ELEGTiONICS

 BASIC, ANALOG, AND DIGITAL

 BASIC, ANALOG, AND DIGITAL}

ELECTRONICS BASIC, ANALOG, AND DIGITAL with PSpice

ELECTRONICS
 BASIC, ANALOG, AND DIGITAL with PSpice

NASSIR H. SABAH

American University of Beirut
Lebanon

MATLAB ${ }^{\circ}$ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB ${ }^{\circ}$ software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ${ }^{\circ}$ software.

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321
International Standard Book Number: 978-1-4200-8707-9 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Sabah, Nassir H.
Electronics : basic, analog, and digital with PSpice / author, Nassir H. Sabah.
p.cm.
"A CRC title."
Includes bibliographical references and index.
ISBN 978-1-4200-8707-9 (hardcover : alk. paper)

1. Electronics. I. Title.

TK7816.S23 2010
621.381--dc22

To Gharid

In loving appreciation of her continued support and forbearance, and in fond remembrance of E.E. Ward, my first teacher of electronics.

Everything should be made as simple as possible, but not simpler.
—Albert Einstein

Brief Contents

Preface xxi
Introduction xxv
Convention for Symbols xxxiii
Chapter 1 Basic Diode Circuits 1
Chapter 2 Basic Principles of Semiconductors 55
Chapter 3 pn Junction and Semiconductor Diodes 105
Chapter 4 Semiconductor Fabrication 149
Chapter 5 Field-Effect Transistors 179
Chapter 6 Bipolar Junction Transistor 241
Chapter 7 Two-Port Circuits, Amplifiers, and Feedback 295
Chapter 8 Single-Stage Transistor Amplifiers 335
Chapter 9 Multistage and Feedback Amplifiers 405
Chapter 10 Differential and Operational Amplifiers 467
Chapter 11 Power Amplifiers and Switches 531
Chapter 12 Basic Elements of Digital Circuits 587
Chapter 13 Digital Logic Circuit Families 647
Appendix A: Reference Material 703
Appendix B: Basic PSpice Models 705
References and Bibliography 709
Index 711

Contents

Preface xxi
Introduction xxv
Convention for Symbols xxxiii

1. Basic Diode Circuits 1
Learning Objectives 1
1.1 Ideal and Practical Diodes 2
Ideal Diode 2
Ideal Si $p n$ Junction Diode 2
Practical Diodes 3
Incremental Diode Resistance 4
1.2 Basic Analysis of Diode Circuits 5
Piecewise Linear Approximation 5
Bias Point 6
Small-Signal Model 6
1.3 Rectifier Circuits 10
Half-Wave Rectifier 10
Full-Wave Rectifier 11
Smoothing of Output 14
Capacitor-Input Filter 14
Approximate Analysis of Capacitor-Input Filter 16
1.4 Zener Voltage Regulator 24
Voltage-Current Characteristic 24
Analysis of Zener Regulator 25
Load Regulation and Line Regulation 28
1.5 Diode Voltage Limiters 32
Surge Protection 36
1.6 Diode-Capacitor Circuits 36
dc Restorer. 36
Voltage Multiplication 41
Summary of Main Concepts and Results 42
Learning Outcomes 43
Supplementary Examples and Topics on Website 43
Problems and Exercises 44
2. Basic Principles of Semiconductors 55
Learning Objectives 55
2.1 Excerpts from Wave Mechanics 56
Some Basic Ideas 56
Schrödinger's Equation 58
Wave Packets 59
Free Atoms 64
Energy Band Structure 64
2.2 Electric Conduction in Semiconductors 66
Electrons in a Periodic Potential 66
Effective Mass 68
Hole Conduction 69
Density of Electron States 71
Fermi-Dirac Distribution 73
2.3 Intrinsic and Extrinsic Semiconductors 74
Crystal Structure 74
Intrinsic Semiconductor 75
Extrinsic Semiconductors 77
2.4 Electrochemical Potential 79
Expression for Chemical Potential 79
Expression for Electrochemical Potential 81
Generalized Ohm's Law 82
State of Equilibrium 83
Fermi Level and Electrochemical Potential 84
2.5 Carrier Concentrations in Semiconductors 85
Carrier Generation and Recombination 87
Intrinsic Semiconductor 88
Position of Fermi Level 89
n-Type Semiconductor. 89
p-Type Semiconductor 90
2.6 Carrier Mobility 94
Variation with Dopant Concentration 94
Variation with Temperature 95
2.7 Carrier Recombination 95
Minority Carrier Lifetime 97
Summary of Main Concepts and Results 98
Learning Outcomes 99
Supplementary Examples and Topics on Website 100
Problems and Exercises 101
3. $p n$ Junction and Semiconductor Diodes 105
Learning Objectives 105
3.1 The $p n$ Junction at Equilibrium 106
Junction Potential 106
Depletion Approximation 107
3.2 The Biased $p n$ Junction 112
The $p n$ Junction as a Rectifier 112
Width of Depletion Region 113
Charge Distributions and Currents under Bias 113
Current-Voltage Relation 117
Charge-Current Relation 118
$p n$ Junction Capacitances 118
Temperature Effects 120
Junction Breakdown 121
3.3 Semiconductor Photoelectric Devices. 124
Photoconductive Cell 124
Photodiode 125
Photocell 126
3.4 Light-Emitting Diodes 128
3.5 Tunnel Diode 131
3.6 Contacts between Dissimilar Materials 134
Metal-Metal Contacts 135
Metal-Semiconductor Contacts 136
Schottky Diode 139
3.7 Heterojunction 139
Summary of Main Concepts and Results 143
Learning Outcomes 144
Supplementary Examples and Topics on Website 144
Problems and Exercises 145
4. Semiconductor Fabrication 149
Learning Objectives 149
4.1 Preparation of Silicon Wafer 150
High-Purity Silicon 150
Crystal Growth 150
Wafer Production 151
Oxidation 151
4.2 Patterning Processes 152
Preparation of Masks 152
Lithography 153
Etching 156
4.3 Deposition Processes 157
Ion Implantation 157
Diffusion 157
Chemical Vapor Deposition. 158
Metallization 158
Clean Room Environment 159
4.4 Packaging 160
Package Types 160
4.5 Fabrication of Simple Devices 161
Resistors 161
pn Junction Diodes 162
Capacitors 163
4.6 CMOS Fabrication 163
Transistor Isolation 163
Transistor Formation 164
Silicon-on-Insulator Technology 168
4.7 Fabrication of Bipolar Junction Transistors 169
Basic BJT Structure 169
Modified BJT Structures 170
BiCMOS 171
4.8 Miscellaneous Topics 172
SiGe Technology 172
Crystal Defects 173
$\mathrm{Si}-\mathrm{SiO}_{2}$ Interface 174
Summary of Main Concepts and Results 175
Learning Outcomes 176
Supplementary Examples and Topics on Website 177
Problems and Exercises 177
5. Field-Effect Transistors 179
Learning Objectives 179
5.1 Amplifiers 180
Hypothetical Amplifying Device 181
5.2 Basic Operation of the MOSFET 183
Structure 183
Operation of Enhancement-Type MOSFETs 184
Current-Voltage Relations 187
p-Channel MOS Transistor 190
Small-Signal Operation 191
5.3 Secondary Effects in MOSFETs 196
Channel-Length Modulation 196
Transconductance 199
Overdrive Voltage 201
Temperature Effects 201
Breakdown 201
Body Effect 202
Capacitances 205
Unity-Gain Bandwidth 207
Short-Channel Effects 209
Carrier Velocity Saturation and Hot Carriers 210
Reduced Output Resistance and Threshold 211
Other Effects 211
Improved Performance 212
5.4 Depletion-Type MOSFETs 214
Diode Connection 217
5.5 Complementary MOSFETs 218
CMOS Amplifier 219
CMOS Transmission Gate 222
CMOS Inverter 225
5.6 Junction Field-Effect Transistor 225
Structure 225
Operation 226
Current-Voltage Relation 228
5.7 Metal-Semiconductor Field-Effect Transistor 232
Structure 233
Operation 233
High-Mobility Devices 234
Summary of Main Concepts and Results 235
Learning Outcomes 235
Supplementary Examples and Topics on CD 236
Problems and Exercises 236
6. Bipolar Junction Transistor 241
Learning Objectives 241
6.1 Basic Operation of the BJT 242
Common-Base dc Current Gains 245
Typical Structure 246
Common-Emitter Configuration 247
Small-Signal Current Gains 250
Small-Signal Equivalent Circuits 254
6.2 Secondary Effects in BJTs 256
Base-Width Modulation 256
Hybrid- π Equivalent Circuit 260
Variation of i_{C} with $v_{b e}$ 265
h-Parameter Equivalent Circuit 265
Temperature Effects 265
Breakdown 266
Punchthrough 268
BJT Capacitances 268
Unity-Gain Bandwidth 271
6.3 BJT Large-Signal Models 275
Ebers-Moll Model 275
Saturation Mode 278
The BJT as a Switch 281
Diode Connection 282
Regenerative Pair 282
Augmented Models 284
6.4 Heterojunction Bipolar Transistor 284
6.5 Noise in Semiconductors 286
6.6 Comparison of BJTs and FETs 287
Summary of Main Concepts 288
Learning Outcomes 288
Supplementary Examples and Topics on Website. 289
Problems and Exercises 289
7. Two-Port Circuits, Amplifiers, and Feedback 295
Learning Objectives 295
7.1 Two-Port Circuits 296
Interpretation of Parameters 296
Equivalent Circuits 298
7.2 Ideal Amplifiers 298
7.3 Negative Feedback. 300
Series-Shunt Feedback 301
Signal-Flow Diagrams 303
Series-Series Feedback 305
Shunt-Series Feedback 307
Shunt-Shunt Feedback 308
7.4 Ideal Operational Amplifier 310
Noninverting Configuration 311
Unity-Gain amplifier 313
Inverting Configuration 314
Integrator 317
Differentiator 318
Extraneous Signals 321
Gain-Bandwidth Product 322
Summary of Main Concepts and Results 325
Learning Outcomes 326
Supplementary Topics and Examples on Website 326
Problems and Exercises 326
8. Single-Stage Transistor Amplifiers 335
Learning Objectives 335
8.1 Transistor Biasing 336
Biasing of Discrete Transistors 336
Current Mirror 341
BJT Current Mirror 341
MOSFET Current Mirror 344
8.2 Basic Amplifier Configurations 346
General Considerations 346
Common-Emitter Amplifier 348
Common-Source Amplifier 350
Common-Drain Amplifier 350
Common-Collector Amplifier 353
Common-Source Amplifier with Source Resistor 356
Common-Emitter Amplifier with Emitter Resistor 358
Common-Gate Amplifier 361
Common-Base Amplifier 363
8.3 High-Frequency Response 368
Miller's Theorem 368
Poles and Zeros of Transfer Function 369
Common Emitter/Source Amplifier 370
Common Collector/Drain Amplifier 373
Common-Emitter/Source Amplifier with Feedback Resistor. 375
Common-Base/Gate Amplifier 376
8.4 Composite Transistor Connections 379
Darlington Pair 379
Common Collector-Common Emitter Cascade 381
Cascode Amplifier 384
MOSFET Cascode 384
BJT Cascode. 386
BiCMOS Cascode 389
8.5 Cascode Current Sources and Mirrors 391
Summary of Main Concepts and Results 392
Learning Outcomes 393
Supplementary Examples and Topics on Website 393
Problems and Exercises 394
9. Multistage and Feedback Amplifiers 405
Learning Objectives 405
9.1 Cascaded Amplifiers 406
dc Level Shifting 409
9.2 RC-Coupled Amplifiers 411
Common-Source Amplifier 411
Common-Emitter Amplifier 413
9.3 Feedback Amplifiers 416
Series-Shunt Feedback 417
Series-Series Feedback 424
Shunt-Series Feedback 428
Shunt-Shunt Feedback 433
9.4 Closed-Loop Stability 436
Stability from Bode Magnitude Plots 438
Frequency Compensation 441
Feedback Oscillators 445
Wien-Bridge Oscillator 445
High-Q Oscillator 446
9.5 Tuned Amplifiers 448
9.6 LC Oscillators 451
9.7 Crystal Oscillators 456
Summary of Main Concepts and Results 457
Learning Outcomes. 458
Supplementary Examples and Topics on Website. 458
Problems and Exercises 459
10. Differential and Operational Amplifiers 467
Learning Objectives 467
10.1 Differential Pair 468
Basic Operation 468
Transfer Characteristic. 470
Small-Signal Differential Operation 471
High-Frequency Response 472
Small-Signal Common-Mode Response. 472
High-Frequency Response 474
Input Bias Currents 476
Input Offset Voltage 476
Current-Mirror Load 478
MOSFET Differential Pair 483
10.2 Two-Stage CMOS Op Amp 486
Input-Offset Voltage 486
Voltage Gain and Output Swing 487
Common-Mode Response 488
Frequency Response 488
Slew Rate 491
10.3 Folded Cascode CMOS Op Amp. 492
Common-Mode Input Range 492
Output Voltage Swing 494
Voltage Gain 494
Frequency Response 495
Slew Rate 495
10.4 CMOS Current and Voltage Biasing 498
Self-Biasing 498
10.5 BJT Op Amps 501
Input Resistance and Bias Current 502
Input Offset Voltage 503
10.6 Some Basic Practical Op-Amp Circuits 507
Inverting and Noninverting Op-amp Circuits 507
Integrator 509
Difference Amplifier 511
Instrumentation Amplifier 514
10.7 Switched-Capacitor Circuits 516
10.8 Digital-Analog Conversion 519
Summary of Main Concepts and Results 522
Learning Outcomes 523
Supplementary Examples and Topics on Website 523
Problems and Exercises 524
11. Power Amplifiers and Switches 531
Learning Objectives 531
11.1 General Considerations 532
Safe Operating Limits 532
Thermal Resistance 533
Thermal Stability 535
Nonlinear Distortion 536
Power-Conversion Efficiency 537
11.2 Class A Operation 539
Transformer Coupling 542
Emitter Follower 543
11.3 Class B Operation 545
11.4 Class AB Operation 546
11.5 Class C Operation 549
11.6 Power Operational Amplifiers 550
11.7 Power Switching 552
Class D Amplifier 552
Switched Regulated Supplies 553
dc-to-ac Converters 556
11.8 Power Diodes 560
11.9 Power Transistors 563
Bipolar Junction Transistors 563
MOSFETs 567
Insulated Gate Bipolar Transistors (IGBTs) 569
11.10 Power Latches 572
Thyristor 572
Summary of Main Concepts and Results 577
Learning Outcomes 578
Supplementary Examples and Topics and on Website 578
Problems and Exercises 579
12. Basic Elements of Digital Circuits 587
Learning Objectives 587
12.1 Digital Signals and Processing 588
Digital Signals 588
Boolean Algebra 590
12.2 Logic Gates 592
Gate Types. 592
CMOS Gate Examples 595
Gate Performance 596
12.3 Flip-Flops 602
Basic Latch 602
SR Latch 604
JK Flip-Flop 606
D Flip-Flop 608
12.4 Digital System Memories 611
Classification of Semiconductor Memories 612
Organization of RAM 613
12.5 Read/Write Memory 614
Static Memory Cell 614
Dynamic Memory Cell 616
Sense Amplifier and Precharge Circuit 617
Row Decoder 620
Column Decoder 622
12.6 Read Only Memory 623
Mask ROM 623
Programmable ROM 625
Erasable Programmable ROM 626
Flash ROM 627
12.7 Ferroelectric RAM 631
12.8 Metallic Interconnect 632
Capacitance 632
Resistance 632
Distributed Models 633
Summary of Main Concepts and Results 636
Learning Outcomes 637
Supplementary Examples and Topics on Website 637
Problems and Exercises 637
13. Digital Logic Circuit Families 647
Learning Objectives 647
13.1 CMOS 648
CMOS Inverter 648
Static Behavior 648
Noise Margins 651
Propagation Delay 653
Power Dissipation 655
CMOS Gates 657
NAND and NOR Gates 657
CMOS Gate Design 659
Effects of Sizing and Scaling 661
Low-Power CMOS 663
Summary 663
13.2 Pseudo NMOS 664
Static Operation 665
Dynamic Operation 667
13.3 Pass-Transistor Logic 668
13.4 Dynamic Logic 674
Basic Configuration 674
Limitations of Dynamic Logic 675
Domino Logic 676
Pipelined Single-Phase Clock Architecture 677
13.5 BiCMOS Logic 678
Basic Operation 678
Propagation Delay 680
BiCMOS Gates 680
13.6 Transistor-Transistor Logic 682
Basic TTL Inverter 682
Advanced Low-Power Schottky TTL 685
13.7 Emitter-Coupled Logic 686
Basic Circuit 686
ECL 100k 687
ECL Gates 691
Summary of Main Concepts and Results 693
Learning Outcomes 694
Supplementary Examples and Topics on Website 694
Problems and Exercises 694
Appendix A: Reference Material 703
Appendix B: Basic PSpice Models 705
References and Bibliography 709
Index 711

Preface

This book differs significantly from other current introductory textbooks on electronics in its coverage and approach. Most of the current textbooks pay only scant attention to basic electronics and the underlying theory of semiconductors. This, I believe, is a serious shortcoming, because some knowledge of the fundamental physical concepts involved is needed for two main reasons: first, in order to gain more than a superficial understanding of the behavior of semiconductor devices, and, second, to appreciate the nature of continuing improvements to the performance of these devices and therefore be able to follow the ongoing and projected advances in microelectronics. Given that the theory of electric conduction in semiconductors is well above the level of an introductory textbook, the challenge is to present the essentials of this theory in a way that gives at least a good qualitative understanding of the fundamental concepts involved. Fundamentals and concepts are strongly emphasized throughout this book, as in the author's book Electric Circuits and Signals, CRC press, Boca Raton, Florida, 2008.

Pedagogy

The following are specific features of the book's pedagogy:

1. Diffusion and drift in semiconductors and contacts between dissimilar materials are discussed in terms of electrochemical potential, which is shown to be a relatively simple but fundamental and unifying generalization of electric potential in the presence of concentration gradients. Most textbooks on electronics ignore electrochemical potential, and, if they go this far, consider instead Fermi and quasi-Fermi levels whose nature and role in semiconductors are not clearly addressed. Consequently, students find it difficult to understand why the Fermi level should be the same throughout a system at equilibrium, or the meaning of statements such as "Current is maintained by a gradient of the quasi-Fermi level," or "A voltmeter actually measures the difference between quasi-Fermi levels." An added benefit of introducing the concept of electrochemical potential is that electrophysiology of membranes of living cells is almost invariably discussed in terms of electrochemical potential. The concept of electrochemical potential provides an instructive link between semiconductor and ionic systems at a time when electrical engineering students are being increasingly exposed to biological systems.
2. An important objective in presenting semiconductor basics and operation of semiconductor devices is to "demystify" concepts and relations that are usually stated as facts, without at least some "plausible" explanation as to "the reason why." It is shown how many of the basic relations can be quite simply derived from fundamental considerations. Where this represents a significant departure from the mainstream of the discussion, it is left to Special Examples and Topics on the website of the book at:
www.crcpress.com/product/isbn/9781420087079
3. The discussion of transistors starts with the MOSFET; then the JFET and its derivative, the MESFET; and lastly the BJT. The discussion of BJT and MOSFET circuits is integrated as much as possible so as to highlight the common underlying
principles, particularly as concerns negative feedback. GaAs is briefly considered and its main characteristics, advantages, and limitations are highlighted.
4. State-of-the-art technologies, such as silicon-on-insulator and SiGe technologies, are presented.
5. The discussion of power electronics includes a brief treatment of power switching and $n p n p$ devices.
6. The Introduction presents a brief history of electronics and its impact.
7. Practical, real-life material is included wherever appropriate, mainly in the form of "Application Windows" that apply theory and provide additional motivation for students.
8. PSpice ${ }^{\circledR}$ simulations based on schematic capture and using OrCAD ${ }^{\circledR} 16.0$ Demo Software are presented in some detail, including the simulation procedure, and are integrated within the discussion (OrCAD, PSpice, SPECTRA for OrCAD, and Cadence are registered trademarks of Cadence Design Systems, Inc., San Jose, California). The PSpice simulation examples are included on the website of the book. A free download of OrCAD Demo Software is announced at the Cadence website:
https://www.cadence.com/products/orcad/pages/downloads.aspx.
9. Answers for all problems are included on the website of the book.

It is assumed that the reader has good familiarity with circuit analysis and basic physics.

Organization

Chapter 1 covers basic diode circuits, the diode being introduced simply as a two-terminal device having a specified current-voltage characteristic. This chapter serves as a "soft," application-oriented, and motivating introduction to electronics, instead of the rather abstract and unfamiliar principles of semiconductor physics. After having aroused the reader's interest and curiosity as to how a semiconductor diode operates, Chapter 2 presents the basic background on the physics of semiconductors and the principles associated with electric conduction in semiconductors. Building on this background, Chapter 3 explains the theory behind the $p n$ junction and the operation of the $p n$ junction diode and several of its derivatives. To satisfy the reader's curiosity as to how $p n$ junction diodes are fabricated, Chapter 4 discusses semiconductor fabrication in general.

Chapter 5 discusses transistor operation for field-effect transistors, namely, MOSFETs, the JFET, and the MESFET, and Chapter 6 discusses the same for the bipolar junction transistor. The discussion in Chapters 5 and 6 is oriented toward both analog and digital applications. Before considering transistor circuits, Chapter 7 introduces some basic notions on two-port circuits, amplifiers, and negative feedback, illustrating these concepts with ideal operational amplifiers.

Chapters 8 through 10 are dedicated to conventional analog electronics, starting with single-stage amplifiers (Chapter 8), then multistage and feedback amplifiers (Chapter 9), and, finally, differential and operational amplifiers (Chapter 10). Chapter 11 is concerned with power amplification and switching, including class D amplifiers and power latches. Chapters 12 and 13 deal with digital electronics; Chapter 12 covers the basic elements of digital circuits, whereas Chapter 13 discusses the most important logic families at present.

Every chapter begins with a brief overview and is followed by learning objectives. These are divided into two groups, inspired by Bloom's taxonomy on cognitive learning: the "to be familiar with" group and the "to understand" group that the student must pay particular attention to. Learning outcomes are stated at the end of every chapter together with a summary of the main concepts and results.

Good use is made of the website. Almost half as much material as in the book is included on the website in the form of supplementary examples (having the section number prefixed by SE) and supplementary topics (prefixed by ST). A given topic is included on the website, rather than in the text, if it is not basic enough, in the sense that it may be somewhat advanced, or it may not introduce additional fundamental concepts, or it might be outside the mainstream of the discussion.

Solutions Manual and Classroom Presentations

A solutions manual for all problems and exercises is available with its own companion CD that includes classroom presentations. These are Microsoft Word files for each chapter that present, in the form of colored bulleted text and figures, the main ideas discussed in the chapters, as well as the examples illustrating these ideas. The files are intended to be projected in the classroom by instructors and used as a basis for explaining the chapter material. They can be modified by instructors as they may deem appropriate for their own purposes.

MATLAB ${ }^{\circledR}$ is a registered trademark of The MathWorks, Inc. For product information, please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 5086477000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Acknowledgments

I am as indebted as ever to my students for their interactions and for asking the sorts of questions that would have never crossed my mind, and which would call for better and clearer explanations of some aspects of the course material. I am very grateful to my colleagues in the ECE department, Professor Ayman Kayssi and Dr. Mariette Awad, for commenting on the manuscript, and to Professor Kayssi for allowing me to include some of his particularly instructive problems. I would also like to express my sincere appreciation of the efforts of the staff of CRC Press and their associates in producing and promoting this book, particularly Nora Konopka, Publisher, Engineering and Environmental Sciences, for her considerate support, Glenon Butler, Project Editor, and Arunkumar Aranganathan, Project Manager, SPi Technologies, India, for their adept professionalism. Special thanks to Shayna Murry for her artfully creative cover design.

Introduction

Brief History of Electronics

Electronics is the branch of science and engineering concerned with devices whose operation depends on phenomena associated with the flow of electric charges in nonmetals. These devices, referred to as electronic devices, comprise diodes, transistors, and a number of other devices, which, at present, are mainly made from semiconductors. Electronics is considered to have started in 1904 with the vacuum-tube diode, although the German physicist Karl Ferdinand Braun (1850-1918) discovered in 1874 the rectifying properties of a point contact between a metal wire and a galena crystal, a lead-sulfide semiconductor. This effect was used over 30 years later in the form of the "cat's whisker" crystal radio detector and formed the background for the experiments that led to the point-contact transistor in 1948. Braun also developed the cathode-ray tube in 1897, consisting of an unheated (cold) cathode, a high-voltage anode, and a phosphor screen. The electron beam was formed by passing electrons through a hole in an aluminum plate and was deflected by a current-carrying coil.

Following the discovery in 1893 by the American inventor Thomas Alva Edison (18571931) that a heated filament in vacuum emits electrons to a metal nearby (the Edison effect), the English electrical engineer and physicist John Ambrose Fleming (1849-1945) constructed a vacuum-tube diode (the kenotron) in 1904 having two main terminals: an anode and a cathode that was connected to one end of the heater, with the other end of the heater being brought out to a third terminal. Shortly thereafter, in 1906, the American inventor Lee De Forest (1873-1961) created the vacuum-tube triode (the audion) by adding a third electrode (the grid) to the vacuum-tube diode to control the anode current by applying a voltage between the grid and the cathode. The performance of the vacuumtube triode was later improved in the late 1920s and early 1930s by adding a second grid (the tetrode) and a third grid (the pentode).

Until the advent of the transistor in the 1950s, vacuum-tube devices were used in electronic amplifiers and circuits in radio, television, wireless communications, radar, control systems, and many other applications. Nevertheless, because of their relative fragility and the short life of their heating filaments, vacuum-tube devices were not considered robust or reliable enough for many industrial and military applications, in addition to their consuming too much power and generating considerable heat. Other types of amplifiers were developed for special purposes, such as magnetic amplifiers, fluidic amplifiers, and rotating-machine amplifiers (the amplidyne). The earliest electronic digital computer, the Electronic Numerical Integrator and Calculator (ENIAC I), inaugurated in 1946, had about 19,000 vacuum tubes. Because of the burnout of filaments of these tubes, trouble-free operations did not, at best, exceed five days even after "high-reliability" vacuum tubes were used.

Because of the disadvantages of vacuum tubes, there were many attempts to replace them by solid-state devices. In 1925, the Austro-Hungarian physicist Julius Edgar Lilienfeld (1881-1963) filed a patent for a field-effect amplifier similar to the MESFET (Section 5.7, Chapter 5), which he followed in 1928 by a device similar to the MOSFET (Section 5.2, Chapter 5). The German physicist/electrical engineer and inventor Oskar Heil (1908-1994) also described in a patent application in 1934 how current through a semiconductor can be
controlled by a transverse electric field. But none of these devices was practical because of the detrimental effects of surface states. The selenium rectifier was introduced in 1933 and consisted of an aluminum or steel electrode, plated with a thin layer of bismuth or nickel, on which was deposited a relatively thick layer of selenium, which formed the other electrode. The rectifier could handle larger currents than the vacuum-tube diode but was not a very efficient rectifier.

An intense, comprehensive, and concerted effort was launched in 1945 at Bell Telephone Laboratories to develop a solid-state alternative to the mechanical relays in telephone switching equipment. The team of about 12 members was headed by William Shockley (1910-1989) and included Walter Brattain (1902-1987) and John Bardeen (1908-1991), all physicists, as well as chemists, engineers, and other physicists. After much experimental work and theoretical interpretations, they succeeded in building what became known as a point contact transistor in 1947, consisting of two closely spaced gold foils that made point contacts with a germanium crystal. The term transistor was coined as a combination of transresistance and varistor, a nonlinear resistor element. One contact (the emitter) was biased positively with respect to the crystal (the base), while the other contact (the collector) was biased negatively with respect to the base. In an early version, a voltage amplification of 2 and a power amplification of 330 were obtained. Bardeen, Brattain, and Shockley received the Nobel Prize in physics in 1956, "for their researches on semiconductors and their discovery of the transistor effect.'

The point contact transistor was commercially produced but suffered from several disadvantages. Its voltage and power gains were low, it could handle only small currents, it was difficult to manufacture, and it was prone to instability under certain operating conditions. Early in 1948, Shockley conceived of an improved transistor, the bipolar junction transistor (BJT; Section 6.1, Chapter 6), based on the theory of $p n$ junctions. It took another two years, however, before the device could be made, and BJTs were first commercially produced by Texas Instruments in 1954. The semiconductor used in early BJTs was germanium, but after methods for large-scale purification of silicon were developed, silicon BJTs prevailed in the early 1960s because of their superior performance. The BJT was the transistor of choice for both discrete and integrated circuits for almost 30 years.

Alongside the development of the point contact and bipolar junction transistors, work on field-effect transistors continued in an attempt to mimic the behavior of the vacuum-tube amplifier in the solid state. Following the contributions of Lilienfeld and Heil, Shockley described in his patent application for the BJT in 1948 a field-effect device having an insulated gate over a pn junction. In 1952, Shockley described a junction field-effect transistor (JFET; Section 5.6, Chapter 5). In 1958, M.M. Atalla and coworkers at Bell Telephone Laboratories reported on how silicon dioxide, thermally grown on a silicon surface, can passivate the silicon surface, thereby overcoming some of the problems associated with this surface. In 1960 he, along with D. Kahng, described what is essentially a p-channel MOSFET that they built using this technique. Silicon-based, discrete MOSFETs were first produced commercially in 1964 by Fairchild Semiconductor Corporation and Radio Corporation of America (RCA). However, discrete MOSFETs were not widely used because BJTs had a superior performance.

Meanwhile, integrated circuits were developed and became increasingly important for meeting the demands of a fast-growing digital computer industry. It was soon recognized that MOSFETs had decisive advantages over BJTs in integrated circuits, as they: (1) were easier to manufacture; (2) could be packed more densely on a chip without seriously affecting performance; and (3) dissipated less power, particularly when combined with
complementary MOSFETs in what became known as CMOS technology. By 1980, the MOSFET eclipsed the BJT, mainly because of its adoption in digital integrated circuits.

The first "integrated circuit" that combined circuit elements and electronic devices in a single package was introduced in 1926 by a German company, Loewe Radio A.G., and consisted of three vacuum-tube triodes, two capacitors, and four resistors in a single glass envelope. The motivation for this combination was a German tax on radio receivers based on the number of glass envelopes in the receiver. An early attempt at integration was made by the British engineer and automation pioneer John Sargrove (1906-1974), who experimented in 1936 and 1937 with creating a low-cost radio receiver by molding resistors, capacitors, inductors, and their interconnections in bakelite, so that all that remained was to insert the vacuum tubes in their sockets and connect the loudspeaker, thereby reducing the amount of labor involved and lowering the cost of production. His larger goal was to develop what he called "electronic circuit making equipment." Although his work succeeded technically, it failed commercially. In 1949, the German mechanical engineerphysicist Werner Jacobi (1904-1985) filed a patent for a two-stage "semiconductor amplifier" consisting of five transistors on a common substrate. This, however, remained largely unknown and was not commercially exploited. In 1952, a British electrical engineer at the Royal Radar Establishment, Geoffrey Dummer (1905-2002), proposed to have "electronic equipment in a solid block with no connecting wires," with the block consisting of layers of insulating and conducting materials (forming passive electrical components) combined with electronic devices. In 1958, Jack S. Kilby (1923-2005) of Texas Instruments constructed a flip-flop consisting of two BJTs on a single chip of germanium, with gold wire connections between the transistors. He shared the 2000 Nobel Prize in physics, "for his part in the invention of the integrated circuit," with Herbert Kroemer and Zores I. Alferov "for developing semiconductor heterostructures used in high-speed- and opto-electronics." Kilby's integrated circuit was not monolithic since the gold wire interconnections were not formed on the chip itself. American physicist Robert N. Noyce (1927-1990) of Fairchild Semiconductor demonstrated in 1959 the first monolithic integrated circuit consisting of silicon BJTs and resistors on a single silicon chip that were interconnected with aluminum conductors produced by photolithography (Section 4.2, Chapter 4).

In 1968, Noyce and chemist-physicist Gordon E. Moore left Fairchild Semiconductor to found Intel Corporation, which is the largest semiconductor company in the world today. Based on his experience with chip design and manufacturing, Moore had enunciated in 1965 what became known as "Moore's law," according to which, the number of transistors on a chip roughly doubles every two years or so, based on three factors: (1) the increase in chip size, (2) the shrinking of transistor dimensions, and (3) improved layout on the chip so as to reduce "dead space" as much as possible, as by merging devices and circuit elements in the chip and increasing the number of layers for interconnections on the chip. Remarkably, the development of semiconductor chips has conformed to Moore's law over the years, and even exceeded it at times.

To complement the preceding brief history of electronic devices and integrated circuits, Table 1 chronicles some important developments relevant to electronics and its applications.

Table 1 Dates for Some Important Developments Relevant to Electronic Applications

1822 English mathematician, philosopher, inventor, and mechanical engineer Charles Babbage (1791-1871) expounded the principles of the difference engine, a mechanical computer designed to compute values of polynomial functions, and whose basic architecture is very similar to that of modern digital computers.

1847 English mathematician and philosopher George Boole (1815-1864) promulgated Boolean algebra.

1849 Italian inventor Antonio Meucci (1808-1889) demonstrated a "talking telegraph," the first phone system in which voice is sent over wires.
1873 Scottish mathematician and theoretical physicist James Clerk Maxwell (1831-1879) published the four partial differential equations on electromagnetism, known since as Maxwell's equations.
1876 Scottish-born inventor Alexander Graham Bell (1847-1922) developed his practical telephone. He founded the Bell Telephone Company in 1877.

1882 American physicist and inventor Amos Emerson Dolbear (1837-1910) demonstrated wireless communication through earth via buried metal rods connected to telephones. The transmission range was about half a mile.
1895 Italian inventor Guglielmo Marconi (1874-1937) communicated via radio signals near Bologna, Italy, using a spark transmitter that could only send telegraph-type signals. He was able to increase the transmission range to about 1.5 km by increasing the length of the transmitting and receiving antennas and by orienting them vertically, with one end touching ground. That same year, Alexander S. Popov claimed to have sent radio signals over 600 yards. Nikola Tesla is claimed to have demonstrated radio transmission in 1893. In 1885, Sir William Pierce had demonstrated wireless transmission by magnetic induction. Marconi shared the 1909 Nobel Prize in physics with Karl Ferdinand Braun, "in recognition of their contributions to the development of wireless telegraphy."
1898 Danish engineer Valdemar Poulsen (1869-1942) built the first working magnetic recorder, which he called the Telegraphone, having magnetic wire wrapped around a drum.

1900 Canadian inventor Reginald Aubrey Fessenden (1866-1932) transmitted speech by radio over a distance of about a mile using a high-frequency spark transmitter. In 1906, he transmitted music by radio using a continuous-wave alterna-tor-transmitter.

1907 Russian scientist and inventor Boris Lvovich Rosing (1869-1933) demonstrated a primitive TV system featuring a mechanical scanning disc and an early form of a cathode-ray tube.
1918 American electrical engineer and inventor Edwin Howard Armstrong (1890-1954) patented the superheterodyne receiver.

1921 The U.S. Department of Commerce licensed the first commercial broadcasting station, Westinghouse's KDKA station, in Pittsburgh. The first broadcast was the returns in the Harding vs. Cox presidential race.

1923 Russian-born, American inventor and engineer Vladimir Kozmich Zworykin (1889-1982) filed a patent for the "iconoscope," a rudimentary TV camera in which charge is stored on a large number of picture elements in proportion to light from the image. The elements are then scanned by an electron beam to reproduce the charge pattern. In 1929, Zworykin patented the "kinescope," the precursor to the modern CRT television tube.

1925 Scottish engineer and inventor John Logie Baird (1888-1946) demonstrated the world's first working television system using a mechanical scanning disc patented in 1884 by the German inventor Paul Gottlieb Nipkow (1860-1940).

1927 American electrical engineer Harold Stephen Black (1898-1983) used negative feedback to improve the performance of an electronic amplifier.
1928 American inventor Philo Taylor Farnsworth (1906-1971) publicly demonstrated an all-electronic television system using a working electronic camera tube.

1933 American electrical engineer and inventor Edwin Howard Armstrong (1890-1954) patented wideband frequency modulation (FM) radio.

1937 British engineer Alec Harvey Reeves (1902-1971) patented pulse-code modulation.
1939 RCA demonstrated the first black-and-white television set.
1940 English physicist Henry Albert Howard Boot (1917-1983) developed a high-power cavity magnetron for use in centimetric radar, which allowed the detection of much smaller objects and the use of much smaller antennas than the earlier lower frequency radars. A basic multi-cavity resonant magnetron had been developed in 1935 by German electronic specialist Hans Erich Hollmann (1899-1960).

1941 NBC launched commercial television broadcasting in the United States.
1941 RCA announced an electronic color TV system that was potentially compatible with black-and-white television.

1943 Austrian inventor Paul Eisler (1907-1995) patented the printed circuit board, first used in the proximity fuse intended to bring down German V1 rockets toward the end of World War II.

1946 The Electronic Numerical Integrator and Computer (ENIAC I), the first generalpurpose, Turing-complete, electronic digital computer, unveiled at the University of Pennsylvania, conceived and designed by the American physicist John William Mauchly (1907-1980) and the American electrical engineer John Presper Eckert (1919-1995). Programs were hard-wired by means of switches and cables. The ENIAC I was intended to calculate artillery firing tables for the U.S. Army's Ballistic Research Laboratory.

1948 The Electronic Delay Storage Automatic Calculator (EDSAC), the first practical, stored program, electronic digital computer, was unveiled at the University of Cambridge Mathematical Laboratory, England.
1949 American chemist Gordon Kidd Teal (1907-2003) of Bell Laboratories developed, with help from mechanical engineer John Little and technician Ernest Buehler, a method of applying the Czochralski process to produce extremely pure germanium single crystals for making greatly improved transistors. He later extended this method to silicon. After moving to Texas Instruments in 1952, he demonstrated in 1954 a silicon BJT.

1950 Color TV was publicly demonstrated by CBS.
1951 The Lyons Electronic Office I (LEO I), the first commercial digital computer, was introduced in Britain by J. Lyons and Co. and modeled after the EDSAC. The first commercial digital computer in the United States was the UNIVersal Automatic

Computer I (UNIVAC I), made by Remington Rand and delivered to the U.S. Census Bureau in 1952.

1952 Andrew Kay of Non Linear Systems, San Diego, California introduced the first commercial digital voltmeter.

1954 The Regency TR-1, the first commercial transistor radio, was announced by the Regency Division of Industrial Development Engineering Associates (I.D.E.A.) of Indianapolis, Indiana. It was patented by the Dutch physicist Heinz De Koster, an employee of the company.

1957 Japanese physicist Leo Esaki of Tokyo Tsushin Kogyo (now known as Sony) invented the tunnel diode, also known as the Esaki diode (Section 3.5, Chapter 3). Esaki shared the 1973 Nobel Prize in physics with Ivar Giaever and Brian David Josephson, "for their discoveries regarding tunneling phenomena in solids."
1960 American physicist Theodore Harold Maiman (1927-2007) of Hughes Research Laboratories demonstrated the first working laser, based on a synthetic ruby crystal.
1961 Fairchild Semiconductor introduced resistor-transistor logic (RTL) ICs, the earliest class of digital logic ICs.

1962 Nick Holonyak Jr. of General Electric Company developed the first practical visiblespectrum (red) LED.
1963 The first CMOS circuit was described by Frank Wanlass of Fairchild Semiconductor.
1964 Sony Corporation introduced the first all-transistor, desktop electronic calculator using a neon-tube display. In 1970, a "cigarette pack"-sized calculator was introduced by Bowmar (United States), featuring an LED display and rechargeable batteries.

1965 The μ A709, the first commercially successful IC operational amplifier, was developed by Robert J. Widlar of Fairchild Semiconductor. The μ A702, also developed by Widlar at Fairchild Semiconductor about a year earlier, was not a commercial success because of many limitations.
1968 A one-transistor DRAM cell was patented by Robert Dennard of IBM.
1969 Intel introduced a 64-bit high-speed static random access memory (RAM), the 3101, using Shottky BJTs. Later, in 1969, Intel introduced the 1101, a 256-bit static RAM, the first memory chip based on MOSFETs.
1969 Charge-coupled devices were invented by George Smith and Willard Boyle of Bell Laboratories.

1970 Intel introduced the first 1K dynamic RAM, the 1103, using three PMOS transistors per memory cell.
1970 Intel introduced the 2048-bit mask programmable MOS, the 1301, and the 1701 chip, a 256-byte erasable read-only memory (EROM).

1970 Hoffmann-LaRoche of Switzerland applied for a patent on the twisted nematic (TN) field effect in liquid crystals. Shortly thereafter, in 1971, James Fergason, of Westinghouse Research Laboratories, Pittsburgh, applied for an identical patent in the United States. LCDs based on the TN effect soon superseded earlier LCDs because of their lower operating voltages and power consumption.

1970 Robert Maurer, Donald Keck, and Peter Schultz of Corning Glass Works introduced a low-loss optical fiber. The first fiber optic, semiflexible gastroscope, was patented in 1956 by Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. Curtiss of the University of Michigan.

1971 Intel introduced the first microprocessor, the 4004, based on 4-bit PMOS technology.
1971 Dov Frohman of Intel invented the Erasable PROM (EPROM) using a floating gate.
1973 The first public telephone call was placed on a portable cellular phone by Martin Cooper, general manager of Motorola's Communications Systems Division and inventor of the first modern portable handset.

1977 Micro Instrumentation and Telemetry Systems (MITS), New Mexico, commercialized the Altair 8800, the first low-cost, personal computer using a single-chip microprocessor, Intel's 8080. It shipped in kit form.
1981 IBM launched its mass-produced, open-architecture personal computer based on Intel's 8088 microprocessor.

1982 GRiD Compass, the first laptop using the clamshell design used today by almost all laptops, was introduced by Grid Systems Corporation of Fremont, California. The computer was designed in 1979 by the British industrial engineer William Moggridge, an employee of the company, and featured an Intel 8086 processor, a 320×200-pixel (CGA) electroluminescent display, a 340 kB magnetic bubble memory, and a $1200 \mathrm{bit} / \mathrm{s}$ modem. Hard drives, floppy drives, and other devices could be connected via the 488 I/O GPIB (General Purpose Instrumentation Bus).

1983 The PF-3000, the first PDA, was released by CASIO, for holding memos, addresses, and telephone numbers.

1984 Flash memory was developed by Fujio Masuoka of Toshiba. Flash memory was commercialized by Intel in 1988.
1987 Ching Tang and Steven Van Slyke of Eastman Kodak Company developed the first organic light-emitting diode.
1994 Apple Computer Inc. introduced the QuickTake 100 camera, the first digital camera for the consumer-level market that worked with a home computer via a serial cable.

2006 Intel's first announcement of the Tukwila server chip, billed as the word's first 2 billion transistor chip.

Impact of Electronics

The transistor, billed as the greatest invention of the twentieth century, was a big improvement over vacuum tubes. Initially, transistors suffered failures because of surface effects. But once these problems were overcome, transistors had a decisive advantage over vacuum tubes as they had a long life, greater robustness, much smaller size, lower cost of production, and much less power consumption. Not only did transistors quickly and almost totally replace vacuum tubes, but they made possible a whole new range of industrial, military, commercial, and consumer applications. For example, portable transistor radios of small size and low battery consumption became available, transforming the lives of many people all over the world.

Electronics and its applications did not really explode, however, until integrated circuits came along and brought not only continuing miniaturization but dramatic cost reduction as well. General-purpose operational amplifiers, for example, of a near-million voltage gain, now cost less than a few cents (of a U.S. dollar) each. The cost of digital memories of huge capacities is less than a cent per megabit. Moreover, the impact of integrated circuits was vastly enhanced by their wedding to digital system techniques. This brought: (1) the economy and ease of design and manufacturing of modules and repeating circuit units, (2) the versatility of software control, and (3) the advantages of digital mass data storage, and digital processing such as data compression, error detection, and correction. It became possible to control the operation of all kinds of equipment by embedded microprocessors and microcontrollers. The wedding of integrated circuits and digital circuit techniques heralded the Third Industrial Revolution, that of information technology based on computers and communications-the First Industrial Revolution being that of mechanization using mainly steam power, and the Second Industrial Revolution being mainly that of electrification in factories, workplaces, and homes. Data processing hardware comprising computers and communications equipment is today the largest electronics application sector in terms of monetary value. Consumer electronics is highly visible in our everyday lives in the form of cellular phones, smartphones, media players, personal digital assistants (PDAs), TVs and radio receivers, recorders, digital cameras, etc. Even at home, electronic control is used in many appliances such as refrigerators, washing machines, and vacuum cleaners. Electronics is a vital constituent of all types of military hardware, biomedical devices and equipment, and process control in chemical plants and manufacturing plants of all kinds. Integrated circuits have opened new application areas in aviation, cars, robots, instrumentation, electric motor and power system control, and equipment for many fields of research. Novel applications are being envisioned all the time that would have been unimaginable in the 1950s or would have been deemed as science fiction. Moreover, microelectronic fabrication techniques have made possible micro-electro-mechanical systems (MEMS) and have paved the way to nanotechnology, one of the major technologies of the twenty-first century. In short, electronics, in its myriad forms, is becoming ever more intricately woven into the fabric of our lives.

Convention for Symbols

Current and Voltage Symbols

- Capital letter with capital subscript denotes a dc, or average, quantity. Example: I_{C}.
- Capital letter with m subscript denotes the peak value of an alternating quantity. Example: $I_{m} \sin \omega t$.
- Lowercase letter with capital subscript denotes a total instantaneous quantity. Example: i_{D}.
- Lowercase letter with lowercase subscript denotes a small signal of zero average value. Example: i_{d}.
- Double subscript in a voltage symbol denotes a voltage drop from the node or terminal designated by the first subscript to the node or terminal designated by the second subscript. Example: $v_{c e}$.

Gate Capacitance Symbols

- Asterisk denotes value of a circuit parameter per unit area. Example: C^{*}.
- Prime denotes value of a circuit parameter per unit length. Example: C^{\prime}.

Basic Diode Circuits

Semiconductor diodes are by far the most important examples of passive, two-terminal, nonlinear devices, as evidenced by their wide use in a variety of important applications in electric and electronic circuits. Some of the more basic applications of diodes are considered in this chapter, treating the diode as a circuit element having a specified current-voltage characteristic. This approach is essentially an extension of circuit analysis to circuits having nonlinear elements. The basic principles underlying the operation of semiconductor devices are covered in Chapter 2 and are applied to various types of semiconductor diodes in Chapter 3.

Just as linear passive elements are idealized in order to highlight their salient characteristics and the way they affect circuit responses, diodes are idealized for the same reasons. However, this idealization can take several forms, depending on the diode circuit under consideration. It is essential, therefore, to appreciate the nature and implications of the approximations inherent in these idealizations. This is true of electronic circuits in general so that gaining insight into the behavior of these circuits is particularly important. Except in relatively few cases, "exact" solutions are usually tedious and unwarranted, considering the usual tolerances on electronic devices. One should therefore strive to acquire a "feel" for electronic circuits in order to make "judicious" approximations. For more accurate results, simulations are usually resorted to. In this and the following chapters on electronic circuits, approximations and shortcuts are emphasized. More exact solutions are mentioned mainly to appreciate the fundamental principles involved and the nature of the approximations made.

Learning Objectives

* To be familiar with:
- The terminology associated with semiconductor diodes and their circuits.
* To understand:
- The implications of the characteristics of ideal diodes and $p n$ junction diodes.
- The principles of operation of rectifier circuits and the methods used to smooth the output.
- The application of zener diodes to voltage regulation.
- The basic operation of voltage limiters, dc restorers, and voltage multipliers.

1.1 Ideal and Practical Diodes

Ideal Diode

Definition: An ideal diode is a two-terminal device that behaves as a short circuit for current flow in one direction (the forward direction) and as an open circuit for current flow in the opposite direction (the reverse direction).

The ideal diode behaves like an ideal switch that is controlled by the direction of current flow, much like a one-way, or no-return, valve that allows fluid to flow in one direction but not in the opposite direction.

The symbol used in this book for an ideal diode switch has an unfilled arrowhead (Figure 1.1.1a), the forward direction being that of the arrow, with the assigned positive directions of diode current and voltage as indicated. The $i-v$ characteristic has the rightangled shape depicted in Figure 1.1.1b, and represents an ideal unilateral element, that is, an element that conducts in one direction only. The diode terminals are denoted as anode and cathode, the direction of forward current through the diode being from anode to cathode. This terminology dates back to one of the earliest forms of diodes, the vacuum-tube diode (see Introduction).

Although the ideal diode switch may seem quite unrealistic, it is shown in the next section that it can serve as a good approximation under certain conditions.

Ideal Si $p n$ Junction Diode

The most common diode is the silicon (Si) $p n$ junction diode. This can take one of two forms: a discrete diode that is fabricated as a two-terminal device, or a diode-connected transistor in an integrated circuit (IC), as explained in Section 6.3, Chapter 6.

An ideal, Si $p n$ junction diode has the $i-v$ relation given by (Equation 3.2.3, Chapter 3):

$$
\begin{equation*}
i_{D}=I_{S}\left(e^{v_{D} / \eta V_{T}}-1\right) \tag{1.1.1}
\end{equation*}
$$

FIGURE 1.1.1
Ideal diode switch: (a) symbol and assigned positive directions; (b) $i-v$ characteristic.
where I_{S} is a small saturation current and $V_{T}=k T$ is the thermal voltage, k being Boltzmann's constant in $\mathrm{eV} / \mathrm{K}\left(8.62 \times 10^{-5}\right)$. At $T=300 \mathrm{~K}, V_{T}=25.852 \mathrm{mV}$. It is generally assumed that $\eta=2$ for discrete diodes and $\eta=1$ for IC diodes. Note that $V_{T}=k_{J} T /|q|$, where $|q|$ is the magnitude of the electronic charge and k_{J} is Boltzmann's constant in J / K.

Exercise 1.1.1

(a) At what voltage will the reverse current of an ideal Si diode reach 99% of its saturation value, assuming $\eta=2$ and $V_{T}=26 \mathrm{mV}$? (b) At what voltage will the forward current be $100 I_{s}$?

Answers: (a) -0.24 V so that the exponential can be neglected for $v_{D}<-0.24 \mathrm{~V}$ and i_{D} considered to be very nearly equal to $-I_{S} ;(\mathrm{b})+0.24 \mathrm{~V}$; under these conditions $I_{D} \gg I_{S}$, or the exponential is much greater than unity so that $i_{D} \cong I_{S} e^{v_{D} / \eta V_{T}}$.

If $v_{D}>0$, the diode is forward-biased. According to Equation 1.1.1, i_{D} increases slowly at first and then very rapidly as v_{D} increases beyond about $0.5-0.6 \mathrm{~V}$ (Figure 1.1.2). The voltage below which the forward current is negligible is the cut-in voltage V_{γ}.
If $v_{D}<0$, the diode is reverse-biased. i_{D} rapidly approaches $-I_{S}$, as shown in Figure 1.1.2 for a much more expanded current scale in the negative direction of current. The symbol for a diode other than the ideal diode switch of Figure 1.1.1 has a filled arrowhead (Figure 1.1.2).

Practical Diodes

The $i-v$ characteristics of practical $p n$ junction diodes differ from Equation 1.1.1 in the following respects depending on the diode type, structure, and method of fabrication:

1. η, the emission coefficient, is in the range of 1-2 and varies with the diode current. Theoretically, as discussed in Sections ST3.6 and ST3.7, Chapter 3, $\eta=2$ at low values and at high values of current, and $\eta=1$ at intermediate values.

FIGURE 1.1.2
$i-v$ characteristic of ideal Si $p n$ junction diode. Inset is the symbol for a diode other than an ideal diode switch.

FIGURE 1.1.3
Diagrammatic illustration of a $p n$ junction diode.

2. A $p n$ junction diode essentially consists of a p-type semiconductor and an n-type semiconductor in the same crystal. The boundary between the two types of semiconductor is the $p n$ junction, as diagrammatically illustrated in Figure 1.1.3. v_{D} in Equation 1.1.1 is, strictly speaking, the voltage drop across the $p n$ junction only. When the diode is forward biased, the total voltage drop across the diode includes an additional voltage drop due to the flow of current through the bulk resistance of the diode. As its name implies, the bulk resistance comprises all the diode resistive elements, including the resistances of the p - and n-regions on either side of the metallurgical junction, the resistance of the contacts to these regions, and the resistance of the lead wires that connect to the external diode terminals. At high forward currents, the voltage drop due to the bulk resistance is appreciable, so that the voltage across the diode is larger than v_{D}, for a given i, and varies more linearly with i.
3. The reverse current I_{R} exceeds I_{S} because of a surface leakage current $I_{\text {leak }}$ around the $p n$ junction, as indicated in Figure 1.1.3 by the block arrows. The magnitude of $I_{\text {leak }}$ increases with the reverse voltage and its temperature dependence is different from that of I_{S} (Section 3.2, Chapter 3). The total reverse current I_{R} is therefore:

$$
\begin{equation*}
I_{R}=I_{S}+I_{\text {leak }} \tag{1.1.2}
\end{equation*}
$$

$I_{\text {leak }}$ can be accounted for by a large resistance across the diode. In the forward direction, $I_{\text {leak }}$ is insignificant compared to the normal diode forward current.
4. When the reverse voltage exceeds a certain value, the $p n$ junction breaks down and the current increases rapidly, as illustrated in Figure 1.4.1.

Incremental Diode Resistance

Because Equation 1.1.1 is nonlinear, an incremental diode resistance r_{d} is defined as the reciprocal of the slope of diode $i-v$ characteristic at any given point. From Equation 1.1.1,

$$
\begin{equation*}
r_{d}=\frac{1}{d i_{D} / d v_{D}}=\frac{\eta V_{T}}{I_{S} e^{v_{D} / \eta V_{T}}}=\frac{\eta V_{T}}{i_{D}+I_{S}} \cong \frac{\eta V_{T}}{i_{D}} \tag{1.1.3}
\end{equation*}
$$

Exercise 1.1.2

(a) What is r_{d} of an ideal, discrete Si diode at a forward current of 10 mA if $I_{S}=10 \mathrm{nA}$ and $V_{T}=26 \mathrm{mV}$? (b) What is the corresponding v_{D} ? (c) What is v_{D} for $i_{D}=20 \mathrm{~mA}$?
Answers: (a) 5.2Ω; (b) 0.718 V ; (c) 0.754 V .

1.2 Basic Analysis of Diode Circuits

Piecewise Linear Approximation

In practical applications, the presence of the diode can be accounted for in different ways depending on the diode circuit under consideration. In many cases, when the diode is conducting an appreciable forward current, the forward characteristic in Figure 1.1.2 can be approximated by two straight lines L_{1} and L_{2}, defined as:

$$
\begin{align*}
& \mathrm{L}_{1}: i_{D}=0, \quad v_{D} \leq V_{D 0} \\
& \mathrm{~L}_{2}: i_{D}=\frac{1}{r_{D}}\left(v_{D}-V_{D 0}\right), \quad v_{D}>V_{D 0} \tag{1.2.1}
\end{align*}
$$

where the intercept of L_{2} on the voltage axis is the diode offset voltage $V_{D 0}$, and $1 / r_{D}$ is the slope of L_{2} (Figure 1.2.1a). The diode can then be represented when conducting in the forward direction by a linear circuit consisting of a battery of voltage $V_{D 0}$ in series with a resistance r_{D} (Figure 1.2.1b). An ideal diode switch is added to make the reverse current zero.

Exercise 1.2.1

Using an appropriate computer program, plot the forward characteristics of two ideal, discrete Si diodes, (a) one having $I_{S}=1 \mu \mathrm{~A}$, (b) the other having $I_{S}=1 \mathrm{nA}$, and estimate $V_{\gamma}, V_{D 0}$, and r_{D}. Assume $V_{T}=26 \mathrm{mV}$.

Answers: (a) $V_{\gamma} \cong 0.18 \mathrm{~V}, V_{D 0} \cong 0.42 \mathrm{~V}$; (b) $V_{\gamma} \cong 0.5 \mathrm{~V}, V_{D 0} \cong 0.78 \mathrm{~V}$. r_{D} is approximately 5.5Ω in both cases. Note that the larger I_{S}, the smaller are V_{γ} and $V_{D 0}$.

FIGURE 1.2.1
Piecewise linear approximation of diode characteristic: (a) approximation lines; (b) circuit representation.

FIGURE 1.2.2
Determination of bias point.

Bias Point

Consider a diode connected in series with a dc voltage source $V_{S R C}$ and a resistance R (Figure 1.2.2). From Kirchhoff's voltage law (KVL):

$$
\begin{equation*}
V_{D Q}+R I_{D Q}=V_{S R C} \tag{1.2.2}
\end{equation*}
$$

where $V_{D Q}$ and $I_{D Q}$ are the dc values of the diode voltage and current, respectively. They define what is referred to in electronic circuits as the bias point or the quiescent point.

Given $V_{S R C}, R$, and the diode nonlinear characteristic, the bias point can be determined in one of two general ways:

1. If the diode characteristic is known analytically, in the form of Equation 1.1.1, for example, $I_{D Q}$ can be determined by successive iterations. The iterations are started by determining $I_{D Q}$ from Equation 1.2.2 using a reasonable initial value of $V_{D Q}$, say $V_{D 0}$. From this value of $I_{D Q}$, a new value is found for $V_{D Q}$ from Equation 1.1.1, which is then substituted in Equation 1.2.2, and so on. The procedure rapidly converges after two or three iterations.
2. Alternatively, the straight-line approximation of Equation 1.2.1 can be solved with Equation 1.2.2 to determine $V_{D Q}$ and $I_{D Q}$. Both methods are illustrated in Example 1.2.1.

Graphical representations can be very helpful in providing insight into the behavior of nonlinear systems and in visualizing the interrelations of the variables involved. In the case of the diode circuit of Figure 1.2.2, for example, Equation 1.2.2 can be represented by a straight line having a voltage intercept $V_{S R C}$ and a slope $-1 / R$ (Figure 1.2.3a). Such a line, when drawn on the graph of the diode characteristic, is a load line. The point of intersection Q of this line with the diode characteristic is the graphical solution for the bias point because it satisfies both Equation 1.2.2 and the diode characteristic.

Small-Signal Model

If a small ac signal, say $V_{m} \sin \omega t$, is applied in series with the dc source in Figure 1.2.2, then this signal is superimposed on $V_{S R C}$, the instantaneous source voltage $V_{S R C}$ being $V_{S R C}+V_{m} \sin \omega t$. The load line oscillates horizontally about its zero-signal position, the voltage intercept varying between $V_{S R C}-V_{m}$ and $V_{S R C}+V_{m}$, as illustrated in exaggerated form in Figure 1.2.3b. The diode voltage will vary by a small amount v_{d} around its value

FIGURE 1.2.3
(a) Load-line construction. (b) Small-signal excursions about quiescent point.
of $V_{D Q}$, the corresponding small-signal variation in diode current being i_{d}. For small enough variations, the operating point can be considered to move along the tangent to the curve at $\mathrm{Q} . v_{d}$ and i_{d} will then be related by the diode incremental resistance $v_{d}=r_{d} i_{d}$, as illustrated by the inset in Figure 1.2.3b.

Concept: For small signals, the diode appears to the small-signal source as a resistance equal to the incremental resistance r_{d} (Equation 1.1.3).

In other words, the small-signal model of the diode is simply r_{d}.

Example 1.2.1 Bias Point Calculation

It is required to determine the bias point in the circuit of Figure 1.2.2 when $V_{S R C}=10 \mathrm{~V}$ and $R=2 \mathrm{k} \Omega$, using two diode models: (a) Equation 1.1.1 with $I_{S}=1.5 \mathrm{nA}, \eta=2$, and (b) the linear approximation to this characteristic with $r_{D}=2.2 \Omega$ and $V_{D 0}=0.77 \mathrm{~V}$.

Solution

(a) The iterative solution, which is a near-exact solution according to Equation 1.1.1, is based on Equation 1.2.2 expressed as:

$$
\begin{equation*}
I_{D Q}=\frac{1}{2}\left(10-V_{D Q}\right) \mathrm{mA} \tag{1.2.3}
\end{equation*}
$$

and on Equation 1.1.1 expressed as:

$$
\begin{equation*}
V_{D Q}=\eta V_{T} \ln \left(\frac{I_{D Q}+I_{S}}{I_{S}}\right) \cong \eta V_{T} \ln \left(\frac{I_{D Q}}{I_{S}}\right) \tag{1.2.4}
\end{equation*}
$$

when $I_{D Q} \gg I_{S}$. The value of V_{T} used is 0.025852 V to obtain good agreement with the simulation in Example 1.2.2. The iteration proceeds as follows:

	$\boldsymbol{V}_{\boldsymbol{D Q}}, \mathbf{V}$	$\boldsymbol{I}_{\boldsymbol{D Q}}, \mathbf{m A}$
First iteration	0.7 (arbitrary)	4.65 (from Equation 1.2.3)
Second iteration	0.7728 (from Equation 1.2.4)	4.614 (from Equation 1.2.3)
Third and subsequent iterations	0.7724 (from Equation 1.2.4)	4.614 (from Equation 1.2.3)

The iterations can be readily performed using the copy and paste commands of a spreadsheet program.
(b) According to the linear approximation, $V_{D}=R I_{D}+V_{D 0}$. Substituting in Equation 1.2.2 gives $I_{D Q}=\frac{\left(10-V_{D O}\right) V}{\left(2+r_{D}\right) \mathrm{k} \Omega}=4.610 \mathrm{~mA}$, and $V_{D Q}=0.77+0.0022 \times I_{D Q}=0.7801 \mathrm{~V}$. Clearly, as $r_{D}=2.2 \Omega \ll 2 \mathrm{k} \Omega$, neglecting r_{D} altogether does not significantly affect $I_{D Q}$. If $V_{D 0}$ is also neglected, $I_{D Q}=5 \mathrm{~mA}$, which is about 8.5% too high. This percentage error decreases for larger values of $V_{S R C}$.

Example 1.2.1 illustrates a useful concept based on the straight line approximation:

Concept: In a given diode circuit, r_{D} can be neglected if it is in series with a much larger resistance, and $V_{D 0}$ can be neglected if it is in series with a much larger voltage. When r_{D} and $V_{D 0}$ are neglected, the diode can be considered an ideal diode switch.

Simulation Example 1.2.2 Diode Bias Point Using PSpice

It is required to simulate the bias point calculation of Example 1.2.1 and illustrate in the process how ideal diode switches can be simulated in PSpice.

Simulation

Appendix SA on the website explains the basic mechanics of PSpice simulation and provides a convenient reference for some general features of PSpice.
(a) The first simulation is based on Equation 1.1.1 using the values of I_{S} and η as in Example 1.2.1. Enter the schematic shown in Figure 1.2.4. For the diode, select Dbreak from the BREAKOUT library under PSpice. Click on the diode symbol with the left mouse button to select the diode, right-click on the selected diode and choose Edit PSpice Model. The following line appears in the editor window:

```
.model Dbreak D Is =1e-14 Cjo=.1pF Rs = .1
```

This indicates that the diode $i-v$ relation satisfies Equation 1.1.1 with $I_{S}=10^{-14} \mathrm{~A}$. The default value of η is 1 , which can be changed to 2 by entering $n=2$. In addition, the diode has a junction capacitance at zero bias of 0.1 pF and a bulk resistance of 0.1Ω. Choose a new name for the diode instead of Dbreak, such as DS1, change I_{S} to $1.5 \mathrm{e}-9$, and R_{S} to 0 . After making the changes, choose File/Save and then File/Exit. The diode name changes to DS1 on the schematic.

Select Bias Point and General Settings in the Simulation Profile and run the simulation. Press the V and I buttons to display the voltages and currents in the circuit. These values

FIGURE 1.2.4
Figure for Simulation Example 1.2.2.
are $V_{D Q}=772.8 \mathrm{mV}$ and $I_{D Q}=4.614 \mathrm{~mA}$, in agreement with the results of Example 1.2.1, the default temperature being $27^{\circ} \mathrm{C}$, or 300 K .
(b) To simulate the piecewise linear approximation with the diode conducting in the forward direction, and the ideal diode switch acting as a short circuit, we need to only use a 0.77 V battery in series with a 2.2Ω resistor. We will, however, add an ideal diode switch, as in Figure 1.2.2, and simulate it using: (1) a diode model having a very small η (Exercise 1.2.3), or (2) a voltage controlled switch. To do this we will open two additional pages in Capture. In the file hierarchical block, click on Design Resources, then all the way to SCHEMATIC1. Click the right mouse button on SCHEMATIC1 and select New Page from the menu that pops up. Enter a different page name, if desired, and click the OK button. Select the new page, copy/paste the schematic of Figure 1.2.4 to the new page, and add the 0.77 V battery and the 2.2Ω resistor (Figure 1.2.5). In the PSpice Model Editor, change the diode name to DS2 and n to $1 \mathrm{e}-6$. Run the simulation and press the V and I buttons. The indicated values are $V_{D Q}=780.1 \mathrm{mV}$ and $I_{D Q}=4.61 \mathrm{~mA}$, in agreement with Example 1.2.1. Note that the voltage across the diode is zero.
To model the ideal diode switch as a voltage-controlled switch, copy/paste the schematic of Figure 1.2.5 and replace the diode by the switch SBreak from the BREAKOUT library (Figure 1.2.6). In the PSpice Model Editor change the name to SD1, Ron to 1 u , and Von to 0.01 m . With these values, the switch will close when the voltage across it, in the forward direction, is 0.01 mV and will open when the voltage across it drops to zero, the on resistance being $1 \mu \Omega$. Run the simulation and verify the values of voltage and current.

