Firebug for some of its functionality. You can get
YSlow from http://developer.yahoo.com/yslow/, and if you plan on using it, the help page at
http://developer.yahoo.com/yslow/help/ is very useful.

Summary
Once again, I covered a lot in this chapter, from CSS grids to prototypal inheritance, DOM manipu-
lation, events, and Ajax. The appropriate use of CSS, JavaScript, and Ajax can really improve your
application and allow you to build interfaces that aren’t possible with traditional static HTML.

There is plenty more in the YUI library, and I strongly encourage you to investigate it. I hope
that the discussion in this chapter goes some way toward giving you the knowledge you’ll need to
begin reading the YUI documentation in earnest. As well as good documentation and plenty of
examples, there are also some very handy A4 cheat sheets for each component. Visit http://
developer.yahoo.com/yui for more information, but don’t forget that Pylons works equally well
with other frameworks like JQuery.

That’s all for Part 2 of the book. In Part 3, you’ll begin looking at expert Pylons topics starting
with a discussion of the Web Server Gateway Interface, which is at the core of Pylons’ architecture.

CHAPTER 15 ■ CSS, JAVASCRIPT, AND AJAX366

Expert Pylons

P A R T 3

The Web Server Gateway Interface
(WSGI)

The Web Server Gateway Interface is a Python standard created in 2003 by Philip J. Eby and the
Python web community. Back in 2003 Python suffered from a very fragmented web framework
community where applications written with code from one framework wouldn’t run on the server
component from a different framework. The Web Server Gateway Interface standard (known as
WSGI and pronounced “wizgy” by those in the Python community) was designed to change that
and enable a degree of cross-framework interoperability.

In the first part of this chapter, you’ll learn how a simple WSGI application works, how you can
use WSGI applications as Pylons controllers, how WSGI servers work, and how WSGI leads to new
classes of components called middleware.

Internally Pylons relies on middleware components to provide some of its core functionality,
so in the second part of the chapter, I’ll explain the different ways of writing WSGI middleware, and
you’ll develop your own Gzip middleware (mentioned in the previous chapter) for compressing
your Pylons projects’ CSS and JavaScript code.

In the normal course of Pylons development, you don’t need to write WSGI applications
because you will use Pylons controllers and actions instead. You don’t need to know how to develop
WSGI middleware yourself either because Pylons already provides all the middleware you need as
well as specific APIs that are much easier to work with than their underlying WSGI APIs (for exam-
ple, those exposed by the request and response objects). For these reasons, you might want to skip
the “Writing WSGI Middleware” section in the second half of the chapter if it doesn’t apply to you
yet and move straight onto the next chapter at that point. You should still read “Introducing WSGI”
in this chapter, though.

Introducing WSGI
The WSGI standard defines three different classes of component: applications, servers, and middle-
ware. I’ll cover each of these types of components in turn and explain how they are relevant to a
Pylons application.

■Tip If you want to know the details of WSGI programming, there is no substitute for reading its formal speci-
fication, which is called Python Enhancement Proposal 333 and is at http://www.python.org/dev/peps/
pep-0333/.

369

C H A P T E R 1 6

WSGI Applications
You’ll remember from all the way back in Chapter 3 that at its heart Pylons deals with the HTTP
protocol, that communication with the browser involves a request and a response, and that all the
HTTP request information, together with information about the server, is encapsulated in a CGI-
like environment dictionary.

In Pylons, a controller action to handle a request and return some plain text might look
like this:

def hello(self):
response.status = '200 OK'
response.content_type = 'text/plain'
return "Hello World!"

The equivalent WSGI application would look like this:

def hello(environ, start_response):
start_response('200 OK', [('Content-type','text/plain')])
return ["Hello World!"]

Technically speaking, setting the response status to '200 OK' in the Pylons example isn’t neces-
sary because it is the default, but I’ve added it to the example to emphasize the similarity between
the two cases. Let’s compare each of the examples by their main features:

Request information: In Pylons, all the request information is available as a global object called
request. In the WSGI application, the request information is all contained in the environ dic-
tionary passed as the first positional parameter to the WSGI application. In Pylons, request.
environ is actually the same dictionary that would be passed to a WSGI application as the
environ argument.

HTTP response status: In Pylons, the status is set by changing the status attribute of the global
response object. In a WSGI application, it is set by passing a string as the first argument to the
start_response() function, which itself is passed into the WSGI application as its second posi-
tional parameter.

HTTP headers: In Pylons, common HTTP headers such as Content-Type have their own
attributes that you can set on the global response object. Others have to be added to response.
headers, as in response.headers['X-Some-Header'] = 'value'. In a WSGI application, the
headers are passed as the second argument to start_response() as a list of tuples where the
first string in a tuple is a string containing the header name and the second is a string contain-
ing the value. Here’s an example: [('Content-type', 'text/plain'), ('X-Some-Header',
'value')].

The response: In Pylons, the response is simply the string returned from the action. If you
return Unicode from a Pylons controller action, it will be encoded into UTF-8 automatically.
In a WSGI application, it is an iterable, which should yield strings when it is iterated over. A list
made up of strings is an example of an iterable that fulfils this criterion. The WSGI response
cannot contain Unicode. Any Unicode must be encoded to an encoding such as UTF-8 before
it is used in an iterable.

On the surface, the WSGI application is really fairly similar to the Pylons controller action
except it doesn’t use the simplifying global variables request and response that Pylons provides;
however, you need to be aware of a couple of complications when writing WSGI applications, which
Pylons takes care of for you when you use a controller action:

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)370

• The start_response() callable that gets passed to the WSGI application as its second argu-
ment can be called only once (except in rare circumstances when an error occurs, as you’ll
see in the “Handling Errors” section later in the chapter).

• start_response() must be called before the application returns any response data.

• After being called, start_response() returns a writable object that can be used to write
response data directly without having to return it as an iterable from a WSGI application.

Here is the same example you saw earlier but written to use the writable object returned from
start_response():

def hello(environ, start_response):
writable = start_response('200 OK', [('Content-type','text/html')])
writable("Hello ")
return ["World!"]

Here the first part of the output was written via the writable returned by start_response(), and
the rest was returned normally by returning the iterable as before.

■Caution This way of returning response data to the browser was included in the specification because some
servers weren’t capable of buffering data returned in any other way. It is really considered very bad practice to use
this approach; in fact, this functionality may be removed in a future version of the WSGI specification because it
significantly complicates the writing of middleware components.

Using Instances of Classes
So far, you’ve seen only how to write WSGI applications as functions, but they can also be written as
iterators, as generators, or as class instances. Writing applications as class instances can be useful if
you want to write a more complex WSGI application. Take a look at this example:

class Hello(object):

def __call__(self, environ, start_response):
start_response('200 OK', [('Content-type','text/plain')])
return ['Hello World!']

hello = Hello()

The Hello class itself isn’t a WSGI application, but if you think about how the hello instance
will behave, you’ll realize that when it is called, it accepts two positional parameters; it calls
start_response() and returns an iterable, which in this case is just a list with one string. These are
exactly the conditions outlined in the previous section to describe how a WSGI application should
behave, so the class instance is a valid WSGI application. This approach is very handy for two main
reasons:

• It provides a way to group related WSGI applications together by having the __call__() dis-
patch the request to different methods.

• It provides a way to configure an application by passing arguments to the __init__()
method.

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 371

Let’s see an example demonstrating these two uses:

class Application(object):
def __init__(self, name):

self.name = name

def __call__(self, environ, start_response):
if environ['PATH_INFO'] == '/hello':

return self.hello(environ, start_response)
elif environ['PATH_INFO'] == '/goodbye':

return self.goodbye(environ, start_response)
else:

start_response('404 Not Found', [('Content-type','text/html')])
return ['Not found']

def hello(self, environ, start_response):
start_response('200 OK', [('Content-type','text/html')])
return ['Hello %s'%(self.name)]

def goodbye(self, environ, start_response):
start_response('200 OK', [('Content-type','text/html')])
return ['Goodbye %s'%(self.name)]

app = Application('Harry')

In this example, you can see that the method that is executed depends on the path in the URL
and that the text returned from the two methods depends on the name that was given when the
WSGI application was created. You might notice that this is beginning to look like an ordinary
Pylons controller, and as you’ll find out in the next section, it turns out that Pylons is designed to
be able to run WSGI applications like this as Pylons controllers.

■Caution It is easy to fall into a trap when using class instances in this way as WSGI applications. You might be
tempted to pass variables between the class methods by assigning values to self and then calling other methods.
This would be fine if you were using the application only outside of a multithreaded environment or if you re-created
the application on each request, but in a multithreaded environment there would be no guarantee that the value
attached to self in one method call would be the same value that was used in the next method call, because
another thread of execution might have taken place in between.

If that sounds a bit confusing, just remember the simple rule that you should never set or change a variable
assigned to self in a WSGI application outside the __init__() method.

This isn’t a problem in a Pylons controller because Pylons controller instances are re-created on each request.

WSGI in Pylons Controllers
If you look at a Pylons controller, you will see it is derived from BaseController, which is defined in
your project’s lib/base.py file. The BaseController class is itself derived from pylons.controllers.
WSGIController, but in fact Pylons is designed so that any valid WSGI application can be used as a
controller. This means you don’t actually need to use a Pylons controller class in your controller at
all; any WSGI application will work as long as you give it the same name your controller would have
had so that Pylons can find it.

For example, if you added a hello controller to a Pylons application by running the paster
controller hello command, you could replace the entire contents of the hello.py file with this:

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)372

def HelloController(environ, start_response):
start_response('200 OK', [('Content-Type','text/plain')])
return ['Hello World!']

Pylons will call your custom WSGI application in the same way as it would call a normal
WSGIController instance. To test the example you'll need to visit a URL which will resolve to the
controller such as /hello/index or add a new route so that the controller can be accessed as /hello:

map.connect('/hello', controller='hello')

You will still have all the session, debugging, and error-handling facilities a normal Pylons con-
troller has. The only difference is that although Pylons would instantiate a new WSGIController on
each request, it will assume that any WSGI application you use either is a function (such as the Hel-
loController() function earlier) or is already instantiated and ready to handle multiple requests at
once. This means if you want to write a WSGI application as a class and want it to be used as a con-
troller, the class instance would have to be named HelloController, not the class itself. Here’s an
example:

class HelloControllerApplication:
def __call__(self, environ, start_response):

start_response('200 OK', [('Content-Type','text/plain')])
return ['Hello World!']

HelloController = HelloControllerApplication()

Pylons avoids this problem with controllers derived from pylons.controllers.WSGIController
because it automatically creates a new controller instance on each request before it calls it.

Being able to mount WSGI applications as Pylons controllers is very useful because it gives
you the basis for integrating Pylons applications with third-party WSGI-enabled software such as
MoinMoin or Mercurial. As an example, it is perfectly possible to mount an entire Trac instance
as a Pylons controller. This has the benefit that Trac will be able to use the same authentication and
authorization system that you are using with Pylons and will also benefit from Pylons’ automatic
error documents and interactive debugger.

There may be occasions where you don’t want to replace your entire controller with a WSGI
application but simply want to run a WSGI application from within a particular controller action.
For example, if you had a WSGI application called wsgi_app, you could call it from the index() con-
troller action like this:

WSGI application
def wsgi_app(environ, start_response):

start_response('200 OK',[('Content-type','text/html')])
return ['<html>\n<body>\nHello World!\n</body>\n</html>']

Pylons controller
class RunwsgiController(BaseController):

def index(self, environ, start_response):
return wsgi_app(environ, start_response)

Notice that the WSGI objects environ and start_response are automatically passed to the
Pylons controller action if it has their names as arguments. This is another feature of the Pylons
dispatch designed to make working with WSGI applications easier, but you’ll remember from
Chapter 9 that this is why you shouldn’t choose routing variables with the same names.

Not all WSGI applications can be run as or from Pylons controllers. Some of the problems are
as follows:

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 373

• Python cannot support more than one version of the same library in the same interpreter at
the same time, so the WSGI application cannot use a different version of one of the libraries
Pylons is already using.

• Not all WSGI applications are written correctly to be mounted at a URL other than /, so when
you use them as part of a Pylons controller at a URL such as /controller/action, they might
break.

• Not all WSGI applications are compatible with the WSGI middleware components Pylons
uses. For example, they might not expect the presence of error documents middleware that
could get in the way of some of their responses.

Despite these potential difficulties, a lot of WSGI applications will run from within Pylons, and
this can lead to interesting new ways of using those applications.

WSGI Servers
Now that you’ve seen what WSGI applications are and how, in many cases, they can be run from a
Pylons controller, it is time to turn your attention to what happens with WSGI servers. Luckily, you
are very unlikely to have to write a WSGI server yourself because WSGI is now an established stan-
dard and almost all the common web servers are now WSGI compatible. Nevertheless, it is still
useful to know how they work since their interface forms the basis for WSGI middleware.

A WSGI server must do a few things. First, it must prepare the environ dictionary and
start_response() callable and pass them as the first and second positional parameters to a WSGI
application. The WSGI application always calls the start_response() callable to set the status and
HTTP headers before it starts returning data (as you’ve seen), so the server has to assemble
start_response() in such a way that, when it is called, the status and headers get sent to the web
browser. You’ll remember that according to the specification, WSGI applications are allowed to use
the writable returned from start_response(), so servers must also assemble start_response() to
return a compatible object.

It is also the server’s responsibility to set certain WSGI-specific variables in the environ dic-
tionary that give the application some information about the type of server they are running on.
Table 16-1 lists the variables that are set.

Table 16-1. The WSGI Variables and Their Meanings According to PEP 333

Variable Value

wsgi.version The tuple (1,0), representing WSGI version 1.0.

wsgi.url_scheme A string representing the “scheme” portion of the URL at which the
application is being invoked. Normally, this will have the value "http" or
"https", as appropriate.

wsgi.input An input stream (file-like object) from which the HTTP request body can be
read. (The server or gateway may perform reads on demand as requested by
the application, it may preread the client’s request body and buffer it in
memory or on disk, or it may use any other technique for providing such an
input stream, according to its preference.)

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)374

Variable Value

wsgi.errors An output stream (file-like object) to which error output can be written, for
the purpose of recording program or other errors in a standardized and
possibly centralized location. This should be a “text mode” stream; that is,
applications should use "\n" as a line ending and assume it will be
converted to the correct line ending by the server/gateway.
For many servers, wsgi.errors will be the server’s main error log.
Alternatively, this may be sys.stderr or a log file of some sort. The server’s
documentation should include an explanation of how to configure this or
where to find the recorded output. A server or gateway may supply different
error streams to different applications, if this is desired.

wsgi.multithread This value should evaluate true if the application object may be
simultaneously invoked by another thread in the same process and should
evaluate false otherwise.

wsgi.multiprocess This value should evaluate true if an equivalent application object may be
simultaneously invoked by another process and should evaluate false
otherwise.

wsgi.run_once This value should evaluate true if the server or gateway expects (but does
not guarantee!) that the application will be invoked only this one time
during the life of its containing process. Normally, this will be true only for
a gateway based on CGI (or something similar).

Of particular interest to a Pylons developer are the wsgi.multithread and wsgi.multiprocess
variables that tell the WSGI application whether it is being run in a multithreaded or multiprocess
environment. You’ll learn more about the differences between multithreading and mulitprocess
servers in Chapter 21, but for now you just need to know that these variables can be accessed from
the environ dictionary to discover what sort of server is being used.

The wsgi.errors variable is also interesting and will become particularly relevant when you
look at application logging in Chapter 20. It provides a file-like object that the server provides for
you to log error messages to. By using this for your log messages, you can be sure that your Pylons
application logs will always be logged in an appropriate manner no matter which server they are
running on. There are downsides to this approach too, though, which you’ll see in Chapter 20.

■Tip Because Pylons is a WSGI framework and runs on WSGI servers, these variables are also available in Pylons
through the request.environ dictionary. For example, to find out whether your application is running on a multi-
threaded web server, you could do this:

if bool(request.environ['wsgi.multithreaded']):
Multithreaded

else:
Not multithreaded

Rather than write a full WSGI HTTP server as an example, let’s consider a much simpler case.
Imagine you already have a CGI server that was capable of running the CGI script you saw all the
way back in Chapter 1. If you wanted to write an adaptor that would be able to run a WSGI appli-
cation in a CGI environment, you would need to implement the WSGI server API.

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 375

Here’s the code you would use:

import os, sys

def run_with_cgi(application):

environ = dict(os.environ.items())
environ['wsgi.input'] = sys.stdin
environ['wsgi.errors'] = sys.stderr
environ['wsgi.version'] = (1,0)
environ['wsgi.multithread'] = False
environ['wsgi.multiprocess'] = True
environ['wsgi.run_once'] = True

if environ.get('HTTPS','off') in ('on','1'):
environ['wsgi.url_scheme'] = 'https'

else:
environ['wsgi.url_scheme'] = 'http'

headers_set = []
headers_sent = []

def write(data):
if not headers_set:

raise AssertionError("write() before start_response()")

elif not headers_sent:
Before the first output, send the stored headers
status, response_headers = headers_sent[:] = headers_set
sys.stdout.write('Status: %s\r\n' % status)
for header in response_headers:

sys.stdout.write('%s: %s\r\n' % header)
sys.stdout.write('\r\n')

sys.stdout.write(data)
sys.stdout.flush()

def start_response(status,response_headers,exc_info=None):
if exc_info:

try:
if headers_sent:

Re-raise original exception if headers sent
raise exc_info[0], exc_info[1], exc_info[2]

finally:
exc_info = None # avoid dangling circular ref

elif headers_set:
raise AssertionError("Headers already set!")

headers_set[:] = [status,response_headers]
return write

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)376

result = application(environ, start_response)
try:

for data in result:
if data: # don't send headers until body appears

write(data)
if not headers_sent:

write('') # send headers now if body was empty
finally:

if hasattr(result,'close'):
result.close()

This example forms part of the WSGI specification in PEP 333, so I won’t discuss it in detail,
but notice that it sets up an environ dictionary and a start_response() callable before calling the
WSGI application in the line marked in bold. The information returned from the WSGI applica-
tion forms the body of the response, and the information passed to the start_response() callable
from the application is used to set the HTTP status and headers. Notice that the example also sets
up a write() function that is returned from start_response() and that the application can also
use to output information. As noted earlier, though, the vast majority of WSGI applications
should return their data as an iterable. It’s also worth drawing your attention to wsgi.errors. Here
the wsgi.errors key simply points to sys.stderr, so any log messages your application sends
when using run_with_cgi() just get sent to the standard error stream.

Let’s write a sample CGI script that uses run_with_cgi() to run the hello()WSGI application
from earlier in the chapter. The script would look like the following, but be sure to specify the cor-
rect path to the python executable. This is likely to be the one in your virtual Python environment:

#!/home/james/env/bin/python

import os, sys

def run_with_cgi(application):
... same as in the example above ...

def hello(environ, start_response):
start_response('200 OK', [('Content-type','text/plain')])
return ["Hello World!"]

if __name__ == '__main__':
run_with_cgi(hello)

You can also run this CGI script from the command line because CGI applications send their
output to the standard output. Save the previous example as wsgi_test.py, and you can run it like
this:

$ chmod 755 wsgi_test.py
$./wsgi_test.py
Status: 200 OK
Content-type: text/plain

Hello World!

This sort of setup can sometimes be useful for debugging problems too because you can
customize how the environ dictionary is set up in run_with_cgi() to simulate different sorts of
requests.

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 377

■Caution Running a WSGI application through a CGI script is generally very inefficient because the WSGI appli-
cation (along with the Python interpreter and the CGI script itself) has to be re-created on each request. Most WSGI
applications (including your Pylons application) are designed to be loaded into memory once and then executed
lots of times without being re-created, and this is a lot more efficient.

Since Python 2.5, WSGI has been built into the Python standard library in the form of the
wsgiref module, which provides basic WSGI tools including a WSGI server. The server is built using
the same methodology as the other servers that make up the Python Standard Library including
BaseHTTPServer. Here’s how you would use it to serve the same helloWSGI application used in the
previous example, although you could use the same code to serve any WSGI application just by
changing the argument to httpd.set_app():

from wsgiref import simple_server

def hello(environ, start_response):
start_response('200 OK', [('Content-type','text/plain')])
return ["Hello World!"]

httpd = simple_server.WSGIServer(
('0.0.0.0', 8000),
simple_server.WSGIRequestHandler,

)
httpd.set_app(hello)
httpd.serve_forever()

■Tip If you are running a version of Python prior to 2.5, you will need to install the wsgiref package from the
Python Package Index to run the example. You can do that with the following:

$ easy_install wsgiref

If you run this application, you’ll find the server running on port 8000 and available on all IP
addresses. You change which interface or port the WSGI application is served from by changing the
first argument to simple_server.WSGIServer(). Once the server is running, you can visit
http://localhost:8000/ to see the hello application running.

Now you have seen how to write WSGI applications and servers and understand the API for
each, it should be clear that any WSGI application can run on any WSGI server without any modifi-
cation needed to either the server or the application. In the next chapter, you’ll learn how to obtain
a WSGI application object from a Pylons application through its config file. Because Pylons applica-
tions are also WSGI applications, it means they can be deployed on a large range of WSGI servers
without modification. You can serve these Pylons WSGI applications in the same ways you saw the
hello application being served in the examples in this chapter. You’d just swap hello for the Pylons
WSGI application. You’ll learn about some of the more common deployment setups in Chapter 21.

WSGI Middleware
Now that you’ve learned about WSGI applications and servers, it is time to learn about another
type of component that sits in the middle between a server and an application and is known as
middleware.

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)378

WSGI middleware are components that, from a WSGI application’s point of view, appear as
though they are a WSGI server because they provide the environ dictionary and start_response()
callable when they call the WSGI application and iterate over the result to return the response in the
same way a WSGI server would. The reason middleware components are not WSGI servers, though,
is that they look to a server as if they are a WSGI application. They are callables that accept the
environ dictionary and start_response() arguments and return an iterable response.

This dual nature puts middleware components in a unique position to be able to change all the
HTTP information an application receives from a server and to change all the HTTP information a
server receives from the application. This turns out to be extremely useful and means that middle-
ware can therefore do any of the following things or a combination of them:

• Change any of the request information by modifying the environ dictionary

• Change the HTTP status returned from an application

• Intercept an error

• Add, remove, or change HTTP headers returned from an application

• Change a response

Middleware is therefore extremely powerful and can build a broad range of discrete compo-
nents that can be used with different WSGI servers and applications. For example, a middleware
component can do the following:

• Produce error documents when certain status codes are received (typically responding to
404 and 500 codes)

• E-mail error reports to a developer if a problem occurs

• Provide interactive debugging facilities

• Forward requests to other parts of the application

• Test the API compliance of applications and servers to the WSGI standard

• Authenticate a user

• Cache pages

• Provide a session store

• Handle cookies

• Gzip the response

Since a WSGI application wrapped in a piece of WSGI middleware is still a valid WSGI applica-
tion, you can also wrap the combined middleware+application in another piece of middleware. You
can keep adding middleware components until your middleware stack provides all the functionality
you need. Doing so is called creating a middleware chain. This is exactly what is happening in your
Pylons application’s config/middleware.py file in the make_app() function that you’ll look at in detail
in the next chapter.

Writing WSGI Middleware
Now that you’ve seen a bit about how WSGI works and how middleware components in particular
can be used to change the behavior of a Pylons application, it is time to look in detail at how you
can write WSGI middleware yourself. As was noted in the introduction to the chapter, writing your
own middleware isn’t necessary to develop Pylons applications, so feel free to skip the rest of this

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 379

chapter if it doesn’t interest you at this stage; however, bear in mind that if you have an understand-
ing of how it is done, you will be better able to understand how components such as AuthKit work.
If you want to become a Pylons expert or want to contribute to Pylons itself, a good understanding
of WSGI applications and middleware is essential.

Let’s start off by looking at middleware that does nothing at all so that you can see its con-
stituent parts:

class Middleware(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):
return self.app(environ, start_response)

You can use this middleware like this to wrap the helloWSGI application you saw earlier:

app = Middleware(hello)

The combined app object is itself a valid WSGI application, and since the middleware doesn’t
do anything, it would behave in the same way as the hello application on its own. Let’s think about
what happens when it is called by a WSGI server to handle a request.

When the app object is created, the Middleware object is instantiated with the hello application
as its first argument, which gets set as self.app. The app object is a class instance, but since it has a
__call__() method, it can be called and therefore can behave as a WSGI application in a similar
manner to the way you saw a class instance being used as a WSGI application earlier in the chapter.

When the instance is called, it in turn calls the hello application (self.app) and then returns its
result to the server, which will iterate over the result from Middleware.__call__() in the same way
as it would have iterated over the result from hello() if Middleware wasn’t present.

Now that you’ve seen the basic API of a middleware component, let’s look at an example of
each of the things mentioned in the previous section, which you can do with a middleware compo-
nent starting with modifying the environment.

Modifying the Environment
Let’s write some middleware that modifies the environ dictionary to add a key specifying a message.
You’ll also add a facility allowing the message to be configured when the middleware is instantiated:

class Middleware(object):
def __init__(self, app, message):

self.app = app
self.message = message

def __call__(self, environ, start_response):
environ['example.message'] = self.message
return self.app(environ, start_response)

This middleware adds a key to the environ called example.message. All WSGI environ keys have
to be strings containing just one . character, so here, example.message is a valid key. A WSGI applica-
tion can now access this modified example. Here’s a new version of the hello application that uses
this key to display a message and an example of how it is used:

def custom_message(environ, start_response):
start_response('200 OK', [('Content-type', 'text/plain')])
return [environ['example.message']]

app = Middleware(custom_message, "Hello world again!")

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)380

This time, the Middleware class takes a message parameter that is set as self.message. When the
application is called, the middleware adds this message as a key in the environ dictionary, which the
application can now extract from the environment.

Changing the Status and Headers
Next I’ll cover how to change the status or the headers in a piece of middleware. The WSGI applica-
tion calls start_response() to set the status and headers, so all the middleware has to do is provide
its own start_response() function that performs any modifications before calling the start_
response() function it has been passed. This example simply sets a cookie named name with the
value value:

class Middleware(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):

def custom_start_response(status, headers, exc_info=None):
headers.append(('Set-Cookie', "name=value"))
return start_response(status, headers, exc_info)

return self.app(environ, custom_start_response)

Notice that custom_start_response() returns the value of calling the original
start_response(). This is very important so that the writable returned from the application calling
the function it receives as start_response() can use the writable object returned by the server. It is
also important that you remember to pass the custom start response callable as the second argu-
ment when calling the WSGI application, rather than the original start_response() the middleware
receives.

Handling Errors
To be able to deal with errors, you need to know that the start_response() callable you have
been using throughout this chapter takes an optional third parameter named exc_info, which
defaults to None.

If an error occurs in your application (or even in one of the middleware components), you
might want to have that error intercepted so that you could log the error, send an e-mail error
report, or display a traceback to the user for debugging. It is possible that the server hasn’t actually
sent the HTTP headers yet, so the middleware doing the intercepting has an opportunity to call
start_response() itself with any status or headers it needs in order to display the traceback or
indicate an error. Since the error-handling middleware doesn’t know whether the server has
actually sent the headers, it behaves as if it hasn’t and calls the server as usual to generate the
required response, but it also specifies the exc_info argument to start_response() as a Python
sys.exc_info() tuple representing the error that occurred.

When start_response() is called with the exc_info argument, the server will check whether
the headers have already been sent and raise the exception passed to it via the exc_info argument
if they have. If they haven’t, it can use the new headers specified by the error-handling middleware.

If you refer to the run_with_cgi() example from earlier in the chapter, you can see this behav-
ior is implemented in the start_response() callable:

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 381

def start_response(status,response_headers,exc_info=None):
if exc_info:

try:
if headers_sent:

Re-raise original exception if headers sent
raise exc_info[0], exc_info[1], exc_info[2]

finally:
exc_info = None # avoid dangling circular ref

elif headers_set:
raise AssertionError("Headers already set!")

headers_set[:] = [status,response_headers]
return write

In this example, if the headers have already been set and there is no exc_info() argument, an
AssertionError is raised to indicate that it is likely the start_response() callable has been called
twice by mistake.

With a good understanding of how the exc_info argument works, let’s go ahead and write an
example that simply displays a traceback using the cgitb module from the Python Standard Library:

import cgitb
import sys
from StringIO import StringIO

class Middleware(object):
def __init__(self, app):

self.app = app

def format_exception(self, exc_info):
dummy_file = StringIO()
hook = cgitb.Hook(file=dummy_file)
hook(*exc_info)
return [dummy_file.getvalue()]

def __call__(self, environ, start_response):
try:

app_iter = self.app(environ, start_response)
for data in app_iter:

yield data
except:

exc_info = sys.exc_info()
start_response(

'500 Internal Server Error',
[('content-type', 'text/html')],
exc_info

)
for data in self.format_exception(exc_info):

yield data
else:

Calling .close() could cause an exception too
so in a real handler you might test for that too
if hasattr(app_iter, 'close'):

app_iter.close()

As you can see, the middleware just uses a simple try... except block, and if it encounters an
error, it calls start_response() with the exc_info argument so that the server can raise an exception
if the headers have already been sent. Then it calls its format_exception() method, which uses the
cgitb module to generate an HTML error page that it then returns.

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)382

Altering the Response
Another thing you can do with WSGI middleware is alter the response returned from a WSGI appli-
cation. In Chapter 15, I discussed ways of speeding up the time it takes a browser to render a page
from a Pylons application, and one of the recommendations was to compress JavaScript or CSS files
using Gzip compression so that they took less time to download from a server. One way of doing
this is with middleware, so let’s write some middleware to Gzip JavaScript and CSS files before they
are sent to the browser.

The example is quite complex, so rather than showing you the final code, let’s build up the
middleware in steps. First you need to know how to use Gzip compression in Python. Here’s an
example function that just compresses its input:

import gzip
import StringIO

def compress(string, compresslevel=9):
The GZipFile object expects to operate on a file, not a string
so we create a file-like buffer for it to write the output to
buffer = StringIO.StringIO()

Now let's create the GzipFile object which compresses any
strings written to it and adds the output to the buffer
output = gzip.GzipFile(

mode='wb',
compresslevel=compresslevel,
fileobj=buffer

)
output.write(string)
output.close()

Finally we get the compressed string out of the buffer
buffer.seek(0)
result = buffer.getvalue()
buffer.close()

return result

Let’s make a first attempt at applying this technique to some middleware:

import gzip
import StringIO

CAUTION: This doesn't work correctly yet

class GzipMiddleware(object):
def __init__(self, app, compresslevel=9):

self.app = app
self.compresslevel = compresslevel

def __call__(self, environ, start_response):
buffer = StringIO.StringIO()
output = gzip.GzipFile(

mode='wb',
compresslevel=self.compresslevel,
fileobj=buffer

)

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 383

app_iter = self.app(environ, start_response)
for line in app_iter:

output.write(line)
if hasattr(app_iter, 'close'):

app_iter.close()
output.close()
buffer.seek(0)
result = buffer.getvalue()
buffer.close()
return [result]

When the middleware is called, the __call__() method behaves in a similar way to the
compress() function from the previous example. A buffer is set up to receive the compressed
data, and a GzipFile object is created to do the work of compressing any data passed to it via its
write() method. The WSGI application the middleware wraps is then called, and its result is iter-
ated over, writing each line to the GzipFile object output. Notice that any time you iterate over
the result, you are also responsible for calling the close() method on the iterator if it has one.
This is to support resource release by the application and is intended to complement PEP 325’s
generator support and other common iterables with close() methods. Once the iterator has
been closed, the method returns the compressed contents of the buffer to the middleware
beneath it as a list.

The example so far correctly generates a compressed response, but there are some problems
with it:

• Not all browsers support Gzip compression, so this middleware would break the application
on those browsers.

• Any data written to the writable object returned by start_response() wouldn’t be com-
pressed.

• If a Content-Length was set, it would now be incorrect because the response has changed.

• Not all content should be compressed; only JavaScript and CSS files should be.

Let’s start by writing a custom start_response() function that returns the GzipFile object.
This object has a write() method which can be returned to fulfil the requirement of the WSGI
specification for start_response() to return a writable object. At the same time, update the code
to check that the browser supports Gzip compression. The new code looks like this with modified
lines in bold:

import gzip
import StringIO

CAUTION: This doesn't work correctly yet

class GzipMiddleware(object):
def __init__(self, app, compresslevel=9):

self.app = app
self.compresslevel = compresslevel

def __call__(self, environ, start_response):
if 'gzip' not in environ.get('HTTP_ACCEPT_ENCODING', ''):

return self.app(environ, start_response)

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)384

buffer = StringIO.StringIO()
output = gzip.GzipFile(

mode='wb',
compresslevel=self.compresslevel,
fileobj=buffer

)

def dummy_start_response(status, headers, exc_info=None):
return output.write

app_iter = self.app(environ, dummy_start_response)
for line in app_iter:

output.write(line)
if hasattr(app_iter, 'close'):

app_iter.close()
output.close()
buffer.seek(0)
result = buffer.getvalue()
buffer.close()
return [result]

If the browser doesn’t support Gzip encoding, the middleware does nothing, returning the
application as it stands. If Gzip encoding is supported, a dummy_start_respose() function is
returned that, when called by the application, returns the object output. Although this code
fixes two of the problems, it introduces a third. The start_response() callable that is passed to
the __call__() method isn’t called itself, so the headers and status won’t actually get passed
to the server, which you’ll recall is responsible for providing start_response() in the first place.
To call the start_response() function, you’ll need to know the status and headers it should be
called with.

The problem here is that status, headers, and exc_info are only locally available in your
dummy_start_response() function, and you need to be able to access them in the scope of the
__call__() method in order to call start_response() after the WSGI application is called. If you
were to set them as globals, they become globally available, not just available in the scope of the
__call__() method, so you definitely don’t want to do that. The solution is to create a list variable
in the scope of the __call__() method and then append the status, headers, and exc_info to it
from the scope of the dummy_start_response() function; then after the application has been called,
the variables will have been set, so you can iterate over the result based on the values in the list.
Let’s update the code to call the real start_response() callable:

import gzip
import StringIO

CAUTION: This doesn't work correctly yet

class GzipMiddleware(object):
def __init__(self, app, compresslevel=9):

self.app = app
self.compresslevel = compresslevel

def __call__(self, environ, start_response):
if 'gzip' not in environ.get('HTTP_ACCEPT_ENCODING', ''):

return self.app(environ, start_response)

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 385

buffer = StringIO.StringIO()
output = gzip.GzipFile(

mode='wb',
compresslevel=self.compresslevel,
fileobj=buffer

)

start_response_args = []
def dummy_start_response(status, headers, exc_info=None):

start_response_args.append(status)
start_response_args.append(headers)
start_response_args.append(exc_info)
return output.write

app_iter = self.app(environ, dummy_start_response)
for line in app_iter:

output.write(line)
if hasattr(app_iter, 'close'):

app_iter.close()
output.close()
buffer.seek(0)
result = buffer.getvalue()
start_response(**start_response_args)
buffer.close()
return [result]

This version correctly calls start_response(), but two problems are left to fix. First you need to
update the Content-Length header to contain the correct length of the new compressed content,
and then you need to ensure that only JavaScript and CSS files are compressed. Since this example
will be used in the SimpleSite application, let’s enable compression for any URL that ends in .js or
.css. Here’s the final version of the code:

import gzip
import StringIO

class GzipMiddleware(object):
def __init__(self, app, compresslevel=9):

self.app = app
self.compresslevel = compresslevel

def __call__(self, environ, start_response):
if 'gzip' not in environ.get('HTTP_ACCEPT_ENCODING', ''):

return self.app(environ, start_response)
if environ['PATH_INFO'][-3:] != '.js' and environ['PATH_INFO'][-4:] != '.css':

return self.app(environ, start_response)
buffer = StringIO.StringIO()
output = gzip.GzipFile(

mode='wb',
compresslevel=self.compresslevel,
fileobj=buffer

)

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)386

start_response_args = []
def dummy_start_response(status, headers, exc_info=None):

start_response_args.append(status)
start_response_args.append(headers)
start_response_args.append(exc_info)
return output.write

app_iter = self.app(environ, dummy_start_response)
for line in app_iter:

output.write(line)
if hasattr(app_iter, 'close'):

app_iter.close()
output.close()
buffer.seek(0)
result = buffer.getvalue()
headers = []
for name, value in start_response_args[1]:

if name.lower() != 'content-length':
headers.append((name, value))

headers.append(('Content-Length', str(len(result))))
headers.append(('Content-Encoding', 'gzip'))
start_response(start_response_args[0], headers, start_response_args[2])
buffer.close()
return [result]

As you can see, this version will work correctly, but it wasn’t exactly a piece of cake to write.
Although changing the response is one of the more difficult things you can do with middleware,
it really makes you appreciate all the things Pylons does for you!

Testing the Gzip Middleware
Let’s test this middleware. Add the previous code to a new file in the SimpleSite project’s lib direc-
tory called middleware.py. Then edit the project’s config file to include this import at the top:

from simplesite.lib.middleware import GzipMiddleware

Then change the code at the end of config/middleware.py so that it looks like this:

Static files (If running in production, and Apache or another web
server is handling this static content, remove the following 2 lines)
static_app = StaticURLParser(config['pylons.paths']['static_files'])
app = Cascade([static_app, app])
app = GzipMiddleware(app, compresslevel=5)
return app

If you start the SimpleSite server on your local machine and reload one of the pages that uses
JavaScript such as http://localhost:5000/page/edit/6, you might find it actually loads more slowly
than it did before. Take a look at the Net tab of Firebug to find out. This is because it is running on
your local computer, so your machine has to do the extra work of compressing and uncompressing
the data. If you were viewing the page over a network, the extra time it takes your browser to
uncompress the data should be less than the time saved in sending the file across the network.

Here are the relevant headers from Firebug when the yahoo-dom-event.js file is requested
before the Gzip middleware is in place:

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI) 387

Server PasteWSGIServer/0.5 Python/2.5.2
Date Fri, 10 Oct 2008 19:31:22 GMT
Content-Type application/x-javascript
...
Content-Length 31637

Here are the headers with the Gzip middleware:

Server PasteWSGIServer/0.5 Python/2.5.2
Date Fri, 10 Oct 2008 19:30:44 GMT
Content-Type application/x-javascript
...
Content-Length 10577
Content-Encoding gzip

As you can see, the Gzip middleware has reduced the file size by about 20KB, which on a very
slow connection could save up to half a second in the page load time.

Summary
This chapter has been a whistle-stop tour of the Web Server Gateway Interface. I hope you can see
that WSGI is actually a very powerful API. If you managed to follow all the examples in the chapter,
you might be keen to start writing WSGI middleware. If you are, that’s great. A good place to start is
the WSGI specification defined in PEP 333, but WSGI is best learned from examples. The Paste pack-
age that is installed with Pylons is particularly rich in WSGI middleware and is a good place to look
to see how different situations are handled with WSGI.

Here are some links for further reading:

• PEP 333, http://www.python.org/dev/peps/pep-0333/

• The WSGI web site, http://wsgi.org

• Introducing WSGI—Python’s Secret Web Weapon Part 1,
http://www.xml.com/pub/a/2006/09/27/introducing-wsgi-pythons-secret-web-weapon.html

• Introducing WSGI—Python’s Secret Web Weapon Part 2, http://www.xml.com/pub/a/2006/10/
04/introducing-wsgi-pythons-secret-web-weapon-part-two.html

CHAPTER 16 ■ THE WEB SERVER GATEWAY INTERFACE (WSGI)388

Pylons’ Internal Architecture

Now that you’ve seen what WSGI is and how it works, in this chapter you’ll look at how Pylons’
architecture is built around the opportunities WSGI provides. Before getting into too much detail,
though, it is helpful to put the Pylons architecture in context by looking at how it came about in the
first place.

A Bit of History
All web frameworks are fundamentally involved in the process of responding to HTTP requests and
generating HTTP responses using APIs that are convenient for developers. These APIs might provide
session handling, cookie handling, E-Tag caching, error reporting, or other features that read infor-
mation from the HTTP request and affect the HTTP response. It turns out that the vast majority of
HTTP services that web frameworks provide are easily implemented as WSGI middleware because,
as you’ve just learned, middleware has the ability to change all aspects of the HTTP request and the
HTTP response, which is exactly what most frameworks’ internal stacks have to do.

Now, just because it is possible to do something doesn’t mean it is always a good idea, but it
turns out that building a web framework stack out of WSGI middleware is very useful because once
a piece of middleware has been written, it can be used between any WSGI-compatible web server
and web application. This means it can be used in any web framework, which in turn means that for
the first time WSGI allows web developers to reuse components at the web framework stack level.
This is really important because it has three implications:

• Developers can easily customize their WSGI frameworks by adding or removing their own
middleware components.

• Web framework developers no longer need to constantly reinvent the wheel because they
can just use existing middleware components instead of creating their own custom imple-
mentations.