FIGURE 1.2.5
Figure for Simulation Example 1.2.2.

FIGURE 1.2.6
Figure for Simulation Example 1.2.2.

Exercise 1.2.2

PSpice includes models for some commercially available $p n$ junction diodes, such as 1 N 4002 , 1N4148, and 1N914. These are listed in the EVAL library prefixed by D. Look up I_{S}, η, and R_{S} listed in the PSpice models for these diodes.
Answers: D1N4002: $I_{S}=14.11 \mathrm{nA}, \eta=1.984, R_{S}=0.03389 \Omega$; D1N4148: $I_{S}=2.682 \mathrm{nA}$, $\eta=1.836, R_{S}=0.5664 \Omega$; D1N914: $I_{S}=168.1 \times 10^{-21} \mathrm{~A}, \eta=1, R_{S}=0.1 \Omega$.

Exercise 1.2.3

An ideal diode switch can be approximated in PSpice by using small values for I_{S} and η. If $I_{S}=1$ pA and $\eta=10^{-6}$, for example, what is i_{D} for $v_{D}=1 \mu \mathrm{~V}$?

Answer: $5.1 \times 10^{4} \mathrm{~A}$.

1.3 Rectifier Circuits

Half-Wave Rectifier

Definition: A rectifier circuit converts an alternating, or bidirectional, current or voltage to a unidirectional one.

A common application of a rectifier circuit is to provide a dc supply for electronic circuits from the ac mains supply. Being unidirectional devices, diodes are evidently suitable for this purpose. We will start with the simplest possible circuit, that of Figure 1.2.2, with the source being an ac voltage $V_{m} \sin \omega t$, instead of dc, and R denoted as a load R_{L} (Figure 1.3.1a).

Assuming a linear approximation for the diode in the forward direction, the diode starts to conduct on the positive half-cycle, when $V_{m} \sin \omega t=V_{D 0}$. While the diode conducts, $i_{L}=\left(V_{m} \sin \omega t-V_{D 0}\right) /\left(R_{L}+r_{D}\right)$. The diode stops conducting when $V_{m} \sin \omega t$ again equals $V_{D 0}$, remains off until the next positive half-cycle, and so on (Figure 1.3.1b). It follows that during a cycle,

FIGURE 1.3.1
(a) Half-wave rectifier circuit. (b) Input and load voltage waveforms.

$$
\begin{align*}
v_{L} & =R_{L} i_{L}=\frac{R_{L}}{R_{L}+r_{D}}\left(V_{m} \sin \omega t-V_{D 0}\right), \quad 2 m \pi+\alpha \leq \omega t \leq(2 m+1) \pi-\alpha, \\
& =0, \quad \text { otherwise } \tag{1.3.1}
\end{align*}
$$

where $\alpha=\sin ^{-1}\left(V_{D 0} / V_{m}\right)$ and $m=0,1,2, \ldots$
The dc, or average, value of v_{L} is given by:

$$
\begin{equation*}
V_{D C}=\frac{1}{2 \pi} \int_{\alpha}^{\pi-\alpha} v_{L} d(\omega t)=\frac{R_{L}\left[2 V_{m} \cos \alpha+(2 \alpha-\pi) V_{D 0}\right]}{2 \pi\left(R_{L}+r_{D}\right)} \tag{1.3.2}
\end{equation*}
$$

When $V_{D 0} \ll V_{m}$ and $r_{D} \ll R_{L}$, then $V_{D 0}$ and r_{D} can be neglected, and v_{L} will consist of complete, sinusoidal, positive half-cycles. Such a waveform has a dc value, $V_{D C}=V_{m} / \pi$, a fundamental of frequency $\omega / 2 \pi$, and even harmonics. If the diode connection is reversed, conduction occurs during negative half-cycles, which reverses the polarity of $V_{D C}$. Because conduction is limited to half-cycles of one polarity, the circuit is a half-wave rectifier.

The half-wave rectifier has two undesirable features: (1) It does not utilize supply cycles of both polarities, which reduces the dc output voltage and increases the ripple in the output. (2) The ac supply is usually derived from the secondary winding of a step-down transformer, in which case the dc current passes through the transformer secondary and produces a dc flux in the core. If, as is most likely at power frequencies, the core is ferromagnetic, the superposed ac flux may take the core into saturation (Sabah 2008, p. 216), which causes a relatively large magnetizing current and reduces the output voltage. The full-wave rectifier overcomes these disadvantages.

Full-Wave Rectifier

Concept: In a full-wave rectifier, diodes are connected in such a way that current flows through the load in the same direction during both half-cycles of the supply.

There are two basic full-wave rectifier circuits: (1) center-tapped transformer (CTT), and (2) bridge. In the former circuit, two identical secondary windings are used, the dot markings being as in Figure 1.3.2a, where $v_{1}=v_{2}=V_{m} \sin \omega t$. Assume that the polarities of

FIGURE 1.3.2
Full-wave CTT rectifier: (a) current flow during one half-cycle; (b) current flow during the other half-cycle; (c) input and load voltage waveforms.
v_{1} and v_{2} during positive half-cycles are as indicated, so that node a is positive with respect to node c , which is positive in turn with respect to node b. Diode D_{1} is forward biased and current flows through the transformer secondary, D_{1}, and R_{L} as shown. While D_{1} conducts, nodes a and d are effectively connected together, assuming the diode is an ideal switch. A reverse voltage $v_{D 2}=v_{1}+v_{2}$ appears across D_{2}, which therefore does not conduct.

During negative half-cycles, the polarities of v_{1} and v_{2} are reversed (Figure 1.3.2b). D_{2} now conducts, while D_{1} does not. i_{L} flows in the same direction in R_{L} during the two halfcycles. Both half-cycles of the supply contribute to the output, producing a full-wave rectified waveform $\left|V_{m} \sin \omega t\right|$, neglecting $V_{D 0}$ and r_{D} (Figure 1.3.2c). The average value of $\left|V_{m} \sin \omega t\right|$ is $2 V_{m} / \pi$ and its fundamental frequency is twice that of the supply.

The current that flows in each half of the secondary is a half-wave rectified waveform of amplitude $I_{m}=V_{m} / R_{L}$ and rms value $I_{m} / 2$. Moreover, the currents in each half of the secondary winding flow in opposite directions relative to the dot markings, so there is no net dc polarization of the core over a complete cycle of the supply.

An important parameter of a rectifier circuit is the peak inverse voltage (PIV) to which the diodes are subjected. This is because a practical diode has a maximum reverse voltage rating, beyond which breakdown occurs and the reverse current rapidly increases. It was mentioned earlier that when a diode does not conduct, the reverse voltage is $v_{1}+v_{2}=$ $2 V_{m}|\sin \omega t|>0$, neglecting $V_{D 0}$. Hence, the PIV is $2 V_{m}$. If $V_{D 0}$ is taken into account, the peak load voltage is $V_{m}-V_{D 0}$, whereas the PIV is this voltage plus V_{m}, which is $2 V_{m}-V_{D 0}$.

The full-wave bridge rectifier is illustrated in Figure 1.3.3. Assume that during positive half-cycles the polarity of the secondary voltage $V_{m} \sin \omega t$ is as indicated in Figure 1.3.3a.

FIGURE 1.3.3
Full-wave bridge rectifier: (a) current flow during one half-cycle; (b) current flow during the other half-cycle.

Diodes D_{1} and D_{3} are forward biased and i_{L} flows as shown. While D_{1} and D_{3} conduct, v_{L} appears as a reverse voltage across D_{2} and D_{4}, which will therefore be nonconducting. During negative half-cycles, the polarity of $V_{m} \sin \omega t$ is reversed (Figure 1.3.3b). Diodes D_{2} and D_{4} conduct, whereas D_{1} and D_{3} do not. If $V_{D 0}$ is taken into account, the peak load voltage is $V_{m}-2 V_{D 0}$, because two diodes conduct in series, whereas the PIV is $v_{L}+V_{d 0}$, which is $V_{m}-V_{D 0}$. Neglecting $V_{D 0}$ and r_{D}, the transformer secondary current is sinusoidal of rms value $I_{m} / \sqrt{2}$.

If $V_{D 0}$ and r_{D} are taken into account, then for a CTT rectifier,

$$
\begin{equation*}
V_{D C}=\frac{1}{\pi} \int_{\alpha}^{\pi-\alpha} v_{L} d(\omega t)=\frac{R_{L}\left[2 V_{m} \cos \alpha+(2 \alpha-\pi) V_{D 0}\right]}{\pi\left(R_{L}+r_{D}\right)} \tag{1.3.3}
\end{equation*}
$$

where v_{L} is given by Equation 1.3.1. $V_{D C}$ is now twice that given by Equation 1.3.2. Equation 1.3.3 applies to a bridge rectifier, with $V_{D 0}$ and r_{D} multiplied by 2 and $\alpha=\sin ^{-1}\left(2 V_{D 0} / V_{m}\right)$. If $r_{D} \ll R_{L}$ and α is small, Equation 1.3.3 reduces to $(2 / \pi) V_{m}-V_{D 0}$ for a CTT circuit and to $(2 / \pi) V_{m}-2 V_{D 0}$ for a bridge circuit. The two types of full-wave rectifier having resistive loads are compared in Table 1.3.1. The CTT circuit is more suitable for low voltages because for a given V_{m} the load voltage is reduced by $V_{D 0}$ instead of $2 V_{D 0}$. For higher voltages, the bridge circuit is preferred because the PIV is $V_{m}-V_{D 0}$ instead of $2 V_{m}-V_{D 0}$. The CTT circuit requires a transformer of higher VA rating than a bridge circuit. The core loss is the same in both cases, assuming the same number of turns in the primary winding, because the core loss depends on the flux, which in turn depends on the primary voltage and the number of turns of the primary winding. The copper loss in the transformer secondary depends on the rms value of the current of the secondary windings. The VA rating of the transformer is considered as the product of the rms voltage and the rms current. If the peak load voltage and current are V_{m} and I_{m}, respectively, then

TABLE 1.3.1
Comparison of CTT and Bridge Circuits Having Resistive Loads

Parameter	CTT	Bridge
Peak load voltage	$V_{m}-V_{D 0}$	$V_{m}-2 V_{D 0}$
$V_{D C}$ (for small α)	$\cong(2 / \pi) V_{m}-V_{D 0}$	$\cong(2 / \pi) V_{m}-2 V_{D 0}$
Peak inverse voltage	$2 V_{m}-V_{D 0}$	$V_{m}-V_{D 0}$
Relative VA rating of transformer secondary	1	0.7

the total secondary rating in the CTT case is $2 \times\left(V_{m} / \sqrt{2}\right) \times\left(I_{m} / 2\right)=V_{m} I_{m} / \sqrt{2}$, whereas in the bridge case it is $\left(V_{m} / \sqrt{2}\right) \times\left(I_{m} / \sqrt{2}\right)=V_{m} I_{m} / 2$, which is 0.7 times that of the CTT. In other words, a transformer of smaller rating, and hence size, is required for the bridge rectifier, because the transformer secondary in the CTT case is underutilized as current flows in each half-secondary for one half-cycle only.

Bridge rectifiers are available in a single package that includes four matched diodes and has two terminals for the ac input and two terminals for the rectified output.

Smoothing of Output

The full-wave rectified waveform of Figure 1.3.2c is far from being a smooth dc voltage, the peak-to-peak ripple in the output being V_{m}. There are two approaches to smoothing the output: (1) using some form of low-pass (LP) filtering, or (2) using a polyphase supply, usually having a large number of phases.

The simplest types of filters are the capacitor-input filter and the inductor-input filter. In a capacitor-input filter, a large capacitor is connected in parallel with the load so that the combined impedance of the capacitor and load is small. The rectifier thus applies a pulsating current to the capacitor-load combination. The dc component of this pulsating current passes through the resistor and establishes the dc load voltage across it, whereas the ac component develops only a small voltage across the small impedance of the capacitor and load.

In an inductor-input filter, a large inductor is connected in series with the load so that the combined impedance of the inductor and load is large. The rectifier thus applies a pulsating voltage to the inductor-load combination. The dc component of this pulsating voltage appears across the resistor and establishes the dc load current through it, whereas the ac component develops only a small current through the large impedance of the inductor and load.

Where load currents or load voltages are high, filtering inductors or capacitors become impractical. The filter is dispensed with altogether and a polyphase supply is used to provide a sufficiently smooth dc output without the need for additional filtering. In electroplating and aluminum industries, supplies of 48 phases or more are used to give a sufficiently smooth, high-current dc supply. Smoothing using polyphase supplies is discussed in Section ST1.2.

Capacitor-Input Filter

A full-wave rectifier circuit with a capacitor-input filter is shown in Figure 1.3.4a. To get better insight into circuit operation, we will analyze the circuit based on some simplifying assumptions before presenting an approximate analysis that is used in practical design.

Assume ideal diode switches, an ideal transformer, and an ideal supply of zero source impedance. C will charge to V_{m}, the peak of the supply voltage, during the first quarter cycle. If the output is open-circuited $\left(R_{L} \rightarrow \infty\right), C$ cannot discharge through the diodes in the reverse direction. The capacitor voltage will therefore remain at V_{m}. If R_{L} is finite, the capacitor discharges through R_{L} when the diodes are nonconducting. The diodes stop conducting when the instantaneous transformer secondary voltage falls below the capacitor voltage.

In the steady state, C charges during part of the cycle and discharges through the load during the rest of the cycle (Figure 1.3.4b). When a diode conducts, v_{L} follows the supply voltage, so that:

$$
\begin{equation*}
v_{L}=V_{m} \cos \omega t, \quad-\theta_{2} \leq \omega t \leq \theta_{1} \tag{1.3.4}
\end{equation*}
$$

FIGURE 1.3.4
(a) Full-wave rectifier with capacitor-input filter. (b) Voltage and current waveforms.

During conduction, $i_{D}=i_{L}+i_{C}$, where $i_{L}=v_{L} / R_{L}$ and $i_{C}=C d v_{L} / d t$. This gives:

$$
\begin{equation*}
i_{D}=\frac{V_{m}}{R_{L}} \cos \omega t-\omega C V_{m} \sin \omega t, \quad-\theta_{2} \leq \omega t \leq \theta_{1} \tag{1.3.5}
\end{equation*}
$$

When the diode stops conducting at $\omega t=\theta_{1}, i_{D}=0$. Equation 1.3.5 gives:

$$
\begin{equation*}
\tan \theta_{1}=\frac{1}{\omega C R_{L}} \tag{1.3.6}
\end{equation*}
$$

During the interval $\theta_{1} \leq \omega t \leq \pi-\theta_{2}$, both diodes are nonconducting. C discharges exponentially through R_{L}, with a time constant $R_{L} C$, from an initial value $V_{m} \cos \theta_{1}$ at $\omega t=\theta_{1}:$

$$
\begin{equation*}
v_{L}=V_{m} \cos \theta_{1} e^{-\left(t-\theta_{1} / \omega\right) / C R_{L}}=V_{m} \cos \theta_{1} e^{-\left(\omega t-\theta_{1}\right) / \omega C R_{L}}, \quad \theta_{1} \leq \omega t \leq \pi-\theta_{2} \tag{1.3.7}
\end{equation*}
$$

Conduction resumes at $\omega t=\pi-\theta_{2}$ when the decaying exponential intersects the rising negative half-cycle $v_{L}=-V_{m} \cos \omega t$. Substituting $v_{L}=-V_{m} \cos \theta_{2}$ in Equation 1.3.7,

$$
\begin{equation*}
\cos \theta_{2}=\cos \theta_{1} e^{-\left[\pi-\left(\theta_{1}+\theta_{2}\right)\right] / \omega C R_{L}} \tag{1.3.8}
\end{equation*}
$$

where $\left(\theta_{1}+\theta_{2}\right)$ is the total conduction angle. Equation 1.3.8 is a transcendental equation that can be solved numerically for θ_{2}, once θ_{1} has been determined from Equation 1.3.6. Knowing θ_{1} and θ_{2}, the dc, or average value of v_{L} is:

$$
\begin{equation*}
V_{L}=\frac{V_{m}}{\pi}\left[\int_{-\theta_{2}}^{\theta_{1}} \cos \omega t d(\omega t)+\int_{\theta_{1}}^{\pi-\theta_{2}} \cos \theta_{1} e^{-\left(\omega t-\theta_{1}\right) / \omega C R_{L}} d(\omega t)\right] \tag{1.3.9}
\end{equation*}
$$

Concept: Under idealized conditions, the behavior of a capacitor-input filter depends entirely on the product $\omega C R_{L}$, which determines $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$.

However, the analysis of a practical capacitor-input filter involves some rather awkward computations, so an approximate analysis is usually resorted to, as presented below.

Exercise 1.3.1

Derive Equation 1.3.6 by considering that v_{L} and $d v_{L} / d t$ are continuous at $\omega t=\theta_{1}$. How do you explain this continuity?

Exercise 1.3.2

Given a full-wave rectifier having a peak secondary voltage of $50 \mathrm{~V}, 50 \mathrm{~Hz}, \mathrm{C}=5 \mu \mathrm{~F}$, and $R_{L}=10 \mathrm{k} \Omega$. (a) Determine $\omega C R_{L}, \theta_{1}, \theta_{2}$, and $V_{\min }$; over what fraction of the half-cycle does each diode conduct? (b) Repeat (a) if R_{L} is increased so that $\omega C R_{L}=50$.

Answers: (a) 15.71, $\theta_{1}=3.64^{\circ}, \theta_{2}=31.8^{\circ}, V_{\min }=42.5 \mathrm{~V}, 19.7 \%$; (b) $\theta_{1}=1.15^{\circ}, \theta_{2}=19.0^{\circ}$, $V_{\text {min }}=47.3 \mathrm{~V}, 11.2 \%$.

Approximate Analysis of Capacitor-Input Filter

The approximate analysis is based on the fact that in a well-designed power supply, the peak-to-peak ripple is small, typically not exceeding 5% of the dc voltage. The conduction interval is small, the diode current flows in narrow pulses (Figure 1.3.4b), and the time constant $R_{L} C$ is large compared to the period of the supply, $\omega C R_{L}$ being typically more than 50. This makes the conduction angle less than about 10% of half a period of the supply (Exercise 1.3.2). Consequently, a number of simplifying assumptions can be made, leading to the following steps:

1. Because conduction occurs during a short interval near the peak of the supply waveform, the peak input voltage is reduced from V_{m} to V_{m}^{\prime} by a diode voltage drop V_{D} that depends on the rectifier circuit and the peak diode current. For a CTT circuit and a moderate load, V_{D} is typically $1-1.5 \mathrm{~V}$. The supply voltage can then be considered $V_{m}^{\prime} \cos \omega t$ instead of $V_{m} \cos \omega t$ (Figure 1.3.5). In other words, where ωt is small, in the vicinity of the peak of the sinusoid, $V_{m} \cos \omega t-V_{D} \cong V_{m} \cos \omega t-$ $V_{D} \cos \omega t=\left(V_{m}-V_{D}\right) \cos \omega t=V_{m}^{\prime} \cos \omega t$.
2. Because $\omega R_{L} C \gg 1, \theta_{1} \cong 0$ (Equation 1.3.6) so that C begins to discharge at the peak value V_{m}^{\prime}. Moreover, the capacitor voltage decreases almost linearly and at a relatively slow rate from V_{m}^{\prime} to $V_{\text {min }}$ (Figure 1.3.5). In other words, the initial part of the exponential discharge is approximated by a straight line when the time constant is large. The capacitor discharge current, $-C d v_{L} / d t$, is then nearly constant and equals $I_{D C}$, the dc load current. Because the period of conduction ($\theta_{1}+\theta_{2}$) is small compared to π, the discharge period can be considered to be nearly $T / 2$, or $1 / 2 f$, where T is the supply period and f is the supply frequency.
3. During discharge, the charge lost by C is $I_{D C} / 2 f$ and the drop in capacitor voltage, from V_{m}^{\prime} to $V_{\min }$, is $I_{D C} / 2 f C$, which is the peak-to-peak ripple v_{r} (Figure 1.3.5). Hence,

$$
\begin{equation*}
v_{r}=\frac{I_{D C}}{2 f C} \tag{1.3.10}
\end{equation*}
$$

FIGURE 1.3.5
Voltage and current waveforms of full-wave rectifier with capacitor-input filter when the filter time constant is large.
4. When the conduction period is small, the variation of v_{L} during conduction can also be considered linear. v_{L} will be almost triangular in shape (Figure 1.3.5), so that,

$$
\begin{equation*}
V_{D C}=V_{m}^{\prime}-\frac{v_{r}}{2}=V_{m}^{\prime}-\frac{I_{D C}}{4 f C} \tag{1.3.11}
\end{equation*}
$$

The following should be noted about what has been discussed so far:
a. Given V_{m}^{\prime}, C, and f, the three unknowns $V_{D C}, I_{D C}$, and v_{r} are determined by Equations 1.3.10 and 1.3.11 and the dc relation for the load, $V_{D C}=R_{L} I_{D C}$.
b. Strictly speaking, if $I_{D C}$ is constant during capacitor discharge, then $I_{D C}$ flowing through R_{L} implies a constant $V_{L}=V_{D C}=R_{L} I_{D C}$. In fact, v_{L} during capacitor discharge is part of an exponential, and $i_{L 1}=-\left.C \frac{d v_{L}}{d t}\right|_{\omega t=\theta_{1}}>i_{L 2}=-\left.C \frac{d v_{L}}{d t}\right|_{\omega t=\pi-\theta_{2}}$.
c. Normally, in a well-smoothed supply, v_{r} is small compared to $V_{D C}$ or V_{m}^{\prime}. Thus, if v_{r} is 5% of V_{m}^{\prime}, then $v_{r} / 2$ in Equation 1.3.11 is only 2.5% of V_{m}^{\prime}. To a first approximation, $V_{D C} \cong V_{m}^{\prime}$.
d. Even if all resistances in series with the load are neglected, then as long as Equation 1.3.11 applies, the capacitor-input filter has an effective dc source resistance of $1 / 4 f C$. However, V_{m}^{\prime} changes with the diode current and hence $I_{D C}$. Thus, when $I_{D C}=0$, the capacitor charges to the peak supply voltage V_{m}, not V_{m}^{\prime}, and remains charged, neglecting the reverse diode current.
e. The average diode current over a supply period is $I_{D C} / 2$. This is because the average capacitor current over a supply period is zero so that each diode supplies half the dc load current.
5. To calculate the conduction angle θ_{2}, we note that $V_{\min }=V_{m}^{\prime} \cos \theta_{2}$. Hence,

$$
\begin{equation*}
v_{r}=V_{m}^{\prime}-V_{\min }=V_{m}^{\prime}\left(1-\cos \theta_{2}\right) \quad \text { or } \quad 1-\cos \theta_{2}=\frac{v_{r}}{V_{m}^{\prime}} \tag{1.3.12}
\end{equation*}
$$

We next use the approximation $\cos \theta_{2} \cong 1-\theta_{2}^{2} / 2$ for small θ_{2}, or $\left(1-\cos \theta_{2}\right) \cong \theta_{2}^{2} / 2$. Equation 1.3.12 then gives:

$$
\begin{equation*}
\theta_{2}=\sqrt{\frac{2 v_{r}}{V_{m}^{\prime}}} \tag{1.3.13}
\end{equation*}
$$

The conduction time T_{cd} is θ_{2} / ω so that:

$$
\begin{equation*}
T_{\mathrm{cd}}=\frac{1}{2 \pi f} \sqrt{\frac{2 v_{r}}{V_{m}^{\prime}}} \tag{1.3.14}
\end{equation*}
$$

6. An important quantity in a capacitor-input filter is the peak diode current $i_{D(\mathrm{pk})}$. During conduction, $i_{D}=C d v_{L} / d t+v_{L} / R_{L}$. When the ripple is small, $v_{L} / R_{L} \cong I_{D C}$. Moreover, $d v_{L} / d t=-V_{m}^{\prime} \omega \sin \omega t$. It is seen from Figure 1.3.5 that maximum $d v_{L} / d t$ occurs at the beginning of conduction, when $\omega t=-\theta_{2}=-\omega T_{\text {cd }}$. As this is small, we can consider $-\sin \omega t=\sin \theta_{2} \cong \omega T_{\mathrm{cd}}$. It follows that $i_{D(\mathrm{pk})}=\omega^{2} C T_{\mathrm{cd}} V_{m}^{\prime}+I_{D C}$. From Equation 1.3.14, $\omega T_{\text {cd }}=\theta_{2}=\sqrt{2 v_{r} / V_{m}^{\prime}}$, and from Equation 1.3.10, $\omega \mathrm{C}=\pi I_{D C} / v_{r}$. Substituting in the expression for i_{D},

$$
\begin{equation*}
i_{D(\mathrm{pk})}=I_{D C}\left(1+2 \pi \sqrt{\frac{V_{m}^{\prime}}{2 v_{r}}}\right) \cong 2 \pi I_{D C} \sqrt{\frac{V_{m}^{\prime}}{2 v_{r}}} \tag{1.3.15}
\end{equation*}
$$

The diode current waveform is almost a right triangle of height $i_{D(\mathrm{pk})}$ at the instant the diode begins to conduct. Problem P1.2.22 gives an alternative derivation of Equation 1.3.15.

Exercise 1.3.3

Let the average diode current over the conduction interval be $i_{D(a v) c d}$. Then the charge delivered by the diode during conduction, $i_{D(a v) c d} T_{\mathrm{cd}}$, equals the charge supplied to the load, $I_{D C} T_{\mathrm{cd}}$, plus that supplied to the capacitor. The latter is equal to that lost during nonconduction, which can be considered as $I_{D C}\left((T / 2)-T_{\mathrm{cd}}\right)$. Using Equation 1.3.14, deduce that $i_{D(\mathrm{av}) \mathrm{cd}}=$ $\left(I_{D C} / 2\right)\left(T / T_{\mathrm{cd}}\right)=I_{D C} \pi \sqrt{V_{m}^{\prime} / 2 v_{r}} \cong i_{D(\mathrm{pk})} / 2$. Since the average diode current over a whole period is $I_{D C} / 2$, the average during conduction must be $\left(I_{D C} / 2\right)\left(T / T_{\mathrm{cd}}\right)$ irrespective of the waveform of the diode current.

Exercise 1.3.4

Derive Equations 1.3.8, 1.3.11, 1.3.14, 1.3.15, and $i_{D(a v) c d}$ (Exercise 1.3.3) for a half-wave rectifier. How do these values compare with those for a full-wave rectifier and why?

> Answers: $\cos \theta_{2}=\cos \theta_{1} e^{-\left[2 \pi-\left(\theta_{1}+\theta_{2}\right)\right] / \omega C R_{L}} ; V_{D C}=V_{m}^{\prime}-I_{D C} / 2 f C ; T_{\mathrm{cd}}=1 / 2 \pi f \sqrt{2 v_{r} / V_{m}^{\prime}} ;$ $i_{D(\mathrm{pk})}=I_{D C}\left(1+2 \pi \sqrt{2 V_{m}^{\prime} / v_{r}}\right) ; i_{D(\mathrm{av}) \mathrm{cd}}=I_{D C} \pi \sqrt{2 V_{m}^{\prime} / v_{r}}$.

The basic characteristics of a capacitor-input filter can be deduced from the preceding relations and summarized as follows:

Summary

1. For a given V_{m}^{\prime} and a given load, increasing C : (a) reduces the ripple, (b) increases $V_{D C}$, and (c) improves the regulation, that is, the variation of $V_{D C}$ with $I_{D C}$, but at the cost of reducing the conduction interval and increasing the diode peak current
2. For a given V_{m}^{\prime} and a given C, decreasing R_{L} increases the ripple and decreases $V_{D C}$.

Simulation Example 1.3.1 Capacitor-Input Filter

Simulation

The circuit is shown in Figure 1.3.6. Instead of a CTT, two voltage sources $15 \sin 100 \pi t \mathrm{~V}$ are used because the PSpice model of a CTT is available in the full version of OrCAD but not in the Demo version. 1N4002 diodes from the EVAL library are used rather than ideal diodes for a more realistic simulation.

In the first simulation, $C=2000 \mu \mathrm{~F}$, which gives $\omega C R_{L}=20 \pi$. The resulting plots are shown in Figure 1.3.7. Only positive voltages are shown in these plots by selecting, in the Schematics page, Plot/Axis Settings/Y-Axis, then selecting User Defined under Data Range, and entering 0 as the lower limit and 20 as the upper limit. The scale for diode currents is expanded by selecting Trace/Add Traces and entering under Trace Expression 2*I(D1),2*I(D2).
The following values are obtained from the plots of Figure 1.3.7: $V_{D C}=13.81 \mathrm{~V}, v_{r}=0.6 \mathrm{~V}$, diode voltage drop at peak input $=0.93 \mathrm{~V}$, so that $V_{m}^{\prime}=14.17 \mathrm{~V}$. A design based on $V_{m}^{\prime}=14 \mathrm{~V}$ gives, by solving Equations 1.3 .10 and 1.3.11, with $I_{D C}=V_{D C} / 100: V_{D C}=13.7 \mathrm{~V}$ and $v_{r}=0.69 \mathrm{~V}$, in good agreement with the simulation. Equation 1.3.15 gives for the calculated peak current: $i_{D(\mathrm{pk})} \cong 0.137 \times 2 \pi \sqrt{14 /(2 \times 0.69)}=2.7 \mathrm{~A}$, compared to a simulated value of 1.93 A . The larger value of the calculated peak current is due to neglecting the diode resistance, and represents erring on the safe side. Equation 1.3.14 gives for the calculated conduction time $T_{\mathrm{cd}}=(1 / 2 \pi \times 50) \sqrt{2 \times 0.69 / 14}=1 \mathrm{~ms}$, compared to a simulated value of about 1.6 ms .

FIGURE 1.3.6
Figure for Simulation Example 1.3.1.

FIGURE 1.3.7
Figure for Simulation Example 1.3.1.

The peak diode current upon switching is 9.2 A . The calculated value is $C d(15 \sin 100 \pi t) / d t=9.4 \mathrm{~A}$ at $t=0$. This is not a worst-case condition. The worst-case condition occurs when the circuit is switched at the peak of the supply voltage (Problem P1.2.24).

For the second simulation, $C=100 \mu \mathrm{~F}$, which makes $\omega C R_{L}=\pi$ and invalidates the approximate analysis. The resulting plots are shown in Figure 1.3.8. The simulation gives $\theta_{1}=23.4^{\circ}$ and $\left|\theta_{2}\right|=57.6^{\circ}$, compared to calculated values of 18.2° and 56.1°, respectively.

Design Example 1.3.2 Regulated Power Supply

It is required to design a regulated power supply that delivers 15 V dc at 0.5 A . The supply is $220 \pm 5 \%$ V, 50 Hz . Assume a CTT rectifier.

FIGURE 1.3.8
Figure for Simulation Example 1.3.1.

FIGURE 1.3.9
Figure for Design Example 1.3.2.

Solution

In practice, the filter capacitor is almost invariably of the electrolytic type. These capacitors have a large capacitance in a small volume, but are polarized, that is, the voltage across them should be of one polarity only, as is the output voltage of a rectifier. The filter capacitor is commonly followed, in low-power dc supplies, by an IC regulator, which provides an output voltage that is virtually ripple-free and constant, despite variations in load current and ac supply voltage within specified ranges. Figure 1.3.9 illustrates the basic circuit. Given a suitable regulator, what concerns us here is the design of a rectifier circuit.

An important characteristic of the regulator is the minimum input voltage $V_{I \text { (min) }}$ to the regulator that will give $V_{L D C}$ at the regulator output. For $V_{L D C}=15 \mathrm{~V}, V_{l(\min)}$ is typically 17.6 V . When the input voltage to the regulator is within specifications, the input and output currents of the regulator are practically the same. Low dropout voltage regulators are available that need a voltage of less than 0.5 V across the regulator. However, the input and output currents of the regulator are not nearly equal, and a capacitor is generally required at the regulator output for frequency compensation (Section 9.4, Chapter 9).

When the regulator is supplied from a capacitor-input filter, $V_{l(\text { min })}=V_{D C(\text { min })}-v_{r} / 2$, where $V_{D C(\text { min })}$ is the minimum dc output of the filter. To determine $V_{D C(\text { min })}$, we have to assume an appropriate value for v_{r}, which can be checked later. Let v_{r} be 5% of $V_{D C(\text { min })}$. It follows that $V_{D C(\text { min })}(1-0.025)=17.6$, which gives $V_{D C(\text { min })} \cong 18 \mathrm{~V}$. Hence, the rectifier/capacitor-input filter is required to give 18 V at a dc current of 0.5 A , with 0.9 V peak-to-peak ripple when the ac supply is at its minimum, that is, $220 \%-5 \%=209 \mathrm{~V}$ rms.
The next step is to determine the filter capacitor. From Equation 1.3.10, $C=I_{D C} / 2 f v_{r}=$ $0.5 /(100 \times 0.9) \equiv 5555 \mu \mathrm{~F}$. We have to choose a standard value of the electrolytic capacitor that is larger than $5555 \mu \mathrm{~F}$. A common value is $6800 \pm 20 \% \mu \mathrm{~F}$, which gives a minimum value of C of $5400 \mu \mathrm{~F}$. Although this is about 2.8% less than $5555 \mu \mathrm{~F}$, it is usually acceptable in view of the approximations made. With this value of C, $v_{r}=I_{D C} / 2 f C=0.5 /\left(100 \times 5400 \times 10^{-6}\right)=0.93 \mathrm{~V}$. We should at this stage check the validity of the approximate analysis. Thus, $\omega C R_{L}=2 \pi \times 50 \times 5400 \times 10^{-6} \times 18 / 0.5=61$. As this is greater than 50 , the approximate analysis is justified. $V_{m}^{\prime}=18+0.93 / 2 \cong 18.5 \mathrm{~V}$. For the CTT rectifier, the peak half-secondary open-circuit voltage $V_{m}=V_{m}^{\prime}+1=19.5 \mathrm{~V}$, where the 1 V allows for the voltage drop in the diode and in the transformer at full load. This gives a half-secondary open-circuit rms voltage of $19.5 / \sqrt{2}=13.8 \mathrm{~V}$. If the primary voltage is 209 V rms, then the primary-to-half-secondary turns ratio is $209 / 13.8=15.14$. We should take this ratio as 15 , that is, the largest integer that is smaller than 15.14 V in order to have a larger secondary open-circuit voltage. It is seen that with this turns ratio, $V_{m}=209 \sqrt{2} / 15=19.7 \mathrm{~V}$ and $V_{m}^{\prime}=18.7 \mathrm{~V}$. Hence, $V_{D C(\min)}=18.7-0.93 / 2=18.23 \mathrm{~V}$, which is slightly larger than the minimum voltage required, and is on the safe side.

Let us now check the design at the other extreme, when the ac voltage is $220+5 \%$ $\mathrm{V}=231 \mathrm{~V}$. This gives $V_{m}=231 \sqrt{2} / 15=21.8 \mathrm{~V}$ and $V_{m}^{\prime}=21.8-1=20.8 \mathrm{~V}$. With $C=6800+20 \%=8160 \mu \mathrm{~F}, v_{r}=0.5 /\left(100 \times 8160 \times 10^{-6}\right)=0.61 \mathrm{~V}$. The maximum dc voltage is $V_{D C(\max)}=20.8-0.31 \cong 20.5 \mathrm{~V}$. We are now ready to specify the components of the filter.
Electrolytic capacitor: C is nominally $6800 \mu \mathrm{~F}$. The voltage rating of the capacitor should be the lowest standard value that exceeds $V_{m}=21.8 \mathrm{~V}$ at $220+5 \% \mathrm{~V}$, to allow for the possibility of disconnection of the load. From manufacturer's specifications, this value is 25 V . The specifications also quote a maximum rms ripple current through the capacitor. Since v_{r} is nearly triangular, its rms value is $v_{r} / 2 \sqrt{3}=0.93 / 2 \sqrt{3}=0.27 \mathrm{~V}$ (Sabah 2008, p.350). At this ripple voltage and $C=5400 \mu \mathrm{~F}$, the ripple current is $0.27 \omega C=0.27 \times 100 \pi \times 5400 \times$ $10^{-6}=0.46 \mathrm{~A}$, which is less than the maximum allowed, because the ripple is small. A small radio frequency (rf) polystyrene or ceramic capacitor of say 10 nF may be connected in parallel with the electrolytic capacitor to protect against voltage surges in the power supply (Section 1.5).

Transformer: The primary-to-half-secondary turns ratio is 15 . To determine the VA of the transformer, we could calculate the rms value of the diode current, which is a rather awkward calculation. A rule of thumb is usually used instead, according to which the transformer rating is 1.7 times the dc power for a CTT rectifier and 1.4 times for a bridge rectifier. The maximum dc power is $20.5 \times 0.5=10.25 \mathrm{~W}$. Hence, the transformer rating should be at least $1.7 \times 10.25=17.5 \mathrm{VA}$. Small transformers are usually specified in terms of the secondary current. The secondary voltage is $220 \times 2 / 15=29.3 \mathrm{Vrms}$, so that the secondary current is $(17.5 \mathrm{VA}) /(29.3 \mathrm{~V}) \cong 0.6 \mathrm{~A} \mathrm{rms}$.
Rectifier diode: The diode is normally chosen on the basis of the average diode current for a capacitive or resistive/inductive load, and the peak repetitive reverse voltage. In the present example, the average diode current is 0.25 A per diode. The largest peak repetitive inverse voltage is $21.8+20.8=41.8 \mathrm{~V}$. A small, general-purpose rectifier diode would be appropriate in this case. The 1 N 4001 general-purpose rectifier diode, for example, has an average rectified forward current of 1 A for a resistive/inductive load, and a peak repetitive reverse voltage of 50 V . A derating of 20% is applied to the average rectified forward current of 1 A if the load is capacitive in order to allow for current peaking.

An important consideration in capacitor-input filters is the current surge at power-on. Initially, the capacitor is discharged and behaves essentially as a short circuit, so the switching transient is limited by the series resistance in the circuit, ignoring the small leakage inductance of the transformer. Under worst conditions, the supply is applied at its peak value, so the diode current at that instant is $i_{D(\text { surge })}=\frac{V_{m}}{R_{T}+r_{D(\text { bulk })}}$, where $r_{D(\text { bulk })}$ is the bulk resistance of the diode and R_{T} is the resistance in the transformer secondary circuit, neglecting the leakage reactance of the transformer and the small impedance reflected from the primary side. The surge capability of a diode is quoted in manufacturer's data sheets as $I_{\text {FSM }}$, defined as the nonrepetitive peak surge current for half a cycle of the supply at rated load conditions. The 1 N 4001 has an $I_{F S M}$ of 30 A . With maximum $V_{m}=21.8 \mathrm{~V}$, which is a relatively low voltage, $i_{D(\text { surge })}$ would be small. Even if the total resistance $R_{T}+r_{D(\text { bulk) }}$ is $1 \Omega, i_{D(\text { surge })}=21.8 \mathrm{~A}$, which is less than $I_{\text {FSM }}$ of the 1 N 4001 . In higher voltage circuits, it may be necessary to add a resistance between the cathodes of the diodes and the capacitor in order to limit the surge current.

In contrast to capacitor-input filters, the current in inductor-input filters flows continuously throughout the cycle, and there is no current surge at power-on. Inductor-input filters are discussed in Section ST1.1. As smoothing in both capacitor-input and inductor-input
filters depends on reactance, then for a given filter and load, increasing the frequency of the supply makes the output smoother (Application Window 1.3.1).

Exercise 1.3.5

Consider the rectifier circuit of Example 1.3.2. Determine: (a) the effective source resistance over the range of $I_{D C}$ for which Equation 1.3 .11 is valid; (b) the largest value of $I_{D(\mathrm{pk})}$.

Answers: (a) 0.5Ω; (b) 13.5 A.

Exercise 1.3.6

Repeat Example 1.3.2 assuming a bridge rectifier.

Application Window 1.3.1 X-Ray Tube

An X-ray tube is diagrammatically illustrated in Figure 1.3.10. A filament heats the cathode to a temperature of about $2000^{\circ} \mathrm{C}$. Electrons acquire sufficient energy at this temperature to overcome the electric potential barrier at the surface, which results in thermionic emission. Once electrons escape from the cathode, they are attracted to the anode by the high dc voltage applied between anode and cathode. The electrons hit the anode with sufficient energy to generate X-rays. The anode is usually made of tungsten or is a tungsten insert in copper. The anode current could be as high as a few hundred mA , and the anode-to-cathode voltage could be well over 100 kV . For best results, this dc voltage should be as smooth as possible so as to produce an X-ray beam of uniformly high energy. At these high voltages, the use of a large smoothing capacitor at the supply frequency is impractical. For high-quality X-ray production, a relatively small filtering capacitor is used with a high frequency supply of a few tens of kHz (Equation 1.3.10). In less expensive equipment, a sufficiently smooth output can be derived from a three-phase supply, as discussed in Section ST1.2.

FIGURE 1.3.10
Figure for Application Window 1.3.1.

1.4 Zener Voltage Regulator

Voltage-Current Characteristic

In addition to being smooth, it is often required in practice that a dc supply be regulated as well, which means that the load voltage should remain constant despite variations of load current and supply voltage between specified limits. Available IC voltage regulators can provide fixed or adjustable, positive or negative, output voltages (Example 1.3.2). The operation of IC voltage regulators is explained in Example SE11.9, Chapter 11.

A basic voltage-regulating device is the zener diode, which can also be used to provide a reference voltage both in discrete-element circuits and in ICs. A zener diode is a $p n$ junction diode that normally operates in the breakdown region, at a closely controlled breakdown voltage (Figure 1.4.1). In the forward direction, it behaves like a normal $p n$ junction diode.

It is more convenient when working with zener diodes to draw the $i-v$ characteristic in the first quadrant, with the reverse voltage v_{Z} and the reverse current i_{Z} considered positive quantities, as shown in Figure 1.4.2 together with the symbol for the zener diode. The $i-v$ characteristic is almost a straight line beyond the knee current $I_{Z K}$, specified in the diode data sheet together with the voltage $V_{Z K}$ at the current $I_{Z K}$. A voltage $V_{Z T}$ across the diode is quoted at a specified test current $I_{Z T} . V_{Z T}$ is considered to be the nominal regulation voltage of the zener diode and could be in the range of a few volts to a few hundred volts. The sign and magnitude of the temperature coefficient of $V_{Z T}$ depend on the value of V_{Z}. The temperature coefficient of $V_{Z T}$ is negative for $V_{Z T}$ less than about 5 V , and is positive for $V_{Z T}$ greater than about 7 V (Section 3.2, Chapter 3).

The maximum current of the diode $I_{Z(\max)}$ depends on its power rating. $I_{Z(\max)}$ for a $0.5 \mathrm{~W}, 12 \mathrm{~V}$ zener diode, for example, may be about 30 mA , taking into account the increase of V_{Z} with current and with the higher temperature associated with the larger current. Over the operating region, between $I_{Z K}$ and $I_{Z(\max)}$, the variation of i_{Z} with v_{Z} is almost linear. The corresponding resistance r_{Z} can be considered constant for a given diode and is normally in the range of a few ohms to a few tens of ohms. r_{Z} is also the incremental or dynamic resistance of the diode.

FIGURE 1.4.1
$i-v$ characteristic of a $p n$ juction diode showing breakdown under reverse bias.

FIGURE 1.4.2
$i-v$ characteristic of zener diode. Inset shows zener diode symbol and assigned positive directions.

As in the case of a forward-biased diode, the $i-v$ characteristic in the operating region can be approximated by a straight line having a voltage intercept $V_{Z 0}$ and slope $1 / r_{Z}$ (Figure 1.4.2), which leads to an equivalent circuit consisting of a battery of voltage $V_{Z 0}$ in series with a resistance r_{Z}. In particular cases, r_{Z} can be neglected.

Analysis of Zener Regulator

A typical circuit of a zener diode regulator is shown in Figure 1.4.3. $v_{S R C}$ could be the filtered output of a rectifier circuit and can be regarded as the sum of a dc voltage $V_{D C}$ and a ripple voltage v_{r}. When the zener diode is replaced by $V_{Z 0}$ in series with r_{Z}, the circuit becomes linear, and superposition applies. Thus, we can consider the complete response to be the sum of: (1) the response due to the dc sources $V_{D C}$ and $V_{Z 0}$ acting alone, with $v_{r}=0$, and (2) the response due to v_{r} acting alone, with $V_{D C}=V_{Z 0}=0$. In the latter case, the circuit reduces to a source v_{r} connected to a resistive voltage divider consisting of R_{s} in series with

FIGURE 1.4.3
Typical zener diode regulator.

FIGURE 1.4.4
(a) ac source of Figure 1.4.3 applied alone; (b) dc sources applied alone.
the parallel combination of r_{Z} and R_{L} (Figure 1.4.4a). It follows that $v_{r L}$, the ripple in the output is given by:

$$
\begin{equation*}
v_{r L}=\frac{r_{Z} \| R_{L}}{R_{s}+r_{Z} \| R_{L}} v_{r} \cong \frac{r_{Z}}{R_{s}} v_{r} \tag{1.4.1}
\end{equation*}
$$

because r_{Z} is normally small compared to either R_{L} or R_{s}. Typically, the ripple is reduced by a factor of at least 10 .

Consider next the dc sources acting alone, that is, with $v_{r}=0$ and with the diode operating in the linear region (Figure 1.4.4b). The diode equation is:

$$
\begin{equation*}
V_{Z}=V_{Z 0}+r_{Z} I_{Z} \tag{1.4.2}
\end{equation*}
$$

From KVL,

$$
\begin{equation*}
V_{D C}=V_{Z}+R_{s}\left(I_{L}+I_{Z}\right) \tag{1.4.3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
V_{Z}=V_{L}=R_{L} I_{L} \tag{1.4.4}
\end{equation*}
$$

Equations 1.4.2 through 1.4.4 are the governing equations for the circuit. In a typical design of a voltage-regulated supply, V_{Z}, maximum I_{L}, and maximum $v_{r L}$ are specified. $V_{D C}, v_{r}$, and R_{s} are to be determined and the zener diode selected. In most cases, the rectifier and regulator are considered together, so as to optimize the overall design.

For purpose of analysis, we can consider the source voltage $v_{S R C}, V_{Z 0}, r_{Z}, R_{s}$, and R_{L} or i_{L} to be known, the unknown quantities being v_{L} and i_{Z}. If the load branch in Figure 1.4.3 is replaced by a current source i_{L}, in accordance with the substitution theorem (Sabah 2008, p. 121), and superposition is applied to the three sources, it follows that:

$$
\begin{equation*}
v_{L}=\frac{r_{Z}}{R_{s}+r_{Z}} v_{S R C}+\frac{R_{s}}{R_{s}+r_{Z}} V_{Z 0}-\left(r_{Z} \| R_{s}\right) i_{L} \tag{1.4.5}
\end{equation*}
$$

As $r_{Z} \rightarrow 0, v_{L} \rightarrow V_{Z 0}$ independently of i_{L} and $v_{S R C}$, as expected for a perfect regulator.

Exercise 1.4.1

Derive Equation 1.4.5 without replacing the load branch by a current source i_{L}.

Exercise 1.4.2

Considering $v_{S R C}$ and $V_{Z 0}$ to be the only sources in the circuit, as in Figure 1.4.4b, apply superposition to show that:

$$
\begin{equation*}
v_{L}=\frac{r_{Z} \| R_{L}}{R_{s}+r_{Z} \| R_{L}} v_{S R C}+\frac{R_{s} \| R_{L}}{r_{z}+R_{s} \| R_{L}} V_{Z 0} \tag{1.4.6}
\end{equation*}
$$

Exercise 1.4.3

Since the circuit is linear, changes in $v_{S R C}$ and v_{L} are the same as small signal v_{r} and $v_{r L}$, respectively. By considering changes in $v_{S R C}$ and v_{L} only in Equation 1.4.6, show that the relation between $\Delta v_{S R C}$ and Δv_{L} is given by Equation 1.4.1.

If r_{Z} is small, we can consider $V_{Z} \cong V_{Z 0}$, and Equation 1.4.3 can be written as:

$$
\begin{equation*}
I_{L}+I_{Z} \cong \frac{V_{D C}-V_{Z 0}}{R_{S}} \tag{1.4.7}
\end{equation*}
$$

The sum of I_{L} and I_{Z} is nearly constant. When I_{L} is maximum, I_{Z} is minimum, and conversely. Hence, the following concept applies:

Concept: In a zener regulator, the range of I_{L} defines two important design limits: at maximum I_{L}, I_{Z} should not fall below some $I_{Z(\min)}$, whereas at minimum I_{L}, I_{Z} should not increase to the point where the power rating of the diode is exceeded.

In practice, $I_{Z(\min)}>I_{Z K}$ so as to have some safety margin that ensures operation well into the breakdown region. Although in normal operation I_{L} may not fall below a certain limit, the load may be accidentally disconnected, so I_{L} becomes zero. The power rating of the diode should not be exceeded under these conditions so as not to damage the diode because of overheating.

The interrelations between the various quantities involved can be illustrated graphically by means of a simple modification of the load-line construction. On the graph of the diode $i-v$ characteristic, a line of slope $-1 / R_{s}$ is drawn passing through the point $\mathrm{P}\left(V_{D C},-I_{L}\right)$ as in Figure 1.4.5. The equation of this line is $I_{L}+I_{Z}=\left(V_{D C}-V_{Z}\right) / R_{s}$, which is the same as Equation 1.4.3. The intersection of this line with the diode characteristic gives the bias point Q. Segment QT is $\left(I_{L}+I_{Z}\right)$ and segment PT is $\left(V_{D C}-V_{Z}\right)$. If I_{L} is zero, P is on the voltage axis, and $I_{Z(\max)}$ flows through the diode. As I_{L} increases, the load line moves vertically downward and I_{Z} decreases. As I_{Z} varies between $I_{Z(\min)}$ and $I_{Z(\max)}$, the maximum excursion in V_{Z}, and hence in the load voltage, is ΔV_{Z}. The reduction in ripple at the output can also be derived graphically (Section ST1.3).

FIGURE 1.4.5
Graphical construction for zener diode regulator with load current.

In summary, the main performance parameters of the zener regulator are:

Summary

1. The ripple in the output is reduced by a factor of nearly r_{Z} / R_{s}.
2. $R_{s(\max)}$ is determined by $I_{Z(\min)}$, with minimum $V_{D C}$ and maximum I_{L}.
3. For a given R_{s}, the power rating of the zener diode is determined by $V_{D C(\max)}$ and $I_{L(\mathrm{~min})}$, which is usually zero.

Load Regulation and Line Regulation

The change in output voltage as the current changes from no load to full load, at constant supply voltage, is the load regulation. Taking differentials in Equation 1.4.5, with $v_{s r c}$ constant, the load regulation is:

$$
\begin{equation*}
\Delta v_{L}=-\left(r_{Z} \| R_{s}\right) \Delta i_{L} \tag{1.4.8}
\end{equation*}
$$

where
$\left(r_{Z} \| R_{s}\right)$ is the effective small-signal source resistance (Thevenin resistance) seen by the load
Δi_{L} is the change in current

The change in v_{L} with the supply voltage $v_{s r c}$, at constant load current, is the line regulation. Taking differentials in Equation 1.4.5, with i_{L} constant, the line regulation is:

$$
\begin{equation*}
\Delta v_{L}=\frac{r_{Z}}{R_{s}+r_{Z}} \Delta v_{s r c} \tag{1.4.9}
\end{equation*}
$$

Exercise 1.4.4

Eliminate V_{Z} between Equations 1.4.2 and 1.4.3 to obtain an expression for I_{Z} :

$$
\begin{equation*}
I_{Z}=\frac{V_{D C}-V_{Z 0}-R_{s} I_{L}}{R_{s}+r_{Z}} \tag{1.4.10}
\end{equation*}
$$

Assume that all quantities on the RHS of Equation 1.4.10 can vary between maximum and minimum limits. Express $I_{Z(\max)}$ and $I_{Z(\min)}$ in terms of these limiting values and interpret them using the graphical construction of Figure 1.4.5.
Answers: $I_{Z(\max)}=\frac{V_{D C(\max)}-V_{Z(\min)}-R_{s(\min)} I_{L(\min)}}{r_{Z(\min)}+R_{s(\min)}}, I_{Z(\min)}=\frac{V_{D C(\min)}-V_{Z 0(\max)}-R_{s(\max)} I_{L(\max)}}{r_{Z(\max)}+R_{s(\max)}}$

Exercise 1.4.5

Using the results of Exercise 1.4.4, deduce how: (a) $R_{s(\max)}$ varies with $V_{D C(\min)}, V_{Z 0(\max)}, r_{Z(\max)}$, $I_{Z(\min)}$, and $I_{L(\max)}$; (b) $R_{s(\min)}$ varies with $V_{D C(\max)}, V_{Z 0(\min)}, r_{Z(\min)}, I_{Z(\max)}$, and $I_{L(\min)}$. Verify these deductions using the graphical construction of Figure 1.4.5.

Design Example 1.4.1 Zener Voltage Regulator

Given a full-wave rectified dc supply of $18 \pm 10 \% \mathrm{~V}$. A zener regulator is required to supply a load of $0-20 \mathrm{~mA}$ at a nominally constant voltage of 12 V .

Solution

The first step is to estimate the maximum power dissipation of the diode in order to select a suitable diode. Let us assume $I_{Z(\text { min })}=1 \mathrm{~mA}$, well above the knee of the $i-v$ characteristic. According to the previous discussion, I_{Z} is minimum when $V_{D C}=18 \times 0.9=16.2 \mathrm{~V}$ and $I_{L}=20 \mathrm{~mA}$. Substituting in Equation 1.4.3, assuming a nominal zener voltage of $12 \mathrm{~V}: 16.2=$ $12+R_{s}(20+1)$, which gives $R_{s}=(4.2 \mathrm{~V}) /(21 \mathrm{~mA})=200 \Omega$. Note that this is $R_{s(\max)}$ (Exercise 1.4.5), and that it is advantageous to use $R_{s(\max)}$, because this will limit $I_{z(\max)}$ when $V_{D C}$ is maximum and I_{L} is minimum, which results in the smallest power rating of the zener diode.
I_{Z} is maximum when $V_{D C}=18 \times 1.1=19.8 \mathrm{~V}$ and $I_{L}=0$. Equation 1.4 .3 gives: $19.8=$ $12+0.2 I_{Z(\max)}$, or $I_{Z(\max)}=39 \mathrm{~mA}$. The minimum power rating of the diode is $12 \times 0.039 \cong$ 0.47 W .

From manufacturer's data sheets, a 0.5 W zener diode is chosen that has $V_{z}=12 \mathrm{~V}$ at 10.5 mA . r_{Z} for this diode is 11.5Ω and $I_{Z K}=0.25 \mathrm{~mA}$. The equation of the $i-v$ characteristic over the operating range is: $\frac{\left(V_{Z}-12\right) \mathrm{V}}{\left(I_{Z}-10.5\right) \mathrm{mA}}=0.0115$, or,

$$
\begin{equation*}
V_{Z}=0.0115 I_{Z}+11.88 \mathrm{~V} \tag{1.4.11}
\end{equation*}
$$

At $I_{Z}=1 \mathrm{~mA}, V_{Z}=11.89 \mathrm{~V}$. We can now determine the actual $R_{s(\max)}$. Substituting $I_{Z}=1 \mathrm{~mA}$ and $V_{Z}=11.89 \mathrm{~V}$ in Equation 1.4.3: $16.2=11.89+R_{s(\max)} \times 21$. This gives $R_{s(\max)}=0.205 \mathrm{k} \Omega \equiv$ 205Ω. A smaller standard value is chosen, say 200Ω with a tolerance of $\pm 2 \%$.

We can recheck the figures, taking resistance tolerances into account. At $I_{L}=20 \mathrm{~mA}, I_{Z}$ is minimum at the higher value of resistance, that is, $200 \times 1.02=204 \Omega$. Equation 1.4.3 gives for this value of resistance and the lower supply voltage: $16.2=V_{Z}+0.204\left(20+I_{Z}\right)$. When this is solved with Equation 1.4.9, the result is: $V_{Z(\text { min })}=11.89 \mathrm{~V}, I_{Z(\text { min })}=1.11 \mathrm{~mA}$, which is well above the knee of the $i-v$ characteristic. At $I_{L}=0 \mathrm{~mA}, I_{Z}$ is maximum at the lower value of resistance, that is, $200 \times 0.98=196 \Omega$. Equation 1.4 .3 gives for this value of resistance and
the higher supply voltage: $19.8=V_{z}+0.196 I_{z}$. When this is solved with Equation 1.4.9, the result is: $V_{Z(\max)}=12.32 \mathrm{~V}, I_{Z(\max)}=38.2 \mathrm{~mA}$. The maximum power dissipation in the diode is $V_{Z(\max)} \times I_{Z(\max)}=0.47 \mathrm{~W}$, neglecting the temperature variation of V_{Z}.

The maximum variation of the voltage across the load, due to variations in both the supply voltage and the load current, has been reduced to $V_{Z(\max)}-V_{Z(\min)}=0.43 \mathrm{~V}$, or 3.6% of the nominal value of 12 V . If the peak-to-peak ripple in the supply is 1 V , the peak-to-peak ripple in the current is approximately $1 /(11.5+196) \equiv 4.8 \mathrm{~mA}$, and the peak-to-peak ripple across the load is $4.8 \times 11.5 \cong 55 \mathrm{mV}$, or $\left(55 \times 10^{-3} / 12\right) \times 100=0.46 \%$ of the nominal load voltage of 12 V . The waveform of the ripple is very nearly triangular. If the peak-to-peak ripple at the output is $v_{r L}$, the rms value of the ac component is $v_{r L} / 2 \sqrt{3}$ (Sabah 2008, p. 350), and the ac ripple power dissipated in the diode is $\frac{v_{r L(r m s)}^{2}}{r_{D}}=\frac{(55 \mathrm{mV})^{2}}{12 \times 11.5 \Omega}=0.02 \mathrm{~mW}$, which is quite negligible. The rms value of the current in R_{s} when $I_{L}=0$ is: $\sqrt{(38.2)^{2}+(4.8 / 2 \sqrt{3})^{2}} \cong 38.2 \mathrm{~mA}$, and the maximum power dissipated in this resistor is $196 \times(38.2)^{2} \cong 0.3 \mathrm{~W}$.

Simulation Example 1.4.2 Zener Diode Characteristics Using PSpice

It is required to obtain, using PSpice, the $i-v$ forward and reverse characteristics of a zener diode at $-50^{\circ} \mathrm{C}, 27^{\circ} \mathrm{C}$, and $100^{\circ} \mathrm{C}$.

Simulation

The zener diode used is the 1N750, 4.7 V diode, available as D1N750 from the EVAL library. The schematic is entered as in Figure 1.2.4, with the zener diode oriented in the same direction. Click on the diode symbol with the left mouse button, and choose Edit/PSpice model from the Orcad Capture menu to view the diode parameters.

In the Simulation Settings, choose dc Sweep, check the Primary Sweep box, select Voltage source, and enter V1 for name. Under Sweep type, select Linear and enter -50 V for Start value, 15 V for End value, and 0.01 for Increment. Check the Secondary Sweep box, select Temperature, select Value list under Sweep type, and enter - 50, 27, 100.
Run the simulation and use a current marker for the diode current or select l(D1) under Add Trace. The diode current is displayed vs. the source voltage. To display the diode current vs. diode voltage, select Plot/Axis Settings, press the Axis Variable button under X Axis and select the diode voltage $\mathrm{V} 1(\mathrm{D} 1)$. A plot appears displaying $i_{D} \mathrm{vs}$. v_{D} from -5 to 1 V for the three temperatures. To display the forward characteristics, change the Data Range to user defined $0.4-0.9 \mathrm{~V}$ for the x-axis and $0-10 \mathrm{~mA}$ for the y-axis. The plot appears as in Figure 1.4.6.

To display the reverse characteristic, change the Data Range to user defined -4.0 to -4.8 V for the x-axis and 0 to -50 mA for the y-axis. The plot appears as in Figure 1.4.7. To determine which characteristic is for which temperature, run a separate simulation for one of the extreme temperatures, $-50^{\circ} \mathrm{C}$ or $100^{\circ} \mathrm{C}$. At constant current, the voltage magnitude has a negative temperature coefficient in both the forward and reverse directions.

It is evident that if the diode voltage is to remain constant, as when the zener diode is used as a voltage reference, the diode current must be kept constant. This can be achieved by supplying the diode at nearly constant current, or from a nearly constant voltage through a resistor, and isolating the zener diode from load variations (Section 7.4, Chapter 7).

FIGURE 1.4.6
Figure for Simulation Example 1.4.2.

FIGURE 1.4.7
Figure for Simulation Example 1.4.2.

TABLE 1.4.1
Diodes for Voltage Regulation

Range of Regulated Voltage (V)	Type of Regulating Diode
$2.5-200$	Zener
$1.5-2$	LED
$0.6-0.8$	Si $p n$
$0.2-0.4$	Si Schottky

For values of regulated voltage smaller than those for which zener diodes are available, forward-biased diodes of various types, discussed in Chapter 3, can be used, as indicated in Table 1.4.1. Series combinations of these diodes can be used for intermediate values of regulated voltage or to achieve desired temperature coefficients.

1.5 Diode Voltage Limiters

Definition: A voltage-limiting circuit prevents voltage excursions beyond a certain level, which could be positive or negative.

Diode-resistor circuits can be used for this purpose, a basic circuit being shown in Figure 1.5.1a, where $V_{\text {LIM }}^{+}$is the nominal desired limiting voltage. The diode can be represented under forward bias by a voltage $V_{D 0}$ in series with a resistance r_{D} and can be considered an open circuit under reverse bias.

In analyzing diode-limiting circuits, it is usually more convenient to consider the range of output voltage over which the diode does not conduct, and then derive the corresponding range of input voltage. In Figure 1.5.1a, as long as the open-circuit voltage $v_{O}<V_{\mathrm{LIM}}^{+}+V_{D 0}$, the diode does not conduct, no current flows in R_{s}, and $v_{S R C}=v_{O}$. If $v_{O}>V_{\mathrm{LIM}}^{+}+V_{D 0}$, the diode is forward biased. Assuming that the load current is zero, the current i that flows in the circuit is:

$$
\begin{equation*}
i=\frac{v_{S R C}-V_{D 0}-V_{\mathrm{LIM}}^{+}}{R_{s}+r_{D}}, \quad v_{S R C}>V_{\mathrm{LIM}}^{+}+V_{D 0} \tag{1.5.1}
\end{equation*}
$$

and,

$$
\begin{equation*}
v_{O}=V_{\mathrm{LIM}}^{+}+V_{D 0}+r_{D} i \tag{1.5.2}
\end{equation*}
$$

Substituting for i from Equation 1.5.1,

$$
\begin{equation*}
v_{O}=\frac{R_{s}}{R_{s}+r_{D}}\left(V_{\mathrm{LIM}}^{+}+V_{D 0}\right)+\frac{r_{D}}{R_{s}+r_{D}} v_{S R C}, \quad v_{S R C}>V_{\mathrm{LIM}}^{+}+V_{D 0} \tag{1.5.3}
\end{equation*}
$$

(a)

(b)

FIGURE 1.5.1
Diode voltage limiter: (a) limiting at positive voltage levels; (b) limiting at negative voltage levels.

FIGURE 1.5.2
Diode limiting assuming piecewise-linear approximation of diode characteristic.

Equation 1.5.3 can, of course, be derived by superposition: $v_{S R C}$ is applied, with $V_{\text {LIM }}^{+}+V_{D 0}=0$, then $V_{\text {LIM }}^{+}$and $V_{D 0}$ are applied with $v_{S R C}=0$. If, as is normally the case, $r_{D} \ll R_{S}$, then $v_{O}=V_{\text {LIM }}^{+}+V_{D 0}$. The output v_{O} follows $v_{S R C}$ as long as $v_{S R C}<\left(V_{\text {LIM }}^{+}+V_{D 0}\right)$ but cannot exceed a positive level of $V_{\text {Lim }}^{+}+V_{D 0}$ (Figure 1.5.2). Because voltages are clipped at a certain level, voltage limiting circuits are also known as clipping circuits. The smooth variation of current with voltage in practical diodes results in gradual clipping rather than abrupt clipping (Figure 1.5.4). Moreover, if r_{D} is not negligible compared to R_{s}, the clipped level varies somewhat with $v_{S R C}$.

When a load R_{L} is connected to the output of the voltage-limiting circuit, the transfer characteristic can be readily obtained by assuming values of output voltage and working backward to determine the currents and the corresponding input voltages. If the output voltage in the limiting range is required for a specific input voltage, Thevenin's equivalent circuit (TEC) can be derived as seen at the load terminals (Exercise 1.5.1).

Exercise 1.5.1

Show that while the diode is conducting in the circuit of Figure 1.5.1a, the circuit between terminals ab is equivalent to a series combination of an input source $v_{S R C} r_{D} /\left(R_{s}+r_{D}\right)$, a battery $\left(V_{\mathrm{LIM}}^{+}+V_{D 0}\right) R_{s} /\left(R_{s}+r_{D}\right)$, and a resistance $R_{s} \| r_{D}$.

If the polarities of the battery and diode are reversed (Figure 1.5.1b), limiting occurs at a negative level $-\left(V_{\mathrm{LIM}}^{+}+V_{D 0}\right)$. Limiting at both negative and positive levels is achieved by combining the two subcircuits of Figure 1.5.1a and b.

The diode and battery of Figure 1.5.1a can be replaced by a zener diode, whereby $\left(V_{\mathrm{LIM}}^{+}+V_{D 0}\right)$ and r_{D} are replaced by $V_{Z 0}$ and r_{Z}, respectively. Limiting at a positive level and a negative level can be obtained by connecting two zener diodes back-to-back, that is, in series opposition, so that when one diode is in its breakdown region, the other diode is forward biased (Example 1.5.1). The limiting voltages are $+\left(V_{Z 01}+V_{D 01}\right)$ and $-\left(V_{Z 02}+V_{D 02}\right)$, and the resistances are $r_{Z}+r_{D}$ for the respective diodes. If the positive and negative limiting levels are to be equal in magnitude, either the two zener diodes must be closely matched, or a diode bridge is used with a single zener diode (Problem P1.3.3).

Simulation Example 1.5.1 Voltage Limiting Using Zener Diodes

It is required to simulate voltage limiting using two back-to-back zener diodes.

Simulation

The schematic is shown in Figure 1.5.3. The diodes are 1N750, of the type whose $i-v$ characteristic was investigated in Example 1.4.2. A VSIN source of 15 V amplitude and 50 Hz frequency is applied. A Time Domain (Transient) analysis is performed, the resulting plots of the source voltage, output voltage across the diodes, and current in the circuit being as shown in Figure 1.5.4. The output voltage begins to deviate significantly from the input voltage at about 4.6 V . The limiting voltage varies from about 5.3 V to about 5.43 V at the peak of the sinusoid, when the current is about 9.57 mA .

Exercise 1.5.2

A clipping circuit consists of two back-to-back zener diodes, as in Figure 1.5.3 with $R_{s}=1 \mathrm{k} \Omega$ and a load resistance of $4 \mathrm{k} \Omega$. The diodes have $V_{D 0}=0.7 \mathrm{~V}$ and $V_{Z 0}=9.1 \mathrm{~V}$, the diode resistance being negligible. If $v_{S R C}=15 \sin \omega t \mathrm{~V}$, determine the output voltage.
Answer: $v_{O}=9.8 \mathrm{~V}, 35.2^{\circ} \leq \omega t \leq 144.8^{\circ}, v_{O}=-9.8 \mathrm{~V}, 215.2^{\circ} \leq \omega t \leq 324.8^{\circ}$, and $v_{O}=12 \sin \omega t \mathrm{~V}$ for the rest of the period.

FIGURE 1.5.3
Figure for Simulation Example 1.5.1.

FIGURE 1.5.4
Figure for Simulation Example 1.5.1.

Design Example 1.5.2 Overload Protection of Meter

A moving coil meter has a basic movement of 100Ω resistance and 1 mA full-scale deflection (FSD). The meter is to read full-scale when 10 V dc is applied. It is required to design a diode circuit that protects the meter against excessive overloads.

Solution

A simple diode protection circuit is shown in Figure 1.5.5. It can be seen from Figure 1.1.2 that the $i-v$ characteristic of a $p n$ junction diode, as given by Equation 1.1.1, shows a rapid increase in current at $V_{D} \cong V_{D 0} \mathrm{~V}$. We can choose R_{1} so that at FSD the voltage across D_{1} is 0.7 V and the diode current I_{D} should not exceed $10 \mu \mathrm{~A}$, or 1% of FSD, so as not to introduce appreciable error. Thus, $\left(R_{1}+0.1\right) \times 1=0.7$, which gives $R_{1}=0.6 \mathrm{k} \Omega$. From Equation 1.1.1, if $V_{T}=26 \mathrm{mV}$ and $\eta=2$, then a diode of $I_{S}=15 \mathrm{pA}$ will have $I_{D} \cong 10 \mu \mathrm{~A}$ at $V_{D}=0.7 \mathrm{~V}$. The reverse current I_{S} of D_{2} is negligible in comparison. Neglecting the $10 \mu \mathrm{~A}$ through R_{2} at FSD, compared to $1 \mathrm{~mA}, R_{2}$ must be such that $R_{2} \times 1+0.7=10$. This gives $R_{2}=9.3 \mathrm{k} \Omega$.

If an input voltage of 100 V is accidentally applied, V_{D} and I_{D} can be determined from TEC at the diode terminals. $V_{T h}=100 \times(0.6+0.1) /(0.6+0.1+0.93)=7 \mathrm{~V}$ and $R_{T h}=$ $0.7\left|\mid 9.3=0.65 \mathrm{k} \Omega\right.$. To determine I_{D}, the equation $V_{D}=7-0.65 \mathrm{I}$ has to be solved with the diode equation $V_{D} \cong 0.052 \times \ln \left(I_{D} /\left(15 \times 10^{-9}\right)\right.$, where I_{D} is in mA and V_{D} is in volts. After a few iterations, starting with $V_{D}=0.8 \mathrm{~V}$, we find $V_{D}=1.05 \mathrm{~V}, I_{D}=9.15 \mathrm{~mA}$. At this value of V_{D}, the current through the meter is $1.05 / 0.7=1.5 \mathrm{~mA}$, Thus, an input voltage, of either polarity, whose magnitude is ten times FSD overloads the meter by 50%. The meter is unlikely to be damaged by this overload.
It is possible to prevent a reverse current through the meter by connecting diode D_{2} in series with R_{2} and adjusting the value of R_{2} accordingly (Problem P1.3.5). But D_{2} must then withstand the maximum negative applied voltage. With the two diodes connected in inverse parallel, the PIV of one diode is the maximum forward voltage drop of the other.

Application Window 1.5.1 Protection of Transistor Switch

A transistor is sometimes used to switch an inductive load, such as the coil of an electromagnetic relay (Figure 1.5.6a). When the transistor switch is turned on, a connection is made, with a very small voltage drop between the relay coil and ground. When the transistor switch opens, which can occur very rapidly, a large voltage, $v_{L}=L d i_{L} / d t$, appears across the coil. The polarity of v_{L}, as shown, is such as to keep i_{L} flowing through the circuit. The resulting voltage across the transistor is $v_{L}+V_{C C}$ and could be high enough to damage the transistor.

A diode connected as in Figure 1.5.6b, and referred to as a freewheeling diode, protects the transistor. When the switch opens, the current i_{L} is diverted through the diode, thus limiting v_{L} to the small forward voltage drop of the diode. i_{L} decays with a

FIGURE 1.5.5
Figure for Design Example 1.5.2.

FIGURE 1.5.6
Figure for Application Window 1.5.1. Diode protection of transistor switch. (a) switch is about to open; (b) switch open.
time constant $L /\left(R_{L}+r_{D}\right)$, which introduces some delay in the opening of the relay. During normal operation, the diode is reverse biased and has no significant effect on the circuit.

Voltage-limiting circuits are used for protection against overvoltage and for wave shaping, as in the clipping of a triangular waveform at positive and negative levels to produce a trapezoidal waveform.

Surge Protection

Voltage surges of large amplitude and short duration often occur in power systems. Because of their rapid rise time, these surges can be transmitted via the interwinding capacitance of mains transformers of equipment, and can damage any electrolytic capacitors and IC voltage regulators that may be present (Example 1.3.2). Fortunately, these components can be adequately protected by surge protectors, or transient voltage suppression (TVS) diodes, as they are also called. In one form of surge protectors, special zener diodes are connected in parallel with the devices to be protected. The zener diodes are designed to turn on very rapidly and to withstand a fairly large amount of power for a very short time.

1.6 Diode-Capacitor Circuits

dc Restorer

Consider the circuit shown in Figure 1.6.1a in which an ideal diode switch is connected in series with a capacitor, $v_{S R C}$ being the rectangular waveform of Figure 1.6.1b. If C is replaced by a resistor, the circuit is a voltage limiter that clips the negative excursions to

FIGURE 1.6.1
(a) Diode clamp; (b) applied waveform; (c) clamped waveform.
zero without affecting the positive parts of the waveform. With C connected and initially uncharged, then when $v_{S R C}$ is positive, no current flows through C, assuming an opencircuit at the output. When $v_{S R C}$ is negative, C charges to V_{m}^{-}and remains charged to this voltage because it cannot discharge through the ideal diode in the reverse direction. From KVL, $v_{O}=v_{S R C}+v_{C}=v_{S R C}+V_{m}^{-}$. So when $v_{S R C}$ becomes $V_{m}^{+}, v_{O}=V_{m}^{+}+V_{m}^{-}$. During the next negative half-cycle, the voltage across the diode, and hence I, is zero. Thus:

$$
\begin{gather*}
v_{O}=0, \quad v_{S R C}<0 \tag{1.6.1}\\
v_{O}=V_{m}^{+}+V_{m}^{-}, \quad v_{S R C}>0 \tag{1.6.2}
\end{gather*}
$$

The input voltage is shifted in the positive direction so that the most negative input is at zero level (Figure 1.6.1c). The circuit is a diode clamp, a clamping circuit, or a dc restorer.

In ac-coupled amplifiers (Section 9.2, Chapter 9), series-connected capacitors block the dc component of voltage so as to avoid problems associated with drift in dc amplifiers. A dc restorer provides a dc component of output voltage. In pulse-width modulation, the pulse width of successive pulses in a pulse train is varied, or modulated, in accordance with the information to be transmitted. Varying the pulse width, while keeping the amplitude and period fixed, varies the average, or dc, level in direct proportion to the pulse width. The pulse-width-modulated signal is amplified and transmitted with the dc component removed. To recover this component, and hence the modulating information, the pulse-width-modulated signal is dc restored.

Exercise 1.6.1

Suppose that in Figure 1.6.1, $\mathrm{C}=10 \mathrm{nF}, V_{m}^{+}=2 \mathrm{~V}, V_{m}^{-}=1 \mathrm{~V}$, and the period of the waveform is 10 ms . Assuming an open-circuited output, and a reverse diode current of 1 nA , by what percentage will v_{C} drop during the time when the diode is nonconducting? (Hint: consider the charge leaked when the diode is reverse biased.)

Answer: 0.05\%.

When practical diodes are used in the circuit of Figure 1.6.1a and v_{O} displayed, say on an oscilloscope, it is found that the negative level is clamped at slightly below zero. The following simulation example explains why.

Simulation Example 1.6.1 Clamping Circuit

It is required to simulate the behavior of a clamping circuit, with and without load.

Simulation

The simulated circuit (Figure 1.6.1a) uses a D1N914 diode from the EVAL library, $C=1 \mathrm{nF}$, with $v_{S R C}$ from a VPULSE source being a square wave of 2 ms period having $V_{m}^{-}=V_{m}^{+}=2 \mathrm{~V}$.

The output at no load is shown in Figure 1.6.2a. On the first negative half-cycle, with the capacitor initially uncharged, the diode conducts heavily and rapidly, charging the capacitor to a voltage of 2 V less the diode voltage drop. After the initial rapid charge, the current and the diode voltage drop decrease in magnitude, while the capacitor voltage increases slowly, because the current is still a charging current. When the input changes to +2 V , the capacitor voltage does not change instantaneously, and the output voltage increases by 4 V to +4 V less the diode voltage. On the next negative half-cycle, the diode conducts and the capacitor receives an additional small charge. Figure 1.6 .2 b , shows v_{O} one second after the source is first applied. The most negative excursion of v_{O} is approximately -60 mV in the steady state.

FIGURE 1.6.2
Figure for Simulation Example 1.6.1. (a) Beginning at $t=0$; (b) beginning at $t=1 \mathrm{~s}$.

FIGURE 1.6.3
Figure for Simulation Example 1.6.1.

In practice, the reason why v_{O} is not zero during negative half-cycles of $v_{S R C}$ is because of some leakage of the charge on C during positive half-cycles of $v_{S R C}$ due to: (1) the reverse leakage current of the diode, (2) finite insulation resistance of C, and (3) finite resistance of the oscilloscope probe used to display v_{O}. In the steady state, the capacitor voltage is such that the charge lost during the positive half-cycles of $v_{S R C}$ is equal to the charge gained during the negative input half-cycles (Example 1.6.2). This means that there will be a steadystate forward voltage drop across the diode during negative half-cycles so that the most negative excursion of v_{O} is below the zero level. It must not be supposed that the final voltage across C is $V_{m}^{-}-V_{D 0}$. If this were the case, then the voltage across the diode during the negative phase is $V_{D 0}$ and the diode will still have a forward current that continues to charge the capacitor. In the absence of all leakage currents, the capacitor is fully charged only when the diode current is zero, which means that the diode voltage is zero, since the diode characteristic passes through the origin.

The output waveform when $R=500 \mathrm{k} \Omega$ is shown in Figure 1.6.3. On the first negative halfcycle, the diode conducts heavily, and the capacitor is rapidly charged to a voltage $\left(2-v_{D}\right)$, as in the case of no load. The capacitor receives additional charge through the resistor during the negative half-cycle, and v_{O} decreases in magnitude to about -0.07 V at 1 ms . At the start of the positive half-cycle, $v_{S R C}$ increases by 4 V and the output voltage increases by this amount to about 3.935 V because the voltage across the capacitor does not change instantaneously. During the positive half-cycle, the diode is reverse biased and the capacitor discharges through the load resistor with a time constant $R C=0.5 \mathrm{~ms}, v_{O}$ reaching about 0.54 V at 2 ms . When $v_{S R C}$ changes to -2 V , a large forward voltage is impressed across the diode, which rapidly charges the capacitor to about 1.4 V . The capacitor is then charged slowly, v_{O} reaching about -0.07 V at 3 ms . The cycle repeats thereafter.

The following example illustrates an important concept that was applied in the case of the capacitor-input filter and referred to in Example 1.6.1.

Concept: When a capacitor is alternately charged and discharged, then in the steady state, the charge gained in the charging phase is equal to the charge lost in the discharging phase.

Example 1.6.2 Capacitor Charging and Discharging with Different Time Constants

$v_{S R C}$ in Figure 1.6.4 is a periodic, rectangular waveform that is at a positive level V_{m}^{+}for a duration T_{1}, and at a negative level $-V_{m}^{-}$for a duration T_{2}. It is required to determine, in the steady state, v_{O} and the average voltage V_{C} across C, assuming that C is very large.

Solution

Because of large C, the capacitor voltage is nearly constant at a value V_{C}. Since $v_{S R C}$ is periodic, then in the steady state, V_{C} is such that the charge lost by C during the positive part of the cycle must be equal to the charge gained during the negative part of the cycle. Otherwise, there will be a net gain or loss of charge, and V_{C} would not have reached a steady state. The charge lost during the positive phase of the cycle is $\left(V_{m}^{+}+V_{C}\right) T_{1} / R_{1}$. Similarly, the charge gained during the negative phase of the cycle is $\left(V_{m}^{-}-V_{C}\right) T_{2} / R_{2}$. Equating these charges gives:

$$
\begin{equation*}
V_{C}=\frac{V_{m}^{-} R_{1} T_{2}-V_{m}^{+} R_{2} T_{1}}{R_{1} T_{2}+R_{2} T_{1}} \tag{1.6.3}
\end{equation*}
$$

Thus, $V_{C}<0$ if $V_{m}^{+} R_{2} T_{1}>V_{m}^{-} R_{1} T_{2}$, and $V_{C}>0$ if $V_{m}^{+} R_{2} T_{1}<V_{m}^{-} R_{1} T_{2}$. If $R_{1} \rightarrow \infty, V_{C}=V_{m}^{-}$, as argued above in connection with Figure 1.6.1a. Moreover, if $R_{1}=R_{2}, V_{C}=$ $\left(V_{m}^{-} T_{2}-V_{m}^{+} T_{1}\right) /\left(T_{2}+T_{1}\right)$, which is the negative of the dc, or average, value of $v_{\text {SRC }}$. That is, V_{C} is equal and opposite to the dc component of the input, so that the dc component of v_{O} is zero. In other words, the dc component of $v_{S R C}$ is blocked by the capacitor, as in a linear circuit. However, when $R_{1} \neq R_{2}$, the charging and discharging capacitor currents are unequal because of the diodes; rectification occurs, and the output voltage has a dc component equal to the algebraic sum of the dc components of $v_{S R C}$ and V_{C}.
$v_{O}=v_{S R C}+V_{C}$, so that during the positive phase,

$$
\begin{equation*}
v_{O}^{+}=V_{m}^{+}+V_{C}=\frac{R_{1} T_{2}\left(V_{m}^{+}+V_{m}^{-}\right)}{R_{1} T_{2}+R_{2} T_{1}} \tag{1.6.4}
\end{equation*}
$$

During the negative phase,

$$
\begin{equation*}
V_{O}^{-}=-V_{m}^{-}+V_{C}=-\frac{R_{2} T_{1}\left(V_{m}^{+}+V_{m}^{-}\right)}{R_{1} T_{2}+R_{2} T_{1}} \tag{1.6.5}
\end{equation*}
$$

$v_{O}^{+}-v_{O}^{-}=V_{m}^{+}+v_{m}^{-}$, as it should be.

FIGURE 1.6.4

Figure for Example 1.6.2.

FIGURE 1.6.5
Figure for Exercise 1.6.3.
The other extreme case, where the time constants are small compared to the duration of the positive and negative phases is considered in Problem P1.4.5.

Exercise 1.6.2

Assume that in Figure 1.6.4, $V_{m}^{+}=10 \mathrm{~V}, V_{m}^{-}=5 \mathrm{~V}, T_{1}=T_{2}, R_{1}=3 \mathrm{k} \Omega$ in series with a 4 V dc source, and $R_{2}=1 \mathrm{k} \Omega$ in series with a 6 V dc source, the negative terminals of both dc sources being connected to ground. Determine V_{C}, justifying any assumptions made.

Answer: $V_{\mathrm{C}}=6.75 \mathrm{~V}$.

Exercise 1.6.3

Let $v_{\text {SRC }}$ in Figure 1.6 .5 be a periodic waveform. KVL gives:

$$
\begin{equation*}
v_{S R C}=v_{C}+v_{R} \tag{1.6.6}
\end{equation*}
$$

where the voltages are instantaneous values. (a) By taking the averages of each term in Equation 1.6.6, deduce that $V_{S R C}=V_{C}+V_{R}$, where the voltages are dc values. (b) Deduce from equality of the charge gained by C during one part of the cycle to the charge lost during the remainder of the cycle, that $V_{R}=0$, which means that C blocks the dc component of $v_{\text {SRC }}$.

Voltage Multiplication

Consider the circuit of Figure 1.6.6, and let the positive half-cycle be of the polarity indicated. Assuming that the capacitors are initially uncharged, C_{1} charges through D_{1}

FIGURE 1.6.6
Basic voltage doubler.
during the first positive half-cycle to a voltage V_{m}, as indicated. During the following negative half-cycle, C_{1} partly discharges as C_{2} is charged, so that C_{2} charges to less than $2 V_{m}$. However, C_{1} charges again during the next positive half-cycle, and C_{2} receives additional charge during the next negative half-cycle. Eventually, in the steady state, and neglecting the load current and the reverse currents of the diodes, C_{1} is charged to a steady voltage V_{m} and C_{2} is charged to a steady voltage $2 V_{m}$, as indicated. The voltage across D_{1} is zero at the peak of positive half-cycles and is in the reverse direction the rest of the time. Similarly, the voltage across D_{2} is zero at the peak of negative half-cycles and is in the reverse direction the rest of the time.

The circuit can be extended to provide multiplication by any integer n. In Figure 1.6.7, two more modules $C_{3} D_{3}$ and $C_{4} D_{4}$ are added, so that the voltages across C_{3} and C_{4} are $2 V_{m}$, as indicated, neglecting the load current and the reverse currents of diodes, and assuming a steady state when all capacitor voltages have reached their final values. The $2 V_{m}$ across C_{3}, the $2 V_{m}$ across C_{2}, and the V_{m} across C_{1} make the voltage across D_{3} equal to zero at the peak of the positive half-cycles, with D_{3} reverse-biased the rest of the time. Similarly, the $2 V_{m}$ across C_{4}, the $2 V_{m}$ across C_{3}, the $2 V_{m}$ across C_{2}, and the V_{m} across C_{1}, make the voltage across D_{4} equal to zero at the peak of the negative half-cycles, with D_{4} reverse-biased the rest of the time.

Summary of Main Concepts and Results

- An ideal diode is a passive, unidirectional element that behaves like a short circuit in the forward direction and an open circuit in the reverse direction.
- In a given diode circuit, r_{D} can be neglected if it is in series with a much larger resistance, and $V_{D 0}$ can be neglected if it is in series with a much larger voltage.
- A rectifier circuit converts a bidirectional input to a unidirectional one. Full-wave rectifier circuits are based on a CTT secondary or on a diode bridge. The CTT circuit is better suited for lower voltages.

FIGURE 1.6.7
Modular voltage multiplier.

- The rectified output is smoothed using inductors or capacitors as low-pass filter elements, or by using a polyphase supply of appropriate number of phases.
- Zener diodes can be used to provide a fixed dc voltage for regulation or for reference purposes. In a regulated power supply, the zener diode maintains a nominally constant load voltage and reduces the ripple across the load.
- Diode-resistor circuits can be used to limit voltage excursions to within specified limits.
- Diode-capacitor circuits can be used for dc restoration and for voltage multiplication.
- When a capacitor is alternately charged and discharged, then in the steady state, the charge gained during charging is equal to the charge lost during discharge.

Learning Outcomes

- Analyze and design basic diode rectifiers, voltage regulators, limiters, and dc restorers.

Supplementary Examples and Topics on Website

SE1.1 Capacitor-Input Filter with Constant-Current Load. Analyzes this simpler case in which the load is a current source rather than a fixed resistor.

SE1.2 Diode Transmission Gate. Analyzes a diode transmission gate consisting of a diode bridge that allows transmission of an input signal to a load when a control signal is of one polarity, and prevents transmission when the polarity of the control signal is reversed.

SE1.3 Diode Logic Gates. The basic Boolean OR and AND operations are discussed using diode gates.

SE1.4 Diode-LC Circuit. Investigates the effect of including a diode in an $L C$ circuit.
ST1.1 Inductor Filters. Several types of inductor filters are analyzed, and their main features highlighted, including the simple inductor-input filter, L-section filter, and π-section filter.

ST1.2 Peak-to-Peak Ripple in Polyphase Systems. Derives an expression for this ripple, as a percentage of the peak value, and in terms of the number of peaks per supply cycle.
ST1.3 Graphical Analysis of Zener Voltage Regulator. Illustrates how the change in V_{Z} is graphically related to the change in $V_{D C}$.

ST1.4 Diode Demodulator. Discusses the use of what is essentially a simple half-wave rectifier circuit for demodulating an amplitude-modulated signal.
ST1.5 Diode Mixer. As a nonlinear element, a diode can be used in a mixer, which is a circuit that generates sum and difference frequencies from two signals of different frequencies.

Problems and Exercises

P1.1 Diode Characteristics and Bias Point Calculations

In the following problems, assume $V_{T}=0.026 \mathrm{~V}$ and $\boldsymbol{\eta}=2$, unless otherwise specified.
P1.1.1 The terminals of a diode are unmarked. How would you use a simple ohmmeter to determine which diode terminal is the anode? How would you use the ohmmeter to determine if a diode is open-circuited or short-circuited?
P1.1.2 A diode has $i_{D}=1 \mathrm{~A}$ at $v_{D}=0.7 \mathrm{~V}$ and $i_{D}=2 \mathrm{~A}$ at $v_{D}=0.73 \mathrm{~V}$. Determine I_{S} and η. What is r_{d} in both cases?
P1.1.3 Consider Equation 1.1.1 with $\eta=1$. Determine v_{D} for which: (a) $e^{v_{D} / \eta V_{T}}=10$; (b) $e^{v_{D} / \eta V_{T}}=100$; (c) i_{D} is 80% of I_{S}; (d) i_{D} is 95% of I_{S}. How do these values change for $\eta=2$?
P1.1.4 Consider Equation 1.1.1 with $\eta=1$. If $i_{D}=1 \mathrm{~mA}$, determine I_{S} for a v_{D} of: (a) 0.3 V ; (b) 0.5 V ; (c) 0.7 V .

P1.1.5 Assuming that in an ideal Si diode $e^{v_{D} / \eta V_{T}} \gg 1$, (a) what is the change in v_{D} that multiplies i_{D} by a factor k ? Deduce the change in v_{D} that: (b) doubles i_{D} assuming $\eta=2$; (c) multiplies i_{D} by a factor of 10 assuming: (i) $\eta=2$, and (ii) $\eta=1$. Note that these values of v_{D} are independent of i_{D} as long as $e^{v_{D} / \eta V_{T}} \gg 1$. If Δv_{D} is the change in v_{D} that causes a 10 -fold change in i_{D}, the diode is referred to as a $\Delta v_{D} /$ decade diode. What is η for a $0.1 \mathrm{~V} /$ decade diode?
P1.1.6 Two $p n$ junction diodes are connected in inverse parallel to protect the differential inputs of an op amp. If the diodes have $I_{S}=0.1 \mathrm{nA}$ and the differential input does not exceed $\pm 1 \mathrm{mV}$ in normal operation, what is the minimum effective incremental resistance of the two diodes?
P1.1.7 Two identical ideal Si diodes having $I_{S}=10 \mathrm{nA}$ are connected in series opposition across a 10 V dc supply. Make a reasonable assumption, which you check later, to determine the current in the circuit and the voltage across each diode.
P1.1.8 The diodes of Problem P1.1.7 are both connected in the forward direction in series with an ideal current source of 1 mA . Determine the voltage across the diodes, assuming $\eta=1$. Repeat with a resistor connected in parallel with the two diodes having a value of: (a) $10 \mathrm{k} \Omega$; (b) $1 \mathrm{k} \Omega$. How do you interpret the results? Simulate with PSpice.
P1.1.9 Determine the voltage across each diode in Problem P1.1.8 if the current source is 5 mA and the $1 \mathrm{k} \Omega$ resistor is connected across one of the diodes. Simulate with PSpice.
DP1.1.10 A voltage reference of 1.4 V is to be derived from $p n$ junction diodes supplied from a current source. If the diodes available have $\eta=1.98$ and $I_{S}=14.11 \mathrm{nA}$ (1N4002), what should be the source current? What will be the small-signal output resistance of the voltage reference source? What is the significance of this output resistance? If the current source varies by $\pm 10 \%$ what will be the variation in the reference voltage? If the available current source has twice the required value, what would be an appropriate diode arrangement? Simulate with PSpice.
DP1.1.11 Suppose that a voltage reference of 1.3 V is required, and the designer opts to use the same current source and diodes as in Problem DP1.1.10 and connect a resistor R across one of the diodes; determine R. What will be the small-signal output resistance in this case? Can you suggest how the output resistance can be reduced to a low value?
P1.1.12 Five identical $p n$ junction diodes are connected in the forward direction in series with a $3 \mathrm{k} \Omega$ resistor across a 9 V supply. If each diode has a 0.7 V drop at 1 mA and can be
approximated as a $0.1 \mathrm{~V} /$ decade diode (see Problem P1.1.5), determine the voltage across the diode string.
P1.1.13 The diodes in Exercise 1.2.1 are connected in the forward direction in series with a $1 \mathrm{k} \Omega$ resistance across a 10 V supply. Assuming the linear approximation for the diodes, determine the current and the voltage across each diode. Compare the results with those obtained from Equation 1.1.1. What is the power dissipated in each diode?
P1.1.14 Determine the diode currents in Figure P1.1.14.

FIGURE P1.1.14

P1.1.15 Determine the current in each diode and v_{O} in Figure P1.1.15.

FIGURE P1.1.15
P1.1.16 In the circuit of Figure P1.1.16, the diode can be represented in the forward direction by $V_{D 0}=0.7 \mathrm{~V}$ and $r_{D}=10 \Omega$. Determine i_{D} and v_{D} if $v_{S R C 1}=A \cos 100 \pi t \mathrm{~V}$ and $V_{S R C 2}=$ 5 V . For what amplitude of the sinusoidal signal will i_{D} just fall to zero during the cycle? If the amplitude of the sinusoidal signal is twice this value, determine i_{D} and v_{D}.

FIGURE P1.1.16

P1.1.17 Consider the OR gate of Figure P1.1.17. Assume that v_{A} is a sinusoidal signal of amplitude A, v_{B} is a triangular signal of the same amplitude, and v_{C} is a rectangular signal of amplitude $A / 2$, all signals having zero average. The three signals have the same frequency and phase, that is, their positive (or negative) cycles coincide. Sketch the output of the OR gate. Can you generalize the output of the OR gate to inputs of different amplitudes?
P1.1.18 Repeat Problem P1.1.17 for the AND gate of Figure P1.1.18.
P1.1.19 Assume that in the OR gate of Problem P1.1.17, $R=$ $10 \mathrm{k} \Omega, V_{A}$ is derived from a +10 V source in series with $0.5 \mathrm{k} \Omega, V_{B}$ is derived from a +15 V source in series with $1 \mathrm{k} \Omega$, and $+V_{C}$ is derived from a 20 V source in series with $2 \mathrm{k} \Omega$. Determine V_{Y}.

P1.1.20 Repeat Problem P1.1.19 for the AND gate of Figure P1.1.18, with $V_{C C}=30 \mathrm{~V}$.

P1.2 Rectifiers and Regulated Power Supplies

P1.2.1 In a high-voltage unregulated power supply with a capacitor-input filter, a bleeder resistor is sometimes added across the capacitor. Why?
DP1.2.2 Figure DP1.2.2 shows a rectifier circuit that is commonly used to provide positive and negative voltage supplies of equal magnitude. Develop this circuit starting with two CTT circuits, one that provides a positive load voltage, the other a negative load voltage of equal magnitude and with respect to the same common ground. Combine the two CTT transformers into one, and redraw the circuit so that the four rectifier diodes are connected in a bridge.

FIGURE P1.1.17

FIGURE P1.1.18

FIGURE DP1.2.2
P1.2.3 What happens in a CTT or a bridge rectifier if one of the diodes becomes: (a) opencircuited, or (b) short-circuited?
P1.2.4 Assume that in Example 1.3.2 the waveform of the diode current is a right triangle having an amplitude of $i_{D(\mathrm{pk})}$ and a duration equal to that of the conduction period. Determine the rms value of current in: (a) each transformer secondary, and (b) the
transformer primary. If a fuse is to be connected in series with the transformer primary to protect against any faults that might develop in the rectifier circuit, what should be the rating of the fuse? It is recommended that such a fuse be of the "slow blow" type. Why?
P1.2.5 In a CTT rectifier with a resistive load (Figure 1.3.2), the diodes have $V_{D 0}=0.7 \mathrm{~V}$ and $r_{D}=10 \Omega$. Assume a source resistance of 2Ω for each transformer secondary and a load resistance of $1 \mathrm{k} \Omega$. If the transformer open-circuit voltage is 20 V rms , determine: (a) the peak output voltage; (b) the fraction of the cycle during which a diode conducts; (c) the dc output voltage; and (d) the PIV. Simulate with PSpice.
P1.2.6 Repeat Problem P1.2.5 assuming the same diodes connected as a bridge rectifier and supplied with the same secondary voltage. Simulate with PSpice.
DP1.2.7 A bridge rectifier is to be used for charging 12 V car batteries. Design a suitable circuit consisting of a transformer, a bridge rectifier, and a resistor R in series with the battery, subject to the following assumptions: (1) the maximum charging voltage is to be 13.5 V at the battery terminals when the charging current is zero; (2) the maximum peak charging current is to be limited to 10 A when the battery voltage is 10.5 V ; (3) the diode voltage drop may be assumed to be 1 V when the diode is conducting, with the battery voltage less than 12 V , and 0.5 V when the battery voltage is 12 V ; (4) the diode resistance, source resistance, and battery resistance are negligible. Specify the transformer secondary voltage, R, the PIV of the diodes, and the largest average diode current. When the battery voltage is 12 V , what are the peak diode current, the average diode current, and the conduction period as a fraction of the supply cycle?
DP1.2.8 Consider a CTT rectifier with a $1 \mathrm{k} \Omega$ load supplied from a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply through a transformer having a primary-to-half-secondary turns ratio of 1 . Assume a diode voltage drop of 0.7 V , zero diode resistance, and zero source resistance. Determine the peak load voltage. Determine the minimum C that should be used if the minimum load voltage is not to fall below its maximum by (1) 10 V ; (2) 1 V . For each case, assuming that the approximate analysis applies, determine: (a) the dc output voltage; (b) the average diode current; (c) the fraction of the cycle during which a diode conducts. Simulate with PSpice.
P1.2.9 In a bridge rectifier with capacitive input filter, $v_{S R C}=12 \cos 100 \pi t \mathrm{~V}$, the diodes drop 0.8 V when conducting, $R_{L}=1 \mathrm{k} \Omega$, and $C=1000 \mu \mathrm{~F}$. Determine the peak-to-peak ripple in the output voltage, neglecting all resistances in the transformer and diodes. Simulate with PSpice.
DP1.2.10 The bridge rectifier of Problem P1.2.9 with a capacitive input filter supplies an IC voltage regulator that maintains its output at 12 V across a 100Ω load as long as its input does not drop below 14 V . What is the minimum value of C that should be used? Assume that when the regulator is operating properly, its input current is the same as its output current.
DP1.2.11 In a bridge rectifier with a capacitive input filter, the dc load is $5 \mathrm{~V}, 50 \mathrm{~mA}$, and the ripple across the load has a frequency of 100 Hz and a peak-to-peak amplitude of 200 mV . Determine C, the average diode current, and the peak diode current. If the maximum voltage drop during conduction is 1 V , and the primary supply voltage is 220 V , what should be the transformer turns ratio? Simulate with PSpice.
P1.2.12 A load is to be supplied at $1 \mathrm{kV}, 100 \mathrm{~mA}$ dc. Only a $1 \mu \mathrm{~F}$ capacitor can be conveniently used for filtering purposes. If the peak-to-peak ripple across the load should not exceed 1 V , what frequency of a single phase supply should be used, assuming a fullwave rectifier with negligible voltage drops? If a polyphase supply is to be used with the $1 \mu \mathrm{~F}$ capacitor at 50 Hz , what should be the effective number of phases (refer to Section ST1.2)?

P1.2.13 A bridge rectifier with capacitive input filter is to be used to supply a dc load at 12 V , 1 A , from a 50 Hz supply. If the peak diode current is not to exceed 40 times the average diode current over the whole cycle, what is the peak-to-peak ripple in the output voltage and the maximum size of capacitor that can be used? Assume to begin with that $V_{m}^{\prime}=V_{D C}$ and determine v_{r}. Using this value of v_{r} determine a new value of V_{m}^{\prime}. Repeat the iterations until you get consistent values of V_{m}^{\prime} and v_{r}.
P1.2.14 A zener diode is specified to have $V_{Z}=15 \mathrm{~V}$ at $I_{Z T}=8.5 \mathrm{~mA}, r_{Z}=16 \Omega$, and a power rating of 0.5 W . The diode is used as a regulator with $R_{s}=300 \Omega$, the minimum zener diode current being 2.5 mA . (a) Determine V_{Z} at $I_{Z(\min)}$; (b) if the load current is 20 mA , what is the lowest supply voltage for which the diode current is $I_{Z(\min)}$? (c) At no load, what is the highest supply voltage at which the power rating of the zener diode is not exceeded? (d) For a 20 V dc input, what is the maximum load current for which the diode current is $I_{Z(\min)}$?
DP1.2.15 A zener regulator is required to provide a dc supply of 10 V nominal voltage at a current of 0 to $0-25 \mathrm{~mA}$, the maximum dc voltage available being 12 V . A zener diode is chosen for this purpose that has $V_{Z}=10 \mathrm{~V}$ at $I_{Z T}=10 \mathrm{~mA}, r_{Z}=8 \Omega, I_{Z K}=1 \mathrm{~mA}$, and a power rating of 1 W . The maximum peak-to-peak ripple in the output is to be 50 mV . Design a suitable regulator, specifying the series resistance, the minimum dc input voltage and the maximum peak-to-peak ripple. Consider $I_{Z(\min)}=2 \mathrm{~mA}$.
DP1.2.16 Repeat Problem DP1.2.15 for the same load current but using two 1N750 diodes in series. Assume the 1 N 750 is rated at 500 mW , has $V_{Z}=4.7 \mathrm{~V}$ at $I_{Z}=20 \mathrm{~mA}, r_{Z}=2.5 \Omega$, and $I_{Z(\min)}=5 \mathrm{~mA}$. Simulate with PSpice.
P1.2.17 A bridge rectifier with capacitor input filter and zener regulator has the following nominal values: secondary voltage $50 \mathrm{~V} \mathrm{rms}, V_{Z 0}=30 \mathrm{~V}, r_{Z}=5 \Omega, C=10,000 \mu \mathrm{~F}$, $R_{L}=500 \Omega$, and $R_{s}=75 \Omega$. The diode voltage drop when conducting may be assumed to be 1.5 V and the source resistance can be neglected. Determine the worst-case ripple voltage across the load, assuming the following tolerances: transformer voltage $\pm 10 \% ; V_{Z 0}, r_{Z}$, and $R_{s} \pm 5 \%$; $C \pm 20 \%$.
P1.2.18 A zener diode is packaged so that it can dissipate to its surroundings $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ temperature rise. If the temperature of the diode is not to increase by more than $15^{\circ} \mathrm{C}$ what is the maximum zener current at a voltage of 10 V ?
P1.2.19 The voltage across a zener diode is 10 V when the current through the diode is 10 mA , the diode resistance being 10Ω. The diode is used in a regulator circuit having a supply voltage of $20 \pm 5 \mathrm{~V}$, a series resistance of 200Ω, and a load of $0-20 \mathrm{~mA}$. (a) Determine the change in v_{L} as the supply voltage changes between 15 and 25 V at a constant i_{L} of: (i) zero, (ii) 20 mA . Show that the change in v_{L} is the same in both cases and is given by the line regulation. (b) Determine the change in v_{L} as the load current changes between 0 and 20 mA at a constant supply voltage of: (i) 15 V , (ii) 25 V . Show that the change in v_{L} is the same in both cases and is given by the load regulation. (c) Determine the worst-case change in v_{L} as the supply voltage changes between 15 and 25 V , and the load current changes between 0 and 20 mA . Show that ΔV_{L} is the sum of what was determined in (a) and (b). How do you justify this result?
P1.2.20 Given a zener diode regulator using a zener diode of $V_{Z 0}=9 \mathrm{~V}$ and $I_{Z(\min)}=2 \mathrm{~mA}$. The input varies between $V_{I(\max)}$ and $V_{I(\min)}$, where $V_{I(\max)}-V_{I(\min)}=5 \mathrm{~V}$. A variation of the load current between 0 and 20 mA , at constant input voltage, changes the load voltage by 0.2 V . A change in the input voltage between $V_{I(\max)}$ and $V_{I(\min)}$ changes the load voltage by 0.1 V , at a constant load current of 20 mA . Determine: (a) R_{s}; (b) r_{Z}; (c) V_{Z} at $I_{Z}=10 \mathrm{~mA}$; (d) $V_{I(\min) ;}$ and (e) minimum power rating of zener diode.
P1.2.21 A 24-phase rectifier is to supply a resistive load at $50 \mathrm{~A}, 20 \mathrm{~V}$ dc as in Figure P1.2.21, where each phase is derived from a transformer secondary, having one terminal connected to a diode, the other to ground. What is the peak load voltage? If the
diode voltage drop is 1.5 V , what is the open-circuit phase voltage? What is the transformer secondary rating per phase (rms voltage $\times \mathrm{rms}$ current)?

FIGURE P1.2.21
P1.2.22 Express Equation 1.3 .5 as: $i_{D}=\left(V_{m}^{\prime} / R_{L}\right) \sqrt{\left(\omega C R_{L}\right)^{2}+1} \times \cos \left[\omega t+\tan ^{-1}\left(\omega C R_{L}\right)\right]$, $-\theta_{2} \leq \omega t \leq \theta_{1}$. Show that if $\omega C R_{L} \gg 1, i_{D} \cong-V_{m}^{\prime} \omega C \sin \omega t$. The maximum value over the given range occurs at $\omega t=-\theta_{2}$. Deduce from the value of θ_{2} derived from Equation 1.3.13, and using Equation 1.3.10, that $i_{D(\mathrm{pk})} \cong 2 \pi I_{D C} \sqrt{V_{m}^{\prime} / 2 v_{r}}$ (Equation 1.3.15).

P1.2.23 A ripple factor r is defined as $r=v_{r(\mathrm{rms})} / V_{D C}$. Show that for a full-wave rectifier with capacitive input filter for which the approximate analysis is valid, $r=1 / 4 f C R_{L} \sqrt{3}$. Although the ripple factor is not commonly used with simple capacitor-input filters, it is useful for specifying the performance of inductor-input and more elaborate types of filters.
P1.2.24 Repeat Simulation Example 1.3.1 considering the worst-case switching transient. To do so, use VSIN sources with a phase angle of 90° and insert a normally open switch between the diodes and the filter with a closure delay of $1 \mu \mathrm{~s}$.

P1.3 Clipping Circuits

P1.3.1 $v_{I}=-6 \mathrm{~V}$ in the circuit of Figure P1.3.1. Determine v_{O} and all the currents in the circuit.

FIGURE P1.3.1
P1.3.2 In the circuit of Figure 1.5.1a, a variable $V_{\text {LIM }}^{+}$can be obtained by replacing the supply V_{LIM}^{+} by a supply $V_{D C}$ having a potentiometer across it and connecting the cathode terminal of the diode to the slider of the potentiometer. If the resistance between the slider of a potentiometer and common reference is $\alpha R_{P}, 0 \leq \alpha \leq 1$, where R_{P} is the total resistance of the potentiometer, modify Equation 1.5.1 to take into account the presence of the potentiometer, assuming the dc source is of negligible resistance. What is the maximum resistance between the slider of the potentiometer and common reference?
P1.3.3 Positive and negative limiting levels of equal magnitude are to be obtained by connecting a zener diode to two terminals of a diode bridge, with the other two
bridge terminals connected between R_{s} and common reference in Figure 1.4.3. Draw the circuit showing the appropriate polarities of the bridge diodes. Can a bridge rectifier package be used for this purpose? If each diode in the bridge has a temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, what should be the temperature coefficient of the zener diode so that the limiting voltages are independent of temperature? If the zener diode selected has a temperature coefficient of $+6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, how would you make the limiting voltages independent of temperature?

FIGURE P1.3.6

P1.3.4 Determine the transfer characteristic v_{O} vs. v_{I} in Problem P1.3.3 if $R_{s}=400 \Omega$, the bridge diodes are represented by $V_{D 0}=0.7 \mathrm{~V}, r_{D}=10 \Omega$, and the zener diode by $V_{Z 0}=9 \mathrm{~V}, r_{Z}=20 \Omega$.
P1.3.5 If one of the diodes in Example 1.5.2 is connected in series with R_{2} to prevent a current of negative polarity through the meter, determine the new value of R_{2}. What would be the overload on the meter in case 100 V is applied?
P1.3.6 Sketch i in Figure P1.3.6 as v_{I} varies from -20 V to +20 V . Simulate with PSpice.
P1.3.7 Sketch i in Figure P1.3.6 as a function of time if v_{I} is a periodic triangular waveform defined over one period as: $v_{I}=20 t, 0 \leq t \leq 1 \mathrm{~s}, v_{I}=-20(t-2), 1 \leq t \leq 3 \mathrm{~s}, v_{I}=$ $20(t-4), 3 \leq t \leq 4 \mathrm{~s}$. Simulate with PSpice.
P1.3.8 Determine the input characteristic i vs. v_{I} of the circuit of Problem P1.3.6 if each diode is represented by $V_{D 0}=0.7 \mathrm{~V}$ and $r_{D}=10 \Omega$.
P1.3.9 Repeat Problem P1.3.6 if the diode in series with 30Ω is reversed.
P1.3.10 Repeat Problem P1.3.9 if the diode in series with 60Ω is also reversed.
P1.3.11 Repeat Problem P1.3.6 if the polarity of the 10 V battery is reversed.
P1.3.12 Suppose that in the circuit of Figure 1.5.1a, $v_{S R C}=10 \cos \omega t \mathrm{~V}, R_{s}=100 \Omega$, and $V_{\mathrm{LIM}}^{+}=5 \mathrm{~V}$. Determine the transfer characteristic and v_{0}, assuming an ideal diode switch.
P1.3.13 Suppose that branches (a) and (b) in Figure 1.5.1 are paralleled together, with $R_{s}=$ $200 \Omega, V_{\mathrm{LIM}}^{+}=5 \mathrm{~V}, V_{\mathrm{LIM}}^{+}=-5 \mathrm{~V}$, and the diodes represented by $V_{D 0}=0.7 \mathrm{~V}$ and $r_{D}=10 \Omega$. Determine the transfer characteristic. Simulate with PSpice.
P1.3.14 Consider a circuit consisting of the two branches of Figure 1.5.1a and b connected in parallel with a load resistance of $4 \mathrm{k} \Omega$, with $R_{s}=1 \mathrm{k} \Omega, V_{\mathrm{LM}}^{+}=-4 \mathrm{~V}, V_{\mathrm{LIM}}^{-}=-2 \mathrm{~V}$ and $v_{S R C}$ a triangular waveform of 4 s period and amplitude $\pm 10 \mathrm{~V}$. Determine the load voltage and the source current, assuming the diodes are ideal.
P1.3.15 Determine the transfer characteristic (v_{O} vs. v_{I}) for the circuit of Figure P1.3.15.

FIGURE P1.3.15
P1.3.16 Repeat Problem P1.3.15 with D_{1} reversed.
P1.3.17 Repeat Problem P1.3.15 with D_{2} reversed.
P1.3.18 Repeat Problem P1.3.15 with D_{1} and D_{2} reversed.

P1.4 Clamping Circuits

P1.4.1 A source voltage is defined as follows: $v_{S R C}=0, t<0 ; v_{S R C}=10 \mathrm{~V}, 0<t<1 \mathrm{~ms}$; $v_{S R C}=-5 \mathrm{~V}, 1<t<2 \mathrm{~ms}$, and the waveform repeats thereafter. The waveform is applied to the circuit of Figure 1.6.1a with $C=1 \mu \mathrm{~F}$ and a load resistance of $100 \mathrm{k} \Omega$. Determine the output waveform in the steady state, assuming an ideal diode switch. Simulate with PSpice.
P1.4.2 Repeat Problem P1.4.1 with the diode reversed.
P1.4.3 Repeat Problem P1.4.1 with a battery of 3 V connected in series with the diode, with the negative pole of the battery connected to ground. Simulate with PSpice.
P1.4.4 Generalize Exercise 1.6.2 to the case where the positive and negative phases of the waveform have amplitudes denoted by V_{m}^{+}and V_{m}^{-}, respectively.
P1.4.5 Consider Example 1.6.2 but with $C R_{1} \ll T_{1}$ and $C R_{2} \ll T_{2}$. (a) Argue that under these conditions v_{C} very nearly reaches the steady values V_{m}^{+}and V_{m}^{-}of $v_{S R C}$ so that v_{C} is given by: $v_{C}=-V_{m}^{+}+V_{P P} e^{-t / \tau_{1}}, 0 \leq t \leq T_{1}$, and $v_{C}=V_{m}^{-}-V_{P P} e^{-t^{\prime} / \tau_{2}}, 0 \leq t^{\prime} \leq T_{2}$, where $V_{p p}=V_{m}^{+}+V_{m}^{-}$. (b) By integrating v_{C} with respect to time, show that the average of v_{C} is $V_{C} \cong-\frac{V_{m}^{+} T_{1}-V_{m}^{-} T_{2}}{T_{1}+T_{2}}+\frac{\tau_{1}-\tau_{2}}{T_{1}+T_{2}} V_{p p} \cong-\frac{V_{m}^{+} T_{1}-V_{m}^{-} T_{2}}{T_{1}+T_{2}}$. (c) Deduce that $v_{O}=$ $V_{p p} e^{-t / \tau_{1}}, 0 \leq t \leq T_{1}$, and $v_{O}=V_{p p} e^{-t^{\prime} / \tau_{2}}, 0 \leq t^{\prime} \leq T_{2}$, and show by integrating with respect to time that, in terms of average values, $V_{S R C}+V_{C}=V_{O}$. (d) Deduce that the currents in the two branches are $i_{1}=\frac{V_{p p}}{R_{1}} e^{-t / \tau_{1}}, 0 \leq t \leq T_{1}$ and $i_{2}=\frac{V_{p p}}{R_{2}} e^{-t^{\prime} / \tau_{2}}, 0 \leq t^{\prime} \leq T_{2}$ (Figure P1.4.5). By integrating the currents with respect to time, show that the charge lost in the positive phase is equal to that gained in the negative phase.

FIGURE P1.4.5

P1.4.6 Based on the results of Problem P1.4.5, determine the average values of v_{C} and v_{O} in Figure P1.4.6, assuming $V_{m}^{+}=12 \mathrm{~V}$ for 2 ms , and $V_{m}^{-}=8 \mathrm{~V}$ for 3 ms .

P1.4.7 The periodic waveform whose first period is illustrated in Figure P1.4.7 is applied to the circuit shown. The diodes are identical and can be considered to have a forward voltage of 1 V and a breakdown voltage of 5 V for all forward or reverse currents, respectively. The capacitor is so large that its voltage can be considered to remain nearly constant in the steady state. Determine the steady-state values of: (a) the average voltage V_{C} across the capacitor; (b) the average output voltage V_{O}.

FIGURE P1.4.7
P1.4.8 In Figure P1.4.8, the zener diode has $V_{Z 0}=5 \mathrm{~V}$, with negligible r_{Z}. In the forward direction, $V_{D 0}=1 \mathrm{~V}$ with negligible r_{D}. If $v_{S R C}$ is the square voltage shown, determine the average, or dc, voltage v_{0}, assuming a very large capacitor.

FIGURE P1.4.8
P1.4.9 Determine $V_{C 1}$ and $V_{C 2}$ in the voltage-doubler circuit of Figure P1.4.9.

P1.5 Miscellaneous

DP1.5.1 A diode-resistor network is to have the following transfer characteristic: $v_{O}=1 \mathrm{~V}, v_{S R C} \leq 0 ; v_{O}=0.5 v_{S R C}+1 \mathrm{~V}, 2 \leq v_{S R C} \leq 3 \mathrm{~V} ; \quad$ and $\quad v_{O}=4 \mathrm{~V}, v_{S R C} \geq 3 \mathrm{~V}$. Design a suitable diode-resistor-battery circuit, assuming ideal diodes and open-circuit output.
P1.5.2 The inductor in Figure P1.5.2 is initially uncharged and $v_{S R C}=V_{m} \sin \omega t$. Analyze the circuit beginning $t=0$ and show that the inductor current is "pumped" every cycle by $2 V_{m} / \omega L$.

FIGURE P1.5.2

P1.5.3 Refer to Equation ST1.1.3 (Section ST1.1) for the simple inductor-input filter, neglect harmonics having $n>2$, and assume that $\left(2 \omega L / R_{L}\right)^{2} \gg 1$. Show that the ripple factor (Problem P1.2.23) is $R_{L} / 3 \sqrt{2} \omega L$. A full-wave rectifier is to supply 10 A at 50 V with a ripple that should not exceed 0.2 V rms . Determine a suitable value for L, assuming $f=50 \mathrm{~Hz}$.
P1.5.4 Consider an L-section filter (Figure ST1.1.2, Section ST1.1) subject to the assumptions made in calculating $I_{L C}$. Show that the ripple factor (Problem P1.2.23) is $1 / 6 \sqrt{2} \omega^{2} L C$. Note that the ripple is inversely proportional to ω^{2} and that for a given ripple factor, more flexibility is provided in the choice of the filter components L and C. Choose filter parameters for a ripple factor of 0.1%, considering the dc supply of Problem P1.5.3.
P1.5.5 Consider the π-section filter (Figure ST1.1.3, Section ST1.1). Subject to the approximation made in the analysis of the capacitor-input and L-section filters, and using Equation ST1.1.6, show that the ripple factor (Problem P1.2.23) is $\sqrt{2} / 8 \omega^{3} R_{L} C C_{1} L_{1}$. Choose filter parameters for a ripple factor of 0.01%, considering the dc supply of P15.3. If a simple capacitor-input filter were to be used for the same ripple factor, what size of capacitor would be required? What would be the peak diode current?
P1.5.6 Verify Equation 1.4.6 for incremental changes using the graphical construction of Section ST1.3.

2

Basic Principles of Semiconductors

A rigorous discussion of electric conduction in semiconductors is well beyond the scope of this book, as it relies heavily on wave mechanics. However, some phenomena of fundamental importance in semiconductors, such as hole conduction and tunneling, cannot be explained by classical mechanics. One of the aims of this chapter is to present in a simplified manner some of the basic ideas of wave mechanics so as to give at least a plausible explanation of phenomena that cannot be explained by classical mechanics. This chapter also lays the foundation for understanding some of the important concepts related to electric conduction in semiconductors.

A critical difference between metals and semiconductors is the much lower conductivity of semiconductors. As a consequence, concentration gradients can exist in a semiconductor, leading to current flow by diffusion, in addition to the familiar current flow by drift under the influence of an applied electric field. In the presence of gradients of concentration and of electric potential, the fundamental concept of electrochemical potential provides a unifying and meaningful framework for understanding the behavior of semiconductors.

Another critical difference between metals and semiconductors, which underlies the practical importance of semiconductors, is the wide latitude that semiconductors provide in selecting the predominant type of current carrier, whether negatively charged electrons or positively charged holes, as well as the carrier concentration. It is important, therefore, to consider aspects such as carrier concentrations, mobility, and lifetime.

Learning Objectives

* To be familiar with:
- Some of the basic ideas of wave mechanics.
* To understand:
- The basis for the energy band structure of semiconductors.
- The basis for tunneling.
- The concept of effective mass and the basis for hole conduction.
- The concept of electrochemical potential and its implications for semiconductors at equilibrium and under bias.
- How carrier concentrations in a semiconductor can be determined.
- The factors affecting carrier mobility and lifetime.

2.1 Excerpts from Wave Mechanics

Some Basic Ideas

Quantum theory, or quantum mechanics, provides the most rigorous and powerful tool available for investigating physical phenomena. A particular formulation of quantum theory, wave mechanics, is customarily used to analyze electric conduction in crystals. It is well beyond the scope of this chapter to go beyond a brief and sketchy introduction to concepts needed for gaining some understanding of the electrical behavior of semiconductors.

Concept: Radiant energy, like matter, is quantized.

In other words, energy in the form of radiation is not emitted or absorbed continuously but in discrete packets. Each packet is a quantum having energy E_{q} given by:

$$
\begin{equation*}
E_{q}=h \nu \tag{2.1.1}
\end{equation*}
$$

where
h is Planck's constant ($6.626 \times 10^{-34} \mathrm{Js}$)
ν is the frequency of the radiation
In the case of ultraviolet light of $\nu=3 \times 10^{15} \mathrm{~Hz}$, for example, $E_{q} \cong 2 \times 10^{-18} \mathrm{~J}$, which is exceedingly small. A quantum of electromagnetic radiation is a photon.

According to the Special Theory of Relativity, energy and mass are equivalent in accordance with Einstein's famous relation $E=m c^{2}$, where c is the speed of light in vacuum. Hence, a photon of energy $E_{q}=h \nu$ has an equivalent mass $h \nu / c^{2}$. If traveling at the speed of light in vacuum its momentum is:

$$
\begin{equation*}
|\boldsymbol{p}|=m c=\frac{h \nu}{c}=\frac{h}{\lambda} \tag{2.1.2}
\end{equation*}
$$

where
λ is the wavelength of the electromagnetic radiation
$|\boldsymbol{p}|$ denotes the magnitude of the momentum vector \boldsymbol{p}
The fact that light behaves as a wave is well established and dominated interpretations of optical phenomena until the theory of light as a stream of particle-like photons was advanced by Einstein early in the twentieth century to explain photoelectric emission.
The converse assertion, that is, that of the behavior of particles as waves, is De Broglie's hypothesis, according to which a particle of total energy E and momentum p has associated with it a hypothetical De Broglie wave of frequency ν and wavelength λ such that:

$$
\begin{equation*}
\frac{E}{\nu}=\frac{1}{(1 / \lambda)}|\boldsymbol{p}|=h \tag{2.1.3}
\end{equation*}
$$

This gives $|\boldsymbol{p}|=h / \lambda$, as for a photon (Equation 2.1.2).

That electrons behave as particles is well known. A beam of electrons can be deflected by electric or magnetic fields just like a stream of particles. That electrons behave as waves is also well established. Electrons passing through metal crystals produce a diffraction pattern in the same way as light is diffracted by appropriate optical structures. This dual particle/wave behavior of particles and of radiation is central to wave mechanics:

Concept: Particles and radiant energy may behave as particles or as waves, depending upon the nature of the system under consideration, including the means of observation of the phenomenon in question.

The inclusion of the means of observation as an integral part of the system has far-reaching implications. In classical mechanics it is quite in order, for example, to specify, independently, both the position of a particle and its momentum at a particular instant of time, and to devise methods for measuring these two quantities simultaneously. However, if one attempts to do so with a subatomic particle such as an electron, a fundamental difficulty arises. Suppose we direct a beam of light at the electron in order to determine its position; the beam of light, consisting of photons, interacts with the electron. Although we may be able to determine the position of the electron precisely by this means, the interaction with photons changes the electron's momentum, making it impossible to account precisely for this interaction, even if it were only with a single photon. Hence, the electron's position and momentum cannot be determined simultaneously. The same sort of interaction occurs with any other method we may devise. In other words, the act of observation alters the state of what is being observed.

Interactions with the means of observation are insignificant at the macroscopic level but become critical at the subatomic level. For according to quantum mechanics, it is meaningless to specify both the position and the momentum of a particle at any given instant if they cannot be measured simultaneously. Such ambiguities are embodied in Heisenberg's uncertainty principle, according to which the product of the uncertainties in position and momentum is at least of the order of Planck's constant. So if we know either of these two quantities precisely, that is, with zero uncertainty, we cannot say anything about the other quantity (infinite uncertainty). Heisenberg's uncertainty principle applies not only to position and momentum but to any two quantities, such as energy and time, whose product has the dimensions of position \times momentum $\left(\mathrm{ml}^{2} / \mathrm{t}\right)$. Hence, it would be more appropriate to speak of the probability of the particle being at a certain location, or the probability of its having a certain momentum, and so on.

Summary: Wave mechanics is the more general and rigorous form of mechanics. It reduces to classical mechanics when considering large-scale phenomena or situations where the dimensions of the system are very large compared to the De Broglie wavelength, so that the variation of potential energy over distances comparable to this wavelength is quite negligible. If this is not the case, classical mechanics breaks down, because it does not take into account the effect of the means of observation on what is being observed.

The De Broglie wavelength is calculated in Section ST2.1 under macroscopic and microscopic conditions to illustrate the validity of classical mechanics.

Exercise 2.1.1

Calculate the De Broglie wavelength of an electron of 1 eV energy, where an eV is the change in energy of an electron in moving through a voltage difference of 1 V and is $|q| \times 1 \mathrm{~J}$. How does the wavelength vary with the energy?

Answer: $1.23 \times 10^{-9} \mathrm{~m}$; inversely as the square root of the energy.

Exercise 2.1.2

Verify that energy \times time has the same dimensions as momentum \times distance. These dimensions are those of a quantity known as action. If the uncertainty in the instant at which a missile is launched is 1 ms , what is the uncertainty in the initial energy?

Answer: Approximately $6.63 \times 10^{-31} \mathrm{~J}$, assuming $\Delta E \times \Delta t=h$.

Schrödinger's Equation

In wave mechanics, the De Broglie wave is represented by a wave function $\psi(r, t)$ that must satisfy Schrödinger's equation, where r denotes the coordinates of a point in three dimensions. Once this equation is solved for $\psi(r, t)$, then the probability of finding the particle at time t in a volume $d \Lambda$ centered at r is given by $|\psi(r, t)|^{2} d \Lambda=\psi(r, t) \psi^{*}(r, t) d \Lambda$, where $\psi^{*}(r, t)$ is the complex conjugate of $\psi(r, t)$. That $\psi(r, t)$ is in general complex serves to emphasize the hypothetical nature of the De Broglie waves. Schrödinger's equation is to wave mechanics what Newton's equation of motion is to classical mechanics.

In fact, there are two Schrödinger's equations, the first is time dependent, and the second is time independent. If the potential energy in the system does not vary with time, then the solution to Schrödinger's time-dependent equation in one dimension is of the form:

$$
\begin{equation*}
\psi(x, t)=\psi(x) e^{-j \omega t} \tag{2.1.4}
\end{equation*}
$$

where $\omega=2 \pi \nu=2 \pi E / h$ (Equation 2.1.3), E is the total energy, that is, the sum of potential and kinetic energies, and $\psi(x)$ satisfies the second Schrödinger's equation in one dimension:

$$
\begin{equation*}
-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \psi(x)}{d x^{2}}+U(x) \psi(x)=E \psi(x) \tag{2.1.5}
\end{equation*}
$$

with $U(x)$ representing the potential energy as a function of position.
Consider a free electron, that is, an electron of total energy E in a region where the potential energy $U(x)$ is constant everywhere, so that the electron is not subjected to any electrical force. Since the zero of potential energy is arbitrary, $U(x)$ can be set to zero. Equation 2.1.5 reduces to $-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x)$. A solution to this equation is of the form:

$$
\begin{equation*}
\psi(x)=A e^{j k \mid x} \tag{2.1.6}
\end{equation*}
$$

where A and k are constants with respect to $x ; k$ is a vector, which means that in the onedimensional case being considered, it can have positive or negative values. Boldfacing also serves to distinguish it from Boltzmann's constant k. Substituting Equation 2.1.6 in Schrödinger's equation, with $U(x)=0$,

$$
\begin{equation*}
E=\frac{h^{2}}{8 \pi^{2} m}|\boldsymbol{k}|^{2} \tag{2.1.7}
\end{equation*}
$$

Since the potential energy is zero everywhere, E is purely kinetic energy:

$$
\begin{equation*}
E=\frac{1}{2} m|\boldsymbol{u}|^{2}=\frac{1}{2 m}|\boldsymbol{p}|^{2} \tag{2.1.8}
\end{equation*}
$$

It follows from Equations 2.1.7 and 2.1.8 that:

$$
\begin{equation*}
p=\frac{h}{2 \pi} k \tag{2.1.9}
\end{equation*}
$$

From Equations 2.1.3 and 2.1.9,

$$
\begin{equation*}
|\boldsymbol{k}|=\frac{2 \pi}{\lambda} \tag{2.1.10}
\end{equation*}
$$

k is the wave vector and is a vector quantity because it is related to the momentum vector by Equation 2.1.9. Its magnitude is also given by Equation 2.1.10 in accordance with De Broglie's hypothesis. $1 / \lambda$ is the wave number, or the number of wavelengths per meter. $|\boldsymbol{k}|$ is thus the number of radians per meter along the length of the wave.

Exercise 2.1.3

If the kinetic energy of the particle is E, show from Equations 2.1.7 and 2.1.10 that $\lambda=h / \sqrt{2 m E}$, in accordance with De Broglie's hypothesis (Equation 2.1.3).

Exercise 2.1.4

Calculate $|\boldsymbol{k}|$ for a free electron of energy 1 eV .
Answer: $5.1 \times 10^{9} \mathrm{rad} / \mathrm{m}$.

Wave Packets

The motion of an electron in wave mechanics is described in terms of a wave packet that is formed by the superposition of a large number of wave functions $\psi(r, t)$ (Equation 2.1.4 in three dimensions) having different energies. Because Schrödinger's equation is linear in the form being considered, the superposition of wave functions of different amplitudes, frequencies, and phases that satisfy Schrödinger's equation would still satisfy the equation. The superposed wave functions are chosen so that their sum is nonzero where the electron is known to be but is zero elsewhere, resulting in a wave packet, as diagrammatically illustrated in Figure 2.1.1. Both the spread in energy of the superposed wave functions forming the wave packet, and the spread in size of the wave packet over several De Broglie wavelengths, are a reflection of Heisenberg's uncertainty principle. As t increases, the individual waves reinforce or cancel at some new values of x. The wave packet therefore moves with time at the group velocity $u_{g}=d \omega / d k$, which, for a free electron, is in fact equal to the particle velocity \boldsymbol{u} of the electron, as shown in Section ST2.2.

FIGURE 2.1.1
Representation of a wave packet.

Summary: An electron can be considered as a particle whose behavior is described by a wave equation-Schrödinger's equation-whose solution gives the probability of finding the electron in a certain region at a given time. This solution has the form of a wave packet that has a nonzero amplitude over the region where the electron is known to be, and has zero amplitude elsewhere.

Example 2.1.1 Electron in Infinite Potential Well

It is required to solve Schrodinger's equation for an electron in a one-dimensional "box" of length L, the electric potential energy being zero inside the box and infinite outside it.