• Users can write their own middleware, such as a custom transaction logger to be used with
several applications.

These more than any other reasons are why Pylons exists today. Once the WSGI standard was
specified and tools such as Paste began to emerge, many people in the Python community were
very keen to refactor existing frameworks such as Django and Zope to be built from WSGI middle-
ware. Understandably, these communities were rather reluctant to stop development to refactor
code to use WSGI middleware when it already worked perfectly well as it was. Doing so would bene-
fit the wider Python community that could then reuse much of their code, but this was more effort
than it was worth to the communities themselves. As a result, WSGI wasn’t adopted in any of the
major frameworks of the time other than as an adaptor to allow them to run on WSGI servers.

389

C H A P T E R 1 7

Finally, late in 2005 Ben Bangert and I started Pylons as a wake-up call to the other Python commu-
nities to demonstrate that writing a full-stack Python framework using WSGI middleware was not
only possible but would also form the very best basis for developers because it put them in com-
plete control of every aspect of their applications. It would also be the best solution for the wider
community because it would create, as a side effect of its architecture, a huge variety of reusable
Python components. This was the basis on which the Pylons WSGI architecture was born.

At the same time, not every component a web framework provides is appropriate as WSGI
middleware. In keeping with Pylons’ philosophy of developer choice and reusability, the Pylons
developers decided early on not to code an integrated set of components for database access, tem-
plating, or form creation in the way Django does but rather to tackle the essence of the workflow
and underlying technical requirements that each of these components has and provide APIs and
written recommendations for how to use these components together. This loosely coupled architec-
ture has meant that Pylons has been able to easily move from SQLObject to SQLAlchemy and from
Myghty to Mako (while still supporting alternatives) and is able to support form generation systems
as diverse as HTML Fill, ToscaWidgets, and FormAlchemy.

As communities within Python continue to innovate on individual projects, Pylons will con-
tinue to be able to use them because the framework isn’t strongly dependent on the other compo-
nents it recommends, whereas the perceived simplicity of other frameworks, notably Django,
comes from its tight integration of components, and this limits that community’s ability to respond
to changes. It also severely limits a developer’s opportunity to do things differently if the solution
provided out of the box doesn’t quite fit your needs.

So, Pylons’ big secret is that actually it isn’t really a framework in the traditional sense at all; it
favors the creation of reusable middleware components over an integrated framework stack and
favors supporting other communities’ efforts over writing anything custom and tightly integrated.
There are other subtle benefits to this that you might not notice at first. Because most of the compo-
nents that make up Pylons are actually stand-alone projects in their own right, you will find the
following:

• You can generally get very good support because you can go to the component-specific mail-
ing list as well as the Pylons one.

• You can easily use the components (and the code you have written) outside the Pylons web
environment because many of the components were designed to run stand-alone in the first
place.

• The skills you learn when developing a Pylons application are very transferable because the
same tools are used by other companies and organizations in nonweb environments.

With these ideas in mind in this chapter, let’s look in detail at how Pylons is really built beneath
the surface. You’ll learn about the following:

• The Paste Deploy package

• The Pylons config file and how to use it to set up middleware

• The Pylons middleware stack

• The Cascade

• What actually happens during a request

But before I can discuss these points, I must discuss one piece of technology that is critical to
the way Pylons works: egg entry points.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE390

Egg Entry Points
As you’ll remember from Chapter 2, most of the components used by Pylons are distributed as
Python eggs. Eggs have a number of useful features for Pylons developers, but one feature called
entry points is particularly useful.

To understand how entry points work, let’s imagine you want to allow the SimpleSite applica-
tion’s pages to support different types of content. At the moment, they support plain text, but you
might want to support HTML, reStructuredText, or some other markup type. Let’s say you decide
to design SimpleSite to use a plug-in architecture so that other people can write plug-ins to support
each of the different formats. Each plug-in will need a display_name() function so SimpleSite can
display a list of available plug-ins in an HTML select field, a markup_to_html() function that will be
called every time a page was viewed, and a render_input_field() function that will return various
HTML fragments necessary to display an edit field for the particular type of markup.

A plug-in developer can then create a new project that implements each of these functions and
packages them up into another egg, but how does SimpleSite know whether the plug-in is installed?
This is where egg entry points come in. The plug-in writer would list the functions SimpleSite needs
in the entry points part of its setup.py file. The syntax is entry_point_name=package.module:object.
Others who write similar plug-ins would define similar entry points.

Then a program that wants to use these plug-ins, be it SimpleSite or a different application, can
ask for all the entry points in all the packages installed on the system to obtain a list of entry points.
It can then select the packages that have the entry points it needs and load the functions pointed to
by the entry points, and it can therefore use the plug-in.

Entry points are arranged in groups with names that can include a period (.), so the SimpleSite
application might define entry points in a simplesite.content_plugin group. Each entry point in a
group has a name, so the entry point that points to the render_input_field() function defined in
the HTMLPlugin might just be called render. SimpleSite can then access the function by looking for
the render entry point in the simplesite.content_plugin group. It doesn’t even need to know what
the function’s name is in the HTMLPlugin package.

The beauty of the entry points system is that entry points allow packages to expose fixed APIs
that other plug-in packages can implement. This system is used a lot within Pylons itself, particu-
larly in relation to the Pylons config files.

Entry Points and websetup.py
If you look at the setup.py file for a Pylons project, this is what the entry point definition looks like:

setup(
...
entry_points="""
[paste.app_factory]
main = simplesite.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller
""",

)

This means your Pylons application implements the functionality expected of an application
supporting the main entry point of a paste.app_factory group and the main entry point for the
paste.app_install group. In effect, your Pylons application behaves like a Paste app factory and as
a Paste installer.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 391

You’ll see how the main entry point of a paste.app_factory group is used in the next section, so
for the moment, let’s concentrate on the main entry point for the paste.app_install group, which is
used by the paster setup-app command.

When you run the paster setup-app command, Paste Script discovers the Pylons application
you want to set up by looking at the use line in the [app:main] section of the config file. It looks like
this:

[app:main]
use = egg:SimpleSite

The Pylons config file is in a special format understood by the PasteDeploy package. The use
line simply tells Paste Deploy which package to use and that the package is an egg. The use line can
also be written like this:

[app:main]
use = egg:SimpleSite#main

This tells Paste Deploy that the entry point it is looking for is called main, but this is assumed to
be the case anyway if the #main part is ignored.

Once paster setup-app knows the package to look for and the name of the entry point, it looks
it up in the paste.app_install group with code similar to this:

from pkg_resources import load_entry_point
entry_point = load_entry_point(spec, 'paste.app_install', 'main')
installer = entry_point.load()

The load_entry_point() function can also take a version specification such as
'SimpleSite>=0.1.0' as its first argument.

■Tip The pkg_resources package comes with setuptools, the same package that provides the easy_
install script. There are other ways of loading objects using entry points too, which you can learn about in the
entry points section of the pkg_resources page at http://peak.telecommunity.com/DevCenter/
PkgResources#entry-points.

Now, Pylons applications are unusual in the sense that this entry point doesn’t point to an
object in the Pylons project in which it is defined but in pylons.util instead. This means the object
that is loaded is always pylons.util.PylonsInstaller no matter which Pylons project is being used.
The PylonsInstaller object itself is responsible for then calling the setup_app() function in your
project’s websetup.py file.

Now that you have seen how entry points can be used to set up a Pylons application, you can
learn about how they are used when serving an application.

The Pylons Config File
Pylons is designed to be as easy as possible for everyone to use, and this design philosophy also
extends to end users of your Pylons application. People configuring your Pylons application might
not be confident configuring WSGI applications in Python source code, so the Pylons config file
provides a more familiar environment for them to make configuration changes. It also provides an
API to allow them to set up some complex combinations of applications and middleware without
needing to get involved in Python code.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE392

In this section, you’ll look at the different ways a Pylons config file can be used and what is
actually going on behind the scenes to convert sections from the config file into real Python objects.
Then, later in the chapter, you’ll see how you can use the same API as the Pylons tools to construct
Python objects directly from the config file.

■Note I won’t be discussing the logging configuration options in this chapter. Although the logging options look
similar, they are actually used in a completely different way behind the scenes, so the techniques in this chapter
for the other Pylons config options do not apply in any way to the logging options. Logging options are described
in Chapter 20.

When you serve a Pylons application via its config file with the paster serve command, these
are the steps that take place:

1. The Paste Script package’s serve plug-in is loaded by paster.

2. The serve plug-in uses the Paste Deploy package to parse the config file.

3. Paste Deploy uses code in the [*:main] section to construct a valid WSGI application,
pipeline, or composite application.

4. Paste Deploy uses code in the [server:main] section to load and configure a suitable WSGI
server with the pipelines, filters, and application object, and then the server is started.

In the following sections, you’ll concentrate on the work Paste Deploy does to parse the config
file, but if you are interested in how to write Paste Script plug-ins so that you can create your own
extensions to the paster program, you should read the Paste Script developer documentation at
http://pythonpaste.org/script/developer.html. You won’t be surprised to hear that plug-ins rely
on entry points.

Default Config Options
The first section in a Pylons config file is the [DEFAULT] section. This contains a set of variables that
will make up the global configuration, accessed in a Pylons application as config.global_conf. The
options are also passed to each of the functions used to construct objects in other sections of the
config file. These options are labeled DEFAULT rather than global_conf because they also work as if
they were present in each of the other sections (apart from the logging sections). As an example,
consider how the debug option works. In the [DEFAULT] section, the debug option is set to true. This
means that in the [app:main] section, if no debug option is specified, debug in that section will also
be set to true. In effect, options in the [DEFAULT] section are providing defaults for the other sec-
tions. When the debug option is set to false in the [app:main] section, the value in the [DEFAULT]
section is overridden, and debugging is disabled.

Now that you understand the role of the [DEFAULT] section, let’s see how Paste Deploy handles
the other sections.

Constructing a Server
When Paste Deploy parses a config file, the [server:main] section is inspected to find out which
server to use. The Pylons config file typically has a section that looks like this:

[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 5000

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 393

The use line tells the Paste Script package’s server plug-in that it should look up an egg entry
point in the Paste package named http. Because this is a [server:main] section, Paste Script knows
that the entry point will be in the paste.server_runner entry point group.

The host option tells the server specified in the use line which host to serve the application on.
You’ll remember from Chapter 3 that if you want to serve an application on all interfaces, you will
need to change the host option to 0.0.0.0 because it is set by default to 127.0.0.1 to prevent you
from accidentally serving an application across a network when it is running in debug mode on
your development machine. You can also specify a hostname or domain name as long as they can
be correctly resolved on your computer.

The port option simply tells the server which port to serve on. For production use, you would
use port 80, but for development use, port 5000 is fine.

Let’s take a closer look at how Paste Deploy loads the Paste HTTP server from the use line. First
the Paste package has the following as part of its entry point definition:

entry_points="""
...
[paste.server_runner]
http = paste.httpserver:server_runner
...

"""

The use = egg:Paste#http line therefore points to the server_runner() function in the
paste.httpserver module. This function is responsible for taking the arguments Paste Deploy sends
it from the information it parsed from the config file and returning a running server. The function
looks like this:

def server_runner(wsgi_app, global_conf, **kwargs):
...

The server_runner() function takes a dictionary of all the options in the [DEFAULT] section of
the config file as the global_conf argument and all the options specified in [server:main] as key-
word arguments that are gathered up by **kwargs into a dictionary. In this case, the global_conf
options aren’t used, but the port and host options passed as keyword arguments are. The wsgi_app
argument is the WSGI application obtained by constructing all the other objects specified in the
config file. I’ll cover these in the next sections.

Once all the options are in place, the function is called, and this starts the server.

■Note In the next chapter, you’ll also see some extra options that can be used in the [server:main] section
to configure the Paste HTTP server with SSL support.

Constructing an Application
Constructing the application happens using a similar mechanism, except Paste Deploy starts by
looking for either an [app:main] section, a [composite:main] section, or a [pipeline:main] section
in the config file. Only one section other than [server:main] can have the name :main. I’ll cover
composite applications and pipelines later in the chapter, so let’s concentrate on what happens
when your main section is an [app:main] section.

The Pylons config file [app:main] section starts like this:

[app:main]
use = egg:SimpleSite
...

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE394

This tells Paste Deploy to look in the SimpleSite package paste.app_factory entry point group,
and just as was the case earlier in the chapter, because no #name is specified after the definition,
Paste Deploy will look for an entry point named main.

Let’s look at SimpleSite’s setup.py file again to see whether it contains a paste.app_factory
group:

setup(
...
entry_points="""
[paste.app_factory]
main = simplesite.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller
""",

)

In this case, the main entry point in the paste.app_factory group points to the make_app()
function in simplesite.config.middleware, so it is this function that is responsible for assembling
the Pylons application and middleware that will form the WSGI application that gets served by the
server specified in the [server:main] section.

The make_app() function looks like this:

def make_app(global_conf, full_stack=True, **app_conf):
...
return app

Once again, the config options from the [DEFAULT] section get passed to the function as
global_conf, just as they did when the server was being called, and once again the section-specific
options get passed as named parameters that this time are gathered up into the app_conf dictionary.

The WSGI application returned by make_app() as app is what PasteScript’s serve plug-in passes
as the first argument to the server_runner() function when it serves the function.

We’ll take a detailed look at what happens in the make_app() function to turn the configuration
options into a Pylons application later in the chapter, but there is one point worth noting first.
Because the full_stack option is specified as an argument to make_app(), it doesn’t get added to the
app_conf dictionary in the same way as all the other variables. There isn’t really a good reason for
this, so it might change in a future version of Pylons to be more like this:

def make_app(global_conf, **app_conf):
full_stack = asbool(app_conf.get('full_stack', 'true'))
...
return app

As you’ve probably realized, the Pylons config file format is slightly more powerful than most
frameworks’ config files. It turns out that you can actually use the config file to directly assemble a
whole range of WSGI (and hence Pylons) applications into one composite application, and you can
even add middleware to individual WSGI (or Pylons) applications using filters and pipelines. Let’s
start with composite applications.

Composite Applications
Composite applications are WSGI applications that are made up of other WSGI applications. A good
example of a composite app is a URL mapper that mounts WSGI applications at different paths rel-
ative to the base URL. Here’s an example that mounts your Pylons application at the path /pylons
and mounts an application for handling downloads at the path /downloads:

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 395

[composite:main]
use = egg:Paste#urlmap
/pylons = pylons
/downloads = staticapp

[app:staticapp]
use = egg:Paste#static
document_root = /path/to/docroot

[app:pylons]
The standard [app:main] section goes here
use = egg:SimpleSite
... etc

When this config file is loaded, Paste Deploy will look for the [server:main] section and any
other main section and find that this time, rather than the second main section being an [app:main]
section, it is a [composite:main] section. It will therefore look up the urlmap entry point name in the
Paste package and the paste.composite_app group, and this in turn will load the paste.urlmap.
urlmap_factory() to load a paste.urlmap.URLMap. The URLMap will be set up with the two WSGI
applications (the Pylons app and the staticapp) at the appropriate paths.

Notice that for this to work the Pylons configuration section had to be renamed from
[app:main] to [app:pylons]. If you hadn’t done this, the two main sections would have conflicted.

One reason for setting up other WSGI applications via a composite section in the config file
rather than as a Pylons controller or from a Pylons controller action is that none of the Pylons
middleware will be in place. This is useful if you find that the Pylons middleware interferes with
some aspect of the behavior of the other WSGI app when it is mounted inside a Pylons application.

It is worth noting that the Paste URLMap in this example will automatically adjust the
SCRIPT_NAME and PATH_INFO environment variables so that your WSGI applications mounted under
it will be able to work out where they are. This means that as long as the applications you mount use
the h.url_for() helper (or their own equivalents), then the URLs generated by the WSGI applica-
tions under URLMap will still be correct even though they are mounted at a path other than /.

Pipelines and Filters
Now let’s look at pipelines and filters. Filters are just Paste Deploy’s name for functions that set up
WSGI middleware, and pipelines are just Paste Deploy’s name for a middleware chain.

To use filters, instead of specifying the main section to be your Pylons application or a compos-
ite application, you specify a pipeline. The pipeline takes just one configuration option, which is a
list of the filters to use. The list should always end with the WSGI application you want to serve,
which is usually your Pylons application.

Let’s use a pipeline to add the Gzip middleware you developed in the previous chapter.
Remember that you added it to the simplesite.lib.middleware module you created. Here’s an
example of how the relevant sections of the config file should be set up:

[pipeline:main]
pipeline = gzip pylons

[filter:gzip]
use = egg:SimpleSite#gzip

[app:pylons]
Your normal Pylons [app:main] section
use = egg:SimpleSite
...

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE396

Once again, because you’ve named the pipeline main, the section holding the configuration for
Pylons will have to be renamed from [app:main] to something else, and once again this example
uses [app:pylons] as a sensible name, so the WSGI application at the end of the pipeline list is
named pylons to point to that section.

■Note Pylons config files typically allow you to specify lists, such as the list of filters on the pipeline, on multiple
lines. The whitespace will be removed, so you could also write this example like this:

[pipeline:main]
pipeline = filter1

filter2
filter3
app

This syntax makes it easier for you to comment out particular filters, which can sometimes be useful for debug-
ging.

There is just one problem with this example as it stands: the gzip entry point doesn’t exist in
the SimpleSite application yet, so this example won’t be able to actually load your Gzip middleware.
You could fix this by using the Paste Gzip middleware instead by using use = egg:Paste#gzip, but
let’s update the SimpleSite project so that your middleware can be used. To do that, you need to
know about factories.

Understanding Factories
In the examples so far, the use option has been used to specify a named entry point within an entry
point group in a package, and that entry point has been used to load a function that, when called
with arguments reflecting config file options, results in the construction of a particular object such
as a server or WSGI application. In Paste Deploy terminology, the function pointed to by the entry
point is known as a factory because it produces the desired object.

As you’ve seen, different types of sections in the config file use different entry point groups,
and these point to different types of factories. Server sections point to server factories, app sec-
tions point to application factories, composite sections point to composite factories, and filters
point to filter factories. Factories effectively translate the config options passed to them into
appropriate variables that can be used to construct the objects they create. For the Gzip middle-
ware to be usable directly from the config file, you’ll need to create a filter app factory for it. A
suitable factory would look like this:

def make_gzip_middleware(app, global_conf, **app_conf):
compresslevel = int(app_conf.get('compresslevel', 9))
return GzipMiddleware(app, compresslevel)

This factory would be passed the options in [DEFAULT] as the global_conf option and the
options in the section for that filter as keyword arguments that can be gathered up into the
app_conf dictionary. The app is a WSGI application that the middleware should wrap. As you can
see, the compresslevel argument (a number from 0–9 is used to specify how much compression
should be applied) is turned into an integer if it is present, and if not, the default value of 9 is
used. The WSGI application is then wrapped in the middleware and returned.

Add this factory to the SimpleSite lib/middleware.py file you created in the previous chapter if
you want to test the example.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 397

Now that the factory is in place, let’s set up the entry point. Filter factories are put in the
paste.filter_app_factory entry point group. Edit the SimpleSite setup.py file to update the entry
points section:

setup(
...
entry_points="""
[paste.app_factory]
main = simplesite.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller

[paste.filter_app_factory]
gzip = simplesite.lib.middleware:make_gzip_middleware
""",

)

You’ll need to run python setup.py develop again for the entry point change to be noticed;
otherwise, you’ll see this error:

LookupError: Entry point 'gzip' not found in egg 'SimpleSite' (dir: ➥
/home/james/Desktop/SimpleSite2b; protocols: paste.filter_factory, ➥
paste.filter_app_factory; entry_points:)

Once you’ve reinstalled the application, you will be able to test the filter. Be sure to remove
the app = GzipMiddleware(app, 5) line from config/middleware.py; otherwise, you will get a
Content-Encoding header with gzip specified twice. The browser won’t understand this and will
expect normal CSS or JavaScript instead of compressed content and will therefore most likely
complain about illegal characters.

Once the Gzip middleware is disabled in config/middleware.py, update the config file. The
lines in bold are the ones that have been changed:

...
[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 5000

[pipeline:main]
pipeline = gzip pylons

[filter:gzip]
use = egg:SimpleSite#gzip

[app:pylons]
use = egg:SimpleSite
full_stack = true
cache_dir = %(here)s/data
beaker.session.key = simplesite
beaker.session.secret = somesecret
...

With these changes in place, if you test the SimpleSite application and use LiveHTTPHeaders
or Firebug to inspect the response at a URL such as http://localhost:5000/page/edit/6, you’ll see
the .js and .css files are still being Gzipped.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE398

There is also an alternative syntax you can use if you simply want to wrap a WSGI application
in one piece of middleware. You can use the filter-with option. Here’s the config file with the
[pipeline:main] section removed, the [app:main] section reintroduced, and the filter-with option
being used:

...
[server:main]
use = egg:Paste#http
host = 127.0.0.1
port = 5000

[app:main]
use = egg:SimpleSite
filter-with = egg:SimpleSite#gzip
full_stack = true
cache_dir = %(here)s/data
beaker.session.key = simplesite
beaker.session.secret = somesecret
...

If you test this setup, you’ll find it behaves in the same way as before and that the CSS and
JavaScript files are Gzipped correctly.

There is one complication with the setup described so far. Paste Deploy, and hence the Pylons
config file, supports two types of filters. The one you are using here is called a filter-app because the
WSGI application is passed along with the configuration options to the filter-app factory. Another
type of factory is one that is passed only the configuration options and that returns a function that,
when called, returns the WSGI application wrapped in the filter. Such a factory is called a filter and
would look like this:

def make_gzip_middleware_filter(global_conf, **app_conf):
compresslevel = int(app_conf.get('compresslevel', 9))
def filter(app):

return GzipMiddleware(app, compresslevel)
return filter

Add this to the lib/middleware.py file too, and update the entry points in setup.py:

setup(
...
entry_points="""
[paste.app_factory]
main = simplesite.config.middleware:make_app

[paste.app_install]
main = pylons.util:PylonsInstaller

[paste.filter_app_factory]
gzip = simplesite.lib.middleware:make_gzip_middleware

[paste.filter_factory]
gzip = simplesite.lib.middleware:make_gzip_middleware_filter
""",

)

If you run python setup.py develop again, the new entry points will take effect. When you have
both a filter and a filter-app for the same entry point name, Paste Deploy uses the filter, so the new
function you’ve added will be used in preference to the previous one.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 399

Alternative Ways of Specifying Factories
So far in this chapter you’ve seen two ways to specify a factory. The first is to use an egg URI such as
the following one to identify a factory via an entry point:

[filter:gzip]
use = egg:SimpleSite#gzip

The second approach is to refer to a different section within a config file and have that section
be responsible for looking up the factory. You’ve just seen this in the discussion of pipelines where
the items in the pipelines were the names of sections, for example:

[pipeline:main]
use = gzip pylons

In addition to these techniques, there are two other approaches. The first is to specify a section
in an entirely different config file like this:

[app:main]
use = config:development.ini#main

You’ve actually seen this technique in Chapter 12 when it was used to ensure the test setup
used the same configuration as the development setup. In that particular situation, you’ll recall that
the approach also had unexpected consequences because the websetup.py setup_app() function
was automatically called each time you ran the tests and this interfered with your development
database setup.

The final way to specify a factory is to point to it in some Python code:

[filter:gzip]
paste.filter_app_factory = simplesite.lib.middleware:make_gzip_middleware

In this last approach, rather than using the word use, you have to specify the entry point group
name as the option name. This might seem slightly counterintuitive, but it is how the config file for-
mat works.

Configuration Inheritance
Paste Deploy also supports a very simple form of inheritance so that if you have to specify multiple
sections with similar configuration options, you don’t have to write them all out again. Here’s how it
works:

[app:main]
use = egg:AnimalTracker
cat = Tabby
dog = St Bernard

[app:other]
use = main
dog = Jack Russell

In this example, the other app inherits all the options from the main app, including the value
for the cat option, but it overrides the dog option with the value Jack Russell.

The Pylons config file is actually a very flexible format. You can learn more about it at
http://pythonpaste.org/deploy/.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE400

Accessing the Pylons WSGI Application and
Other Objects Programmatically
It is all very well for the paster serve and paster setup-app commands to be able to load WSGI
applications and middleware from the config file, but sometimes you might want to be able to
access them yourself. You frequently need to do this if you want to serve the application with a tool
other than Paste’s HTTP server, as you’ll see when you learn about deployment in Chapter 19.

Accessing the Server, Application, and Filters
Paste Deploy provides three functions to allow you to access servers, applications (pipeline, com-
posite, and app sections), and filters:

loadserver(uri, name=None, **kw): This function returns a server wrapper function that takes
the WSGI application to serve as its first argument. When called, the function uses the options
from the [server:main] section, together with the WSGI application passed to it, to start the
server. If your config file defines multiple servers, you can specify the one to use with name. For
example, here you load the alternative server instead of the main one:

from paste.deploy import loadserver
server_wrapper = loadserver('config:/path/to/config.ini', name='alternative')
Serve the application with the options in ``[server:alternative]``
server_wrapper(app)

loadapp(uri, name=None, **kw): This is the function you are most likely to use, which
returns a WSGI app based on the name of the application section you specify. If you don’t
specify a section name, it assumes you want the main section so loads the application based
on the information in the [app:main], [composite:main], or [pipeline:main] section in the
config file, depending on which you’ve used. For example:

from paste.deploy import loadapp
app = loadapp('config:/path/to/config.ini')

loadfilter(uri, name=None, **kw): This function behaves similarly to loadserver() returning
a wrapper function that, when called with a WSGI application, returns the application wrapped
in the middleware specified in the filter section named name and constructed with the options
from that section.

This doesn’t load filter-app factories, just filter factories.

from paste.deploy import loadfilter
filter_wrapper = loadfilter('config:/path/to/config.ini')
Wrap the application with the middleware specified by ``[filter:main]``
app = filter_wrapper(app)

Notice that each of these functions takes a config URI, not simply a path to a config file as you
might have expected. Each of these functions also takes a relative_to argument that you can use if
you want to specify a relative location for the URI; you can use it like this:

import os
from paste.deploy import loadserver
server = loadserver('config:config.ini', relative_to=os.getcwd())
Start the server
server(wsgi_app)

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 401

If you try to use a relative path without specifying relative_to, you will get an error explain-
ing no context keyword argument given. This error isn’t particularly informative, but specifying
relative_to resolves this error.

Accessing Configuration Options
There are occasions when even the functions described so far aren’t low level enough and you want
to get directly at the individual options set. For this circumstance, Paste Deploy provides an
appconfig() function that returns a config object. Return the application configuration for the app
factory specified:

appconfig(uri, name=None, relative_to=None, global_conf=None)

The config object returned has two attributes, local_conf and global_conf, both of which are
dictionaries. The .global_conf dictionary contains all the options from the [DEFAULT] section, and
the .local_conf dictionary contains all the options from whichever application section you speci-
fied as the name argument to appconfig() defaulting to main if no name is specified.

The config object itself behaves like a dictionary too. It has all the keys of both the local_
conf dictionary and the global_conf dictionary, but where two keys have different values, the
local_conf value overrides the global conf value. The config object therefore has the same values
you would access as pylons.config['app_conf'] from a Pylons controller, and the .global_conf
attribute contains the same values you would access as pylons.config['app_conf'].

Here’s an example demonstrating this:

>>> from paste.deploy import appconfig
>>> config = appconfig('config:/path/to/config.ini')
>>> combined = {}
>>> combined.update(config.global_conf)
>>> combined.update(config.local_conf)
>>> print config.items() == combined.items()
True

As you can see, the configuration in the config object itself matches that obtained by com-
bining the global_conf and local_conf dictionaries.

Creating a Pylons Application with Paste Deploy
Using the Paste Deploy loadapp() function described earlier is the best way of getting access to the
Pylons WSGI application. At the start of this chapter, you learned how to use entry points to access
the make_app() function in your project’s config/middleware.py file. This function is a standard
Paste Deploy app factory, so although you can create a Pylons WSGI application object by calling it
directly with the configuration options you want to create the application with, it is usually much
easier to use the loadapp() function. This function does both steps at once, looking up the entry
point and calling the make_app() factory with the configuration options from the config file.

You can get the WSGI application object from your Pylons configuration file like this:

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

You can then serve the file using a WSGI server. Here is an example using the WSGI Reference
Implementation server included in Python 2.5 and newer:

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE402

from paste.deploy import loadapp
wsgi_app = loadapp('config:/path/to/config.ini')

from wsgiref import simple_server
httpd = simple_server.WSGIServer(('',8000), simple_server.WSGIRequestHandler)
httpd.set_app(wsgi_app)
httpd.serve_forever()

The paster serve command you are used to using while developing Pylons projects combines
these two steps of creating a WSGI app from the config file and serving the resulting file to give the
illusion that it is serving the config file directly.

The Pylons Middleware Stack
Let’s just recap what you’ve learned so far about how a Pylons application is constructed:

• A Pylons application is loaded from a config file in a format understood by the Paste Deploy
package.

• The Paste Deploy loadapp() function is called to parse the config file.

• The use option in the main application section (be it an [app:main], [pipeline:main], or
[composite:main] section) is used to determine the factory to use to create the Pylons
application.

• The make_app() factory in the project’s config/middleware.py file is called and returns the
configured Pylons app ready to serve requests.

If you open a Pylons project’s config/middleware.py file and look at the make_app() function,
you will see that a WSGI application named app is created. This is your Pylons application object
and is what is ultimately responsible for calling the actions in the controllers you have created.
The make_app() function looks like this at the time of writing:

def make_app(global_conf, full_stack=True, **app_conf):

Configure the Pylons environment
load_environment(global_conf, app_conf)

The Pylons WSGI app
app = PylonsApp()

CUSTOM MIDDLEWARE HERE (filtered by error handling middlewares)

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

if asbool(full_stack):
Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 403

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

Establish the Registry for this application
app = RegistryManager(app)

Static files (If running in production, and Apache or another web
server is handling this static content, remove the following 3 lines)
static_app = StaticURLParser(config['pylons.paths']['static_files'])
app = Cascade([static_app, app])
return app

After the app object is created, it is then wrapped in lots of different WSGI middleware com-
ponents. Each of the components performs a different task:

RoutesMiddleware: This is responsible for matching a URL against the route map you’ve speci-
fied in config/routing.py and setting up the routing variables.

SessionMiddleware: This is responsible for providing the Pylons session global that provides
the session functionality you used in Chapter 8 to create the flash message.

CacheMiddleware: This sets up a Beaker CacheManager and provides the caching facility you saw
in Chapter 5 when I covered caching templates. The SessionMiddleware is also provided by the
Beaker package.

ErrorHandler: This catches any exceptions that have occurred during the processing of a
request and, depending on the settings in the config file, either will return a 500 Internal Server
Error for the StatusCodeRedirect middleware mentioned next to handle or will start the Pylons
interactive debugger you learned about in Chapter 4 to help you track down where the error
occurred.

StatusCodeRedirect: This catches responses with certain HTTP status codes such as 401, 403,
404, and sometimes 500 and internally redirects the request to the error controller in your
project’s controllers/error.py file so that a nice-looking error page can be generated.

RegistryManager: This keeps track of which of the Pylons global variables should be used in
each thread of execution so that information from one request doesn’t get confused with infor-
mation from another request being handled by Pylons at the same time.

Cascade: This handles two apps, a StaticURLParser application to serve files from the public
directory and the Pylons app itself. On each request the two applications are called in turn until
one of them is able to handle the request URL.

The reason this architecture is so powerful is that you are free to add your own middleware to
the stack, enabling you to completely change the way Pylons behaves if you want. For example, if
you didn’t want the error documents support, you could comment out the StatusCodeRedirect mid-
dleware. If you wanted all the responses to be Gzip compressed to save bandwidth, you can simply
add Gzip middleware, as you’ve seen already.

Application State vs. Request State
Once the application has been created with all the middleware components correctly set up, it is
held in memory by the server, ready to receive a request. The application object, the middleware,

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE404

and all the other Pylons objects that were configured when make_app() was called will persist
between each request. This means the make_app() factory is called only once when the Pylons appli-
cation is created, but the app object returned from make_app() is called on each request. This makes
Pylons very fast because the app object doesn’t need to be re-created to handle a request, but it also
means that the process of creating a Pylons application is completely separate from the process of
handling a request.

In the next sections, you’ll see in detail which processes occur when the app object is being set
up and which occur before and after a request has been handled by a controller action.

Creating an Application
You’ve already seen the objects and middleware involved in the creation of an application, but in
the following sections, you’ll see in detail what happens in each of the components as the applica-
tion is created.

Loading the Pylons Environment
The first thing that happens in make_app() is a call to load the environment:

Configure the Pylons environment
load_environment(global_conf, app_conf)

This function is actually located in your project’s config/environment.py file and is responsible
for any configuration of your application that you don’t want to expose to the end user of an appli-
cation in the config file. You have to be slightly careful when editing config/environment.py because
some aspects of Pylons’ behavior rely on the objects that are set up there.

The load_environment() function is responsible for the following:

• Setting up the paths that will be used in your project to access controllers, static files, and
templates. By default, the paths are configured to point to your project’s controllers, public,
and templates directories, respectively.

• Initializing the Pylons config object with information about the project including where the
function to set up the routes is, which module should be used as the h object within tem-
plates, and which object should be used as the app_globals object. By default, these are set
to the config/routing.py file’s make_map() function, the project’s lib/helpers.py module,
and an instance of the Globals class in lib/app_globals.py, respectively.

• Using the config object to indirectly attach a mako_lookup attribute to the app_globals object,
which will later be used by the render() function to render Mako templates. The mako_lookup
attribute is actually an instance of a Mako TemplateLookup object, and as you’ll recall from
Chapter 5, this can be customized to change Mako’s behavior or replaced if support for a dif-
ferent templating language is required.

• Setting up a SQLAlchemy engine and initializing the model (if you chose a project template
that included SQLAlchemy when running the paster create command). The way the engine
is created and the role of init_engine() is explained in Chapter 7.

At the end of the load_environment() function are these lines:

CONFIGURATION OPTIONS HERE (note: all config options will override
any Pylons config options)

Any further customization you want to do should usually happen after these lines.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 405

The PylonsApp Instance
After the environment has been loaded to set up the app_globals, h, and config objects as well as
the template engine and SQLAlchemy (if necessary), a Pylons application is created. This is done
with the following line in make_app():

The Pylons WSGI app
app = PylonsApp()

The PylonsApp instance is the very heart of your Pylons application; it is defined in the pylons.
wsgiapp module, and its instance (app) is a valid WSGI application. At this stage, all app has to do is
initialize itself with the config object, the app_globals object, and the package name and various
options that will be used to set up the request and response during a request. This all happens
behind the scenes and is not something you would normally have to deal with. You’ll hear more
about the PylonsApp instance when I discuss how it behaves during a request.

The Middleware Chain
Next, the PylonsApp instance app is wrapped in a series of different middleware components, each
of which is initialized:

Routing/Session/Cache Middleware
app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

First the RoutesMiddleware is initialized and is passed the route map it will be expected to deal
with via the config['routes.map'] object that was set up in the call to load_environment().

■Note You might be wondering how the config object was set up even though it wasn’t passed directly to
load_environment(). Both config/middleware.py and config/environment.py import the object from the
pylons module, which itself imports it from pylons.configuration. The config object is defined as a module
global and is an instance of pylons.configuration.PylonsConfig. It isn’t an ordinary global, though; it is
inherited from a paste.config.DispatchingConifg object, which can keep different configurations separate in
different threads. Because both files are accessing the same object, changes made in config/environment.py
are reflected in config/middleware.py.

After the RoutesMiddleware is set up, SessionMiddleware and CacheMiddleware are both set up.
These use the beaker.* configuration options from the config object in order to initialize them-
selves. The options specify where the session and cache stores should be set up. By default, this
happens in a data directory relative to the config file being used to serve the application.

What happens next depends on whether you’ve set full_stack to true or false in the con-
figuration file. If it is true, which is the default, then the ErrorHandler and StatusCodeRedirect
middleware will be set up; otherwise, they’ll be ignored.

if asbool(full_stack):
Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE406

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

If the fullstack option is enabled, the ErrorHandler is set up with options from config
['pylons.errorware']. These in turn are set up when the config object’s init_app() method is
called in config/environment.py and contain the options that will be used in error reporting such
as the e-mail address to send error reports to, the SMTP server to use, and who the e-mail should
appear to have come from. The values used are all obtained from the [DEFAULT] section of the config
file. The subject of the e-mail and the error log to use are also passed to the ErrorHandler in the
same dictionary, but these values cannot be configured in the config file.

If debug mode is on, the ErrorHandler middleware sets up the WebError package’s EvalException
middleware, which provides the Pylons Interactive Debugger you first saw in Chapter 4; otherwise, it
sets up the WebError package’s ErrorMiddleware to handle the e-mail error reports.

During a request, the StatusCodeRedirect middleware creates a copy of the current request in
case it later needs to perform a subrequest to the error controller’s document() to generate an error
page, but during application initialization, the middleware just wraps itself around the app object.

Next to be wrapped around the app object is the RegistryManager middleware. This doesn’t
need any configuration as the application is being created, but its importance will become apparent
when you look at how Pylons handles a request in the next section.

Establish the Registry for this application
app = RegistryManager(app)

The final piece of middleware is the Cascade. This is configured with an instance of a
StaticURLParser as its first argument. The StaticURLParser will be responsible for serving static
files and is configured with config['pylons.paths']['static_files']), which was set up in
config/environment.py to point to your project’s public directory. The second item in the list
specified as an argument to the Cascade is the app object all the middleware components have
been wrapping.

Static files (If running in production, and Apache or another web
server is handling this static content, remove the following 3 lines)
static_app = StaticURLParser(config['pylons.paths']['static_files'])
app = Cascade([static_app, app])
return app

At this point, the application state has been configured. All the middleware has been initial-
ized, and the PylonsApp and StaticURLParserWSGI applications have been initialized. At this point,
the app object is ready to handle a request, and this is where the middleware components play an
important part.

With the application state successfully configured, make_app() can return the app object to the
server, ready to be called to handle a request.

Handling a Request
You’ll remember from the previous chapter that when a WSGI application is called (whether
wrapped in middleware or not), it is passed two arguments, the environment dictionary and the
start_response() callable. Let’s assume for the moment that there are no pipelines or composite
applications set up in the config file. In that case, because the Cascade middleware was the last

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 407

middleware that wrapped the app object, it will be the first one to be passed the environ and
start_response() arguments.

This means that although the middleware components were set up from top to bottom when
they were being initialized, it is actually the middleware at the bottom of the config/middleware.py
file that receives the request information first, and the request information passes from the bottom
of the middleware chain toward the top and eventually to the PylonsApp instance, app. Figure 17-1
illustrates this request behavior.

Figure 17-1. Middleware request architecture

The Cascade
The first piece of middleware to be called on any request is the Cascade. When it is passed environ
and start_response(), it first calls static_app to see whether the URL requested matches a file in
your project’s public directory. If static_app returns a 404 Not Found response, the Cascade will
instead call the main Pylons application.

■Note This is why you need to delete the public/index.html file before the root URL of the site will serve
content from a controller. If you changed the order of the applications in the Cascade, you would not need to
delete the file because the Pylons application would be checked first before the public directory, but since more
files are likely to be handled by static_app than Pylons during each page view, it is usually more efficient to keep
the order as it is.

The next middleware in the chain is the RegistryManager, which is responsible for managing
the Pylons globals in a thread-safe way. Let’s look at it in detail before returning to the middleware
chain.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE408

The Registry Manager, StackedObjectProxy, and Pylons Globals
Pylons aims to avoid the use of any complex Python code that appears to behave in a “magical”
way, but there is one aspect of the Pylons architecture that often appears to be magic to those who
haven’t seen anything similar before: the Pylons globals. People wonder how a module global such
as the Pylons template context c can be available throughout an application and yet take a differ-
ent value depending on the thread in which it is executing.

The answer is that Pylons globals (such as c, request, and response) are all instances of the
paste.registry.StackedObjectProxy class and not the objects they appear to be at all. When you
access their properties or methods, they return the result of applying that action to the object they
are associated with in the current thread so that they behave as if they were that object. Put another
way, they proxy attributes to the correct object in a thread-safe way based on the scope of the
request in which they run to give the illusion of being the objects themselves.

You can always access the underlying object for a particular global in the current request by
calling the _current_obj() method on a StackedObjectProxy. For example, to obtain the actual
request object being used in a request, rather than the StackedObjectProxy that is proxying to it,
you could use pylons.request._current_obj().