Solution

Let the box extend from $x=0$ to $x=L . U(x) \rightarrow+\infty$ presents an insurmountable energy barrier to the electron, so the probability of finding the electron outside the box is zero. Hence ψ $(x)=0$, for $x \leq 0$ and $x \geq L$. Inside the box, Equation 2.1.5 reduces to:

$$
\begin{equation*}
-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2} \psi(x)}{d x^{2}}=E \psi(x) \tag{2.1.11}
\end{equation*}
$$

$\psi(x)$ must be zero at $x=0$ and $x=L$ so as to be continuous with $\psi(x)$ outside the box. Otherwise, a discontinuity at $x=0$ or $x=L$ would lead to different probabilities of finding the electron at the same point, which is not acceptable. The solution of Equation 2.1.11 subject to the boundary conditions that $\psi(x)=0$ at $x=0$ and $x=L$ is:

$$
\begin{equation*}
\psi(x)=A \sin n \frac{\pi}{L} x \tag{2.1.12}
\end{equation*}
$$

where
A is a constant
n is an integer
A period of this function of x is the wavelength λ and is equivalent to an angle of 2π radians. This means that the boundary conditions are satisfied if L is an integral multiple of half-wavelengths, that is, $L=n \lambda / 2$, where $n=1,2,3, \ldots$ (Figure 2.1.2a). Since $|\boldsymbol{k}|=2 \pi / \lambda$, Equation 2.1.12 can be written as:

$$
\begin{equation*}
\psi(x)=A \sin |\boldsymbol{k}| x, \quad|\boldsymbol{k}|=n \frac{\pi}{L} \tag{2.1.13}
\end{equation*}
$$

Substituting Equation 2.1.13 in Equation 2.1.11,

$$
\begin{equation*}
E=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{h^{2}}{8 \pi^{2} m}|\boldsymbol{k}|^{2} \tag{2.1.14}
\end{equation*}
$$

The value of A is obtained from the normalization condition that $\int_{0}^{L} \psi(x) \psi^{*}(x) d x=1$, since the electron is known to be in the box. This gives $\int_{0}^{L} A^{2} \sin ^{2} k x d x=1$, or $A=\sqrt{2 / L}$.
$|\psi(x)|^{2}$ is plotted in Figure 2.1.2b for $n=1,2$, and 3. According to Equation 2.1.14, energy levels are quantized: they can assume only discrete values corresponding to integer values of n, as illustrated in Figure 2.1.3a.

FIGURE 2.1.2
Plots of $\psi(x)$ (a) and $|\psi(x)|^{2}$ (b) for stationary states of a particle in an infinite potential well.

FIGURE 2.1.3
Energy levels of the stationary states of Figure 2.1.2: (a) discrete energy levels; (b) allowed values of k and E.

Equation 2.1.14 is of the same form as Equation 2.1.7 with the difference that the values of $|\boldsymbol{k}|$ in Equation 2.1.14 are restricted to integer multiples of π / L, in accordance with Equation 2.1.13, whereas in Equation 2.1.7 the values of $|\boldsymbol{k}|$ are unrestricted. In Figure 2.1.3b the dashed curve is a parabolic plot of E vs. \boldsymbol{k} according to Equation 2.1.7. Equation 2.1.14 gives a series of points on this parabola corresponding to the allowed values of \boldsymbol{k}. For the lowest energy state $(n=1), E_{1}=\frac{h^{2}}{8 m L^{2}} \mathrm{~J}=\frac{h^{2}}{8 m L^{2}|q|} \mathrm{eV}=\frac{3.76 \times 10^{-19}}{L^{2}} \mathrm{eV}$, where L is in meters.

For macroscopic objects, where L is at least of the order of microns, $E_{1} \cong 0$, in agreement with classical mechanics, according to which the lowest energy is for a particle at rest. But for L of the order of atomic dimensions, say $L=3 \AA=3 \times 10^{-10} \mathrm{~m}, E_{1}=4.18 \mathrm{eV}$, which is not negligible. Moreover, for macroscopic objects, the separation of energies for different values of n is extremely small, so that energy values become essentially continuous, as in classical mechanics.

Note that $n=0$ gives $E=0$ and $\psi(x)=0$ (Equation 2.1.12). But $\psi(x)=0$ inside the box means zero probability of finding the particle inside the box, which leads to a contradiction, since the particle is assumed to be in the box.

Because energy for each n is precisely defined, time is indeterminate, according to Heisenberg's uncertainty principle. Each of these states is a stationary state, having $|\psi|^{2}$ independent of time. $|\psi|^{2} \Delta x$ for each stationary state gives the probability of finding the electron in a given interval Δx. For $n=1$, for example, the electron is most likely to be found around the middle of the box. Since time is indeterminate, the motion of the electron inside the box cannot be followed for a stationary state. Doing so would inevitably disturb the electron and remove it from the stationary state concerned. To follow the motion of the electron when not in a stationary state, a wave packet, of size smaller than L, should be built up from the superposition of wave functions for a number of stationary states.

Example 2.1.2 Finite Energy Barrier and Tunneling

An electron of total energy E traveling in the positive x-direction in a region of zero potential energy encounters at $x=0$ a potential barrier of infinite width in the positive x-direction, and of height U, where $U>E$ (Figure 2.1.4). It is required to derive the solution of Schrödinger's equation for the two regions $x \leq 0$ and $x \geq 0$.

Solution

(a) Region $x \leq 0$. Equation 2.1.5, with $U(x)=0$, can be written as:

$$
\begin{equation*}
\frac{d^{2} \psi_{1}(x)}{d x^{2}}+k_{1}^{2} \psi_{1}(x)=0 \tag{2.1.15}
\end{equation*}
$$

where $k_{1}^{2}=8 \pi^{2} m E / h^{2}$. The solution of Equation 2.1.15 is of the form:

$$
\begin{equation*}
\psi_{1}(x)=A \cos k_{1} x+B \sin k_{1} x \tag{2.1.16}
\end{equation*}
$$

as can be readily verified by substitution, where A and B are constants.
(b) Region $x \geq 0$. According to classical mechanics, a particle of total energy E cannot penetrate a potential energy barrier of height $U>E$, because the kinetic energy of the particle in this region, $E-U$, will be negative. In wave mechanics, on the other hand, Schrödinger's equation has a valid solution $\psi(x)$ in this region, which means that there is a

FIGURE 2.1.4
Figure for Example 2.1.2.
finite probability, as determined by $|\psi(x)|^{2}$, of finding the electron beyond the barrier. However, this probability is expected to decrease with x and with increasing $U-E$.

For $x \geq 0$, Equation 2.1.15 can be written as:

$$
\begin{equation*}
\frac{d^{2} \psi_{2}(x)}{d x^{2}}-k_{2}^{2} \psi_{2}(x)=0 \tag{2.1.17}
\end{equation*}
$$

where $k_{2}^{2}=\frac{8 \pi^{2} m}{h^{2}}(U-E)$. The solution of Equation 2.1.17 is of the form:

$$
\begin{equation*}
\psi_{2}(x)=C e^{-k_{2} x}+D e^{k_{2} x} \tag{2.1.18}
\end{equation*}
$$

as can be verified by substitution, where C and D are constants. Moreover, $D=0$, or else the probability of finding the electron inside of the barrier increases with x, which is impossible.

At $x=0, \psi(x)$ must be continuous, so that $\psi_{1}(0)=\psi_{2}(0)$, or else, as noted for the infinite potential well, there will be two different probabilities for finding the electron at $x=0$. Applying $\psi_{1}(0)=\psi_{2}(0)$ to Equations 2.1.16 and 2.1.18, with $D=0$, gives $A=C$.

Equation 2.1.5 can be integrated from $x=0^{-}$on one side of the barrier to $x=0^{+}$on the other side to the barrier to give:

$$
\int_{0^{-}}^{0^{+}} \frac{d^{2} \psi}{d x^{2}}=\int_{0^{-}}^{0^{+}} \frac{8 \pi^{2} m}{h}(U-E) \psi(x) d x
$$

or,

$$
\begin{equation*}
\left.\frac{d \psi}{d x}\right|_{x=0^{+}}-\left.\frac{d \psi}{d x}\right|_{x=0^{-}}=\int_{0^{-}}^{0^{+}} \frac{8 \pi^{2} m}{h}(U-E) \psi(x) d x \tag{2.1.19}
\end{equation*}
$$

The integral on the RHS vanishes as long as $(U-E)$ is finite. This means that $d \psi / d x$ is continuous at $x=0$. It may be noted that in Example 1.1.2 $d \psi / d x$ is not continuous at $x=0$ and $x=L$ because the potential barrier is of infinite height.
Applying $\left.\frac{d \psi_{1}}{d x}\right|_{x=0}=\left.\frac{d \psi_{2}}{d x}\right|_{x=0}$ to Equations 2.1.16 and 2.1.18, with $D=0$, gives $B=-\frac{k_{2}}{k_{1}} A$. The complete solution is therefore given by:

$$
\begin{gather*}
\psi_{1}(x)=A\left(\cos k_{1} x-\frac{k_{2}}{k_{1}} \sin k_{1} x\right), \quad x \leq 0 \tag{2.1.20}\\
\psi_{2}(x)=A e^{-k_{2} x}, \quad x \geq 0 \tag{2.1.21}
\end{gather*}
$$

These functions are plotted in Figure 2.1.4. It is seen that the larger k_{2} the more rapid is the decrease of $\psi_{2}(x)$ with x and the smaller is the probability of finding the particle where $x>0$.
When the electron is known to be in a given region $x \leq 0$ at a given time, a wave packet is set up over this region. The normalization condition discussed for the preceding Example gives the value of A. As t increases, the wave packet moves in the positive x-direction until it encounters the barrier. The probability is unity that the wave packet will be reflected at the barrier of infinite width, corresponding to the electron "bouncing" back in the negative x-direction. However, if the barrier width is small, and $U-E$ in the barrier region is not too large, there is a finite probability that the electron will penetrate the barrier and move to the other side. This phenomenon, known as tunneling, cannot be explained by classical mechanics but is explainable by the probabilistic interpretation of $|\psi(\boldsymbol{r}, t)|^{2}$, where $\psi(\boldsymbol{r}, t)$ is the wave function solution of Schrodinger's equation.

Exercise 2.1.5

An electron is in an infinite potential well $10 \AA$ wide. (a) Determine the energy of the state for which $n=3$; (b) if the electron drops to the lowest energy state, or ground state ($n=1$), what is the frequency of the radiation emitted?

Answers: (a) 3.39 eV ; (b) $7.28 \times 10^{14} \mathrm{~Hz}$.

Exercise 2.1.6

Given an electron of 10 eV energy and a barrier of 50 eV . Determine k_{1} and k_{2}.
Answers: $k_{1}=16.2 \times 10^{9} \mathrm{rad} / \mathrm{m} ; k_{2}=32.4 \times 10^{9} \mathrm{rad} / \mathrm{m}$.

Free Atoms

A free atom is an isolated atom that is not subjected to any external influences, as in a dilute gas. Schrödinger's equation can be solved exactly for a free atom only in very simple cases, such as that of a nucleus and a single electron. Solutions in this case are valid only for integer values of three parameters n, l, and m_{l} referred to as quantum numbers (Section ST2.3), which arise naturally from the three-dimensional spherical coordinates, just like the quantized value of n in the one-dimensional case of the infinite potential well. When considering atoms having more than one electron, quantization of energy still applies:

Concept: Electrons in a free atom can only have quantized values of total energy corresponding to discrete energy levels.

Moreover, to completely account for the data from atomic spectra, it was necessary to assume that the electron possesses a spin. That is, the electron not only rotates around the nucleus but also around its own axis. This effect is represented by a fourth quantum number m_{s} which can assume one of two values, $\pm 1 / 2$ for an electron, depending on the direction of spin.

The four quantum numbers define an electron state. According to Pauli's exclusion principle, which can be justified from quantum-mechanical considerations, not more than one electron can be in the same state, that is, be described by the same set of four quantum numbers.

Energy Band Structure

When atoms are grouped together in a crystal, the wave functions of the electrons in the individual atoms interfere with one another. Consequently, the discrete energy levels of identical free atoms no longer coincide but are grouped together into energy bands separated by forbidden energy gaps. A similar situation is encountered, for example, if two oscillators of the same frequency of oscillation are coupled together; the mutual interference between the two oscillators shifts the frequency of oscillation of one oscillator upward, that of the other oscillator downward, so that the two frequencies of oscillation form a "band."

The number of energy levels in an atomic energy band is very large, of the order of the number of atoms in a crystal, the density of atoms being typically about 10^{23} atoms $/ \mathrm{cm}^{3}$. According to Pauli's exclusion principle, not more than two electrons, having opposite spins, can occupy the same energy level, that is, have the same value of total energy.

FIGURE 2.1.5
Energy band structure of semiconductor at 0K showing a filled valence band and an empty conduction band.

Concept: At $0 K$, atoms in a crystal are at rest, and electrons occupy the lowest possible energy levels, subject to Pauli's exclusion principle.

Note that at 0 K electrons are not at rest. If they were, they would all have the same zero energy, which violates Pauli's exclusion principle. Because they occupy the lowest possible energy states, all valence electrons are bound to their parent atoms at 0 K . The band that represents the energies of these electrons is the valence band. The next higher energy band is the conduction band, which is separated from the valence band by an energy gap E_{g}. In the case of semiconductors at 0 K , the valence band is completely filled and the conduction band is completely empty, as illustrated in the energy band diagram of Figure 2.1.5.

The following should be noted concerning energy band diagrams: (1) The horizontal axis represents position in the crystal. The vertical axis represents total electron energy, that is, potential and kinetic, the total energy increasing upward on the diagram. (2) Conventionally, the highest electron energy is zero, corresponding to the potential energy of an electron at rest at an infinite distance from a positively charged nucleus. Hence, values of energy levels on the diagram are negative. Normally, energy differences are of interest and not absolute values. (3) The highest energy level in the valence band is denoted by E_{v} and the lowest energy level in the conduction band by E_{c}. The width of the gap separating these two bands is $E_{g}=E_{c}-E_{v}$; $E_{g} \cong 1.17 \mathrm{eV}$ for Si and $E_{g} \cong 1.52 \mathrm{eV}$ for GaAs at 0 K .

Energy band diagrams are very helpful in understanding electric conduction in crystals and are used to characterize insulators, semiconductors, metals, and semimetals (Section ST2.4).

Exercise 2.1.7

If electrons in the valence band are to absorb energy from photons of green light, of 570 nm wavelength, what should be the minimum width of the air gap?
Answer: 2.18 eV .

Exercise 2.1.8

If 1 in 10^{10} of the valence band electrons in Si at 0 K gain sufficient energy to jump to the conduction band, what will be the density of conduction electrons, assuming the density of atoms in Si to be $5 \times 10^{22} / \mathrm{cm}^{3}$?

Answer: $2 \times 10^{13} / \mathrm{cm}^{3}$.

2.2 Electric Conduction in Semiconductors

Electrons in a Periodic Potential

At $T>0 \mathrm{~K}$, some of the valence electrons acquire sufficient energy to break away from their parent atoms and circulate randomly in the crystal. They become conduction electrons, because in the presence of an applied electric field they can acquire a small drift velocity that is superposed on their random thermal motion, thereby supporting the flow of electric current. Their energies are now in the conduction band (Figure 2.1.5). The atoms that have lost valence electrons become positively charged ions.

When atoms are brought together in a crystal, the potential energy profiles for an electron in the vicinity of each positively charged nucleus (Section ST2.3) superimpose. Figure 2.2.1 illustrates the potential energy profile for a hypothetical, one-dimensional crystal, where positive charges denote nuclei of crystal atoms. Except at the ends of the crystal, the potential energy function $U(x)$ is periodic, of periodicity equal to the atomic spacing a. Strictly speaking, the potential energy function should include not only the interaction of a conduction electron with the positive ions but also with all other conduction electrons. This latter interaction is very difficult to account for and is weak compared to the periodic, electron-ions interaction.

The behavior of an electron in the periodic potential of the crystal is described by the solution to Schrödinger's equation, which takes the form:

$$
\begin{equation*}
\psi(x)=v_{k}(x) e^{j k x} \tag{2.2.1}
\end{equation*}
$$

where $v_{k}(x)$ is also a periodic function of periodicity a. This is Bloch's theorem, and the wave function of the form of Equation 2.2.1 is a Bloch function. If $\psi(x)$ from Equation 2.2.1 is substituted in Equation 2.1.5, we obtain the equation that is satisfied by $v_{k}(x)$:

$$
\begin{equation*}
\frac{d^{2} v_{k}(x)}{d x^{2}}+2 j k \frac{d v_{k}(x)}{d x}+\left[\frac{8 \pi^{2} \boldsymbol{m}}{h^{2}}(\boldsymbol{E}-\boldsymbol{U}(x))-\boldsymbol{k}^{2}\right] \boldsymbol{v}_{k}(x)=0 \tag{2.2.2}
\end{equation*}
$$

Recall that in the cases of a free electron and an electron in an infinite potential well, the solution to Schrödinger's equation gave a continuous parabolic E vs. k relation for the former case, and, for the latter case, a series of points on the parabola that are spaced at intervals

FIGURE 2.2.1
Potential energy profile for a row of atoms.

FIGURE 2.2.2
(a) Variation of electron energy with the wave vector in a single-dimensional crystal; (b) equivalent representation based on the periodicity in (a).
of π / L (Figure 2.1.3). Similarly, the solution to Equation 2.2.2 is a series of E vs. k curves, as indicated by the solid curves in Figure 2.2.2a, which also shows the aforementioned parabolic relation. The solid curves represent the allowed energies for various values of \boldsymbol{k}. Thus, for $\frac{2 \pi}{a} \leq k \leq \frac{3 \pi}{a}$, the allowed energies are those in the range b to c. Since k is related to momentum by Equation 2.1.9, it is to be expected that higher energies are associated with larger values of \boldsymbol{k}.

Two features of these curves are of immediate interest: (1) the discontinuity in E at values of k that are integral multiples of π / a, and (2) the periodicity of $2 \pi / a$ in k, as illustrated by the thin dashed curves. For example, if the energy curve b to c is displaced by $-2 \pi / a$ so that b lies on the vertical axis, it is still the same energy variation but for values of k that are reduced by $2 \pi / a$. Because of this periodicity, it is customary to draw a reduced diagram for k between $-\pi / a$ and $+\pi / a$, as in Figure 2.2.2b, since such a diagram contains all the relevant information about the variation of E with k for all allowed energies. In a real crystal, the shapes of the E vs. k curves can be quite complicated and are different for $k^{\prime} s$ in different directions in the crystal. The range $-\frac{\pi}{a} \leq k \leq \frac{\pi}{a}$ is the first Brillouin zone in one dimension. The ranges $-\frac{2 \pi}{a} \leq k \leq-\frac{\pi}{a}$ and $\frac{\pi}{a} \leq k \leq \frac{2 \pi}{a}$ are the second Brillouin zone, and so on. Figure 2.2.2 again shows the formation of energy bands separated by gaps. Since the energy bands consist of discrete energy levels, the E vs. k curves are in fact not continuous but are made up of closely spaced points.

The formation of energy bands in connection with Figure 2.1.5 was attributed to interference between the wave functions of the discrete energy levels of free atoms as the atoms were brought close together in a crystal. In Figure 2.2.2, the same energy bands can be interpreted in terms of restrictions on wave travel in a crystal. The gaps occur at $k= \pm n \pi / a$, the condition for Bragg reflection, when traveling waves representing electron motion interfere with those reflected at the discontinuities due to the presence of crystal atoms. There is no wave propagation under these conditions because of the formation of standing waves (Section ST2.5).

Effective Mass

In the presence of an applied electric field, an electron in a crystal experiences a force $F_{\text {ext }}$ and picks up energy from the field. The electron is represented as a wave packet having a group velocity $\boldsymbol{u}_{g}=\frac{d \omega}{d \boldsymbol{k}}$. From Equation 2.1.1, $\omega=2 \pi \nu=2 \pi E / h$. Differentiating,

$$
\begin{equation*}
\boldsymbol{u}_{g}=\frac{d \omega}{d \boldsymbol{k}}=\frac{2 \pi}{h} \frac{d E}{d \boldsymbol{k}} \tag{2.2.3}
\end{equation*}
$$

The rate at which the electron picks up KE from the electric field is:

$$
\begin{equation*}
\frac{d E}{d t}=\frac{d}{d t}\left(\frac{1}{2} m \boldsymbol{u}_{g}^{2}\right)=m \boldsymbol{u}_{g} \frac{d \boldsymbol{u}_{g}}{d t}=F_{\mathrm{ext}} \boldsymbol{u}_{g}=F_{\mathrm{ext}} \frac{2 \pi}{h} \frac{d E}{d \boldsymbol{k}} \tag{2.2.4}
\end{equation*}
$$

assuming that m is constant, where $F_{\text {ext }}=m d \boldsymbol{u}_{g} / d t$. But,

$$
\begin{equation*}
\frac{d E}{d t}=\frac{d \boldsymbol{k}}{d t} \frac{d E}{d \boldsymbol{k}} \tag{2.2.5}
\end{equation*}
$$

Comparing Equations 2.2.4 and 2.2.5:

$$
\begin{equation*}
F_{\mathrm{ext}}=\frac{h}{2 \pi} \frac{d \boldsymbol{k}}{d t}=\frac{d}{d t}\left(\frac{h \boldsymbol{k}}{2 \pi}\right) \tag{2.2.6}
\end{equation*}
$$

For a classical particle subjected to a force $F_{\text {ext }}$, the equation of motion is:

$$
\begin{equation*}
F_{\mathrm{ext}}=\frac{d}{d t}(\boldsymbol{p}) \tag{2.2.7}
\end{equation*}
$$

Equations 2.2.6 and 2.2.7 are of the same form. The quantity $h \boldsymbol{k} / 2 \pi$ can therefore be considered as the crystal momentum of the electron.

We can go a step further and conclude that there should be associated with this momentum an effective mass m_{e}^{*} such that $m_{e}^{*} \boldsymbol{u}_{g}=h \boldsymbol{k} / 2 \pi$. Substituting Equation 2.2.3:

$$
\begin{equation*}
m_{e}^{*}=\left(\frac{h}{2 \pi}\right)^{2} \frac{k}{d E / d k} \tag{2.2.8}
\end{equation*}
$$

For a free electron, $E=\frac{h^{2}}{8 \pi^{2} m}|\boldsymbol{k}|^{2}$ (Equation 2.1.7), so $m_{e}^{*}=m_{e}$.

Concept: Replacing a true mass by an effective mass allows treating the electron as a free particle that obeys classical mechanics when subjected to an external force, such as an electric field.

In other words, the effective mass accounts for the forces experienced by the electron in the crystal. As a free particle, a conduction electron of effective mass m_{e}^{*} has the same potential energy everywhere in the crystal and is not subject to any force other than an external force.

Hole Conduction

It is seen from Equation 2.2.8 that, in general, m_{e}^{*} is a function of k and can be larger or smaller than m_{e} depending on the value of $\frac{\boldsymbol{k}}{d E / d \boldsymbol{k}}$. Near the top or bottom of an energy band, the E vs. \boldsymbol{k} curve can be approximated by a parabola, as in the case of a free electron. Under these conditions, $E=b \boldsymbol{k}^{2}$, where b is a constant, so that $\frac{\boldsymbol{k}}{d E / d \boldsymbol{k}}=2 b$. This means that m_{e}^{*} is constant, and Equation 2.2.7 can then be written as $F=m_{e}^{*} \frac{d u_{g}}{d t}=m_{e}^{*} a$, where a is the acceleration of the wave packet. From Equation 2.2.3:

$$
\begin{equation*}
a=\frac{d \boldsymbol{u}_{g}}{d t}=\frac{2 \pi}{h} \frac{d}{d t}\left(\frac{d E}{d \boldsymbol{k}}\right)=\frac{2 \pi}{h} \frac{d \boldsymbol{k}}{d t} \frac{d}{d \boldsymbol{k}}\left(\frac{d E}{d \boldsymbol{k}}\right)=\frac{2 \pi}{h} \frac{d \boldsymbol{k}}{d t} \frac{d^{2} E}{d \boldsymbol{k}^{2}} \tag{2.2.9}
\end{equation*}
$$

Substituting $\frac{d k}{d t}=\frac{2 \pi}{h} F_{\text {ext }}$ from Equation 2.2.6:

$$
\begin{equation*}
a=\left[\left(\frac{2 \pi}{h}\right)^{2} \frac{\mathrm{~d}^{2} E}{\mathrm{~d} k^{2}}\right] F_{\mathrm{ext}} \tag{2.2.10}
\end{equation*}
$$

The quantity inside the square brackets must be $1 / m_{e}^{*}$. Thus:

$$
\begin{equation*}
m_{e}^{*}=\left(\frac{h}{2 \pi}\right)^{2} \frac{1}{d^{2} E / d k^{2}} \tag{2.2.11}
\end{equation*}
$$

Unlike Equation 2.2.8, Equation 2.2 .11 does not explicitly involve \boldsymbol{k} and shows that m_{e}^{*} depends on the curvature of the E vs. k curves. Near the bottom of an energy band, where the E vs. k curve is concave upward (Figure 2.2.2b), $d^{2} E / d k^{2}$, and hence m_{e}^{*}, is positive. On the other hand, the E vs. k curve is concave downward near the top of the energy band, so $d^{2} E / d k^{2}$, and hence m_{e}^{*}, is negative.

How is a negative m_{e}^{*} to be interpreted? Consider a one-dimensional motion of an electron in the positive x-direction. If a force F is applied in this direction, an electron of positive mass accelerates in the positive x-direction. When the mass is negative, a is negative and the electron decelerates. Such behavior cannot be explained by classical mechanics, but a "plausible" wave-mechanical explanation can be given in terms of the wave packet. If such a wave packet corresponds to electron energies near the top of the energy band, then although the individual waves making up the wave packet travel in the positive x-direction at phase velocities, their phases, amplitudes, and frequencies can be such that their superposition, that is the wave packet, decelerates rather than accelerates in the direction of the applied force.

To see how an electron of negative mass contributes to current flow, Figure 2.2.3 illustrates the directions of the force exerted, the velocity acquired, and the current when an electric field is applied in the positive x-direction to: (1) a positive charge of positive mass, (2) an electron of positive mass, and (3) an electron of negative mass. It is seen that an electron of negative mass acquires velocity in the same direction as that of a positive charge of positive mass but contributes to current in the opposite direction because of its negative charge.

FIGURE 2.2.3
Effect of the electric field on particles of positive or negative charges and masses.

When valence electrons in a nearly filled valence band are subjected to an electric field, they can gain kinetic energy from the field and move to available higher energy levels in the valence band, giving rise to a current, although their motion is restricted to the covalent bonds of the crystal atoms. If the valence band is filled, they cannot ordinarily gain sufficient additional energy from the electric field to move to the conduction band by breaking away from their parent atoms. The electric field strength required for this would cause electrical breakdown of the material, as explained in Section 3.2, Chapter 3, resulting in a large, uncontrolled current. It follows that a filled valence band does not contribute to current flow under normal conditions.

Let the energy levels of the valence band be labeled $1 \ldots N_{v}$ in the order of increasing energy, and let us assume that electrons in the levels $1 \ldots N_{v m^{+}}$have positive effective mass in the presence of an applied electric whereas electrons in the levels $\left(N_{v m^{+}}+1\right) \ldots N_{v}$ have negative effective mass. The current density due to all the electrons in the filled valence band is:

$$
\begin{equation*}
J_{v b}^{\prime}=-\frac{2|q|}{\Lambda} \sum_{i=1}^{N_{o m}+} \overleftarrow{u}_{i}-\frac{2|q|}{\Lambda} \sum_{i=N_{v m}++1}^{N_{v}} \vec{u}_{i}=0 \tag{2.2.12}
\end{equation*}
$$

where Λ is the volume of the crystal, and the factor 2 accounts for the fact that two electrons, one of each spin, occupy a given energy level. Equation 2.2.12 is simply of the form of current density as the product: charge \times velocity \times (number of electrons)/volume. Assuming that the electric field is in the positive x-direction, the u_{i}^{\prime} 's for electrons having positive mass will be in the negative x-direction, as indicated by the arrow over the velocity symbol, and will, therefore, have negative values. The current due to these electrons is represented by the first term on the RHS of Equation 2.2.12 and will have a positive numerical value, that is, it will be in the direction of the electric field. The u_{i}^{\prime} 's for electrons having negative mass will be in the positive x-direction, as indicated by the arrow over the velocity symbol, in accordance with Figure 2.2.3. The second term on the RHS of Equation 2.1.12 will have a negative numerical value that cancels out the first term.

Let us assume, for simplicity, and without invalidating the essence of the argument, that the levels in the valence band corresponding to a positive electron mass are filled, whereas
the levels corresponding to a negative electron mass are empty. The current due to the applied electric field will then be represented by the first term on the RHS of Equation 2.2.12:

$$
\begin{equation*}
J_{v b}=-\frac{2|q|}{\Lambda} \sum_{i=1}^{N_{v m}+} \overleftarrow{u}_{i} \tag{2.2.13}
\end{equation*}
$$

But this current is the negation of the second term on the RHS of Equation 2.2.12, so that:

$$
\begin{equation*}
J_{v b}=+\frac{2|q|}{\Lambda} \sum_{i=N_{v m}+1}^{N_{v}} \vec{u}_{i} \tag{2.2.14}
\end{equation*}
$$

$J_{v b}$ according to Equation 2.2 .14 is the same as the current due to positive charges $+|q|$ having a positive mass and moving in the same direction as the electric field. Hence,

Concept: The contribution of a nearly filled valence band to current flow is as if the band is devoid of electrons, and the initially empty levels are occupied by positive charges, each having the same magnitude of charge as an electron and a positive mass.

These positive charges are referred to as holes and arise because of empty energy levels or "holes" near the top of the valence band. Like electrons, an effective mass m_{h}^{*} can be assigned to a hole, which allows treating a hole as a free particle that obeys classical mechanics when subjected to an external force. Because holes are positively charged, hole energies increase downward on the energy band diagram. The valence band of a semiconductor at $T \gg 0 \mathrm{~K}$ can be considered devoid of electrons, with the empty energy levels near the top of the band occupied by holes, the lowest hole energy being E_{v}. When they acquire additional kinetic energy, holes move to the lower levels in the valence band.

Density of Electron States

Of primary interest is the concentration of current carriers in a semiconductor at a given temperature. This concentration is calculated as the product of: (1) the number of energy levels that can be occupied by electrons or holes, and (2) the probability that a given level is occupied, the probability depending on the energy of the given level and the temperature.

The density of electron states at a given energy E is denoted by $N(E)$. This means that $N(E) d E$ is the number of electron states per unit volume having energy between E and $E+d E$. The number of electron states $N^{\prime}(E)$ per unit volume with energy less than or equal to E is then:

$$
\begin{equation*}
N^{\prime}(E)=\int_{0}^{E} N(E) d E \quad \text { or } \quad N(E)=\frac{d N^{\prime}(E)}{d E} \tag{2.2.15}
\end{equation*}
$$

$N^{\prime}(E)$ can be calculated quite simply by considering free electrons in a cubical potential well of side L, with infinite potential energy outside the well. From Example 2.1.1 the energy levels in a one-dimensional well are $E=\frac{h^{2} n^{2}}{8 m_{e} L^{2}} \mathrm{~J}=\frac{h^{2} n^{2}}{8 m_{e} L^{2}|q|} \mathrm{eV}$. For a three-dimensional
well, similar relations hold for the other two dimensions, so that the energy levels in eV are given by:

$$
\begin{equation*}
E=\frac{h^{2}}{8 m_{e} L^{2}|q|}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \tag{2.2.16}
\end{equation*}
$$

where n_{x}, n_{y}, and n_{z} are positive integers that account for the quantization of energy in the x-, y-, and z-directions, respectively. The lowest energy state is that having $n_{x}=n_{y}=n_{z}=1$, and the energy increases by one level each time n_{x}, n_{y}, or n_{z} is incremented by 1 . This can be represented by cubes of unit sides in a three-dimensional space having axes n_{x}, n_{y}, and n_{z} (Figure 2.2.4).

For a given $E, n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=$ constant $=r^{2}$, which describes a sphere of radius r centered at the origin. The number of energy levels having energy less than or equal to E is then the number of unit cubes inside an octant (that is, one-eighth of the volume) of the sphere of radius r, since n_{x}, n_{y}, and n_{z} can only take positive values. The volume of the octant is $\frac{1}{6} \pi r^{3}=\frac{\pi}{6}\left(\frac{8 m_{e} L^{2}}{h^{2}} E|q|\right)^{\frac{3}{2}}$. The number of energy levels per unit volume of material is:

$$
\begin{equation*}
N_{L}^{\prime}(E)=\frac{\pi}{6}\left(\frac{8 m_{e}|q|}{h^{2}}\right)^{\frac{3}{2}} E^{\frac{3}{2}} \tag{2.2.17}
\end{equation*}
$$

where the L subscript is added to distinguish electron energy levels from electron states. When the number of energy levels is large, the separation between allowed energy levels is small, so E can be considered continuous. Equation 2.2.17 is differentiated to give:

$$
\begin{equation*}
N_{L}(E)=\frac{d N_{L}^{\prime}(E)}{d E}=\frac{\pi}{4}\left(\frac{8 m_{e}|q|}{h^{2}}\right)^{\frac{3}{2}} E^{\frac{1}{2}} \tag{2.2.18}
\end{equation*}
$$

For conduction electrons in a solid, the potential barriers at the surface can be considered virtually infinite, if the solid is undisturbed. This is because if an electron attempts to escape from the solid, it leaves behind a positive charge that attracts the electron back, unless the electron is of exceptionally high energy. Moreover, the effect of the periodic potential in the crystal can be accounted for by using the effective mass, as explained previously. Replacing m_{e} by m_{e}^{*}, and bearing in mind that each energy level can accommodate two electrons, one of each spin, the density of electron states per unit volume in the conduction band is:

$$
\begin{equation*}
N_{e}(E)=4 \pi\left(\frac{2 m_{e}^{*}|q|}{h^{2}}\right)^{\frac{3}{2}}\left(E-E_{c}\right)^{\frac{1}{2}} \tag{2.2.19}
\end{equation*}
$$

where the energy E of the electron in the box in Equation 2.2.18 corresponds to the energy $E-E_{c}$ of the electron in the conduction band in Equation 2.2.19. $N_{e}(E)$, the number of energy states per unit volume per unit energy difference, increases with E, but at a decreasing rate.

The density function for holes is obtained from Equation 2.2 .18 by replacing m_{e} by m_{h}^{*} and E by $E_{v}-E$:

$$
\begin{equation*}
N_{h}(E)=4 \pi\left(\frac{2 m_{h}^{*}|q|}{h^{2}}\right)^{\frac{3}{2}}\left(E_{v}-E\right)^{\frac{1}{2}} \tag{2.2.20}
\end{equation*}
$$

where E is the electron energy of a given energy level in the valence band, so that $E \leq E_{v}$.

Fermi-Dirac Distribution

The probability that a particle has a certain energy E is given by a distribution function $f(E)$ that depends on the system of the particles in question. For electrons subject to Pauli's exclusion principle, $f(E)$ is given by the Fermi-Dirac distribution (Section ST2.6) expressed as:

$$
\begin{equation*}
f(E)=\frac{1}{1+e^{\frac{E-E_{F}}{k T}}} \tag{2.2.21}
\end{equation*}
$$

where
k is Boltzmann's constant in eV / K
E_{F} is a constant known as the Fermi Level
$f(E)$ is plotted in Figure 2.2.5 as a function of $E-E_{F}$ for various T. At $T=0 \mathrm{~K}, f(E)=1$ for $E<E_{F}$, and $f(E)=0$ for $E>E_{F}$. This means that at 0 K all allowed energy levels of energy less than E_{F} are occupied, and all levels of energy greater than E_{F} are empty. As T is raised, electrons of highest energy acquire additional energy and are able to move to higher energy levels. Electrons of low energies cannot move to higher levels because these are already occupied.

For $T>0 K, f(E)=1 / 2$ at $E=E_{F}$, and $f(E)$ is symmetrical with respect to this point, since $f\left(E_{F}+\Delta E\right)=1-f\left(E_{F}-\Delta E\right)$ (Exercise 2.2.1). If $E-E_{F} \gg k T$,

$$
\begin{equation*}
f(E) \cong e^{-\left(E-E_{F}\right) / k T} \tag{2.2.22}
\end{equation*}
$$

FIGURE 2.2.5
Variation of the Fermi-Dirac distribution function with energy and temperature.
which is another distribution function, the Maxwell-Boltzmann distribution. For $\left(E-E_{F}\right)>$ 0.08 eV , the deviation between the two distributions is less than 5% at 300 K (Figure 2.2.5). The Maxwell-Boltzmann distribution applies to particles that are sufficiently far apart so that their wave functions do not interact to any significant extent, like the molecules of a dilute gas. When the probability of occupancy of an energy level is low, as at the tail end of the Fermi-Dirac distribution, the restriction of not more than two electrons per energy level is no more relevant and the concentration of carriers is low enough so that their wave functions do not interact to any significant extent. Hence, the Maxwell-Boltzmann distribution can be used instead of the Fermi-Dirac distribution under these conditions, which considerably facilitates mathematical analysis.

Exercise 2.2.1

Verify that $f\left(E_{F}+\Delta E\right)=1-f\left(E_{F}-\Delta E\right)$ for any $\Delta E=E-E_{F}$.

Exercise 2.2.2

Calculate the percentage difference between the Fermi-Dirac and Boltzmann distributions for (a) $\left(E-E_{F}\right)=2 k T$; (b) $\left(E-E_{F}\right)=3 k T$; (c) $4 k T$.

Answers: (a) 13.5%; (b) 5%; (c) 1.8%.

2.3 Intrinsic and Extrinsic Semiconductors

Crystal Structure

The most important semiconductor materials at present are the crystalline forms of the element silicon (Si) and the compound gallium arsenide (GaAs). The atoms in a crystal are regularly arranged in a periodic structure, the crystal lattice. The basic unit that periodically repeats in the crystal lattice is the unit cell. Silicon, germanium, and gallium arsenide have a diamond structure consisting of a tetrahedron in which each atom is surrounded by four equidistant atoms at the corners of the tetrahedron, as illustrated in Figure 2.3.1. The diamond structure is part of the unit cell, which is a face-centered cubic lattice with four additional atoms inside the cube. In the case of Si , the cube edge is 0.543 nm , the lattice constant. The edge of the smaller cube of Figure 2.3.1 is half the lattice

FIGURE 2.3.2
Two-dimensional representation of a silicon crystal illustrating the sharing of valence electrons between each atom and its four closest neighbors.
constant, that is, approximately 0.272 nm . Bearing in mind that the radius of the Si atom is approximately 0.118 nm , it can be readily calculated that the Si atoms occupy only about 4.3% of the volume of the unit cell (Problem 2.2.1).

The tetrahedral structure can be conveniently represented in two dimensions, as shown in Figure 2.3.2 for Si. Every atom has four valence electrons, each of which is shared with one of its four closest neighbors in a covalent bond. Effectively, this provides each atom with a stable outer shell of eight electrons. Because of this sharing, the valence electrons are not bound to any particular atom but are continuously exchanged between atoms, thereby producing a strong attractive force that is mainly responsible for holding the crystal together.

GaAs has a tetrahedral structure in which each atom of one element has four closest neighbors of the other element. In a given sample, half the atoms are Ga and half are As. Ga and As atoms can be imagined to alternate along each diagonal row of atoms in the two-dimensional representation corresponding to that of Figure 2.3.2. Whereas, bonding in Si crystals is purely covalent and is largely covalent in GaAs crystals, there is some ionic bonding in GaAs because of the different number of valence electrons in Ga and As.

Intrinsic Semiconductor

This is a semiconductor without any impurities. The energy band diagram of an intrinsic semiconductor at 0 K has a completely filled valence band and a completely empty conduction band, separated by a relatively narrow energy gap, as illustrated in Figure 2.1.5. When the temperature is raised above 0 K , electrons from the valence band acquire sufficient energy to move to the conduction band. Every time an electron moves from the valence band to the conduction band, an electron-hole pair is generated (Figure 2.3.3). A conduction electron of total energy $E>E_{c}$ has a potential energy E_{c}, as discussed previously in connection with effective mass, the additional energy $E-E_{c}$ being KE. Similarly a hole of total energy E possesses potential energy E_{v} and $\operatorname{KE} E_{v}-E$, where E_{v} and E for a hole are expressed in terms of the corresponding electron energies.

Exercise 2.3.1

If the atomic density of Si is 5×10^{22} atoms $/ \mathrm{cm}^{3}$ and $n_{i}=10^{10} / \mathrm{cm}^{3}$ at 300 K . How many Si atoms contribute, on average, 1 electron-hole pair?

Answer: 1 in 5×10^{12}.

FIGURE 2.3.3
Electron-hole pair generation and recombination.

The movement of electrons between the valence and conduction bands is dynamic, occurring continually in both directions. A conduction electron may be "captured" by an unsatisfied covalent bond and becomes a valence electron, losing energy in the process. On the energy band diagram, the electron drops from the conduction band to the valence band, and an electron and a hole are said to have recombined (Figure 2.3.3). On average, an electron or a hole exists for a time τ before recombination, τ being the mean lifetime of the carrier. Unless otherwise indicated, the term "electron" will henceforth refer to a conduction electron.

Concept: In an intrinsic semiconductor, the concentrations of electrons and holes are equal and are denoted by the intrinsic concentration n_{i}. This concentration increases with temperature and is larger, at a given temperature, for materials having a smaller E_{g}.

Electrons and holes have the same concentration n_{i} in an intrinsic semiconductor because they are generated in pairs and recombine in pairs. n_{i} increases with temperature as more valence electrons acquire sufficient energy to move to the conduction band. The smaller E_{g}, the larger is the number of electrons that have sufficient energy, at a given temperature, to move to the conduction band. E_{g} decreases slightly with temperature (Problem P2.1.2), because electrons acquire additional energy at higher temperatures, so that it becomes easier for them to move to the conduction band. At $300 \mathrm{~K}, E_{g}$ is approximately 1.12 eV for Si and 1.42 eV for GaAs. n_{i} at 300 K is approximately $10^{10} / \mathrm{cm}^{3}$ for Si and $2 \times 10^{6} / \mathrm{cm}^{3}$ for GaAs.

Table 2.3.1 lists some properties of intrinsic Si and GaAs at 300 K . Mobility and lifetime are discussed in Sections 2.6 and 2.7, respectively. In comparing Si and GaAs , it should be noted that Si has many desirable physical properties, such as intrinsic concentration and carrier mobilities which result in devices having good electrical properties. It can be readily oxidized to form SiO_{2}, which is an excellent and easily controlled insulator. The comparable electron and hole mobilities in Si allow complementary transistor circuits (CMOS) featuring greatly reduced power dissipation, leading to a tremendous increase in packaging density and reduction in manufacturing costs, as will be described later. For these reasons Si-based CMOS is the dominant semiconductor technology at present. Moreover, continued improvements in transistor materials and structure further enhance the dominant role of Si .

TABLE 2.3.1
Some Properties of Intrinsic Si and GaAs at 300K

	Si	GaAs
Density of atoms or molecules per cm		
Energy gap, E_{g}, eV	5×10^{22}	4.42×10^{22}
Intrinsic concentration per cm		
Carrier mobility $\mathrm{cm}^{2} / \mathrm{Vs}$	1.12	1.42
$\quad \cong 10^{10}$	$\cong 2 \times 10^{6}$	
Electrons		
Holes	1430	9200
\quad Minority carrier lifetime, s	480	320

Nevertheless, GaAs has some properties that are important for particular applications. It is widely used in light-emitting devices. Compared to $\mathrm{Si}, \mathrm{GaAs}$ has a much smaller intrinsic concentration. This is advantageous for ICs that might be exposed to radiation, as in satellites, as well as for high-speed applications. The speed advantage of GaAs is further enhanced by its very high electron mobility, but its hole mobility is much lower. This, in addition to the fact that there is no GaAs -based insulator that possesses the many desirable properties of SiO_{2}, has made it impractical to implement complementary structures in GaAs. As a result, power dissipation is relatively high, and because of the higher density of crystal defects due to the difficulty of growing single GaAs crystals, the packaging density is lower than in CMOS. Other than in light-emitting devices, GaAs is mainly used in very high-speed and high-frequency applications.

Extrinsic Semiconductors

The operation of semiconductor devices depends on having carriers predominantly either holes or electrons. This is achieved by doping, that is, adding a carefully controlled concentration of certain impurity atoms, usually in the range of 1 impurity atom per $10^{4}-10^{8}$ crystal atoms. The semiconductor becomes extrinsic, either n-type or p-type. The predominant carriers are the majority carriers, whereas carriers of the other type become minority carriers.

In an n-type semiconductor, the dopant is pentavalent, such as phosphorus or arsenic, having one electron more than the four needed for the covalent bonds. The ionization energy is therefore low, approximately 50 meV in a Si crystal (Example SE2.4), so that it takes little energy for the electron to break away from its parent atom and become a conduction electron, leaving a positive ion behind (Figure 2.3.4a). Because it donates an

FIGURE 2.3.4
(a) Donor impurity atom in silicon crystal; (b) energy-band diagram.
electron, this type of impurity is a donor impurity. Through associations of the letter n, it is easy to remember that in an n-type semiconductor, impurity atoms are donors, and majority carriers are negative charges.

In the energy band diagram (Figure 2.3.4b), the donor impurity introduces a narrow donor energy band, having as many electron states as there are donor atoms in the crystal, and located about 0.05 eV below the edge of the conduction band. At 0 K , the band is filled, which means that the extra electrons are bound to the impurity atoms. The valence band will also be filled and the conduction band empty, as in an intrinsic semiconductor. As the temperature is raised, some of the additional electrons jump the 0.05 eV gap into the conduction band and become conduction electrons, which corresponds to their breaking away from the donor atoms and becoming free to circulate in the crystal. At room temperature, practically all the donor atoms are ionized, and $n_{n o} \cong N_{D}$, where $n_{n o}$ is the equilibrium concentration of electrons in the n-type semiconductor and N_{D} is the concentration of donor atoms, which is ordinarily much greater than n_{i}. In comparison, the concentrations of electrons and of holes due to the intrinsic carrier generation are very small at room temperature, but at high enough temperatures, the intrinsic mechanism predominates (Figure 2.3.5). In the temperature range that is usually of interest in a semiconductor operation (about $250 \mathrm{~K}-450 \mathrm{~K}$), the concentration of electrons is practically constant at N_{D}, and is much greater than the concentration of holes.

An analogous situation exists for holes in a p-type semiconductor. The dopant is trivalent, such as boron or gallium, so that an electron is missing from one of the covalent bonds. It takes little energy for an electron from a crystal atom to attach to the impurity atom, making it a negative ion (Figure 2.3.6a). Because it accepts an electron, this type of

FIGURE 2.3.5
Temperature dependence of the majority carrier concentration in n-type semiconductor.

FIGURE 2.3.6
(a) Acceptor impurity atom in silicon crystal; (b) energy-band diagram.
impurity is an acceptor impurity. Through associations of the letter p, it is easy to remember that in a p-type semiconductor, impurity atoms are acceptors, and majority carriers are positive charges.

In the energy band diagram (Figure 2.3.6b), the acceptor impurity introduces an acceptor energy band, having as many electron states as there are acceptor atoms in the crystal, and located about 0.05 eV above the edge of the valence band. At 0 K , the band is empty, but as the temperature is raised, some of the valence electrons of the crystal atoms jump the 0.05 eV gap into the empty acceptor states, leaving holes in the valence band. At room temperature, practically all the acceptor atoms are ionized, and $p_{p o} \cong N_{A}$, where $p_{p o}$ is the equilibrium concentration of holes in the p-type semiconductor and N_{A} is the concentration of acceptor atoms, which is ordinarily much greater than n_{i}. As for n-type semiconductors, the concentration of holes is practically constant at N_{A} over the temperature range of interest and is much greater than the concentration of electrons.

Concept: Over the temperature range of practical interest, the type and concentration of current carrier in an extrinsic semiconductor are determined by the type of dopant and its concentration.

In other words, the current carriers in an extrinsic semiconductor can be predominantly positive or negative electric charges whose concentrations can be varied over a wide range. This gives great flexibility to semiconductor devices and underlies their practical importance.

2.4 Electrochemical Potential

A characteristic feature of semiconductors is that the current can be a drift current due to an applied electric field, as in metals, or a diffusion current due to differences in carrier concentrations in different parts of the semiconductor. There is no diffusion current in metals, because the conductivity is so high that any concentration gradients result in large currents that immediately eliminate these gradients. The analysis of systems having both electric potential and concentration gradients is greatly facilitated by the concept of electrochemical potential.

Expression for Chemical Potential

Atomic particles, such as atoms, electrons, or holes that are free to move in a given medium, will move from regions of high concentration to regions of low concentration. A region that contains a given particle at a higher average concentration than adjacent regions will gradually expand due to random thermal motion of the particle. If a drop of a water-soluble dye, for example, is deposited in a glass of water, the dye spreads by diffusion until it is uniformly distributed throughout the glass. When this happens, the same number of dye particles, on average, will move per unit area per unit time in any specified direction.

Since the net motion of free particles can be considered quite generally to occur from regions of higher potential energy to regions of lower potential energy, a type of potential energy, referred to as chemical potential energy, is associated with concentration. That is, regions of high concentration of a given particle are at a higher chemical potential energy
than regions of lower concentration. Just as electric potential is electric potential energy per particle, a chemical potential can be defined as chemical potential energy per particle. As in the case of electric potential, differences in chemical potential are normally of interest and not the absolute value of the potential.

To derive the expression for chemical potential, consider a one-dimensional flow of particles under the influence of a concentration gradient. The flux M, in the number of particles per unit area per unit time passing a given plane that is oriented perpendicularly to the direction of flow, is given by Fick's law:

$$
\begin{equation*}
M=-D \frac{d C}{d x} \tag{2.4.1}
\end{equation*}
$$

where
C is the concentration at x
D is a diffusion constant that depends on the resistance to the motion of particles in the medium

If C decreases with $x(d C / d x<0)$, then M is in the positive x-direction $(M>0)$, since the particles move in this direction, from regions of high concentration to regions of low concentration. A negative sign is required in Equation 2.4.1 to make D positive.

Flux is also related quite generally to concentration and velocity u as follows:

$$
\begin{equation*}
M=C u \tag{2.4.2}
\end{equation*}
$$

Mobility μ is defined as the magnitude of drift velocity per unit electric field:

$$
\begin{equation*}
\mu=\left|\frac{u_{\mathrm{drift}}}{\xi_{x}}\right|=|q| \frac{u_{\mathrm{drift}}}{F_{\mathrm{drift}}} \tag{2.4.3}
\end{equation*}
$$

where the force on an electron or a hole due to an electric field ξ_{x} is $F_{\text {drift }}=q \xi_{x}, q$ being the electronic charge, including the sign. For particles of positive mass, as is true of both electrons and holes, $u_{\text {drift }}$ is in the direction $F_{\text {drift }}$, so that μ is a positive quantity. μ is expected to depend on the effective mass of the particle, so that the smaller the effective mass, the larger is the velocity acquired per unit driving force, and the greater is the mobility (Section ST2.7).

In the presence of a concentration gradient alone, particles can be considered subject to some "diffusion force" $F_{\text {diff }}$ and acquire a velocity $u_{\text {diff }}$, just as in the case of drift in the presence of an electric field. The velocity acquired per unit driving force is independent of the nature of the force, depending only on the particle and the medium. It follows from Equation 2.4.3 that:

$$
\begin{equation*}
\frac{u_{\text {diff }}}{F_{\text {diff }}}=\frac{u_{\text {drift }}}{F_{\text {drift }}}=\frac{\mu}{|q|} \tag{2.4.4}
\end{equation*}
$$

Clearly, diffusion and mobility are related, for both depend on the ease with which a particle moves in a given medium. This relationship is given by the Nernst-Einstein relation:

$$
\begin{equation*}
D=\mu \frac{k_{J} T}{|q|}=\mu V_{T} \tag{2.4.5}
\end{equation*}
$$

where
k_{J} is Boltzmann's constant in J / K
T is the absolute temperature
V_{T} is the thermal voltage
Note that the dimensions of μ are in $\mathrm{m}^{2} / \mathrm{Vs}$, and the dimensions of D are $\mathrm{m}^{2} / \mathrm{s}$.
Eliminating $D, \mu, u_{\text {diff }}$, and M between the preceding equations, bearing in mind that for diffusion, u in Equation 2.4 .2 should be replaced by $u_{\text {diff }}$, gives:

$$
\begin{equation*}
F_{\mathrm{diff}}=-\frac{k_{J} T}{C} \frac{d C}{d x}=-\frac{d}{d x}\left[k_{J} T \ln \frac{C}{C_{r}}+\kappa_{J r}^{\prime}\right] \tag{2.4.6}
\end{equation*}
$$

where C_{r} and $\kappa_{r}{ }^{\prime}$ are arbitrary constants.
A driving force is quite generally the negative of a potential energy gradient. The quantity in square brackets can therefore be identified as the chemical potential energy per particle, κ^{\prime}, which is the chemical potential. Thus, for a given concentration C :

$$
\begin{equation*}
\kappa_{J}^{\prime}=k_{J} T \ln \frac{C}{C_{r}}+\kappa_{J r}^{\prime} \tag{2.4.7}
\end{equation*}
$$

where κ_{J}^{\prime} is the chemical potential in J/particle and $\kappa_{J r}^{\prime}$ is the chemical potential of some reference concentration C_{r}, since $\kappa_{J}^{\prime}=\kappa_{I r}^{\prime}$ when $C=C_{r}$. Including $\kappa_{J r}^{\prime}$ is in keeping with the fact that potential energy is generally measured with respect to some arbitrary reference.

Exercise 2.4.1

Verify the statement: "A driving force is quite generally the negative of a potential energy gradient," in the case of: (a) electric field; (b) gravitational field.

Exercise 2.4.2

If the chemical potential of electrons in an intrinsic semiconductor is taken as zero, what is the chemical potential of electrons in an n-type semiconductor of donor concentration $N_{D}=10^{15} / \mathrm{cm}^{3}$ at 300 K ?

Answer: $4.67 \times 10^{-20} \mathrm{~J}$ or 0.29 eV .

Expression for Electrochemical Potential

If the particle is electrically charged, and is located in a region where the concentration is C and the electric potential is V, the algebraic sum of the chemical potential energy and the electric potential energy is the electrochemical potential energy. The electrochemical potential energy per particle is the electrochemical potential κ. It follows that:

$$
\begin{equation*}
\kappa_{J}=k_{J} T \ln \frac{C}{C_{r}}+q\left(V-V_{r}\right)+\kappa_{J r} \tag{2.4.8}
\end{equation*}
$$

where the r subscript refers to a reference state whose concentration is C_{r}, whose electric potential is V_{r}, and whose electrochemical potential is $\kappa_{J r}$. As noted previously, $\kappa_{J r}$ can be assigned any arbitrary value, because it is the differences in potential that are of interest and not the absolute values of potential. Note that all terms in Equation 2.4.8 are in $J /$ particle; hence, the J subscript.

Exercise 2.4.3

If the n-type semiconductor of Exercise 2.4.2 is at a voltage of 1 V with respect to the intrinsic semiconductor, what is the electrochemical potential of an electron in the n-type semiconductor? If the semiconductor were p-type of the same doping level, what would be the electrochemical potential of a hole?

Answers: $-0.71 \mathrm{eV} ; 1.29 \mathrm{eV}$.

Generalized Ohm's Law

When electrons or holes flow under the influence of both a concentration gradient and an electric potential gradient, the current density is:

$$
\begin{equation*}
J=J_{\mathrm{diff}}+J_{\mathrm{drift}} \tag{2.4.9}
\end{equation*}
$$

where
$J_{\text {diff }}$ is the diffusion current density due to the concentration gradient
$J_{\text {drift }}$ is the drift current density due to the electric field
The drift component is the familiar current in electric circuits that obeys Ohm's law. When current flow and electric field are not uniform,

$$
\begin{equation*}
J_{\mathrm{drift}}=\sigma \xi_{x} \tag{2.4.10}
\end{equation*}
$$

where σ is the conductivity. Conductivity is related to mobility, since the higher the mobility of current carriers, the larger is the velocity per unit applied force and the larger is the current. From Equation 2.4.2, $J_{\text {drift }}=q M_{\text {drift }}=q C u_{\text {drift }}$. Substituting for $u_{\text {drift }}$ from Equation 2.4.3 gives $J_{\text {drift }}=\mu C|q| \xi_{x}$. Comparing with Equation 2.4.10,

$$
\begin{equation*}
\sigma=|q| \mu C \tag{2.4.11}
\end{equation*}
$$

By definition, diffusion flux M is related to diffusion current density by $M=J_{\text {diff }} / q$. Substituting in Equation 2.4.1:

$$
\begin{equation*}
J_{\mathrm{diff}}=-D q \frac{d C}{d x} \tag{2.4.12}
\end{equation*}
$$

Or, from Equations 2.4.5 and 2.4.11:

$$
\begin{equation*}
J_{\text {diff }}=-\frac{\sigma}{q} \frac{k_{J} T}{C} \frac{d C}{d x} \tag{2.4.13}
\end{equation*}
$$

The sign of $J_{\text {diff }}$ should be noted. If $d C / d x<0$, the particle moves in the positive x-direction. The sign of $J_{\text {diff }}$ is then the same as that of q. Combining Equations 2.4.10 and 2.4.13:

$$
\begin{align*}
J & =-\frac{\sigma}{q} \frac{k_{J} T}{C} \frac{d C}{d x}-\sigma \frac{d V}{d x} \tag{2.4.14}\\
& =-\frac{\sigma}{q} \frac{d}{d x}\left[k_{J} T \ln \frac{C}{C_{r}}+q\left(V-V_{r}\right)+\kappa_{J r}\right]=-\frac{\sigma}{q} \frac{d \kappa}{d x} \tag{2.4.15}
\end{align*}
$$

Equation 2.4.15 is known as generalized Ohm's law because it applies when current is due to both diffusion and drift. In the absence of a concentration gradient, it reduces to the familiar $J=-\frac{\sigma}{q} \frac{\mathrm{~d}\left[q\left(V-V_{r}\right)\right]}{\mathrm{d} x}=-\frac{\sigma}{q} \frac{q \mathrm{~d} V}{\mathrm{~d} x}=\sigma \xi_{x}$ (Equation 2.4.10).

When considering electrons and holes, it is convenient to express energies, including chemical and electrochemical potentials, in eV. Dividing both sides Equation 2.4.7 by $|q|$:

$$
\begin{equation*}
\kappa^{\prime}=V_{T} \ln \frac{C}{C_{r}}+\kappa_{r}^{\prime} \tag{2.4.16}
\end{equation*}
$$

where $V_{T}=k T$ and each term is in eV /particle. Equation 2.4.8 becomes for the holes:

$$
\begin{equation*}
\kappa_{h}=V_{T} \ln \frac{C}{C_{r}}+\left(V-V_{r}\right)+\kappa_{r} \tag{2.4.17}
\end{equation*}
$$

where $\left(V-V_{r}\right)$ is in volts, numerically equal to eV , and the remaining terms are in $\mathrm{eV} /$ particle. For electrons:

$$
\begin{equation*}
\kappa_{e}=k T \ln \frac{C}{C_{r}}-\left(V-V_{r}\right)+\kappa_{r} \tag{2.4.18}
\end{equation*}
$$

Equation 2.4.15 becomes for holes and electrons:

$$
\begin{equation*}
J=-\sigma_{h} \frac{d \kappa_{h}}{d x}=\sigma_{e} \frac{d \kappa_{e}}{d x} \tag{2.4.19}
\end{equation*}
$$

Concept: The driving force for electric current is, in general, the electrochemical potential gradient. In the absence of a concentration gradient, the electrochemical potential gradient is the same as the electric potential gradient, that is, the negative of the electric field.

Exercise 2.4.4

Verify that when C is constant, Equation 2.4.15 reduces to Equation 2.4.10.

Exercise 2.4.5

It appears from Equation 2.4.15 that the net current could be zero if $J_{\text {diff }}$ and $J_{\text {drift }}$ are equal but opposite. Derive the condition for this to occur.

Answer: $V-V_{r}=-\frac{k T}{q} \ln \frac{C}{C_{r}}$.

State of Equilibrium

Equilibrium conditions play an essential role in the discussion of semiconductor systems, so the definition of a state of equilibrium should be clearly understood.

Definition: Under equilibrium conditions, the temperature and pressure in the system, and the electrochemical potential of every species of freely moving particles, are equalized throughout the system, do not change with time, and the system is not disturbed in any way.

The definition implies that no work is done in moving a freely moving particle from one part of the system to another. Hence,

Concept: In a system at equilibrium, there can be no net flow of freely moving particles, which implies no current flow.

A net flow of particles from one part of the system to another can only occur because of differences in temperature, pressure, or electrochemical potential. These differences are precluded by the definition of a state of equilibrium. The converse statement, however, is not true, that is, if there is no net flow of freely moving particles, then it cannot be concluded that the system is at equilibrium (see Example 3.3.1, Chapter 3).

Example 2.4.1 Electric Field in Nonuniformly Doped Semiconductor

Given an n-type semiconductor slab, oriented along the x-axis and with $x=0$ at one end of the slab. The semiconductor is doped so that the impurity concentration varies exponentially with x as $N_{D}(x)=N_{D}(0) e^{-\alpha x}$. It is required to determine $\xi(x)$ at equilibrium assuming that $N_{D}(x) \gg n_{i}$ over the range of x involved, so that electron concentration equals $N_{D}(x)$.

Solution

$J_{\text {ediff }}=D_{e}|q| d N_{D}(x) / d x$ and $J_{\text {edrift }}=|q| N_{D}(x) \mu_{e} \xi(x)$. At equilibrium, the electrochemical potential of electrons is equalized throughout the slab, so there cannot be a net current flow, which means that $J_{\text {ediff }}+J_{\text {edrift }}=0$. Hence, $-\alpha D_{e} N_{D}(0) e^{-\alpha x}+N_{D}(0) \mathrm{e}^{-\alpha x} \mu_{e} \xi(x)=0$. This gives $\xi(x)=D_{\mathrm{e}} \alpha / \mu_{\mathrm{e}}=V_{T} \alpha . \xi(x)$ is in the positive x-direction, because electrons tend to diffuse in this direction, which causes a diffusion current in the negative x-direction. To counteract this current, $\xi(x)$ has to be in the positive x-direction. Note that for this exponential doping profile $\xi(x)$ is constant, depending only on α and T.

Example 2.4.2 Conductivity of Intrinsic Silicon

Based on the data in Table 2.3.1, it is required to determine the conductivity of intrinsic Si at 300 K .

Solution

$\sigma=\mu n|q|$ (Equation 2.4.11), where μ is the mobility of the particle. Electrons and holes have the same magnitude of charge, concentration n_{i}, but different mobilities. Hence, $J=\sigma_{e} \xi+\sigma_{h} \xi=\sigma_{i} \xi$, where $\sigma_{i}=\left(\mu_{e}+\mu_{h}\right) n_{i}|q|=(1430+480) \times 10^{10} \times\left(1.6 \times 10^{-19}\right)=$ $3.06 \times 10^{-6} \mathrm{~S} / \mathrm{cm}$. This corresponds to a resistivity of $3.3 \times 10^{5} \Omega \mathrm{~cm}$, compared to a resistivity for copper of $1.7 \times 10^{-6} \Omega \mathrm{~cm}$. It is seen that intrinsic Si is a very poor conductor.

Fermi Level and Electrochemical Potential

The Fermi level E_{F} (Equation 2.2.21) is interpreted as: (1) the energy level below which all allowed levels are occupied at $T=0 \mathrm{~K}$ and above which all levels are empty, or (2) the energy level that has a probability of 0.5 of being occupied at $T>0 \mathrm{~K}$, provided it is an allowed level, that is, it is not in a forbidden energy gap. It also follows from the derivation of the Fermi-Dirac distribution that E_{F} is of the nature of an electrochemical potential
(Section ST2.6). But since a state of equilibrium is explicitly assumed in the derivation of the Fermi-Dirac distribution, E_{F} is defined only under equilibrium conditions. On the other hand, electrochemical potential is defined under both equilibrium and nonequilibrium conditions. For this reason some authors refer to the electrochemical potential under nonequilibrium conditions as a "quasi-Fermi" level.

But if E_{F} is an equilibrium electrochemical potential, what equilibrium potential does it in fact represent? It is argued in Section ST2.8 that:

Concept: $\quad E_{F}$ can be considered to be the equilibrium electrochemical potential of both electrons and holes in an intrinsic or an extrinsic semiconductor. This means that in any semiconductor system at equilibrium, E_{F} is a constant level throughout the system.

The constancy of E_{F} in a semiconductor at equilibrium is almost invariably invoked in the analysis of these systems.

2.5 Carrier Concentrations in Semiconductors

By definition of the density of states for electrons (Equation 2.2.19), $N_{e}(E) d E$ is the number of electron states per unit volume having energies between E and $E+d E$ in the conduction band. If this is multiplied by $f(E)$, the probability that the energy level is occupied (Equation 2.2.21), then $N_{e}(E) f(E) d E$ is the number of electrons per unit volume having energies between E and $(E+d E) \mathrm{eV}$. Integrating this over all energies in the conduction band gives the equilibrium concentration of electrons n_{o}. Thus:

$$
\begin{equation*}
n_{o}=\int_{E_{c}}^{E_{c(t o p)}} N_{e}(E) f(E) d E \tag{2.5.1}
\end{equation*}
$$

where $E_{c(\text { top })}$ is the energy at the top of the conduction band. The expression for p_{o}, the equilibrium concentration of holes, is analogous, except that $N_{h}(E)$ (Equation 2.2.20) has to be multiplied by $1-f(E)$, the probability that the level of energy E is empty:

$$
\begin{equation*}
p_{o}=\int_{E_{v(\mathrm{bot})}}^{E_{v}} N_{h}(E)(1-f(E)) d E \tag{2.5.2}
\end{equation*}
$$

where $E_{v(\text { bot) }}$ is the energy at the bottom of the valence band.
Two simplifications can be made in the evaluation of the integrals in Equations 2.5.1 and 2.5.2: (1) $E_{c \text { (top) }}$ and $E_{v(\text { bot })}$ are identified with $+\infty$ and $-\infty$, respectively. This is justified by the fact that, for electrons, $f(E)$ decreases rapidly toward zero in the conduction band, unless E_{F} lies deep in this band. Similar considerations apply for holes in the valence band. (2) Equation 2.2.22 is used for $f(E)$. It turns out that as long as $E_{c}-E_{F}$, or $E_{F}-E_{v}$, is greater than about $2 k T$, the values of the integrals in Equations 2.5.1 or 2.5.2 using Equation 2.2.22 are in excellent agreement with those using Equation 2.2.21. Semiconductors in which E_{F} is at least $2 k T$ away from the edges of the conduction and valence bands are nondegenerate, and the Maxwell-Boltzmann distribution applies. Semiconductors in

FIGURE 2.5.1
Derivation of carrier concentrations from the density of states and the Fermi-Dirac distribution in an intrinsic semiconductor.
which E_{F} is within $2 k T$ from the edges of the conduction and valence bands, or falls within these bands, are degenerate, in which case the Fermi-Dirac distribution must be used to evaluate the integrals of Equations 2.5.1 and 2.5.2. At room temperature, the semiconductor is degenerate if the doping level exceeds about $10^{19} / \mathrm{cm}^{3}$ (Exercise 2.5.2). Unless explicitly stated otherwise, nondegeneracy is assumed in what follows.
The integration is shown graphically in Figure 2.5.1 for an intrinsic semiconductor. $f(E)$ is drawn with E_{F} located in the middle of the energy gap, as will be justified later. $f(E)$ has a tail that extends into the conduction band, whereas $1-f(E)$ has a tail that extends into the valence band. Each tail, when multiplied by the density of states in the corresponding band, and the product integrated over the band, gives the density of carriers in that band.

Substituting for $N_{e}(E)$ from Equation 2.2.19 and for $f(E)$ from Equation 2.2.21 in Equation 2.5.1,

$$
n_{o}=\int_{E_{c}}^{\infty} 4 \pi\left(\frac{2 m_{e}^{*}|q|}{h^{2}}\right)^{\frac{3}{2}}\left(E-E_{c}\right)^{\frac{1}{2}} e^{-\left(E-E_{F}\right) / k T} d E
$$

The integral evaluates to (Problem P2.2.8):

$$
\begin{equation*}
n_{o}=N_{c} e^{-\left(E_{c}-E_{F}\right) / V_{T}}, \quad \text { where } N_{c}=2\left(\frac{2 m_{e}^{*} k_{J} T \pi}{h^{2}}\right)^{\frac{3}{2}} \tag{2.5.3}
\end{equation*}
$$

N_{c} is the effective density of states of the conduction band. It is as if a number of states N_{c} per unit volume were concentrated at energy E_{c}. The exponential $e^{-\left(E_{c}-E_{F}\right) / V_{T}}$ represents, according to Equation 2.2.22, the probability that these states are occupied. Multiplying this probability by N_{c} gives n_{o}. If m_{e}^{*} is expressed in kg, k_{J} in J / K, and h in Js, N_{c} is in m^{-3}.

The integration of Equation 2.5 .2 gives:

$$
\begin{equation*}
p_{o}=N_{v} e^{-\left(E_{F}-E_{v}\right) / V_{T}}, \quad \text { where } N_{v}=2\left(\frac{2 m_{h}^{*} k_{J} T \pi}{h^{2}}\right)^{\frac{3}{2}} \tag{2.5.4}
\end{equation*}
$$

TABLE 2.5.1
Densities of States in Si and GaAs

	Si	GaAs
$N_{c}(300 \mathrm{~K})$	$2.86 \times 10^{19} / \mathrm{cm}^{3}$	$4.7 \times 10^{17} / \mathrm{cm}^{3}$
$N_{v}(300 \mathrm{~K})$	$3.10 \times 10^{19} / \mathrm{cm}^{3}$	$7.0 \times 10^{18} / \mathrm{cm}^{3}$
m_{e}^{*} / m_{e} (density of states)	1.09	0.0705
m_{h}^{*} / m_{e} (density of states)	1.15	0.426

N_{v} is the effective density of states of the valence band. Because of uncertainties in the values of effective masses, different values of N_{c} and N_{v} are found in the literature. A set of these values for Si and GaAs at 300 K is given in Table 2.5.1 together with the associated effective masses of electrons and holes based on Equations 2.5.3 and 2.5.4.
E_{F} can be eliminated from the expressions for n_{o} and p_{o} by multiplying them together:

$$
\begin{equation*}
n_{o} p_{o}=N_{c} N_{v} e^{-E_{g} / V_{T}} \tag{2.5.5}
\end{equation*}
$$

where $E_{g}=\left(E_{c}-E_{v}\right) \mathrm{eV}$ is the width of the energy gap.
In an intrinsic semiconductor, $n_{o}=p_{o}=n_{i}$. By applying Equation 2.5.5 to an extrinsic and to an intrinsic semiconductor, it follows that in any semiconductor at equilibrium:

$$
\begin{equation*}
n_{o} p_{o}=n_{i}^{2} \tag{2.5.6}
\end{equation*}
$$

assuming that E_{g} is the same in the extrinsic and intrinsic semiconductors, which is the case in nondegenerate semiconductors, in which the dopant concentration is not too high.

Carrier Generation and Recombination

An alternative derivation of Equation 2.5.6 is instructive. Carrier generation and recombination can be considered as a "reversible reaction":

$$
\begin{equation*}
\text { electron }+ \text { hole } \rightleftarrows \text { recombined electron-hole pair } \tag{2.5.7}
\end{equation*}
$$

The reaction to the left is that of electron-hole pair generation. Its rate at equilibrium, denoted by $G_{o}(T)$, is dependent on T alone, and is independent of the concentrations of impurity atoms, electrons, or holes, since these are normally much less than that of the concentration of crystal atoms. The reaction to the right is that of recombination. For direct recombination, that is, when an electron drops directly from the conduction band to the valence band, the rate can be expressed as $R_{o}(T) n_{o} p_{o}$, where $R_{o}(T)$ is a function of T and n_{o} and p_{o} are the equilibrium concentrations of electrons and holes, respectively. The rate of recombination is proportional to the product $n_{o} p_{o}$, in accordance with the law of mass action, because the larger this product, the greater is the chance of an encounter between an electron and a hole, and the greater is the recombination rate. At equilibrium, the rates of generation and recombination are equal, because n_{o} and p_{o} do not vary with time. Hence,

$$
\begin{equation*}
G_{o}(T)=R_{o}(T) n_{o} p_{o} \tag{2.5.8}
\end{equation*}
$$

For an intrinsic semiconductor at the same temperature as a given extrinsic semiconductor, $G_{o}(T)$ and $R_{o}(T)$ are the same, and $n_{o}=p_{o}=n_{i}$, which gives:

$$
\begin{equation*}
G_{o}(T)=R_{o}(T) n_{i}^{2} \tag{2.5.9}
\end{equation*}
$$

Comparing Equations 2.5.8 and 2.5.9 gives Equation 2.5.6.
If the equilibrium concentration of one type of carrier is known, the concentration of the other carrier can be determined from Equation 2.5.6. Consider, for example, Si that is doped with a donor impurity at a level of 1 in 10^{6}. Since the density of crystal atoms is $5 \times 10^{22} / \mathrm{cm}^{3}$ (Table 2.3.1), $n_{n o}=N_{D}=5 \times 10^{16} / \mathrm{cm}^{3}$, assuming that all donor impurities are ionized. At $T=300 \mathrm{~K}, n_{i}=10^{10} / \mathrm{cm}^{3}$, so $n_{n o} \gg n_{i}$. From Equation 2.5.6, the minority carrier concentration $p_{n o}$ is 2×10^{3}, which is much smaller than n_{i}. It is seen that when $n_{n o}$ becomes larger than n_{i}, because of donor impurity atoms, $p_{n o}$ becomes less than n_{i}. This is known as minority carrier suppression, and is a direct consequence of Equation 2.5.6. It is important to keep in mind that:

Concept: For a typical n-type semiconductor at room temperature: $n_{n o} \gg n_{i} \gg p_{n o}$, whereas for a typical p-type semiconductor at room temperature: $p_{p o} \gg n_{i} \gg n_{p o}$.

It may be noted that the "reaction" of Equation 2.5.7 is similar to the ionization of water, which from basic physical chemistry is:

$$
\begin{equation*}
\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}^{+}\right] \rightleftarrows \mathrm{H}_{2} \mathrm{O} \tag{2.5.10}
\end{equation*}
$$

For pure water, which is analogous to an intrinsic semiconductor, the concentrations of OH^{-}and H^{+}are equal. The rates of ionization and recombination are given by expressions similar to those in Equation 2.5.9. The rate of ionization is independent of the concentrations of OH^{-}and H^{+}because these concentrations are normally much less than that of water. If the concentration of one of these ions is increased by adding acid or base, the concentration of the other ion is depressed below its value in pure water, as in minority carrier suppression.

Intrinsic Semiconductor

In an intrinsic semiconductor, Equation 2.5 .5 becomes:

$$
\begin{equation*}
n_{i}^{2}=N_{c} N_{v} e^{-E_{g} / V_{T}} \tag{2.5.11}
\end{equation*}
$$

which can be expressed as:

$$
\begin{equation*}
n_{i}=K T^{3 / 2} e^{-E_{g} / 2 V_{T}} \tag{2.5.12}
\end{equation*}
$$

where $K=\sqrt{N_{c} N_{v}} / T^{3 / 2}$, independently of T, and depends only on the material, neglecting the weak variation of effective mass with T. Using the values of N_{c} and N_{v} in Table 2.5.1, and $E_{g}=1.1245 \mathrm{eV}$ for Si and 1.4225 eV for GaAs (Problem P2.1.2) gives $n_{i}=1.07 \times 10^{10} / \mathrm{cm}^{3}$ for Si , and $2.04 \times 10^{10} / \mathrm{cm}^{3}$ for GaAs, at $T=300 \mathrm{~K}$. Because of T in the argument of the exponential in Equation 2.5.11, n_{i} rapidly increases with temperature.

Position of Fermi Level

The position of the Fermi level in the energy gap can be determined by equating the expressions from Equations 2.5.3 and 2.5.4:

$$
N_{c} e^{-\left(E_{c i}-E_{F}\right) / V_{T}}=N_{v} e^{-\left(E_{F}-E_{v i}\right) / V_{T}}
$$

where the i subscript has been added to E_{c} and E_{v} to emphasize that the intrinsic case is being considered. It follows that:

$$
\begin{equation*}
E_{F}=\frac{1}{2}\left(E_{c i}+E_{v i}\right)+\frac{V_{T}}{2} \ln \frac{N_{v}}{N_{c}}=\frac{1}{2}\left(E_{c i}+E_{v i}\right)+\frac{3}{4} V_{T} \ln \frac{m_{h}^{*}}{m_{e}^{*}} \tag{2.5.13}
\end{equation*}
$$

At $T=0 \mathrm{~K}, V_{T}=0$ and E_{F} is in the middle of the energy gap. As T increases, E_{F} moves slightly away from the middle of the gap, because $m_{e}^{*} \neq m_{h}^{*}$. In the case of S_{i}, for example (Table 2.5.1), the second term on the RHS of Equation 2.5.13 is approximately 1 meV at $T=300 \mathrm{~K}$, so that E_{F} is only very slightly above the middle of the energy gap.

Since E_{F} in an intrinsic semiconductor can be considered to lie in the middle of the gap, it is convenient to use it as a reference energy level $E_{F i}=\frac{1}{2}\left(E_{c i}+E_{v i}\right)$. Equation 2.5.3 for an intrinsic semiconductor can then be written as $n_{i}=N_{c} e^{-\left(E_{c}-E_{F i}\right) / V_{T}}$. Dividing Equation 2.5 .3 by this relation so as to eliminate N_{c} gives:

$$
\begin{equation*}
n_{o}=n_{i} e^{\left(E_{F}-E_{F i}\right) / V_{T}} \tag{2.5.14}
\end{equation*}
$$

Similarly, Equation 2.5.4 for an intrinsic semiconductor can be written as $n_{i}=N_{v} e^{-\left(E_{F i}-E_{v}\right) / V_{T}}$. Dividing Equation 2.5.4 by this relation so as to eliminate N_{v} gives:

$$
\begin{equation*}
p_{o}=n_{i} e^{\left(E_{F i}-E_{F}\right) / V_{T}} \tag{2.5.15}
\end{equation*}
$$

Note that in an n-type semiconductor, $E_{F}>E_{F i}$, so that $n_{o}>n_{i}$. Similarly, in a p-type semiconductor, $E_{F}<E_{F i}$, so that $p_{o}>n_{i}$.

n-Type Semiconductor

For an n-type semiconductor, Equation 2.5.6 is:

$$
\begin{equation*}
n_{n o} p_{n o}=n_{i}^{2} \tag{2.5.16}
\end{equation*}
$$

To determine $n_{n o}$ and $p_{n o}$, another relationship is provided by the condition that the crystal as a whole must be electrically neutral at equilibrium since it is not disturbed in any way. Thus:

$$
\begin{equation*}
n_{n o}=p_{n o}+N_{D}^{+} \tag{2.5.17}
\end{equation*}
$$

where N_{D}^{+}is the concentration of ionized donor impurities. Solving for $n_{n o}$:

$$
\begin{equation*}
n_{n o}=\frac{N_{D}^{+}}{2}+\sqrt{n_{i}^{2}+\left(\frac{N_{D}^{+}}{2}\right)^{2}} \tag{2.5.18}
\end{equation*}
$$

At room temperature, the donor impurities are almost completely ionized, so $N_{D}^{+} \cong N_{D}$ (Example SE2.2). The concentration of donor atoms N_{D} is normally such that $N_{D} \gg n_{i}$. It follows from Equation 2.5.18 that $n_{n o} \cong N_{D}$ under these conditions. Note that in Equation 2.5.17 $p_{n o}$ is the same, in value and sign, as the ionized crystal atoms, and $n_{n o}$ is due to both crystal and dopant ions (Problem P2.2.9).

The position of the Fermi level in the energy gap can be found from Equation 2.5.3, assuming that $n_{n o} \cong N_{D}$ and the semiconductor is nondegenerate. Thus:

$$
\begin{equation*}
E_{F n}=E_{c n}-V_{T} \ln \frac{N_{c}}{N_{D}} \tag{2.5.19}
\end{equation*}
$$

where $E_{F n}$ denotes E_{F} in the n-type semiconductor. Alternatively, from Equation 2.5.14:

$$
\begin{equation*}
E_{F n}=E_{F i}+V_{T} \ln \frac{n_{n o}}{n_{i}} \tag{2.5.20}
\end{equation*}
$$

$E_{F n}$ is closer to E_{c}, as illustrated in Figure 2.5.2 for the case for an n-type semiconductor. The donor density of states is shown in the figure on the left. These states do not enter directly in the integration shown in the figure on the right. Their effect is included in the position of $E_{F n}$. It is seen that $n_{n o} \gg p_{n o}$ at room T. Note that the concentration of electrons in the conduction band is maximum close to the edge of the conduction band.

p-Type Semiconductor

The case of a p-type semiconductor is analogous. Equations 2.5.16 and 2.5.17 become:

$$
\begin{gather*}
p_{p o} n_{p o}=n_{i}^{2} \tag{2.5.21}\\
p_{p o}=n_{p o}+N_{A}^{-} \tag{2.5.22}
\end{gather*}
$$

where N_{A}^{-}is the concentration of ionized acceptor impurities. Solving for $p_{p o}$:

$$
\begin{equation*}
p_{p o}=\frac{N_{A}^{-}}{2}+\sqrt{n_{i}^{2}+\left(\frac{N_{A}^{-}}{2}\right)^{2}} \tag{2.5.23}
\end{equation*}
$$

At room temperature $N_{A}^{-} \cong N_{A}$, and normally, $N_{A} \gg n_{i}$. Hence, $p_{p o} \cong N_{A}$.

FIGURE 2.5.2
Derivation of carrier concentrations from the density of states and the Fermi-Dirac distribution in an n-type semiconductor.

The position of the Fermi level in the energy gap can be found from Equation 2.5.4, assuming that $p_{p o} \cong N_{A}$ and that the semiconductor is nondegenerate:

$$
\begin{equation*}
E_{F p}=E_{v p}+V_{T} \ln \frac{N_{v}}{N_{A}} \tag{2.5.24}
\end{equation*}
$$

Alternatively, from Equation 2.5.15:

$$
\begin{equation*}
E_{F p}=E_{F i}-V_{T} \ln \frac{p_{p o}}{n_{i}} \tag{2.5.25}
\end{equation*}
$$

$E_{F p}$ is closer to E_{v}, as illustrated in Figure 2.5 .3 for the case for an p-type semiconductor. Moreover, the maximum concentration of holes is close to the edge of the valence band. The general case, where the conductor is degenerate and impurity atoms are not completely ionized, is more complicated and is outlined in Section ST2.9.
The variation of the E_{F} with T in an extrinsic semiconductor is of interest. Consider an n-type semiconductor. At $T=0 \mathrm{~K}$, the donor level E_{D} is filled and the conduction band is empty. According to the interpretation of E_{F} as the level below which all allowed energy levels are filled at $T=0 \mathrm{~K}$, this level must lie above E_{D}. It can be shown (Example SE2.3) that in fact it lies midway between E_{C} and E_{D}. At a sufficiently high T, the semiconductor becomes essentially intrinsic, so E_{F} must be close to the middle of the energy gap.

Conclusion: The position of E_{F} in the energy gap is indicative of the relative concentrations of electrons and holes in a semiconductor. When these concentrations are equal, as in an intrinsic semiconductor, E_{F} is essentially in the middle of the gap. In an n-type semiconductor, where electrons are majority carriers, E_{F} is closer to the conduction band. In a p-type semiconductor, where holes are majority carriers, E_{F} is closer to the valence band.

Example 2.5.1 Fermi Level in Extrinsic Semiconductor

It is required to determine the Fermi levels in a p-type semiconductor having $N_{A}=10^{18} / \mathrm{cm}^{3}$ and in an n-type semiconductor having $N_{D}=10^{15} / \mathrm{cm}^{3}$.

FIGURE 2.5.3
Derivation of carrier concentrations from the density of states and the Fermi-Dirac distribution in a p-type semiconductor.

Solution

In the case of the n-type semiconductor, Equation 2.5.19 gives $E_{c n}-E_{F n}=$ $0.026 \ln \left(2.86 \times 10^{19} / 10^{15}\right)=0.27 \mathrm{eV}$, which is considerably larger than $2 \mathrm{kT}=0.052 \mathrm{~V}$. For the p-type semiconductor, Equation 2.5 .24 gives $E_{F p}-E_{v n}=0.026 \ln \left(3.10 \times 10^{19} / 10^{18}\right)=$ 0.09 eV , which is larger than $2 k T$, although the acceptor impurity concentration is on the high side.

Example 2.5.2 Energy Bands in a pin Structure

A silicon crystal is doped so that it is p-type at one end, n-type at the other end, and intrinsic in the middle. It is required to sketch how the edges of the conduction and valence bands vary along the crystal at equilibrium.

Solution

Imagine for the moment that the energy bands of the three regions are laid side by side so that the edges of the conduction and valence bands are aligned (Figure 2.5.4). As explained previously, E_{F} must be the same throughout the crystal. To make this happen, energy levels must be lowered by $\left(E_{F n}-E_{F i n}\right) \mathrm{eV}$ in the n-region, and raised by $\left(E_{F i p}-E_{F p}\right) \mathrm{eV}$ in the p-region. This implies that the electric potential energies of electrons are lowered by $\left(E_{F n}-E_{F i n}\right) \mathrm{eV}$ in the n-region, and raised by $\left(E_{F i p}-E_{F p}\right) \mathrm{eV}$ in the p-region; conversely for holes. If Equations 2.5.20 and 2.5.25 are written as $E_{F n}-E_{F i n}=V_{T} \ln \left(n_{\text {no }} / n_{i}\right)$, and $E_{F i p}-E_{F p}=V_{T} \ln \left(p_{p o} / n_{i}\right)$, respectively, the aforementioned changes in electric potential energy exactly compensate for the changes in chemical potential energy, so that the electrochemical potential of electrons and holes is the same throughout, as it must be at equilibrium.
The complete energy band diagram is illustrated in Figure 2.5.5. All energy levels are lowered by $\left(E_{F n}-E_{F i n}\right) \mathrm{eV}$ in the n-region and raised by $\left(E_{F i p}-E_{F p}\right) \mathrm{eV}$ in the p-region, so as to make $E_{F}=E_{F n}=E_{F p}$ the same level throughout. Since changes in electric potential energy are reflected as changes in voltage, then in going from the intrinsic to the n-region, the change in electric potential energy is $E_{c n o}-E_{c i o}=E_{F i n}-E_{F n}$. When energies are expressed in eV , the change in potential energy of an electron is the negative of the change in voltage. Thus, $E_{c n o}-E_{c i o}=E_{F i n}-E_{F n}=-\left(V_{n o}-V_{i o}\right)=\left(V_{i o}-V_{n o}\right)=V_{i n}=-V_{n i}$, where $V_{n o}$ and $V_{i o}$ are the electric potentials of the n-region and the intrinsic region, respectively, with respect to some arbitrary reference, and $V_{n i}>0$ is the electric potential of the n-region with respect to the intrinsic region. Hence, $E_{F n}-E_{F i n}=V_{n i}$, as indicated in the figure. Equation 2.5.14 becomes, for electrons:

$$
\begin{equation*}
n_{n o}=n_{i} e^{\left(E_{F n}-E_{F i n}\right) / V_{T}}=n_{i} e^{V_{n i} / V_{T}} \tag{2.5.26}
\end{equation*}
$$

so that $n_{n o}>n_{i}$.

FIGURE 2.5.4
Figure for Example 2.5.2.

FIGURE 2.5.5
Figure for Example 2.5.2.

Let us consider holes in the n-region. In going from the intrinsic to the n-region, the change in the electric potential energy of holes is $-E_{v n o}-\left(-E_{v i o}\right)=E_{v i o}-E_{v n o}=E_{F n}-E_{\text {Fin }}$, since the electric potential energy levels for the holes are the negatives of those for electrons. The corresponding change in the electric potential is $V_{n o}-V_{i o}=V_{n i}$. It follows that, for holes, $E_{F i n}-E_{F n}=-V_{n i}$. Equation 2.5.15 becomes:

$$
\begin{equation*}
p_{n o}=n_{i} e^{\left(E_{\text {Fin }}-E_{F n}\right) / V_{T}}=n_{i} e^{-V_{n i} / V_{T}} \tag{2.5.27}
\end{equation*}
$$

so that $p_{n o}<n_{i}$. It follows, of course, from Equations 2.5.26 and 2.5.27 that $n_{n o} p_{n o}=n_{i}^{2}$.
It is seen that, compared to the intrinsic region, electrons in the n-region have a higher chemical potential energy but an equally lower electric potential energy, so that their electrochemical potential is the same in both regions. Conversely, holes in the n-region have a lower chemical potential energy, compared to the intrinsic region, but an equally higher electric potential energy, so that their electrochemical potential is the same in both regions. The required change in the electric potential energy of electrons and holes in the n-region is brought about by having the n-region at a positive voltage, $V_{n i}$, with respect to the intrinsic region. The fact that the edge of the conduction band is lower in the n-region than in the intrinsic region can be interpreted to mean that electrons are more concentrated in the n-region than in the intrinsic region. This is because at the highest filled energy level above $E_{c i o}$ in the intrinsic region, and at a given T, more levels are filled in the n-region than in the intrinsic region, as illustrated diagrammatically in Figure 2.5.5. Similarly, the fact that the edge of the valence band is lower in the n-region than in the intrinsic region can be interpreted to mean that holes are less concentrated in the n-region than in the intrinsic region, since at the highest filled energy level below $E_{\text {vno }}$ in the n-region, and at a given T, more levels are empty in the intrinsic region than in the n-region.
An exactly analogous argument shows that the intrinsic region is at a positive voltage $V_{i p}$ with respect to the p-region. The edges of the conduction and valence bands vary smoothly from one region to the other in Figure 2.5.5 in a manner that depends on the type of junction,
that is, whether the impurity concentration changes abruptly or in a specified, gradual manner.
Equations 2.5.26 and 2.5.27 are a form of Boltzmann relations. They derive very simply from equating the change in chemical potential to the change in electric potential.

Exercise 2.5.1

Verify the voltage relations between the p-type and intrinsic semiconductors in Figure 2.5.5.

Exercise 2.5.2

Determine N_{D} and N_{A} that will bring E_{F} to approximately $2 k T$ below E_{c} or above E_{v}.
Answers: $N_{D}=N_{c} / e^{2} \cong 0.44 \times 10^{19} / \mathrm{cm}^{3}, N_{A}=N_{v} / e^{2} \cong 0.25 \times 10^{19} / \mathrm{cm}^{3}$.

A semiconductor may contain both donor and acceptor impurities, in which case it is described as a compensated semiconductor. The behavior of the semiconductor will then depend on the net concentration of these impurities. Thus, the semiconductor behaves as an n-type if $N_{D}>N_{A}$, as p-type if $N_{D}<N_{A}$, and as intrinsic if $N_{D}=N_{A}$. Such semiconductors are encountered in practice in several situations. For example, the substrate of a semiconductor device may be a lightly doped n-type material. To add a p-type region, a sufficient concentration of acceptor impurities is added to compensate for the donor impurities present and result in a p-type material having a net desired concentration of acceptor impurities. Another situation is where there is a small but residual, unknown concentration of donor impurities that cannot be reduced for technological reasons. To produce a high-resistivity intrinsic material, a controlled concentration of acceptor impurities is added. An important difference, however, between a compensated semiconductor and an uncompensated semiconductor is that the effect of dopants on carrier mobility and lifetime (Equations 2.6.1, 2.6.2, and 2.7.2) depends on the total concentration of impurities and not on the net concentration of donor or acceptor impurities.

2.6 Carrier Mobility

Variation with Dopant Concentration

As its name implies, mobility is a measure of how easily an atomic particle moves in a medium under the influence of some applied force (Section 2.4). Mobility depends on temperature, on the effective mass of the particle, and on impediments to the motion of the particle in a given medium. In the intrinsic semiconductor, mobility is limited by lattice scattering, which refers to the interactions between the electron waves describing the motion of electrons in the crystal, and crystal vibrations, that is, crystal ions vibrating about their rest positions. In extrinsic semiconductors, ionized impurity scattering due to dopants further impedes the movement of carriers. For our purposes, we will consider electron and hole mobilities in Si at 300 K in $\mathrm{cm}^{2} / \mathrm{Vs}$ to be related to the total dopant concentration N of donor and acceptor impurities in particles $/ \mathrm{cm}^{3}$ as follows, independently of the types of dopants (Arora et al., 1982):

$$
\begin{align*}
\mu_{e} & =130+\frac{1300}{1+7 \times 10^{-18} N} \tag{2.6.1}\\
\mu_{h} & =65+\frac{415}{1+3.75 \times 10^{-18} N} \tag{2.6.2}
\end{align*}
$$

Variation with Temperature

The variation of mobility with temperature is more complicated. In the intrinsic semiconductor, as the temperature increases, the amplitude of vibration of lattice atoms about their mean positions increases, the probability of scattering increases, and mobility decreases with increasing temperature. In the presence of ionized impurities, carrier velocities are small at relatively low temperatures, which means that the time of the passage of carriers past the ionized impurities is longer than at higher temperatures, so that the deflection of carriers is increased, and the mobility decreases with decreasing temperature. The net effect of these opposing mechanisms is a decrease of mobility with temperature over the temperature range normally of interest. An approximate, empirical expression for the variation of mobility with temperature over the range $300-400 \mathrm{~K}$ is (Green, 1990):

$$
\begin{equation*}
\mu(T)=\frac{\mu(300)}{(T / 300)^{2.5}} \tag{2.6.3}
\end{equation*}
$$

Electron mobility in GaAs is considerably larger than in Si (Table 2.3.1). GaAs devices that depend for their operation on electron mobility will respond more quickly to changes in applied voltages and will therefore have a faster response than comparable Si devices.

The decrease of mobility with temperature has a somewhat unexpected effect. Whereas the conductivity of an intrinsic semiconductor increases with temperature, because of the predominant effect of increase in carrier concentrations, the conductivity of an extrinsic semiconductor generally decreases with temperature because of the reduction of mobility at a relatively constant concentration of carriers, as in metals (Problem P2.2.20).

Exercise 2.6.1

Verify that the temperature coefficient $\frac{1}{\mu(T)} \frac{d \mu(T)}{d T}$ is given by:

$$
\begin{equation*}
\frac{1}{\mu(T)} \frac{d \mu(T)}{d T}=-\frac{2.5}{T} \tag{2.6.4}
\end{equation*}
$$

2.7 Carrier Recombination

Whenever carrier concentrations in a semiconductor exceed their equilibrium values, as when a semiconductor is subjected to a pulse of radiation, for example, the rate of recombination increases above its equilibrium level so as to bring the concentrations back to their equilibrium values. Whenever an electron and a hole recombine both energy and momentum must be conserved, as will be discussed in more detail in Section 3.4, Chapter 3. In a direct-bandgap semiconductor such as GaAs, recombination is mainly direct, as described in

Section 2.5. That is, an electron in the conduction band drops directly into the valence band, conserving momentum and emitting the energy difference E_{g} as radiation.

In indirect-bandgap semiconductors such as Si , however, recombination occurs mainly via traps and surface states. Traps can be due to metallic impurities, which are always present in practice and introduce energy levels in the forbidden gap, just like donor and acceptor impurities, but located closer to the center of the energy gap. Gold in Si and copper in GaAs are effective in providing traps that increase the rate of recombination, and therefore reduce carrier lifetime.

Indirect recombination through a trap of energy E_{t} is illustrated in Figure 2.7.1. An electron in the conduction band (1) may drop into the energy level $E_{t}(2)$. It may then drop into the valence band (3), annihilating the electron-hole pair. In effect, the sequence (1) to (3) represents electron-hole recombination through an intermediate energy level E_{t}. Once in the trap (2), there is some probability that the electron may return to the conduction band. The closer E_{t} is to E_{c}, the larger is this probability. That is why, for effective recombination, E_{t} should not be close to E_{c}. Moreover, the reverse sequence can also take place: an electron can move from the valence band to the energy level E_{t} and then into the conduction band, which constitutes indirect generation. For this reason, traps are also referred to as generation-recombination centers. The recombination rate in indirect recombination is derived in Section ST2.10.

Crystal imperfections also introduce energy levels in the forbidden gap. The imperfections may be due to atoms missing from crystal locations or due to the distortion of the crystal because of mechanical strain. The discontinuity at the surface of a crystal can be regarded as an extreme form of crystal imperfection. In effect, the crystal atoms right at the surface do not have neighboring atoms, beyond the surface, with which they can share electrons. This leaves so-called dangling bonds that are capable of capturing electrons from the bulk of the crystal at energy levels in the forbidden gap. The density of these energy levels, or surface states, can be controlled to a considerable extent by an appropriate choice of crystal orientation and the treatment of the surface during fabrication (Section 4.8, Chapter 4). Adsorbed ions or molecules, or mechanical damage to surface layers, can also introduce surface states.

Another type of recombination that becomes important at the high carrier concentrations is Auger recombination, in which the energy and momentum balance of an electron-hole recombination is transferred to a third particle, which could be an electron or a hole. This third particle then loses its energy to lattice interactions.

FIGURE 2.7.1
Indirect recombination through a trap of energy in the forbidden band.

Minority Carrier Lifetime

Let τ_{x} be the mean lifetime of a given type of carrier, which could be a minority or a majority carrier. Then $\left(1 / \tau_{x}\right)$ is the average rate at which individual carriers recombine. Multiplying this by the carrier concentration gives the overall rate of recombination:

$$
\begin{equation*}
\left(\frac{1}{\tau_{x}}\right) n_{x}=R_{x}(T) \quad \text { or } \quad \tau_{x}=\frac{n_{x}}{R_{x}(T)} \tag{2.7.1}
\end{equation*}
$$

where
n_{x} is the carrier concentration
$R_{x}(T)$ is the rate of recombination per unit volume
It is seen that τ_{x} decreases with an increased $R_{x}(T)$, as expected.
In an extrinsic semiconductor, the concentration of majority carriers greatly exceeds that of minority carriers, so that the rate of recombination is limited by the lifetime and concentration of minority carriers. This lifetime decreases with increased doping level in an extrinsic semiconductor, for all the recombination mechanisms mentioned previously. The higher the doping level, the higher is the concentration of majority carriers, the smaller is the concentration of minority carriers, and the smaller is the minority carrier lifetime (Equation 2.7.1). A simplified empirical relationship between minority carrier lifetime and the total dopant concentration N of donor and acceptor impurities at 300 K is:

$$
\begin{equation*}
\tau \cong \frac{2.5 \times 10^{-3}}{1+\left[N /\left(3.5 \times 10^{15}\right)\right]^{1.33}} \tag{2.7.2}
\end{equation*}
$$

As for temperature dependence, minority carrier lifetime increases with temperature for both direct and indirect recombinations. This is reasonable, because as the temperature is raised, the minority carrier concentration increases relative to the majority carrier concentration, so that minority carriers become less overwhelmed by majority carriers, and their lifetime increases. In Auger recombination, however, the mobility decreases with temperature.

In general,

Concept: High mobilities and short minority carrier lifetimes in a semiconductor device are conducive to fast switching and high-frequency operation.

It should be noted that minority carrier lifetime plays an important role in the operation of semiconductor devices such as $p n$ junction diodes and bipolar junction transistors (BJTs). On the other hand, other semiconductor devices, such as Schottky diodes and field-effect transistors (FETs) are majority-carrier operated. The response time for majority carriers depends on the dielectric relaxation time τ_{D}, which equals ε / σ, where ε is the permittivity of the semiconductor and σ is its conductivity (Section ST3.4, Chapter 3). Because τ_{D} is generally much smaller than the minority carrier lifetime, majority-carrieroperated devices are in principle faster than minority-carrier-operated devices, other factors being equal. This latter proviso is critical, because, as will be demonstrated later, BJTs are in fact faster than FETs.

Summary of Main Concepts and Results

- Wave/quantum mechanics is the more general and rigorous form of mechanics. It reduces to classical mechanics when considering large-scale phenomena, or situations where the dimensions of the system are very large compared to the De Broglie wavelength, so that the variation of potential energy over distances comparable to this wavelength is quite negligible. If this is not the case, classical mechanics breaks down, because it does not take into account the effect of the means of observation on what is being observed.
- In wave mechanics, the wave function $\psi(x, t)$ satisfies Schrödinger's equation, where $|\psi(x, t)|^{2}$ is the probability of finding the particle under consideration at a certain location at a given time. A probability wave packet can be set up that is composed of a superposition of wave functions subject to the boundary conditions of the problem. In general, the individual wave functions in a wave packet travel at phase velocities. Their envelope travels at the group velocity, which corresponds to the velocity of the particle.
- Because of the probabilistic interpretation of the location of a particle in wave mechanics, there is a finite probability that a particle is able to penetrate, or tunnel through, a potential energy barrier of finite height and width. The probability of tunneling increases rapidly as the barrier height or width decreases.
- When atoms come together in a crystal, the discrete energy levels of free atoms form energy bands separated by forbidden gaps. The highest energy band is the conduction band, the next lower energy band being the valence band.
- At 0 K electrons occupy the lowest energy levels available. In semiconductors, the valence band is filled at 0 K and the conduction band is empty, the bandgap being relatively narrow.
- An electron state in a free atom is defined by four quantum numbers. According to Pauli's exclusion principle, not more than one electron can be in the same state, or not more than two electrons, one of each spin, can have the same energy.
- Electrons in the periodic electric potential of the crystal can be in stationary states because of Bragg reflections. Electrons in stationary states do not propagate, and the wave vectors correspond to forbidden energies in the gaps between energy bands.
- Electrons occupying energy levels near the top of the valence band have negative effective mass. In the presence of an electric field, a nearly filled valence band behaves as if it were devoid of electrons and the initially empty levels were occupied by positive charges having positive mass, these positive charges being referred to as holes.
- The concept of effective mass accounts for the interaction of an electron with the rest of the crystal and allows an electron or a hole in the crystal to be treated like a free particle that obeys classical mechanics when subjected to an external force.
- Freely moving, charged atomic particles posses chemical potential energy, because of concentration, and electric potential energy in the presence of electric potential. The algebraic sum of these two potential energies is the electrochemical potential energy. The electrochemical potential energy per particle is the electrochemical potential.
- The Fermi-Dirac distribution gives the probability that a given energy level is occupied. The product of this probability and the density of states is the carrier concentration.
- The Fermi level can be identified with the equilibrium electrochemical potential of electrons or holes in an intrinsic or an extrinsic semiconductor. Its location determines the equilibrium concentrations of electrons and holes. It is the same level throughout a system at equilibrium.
- The diffusion and drift currents are due to the flow of current carriers under the influence of concentration gradients and electric potential gradients, respectively. The total current is proportional to the electrochemical potential gradient as the net driving force, leading to a generalized ohm's law.
- Equilibrium is the state in which temperature, pressure, and electrochemical potential of freely moving particles are all equalized throughout the system, do not change with time, and the system is not disturbed in any way. There is no net flow of particles at equilibrium.
- In an intrinsic semiconductor, electrons and holes have equal concentrations. This intrinsic concentration is highly temperature sensitive and decreases as the bandgap increases.
- Extrinsic semiconductors have carefully controlled concentrations of dopant. If the dopant atom is pentavalent, it is a donor type dopant and the semiconductor is n-type, in which the majority carriers are negatively charged particles, or electrons. If the dopant atom is trivalent, it is an acceptor type impurity and the semiconductor is p-type, in which the majority carriers are positively charged particles, or holes.
- Over the temperature range of practical interest, and for typical concentrations of dopants, the concentration of majority carriers in an extrinsic semiconductor is very nearly equal to the concentration of impurity atoms. This fact underlies the practical importance of semiconductor devices, since the type and concentration of the current carrier is completely determined by the type and concentration of dopants added.
- In an extrinsic semiconductor at equilibrium, the product of the concentrations of majority carriers and minority carriers equals the square of the intrinsic concentration.
- In an intrinsic or extrinsic semiconductor at equilibrium, the rate of electron-hole pair generation must be equal to the rate of electron-hole recombination. Carriers have a mean lifetime between generation and recombination.
- Mobility and minority carrier lifetime decrease with increasing concentration of dopants. Mobility decreases with increasing temperature over the temperature range of interest, whereas the minority carrier lifetime increases.
- It is generally true that high mobilities and short carrier lifetimes in a semiconductor device are conducive to fast switching and high-frequency operation.

Learning Outcomes

- Articulate some of the basic concepts that govern electric conduction in semiconductors, including diffusion and drift, carrier concentrations, carrier mobility, and lifetime.

Supplementary Examples and Topics on Website

SE2.1 Calculation of Atomic Densities of Si and GaAs. These densities are calculated from atomic/molecular mass and densities.

SE2.2 Calculation of Percentage Ionization of Impurities. The percentage ionization is calculated at 300 K for phosphorous and aluminum in Si .

SE2.3 Fermi Level in an n-Type Semiconductor. The Fermi level is calculated in a nondegenerate n-type semiconductor as a function of temperature and donor impurity concentration, taking into account incomplete ionization.

SE2.4 Ionization Energy Using Bohr's Model. The ionization energy of donor atoms is estimated using Bohr's model of the hydrogen atom.

ST2.1 De Broglie Wavelength. Illustrates the validity of classical mechanics by calculating the De Broglie wavelength for: (a) a mass of 1 kg falling through 100 m , (b) an electron accelerated through 300 V over a distance of 1 cm , and (c) an electron in a hydrogen atom.

ST2.2 Wave Packets. Illustrates the concept of a wave packet and derives the expression for the group velocity of waves having slightly different frequencies. It is shown that the group velocity of a wave packet representing a free electron moving with a velocity u in a region of constant potential energy is the same as u.

ST2.3 Quantum Numbers. Discusses in more detail the interpretation of quantum numbers.

ST2.4 Grouping of Energy Levels into Energy Bands. Illustrates the formation of energy bands in a hypothetical crystal and in the case of Si .

ST2.5 Bragg Reflection and the Formation of Standing Waves. Illustrates the formation of standing waves when incident and reflected waves interfere, leading to Bragg reflection.
ST2.6 Fermi-Dirac Distribution. Derives this distribution and shows that the Fermi level is of the nature of an electrochemical potential.

ST2.7 Mobility. The expression for mobility is derived in terms of effective mass and momentum relaxation time.

ST2.8 Interpretation of the Fermi Level. Argues that the Fermi level can be interpreted as: (1) a reference level for the electric potential energy of both electrons and holes in an intrinsic semiconductor at equilibrium, and (2) the electrochemical potential of electrons and holes in an intrinsic or an extrinsic semiconductor at equilibrium. It is also shown that $n_{x o} p_{x o}=n_{i}^{2}$ for an extrinsic semiconductor that is not too heavily doped.

ST2.9 Carrier Concentrations in Degenerate Semiconductor. Outlines the analysis of the general case of a degenerate, compensated semiconductor in which the unknowns are $n_{0}, p_{0}, N_{D}^{+}, N_{A}^{-}$, and E_{F}.

ST2.10 Rate of Indirect Recombination. Derives the expression for this rate.

Problems and Exercises

P2.1 Basic Physical Concepts

P2.1.1 In Figure 2.3.2b, $|\psi(x)|^{2}=0$ at intermediate values of x. Does this mean that the particle does not cross such locations?
P2.1.2 Why does E_{g} become narrower as T increases? The variation of E_{g} with T can be considered as $E_{g}(T)=E_{g}(0)-\alpha T^{2} /(T+\beta) \mathrm{eV}$, where T is the absolute temperature, and the values of the various quantities are as follows:

	$\boldsymbol{E}_{\boldsymbol{g}} \mathbf{(0)}$	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$
Si	1.17	4.73×10^{-4}	636
GaAs	1.519	5.405×10^{-4}	204

P2.1.3 $\quad E_{g}$ in insulators is too wide to allow valence electrons to jump to the conduction band by acquiring energy from photons of light in the visible spectrum. Do you expect a pure insulator without imperfections to be transparent or opaque? What about metals?
P2.1.4 Sketch Equations ST2.5.2 and ST2.5.3 at $t=0, T / 8, T / 4,3 T / 8, T / 2,5 T / 8,3 T / 4$, and $7 T / 8$ assuming $k=\pi / a$. Note that if there are many reflection sites equally separated by a distance that satisfies the condition for Bragg reflection, and which produce reflections either in accordance with Equation ST2.5.2 or Equation ST2.5.3, waves traveling at the same speed in opposite directions produce standing waves.
P2.1.5 Are electrons in stationary states in the crystal at rest? Explain in terms of the probabilistic interpretation of electron motion. Note that the interpretation applies to an electron of zero KE at the edge of the conduction band.
P2.1.6 In ionic systems, electrochemical potential is defined as $\mathrm{J} / \mathrm{mol}$ rather than $\mathrm{J} /$ particle or $\mathrm{eV} /$ particle. What would be the expression for electrochemical potential for ions of valence z ?
P2.1.7 Extend Figure 2.2.3 to include the case of positive charges having negative mass.
P2.1.8 A radio transmitter radiates 10 kW at 100 MHz . How many photons are radiated/s?
P2.1.9 Consider an energy level that is 0.5 eV below the Fermi level. What is the probability of its being occupied, or empty at: (a) 100 K , (b) 300 K , (c) 500 K ?
P2.1.10 Repeat Problem P2.1.9 for an energy level that is 0.5 eV above the Fermi level.
P2.1.11 If a state of energy E has a probability K of being occupied, where $E-E_{F} \gg k T$, what is the probability of occupation of a state of energy $E+k T$?

P2.2 Semiconductors

P2.2.1 The unit cell of the diamond structure consists of: (1) 8 atoms at the corners of a cube, (2) 6 atoms at the centers of each face of the cube, and (3) 4 atoms within the body of the cube, all these individual atoms being part of a tetrahedral structure as in Figure 2.3.1.
(a) Considering each side of the cube to be 0.543 nm , calculate the density of Si atoms;
(b) Assuming a Si atom to be a sphere of 0.118 nm radius, what fraction of the cube volume is filled with Si atoms?
P2.2.2 How do you expect a GaAs semiconductor to behave if: (a) one in every $10^{17} \mathrm{Ga}$ atoms is replaced by a Si atom? (b) one in every 10^{17} As atoms is replaced by a Si atom?
P2.2.3 Calculate the position of E_{F} in intrinsic GaAs at $T=300 \mathrm{~K}$ using the data of Table 2.3.1.
P2.2.4 If E_{g} increases by 50% from 1.12 eV , what is the effect on n_{i} at 300 K ?

P2.2.5 The Fermi level in a Si sample at 300 K is located 0.3 eV above the middle of the energy gap. Determine the equilibrium concentrations of electrons and holes.
P2.2.6 Determine the position of E_{F} with respect to E_{v} at 300 K in Si having $N_{A}=$ $5 \times 10^{16} / \mathrm{cm}^{3}$, assuming the impurity atoms are completely ionized.
P2.2.7 For what value of N_{D} / n_{i} is a 1% error introduced in assuming $n_{n o}=N_{D}$ in Equation 2.5.18?

P2.2.8 Verify the integration leading to Equation 2.5 .3 by substituting $x=\left(E-E_{c}\right) / k T$ and noting that $\int_{0}^{\infty} x^{1 / 2} e^{-x} d x=\sqrt{\pi} / 2$.
P2.2.9 Consider the electroneutrality Equation 2.5.17. Show that the equation is valid if the positively charged Si crystal ions that have lost valence electrons due to the intrinsic carrier generation are taken into account. Assume that all donor impurities are ionized.
P2.2.10 A Si sample at 300 K has $N_{D}=1.0 \times 10^{16} / \mathrm{cm}^{3}$ and $N_{A}=1.1 \times 10^{16} / \mathrm{cm}^{3}$. Determine n_{o} and p_{o} at 300 K assuming that the impurities are completely ionized.
P2.2.11 Neglecting the variation of E_{g} and of effective mass with T, apply Equation 2.5.12 to determine n_{i} at 200 K and at 400 K in Si assuming $n_{i}=10^{10}$ at 300 K .
P2.2.12 If a semiconductor is doped at a concentration of 1 in 10^{8}, at what temperature will the intrinsic concentration be equal to that of the impurity atoms? What will be the majority carrier concentration? Assume that E_{g} remains constant at 1.12 V .
P2.2.13 Repeat Problem P2.2.12 for a doping level of 1 in 10^{5}.
P2.2.14 Using Equation 2.6.3, and the values in Table 2.3.1, determine electron and hole mobilities in intrinsic Si at 200 K and 400 K .
P2.2.15 Determine electron and hole mobilities in an extrinsic Si semiconductor doped at a concentration of 1 in 10^{7} with: (a) donor impurities; (b) acceptor impurities.
P2.2.16 Consider an n-type Si that is doped at a concentration of 1 in 10^{6}. Assuming complete ionization of the dopant at $T=300 \mathrm{~K}$, compare the semiconductor to intrinsic Si with respect to: (a) the concentration of electrons; (b) the concentration of holes; and (c) conductivity, using Equations 2.6.1 and 2.6.2.

P2.2.17 A p-type semiconductor at equilibrium has a resistivity of $0.5 \Omega \mathrm{~cm}$ at 300 K . Assuming complete ionization of the dopant, determine: (a) the concentration of acceptor impurities that must be added to double the conductivity; (b) the concentration of donor impurities that must be added to reduce the conductivity to one-tenth of its original value. How do the electron and hole mobilities compare with those in the original sample?
P2.2.18 The diffusion constant, which is the diffusion current density per unit concentration gradient, is related to mobility by the Nernst-Einstein relation (Equation 2.4.5). Determine the diffusion constants of electrons and holes in: (a) intrinsic Si at 300 K ; (b) intrinsic Si at 400 K ; (c) n-type Si at 300 K doped at a concentration of 1 in 10^{7}; (d) case (c) at 400 K .

P2.2.19 Assume that in a bar of n-type silicon doped at a concentration of 1 in 10^{7}, a hole concentration gradient of $5 \times 10^{6} \times p_{n o} / \mu \mathrm{m}$ is maintained at $T=300 \mathrm{~K}$. (a) Express the concentration as function of x, with $x=0$ at the point of largest concentration, and determine the hole diffusion current density. (b) Express the chemical potential as function of x and verify Equation 2.4.19. Note that σ in this equation is that due to holes only.
P2.2.20 (a) Determine the change in σ of intrinsic Si at equilibrium between 300 K and 400 K , referring to Example 2.4.2, Problem P2.2.11, and Problem P2.2.14. (b) Repeat for Si having $N_{D}=10^{17} / \mathrm{cm}^{3}$. Note that whereas the conductivity of intrinsic Si increased with T, that of extrinsic Si decreases with T over the temperature range considered because of decrease in mobility.

P2.2.21 Consider silicon that is doped with As $\left(E_{D}=0.048 \mathrm{eV}\right)$ at a concentration of $10^{16} / \mathrm{cm}^{3}$. Assume that the semiconductor temperature range of interest is from 250 K to 450 K . Determine: (a) the percentage ionization of the donor impurity atoms at 250K (refer to Examples SE2.2 and SE2.3); (b) the intrinsic concentration at 450K. Calculate $n_{n o}$ at these two temperatures.
P2.2.22 In Example SE2.3, what should be the position of E_{F} to give a percentage ionization of 99.9% at 300 K for: (a) donor impurities; (b) acceptor impurities? Are the semiconductors degenerate?
P2.2.23 Repeat Example SE2.3 for a p-type semiconductor.

3

pn Junction and Semiconductor Diodes

The purpose of this chapter is to explain the behavior of various types of semiconductor diodes, based on the physical principles enunciated in Chapter 2. The $p n$ junction is a basic constituent of a wide variety of semiconductor devices, not only diodes but also metal-oxide-semiconductor transistors and bipolar junction transistors, covered in Chapters 5 and 6, respectively. It is highly important, therefore, to acquire a good physical understanding of the behavior of the $p n$ junction.

The $p n$ junction is first considered at equilibrium, which serves as a foundation for the discussion of the $p n$ junction under forward or reverse bias. The behavior of the $p n$ junction, and some associated phenomena, are explored in considerable detail, with a strong emphasis on fundamental physical principles. Mathematical derivations and topics that are more advanced are left to the Supplementary Examples and Topics on the website.

The discussion then shifts to some special types of semiconductor diodes. The electrical properties of a pn junction can be altered through irradiation by light, as in photodiodes and photocells. The reverse process of light emission by a $p n$ junction occurs in light-emitting diodes (LEDs). The current-voltage characteristic of the tunnel diode has an unusual negative resistance part that is useful for some applications. Metal-semiconductor contacts are not only unavoidable in semiconductor devices, but are also the main structure in some special-purpose diodes and transistors. The chapter ends with a discussion of the heterojunction, which is an important development that enhances the performance of the bipolar junction transistor.

Learning Objectives

* To be familiar with:
- The terminology associated with semiconductor diodes of various types.
* To understand:
- The basic physical principles underlying the operation of the $p n$ junction.
- The capacitances associated with the $p n$ junction and their implications.
- The effects of temperature on the $p n$ junction diode.
- Breakdown phenomena in the reverse-biased $p n$ junction diode.
- The effect of light on semiconductors and on the $p n$ junction.
- The basic principles of operation of photodiodes, solar cells, LEDs, and tunnel diodes.
- The basic principles underlying the behavior of metal-metal contacts, metalsemiconductor contacts, and heterojunctions.

3.1 The pn Junction at Equilibrium

Junction Potential

A $p n$ junction is formed in a crystal, part of which is n-type and part is p-type (Figure 3.1.1), as is explained in Chapter 4. It is assumed, for simplicity, that the two regions are uniformly doped and that the metallurgical boundary between them is abrupt. Electrons and holes can move freely between the n - and p-sides, as these are part of the same crystal.

How is equilibrium established? Consider the case of conduction electrons first. Because these electrons are more concentrated on the n-side than on the p-side, they diffuse down their concentration gradient. As they do so, however, they make the p-side negatively charged with respect to the n-side. An electric potential difference is thereby established that tends to drive electrons in the opposite direction, from the p-side to the n-side. At equilibrium, these two tendencies are equal and opposite. Electrons have a higher chemical potential energy on the n-side, compared to the p-side, but a lower electric potential energy, so that their electrochemical potential is the same on both sides of the junction, as it must be at equilibrium (Section 2.4, Chapter 2). Thus, as electrons move from one side to the other at equilibrium:

$$
\begin{equation*}
\Delta(\text { Chemical potential energy })+\Delta(\text { Electric potential energy })=0 \tag{3.1.1}
\end{equation*}
$$

In going from the n-side to the p-side, for example, Δ (Chemical potential energy/electron $)=$ $\kappa_{e p o}^{\prime}-\kappa_{e n o}^{\prime}=V_{T} \ln \left(n_{p o} / n_{n o}\right) \mathrm{eV}$, and Δ (Electric potential energy/electron) $=-\left(V_{p o}-V_{n o}\right) \mathrm{eV}$, where the change in a given quantity is taken as its value at the destination minus its value initially. Substituting in Equation 3.1.1 and rearranging,

$$
\begin{equation*}
V_{n p o}=V_{n o}-V_{p o}=V_{T} \ln \frac{n_{n o}}{n_{p o}} \tag{3.1.2}
\end{equation*}
$$

where $V_{n p o}$ is the junction potential or the built-in potential.
An exactly analogous situation applies for holes. They tend to diffuse down their concentration gradient, from the p-side to the n-side. But this tendency is opposed by the electric potential difference between the two sides. At equilibrium, holes have a higher chemical potential energy on the p-side than on the n-side but a lower electric potential energy,

FIGURE 3.1.1
Establishment of equilibrium in a $p n$ junction.
Acquired charge:
p-side $-\longleftarrow \xi+n$-side
so that their electrochemical potential is the same on both sides. In going from the n-side to the p-side, for example, Δ (Chemical potential energy $/$ hole $)=\kappa_{h p o}^{\prime}-\kappa_{h n o}^{\prime}=V_{T} \ln \left(p_{p o} / p_{n o}\right) \mathrm{eV}$, and $\Delta($ Electric potential energy $/$ hole $)=\left(V_{p o}-V_{n o}\right)=-V_{n p o} \mathrm{eV}$. This gives:

$$
\begin{equation*}
V_{n p o}=V_{n o}-V_{p o}=V_{T} \ln \frac{p_{p o}}{p_{n o}} \tag{3.1.3}
\end{equation*}
$$

Equating the two expressions for $V_{n p o}$ gives $n_{n o} p_{n o}=n_{p o} p_{p o}$, which follows from the basic equation at equilibrium, $n_{o} p_{o}=n_{i}^{2}$ (Equation 2.5.6, Chapter 2).

Conclusion: Equilibrium is established in a pn junction, for both electrons and holes, by having the n-side at a positive voltage $V_{\text {npo }}$ with respect to the p-side, where,

$$
\begin{equation*}
V_{n p o}=V_{T} \ln \frac{p_{p o}}{p_{n o}}=V_{T} \ln \frac{n_{n o}}{n_{p o}}=V_{T} \ln \frac{p_{p o} n_{n o}}{n_{i}^{2}} \cong V_{T} \ln \frac{N_{A} N_{D}}{n_{i}^{2}} \tag{3.1.4}
\end{equation*}
$$

The approximation on the RHS applies at room temperature with the dopant atoms completely ionized, and their concentrations much larger than n_{i} (Section 2.5, Chapter 2). This last expression is usually the most convenient for calculating $V_{n p o}$.

Exercise 3.1.1

Derive the expression for $V_{n p o}$ from Equations 2.4.17 and 2.4.18, Chapter 2 by setting $\kappa_{h p}=\kappa_{h n}$ and $\kappa_{e p}=\kappa_{e n}$.

Exercise 3.1.2

Given a $p n$ junction having $N_{A}=10^{16} / \mathrm{cm}^{3}$ and $N_{D}=10^{15} / \mathrm{cm}^{3}$. (a) Determine p_{o} and n_{o} at 300 K , stating any assumptions made; (b) Determine $V_{n p o}$; (c) what is the electric potential energy of an electron on the p-side relative to the n-side at equilibrium? What is the corresponding chemical potential energy and the electrochemical potential energy?

Answers: (a) $p_{p o}=10^{16} / \mathrm{cm}^{3}, n_{p o}=10^{4} / \mathrm{cm}^{3}, n_{n o}=10^{15} / \mathrm{cm}^{3}$, and $p_{n o}=10^{5} / \mathrm{cm}^{3}$, based on the assumptions of: (i) complete ionization of impurity atoms at 300 K , and (ii) $N_{A}, N_{D} \gg n_{i}$; (b) 0.66 V ; (c) $1.06 \times 10^{-19} \mathrm{~J},-1.06 \times 10^{-19} \mathrm{~J}, 0$.

Depletion Approximation

Assuming an abrupt junction (Figure 3.1.2a) and $N_{A}^{-}>N_{D}^{+}$so that $p_{p o}>n_{n o}$, the energyband diagram of a $p n$ junction is shown in Figure 3.1.2b. As explained in Example 2.5.2, Chapter 2, E_{F} is the same throughout, being closer to the edge of the conduction band on the n-side, and to the edge of the valence band on the p-side. In the region on either side of the metallurgical junction, the edges of the conduction and valence bands rise smoothly from their levels on the n-side to their levels on the p-side. Similarly, the majority and minority carrier concentrations change smoothly in this region from their values on one side to their values on the other side (Figure 3.1.2c). This region of adjustment of voltage and concentration between the two sides is the depletion region. Where E_{F} intersects the midgap level $E_{F i}$, the concentrations of electrons and holes is n_{i}. In general, this does not occur at the metallurgical junction (Example 3.1.1).

FIGURE 3.1.2
$p n$ junction at equilibrium: (a) depletion region; (b) energy-band diagram; (c) carrier concentration profile.

Where there is a voltage difference, there must be charge separation. In the case of the $p n$ junction, there is a net positive charge on the n-side, with an equal and opposite net negative charge on the p-side. These net charges arise in the depletion region on both sides of the junction (Figure 3.1.2a). According to the depletion approximation, the concentrations of carriers in the depletion region on either side of the junction is assumed to be negligibly small compared to the concentration of dopant atoms. The justification for this is the exponential variation of concentrations with energy levels (Equations 2.5.14 and 2.5.15, Chapter 2). If $N_{D}=10^{16} / \mathrm{cm}^{3}$, for example, $E_{F}-E_{F i}=0.357 \mathrm{eV}$ on the n-side. A decrease of $E_{F}-E_{\text {Fin }}$ in the depletion region to half this value reduces n_{o} by a factor of 1000 .
If carrier concentrations in the depletion region are neglected, and assuming complete ionization of impurity atoms, the charge concentrations per unit volume are $|q| N_{D}$ on the n-side and $|q| N_{A}$ on the p-side. The electric field $\xi(x)$ is zero outside the depletion region, where the majority carrier concentrations are high, and is directed in the negative x-direction in the depletion region. Considering $x=0$ to be at the metallurgical junction, let the edge of the depletion region be at $x=W_{n}$ on the n-side, and at $x=-W_{p}$ on the p-side (Figure 3.1.3a).

For $x \geq 0, \xi(x)$ is from Gauss's law:

$$
\begin{gather*}
\xi(x)=\frac{1}{\varepsilon} \int_{W_{n}}^{x}|q| N_{D} d x=\frac{|q| N_{D}}{\varepsilon}\left(x-W_{n}\right) \tag{3.1.5}\\
\text { At } x=0, \quad \xi(0)=-\frac{|q| N_{D}}{\varepsilon} W_{n} .
\end{gather*}
$$

FIGURE 3.1.3
Depletion approximation: (a) charge distribution; (b) variation of electric field; and (c) variation of voltage.

For $x \leq 0$,

$$
\begin{equation*}
\xi(x)=\frac{1}{\varepsilon} \int_{-W_{p}}^{x}-|q| N_{A} d x=-\frac{|q| N_{A}}{\varepsilon}\left(x+W_{p}\right) \tag{3.1.6}
\end{equation*}
$$

At $x=0, \xi(0)=-|q| N_{A} / \varepsilon W_{p} . \xi(x)$ has its largest magnitude at $x=0$ (Figure 3.1.3b). Since $\xi(0)$ is the same, $N_{D} W_{n}=N_{A} W_{p}$, as to be expected, because the total charge per unit area is of the same magnitude, but opposite in sign, on the two sides of the junction. It follows that:

$$
\begin{equation*}
\frac{W_{n}}{W_{p}}=\frac{N_{A}}{N_{D}} \tag{3.1.7}
\end{equation*}
$$

If $N_{A}>N_{D}$, then $W_{n}>W_{p}$, that is,

Concept: The depletion region extends more into the less heavily doped side.
Using $\xi(x)=-d V(x) / d x$, Equation 3.1.5 gives:

$$
\begin{equation*}
V(x)=-\frac{|q| N_{D}}{\varepsilon} \int_{0}^{x}\left(x-W_{n}\right) d x+V(0)=\frac{|q| N_{D}}{\varepsilon}\left(x W_{n}-\frac{x^{2}}{2}\right), \quad 0 \leq x \leq W_{n} \tag{3.1.8}
\end{equation*}
$$

assuming $V(0)=0$, for convenience (Figure 3.1.3c). At $x=W_{n}, V\left(W_{n}\right)=|q| N_{D} W_{n}^{2} / 2 \varepsilon=$ $\frac{1}{2} W_{n}|\xi(0)|$, which is the area of triangle OAB , as expected. Equation 3.1.6 gives:

$$
\begin{equation*}
V(x)=\frac{|q| N_{A}}{\varepsilon} \int_{0}^{x}\left(x+W_{p}\right) d x+V(0)=\frac{|q| N_{A}}{\varepsilon}\left(x W_{p}+\frac{x^{2}}{2}\right), \quad-W_{p} \leq x \leq 0 \tag{3.1.9}
\end{equation*}
$$

At $x=-W_{p}, V\left(-W_{p}\right)=-|q| N_{A} / 2 \varepsilon W_{p}^{2}=-\frac{1}{2} W_{p}|\xi(0)| ;\left|V\left(-W_{p}\right)\right|$ is the area of triangle OAC.
W_{n} and W_{p} are unknown. Equation 3.1.7 is one relation between them. The other relation is obtained from the fact that $V\left(W_{n}\right)-V\left(-W_{p}\right)=V_{n p o}$, the known junction potential. Let $W_{d}=W_{n}+W_{p}$. Then, from Equation 3.1.7,

$$
\begin{equation*}
W_{n}=\frac{N_{A}}{N_{A}+N_{D}} W_{d}, \quad \text { and } \quad W_{p}=\frac{N_{D}}{N_{A}+N_{D}} W_{d} \tag{3.1.10}
\end{equation*}
$$

From Equations 3.1.8 through 3.1.10,

$$
\begin{gather*}
V_{n p o}=\frac{|q|}{2 \varepsilon}\left(N_{D} W_{n}^{2}+N_{A} W_{p}^{2}\right)=\frac{|q|}{2 \varepsilon} W_{d}^{2} \frac{N_{A} N_{D}}{N_{A}+N_{D}} \\
W_{d}=\sqrt{\frac{2 \varepsilon}{|q|} V_{n p o}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)} \tag{3.1.11}
\end{gather*}
$$

Exercise 3.1.3

Calculate the junction potential in a Si $p n$ junction diode if $N_{A}=10^{16} / \mathrm{cm}^{3}, N_{D}=10^{15} / \mathrm{cm}^{3}$, and: (a) $T=300 \mathrm{~K}$; (b) $T=500 \mathrm{~K}$. Assume that $n_{i}=10^{10}$ at 300 K , all impurities are ionized, and E_{g} varies with T as in P2.1.2, Chapter 2.

Answers: (a) 0.64 V ; (b) 0.2 V .

Exercise 3.1.4

Calculate W_{d} for the $p n$ junction of Exercise 3.1.3 at 300 K assuming $\varepsilon=12 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$ for Si .

Answer: $0.967 \mu \mathrm{~m}$.

Equilibrium is dynamic; that is, electrons continually move from the n-side to the p-side, through diffusion, and from the p-side to the n-side, through drift under the influence of the voltage difference; similarly for holes. These movements constitute currents, which, because of the relatively large carrier concentrations, are extremely large, and can exceed tens of thousands of $\mathrm{A} / \mathrm{cm}^{2}$ at room temperature, depending on the doping level (Example 3.1.1). However, over any given time interval at equilibrium, the diffusion current for electrons, or holes, is equal in magnitude, on the average, but opposite in direction to the corresponding drift current.

Example 3.1.1 Equilibrium Diffusion and Drift Currents across a pn Junction

Consider an abrupt silicon $p n$ junction with $N_{A}=10^{16} / \mathrm{cm}^{3}$ and $N_{D}=10^{14} / \mathrm{cm}^{3}$. It is required to determine the equilibrium drift and diffusion currents, and the carrier concentrations in the depletion region, assuming the depletion approximation and a temperature of 300 K .