Now that you know what a StackedObjectProxy is, let’s look at the role of the RegistryManager
during a request. Here’s an example based on the Paste Registry documentation, which demon-
strates how the globals are set up and used in a pure-WSGI environment:

from paste.registry import RegistryManager, StackedObjectProxy
from pylons.controllers.util import Request

request = StackedObjectProxy()

WSGI app stack (imagine the middleware stack in config/middleware.py)
app = App()
app = RegistryManager(App)

WSGI app (imagine the PylonsApp)
class App(object):

def __call__(self, environ, start_response):
obj = Request(environ) # The request-like theread-local object you want

to access via pylons.myglobal
if environ.has_key('paste.registry'):

environ['paste.registry'].register(request, obj)

The RegistryManager adds a new Registry() as environ['paste.registry'] on each request
and calls the existing registry’s prepare() method to set it up for the new registry context.

The registration process involves telling the registry which objects in the current thread should
be attached to which globals. This ensures that during the scope of the request, attributes from the
correct real object will be returned any time you access an attribute or method of one of the Pylons
global objects, even though the global is really a StackedObjectProxy.

You’ll see in the section “The Role of PylonsApp” that the registration happens within the
PylonsApp instance app.

■Tip If you ever see StackedProxyObject errors in your Pylons application, it may be because you are trying to
access one of the Pylons globals outside the scope of a request and therefore before Pylons has had a chance to
set up and register the real object with the particular StackedObjectProxy global it is associated with.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 409

Returning to the Middleware Chain
Now that you have an idea of how the RegistryManager middleware works, let’s continue looking at
how the other middleware components in the chain behave during a request.

If the full_stack option is set to true, the StatusCodeRedirect and ErrorHandler middleware
are called. The StatusCodeRedirect middleware creates a copy of the request information, but it
doesn’t do anything with it until it deals with the response after a controller action is called. Next,
the CacheMiddleware and then the SessionMiddleware are called, each adding information to the
environ dictionary that the PylonsApp app instance will use when it is eventually called to set up the
Pylons cache and session functionality.

Next, the RoutesMiddleware is called. This now assembles the request URL from the informa-
tion in the environ dictionary it is passed and works through the route map as you saw in Chapter 9.
It adds the routing variables it matches to the environ dictionary.

Finally, the PylonsApp instance, app, gets called itself.

The Role of PylonsApp
The ultimate responsibility of app is to call a Pylons controller action and return a response, but it
has to do a number of things first. Each of these is handled by a different method on the PylonsApp
class, and they are called in the order described here:

PylonsApp.setup_app_env(): This creates all the global objects for the request including
the Pylons request and response objects, the translator used for internationalization, and the
Pylons template context global c. It adds these and other objects to the template context object
as attributes and makes it available as pylons.pylons in the environ dictionary.

PylonsApp.register_globals(): If the RegistryManager middleware is present, each of the
Pylons globals is registered with the registry. This includes pylons.response, pylons.request,
pylons.app_globals, pylons.config, pylons.h, pylons.c, and pylons.translator. It will also
register pylons.session and pylons.cache if the SessionMiddleware and CacheMiddleware are
present. Pylons also adds a pylons.url object that is simply the current request URL.

At this point, all of these objects, when imported from the pylons module in your application,
will proxy the attributes and methods you call on them to the correct underlying objects for the
current request thread (that is, the ones created in the PylonsApp.setup_app_env() call or as
the request passed through the middleware stack).

PylonsApp.load_test_env(): If Pylons is operating in testing mode, this method will be called
to add the standard Pylons environment variables described earlier to environ['paste.
testing_variables'] so that they are available as attributes of the paste.fixture response
object you learned about in Chapter 12. These currently include the attributes req, response,
tmpl_context and its alias c, app_globals and its alias g, h, and config. If the session and cache
middleware are present, it also sets up session and cache attributes.

With all the objects correctly set up and registered, the dispatch to the controller action can
begin. The following methods on PylonsApp are called in this order:

PylonsApp.resolve(): This uses the routing arguments that the RoutesMiddleware added to
environ['wsgiorg.routing_args'] to retrieve a controller name and return the controller
instance from the appropriate controller module.

PylonsApp.dispatch(): Finally, once the controller instance has been created, PylonsApp can
call its __call__() method with environ and start_response() to begin the dispatch.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE410

■Note You can override these last two methods to change how controllers are resolved and dispatched to if you
want to customize Pylons’ behavior. You just need to use your derived object in config/middleware.py instead
of PylonsApp.

Even though the controller has now been dispatched, there is still some more you need to
know about how the controller behaves to call the action.

The Role of WSGIController
You’ll remember that your project’s controllers are inherited from BaseController in your project’s
lib/base.py file and that BaseController is inherited from pylons.controller.core.WSGIController.
This means that when PylonsApp instantiates and calls one of your project’s controllers, it is actually
calling the WSGIController.__call__() method.

The WSGIController.__call__() method proceeds as follows. First, it checks to see whether the
controller has a __before__() method. If it does, it calls its _inspect_call() method that itself calls
_get_method_args() to find out which arguments the method expects. The __before__() method is
then called with those arguments.

Next, the controller action itself needs to be called. This is done with a call to the controller’s
_dispatch_call() method, which finds out which action to call from the routing variables and then
calls __inspect_call() itself to find out the arguments the action needs and to call the action with
those arguments.

Finally, after the action is called, the __call__() method checks to see whether an __after__()
method exists. If it does, it will always be run on each request after the action, even if the action
raises an exception or issues a redirect. Once again, __after__() is run by a call to the
_inspect_call() method.

If an action is not found to handle the request, the controller will raise an “Action Not Found”
error in debug mode; otherwise, a 404 Not Found error will be returned.

Handling the Response
Once the controller action is finally called, it can perform all manner of operations using the Pylons
objects that have just been described. The whole of the first two parts of the book were dedicated to
some of the ways Pylons could be used, so I won’t repeat them here.

The action can do any of the following:

• Call the abort() or redirect_to() functions to halt the request

• Trigger an unexpected exception

• Return a response that requires an error document

• Return a function to stream content

• Return a Unicode object or UTF-8 encoded string as a result

Let’s see how Pylons handles each of these cases.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 411

abort(), redirect_to(), and HTTPException
During each call to WSGIController’s _inspect_call() method when the request was being han-
dled, the call to the method being inspected is wrapped in a try...except block. If a certain type of
exception known as an HTTPException occurs, Pylons will turn that exception into a normal HTTP
response. This might seem like an odd behavior, but you’ll recall that Pylons provides the func-
tions abort() and redirect_to() in pylons.controllers.util. These functions work by raising an
HTTPException when they are called, so it is the code in the _inspect_call() method that is
responsible for making these functions result in the correct HTTP response.

Since the _inspect_call() method is also used to call the __before__ and __after__ actions if
they exist, abort() and redirect_to() can also be used in those actions.

Exception Handling
When an exception that isn’t an HTTPException is raised, it goes straight through the try...except
block in _inspect_call() and isn’t caught until another try...except block in the error-handling
middleware. If debug mode was enabled, the EvalException middleware would have been set up.
If not, the ErrorMiddleware would be in place.

If the EvalException middleware is set up, you will see the familiar Pylons Interactive Debug-
ger. If not, an error report gets e-mailed, and the exception is turned into a 500 Internal Server Error
response by the ErrorMiddleware.

The StatusBasedRedirect middleware is below the error-handling middleware, so it receives
the response after the error handler. At this point, the StatusCodeRedirect middleware can’t dis-
tinguish between a 500 error triggered by the ErrorMiddleware or a 500 response from a Pylons
controller action, so both are treated in the same way. In debug mode 500, responses are ignored
by the StatusCodeRedirect middleware; with debug mode disabled, an error document is
displayed.

Error Documents
When the StatusCodeRedirect middleware receives a response that it was set up to intercept, it
uses a copy of the request information (which it made when the request was passing through it
toward the controller action) to start a subrequest to the error controller’s document() action to
generate the familiar Pylons error page. You’ll see more about error documents, how they work,
and how to customize them in Chapter 21.

Streaming Content
If you need to stream content, you can always use one of the techniques described in Chapter 16 to
mount a WSGI application in a Pylons application and set up the WSGI application to stream the
content, but Pylons controller actions support streaming directly too.

You need to turn debug mode off to stream content because the exception middleware needs
to have the entire response finished before it will pass on the result farther down the middleware
chain.

Turn off debug mode in your INI file by uncommenting the following line:

#set debug = false

Now that it’s disabled, returning an iterator object or a generator is sufficient to start streaming
output. Here’s an example that sends a new number every two seconds:

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE412

import time

class StreamingController(object):

def output(self):
def output_pause():

number = 0
while 1:

number += 1
yield number
time.sleep(2)

return output_pause()

If you were to set this up in a Pylons project and visit
http://localhost:5000/streaming/output, you should now see a number sent every two seconds,
continuing forever.

■Caution You have to be slightly careful when using time.sleep() in a production system because it causes
the thread in which the Pylons application is running to simply sleep. If you are running Pylons on a multithreaded
server using a worker pool of ten threads (which is the default setup you will be using when running paster
serve), there is a chance that in busy periods all your threads could just be sleeping rather than serving requests,
and this will adversely affect the performance of your Pylons application.

Returning Unicode from an Action
Now that you’ve seen some of the less usual cases for controller action responses, let’s look at
what happens during a normal response when you return a string, most likely as a result of a call
to render() to render a template.

First the response passes back from the WSGIController.__call__() method and the
PylonsApp.dispatch() method to the middleware chain. The response will start at the middleware
defined at the top of config/middleware.py and end with the ones defined at the bottom. As it
passes through the SessionMiddleware, it will have a session cookie added to it if there was a session
cookie in the request or if you called session.save() during the request to create a session store for
the current user. The response will then pass back through the other middleware without being
altered and eventually be sent back to the server where it is passed to the browser.

Summary
This chapter covered a lot including entry points, the config file format, factories, and the details of
Pylons’ request and response architecture. There is a lot going on in Pylons, but I hope this chapter
will have given you a good enough overview for you to be able to explore the Pylons code for yourself.

Pylons was always designed to be highly customizable and to expose all the relevant parts so
that you can change it yourself if you need to do so. Feel free to read the Paste and Pylons source
code to get a better idea of how they work and to experiment with alternative setups in your own
Pylons applications.

CHAPTER 17 ■ PYLONS’ INTERNAL ARCHITECTURE 413

Authentication and Authorization

There comes a point in most projects when you need to be able to restrict access to certain parts
of your web site. This might be so that you can create an administration area or because your users
are storing private information and want to know their data is password protected. To do this, you
will need to implement a security system that can confirm the identity of a user and then restrict
the pages each user has access to based on their permissions to each area. These two processes are
known as authentication and authorization.

Authentication is typically performed by asking a visitor for their username and password. If
the visitor enters the correct password, you can be fairly sure they are who they claim to be. Once
a user has been authenticated, your security system needs some way of remembering who the user
is so that they are not asked to enter their username and password the next time they try to access
a restricted page. This could be achieved by setting a cookie on the user’s browser so that the next
time they visit a page, the security system can read a secret code from the cookie and determine
which user is accessing the page from the secret code.

Just because the user has been authenticated, it doesn’t necessarily mean they should be
authorized to access the page they are trying to visit. If, for example, you signed into a Yahoo! Mail
account with your username and password, you wouldn’t expect to be able to read the e-mails of
other users, because you wouldn’t be authorized to do so.

Authorization is usually performed by checking the authenticated user has the appropriate
permissions to access the page they are trying to visit. The permission check can be as simple as
ensuring that a user has in fact signed in but can also be very sophisticated involving checks about
the user’s roles, group, or even which computer the user is accessing the web site from.

In this chapter, you’ll start off by looking at how Pylons handles private data before learning
how to implement a basic security system from scratch. You’ll then move on to considering an
authentication and authorization tool called AuthKit and looking at its main features. In the next
chapter, you’ll use the knowledge you’ve gained about AuthKit in this chapter to add a sign-in form
and role-based permissions system to the SimpleSite application.

Private Data
The easiest way to prevent any user from accessing a controller action is to make that action pri-
vate. You’ll remember from Chapter 9 that Pylons treats any controller method that starts with an
underscore (_) character as private and will not dispatch to it as a controller action. This means
controller methods beginning with _ are not directly publicly accessible.

Let’s create a controller to demonstrate this. Run the following commands to create a test
project; you won’t need SQLAlchemy or Google App Engine support:

415

C H A P T E R 1 8

$ paster create --template=pylons AuthTest
$ cd AuthTest
$ paster controller example
$ paster serve --reload development.ini

Now add the following content to the example controller:

class ExampleController(BaseController):

def hello(self):
return self._result()

def _result(self):
return 'Hello World!'

If you start the server and visit http://localhost:5000/example/_result, you will be shown a
404 Not Found error document, but if you visit http://localhost:5000/example/hello, you will see
the Hello World! message because the public action hello() is able to return the value from the
private method _result().

A Homegrown Solution
Although making certain controller actions private prevents any user from accessing a method, you
will often need to restrict access to just certain users. You can do this by using Pylons’ __before__()
method and session functionality.

Create a new controller for the AuthTest project called homegrown:

$ paster controller homegrown

You’ll recall that on each request the __before__() method of the controller is called before the
controller action is called. Let’s set up a simple session variable named user that will be used to
store the username of the authenticated user. If the user session variable isn’t set, you can assume
no user is signed in. If it is set, you can set the REMOTE_USER environment variable.

class HomegrownController(BaseController):

def __before__(self, action, **params):
user = session.get('user')
if user:

request.environ['REMOTE_USER'] = user

def signin(self):
if len(request.params) > 1 and \
request.params['password'] == request.params['username']:

session['user'] = request.params['username']
session.save()
return redirect_to(controller='homegrown', action="private")

else:
return """\

<html>
<head><title>Please Login!</title></head>
<body>
<h1>Please Login</h1>
<form action="signin" method="post">

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION416

<dl>
<dt>Username:</dt>
<dd><input type="text" name="username"></dd>
<dt>Password:</dt>
<dd><input type="password" name="password"></dd>

</dl>
<input type="submit" name="authform" />
<hr />

</form>
</body>

</html>
"""

def public(self):
return 'This is public'

def private(self):
if request.environ.get("REMOTE_USER"):

return 'This is private'
else:

return redirect_to(controller='homegrown', action="signin")

In this example, you can access http://localhost:5000/homegrown/public without signing in,
but if you visit http://localhost:5000/homegrown/private, you will be redirected to the sign-in
form at http://localhost:5000/homegrown/signin to sign in. If you enter a username that is the
same as the password, you will be shown the private message. You will be able to continue to see
the private message until you clear the Pylons session cookie by closing your browser.

This example works perfectly well for the straightforward case described earlier, but when you
start dealing with complex permissions and different authentication methods, it quickly becomes
preferable to use an authentication and authorization framework.

AuthKit
AuthKit is a complete authentication and authorization framework for WSGI applications and was
written specifically to provide Pylons with a flexible approach to authentication and authorization.
AuthKit can be used stand-alone with its user management API or integrated with other systems
such as a database. You’ll see both of these approaches in this chapter and the next.

AuthKit consists of three main components:

Authentication middleware: Intercepts any permission errors or HTTP responses with a 401
status code and presents a user with a way to sign in. Various authentication methods can be
used, and the middleware is also responsible for setting the REMOTE_USER environ variable once
a user has signed in.

Permission objects: Represent a particular permission that a user may or may not have.

Authorization adaptors: Check the permissions, triggering a PermissionError, which is inter-
cepted by the authentication middleware if the permission check doesn’t pass. If no
PermissionErrors are raised, the user is considered to be authorized.

In this chapter, you’ll learn about each of these components in turn before looking at AuthKit’s
more advanced features.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 417

Of course, AuthKit is just one of the authentication and authorization tools available for Pylons.
There may be occasions when you want to handle all authentication yourself in your application
rather than delegating responsibility to AuthKit. Although AuthKit provides a basic platform on
which to build, you should also be willing to look at the AuthKit source code and use it as a basis for
your own ideas.

■Note One toolset that is proving to be particularly popular at the time of writing is repoze.who, which is part
of the repoze project to help make Zope components available to WSGI projects such as Pylons. If you are inter-
ested in repoze.who, you should visit the web site at http://static.repoze.org/whodocs/.

Authentication Middleware
AuthKit is actually very straightforward to integrate into an existing Pylons project. You’ll remember
from Chapter 3 that a web browser finds out what type of response has been returned from the
server based on the HTTP status code. There are two HTTP status codes that are particularly rele-
vant to authentication and authorization. A 401 status code tells the browser that the user is not
authenticated, and a 403 status code tells the browser that the user is not authorized (which you
may have seen described in error pages as Forbidden). AuthKit’s authentication middleware works
at the HTTP level by responding to 401 status responses so that the authentication middleware can
work with any application code that is HTTP compliant, regardless of whether AuthKit is used for
the authorization checks.

Let’s create a new project to use with AuthKit. Run the following commands to install AuthKit
and create a test project; again, you won’t need SQLAlchemy support:

$ easy_install "AuthKit>=0.4.3,<=0.4.99"
$ paster create --template=pylons AuthDemo
$ cd AuthDemo
$ paster serve --reload development.ini

To set up the authentication middleware, edit the AuthTest project’s config/middleware.py file,
and add the following import at the end of the existing imports at the top of the file:

import authkit.authenticate

Then add this line:

app = authkit.authenticate.middleware(app, app_conf)

just before these lines and at the same indentation level:

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION418

The authentication middleware has to be set up before the error documents middleware
because you don’t want any 401 responses from the controllers being changed to error pages before
the authentication middleware has a chance to present a sign-in facility to the user.

If you had set the full_stack option to false in the Pylons config file, you would need to add
the AuthKit authenticate middleware before these lines; otherwise, it wouldn’t get added:

if asbool(full_stack):
Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

■Tip You’ll remember from Chapter 16 that middleware is simply a component that sits between the server and
the controller action that is being called and has an opportunity to change the response that the controller action
returns.

Now that the authentication middleware is set up, you need to configure it. AuthKit is designed
to be completely configurable from the Pylons config file and has a number of required options that
tell AuthKit which authentication method you want to use and how AuthKit should check whether
the username and password that have been entered are correct.

Add the following options to the end of the [app:main] section:

authkit.setup.method = form, cookie
authkit.form.authenticate.user.data = visitor:open_sesame
authkit.cookie.secret = secret string

These options set up AuthKit to use form and cookie-based authentication. This also sets up a
user named visitor with the password open_sesame. These options will be passed to the authentica-
tion middleware via the app_conf argument.

At this stage, you can test that the middleware is set up and ready to be used. Create a new con-
troller called auth:

$ paster controller auth

and add the following action:

def private(self):
response.status = "401 Not authenticated"
return "You are not authenticated"

If you visit http://localhost:5000/auth/private, the 401 status will be returned and inter-
cepted by the AuthKit middleware, and you will see the default sign-in screen for form and cookie
authentication displayed at the same URL, as shown in Figure 18-1.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 419

Figure 18-1. The default sign-in screen when using the form and cookie authentication method

There is just one more change you need to make in order to properly test your authentication
setup. At the moment, the private action always returns a 401 HTTP status code, even if a user is
authenticated. This means the first time you sign in, you’ll see the error document for a 401
response, but on subsequent requests you’ll see the sign-in form again.

The authenticate middleware automatically adds a key to the environ dictionary named
REMOTE_USER if a user is authenticated. The value of the key is the username of the authenticated
user. Let’s use this fact to update the private() action so that a user can see the message once they
are authenticated:

def private(self):
if request.environ.get("REMOTE_USER"):

return "You are authenticated!"
else:

response.status = "401 Not authenticated"
return "You are not authenticated"

If you start the server and visit http://localhost:5000/auth/private, you will now be able to
sign in. If you sign in with the username and password you specified in the config file (visitor and
open_sesame), you will see the message You are authenticated!. If you refresh the page, you will
notice you are still signed in because AuthKit set a cookie to remember you.

To implement a facility for signing out, you will need to add this line to your config file:

authkit.cookie.signoutpath = /auth/signout

This tells AuthKit that when a user visits the URL http://localhost:5000/auth/signout, an
HTTP header should be added to the response to remove the cookie. AuthKit doesn’t know what
else should be included in the response, so you will also need to add a signout() action to the con-
troller at that URL so that the visitor is not shown a 404 Not Found page when they sign out:

def signout(self):
return "Successfully signed out!"

After you have restarted the server, you can test the sign-out process by visiting http://
localhost:5000/hello/signout. If you use Firebug to look at the HTTP headers, you’ll notice
AuthKit has added this to the response headers to sign you out:

Set-Cookie authkit=""; Path=/

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION420

■Caution Setting the header to remove the AuthKit cookie happens in the AuthKit middleware, after the
response from the controller action. The controller action itself plays no part in the sign-out process, so it could
return the text You are still signed in, but the user would still be signed out. More dangerously, if you
entered an incorrect path for the authkit.cookie.signoutpath option, the user would still get a message say-
ing they are signed out when they are actually still signed in. It is therefore very important that you enter the
correct path in the authkit.cookie.signoutpath option.

Authorization and Permissions
By using the AuthKit middleware, you have been able to quickly implement a fully working authen-
tication system, but so far you have had to perform the authorization by manually checking
environ["REMOTE_USER"] to see whether there was a user signed in. AuthKit can help simplify
authorization too.

The Authorization Decorator
Let’s start by looking at how the @authorize decorator can be used with AuthKit permission objects
to protect entire controller actions.

Add the following imports to the top of the auth controller:

from authkit.authorize.pylons_adaptors import authorize
from authkit.permissions import RemoteUser, ValidAuthKitUser, UserIn

Next change the private() action to look like this:

@authorize(RemoteUser())
def private(self):

return "You are authenticated!"

This code is clearly a lot neater than what you had previously. If you sign out or clear your
browser’s cookies, you’ll see it behaves exactly as it did before, allowing you to view the private
message You are authenticated, but only after you have signed in.

In this example, the @authorize decorator simply prevents the action from being called if the
permission check fails. Instead, it raises a PermissionError, which is derived from an HTTPException
and is therefore converted either by Pylons or by AuthKit itself into a response with either a 401 sta-
tus code or a 403 status code depending on whether the permission failed because of an authenti-
cation error or an authorization error. The response is then handled by the authentication
middleware triggering a response, resulting in the sign-in screen you’ve just used.

The RemoteUser permission might not be the best permission to use in this case since it simply
checks that a REMOTE_USER is set and could therefore potentially grant permission to someone who
wasn’t in the list of users specified in the config file if some other part of the system were to set the
REMOTE_USER environment variable. Instead, it might be better to use the ValidAuthKitUser permis-
sion, which does a similar thing but allows only valid AuthKit users. You imported the
ValidAuthKitUser at the same time you imported RemoteUser, so you can use it like this:

@authorize(ValidAuthKitUser())
def private(self):

return "You are authenticated!"

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 421

You can also use an AuthKit permission object named UserIn to specify that only certain users
are allowed. Add another user to the config file like this:

authkit.form.authenticate.user.data = visitor:open_sesame
nobody:password

Then change the way the permission is used like this:

@authorize(UserIn(["visitor"]))
def private(self):

return "You are authenticated!"

This time, even if you signed in as nobody, you would still not be authorized to access the action
because the permission check will authorize only the user named visitor.

■Tip You don’t actually need to instantiate a permission in the decorator itself; you can also create a permission
instance elsewhere and use it as many times as you like in different authorize() decorators.

You’ve now seen how to use the @authorize decorator to check permissions before an action is
called, but there are actually two other ways of checking permissions that automatically raise the
correct PermissionError if a permission check fails:

• The authorize middleware for protecting a whole WSGI application

• The authorized() function for checking a permission within a code block

Let’s look at these next.

The Authorization Middleware
To protect a whole application, you can use AuthKit’s authorization middleware. You need to set this
up in your project’s config/middleware.py file before the authentication middleware to use it. If you
set it up after the authentication middleware, any PermissionError raised wouldn’t get intercepted
by the authentication middleware. Let’s test this on the AuthDemo project. First import the authori-
zation middleware and ValidAuthKitUser permission at the end of the imports at the top of
config/middleware.py:

import authkit.authorize
from authkit.permissions import ValidAuthKitUser

Then set up the authorization middleware before the authentication middleware:

permission = ValidAuthKitUser()
app = authkit.authorize.middleware(app, permission)
app = authkit.authenticate.middleware(app, app_conf)

Now every request that comes through your Pylons application will require the user to be
signed in as a valid AuthKit user. To test this, add a new action to the auth controller, which looks
like this:

def public(self):
return "This is still only visible when you are signed in."

Even though this doesn’t have an @authorize decorator, you still won’t be able to access it until
you are signed in because of the presence of the authorization middleware. Try visiting http://
localhost:5000/auth/public to test it.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION422

■Caution Using the authorization middleware in this way will protect only the WSGI applications defined above
it in config/middleware.py. In this case, the middleware is set up above the Cascade, so any requests that are
served by the StaticURLParser application will not be covered. This means that files served from your project’s
public directory won’t be protected. You can protect them too by moving all the AuthKit middleware to below the
Cascade in config/middleware.py.

The Authorization Function
Of course, sometimes you will want to be able to check a permission from within an action or a
template. AuthKit provides a function for doing this too named authorized(). The function returns
True if the permission check passes or False otherwise. If you comment out the authorization mid-
dleware you set up in config/middleware.py a few moments ago (leaving the authenticate middle-
ware), you will be able to test this function:

permission = ValidAuthKitUser()
app = authkit.authorize.middleware(app, permission)
app = authkit.authenticate.middleware(app, app_conf)

First edit the auth controller to import the authorized() function:

from authkit.authorize.pylons_adaptors import authorized

Then update the public() action to look like this:

def public(self):
if authorized(UserIn(["visitor"])):

return "You are authenticated!"
else:

return "You are not authenticated!"

Using the authorized() function will never actually trigger a sign-in; if you want to trigger a
sign-in, you either need to manually return a response with a status code of 401 like this:

def public(self):
if authorized(UserIn(["visitor"])):

return "You are authenticated!"
else:

response.status = "401 Not authenticated"
return "You are not authenticated!"

or raise the appropriate permission error:

def public(self):
if authorized(UserIn(["visitor"])):

return "You are authenticated!"
else:

from authkit.permissions import NotAuthenticatedError

You can test this at http://localhost:5000/auth/public.

■Caution Although all the permission objects that come with AuthKit can be used with the authorized()
function, it is possible to create custom permissions that will not work. This is because permissions can perform
checks on both the request and the response, and although the authorization decorator and authorization middle-
ware both have access to the response, the authorized() function does not and so is not capable of performing
checks on permissions that depend on the response.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 423

Protecting a Controller
Sometimes you might want to protect a controller rather than an individual action or an entire
WSGI application. Since all Pylons controllers have a __before__() method, adding an @authorize
decorator to __before__() is equivalent to protecting the entire controller.

For example:

class AuthController(BaseController):

@authorize(ValidAuthKitUser())
def __before__(self):

pass

def public(self):
return "This is still only visible when you are signed in."

Groups, Roles, and Permissions
So far, you have seen how to authenticate users and how to use permissions to authorize them, but
the permissions you’ve used haven’t been very complicated.

One common and extremely flexible pattern used in many authorization systems is that of
groups and roles. Under this pattern, each user can be assigned any number of roles that relate to
tasks they might use the system for. They can also be a member of one group, usually a company
or organization.

As an example, if you were designing a content management web site, you might choose the
following roles:

Writer: Someone tasked with creating new articles

Editor: Someone with permission to update existing articles

Reviewer: Someone who reviews articles before they are published

Admin: Someone who has permission to set the roles of other users

Certain users might have more than one role, and others might not have any roles at all.
An appropriate use for groups would be when you give access to the same web site to users

from different companies and each user is either from one company or the other. Of course, you
could implement the same functionality by creating a role for each company and checking which
role each user had, but using groups is simpler. If you find you need to assign more than one group
to the same person, then you should be using roles, not groups.

■Tip The groups and roles pattern even works when conceptually you have more than one application to which
each person should be assigned roles. You can append application names to the front of the roles so that, for
example, intranet_editor is a role for an editor on an intranet application and website_editor is a role for an
editor on a public-facing web site application.

You can specify AuthKit groups and roles in the configuration file along with the user informa-
tion. Here is the configuration to set up roles for four users of our content management system:

authkit.form.authenticate.user.data = ben:password1 writer editor reviewer admin
james:pasword2 writer
graham:password3 writer reviewer
philip:password4 editor reviewer

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION424

As you can see, user information is specified in the format username:password role1 role2
role3, and so on. Each new user is on a new line, and roles are separated by a space character. In
this example, Ben and Philip are Editors; Ben, James, and Graham are Writers; Ben, Graham, and
Philip are Reviewers; and Ben is the only Admin.

If our imaginary content management system was used by two web framework communities, it
might be useful to be able to specify which community each user belonged to. You can do this using
AuthKit’s group functionality:

authkit.form.authenticate.user.data = ➥
ben:password1:pylons writer editor reviewer admin
simon:password5:django writer editor reviewer admin

As you can see, the group is specified after the password and before the roles by using another
colon (:) character as a separator.

■Caution You have to be a little careful when using groups because your users can never be members of
more than one group. In this instance, you would hope that people from both the Django and Pylons communi-
ties might contribute to each others’ projects, so in this instance it might be more appropriate to create two
new roles, django and pylons, and assign the pylons role to Ben and the django role to Simon. Then, if at a
later date Simon wants to work on Pylons, he can simply be assigned the pylons role too.

Groups and roles can be checked in a similar way to other permissions using the authorization
middleware, the @authorize decorator, or the authorized() function.

The two important permissions for checking groups and roles are HasAuthKitRole and
HasAuthKitGroup. They have the following specification:

HasAuthKitRole(roles, all=False, error=None)
HasAuthKitGroup(groups, error=None)

The roles and groups parameters are a list of the acceptable role or group names. If you specify
all=True to HasAuthKitRole, the permission will require that all the roles specified in roles are
matched; otherwise, the user will be authorized if they have been assigned any of the roles speci-
fied. Here are some examples of using these permission objects:

from authkit.permissions import HasAuthKitRole, HasAuthKitRole, And

User has the 'admin' role:
HasAuthKitRole('admin')

User has the 'admin' or 'editor' role:
HasAuthKitRole(['admin', 'editor'])

User has the both 'admin' and 'editor' roles:
HasAuthKitRole(['admin', 'editor'], all=True)

User has no roles:
HasAuthKitRole(None)

User in the 'pylons' group:
HasAuthKitGroup('pylons')

User in the 'pylons' or 'django' groups:
HasAuthKitGroup(['pylons', 'django'])

User not in a group:
HasAuthKitGroup(None)

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 425

It is also possible to combine permissions using the And permission class. This example would
require that the user was an administrator in the Pylons group:

And(HasAuthKitRole('admin'), HasAuthKitGroup('pylons'))

In addition to the permissions for roles and groups, AuthKit also comes with permission
objects for limiting users to particular IP addresses or for allowing them to access the resource only
at particular times of day:

Only allow access from 127.0.0.1 or 10.10.0.1
permission = FromIP(["127.0.0.1", "10.10.0.1"])

Only allow access between 6pm and 8am
from datetime import time
permission = BetweenTimes(start=time(18), end=time(8))

User Management API
All the examples so far have been using the authkit.users.UsersFromString driver to extract all the
username, password, group, and role information from the config file for use with the permission
objects. If you had lots of users, it could quickly become unmanageable to store all this information
in the config file, so AuthKit also comes with a number of other drivers.

The first driver you will learn about is the UsersFromFile driver from the authkit.users
module. This driver expects to be given a filename from which to load all the user information.
For example, if you stored your user information in the file C:\user_information.txt, you might
set up your config file like this:

authkit.form.authenticate.user.type = authkit.users:UsersFromFile
authkit.form.authenticate.user.data = C:/users_information.txt

The users_information.txt file should have the user data specified in the same format as has
been used so far in this chapter with one user per line. For example:

ben:password1 writer editor reviewer admin
james:pasword2 writer
graham:password3 writer reviewer
philip:password4 editor reviewer

Of course, you may want to perform checks on the users in your application code as well as on
permissions. AuthKit allows you to do this too via a key in the environment called authkit.users,
which is simply an instance of the particular instance class you are using.

You can use it like this:

>>> users = request.environ['authkit.users']
>>> users.user_has_role('ben', 'admin')
True
>>> users.user_has_group('ben', 'django')
False
>>> users.list_roles()
['admin', 'editor', 'reviewer', 'writer']

The full API documentation is available on the Pylons web site.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION426

Cookie Options
The AuthKit cookie-handling code supports quite a few options:

authkit.cookie.name: The name of the cookie; the default is auth_tkt.

authkit.cookie.includeip: Should be True or False. If True, the IP address of the user is also
included in the encrypted ticket to prevent the same cookie from being used from a different
IP address and hence to try to improve security.

authkit.cookie.signoutpath: A path that, when visited, will cause the cookie to be removed
and the user to therefore be signed out. The application should still display a page at this path;
otherwise, the user will see a 404 page and think there is a problem.

authkit.cookie.secret: A string you can set used to make the encryption on the cookie data
more random. You should set a secret and make sure it isn’t publically available.

authkit.cookie.enforce: If a cookie expires param is set and this is set to True, then there will
also be server-side checking of the expire time to ensure the user is signed out even if the
browser fails to remove the cookie.

authkit.cookie.params.*: The available options are expires, path, comment, domain, max-age,
secure, and version. These are the values described in RFC 2109, but for convenience expires
can be set as the number of seconds and will be converted automatically.

So, for example, to have a cookie that expires after 20 seconds with a cookie name test and the
comment this is a comment, you would set these options:

authkit.cookie.secret = random string
authkit.cookie.name = test
authkit.cookie.params.expires = 20
authkit.cookie.params.comment = this is a comment

If you want a more secure cookie, you can add these options:

authkit.cookie.enforce = true
authkit.cookie.includeip = true

The first option enforces a server-side check on the cookie expire time as well as trusting the
browser to do it. The second checks the IP address too and will work only if the request comes from
the same IP address the cookie was created from.

AuthKit’s default cookie implementation is based on the Apache mod_auth_tkt cookie format.
This means the cookie itself contains the username of the signed-in user in plain text. You can set
another option called authkit.cookie.nouserincookie if you’d prefer AuthKit used a session store to
hold the username, but this option breaks compatibility with mod_auth_tkt and means you have to
move the AuthKit authentication middleware to above the SessionMiddleware in your project's
config/middleware.py file so that AuthKit can use the Beaker session.

authkit.cookie.nouserincookie = true

Alternative Methods
So far, our discussion about authentication, groups, and roles has centered around AuthKit’s User
Management API. AuthKit also provides six ways of authenticating users including HTTP basic and
digest authentication, and of course, it provides APIs for implementing your own authentication
method. To use one of the alternative authentication methods, you just need to change the AuthKit
options in your config file.

As an example, to use HTTP digest authentication, you could change the AuthKit options in
your config file to look like this:

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 427

authkit.setup.method = digest
authkit.digest.authenticate.user.data = visitor:open_sesame
authkit.digest.realm = 'Test Realm'

Now when you access a controller action that causes a permission check to fail, the browser
will display an HTTP digest dialog box prompting you to sign in. Once you are signed in, you will
be able to access the controller action as before. The process of handling the sign-in and setting
the REMOTE_USER variable is done automatically for you by AuthKit as before, so the rest of your
application can remain unchanged.

AuthKit has similar setups for HTTP basic authentication and OpenID authentication and also
has other plug-ins that can redirect users to a URL to sign in or forward the request to a controller
inside your Pylons application.

Functional Testing
As you’ll remember from Chapter 12, creating functional tests for key controllers is highly recom-
mended. If your controller actions are protected by AuthKit, you will need to emulate a user being
signed in by setting the REMOTE_USER environment variable when setting up your tests. Here’s how
to set up a user called james by passing the extra_environ argument when using the get()
method to simulate a GET request:

from authdemo.tests import *

class TestAuthController(TestController):

def test_index(self):
response = self.app.get(

url(controller='auth', action='public'),
extra_environ={'REMOTE_USER':'james'}

)
Test response...
assert "you are signed in" in response.body

Alternatively, AuthKit 0.4.1 supports two further options for helping you handle tests:

authkit.setup.enable = false
authkit.setup.fakeuser = james

The first of these options completely disables the AuthKit authenticate middleware and makes
all the authorization facilities return that the permission check passed. This enables you to test your
controller actions as though AuthKit wasn’t in place. Some of your controller actions might expect
a REMOTE_USER environment variable, so this is set up with the value of the authkit.setup.fakeuser
option, if it is present. Both these options should be used only in test.ini and never on a produc-
tion site.

How useful the previous options are depends on the complexity of your setup. For more com-
plex setups, you are likely to want to specify environment variables on a test-by-test basis using the
extra_environ argument.

■Caution Always remember to set authkit.setup.enable = true on production sites; otherwise, all authen-
tication is ignored and authorization checks always return that the user has the appropriate permission. Although
useful for testing, this makes all your controller actions public, so it is not a good idea on a production site.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION428

General Security Considerations
So far, everything we have discussed has been around how to authenticate a user and check their
permissions in order to authorize them to perform certain actions. A very important aspect of this is
making sure the authentication is secure and that no one can get hold of the usernames and pass-
words your users use. Security as a whole is a huge topic on which many books have been written,
but you can take three steps to greatly reduce the risk of an intruder obtaining a user’s username
and password:

• Ensure other users of the system cannot read passwords from your Pylons config file. This is
especially relevant if you are deploying your Pylons application in a shared hosting environ-
ment where other users of the system might be able to read database passwords and other
information from your development.ini file.

• Ensure a user never sends their password in any form over an unencrypted connection such
as via e-mail or over HTTP.

• Never directly store a user’s password anywhere in your system.

Secure Sockets Layer
If you are using a form and a cookie or HTTP basic authentication, then the user’s password is
transmitted in plain text to the server. This means that anyone on the network could potentially
monitor the network traffic and simply read the username and password. It’s therefore important
that on a production site using these authentication methods you set up a secure connection for
the authentication using Secure Sockets Layer (SSL) to encrypt the communication between the
browser and server during authentication.

Even HTTP digest authentication, which does use some encryption on the password, isn’t par-
ticularly secure because anyone monitoring the network traffic could simply send the encrypted
digest and be able to sign onto the site themselves, so even if you are using digest authentication,
it is worth using SSL too.

To set up an SSL certificate, you need two things:

• A private key

• A certificate

The certificate is created from a certificate-signing request that you can create using the pri-
vate key.

The private key can be encrypted with a password for extra security, but every time you restart
the server, you will need to enter the password. The certificate-signing request (CSR) is then sent to
a certificate authority (CA) that will check the details in the certificate-signing request and issue a
certificate. Anyone can act as a certificate authority, but most browsers will automatically trust cer-
tificates only from the main certificate authorities. This means that if you choose a lesser-known
certificate authority or you choose to sign the certificate yourself, your users will be shown a warn-
ing message asking them whether they trust the certificate.

For production sites, you should always choose one of the major certificate authorities such
as VeriSign or Thawte because virtually all browsers will automatically trust certificates issued by
them. CAcert.org is an initiative to provide free certificates, but these are not trusted by all com-
monly used browsers yet.

On a Linux platform with the openssh package installed, you can run the following command
from a terminal prompt to create the key:

$ openssl genrsa -des3 -out server.key 1024

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 429

You’ll see output similar to the following:

Generating RSA private key, 1024 bit long modulus
.....................++++++
.................++++++
unable to write 'random state'
e is 65537 (0x10001)
Enter pass phrase for server.key:

If you want to use a key without a passphrase, you can either leave out the -des3 option or
create an insecure version from the existing key like this:

$ openssl rsa -in server.key -out server.key.insecure

You should keep the private key server.key private and not send it to anyone else.
Once you have a key, you can use it to generate a certificate-signing request like this:

$ openssl req -new -key server.key -out server.csr

The program will prompt you to enter the passphrase if you are using a secure key. If you enter
the correct passphrase, it will prompt you to enter your company name, site name, e-mail, and so
on. Once you enter all these details, your CSR will be created, and it will be stored in the server.csr
file. The common name you enter at this stage must match the full domain name of the site you
want to set up the certificate for; otherwise, the browser will display a warning about a domain mis-
match. It is worth checking with the certificate authority about the exact details it requires at this
stage to ensure the CSR you generate is in the format required by the certificate authority.

Now that you have your certificate-signing request server.csr, you can send it to the certificate
authority. The CA will confirm that all the details you’ve entered are correct and issue you a certifi-
cate that you can store as server.crt.

If you want to sign the certificate yourself, you can do so with this command:

$ openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

■Caution If you are planning on using your secure server in a production environment, you probably need a
CA-signed certificate. It is not recommended to use self-signed certificates because of the warnings the browser
will show the user.

Now that you have your private key and the certificate, you can use them to set up your server.
How to set up SSL depends on the server you are using to deploy your Pylons application. You
should consult your server’s documentation for more information.

■Note If you are using Apache, there is a good entry in the Pylons Cookbook describing how to set up SSL.
You can find it at http://wiki.pylonshq.com/display/pylonscookbook/Setting+up+Apache+and+SSL+
for+Pylons.

The Pylons server (started with the paster serve command) also supports SSL as long as you
install the pyOpenSSL package. The Paste HTTP server requires the certificate and the private key to
be added to the same file, so if you want to use your certificate and the key you generated earlier,
you need to create a server.pem file like this:

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION430

$ cat server.crt server.key > server.pem
$ chmod 400 server.pem

Edit your project’s development.ini file, and change the [server:main] section so it uses the
following options marked in bold:

[server:main]
host = 127.0.0.1
ssl_pem = server.pem
port = 443

Port 443 is the default port for HTTPS. If you restart the server and visit https://localhost/,
you should be able to access your Pylons application. You'll need the pyOpenSSL package installed
though. Make sure the URL starts with https and not http; otherwise, you won’t be able to connect
to your Pylons application. Also make sure you change the host to 0.0.0.0 if you want to be able to
access the server from a different machine on the network.

Encrypted Passwords
As was mentioned earlier, it is a good idea never to store users’ passwords anywhere on your system
in case the worst happens and someone breaks in and steals that information. One way to avoid
this is to set up a function to encrypt the passwords before they are stored. One drawback to this
approach is that if the user forgets their password, you are not able to send them a reminder by
e-mail because you do not ever store the original password. Instead, you have to randomly generate
a new password for them and send them an e-mail asking them to sign in with the new password
and then change the password to something more memorable.

You can set up encrypted passwords with form authentication by adding the following to your
AuthKit config:

authkit.setup.method = form, cookie
authkit.cookie.secret = secret string
authkit.form.authenticate.user.data = visitor:9406649867375c79247713a7fb81edf0
authkit.form.authenticate.user.encrypt = authkit.users:md5
authkit.form.authenticate.user.encrypt.secret = some secret string

The authkit.form.authenticate.user.encrypt.secret option allows you to specify a string
that will be used to make the password encryption even harder to break.

Once this option is enabled, you will need to manually convert all existing passwords into their
encrypted forms. Here is a simple program that converts the passwords you have used so far in this
chapter into their encrypted forms using the secret "some secret string". As you can see the
encrypted password in the previous example corresponds to password1:

from authkit.users import md5

passwords = [
'password1',
'password2',
'password3',
'password4',
'password5',

]

for password in passwords:
print md5(password, "some secret string")

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION 431

The result is as follows:

9406649867375c79247713a7fb81edf0
4e64aba9f0305efa50396584cfbee89c
aee8149aca17e09b8a741654d2efd899
2bc5a9b5c05bb857237d93610c98c98f
873f0294070311a707b941c6315f71f8

You can try replacing the passwords in the config file with these passwords. As long as you set
the config options listed here, everything should still work without the real passwords being stored
anywhere. This is more secure because an attacker would still need the original password in order
to sign in, even if they knew the encrypted version.

Summary
Although the tools and techniques you’ve learned about in this chapter will enable you to write
fairly advanced authorization and authentication systems that will be adequate for a lot of cases,
you may sometimes need to do things slightly differently. AuthKit also supports custom authenti-
cation functions and a SQLAlchemy driver for storing the user information.

In the next chapter, you’ll apply some of the knowledge you’ve gained in this chapter to the
SimpleSite application you’ve been working on throughout the book, and you’ll see some more
techniques involving AuthKit, including how it integrates with SQLAlchemy and how to use a tem-
plate to give the sign-in screen a theme.

CHAPTER 18 ■ AUTHENTICATION AND AUTHORIZATION432

SimpleSite Tutorial Part 3

In this final part of the SimpleSite tutorial, you’ll add authentication and authorization facilities to
SimpleSite so that only registered users can edit pages and so that only administrators can move
pages or sections around or delete them.

After the authentication and authorization facilities are in place, you’ll learn how to cus-
tomize Pylons’ error pages so that they use the same templates as the rest of SimpleSite. At that
point, you’ll learn how to package up an application and publish it on the Python Package Index.
Finally, you’ll turn the whole SimpleSite project into a project template (similar to the Pylons
template you are used to using to with the paster create --template command) so that other
people can use it as a basis for their own projects.

There’s a lot to do, so let’s get started!

■Note There is some code in Chapters 15 and 16 related to SimpleSite that handles animating the flash mes-
sage, includes some extra CSS, and handles populating the before field drop-down list with Ajax. You should add
this to your project before continuing with the tutorial or download the source code for the beginning of this
chapter from the Apress website.

Authentication and Authorization
In the first part of this chapter, you’ll use AuthKit to add authentication and authorization facilities
to the SimpleSite project. If you haven’t already installed AuthKit, you should do so now with this
command:

$ easy_install "AuthKit>=0.4.3,<=0.4.99"

Setting Up the Middleware
You’ll remember from Chapter 18 that the first thing you need to do to use AuthKit in a Pylons
application is to set up the AuthKit authentication middleware. Edit config/middleware.py, and add
the following import at the top of the file:

import authkit.authenticate

Then add the AuthKit middleware immediately before the StatusCodeRedirect middleware (it
is shown in bold here):

433

C H A P T E R 1 9

app = RoutesMiddleware(app, config['routes.map'])
app = SessionMiddleware(app, config)
app = CacheMiddleware(app, config)

if asbool(full_stack):
Handle Python exceptions
app = ErrorHandler(app, global_conf, **config['pylons.errorware'])

app = authkit.authenticate.middleware(app, app_conf)

Display error documents for 401, 403, 404 status codes (and
500 when debug is disabled)
if asbool(config['debug']):

app = StatusCodeRedirect(app)
else:

app = StatusCodeRedirect(app, [400, 401, 403, 404, 500])

■Note If you find you have a conflict with the version of Pylons you are using or if you are using a configura-
tion with the full_stack option set to false, set the AuthKit middleware up after the Cascade, just before the
make_app() function returns app.

AuthKit comes with a SQLAlchemy driver that can be used to store AuthKit user information
in a relational database. The driver requires slightly more configuration to integrate it into a Pylons
project than the file-based UsersFromFile driver you saw in the previous chapter but is still fairly
straightforward. First you’ll need to edit your development.ini file so that these lines appear at the
end of the [app:main] section:

authkit.setup.enable = true
authkit.setup.method = form, cookie
authkit.form.authenticate.user.type = ➥
authkit.users.sqlalchemy_driver:UsersFromDatabase
authkit.form.authenticate.user.data = simplesite.model
authkit.cookie.secret = secret string
authkit.cookie.signoutpath = /signout

These options tell AuthKit that you are going to be using a SQLAlchemy database to manage
the users and that the SQLAlchemy model used by the rest of your Pylons application is defined in
the simplesite.model module.

AuthKit will expect the model to be set up in the standard way described in Chapter 7 with a
Session object and the meta module present. It will add its own tables and classes to the model
automatically during the first request, so you don’t need to manually change the model to use the
new SQLAlchemy tables.

To make it harder for someone to guess a user’s cookie, you should always set a new string for
the authkit.cookie.secret option. Using the same string as the example (which is secret string)
isn’t very secure.

Adjusting websetup.py
At this point, the middleware is correctly configured, but the database tables AuthKit requires don’t
exist yet. You’ll need to change SimpleSite’s websetup.py file so that these tables are created at the
same time as any other tables used by your model.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3434

First add the following import to the top of the websetup.py file:

from authkit.users.sqlalchemy_driver import UsersFromDatabase

Then after these lines:

Load the models
from simplesite.model import meta
meta.metadata.bind = meta.engine

add these lines to add the AuthKit classes and mappers to the model:

log.info("Adding the AuthKit model...")
users = UsersFromDatabase(model)

Next you’ll need to add some users and roles to the application. After these lines:

Create the tables if they aren't there already
meta.metadata.create_all(checkfirst=True)

add these:

log.info("Adding roles and uses...")

users.role_create("delete")
users.user_create("foo", password="bar")
users.user_create("admin", password="opensesame")
users.user_add_role("admin", role="delete")

While you are updating the websetup.py file, it also makes sense to add a default set of tags so
that users can begin tagging pages. Although it doesn’t have anything to do with AuthKit, add these
Pylons-related tags by adding these lines after the ones earlier:

log.info("Adding tags...")

tag1 = model.Tag()
tag1.name = u'Pylons'
meta.Session.add(tag1)

tag2 = model.Tag()
tag2.name = u'Paste'
meta.Session.add(tag2)

tag3 = model.Tag()
tag3.name = u'Tutorial'
meta.Session.add(tag3)

tag4 = model.Tag()
tag4.name = u'Database'
meta.Session.add(tag4)

tag5 = model.Tag()
tag5.name = u'Recipe'
meta.Session.add(tag5)

With the changes in place, you will need to drop the database you’ve been using so far or
change the config file to use a new database so that you can set up the new AuthKit tables. Re-create
the database with this command:

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 435

$ paster setup-app development.ini
Running setup_config() from simplesite.websetup
22:30:49,808 INFO [simplesite.websetup] Adding the AuthKit model...
... omitted log output for brevity ...
22:30:50,076 INFO [simplesite.websetup] Successfully set up.

If you are using the filter-with option in [app:main] you'll need to disable it to create the
database. If all goes well and you see the Successfully set up message, you should find the new
tables have been successfully created. If you use a command-line tool to inspect the database, you
will notice that there are some new tables used by AuthKit, including users, roles, groups, and
user_roles:

$ sqlite3 development.db
SQLite version 3.4.2
Enter ".help" for instructions
sqlite> .tables
comment nav pagetag section users
groups page roles tag users_roles

Protecting Controller Actions
Now that AuthKit is set up, let’s think about how it should be used in the SimpleSite application.
Over the following sections, you’ll add functionality that allows anyone to create pages and sections
but allows only signed-in users to edit or move them. Only users with the delete role should be able
to delete pages or sections, edit comments, or rename tags.

Let’s start by ensuring only people who are signed in can edit pages. To do this, you need to add
a ValidAuthKitUser() permission to the page controller’s edit action. Add the following imports at
the top of the page.py controller:

from authkit.permissions import ValidAuthKitUser
from authkit.authorize.pylons_adaptors import authorize

Then add an authorize decorator before the edit() action so that it looks like this:

@authorize(ValidAuthKitUser())
def edit(self, id=None):

...

Let’s start the server and see what happens:

$ paster serve --reload development.ini

If you are following along from the previous chapter, close your browser to clear any AuthKit
session cookies you might still have from the previous application, and visit http://localhost:
5000/. You will be able to see the front page as usual (albeit with the extra tags), but if you click the
Edit Page link at the bottom, you will be shown the AuthKit sign-in page you saw in Figure 18-1.
Sign in with the username foo and the password bar, which were set up in the websetup.py file.

Once you are signed in, you can then see the edit page as usual, and because AuthKit auto-
matically sets a cookie, on each subsequent request you will also be able to edit pages too because
AuthKit can read the cookie to find out which user is signed in.

So far, you have protected the edit() action only, but it is the save() action that actually modi-
fies the database, so currently a malicious user could still make changes to pages if they knew that
there was a save() action. You’d better protect save() too:

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3436

@authorize(ValidAuthKitUser())
@restrict('POST')
@validate(schema=NewPageForm(), form='edit')
def save(self, id=None):

...

The decorators on both the edit() and save() actions use a different instance of the
ValidAuthKitUser permission class, but AuthKit permission objects are designed to be used
multiple times; therefore, a better way of organizing permissions is in their own module. Add
a new file to the lib directory called auth.py, and add the following code to it:

from authkit.permissions import ValidAuthKitUser
is_valid_user = ValidAuthKitUser()

In the next section, you’ll need to access the is_valid_user permission in the templates as well
as the controllers, so it makes sense to import the whole auth module into the lib/helpers.py so
that permissions can be easily accessed via h.auth, for example, as h.auth.is_valid_user. Add this
to the end of the helper imports:

from simplesite.lib import auth

Now you can update the @authorize decorators in the page controller to look like this:

@authorize(h.auth.is_valid_user)

You can also remove the import of the ValidAuthKitUser from the page controller if you like
because it isn’t needed now, thanks to the addition of the permissions to the helpers module.

Although all signed-in users should be able to create new pages and edit existing ones, only
users with the delete role should be able to delete pages. You’ll need to create a different permission
object to handle this condition. Add the following line to lib/auth.py:

has_delete_role = HasAuthKitRole(['delete'])

You’ll also need to add this import at the top of the file:

from authkit.permissions import HasAuthKitRole

Now edit the page controller’s delete() action so that it looks like this:

@authorize(h.auth.has_delete_role)
def delete(self, id=None):

...

If you try to delete a page while still being signed in as the user foo, you will be shown the
Pylons 403 Forbidden page because although you are signed in, you don’t have permission to access
the resource, so AuthKit triggers a 403 response that the StatusCodeRedirect middleware will inter-
cept to produce the error document (see Figure 19-1).

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 437

Figure 19-1. The Pylons 403 Forbidden error document

Now that you’ve tested the permissions as user foo, close the browser, and open it again at
http://localhost:5000/. This will clear the AuthKit cookie and hence sign out the user foo. Now
visit http://localhost:5000/page/edit/6 to edit the home page. Once again, you will be asked to
sign in. This time sign in with the username admin and the password opensesame that you also set up
in websetup.py. You’ll now find you have permission to delete pages because the admin user has the
delete role.

Changing Templates Based on Permissions
Now that users who aren’t signed in can’t edit pages, it isn’t sensible to show them the Edit Page link.
Once again, you can use AuthKit, but this time, you’ll use the authorized() function, which returns
True if the user has the permission specified and False otherwise.

Let’s add this function to the lib/auth.py file so that it can easily be accessed as h.auth.
authorized() from the project’s templates:

from authkit.authorize.pylons_adaptors import authorized

Now you can update the derived/page/view.html template so that the Edit Page link looks like
this:

% if h.auth.authorized(h.auth.is_valid_user):
| Edit
Page
% endif

When a user is signed in, they will now see the Edit Page link, and when they are not, they won’t.
This isn’t too easy to test yet, so let’s add some facilities for signing in and out more easily first.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3438

Signing In and Signing Out
When you added the AuthKit configuration to the config file, you specified the option authkit.
cookie.signoutpath = /signout. This means that when a user visits the path /signout, the AuthKit
cookie will be removed, and they will be signed out. Try visiting http://localhost:5000/signout
now. You’ll be shown the standard Create Page screen, but when you try to browse the site again,
you’ll see that you’ve been signed out by the AuthKit middleware because the URL you visited
matched the value of the authkit.cookie.signoutpath option in the config file.

Let’s add a new controller to the application to specifically handle signing in and signing out.
Call this controller account because it could eventually be extended to handle other account func-
tionality. Add it like this:

$ paster controller account

Edit the skeleton account controller in controllers/account.py so that it has the following
two actions:

class AccountController(BaseController):

def signin(self):
if not request.environ.get('REMOTE_USER'):

This triggers the AuthKit middleware into displaying the sign-in form
abort(401)

else:
return render('/derived/account/signedin.html')

def signout(self):
The actual removal of the AuthKit cookie occurs when the response passes
through the AuthKit middleware, we simply need to display a page
confirming the user is signed out
return render('/derived/account/signedout.html')

When a user is signed in, AuthKit sets the environment variable REMOTE_USER to contain the
user’s username. The signin() action checks this to see whether it is present. If it isn’t, it aborts
with a 401 response to trigger AuthKit to prompt the user to sign in.

Once a user is signed in, the signedin.html template is rendered. Create the templates/
derived/account directory, and add the signedin.html template to it with the following content:

<%inherit file="/base/index.html"/>

<%def name="title()">Signed In</%def>
<%def name="heading()"><h1>Signed In</h1></%def>

<p>You are signed in as ${request.environ['REMOTE_USER']}.
Sign out</p>

Next you’ll need to add the signedout.html template to the account directory too with the
following content:

<%inherit file="/base/index.html"/>

<%def name="title()">Signed Out</%def>
<%def name="heading()"><h1>Signed Out</h1></%def>

<p>You have been signed out.</p>

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 439

Now you need to modify the routes so that the path /signin points to the signin() action and
the path signout() points to the signout() action. Add the following named routes immediately
after the # CUSTOM ROUTES HERE line in config/routing.py:

map.connect('signout', '/signout', controller='account', action='signout')
map.connect('signin', '/signin', controller='account', action='signin')

Now let’s add an extra line to the header so it contains a link to the signin() action when you
are not signed in and contains your username and a link to the signout() action when you are
signed in. Modify the base/index.html template so that the header has the extra links. The lines in
bold are the ones you need to change:

<div id="hd">
<div class="yui-gc">

<div class="yui-u first">
${self.heading()}

</div>
<div class="yui-u">

% if h.auth.authorized(h.auth.is_valid_user) and not (➥
request.urlvars['controller'] == 'account' and ➥
request.urlvars['action'] == 'signout'):

<p>Signed in as ${request.environ['REMOTE_USER']},
Sign out</p>

% else:
<p>Sign in</p>

% endif
</div>

</div>
${self.header()}
${self.tabs()}

</div>

Because you don’t want the “Signed in as...” message on the signed-out page, you have to test
the routing variables to ensure that the user isn’t on the signed-out page. The routing variables are
always available as the request.urlvars dictionary, which can be useful if you haven’t explicitly
added them to the template context global c.

Notice also that because you set up named routes for signing in and signing out in the
config/routing.py file, you just need to specify the name of the route when using h.url_for(), and
not the routing variables as well. This is particularly handy for routes that get used a lot or for ones
that don’t have any variable parts.

You can also add a style so that the text appears on the right. Add this to public/css/main.css:

#hd p {
text-align: right;
padding-right: 20px;
padding-top: 5px;

}

With these changes in place, you can test the sign-in and sign-out functionality. Figure 19-2
shows what the home page looks like when you are signed out. Notice the Sign In link in the top
right and the fact the Edit Page link isn’t visible, because you are not signed in.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3440

Figure 19-2. The updated home page

Styling the Sign-in Screen
You’ve now seen AuthKit and its user management API in action, but for a production system,
you need to style the sign-in screen so that it looks like the rest of the site. AuthKit allows you to
do this in two ways. The first is to provide all the HTML for the sign-in screen as a config option.
In reality, though, it would be more useful if you could use the template structure you’ve set up
for the rest of the pages so that if the styles in the base template were to change at some point in
the future, you wouldn’t have to generate a new static version for AuthKit. Luckily, AuthKit also
allows you to specify a custom function, which, when called, will generate a template dynami-
cally. Let’s create such a function.

First, create a new template in derived/account/signin.html with this content:

<%inherit file="/base/index.html"/>

<%def name="title()">Sign In</%def>
<%def name="heading()"><h1>Sign In</h1></%def>

${h.form_start('%s', method="post")}
${h.field(

"Username",
h.text(name='username'),

)}

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 441

${h.field(
"Password",
h.password(name='password'),

)}
${h.field(field=h.submit(value="Sign in", name='submit'))}

${h.form_end()}

AuthKit expects the username and password to be submitted as the username and password
fields, respectively, and is designed to handle a POST method. AuthKit will use Python string inter-
polation to replace the %s string with the URL the form needs to submit to. For this to work you'll
need to import password from the webhelpers.html.tags module into lib/helpers.py.

Now let’s create a new function in lib/auth.py to render it:

def render_signin():
return render('/derived/account/signin.html')

You’ll need to add this import to the top of the file:

from pylons.templating import render_mako as render

You can then specify in the development.ini config file that, instead of using the default tem-
plate, AuthKit should call the render_signin() function you created in simplesite.lib.auth to
render the signin.html page. Add this to the config options:

authkit.form.template.obj = simplesite.lib.auth:render_signin

■Caution One potential problem with this approach is that if the HTML returned from the template contains
other % characters, then the string interpolation will fail in AuthKit. In these situations, you can put a string such
as FORM_ACTION in the signin.html template and then modify the render_signin() function to escape the
% characters like this:

def render_signin():
result = render('/derived/account/signin.html')
result = result.replace('%', '%%').replace('FORM_ACTION', '%s')
return result

Once the server has restarted, you will be able to test the new sign-in screen (see Figure 19-3),
and you should find it now shares the same theme as the rest of the site.

Now that you can sign in and out easily, have a go at signing in as the admin user. You’ll find you
can delete pages as the admin user but not as the foo user.

■Note Previous versions of Pylons required a more complex version of the render_signin() function, so this
works only with Pylons 0.9.7 or newer. This is because previous Pylons required the initialization of a component
called Buffet before templates could be rendered, and this was not set up by the point in the middleware stack
where AuthKit needed to access it to render the sign-in screen. Pylons 0.9.7 and newer replace Buffet with the
simple render functions you learned about in Chapter 5 and that have been using throughout the book.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3442

Figure 19-3. The updated sign-in page

Protecting the Rest of the Actions
Now that the edit and delete functionality for the page controller is properly protected, you need to
protect the actions in the other controllers. Table 19-1 lists the permission objects you need to add
to each controller action with an @h.auth.authorize decorator. For this to work you'll need to
import the @authorize decorator at the top of the lib/auth.py file. Once these permissions are
added, you can continue with the tutorial.

Table 19-1. The Controller Actions and Their Associated Permissions

Controller Permission Actions

Page h.auth.is_valid_user edit(), save()

Page h.auth.has_delete_role delete(), list()

Section h.auth.is_valid_user edit(), save()

Section h.auth.has_delete_role delete()

Tab h.auth.has_delete_role delete(), list(), edit(), save()

Comment h.auth.has_delete_role delete(), edit(), save()

With this setup and in line with the original requirements, anyone can now create pages and
sections, but only signed-in users can edit or move them. Only users with the delete role can delete
pages or sections, edit comments, or rename tags.

With this in mind, let’s update the page/view.html footer so that people are shown the links
only for functionality they are entitled to use. The finished footer looks like this:

<%def name="footer()">
Then add our page links
<p>
% if h.auth.authorized(h.auth.has_delete_role):
All Pages |

% endif

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 443

<a href="${h.url_for(controller='page', action='new', section=c.page.section,
before=c.page.before)}">New Page
% if h.auth.authorized(h.auth.is_valid_user):
| Edit
Page
% endif
% if h.auth.authorized(h.auth.has_delete_role):
| Delete
Page
% endif
</p>
Comment links
<p>
<a href="${h.url_for(pageid=c.page.id, controller='comment', action='list')}"

>Comments (${str(c.comment_count)})
| <a href="${h.url_for(pageid=c.page.id, controller='comment', action='new')}"
>Add Comment
</p>
Section links
<p>
<a href="${h.url_for(controller='section', action='new', section=c.page.section,

before=c.page.before)}">New Section
% if h.auth.authorized(h.auth.is_valid_user):
| <a href="${h.url_for(controller='section', action='edit', id=c.page.section)}"
>Edit Section
% endif
% if h.auth.authorized(h.auth.has_delete_role):
| <a href="${h.url_for(controller='section', action='delete', id=c.page.section)}"
>Delete Section and Index Page
% endif
</p>
Tag links
<p>
% if h.auth.authorized(h.auth.has_delete_role):
All Tags
|
% endif
Add Tag</p>
Include the parent footer too
${parent.footer()}
</%def>

Finally, let’s update the base/index.html template’s footer so that there is always a link back to
the home page available:

<%def name="footer()">
<p>

[Home] |
Top ^

</p>
</%def>

Notice the use of the explicit URL in the href attribute because you always want the link to
point to the root of the site, no matter which page or section that serves. This still takes advantage
of Routes’ ability to adjust URLs for you if the application is mounted at a nonroot URL.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3444

Using the AuthKit User Management API
At this point, all the permissions are set up, but in real life you might want to add a new user to the
system or perhaps change a user’s roles. You could do that by altering websetup.py and re-creating
the database, but that would result in all your data being lost. Another solution would be to manu-
ally alter the data in the AuthKit tables using SQL, or you could even create your own interface for
managing users. For the moment, though, let’s use the Pylons interactive shell.

Start the interactive shell like this:

$ paster shell development.ini

AuthKit automatically adds a UsersFromDatabase instance (like the one you used in
websetup.py as the users object) to the authkit.users key in the WSGI environ dictionary so you
can easily access it from your application, your tests, or the interactive shell. The commands
below show you how to give the user foo the delete role. Don't run them just yet though.

>>> from pylons import request
>>> users = request.environ['authkit.users']
>>> users.user_add_role("foo", role="delete")
>>> from simplesite.model import meta
>>> meta.Session.commit()

The AuthKit users object has a series of different methods for managing users, described in
detail at http://authkit.org/docs/0.4/class-authkit.users.Users.html. Using this API and the
Pylons interactive shell, you can manipulate the AuthKit settings directly without needing to re-
create any database tables.

Error Documents
Now that the authentication and authorization facilities are in place, let’s pause for a moment to
look at how and why Pylons generates error documents such as the 403 error document shown in
Figure 19-1.

In certain circumstances, your Pylons application will return a status code that isn’t 200. This
might be because the URL requested doesn’t exist, because the user is not authorized to view a
particular URL, or occasionally because there is a bug in your code that caused an exception. Most
browsers will understand the status code and display some sort of error message so that the user
knows what went wrong, but rather than relying on the browser to inform the user of the problem,
it is often preferable for your application to display an error document so that the page contains
the same branding as the rest of your site.

As you saw in Chapter 17, whenever a response with a 401, 403, 404, or 500 response is
returned down the middleware chain as far as the StatusCodeRedirect middleware, it is intercepted,
and a request is forwarded to your project’s error controller. The exact HTTP response status codes
to be intercepted can be customized by changing the arguments to the StatusCodeRedirect middle-
ware. The error controller itself is a special controller set up by Pylons specifically for generating
error documents.

Your project’s controllers/error.py will look something like this:

import cgi
import os.path

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 445

from paste.urlparser import StaticURLParser
from pylons import request
from pylons.controllers.util import forward
from pylons.middleware import error_document_template, media_path
from webhelpers.html.builder import literal

from simplesite.lib.base import BaseController

class ErrorController(BaseController):

def document(self):
"""Render the error document"""
resp = request.environ.get('pylons.original_response')
content = literal(resp.body) or cgi.escape(request.GET.get('message'))
page = error_document_template % \

dict(prefix=request.environ.get('SCRIPT_NAME', ''),
code=cgi.escape(request.GET.get('code', str(resp.status_int))),
message=content)

return page

def img(self, id):
"""Serve Pylons' stock images"""
return self._serve_file(os.path.join(media_path, 'img'), id)

def style(self, id):
"""Serve Pylons' stock stylesheets"""
return self._serve_file(os.path.join(media_path, 'style'), id)

def _serve_file(self, root, path):
"""Call Paste's FileApp (a WSGI application) to serve the file
at the specified path
"""
static = StaticURLParser(root)
request.environ['PATH_INFO'] = '/%s' % path
return static(request.environ, self.start_response)

When the StatusCodeRedirect middleware forwards a request, it does so by passing the status
code and status message to the document() action of the error controller by modifying the request
so that it looks as if it came from a URL such as this:
/error/document?code=404&message=Not%20Found. It is the responsibility of the document() action to
then return the HTML of the error document with the code and message provided.

For the default implementation, the error document is generated from the Python string
error_document_template in the pylons.middleware module, which is used to generate a response
after the code, and messages have been substituted in the appropriate places. What is craftier is that
to avoid having to add error document static files into your project template, the Pylons developers
have added two further actions, img() and style(), that both create a static file server application
and serve the static files from the Pylons module directory. (They use the same StaticURLParser
WSGI application that is used to serve files from your project directory.) The template then refer-
ences these actions so that all the images and CSS styles that the default template use are actually
served from the Pylons module directory and don’t clutter up your application.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3446

Customizing the Error Documents for SimpleSite
Now that you’ve seen how error documents are generated by default, let’s look at how you can cus-
tomize them to change the theme for the SimpleSite application. The easiest way to do this is to
simply replace error_document_template with a different string containing the HTML you want
returned. The string can contain the variables %(prefix)s, %(code)s, and %(message)s, which get
substituted for the URL path where the application is mounted, the HTTP status code that was
intercepted, and the default Pylons description of the HTTP status, respectively.

Although this approach works perfectly well, for the SimpleSite application you’ll go one step
further and use a custom template to generate the error documents. To do this, you need to modify
the document() action. Update it to look like this:

def document(self):
"""Render the error document"""
resp = request.environ.get('pylons.original_response')
code = cgi.escape(request.GET.get('code', ''))
content = cgi.escape(request.GET.get('message', ''))
if resp:

content = literal(resp.status)
code = code or cgi.escape(str(resp.status_int))

if not code:
raise Exception('No status code was found')

c.code = code
c.message = content
return render('/derived/error/document.html')

The start of the action remains the same, but the lines in bold pass the code and message to
a template rather than generating a response based on a string. Notice that you’ve also changed
resp.body to resp.status because resp.body contains some HTML markup you don’t need.

For the previous code to work, you need to add imports for the c global and Mako render()
function at the top of the file:

from pylons import tmpl_context as c
from simplesite.lib.base import render

Create the new derived/error/document.html template with the following content:

<%inherit file="/base/index.html"/>

<%def name="title()">Server Error ${c.code}</%def>
<%def name="heading()"><h1>Error ${c.code}</h1></%def>

<p>${c.message}</p>

With the changes in place, you can test the template by visiting a page that doesn’t exist such as
http://localhost:5000/no/such/page. The result is shown in Figure 19-4.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 447

Figure 19-4. The updated error document support showing a 404 Not Found page

When a user tries to access functionality they don’t have access to, they are now shown the
styled 403 error document. Although this is a significant improvement over the Pylons default ver-
sion, it would be even better if the user was given a customized error message explaining that they
don’t have the appropriate permissions to perform the action they are trying to perform. It would
also be a good idea to provide a link so they can sign in as a different user who does have the
required permissions.

Let’s start by customizing the template to display a custom message for the 403 status code and
the link to allow the user to sign in again. Update the template so it looks like this:

<%inherit file="/base/index.html"/>

<%def name="title()">Server Error ${c.code}</%def>
<%def name="heading()"><h1>Error ${c.code}</h1></%def>

% if c.code == '403':
<p>You do not have sufficient permissions to access this page. Please
sign in as a different user.</p>
% else:
<p>${c.message}</p>
% endif

When a user clicks the link, the action that gets called would need to sign them out before dis-
playing the sign-in screen; otherwise, when they try to sign in, they will find they are still signed in
as the original user.

Up until now, the only method you’ve seen for signing out a user is for them to visit the URL
specified in the authkit.cookie.signoutpath option in the config file; this isn’t the only method you
can use, though. The AuthKit cookie plug-in you are using is an extended version of the Paste
paste.auth.auth_tkt functionality and as such uses the same API for signing out users. This means
the AuthKit middleware adds a sign-out function to the environ dictionary under the key
'paste.auth_tkt.logout_user'. If you call this function, the middleware will remove the cookie
from the headers after the response is returned. Now that you know this, you can write a new action
that signs the user out and displays the sign-in form:

Add this action to the account controller:

def signinagain(self):
request.environ['paste.auth_tkt.logout_user']()
return render('/derived/account/signin.html').replace('%s', h.url_for('signin'))

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3448

Remember that the /derived/account/signin.html page isn’t a normal template. It has to be
set up so that it returns a string that AuthKit can use Python string interpolation on to replace the %s
character with the action. Since you are not using the template with AuthKit this time, you have to
add the form action yourself. (If you are using FORM_ACTION instead of %s, you’ll have to adjust the
last line accordingly.)

You’ll also need another route for the signinagain() action in the config/routing.py file:

map.connect('signinagain', '/signinagain', controller='account', ➥
action='signinagain')

Finally, add the import for h into the account controller:

import simplesite.lib.helpers as h

This new action is now accessible from /signinagain and presents the sign-in form with the
action adjusted to point to the sign-in screen.

There’s one final change to make. You’ll need to update the base/index.html template so the
“Signed in as...” link isn’t shown on the sign-in again page. Make the relevant line look like this:

% if h.auth.authorized(h.auth.is_valid_user) and not (➥
request.urlvars['controller'] == 'account' and request.urlvars['action']➥
in ['signout', 'signinagain']):

If you sign in as user foo and try to access a URL such as http://localhost:5000/page/list,
you will now be shown the page in Figure 19-5. Clicking the sign-in link will then take you to the
sign-in again page, where you can sign in as a different user. With these changes in place, the cus-
tomization of the error documents support is complete.

Figure 19-5. The customized 403 error document

Adding a WYSIWYG Interface
Even with all the changes you’ve made so far, SimpleSite is still rather simple. After all, it can be
used to edit only plain text, which isn’t too helpful for a website. In this section, you’ll update the
edit page functionality to use the YUI Rich Text Editor, and you’ll change the page view template to
allow HTML to be rendered.

Let’s start by thinking about the JavaScript required to change the content text area on the edit
page to use a visual editor. The editor you’ll use is the YUI Rich Text Editor and is documented at

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 449

http://developer.yahoo.com/yui/editor/. To set it up, you need to modify the derived/page/
edit.html template so that the js() def looks like this:

<%def name="js()">
${parent.js()}
${navfields.js()}

<script type="text/javascript"
src="/yui/2.6.0/element/element-beta-min.js"></script>

<script type="text/javascript"
src="/yui/2.6.0/container/container_core-min.js"></script>

<script type="text/javascript"
src="/yui/2.6.0/editor/simpleeditor-min.js"></script>

<script type="text/javascript">
(function() {

// Set up some private variables
var Dom = YAHOO.util.Dom;
var Event = YAHOO.util.Event;

// The SimpleEditor config
var myConfig = {

height: '200px',
width: '630px',
dompath: true,
focusAtStart: true,
handleSubmit: true

};

// Now let's load the SimpleEditor..
var myEditor = new YAHOO.widget.SimpleEditor('editor', myConfig);
myEditor._defaultToolbar.buttonType = 'advanced';
document.e = myEditor;
myEditor._defaultToolbar.titlebar = 'Rich Text Editor';
myEditor.render();

})();
</script>

</%def>

Ordinarily, you would also need the yahoo-dom-event and connection libraries, but you are
already using these to support the callAJAX() function used to update the before field, so you don’t
need to include them again.

For the previous JavaScript to work, you need some more changes. First, you need to add
id="editor" to the text area used to edit the content so that the JavaScript you’ve added is applied
to the correct element. Change derived/page/fields.html so the content field definition looks like
this:

${h.field(
"Content",
h.textarea(name='content', rows=7, cols=40, id='editor'),
required=True,
field_desc = 'The text which will make up the body of the page'

)}

If you were to try to edit the page now, you’d see that although you could correctly edit the text,
the Rich Text Editor wouldn’t be displayed correctly. This is because you haven’t yet chosen a theme
for YUI.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3450

YUI’s theming system relies on the name of the theme to be used being specified as the class of
the <body> tag. The default theme is called sam skin, so you’ll use this one. Update the <body> tag in
base/index.html so that it looks like this:

<body class="yui-skin-sam">

Finally, add this def to the end of derived/page/edit.html.

<%def name="head()">
${parent.head()}
${h.stylesheet_link(h.url_for('/yui/2.6.0/assets/skins/sam/skin.css'))}

</%def>

With these changes in place, try editing a page, and you should see an editor that allows you to
add content such as that shown in Figure 19-6.

Figure 19-6. Adding some HTML and an Image with the YUI Rich Text Editor

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 451

If you try to use the editor to create a complex page, you’ll notice that, because you were con-
scientious when designing the application, your HTML content is automatically escaped when
viewing pages. To prevent the HTML page’s content from being escaped, you can edit
derived/page/view.html and replace this line:

${(c.page.content)}

with these lines so that content is treated as an HTML literal:

<%!
from webhelpers.html import literal

%>
<div id="page-content">
${literal(c.page.content)}
</div>

The final problem is that since you are using the YUI reset.css styles in the SimpleSite pages,
some of the styles that looked correct in the editor get reset when you view the HTML. To fix this,
add the following styles to the end of the public/css/main.css file:

#page-content strong {
font-weight: bold;

}
#page-content em {

font-style: italic;
}
#page-content p {

margin-bottom: 20px;
}
#page-content ol, #page-content ul {

margin: 20px 20px 20px 1em;
padding-left: 20px;

}
#page-content ol li {

list-style: decimal;
}
#page-content ul li {

list-style: disc;
}

The pages will now display correctly.

Configuring the setup.py File
At this point, the SimpleSite application is pretty much finished, so it is nearly time to package it
up to be distributed. Pylons comes equipped with quite a few tools to help you easily publish your
application and to allow other people to easily install it and its dependencies. We’ll look at these
tools in this section.

Before you can publish the egg, there are a number of changes you need to make including the
following:

• Choosing a version number

• Configuring dependencies

• Specifying metadata

• Customizing the production config file template

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3452

Choosing a Version Number
The first step in distributing an application is to choose a version number for the project. Ordinarily,
the 1.0.0 release is considered to be the first main release of a project. You’ve made three core sets of
revisions to SimpleSite in each of the three chapters, but there are still some changes you might like
to make before this is an official product you’d be proud to distribute more widely (notably the lack
of documentation), so it probably isn’t ready for a 1.0.0 release just yet. Let’s set the version number
to 0.3.0 to reflect the fact that this is the third minor revision.

The version number is set in setup.py and is used by Easy Install when determining which ver-
sion to install. Update the version number for the SimpleSite project like this:

version = '0.3.0',

This example uses a simple version number, but Pylons also supports development releases
and alpha, beta, and prerelease versions.

Let’s start with alpha, beta, and prerelease releases. These are treated by setuptools as being
before the final version for the purposes of their use in Easy Install conditions. For example, 0.5.0a1
would be considered the first alpha release of the 0.5 version of a particular application. Similarly,
0.5.0pre2 would be the second prerelease, and 0.5.0rc3 would be the third release candidate. This
means that if certain software required version 0.5 or greater, none of the releases specified so far
would be suitable.

For example, during the process of writing the book, I released the first version of the
SimpleSite code as version 0.3.0pre1. As the book went into production, I released the 0.3.0
release, but if there are changes to Pylons before the book is released and these need correspon-
ding changes in SimpleSite, I’d release a 0.3.1 release.

Development versions are slightly more complicated but are an equally useful feature. In
development mode, setuptools automatically calculates the version revision number from the
revision of the Subversion repository you are currently developing the Pylons application in (if
indeed you are using Subversion). By default, Pylons applications are set up to be treated as a
development version, which means the .egg file produced from it will have dev as part of the ver-
sion. For example, if the repository is at revision 68, then the egg produced would be labeled
SimpleSite-0.3.0dev-r68_py2.5.egg. If you want your release to be treated as a production
release, you need to edit setup.cfg and comment out these two lines:

[egg_info]
#tag_build = dev
#tag_svn_revision = true

You should make this change to the SimpleSite project.
At this point, the project is set up to build the egg for the 0.3.0 production release so the egg

produced will be named SimpleSite-0.3.0_py2.5.egg, but there are still some changes you need to
make.

Configuring Dependencies
Now that the version number has been specified, let’s update the list of libraries and other Python
software the application depends on. This is done by adding the dependencies to the
install_requires argument of the setup() function in your project’s setup.py file. When you install
software with Easy Install, the easy_install script automatically installs all the software specified in
the install_requires line. The SimpleSite setup.py file currently has an install_requires, which
looks like this:

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 453

install_requires=[
"Pylons>=0.9.7",
"SQLAlchemy>=0.4",
"Mako",
"FormBuild>=2.0",

],

Update this information to use SQLAlchemy 0.5 and to include AuthKit 0.4.3.
Here’s what the lines should look like:

install_requires=[
"Pylons>=0.9.7,<=0.9.7.99",
"SQLAlchemy>=0.5,<=0.5.99",
"Mako>=0.2.2,<=0.2.99",
"FormBuild>=2.0.1,<=2.0.99",
"AuthKit>=0.4.3,<=0.4.99",

],

Notice that you’ve specified all the dependencies with version numbers in a particular range.
Package developers should be using the convention that any software release where only the revi-
sion has changed (the revision being the very last number making up the version) will be compati-
ble with all previous versions with the same major and minor numbers (the first and second parts of
the version, respectively). This means you can be fairly confident that your application should work
with more recent versions of the dependencies as long as the major and minor components of the
version number haven’t changed. By specifying a range of suitable alternatives in your application,
if any bug fix releases of the dependencies are made, SimpleSite can use them. It also means that if a
user has a slightly different yet still compatible version of a dependency already installed, then Easy
Install can use that rather than downloading a new version.

■Note You might expect that you would be able to specify dependencies like this:

"AuthKit>=0.4,<=0.5"

This isn’t quite what you want, though, because as has already been discussed, Easy Install would also treat other
AuthKit versions including 0.5.0dev, 0.5.0a1, and 0.5.0pre2 as being lower than 0.5, and since these have a differ-
ent minor version, the APIs might not be backward compatible with the 0.4 release. Instead, the convention is to
use <0.4.99 on the basis that it is unlikely that there would be 99 revisions of a minor version of a piece of
software.

Extra Dependencies
Sometimes you might want a particular dependency installed only if a user is installing a particular
feature. As an example, SimpleSite is designed to work with multiple database engines, each of
which require a particular driver. Let’s focus on just MySQL and PostgreSQL, though. You wouldn’t
want to list both the mysql-python and psycopg2 packages in the install_requires line as depend-
encies because your users would only ever need one of the drivers. On the other hand, if you left out
the drivers completely, they would not be automatically installed when SimpleSite was installed.