Solution

Step 1: Calculation of equilibrium carrier concentrations and junction potential. $p_{p o} \cong$ $N_{A}=10^{16} / \mathrm{cm}^{3}, n_{n o} \cong N_{D}=10^{14} / \mathrm{cm}^{3}$. From Equation 3.1.4, the equilibrium junction potential is $V_{n p o}=0.026 \ln \left(10^{16} \times 10^{14} / 10^{20}\right) \cong 0.6 \mathrm{~V}$.
Step 2: Calculation of the extent of the depletion region and the electric field strength at the metallurgical junction. The total width of the depletion region is given by Equation 3.1.11. Substituting $\varepsilon=12 \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$, where the relative permittivity of Si is taken as 12 $W_{d}=\sqrt{\frac{2 \times 12 \times 8.85 \times 10^{-14} \times 0.6}{1.6 \times 10^{-19}}\left(10^{-14}+10^{-16}\right)}=2.8 \times 10^{-4} \mathrm{~cm} \equiv 2.8 \mu \mathrm{~m}$. From the relations of Equation 3.1.10, W_{n} and W_{p} are: $W_{p}=10^{14} \times 2.8 /\left(10^{14}+10^{16}\right)=0.0277 \mu \mathrm{~m}$, and $W_{n}=10^{16} \times 2.8 /\left(10^{14}+10^{16}\right)=2.773 \mu \mathrm{~m}$. The electric field strength at the junction $\xi(0)$ can be calculated from Equation 3.1 .5 as $\xi(0)=-\frac{|q| N_{D}}{\varepsilon} W_{n}=$ $-\frac{1.6 \times 10^{-19} \times 10^{14} \times 2.773 \times 10^{-4}}{12 \times 8.85 \times 10^{-14}}=-4.178 \times 10^{3} \mathrm{~V} / \mathrm{cm}$, and is directed in the negative x-direction, from the n-side toward the p-side.
Step 3: Calculation of equilibrium hole diffusion and drift current densities. If generation or recombination of carriers in the depletion region is neglected, current densities do not vary in the depletion region and are most conveniently calculated at $x=0$. The diffusion current density at any x is given by Equation 2.4.12, Chapter $2: I_{h(\text { diff }}=-D_{h}|q| \mathrm{d} p_{o}(x) / \mathrm{d} x$. To determine $p_{o}(x)$, we note that in going from the bulk p-region to any point $x \leq 0$, the change in hole chemical potential energy is $k_{J} T \ln p_{o}(x) / p_{p o}$, while the change in hole electric potential energy is $|q|\left(V(x)-V_{p o}\right)$. Hence, $k_{J} T \ln p_{o}(x) / p_{p o}+|q|\left(V(x)-V_{p o}\right)=0$. This gives:

$$
\begin{equation*}
p_{o}(x)=p_{p o} \mathrm{e}^{|q|\left(V_{p o}-V(x)\right) / V_{T}} \tag{3.1.12}
\end{equation*}
$$

Differentiating with respect to x and substituting $\xi(x)=-d V(x) / d x$, we obtain $\frac{d p_{o}(x)}{d x}=\frac{p_{o}(x) \xi(x)}{V_{T}}$, and $\left.\frac{d p_{o}(x)}{d x}\right|_{x=0}=\frac{p_{o}(0) \xi(0)}{V_{T}}$. Thus:

$$
\begin{equation*}
J_{h(\text { diff })}=\frac{-D_{h}|q| p_{o}(0) \xi(0)}{V_{T}} \tag{3.1.13}
\end{equation*}
$$

Substituting for D_{h} from the Nernst-Einstein relation (Equation 2.4.5, Chapter 2),

$$
\begin{equation*}
J_{h(\mathrm{diffl})}=-|q| \mu_{h} p_{o}(0) \xi(0)=-J_{h(\text { drift })} \tag{3.1.14}
\end{equation*}
$$

where $J_{h(\text { drift })}(0)=\mu_{h}|q| p_{o}(0) \xi(0)$, from Equations 2.4.10 and 2.4.11, Chapter 2. From Equation 3.1.12, $p_{o}(0)=p_{p o} e^{V_{p o} / V_{T}}$, where from Equation 3.1.9, $V_{p o}=-\frac{1}{2} W_{p}|\xi(0)|=-0.5 \times(0.0277$ $\mu \mathrm{m}) \times\left(4.178 \times 10^{5} \mathrm{~V} / \mathrm{m}\right) \equiv-5.79 \mathrm{mV}$. This gives $p_{o}(0)=10^{16} \times \mathrm{e}^{-5.79 / 25.85}=8 \times 10^{15} / \mathrm{cm}^{3}$. Taking $\quad \mu_{h}=400 \mathrm{~cm}^{2} /(\mathrm{Vs}), \quad J_{h(\text { diff }}=400 \times 1.6 \times 10^{-19} \times 8 \times 10^{15} \times\left(-4.178 \times 10^{3}\right)=$ $2.14 \times 10^{3} \mathrm{~A} / \mathrm{cm}^{2}$. This current increases considerably with the doping level. For example, if $N_{A}=10^{18} / \mathrm{cm}^{3}$ and $N_{D}=10^{16} / \mathrm{cm}^{3}, J_{h(\text { drift })} \cong 8.7 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ (Problem P3.1.22).

The calculation of equilibrium electron drift and diffusion currents can be carried out in an exactly analogous manner and is left as a problem (Problem P3.1.21).
Step 4: Calculation of carrier concentrations in the depletion region. $p_{o}(x)$ is given by Equation 3.1.12. The concentration of electrons as a function of x can be determined in a similar manner. Thus, in going from any point $x \geq 0$ to the bulk n-region, the change in electron
chemical potential energy is $k T \ln \left(n_{n o} / n_{o}(x)\right)$, while the change in electron electric potential energy is $-|q|\left(V_{n o}-V(x)\right)$. It follows that:

$$
\begin{equation*}
n_{o}(x)=n_{n o} \mathrm{e}^{\left(V(x)-V_{n o}\right) / V_{T}} \tag{3.1.15}
\end{equation*}
$$

where $V(x)$ is given by Equation 3.1.8, $0 \leq x \leq W_{n}$.
It will be noted that at the metallurgical junction $(x=0)$, the semiconductor is effectively p-type, because $p(0)=8 \times 10^{15} / \mathrm{cm}^{3}>n_{i}=10^{10} / \mathrm{cm}^{3}$. The semiconductor is effectively intrinsic in the n-region. It is of interest to determine the value of $x=x_{i}$ at which this occurs. From Equation 3.1.8, $V_{n o}=\frac{1}{2} W_{n}|\xi(0)|=0.579 \mathrm{~V}$, and from Equation 3.1.15, $V\left(x_{i}\right)=0.579+0.026 \times$ $\ln \left(10^{10} / 10^{14}\right)=0.34 \mathrm{~V}$. From Equation 3.1.8, $V\left(x_{i}\right)=\left(|q| N_{D} / \varepsilon\right) \times\left(x_{i} W_{n}-\frac{x_{i}^{2}}{2}\right)$. Substituting and solving for x_{i} gives $x_{i}=8 \times 10^{-4} \mu \mathrm{~m}$, which is only very slightly into the n-side. At this x_{i}, $E_{F}=E_{F i}$, that is, E_{F} is in the middle of the energy gap.

The assumptions made in Example 3.1.1 are well justified in practice under normal conditions. The more exact analysis, outlined in Section ST3.1, is not difficult but awkward.

Exercise 3.1.5

Using Equations 3.1.4, 3.1.12, and 3.1.15, show that $p_{o}(x) n_{o}(x)=n_{i}^{2}$.

3.2 The Biased $p n$ Junction

The $p n$ Junction as a Rectifier

If an external voltage is applied across the $p n$ junction, the junction becomes biased. If the p-side is made positive with respect to the n-side, the junction is forward biased, whereas if the p-side is made negative with respect to the n-side, the junction is reverse biased. It is helpful to remember that the p-side is positive with respect to the n-side under forward (spelled with ph!) bias. Because the $p n$ junction is disturbed by the bias, it is no longer at equilibrium.

A forward bias opposes the junction potential, which reduces the electric potential energy difference relative to the chemical potential energy difference, for both electrons and holes. The diffusion-drift balance is upset in favor of diffusion, causing a net diffusion current in the forward direction, that is, in the direction of the drop in applied voltage and in electrochemical potential. The current is due to majority carriers, that is, holes moving from the p-side to the n-side and electrons moving from the n-side to the p-side.

A reverse bias augments the junction potential. The electric potential energy difference is increased relative to the chemical potential energy difference, so the diffusion-drift balance is upset in favor of drift. There will, therefore, be a net drift current in the reverse direction, but still in the direction of the drop in applied voltage and in electrochemical potential. This current is carried by minority carriers, that is, by holes moving from the n-side to the p-side and by electrons moving from the p-side to the n-side. These relations are summarized in Table 3.2.1.

Concept: In a biased pn junction, the forward current is due to majority carriers, whereas the reverse current is due to minority carriers. Since the majority carrier concentration vastly exceed the minority carrier concentration, the forward current is much larger than the reverse current. The pn junction therefore behaves as a rectifier.

TABLE 3.2.1
Potential Energy Relations and Current under Bias

	Difference in Electric Potential Energy Relative to Difference in Chemical Potential Energy	Diffusion-Drift Balance in Favor of	Direction of Current	Current Carriers
State	Same	Neither	No current	-
Equilibrium	Reduced	Diffusion	$p \rightarrow n$	Majority
Forward bias	Increased	Drift	$n \rightarrow p$	Minority
Reverse bias				

Width of Depletion Region

The results of Example 3.1.1 lead to a fundamental assumption in the simplified analysis of the $p n$ junction:

Concept: Because the equilibrium diffusion and drift currents across a pn junction are much larger than the current that ordinarily flows even under heavy forward bias, the biased junction is never far from equilibrium.

This concept is extensively applied in the simplified analysis of the $p n$ junction. For example, Equation 3.1.11, based on the depletion approximation, is generalized to:

$$
\begin{equation*}
W_{d}=\sqrt{\frac{2 \varepsilon}{|q|}\left(V_{n p o}-v_{D}^{*}\right)\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)} \tag{3.2.1}
\end{equation*}
$$

where v_{D}^{*} is, strictly speaking, the voltage across the junction and differs from the terminal voltage v_{D} because of the voltage drop due to the bulk resistance (Section 1.1, Chapter 1). In the forward direction, $v_{D}>v_{D}^{*}>0$ and $v_{D}^{*}<V_{n p o}$. If $v_{D}^{*}=V_{n p o}$, the drift current is zero and the diffusion current will be extremely large. In fact, the diode will be damaged by overcurrent and overheating long before v_{D}^{*} approaches $V_{n p o}$. Nevertheless, under forward bias, $v_{D}^{*}>0$, and the net voltage across the junction is reduced from $V_{n p o}$ to $\left(V_{n p o}-v_{D}^{*}\right)$, so that less charge in the depletion region is required to support this voltage. Since dopant concentrations are fixed, less charge can only result from a narrower width of the depletion region (Figure 3.1.3).

Conversely, under reverse bias, the current is small and the voltage drop due to the bulk resistance is small. $v_{D}^{*} \cong v_{D}=-v_{R}$, where v_{R} is the reverse bias. The net voltage across the junction is increased from $V_{n p o}$ to $\left(V_{n p o}+v_{R}\right)$, and more charge in the depletion region is required to support this voltage, which means that the depletion region becomes wider. Hence,

Concept: The width of the depletion region decreases under forward bias and increases under reverse bias.

Charge Distributions and Currents under Bias

Under forward bias, electrons and holes diffuse across the junction from the region where they are majority carriers to the region where they are minority carriers. Minority carriers are said to be injected by forward bias. At the edges of the depletion region, the

FIGURE 3.2.1
$p n$ junction under forward bias.
concentrations of these carriers increase exponentially with forward bias, in accordance with the following relations, known as the law of the junction:

$$
\begin{equation*}
p_{n}\left(W_{n}\right)=p_{n o} e^{v_{D} / V_{T}} \quad \text { and } \quad n_{p}\left(-W_{p}\right)=n_{p o} e^{v_{D} / V_{T}} \tag{3.2.2}
\end{equation*}
$$

where v_{D} is the forward bias across the junction (Figure 3.2.1). Equations 3.2.2 can be derived quite readily from the electrochemical potential difference of the carriers (Section ST3.5). Thus, neglecting the small electric field outside the depletion region, the change in hole electrochemical potential in going from the p-side through the transition region on the n-side is $V_{T} \ln \left(p_{n o} / p_{n}\left(W_{n}\right)\right) \mathrm{eV}$. In going through the external circuit, the change in hole electrochemical potential is $-v_{D} \mathrm{eV}$. Equating these expressions gives the law of the junction on the n-side.

Injected minority carriers recombine with majority carriers on either side, their concentration decreasing exponentially with distance at a rate determined by the diffusion length, L_{h} or L_{e}, for holes and electrons, respectively. The diffusion length is analogous to the time constant in the case of exponential variation with time and equals $\sqrt{D \tau}$ (Section ST3.4), where D is the diffusion constant of minority carriers and τ is the minority carrier lifetime. The larger the diffusion constant, the more mobile is the particle, and the further it can travel in a given time. The larger the lifetime, the longer will the particle exist before recombination. Typically, D is of the order of $\mu \mathrm{m}$, whereas τ is in the range of ns to $\mu \mathrm{s}$.
The net charge due to injected minority carriers attracts majority carriers, which tend to neutralize the distribution of minority carriers, as illustrated in Figure 3.2.1, where $n_{e x}(x)$ and $p_{e x}(x)$ are the respective excess majority carrier concentrations above their equilibrium values. The distribution of majority carriers is, however, flatter than the exponential distribution of the minority carriers, leaving equal net charges of opposite polarity. These net charges are required to produce the electric field necessary for supporting the distribution of majority carriers. Thus, the distribution of minority carriers is maintained by injection from the opposite side, whereas the distribution of majority carriers is
maintained by the relatively small electric field that arises from the difference between the distributions of minority and majority carriers.

At distances sufficiently removed from the junction, the presence of the junction is not significantly felt, and the concentrations of majority carriers and minority carriers approach their equilibrium values. The region on either side of the junction, beyond the depletion region, where the concentration of minority carriers is significantly above its equilibrium value, is the transition region. The region, on either side of the junction, beyond the transition region, where carrier concentrations are substantially at their equilibrium values, is the bulk region (Figure 3.2.1). Since minority carriers are injected across the junction into the transition region, through the depletion region, the concentrations of holes and electrons in the depletion region are higher than at equilibrium. This means that there will be a net recombination of carriers in this region.

In the steady state, a continuous flow of majority carriers on a given side toward the junction is required for two purposes: (1) to replace majority carriers lost to recombination with minority carriers, both in the transition and depletion regions on the given side; and (2) to inject the carriers that would cross the depletion region and become minority carriers on the other side. The majority carriers are supplied through the external circuit that applies the forward bias, as illustrated in Figure 3.2.2. Electrons flow from the negative terminal of the dc supply, through the cathode terminal, and into the bulk region, toward the junction. On the p-side, holes flow in bulk region toward the junction and have to be replaced by the external circuit. Since the metallic conductor of the external circuit does not ordinarily support the flow of holes, electron-hole pairs must be generated at the metal-semiconductor on the p-side, so that holes flow into the bulk region and electrons flow in the external circuit. On the n-side, the metal-semiconductor contact is only required to allow the flow of electrons.

Similar considerations apply to reverse bias, with all currents reversed and generation replacing recombination (Figure 3.2.3). At the edges of the depletion region, minority carrier concentrations are depressed below their equilibrium values, in accordance with Equations 3.2.2 with $v_{D}<0$. Instead of being injected across the junction into the depletion and transition regions, minority carriers are now extracted from these regions. This extraction of minority carriers is due to the dominance of the electric potential energy difference under reverse bias, so the electric field, which is in the negative x-direction, sweeps holes from the n-side to the p-side, and electrons from the p-side to the n-side.

FIGURE 3.2.2
Flow of charges for a $p n$ junction under forward bias.

FIGURE 3.2.3
$p n$ junction under reverse bias.
The depression of the concentrations of minority carriers is accompanied by deficiencies in the concentrations of majority carriers $n_{\text {def }}(x)$ and $p_{\text {def }}(x)$ below their equilibrium values (Figure 3.2.3). Since carrier concentrations in the depletion and transition regions are below equilibrium levels, there is a net generation of carriers. Electrons extracted from the transition region on the p-side, and those generated in the depletion and transition regions on the n-side, flow in the bulk regions away from the junction and out of the cathode terminal (Figure 3.2.4); similarly for holes. At the metal-semiconductor contacts on the p-side, electrons and holes recombine, so that electron inflow at the anode terminal is converted to flow of holes toward this terminal. Because the rate at which minority carriers are extracted is limited, the reverse current I_{S} quickly saturates with reverse bias.

FIGURE 3.2.4
Flow of charges for a $p n$ junction under reverse bias.

Current distributions under forward bias and reverse bias are discussed qualitatively in Section ST3.2, where the drift and diffusion components of the carrier current in are identified in each of the three regions on either side. It should be noted that:

Concept: The forward current of the pn junction diode is essentially a recombination current, and the reverse current is essentially a generation current.

All electrons that flow on the n-side toward the junction under forward bias eventually recombine with holes in the transition and depletion regions on the two sides; similarly for holes that flow on the p-side toward the junction. In an analogous manner, the reverse current is a generation current. Because the forward and reverse currents are recombination and generation currents, respectively, minority carriers play an essential role in the operation of the $p n$ junction diode. Exposure to radiation, as may occur in space applications, can have a detrimental effect on operation, because it increases the rate of generation, and hence the rate of recombination.

Current-Voltage Relation

Based on some simplifying assumptions, the diode current-voltage relation can be derived from $i_{D h}$ and $i_{D e}$, the hole and electron current, respectively. The relations are (Equations ST3.5.10 and ST3.5.11):

$$
\begin{equation*}
i_{D}=i_{D h}+i_{D e}=I_{S}\left(e^{v_{D} / V_{T}}-1\right) \tag{3.2.3}
\end{equation*}
$$

where

$$
\begin{gather*}
I_{S}=A_{J}|q|\left(\frac{D_{h} p_{n o}}{L_{h}}+\frac{D_{e} n_{p o}}{L_{e}}\right)=A_{J}|q|\left(\frac{D_{h}}{L_{h} N_{D}}+\frac{D_{e}}{L_{e} N_{A}}\right) n_{i}^{2} \tag{3.2.4}\\
i_{D h}=\frac{A_{J}|q| D_{h} p_{n o}}{L_{h}}\left(e^{v_{D} / V_{T}}-1\right)=\frac{A_{J}|q| D_{h} n_{i}^{2}}{L_{h} N_{D}}\left(e^{v_{D} / V_{T}}-1\right) \tag{3.2.5}\\
i_{D e}=\frac{A_{J}|q| D_{e} n_{p o}}{L_{e}}\left(e^{v_{D} / V_{T}}-1\right)=\frac{A_{J}|q| D_{e} n_{i}^{2}}{L_{e} N_{A}}\left(e^{v_{D} / V_{T}}-1\right) \tag{3.2.6}
\end{gather*}
$$

A_{J} being the area of the junction.
Under forward bias, the effect of recombination in the depletion region is generally not negligible, particularly in Si diodes when the forward bias is relatively low. It is shown in Section ST3.6 that the current due to recombination in the depletion region is:

$$
\begin{equation*}
i_{D}=I_{S}\left(e^{v_{D} / 2 V_{T}}-1\right) \tag{3.2.7}
\end{equation*}
$$

where the emission coefficient η is 2 . At small enough forward currents, the current component due to recombination predominates and Equation 3.2.7 applies. At large forward currents, the concentration of injected minority carriers at the edge of the transition region can become comparable to the majority carrier concentration, or can even exceed it. In such a state of high-level injection, η is also theoretically equal to 2 (Section ST3.7). As mentioned in Section 1.1, Chapter 1, η varies with the diode current, but is normally considered 2 for a discrete Si $p n$ junction diode and 1 for an IC diode.

In a short-base diode, the length of one side, say the n-side, is short compared to the diffusion length of holes on this side. The advantages of a shorter side are a larger current and a faster turnoff time because of reduced stored charge (Section ST3.8).

Charge-Current Relation

The diode current can be expressed in terms of the stored minority carrier charge on either side. As argued in connection with Equation 2.7.1, Chapter 2, $1 / \tau_{h}$ is the average rate at which individual holes recombine in the transition region on the n-side. If the number of excess holes stored on this side is N_{h}, the rate at which holes recombine is N_{h} / τ_{h}. The rate at which hole charge is lost to recombination is $q N_{h} / \tau_{h}=Q_{h} / \tau_{h}$, where Q_{h} is the excess hole charge stored on the n-side. Under steady-state conditions, the stored charge is replenished by the hole current $i_{D h}$ so that $i_{D h}=Q_{h} / \tau_{h}$. Similarly, the charge stored on the p-side is replenished by the electron current $i_{D e}=Q_{e} / \tau_{e}$. The total diode current is $i_{D}=i_{D h}+i_{D e}$, which gives:

$$
\begin{equation*}
i_{D}=\frac{Q_{h}}{\tau_{h}}+\frac{Q_{e}}{\tau_{e}} \tag{3.2.8}
\end{equation*}
$$

The charge-current relation is also derived in Section ST3.5. The total charge stored on both sides of the junction is $Q_{\text {diff }}=Q_{h}+Q_{e}$, where $Q_{h}=i_{D h} \tau_{h}$ and $Q_{e}=i_{D e} \tau_{e}$. Thus:

$$
\begin{equation*}
Q_{\text {diff }}=\tau_{h} i_{D h}+\tau_{e} i_{D e}=\tau_{T} i_{D} \tag{3.2.9}
\end{equation*}
$$

where τ_{T} is the mean transit time and can be readily expressed in terms of Equations 3.2.3, 3.2.5, 3.2.6, and the relation $L=\sqrt{D \tau}$ (Problem P3.1.16).

Normally, $N_{A} \gg N_{D}$ so as to control the breakdown voltage, as discussed later. This makes $i_{D h} \gg i_{D e}$ (Equations 3.2.5 and 3.2.6), so that $i_{D} \cong Q_{h} / \tau_{h}$.

$p n$ Junction Capacitances

Capacitance is a circuit parameter that accounts for energy stored in the electric field arising from separated electric charges. In a linear capacitor, the charge is directly proportional to the voltage difference between the two plates of the capacitor. In the more general case encountered in $p n$ junctions, charge varies nonlinearly with voltage difference, so an incremental capacitance is defined at a given operating point as the ratio of a small change in charge to a small change in the associated voltage difference. Under dc conditions, voltages are constant, and capacitors behave as open circuits. Under time-varying conditions, the charge changes with time, which constitutes a current through the capacitor. The higher the frequency, the smaller is the time during which a given change of charge takes place and the larger is the current.
In a $p n$ junction at equilibrium, a positive charge exists in the depletion region on the n-side, with an equal negative charge in the depletion region on the p-side (Figure 3.1.2). As explained in connection with Equation 3.2.1, the charge in the depletion region decreases with forward bias and increases with reverse bias. Hence, a change Δv_{D} produces a change $-\Delta Q_{d p}$ in the charge on either side of the junction. A depletion capacitance $C_{d p}$ is defined as:

$$
\begin{equation*}
C_{d p}=-\frac{d Q_{d p}}{d v_{D}}=\left.\frac{d Q_{d p}}{d v_{R}}\right|_{v_{R}=V_{R}} \tag{3.2.10}
\end{equation*}
$$

To make $C_{d p}$ positive, it is defined as the derivative of $Q_{d p}$ with respect to $v_{R}=-v_{D}$, since $Q_{d p}$ increases with $v_{R} . C_{d p}$ is evaluated at a particular value V_{R}. The charge $Q_{d p}$ at any given
diode voltage can be readily derived using the depletion approximation for an abrupt junction (Figure 3.1.3). Thus, $Q_{d p}=|q| A_{J} N_{D} W_{n}=|q| A_{J} W_{d} N_{A} N_{D} /\left(N_{A}+N_{D}\right)$, where A_{J} is the area of the junction and W_{d} is given by Equation 3.2.1 with $v_{R}=-v_{D}$. Applying Equation 3.2.10,

$$
\begin{equation*}
C_{d p}=\frac{C_{d p 0}}{\sqrt{1+V_{R} / V_{n p o}}} \tag{3.2.11}
\end{equation*}
$$

where $C_{d p 0}$ is the depletion capacitance at equilibrium, when $V_{R}=0$. Because $Q_{d p}$ varies as the square root of ($V_{n p o}+V_{R}$) (Equation 3.2.1), $d Q_{d p} / d v_{R}$, and hence $C_{d p}$, decrease with increasing V_{R}, while $Q_{d p}$ increases. From Equation SE3.1.3, Example SE3.1, $C_{d p 0}$ is given by:

$$
\begin{equation*}
C_{d p 0}=A_{J} \sqrt{\frac{\varepsilon_{s}|q|}{2 V_{n p o}}\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)} \tag{3.2.12}
\end{equation*}
$$

For a nonabrupt junction, Equation 3.2.11 can be written as:

$$
\begin{equation*}
C_{d p}=\frac{C_{d p 0}}{\left(1+V_{R} / V_{n p o}\right)^{m}} \tag{3.2.13}
\end{equation*}
$$

where m depends on the grading of the junction. m is $1 / 2$ for an abrupt junction and $1 / 3$ for a linearly graded junction (Example SE3.1). It is shown in Example SE3.1 that for abrupt and linearly graded junctions $C_{d p}$ is that of a parallel-plate capacitor of area A_{J} and a silicon dielectric of thickness W_{d} :

$$
\begin{equation*}
C_{d p}=\frac{\varepsilon A_{J}}{W_{d}} \tag{3.2.14}
\end{equation*}
$$

Exercise 3.2.1

Assume that the diode of Exercise 3.1.2 has an abrupt junction of $2000 \mu \mathrm{~m}^{2}$ area. If $C_{d p}=0.4 \mathrm{pF}$ at $V_{R}=5 \mathrm{~V}$, determine $C_{d p 0}$ per unit area.

Answer: $0.59 \mathrm{fF} / \mathrm{\mu m}^{2}$.

In the biased junction, there is also charge in the transition region. Under forward bias, there is an excess charge on either side of the junction due to injected minority carriers. The charge is partly counterbalanced by a flatter distribution of majority carriers, leading to charge separation and the establishment of an electric field that maintains the distribution of the majority carriers (Figure 3.2.1). A diffusion capacitance is defined under these conditions as $C_{d}=d Q_{\text {diff }} / d v_{D}$. From Equation 3.2.9, and using Equation 1.1.3, Chapter 1,

$$
\begin{equation*}
C_{d}=\tau_{T} \frac{d i_{D}}{d v_{D}}=\frac{\tau_{T}}{r_{d}}=\frac{\tau_{T}}{\eta V_{T}} i_{D} \tag{3.2.15}
\end{equation*}
$$

If $N_{A} \gg N_{D}, i_{D h} \gg i_{D e}$ (Equations 3.2.5 and 3.2.6), so $Q_{\text {diff }} \cong \tau_{h} i_{D h}$ and $C_{d} \cong \tau_{h} d i_{D} / d v_{D}=\tau_{h} / r_{d}$.

Concepts: (1) The diffusion capacitance increases rapidly with forward bias and is negligible for reverse bias. (2) The depletion capacitance also increases with forward bias and
decreases with reverse bias. (3) In a forward-biased diode, the diffusion capacitance is dominant, whereas in a reverse-biased diode the depletion capacitance is dominant.

Exercise 3.2.2

Estimate C_{d} at $i_{D}=10 \mathrm{~mA}$ if $\tau_{h}=100 \mathrm{~ns}$, assuming $\eta=2$ and $V_{T}=0.026 \mathrm{~V}$.
Answer: 19.2 nF .

Application Window 3.2.1 Varactors

Varactors are reverse-biased diodes that are used to provide a voltage-controlled capacitance. Such a capacitance can vary the resonant frequency of an RLC circuit, as illustrated in Figure 3.2.5. The resonant frequency is determined by L and the varactor capacitance, which depends on the reverse bias. The reverse bias depends in turn on R_{v}, which is usually the voltage-controlled resistance of a transistor. The nominal capacitance of varactors is generally in the range of tens of pFs and can be varied over a fraction of the nominal value. Varactors are used for electronic tuning in radio and television receivers.

Diode transients are discussed mainly qualitatively in Section ST3.3. Of particular importance is the reverse switching transient that occurs when a diode is switched from forward bias to reverse bias. Before the diode can assume this latter state, the stored charge due to injected minority carriers must be removed. Manufacturer's data sheets quote a reverse recovery time $t_{r r}$, which is the total time taken for the diode to recover to a specified reverse current, or to a specified reverse resistance, under specified conditions. $t_{r r}$ is typically in the nanosecond range.

Temperature Effects

From Equation 3.2.4, the temperature dependence of I_{S} is due to n_{i}^{2}, the diffusion constants, and the minority carrier lifetimes. From Equation 2.5.12, Chapter $2, n_{i}^{2}$ varies with temperature as $T^{3} e^{-E_{g} / k T}$. The diffusion constant varies with temperature as μT (Equation 2.4.5, Chapter 2). As discussed in Section 2.6, Chapter 2, mobility and minority carrier lifetime are temperature dependent. The temperature variation of I_{S} can be expressed as:

$$
\begin{equation*}
I_{S}=M T^{b} e^{-E_{g} / k T} \tag{3.2.16}
\end{equation*}
$$

where M is independent of temperature, and b can assume values between 2.5 and 5.5. Neglecting the small variation of E_{g} with T (Problem P2.1.2, Chapter 2), taking logarithms of both sides of Equation 3.2.16, and differentiating with respect to T :

$$
\begin{equation*}
\frac{1}{I_{S}} \frac{d I_{S}}{d T}=\frac{d\left(\ln I_{S}\right)}{d T}=\frac{b}{T}+\frac{E_{g}}{k T^{2}} \tag{3.2.17}
\end{equation*}
$$

Over the temperature range of practical interest, the contribution of the first term is small compared to the second term, irrespective of b. Substituting $E_{g}=1.12 \mathrm{eV}$ for Si and $k=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$ gives $\frac{1}{I_{S}} \frac{d I_{S}}{d T} \cong$ 0.15 for Si at 300 K . This means that I_{S} increases by 15% per ${ }^{\circ} \mathrm{C}$. It approximately doubles for every $5^{\circ} \mathrm{C}$ rise in temperature, since

FIGURE 3.2.5
Figure for Application Window 3.2.1.
$(1.15)^{5} \cong 2$. However, $I_{\text {leak }}$ (Equation 1.1.2, Chapter 1) does not increase as rapidly with temperature. As a rule of thumb, the reverse current I_{R} is considered to double for every $10^{\circ} \mathrm{C}$ rise in temperature. Thus, if I_{R} is 1 nA at a junction temperature of $25^{\circ} \mathrm{C}$, it becomes $2^{5}=32 \mathrm{nA}$ at a junction temperature of $75^{\circ} \mathrm{C}$.

Under forward bias, we can consider temperature effects under conditions of constant diode voltage or constant diode current. For constant diode voltage, it follows from Equation 1.1.1, Chapter 1, neglecting unity in comparison with the exponential, that:

$$
\begin{equation*}
\frac{1}{i_{D}} \frac{d i_{D}}{d T}=\frac{1}{i_{D}} \frac{d\left(I_{S} e^{v_{D} / \eta k T}\right)}{d T}=\frac{1}{I_{S}} \frac{d I_{S}}{d T}-\frac{v_{D}}{\eta k T^{2}} \tag{3.2.18}
\end{equation*}
$$

If $v_{D}=0.7 \mathrm{~V}, \eta=1$, and $T=300 \mathrm{~K}$, the second term evaluates to 0.09 , compared to 0.15 for the first term. Hence, i_{D} increases by about 6% per ${ }^{\circ} \mathrm{C}$, that is, it doubles every approximately $12^{\circ} \mathrm{C}$. If $\eta=2, i_{D}$ doubles approximately every $7^{\circ} \mathrm{C}$.

If i_{D} is assumed constant,

$$
\begin{equation*}
\frac{d v_{D}}{d T}=\frac{v_{D}}{T}-\eta k T\left(\frac{1}{I_{S}} \frac{d I_{S}}{d T}\right) \tag{3.2.19}
\end{equation*}
$$

At $T=300 \mathrm{~K}$, and $v_{D}=0.7 \mathrm{~V}, \frac{d v_{D}}{d T} \cong-1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ if $\eta=1$, and $\frac{d v_{D}}{d T} \cong-5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ if $\eta=2$. As a rule of thumb, v_{D} is considered to change at a rate of approximately $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, based on measurements at i_{D} of about 1 mA . The forward $i-v$ characteristic therefore changes with temperature as illustrated in Figure 1.4.6, Chapter 1.

Junction Breakdown

As the reverse bias is increased, the reverse current $I_{\mathrm{S}}+I_{\text {leak }}$ increases slowly at first, due to $I_{\text {leak }}$. Eventually, at a reverse voltage $B V$ the reverse current increases rapidly with a small increase in the reverse voltage (Figure 1.4.1, Chapter 1). The part of the $i-v$ characteristic where this occurs is the breakdown region. Breakdown can occur according to two distinct mechanisms that differ in the magnitude of $B V$ and in its temperature dependence.

One breakdown mechanism is avalanche breakdown. If the electric field ξ in the depletion region is large enough, electrons can acquire sufficient KE from the electric field so that when they "collide" with atoms in the crystal they break covalent bonds, thereby generating electron-hole pairs. The released electrons can in turn receive sufficient KE from the electric field so that when they "collide" with crystal atoms, they generate more electron-hole pairs and so on. The generated electrons and holes contribute to the reverse current, which therefore increases very rapidly, like an avalanche.

The process is diagrammatically illustrated in Figure 3.2.6. Electron 1 has potential energy $E_{c p}$ at the edge of the depletion region on the p-side and no $K E$ as a classical particle. In terms of wave mechanics, the electron wave is a standing wave. As it moves into the depletion region, the electron is subjected to ξ and gains KE, as indicated by the difference between its energy level and the corresponding energy of the edge of the conduction band. If it gains sufficient energy after a distance $d_{\text {coll }}$, which on the average equals the mean free path between "collisions," it generates an electron-hole pair, denoted by the number 2 . Electrons 1 and 2 are shown at the edge of the conduction band, just after "collision," and hole 2 at the edge of the valence band. This is tantamount to assuming that electron 1 loses on "collision" all the KE it had gained, and that electron 2 and hole 2 are

FIGURE 3.2.6
Diagrammatic illustration of avalanche breakdown.
released with no KE as classical particles. If ξ is strong enough, both electrons 1 and 2 may gain sufficient KE, so that, after traveling an average distance $d_{\text {coll }}$, each can cause the generation of an electron-hole pair, and so on. Holes can also cause ionizing "collisions" but at a higher reverse voltage. In practice, avalanche breakdown due to electrons occurs before hole collisions can make a significant contribution.

It is seen from this simple illustration that for avalanche breakdown to occur, the KE gained from ξ must be greater than E_{g}, because this is the minimum energy required for a valence electron in a covalent bond to break away from its parent atom and become a conduction electron. Moreover, the width of the depletion region must be greater than several mean free paths, so that avalanche multiplication occurs. Using the depletion approximation, it can be shown that (Problem P3.1.8):

$$
\begin{equation*}
B V=\xi_{\mathrm{brk}}^{2} \frac{\varepsilon}{2|q|}\left(\frac{1}{N_{D}}+\frac{1}{N_{A}}\right) \tag{3.2.20}
\end{equation*}
$$

where ξ_{brk} is the breakdown value of the electric field. For a given $\xi_{\mathrm{brk}}, B V$ varies inversely with the doping levels. The larger the doping levels, the narrower is the depletion region, the larger is $|\xi(0)|$ (Figure 3.1.3b), and the smaller is the voltage required to cause avalanche breakdown. $\xi_{\text {brk }}$ increases somewhat with dopant concentration (Problem 3.1.8) because of the increased probability of "collisions." This effectively reduces the mean free path of carriers, so that a larger $\xi_{b r k}$ is required for avalanche breakdown. $\xi_{b r k}$ is in the range of about 3×10^{5} to $10^{6} \mathrm{~V} / \mathrm{cm}$, in both Si and GaAs , for a concentration range of 10^{15} to $10^{18} / \mathrm{cm}^{3}$. For a given $\xi_{\text {brk }}$,

Concept: If one side of a pn junction diode is much less heavily doped than the other, the breakdown voltage can be closely controlled by varying the dopant concentration in the less heavily doped side.

For example, if $N_{D} \ll N_{A}, B V \cong \xi_{\text {brk }}^{2} \varepsilon / 2|q| N_{D}$.
The other breakdown mechanism is zener breakdown. If the doping levels of both sides are high, the width of the depletion region is relatively small (Equation 3.2.1). At a sufficiently high reverse voltage, empty energy levels in the conduction band on the n-side

FIGURE 3.2.7
Diagrammatic illustration of zener breakdown.
of the junction become aligned with filled energy levels in the valence band on the p-side, as illustrated in Figure 3.2.7. Electrons in the valence band encounter an energy barrier in trying to move to the conduction band, as shown in heavy lines in the figure. If the width of the barrier $W_{\text {barrier }}$ is small enough, in the range of nanometers, an electron in the valence band can "tunnel" through the barrier to the conduction band (Example 2.1.2, Chapter 2), thereby creating an electron-hole pair. As the reverse voltage v_{R} is increased, the net effect is that $W_{\text {barrier }}$ decreases. Since the probability of tunneling increases exponentially as the barrier width decreases, the current increases rapidly with the reverse voltage once tunneling occurs.

The critical factor that determines which type of breakdown occurs is the doping level. If the doping level is sufficiently high, the zero-bias width of the depletion region is small. Tunneling occurs at values of v_{R} in the range of $2.5-5 \mathrm{~V}$. The depletion region is not wide enough to cause avalanche breakdown. At lower doping levels, the depletion region is wider, which is not conducive to tunneling. Instead, avalanche breakdown occurs at v_{R} in the range of 7 V to a few kilovolts. For v_{R} in the range $5-7 \mathrm{~V}$, breakdown can occur by both mechanisms. Breakdown diodes are referred to as "zener diodes" irrespective of the breakdown mechanism, because it was believed at one time that breakdown occurred only by the zener mechanism.

The effect of temperature is different in the two types of breakdown. In zener breakdown, a rise in temperature reduces the width of the energy gap, because the average energy of electrons increases with temperature. This reduces the barrier height so that breakdown occurs at a lower v_{R}. The zener breakdown voltage therefore has a negative temperature coefficient. On the other hand, an increase in temperature reduces the mean free path of the carriers, because of increased amplitude of oscillations of atoms in the crystal. A larger electric field, and hence a larger voltage, is required to impart sufficient energy to the carriers to initiate avalanche breakdown. The avalanche breakdown voltage therefore has a positive temperature coefficient. When breakdown is due to both mechanisms, the temperature coefficient can be very small. Moreover, diodes can be connected in the forward direction in series with zener diodes having a positive temperature coefficient so as to reduce the overall temperature coefficient, but at the expense of increasing the incremental resistance.

A diode can operate safely in the breakdown region if adequate measures are taken to dissipate the heat generated. If not, the temperature can rise sufficiently to cause irreversible damage (Application Window 11.1.1, Chapter 11).

3.3 Semiconductor Photoelectric Devices

Concept: Electron-hole pairs are generated in a semiconductor by light of frequency ν_{rad} if the photon energy $h \nu_{\text {rad }}$ exceeds the bandgap energy $E_{g J}$.

When $h \nu_{\mathrm{rad}}>E_{g J}$, where h is Planck's constant, and $E_{g J}$ is the bandgap energy in joules, electrons in the valence band acquire sufficient energy from incident photons to move to the conduction band, thereby generating electron-hole pairs. This is the basis of operation of semiconductor photoelectric devices.

Photoconductive Cell

Basically, the photoconductive cell is a thin film of semiconductor that is exposed to light. The conductivity of the semiconductor increases with the rate of carrier generation, and hence with light intensity. For a given applied voltage, the current through the semiconductor therefore increases with the light intensity (Example 3.3.1 and Application Window 3.3.1).

Example 3.3.1 Photoconductive Current

It is required to derive an expression for the photoconductive current in a semiconductor film subjected to incident radiation.

Solution

If the power of the incident radiation is $P_{\text {rad }}$, then the number of incident photons $/ \mathrm{s}$ is $P_{\mathrm{rad}} / h \nu$. The additional number of electron-hole pairs generated per unit time per unit volume is:

$$
\begin{equation*}
G_{x}=\zeta\left(\frac{P_{\mathrm{rad}}}{h \nu}\right) \frac{1}{\Lambda} \tag{3.3.1}
\end{equation*}
$$

where
ζ is an efficiency parameter defined as the number of electron-hole pairs generated per incident photon
Λ is the volume
It is assumed that the film is thin enough so that electron-hole pairs are generated uniformly by the radiation throughout the volume Λ.
Under steady-state conditions, $G_{x}=R_{x}(T)$, the rate of recombination. From Equation 2.7.1, Chapter 2, the excess hole and electron concentrations are, respectively, $G_{x} \tau_{h}$ and $G_{x} \tau_{e}$. The total concentrations are $p=G_{x} \tau_{h}+p_{o}$ and $n=G_{x} \tau_{e}+n_{o}$, where p_{o} and n_{o} are the equilibrium concentrations of holes and electrons, respectively. The conductivity is then,

$$
\begin{equation*}
\sigma=|q|\left(p \mu_{h}+n \mu_{e}\right) \tag{3.3.2}
\end{equation*}
$$

If G_{x} is large enough so that $p=n$, then because the rate of recombination is the same for both under steady-state conditions, $\tau_{h} \cong \tau_{e}$.

Note that when carrier concentrations reach steady values, the semiconductor is in a steady state but not at equilibrium. Although pressure, temperature, and electrochemical potential of carriers are equalized throughout the system and do not vary with time, the semiconductor is disturbed by the radiation so that carrier concentrations are higher than their equilibrium values, which means that the semiconductor is not at equilibrium.

Photodiode

When a biased $p n$ junction is exposed to light, the increase in the rate of generation of carriers in the depletion and transition regions modifies the $i-v$ relation to (Section ST3.5):

$$
\begin{equation*}
i_{D}=I_{S}\left(e^{v_{D} / \eta V_{T}}-1\right)-I_{S S} \tag{3.3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{S S}=A_{J}|q| G_{x}\left(W_{d}+L_{h}+L_{e}\right) \tag{3.3.4}
\end{equation*}
$$

G_{x} is given by Equation 3.3.1, W_{d} is the width of the depletion region, and L_{h} and L_{e} are the diffusion lengths of holes and electrons, respectively.

It is seen from Equation 3.3.3 that the $i-v$ characteristic is shifted away from the origin, as illustrated in Figure 3.3.1. In the third quadrant, the reverse current under reverse bias increases markedly with the light intensity. The diode now operates as a photodiode, as illustrated in Figure 3.3.2a, which also shows the photodiode symbol. Figure 3.3.2b depicts the load-line construction, with the characteristics in the third quadrant redrawn so that the diode reverse voltage and current are in the positive directions. The parameter of the characteristics is the total reverse current $I_{S}+I_{S S} \cong I_{S S}$. If $I_{S S 1}$ is the reverse current for a given light intensity, P is the operating point, $v_{P D}$ is the voltage across the diode, and $V_{S R C}-v_{P D}$ is the voltage across R_{L}. If the light intensity increases so that the reverse current is $I_{S S 2}$, the operating point moves to Q . The voltage across the diode decreases, while that across R_{L} increases.

FIGURE 3.3.1
Effect of light on the $i-v$ characteristic of a $p n$ junction diode.

FIGURE 3.3.2
(a) Circuit and symbol of a photodiode; (b) load-line construction.

Photocell

Operation in the fourth quadrant of Figure 3.3.1 results in a photocell, or solar cell, which converts solar energy to electric energy. The basic photocell circuit is illustrated in Figure 3.3.3a, which also shows the photocell symbol. The $i-v$ characteristic in the fourth quadrant is redrawn as a source characteristic in Figure 3.3.3b with a line of slope R_{L} representing the load resistance. Since the photocell acts as a power source, it is important to have maximum power delivered to the load. The condition for maximum power transfer, derived in Section SE3.2, is that the magnitude of the slope of the source characteristic at the operating point is equal to R_{L}.

It is instructive to consider qualitatively, and in terms of electrochemical potential, how a photocell forward voltage is developed under open-circuit conditions in the presence of light. At equilibrium, the chemical potential energy difference of holes between the p-side and the n-side is proportional to $\ln \left(p_{p o} / p_{n o}\right)$ (Equation 2.4.16, Chapter 2), and that of electrons is proportional to $\ln \left(n_{n o} / n_{p o}\right)$. In the presence of light, electrons and holes are generated in equal numbers. If the concentration of holes increases by Δp, the chemical potential energy difference of holes becomes $\ln \frac{p_{p o}+\Delta p}{p_{n o}+\Delta p}$. Since $p_{p o} \gg p_{n o}$, the effect is to reduce the chemical potential energy difference for holes; similarly for electrons. The electric potential energy difference therefore predominates. This means that in the

FIGURE 3.3.3
(a) Circuit and symbol of a photocell; (b) source characteristic and load resistance.
depletion region, where the electric field exists and is directed from the n-side to the p-side, generated holes are swept to the p-side and electrons to the n-side. The p-side becomes positively charged with respect to the n-side and an open-circuit forward voltage $V_{o c}$ is developed. If i_{D} is set to zero in Equation 3.3.3,

$$
\begin{equation*}
V_{o c}=\eta V_{T} \ln \left(\frac{I_{S S}}{I_{S}}+1\right) \tag{3.3.5}
\end{equation*}
$$

At normal levels of radiation, the short-circuit current $I_{s c}$ of the photocell $\left(v_{D}=0\right)$ is practically equal to $I_{S S}$, as can be seen from Figure 3.3.1.

Application Window 3.3.1 Semiconductor Photoelectric Devices

Semiconductor photoelectric devices are examples of transducers that convert radiation energy to electric energy. The material of a photoconductive cell could be lightly doped n-type silicon, cadmium sulfide, or lead sulfide. The material is chosen not only for good sensitivity to light, but also for its ability to dissipate power, and for its spectral response, that is, the variation of its light sensitivity with the wavelength of light. Depending on the application, the photoconductive cell may be required to have its maximum sensitivity to visible light of a particular frequency, for example, or to infrared radiation. The conductance of most photoconductive cells varies almost linearly with light intensity. The change in resistance could be quite considerable, from many $\mathrm{M} \Omega \mathrm{s}$ in the dark to a few hundreds of ohms in bright illumination. Photoconductive cells are used in some light meters to measure light intensity.

The current of a photodiode diode (Figure 3.3.2) can increase several thousand-folds from darkness to bright illumination. Practical photodiodes have a pin structure, in which a relatively wide intrinsic region is interposed between the p - and n-type regions (Figure 3.3.4). This increases the width of the depletion region, and hence $I_{S S}$ (Equation 3.3.4). However, the speed of response is reduced because of the additional time it takes the carriers to drift through the intrinsic region under the influence of the electric field. The width of this region is therefore a compromise between photosensitivity and speed of response. The diode is operated at a reverse bias close to breakdown, resulting in two advantages: (1) the high electric field, which appears mostly in the intrinsic region, increases the drift velocity, and improves the speed of response; and (2) the current is increased because of avalanche multiplication.

The basic structure of a silicon photocell is illustrated in Figure 3.3.5. It is important to have a high efficiency of conversion of solar energy to electric

FIGURE 3.3.4
Figure for Application Window 3.3.1. energy. To capture more of the incident light, the exposed surface is coated with antireflective material. Placing the contacts on the sides would provide maximum exposure of the surface of the cell to incident light, but is avoided because current will then have to flow laterally through the relatively high resistance of the semiconductor in order to reach the contacts. This increases the source resistance of the cell and hence the power loss. Instead, the top contact is in the form of a grid that allows most of the light to reach the semiconductor while shortening the current path. Even then, the efficiency remains low; the power delivered is only about 15% of the incident radiation power. The main cause of inefficiency is the narrow band of wavelengths that is effective in generating electron-hole pairs. Light of energy less than E_{g} cannot

FIGURE 3.3.5
Figure for Application Window 3.3.1.

generate electron-hole pairs, whereas with light of greater energy, the excess energy above E_{g} appears as heat. The efficiency is significantly improved in multijunction cells having two or more layers of material with different bandgaps. The material nearer the surface has a wider bandgap and absorbs high-energy photons, whereas the low-energy photons are absorbed by the lower layers of material having a narrower bandgap. The current delivered by the cell is increased by having a large cell area. In a solar panel, photocells are connected in series-parallel so as to increase the output voltage and current.

A charged-coupled device (CCD) is another important example of a semiconductor photoelectric device. Basically, it consists of an array of metal-oxide-semiconductor (MOS) capacitors (Section ST4.3, Chapter 4) that are coupled by $p n$ channels. The image to be captured is projected onto the exposed array through a lens. Carriers are generated in each capacitor structure, or picture element (pixel), in proportion to the intensity of the light received. By applying a sequence of pulses to the gates, which constitute one set of electrodes of the capacitors, the stored charge in a row of capacitors can be passed from one end of the row to the other and read out sequentially for each capacitor in the row. The process is repeated for all the rows in the array. The information that is read is digitized and processed to provide a two-dimensional reconstruction of the original image. Color can be reproduced in a number of ways. The best, but the most expensive, scheme uses three CCD arrays, one for each of the three primary colors (red, green, and blue). CCD arrays can have more than 6 million elements, which gives high spatial resolution, and are about 100 times more sensitive than photographic film, because they are much more efficient in capturing incident light. This makes them particularly suitable for astronomical telescopes. CCD arrays are widely used in digital, still and video cameras, scanners, optical character recognition (OCR), and machine vision for robots.

3.4 Light-Emitting Diodes

It was pointed out earlier that the diode forward current is accounted for by the recombination of carriers, which implies release of energy as electrons and holes recombine. It may be thought that energy is released as photons of radiation of energy $h \nu=E_{g J}$, where ν is the frequency of the radiation and $E_{g J}$ is the bandgap energy is joules. However, this is not the case in all semiconductors, because,

Concept: When an electron and a hole combine, energy and momentum must be conserved.

FIGURE 3.4.1
Diagrammatic illustration of energy-band diagrams for: (a) a direct-bandgap semiconductor, and (b) an indirectbandgap semiconductor.

To see how conservation of momentum affects the type of recombination that takes place, consider the E vs. k diagram introduced in Section 2.2, Chapter 2, for a hypothetical onedimensional case (Figure 2.2.2, Chapter 2). In a real, three-dimensional crystal, these diagrams have different forms for different directions of k, but all forms for a given semiconductor show separation between conduction bands and valence bands. Based on these E vs. \boldsymbol{k} diagrams, semiconductors can be classified as direct-bandgap or indirect-bandgap semiconductors. In direct-bandgap semiconductors, such as GaAs, the lowest energy of the conduction band occurs at the same value of k as the highest energy of the valence band (Figure 3.4.1a), unlike the case of indirect-bandgap semiconductors, such as Si (Figure 3.4.1b).

In direct-bandgap semiconductors, an electron in the conduction band can drop into an empty level in the valence band, with little or no change in k and hence in its momentum. Conservation of momentum is easily satisfied and a photon of wavelength $h c / E_{g J}$ is emitted. Direct-bandgap semiconductors are therefore efficient emitters of light through recombination and are suitable as a substrate for LEDs and semiconductor lasers. They can also efficiently absorb photons of light having energies greater than E_{g}.

If an electron in an indirect-bandgap semiconductor is to transfer directly from the conduction band to the valence band, then because k at the energy minimum of the conduction band is different from that at the energy maximum of the valence band, the right amount of momentum must be exchanged in interactions with crystal vibrations so as to conserve momentum. Such interactions are rare. Hence, recombination is much more likely to take place via traps that introduce energy levels in the bandgap (Figure 2.7.1, Chapter 2). In this case, energy and momentum are exchanged with the crystal, the energy difference appearing as heat.

Application Window 3.4.1 Light-Emitting Diodes

Photons of visible light having a wavelength in the range of about 460 nm (blue) to 770 nm (red), have corresponding energies, $h c /$ wavelength, that are approximately in the range 2.7 eV (blue) to 1.6 eV (red), which is the range of gap energies obtained with suitable semiconductor materials. Lower gap energies down to about 1.1 eV can give rise to photons of wavelength in the infrared region, which is useful in some practical applications.

The substrates of practical LEDs are gallium arsenide (GaAs), gallium phosphide (GaP), gallium-arsenide-phosphide (GaAsP), gallium nitride (GaN), or indium gallium nitride (InGN). The substrate and type of dopant added to create the necessary $p n$ junction determine the wavelength of emitted light, which is nearly monochromatic, that is, consists of a single frequency, and can be in the blue, green, yellow, orange, or red regions of the electromagnetic spectrum. White LEDs are blue LEDs having a phosphor that fluoresces and emits white light when irradiated by blue light, which is very similar to what happens in a fluorescent lamp.

Special precautions are taken to maximize the fraction of generated light that is emitted through the exposed surface of the diode. Photons that are not emitted are reabsorbed resulting in the generation of electron-hole pairs. LEDs have a diode offset voltage $V_{D 0}$ that is typically in the range $1.2-2 \mathrm{~V}$ and normally operate with forward currents of $20-50 \mathrm{~mA}$.

LEDs are useful as indicators of various types, such as mains, or power-on indicators, and tuning indicators. LEDs are widely used as light sources in many applications, ranging from flashlights to instrumentation systems utilizing optical fibers. Compared to incandescent and fluorescent lamps, they have the following advantages:

1. They are rugged and have a lifetime of at least $100,000 \mathrm{~h}$ if they are not overheated. Moreover, their life expectancy is not shortened by frequent switching on and off, as is the case with incandescent lamps and with fluorescent lamps, particularly at low temperatures.
2. They do not generate much heat and are easy to control and dim.
3. They have a faster turn-on time, which is important in some applications such as brake lights on cars. Because of elimination of the time for heating a filament, LEDs turn on about 0.18 s faster than incandescent lamps. At $80 \mathrm{~km} / \mathrm{h}$, this gives an additional braking distance of about 4 m .
4. Because they do not normally need replacement, LEDs can be soldered in place, thereby avoiding the deterioration of contacts in corrosive atmospheres.

Light is also emitted due to electron-hole recombination in an organic LED (OLED). The OLED, whose structure and operation are diagrammatically illustrated in Figure 3.4.2, consists of an anode, a cathode, and two layers of organic polymer semiconductors: (1) the emissive layer, made of a polymer such as polyfluorene, that transports electrons from the adjacent cathode, and (2) a conductive layer, made of a polymer such as polyaniline, that transports holes. When the anode is made positive with respect to the cathode, electrons are emitted from the cathode and collected at the anode, so the emissive layer becomes negatively charged with electrons and the conductive layer positively charged with holes. Electrons and holes are attracted toward each other and recombine in the emissive layer,

FIGURE 3.4.2
Figure for Application Window 3.4.1.
close to the boundary, because holes have a higher mobility than electrons in organic semiconductors. The energy released on recombination in the emissive layer is in the visible spectrum, resulting in emission of light through either a transparent anode or a transparent cathode. The color of the emitted light depends on the polymer in the emissive layer and its side chains.

OLEDs can be produced by low-cost manufacturing processes, such as ink-jet or silkscreen printing on suitable substrates, which can be flexible or rollable. Compared to LCD panels, they do not need a backlight, consume less power, and have a larger range of color, contrast, and viewing angle. They are used for screen displays on cellular phones, media players, car radios, digital cameras, and in lightweight TV displays that can be hung on a wall. Their useful life is, however, limited, as they degrade after several years.

Exercise 3.4.1

The luminous intensity $I_{\text {lum }}$ of an LED is almost directly proportional to the forward diode current. The relation for a given LED is: $I_{\text {lum }}=0.05 I_{D}$, where I_{D} is in mA and $I_{\text {lum }}$ is in millicandela (mcd). The LED has a forward voltage drop of 1.8 V and is connected in series with a resistor R across a 5 V supply. Determine R such that the luminous intensity is 2 mcd .

Answer: 80Ω.

3.5 Tunnel Diode

Although its practical importance has declined, the tunnel diode is of fundamental interest, as will be demonstrated in this section.

In the tunnel diode, the doping levels of the p - and n-sides are so high that tunneling occurs even for small forward or reverse bias. The energy-band diagram at equilibrium is illustrated in Figure 3.5.1a, where $\kappa_{h p o}$ and $\kappa_{\text {eno }}$ denote, respectively, the electrochemical potentials of majority carriers, which are the same as E_{F} at equilibrium (Section 2.4, Chapter 2). Because of the high doping, E_{F} is no longer in the energy gap, and the donor and acceptor impurity levels broaden to bands that overlap the edges of the conduction and valence bands, respectively. At equilibrium, energy levels are filled to the same level on both sides. Tunneling occurs in both directions with equal probabilities, so the net tunneling current is zero.

When a small reverse bias is applied, energy levels on the n-side, including $\kappa_{\text {eno }}$, are lowered by $v_{R} \mathrm{eV}$ (Figure 3.5.1b). The energy levels of the highest-energy electrons in the valence band on the p-side are now opposite to empty energy levels in the conduction band on the n-side. The probability of electron tunneling is therefore larger from the p-side to the n-side than in the opposite direction. A relatively large reverse current flows (Figure 3.5.2a, region 1).

When a small forward bias is applied, net tunneling occurs in the opposite direction (Figure 3.5.2b), giving rise to an equally large forward current (Figure 3.5.2a, region 2). The $i-v$ characteristic thus has a high slope in the vicinity of the origin, equivalent to a relatively small resistance of a few tens of ohms or less. With increasing forward bias, the forward tunneling current increases until all the energy levels in the conduction band on the n-side are opposite empty levels in the valence band on the p-side (Figure 3.5.2c). At this point, the

FIGURE 3.5.1
Energy-band diagram of a tunnel diode, (a) at equilibrium and (b) for small reverse bias.
tunneling current is at its maximum (Figure 3.5.2a, point 3). If the forward bias is increased further, the tunneling current decreases in magnitude (Figure 3.5.2d), which gives the negative resistance part of the characteristic (Figure 3.5.2a, region 4). Tunneling stops when the energy levels of the conduction band on the n-side are opposite the forbidden gap (Figure 3.5.2e). While tunneling takes place in the forward direction, there is also the normal, but still small, $p n$ junction current due to injection of minority carriers. When tunneling ceases, this latter current builds up rapidly, as in a regular $p n$ junction diode (Figure 3.5.2a, region 5).

The tunnel diode therefore has the composite $i-v$ characteristic illustrated in Figure 3.5.3, which also shows the symbol for the tunnel diode. There is a peak point $\left(I_{p}, V_{p}\right)$, a valley point $\left(I_{v}, V_{v}\right)$, and a forward voltage V_{F}, at which the current again equals I_{p}. If a variable current source is applied to the diode, then as the current increases from zero, the $i-v$ characteristic is swept by the intersection point with a horizontal line, as shown in Figure 3.5.3. Part OP of the characteristic is first traced. If the current is increased just beyond I_{p}, the diode voltage switches abruptly from V_{p} to V_{F}. Further increase of current causes the voltage to increase along part FS. If the current is reduced, path SV is followed. A small decrease in current below I_{v} causes the voltage across the diode to switch from V_{v} to a small value. The negative resistance part of the characteristic is not traced but a switching action occurs when the voltage across the diode changes suddenly. If a variable voltage source is applied, then the entire characteristic can be swept, including the negative resistance region, as illustrated by the vertical line in Figure 3.5.3. When a load line of

FIGURE 3.5.2
(a) Tunneling current of a tunnel diode; (b) to (e) show the energy-band diagrams for increasing forward bias; (b) for a small forward bias; (c) for maximum tunneling current; (d) for reduced tunneling current; and (e) for zero tunneling current.
slope $-1 / R$ is superposed on an $i-v$ characteristic having a negative resistance part, it is instructive to examine the stability of operating points in different parts of the characteristic (Section ST3.9).

Tunnel diodes are usually made from GaAs, which gives a high ratio of I_{p} / I_{v}. Typical parameters are $V_{p} \cong 0.15 \mathrm{~V}, V_{v} \cong 0.5 \mathrm{~V}, V_{F} \cong 1 \mathrm{~V}, I_{p} \cong 2 \mathrm{~mA}$, and $I_{v} \cong 0.1 \mathrm{~mA}$. Tunneling

FIGURE 3.5.3
$i-v$ characteristic of tunnel diode.
takes place at virtually the speed of light, with very little capacitance associated with the junction. Tunnel diodes are therefore suitable for high-frequency operation, as switches and as negative resistance oscillators (Example SE3.4). The peak point (I_{p}, V_{p}), which depends only on tunneling, is quite insensitive to temperature. On the other hand, the valley point $\left(I_{v}, V_{v}\right)$ depends on the normal forward characteristic of a $p n$ junction diode and is temperature sensitive.

3.6 Contacts between Dissimilar Materials

Contacts between dissimilar materials are ubiquitous. The $p n$ junction is between two dissimilar semiconductors that are in turn connected to external elements by semicon-ductor-metal contacts. A different metal is almost invariably used to connect these metal contacts to the diode terminals, which introduces yet another type of contact between dissimilar materials, this time a metal-metal contact.

When dissimilar materials are in contact, some general principles apply.

Concepts:

1. Under equilibrium conditions, the Fermi level E_{F}, being the equilibrium electrochemical potential of current carriers, must be the same throughout.
2. The alignment of E_{F} is brought about by a contact potential, which is the junction potential in the case of the pn junction. The contact potential lowers electron energy levels on the positively charged side, with respect to those on the negatively charged side, so as to align E_{F}.
3. The contact potential is associated with a net charge on either side of the contact. In semiconductors, the net charge is a space charge in a depletion region of the semiconductor. In metals, the net charge is a surface charge, because the high conductivity precludes a space charge.

FIGURE 3.6.1
Measurement of voltage between the two terminals of a $p n$ junction diode at equilibrium using a current-actuated voltmeter.

Given that a contact difference of potential exists between dissimilar materials, would it be possible to measure such differences of potential by means of an ordinary, currentactuated voltmeter? To answer this question, consider the voltmeter connected to diode terminals at a and b, as in Figure 3.6.1, where the voltmeter is represented by its resistance, which can be very large but is finite nevertheless. Clearly, no current flows in the circuit at equilibrium; the electrochemical potential of current carriers, which are electrons in the external copper wires, is the same throughout. In other words, there is no driving force to drive current through the circuit.

The preceding argument emphasizes that a current-actuated voltmeter actually measures electrochemical potential difference, since this is fundamentally the driving force for current. In the absence of differences of concentrations of current carriers, that is, differences in chemical potential of carriers, the electrochemical potential difference is the same as the electric potential difference. In principle, contact potential can be measured by an electrometer-type voltmeter, whose indication depends on forces between charges in capacitor structures.

Another implication is for Kirchhoff's voltage law, which fundamentally depends on conservation of energy (Sabah 2008, p. 50). Since the equilibrium contact potential balances the chemical potential, it does not enter into conservation of energy in terms of currents and voltages. It follows that, in the presence of concentration gradients of current carriers, Kirchhoff's voltage law applies to electrochemical potential differences and not to voltages, as discussed in connection with Equation ST5.6.7, Section ST5.6, Chapter 5, for the JFET.

Metal-Metal Contacts

If an electron attempts to escape from a metal, it leaves behind a net positive charge $+|q|$ that attracts the electron back to the metal. An electric potential barrier therefore exists at the surface of the metal, which must be surmounted by the electron if it is to escape from the metal.

The energy-band diagram of a metal is illustrated in Figure 3.6.2a. At $0 \mathrm{~K}, E_{F}$ is the highest energy level of conduction electrons. The zero energy level is theoretically at infinity and is that of a free electron at rest. In practice, zero energy is that of an electron that just escapes from the metal with zero KE. The work function ϕ_{W} of the metal is the minimum energy that must be possessed by an electron at 0 K to enable it to escape from the metal. It is the energy difference between E_{F} and the zero level outside the metal.

Consider two metals 1 and 2 in contact at equilibrium (Figure 3.6.2b). Let the work functions of the two metals be $\phi_{W 1}$ and $\phi_{W 2} \mathrm{eV}$, where $\phi_{W 1}<\phi_{W 2}$. Because of the

FIGURE 3.6.2
Contact between two metals of different work functions. (a) Energy-band diagram of a metal at 0K; (b) metalmetal contact at equilibrium; (c) energy-band diagram at equilibrium.

difference in work functions, more electrons are able to leave metal 1 to metal 2 than in the opposite direction. As a result, metal 2 acquires a net negative charge, whereas metal 1 acquires an equal and opposite positive charge. The resulting difference in electric potential opposes the flow of electrons from metal 1 to metal 2. At equilibrium, the electrochemical potential of electrons in the two metals is the same, and E_{F} is aligned (Figure 3.6.2c). There will be a contact potential in volts of ($\phi_{W 2}-\phi_{W 1}$), which is that required to raise the energy levels of metal 2 with respect to those of metal 1 so as to align E_{F}. The charges on metals 1 and 2 are surface charges.

Metal-Semiconductor Contacts

It will be argued in this section, in a highly simplified manner that is intended mainly to highlight some of the basic principles involved, that metal-semiconductor contacts are of two general types: rectifying and nonrectifying. A practical example of a rectifying contact is the Schottky diode, considered at the end of this section. Nonrectifying contacts, or ohmic contacts, are required for making connections between semiconductors and external elements.