To cater for this situation, Pylons applications can use the setuptools optional extra depend-
ency feature. Add the following to the end of the setup() function in setup.py:

extras_require = {
'MySQL': ["mysql-python>=1.2"],
'PostgreSQL': ["psycopg2"],

},

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3454

Each of the extras is specified as a key and a list of all the dependencies. In this case, both the
extras require only one dependency to be installed.

When it comes to installing SimpleSite, the extras required can be specified like this:

$ easy_install SimpleSite[MySQL]

This will now automatically install the mysql-python package version 1.2 or greater, which
provides the MySQLdb module that SQLAlchemy uses for its MySQL support.

Extra Dependency Links
By default, Easy Install installs software only from the Python Package Index unless you use the -f
flag to specify extra URLs.

If your application relies on packages hosted at different URLs, you can add them to the
setup() function like this:

dependency_links = [
"http://pylonshq.com/download/"

],

Easy Install will automatically search these links when trying to resolve the dependencies.

Specifying Metadata
As well as allowing you to specify dependencies, the setup() function takes arguments for specify-
ing metadata about your project. This metadata is used as the basis for the information on the
Python Package Index. Update the setup.py with the following metadata:

setup(
name='SimpleSite',
version='0.3.0',
description='''A simple website application written as a demonstration of Pylons

for the Definitive Guide to Pylons''',
author='James Gardner',

author_email='feedback@pylonsbook.com',
url='http://pylonsbook.com',
long_description='''\

A simple CMS application allowing WYSIWYG page editing, sections and subsections
and full navigation widgets

''',
... other options here ...

)

The short_description argument is used in the list on the home page of the Python Package
Index, and the long_description argument is used in the main page for the project on the Python
Package Index. In addition to the author, author_email, and home page url, you can also specify
which categories the application should be placed in. The categories are known as trove classifiers,
and you can find a full list at http://pypi.python.org/pypi?%3Aaction=list_classifiers. Here are
the classifiers for Pylons itself:

classifiers=[
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
"License :: OSI Approved :: BSD License",
"Framework :: Pylons",
"Programming Language :: Python",
"Topic :: Internet :: WWW/HTTP",

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 455

"Topic :: Internet :: WWW/HTTP :: Dynamic Content",
"Topic :: Internet :: WWW/HTTP :: WSGI",
"Topic :: Software Development :: Libraries :: Python Modules",

],

In addition, it can also be useful to specify keywords related to the application and the license:

keywords='pylons simple site book example',
license='BSD, see the simplesite/public/yui/2.6.0/LICENSE.txt file for details.

Customizing the Long Description
The long_description argument is used on the main page for the package and also accepts
reStructuredText, which you learned about in Chapter 13. This means you can add some quite
complex formatting to the long description. You can use something like this, for example:

++++++++++
SimpleSite
++++++++++

A simple website application allowing WYSIWYG editing, sections and
subsections and full navigation widgets. The idea is that the application can
form a starting point for your own website projects.

Installation
============

First install Easy Install if you don't have it already by downloading
``ez_setup.py`` from http://peak.telecommunity.com/dist/ez_setup.py and
installing it like this::

python ez_setup.py

Install SimpleSite like this specifying either MySQL, SQLite or PostgreSQL
as the word within the square brackets depending on the database you intend to
use::

easy_install SimpleSite["MySQL"]
paster make-config simplesite.ini

Configure the application by editing ``simplesite.ini`` to specify a database
to use using the format described at
http://www.sqlalchemy.org/docs/05/dbengine.html#dbengine_supported ::

paster setup-app simplesite.ini
paster serve simplesite.ini

The running application will now be available at http://localhost/

Files
=====

The reason for the Files subheading at the end is that the Python Package Index specifies
the files after the long description, so this formatting will result in a nicely structured page on the
Python Package Index.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3456

With these changes in place, the Python Package Index page for the project will look eventually
look like Figure 19-7 once the package is published.

Figure 19-7. The SimpleSite project on the Python Package Index

Customizing the Production Config File Template
There is one more customization you need to make before you are ready to publish the egg itself.
As you’ll see in Chapter 21 about deployment, when a user has installed your .egg, they will run
the application directly from a config file. To create the config file, they’ll use this command:

$ paster make-config SimpleSite myconfig.ini

The SimpleSite application requires the AuthKit configuration options to be present in the
config file that the earlier command generates. To achieve this, you need to customize how Pylons
generates the config file. Pylon provides a deployment.ini_tmpl file in your project’s config direc-
tory, which will be used as a basis for generating this config file, so you should update it to contain
the AuthKit configuration (marked in bold here):

#
SimpleSite - Pylons configuration
#
The %(here)s variable will be replaced with the parent directory of this file
#

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 457

[DEFAULT]
debug = true
email_to = you@yourdomain.com
smtp_server = localhost
error_email_from = paste@localhost

[server:main]
use = egg:Paste#http
host = 0.0.0.0
port = 5000

[app:main]
use = egg:SimpleSite
full_stack = true
cache_dir = %(here)s/data
beaker.session.key = simplesite
beaker.session.secret = ${app_instance_secret}
app_instance_uuid = ${app_instance_uuid}

authkit.setup.enable = true
authkit.setup.method = form, cookie
authkit.form.authenticate.user.type = ➥
authkit.users.sqlalchemy_driver:UsersFromDatabase
authkit.form.authenticate.user.data = simplesite.model
authkit.cookie.secret = secret string
authkit.cookie.signoutpath = /signout
authkit.form.template.obj = simplesite.lib.auth:render_signin

If you'd like to fine-tune the individual locations of the cache data dirs
for the Cache data, or the Session saves, un-comment the desired settings
here:
#beaker.cache.data_dir = %(here)s/data/cache
#beaker.session.data_dir = %(here)s/data/sessions

SQLAlchemy database URL
sqlalchemy.url = sqlite:///production.db
sqlalchemy.echo = False

WARNING: *THE LINE BELOW MUST BE UNCOMMENTED ON A PRODUCTION ENVIRONMENT*
Debug mode will enable the interactive debugging tool, allowing ANYONE to
execute malicious code after an exception is raised.
set debug = false

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3458

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s

You’ll notice that this file is slightly different from the default development.ini file. In particu-
lar, it has these two extra lines:

beaker.session.secret = ${app_instance_secret}
app_instance_uuid = ${app_instance_uuid}

The variables ${app_instance_secret} and ${app_instance_uuid} are replaced with appropri-
ate values when the user of the application runs the paster make-config command.

You’ll also notice that debugging is automatically set to false to ensure that production deploy-
ments don’t accidentally have the Pylons interactive debugger enabled.

■Tip Pylons 0.9.6 users will be used to using a paste_deploy_config.ini_tmpl in their project’s
ProjectName.egg-info directory. The config/deployment.ini_tmpl file behaves in the same way but
is in a location that is less likely to be deleted accidentally.

Packaging a Pylons Project for Distribution
Now that you know how to customize setup.py, let’s look at how to package the SimpleSite
application.

Pylons applications are designed to be distributed as .egg files. This is the same format that
Pylons itself and all its dependencies are distributed in. You’ll remember from Chapter 2 that
applications distributed as eggs can be installed with Easy Install. This means that if your Pylons
application is published on the Python Package Index, other users will be able to install it with
Easy Install too. Let’s start by looking at how to build an egg.

Building an Egg File
The first step of building an egg is to remove any unnecessary files that you don’t want packaged.
In this case, this includes any of the YUI library files the application is not using. By looking at Fire-
bug’s Net tab when using the application, you can see that only the following files are being used:

• /css/main.css

• /yui/2.6.0/animation/animation-min.js

• /yui/2.6.0/assets/skins/sam/blankimage.png

• /yui/2.6.0/assets/skins/sam/editor-sprite.gif

• /yui/2.6.0/assets/skins/sam/editor-sprite-active.gif

• /yui/2.6.0/assets/skins/sam/skin.css

• /yui/2.6.0/assets/skins/sam/sprite.png

• /yui/2.6.0/connection/connection-min.js

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 459

• /yui/2.6.0/container/container_core-min.js

• /yui/2.6.0/editor/simpleeditor-min.js

• /yui/2.6.0/element/element-beta-min.js

• /yui/2.6.0/json/json-min.js

• /yui/2.6.0/reset-fonts-grids/reset-fonts-grids.css

• /yui/2.6.0/yahoo-dom-event/yahoo-dom-event.js

You should remove all the other files from your project’s public directory. Also, because YUI
is licensed under a separate license, you should also add the text of the license to /yui/2.6.0/
LICENSE.txt. Then you are ready to build the egg. You can do so with this command:

$ python setup.py bdist_egg

If everything goes smoothly, an .egg file with the correct name and version number appears in
a newly created dist directory. The .egg file contains everything anyone needs to run your program.
You should probably make eggs for each version of Python your users might require by running the
previous command with Python 2.4, 2.5, and 2.6 to create each version of the egg.

At this point, your work as a developer is done. The finished and packaged egg file is now pro-
duced and ready to be distributed or deployed. If you emailed the egg to a colleague, they could
now install it into their own virtual Python environment just like this:

$ easy_install SimpleSite-0.3.0-py2.5.egg

You’ll learn about how you can deploy eggs like this one in production environments in
Chapter 21, but for now let’s look at how you can publish eggs on the Python Package Index to
make it even easier to share them with the wider Python community.

Publishing an Egg on the Python Package Index
Now that you have successfully created eggs for your application, you can register them on the
Python Package Index at http://www.python.org/pypi. Do this by running the following command.
Please do this only with your own projects, though, because SimpleSite has already been registered!

When you run the command, some processing is done on the project, and then you are given
some choices of how to proceed. Here I’m using my existing login details, but you can choose
option 2. to register a new account with the system:

$ python setup.py register
running register
... some lines omitted ...
We need to know who you are, so please choose either:
1. use your existing login,
2. register as a new user,
3. have the server generate a new password for you (and email it to you), or
4. quit
Your selection [default 1]: 1
Username: thejimmyg
Password:
Server response (200): OK
I can store your PyPI login so future submissions will be faster.
(the login will be stored in /home/james/.pypirc)
Save your login (y/N)?y

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3460

The program then asks you whether you want it to save your login details. When I ran the previ-
ous example to register SimpleSite, I chose to save them because I knew I’d want to upload the egg
files automatically too. This option saved me from having to enter my details again.

■Caution The Python Package Index authentication is very weak, and passwords are transmitted in plain text.
Don’t use any sign-in details that you use for important applications because they could be easily intercepted.

If you visit http://pypi.python.org/pypi/SimpleSite/0.3.0, you’ll see the page that was cre-
ated by the previous command. It was also shown a few pages ago in Figure 19-7. You’ll also notice
that new projects appear at the top of the list of recent projects on the Python Package Index home
page, as shown in Figure 19-8.

Figure 19-8. The SimpleSite project on the Python Package Index

You can now sign in to the Python Package Index with the account details you used when you
registered your application and upload the eggs you’ve created, or if you prefer, you can even have
Python do it for you; just enter this command for each version of Python supported to upload the
eggs for you:

$ python2.4 setup.py bdist_egg register upload
$ python2.5 setup.py bdist_egg register upload

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 461

If you didn’t allow the register command to create a .pypirc file in your home directory for
you, you’ll need to create one yourself. It should contain your username and password so that the
upload command knows who to sign in as, and it should look similar to this:

[server-login]
username: james
password: password

This works on Windows too, but you will need to set your HOME environment variable first. If
your home directory is C:\Documents and Settings\James, you would put your .pypirc file in that
directory and set your HOME environment variable with this command:

> SET HOME=C:\Documents and Settings\James

You can now use python setup.py bdist_egg upload as normal.

At this point, your project has been successfully published. Other Python users can now install it
just by entering this command:

$ easy_install SimpleSite

With the application successfully published, you might think your work is done, but actually,
if you have a project you think would make a good starting point for other people’s projects, you
can package it up as a project template. Let’s look at this next.

Making SimpleSite into a Paste Project Template
If you have a Pylons project you think would be useful to other people, it is possible to turn your
Pylons project into a Paster project template, which can then be used to automatically generate a
skeleton project based on SimpleSite by running this command:

$ paster create --template=SimpleSite MyProject

To set this up for SimpleSite, you’ll need to create a new project called SimpleSiteTemplate,
which is just an empty setuptools-enabled package (not a Pylons project this time). Run the follow-
ing command, and enter the appropriate information when prompted:

$ paster create SimpleSiteTemplate

Selected and implied templates:
PasteScript#basic_package A basic setuptools-enabled package

Variables:
egg: SimpleSiteTemplate
package: simplesitetemplate
project: SimpleSiteTemplate

Enter version (Version (like 0.1)) ['']: 0.1
Enter description (One-line description of the package) ['']: A Paste Template➥
which allows you to create a new Pylons project based on the SimpleSite tutorial➥
described in the Pylons Book
Enter long_description (Multi-line description (in reST)) ['']:
Enter keywords (Space-separated keywords/tags) ['']: Pylons Paste Template ➥
SimpleSite Simple Site Website
Enter author (Author name) ['']: James Gardner
Enter author_email (Author email) ['']: feedback@pylonsbook.com

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3462

Enter url (URL of homepage) ['']: http://pylonsbook.com
Enter license_name (License name) ['']: BSD
Enter zip_safe (True/False: if the package can be distributed as a .zip file) ➥
[False]:
Creating template basic_package
Creating directory ./SimpleSiteTemplate
Recursing into +package+
Creating ./SimpleSiteTemplate/simplesitetemplate/
Copying __init__.py to ./SimpleSiteTemplate/simplesitetemplate/__init__.py

Copying setup.cfg to ./SimpleSiteTemplate/setup.cfg
Copying setup.py_tmpl to ./SimpleSiteTemplate/setup.py

Running /Users/james/devenv/bin/python setup.py egg_info

This creates a skeleton package with a simple setup.py file built with the settings you entered
at the command prompt.

You need a submodule to store the template files that will be used to as a basis for building the
Pylons projects. Create a template directory within the SimpleSiteTemplate/simplesitetemplate
directory. Next, copy every file and folder underneath the top-level SimpleSite directory into the
SimpleSiteTemplate/simplesitetemplate/template directory.

$ cd SimpleSiteProject/simplesiteproject/template
$ cp -pr /path/to/SimpleSite/* ./

You don’t need the data directory, though, because Pylons re-creates this as it is needed based
on the settings in the config file of the Pylons package the user eventually creates. You don’t need
the dist or build directories either because they will get created automatically too if they are
needed, and you don’t need any of the .pyc files or any of the files in SimpleSite.egg-info because
they are all re-created by Paste when a user creates a project from the template. You should also
remove any development database files you might have used such as the development.db file
because users of your template will create their own database and are unlikely to want your
existing content.

One command you can use to delete all .pyc files (tested on Mac OS X Leopard) is as follows:

$ find . | grep .pyc | xargs rm

Once you have finished, the SimpleSiteTemplate/simplesitetemplate directory should look
like this:

$ ls
MANIFEST.in docs simplesite
README.txt ez_setup.py test.ini
SimpleSite.egg-info setup.cfg
development.ini setup.py

Next, you’ll need to customize the SimpleSiteProject setup.py file so that Paste is automatically
installed if a user tries to use the project template (this is not the setup.py file you copied into the
template directory):

install_requires = [
"Paste>=1.7",

],

At this point, you are ready to start implementing the template part. First, you need to imple-
ment the plug-in class, which Paste will use to determine how to create the template. It is very
simple. Add this to the SimpleSiteTemplate/simplesitetemplate/__init__.py file:

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 463

from paste.script.templates import BasicPackage

class SimpleSitePackage(BasicPackage):
_template_dir = 'template'
summary = "A Pylons template to create a simple, user-editable website"
egg_plugins = ['PasteScript', 'Pylons']

The _template_dir variable specifies the directory that contains the template files, relative to
the Python module the BasicPackage class is defined in (in this case the __init__.py file). The
summary variable contains the text that is displayed when a user runs the command paster
create --list-templates.

Next you need to use egg entry points so that the paster template program can find your new
template. Edit the SimpleSiteProject setup.py file again to update the entry_points argument to the
setup() function, to look like this:

entry_points="""
-*- Entry points: -*-
[paste.paster_create_template]
simplesite=simplesitetemplate:SimpleSitePackage

""",

The entry point name will be used as the name of the plug-in, which in this case is simplesite.
The second part points to the class that Paste will use to create the file structure for the new project.
In this case, it is the SimpleSitePackage class you’ve just created in
simplesitetemplate/__init__.py.

At this point, everything is set up and ready to test. Install the package in development mode
with the following:

$ python setup.py develop

You can try to create a sample project somewhere, but there will be some problems:

$ cd /path/to/create/new/project
$ paster create --template simplesite MyProject
simplesite MyProject
Selected and implied templates:
SimpleSiteTemplate#simplesite A Pylons template to create a simple, ➥

user-editable website

Variables:
egg: MyProject
package: myproject
project: MyProject

Enter version (Version (like 0.1)) ['']:
Enter description (One-line description of the package) ['']:
Enter long_description (Multi-line description (in reST)) ['']:
Enter keywords (Space-separated keywords/tags) ['']:
Enter author (Author name) ['']:
Enter author_email (Author email) ['']:
Enter url (URL of homepage) ['']:
Enter license_name (License name) ['']:
Enter zip_safe (True/False: if the package can be distributed as a .zip file) ➥
[False]:
Creating template simplesite

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3464

Creating directory ./MyProject
Copying MANIFEST.in to ./MyProject/MANIFEST.in
Copying README.txt to ./MyProject/README.txt
Recursing into SimpleSite.egg-info

...
Copying test_models.py to ./MyProject/simplesite/tests/test_models.py

Copying websetup.py to ./MyProject/simplesite/websetup.py
Copying test.ini to ./MyProject/test.ini

Running /Users/james/devenv/bin/python setup.py egg_info
Traceback (most recent call last):
...
IOError: No egg-info directory found
...

The command created a SimpleSite.egg-info directory, not a MyProject.egg-info directory,
so when the command to set up the egg-info directory was run, it failed. You’ll need to fix that and
also change the files and directories in the template directory so that they use variable names that
Paste can replace when it creates the template.

It would also be nice if the paster create script prompted you for a SQLAlchemy URL so that
no manual editing of the development.ini file was necessary. You’ll learn how do each of these
things in the next sections.

Introducing Project Template Variables
Classes derived from BasicPackage like the SimpleSitePackage class you just created can take a
vars member variable. This allows you to ask extra questions just before the project is generated.
The answers to those questions can then be assigned to variable names you specify, and those
variable names can be used in the filenames, directory names, and file content, and they will be
substituted for the options chosen on the command line when someone creates a project using
the project template.

As you saw in the previous section, the BasicPackage class already asks the person creating a
project a number of questions, and it assigns the answers of these questions to the following vari-
ables:

version
description
long_description
keywords
author
author_email
url
license_name
zip_safe

If you look at the output when you run the command, you’ll see these variable names in part
of the question. For example:

Enter author_email (Author email) ['']:

Let’s modify SimpleSitePackage to also ask for a value for sqlalchemy_url. Update the
simplesitetemplate/__init__.py file to look like this:

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 465

from paste.script.templates import BasicPackage, var

class SimpleSitePackage(BasicPackage):
_template_dir = 'template'
summary = "A Pylons template to create a simple, user-editable website"
egg_plugins = ['PasteScript', 'Pylons']
vars = [

var('sqlalchemy_url', 'The SQLAlchemy URL to the database to use',
default='sqlite:///%(here)s/develpment.db'),

]

If you run the command again, you’ll now be prompted for a SQLAlchemy URL, and if you
don’t provide one, a default of sqlite:///%(here)s/develpment.db will be used.

Enter sqlalchemy_url (The SQLAlchemy URL to the database to use) ➥
['sqlite://%(here)s/develpment.db']:

■Tip There are some other options too, but you won’t use them in this example. If you want to set up a more
complex BasicPackage plug-in, you should have a look at the source code at the following location to understand
how everything works: http://pythonpaste.org/script/paste/script/templates.py.html.

Using Project Template Variables
Now that the paster create script is correctly prompting the user for all the information you need,
it is time to update the files and directories in simplesitetemplate/template to use these variables.

In addition to the variables described so far, Paste sets up three more variables for you. If you
look at the output from running the paster create --template=simplesite MyProject command
from the previous section, you’ll see them listed near the top:

Variables:
egg: MyProject
package: myproject
project: MyProject

The egg, package, and project variables represent the name used in the egg file, the Python
name of the package, and the project name (which is the name that would be used if you published
the package on the Python Package Index), respectively. Now that the variables have values assigned
to them, you can begin using them in the files and directories in the template directory. Variables
can be used in filenames, in directory names, and in the source code itself, but there are a few rules
to follow:

• When a variable is used in a directory name or filename, it must have + characters on either
side. For example:

+egg+.egg_info
+project+.py

• Variables within files should be wrapped in {{ and }} characters. For example:

import {{package}}.lib.base

• Any file that contains variables should be renamed so that its file extension ends in _tmpl. So,
foo.ini would become foo.ini_tmpl, and foo would become foo_tmpl.

In fact, you can perform more complex operations too. The paster create template
script understands a very simple template language called Tempita documented at

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3466

http://pythonpaste.org/tempita/, so you can use any constructs supported by Tempita.
Now that you know the rules, let’s go through and update the files, directories, and code in
simplesitetemplate/template to use the variables you now have access too, starting by
renaming the SimpleSite.egg-info and simplesite directories:

$ cd SimpleSiteTemplate/simplesitetemplate/template
$ rm -r SimpleSite.egg-info
$ mkdir +egg+.egginfo
$ mv simplesite +package+

You can delete the +package+/controllers/template.py.txt file you used as a template for
other controllers in Chapter 14.

Now let’s get a list of all the files that contain the word SimpleSite or simplesite, because
you’ll need to update them:

$ egrep -rl '(simplesite|SimpleSite)' . | grep -v ".pyc"
./+package+/config/deployment.ini_tmpl
./+package+/config/environment.py
./+package+/config/middleware.py
./+package+/config/routing.py
./+package+/controllers/account.py
./+package+/controllers/comment.py
./+package+/controllers/error.py
./+package+/controllers/nav.py
./+package+/controllers/page.py
./+package+/controllers/section.py
./+package+/controllers/tag.py
./+package+/lib/base.py
./+package+/lib/helpers.py
./+package+/model/__init__.py
./+package+/public/yui/2.6.0/LICENSE.txt
./+package+/templates/base/index.html
./+package+/templates/component/navigation.html
./+package+/tests/functional/test_account.py
./+package+/tests/functional/test_nav.py
./+package+/tests/functional/test_page.py
./+package+/websetup.py
./MANIFEST.in
./README.txt
./development.ini
./docs/index.txt
./setup.cfg
./setup.py
./test.ini

Rename each of these files so that they all have _tmpl added to the end of the filename. The
config/deployment.ini_tmpl will need the extension too so will end up as config/deployment.
ini_tmpl_tmpl.

If you don’t want to do this manually and are comfortable with a single command that will do
this for you in a Bash shell, you could try the following one. The command should be entered on
one line, and you are advised to back up your files first in case it behaves slightly differently or your
platform:

$ for f in `egrep -rl '(simplesite|SimpleSite)' . | grep -v .pyc `; ➥
do mv "$f" "`echo $f`_tmpl"; done

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 467

Once the files are renamed, you’ll need to update the contents of the files. The majority of the
work is changing the text SimpleSite and simplesite, so let’s do that first:

$ grep -rl simplesite . | xargs perl -pi -w -e 's/simplesite/{{package}}/g;'
$ grep -rl SimpleSite . | xargs perl -pi -w -e 's/SimpleSite/{{project}}/g;'

You also need to use the sqlalchemy_url variable the user has specified to fill in the value of the
sqlalchemy.url option in development.ini.

Update development.ini_tmpl so that the sqlalchemy.url option looks like this:

sqlalchemy.url = {{sqlalchemy_url}}

■Note You might be tempted to think that it would be a good idea to use the sqlalchemy_url variable in the
config/deployment.ini_tmpl_tmpl file too, but just because users of your application are using a particular
SQLAlchemy URL for their development doesn’t mean they will use the same in production.

You should also ensure that none of the files you are about to package contain any usernames,
passwords or any other information you don't want distributed. In particular you should check the
development.ini and test.ini files.

Now that everything is set up correctly, let’s give the new template a test run. First let’s check
that the template has been found:

$ paster create --list-templates
Available templates:
authenticate_plugin: An AuthKit authenticate middleware plugin
basic_package: A basic setuptools-enabled package
paste_deploy: A web application deployed through paste.deploy
pylons: Pylons application template
pylons_minimal: Pylons minimal application template
simplesite: A Pylons template to create a simple, user-editable website

The simplesite project template is correctly listed, so let’s try to create the MyProject appli-
cation again. Remove the old MyProject directory if you tried to create the project earlier in the
chapter, and then run the following command:

$ paster create --template=simplesite MyProject

If everything worked correctly, you can now test the application:

$ cd MyProject
$ python setup.py develop
$ paster setup-app development.ini
$ paster serve --reload development.ini

If you visit http://localhost:5000, you will see the new project correctly serving pages. You’ve
successfully created a new project with the same functionality as SimpleSite with just a few com-
mands. At this point, you are ready to start customizing the MyProject application for your own
requirements and needs.

Completing the Cycle
If you’ve been following along with the tutorial chapters of the book, you’ll actually have achieved
something quite remarkable by this point. You’ll have created a useful product and packaged it up
in such a way that other developers can use it as a project template for their own projects without
having to re-solve all the problems you’ve already solved.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3468

To complete the cycle, I'd like to show you how I packaged up and released the SimpleSiteTem-
plate on the Python Package Index so that other developers can use it as a basis for their projects.
First I edited setup.cfg to comment out the tag_build and tag_svn_revision options. Then I cre-
ated a MANIFEST.in file. This tells Python which files need to be included in the package. It looks like
this and includes all the files in the template directory:

recursive-include simplesitetemplate/template *

Finally, I ran this command to create and upload the package:

$ python setup.py bdist_egg sdist register upload

Now any user can create a Pylons project based on SimpleSite, just by entering the following
commands:

$ easy_install SimpleSiteTemplate
$ paster create --template=simplesite MyProject

I hope you consider packaging any projects you frequently use as a basis for your own projects
into Paste Templates in a similar way so that other people can use them as starting points. In this
way, members of the Pylons community can quickly and easily build on the success of other Pylons
users’ projects.

Summary
You learned a lot in this chapter, from adding authentication and authorization facilities to Simple-
Site to customizing Pylons’ error pages. You also saw how to add metadata to projects and how the
egg format and Pylons metadata integrate with the Python Package Index so that you can easily
publish projects online and automatically create a page containing basic information. You also saw
what a project template really is, and you turned the SimpleSite application into a reusable project
template so that other people can use it as a basis for their own projects.

That’s the end of the SimpleSite tutorial, but I hope many of the techniques and tools you’ve
used to create the SimpleSite application will be useful in your own applications. If you are building
a wiki, you might even be able to use the project template as a starting point for your code.

In the next chapter, you’ll look at Pylons’ logging support before moving on to see how to
deploy Pylons applications in production environments.

CHAPTER 19 ■ SIMPLESITE TUTORIAL PART 3 469

Logging

A useful way of working out what is happening during a request is to write log statements at vari-
ous points in your code. These log statements can output log messages to multiple places such as
the console or a file to help you follow how your code is working.

■Tip If you don’t want to know the details of how logging works but are just desperate to log a message to the
console from within a controller action, you can do so like this:

log.debug('Your message goes here')

Getting Started with Pylons Logging
Conceptually, it’ helpful to think about Pylons applications as having two completely different types
of logs:

• Server logs

• Application logs

Server logs are generated by the server running the Pylons application and will typically
include information such as the URL that was requested and the time the request was made. The
server might also log information such as the IP address of the user visiting the site.

The application logs are generated by your Pylons application and the packages it uses. Appli-
cation log messages can come from your controllers, model, helpers, templates, or any other part of
your application as well as from third-party packages your application uses such as SQLAlchemy or
AuthKit. Application log messages are sometimes also sent to the server for logging, and this results
in the application log messages being intermingled with the server log messages. As you can imag-
ine, logging can quickly get quite complicated unless you keep the concept of a server log very
separate from the concept of an application log in your own mind.

To demonstrate the difference between the two types of logs and how they interact in develop-
ment mode with the Paste HTTP server, let’s create a new project called LogTest with a controller
named log. Choose Mako as the templating language, and you won’t need SQLAlchemy or Google
App Engine support:

$ paster create --template=pylons LogTest
$ cd LogTest
$ paster controller log

471

C H A P T E R 2 0

Now edit logtest/controllers/log.py so that the index() action looks like this:

def index(self):
log.debug('My first Pylons log message!\n')
return 'Check the logs!'

Start the server with the --reload and --log-file options like this:

$ paster serve --reload development.ini --log-file test.log

The --log-file option specifies the file that the log messages should be written to. Now visit
http://localhost:5000/log/index in your browser. You should see the message Check the logs! in
the browser, and you will see the message My first Pylons log message! has been written to
test.log.

Now, with the server still running, add a new action to the log controller called newlog() that
looks like this:

def newlog(self, action):
log.debug("Logged from the 'newlog' action")
return 'Check the logs again!'

The server will restart because you changed the file. Visit http://localhost:5000/log/newlog,
and then stop the server. Once again, the message returned from the controller will be shown in the
browser, and the log message will be written to test.log.

After having visited just these two URLs, the Paste HTTP server log file (test.log) will contain
these lines:

serving on http://127.0.0.1:5000
12:49:46,347 DEBUG [logtest.controllers.log] My first Pylons log message!

/home/james/LogTest/logtest/controllers/log.pyc changed; reloading...
Starting server in PID 533.
serving on http://127.0.0.1:5000
12:50:29,567 DEBUG [logtest.controllers.log] Logged from the 'newlog' action

As you can see, the log file has two types of messages: the debug messages from the controller
and the messages from the server. The server logs (in normal font) and the application logs (in bold)
are combined into one file. So, let’s discuss exactly what is happening in this example.

When the log.debug() function is called, a message is logged, but what happens to that mes-
sage depends on the configuration you have set up with the logging options in the development.ini
config file. The default settings cause all log messages of INFO level or above to be sent to the stan-
dard error stream.

Now, it just so happens that the Paste HTTP server captures all the information sent to the
standard error stream to its server logs, so in this example both the server logs and the application
logs end up combined in the same file. This is handy for development use, but not all servers will
behave in the same way, so you can’t guarantee application log output will always end up in the
server logs with the default Pylons configuration, although it often will.

In the section “Logging to a File” later in the chapter, you’ll learn how to redirect the applica-
tion logs to a separate file, but before I go into too much detail, you need to learn a little bit more
about the logging module used to produce the application logs.

Understanding the logging Module
Pylons uses Python’s logging module to provide its application logging. The basic concept behind
the logging module is that each message is logged to a particular logger and that each logger has a

CHAPTER 20 ■ LOGGING472

name. Each controller therefore has the following lines at the top to set up a logger to be used for
logging messages related to each controller:

import logging
...
log = logging.getLogger(__name__)

Python’s special __name__ variable refers to the current module’s fully qualified name, which in
this case is logtest.controllers.log. This means that the log variable is set up to log messages to a
logger named logtest.controllers.log.

The named loggers exist in a hierarchy where parent loggers can respond to the log messages
of child loggers, and each . character in the name separates a level in the hierarchy. If, for example,
you created a second logger in the controller specifically for logging the index() action and you
named it logtest.controller.log.index, the logtest.controller.log logger would also receive its
messages. This behavior is called propagation and can be overridden, as you’ll see when it is dis-
cussed in more detail later in this chapter.

■Tip The loggers don’t need to have the names of the modules they are created in; they can have any names as
long as you understand that they will be treated as part of a logger hierarchy with . characters separating parents
from children. Most of the time, using the full name of the module in which the loggers are defined is a good idea,
though.

In addition to ordinary loggers, there is also a root logger at the very top of the logging hierar-
chy. In the default Pylons setup, the individual loggers are not configured to handle their own log
messages, so they get propagated to the root logger, which handles them instead. You’ll learn more
about this behavior later in this chapter.

Understanding Log Levels
Each message logged to a specific logger must also have a log level. Table 20-1 shows the main log
levels and their corresponding numeric values.

Table 20-1. Levels of Importance and Their Corresponding Numeric Values

Level Numeric Value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

Messages that you want to be displayed only during debugging might be assigned to the DEBUG
level, whereas critical error messages should be logged to the CRITICAL level.

To log messages, you simply use one of the methods corresponding to the levels in Table 20-1,
which are available on the log object you want to log messages for. Here’s an example:

def index(self):
log.error('My third Pylons log message!')
return 'Check the logs!'

CHAPTER 20 ■ LOGGING 473

When this action is executed, the following will be logged:

16:20:20,440 ERROR [logtest.controllers.log] My third Pylons log message!

Notice that because you called log.error(), the message was logged with the ERROR level. Let’s
also try to log a simple warning message. Change the action you were editing earlier to look like
this:

def index(self):
log.warning('My third Pylons log message!')
return 'Check the logs!'

If you restart the Paste HTTP server and visit the http://localhost:5000/log/index URL again,
you will see that the message is displayed on the console with the WARNING level:

16:21:30,410 WARNI [logtest.controllers.log] My third Pylons log message!

It is also possible to log messages by their output number rather than by their level; you can
specify any number from 0–50, not just numbers corresponding to a level. This is useful if you want
to set your own fine-grained log levels. You can log a message at a particular numeric value like this:

def index(self):
log.log(10, 'Another log message')
return 'Check the logs!'

Logging Variables
Each of the logging methods debug(), info(), warning(), error(), critical(), and log() also
accepts an optional set of variable names that will be substituted into the log message itself using
standard Python string formatting. This means you can log variables like this:

def index(self):
error = 'Wrong Number'
value = 5
log.error('The error %r occurred with a value of %s.', error, value)
return 'Check the logs!'

When this action is executed, the following output will be logged:

16:20:20,440 ERROR [logtest.controllers.log] The error 'Wrong Number' occurred ➥
with a value of 5.

Logging in Templates
The logging module’s getLogger() function always returns the same logger instance for the name it
is given. This means that if you wanted to log to the logtest.controllers.log logger from within a
template, you could access the same logger like this:

<%!
import logging
log = logging.getLogger('logtest.controllers.log')

%>

Then later in your code you could write a log message like this:

<% log.debug('This is a debug message') %>

Both the log object in the template and the log object in the controller log messages to the
same log. Of course, you could also attach the controller’s log object to c.log and access that
directly in the template instead if you prefer.

CHAPTER 20 ■ LOGGING474

Now that you’ve seen the basics of how the logging module works and you understand the dif-
ference between server logs and application logs in the context of a Pylons application, let’s take a
look at how logging is configured.

Introducing Logging Configuration
Pylons logging is configured through the Pylons config file and is used to change how the applica-
tion logs are handled. The format used is the same as that used by the logging module, as described
at http://docs.python.org/lib/logging-config-fileformat.html. Although it looks similar to the
Paste Deploy configuration you learned about in Chapter 17, it is actually completely different.

Logging configuration consists of three types of section: loggers, handlers, and formatters.
Broadly speaking, the formatters take a message and format it together with extra information
available such as the time or the process ID of the running application. The handlers take the for-
matted messages and handle them in some way, perhaps by writing them to a file or sending them
to the standard error stream, and the logger sections override the default setting of each of the
loggers that are used to output log messages, either discarding them or passing them onto the
appropriate handler depending on the severity level of the message. Each logger, handler, and for-
matter requires its own section in the config file, but to keep track of the names being used for each
section, every config file must also contain sections called [loggers], [handlers], and [formatters]
that identify the name and the type of each section in the file through the use of keys.

Here are the first sections defined in the LogTest project’s development.ini file:

Logging configuration
[loggers]
keys = root, routes, logtest

[handlers]
keys = console

[formatters]
keys = generic

This means the logging module will also expect to see sections named [logger_root],
[logger_routes], [logger_logtest], [handler_console], and [formatter_generic]. The
[logger_logtest] section is named according to the package name of your Pylons application,
so the section name in your own project would reflect its package name instead of LogTest’s.

■Tip If you want to supplement the logging configuration supplied by the development.ini file, you can also
configure logging in Python code. You might want to do this if you have written your own handler or formatter. A
good place to add your extra configuration would be your project’s environment.py file.

Let’s take a look at the options you can use with each of the different types of section.

Logger Sections
Logger sections specify how to log messages to a particular logger, such as the logtest.
controllers.log logger used earlier. Loggers take four configuration options. The level option
specifies the log level below which log messages should be ignored. The handlers option takes a
comma-separated list of the names of handlers to which the messages should be sent. The qualname
option is the name of the logger to log messages for; and the propagate option determines whether
messages sent to this logger should also be sent to its parent logger.

CHAPTER 20 ■ LOGGING 475

As an example, here’s what the routes logger from the LogTest project’s development.ini file
looks like:

[logger_routes]
level = INFO
handlers =
qualname = routes.middleware
"level = DEBUG" logs the route matched and routing variables.

This logger doesn’t have any handlers of its own, but its messages propagate to the root logger,
where they are handled instead.

Handler Sections
Handlers are used to handle the log messages passed to them from the loggers you have configured.
Here’s the console handler as an example:

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

The class option indicates the handler’s class (as determined by executing Python’s eval()
function in the logging package’s namespace). The args argument is a list of arguments to pass to
the handler specified by class. It’s important to remember to add a comma at the end of the args
list if there is just one argument; otherwise, the brackets are treated as parentheses rather than
marking the start and end of a tuple.

You can use many handlers besides StreamHandler including FileHandler,
RotatingFileHandler, TimedRotatingFileHandler, SocketHandler, DatagramHandler, SysLogHandler,
NTEventLogHandler, SMTPHandler, MemoryHandler, and HTTPHandler. They are all documented in
detail at http://docs.python.org/lib/node409.html.

The level option determines which level of messages are passed to the formatter and can be
any one of the levels mentioned earlier: CRITICAL, ERROR, WARNING, INFO, DEBUG, and NOTSET. Setting
the level to NOTSET results in everything being logged, setting the level to INFO results in messages of
INFO level and above being logged. Finally, the formatter option should be the name of a formatter
section that will specify how the log message should be formatted.

Formatter Sections
Formatters are responsible for converting a log record passed from a handler to a format suitable
for output, usually a string with certain extra data about when and where the message was logged.

Here is an example:

[formatter_form01]
format=F1 %(asctime)s %(levelname)s %(message)s
datefmt=
class=logging.Formatter

The format option is the overall format string, and the datefmt option is the strftime()-
compatible date/time format string. If it is empty, the logging package substitutes ISO8601 format
dates and times.

The class entry is optional. It indicates the name of the formatter’s class (as a dotted module
and class name) and is useful if you have created your own Formatter subclass you want to use.

Most of the time, the only line in formatter sections that you’ll want to change is the format
line. You can use the variables in Table 20-2 to configure how the log messages will be formatted.

CHAPTER 20 ■ LOGGING476

Table 20-2. Format Codes and Their Descriptions

Format Description

%(name)s Name of the logger.

%(levelno)s Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR,
CRITICAL).

%(levelname)s Text logging level for the message ('DEBUG', 'INFO', 'WARNING', 'ERROR',
'CRITICAL').

%(pathname)s Full path name of the source file where the logging call was issued (if
available).

%(filename)s File name portion of path name.

%(module)s Module (name portion of file name).

%(funcName)s Name of function containing the logging call. Added in Python 2.5.

%(lineno)d Source line number where the logging call was issued (if available).

%(created)f Time when the LogRecord was created (as returned by time.time()).

%(relativeCreated)d Time in milliseconds when the LogRecord was created, relative to the
time the logging module was loaded.

%(asctime)s Human-readable time when the LogRecord was created. By default, this is
of the form 2003-07-08 16:49:45,896 (the numbers after the comma are
millisecond portion of the time).

%(msecs)d Millisecond portion of the time when the LogRecord was created.

%(thread)d Thread ID (if available).

%(threadName)s Thread name (if available).

%(process)d Process ID (if available).

%(message)s The logged message, computed as msg % args.

The formatter section used by LogTest looks like this:

[formatter_generic]
format = %(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s
datefmt = %H:%M:%S

You can work out what each of the variables in the format option does from Table 20-2.
Over the next sections, you’ll learn how to tweak the settings in each of the types of sections to

solve common logging problems, so don’t worry if you don’t understand all the options just yet.

■Tip If you want to understand logging in detail, it is well worth reading the logging documentation at
http://docs.python.org/lib/module-logging.html.

Redirecting Log Output Using Handlers
Now that you have seen the options for each of the different types of logging configuration sections,
let’s look at some of the common ways of handling log messages.

One of the most useful things to do with application log messages is to write them directly to
a file. In fact, if you are new to logging or are setting up a Pylons applications on a new server, it is
highly recommended you start by logging messages to a file because there is a lot less that can go

CHAPTER 20 ■ LOGGING 477

wrong compared with logging either to the standard output stream, the standard error stream, or
the WSGI errors stream.

Logging to a File
Although it is helpful to see application log messages in the console when you are developing a
Pylons application, for production use the messages often need to be logged to a file.

To capture log output to a separate file, you can use a FileHandler or a RotatingFileHandler.
The following is the configuration to set up a FileHandler called file. Add it to the end of the
development.ini file from the LogTest project you created at the start of the chapter:

[handler_file]
class = FileHandler
args = ('application.log', 'a')
level = INFO
formatter = generic

The options here are similar to those used for the console handler that already exists in the
development.ini file. The args option specifies the file name of the log file and that it should be
opened in append mode so that new information is added to the end of the file and doesn’t over-
write existing data. The new handler will use the same formatter as the console handler.

For Pylons to know this section represents a new log handler, you also have to add the file
handler to the [handlers] section. Update it to look like this:

[handlers]
keys = console, file

Now that the new handler is set up, you can customize the root logger to use the file handler
rather than the existing console handler. Change the [logger_root] section to look like this:

[logger_root]
level = INFO
handlers = file

Now all the root logger’s messages will be directed to the application.log file instead of the
sys.stderr error stream.

With the new handler in place, start the Paste HTTP server again, this time using the file name
server.log for the output log:

$ paster serve --reload development.ini --log-file=server.log

If you visit http://localhost:5000/log/index, you will see that the application log is not sent to
server.log but instead appears in application.log. The server messages continue to appear in
server.log, though. You have successfully redirected the application logs to a file.

■Tip If you are using log files, it can often be useful to see the output that is logged as it is written, without
having to constantly close and reopen the file. On Unix platforms you can use this command:

$ tail -f server.log

With this command running, any messages will be automatically copied to the console as they are written to
server.log so that you can see the messages appear as you interact with the server.

CHAPTER 20 ■ LOGGING478

Logging to wsgi.errors
You’ll remember from Chapter 16 that one of the responsibilities of a WSGI server is to provide a
suitable writable object as environ['wsgi.errors'] to be used for logging errors. Because of this,
any messages written to wsgi.errors are guaranteed to go to the server’s error log no matter which
server you are using and no matter what format that error log takes (as long as the server conforms
to the WSGI specification, of course).

You can test the behavior of wsgi.errors with the Paste HTTP server by adding a new action to
the log controller:

def wsgi_errors(self):
request.environ['wsgi.errors'].write(

'This is sent directly to the wsgi.errors stream')
return 'Message logged to wsgi.errors'

Check that the server is still running and has the --log-file server.log option set. Now
visit http://localhost:5000/log/wsgi_errors, and you will see Message logged to wsgi.errors
returned to the browser. If you look at server.log, you will see the last line looks like this:

This is sent directly to the wsgi.errors stream

As you can see, sending messages to the wsgi.errors stream sends messages directly to the
server log, not the application log and so bypasses all the standard logging configuration. As a result,
the extra information added by a formatter such as the time or log level has not been added.

Now that you know how the wsgi.errors stream logs messages, you might decide you want
to be able to use it via a handler in the configuration file using the existing logging infra-
structure. Pylons provides a custom logging handler class specifically for this purpose called
WSGIErrorsHandler, which you can use to automatically send log messages to the wsgi.errors
stream. It is documented at http://docs.pylonshq.com/modules/log.html. The advantage of
using WSGIErrorsHandler is that all application logs get mixed in with the server logs, so you
have only one log file to deal with, and you can quickly see the order that particular server and
application events occurred in without having to compare their time stamps.

■Caution Although using the wsgi.errors stream can be useful, there is one big problem with using the
Pylons WSGIErrorsHandler: all messages logged outside of a Pylons request will be silently lost.

The wsgi.errors stream is available only during a request because it has to be accessed via the
WSGI environ dictionary, which itself is available only during a request. This means log messages
created during application startup, shutdown, or before and after a request are silently lost.

This silent loss of messages may be something you can tolerate in your application, but gener-
ally speaking it is better to handle the application logs via a FileHandler (described in the previous
section) or a RotatingFileHandler, so you can be sure all the messages are logged.

If you still want to use the WSGIErrorsHandler, this is how you do it. First add the handler name
wsgierrors to the [handlers] section of the configuration file so that Pylons knows it is a handler:

[handlers]
keys = console, file, wsgierrors

Then add a new handler section specifying pylons.log.WSGIErrorsHandler as the class and an
empty tuple for args. In this example, only messages with the DEBUG level or higher are logged, and
you are using the same generic formatter you used for the console and file handlers.

CHAPTER 20 ■ LOGGING 479

[handler_wsgierrors]
class = pylons.log.WSGIErrorsHandler
args = ()
level = DEBUG
format = generic

You could now update the root logger’s handler to use the wsgierrors handler on its own, but it
is safer to use both the file handler and the wsgierrors handlers together so that any messages
ignored by the wsgierrors handler are at least captured by the file handler. Change the
[logger_root] section to look like this:

[logger_root]
level = INFO
handlers = file, wsgierrors

If you try this, notice that application messages are logged both to the Paste HTTP server log
(via wsgierrors) as well as directly to application.log. If you log any messages outside a request,
they will appear only in the application.log file via the file handler.

Configuring Which Messages Are Logged
Now that you’ve seen a couple of examples of how to use different handlers, it’s time to see how you
can use handlers to control which messages are logged. The golden rule is that the level that even-
tually gets logged is the higher of the level specified in the logger and the level specified in the handler.

This means that if you want only ERROR-level messages and above going to the wsgi.errors
stream, you can change its handler definition to look like this:

[handler_wsgierrors]
class = pylons.log.WSGIErrorsHandler
args = ()
level = ERROR
format = generic

Now only the messages that are logged at the ERROR level or above get sent to the wsgi.errors
stream by the pylons.log.WSGIErrorsHandler handler.

Controlling Propagation with Loggers
Now that you’ve seen some of the things that you can do with handlers, let’s look in more detail at
loggers.

By default, three loggers are configured for your development.ini configuration. In the case of
LogTest, the relevant lines look like this:

[loggers]
keys = root, routes, logtest

...

[logger_root]
level = INFO
handlers =

[logger_routes]
level = INFO
handlers =
qualname = routes.middleware
"level = DEBUG" logs the route matched and routing variables.

CHAPTER 20 ■ LOGGING480

[logger_logtest]
level = DEBUG
handlers =
qualname = logtest

...

As you can see, loggers are configured for the following:

• All messages (logger_root)

• Routes middleware messages (logger_routes)

• Messages from the LogTest project (logger_logtest)

If you look at the [logger_logtest] section, you’ll see that no handler is defined, so you might
be wondering how the test messages you wrote in the log controller at the beginning of the chapter
were logged to the application log. The answer is via propagation.

If you don’t explicitly set a value for the propagate option, it is assumed to be set to 1. This
means that any messages sent to the logger are also propagated to its parent logger. In this case,
the parent logger is the root logger, and this does have a handler specified, so all messages to the
logtest logger are actually handled by the root logger.

■Caution You have to be very careful when spelling propagate because Pylons won’t give you a warning if you
misspell it. I’ve spent quite a long time wondering why propagation wasn’t working only to realize I’d made a typo,
and I wouldn’t want you to make the same mistake!

You can test this behavior by setting propagate to 0 in the configuration section for
[logger_logtest] and restarting the server. If you do this and then visit the http://localhost:
5000/log/index URL, you’ll see the following error message instead of the log message you might
have expected:

No handlers could be found for logger "logtest.controllers.log"

This is because the messages are no longer propagated to the root logger and no handlers are
specified for the logtest.controllers.log logger. The logging system is warning you that you might
have made a mistake.

You might be wondering how the messages were sent to the logtest logger in the first place
when the logger the messages were sent to is actually called logtest.controller.log. Once again,
this occurs via propagation. Because the qualname option is specified with the value logtest, the
[logger_logtest] configuration will apply to any logger whose name starts with logtest.. To test
this, you could create a new logger in the log controller, which looks like this:

other_log = logging.getLogger('logtest.controllers.log.other')

Then in the index() action you could choose to use the new logger like this:

def index(self):
other_log.info("Logged with the 'logtest.controllers.log.other' logger")
log.info("Logged with the %r log", __name__)
return 'Check the logs!'

If you tested the example, you’d see that messages to both loggers are output:

21:30:43,621 INFO [logtest.controllers.log.other] Logged with the ➥
'logtest.controllers.log.other' logger
21:30:43,622 INFO [logtest.controllers.log] Logged with the ➥
'logtest.controllers.log' log

CHAPTER 20 ■ LOGGING 481

Since both the loggers in this example are children of the logtest logger, both get logged.
Remember to change the propagate option back to 1 if you test this example so that the messages
are propagated onto the root logger and then onto the handler.

■Tip Remember that the logger name used in controllers is related to the qualname specified in the con-
figuration for the logger section, not to the name of the config file section. This means you could rename the
[logger_logtest] section to something completely different such as [logger_foo] as long as you kept the
qualname as logtest and updated other references within the config file to use the foo name.

Using Propagation to Filter Messages
You can also use propagation to filter log messages. For example, say you wanted only WARNING mes-
sages or above from the logtest.controllers.log.other logger but still wanted DEBUG messages or
above for all other children of the logtest logger. You could update the config file like this (changes
are in bold):

[loggers]
keys = root, routes, logtest, logtest_controllers_log_other

...

[logger_logtest]
level = DEBUG
handlers =
qualname = logtest
propagate = 1

[logger_logtest_controllers_log_other]
level = WARNING
handlers =
qualname = logtest.controllers.log.other
propagate = 1

Now if you tested the previous example again so that an INFO message is logged to both the
logtest.controllers.log.other logger and the logtest.controllers.log logger, you’d just see the
message that was logged to logtest.controllers.log. This is because logtest.controllers.log.
other is only accepting messages of WARNING level or above, so the INFO message it receives is
ignored. Here is the output logged:

21:30:53,422 INFO [logtest.controllers.log] Logged with the ➥
'logtest.controllers.log' log

If you updated the action to use a warning or error message like this, the log message would
appear again, this time as a WARNING.

def index(self):
other_log.warning("Logged with the 'logtest.controllers.log.other' logger")
log.info("Logged with the %r log", __name__)
return 'Check the logs!'

If you tested the example, you’d see the following output:

21:31:48,531 WARN [logtest.controllers.log.other] Logged with the ➥
'logtest.controllers.log.other' logger
21:31:48,532 INFO [logtest.controllers.log] Logged with the ➥
'logtest.controllers.log' log

CHAPTER 20 ■ LOGGING482

A logger's level option does not affect messages which it receives via propagation from a child
logger. This means the level option can only be used to filter messages which are received directly.
To test this, update the config file so that the level for logtest.controllers.log.other is set to
DEBUG and the level for logtest.controllers.log is set to WARNING. If you call other_log.info
('This message will be logged') in the controller you will see the message is logged because it
isn't filtered by the level = WARNING option in the [log_logtest] section.

This is why the very first example in the chapter worked even though it logged a debug mes-
sage and the root logger level was specified as INFO.

Summarizing Propagation Options
In practical terms, you can use propagation in three main ways:

• Set up nonroot loggers that have no handlers but do propagate. The non-root loggers can
then be used to adjust the verbosity of their logging output by changing their level.

• You could also set up nonroot loggers that have handlers but that do not propagate. These
produce output only in the handlers they specify and not in the root handler. If a handler has
a level higher than the underlying message, the output is suppressed. You’ll see an example
of this setup next when you add SQLAlchemy output to a new log file.

• Some nonroot loggers have handlers and do propagate. The message will appear in both
places. This can be useful if you are using the WSGIErrorsHandler to ensure that all messages
get logged.

Capturing Log Output from Other Software
When you are trying to debug a problem in a particular controller, or perhaps a particular module
from, say, SQLAlchemy, then you might find that setting the root logger to DEBUG or NOTSET will pro-
duce too many messages for you to easily deal with, most of which will be generated by modules
you aren’t interested in. Instead, you want to be able to adjust only the verbosity of output from one
logger or set of loggers.

To do this, you need to add logging configuration for the logger you want to add log messages
for. You can then choose to have them handled by the root logger using propagation, configure
them to use a separate handler, or do both. Let’s look at these approaches.

Capturing SQLAlchemy Log Messages Using Propagation
As an example, let’s set up a logger to log a SQLAlchemy engine. To do this, you need to set up a new
logger in the configuration file; name it sqlalchemy:

[loggers]
keys = root, routes, logtest, sqlalchemy

Now you need to add the configuration for that logger:

[logger_sqlalchemy]
level = DEBUG
handlers =
qualname = sqlalchemy.engine
propagate = 1

CHAPTER 20 ■ LOGGING 483

The qualname option here specifies that this logger will handle any messages sent to a logger
named sqlalchemy.engine or any children it might have. Because the propagate option is set to 1,
this logger’s messages get propagated up to the root logger where they are handled by the root log-
ger’s handler.

Even if you set the root logger’s level to something higher such as ERROR, the sqlalchemy.
engine debug messages logged at the INFO and DEBUG levels would still be logged because, as you’ve
seen, the level option on the root logger doesn’t apply to log messages propagated from config-
ured loggers.

If you chose to enable SQLAlchemy support when you used paster create to create your
Pylons project, you’d see that your config file already has the following configuration set up:

[logger_sqlalchemy]
level = INFO
handlers =
qualname = sqlalchemy.engine
"level = INFO" logs SQL queries.
"level = DEBUG" logs SQL queries and results.
"level = WARNING" logs neither. (Recommended for production systems.)

By changing the qualname option, you can adjust which parts of SQLAlchemy are logged. By
changing the log level of the sqlalchemy logger, you can adjust which SQLAlchemy messages are
propagated to the root logger to be handled. The INFO level results in SQL queries being logged, and
the DEBUG level causes both queries and results to be logged. You may decide that you want to turn
off SQLAlchemy log messages temporarily. If so, you can leave the root logger set to INFO and set the
sqlalchemy logger’s level to WARNING, and then the usual INFO log messages will be suppressed.

Capturing AuthKit Messages Using a Handler
Another piece of software that uses log messages is AuthKit. Some of what AuthKit does behind the
scenes is rather complicated, so if you are trying to debug a particular behavior, logging can help.

Let’s configure AuthKit so that its messages are sent straight to application.log via the file
handler. First add the logger to the [loggers] section and change the [logger_root] section so that
it is no longer using the file handler itself:

[loggers]
keys = root, routes, logtest, authkit
[logger_root]
level = INFO
handlers = wsgierrors

Then add the configuration for the new logger:

[logger_authkit]
level = DEBUG
handlers = file
qualname = authkit
propagate = 0

In this case, the qualname is authkit to capture all AuthKit log messages. The handler is set to
file to use the same file handler section you set up earlier, and propagate is set to 0 so that the log
messages aren’t propagated to the root logger.

In this configuration, the AuthKit messages get sent directly to the file handler where they are
logged to the application.log file. Of course, nothing is stopping you from using a handler and
propagating a message to the root logger. To do this, just set propagate to 1 and you'll see the mes-
sage is passed to the root logger which passes it to the wsgierrors handler so that it gets logged
there too.

CHAPTER 20 ■ LOGGING484

Production Configuration
So far in this chapter I’ve been discussing the logging configuration for a development setup, but
Pylons uses a different default configuration for production setups.

If you install the LogTest project you can create a production configuration file like this:

$ paster make-config LogTest production.ini
Distribution already installed:
LogTest 0.1dev from /home/james/Desktop/LogTest

Creating production.ini
Now you should edit the config files
production.ini

The logging part of the generated production.ini file looks like this:

Logging configuration
[loggers]
keys = root

[handlers]
keys = console

[formatters]
keys = generic

[logger_root]
level = INFO
handlers = console

[handler_console]
class = StreamHandler
args = (sys.stderr,)
level = NOTSET
formatter = generic

[formatter_generic]
format = %(asctime)s %(levelname)-5.5s [%(name)s] %(message)s

As you can see, this defines just one logger, the root logger. The console handler is the same
for the development setup, and the formatter is only slightly different (it doesn’t include the milli-
second part of the time).

This means that any messages of INFO level or above will be logged to the standard error
stream. As you’ve seen, this is likely to send log messages generated by the application to the server
log, so you might prefer to set up a file handler instead. You saw how to do this in the “Logging to a
File” section.

Summary
In this chapter, you saw how to use logging within a Pylons controller and template and took a brief
tour of some of the features of Python’s logging module. You also saw how logging configuration is
divided into sections for loggers, handlers, and formatters, and you saw the options each of these
different sections can take and what the options do.

CHAPTER 20 ■ LOGGING 485

You also saw how to control log messages, filtering them by changing the log levels in a handler
or using propagation to control which levels of messages get propagated. You saw how to direct cer-
tain messages to different handlers such as an external file, and you know how to configure logging
to have messages from other software included in the logs.

With the knowledge you’ve gained, you should be able to take control of the Pylons log mes-
sages and make them work for you. When used correctly, logging can be a very powerful tool.

CHAPTER 20 ■ LOGGING486

Deployment

Pylons is designed to be extremely flexible when it comes to deployment. The upside of this is that
you will be able to deploy a Pylons application virtually anywhere—on any platform including
Linux, Mac, BSD, and Windows; using any popular server including Nginx, Apache, Lighttpd, and
IIS; and using most popular protocols or techniques including CGI, FastCGI, and others. The down-
side is that it is impossible to document all the options in one chapter.

The approach I’ll take in this chapter is to first explain the main steps in the deployment
process before getting into some of the details of the different architectures that different deploy-
ment strategies rely on. Then I’ll end with two complete examples. The first explains how to use
Apache to proxy to a Pylons application served by Paste and monitored by a cron job. The second is
an embedded solution using mod_wsgi and Apache. Of course, I could have used any of the other
available servers for the examples, but Apache is the most well known amongst open source devel-
opers.

■Tip You can find specific information about how to deploy Pylons on different servers and in different ways in
the Pylons Cookbook at http://wiki.pylonshq.com/display/pylonscookbook/Deployment.

Setting up and deploying a Pylons application involves the following steps:

1. Choosing or setting up a Python environment

2. Installing the required software into the environment

3. Creating a config file for the application

4. Setting up the application instance

5. Serving the application from the installed environment

Let’s look at each in turn.

Choosing or Setting Up a Python Environment
Throughout the book so far, I have recommended using a virtual Python environment to isolate the
software libraries your particular Pylons application will use from other Python software on the sys-
tem while developing your Pylons application.

Using a virtual environment is an extremely good way to deploy a Pylons application in a pro-
duction environment too, but there are alternatives, and it is worth being aware of them.

487

C H A P T E R 2 1

Using the System Python Environment
The most obvious option is to install your Pylons applications into the system Python environment.
If you want to have only one Pylons application running on the server, this is a great option. Because
there is only one Python environment, you avoid the need to worry about setting up the appropriate
paths, and you can be sure your Pylons application is always using the same libraries as every other
Python application on your system.

The disadvantages are that you need to have root access to install libraries and that any
changes to the system Python environment (such as platform security updates or another user
upgrading software) will also affect your Pylons application.

Platform Packages or Easy Install?
If you do decide to use the system Python environment, you are faced with another choice. Should
you use the versions of libraries packaged for your operating system or install them manually? As an
example, Pylons itself is available as a .deb file for Debian-based systems such as Ubuntu Hardy
Heron, which was used to generate the screenshots in this book. This means it can be installed to
the system Python environment with apt-get install python-pylons. By installing Pylons in this
way, you get certain benefits:

• Confidence that the software will be installed correctly for your platform

• Automatic installation of the dependencies

• The ability to easily uninstall

• An assurance from the particular platform package maintainer that if a security flaw is
found, an updated package will provided

• Binary versions of any dependencies with C or C++ extensions so that no compilation is
required

The big disadvantage is this:

• Your platform probably has a much slower release cycle than the packages your Pylons
applications depend on, so it is likely most of the software available is out-of-date. For
example, Hardy Heron uses Pylons 0.9.6.1, whereas this book already covers Pylons 0.9.7.

For this reason, it is usually better to install software to the system Python installation using
Easy Install and get the latest version of the software on which your application depends. If you
need to use Easy Install, you are probably much better off also using a virtual Python environment
anyway so that you can keep complete control over the software your application needs. This is why
for the vast majority of cases you should use a virtual Python environment.

Using Buildout
The virtualenv.py tool for setting up a virtual Python environment isn’t the only way to set up an
isolated Python sandbox. Another option is to use Buildout.

Buildout does a number of things:

• Creates a sandbox for your application

• Provides various recipes for managing common deployment tasks

• Manages the eggs your application depends on

CHAPTER 21 ■ DEPLOYMENT488

Buildout is interesting because it provides more than just an isolated Python environment. In
fact, it also replaces Easy Install, so you can’t easily use Buildout and Easy Install together.

Buildout comes from the Zope world and can be used for setting up any sort of environment
via plug-ins called recipes. This means Buildout can compile and install Apache, fetch your Python
dependencies, run a test suite, and start your application running. Buildout can also cache the eggs
it downloads, which can be handy if multiple applications share the same eggs or if you want to
provide some resilience against a particular egg dependency not being available the next time you
try to install your Pylons application.

The drawback of Buildout from a Pylons user perspective is that you already know how to do all
the things Buildout does but in other ways. For example, you can already isolate your Python envi-
ronment using a virtual Python environment, you can already install dependant packages using
Easy Install, and you can easily write your own shell scripts or Python programs to handle more
complex deployment or testing requirements. You can even download the required eggs to a cache.
Just use this command:

$ easy_install -zmaxd . "SimpleSite==0.3.0"

This will connect to the Internet and download SimpleSite and all of its dependencies to the
current directory, without installing anything. The -a option used here is short for --always-copy,
but this command does not copy eggs that are created in development mode (ones that have
tag_build=true set in the setup.cfg file), so you’ll still need to manually download any develop-
ment eggs your application requires.

If you are willing to invest some time learning Buildout and the recipes it uses, you’ll find it
works well, but since most Pylons developers use a virtual Python environment, you might find
Pylons-oriented Buildout documentation a bit thin on the ground. Having said that, you can always
read the main Buildout documentation at http://pypi.python.org/pypi/zc.buildout/1.1.1.

Setting Up a Virtual Python Environment
Although using the system Python environment has its benefits and Buildout is a useful tool, I’ll
assume you have decided to create a virtual Python environment. When deploying an applica-
tion, it is also usually a good idea to create a user for the application. In this chapter, you’ll
deploy the SimpleSite application you’ve been developing, so I’ll assume you’ve created a user
called simplesite with a home directory in /home/simplesite. To set up a virtual Python environ-
ment from scratch in an env directory in the simplesite user’s home directory, you would use
the following commands as the simplesite user. I like to keep any files I download in a directory
called download, so you’ll save the virtualenv-1.1.tar.gz file there:

$ mkdir /home/simplesite/download
$ cd /home/simplesite/download
$ wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.1.tar.gz
$ tar zxfv virtualenv-1.1.tar.gz
$ cp virtualenv-1.1/virtualenv.py ./

You can now remove the old files if you like:

$ rm -r virtualenv-1.1

Now create the virtual Python environment, ignoring packages installed in the system Python:

$ cd /home/simplesite/
$ python2.5 download/virtualenv.py --no-site-packages env

The virtual Python environment is now in /home/simplesite/env.

CHAPTER 21 ■ DEPLOYMENT 489

■Tip You should always check the virtual Python page on the Python Package Index to see whether there is a
more recent release. In particular, virtualenv 1.1 doesn’t support Python 2.6 properly, so if you want to use Python
2.6, keep a lookout for a more recent version.

Dealing with Activate
You’ll recall from Chapter 2 that one way of using a virtual Python environment is to use the
activate script (or activate.bat on Windows) to automatically modify the PATH environment vari-
ables in the shell you are working in. This setup means the commands you type such as paster,
python, and easy_install will result in the virtual Python environment copies being executed
rather than the system Python environment’s versions. If you are used to working in an activated
virtual Python environment like this, it is easy to forget that the scripts in the virtual Python envi-
ronment’s bin directory can be executed equally well outside the activated shell just by specifying
their full paths.

For example, if you had set up a virtual Python environment in /home/simplesite/env, the fol-
lowing commands would work perfectly well from anywhere:

$ /home/simplesite/env/bin/python
$ /home/simplesite/env/bin/easy_install "SimpleSite==0.3.0"

When you are deploying an application, you frequently need to run the previous scripts and
programs from cron jobs, CGI scripts, or other locations. In such situations, rather than trying to
run activate first or modify the PATH, just specify the full path to the executable you are trying
to execute, and everything will work as easily as it would if you were running commands from the
system Python’s installation.

Installing the Required Software into
the Environment
Now that you have a fresh, clean virtual Python environment, you need to install the software you
want to deploy into it. You can do this in a number of ways that you have already been using
throughout the book:

$ /home/simplesite/env/bin/easy_install "SimpleSite==0.3.0"
$ /home/simplesite/env/bin/easy_install SimpleSite-0.3.0-py2.5.egg -f /path/to/eggs
$ cd /path/to/SimpleSite; ~/env/bin/python setup.py develop

In the first example, the SimpleSite egg and all its dependencies would be fetched and installed
from the Python Package Index (or any of the links you specified as metadata in the setup.py file, as
you learned in Chapter 19). The second example demonstrates how to install a specific egg that you
have created yourself. Once again, the dependencies will be matched from the Python Package
Index, the links in the egg’s setup.py file, or, this time, the eggs in the /path/to/eggs directory. The
second approach is useful if your project uses some custom modules that aren’t publicly distrib-
uted. The final example demonstrates how to set up the source code in develop mode, as you have
done throughout most of the book. Once again, the dependencies will be matched from the Python
Package Index or any of the links in the project’s setup.py file.

Which method you choose is entirely up to you, but bear in mind that for a production deploy-
ment you probably want to be absolutely sure of the version you are using, so you will probably

CHAPTER 21 ■ DEPLOYMENT490

want to use one of the first two methods. If you were to use the third method, you might be tempted
to modify the code in the SimpleSite directory in the event of a problem when really you should fix
the problem, change the version number, make a release, and deploy the new version to the virtual
Python environment.

Creating a Config File for the Application
Once the application and all its dependencies are installed, you’ll need to create a config file for
your application. Ideally, you will have designed your application in such a way that any configura-
tion that needs to be done to deploy the application happens in the config file. The user shouldn’t
have to edit any Python code within your application since it is now packaged up into the egg and
not easily accessible.

You’ll remember from the “Customizing the Production Config File Template” section of
Chapter 19 that Pylons has a tool to automatically generate a config file for an application from the
deployment.ini_tmpl template in the project’s config directory. That tool is the paster make-config
command.

Create a skeleton config file for your application instance called production.ini:

$ /home/simplesite/env/bin/paster make-config "SimpleSite==0.3.0" production.ini

Once the production.ini file is created, you can customize it for your particular deployment.
In particular, you’ll want to ensure the debug option in [app:main] is set to false. You should also
customize the secret for the AuthKit cookie, specify an appropriate DSN in the sqlalchemy_url, and
change any other options you need to configure such as the error-reporting options.

One thing to bear in mind is that with the debug option set to false and the error reporting
configured correctly, Pylons will e-mail an error report for every request during which an error
occurs. If you have a very busy site and a serious problem occurs, your e-mail address could be
swamped by e-mails. If you choose an address you don’t check very often, you might miss
important error reports, so choose an appropriate e-mail address, but be aware of the risks.

■Tip The paster make-config command doesn’t actually require the software you are creating a config file
for to be installed. As long as a recent version of Paste is installed, the command will automatically install all the
software you require from the Python Package Index before creating the config file.

Setting Up the Application Instance
Once you have installed the Pylons application and created a config file with the paster make-app
command, you can set up the configured application. You’ve seen how to do this quite a few times
now. You simply run the following command, specifying the config file you want to set up, which in
this case is production.ini:

$ /home/simplesite/env/bin/paster setup-app production.ini

This will run the code in the application’s websetup.py file using the configuration options
you’ve specified in the config file. In this case, it will set up all the tables and data you need for an
empty website in the database specified by the sqlalchemy_url configuration option. You can then
access the Pylons interactive shell with this command:

$ /home/simplesite/env/bin/paster --plugin=pylons shell production.ini

CHAPTER 21 ■ DEPLOYMENT 491

Serving the Application from the
Installed Environment
Once the application and all its dependencies are installed into the environment and the applica-
tion has been set up, you are ready to serve the application.

Once again, there are many options for how to serve your application. Because a configured
Pylons application is also a WSGI application, Pylons applications will run on any WSGI server, as
you learned in Chapter 16.

Deploying a Pylons application involves obtaining a WSGI application based on the config-
uration in the config file. You learned how to do this manually with the Paste Deploy loadapp()
function in Chapter 17.

Rather than discuss all the options here, I’ll first show how to choose a deployment option and
then show two examples of different techniques for deploying a Pylons application via Apache—
one as an example of embedding a Pylons application with mod_wsgi and the other an example of
using the Paste HTTP server proxied to by an Apache web server and monitored with a simple cron
script.

As a test, though, you can run your application using the Paste HTTP server you are used to
using for serving development instances of your application:

$ /home/simplesite/env/bin/paster serve production.ini

Notice that you didn’t use the --reload option this time.

■Caution As was explained in Chapter 4, it is important that you remember to disable the interactive debugger
for production deployment. If it is enabled and an error occurs, the visitor will be presented with the same debug-
ging interface you have used and may be able to cause serious harm to your application by doing things such as
deleting files, changing data in your database, or worse.

Deployment Options
Pylons applications are designed to be run in a multithreaded environment. This means they are
loaded into memory once when the server is started, and on each request a new thread is started.
Simply put, threading allows the same code to be executed in parallel to handle different requests,
with each thread in turn getting a portion of the CPU time until it has finished executing.

The advantage of the threaded approach is clear. Since most requests take at least a few milli-
seconds, there is no point in waiting for one request to finish before starting the next because most
of the time the Pylons application will be waiting for data, either from the network, the filesystem,
the database, or elsewhere; so, handling multiple requests at the same time using threads is much
more efficient because while one thread is waiting for network or database information, the others
can be performing useful processing. Handling multiple threads at once in this way is called multi-
threading.

An alternative approach is to have multiple Pylons applications running at once as different
processes and then pass each new request to one of the running Pylons processes. This approach
is called a multiprocess approach. Although this takes a lot more memory (since you are running
more copies of Pylons), it is arguably more reliable because if one Pylons application has a seri-
ous crash, the others will still be available to serve requests. In a multithreaded environment, if

CHAPTER 21 ■ DEPLOYMENT492

one Pylons application were to crash badly, no more requests could be served. Luckily, Pylons is
designed to handle problems within individual threads so is highly unlikely to fail in such a way
as to prevent other threads from serving requests; therefore, most people stick with a multi-
threaded environment.

One drawback of the multiprocess approach is that you can’t directly share information
between requests. For example, if your application used the counter example from Chapter 3 where
the number of requests was stored in the app_globals object and you were to run the application as
two separate processes, each would have their own counter. You can’t share data via the app_globals
object in a multiprocess environment, but you can in a multithreaded environment.

Of course, nothing is stopping you from setting up multiple Pylons processes, each of which
can handle multiple threads, as long as you haven’t written any complex code that relies on infor-
mation in the Pylons app_globals object being available.

You could also deploy your Pylons application as a CGI script using the run_with_cgi() exam-
ple you saw in Chapter 16. As was mentioned in that chapter, though, doing so is very inefficient
because handling each request would involve loading the entire app into memory including Python
itself and all the required libraries, setting up the middleware stack, handling the one request, and
then unloading everything again. For this reason, deploying a Pylons application as a CGI script is
not recommended.

It is also possible to run Pylons on an asynchronous server, although I’ve never done so. In
practice, this would offer few advantages over multithreading because Pylons itself is not set up for
asynchronous use.

The different ways of getting a Pylons application integrated into another server broadly fall
into two camps: embedding and proxying.

Embedding
By using a tool such as mod_wsgi or mod_python, you can directly embed a Python interpreter
running your Pylons application into the server. If you are used to a particular server architecture,
this can be very useful because the Pylons application effectively becomes part of the server itself.
The drawback of this approach is that it can be difficult to debug problems because it isn’t always
clear whether the problem is with a Pylons application, the server setup, or the way the WSGI
adaptor is working.

To embed the Pylons application into a server, you usually need to gain access to the actual
WSGI object. You can do so like this:

#!/home/simplesite/env/bin/python

from paste.deploy import loadapp
wsgi_app = loadapp('config:/home/simplesite/production.ini')

Because you aren’t serving the application directly, you don’t need to specify any settings in the
[server:main] section of the config file because servers other than the Paste HTTP server don’t cur-
rently understand them. Instead, you would configure settings such as the port and the host in your
server’s configuration.

Another issue when embedding a Pylons application into another server is that you have to
ensure that the Python interpreter that serves the application has access to all the libraries in your
virtual Python environment. How this is configured would depend on your server. Later in the
chapter you’ll look at the specific case of using mod_wsgi to embed a Pylons application in Apache.

CHAPTER 21 ■ DEPLOYMENT 493

Proxying
An alternative approach is to serve the Pylons application with a Python server such as the Paste
HTTP server and then proxy requests from your main server to the server running the Pylons appli-
cation. Paste supports a variety of protocols including HTTP and FastCGI, and has a range of
threading options. The advantage of this approach is that you have complete control over your
Pylons application but get the added security of using a more security-hardened server such as
Apache for the Internet-facing side of the setup.

To set this up, you simply specify the settings you want to use in the [server:main] section of
the config file and start the paster server as usual with the paster serve command, making sure to
use the paster script from the virtual environment you want to serve the application from. You
would ordinarily also change the port to one that was not already in use, such as 8080.

You would then configure the main server to proxy requests from port 80 on the public-facing
Internet to port 8080 on the local machine where the Paste HTTP server will handle the request.
You’ll see how to do this with Apache later in the chapter, although you can also easily use Lighttpd
or Nginx, both of which are good choices.

Using Apache to Proxy Requests to Pylons
Let’s start by looking at a proxying setup. This is a very good way of setting up a Pylons application
because it puts you in complete control of the process.

First you’ll need to install Apache 2, mod_proxy, and mod_proxy_http. Most platforms will
automatically have mod_proxy and mod_proxy_http with the standard Apache installation, but
you may need to enable them:

$ sudo a2enmod proxy
$ sudo a2enmod proxy_http

Once Apache is installed, you can add a new virtual host. A suitable configuration for the
SimpleSite application you’ve been developing might look like this:

<VirtualHost *>
ServerName www.pylonsbook.com
ServerAlias pylonsbook.com

Logfiles
ErrorLog /home/simplesite/log/error.log
CustomLog /home/simplesite/log/access.log combined

Proxy
ProxyPass / http://localhost:8080/ retry=5
ProxyPassReverse / http://localhost:8080/
ProxyPreserveHost On
<Proxy *>

Order deny,allow
Allow from all

</Proxy>
</VirtualHost>

You’ll need to replace pylonsbook.com with the domain name that will host your Pylons project,
create the directory you would like the error logs to be held in, and then save the config file as
/etc/apache2/sites-available/simplesite or in the equivalent location for your platform.

The ProxyPass directive tells Apache to forward any requests that have a URL starting with /
(that is, all requests) to a server running on port 8080 on the local machine. Notice that you’ve set

CHAPTER 21 ■ DEPLOYMENT494

the retry timeout to 5 seconds so that Apache tries to connect every 5 seconds if the Pylons appli-
cation is restarted rather than the default of 60 seconds.

■Tip Retry timeout customization is particularly useful because the default is 60 seconds, which means that
Apache will show an error page for 60 seconds if any connection to the Paste HTTP server failed, including when
you restart the server. This issue is easily avoided by setting the retry option to a smaller number, but you can do
this only on versions of Apache newer than 2.2.

Next, you need to start the Pylons application. Apache is set up to proxy to a server on port
8080, so check that the production.ini config file sets the port to 8080 in the [server:main] section
and that the debug setting is false.

Because you want the Pylons server to remain running after you have exited from the shell you
started it in, you use a slightly different version of the paster serve command, which looks like this:

$ /home/simplesite/env/bin/paster serve --daemon production.ini start

You’ll see the message Entering daemon mode, and then you’ll be returned to the shell.

■Tip Daemon mode isn’t supported on Windows, but instead you can run your Pylons application as a Windows
service. The “Deployment on Windows” section later in the chapter contains a link that will show you how.

Now that the Pylons application is running in production mode, you are ready to enable the
virtual host in Apache, disable the default configuration and enable simplesite:

$ sudo a2dissite default
$ sudo a2ensite simplesite

You will need to restart Apache for the changes to take effect:

$ sudo /etc/init.d/apache2 restart

Now you are ready to test your application. Make sure you have created the log directory and
then if you visit the external domain for your application, http://pylonsbook.com in the example,
you should see your application running. If not, check the Apache error logs and check that the
paster server is actually running by visiting the application running on port 8080; in our example,
this would be http://pylonsbook.com:8080 but on your local machine this would be http://
localhost:8080. If the application doesn’t appear on port 8080 either, check that you have set the
correct port in your production.ini file, and check that you are serving the production.ini file and
not a different file by mistake. Finally, you can check the paster server is running with the following
command, which lists all running processes on your system and then displays only those with
paster somewhere in the results:

$ ps aux | grep paster

Once the application is running correctly, you should consider setting up a firewall so that the
Paste HTTP server cannot be accessed directly on the Internet on port 8080 because your applica-
tion expects to have requests proxied from port 80.

Although the example here uses only one Paste HTTP server, you could also set up a whole
range of them, each running on different ports. You can then set up Apache to proxy different
requests to different servers so that the load can be shared between the different processes. If you
are running on a multicode processor, this is one way to ensure all the cores are used effectively.

CHAPTER 21 ■ DEPLOYMENT 495

Setting Up Log Files
For running a Pylons application in a production environment, you might also want the paster
serve script to log error messages. You can specify a file to log to using the --log-file option. You
might also want to store the process ID of the running server in a file so that other tools know which
server is running; this is done with the --pid-file option. Here’s what the full command might look
like:

$ /home/simplesite/env/bin/paster serve --daemon ➥
--pid-file=/home/simplesite/simplesite.pid ➥
--log-file=/home/simplesite/log/paster-simplesite.log production.ini start

As well as specifying start, you can use a similar command with stop or restart to stop or
restart the running daemon, respectively.

Of course, as well as relying on the Apache and Paste HTTP server logs, you can also use any of
the techniques you learned about in Chapter 20 to set up application logs to log messages to files in
the log directory.

Creating init Scripts
Now that the Pylons application is successfully running, you might want to add a script to ensure
the Pylons application is correctly started and stopped when the server is turned on, rebooted, or
shut down. Here’s a simple script named simplesite to achieve this:

#!/bin/sh -e

cd /home/simplesite/
case "$1" in
start)
/home/simplesite/env/bin/paster serve --daemon ➥

--pid-file=/home/simplesite/simplesite.pid ➥
--log-file=/home/simplesite/simplesite.log /home/simplesite/production.ini start

;;
stop)
/home/simplesite/env/bin/paster serve --daemon ➥

--pid-file=/home/simplesite/simplesite.pid ➥
--log-file=/home/simplesite/simplesite.log /home/simplesite/production.ini stop

;;
restart)
/home/simplesite/env/bin/paster serve --daemon ➥

--pid-file=/home/simplesite/simplesite.pid ➥
--log-file=/home/simplesite/simplesite.log /home/simplesite/production.ini restart

;;
force-reload)
/home/simplesite/env/bin/paster serve --daemon ➥

--pid-file=/home/simplesite/simplesite.pid ➥
--log-file=/home/simplesite/simplesite.log /home/simplesite/production.ini restart

/etc/init.d/apache2 restart
;;

*)
echo $"Usage: $0 {start|stop|restart|force-reload}"
exit 1

esac

exit 0

CHAPTER 21 ■ DEPLOYMENT496

Notice that the force-reload option also restarts Apache. The way you would install this script
varies from platform to platform. On Debian-based systems, you would install it like this:

$ sudo cp simplesite /etc/init.d/simplesite
$ sudo chmod o+x /etc/init.d/simplesite
$ sudo /usr/sbin/update-rc.d -f simplesite defaults
Adding system startup for /etc/init.d/simplesite ...
/etc/rc0.d/K20simplesite -> ../init.d/simplesite
/etc/rc1.d/K20simplesite -> ../init.d/simplesite
/etc/rc6.d/K20simplesite -> ../init.d/simplesite
/etc/rc2.d/S20simplesite -> ../init.d/simplesite
/etc/rc3.d/S20simplesite -> ../init.d/simplesite
/etc/rc4.d/S20simplesite -> ../init.d/simplesite
/etc/rc5.d/S20simplesite -> ../init.d/simplesite

This adds the simplesite script to the different run levels so that it will be started automatically
when the system starts.