Consider a metal of high work function in contact with an n-type semiconductor having a lower work function (Figure 3.6.3a). Initially, there will be a net flow of electrons from the n-type semiconductor to the metal. At equilibrium, the metal will have a negative surface charge, the semiconductor an equal, positive space charge. In the semiconductor, the space charge arises from a reduced concentration of conduction electrons leaving an excess of positively charged donor ions. The edge of the conduction band is bent upward, away from the Fermi level (Figure 3.6.3b) so as to reduce the concentration of electrons in the conduction band, as required to produce the space charge. Alternatively, it may be argued that the body of the semiconductor, sufficiently far from the contact surface, is at a positive potential with respect to the metal, because of the positive charge in depletion region. This reduces the electric potential energy of electrons and shifts electron energy levels in the semiconductor downward in order to align E_{F}. As the contact surface is approached, less positive charge is enclosed between the given point and the contact surface. The potential of the semiconductor becomes less positive. Electron energy levels are therefore raised as the contact surface is approached.

FIGURE 3.6.3
Contact between an n-type semiconductor and a metal of higher work function. (a) Metal-semiconductor contact; (b) energy-band diagram.

The upward bending of the conduction band introduces at the interface an energy barrier to electrons moving across the contact in either direction. The barrier is normally too wide for any significant tunneling to occur, so only electrons possessing energies greater than the barrier height are able to cross the barrier. Electron energies are distributed according to the Fermi-Dirac statistical distribution function (Section 2.2, Chapter 2), which can be approximated by a Maxwell-Boltzmann distribution for higher-energy electrons. Thus, if E_{B} is the nominal height of the energy barrier for conduction electrons, the number of electrons having energies of at least E_{B} is proportional to $e^{-E_{B} / V_{T}}$. The electron current at equilibrium, in either direction, can therefore be expressed as $B e^{-E_{B} / V_{T}}$, where B is some proportionality constant.

If the semiconductor is made negative with respect to the metal by a bias voltage v_{B}, electron energies in the semiconductor are raised, which reduces the barrier height on the semiconductor side by $v_{B} \mathrm{~V}$ (Figure 3.6.4a); conversely, if the semiconductor is made positive with respect to the metal (Figure 3.6.4b). In both cases, the barrier, as seen from the side of the metal is unchanged, so electron flow from the metal to the semiconductor is the same as at equilibrium. On the semiconductor side, the number of electrons having energies that enable them to surmount the barrier is proportional to $e^{-\left(E_{B}-v_{B}\right) / V_{T}}$, where this number is larger than the equilibrium value for $v_{B}>0$ (Figure 3.6.4a), and is smaller when

FIGURE 3.6.4
Energy barrier of the contact of Figure 3.6.3 under forward bias (a) and under reverse bias (b).
$v_{B}<0$ (Figure 3.6.4b). If we subtract from this the electron flow from the metal to the semiconductor, the net electron flow from the semiconductor to the metal is proportional to $e^{-E_{B} / k T}\left(1-e^{v_{B} / V_{T}}\right)$. The current, in the conventional sense, from the metal to the semiconductor can be expressed as:

$$
\begin{equation*}
i_{B D}=I_{B 0}\left(e^{v_{B} / V_{T}}-1\right) \tag{3.6.1}
\end{equation*}
$$

Equation 3.6.1 is of the same form as Equation 3.2.3 for a $p n$ junction diode and shows that a contact between a metal and an n-type semiconductor of lower work function has rectifying properties. The preceding discussion neglects the effect on the barrier height of charge in surface states. The density of these surface states is very much influenced by the crystal orientation, by the metal used, and by the treatment of the semiconductor surface (Section 4.8, Chapter 4).

Consider next the case of a metal-semiconductor contact in which the metal has a lower work function than the semiconductor (Figure 3.6.5a). There will be a net flow of electrons from the metal to the n-type semiconductor, with the result that the semiconductor gains electrons, whereas the metal loses electrons. At equilibrium, the metal will have a positive surface charge, the semiconductor an equal but negative space charge. In the semiconductor, the volume space charge arises from an increased concentration of conduction electrons. The edge of the conduction band is therefore bent downward, toward the Fermi level (Figure 3.6.5b), which increases the concentration of electrons in the conduction band, as required. The barrier will be small, or virtually nonexistent. The contact is therefore nonrectifying, or ohmic.

Similarly, a contact between a p-type semiconductor and a metal of lower work function is rectifying, whereas a contact between such a semiconductor and a metal of higher work function is nonrectifying. The Schottky diode is based on a metal-Si semiconductor contact, whereas the metal-semiconductor field-effect transistor (MESFET) is based on a metal-GaAs semiconductor contact (Section 5.7, Chapter 5).

FIGURE 3.6.5
Contact between an n-type semiconductor and a metal of lower work function. (a) Metal-semiconductor contact; (b) energy-band diagram.

Schottky Diode

A rectifying contact is formed in this diode between a metal and an n-type semiconductor of lower work function. In a Si Schottky diode, the metal used, which is usually platinum or nickel, reacts with Si to produce a silicide (Section 4.3, Chapter 4), which has the energy-band structure of a metal and makes the diode properties insensitive to the type of cleaning treatment of the semiconductor surface prior to application of the metal. The diode is forward biased by making the metal positive with respect to the semiconductor, as in a $p n$ junction diode. Figure 3.6 .6 shows the symbol for the Schottky diode.

The $i-v$ characteristic of the Schottky diode is of the form given by

Cathode (n-type semiconductor)

FIGURE 3.6.6
Symbol of a Schottky diode. Equation 3.6.1. The saturation current $I_{B 0}$ is, however, several orders of magnitude larger than that of a $p n$ junction diode having the same junction area. This also reduces the diode offset voltage to approximately 0.3 V (Exercise 1.2.1, Chapter 1). The reverse breakdown voltage of the Schottky diode is also smaller than that of a comparable $p n$ junction diode. Nevertheless, Schottky diodes have some distinct advantages. They do not depend on minority carrier injection for their operation. The absence of minority carrier storage means that the Schottky diode can switch substantial currents at very high speeds. Another consequence is insensitivity to radiation, which increases the rate of generation of carriers and therefore affects devices that depend for their operation on minority carriers. Schottky diodes are extensively used in Schottky transistor-transistor logic (TTL) digital circuits (Section 13.6, Chapter 13) to limit transistor saturation.

3.7 Heterojunction

A heterojunction is a $p n$ junction formed between two dissimilar semiconductors, which are chosen to have different bandgap energies E_{g} but nearly equal lattice constants, that is, dimensions of the unit cell. The near-equality of lattice constants ensures crystal continuity, so there are no unsatisfied bonds at the interface that would trap carriers and therefore impede their motion between the two semiconductors. In the Si heterojunction of practical importance, the n-type semiconductor is Si , having a bandgap of 1.12 eV , whereas the p-type semiconductor is made up of silicon-germanium (SiGe) having $15-20 \% \mathrm{Ge}$, which reduces the bandgap to $0.8-0.9 \mathrm{~V}$ (Section 4.8, Chapter 4). In GaAs heterojunctions, the p-type semiconductor is GaAs, having a bandgap of 1.42 eV , and the n-type semiconductor is usually GaAsAl having a bandgap of approximately $1.6-1.8 \mathrm{eV}$, depending on the concentration of Al. The Si heterojunction is considered in what follows.

We will start by applying the depletion approximation (Section 3.1) to the heterojunction, as shown in Figure 3.7.1. In comparing this figure with Figure 3.1.2 for a homojunction, charge neutrality of the semiconductor as a whole requires, as in the case of a homojunction that:

$$
\begin{equation*}
N_{D} W_{n}=N_{A} W_{p} \tag{3.7.1}
\end{equation*}
$$

At the junction, the electric displacement $D=\varepsilon \xi$ is continuous, so that:

$$
\begin{equation*}
\varepsilon_{n} \xi_{n}(0)=\varepsilon_{p} \xi_{p}(0) \tag{3.7.2}
\end{equation*}
$$

where ε_{n} and ε_{p} are the permittivities of the n-type and p-type semiconductors, respectively. As the relative permittivity of Ge is 16.2 , compared to 11.9 for $\mathrm{Si}, \varepsilon_{p}>\varepsilon_{n}$, so that $\left|\xi_{p}(0)\right|<$ $\left|\xi_{n}(0)\right|$. The electric field is discontinuous at the junction, as shown in Figure 3.7.1b. In accordance with Gauss's law, the magnitude of the electric field at the junction on either side equals the area of the corresponding charge rectangle in Figure 3.7.1a divided by the permittivity. Thus,

$$
\begin{equation*}
\left|\xi_{n}(0)\right|=\frac{|q| N_{D}}{\varepsilon_{n}} W_{n}, \quad \text { and } \quad\left|\xi_{p}(0)\right|=\frac{|q| N_{A}}{\varepsilon_{p}} W_{p} \tag{3.7.3}
\end{equation*}
$$

It is seen that Equation 3.7.3 is consistent with Equations 3.7.1 and 3.7.2.

Considering, for convenience, the voltage at the junction to be zero, the voltage of either semiconductor beyond the depletion region is given by the area of the corresponding $\xi-x$ triangle:

$$
\begin{equation*}
V_{n}=\frac{|q| N_{D}}{2 \varepsilon_{n}} W_{n}^{2}, \quad \text { and } \quad V_{p}=\frac{|q| N_{A}}{2 \varepsilon_{p}} W_{p}^{2} \tag{3.7.4}
\end{equation*}
$$

It follows from Equations 3.7.4 that:

$$
\begin{equation*}
W_{n}=\sqrt{\frac{2 \varepsilon_{n}}{|q| N_{D}} V_{n}}, \quad \text { and } \quad W_{p}=\sqrt{\frac{2 \varepsilon_{p}}{|q| N_{A}} V_{p}} \tag{3.7.5}
\end{equation*}
$$

Using Equations 3.7.1 and 3.7.4,

$$
\begin{equation*}
\frac{V_{n}}{V_{p}}=\frac{\varepsilon_{p} N_{A}}{\varepsilon_{n} N_{D}} \tag{3.7.6}
\end{equation*}
$$

The voltage variation is shown in Figure 3.7.1c. The voltage at the junction is continuous, because a discontinuity in voltage is generally due to an electric double layer at the interface. This is a surface sheet of charge, of infinitesimal thickness, having positive charges on one side and equal and opposite negative charges on the other. Since atomic bonding is assumed to be continuous across the interface, there are no surface charges. However, the slope of the voltage curve is discontinuous at the interface because of the discontinuity in the electric field.

The equilibrium junction potential $V_{n p o}$ is $V_{n}+V_{p}$. From Equation 3.7.6,

$$
\begin{equation*}
V_{n}=\frac{\varepsilon_{p} N_{A}}{\varepsilon_{p} N_{A}+\varepsilon_{n} N_{D}} V_{n p o}, \quad \text { and } \quad V_{p}=\frac{\varepsilon_{n} N_{D}}{\varepsilon_{p} N_{A}+\varepsilon_{n} N_{D}} V_{n p o} \tag{3.7.7}
\end{equation*}
$$

Substituting in the relations of Equation 3.7.5,

$$
\begin{equation*}
W_{n}=\sqrt{\frac{2 \varepsilon_{n} \varepsilon_{p} N_{A}}{|q| N_{D}\left(\varepsilon_{p} N_{A}+\varepsilon_{n} N_{D}\right)} V_{n p o}} \tag{3.7.8}
\end{equation*}
$$

$$
\begin{equation*}
W_{p}=\sqrt{\frac{2 \varepsilon_{n} \varepsilon_{p} N_{D}}{|q| N_{A}\left(\varepsilon_{p} N_{A}+\varepsilon_{n} N_{D}\right)} V_{n p o}} \tag{3.7.9}
\end{equation*}
$$

The total width of the depletion region is $W_{d}=W_{n}+W_{p}$. Hence,

$$
\begin{equation*}
W_{d}=\sqrt{\frac{2 \varepsilon_{n} \varepsilon_{p}}{|q|\left(\varepsilon_{p} N_{A}+\varepsilon_{n} N_{D}\right)} \frac{\left(N_{A}+N_{D}\right)^{2}}{N_{A} N_{D}} V_{n p o}} \tag{3.7.10}
\end{equation*}
$$

If $\varepsilon_{n}=\varepsilon_{p}=\varepsilon$, Equation 3.7.10 reduces to Equation 3.1.11.
The energy-band diagrams of the two semiconductors in isolation are shown in Figure 3.7.2a. When the two semiconductors form a junction, E_{F} is aligned as usual by having the n-side at a more positive potential $V_{n p o}$ with respect to the p-side. This is reflected in Figure 3.7.2b by having the zero energy level on the n-side lowered by $V_{n p o}$ with respect to the p-side, where all energy levels are expressed in electron volts.

FIGURE 3.7.2
Energy-band diagrams of an n-type semiconductor and a p-type semiconductor, (a) in isolation and (b) when forming a $p n$ heterojunction.

To align E_{F},

$$
\begin{equation*}
V_{n p o}=\phi_{p}-\phi_{n} \tag{3.7.11}
\end{equation*}
$$

$V_{n p o}=V_{p}+V_{n}$, where V_{p} is the voltage between the zero level on the p-side and the junction at $x=0$, and V_{n} is the voltage between the junction and the zero level on the n-side.

In a homojunction, where E_{g} is the same on both sides of the junction, the edges of the conduction and valence bands on the n-side are also lowered by $V_{n p o}$ with respect to those on the p-side when E_{F} is aligned (Figure 3.1.2). In the heterojunction, the gaps differ by ΔE_{g} expressed as:

$$
\begin{equation*}
\Delta E_{g}=E_{g n}-E_{g p}=\Delta E_{c}+\Delta E_{v} \tag{3.7.12}
\end{equation*}
$$

The division of ΔE_{g} between ΔE_{c} and ΔE_{v} is governed by the electron affinity, defined as the energy $\chi \mathrm{eV}$ needed to move an electron from the edge of the conduction band E_{c} to the zero level. It follows from Figure 3.7.1b that:

$$
\begin{equation*}
\Delta E_{c}=\chi_{p}-\chi_{n} \tag{3.7.13}
\end{equation*}
$$

If $\chi_{p}>\chi_{n}$, as in Figure 3.7.1b, a discontinuity ΔE_{c} is introduced in the conduction band, as shown in the figure. A discontinuity ΔE_{v} is also introduced in the valence band to give $E_{g n}$ in accordance with Equation 3.7.12. Note that if $\chi_{p}=\chi_{n}$, then $\Delta E_{c}=0$; there is no discontinuity in the conduction band, but a discontinuity of ΔE_{g} occurs in the valence band.

In each semiconductor,

$$
\begin{equation*}
p_{p o} n_{p o}=n_{i p}^{2}, \quad \text { and } \quad n_{n o} p_{n o}=n_{i n}^{2} \tag{3.7.14}
\end{equation*}
$$

From Equation 2.5.5, Chapter 2,

$$
\begin{equation*}
n_{i p}^{2}=N_{c p} N_{v p} e^{-E_{g p} / k T}, \quad \text { and } \quad n_{i n}^{2}=N_{c n} N_{v n} e^{-E_{g n} / k T} \tag{3.7.15}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
\frac{n_{i p}^{2}}{n_{i n}^{2}}=\frac{p_{p o} n_{p o}}{n_{n o} p_{n o}}=\frac{N_{c p} N_{v p}}{N_{c n} N_{v n}} e^{\Delta E_{g} / k T} \tag{3.7.16}
\end{equation*}
$$

Equating the change in chemical potential of holes to the change in electric potential,

$$
\begin{equation*}
k T \ln \frac{p_{p o}}{p_{n o}}=E_{v p}-E_{v n}=V_{n p o}+\Delta E_{v} \tag{3.7.17}
\end{equation*}
$$

Similarly for electrons,

$$
\begin{equation*}
k T \ln \frac{n_{n o}}{n_{p o}}=E_{c p}-E_{c n}=V_{n p o}-\Delta E_{c} \tag{3.7.18}
\end{equation*}
$$

Subtracting Equation 3.7.18 from Equation 3.7.17 gives:

$$
\begin{equation*}
k T \ln \frac{p_{p o} n_{p o}}{n_{n o} p_{n o}}=\Delta E_{g} \tag{3.7.19}
\end{equation*}
$$

Equation 3.7.19 is consistent with Equation 3.7.16, because Equations 3.7.17 and 3.7.18 do not account for any changes in the effective masses of electrons and holes on the two sides. If these effective masses are the same, $N_{c p}=N_{c n}$ (Equation 2.5.3, Chapter 2) and $N_{v p}=N_{v n}$ (Equation 2.5.4, Chapter 2). Equation 3.7.16 then reduces to Equation 3.7.19.

The importance of heterojunctions is mainly in their use as the base-emitter junctions in bipolar junction transistors (Section 6.4, Chapter 6).

Summary of Main Concepts and Results

- In a $p n$ junction at equilibrium, electrons (holes) have a higher (lower) chemical potential energy on the n-side than on the p-side but a lower (higher) electric potential energy, so that their electrochemical potential is the same on both sides. The electric potential energy difference results in an equilibrium junction potential. At equilibrium, the electron (hole) diffusion current is equal and opposite to the electron (hole) drift current. These currents are so large that the biased junction is never far removed from equilibrium.
- Under forward bias, the drift-diffusion balance is upset in favor of diffusion. Minority carriers are injected, and the forward current of the diode is a recombination current that supplies the carriers that recombine in the depletion and transition regions on both sides of the junction.
- Under reverse bias, the drift-diffusion balance is upset in favor of drift. Minority carrier extraction takes place, and the reverse current of the diode is essentially a generation current that is carried by minority carriers and which removes the carriers generated in the depletion and transition regions on both sides of the junction.
- Since the majority carrier concentration vastly exceeds the minority carrier concentration, the forward current is much larger than the reverse current. The pn junction therefore behaves as a rectifier.
- A $p n$ junction has two types of capacitance: a depletion capacitance associated with charges in the depletion regions, and a diffusion capacitance associated with charges due to injection or extraction of minority carriers in the transition regions. Both capacitances increase with the forward bias and decrease with the reverse bias. Under forward bias, the diffusion capacitance is dominant, whereas under reverse bias, the depletion capacitance is dominant. The capacitances introduce a finite reverse recovery time when the diode is switched from forward bias to reverse bias.
- The effect of temperature on a $p n$ junction diode is to cause I_{R} to approximately double per $10^{\circ} \mathrm{C}$ rise in T, and v_{D} to decrease by about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at constant i_{D}.
- In a heavily doped $p n$ junction diode, breakdown occurs at a reverse voltage of $2.5-5 \mathrm{~V}$ due to zener breakdown. Electrons in the valence band of the p-semiconductor tunnel through the energy gap and become conduction electrons in the n-semiconductor. $B V$ has a negative temperature coefficient. In a less heavily doped $p n$ junction diode, breakdown occurs at a reverse voltage between about 7 V and a few kilovolts due to avalanche breakdown. Electrons and holes acquire
sufficient KE between "collisions" with crystal atoms to cause ionizing "collisions" with these atoms. $B V$ has a positive temperature coefficient.
- The effect of light on semiconductors is to increase the rate of generation of carriers, and hence the electrical conductivity. In a $p n$ junction diode, the reverse current is greatly increased-an effect used in photodiodes. The forward $i-v$ characteristic is displaced in the direction of positive forward voltage leading to a photocell that converts light energy to electric energy.
- Energy released when electrons and holes recombine during forward conduction of a $p n$ junction diode falls within the infrared and visible parts of the spectrum. However, only in direct recombination, which occurs in direct gap semiconductors such as GaAs, is useful radiation emitted. This forms the basis of operation of LEDs. In indirect gap semiconductors, such as Si , recombination takes place mainly via traps or surface states having energies within the forbidden gap. Energy is released as heat.
- In a tunnel diode, doping levels are so high that electron tunneling takes place for small forward or reverse bias. The tunneling current produces a negative resistance region in the forward $i-v$ characteristic, which can be used for switching purposes or to construct high-frequency oscillators.
- When dissimilar materials are in contact at equilibrium, the electrochemical potential of current carriers, and E_{F}, must be the same throughout. The alignment of E_{F} is brought about by a contact potential between the two materials. The contact potential is associated with a net charge distribution that is a surface charge in metals and a volume charge in semiconductors.
- A current-actuated voltmeter fundamentally measures differences in electrochemical potential. In the absence of differences in chemical potential, the voltmeter measures differences in electric potential. In the presence of chemical potential differences, KVL applies to electrochemical potential differences.
- The work function of a metal is the minimum energy that must be imparted to an electron at 0 K to enable it to escape from the metal. A contact between a metal of high work function and an n-type semiconductor is rectifying, as in a Schottky diode. On the other hand, a contact between a metal of low work function and an n-type semiconductor is nonrectifying, or ohmic.
- A heterojunction is formed between n-type Si and p-type SiGe that contains 15% $25 \% \mathrm{Ge}$. The energy gaps between the conduction and valence bands in the two semiconductors are no longer equal, which can be utilized in improving the performance of bipolar junction transistors.

Learning Outcomes

- Articulate the physical basis for rectification in a $p n$ junction diode, junction capacitances, junction breakdown, effect of light on a $p n$ junction, emission of light by a $p n$ junction, and operation of the tunnel diode, Schottky diode, and heterojunction.

Supplementary Examples and Topics on Website

SE3.1 Capacitances of Abrupt and Graded Junctions. Determines the depletion capacitances of abrupt and linearly graded junctions.

SE3.2 Maximum Power Output from Solar Cell. Derives the condition for maximum power transfer from a solar cell.
SE3.3 LED Mains Indicator. Considers three alternative designs for such an indicator.
SE3.4 Tunnel Diode Oscillator. Analyzes the operation of a tunnel diode oscillator.
ST3.1 Exact Analysis of $\boldsymbol{p} \boldsymbol{n}$ Junction at Equilibrium. Indicates how $N_{A}^{+}, N_{D}^{-}, n_{n o}, p_{n o}, p_{p o}$, and $p_{n o}$, as well as $V(x), n_{o}(x)$, and $p_{o}(x)$ in the depletion region, can be derived without making the usual simplifying assumptions. Applies Poisson's equation and Boltzmann's relations to obtain an expression for the Debye length.

ST3.2 Diffusion and Drift Currents under Forward Bias and Reverse Bias. Illustrates the division of electron and hole currents into drift and diffusion components under forward bias and reverse bias.

ST3.3 Diode Transients. Discusses diode transients in terms of the diode capacitances and the charge concentration profile.

ST3.4 Continuity Equation. Derives the continuity equation and applies it to minority carrier injection across a $p n$ junction; shows that the diffusion length can be interpreted as the mean distance through which a minority carrier travels before it recombines. The continuity equation is used to derive the dielectric relaxation time and its relation to the Debye length.
ST3.5 Quantitative Analysis of $p n$ Junction. States, in terms of electrochemical potential, the assumptions made in the simplified analysis of the $p n$ junction and derives the diode current.

ST3.6 Recombination Current of a $p \boldsymbol{n}$ Junction Diode. Derives the expression for the recombination current, which dominates at low forward currents, and which has $\eta=2$.

ST3.7 High-Level Injection in a $p n$ Junction Diode. Shows that $\eta=2$ for high-level injection.

ST3.8 Short-Base Diode. Derives the expression for current in a short-base diode, in which the length of one side is small compared to the diffusion length of minority carriers on that side.

ST3.9 Stability of Operating Points on $i=v$ Characteristic with Negative Resistance Part. Derives the criterion for stability in terms of the slopes of the load line and the different parts of an $i-v$ characteristic having a negative resistance part.

Problems and Exercises

P3.1 $p n$ Junction Diode

P3.1.1 Determine $V_{n p o}$ for a $p n$ junction in which the doping concentration is 1 in 10^{6} on the n side and is: (a) 1 in 10^{6}, (b) 1 in 10^{8} on the p-side.
P3.1.2 Repeat Problem P3.1.1 with the n-side and p-side interchanged.
P3.1.3 What would you expect $V_{n p o}$ to be at $T=0$? Justify your answer.

P3.1.4 Compare $V_{n p o}$ for Si and GaAs $p n$ junctions having the same N_{A} and N_{D} at 300 K .
P3.1.5 Consider a Si $p n$ junction at 300 K having $N_{A}=10^{16} / \mathrm{cm}^{3}$ and $N_{D}=10^{14} / \mathrm{cm}^{3}$. Assuming that the junction is abrupt and that the depletion approximation applies, determine the effect of multiplying N_{D} by 10 on: (a) W_{n} and W_{p}; (b) the maximum electric field.
P3.1.6 Repeat Problem P3.1.5 with $N_{A}=10^{15} / \mathrm{cm}^{3}$ and N_{D} of: (a) $10^{13} / \mathrm{cm}^{3}$, (b) $10^{14} / \mathrm{cm}^{3}$. What can you conclude from the results of this problem and those of Problem P3.1.5?
P3.1.7 N_{A} and N_{D} on the two sides of a $p n$ junction are varied but their product is kept constant at $10^{32} / \mathrm{cm}^{6}$. For what N_{A} and N_{D} is the width of the depletion region W_{d}, a minimum?
P3.1.8 (a) Derive Equation 3.2.20. (b) A Si $p n$ diode has $N_{A}=10^{18} / \mathrm{cm}^{3}$. Determine N_{D} that would give a breakdown voltage of 50 V , assuming that in the range of $N_{D}=10^{16} / \mathrm{cm}^{3}$ to $10^{17} / \mathrm{cm}^{3}, \xi_{\text {brk }}$ varies with N_{D} as $\xi_{\text {brk }}=4.45 \times 10^{5}+4 \log _{10}\left(N_{D} / 10^{16}\right) \mathrm{V} / \mathrm{cm}$.
P3.1.9 Consider a $p n$ junction diode with $N_{A}>N_{D}$. Compare the magnitudes of the hole and electron currents under: (a) forward bias, (b) reverse bias.
P3.1.10 If I_{R} doubles every $10^{\circ} \mathrm{C}$, what is the percentage increase per ${ }^{\circ} \mathrm{C}$. By what factor does the current changes if T increases by: (a) $15^{\circ} \mathrm{C}$, or (b) by an arbitrary change of $\Delta T^{\circ} \mathrm{C}$.
P3.1.11 If I_{S} varies by 15% per ${ }^{\circ} \mathrm{C}$ and I_{R} varies by 10% per ${ }^{\circ} \mathrm{C}$, what percentage of I_{R} is I_{S}, assuming that $I_{\text {leak }}$ does not change with T ? If the variation of I_{R} is measured at $I_{R}=1 \mathrm{nA}$ and a reverse voltage of 10 V , what is the leakage resistance of the diode?
P3.1.12 Consider a Si $p n$ junction diode having $I_{S}=10 \mathrm{nA}, \eta=2$, and operating at a forward voltage of 0.7 V at 300 K . If the temperature increases by 50 K , what is the change in: (a) I_{S}, (b) i_{D} ? Use Equation 3.2.16 for I_{S} assuming $b=3$ and $E_{g}=1.1 .2 \mathrm{eV}$, and use Equation 1.1.1, Chapter 1, for i_{D}.
P3.1.13 A pn junction diode has a capacitance of 1.05 pF at a reverse voltage of 3 V and 0.72 pF at a reverse voltage of 9 V . If $V_{n p o}=0.75 \mathrm{~V}$, determine: (a) the grading coefficient m, (b) $C_{d p 0}$.

P3.1.14 Are the capacitances due to charges of stored minority carriers on the two sides of a forward-biased $p n$ junction, in series or in parallel? Justify your answer.
P3.1.15 A $p n$ junction that is reverse biased at 5 V has $I_{S}=10 \mathrm{pA}, V_{n p o}=0.7 \mathrm{~V}$, and $C_{d p 0}=2 \mathrm{pF}$. If the reverse voltage is suddenly changed by 100 mV , what is the transient change in the charge flowing through the diode? What percentage of the total charge that passes through the diode in 100μ s does this represent? Assume that the junction is abrupt.
P3.1.16 Using Equations 3.2.5 and 3.2.6, express the mean transit time τ_{T} in terms of the diode parameters.
P3.1.17 A Si $p n$ diode has $N_{A}=10^{17} / \mathrm{cm}^{3}, N_{D}=10^{15} / \mathrm{cm}^{3}, \mu_{e}=1200 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{h}=400 \mathrm{~cm}^{2} / \mathrm{Vs}$, $\tau_{e}=2 \mu \mathrm{~s}$, and $\tau_{h}=8 \mu \mathrm{~s}$. Calculate the hole and electron current densities at a forward voltage of 0.68 V at 300 K .
P3.1.18 Repeat Problem P3.1.17 for GaAs, assuming $\mu_{e}=8000 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{h}=350 \mathrm{~cm}^{2} /$ Vs, $\tau_{e}=1$ ns , and $\tau_{h}=10 \mathrm{~ns}$.
P3.1.19 Consider a Si $p n$ diode at 300 K having $N_{A}=10^{17} / \mathrm{cm}^{3}$ and $N_{D}=10^{15} / \mathrm{cm}^{3}$. (a) Determine v_{D} at which the concentration of holes at the edge of the transition region on the n-side becomes comparable with the concentration of majority carriers on this side, say onefifth. This can be considered the limit of low-level injection. At this voltage, (b) what is the corresponding ratio of the electron concentration at the edge of the transition region on the p-side to the concentration of majority carriers on this side? (c) What is the width of the depletion region on each side?
P3.1.2 The hole diffusion length in a $p^{+} n$ diode is $2 \mu \mathrm{~m}$. In a $p^{+} n$ diode under forward bias, the ratio of the hole diffusion current to the electron diffusion current at the edge of the transition region on the n side is 50 . Determine this ratio at a distance L_{h} from the edge of the transition region, assuming that the total diffusion current is the same.
P3.1.21 Calculate the equilibrium electron drift and diffusion currents in Example 3.1.1.

P3.1.22 Repeat Example 3.1.1 if $N_{A}=10^{18} / \mathrm{cm}^{3}$ and $N_{D}=10^{16} / \mathrm{cm}^{3}$.
P3.1.2 Sketch the voltage variations across the junction in Example 3.1.1 using the depletion approximation.
P3.1.24 The junction of a $p n$ Si diode has an area of $10^{5} \mu \mathrm{~m}^{2}, N_{A}=10^{18} / \mathrm{cm}^{3}$, and $N_{D}=10^{16} / \mathrm{cm}^{3}$. Determine (a) $C_{d p 0}$ and (b) $C_{d p}$ at a reverse bias of 10 V .
P3.1.25 A $p n$ junction Si diode has $\tau_{h}=100 \mathrm{~ns}$ and $\eta=1.6$. Determine C_{d} at i_{D} of: (a) 1 mA , (b) 10 mA .

P3.2 Special-Purpose Diodes

P3.2.1 Is an abrupt or a graded junction more desirable for a varactor diode? Assume that a varactor diode has an abrupt junction, a $C_{d p 0}$ of 5 pF , and a $V_{n p o}$ of 0.8 V . It is required to resonate with a $1 \mu \mathrm{H}$ inductor at 100 MHz . Determine the required reverse bias.
P3.2.2 A photocell has $I_{S}=1 \mathrm{nA}$ and $I_{S S}=100 \mathrm{~mA}$. Subject to the simplifying assumptions made in Section 3.3, determine: (a) $I_{s c}$; (b) $V_{o c}$; (c) $v_{P C}$ for maximum power transfer; and (d) the maximum power available.

P3.2.3 A simplified equivalent circuit of a photocell based on Equation 3.3.3 is shown in Figure P3.2.3. Given two banks of photocells, one having an open-circuit voltage of 0.68 V and a short-circuit current of 1.4 A , the other having an open-circuit voltage of 0.52 V and a short-circuit current of 1 A . Determine the open-circuit voltage and the short-circuit current when the photocell banks are connected in: (a) parallel, and (b) series. Assume that $\eta V_{T}=0.04 \mathrm{~V}$ for all the photocells.

FIGURE P3.2.3

P3.2.4 Based on Equations 3.3.5, 3.2.4, and 2.5.11, Chapter 2, how will $V_{o c}$ of a photocell vary with E_{g} ? Using the qualitative argument in terms of electrochemical potential difference in a photocell, what is the theoretical maximum $V_{o c}$?
P3.2.5 Show that for a photocell, $v_{P C(\max)}$, the voltage for maximum power output, satisfies the equation: $v_{P C(\max)}=V_{o c}-\eta V_{T} \ln \left(1+v_{P C(\max)} / \eta V_{T}\right)$.
P3.2.6 The $i-v$ characteristic of a tunnel diode can be expressed as $i_{D}=I_{p}\left(v_{D} / V_{p}\right) e^{\left(1-v_{D} / V_{P}\right)}+$ $I_{S} e^{v_{D} / V_{T}}$, where the first term is due to tunneling and the second term is due to normal diode action. Neglecting the latter term, show that the negative incremental resistance R is given by $\frac{1}{R}=-\frac{I_{P}}{V_{p}}\left(\frac{v_{D}}{V_{p}}-1\right) e^{\left(1-v_{D} / V_{P}\right)}$. Determine: (a) the largest magnitude of the incremental resistance for a tunnel diode having $V_{p}=0.15 \mathrm{~V}, I_{p}=2 \mathrm{~mA}$, and $I_{S}=0.1 \mathrm{nA}$; (b) the corresponding i_{D}.
P3.2.7 I_{S} of a Schottky diode can be expressed as $I_{B 0}=K_{S B} T^{2} e^{-E_{B} / V_{T}}$. If $E_{B}=0.6 \mathrm{~V}$ and $v_{D}=0.4 \mathrm{~V}$, by how much does v_{D} change, at constant i_{D}, for a $1^{\circ} \mathrm{C}$ rise in T above 300 K ?
P3.2.8 The forward current of both a $p n$ junction Si diode and a Schottky diode is given by: $I_{S} e^{V_{D} / V_{T}}$. (a) What should be the ratio of the saturation currents if the forward voltage drop of the Schottky diode is 0.3 V less than that of the $p n$ junction Si diode? (b) If the saturation current density of the Schottky diode is 5000 times that of the Si $p n$ junction diode, what should be the ratio of the areas?

P3.2.9 Consider a Si-SiGe heterojunction having $N_{D}=10^{16} / \mathrm{cm}^{3}, N_{A}=10^{18} / \mathrm{cm}^{3}$, and $V_{n p o}=1.58 \mathrm{~V}$. Determine V_{n}, V_{p}, W_{n}, and W_{p}, at equilibrium, assuming ε is 12 for Si and 13 for SiGe.
P3.2.10 Repeat Problem P3.2.9 for a reverse bias of 10 V , replacing $V_{n p o}$ by $\left(V_{n p o}-v_{D}\right)$.

P3.3 Miscellaneous

P3.3.1 An n-type semiconductor slab of $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ section and $10 \mu \mathrm{~m}$ depth has $N_{D}=10^{15} / \mathrm{cm}^{3}$ and is irradiated at a power density of $0.4 \mathrm{~W} / \mathrm{cm}^{2}$. If $E_{g}=2 \mathrm{eV}$, what is the maximum wavelength of light that can be detected? Determine the conductivity at this wavelength if $\mu_{e}=800 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{h}=300 \mathrm{~cm}^{2} / \mathrm{Vs}, \tau_{e}=\tau_{h}=10^{-5} \mathrm{~s}$, and $\zeta=10 \%$.
P3.3.2 Express Equation ST3.4.9 as $p_{n}(x)-p_{n o}=A \cosh \left(x / L_{h}\right)+B \sinh \left(x / L_{h}\right)$. Determine A and B subject to the general boundary conditions of Equations ST3.8.1 and ST3.8.2. Show that when $\left(x / L_{h}\right) \ll 1, p_{n}(x)-p_{n o}=\left(p_{n}(0)-p_{n o}\right) \times\left(1-\left(\operatorname{coth} \frac{W_{n}}{L_{h}}\right) \frac{x}{L_{h}}\right)$, which is the same as Equation ST3.8.5 when W_{n} / L_{h} is small. Deduce that the hole current density can be expressed as $J_{h}(x)=\frac{|q| D_{h} n_{i}^{2}}{L_{h} N_{D}} \operatorname{coth} \frac{W_{n}}{L_{h}}(e-1)$.
P3.3.3 Show that Equation ST3.8.4 reduces to Equation ST3.4.10 when $W_{n} \gg L_{h}$.
P3.3.4 Show that if $N_{A} \gg N_{D}$ in a short-base diode, $C_{d} r_{d}=W_{n}^{2} / 2 D_{h}$.

Semiconductor Fabrication

After having discussed the basic properties of semiconductors and the various types of $p n$ junction diodes, and before considering transistors, it is opportune at this stage to familiarize the reader with the nature and some basic features of semiconductor fabrication. This makes the description of the structure of semiconductor devices, particularly transistors of various types, more realistic and concrete. The description of fabrication processes in what follows applies specifically to Si , not to GaAs. This is justified, not only by the introductory nature of this book, but also by the fact that Si is currently by far the most popular material for microelectronic fabrication. Moreover, GaAs fabrication processes are of essentially the same nature as those for Si , but differ in some important details, so that a discussion of Si fabrication processes will provide the reader with a good understanding of semiconductor fabrication in general.

The chapter begins with a brief description of the preparation of a Si wafer, which acts as the substrate for all the ICs fabricated from the wafer. Various patterning processes are then considered that are involved in the transfer of the desired circuit design to appropriate structural patterns in a number of levels of the IC. This is followed by deposition processes, which are concerned with the controlled addition of substances to the wafer, including doping. The discussion of fabricating processes ends with packaging.

Semiconductor fabrication is illustrated with the fabrication of simple devices, namely, resistors, $p n$ junction diodes, and capacitors, followed by the fabrication of CMOS and bipolar junction transistors (BJTs), including BiCMOS. Although MOSFETs and BJTs have not yet been considered, the reader is expected to refer to these sections while reading Chapters 5 and 6 , respectively. The chapter ends with some special topics related to semiconductor fabrication and operation, namely, SiGe technology, crystal defects, and the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface.

Finally, it should be mentioned that Si-based microelectronic fabrication techniques are increasingly being used to produce devices for nonelectronic applications, such as microelectromechanical systems (MEMS). These exploit the mechanical properties of materials used in Si IC fabrication, such as single-crystal Si , polycrystalline $\mathrm{Si}, \mathrm{SiO}_{2}$, and silicon nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$. Further developments and extensions of microelectronic fabrication techniques have paved the way to nanotechnology, in which materials and structures exhibit at this scale new characteristic that are not encountered in structures of larger dimensions.

Learning Objectives

* To be familiar with:
- Terms used in conjunction with semiconductor fabrication.
- The nature of the major processes involved in semiconductor fabrication.
* To understand:
- The significance of the basic steps in the preparation of silicon wafers, patterning processes, deposition processes, and packaging.
- The basic structure of some simple semiconductor devices such as resistors, pn junction diodes, and capacitors, as well as the basic structure of CMOS transistors and BJTs.

4.1 Preparation of Silicon Wafer

High-Purity Silicon

In IC fabrication, a number of component assemblies known as dice, whose singular is a die, are formed on a wafer, which is a thin slice of a large Si crystal. A usable die is the IC before it is packaged. The packaged die, or IC, is also known as a chip.

The starting point in the preparation of a wafer is natural SiO_{2}, or quartzite, which is a relatively pure form of sand. To extract Si , quartzite is subjected to high temperatures of about $2000^{\circ} \mathrm{C}$ in an arc furnace in the presence of a source of carbon, such as SiC . This reduces SiO_{2} and yields metallurgical grade silicon of $90 \%-99 \%$ purity, which is still far from the degree of purity required. Because the dopant density in semiconductors is usually in the range of $10^{15}-10^{19} / \mathrm{cm}^{3}$, the concentration of unwanted impurities should be much lower, of the order of $10^{13} / \mathrm{cm}^{3}$. Since the concentration of Si atoms is about $5 \times 10^{22} / \mathrm{cm}^{3}$ (Table 2.3.1), the degree of purity required is nearly one impurity atom for every 5 billion Si atoms. Obtaining such high purity was the first challenge in the fabrication of Si semiconductors.

To achieve the required high purity, metallurgical grade Si is pulverized and treated with HCL to form trichlorosilane $\left(\mathrm{SiHCl}_{3}\right)$. As this is liquid at room temperature, it can be distilled to a high degree of purity. The purified SiHCl_{3} is then reduced by hydrogen to produce highly purified electronic grade silicon. The silicon at this stage is polycrystalline (polysilicon), or poly, in the form of small crystals having many defects.

Crystal Growth

Single crystals for IC fabrication are almost invariably grown by the Czochralski growth technique. The silicon is melted in a fused silica crucible in an inert gas (usually argon) atmosphere at a temperature of about $1500^{\circ} \mathrm{C}$, just above the melting point of Si . A chemically etched seed crystal, about 10 cm long, 0.5 cm in diameter, and having the desired crystal orientation is lowered into contact with the melt. The seed is pulled up at a controlled rate of a few mm / h while both the seed and crucible are rotated at a slowspeed in opposite directions. As the seed is pulled up, the melted silicon attaches to the growing seed and solidifies, becoming part of a single crystal having the same crystal orientation as the seed crystal. The fully grown crystal, referred to as a boule or ingot, is $1-2 \mathrm{~m}$ in length, and of a diameter determined by the temperature and pulling speed. Boron or phosphorus is commonly added to the melt to obtain p-type or n-type boules, respectively, of specified resistivity.

The three possible crystal orientations can be defined with respect to the tetrahedral structure of Figure 4.1.1, referred to in Section 2.3, Chapter 2. The orientation is $<100>$ if the surface of the crystal is parallel to the plane $\mathrm{ABCD},<110\rangle$ if the surface of the crystal is parallel to the plane AFGD, and $<111\rangle$ if the surface of the crystal is parallel to the plane EDG.

FIGURE 4.1.1
Crystal orientations of a tetrahedral structure.

Wafer Production

The top and bottom parts of the boule are cut off, and the boule is ground to a near-final diameter. Flat regions may be ground along the length of a boule to identify crystal orientation and semiconductor type. The boule is then dipped in a chemical etching solution to remove the damage caused by mechanical grinding. The boule is sliced into circular wafers $0.6-1.3 \mathrm{~mm}$ thick using a wire impregnated with diamond particles. Wafer thickness generally increases with diameter, for more rigidity. The wafers are polished on one surface by a chemical mechanical process (CMP) in which the wafer is rotated over a polishing pad that is continually supplied with an abrasive chemical solution, or slurry, of progressively finer grain. Polishing is due to both fine mechanical abrasion as well as chemical action. As a final step, the wafers are chemically cleaned to give a mirrorlike finish that is virtually free from imperfections.

Wafer diameter has increased over the years. Wafers with 200 mm diameters were introduced in 1991, those with 300 mm diameters were introduced in 2001, and those with 450 mm diameters are planned to be introduced around 2012. Increasing the wafer diameter increases the number of chips of a given size that can be produced from the wafer, which reduces the cost per chip, assuming that the costly upgrade to the larger wafer diameter can be offset by a larger volume of chips produced. A 300 mm diameter wafer can supply more than 50,000 small chips, like some op amps, and a 450 mm diameter wafer would carry about twice the number of chips as a 300 mm diameter wafer.

Oxidation

When the surface of the wafer is exposed to air at room temperature, Si reacts readily with O_{2} to produce SiO_{2}, which is a form of glass and is a very good insulator. Rather than having a layer of SiO_{2} form on the surface of a wafer in an uncontrolled manner, an oxide layer of controlled thickness is grown on the wafer. To oxidize the surface, it is exposed at a temperature of $1000^{\circ} \mathrm{C}-1200^{\circ} \mathrm{C}$ to oxygen (dry oxidation) or to steam (wet oxidation). The oxide grows more rapidly in the wet process, which is therefore used to grow thick oxide layers, but the oxide is not as dense and does not have as good mechanical and electrical properties (Section 4.8). An important feature of the oxidation process is that as the oxide film grows, new oxide is formed, not at the exposed SiO_{2} surface, but at the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface, because the rate of diffusion of oxygen in SiO_{2} is much higher than that of Si . The $\mathrm{Si}-\mathrm{SiO}_{2}$ interface is thereby protected from contamination. The thickness of the oxide
ranges between about $0.1 \mu \mathrm{~m}$ (dry oxidation) and $1 \mu \mathrm{~m}$ (wet oxidation), depending on the application. Oxidation consumes Si from the wafer and adds to its thickness. If the thickness of the oxide is $t_{o x}$, the thickness of the wafer is increased by about $0.55 t_{o x}$, and the original thickness of Si in the wafer is reduced by $0.45 t_{o x}$. Following oxidation, the wafer is usually annealed by heating in an inert gas atmosphere, as this reduces the positive charge that inevitably forms in the oxide near the $\mathrm{Si}_{-\mathrm{SiO}_{2}}$ interface (Section 4.8).

The oxide can serve several purposes, such as protection, electrical isolation of different structures on the chip, acting as a functional dielectric, or as a barrier that allows the introduction of dopants in predefined areas of the chip, as described later.

4.2 Patterning Processes

Preparation of Masks

Patterning refers to the transfer of the circuit design to a Si wafer that has been appropriately treated. The starting point is, of course, the design of a circuit that operates in the desired manner. Generally, this involves PSpice simulations at various stages in the design to validate the design and ensure its proper operation. The physical realization of the circuit design in the form of a chip consists of building up the chip layer by layer, each layer involving a number of fabrication steps. A complex IC can have more than 10 layers, with 30 or more major fabrication steps involving something like 200 operations or process steps. Each major fabrication step is governed by a mask, which is a two-dimensional pattern that is transferred to the wafer through a lithographic process, as described later (Figure 4.2.1).

A layout computer program generates the required series of masks from the circuit design, subject to certain layout design rules that are dictated by the fabrication technology used. The design rules can be generally divided into two categories: one category is concerned with spatial resolution in a given level and defines the minimum allowed widths of lines and their spacing; the other category is concerned with alignment between successive layers. The design rules are based on manufacturing variability such as

FIGURE 4.2.1
Work flow diagram for preparation of masks.

dimensional tolerances, registration errors in the alignment of different masks, and variations in the timing and duration of various processes.

The minimum feature size is the minimum resolvable metal line widths of the interconnections. It is also the minimum half-pitch, or separation between adjacent metal lines. In a 45 nm technology, for example, the minimum feature size is 45 nm .

Lithography

Lithography is the process of transferring the physical patterns of the masks to the Si wafer in order to select parts of the wafer that are to be exposed to fabrication steps such as oxidation, ion implantation, diffusion, etc., as will be described later. Currently, optical lithography, or photolithography using ultraviolet (UV) light, is the main lithographic process used in IC fabrication. Literally, photolithography means "using light to write on stone (lithos in Greek)." Figure 4.2.2 illustrates a simple mask that can be used as a first step in producing an n-well in a p-substrate. The n-well can in principle be used to fabricate a $p n$ junction diode or an IC resistor, or to form the body of a metal-oxide-semiconductor (MOS) transistor, as will be explained later. The well is rectangular in shape, defined by the inner, white rectangle in top view. As illustrated in cross-sectional view, the mask is up to about 7 mm thick and consists of a quartz layer with chromium backing that has been removed in the area that defines the well.

The first step in lithography is chemical mechanical polishing (CMP), as previously described, which planarizes the surface to make it optically flat so that small features can be more accurately reproduced. The entire surface of the wafer is then coated with a lightsensitive emulsion, or photoresist. The surface must be clean and dry for good adherence of the photoresist. To dry the surface, the wafer is placed in an oven at $150^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$ for at least 15 min . A quantity of photoresist is then deposited on the surface of the wafer, and the wafer spun rapidly at $2000-6000 \mathrm{rpm}$ to cover the surface of the wafer with a uniform film of photoresist about $1 \mu \mathrm{~m}$ thick depending on the speed (Figure 4.2.3). A pre-exposure bake, or softbake, as specified by the photoresist manufacturer, removes the solvent from the photoresist and improves its adhesion to the wafer. The wafer is then subjected to UV light through the mask, as diagrammatically illustrated in Figure 4.2.3. The UV light is blocked by the opaque chromium backing, but where the chromium backing has been removed, the UV light is transmitted through the transparent quartz layer and reacts with the photoresist.

Photoresists are of two types: positive and negative. Positive photoresist is composed of long-chain molecules that are broken into small chains by the UV light, whereas negative

FIGURE 4.2.2
Illustration of a simple lithographic mask.

FIGURE 4.2.3
Illustration of lithographic process.

photoresist consists of small-chain molecules that are polymerized into long chains by the UV light. When either photoresist is developed, the short-chain photoresist is removed, leaving the long-chain photoresist. Consequently, the positive photoresist that remains after development conforms to the areas of chromium backing, and the exposed surface of the wafer conforms to the clear pattern of the mask. The opposite is true of negative photoresist. In the case of the n-well of Figure 4.2.3, a positive photoresist should be used with the mask shown. A positive photoresist is more commonly used in IC fabrication because of its better resolution, although using both types of photoresists can reduce the number of masks required.

After exposure to UV light, the photoresist is developed, usually by immersing the wafer in the developing solution. The non-polymerized photoresist is softened by the developer and is subsequently washed away. A hardbake often follows, to improve the adhesion of the polymerized photoresist and its resistance to subsequent etching processes. The surface of the wafer becomes as in Figure 4.2.4a. Before any doping processes can be performed, the oxide layer has to be etched away from the exposed surface of the wafer, as illustrated in Figure 4.2.4b, and discussed in the next subsection. Note that some etching occurs under the resist. The photoresist is then removed, usually using a solvent such as acetone.

FIGURE 4.2.4
Surface of wafer (a) after removal of the photoresist and (b) after etching of the oxide.

Before describing etching, there are some important points to note concerning photolithography. During exposure to UV radiation, the mask could be in contact with the wafer, in close proximity to it, as in Figure 4.2.3, or the mask pattern could be projected from a mask onto a wafer that is many centimeters away, using an optical system. Having the mask in physical contact with the wafer is simple and reproduces the image on the mask as 1:1 with minimal blurring. However, repeated contact can damage the mask due to scratching of the chromium or the sticking of photoresist to it. Damage to the mask can be avoided by having the mask spaced some $10-50 \mu \mathrm{~m}$ from the wafer. Resolution is degraded, however, because of the diffraction of light as it passes through small apertures, or openings, in the mask, if the dimensions of the apertures are not large compared to the wavelength of light used. As a result of diffraction, some light spreads as fringes or bands into what would have been shadow regions had the light propagated in straight lines through the mask. The edges of these small openings would therefore appear blurred. For these reasons, a projection system is almost invariably used nowadays.

A mask may include patterns for the whole wafer, or it may contain the pattern for a single die or several dice, in which case it is referred to as a reticle. The reticle is projected onto the wafer, usually with a $5: 1$ or 10:1 reduction. Since the pattern of the reticle is 5 or 10 times larger than the pattern on the wafer, the fabrication of the reticle becomes easier. A stepper, referred to as an optical stepper, is used to step the wafer so that the entire array of circuits is patterned. A reticle can be used on several thousand wafers before it has to be replaced. The maximum dimensions of a die are limited by the size of the imaging field of the optical system. The maximum die dimensions are currently about 30 mm on each edge.

Of crucial importance is the alignment of successive reticles so that the circuit patterns would be properly placed relative to one another in different layers on the chip. The wafer and reticles for different layers have sets of alignment marks, which, before every exposure for a given layer, must be properly aligned relative to one another. In VLSI fabrication, the alignment of each individual die is done automatically under computer control by imaging and pattern-recognition systems. The error in the alignment of masks for successive levels is the registration error.

The smallest resolution possible with optical lithography is fundamentally limited by diffraction phenomena. To achieve finer resolution, UV light of shorter wavelengths must be used, such as deep UV light of 248, 193, or 157 nm wavelength. The shorter wavelengths necessitate different light sources, materials for the reticle and its backing, and photoresists. The quartz of the mask is replaced by CaF, and an UV-emitting laser is used as a source instead of a mercury lamp. The laser scans the surface of the wafer, through the reticle, rather than project the light over the whole surface to be exposed, before the wafer is stepped. Resolution-enhancement techniques (RETs) and chemically amplified resists have been developed to obtain resolutions better than those dictated by lens optics. Resolution has been enhanced by immersion, that is, having the UV light reach the wafer through a film of high-purity water instead of air. This changes the refractive index and increases the numerical aperture of the lens by about 40%. With these improvements, minimum feature sizes of 25 nm have been realized in the laboratory using deep UV photolithography. For finer resolution, other technologies may have to be used, such as electron-beam lithography, currently used to produce the masks for photolithography; ion-beam lithography; extreme ultraviolet (EUV) lithography of 13.5 nm wavelength; or X-ray lithography. Note, however, that not all the layers in the fabrication of a given chip
may require the highest resolution. Some of the theoretical and practical aspects of lithography are elaborated in Section ST4.2.

Etching

Etching is the removal from the wafer of unwanted substances, which could be $\mathrm{Si}, \mathrm{SiO}_{2}$, metal, or photoresist. Etching can be chemical, physical, or a combination of both, the etching processes being classified as wet or dry.

In wet etching, a liquid chemically erodes the material to be removed. Wet etching is used extensively for cleaning and for removal of thin films, as in the development of the photoresist. However, it is not appropriate for critical fabrication steps for two reasons: (1) contamination by etching chemicals or their by-products, and (2) difficulty in controlling the extent of removal in specific directions, with consequent encroachment on the dimensions of small features and the degradation of resolution.

Dry etching, on the other hand, uses a plasma, which is an electric discharge in a partially ionized gas. A plasma may contain charged atoms or molecules in the form of positive or negative ions, and may also contain radicals, that is, dissociated atomic or molecular fragments having unsatisfied bonds, which makes them highly reactive. A plasma is initiated in a gas at low pressure by a voltage between two electrodes that is sufficiently high to cause electrical breakdown due to ionization of the gas and the creation of free electrons and positive ions. Electrons travel to the anode and positive ions to the cathode, where they release electrons by secondary emission because of the high energies of the ions. The secondary electrons travel to the anode, colliding with gas atoms along the way, thereby causing more ionization. The discharge becomes a self-sustaining plasma. Because in IC fabrication some of the materials on one or both electrodes can be insulating, such as SiO_{2}, radio frequency (rf) plasmas are used in these cases at a frequency of 13.56 MHz . Plasma density can also be increased in various ways.

Three general types of dry etching are used in IC fabrication. In what is referred to simply as plasma etching, a specific gas or gas mixture such as carbon tetrafluoride $\left(\mathrm{CF}_{4}\right)$ and oxygen, is used at a relatively high vacuum pressure of about 0.5 mm of mercury. The chemistry involved is rather complicated, but basically, the reactive components are adsorbed to the surface to be removed, react with surface atoms, become desorbed or are nudged away by other components of the plasma, and are removed out of the etch chamber by the vacuum system. Plasma etching has high selectivity, which means that the rate of removal of the desired material is much higher than that of other materials that are not to be removed.

In another method of dry etching, known as ion milling or sputter etching, no chemical reactions are involved. A plasma at low pressure in an inert gas, such as argon, generates ions that strike the surface at moderate energy and physically eject atoms from the surface. The advantages of ion milling is that it is highly directional, that is anisotropic, because the ions follow the direction of the electric field. Anisotropy is important for minimizing lateral etching compared to depth etching. Ion milling can be applied to a wide variety of materials, which implies, however, that it is not very selective.

The third method that of reactive ion etching (RIE), is a combination of both methods and involves adding certain chemicals to the Si surface, such as fluorocarbon polymers. This method is extensively used, particularly for etching narrow, deep structures, because it combines the high selectivity of plasma etching with the high directionality of ion milling.

4.3 Deposition Processes

Deposition processes, including doping, are concerned with the controlled addition of substances to the Si wafer in order to control the electrical properties of various parts of the wafer. In common with the patterning processes discussed in Section 4.2, the deposition processes are planar, that is, they are implemented from the top surface of the wafer.

Ion Implantation

In this process, dopant ions of high energy bombard the surface and become embedded within a given penetration depth from the surface. Commonly used dopants are boron for p-type semiconductors, and phosphorus or arsenic for n-type semiconductors.

The ion source is a gaseous compound such as $\mathrm{BF}_{3}, \mathrm{PH}_{3}$, or AsH_{3}. The gas is passed through an arc chamber where it is broken up into ionized components. To select a particular ionic species, the ionized gas is accelerated by an electric field and subjected to a magnetic field perpendicular to the direction of flow. Because ions are deflected according to their charge/mass ratio, the electric and magnetic fields can be adjusted so that only the desired ionic species will emanate as a beam. The beam is focused by means of electrostatic lenses and accelerated to a high energy that is usually in the range $20-200 \mathrm{keV}$ but could be as high as several MeV in some cases. Regions that are not to be implanted with ions are masked off with a sufficiently thick layer of oxide, silicon nitride, polysilicon, or photoresist, which cannot be penetrated by the beam. The narrow ion beam is scanned across the wafer, implanting ions over unmasked as well as masked regions that are subsequently removed.

The implant dose, which determines the doping concentration, is controlled by the beam intensity and can be precisely adjusted by measuring the beam current. The concentration profile of implanted ions depends mainly on the mass of the ions and their energies. The depth of penetration can be accurately controlled by the beam energy and is usually between 0.1 and $1 \mu \mathrm{~m}$, although very shallow or very deep profiles are difficult to control. Because of the penetration of bombarding ions, the concentration of these ions peaks not at the surface but some distance into the semiconductor, resulting in what is known as a retrograde profile. Ion implantation is widely used, because it is highly controllable and does not require a high temperature. Its major disadvantage is that ion bombardment causes local damage to the crystal by dislocating crystal atoms (Section 4.8). Ion implantation is followed by annealing, that is, heating the wafer to a temperature of about $1000^{\circ} \mathrm{C}$ for a predetermined time in an inert gas atmosphere. The objective is twofold: (1) to repair crystal damage by allowing the crystal to reform where crystal atoms have been dislocated, and (2) to allow the implanted ions to occupy lattice sites, which they must if they are to act as a dopant. This is known as impurity activation.

Diffusion

Diffusion is used to introduce specified impurities to depths in the range of few tenths to several $\mu \mathrm{m}$. Diffusion proceeds in two steps: predeposition, which deposits the required impurity at a high concentration at the surface, and drive-in, which allows the deposited impurity to diffuse to the required depth. The final impurity concentration is maximum at, or very close to, the surface and decreases with depth into the semiconductor.

In modern practice, the impurity is deposited very near the surface by ion implantation, but when a high doping concentration is required, vapor deposition at the surface is used. An inert gas, such as nitrogen, is bubbled through a liquid compound of the dopant to produce a vapor of the liquid compound. Typically, BBr_{3} and POCl_{3} are used to deposit boron and phosphorus, respectively. Oxygen is added to the mixture of nitrogen and the vapor of the liquid compound, and the gases are passed to the furnace containing the wafer. When they come in contact with the surface of the wafer, the gases react to release the dopant at the surface. The drive-in step occurs at a higher temperature of about $1100^{\circ} \mathrm{C}$ and allows the dopant to diffuse below the surface to a depth that depends on the temperature and the time allowed.

Substances can diffuse in a crystal in two ways: if they do not bond readily with crystal atoms, they end up in the interstitial spaces between crystal atoms and do not contribute to doping. Examples are gold, copper, nickel, and zinc. The other diffusion mode is substitutional, where the impurity, which acts as a dopant, occupies the position of a crystal atom. It may diffuse by occupying vacant sites in the crystal, or by exchanging places with a crystal atom. Boron and phosphorus have the advantage of high solubility and a high rate of diffusion in Si , whereas their rate of diffusion in SiO_{2} is very low, so that the oxide forms an effective barrier to diffusion.

Chemical Vapor Deposition

In chemical vapor deposition (CVD), chemical reactions involving gases and vapors at the surface of the wafer lead to deposition of material on this surface. A variety of materials can be deposited in this manner, including silicon, polysilicon, dielectrics such as SiO_{2} or silicon nitride, metals such as tungsten and copper, and barrier metals such as titanium nitride and tungsten nitride. Depending on the material to be deposited, CVD can take place at atmospheric pressure (APCVD), at a low pressure of $0.25-10 \mathrm{~mm}$ of mercury (LPCVD), or can be plasma enhanced (PECVD). An important advantage of CVD is its good step coverage, meaning a good coverage of both the vertical and horizontal surfaces of a steplike geometry on the surface of the wafer. Such geometries become more prominent with continuing reduction in minimum feature size.

When the temperature is raised to around $1000^{\circ} \mathrm{C}$, so that the reactions are driven by heat energy, the process is referred to as thermal CVD, vapor-phase epitaxy, or epitaxy. An important feature of silicon epitaxy is that it allows the growth of a doped layer of crystalline silicon on a single-crystal substrate, so that the layer becomes part of the single crystal, with the doping level in the grown layer being less than that in the substrate. This is not possible with ion implantation or diffusion, which result in regions having higher dopant concentrations. In a typical epitaxial growth system for growing doped silicon, a gas mixture of silane $\left(\mathrm{SiH}_{4}\right)$, hydrogen as a diluent, and gaseous dopant compounds such as $\mathrm{PH}_{3}, \mathrm{AsH}_{3}$, or $\mathrm{B}_{2} \mathrm{H}_{6}$ is passed through the furnace. A relatively thick layer of up to few tens of $\mu \mathrm{m}$ can be grown in this manner, and abrupt $p n$ junctions can be formed, compared to the graded junctions formed by diffusion processes.

At a lower temperature of about $600^{\circ} \mathrm{C}$, the deposited silicon does not integrate with the single crystal of the substrate, but becomes a layer of polycrystalline silicon. This layer can then be heavily doped to produce polysilicon for the gates of MOSFETs and for interconnections.

Metallization

The first metallization that takes place is in making low-resistance ohmic contacts to terminal regions of various devices. Al is extensively used for this purpose because it has a low
resistivity, adheres well to Si , and is easy to evaporate and etch. Being trivalent, it forms a heavily doped p^{+}contact region. To make a metallic contact to p-type Si , for example, Al is deposited on the Si surface and the wafer is heated to about $400^{\circ} \mathrm{C}$, so that the Al forms a thin, highly doped p^{+}region. Al has a relatively low-work function (Section 3.6, Chapter 3) and electrons can tunnel through the thin barrier from the p^{+}semiconductor to Al under forward bias and in the opposite direction under reverse bias (Figure 3.2.2, Chapter 3). To make a metallic contact with n-type Si , a heavily doped n^{+}region is formed, and the heated aluminum then makes a $p^{+} n^{+}$junction through which electrons can tunnel (Section 3.5, Chapter 3).

The common method of depositing metal is sputtering in one of its several variants. In this process, a disk of the metal to be deposited is placed in close proximity to the wafer in a chamber filled with argon gas at low pressure. The metal disk, or target, is made the cathode and a voltage is applied that is sufficiently high to ionize the gas. The gas ions strike the target and vaporize metal atoms, which coat the whole surface of the wafer. The unwanted metal is then selectively etched, leaving the desired interconnection pattern.

A second form of metallization is the interconnections at the same level between various components (such as different transistors) or between regions of the same component (such as gate-drain or base-collector shorts in diode-connected transistors). Aluminum, alloyed with a small percentage of Si , has also been very popular for metallization. However, continued miniaturization has increased the importance of the electrical properties of interconnections (Section 12.8, Chapter 12). The reduction of the width and thickness of interconnections increases the resistance, so that Cu , whose resistivity is about $1.7 \mu \Omega-\mathrm{cm}$ compared to $2.7 \mu \Omega-\mathrm{cm}$ for Al , is being increasingly used for smaller-size interconnections. An added advantage is that small-size Al interconnections are susceptible to electromigration (Section 5.3, Chapter 5), whereas Cu is less susceptible to this phenomenon. However, copper interconnections are more difficult to work with. Doped polysilicon is also used in some situations for making metallic connections.

A third form of metallization is the connections between metallic conductors in adjacent levels of the wafer. The connection is made by a small plug or stud, also known as a via. Copper plugs are used with copper conductors, but tungsten plugs are used with aluminum conductors because of electromigration problems with Al.

A fourth form of metallization is concerned with the external, off-chip connections of the die. Square metal pads of several tens of $\mu \mathrm{m}$ side, known as bonding pads, are provided on the chip for this purpose. The metal of the pads is almost invariably Al. Connections to these pads are described in Section 4.4.

Clean Room Environment

All fabrication processes are carried out in ultraclean environments in which the temperature and humidity are precisely controlled. Of particular importance is dust control through stringent filtering of air in IC fabrication facilities. Dust particles on the surface of the wafer or mask may behave as opaque objects during lithography, thereby interfering with the circuit pattern transferred to the wafer. Dust particles on the surface of the wafer can interfere with crystal growth, resulting in unoccupied crystal sites, or they may lodge in the gate oxide, causing partial or complete shorting. A metallic conductor of submicron size can be damaged by a dust particle.

Dust count is specified differently in the English and metric systems. A Class N clean room in the English system has a maximum of N particles of $0.5 \mu \mathrm{~m}$ diameter or larger per cubic foot of air. In the metric system, a Class M X clean room has a maximum of
10^{X} particles of $0.5 \mu \mathrm{~m}$ diameter or larger per cubic meter of air. Thus, a Class 100 clean room would have a maximum count of 100 particles of $0.5 \mu \mathrm{~m}$ diameter or larger per cubic foot of air, which is equivalent to a count of nearly 3531 per cubic meter of air. This gives $X=\log _{10}(3531)=3.55$, which corresponds to a Class M 3.55 in the metric system. An IC fabrication facility should be Class 100 or cleaner, which is typically at least four orders of magnitude lower than that of ordinary room air and at least an order of magnitude lower than that of a hospital operating room.

4.4 Packaging

When all fabrication steps have been performed, the individual dice are tested electrically using an automatic probing station to make sure that they comply with the required performance specifications. Bad circuits are marked, and the wafer is cut into separate dice by a diamond-coated blade, the operation being referred to as dicing. The good dice are attached to a plastic or ceramic substrate or to a metal lead frame to which the external pins of the package are connected. A fine gold wire, known as a bond wire, is bonded to the Al bonding pad by a combination of heat, pressure, and ultrasonic vibration, which is used to break the oxide layer that inevitably forms on the Al surface. The other end of the gold wire is similarly bonded to the metal lead frame of the package. In an alternative arrangement, known as the flip-chip process, the die is provided with aluminum pads on which blobs of solder are deposited, resulting in solder bumps. The die is flipped over, face down, and the solder bumps are mated with the metal pads on the package. Heating to about $250^{\circ} \mathrm{C}$ causes the solder to flow, making a very good connection between the chip and the package. The flip-chip process eliminates the resistance and inductance of the bond wires and allows the connection pads to cover the entire chip area, rather than just the periphery, as is the case with bond wires, which results in a high pin density and better heat removal. However, thermal fatigue of the solder bumps may cause failure of the connections with time, unless special measures are taken. Moreover, the use of common, lead-based solder is prohibited in some countries because of the environmental hazards of lead.

Package Types

A traditionally popular type of package is the through-hole technology (THT) package having metal leads or pins that are inserted into holes in the circuit board and soldered in place. THT packages may be dual-in-line packages (DIPs) having metal leads on two long sides of the rectangular package, or quad-in-line packages (QIPs) having metal leads along the four sides of the rectangular package, or pin-grid array (PGA) packages having an array of pins on the bottom of the package. The trend toward higher densities of ICs having a larger number of pins, faster data rates, and greater power dissipation has curbed the popularity of THT packages.

An increasingly popular type of package is the surface-mount-technology (SMT) package having metal leads with flat ends parallel to the bottom surface of the package and which are soldered to the surface of the circuit board. Compared to THT packages, SMT packages are smaller, lighter, and more resistant to mechanical shock. Several versions of SMT are in use. Some have leads on two opposite sides, some on all four sides, and some have the flat end bent inward to fit under the package. Another version is the
ball grid array (BGA) package having a grid of solder bumps on the bottom of the package for attachment to the circuit board.
Both THT and SMT packages may house several chips stacked on top of one another in what are known as multichip modules (MCMs). These are becoming increasingly popular as they result in a denser packing of chips per unit surface area of the circuit board.
Packages not only protect the chip mechanically but should also conduct heat so as to limit the temperature rise of the chip due to power dissipation in normal operation. The least expensive packages are molded over the die and lead frame using thermosetting plastics. These packages do not completely protect the chip from contamination by water or other environmental contaminants during operation despite encapsulating the circuit with glass, polyamide, or silicon nitride. Full protection is provided by the more expensive hermetically sealed packages commonly used in aerospace and military applications. These packages have metal, ceramic, or metal-ceramic enclosures with glass seals. The packaging material and glass seal should have matched thermal expansion coefficients so as to reduce thermal stresses on the seal.

After packaging, the chip is electrically tested to ensure that it meets the specifications. Electrical testing is sometimes done at an elevated temperature, a process referred to as burn-in or accelerated testing, which identifies chips that may be subject to early failure.

4.5 Fabrication of Simple Devices

This section illustrates how some of the basic processes discussed in Sections 4.2 and 4.3 can be used to fabricate some fairly simple devices, mainly semiconductor resistors, $p n$ junction diodes, and semiconductor capacitors.

Resistors

In principle, a simple type of resistor can be made from the n-well of Figure 4.2.4. After the oxide has been etched, an n-well is produced by ion implantation followed by diffusion, or by diffusion through vapor deposition. The oxide is reformed on the surface of the chip, and then etched again at the two ends of the well for the contact. An n^{+}region is formed, usually by ion implantation, and Al is deposited to form the contacts, as illustrated diagrammatically in cross section in Figure 4.5.1. Resistance values obtained in this manner are in the range of few $\mathrm{k} \Omega \mathrm{s}$. A lower value of resistance can be obtained by increased doping of the n-well. For higher values of resistance, a zigzag pattern can be used. A resistor formed in this manner has the following disadvantages: (1) its tolerance can exceed 20%, although different resistors can be matched to within a few percent, and (2) the

FIGURE 4.5.1
A simple IC resistor.
resistor is usually isolated from the rest of the chip by reverse biasing the $p n$ junction formed between the n-well and the p-substrate. This, however, introduces a parasitic capacitance and makes the resistance voltage-dependent because of the variation of the width of the depletion layer with voltage. A better resistor can be formed by a polysilicon layer that is isolated from the rest of the chip by SiO_{2}.
The resistance of structures on chips, including interconnections, is usually specified in terms of the sheet resistance, denoted as Ω / \square (ohms/square) and having the dimensions of ohms. Recall that the resistance of a block of length L, width W, and thickness d is:

$$
\begin{equation*}
R=\frac{\rho}{d} \times \frac{L}{W} \tag{4.5.1}
\end{equation*}
$$

where ρ is the resistivity in ohm-(unit length). The sheet resistance, R_{sq}, is defined as:

$$
\begin{equation*}
R_{\mathrm{sq}}=\frac{\rho}{d} \tag{4.5.2}
\end{equation*}
$$

and takes into account the variation of concentration of the dopant with the depth d as well as the variation of carrier mobility with dopant concentration. The total resistance is given by:

$$
\begin{equation*}
R=R_{\mathrm{sq}} \times \frac{L}{W} \tag{4.5.3}
\end{equation*}
$$

$p n$ Junction Diodes

A $p n$ junction diode can be formed in an n-well process by forming p^{+}and n^{+}regions, as illustrated in Figure 4.5.2a. The p^{+}region is the anode, the $p n$ junction being formed between this region and the n-well. As mentioned in connection with diode-connected transistors, IC diodes of better performance are formed by shorting together the base and collector metallization of a BJT (Section 6.3, Chapter 6).

Discrete, planar diodes are often made starting with an n^{+}substrate, on which an epitaxial n-layer is grown, which allows accurate control of the doping of the n-region of

FIGURE 4.5.2
(a) An IC $p n$ junction diode, and (b) a discrete, planar $p n$ junction diode.

(b)

Al

FIGURE 4.5.3
An IC capacitor.
the diode. A p-region is then implanted and contacts are made to both sides of the chip (Figure 4.5.2b).

Capacitors

Capacitors can be formed by reverse-biased $p n$ junctions or by MOS structures in which the metal is one plate of the capacitor, the semiconductor is the other plate, and SiO_{2} is the dielectric. In both of these types, the capacitance is voltage dependent. The voltage dependency of an MOS capacitor (Section ST4.3) can be reduced by implanting on the surface of the substrate an n^{+}layer that acts as the other plate of the capacitor, as illustrated in Figure 4.5.3.

A better capacitor can be formed by two polysilicon layers separated by a thin layer of SiO_{2}, the polysilicon layers being themselves isolated from the rest of the chip by SiO_{2}. The tolerance of IC capacitors can be about 1%, but capacitors can be matched to within 0.1%.

4.6 CMOS Fabrication

The objective of this section is to describe the basic processes of CMOS fabrication, the details of which may vary depending on the intended application for the chip. This section should be read in conjunction with Section 5.2, Chapter 5, describing MOSFET operation.

CMOS ICs can be fabricated starting with a p-substrate, on which n-channel MOSFETs are formed, with p-channel MOSFETs formed in n-wells in the p-substrate. Alternatively, the start can be an n-substrate on which p-channel MOSFETs are formed, with n-channel MOSFETS in p-wells. Better performance is achieved in a twin-well construction in which each type of transistor has its own well, usually in an n-substrate on which a low-resistivity epitaxial n-layer is grown. The n-wells and p-wells are then formed in this layer, each type of well having the required dopant concentration. Individual NMOS or PMOS transistors can, of course, be fabricated in the same manner as the corresponding CMOS transistor. In all cases, the substrate is preferably of $\langle 100\rangle$ crystal orientation, as this orientation has the lowest interface trap density.

Transistor Isolation

The isolation of adjacent transistors on a chip so as to eliminate unwanted coupling between them through the substrate has an important bearing on the packing density. In normal operation, the channel, source, and drain regions of a MOSFET are surrounded by a depletion region, which effectively isolates the MOSFET from the rest of the IC. To be effective, the depletion region should be relatively wide, which severely limits the packing
density. Moreover, if the drain of one transistor, say D_{A}, is adjacent to the source of another transistor, say S_{B}, on the same IC, with metallic interconnections running over the surface oxide between D_{A} and S_{B}, then if the voltages between these three regions are of appropriate magnitude and polarity, a parasitic MOSFET is formed having the metallic interconnections as gate and a conducting channel between D_{A} and S_{B}. To eliminate this possibility, the threshold of the parasitic transistor is made sufficiently high by: (1) creating a channel stop, or chanstop, between transistors by increasing the surface doping level in the substrate between transistors using ion implantation, which increases the electric field required to induce a channel in this region; and (2) increasing the oxide thickness over this parasitic channel, which increases the voltage required to produce the larger electric field. The relatively thick oxide between the active areas of isolated transistors is referred to as the field oxide (FOX) and is usually grown by a process of local oxidation (LOCOS).

The first step in the LOCOS process is to grow a thin layer of SiO_{2} followed by a thicker layer of $\mathrm{Si}_{3} \mathrm{~N}_{4}$. The thin oxide layer, called an oxide pad, reduces the stress in the Si substrate that occurs during oxidation because of the difference in thermal expansion coefficients between Si and $\mathrm{Si}_{3} \mathrm{~N}_{4}$, and because of the increasing volume of the growing oxide. A mask is used to pattern the nitride, and both the photoresist and nitride are removed from the areas where the oxide is to be made thick. The doping level of the substrate in these regions is increased by ion implantation so as to produce the channel stops. The photoresist is stripped from the nitride layer and the wafer is oxidized. The nitride acts as a barrier to oxidation, so that the oxide grows thicker only in areas not covered by the nitride. The areas covered by the nitride define the active regions of the transistors. The nitride is subsequently removed from these regions to create the wells. Although extensively used in technologies having minimum feature sizes of $0.5 \mu \mathrm{~m}$ or larger, LOCOS alone is not appropriate for smaller feature sizes because of encroachment of the oxide into active regions, which limits the packing density.
In technologies of smaller feature sizes, trench isolation is used, which can be shallow trench isolation (STI) or deep trench isolation. STI is illustrated in Figure 4.6.1a, which shows the pad SiO_{2} and $\mathrm{Si}_{3} \mathrm{~N}_{4}$ layers previously mentioned, with a shallow trench less than $1 \mu \mathrm{~m}$ in depth. The trench walls are implanted with dopants so as to form chanstops that will also act as sidewalls for the p-well on one side and the n-well on the other side. The trench is filled with CVD-grown oxide and an optically flat surface is produced by CMP, the $\mathrm{Si}_{3} \mathrm{~N}_{4}$ serving as a polish stop. The thickness of the oxide in the trench and the chanstops effectively isolates the transistors and prevents the formation of a parasitic MOSFET. However, STI does not eliminate latchup in CMOS (Section ST6.6, Chapter 6). A deep trench less than $1 \mu \mathrm{~m}$ wide and about $5 \mu \mathrm{~m}$ deep eliminates latchup (Figure 4.6.1b) but is considerably more difficult to fabricate. As illustrated in Figure 4.6.1b, the trench is deeper than the ensuing wells.

The process of making a trench, overfilling it with material, and then grinding the surface flat is known as a Damascene process, after the process used in medieval times by craftsmen in Damascus to inlay gold or silver in sword handles and sheaths.

Transistor Formation

To form the wells, the $\mathrm{Si}_{3} \mathrm{~N}_{4}$ layer is removed, leaving the pad oxide. The p-well region is patterned by photolithography and etching, followed by several boron ion implantations to achieve the desired retrograde profile. The n-well is then similarly formed using phosphorus ion implantation. The wells are usually about $2 \mu \mathrm{~m}$ deep. Special implants are made to adjust the thresholds of the two transistors. The next major step is to form the

FIGURE 4.6.1
(a) Chanstops and a shallow trench; (b) chanstops and a deep trench.
gate stack comprising the gate oxide and the polysilicon gate electrode. A high-quality thin oxide of thickness appropriate to the technology used is thermally grown to serve as the gate oxide. In modern transistors, the gate oxide is nitrided, by oxidizing in the presence of NO or by using $\mathrm{N}_{2} \mathrm{O}$, to increase the breakdown voltage and the dielectric constant. Oxidation is followed by a blanket LPCVD deposition of polysilicon over the whole surface. The main reason poly is used as the gate electrode rather than Al is that the poly can withstand the high temperatures required to activate the source and drain implants. The gate and its interconnections are patterned, and undesired poly and oxide are removed. A series of steps then follow resulting in the structure diagrammatically illustrated in Figure 4.6.2. The following features should be noted: (1) The source and drain have more lightly doped regions, the source/drain extensions, also referred to as

FIGURE 4.6.2
Diagrammatic structure of the CMOS transistors.
lightly doped drain (LDD), which extend into the channel and provide a resistive transition between the channel and the highly doped source/drain regions. This spreads the drain-channel voltage drop over a longer distance and reduces the electric field, thereby attenuating some short-channel effects, particularly hot-carrier injection into the oxide. (2) Before the source and drain are implanted, nitride spacers are formed on the gate. The polysilicon and spacers act as a barrier to the implanted ions, thereby leading to self-alignment of the source and drain, in the sense that the channel length is defined by the gate regions that had already been formed. In the older technology, where Al was used for the gate, the gate was formed after the source and drain, using a separate mask. Registration errors in the alignment of the different masks resulted in a larger overlap between the gate on one side and the source and the drain on the other, thereby creating relatively large parasitic capacitances between the gate and the source/drain regions.

The next series of steps are concerned with metallization of the source and drain. Al was originally used for contacts but became unsuitable as dimensions kept shrinking and the source and drain became much shallower. The problem with Al is that Si is partially soluble in Al at the annealing temperatures used. The migration of Si into Al allows Al to encroach into Si in the form of spikes that dangerously reduce the thickness of already shallow source/drain regions. Al encroachment can be reduced by adding Si to Al, which reduces the amount of wafer Si that dissolves in the Al contact. Another measure is to introduce a barrier metallic compound, such as TiN, which has low contact resistance with Si and does not react with Al .

Because of the problem of Al spiking, a silicide is used nowadays as a contact metal. Silicides are compounds of Si and a refractory metal, such as $\mathrm{TiSi}_{2}, \mathrm{TaSi}_{2}, \mathrm{MoSi}_{2}, \mathrm{WSi}_{2}$, PtSi_{2}, or CoSi_{2}. Silicides have the energy band structure of a metal and a reasonably low specific contact resistance in the range of $10-25 \mu \Omega-\mathrm{cm}^{2}$ compared to $2.7 \mu \Omega-\mathrm{cm}^{2}$ for aluminum, where contact resistance is the specific contact resistance divided by contact area. The product of the reaction with polysilicon is a polycide, and a self-aligned silicide is referred to a salicide. To form the salicide, Ti or Co is deposited over the entire surface of the wafer and the wafer is heated to a relatively low temperature so that the metal reacts with Si in the source and drain areas to form a silicide, and with the polysilicon to form a polycide. The metal does not react with the nitride spacers or with the oxide over the trenches so that the silicide is self-aligned in the required areas without the need for a masking operation. The unreacted metal is etched away.

The next step is to grow a SiO_{2} layer that will act as an electrical insulator between the silicides/polycides formed so far on the surface of the wafer and the first layer of metal interconnections. A layer of CVD-grown oxide is deposited over the whole wafer, a photolithography operation is performed that defines the contact windows, and the oxide is etched away at these locations. The contact openings are filled with tungsten and the surface is planarized, as illustrated in the cross section of Figure 4.6.3. The tungsten studs to the gate poly are not shown because they are not, in general, in the same plane as those of the sources and drains. Tungsten is used to avoid electromigration problems with Al studs and because of its good adhesion to silicide/polycide and to Al in the interconnect. Before tungsten is applied, a layer of TiN is sometimes added to promote adhesion of tungsten to SiO_{2} and to act as a barrier between tungsten and the source/drain.

The next step is to add the first metal layer, referred to as metal1, or M1. When A1 is used, it is applied, often with some Cu or Ti added to reduce electromigration. The connections in this layer are patterned as required. Another oxide layer is grown and patterned for the tungsten vias between metal1 layer and metal2, as mentioned previously under "Metallization."

FIGURE 4.6.3
The transistors of Figure 4.6.2 after addition of contacts to the next layer.

The preceding operations are repeated for subsequent metal layers. The upper layers of metals are primarily used for power connections, clock, and global signals and are normally thicker than the lower layers because they have to carry heavier currents. The lower metal layers are primarily for connections between transistors or transistor groups. Because vias have an appreciable resistance, they are kept as short as possible, and several vias may be paralleled to reduce resistance. Where Cu is used instead of Al , both Cu vias and interconnects are formed by a dual-Damascene process. The advantage of this process is that it does not require metal etching. This is particularly important for Cu because of the lack of a good etch process for Cu .

After all the metal layers have been formed, a final passivation layer is added, usually in the form of doped glass or $\mathrm{Si}_{3} \mathrm{~N}_{4}$. The purpose of this layer is to protect the chip from contaminants, such as water or ionic salts, as well as from abrasion during probe testing and packaging. Finally, openings are made for bond pads by photolithography and etching of the passivation layer.

It should be mentioned that the gate insulation is so thin and has such a high resistance (normally greater than about $10^{9} \Omega$) that it may be readily damaged by static electricity created by handling the chip or transistor. The layout of the I/O pad is usually such that the gates of transistors connected to I/O pads, and which are therefore liable to be damaged by electrostatic discharge, are protected by diodes, as illustrated in Figure 4.6.4. These diodes are implemented by providing appropriate n^{+}and p^{+}

FIGURE 4.6.4
Diode protection of transistor gates. implants in the substrate and transistor wells. As long as the gate voltage is not less than zero or more than $V_{D D}$, both diodes are nonconducting and do not affect normal operation. Should the gate voltage fall below 0 , or rise above $V_{D D}$, by more than the diode cut-in voltage of about 0.5 V , one of the diodes will conduct and clamp the gate voltage to a safe value. A similar arrangement is used in discrete devices.
It should be noted that in the preceding description separate NMOS and PMOS transistors were assumed, as in Figures 4.6.2 and 4.6.3. In some circuits, a terminal of one transistor is connected to a terminal of another transistor.

In the CMOS inverter (Section 5.5, Chapter 5), for example, the drains of the NMOS and PMOS transistors are connected together. The two drains are therefore merged together in one structure during fabrication. This merging of structures in a given layer is implemented whenever possible so as to minimize the inactive area on the chip, which can also improve performance by eliminating the parasitic resistance and capacitance.

Silicon-on-Insulator Technology

In silicon-on-insulator (SOI) technology, each transistor is completely encased by SiO_{2}. Transistor fabrication begins with a Si wafer having at its surface an oxide layer underneath a thin Si layer. Such a structure can be produced in several ways. In the implantation of oxygen (SIMOX) process, oxygen ions are implanted, producing a nearly amorphous layer having about twice as many oxygen as Si atoms. This is followed by a high temperature anneal that repairs the crystal damage caused by the implantation and forms a buried oxide (BOX) layer that is $50-200 \mathrm{~nm}$ thick, with a Si layer above it of approximately the same thickness.

Alternative processes rely on wafer bonding. In the epitaxial layer transfer (ELTRAN) process, a wafer, referred to as the device wafer, is anodized to create two distinct, porous Si layers of different porosities. A high-quality epitaxial layer of Si is then grown above the porous layers followed by thermal oxidation to create a SiO_{2} layer (Figure 4.6.5a). Another wafer, referred to as the handle wafer, is bonded to the device wafer by pressing them together at a high temperature. The bonded wafers are then separated between the two

FIGURE 4.6.5
(a) Preparation of a device wafer in SOI technology; (b) a handle wafer bonded to the device wafer; (c) preparation of silicon substrate.

FIGURE 4.6.6
Diagrammatic structure of SOI CMOS transistors.
porous layers, as illustrated in Figure 4.6.5b. The handle wafer, which is used as the Si substrate for forming transistors, has a porous Si layer on top of an epitaxial Si layer, with a buried SiO_{2} layer (Figure 4.6.5c). The porous silicon layer is removed, the source/drain are formed in the epitaxial layer, and the transistor is fabricated as previously described, but with a buried SiO_{2} layer beneath the transistor.

The resulting CMOS structure is very similar to that previously considered (Figure 4.6.2), except that each transistor is encased in SiO_{2} insulation (Figure 4.6.6). When the thickness of the Si layer in which the transistors are formed is small, that is, about 50 nm , the Si layer under the channel is fully depleted at zero bias by the built-in junction potentials between the source/drain and the Si under the channel. The transistor is said to be of the fully depleted (FD) type. If the silicon layer is thicker, that is, more than 100 nm , the Si under the channel is partially depleted, and the transistor is said to be of the partially depleted (PD) type. Although PD transistors are easier to manufacture, the trend is to adopt FD transistors for the more advanced technologies.

4.7 Fabrication of Bipolar Junction Transistors

Operation of the BJT is described in Section 6.1, Chapter 6.

Basic BJT Structure

The basic structure of an $n p n$ BJT is diagrammatically illustrated in Figure 4.7.1. Starting with a lightly doped p-substrate, the first step is to form a buried n^{+}layer that reduces the resistance in the current path to the collector. The steps involved are the thermal growing of a thick oxide layer, of $0.5-1 \mu \mathrm{~m}$ depth, then opening a window in the oxide, implanting As ions, followed by annealing to repair the damage caused by ion implantation and to activate the implanted impurities. The oxide that is formed during annealing is removed and an epitaxial n-layer is grown over the n^{+}layer. Epitaxy is here indispensable for forming a layer of reduced doping concentration over the n^{+}layer, and which will form the collector region. The next step is to grow a thick LOCOS layer that reaches all the way to the n^{+}buried layer for lateral isolation between adjacent transistors. The transistor is isolated from the p-substrate by the $n^{+} p$ junction between the n^{+}buried layer and the substrate. Boron-doped p^{+}channel stops are formed under the isolation oxide to prevent the formation of an E-NMOS transistor consisting of the p-substrate, the oxide layer, and overlying metallic connections and n^{+}regions on either side.

FIGURE 4.7.1
Diagrammatic structure of npn BJT.

The n-collector region is now almost formed, except for the contact region. The next major step is to implant boron ions to form the p-base. This is followed by As ion implant to form the n^{+}emitter and the n^{+}collector contact region. The p^{+}base contact region is then formed by boron ion implantation, followed by the metallization of the contact.

It should be noted that the depth of the collector region under the base is that of the n-epitaxial layer less the base diffusion and the updiffusion from the n^{+}buried layer. Arsenic is used in the n^{+}buried layer to minimize this updiffusion. For analog applications, which require higher breakdown voltages, the depth of the n-epitaxial layer is relatively large and the doping level is relatively low, compared to digital applications, which require lower voltages for switching purposes. Not shown in Figure 4.7.1 is a sinker implant that is used to connect the n^{+}buried layer to the n^{+}collector contact so as to lower the collector resistance.

In Figure 4.7.1, the structure comprising the emitter, the base, and the collector region directly beneath the emitter is referred to as the intrinsic device. The region from the intrinsic device to the base contact is the extrinsic base, and the region from the intrinsic device to the collector terminal is the extrinsic collector. The extrinsic base adds to the base resistance, whereas the extrinsic collector adds to the collector-substrate capacitance. Both of these parasitic elements degrade the high-frequency response of the transistor.

Modified BJT Structures

One of the improvements to the basic BJT structure is to use SOI substrates. This not only reduces the collector junction capacitance but increases the breakdown voltage as well. However, because thermal conductivity of SiO_{2} is much lower than that of Si , not as much power can be dissipated in SOI devices for the same junction temperature.

The parasitic base resistance and collector-substrate capacitance are reduced in the selfaligned, double-poly structure, illustrated diagrammatically in Figure 4.7.2. After the buried n^{+}layer, the n-epitaxial layer, and the SiO_{2} isolation are formed, a p^{+}poly layer, heavily doped with boron, is deposited and then patterned to open a window for the active regions of the base and the emitter. A thermal oxide is grown over the etched structure to form the p^{+}poly vertical sidewalls that determine the spacing between the base and emitter contacts. Because boron is highly soluble in Si , it outdiffuses from the heavily doped p^{+}poly during the thermal oxidation and forms the extrinsic base regions. The intrinsic base region is then formed by implantation of boron ions. The intrinsic and extrinsic base regions are self-aligned in this step because of the sidewall spacers.

FIGURE 4.7.2
Improved, double-poly structure of $n p n$ BJT.

The second poly layer is then deposited and implanted with As or P. Outdiffusion from this n^{+}poly forms the n^{+}emitter region. Finally, a Pt film is deposited and heated to form PtSi polycide over some of the emitter and base poly regions. The resulting structure has reduced base resistance, collector-substrate capacitance, and base-collector capacitance.

A pnp transistor can be formed by the same self-alignment process discussed in connection with Figure 4.7.2 using complementary semiconductors. It is also possible to combine such a $p n p$ transistor with the self-aligned $n p n$ transistor of Figure 4.7.2.

A lateral-type $p n p$ transistor, as opposed to the vertical-type $n p n$ transistors considered so far, is formed by the structure of Figure 4.7 .3 using the same manufacturing process as $n p n$ transistors, with the lightly doped n-type epitaxial layer constituting the base. As a result, the collector/base depletion layer extends mostly into the base, so the base must be made wider, which reduces current gain and unity gain frequency, and makes the recombination current a larger fraction of the base current (Example 6.1.1, Chapter 6). Lateral pnp transistors are also compatible with MOSFET fabrication. The emitter and collector regions could be the source and the drain of a PMOS transistor whose n-well, with an added contact, would act as the base.

BiCMOS

Most BiCMOS technologies aim at using the same CMOS processes as much as possible. The n-well CMOS construction is well suited for incorporating npn BJTs, as this basically involves the addition of a p-base diffusion region. Starting with a p^{-}substrate, an n^{+}

FIGURE 4.7.3
Lateral-type pnp BJT.

FIGURE 4.7.4
$n p n$ BJT in BiCMOS fabrication.
buried layer is implanted for reducing collector series resistance (Figure 4.7.4). Arsenic is usually used in this layer because its low diffusion rate minimizes outdiffusion from this layer. An n-type epitaxial layer is then deposited for further processing. n-wells are formed for both the PMOS and BJT transistors at a doping level of about $10^{17} / \mathrm{cm}^{3}$, which is found to give good performance for both types of transistors. A series of high-dose n-type implants in parts of the n-well establishes a connection between the collector contact region and the buried layer. A boron ion implant forms the p-base. A polysilicon emitter is used to establish the emitter contact.

4.8 Miscellaneous Topics

SiGe Technology

Adding Ge to Si is an important technological development that can enhance the performance of both MOSFETs and BJTs. Ge is a group IV element, like Si , but has a larger atomic weight, and hence is a bigger atom. Its E_{g} of about 0.7 eV is smaller than that of Si , because valence electrons, being farther away from the nucleus, require less energy to move to the conduction band. When incorporated in a Si crystal, Ge replaces some Si atoms but does not dope the crystal because its outermost shell has four electrons, just like Si.

The effect of adding Ge at concentrations that are usually between 15% and 25% is twofold: (1) SiGe has a bandgap of approximately $0.8-0.9 \mathrm{eV}$, depending on the concentration of Ge , compared to 1.12 for Si . The difference in bandgap energies dramatically increases current gain in the heterojunction bipolar transistor (HBT) (Section 6.4, Chapter 6). (2) The Si crystal is strained, with resultant increase in carrier mobility. Using strained Si in a MOSFET channel increases the speed of the transistor (Section 5.3, Chapter 5).

The common method of straining Si basically consists of growing a thin epitaxial layer of Si on a SiGe crystal. The dimensions of the unit cell of the SiGe crystal are about 1% larger than those of the Si crystal. In maintaining continuity across the interface by satisfying the atomic bonds, the Si crystal becomes strained in the plane parallel to the interface, for example, the $x y$ plane. As the Si crystal is strained in tension in the $x y$ plane, it is compressed in the z-direction, as illustrated in Figure 4.8.1a. However, if the Si layer is too thick, the stress is relieved during subsequent annealing, and the Si crystal assumes its

FIGURE 4.8.1
(a) A thin strained layer of Si on SiGe ; (b) strain relieved in a thicker Si layer.
normal dimensions, leaving unsatisfied bonds, or misfit dislocations, at the interface (Figure 4.8.1b). The critical thickness of the Si layer decreases as the concentration of Ge in the underlying substrate is increased. For concentrations normally used, the critical thickness is about 100 nm .

Crystal Defects

As crystal defects can have a substantial impact on the performance of semiconductors, it is important to appreciate their nature and effects. It should be borne in mind that crystal boundaries are in themselves a major departure from an ideal crystal of infinite extent, because atoms at the surface of the crystal do not have four neighbors to form covalent bonds with (Section 2.3, Chapter 2), leaving dangling bonds that can trap current carriers (Section 2.7, Chapter 2).

Crystal defects are normally classified into four categories: point defects, line defects, area defects, and volume defects. Point defects are localized, as illustrated in Figure 4.8.2a. Examples are: (1) a vacant lattice site (A); (2) a self-interstitial in which a lattice atom occupies a space between lattice positions (B); (3) a Frenkel defect (C), in which a lattice atom is displaced into the interatomic space, creating both a vacant site and a selfinterstitial; (4) a substitutional defect, in which an impurity atom occupies a lattice site (D), as in the case of dopants; and (5) an interstitial defect, in which an impurity atom occupies a space between lattice atoms (E). Defects A to C involving only the crystal atoms are intrinsic defects, whereas defects D and E are extrinsic defects. Vacancies and selfinterstitials occur, with a small probability, in an otherwise perfect crystal due to thermal excitation at nonzero temperatures. They also propagate through the crystal, particularly at high temperatures. When a vacancy is created (A), not all the bonds may be broken, so that some electrons are left behind. Substitutional impurities (E) introduce energy levels in the

FIGURE 4.8.2
(a) Examples of point crystal defects and (b) crystal dislocation.
bandgap, acting as generation-recombination centers (Section 2.7, Chapter 2). Point defects are important in ion implantation and diffusion processes.

Line defects occur in one dimension, most commonly as a dislocation, in which an additional line of atoms is inserted between two other lines, as illustrated diagrammatically in Figure 4.8.2b. It is seen that some bonds are stressed in expansion and some in compression, which affects carrier mobilities and energy levels. Line defects can occur as a result of agglomeration of point defects, or as a result of stress that may be induced by uneven heating or mechanical pressure, or by ionic bombardment, or by a high concentration of substitutional impurities. Dislocations can also move through the crystal.

Area defects are discontinuities in two dimensions, such as a stacking fault, which is an extra plane of atoms rather than an extra line, as in a line fault. The atomic spacing is irregular in two dimensions but is regular in the third. Area defects can also occur as a change in the crystal orientation across a plane, as happens at grain boundaries between crystals. Volume defects have irregularity in three dimensions and usually occur as precipitates due to a decrease in the solubility of an impurity, because of temperature changes, for example.

$\mathrm{Si}-\mathrm{SiO}_{2}$ Interface

The structure of SiO_{2} is basically that of four oxygen atoms at the corners of a tetrahedron, with a Si atom at the center (Figure 4.8.3). The Si valence shell of 8 is satisfied by covalent

FIGURE 4.8.3
Structure of SiO_{2}.

bonds with the four oxygen atoms at the corners of the tetrahedron. If each oxygen atom is part of two tetrahedra, then each oxygen atom is bonded to two Si atoms, the valence of oxygen will also be satisfied, and the oxygen atoms are referred to as bridging sites. Quartz has such a regular, lattice structure in which all oxygen atoms are bridging sites. In thermally grown SiO_{2}, some of the oxygen atoms are nonbridging, that is, they are not common to two tetrahedra and are bonded to one Si atom only. The larger the fraction of bridging sites, the denser and more cohesive is the oxide. Dry oxides have a much larger fraction of bridging sites than wet oxides.

The $\mathrm{Si}-\mathrm{SiO}_{2}$ interface is basically between a regular Si crystal and an essentially amorphous SiO_{2}. Hence, not all the bonds of the Si crystal atoms will be satisfied, which creates low-energy traps that can capture and release electrons and holes, resulting in flicker noise (Section 6.5, Chapter 6). The mean charge held in these traps depends on the voltage across the SiO_{2} layer. The trap density of states can be reduced in two ways: (1) making the surface plane the $<100>$ orientation (Figure 4.1.1), which has the lowest density of surface atoms of about 6.8×10^{14} atoms $/ \mathrm{cm}^{2}$; and (2) low-temperature hydrogen annealing at about $450^{\circ} \mathrm{C}$. Hydrogen satisfies dangling bonds at the interface and in the body of the oxide.

Apart from the charge due to surface states, a fixed positive charge exists in a thin, transition layer of about 3 nm thickness at the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface due to excess Si ions that have broken away from the Si crystal. This charge is also lowest for the $<100\rangle$ orientation and is effectively reduced by postoxidation, high-temperature annealing at about $1200^{\circ} \mathrm{C}$ in an inert atmosphere of nitrogen or argon.

In addition to the aforementioned charges at the interface, fixed and mobile charges can exist in the body of the oxide. The fixed charges can be positive or negative and are due to defects in the SiO_{2} or due to hot carriers, resulting from a high electric field at the drain, and which get trapped in the oxide. The mobile charges are due to contamination during fabrication by Na^{+}and K^{+}, which have a large mobility in SiO_{2}, particularly at temperatures exceeding about $100^{\circ} \mathrm{C}$. These charges move in the oxide under the influence of an applied voltage.

Electric charges in the oxide or at the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface affect the threshold of MOS transistors. If the charge is not affected by voltage and causes only a small shift in the threshold, then it is not much of a problem. Much more serious are the charges affected by the applied bias voltage, such as the charge due to mobile ions or due to hot carriers. These can have a detrimental effect on the long-term reliability of the transistor.

Summary of Main Concepts and Results

- Silicon of high purity is obtained by distillation of SiHCl_{3}, a liquid compound of silicon.
- A large single crystal, or ingot, is grown from a seed crystal having the desired crystal orientation. The ingot is then cut into wafers which are highly polished on one surface using a CMP.
- SiO_{2} is thermally grown using dry or wet processes. SiO_{2} grows at the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface.
- The major fabrication steps depend on masks that transfer the required layout patterns to the wafer using a photolithographic process followed by etching. Etching could be wet or dry, using a plasma. RIE utilizes a plasma in conjunction with suitable chemicals.
- Ion implantation is extensively used for doping. It allows close control at a relatively low temperature but causes local damage to the crystal. The damage is repaired by a high-temperature anneal, which also activates the dopant ions by making them occupy lattice sites.
- Diffusion is used to introduce specific impurities to depths of several $\mu \mathrm{m}$, following an initial deposition by ion implantation or by vapors of compounds of the required dopant. Subsequent heating allows the impurities to diffuse to the required depths.
- CVD is used to deposit many different types of materials. An important advantage of CVD is good step coverage. A form of CVD is silicon epitaxy, which allows the growth of a less heavily doped layer of crystalline Si over wafer Si , the epitaxial layer becoming part of the same crystal.
- Metallization includes the formation of low-resistance metallic contacts to terminal regions of devices, metallic interconnections at the same level of the chip and between different levels, as well as bonding pads for external connections. Polysilicon, aluminum, and silicides are used for low-resistance contacts, aluminum and copper are mainly used for interconnections, tungsten vias are used with aluminum interconnections, whereas copper vias are used with copper interconnections, and aluminum is used for bonding pads.
- IC packages of various forms are used to connect the chip to the circuit board, protect it mechanically, and conduct the heat dissipated in the chip. Hermetic sealing protects the chip from environmental contaminants such as water and ionic compounds.
- Simple devices such as resistors, $p n$ junction diodes, and capacitors, albeit of not very exacting specifications, can be based on a basic well structure in a complementary semiconductor substrate.
- With the increasing density of transistors, reverse-biased pn junctions could no longer be used to isolate transistors and prevent the formation of the parasitic MOS transistors. STI, deep trench isolation, or SOI provide effective isolation.
- Fully depleted, SOI transistors are an important development for submicron CMOS technologies.
- Reduction of parasitic base resistance, collector resistance, base-collector capacitance, and collector-substrate capacitance are important considerations in advanced structures for the BJT.
- Bipolar transistors can be integrated into CMOS fabrication to produce BiCMOS ICs.
- SiGe technology can be used to enhance the performance of both BJTs and MOSFETs.
- Charge in the gate oxide and at the $\mathrm{Si}-\mathrm{SiO}_{2}$ interface affects the threshold of the MOSFETs and can have a detrimental long-term effect on the reliability of the transistor.

Learning Outcomes

- Articulate the basic processes involved in semiconductor fabrication and their essential features.

Supplementary Examples and Topics on Website

ST4.1 Doping Concentration in Czochralski Growth. Derives the expression for the doping concentration in the boule as a function of the solidification fraction in Czochralski growth.

ST4.2 Some Theoretical and Practical Aspects of Lithography. Elaborates some topics on lithography, including optical considerations, resolution-enhancement techniques, and nonoptical lithography.

ST4.3 MOS Capacitor. Derives the basic relations of the MOS capacitor.

Problems and Exercises

P4.1.1 A Czochralski-grown boule is to be doped with phosphorus at a concentration of $10^{16} / \mathrm{cm}^{3}$, where the equilibrium segregation coefficient $k_{0}=C_{s} / C_{m}$ is $0.35, C_{s}$ and C_{m} are, respectively, the concentrations of dopant in the solid crystal and melt. This means that as the melt is converted to a solid crystal, the dopant concentration in the melt, and hence in the crystal increases. It can be shown (Equation ST4.1.6) that $C_{s}=k_{0} C_{0}\left(1-M_{s} / M_{0}\right)^{k_{0}-1}$, where M_{s} / M_{0} is the fraction of the melt that has solidified. (a) What should be the mass of phosphorus added to a 50 kg melt of Si to give initially the required concentration in the solid crystal? Assume that the density of Si is $2.53 \mathrm{~g} / \mathrm{cm}^{3}$ and that the atomic weight of phosphorus is $31 \mathrm{~g} / \mathrm{mol}$. (b) What is the dopant concentration in the solid crystal by the time that half the melt has solidified?
P4.1.2 If an SiO_{2} layer 10 nm thick is grown by thermal oxidation, what is the thickness of Si consumed? Assume that Si has a molecular weight of $28.9 \mathrm{~g} / \mathrm{mol}$ and a density of 2.33 $\mathrm{g} / \mathrm{cm}^{3}$, while the corresponding figures for SiO_{2} are $60.1 \mathrm{~g} / \mathrm{mol}$ and $2.21 \mathrm{~g} / \mathrm{cm}^{3}$. (Hint: calculate the volume of 1 mol from the figures given.)
P4.1.3 Assume that the surface-trap and fixed charge at an $\mathrm{Si-} \mathrm{SiO}_{2}$ interface is one electronic charge per $10^{4} \mathrm{Si}$ atoms, the density of atoms in the $\langle 100\rangle$ orientation being 6.8×10^{14} atoms $/ \mathrm{cm}^{2}$. Determine the shift in the threshold if $t_{o x}=10 \mathrm{~nm}$. (Hint: calculate the charge/unit area).
P4.1.4 CMP is to be used to remove a layer of material $1 \mu \mathrm{~m}$ thick that is on top of a "stop layer" that is $0.01 \mu \mathrm{~m}$ thick. If the rates of removal of the top and stop layers are 0.15 and $0.02 \mu \mathrm{~m} / \mathrm{min}$, respectively, how much polishing time should be allowed?
P4.1.5 A 300 mm diameter wafer is exposed for 1 min to a laminar airflow of $25 \mathrm{~m} / \mathrm{min}$ in a class M 3 clean room. How many dust particles of $0.5 \mu \mathrm{~m}$ diameter or larger will be deposited on the wafer?
P4.1.6 Fick's diffusion equation, $\frac{\partial C(x, t)}{\partial t}=D \frac{\partial^{2} C(x, t)}{\partial x^{2}}$, where $C(x, t)$ is the concentration of the dopant and D is its diffusion constant at the given temperature, applies for low dopant concentrations. The solution to this equation subject to the boundary conditions that a fixed amount S of the dopant is deposited at the semiconductor surface, and that $C(\infty, t)=0$, is $C(x, t)=\frac{S}{\sqrt{\pi D t}} e^{-x^{2} / 4 D t}$. If As is deposited from the gaseous phase at a surface concentration of 2×10^{14} atoms $/ \mathrm{cm}^{2}$, determine the concentration of As at the surface and at a depth of $1 \mu \mathrm{~m}$ after 2 min of diffusion at $1200^{\circ} \mathrm{C}$, assuming that the diffusion constant is $2.6 \times 10^{-13} \mathrm{~cm}^{2} / \mathrm{s}$.

P4.1.7 The length of an n-well is 10 times its width. Calculate the resistance of this n-well assuming that its sheet resistance is $2 \mathrm{k} \Omega / \square \pm 20 \%$.
P4.1.8 Titanium silicide has a resistivity of $15 \mu \Omega-\mathrm{cm}$. Determine the thickness that will give a sheet resistance of $0.5 \Omega / \square$.
P4.1.9 An IC resistor $100 \mu \mathrm{~m}$ long and $8 \mu \mathrm{~m}$ wide has a sheet resistance of $1.2 \mathrm{k} \Omega / \square$. If the two end contacts are equivalent to $1.5 \square$, determine the total resistance.
P4.1.10 Two parallel Cu wires of $0.5 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$ cross section and 1 mm length are separated by a SiO_{2} dielectric $0.5 \mu \mathrm{~m}$ wide. Determine: (a) the resistance of each wire, and (b) the capacitance between the wires neglecting fringe effects. Assume the resistivity of copper is $1.7 \mu \Omega-\mathrm{cm}$ and the dielectric constant of SiO_{2} is 3.9 .
P4.1.11 A 0.5 mm long, $0.25 \mu \mathrm{~m}$ wide metal line is separated from the substrate below it by a $1 \mu \mathrm{~m}$ layer of SiO_{2}. Determine the capacitance between the metal and the substrate neglecting fringing effects and assuming the dielectric constant of SiO_{2} is 3.9.
P4.1.12 The inductance of an IC spiral inductor of N turns and outer radius r is approximately given by $L \cong \mu_{0} N^{2} r$, where μ_{0} is the permeability of free space. Determine r that is required to give $L=15 \mathrm{nH}$ with 25 turns.

5

Field-Effect Transistors

Chapters 5 and 6 are concerned with the common types of transistors-the active devices used in electronic circuits mainly for signal amplification and switching. Transistors fall into two general classes: field-effect transistors (FETs), of which there are several types, and bipolar junction transistors (BJTs), with each type having its own advantages and disadvantages. As a switch, the transistor is either fully conducting or nonconducting, whereas as an amplifier the transistor is in an intermediate state of conduction that allows amplification of voltage, or current, or both. In all cases, it is important to have a good understanding of the basic operating principles of the various types of transistors and their voltage-current characteristics.

Analog electronics is principally concerned with the use of transistors as amplifying devices, although some switching operations may be included. Digital electronics, on the other hand, is mostly concerned with the use of transistors as switches in logic gates and in other digital elements, although some nonswitching applications may be included.

The general approach in Chapters 5 and 6 is to analyze the operation of an idealized device, based on physical principles, and derive its voltage-current characteristics and small-signal equivalent circuit. Effects that significantly affect device behavior are then considered, including secondary effects that are important under certain conditions. Mathematical treatment is kept to a minimum; derivations of transistor equations and other mathematical relations are left to Supplementary Examples and Topics on the website.

The reader may find the many assumptions made in transistor operation rather disconcerting. Nevertheless, as is true of engineering models in general, the assumptions are welljustified under normal conditions. It is important, therefore, to appreciate the nature of the assumptions underlying different models, and not draw unwarranted conclusions based on incorrect assumptions. Particular attention is paid to explaining the limitations of derived models.

The operation of various types of FETs is considered in this chapter, beginning with a general discussion of the essential attribute of an amplifier and the various possible modes of operation of a generic, hypothetical amplifying device.

Learning Objectives

* To be familiar with:
- The symbols, terminology, and basic structure of FETs.
- Various secondary effects and some more advanced concepts that influence the behavior of FETs.
* To understand:
- The basic operation of an active element as an amplifying device, a voltage controlled resistance, a switch, and a transmission gate.
- The basic operation of enhancement-type and depletion-type, n-channel and p-channel, metal-oxide-semiconductor field-effect transistors (MOSFETs) in terms of the basic square-law model, and the resulting transfer and output characteristics.
- The voltage and current relations in a basic MOSFET amplifier circuit for small-signal operation, and the derivation of the small-signal equivalent circuit.
- The effect of channel-length modulation on MOSFET characteristics.
- The various capacitances that influence the behavior of the MOSFET at high frequencies.
- The different $i-v$ characteristics of diode-connected MOSFETs.
- The basic operation of the CMOS amplifier, transmission gate, and inverter.
- The basic operation of the junction field-effect transistor (JFET) and the resulting transfer and output characteristics as well as the small-signal equivalent circuit.
- The basic operation of the metal-semiconductor field-effect transistor (MESFET).

5.1 Amplifiers

An electronic amplifier is essentially a three-terminal circuit having an input terminal, an output terminal, and a terminal that is common between input and output (Figure 5.1.1). An input signal is applied to the input terminal, and the output signal is applied to some kind of load, which for simplicity can be considered purely resistive, but which could, in general, be reactive or another amplifying stage.

Definition: An amplifier amplifies power, so that the output signal power is considerably larger than the input signal power:

$$
\begin{equation*}
v_{O}\left(-i_{O}\right)>v_{I} i_{I} \tag{5.1.1}
\end{equation*}
$$

where $v_{I} i_{I}$ is the instantaneous power delivered to the amplifier, and $v_{O}\left(-i_{O}\right)$ is the instantaneous power delivered to the load.

FIGURE 5.1.1
Electronic amplifier connected to a load.

The following should be noted concerning this inequality:

1. The inequality strictly applies to the average, or real, power under steady-state conditions. Under transient conditions, when internal capacitances are being charged, for example, the output power can be small.
2. In order to satisfy the inequality, either v_{O} must be sufficiently larger than v_{I} (corresponding to voltage amplification) or $-i_{O}$ must be sufficiently larger than i_{I} (corresponding to current amplification), or both. The latter condition prevails in most amplifier circuits.
3. Energy must be conserved in an amplifier circuit, despite inequality 5.1.1. This implies that some auxiliary supply, which usually consists of one or more dc bias supplies, must be associated with the amplifier so that energy is conserved in the circuit as a whole.

Hypothetical Amplifying Device

In order to appreciate some basic concepts concerning amplifiers, consider the hypothetical device illustrated in Figure 5.1.2 consisting of a capacitor-like structure having upper and lower plates as well as side plates. The upper plate is connected to the control terminal c, whereas the lower plate, connected to terminal d, is grounded. Terminal a is connected to a source v_{x}, and terminal b is connected to a load R_{L}.

The material between the two plates is assumed to have some very special properties. It does not conduct current between the plates connected to terminals c and d , so that i_{C} is always zero. When $v_{C} \geq 0$, the concentration of electrons is high, so that the material acts as an excellent conductor between the plates connected to a and b , the resistance $r_{a b}$ being practically zero. But when $v_{C}<0$, electrons are repelled and $r_{a b}$ increases as v_{C} becomes more negative. At a sufficiently negative $v_{C}, r_{a b} \rightarrow \infty$.

The device of Figure 5.1.2 can be operated in one of four modes:

1. As a voltage-controlled resistance. This gives $v_{O}=v_{x} R_{L} /\left(r_{a b}+R_{L}\right)$, where $r_{a b}$ can be varied between zero and infinity by varying v_{C} between zero and a sufficiently negative value.
2. As a switch. If v_{x} is a dc supply, the dc current through the load can be switched on and off by varying v_{C} between a positive value ($r_{a b}=0$) and a sufficiently negative value ($r_{a b} \rightarrow \infty$).

FIGURE 5.1.2
Hypothetical amplifying device.
3. As a transmission gate. If v_{x} is a time-varying signal, v_{C} can control or "gate" the transmission between the signal source v_{x} and load. If $v_{C} \geq 0, r_{a b}=0$, and the signal v_{x} is applied to the load. But if v_{C} is sufficiently negative, $r_{a b} \rightarrow \infty$, and no signal is applied to the load.
4. As an amplifier. In this case, terminal a is grounded, so that the device becomes three-terminal. A small-signal ac source $v_{s r c}$ in series with a dc bias $V_{B B}$ is applied to input terminal c , which ensures that the total voltage v_{I} applied to the upper plate is always negative (Figure 5.1.3a). The load R_{L} is connected to output terminal b in series with a dc supply $V_{C C}$. When $v_{\text {src }}=0, v_{I}=-V_{B B}$. A steady current I_{L} flows and a steady voltage $R_{L} I_{L}$ is developed across R_{L} (Figure 5.1.3b). When $v_{s r c} \neq 0$, $v_{I}=-V_{B B}+v_{S R C}$, and i_{L} varies in phase with $v_{s r c}$. That is, when v_{I} becomes less negative, i_{L} increases in magnitude, and conversely. When i_{L} increases, the voltage drop $v_{L}=R_{L} i_{L}$ increases and v_{O} decreases, since $v_{O}+v_{L}=V_{C C}$. The overall effect is that the signal $v_{s r c}$ effectively modulates the current through the device, causing a substantial variation of the voltage across the load due to signal variations. If the ac input signal is $v_{i}=V_{i m} \sin \omega t$, then $i_{l}=I_{l m} \sin \omega t, v_{l}=V_{l m} \sin \omega t$, and $v_{o}=-V_{o m} \sin \omega t$, where $V_{o m}=V_{l m}$. The signal power delivered to the load is $V_{l m}^{2} / 2 R_{L}$. The power expended by the signal source $v_{\text {src }}$ is ideally zero, because $i_{C}=0$. The power amplification is theoretically infinite. Since it essentially generates signal power, an amplifying device is an active device.

FIGURE 5.1.3
(a) Connection of the device of Figure 5.1.2 as an amplifier and (b) voltage and current waveforms.

(b)

Concept: In an amplifier, the input signal essentially modulates, at a low power level, the output current, at a high power level.

As will be demonstrated in due course, the output current is modulated in some way by the input signal in both FETs and BJTs.

Exercise 5.1.1

An ideal transformer of primary-to-secondary turns ratio a is a two-port device whose $v-i$ relations at the input and output are given by $\frac{v_{O}}{v_{I}}=a$ and $\frac{i_{O}}{i_{I}}=-\frac{1}{a}$, following the voltage and current designations of Figure 5.1.1. If $a>1$, voltage is amplified. If $a<1$, current is amplified. Is the ideal transformer an amplifier?

Answer: No, because $v_{O}\left(-i_{O}\right)=v_{I} i_{I}$, that is, power is not amplified.

5.2 Basic Operation of the MOSFET

MOSFETs are of two types: enhancement-type or depletion-type, each of which can be either n-channel (NMOS), or p-channel (PMOS). Where it is necessary to differentiate between the four types, we will refer to them as E-NMOS, D-NMOS, E-PMOS, and D-PMOS, where the E- and D-prefixes denote enhancement and depletion types, respectively.

Structure

Figure 5.2.1 diagrammatically illustrates the basic structure of an E-NMOS transistor. The source and drain are highly doped $\left(n^{+}\right)$regions that are formed in a p-type Si body. A gate electrode is separated from the semiconductor by a thin layer of silicon dioxide $\left(\mathrm{SiO}_{2}\right)$, which is an excellent insulator. For this reason, MOSFETs are sometimes referred to as insulated-gate field-effect transistors (IGFETs). Metallic contacts are made to the source, drain, and gate, and are brought out as terminals in discrete devices.

Henceforth, the term "body" will be used in this book to denote the semiconductor that borders the source and drain in a particular transistor. In contrast, the substrate is the

FIGURE 5.2.1
Diagrammatic illustration of the structure of an E-NMOS transistor.
base semiconductor that is common to all the transistors on the chip. The body is the substrate itself if the source and drain are formed directly in the substrate. However, the body could be a well that is formed in the substrate for a single transistor, or could be the semiconductor encased by insulation in silicon-on-insulator (SOI) technology (Section 4.6, Chapter 4). Note, however, that the B terminal (Figure 5.2.1) is connected to the substrate.

In early MOSFETs, the gate electrode was made of aluminum, and the structure at the gate (metal-oxide-semiconductor) gave the transistor its name. In later technologies, the gate metal was replaced by polysilicon, which is a heavily doped polycrystalline silicon composed of many crystals, in contrast to the single-crystal structure of the silicon chip from which the rest of the transistor is made (Section 4.6, Chapter 4). However, there has been a return once more to metal gates in the most recent technologies, as will be mentioned later in Section 5.3.

The separation between the source and drain constitutes a channel of length L, which can be in the range $1 \mu \mathrm{~m}$ to several $\mu \mathrm{ms}$ in long-channel devices, or much less than $1 \mu \mathrm{~m}$ in short-channel devices. The width W of the channel in the direction normal to the plane of the paper typically ranges between approximately $1.5 L$ to several hundred times L. The thickness of the oxide $t_{o x}$ is typically about $L / 50$. Thus, $t_{o x} \cong 20 \mathrm{~nm}$ for $L=1 \mu \mathrm{~m}$. The trend has been to decrease these dimensions as much as possible in order to pack a larger number of transistors per unit area of the Si chip, and to increase switching speeds, as discussed later under short-channel effects.

The structure of Figure 5.2.1 is symmetrical; the drain and source can be interchanged without affecting device characteristics. In normal operation, the $p n$ junctions between the body and source or drain are never forward biased, as discussed later under body effect (Section 5.3).

Operation of Enhancement-Type MOSFETs

The dc gate current is normally extremely small, typically of the order of $10^{-15} \mathrm{~A}$, and is neglected. With no gate bias applied ($v_{G S}=0$), two $p n$-junction diodes are effectively connected back-to-back between drain and source, resulting in a very high resistance between these two regions (typically $>10^{10} \Omega$). If $v_{D S}>0$ is applied, the drain current i_{D} is practically zero.

If $v_{G S}>0$ and is small, an electric field is directed from the positively charged gate electrode into the p-type body. Holes are repelled, so that the electric field lines end on negatively charged acceptor ions. As $v_{G S}$ is increased further, the field becomes strong enough to attract electrons, primarily from the source and drain regions, so that the electric field lines end on both negatively charged acceptor ions and conduction electrons. An n-channel is thereby formed in a thin surface layer underneath the gate, between the source and drain (Figure 5.2.2a). This induced n-channel is an inversion layer, because it effectively inverts the p-semiconductor into an n-type-like semiconductor in the channel. If a small $v_{D S}$ is applied, a current i_{D} flows that is essentially directly proportional to $v_{D S}$ (Figure 5.2.2b). It is important to note that i_{D} does not flow until the n-channel is formed, which requires a minimum $v_{G S}=V_{t n}$, where $V_{t n}$ is the threshold voltage of the E-NMOS transistor. As at any $p n$ interface, a depletion layer is formed around the channel, source, and drain even with zero bias across this interface. For small $v_{D S}$, the channel and the depletion layer underneath it are essentially of uniform depth.

Increasing $v_{G S}$ beyond $V_{t n}$ enhances the n-channel and hence i_{D} for a given $v_{D S}$, which gives the enhancement-type transistor its name. As $v_{D S}$ increases, with the body and source

FIGURE 5.2.2
(a) E-NMOS transistor when drain-source voltage is small and (b) the resulting current-voltage characteristic.
voltages constant, the drain-body voltage increases, so that the depletion region below the drain becomes deeper than below the source (Figure 5.2.3a).
$v_{D S}$ appears as a voltage drop along the channel, due to the flow of i_{D}. If we consider a plane xx^{\prime} transversely across the channel, the voltage in the channel at this plane is the same, because no current flows transversely in the channel. The voltage v_{x} at xx^{\prime} with respect to the source is the voltage drop in the channel from xx^{\prime} to the source, due to i_{D} in the channel. The voltage $v_{G x}=v_{G S}-v_{x}$ is the voltage between the gate and body at $x x^{\prime} . v_{G x}$ determines the concentration of electrons in the channel at x^{\prime}, and hence the depth of the channel at xx^{\prime}. At the source, $v_{x}=0$ and $v_{G x}=v_{G S}$. At the drain, v_{x} reaches its maximum value of $v_{D S}$, so that $v_{G x}=v_{G S}-v_{D S}$. For a given i_{D}, therefore, the channel is tapered, its depth decreasing from source to drain.

FIGURE 5.2.3
(a) The channel at increased drain-source voltage and (b) the corresponding variation of drain current.

As i_{D} increases, v_{x} increases at a given xx^{\prime} and $v_{G x}$ decreases. The channel depth decreases and its resistance correspondingly increases. i_{D} no longer increases linearly with $v_{D S}$, as with small $v_{D S}$, but increases at a progressively slower rate (Figure 5.2.3b). When,

$$
\begin{equation*}
v_{G S}-v_{D S}=V_{t n} \tag{5.2.1}
\end{equation*}
$$

the channel depth at the drain becomes almost zero, and the channel is pinched off. Further increase in $v_{D S}$ theoretically has no effect on i_{D}, because of the ideally infinite incremental resistance at the pinch-off point, so that a change in $v_{D S}$ causes no change in i_{D}. The region of the $i_{D}-v_{D S}$ characteristics in which i_{D} remains nominally constant is the saturation region. The region in which i_{D} increases with $v_{D S}$, at constant $v_{G S}$, is the triode region, because of its resemblance to a similar region in the characteristics of a vacuumtube triode. The following should be noted:

1. When $v_{D S}$ increases beyond pinch off in Equation 5.2.1, $v_{G S}-v_{x}=V_{t n}$ is satisfied at $v_{x}<v_{D S}$, so that pinch off takes place closer to the source, that is, the effective channel length is reduced (Figure 5.2.4). The region between the drain and the pinch-off point is the pinch-off region. As $v_{G S}-v_{x}<V_{t n}$ in this region, the region is depleted of carriers, so that the depletion region near the drain expands into the pinch-off region. Electrons flow in this depleted pinch-off region under the influence of the electric field, which is directed from the drain toward the channel.
2. When the channel is pinched off, i_{D} is not reduced to zero. This is because, where the channel is sufficiently deep, nearer the source, significant electron concentration supports current flow, but conservation of current requires that i_{D} be the same all along the channel. i_{D} in the channel is a drift current that is proportional to the product of electron concentration and velocity u, where $|u|=\mu_{e}|\xi| ;|u|$ is directly proportional to the magnitude of the electric field $|\xi|$ as long as the mobility μ_{e} is constant. Hence, where the electron concentration decreases, the electric field and velocity increase to keep the same current flowing.

A hydraulic analogy is helpful. Consider a pump that drives Q liters of water per minute through a pipe of uniform cross section and length L (Figure 5.2.5a). The pressure at the inlet of the pipe is P_{a}, and the pressure gradient P_{a} / L being uniform along the pipe. Suppose that the pipe is replaced by another pipe that is constricted over a length x. In order to have the same flow Q, the pressure at the inlet has to be increased to P_{b}, analogous to a higher drain-source voltage. In the constricted region, water must flow faster in order to keep the same flow through the smaller cross section. The pressure gradient $\Delta P / x$, analogous to the electric field, is

FIGURE 5.2.4
The pinch-off region at the drain and reduced channel length when the drain-source voltage is increased in the saturation region.

FIGURE 5.2.5
Hydraulic analogy of current flow in the channel, before pinch off (a) and after pinch off (b).
correspondingly larger than in the nonconstricted region. Similarly, in the pinched-off region of the channel, fewer electrons move faster under the influence of a larger electric field.
3. The reduction in the effective channel length L as $v_{D S}$ increases beyond its value that causes pinch off at the drain (Figure 5.2.4) is channel-length modulation. The effect of this modulation on i_{D} can be accounted for as described in Section 5.3, but is neglected in the simplified analysis of transistor behavior, which means that as $v_{D S}$ is increased in the saturation region, i_{D} is assumed to remain constant at its value when pinch first occurs (Figure 5.2.3b).

Current-Voltage Relations

The dependence of i_{D} on $v_{D S}$ and $v_{G S}$ in the triode region is derived in Section ST5.1. According to the approximation of the square-law model (Equation ST5.1.24),

$$
\begin{equation*}
i_{D}=\mu_{e} C_{o x}^{*} \frac{W}{L}\left[\left(v_{G S}-V_{t n}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right] \tag{5.2.2}
\end{equation*}
$$

where
μ_{e} is electron mobility
$C_{o x}^{*}=\varepsilon_{o x} / t_{o x}$ is the gate capacitance per unit area (the asterisk denotes capacitance per unit area), where $\varepsilon_{o x}$ and $t_{o x}$ being the permittivity and thickness of the oxide layer, respectively
$\mu_{e} C_{o x}^{*}=k_{n}^{\prime}$ is the process transconductance parameter and is determined by the manufacturing process and the material properties of the transistor. $k_{n}=k_{n}^{\prime}(W / L)$ is the device transconductance parameter, and W / L is the aspect ratio. W / L is used to obtain different values of i_{D}, for the same $v_{G S}$ and $v_{D S}$ in transistors having the same $\mu_{e} C_{o x}^{*}, L$, and $V_{t n}$.
For small $v_{D S}$, the squared term in Equation 5.2.2 can be neglected. i_{D} then varies linearly with $v_{D S}$ for a given $\left(v_{G S}-V_{t n}\right)$, and with $\left(v_{G S}-V_{t n}\right)$ for a given $v_{D S}$ (Figure 5.2.2b). The effective drain-source resistance $r_{D S}$ can be expressed under these conditions as (see also Example SE5.1):

$$
\begin{equation*}
r_{D S}=\frac{v_{D S}}{i_{D}}=\frac{1}{k_{n}\left(v_{G S}-V_{t n}\right)} \tag{5.2.3}
\end{equation*}
$$

Exercise 5.2.1

Given an E-NMOS transistor having the following parameters: $t_{o x}=0.1 \mu \mathrm{~m}, \varepsilon_{o x}=3.9 \times$ $8.85 \times 10^{-14}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}, \mu_{e}=800 \mathrm{~cm}^{2} / \mathrm{Vs}, W / L=60 \mu \mathrm{~m} / 1 \mu \mathrm{~m}$, and $V_{t n}=2 \mathrm{~V}$. Determine: (a) k_{n}^{\prime}; (b) k_{n}; (c) $r_{D S}$ for $v_{G S}=3,5$, and 7 V .

Answers: (a) $27.6 \mu \mathrm{~A} / \mathrm{V}^{2}$; (b) $331.2 \mu \mathrm{~A} / \mathrm{V}^{2}$; (c) $3.02 \mathrm{k} \Omega, 1.01 \mathrm{k} \Omega, 604 \Omega$.
i_{D} saturates when $v_{D S(\text { sat })}=v_{G S}-V_{t n}$ (Equation 5.2.1). Substituting this value of $v_{D S}$ in Equation 5.2.2 gives for the saturation value of i_{D} :

$$
\begin{equation*}
i_{D(\text { sat })}=\frac{1}{2} k_{n}\left(v_{G S}-V_{t n}\right)^{2}, \quad v_{G S} \geq V_{t n} \tag{5.2.4}
\end{equation*}
$$

Equation 5.2.4, plotted in Figure 5.2.6a, is the transfer characteristic of the transistor, because it relates i_{D} on the drain side to $v_{G S}$ on the gate side.

The output characteristics are a family of curves that relate i_{D} to $v_{D S}$ for various values of $v_{G S}$ (Figure 5.2.6b). For a given $v_{G S}>V_{t n}, i_{D}$ is related to $v_{D S}$ in the triode region by Equation 5.2.2. The saturation value of i_{D} (Equation 5.2.4) is then extended into the saturation region, because of the assumption that once pinch off occurs, i_{D} becomes independent of $v_{D S}$, depending only on $v_{G S}$. The boundary between the triode and saturation regions, (dashed in Figure 5.2.6b), can be derived by substituting $v_{G S}-V_{t n}=v_{D S(\text { sat })}$ in Equation 5.2.2 or 5.2.4 to obtain:

$$
\begin{equation*}
i_{D(\mathrm{sat})}=\frac{1}{2} k_{n} v_{D S(\mathrm{sat})}^{2} \tag{5.2.5}
\end{equation*}
$$

The behavior of the MOSFET at low frequencies is completely described by the output characteristics, because $i_{D}, v_{D S}$, and $v_{G S}$ are the only circuit variables involved in the operation of the transistor. The transfer characteristic is not an independent characteristic.

FIGURE 5.2.6
Transfer characteristic (a) and output characteristics (b) of an E-NMOS transistor.

FIGURE 5.2.7
Large-signal equivalent circuit of a MOSFET in the saturation region.

It can be obtained from the output characteristics as the relation between i_{D} and $v_{G S}$ at any value of $v_{D S}$ in the saturation region, such as that corresponding to line xx^{\prime} in Figure 5.2.6b.

For operation in the saturation region, and according to the assumptions made, the transistor can be replaced by the equivalent circuit of Figure 5.2.7. The gate terminal is open circuited, and i_{D} is given by a dependent current source in accordance with Equation 5.2.4. The MOSFET behaves as a voltage-controlled dependent current source having a quadratic voltage dependence. Note that this is a large-signal equivalent circuit, in contrast to the small-signal, linearized equivalent circuit discussed later (