You can now start, restart, and stop the Pylons application with the following commands:

$ sudo /etc/init.d/simplesite start
$ sudo /etc/init.d/simplesite restart
$ sudo /etc/init.d/simplesite stop

Restarting Stopped Applications
If for any reason the Paste HTTP server daemon running your Pylons application should unexpect-
edly die (not that it ever should), you will want a way to restart it. Many tools are available to
monitor and restart processes including daemontools (http://cr.yp.to/daemontools.html) and
Supervisor (http://supervisord.org/). These are documented in the Pylons Cookbook.

For many situations, the simplest approach is simply to use a cron job to attempt to start the
Paste HTTP server daemon every couple of minutes. If it is already running, the request is ignored;
otherwise, the server is started. Edit the root crontab like this:

$ sudo crontab -e

Then add this line to check every two minutes:

m h dom mon dow command
*/2 * * * * /etc/init.d/simplesite start

Although this isn’t the most elegant approach, it does work surprisingly well and is a lot less
hassle to set up than more advanced monitoring tools. Of course, for more sophisticated setups,
a more sophisticated monitoring and restart strategy is required.

Embedding Pylons in Apache with mod_wsgi
Now that you’ve seen an example of how to proxy to the Paste HTTP server to run a Pylons applica-
tion, I’ll show you an example of a different approach. In this section, you’ll embed the Pylons
application directly into Apache with mod_wsgi, which is well documented at http://code.google.
com/p/modwsgi/. There is also a user group at http://groups.google.com/group/modwsgi if you have
any problems.

Since mod_wsgi is relatively new, not all platforms will have a binary package that can be easily
installed, so in this section you’ll learn how to compile it from scratch. The mod_wsgi package can
be compiled for and used with either Apache 1.3, 2.0, or 2.2 on Unix systems (including Linux), as
well as with Windows. Either the single-threaded prefork or multithreaded worker Apache MPMs
can be used when running on Unix and Linux; in this section, you’ll use the worker MPM. If you are

CHAPTER 21 ■ DEPLOYMENT 497

using Windows, you can skip the compilation steps and download the appropriate binary for your
version of Python from http://code.google.com/p/modwsgi/wiki/InstallationOnWindows.

First make sure you have all the required packages. On Ubuntu Hardy Heron you will need at
least the following:

$ sudo apt-get install build-essential python2.5-dev
$ sudo apt-get install apache2 apache2-mpm-worker apache2-utils apache2-threaded-dev

Whichever way you’ve installed Apache, check it has the worker:

$ apache2 -l
Compiled in modules:
core.c
mod_log_config.c
mod_logio.c
worker.c
http_core.c
mod_so.c

You are now ready to download and build mod_wsgi. At the time of writing, the latest version is
2.3, which you can download and build on Unix-based systems like this. Here I’m using Python 2.5,
but you can create a version for a different version of Python if you prefer:

$ wget http://modwsgi.googlecode.com/files/mod_wsgi-2.3.tar.gz
$ tar zxfv mod_wsgi-2.3.tar.gz
$ cd mod_wsgi-2.3
$./configure --with-python=/usr/bin/python2.5
$ make

Check that it can share the Python library by looking for libpython2.5.so in the output from
the following commands:

$ cd .libs
$ ldd mod_wsgi.so | grep python2.5

libpython2.5.so.1.0 => /usr/lib/libpython2.5.so.1.0 (0x00002b081a2e1000)

You can then install it:

$ cd ../
$ sudo make install

With mod_wsgi installed, you’ll need to enable it so that Apache can use it. Create an
/etc/apache2/mods-available/wsgi.load file with the following content:

LoadModule wsgi_module /usr/lib/apache2/modules/mod_wsgi.so

Now enable the mod_wsgi module:

$ sudo a2enmod wsgi

At this point, mod_wsgi is installed. To make debugging Apache easier, it is useful to set the log
level to info so that you get all the mod_wsgi information. You do this by adding the following line
to Apache’s httpd.conf:

LogLevel info

You’ll need to restart Apache:

$ sudo /etc/init.d/apache2 restart

Check the error logs to ensure mod_wsgi has loaded:

$ cat /var/log/apache2/error.log | grep wsgi

CHAPTER 21 ■ DEPLOYMENT498

Then when you restart, you see the following:

[Sun Jun 29 04:54:44 2008] [info] mod_wsgi: Initializing Python.
[Sun Jun 29 04:54:44 2008] [info] mod_wsgi (pid=4237): Attach interpreter ''.
[Sun Jun 29 04:54:44 2008] [info] mod_wsgi (pid=4239): Attach interpreter ''.
[Sun Jun 29 04:54:44 2008] [notice] Apache/2.2.8 (Ubuntu) ➥
mod_wsgi/2.3 Python/2.5.2 configured -- resuming normal operations

Setting Up a Virtual Host
Now that mod_wsgi is installed, you’ll need to create a virtual host. Create a new file called
/etc/apache2/sites-available/simplesite_mod_wsgi with the following content:

<VirtualHost *>
ServerName www.pylonsbook.com
ServerAlias pylonsbook.com

Logfiles
ErrorLog /home/simplesite/log/error.log
CustomLog /home/simplesite/log/access.log combined

Setup mod_wsgi
WSGIScriptAlias / /home/simplesite/mod_wsgi/dispatch.wsgi

<Directory /home/simplesite/mod_wsgi>
Order deny,allow
Allow from all
</Directory>

</VirtualHost>

Once again, you’ll need to replace pylonsbook.com with the domain name that will host your
Pylons project. In the example, you are using the same log directory as for the proxy example, but
you can change that if you want.

The WSGIScriptAlias directive tells mod_wsgi that all requests to the root of your application
should be handled by the /home/simplesite/mod_wsgi/dispatch.wsgi script. Create the /home/
simplesite/mod_wsgi directory, and add the dispatch.wsgi file with the following content:

Add the virtual Python environment site-packages directory to the path
import site
site.addsitedir('/home/simplesite/env/lib/python2.5/site-packages')

Avoid ``[Errno 13] Permission denied: '/var/www/.python-eggs'`` messages
import os
os.environ['PYTHON_EGG_CACHE'] = '/home/simplesite/egg-cache'

Load the Pylons application
from paste.deploy import loadapp
application = loadapp('config:/home/simplesite/production.ini')

A few things are going on in this script. The virtual Python environment’s site-packages
directory is added to the Pylons path so that mod_wsgi can find all the libraries you need. You
used site.addsitedir() rather than the more usual sys.path.append() so that eggs listed in the
.pth files set up by Easy Install are also added to the path.

Your Pylons application will actually be run as the Apache user, and occasionally mod_wsgi will
need to unpack some of the eggs your Pylons application uses. The location it should unpack them

CHAPTER 21 ■ DEPLOYMENT 499

to can be customized by setting the PYTHON_EGG_CACHE environment variable, which you first saw in
Chapter 2. In this case, the example uses the directory /home/simplesite/egg-cache, so you should
create that directory and ensure that the Apache user has permission to read and write to it. If you
see a pkg_resources.ExtractionError, which starts with “Can't extract file(s) to egg cache”, it means
that you haven't specified your egg cache directory correctly or that Apache doesn't have the appro-
priate permissions to that directory. Apache will also need access to your data directory. The easiest
way of setting up the appropriate permissions is to add the Apache user to the simplesite group
and then grant group write permission to the egg-cache and data directories so that Apache can
write to them. On Ubuntu Hardy you do so like this:

$ sudo usermod -a -G simplesite www-data
$ mkdir /home/simplesite/egg-cache
$ chmod g+w /home/simplesite/egg-cache
$ chmod g+w /home/simplesite/data

Most developers would choose MySQL or PostgreSQL for a production system but if you are
using SQLite as a database bear in mind that mod_wsgi will require write access to the directory
containing the database. This means you will have to create a new directory for SQLite, give the
Apache user access to it and modify the path in the production.ini file.

The final part of the dispatch.wsgi script uses Paste Deploy to load the Pylons WSGI applica-
tion object from the config file in the way you learned about in Chapter 17. mod_wsgi knows to look
for an object called application in the dispatch script, and it uses this (the Pylons application) to
serve the requests.

Now that the virtual host configuration is in place and you’ve written dispatch.wsgi, you can
test the application. First you’ll need to enable the virtual host:

$ sudo a2dissite simplesite
$ sudo a2ensite simplesite_mod_wsgi

Then you will need to restart Apache for the changes to take effect:

$ sudo /etc/init.d/apache2 restart

If you visit your web site, you should now see the finished SimpleSite application being cor-
rectly served by mod_wsgi, as shown in Figure 21-1.

CHAPTER 21 ■ DEPLOYMENT500

Figure 21-1. The finished SimpleSite application deployed with Apache and mod_wsgi

Troubleshooting
If you have problems with mod_wsgi, the first thing you should do is look at the error logs in both
the /home/simplesite/log directory and the main Apache error log. Messages from mod_wsgi
should be logged. If the problem isn’t obvious, try replacing the dispatch.wsgi script with this test
script, and make sure it works properly:

def application(environ, start_response):
status = '200 OK'
output = 'Hello World!'

response_headers = [('Content-type', 'text/plain'),
('Content-Length', str(len(output)))]

start_response(status, response_headers)

return [output]

You will need to restart Apache any time you make a change to any code or to the
production.ini or dispatch.wsgi files. This is because once an application is loaded into memory,
mod_wsgi uses the same application to serve each request so you need to force Apache to recreate
the application before your changes will take effect. If you replace the dispatch.wsgi file, restart
Apache and visit the site, you should be greeted with “Hello World!” Once this works correctly, you
can try with Pylons once again.

One thing that often catches people out when using mod_wsgi with Pylons is that the Pylons
interactive debugger cannot be used with mod_wsgi. If you try to use it, you will get an error like
this:

CHAPTER 21 ■ DEPLOYMENT 501

AssertionError: The EvalException middleware is not usable in a multi-process ➥
environment

You should set the debug option to false to disable the interactive debugger, and then your
Pylons application will work.

If you still have problems, you should read the detailed documentation on the
http://code.google.com/p/modwsgi/ site or ask a question on the mailing list.

Deployment on Windows
Pylons can also be deployed on Windows systems. The easiest approach is simply to use the
Windows ports of all the software you would usually use with Pylons under Linux. For example,
Apache, MySQL, and PostgreSQL all have good-quality versions available for the Windows plat-
form. Pylons and its dependencies run equally well on Windows as on other platforms as long as
you use Python 2.4 or newer.

If you want to do things in a more Windows-specific way, you can use one of two approaches
that Pylons users have used in the past. The first involves setting up the Paste HTTP server as a Win-
dows service. This is documented in the Pylons Cookbook at http://wiki.pylonshq.com/
display/pylonscookbook/How+to+run+Pylons+as+a+Windows+service. You will need to install
pywin32 from https://sourceforge.net/projects/pywin32/ to use this approach.

The second approach is to serve a Pylons application from IIS, and although this is signifi-
cantly more complicated, the process is fully documented at
http://wiki.pylonshq.com/display/pylonscookbook/Serving+a+Pylons+app+with+IIS.

A final approach is a bit of a compromise, but if you are installing Pylons on a Windows
machine purely because your company’s infrastructure is Windows-based, you could consider
using a virtualization technology such as VMware to run an entire Linux instance on a Windows
server.

Summary
You should now have a solid understanding of how to deploy your Pylons applications. With
the information you have gathered throughout this entire book, you should now be ready to
design, develop, and deploy your own Pylon applications! I hope you've found this book to be
useful guide to web development with Pylons. I'd encourage you to get involved in the Pylons
community by contributing to the discussions on the mailing list or on IRC or by writing new
articles for the Pylons cookbook. Whatever you intend to use Pylons for, whether it is a simple
site like the one developed in the book or a popular service like http://reddit.com, I wish
you all the very best in your endeavors.

CHAPTER 21 ■ DEPLOYMENT502

Licenses

This appendix gives the full text of each license that applies to the content in this book. The GNU
Free Documentation License applies to all content. The Pylons License applies to the examples that
are based on ones in the Pylons documentation. The YUI license applies to the YUI source files you
will include as part of the SimpleSite example code and YUI documentation quoted in Chapter 15.

GNU Free Documentation License
sourcecode:: text

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistrib-
ute it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must them-
selves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We recom-
mend this License principally for works whose purpose is instruction or reference.

503

A P P E N D I X

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-
tions stated herein. The “Document”, below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distrib-
ute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that over-
all subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not “Transpar-
ent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, “Title Page” means the text near the most promi-
nent appearance of the work’s title, preceding the beginning of the body of the text.

APPENDIX ■ LICENSES504

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedica-
tions”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2.VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Docu-
ment, numbering more than 100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly
identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the covers in addi-
tion. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably pru-
dent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

APPENDIX ■ LICENSES 505

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of
the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transpar-
ent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four years before the Docu-
ment itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the sec-
tion, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

APPENDIX ■ LICENSES506

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same cover, previously added
by you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents, unmodified, and list them all as
Invariant Sections of your combined work in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original docu-
ments, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowl-
edgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verba-
tim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

APPENDIX ■ LICENSES 507

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copy-
right resulting from the compilation is not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a transla-
tion of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does not
specify a version number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

APPENDIX ■ LICENSES508

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software Foun-
dation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Pylons License
Note: This license applies to Pylons itself, not to its dependencies. Please check the licenses of the
dependencies separately.

Copyright (c) 2005-2008 Ben Bangert, James Gardner, Philip Jenvey and contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The name of the author or contributors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS’’ AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

APPENDIX ■ LICENSES 509

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

ALL TEMPLATES GENERATED ARE COVERED UNDER THE
FOLLOWING LICENSE:
Copyright (c) 2005-2008 Ben Bangert, James Gardner, Philip Jenvey and contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following condition is met:

The name of the author or contributors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

YUI License
Software License Agreement (BSD License)

Copyright (c) 2008, Yahoo! Inc.

All rights reserved.

Redistribution and use of this software in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Neither the name of Yahoo! Inc. nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission of
Yahoo! Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

APPENDIX ■ LICENSES510

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sources of Intellectual Property Included in the YUI Library

YUI is issued by Yahoo! under the BSD license above. Below is a list of certain publicly available soft-
ware that is the source of intellectual property in YUI, along with the licensing terms that pertain to
thosesources of IP. This list is for informational purposes only and is not intended to represent an
exhaustive list of third party contributions to the YUI.

• Douglas Crockford’s JSON parsing and stringifying methods: In the JSON Utility, Douglas
Crockford’s JSON parsing and stringifying methods are adapted from work published at
JSON.org. The adapted work is in the public domain.

• Robert Penner’s animation-easing algorithms: In the Animation Utility, YUI makes use of
Robert Penner’s algorithms for easing.

• Geoff Stearns’s SWFObject: In the Charts Control and the Uploader, YUI makes use of Geoff
Stearns’s SWFObject v1.5 for Flash Player detection and embedding. More information on
SWFObject can be found here (http://blog.deconcept.com/swfobject/). SWFObject is (c)
2007 Geoff Stearns and is released under the MIT License (http://www.opensource.org/
licenses/mit-license.php).

APPENDIX ■ LICENSES 511

■Symbols
__after__() method, 199
@authorize decorator, 421–422
\ (back slash), in Mako, 68
before() method, 198, 416–417
.build directory, 272
characters, for comments, 67
${} construct, for templates, 63, 67
<%def> blocks (Mako), 76–77, 81
<%doc> tag, 67
#document element, 350
<form > tag

action attribute, 91
method attribute, 93

/ (forward slash), template paths and, 64
I18N abbreviation, 227
<%inherit> tag, 92
init() method, to set up classes, 150
init.py file, 38
@jsonify decorator, 361
L10N abbreviation, 227
\n (line-end) character (Unix), 27
<%namespace> tag (Mako), 80–81
| operator (Mako), 75–76
.pager() template, variables to use as arguments

in, 188
\ (path separator) character (Windows), 27
/ (path separator) character (Linux and Mac OS

X), 27
.po (portable object) file, 229
.pot (portable object template) file, 229
—reload option (Paste HTTP server), 55
—reload switch, starting server with, 166
repr method, 150
@restrict decorator, 181
\r\n (line-end) character (Windows), 27
<%text> tag, 67
-U flag for commands, 21
_() function, 228–230
_ (underscore) character, 66, 415
@validate decorator, 103, 111–112
0.0.0.0 IP address, 36
127.0.0.1 IP address, 36
301 redirect to URL, 206
401 status code, 418
403 error document, 418, 437, 448– 449
404 Not Found page

generation of, 445–446
SimpleSite and, 447–449

■A
abbreviations for internationalization and

localization, 227
abort object, 47
abort() function, 178, 412
accessing objects

programmatically, 401–402
that aren’t thread-safe, 294

AccountController class, 439
action attribute of <form > tag, 91
actions, description of, 6, 38
activate (activate.bat) script, 31, 490
activating virtual Python environment, 18–19
add_fallback() function, 239–240
__after__() method, 199
Ajax

description of, 325
JSON, 361–364
requests, debugging, 58, 360–361
SimpleSite and, 356–360

Amazon S3, storing data in, 129–130
And permission class, 426
animation, adding to flash message, 354–356
anonymous functions (JavaScript), 343
Apache, proxying approach with

init scripts, creating, 496–497
log files, setting up, 496
overview of, 494–495
restarting stopped applications, 497

appconfig() function, 402
Apple Mac OS X, installation on, 24
application component (WSGI)

as class instances, 371–372
overview of, 370–371
as Pylons controllers, 372–374

application directory structure of project, 37–38
application logs, server logs compared to,

471–472
application state, 404
applications

See also SimpleSite application
composite, 395–396
configuring, 51–52
constructing, Paste Deploy and, 394–395
creating

loading environment, 405
middleware chain, 406–407
with Paste Deploy, 402–403
PylonsApp instance, 406

developing on Windows, 27–28

Index

513

embedding into server
mod_wsgi tool, using, 497–502
overview of, 493

restarting stopped, 497
serving from installed environment, 492
WSGI, accessing programmatically, 401–402

app_globals object, 50–51
architecture

See also Object-Relational API
egg entry points, websetup.py and, 391–392
history of, 390
SQLAlchemy

Declarative API, 160–162
Engine API, 136–138
Metadata and Type APIs, 138–141
overview of, 135–136
SQL Expression API, 141–146

arguments used for sessions (SQLAlchemy),
152–153

Array type (JavaScript), 338
ASCII character set, 217
assert keyword, 248
assigning template variables using context c

global, 65–66
Asynchronous JavaScript and XML. See Ajax
attributes

of c object, 49
of request object, 44–45

attrs argument, form helpers and, 97
augmentation, 348
authentication

See also AuthKit
overview of, 415
security of

encrypting passwords, 431–432
SSL, 429–431

authentication middleware (AuthKit)
configuring, 419–421
setting up, 418–419

AuthKit
alternative authentication methods, 427–428
authentication middleware

configuring, 419–421
setting up, 418–419

authorization and, 421
authorization middleware, 422–423
@authorize decorator, 421–422
authorized() function, 423
components of, 417
controllers, protecting, 424
cookie-handling code, 427
description of, 417
drivers, 426
functional testing for controllers, 428
group functionality, 425
log messages and, 484
permission objects, @authorize decorator,

421–422

SimpleSite and
changing templates based on

permissions, 438
controller actions, protecting, 436–438,

443–444
middleware, setting up, 433–434
signing in and out, 439–440
styling sign-in screen, 441–442
User Management API, 445
websetup.py, adjusting, 434–436

source code, as basis for customization, 418
SQLAlchemy driver, 434

authkit.cookie.signoutpath option, 421
authorization

See also AuthKit
groups, roles, and, 424–426
overview of, 415
restricting access using _before_() method,

416–417
authorization middleware (AuthKit), 422–423
authorized() function (AuthKit), 423, 438
autodoc extensions (Sphinx), 276

■B
Babel extractors, 236–237
Babel, using, 230–232
back slash (\), in Mako, 68
Bangert, Ben, 390
base controller for SimpleSite, role of, 176–177
base template for SimpleSite, creating, 169
base/index.html file, <body > part of, 332
BaseController class, 176, 372
Beaker package

caching functionality, 87
description of, 29
session handling and, 190
sessions, 152

Becker, Joe, 218
BEGIN keyword (SQLAlchemy), 154
best practice for Routes use, 209–211
bin directory, 31
binary numbers, 217
bit, 217
bleeding edge, working on, 22
body() def (Mako), 81
Boolean data type (JavaScript), 341
boto package, 130
breadcrumbs for SimpleSite, 319–321
browser CSS, resetting, 326–327
browser detection, feature detection compared

to, 354
browsers

event handling in, 352–353
Internet Explorer 6, downloading files as

attachments and, 101
Opera, 243

■INDEX514

BSD, installation on, 23
bubbling-up model of event handling, 353
Buildout tool, 15, 488–489
built-in types supported by SQLAlchemy, 139

■C
C and C++ extensions, support for, 23
c object, 49–50
C:\Python25\Scripts directory, 25–27
CacheMiddleware component (WSGI), 404, 410
cache_dir variable, 78
caching

Beaker package and, 87
Mako templating language and, 77–79

callAjax() function, 359, 362
capture() function (Mako), 71, 79–80
capturing output (Mako), 79–80
Cascade component (WSGI), 404, 408
cascade object, 167
Cascading Style Sheets (CSS)

adding to form, 102
of DOM elements, changing, 351
fonts, 327–328
grid framework

nested grids, 331
overview of, 328–329
special nested grids, 331–332
template preset grids, 329–331
updating SimpleSite to use, 332–336

reducing page load time, 365–366
resetting browser, 326–327

case sensitivity of URL, 205
century routing variable, 201
certificate-signing request for SSL, 429
CGI script (Python)

deploying application as, 493
overview of, 4
pros and cons of, 5
Pylons techniques compared to, 5

cgi.FieldStorage object, 99
cgitb module, 382
chained validators, 121, 296
changing URL, 206
character set, ASCII, 217
chr() function, 217
class attribute, specifying, 97
class instances, WSGI applications as, 371–372
classes

AccountController, 439
And permission, 426
BaseController, 176, 372
FancyValidator, 115
GzipMiddleware

custom start_response callable, 384–385
final version of code, 386–387
start_response() callable, 385–386
testing, 387–388

HomegrownController, 416–417

Invalid exception, 114
meta.Session, 177
NavController, 303
SQLAlchemy), 150–151
StackedObjectProxy, 409
yui-gf, 331

clean separation, 7
code

See also listings; source code
cookie-handling (AuthKit), 427
to implement WSGI server API, 376–377
logic, separating view code and, 72
make_app() function, 403–404
start_response() callable

custom, to return GzipFile object, 384–385
final version of, 386–387
updating GzipMiddleware class to call,

385–386
using run_with_cgi() to run hello() WSGI

application, 377
code pages, 218
code points, 218
codecs module, 223
Collins, Lee, 218
column widths, fixed, 329
command line, testing from, 261–262
command prompt, accessing in Windows, 26
command-line debugging in nose, 250–251
command-line options, virtualenv.py tool, 19
commands

for installation, 13–14
nosetests, 254, 260
paster create, 31–32
paster make-app, 491
paster make-config, 491
paster serve, 393
paster setup-app, 173, 392
python, 23
register, 460
sphinx-build, 271
-U flag, 21
Windows and, 16

Comment object (SQLAlchemy), 151
comments, 67, 263–264
comments system

controller for
creating, 281–282
planning, 280
updating to handle comments, 282–285

overview of, 279–280
routes for, modifying, 280–281
setting page ID automatically, 285–288

committing session (SQLAlchemy), 152
community support, 9
compiling Python directly from source, 23
components, 9
composite applications, 395–396
concatenating strings, 145
conditions argument (Routes), 212–215

■INDEX 515

config directory, 37
config file

application, constructing, 394–395
composite applications, 395–396
default options, 393
defining default language in, 237
factories

alternative ways to specify, 400
overview of, 397–399

inheritance and, 400
overview of, 392–393
pipelines and filters, 396–397
server, constructing, 393–394

config object, 47, 51
config/environment.py file, editing, 64
config/middleware.py file, make_app()

function, 403–404
config/routing.py file

changing, 314–315
navigation_from_path() function, 316–317
overview of, 196

configuration files, development.ini, 33–34
configuration options, accessing

programmatically, 402
configuring

applications, 51–52
authentication middleware, 419–421
engine for SimpleSite, 171
logging

formatter sections, 476–477
handler sections, 476
logger sections, 475–476

setup.py file for SimpleSite
dependencies, 453–454
extra dependencies, 454–455
extra dependency links, 455
long_description argument, 456–457
metadata, specifying, 455–456
overview of, 452
production config file template, 457–459
version number, choosing, 453

validators, 107–108
ConfirmType validator, 107
connect() function (routing map), 201
Connection object (SQLAlchemy), 136
connection pools, 137
console object (Firebug), 362
constraining tag names, 293–294
content

context c, assigning template variables using,
65–66

describing with URL, 205
streaming, 412–413

context object
Mako, 71–72
tmpl_context, 49–50

control structures in Mako, 67

controller actions
calling with routing variables, 198–199
protecting for SimpleSite, 436–438, 443–444

controllers
See also page controller
actions of, making private, 415–416
for comments system

creating, 281–282
planning, 280
updating to handle comments, 282–285

creating, 38–39
decorators available for, 52
description of, 6
for forms, 92
functional testing for AuthKit, 428
for navigation hierarchy, creating, 303–311
pagetag, 295–298
protecting, 424
SimpleSite example

base, role of, 176–177
create() method, 180–183
creating, 167–168
customizing, 167
delete() method, 185–186
edit and save() methods, 183–184
list() method, 185
new() method, 178–180
updating to support editing pages, 177
view() method, 178

tag, creating, 291–293
types of, 52
WSGI applications as, 372–374
WSGIController, 411

controllers directory, 37
controllers/errors.py, 445–446
controller_scan() function

description of, 198
returning list of valid controllers using, 200

controlling
propagation using loggers

filtering messages, 482
options, 483
overview of, 480–482

which messages are logged using handlers,
480

convention over configuration, 6
cookie-handling code (AuthKit), 427
copying temp file data to permanent location,

99
copytree() function (shutil module), 129
create() method, updating controller to support

editing pages, 180–183
create_engine() function, 137
Crockford, Douglas, 339
cross-site scripting (XSS) attacks, 73
CSS (Cascading Style Sheets)

adding to form, 102
of DOM elements, changing, 351
fonts, 327–328

■INDEX516

grid framework
nested grids, 331
overview of, 328–329
special nested grids, 331–332
template preset grids, 329–331
updating SimpleSite to use, 332–336

reducing page load time, 365–366
resetting browser, 326–327

customizing error documents for SimpleSite,
447–449

Cutrell, Edward, 205

■D
daemontools, 497
data

private, 415–416
querying, SimpleSite, 175–176
storing

in Amazon S3, 129–130
approaches to, 127
in databases, 130–132
in filesystems, 127–129

data directory, 37, 127
data persistence layer, RDBMS and, 132
data source name, specifying for database, 171
database tables for SimpleSite, creating,

173–175
databases

See also RDBMS
creating with SQLite, 135
object-relational principles, 146–148
storing data in

object databases, 131
overview of, 130
XML databases, 131–132

Unicode and, 225
DateConverter validator, 106–108
dates in SimpleSite, formatting, 189–190
datetime.datetime objects, 189–190
Davis, Mark, 218
DB-API drivers

installing, 134–135
for popular RDBMS systems, 133–134

deactivating virtual Python environment, 18–19
debug messages in nose, 249
debug mode in INI file, turning off, 412
debugging

Ajax requests, 360–361
interactive debugger

description of, 55
enabling error reporting, 59
in production environments, 59
tabs, 56–58

Declarative API (SQLAlchemy), 160–162
decoding

request parameters, 224
Unicode, 221

decorator tool, 29
decorators, 52, 361

def (Mako), 71
def blocks (Mako), 76–77, 81
default language, defining in config file, 237
default variables (Routes), 201–202
DELETE statement (SQLAlchemy), 145
delete() action, protecting, 437
delete() method, updating controller to support

editing pages, 185–186
deleted pages, handling, 289–290
deleting

pages, 298
tags, 298

dependencies
overview of, 29–31
for SimpleSite, configuring, 453–455

deployment
Apache proxying

init scripts, creating, 496–497
log files, setting up, 496
overview of, 494–495
restarting stopped applications, 497

embedding application into server, 493,
497–502

options for, 492–493
overview of, 487
proxying, overview of, 494
steps in, 487
system Python environment and, 488
virtual Python environment and

activate script, 490
application instance, setting up, 491
Buildout, 488–489
config file, creating, 491
installing software to, 490–491
serving application, 492
setting up, 489

on Windows, 502
derived/nav/create_page.html template, 318
derived/nav/create_section.html template, 318
detailed errors in nose, 249
developing applications on Windows, 27–28
development mode (setuptools package), 174
development process, types of testing and,

246–247
development.ini file

cache_dir variable, 78
description of and code for, 33
host option in, 36
options, 34

Dialect object (SQLAlchemy), 137
dictionaries

environ, 379–381
JavaScript, 345
request.environ, 43
request.urlvars, 199, 440

directory, 128. See also specific directories
directory structure of project, 36–37

■INDEX 517

disabling
implicit defaults feature, 209
interactive debugger, 59
route memory, 208
route minimization feature, 207

disambiguated URL, 206
dispatching, 198–199
distribution, packaging project for (SimpleSite)

egg file, building, 459–460
egg file, publishing on PyPI, 460–462
overview of, 459

distutils.cfg file, virtual Python environments
and, 15

Dive Into Python (Pilgrim), 8
Django

clean separation, 7
Pylons compared to, 6, 390

<%doc> tag, 67
docs directory, 37, 271–272
docstrings

help() function and, 265
tools working on, 265
use of, 264

doctest library, 246
doctests, 266–268
#document element, 350
Document Object Model (DOM)

manipulating, 352
navigating, 351–352
overview of, 349
parse tree, 350

documentation
See also documentation tools
doctests, 266–268
overview of, 263
reStructuredText language, 268–270
Sphinx and

automatically generating documentation
with, 276–277

Python source code, documenting with,
273–274, 276

SimpleSite project, documenting with,
270–273

syntax highlighting, 277–278
documentation tools

comments, 263–264
docstrings, 264
help() function, 265–266

docutils package, 268–270
docutils.core.publish_pars() function, 270
DOM. See Document Object Model
downloading from Python Package Index, 14
drivers

AuthKit, 426
DB-API, 133–135

drop-down lists, populating one from values of
another, 356–360

Durus object database, 131
dynamic parts of routes, 195, 200

■E
e-mail address, validating, 101–102
E-Tag caching for static files, 36
easy_install program

choosing package versions with, 19–20
description of, 31
troubleshooting, 21–22
working with, 16

easy_install.pth file, 20
Eby, Philip J., 369
echo option (SQLAlchemy), 143
ECMAScript, 340. See also JavaScript
edit() action

protecting, 436
updating to handle comments, 283

edit() method, updating controller to support
editing pages, 183–184

editing
config/environment.py file, 64
pages, updating controller to support

create() method, 180–183
delete() method, 185–186
edit and save() methods, 183–184
list() method, 185
new() method, 178–180
overview of, 177
view() method, 178

editors, 28
egg entry points, 391–392
egg file

building, 459–460
publishing on PyPI, 460–462

eggs
description of, 18
installing directly with Easy Install, 20

Email validator, 104–106
EmailForm schema, 104
embedding application into server

mod_wsgi tool, using, 497–502
overview of, 493

enabling
error reporting in interactive debugger, 59
Firebug plug-in, 336

encode() method (Unicode), 222
encoding

code points into binary numbers, 218
Unicode, 222

encrypting passwords, 431–432
Engine API (SQLAlchemy), 136–138
engine for SimpleSite, configuring, 171
engine.connect() function, 137
engine_from_config() function, 170
entities, 146
environ argument, 199, 202
environ dictionary

description of, 379
modifying, 380–381

■INDEX518

environment, loading when creating
application, 405

environment variables
HTTP headers, 42
set for all requests, 42
viewing, 43–44
WSGI, 43

environment.py file, 51
equality operators (JavaScript), 340
error documents, 412
error handling, Unicode, 220–221
error messages

formatting of, and HTML Fill tool, 110
FormEncode tool, 105
403 Forbidden, 418, 437, 448–449
404 Not Found page

generation of, 445–446
SimpleSite and, 447–449

highlighting in red, 102
including full path and, 32
Missing value, customizing, 120
pkg_resources.ExtractionError, 21
styling to appear in red, 182
Unicode, 217

error reporting, enabling in interactive
debugger, 59

ErrorHandler component (WSGI), 404, 410
ErrorHandler middleware, 55
errors in WSGI application, handling, 381–382
escape functions (Mako), 75
escape() function, 73–74
Event Model

browser detection vs. feature detection, 354
overview of, 352–353
same origin policy, 354

exception handling, 412
eXist XML database, 131–132
explicit routes, 202, 210
expressing file size in human-readable terms,

129
Extra Data tab (interactive debugger), 56
extracting

internationalizable messages with Babel
extractors, 236–237

messages, 229
extra_environ argument, 428
ez_setup.py file, 37

■F
factories

alternative ways to specify, 400
overview of, 397–399

fallback languages, 239–240
FancyValidator class, 115
feature detection, browser detection compared

to, 354
field helper, 179
fields.html file for nav table, 305

file extensions in URL, 206
FileHandler, 478
files

See also specific files
logging to, 478
naming, 100
uploading, 98–101
writing Unicode data to, 223

filesystem, storing data in, 127–129
file_field helper, 98
filter functions (Routes), 215–216
filter() and filter_by() methods, 157–158
filtering messages using propagation, 482
filters

applying in view templates, 75–76
overview of, 396–397
WSGI, accessing programmatically, 401–402

Firebug
console object, 362
description of, 336
Inspect button, 351
Net tab, 360
testing JavaScript in, 337

Firefox
attachment download dialog box, 101
web browser, LiveHTTPHeaders extension,

39
fixed column widths, 329
flash message system, adding animation to,

354–356
flash messages, using, 190–192
flushing session (SQLAlchemy), 152, 155
fonts, specifying, 327–328
footer def

adding link enabling users to add new tags,
298

for nav controllers, 310
templates/derived/page/view.html template,

289
footers, updating, 186, 443–444
Forbidden status code, 418, 437, 448–449
ForEach validator, 116, 120
foreign key

description of, 147
one-to-many mappings and, 279

form and cookie authentication method, 419
form() helper, 96
<form > tag

action attribute, 91
method attribute, 93

formatter sections, 476–477
formatters, 110
formatting dates and times, 189–190
FormBuild package, 179
FormEncode package, 29, 184
FormEncode schema

creating, 180
for nav controller, 303

■INDEX 519

FormEncode tool
See also HTML Fill tool
chained validators, 121
EmailForm schema and, 105
error messages produced by, 105
nestedvariables module, 118
parts of, 103
prevalidators, 119
validation schema and, 104
validators

configuring, 107–108
custom, creating, 112–115
list of, 106–107
options supported by, 107

forms
building with helpers, 96–98
controllers for, 92
handling

approaches to, 91
manually, 101–103

overview of, 91
repeating fields problem

complete code for, 122–124
controller code for, 121
field names for, 119
overview of, 115
role field values, 116
schema for, 116–121
solutions to, 116
testing, 124–125

request.params object and, 93
resubmitted data problem, 95–96
simple template for, 92
submitting using GET or POST HTTP

methods, 93, 95
uploading files, 98–101
validation schema for, 103

forward slash (/), template paths and, 64
403 Forbidden message, 418, 437, 448–449
404 Not Found page message

generation of, 445–446
SimpleSite and, 447–449

FTP (File Transfer Protocol), 39
function option (conditions argument), 212
function scope and closures (JavaScript),

343–344
functional testing

for controllers, 428
description of, 246
of objects, 260–261
page controller save() action, 257–260
with paste.fixture

documentation on, 261
nosetests command, 254
overview of, 252–253
test.ini file, 254–256

functions
See also helper functions
abort(), 178, 412
add_fallback(), 239–240
anonymous (JavaScript), 343
appconfig(), 402
authorized(), 423, 438
callAjax(), 359, 362
capture(), 71, 79–80
chr(), 217
connect(), 201
controller_scan(), 198, 200
copytree(), 129
create_engine(), 137
docutils.core.publish_pars(), 270
engine.connect(), 137
engine_from_config(), 170
escape(), 73–75
generating for routes, 202–203
getattr(), 50
get_lang(), 233
getLogger(), 474
hasattr(), 50
hasOwnProperty(), 348
help(), 265–266
h.size_to_human(), 129
h.url_for()

description of, 48
generating routes with, 202–203
generating URLs with, 195
referencing static resources with, 204

init_model(), 173
JavaScript, 338, 343
lazy_ugettext(), 241
link(), 77
loadapp(), 401–402
load_environment(), 405
loadfilter(), 401
loadserver(), 401
make_app(), 395, 402–407
make_app(), 196
message, 107
navigation_from_path(), 315–317
navigation_links(), 77
now(), 149
object(), 347
ord(), 217, 220
os.listdir(), 223
os.stat(), 128
redirect_to, 47, 202–203, 412
relation(), 151
render(), 65, 69–70, 85–86, 110–111
render_body(), 78
render_mako(), 86
render_signin(), 442
render_template(), 86
scoped_session(), 153

■INDEX520

server_runner(), 394
sessionmaker(), 152
set_lang(), 239
setup_app(), 174, 255–256
test_save_prohibit_get(), 258
time.sleep(), 413
time_ago_in_words(), 129
ungettext(), 241
unichr(), 220
webhelpers.html.escape, 73
in YAHOO.lang, 341–342

■G
generating routes, functions for, 202–203
Genshi templating language, 88–89
GET method, 40, 93–95
get(key, default) on request.params object, 93
getall() method, 93
getattr() function, 50
getLogger() function, 474
getone() method, 93
get_lang() function, 233
globals

See also request object; response object
abort, 47
app_globals object, 50–51
c context, assigning template variables using,

65–66
c object, 49–50
config, 47, 51
description of, 46, 409
h object, 48–49
redirect_to, 47
session, 48

GNU gettext, 229
go-pylons.py script, 22
greeting.html template, 64
grids

nested, 331
special nested, 331–332
style sheet, 328–329
template preset, 329–331
updating SimpleSite to use, 332–336

groups, authorization and, 424–426
Guan, Zhiwei, 205
Gzip compression, 383–384
GzipMiddleware class

custom start_response() callable, 384–385
final version of code, 386–387
start_response() callable, 385–386
testing, 387–388

■H
handler sections, 476
handlers

capturing AuthKit messages using, 484
controlling which messages are logged using,

480

redirecting log output using
logging to files, 478
logging to wsgi.errors, 479–480
overview of, 477

handling errors, Unicode, 220–221
handling requests

Cascade, 408
middleware chain, 410
overview of, 407–408
PylonsApp instance, 410–411
RegistryManager, 409
WSGIController, 411

handling responses
error documents, 412
exception handling, 412
overview of, 411–412
returning Unicode from action, 413
streaming content, 412–413

handling translations for internationalization,
229

hard-coded variables (Routes), 201
hasattr() function, 50
HasAuthKitGroup permission, 425
HasAuthKitRole permission, 425
hash tables, 345
hasOwnProperty() function (JavaScript), 348
headers in piece of middleware, changing, 381
helloworld application directory structure,

37–38
HelloWorld directory structure, 36–37
help() function, 265–266
helper functions

built-in, building forms with, 96–98
description of, 48–49
field, 179
stylesheet_link(), 182
writing to use HTML literals, 74–75

hierarchy of named loggers, 473
history

of Pylons, 389–390
of Unicode, 217–218

home page when signed out, 440
HomegrownController class, 416–417
hosts, running project with web server, 36
h.size_to_human() function, 129
HTML (Hypertext Markup Language)

JavaScript in, 349
overview of, 39
templating system and, 63

HTML escaping, Mako and, 73
HTML Fill tool

controller for, 109
customizing call for, 112
description of, 103, 108
error message formatting, 110
generated example, 109
render() function, 110–111

HTML view, Inspect in DOM tab, 351

■INDEX 521

HTTP (Hypertext Transfer Protocol)
overview of, 39
requests, 40–41
specification, 41
status codes, 41

HTTP digest authentication, 427, 429
HTTP GET request, 40
HTTP headers

environment variables and, 42
Pylons compared to WSGI, 370

HTTP response with X-Debug-URL header, 58
HTTP response status, Pylons compared to

WSGI, 370
HTTP status codes, authentication,

authorization, and, 418
HTTPException, 412
HTTPS, port 443 and, 431
HTTP_ACCEPT_LANGUAGE header, 240
HTTP_PROXY environment variable, 20
h.url_for() function

description of, 48
generating routes with, 202–203
generating URLs with, 195
referencing static resources with, 204

Hypertext Markup Language (HTML)
JavaScript in, 349
overview of, 39
templating system and, 63

Hypertext Transfer Protocol (HTTP)
overview of, 39
requests, 40–41
specification, 41
status codes, 41

hyphens in URL, 205

■I
I18N abbreviation, 227
id column, adding to each table as primary key,

147
id field, 280
IDLE editor, 28
implicit defaults feature, 209
importing

functions into templates, 80–81
helper function, 48
HTML Fill tool, 109
validate() decorator, 111

index.html file, 36
index.txt file, 271
<%inherit> tag, 92
inheritance

configuring validators using, 108
in JavaScript, 339, 347–348
Paste Deploy and, 400
in SQLAlchemy, 299–301

inheritance chains (Mako)
next namespace, 83–85

overview of, 81
parent namespace, 85
simple inheritance, 82–83

init scripts, creating for Apache proxying,
496–497

init_model() function, 173
injection attacks, 142–143
INSERT statement (SQLAlchemy), 154
inspecting DOM element, 351
inspect_call() method, 412
installation

bleeding edge, working on, 22
easy_install program

choosing package versions with, 19–20
troubleshooting, 21–22
working with, 16

eggs, 18
on Linux and BSD, 23
on Mac OS X, 24
overview of, 13
with proxy server, 20
of Pylons, 17
Python Package Index, 14
quick, on Linux, 13–14
virtual Python environment

activating and deactivating, 18–19
setting up, 14–15

virtualenv.py tool, setting options for, 19
on Windows, 24–26

installing
Babel, 230
DB-API driver, 134–135
FormBuild package, 179
pysqlite2 module, 135
SQLAlchemy, 135
templating language, 88
YUI into public directory, 325

interactive debugger
description of, 55
enabling error reporting, 59
in production environments, 59
tabs, 56–58

interactive shell, testing and, 261–262
internal static routes, 204
internationalization

Babel extractors, 236–237
default language, defining in config file, 237
extracting messages and handling

translations, 229
fallback languages, 239–240
lazy translations, 240–241
marking strings for, 228–229
overview of, 227
plural forms, 241–242
process of, 228
search engines and, 243
storing user language in sessions, 238–239

■INDEX522

TranslateDemo example
Babel, using, 230–232
overview of, 229–230
supporting multiple languages, 232–234

translations within templates, 235–236
updating message catalogs, 234–235

Internet Explorer 6, downloading files as
attachments and, 101

introduction page, 167
Invalid exception class, 114
IP addresses, running project with web server,

36
ISO 8859-1 encoding, 218

■J
JavaScript

See also Ajax
Document Object Model and, 349
Event Model and, 352
function scope and closures, 343–344
functions, 343
in HTML, 349
inheritance in, 347–348
namespaces, 346–347
objects, 344–345
operators, 340
overview of, 338–339
prototypes, 348–349
reducing page load time, 365–366
testing in Firebug, 337
this, 345–346
types, 341–342

JavaScript: The Good Parts (Crockford), 339
JavaScript web frameworks

description of, 325
most popular, 325
YUI

adding to project, 325–326
animation classes, 354
event handling in, 353
fonts style sheet, 327–328
grids style sheet, 328–329
nested grids, 331
resetting browser CSS with, 326–327
special nested grids, 331–332
template preset grids, 329–331
updating SimpleSite to use grids, 332–336

Jinja 1 templating language, 88–90
JSON, 361–364
@jsonify decorator, 361

■K
keys

foreign, 147, 279
primary, 146
private, for SSL, 429

keywords
assert, 248
BEGIN (SQLAlchemy), 154

■L
L10N abbreviation, 227
languages

See also Mako templating language; Python
language; templating languages

default, defining in config file, 237
fallback, 239–240
multiple, supporting, 232–234
reStructuredText, 268–270

Latin-1 encoding, 218
lazy_ugettext() function, 241
length of URL, 205
lib directory, 38
lib/helpers.py module, 48
lib/python2.5/site-packages directory, 29
line-end characters (\n or \r\n), 27
link() function, 77
linkage pattern, 348
Linux

installation on, 23
quick installation on, 13–14

list comprehension, 158
list() method, updating controller to support

editing pages, 185
list.html template

tag controller and, 292–293
updating to handle comments, 283–284

listamatic web site, 322
listings

accessing page object from attributes, 160
base controller for SimpleSite, 176
base template for SimpleSite, 169
CGI script example, 3
controllers/errors.py, 445–446
controllers/page.py file, 167
def block (Mako), 76
derived/form.html template, 117
derived/page/view.html template, updating

footer, 186
development.ini file, 33
engine_test.py file, creating, 136
flushing session, 155
footer, updating to protect actions, 443–444
form to handle repeating fields problem, 122,

124
HomegrownController class, 416–417
inserting rows into tables, 159
list.html template, updating to use paginator,

187–188
long_description argument, customizing,

456
metadata_test.py file, creating, 138
model.py file

creating, 148–149
rewriting using Declarative API, 160–162

model._init_.py, 171–173
object_test.py, creating, 152
page controller save() action, 257
production config file template, 457–459

■INDEX 523

render_body() function, 78
route map, 196
setup_app() function, 255–256
SimpleSiteTemplate

creating, 462–463
using, 464–465

sqlexpression_test.py file, creating, 141
templates/derived/page/fields.html file, 178
test.ini file, 254
test_save() method, 259–260
YUI Rich Text Editor, setting up, 450

literal() objects, 73–74
literals, Unicode, 219–220
LiveHTTPHeaders extension (Firefox web

browser), 39
LiveHTTPHeaders, GET and POST requests in,

93
loadapp() function, 401–402
load_environment() function, 405
loadfilter() function, 401
loading environment when creating

applications, 405
loadserver() function, 401
localization

See also internationalization
fallback languages, 239–240
lazy translations, 240–241
overview of, 227
plural forms, 241–242
process of, steps in, 228
search engines and, 243

log files, setting up for Apache proxying, 496
log messages

AuthKit and, 484
capturing SQLAlchemy messages using

propagation, 483–484
handling

controlling which messages are logged,
480

logging to files, 478
logging to wsgi.errors, 479–480
overview of, 477

log statements, writing into code, 471
logger sections, 475–476
loggers, controlling propagation with

filtering messages, 482
options, 483
overview of, 480–482

logging
production configuration file and, 485
types of logs, 471– 472

logging configuration
formatter sections, 476–477
handler sections, 476
logger sections, 475–476

logging module
log levels, 473–474
overview of, 472–473
templates and, 474–475
variables, 474

logic code, separating view code and, 72
long_description argument, customizing,

456–457
loose coupling, 7
lowercase URL, 205

■M
Mac OS X, installation on, 24
main links for SimpleSite, 319–321
maintaining performance, SQLAlchemy and,

162–163
make_app() function

code, 403–404
description of, 402
loading environment, 405
middleware chain, 406–407
PylonsApp instance, 406
syntax, 395

make_map() function, 196
Mako templating language

applying filters in templates, 75–76
basic syntax, 66–69
body() def, 81
built-in escape functions, 75
caching, 77–79
capturing output, 79–80
def blocks, using, 76–77, 81
description of, 6–7, 30
example of, 63
inheritance chain features, 168
inheritance chains

next namespace, 83–85
overview of, 81
parent namespace, 85
simple inheritance, 82–83

<%namespace> tag, 80–81
runtime built-ins, 70–72
security considerations, 73–74
separating logic code and view code, 72
Unicode and, 225
working with Jinja, 89–90
writing helpers to use HTML literals, 74–75

mako-render script, 31
MANIFEST.in file, 37
manipulating Document Object Model, 352
many-to-many mappings, 290. See also tags
many-to-many relationship, 147
map.connect(), naming routes and, 195
Mapper object (Routes), 197
mappers (SQLAlchemy), 150–151
mapping

root URL to controller action, 39
URL, 195

marking strings for internationalization,
228–229

matching URL, 197
Mercurial repository, 22
message catalogs, updating, 234–235
message function (validators), 107

■INDEX524

messages, in internationalization terminology,
228

meta.Session class, 177
Metadata API (SQLAlchemy), 138–141
metadata for SimpleSite, specifying, 455–456
MetaData object, 173
metadata of database, describing

(SQLAlchemy), 148–150
method attribute of <form> tag, 93
method option (conditions argument), 212
methods

__after__(), 199
before(), 198, 416–417
of context object (Mako), 71–72
create(), 180–183
delete(), 185–186
edit(), 183–184
encode() (Unix), 222
filter() and filter_by(), 157–158
form and cookie authentication, 419
GET, 40, 93–95
getall(), 93
getone(), 93
init(), 150
inspect_call(), 412
list(), 185
log levels and, 473
for manipulating DOM, 352
nav_to_path(), 319
new(), 178–180
POST, 40, 93–95
repr, 150
of request object, 44–45
request.params.getall(), 45
request.params.getone(), 45
save(), 183–184
session.commit(), 156
session.execute(), 156
strftime(), 189–190
test_save(), 259–260
test_save_invalid_form_data(), 259
test_save_invalid_id(), 258
to_python, 105
validate_python(), 113
view(), 178, 295

Microsoft
See also Windows
Internet Explorer 6, downloading files as

attachments and, 101
middleware

ErrorHandler, 55
setting up for SimpleSite, 433–434

middleware component (WSGI)
advantages of, 389
building stack out of, 389–390
overview of, 369, 378–379
testing, 387–388

writing
environment, modifying, 380–381
errors, handling, 381–382
overview of, 379–380
response, altering, 383–387
status and headers, changing, 381

middleware stack, 403–404
middleware.py file, 51
Missing value message, customizing, 120
model directory, 38, 128
model layer, storing data and, 127
Model View Controller architecture, 5–6
models

for SimpleSite
creating, 171–173
engine, configuring, 171
overview of, 170

separating from templates, 176
modifying Routes system, 38–39
module-level blocks, 69
mod_wsgi tool

description of, 493
embedding with, 497–499
troubleshooting, 501–502
virtual host, setting up, 499–500

Mozilla Firefox, attachment download dialog
box, 101

MultiDict object, 45
multiple languages

supporting, 232–234
working with, 89–90

multiprocess approach to deployment, 492–493
multithreading approach to deployment, 492
MVC (Model View Controller) architecture, 5–6
MySQL, pool_recycle option, 171
MySQLdb module, 134

■N
\n (line-end) character (Unix), 27
name argument, form helpers and, 97
named routes

description of, 203–204
filter functions and, 215–216

<%namespace> tag (Mako), 80–81
namespaces

JavaScript, 346–347
Mako, 71, 83–85
YAHOO, 346

naming
files, 100
routes, 195
routing variables, 202
table columns, 151

Nav object, mapper for, 300
nav table, 299
NavController class, 303
navigating Document Object Model, 351–352

■INDEX 525

navigation hierarchy for SimpleSite
controllers, creating, 303–311
creating, 299
elements, adding, 319–321
inheritance in SQLAlchemy and, 299–301
initial data, setting up, 301–303
page controller, 311–313

navigation_from_path() function, 315–317
navigation_links() function, 77
navigator tool, 187
nav_to_path() static method, 319
nested grids, 331–332
nestedvariables module (FormEncode tool),

118
new() method, updating controller to support

editing pages, 178–180
NewCommentForm schema, 282
NewNavForm schema, 304–305
NewPageForm schema, 311
NewTagForm schema

UniqueTag validator, 293
updating, 291

next namespace (Mako), 83–85
nodes, 353
nopage() action, 317
nose tool

command-line debugging, 250–251
debug messages, 249
detailed errors, 249
overview of, 30, 247–249
paste.fixture and, 252
search locations, 251

nosection() action, 317
nosetests command, 254, 260
nosetests script, 31
now() function (SQLAlchemy), 149
Null data type (JavaScript), 341
Number data type (JavaScript), 341
numbers, in JavaScript, 340

■O
object databases, 131
object() function, 347
Object-Relational API (SQLAlchemy)

classes and mappers, 150–151
database metadata, describing, 148–150
objects, 159–160
overview of, 146
queries, 157–159
sessions

examples of, 153–156
overview of, 152–153

object-relational mappers (ORMs)
See also SQLAlchemy
advantages and disadvantages of, 132
available for Python, 133

object-relational principles, 146–148

objects
See also specific objects
accessing

programmatically, 401–402
that aren’t thread-safe, 294

docstrings, 264
functional testing of, 260–261
JavaScript, 344–345
SQLAlchemy, 159–160

OneOf validator, 117
one-to-many mappings, 279
one-to-many relationship, 147
one-to-one relationship, 147
127.0.0.1 IP address, 36
Online Assistance box (interactive debugger),

57
Open Command Here Powertoy, 26
Opera web browser, 243
operators

JavaScript, 340
Python, 144

Oracle Berkeley DB XML database, 131–132
ord() function, 217, 220
ORDER_BY clause (SQLAlchemy), 145
origins, 354
ORMs (object-relational mappers)

See also SQLAlchemy
advantages and disadvantages of, 132
available for Python, 133

os.listdir() function, 223
os.path module, 128
os.stat() function, 128
output buffering (Mako), 79–80
output encoding (Unicode), 225

■P
packages

See also Beaker package; Paste Deploy
package; setuptools package:
WebHelpers package

boto, 130
docutils, 268–270
FormBuild, 179
FormEncode, 29, 184
Paste, 130
pkg_resources, 392
Pygments, 277
Pylons-0.9.7-py2.5.egg, 30
removing, 20
simplejson, 30
upgrading, 20
versions, choosing with Easy Install, 19–20
WebError, 30
WebOb, 31, 44, 46
with extensions, 23

packaging SimpleSite for distribution
egg file, building, 459–460
egg file, publishing on PyPI, 460–462
overview of, 459

■INDEX526

page controller
for navigation hierarchy, 311–313
for SimpleSite, creating, 167–168
save() action

listing, 257
testing, 257–260

page ID, setting automatically, 285–288
page load time, reducing, 365–366
Page view for SimpleSite

deleted pages, handling, 289–290
updating, 288–289

page widths, setting, 329
pageargs dictionary (Mako), 71
pageid field, 280
pages, deleting, 298
pagetag controller, 295–298
paginate module (WebHelpers), 187
pagination, using, 186–189
parent namespace (Mako), 85
passing request-specific information to parts of

code using context object, 49–50
passwords, encrypting, 431–432
Paste Deploy package

accessing objects programmatically, 401–402
application, constructing, 394–395
config file and, 392
creating applications with, 402–403
factories

alternative ways to specify, 400
overview of, 397–399

inheritance and, 400
pipelines and filters, 396–397
server, constructing, 393–394

Paste HTTP server
IP addresses and, 36
—reload option, 55
running project with, 34–35
SSL and, 430

Paste package, 30
Paste Script developer documentation, 393
paste.fixture

documentation on, 261
nosetests command, 254
overview of, 252–253
response object, 253
test.ini file, 254–256

paste.testing_variables dictionary, 260
paster create command, 31–32
paster make-app command, 491
paster make-config command, 491
Paster project template, making SimpleSite into

overview of, 462–465
variables, 465–468

paster script, 31
paster serve command, 393
paster setup-app command, 173, 392
PATH environment variable, configuring on

Windows, 25–26

path separator character (/ or \), 27
pdb module, 250–251
performance maintenance, SQLAlchemy and,

162–163
permission check, for authorization, 415
permission objects (AuthKit), @authorize

decorator and, 421–422
PermissionError

@authorize decorator and, 421
ways of checking permissions that raise, 422

permissions, changing templates based on, 438
pickle module (Python), 131
PickleType field (SQLAlchemy), 139
Pilgrim, Mark, 8
pipelines, 396–397
pixels to percent translation for fonts, 327
pkg_resources package, 392
pkg_resources.ExtractionError error, 21
plural forms and internationalization, 241–242
pool_recycle option (MySQL), 171
populating one drop-down list from values of

another, 356–360
port 443, 431
portable object (.po) file, 229
portable object template (.pot) file, 229
POST method, 40, 93–95
posting traceback information online, 58
prevalidators, 119
primary key, 146
private data, 415–416
private key for SSL, 429
private members (JavaScript), 346
private() action, 420
production config file template, customizing,

457–459
production configuration file, 485
production environments, interactive debugger

in, 59
project

application directory structure, 37–38
creating, 31–32
directory structure of, 36–37
running with web server

configuration files and, 33–34
IP addresses, hosts, and security, 36
Paste HTTP server, 34–35
static files, 35–36

project template, 32
propagation

capturing SQLAlchemy log messages using,
483–484

controlling with loggers
filtering messages, 482
options, 483
overview of, 480–482

definition of, 473

■INDEX 527

protecting
controllers, 424
delete() action, 437
edit() action, 436
save() action, 436

prototypal inheritance, 339, 347–348
prototypes (JavaScript), 348–349
proxy server, installing with, 20
proxying approach to deployment

Apache and
init scripts, creating, 496–497
log files, setting up, 496
overview of, 494–495
restarting stopped applications, 497

overview of, 494
public directory, 38, 325
public folder, 36
public/css/main.css, style, adding, 321–322
Pygments package, 277
Pylons

community support, 9
components, 9
convention over configuration, 6
features of, 7–8
installing, 17
loose coupling and clean separation, 7
Model View Controller architecture of, 5–6
overview of, 3, 11
techniques of, 5

pylons project template, 32
Pylons-0.9.7-py2.5.egg package, 30
PylonsApp instance, 406, 410–411
PylonsInstaller object, 392
pylons_minimal template, 32
PyPI. See Python Package Index
pysqlite2 module, installing, 135
Python 2, Unicode in

decoding, 221
encoding, 222
handling errors, 220–221
literals, 219–220
overview of, 219
source code encoding, 222–223
writing data to files, 223

Python CGI script, 4–5
python command, 23
Python language

See also Python 2, Unicode in
blocks, code within, 68–69
C and C++ extensions, support for, 23
compiling directly from source, 23
debugger (pdb), 250
eggs, 18
IDLE editor, 28
as interpreted, 13
object-relational mappers available for, 133
operators, 144
overview of, 8
pickle module, 131

source code, documenting with Sphinx,
273–276

versions of, 8, 17, 22
Python Package Index (PyPI)

DB-API drivers and, 134
downloading from, 14
publishing egg on, 460–462
SimpleSite on, 457–461

python script, 31
PYTHON_EGG_CACHE environment variable,

21

■Q
queries (SQLAlchemy), 157–159
querying data, SimpleSite example, 175–176
quick installation on Linux, 13–14

■R
RDBMS (relational database management

systems)
See also SQLAlchemy
DB-API drivers for, 133–134
object databases compared to, 131
object-relational mappers, 132–133

README.txt file, 37
redirecting log output using handlers

logging to files, 478
logging to wsgi.errors, 479–480
overview of, 477

redirect_to object, 47
redirect_to() function, 202–203, 412
reducing page load time, 365–366
Refresh button and resubmitted data problem,

95–96
register command, 460
RegistryManager component (WSGI), 404, 409
relation() function, 151
relational database, and object-relational

principles, 146–148
relational database management systems. See

RDBMS
—reload option (Paste HTTP server), 55
—reload switch, starting server with, 166
RemoteUser permission, 421
removing

DOM nodes, 353
files before packaging project for

distribution, 459
packages, 20

render() function
assigning template variables to c compared

to passing them directly as arguments
to, 65

HTML Fill tool, 110–111
linking to template engine code, 85–86
objects passed automatically via, 69–70

render_body() function, 78
render_mako() function, 86

■INDEX528

render_signin() function, 442
render_template() function, 86
repeating fields problem on forms

complete code for, 122–124
controller code for, 121
field names for, 119
overview of, 115
role field values, 116
schema for, 116–121
solutions to, 116
testing, 124–125

repoze.who toolset, 418
repr method, 150
request cycle, Unicode and, 226
request handling

Cascade, 408
middleware chain, 410
overview of, 407–408
PylonsApp instance, 410–411
RegistryManager, 409
WSGIController, 411

request information, Pylons compared to WSGI,
370

request object
environment variables and, 42
methods and attributes of, 44–45

request parameters, decoding, 224
request state, 404
request.environ dictionary, 43
request.params object, 45, 93
request.params.getall() method, 45
request.params.getone() method, 45
request.urlvars dictionary, 199, 440
requests

Ajax, debugging, 360–361
environment variables set for all, 42
HTTP, 40

requirement argument (Routes), 211
resetting browser CSS, 326–327
response handling

error documents, 412
exception handling, 412
overview of, 411–412
returning Unicode from action, 413
streaming content, 412–413

response object, 44–46
responses

HTTP, 40
Pylons compared to WSGI, 370
returned from WSGI application, altering,

383–387
restarting stopped applications, 497
@restrict decorator, 181
restricting access using _before_() method,

416–417
reStructuredText language, 268–270
resubmitted data problem, 95–96
ResultProxy object (SQLAlchemy), 136, 144

results, selecting (SQLAlchemy), 143–146
retry timeout, 495
returning Unicode from action, 413
\r\n (line-end) character (Windows), 27
roles, authorization and, 424–426
ROLLBACK statement (SQLAlchemy), 155
rolling back (SQLAlchemy), 152
root logger, 473
root URL, mapping to controller action, 39
route map, 196–198
route memory feature, 207–208
route minimization feature, 207
route options, 196
route paths, 196
routes

for comments system, modifying, 280–281
definition of, 196
dynamic parts of, 195
explicit, 202, 210
generating, functions for, 202–203
internal static, 204
named

description of, 203–204
filter functions and, 215–216

naming, 195
parts of, 199–201
static named, 204

Routes system
best practice, 209–211
c object and, 49
conditions argument, 212–215
controller_scan() function, 198
default variables, specifying, 201–202
description of, 30, 195
filter functions, 215–216
Mapper object, 197
modifying, 38–39
requirement argument, 211
specifying extra variables in route maps, 48
unnecessary features of

implicit defaults, 209
overview, 196, 207
route memory, 207–208
route minimization, 207

url_for() function, generating URLs with, 195
RoutesMiddleware component (WSGI),

404–405, 410
routing for SimpleSite, changing, 313–319
routing map, and connect() function, 201
routing variables

calling controller action with, 198–199
definition of, 196
naming, 202

routing.py file, 51
Ruby on Rails, and clean separation, 7
runtime built-ins (Mako), 70–72

■INDEX 529

■S
same origin policy, Event Model, 354
save() action

protecting, 436
testing, 257–260

save() method, updating controller to support
editing pages, 183–184

SciTE editor, 28
scoped_session() function, 153
scripts, 31
Scripts directory, 31
search engines

internationalization and, 243
use of, study of, 205

search locations for nose, 251
secondary table, specifying, 151
section links for SimpleSite, 319–321
Secure Sockets Layer (SSL), setting up, 429–431
security

authentication
encrypting passwords, 431–432
overview of, 429
SSL, 429–431

interactive debugger in production
environments, 59

naming files and, 100
running project with web server, 36
view templates and

applying filters, 75–76
overview of, 73–74
writing helpers to use HTML literals,

74–75
SELECT statement (SQLAlchemy), 143
select() helper, 97–98
selecting results (SQLAlchemy), 143–146
self.app object, 252
Sequence object (SQLAlchemy), 149
server component (WSGI), 374–378
server logs

application logs compared to, 471–472
sending messages to wsgi.errors stream and,

479
servers

See also web server, running project with
constructing, Paste Deploy and, 393–394
embedding applications into, 493, 497–502
Paste HTTP, 34–36, 55, 430
proxy, installing with, 20
Pylons, SSL and, 430
starting, 166
WSGI, accessing programmatically, 401–402

server_runner() function, 394
serving application from installed environment,

492
session handling, Beaker package and, 190
session object, 48
session.commit() method, 156
session.execute() method, 156

sessionmaker() function, 152
SessionMiddleware component (WSGI), 404,

410
sessions

Beaker package, 152
SQLAlchemy

examples of, 153–156
overview of, 152–153
using in Pylons, 177

storing user language in, 238–239
setup.cfg file, 37
setup.py file

overview of, 37
for SimpleSite

dependencies, 453–454
extra dependencies, 454–455
extra dependency links, 455
long_description argument, 456–457
metadata, specifying, 455–456
overview of, 452
production config file template, 457–459
version number, choosing, 453

setuptools package
description of, 30
development mode, 174
extra dependency feature, 454–455
upgrading, 21
version number and, 453

setup_app() function, 174, 255–256
set_lang() function, 239
shutil module, copytree() function, 129
shutil.copyfileobj, 99
sign-in screen, styling, 441–442
sign-in, triggering, 423
signedin.html template, 439
signedout.html template, 439
signinagain() action, 448–449
signing in and out

AuthKit middleware and, 421
of PyPI, 461
of SimpleSite, 439–440

signout() action, 420
simplejson package, 30
SimpleSite application

Ajax and, 356–360
animation, adding to, 354–356
API Documentation page, 274
AuthKit and

changing templates based on
permissions, 438

controller actions, protecting, 436–438,
443–444

middleware, setting up, 433–434
signing in and out, 439–440
styling sign-in screen, 441– 442
User Management API, 445
websetup.py, adjusting, 434–436

base controller role, 176–177

■INDEX530

comments system
controller, creating, 281–282
controller, planning, 280
controller, updating to handle comments,

282–285
overview of, 279–280
routes, modifying, 280–281
setting page ID automatically, 285–288

controller
create() method, 180–183
customizing, 167
delete() method, 185–186
edit and save() methods, 183–184
list() method, 185
new() method, 178–180
updating to support editing pages, 177
view() method, 178

creating new project, 166–167
database tables for, creating, 173–175
dates and times, formatting, 189–190
deployed with apache and mod_wsgi, 500
deploying

activate script, 490
virtual Python environment and, 489

documenting with Sphinx, 270–273
error documents for, customizing, 447–449
finished, with customized front page, 165
flash message, using, 190–192
footer, updating, 186
functional tests for, 252
grids, using, 332–336
Index page, 275
making into Paster project template

overview of, 462–465
variables, 465–468

model for
creating, 171–173
engine, configuring, 171
overview of, 170

navigation elements, adding, 319–321
navigation hierarchy

controllers, creating, 303–311
creating, 299
inheritance in SQLAlchemy and, 299–301
initial data, setting up, 301–303
page controller, 311–313

on PyPI, 457, 461
overview of, 165
packaging for distribution

egg file, building, 459–460
egg file, publishing in PyPI, 460–462

page controller, creating, 167–168
Page view

deleted pages, handling, 289–290
updating, 288–289

pages, deleting, 298
pagination, using, 186–189
querying data, 175–176

route map, 196
routing, changing, 313–319
setup.py file, configuring

dependencies, 453–454
extra dependencies, 454–455
extra dependency links, 455
long_description argument, 456–457
metadata, specifying, 455–456
overview of, 452
production config file template, 457–459
version number, choosing, 453

setup_app() function, 255–256
SQLAlchemy sessions, using, 177
style, adding, 321–323
tags

adding to pages, 295–298
deleting, 298
names, constraining, 293–294
overview of, 290
tag controller, creating, 291–293

template, releasing, 468–469
template structure, 168–170
WYSIWYG interface, adding, 449–452

SOLObject, 133
source code

See also code; listings
commenting, 263–264
encoding (Unicode), 222–223
Python, documenting with Sphinx, 273–276

special nested grids, 331–332
Sphinx tool

automatically generating documentation
using, 276–277

docstrings and, 266
documenting Python source code using,

273–276
documenting SimpleSite project using,

270–273
syntax highlighting, 277–278

sphinx-build command, 271
SQL (Structured Query Language), RDBMS and,

132
SQL Expression API (SQLAlchemy)

injection attacks and, 142–143
overview of, 141–142
selecting results, 143–146

SQL injection attacks, 142–143
SQLAlchemy

See also navigation hierarchy
architecture

Declarative API, 160–162
Engine API, 136–138
Metadata and Type APIs, 138–141
overview of, 135–136
SQL Expression API, 141–146

automatically converting string types to
handle Unicode, 140

base controller, role of, 176–177

■INDEX 531

capturing log messages using propagation,
483–484

database tables, creating, 173–175
description of, 133
engine, configuring, 171
inheritance in, 299–301
installing, 135
maintaining performance, 162–163
model, creating, 171–173
Object-Relational API

classes and mappers, 150–151
database metadata, describing, 148–150
objects, 159–160
overview of, 146
queries, 157–159
sessions, 152–156

object-relational mapper, 6
overview of, 170
query object, 175–176
sessions, using in Pylons, 177
setting up, 133
Unicode column type, 225

SQLAlchemy driver (AuthKit), 434
SQLite

creating database with, 135
description of, 134
installing, 134–135
memory mode function, 137
specifying relative an absolute paths in, 137

SSL (Secure Sockets Layer), setting up, 429–431
stability of object databases, 131
stack, building out of WSGI middleware,

389–390
StackedObjectProxy class, 409
starting

Paste HTTP server, 35
server, 166

start_response argument, 199, 202
start_response() callable

custom, to return GzipFile object, 384–385
description of, 371
final version of code, 386–387
updating GzipMiddleware class to call,

385–386
WSGI middleware and, 379
WSGI servers and, 374

static files, 35–36
static named routes, 204
static parts of routes, 200
static-looking URL, 205
StaticURLParser, 407
status codes (HTTP), 41
status in piece of middleware, changing, 381
StatusCodeRedirect component (WSGI), 404,

410
StatusCodeRedirect middleware

403 error document and, 437
error documents and, 445–446

storing
user language in sessions, 238–239
view templates, 64

storing data
See also RDBMS
in Amazon S3, 129–130
approaches to, 127
in databases

object databases, 131
overview of, 130
XML databases, 131–132

in filesystems, 127–129
Storm, 133
story object, filter function for, 215–216
streaming content, 412–413
strftime() method (datetime.datetime objects),

189–190
strict_c option, 50
String data type (JavaScript), 341
string types, automatically converting to handle

Unicode, 140
strings

concatenating, 145
extracting, and handling translations, 229
marking for internationalization, 228–229

Structured Query Language (SQL), RDBMS and,
132

style for SimpleSite, adding, 321–323
stylesheet_link() helper, 182
styling sign-in screen, 441–442
submit() helper, 96
submitting forms using GET or POST HTTP

methods, 93–95
sub_domain option (conditions argument),

213–215
Supervisor tool, 497
supporting multiple languages, 232–234
syntax

highlighting (Sphinx), 277–278
template, 66–69

system Python environment, 488

■T
table columns, naming, 151
tables

for laying out HTML content, 328
for SimpleSite, creating, 173–175
in SQLAlchemy, 138–140

tag controller, creating, 291–293
Tag object (SQLAlchemy), 151
tags for SimpleSite

adding to pages, 295–298
deleting, 298
names, constraining, 293–294
overview of, 290
tag controller, creating, 291–293

temp file data, copying to permanent location,
99

■INDEX532

Tempita template language, 30
template preset grids, 329–331
template structure for SimpleSite, 168–170
Template tab (interactive debugger), 56
template variables, default, 69–70
templates

See also Paster project template; specific
templates; view template

changing based on permissions, 438
derived/form.html, 117
for forms, 92
listing, 32
logging module, 474–475
.pager(), variables to use as arguments in,

188
separating from models, 176
translations within, 235–236
types of, 32

templates directory, 38, 64
templates/base/index.html template, 321
templates/component/navigation.html

template, 320–321
templates/derived/comment/fields.html

template, 283
templates/derived/page/view.html template

footer def, 289
page controller, 296

templating, Unicode and, 225
templating languages

See also Mako templating language
choosing among, 88
integrating into Pylons application, 90
Jinja 1 and Genshi, 88–89
working with multiple, 89–90

templating system, 63. See also view template
test.ini file, 254–256
testing

form to handle repeating fields problem,
124–125

from command line, 261–262
functional

for controllers, 428
description of, 246
of objects, 260–261
page controller save() action, 257–260
with paste.fixture, 252–256, 261

JavaScript in Firebug, 337
middleware, 387–388
overview of, 245–246
POST method, 95
types of, 246–247
unit, with nose, 247–251
view templates, 64

tests directory, 38
test_page object (SQLAlchemy), 153–156
test_save() method, 259–260
test_save_invalid_form_data() method, 259
test_save_invalid_id() method, 258

test_save_prohibit_get() function, 258
text() helper, 96–97
<%text> tag, 67
Thawte certificate authority, 429
this (JavaScript), 345–346
301 redirect to URL, 36
time.sleep() function, 413
times for SimpleSite, formatting, 189–190
time_ago_in_words() function, 129
tinyurl.com, 205
tmpl_context object, 49–50
toctree directive (Sphinx), 273
tools

See also documentation tools; FormEncode
tool; HTML Fill tool; nose tool

Buildout, 15, 488–489
for creating virtual Python environments, 15
decorator, 29
feditors, 28
Firebug

console object, 362
description of, 336
Inspect button, 351
Net tab, 360
testing JavaScript in, 337

or form handling, 91
mod_wsgi

embedding with, 497–499
overview of, 493
troubleshooting, 501–502
virtual host, setting up, 499–500

to monitor and restart processes, 497
navigator, 187
repoze.who
SciTE editor, 28
Sphinx

automatically generating documentation
using, 276–277

docstrings and, 266
documenting Python source code using,

273–276
documenting SimpleSite project using,

270–273
syntax highlighting, 277–278

Supervisor, 497
ToscaWidgets, 91
virtualenv.py, 15, 19

ToscaWidgets tool, 91
to_python() method, 105
Traceback tab (interactive debugger), 56
TranslateDemo example

Babel, using, 230–232
overview of, 229–230
supporting multiple languages, 232–234
translations within templates, 235–236
updating message catalogs, 234–235

■INDEX 533

translations for internationalization
handling, 229
lazy, 240–241
within templates, 235–236

trickling-down model of event handling, 352
troubleshooting

Easy Install, 21–22
mod_wsgi, 501–502

trove classifiers, 455
TurboGears 1.0, 22
turning off debug mode in INI file, 412
Type API (SQLAlchemy), 138–141
types (JavaScript), 341–342

■U
-U flag for commands, 21
UI, treating URL as part of, 206
UKDateConverter validator, 108
Undefined data type (JavaScript), 341
underscore (_) character, 66, 415
ungettext() function, 241
unichr() function, 220
Unicode

automatically converting string types to
handle, 140

complete request cycle, 226
description of, 218–219
encoding code points into binary numbers,

218
error message, 217
history of, 217–218
in Pylons application, 224–225
in Python 2

decoding, 221
encoding, 222
handling errors, 220–221
literals, 219–220
overview of, 219
source code encoding, 222–223
writing data to files, 223

returning from action, 413
UTF-8 encoding and, 219

Unicode() constructor, 220–221
unicodedata module, 220
UniqueSectionPath validator, 305
UniqueTag validator, 293
unit testing

description of, 246
with nose

command-line debugging, 250–251
debug messages, 249
detailed errors, 249
overview of, 247–249
search locations, 251

UPDATE statement (SQLAlchemy), 145
update_tags() action, 297

updating
controller

create() method, 180–183
delete() method, 185–186
edit and save() methods, 183–184
list() method, 185
new() method, 178–180
to support editing pages, 177
view() method, 178

footer for SimpleSite, 186
message catalogs, 234–235

upgrading
packages with Easy Install, 20
setuptools, 21

uploading files, 98–101
URL

choosing, tips for, 205–206
generating, 195
mapping, 195
matching, 197
parts of, 204

url_for() helper, 96
User Management API (AuthKit)

overview of, 426
SimpleSite and, 445

user testing
description of, 246
resources on, 247

UserIn permission, 422
UsersFromFile driver (AuthKit), 426
UsersFromString driver (AuthKit), 426
UTF-8 encoding, 218–219

■V
validate() decorator, 103, 111–112
validate_python() method, 113
validating e-mail address, 101–102
validation schema for forms, 103
validators

accessing objects that aren’t thread-safe, 294
chained, 296
description of, 103
FormEncode tool

chained, 121
configuring, 107–108
custom, creating, 112–115
list of, 106–107
options supported by, 107
prevalidators, 119

ValidAuthKitUser permission, 422, 436–437
ValidSectionPosition validator, 305
ValidTagsForm schema, 297
variables

assigning template, using context c global,
65–66

cache_dir, 78
century routing, 201
default (Routes), 201–202

■INDEX534

defining, in JavaScript, 339
environment, 42–44
hard-coded (Routes), 201
HTTP_PROXY environment, 20
logging methods, 474
project template, 465–468
PATH environment, 25–26
PYTHON_EGG_CACHE environment, 21
routing

calling controller action with, 198–199
definition of, 196
naming, 202

WSGI, 374
wsgi.errors, 375

VeriSign certificate authority, 429
version number for project, choosing, 453
view template

applying filters in, 75–76
assigning variables using context c global,

65–66
basic syntax, 66–69
body() def, 81
caching functionality (Beaker package), 87
capturing output, 79–80
def blocks, using, 76–77
description of, 6, 32, 64
inheritance chains

next namespace, 83–85
overview of, 81
parent namespace, 85
simple inheritance, 82–83

linking render() function to engine code,
85–86

Mako caching, 77–79
Mako runtime built-ins, 70–72
<%namespace> tag, 80–81
objects passed automatically via render()

function, 69–70
security considerations, 73–74
separating logic code and view code, 72
storing, 64
testing, 64
writing helpers to use HTML literals, 74–75

view() method
page controller, 295
updating controller to support editing pages,

178
view.html template

for SimpleSite, 170
tag controller and, 292
updating to handle comments, 283

viewing environment variables, 43–44
virtual host, mod_wsgi and, setting up, 499–500
virtual Python environment

activate script, 490
activating and deactivating, 18–19
application instance, setting up, 491
Buildout, 488–489

config file for application, creating, 491
installing required software to, 490–491
serving application, 492
setting up, 14–15, 489

virtualenv.py tool
creating virtual Python environment with, 15
setting options for, 19

■W
Web Developer toolbar, 40
web server, running project with

configuration files and, 33–34
IP addresses, hosts, and security, 36
Paste HTTP server, 34–35
static files, 35–36

Web Server Gateway Interface. See WSGI
web site example. See SimpleSite application
web sites

community support, 9
doctest module documentation, 268
Easy Install documentation, 16
ECMAScript specification, 340
on filesystem use, 129
Firebug, 336–337
Firefox web browser, 40
GNU gettext, 229
HTML helpers documentation, 97
HTTP specification, 41
listamatic, 322
Mako documentation, 70
Mercurial documentation, 22
object databases, 131
object-relational mappers, 133
Paste Script developer documentation, 393
paste.fixture documentation, 261
Python Package Index, 14
Python Tutorial, 8
reStructuredText documentation, 270
Sphinx documentation, 278
Web Developer toolbar, 40
WebHelpers documentation, 75
XML databases, 132
YUI, 326

WebError package, 30
WebHelpers package

building forms with, 96–98
description of, 31
HTML helper functions, writing or

upgrading, 74–75
paginate module, 187
version 0.6, changes in, 96

webhelpers.html.escape function, 73
webhelpers.html.literal() object, 73
WebOb package

description of, 31
request object and, 44
response object and, 46

■INDEX 535

websetup.py file
description of, 38
egg entry points and, 391–392
for navigation, updating, 301–303
updating for SimpleSite, 434–436

WHERE clause (SQLAlchemy), 143–144
whitespace, help() function and, 265
wiki comments system as object-relational

example, 147–148
wildcard parts of routes, 200–201
Windows

deployment on, 502
developing applications on, 27–28
file extensions for commands, 16
installation on, 24–26
Python versions and, 17

writing
helper functions to use HTML literals, 74–75
WSGI middleware

environment, modifying, 380–381
errors, handling, 381–382
overview of, 379–380
response, altering, 383–387
status and headers, changing, 381
testing, 387–388
Unicode data to files, 223

WSGI (Web Server Gateway Interface)
application component, accessing

programmatically, 401–402
applications

as class instances, 371–372
overview of, 370–371
as Pylons controllers, 372–374

architecture, history of, 389–390
components of, 369
composite applications, 395–396
description of, 43, 369
middleware

advantages of, 389
building stack out of, 389–390
overview of, 378–379
testing, 387–388
writing, 379–387

servers, 374–378
variables, 43

wsgi.errors, logging to, 479–480
wsgi.errors variable, 375
WSGIController, 411
WSGIErrorsHandler, 479–480
wsgiref module, 378
WYSIWYG interface, adding to SimpleSite,

449–452

■X
X-Debug-URL header, 58
XML databases, 131–132
XSS (cross-site scripting) attacks, 73

■Y
YAHOO namespace (YUI library), 346
YAHOO.lang, functions defined in, 341–342
YUI

adding to project, 325–326
animation classes, 354
event handling in, 353
fonts style sheet, 327–328
grids

nested, 331
special nested, 331–332
style sheet, 328–329
template preset, 329–331
updating SimpleSite to use, 332–336

library
YAHOO namespace, 346
YAHOO.lang, functions defined in,

341–342
resetting browser CSS with, 326–327

YUI Rich Text Editor
preventing HTML page content from being

escaped, 452
setting up, 449–450
styles and, 452
theming system, 450–452

yui-gf class, 331

■Z
0.0.0.0 IP address, 36
ZIP files, 18
ZODB object database, 131

■INDEX536

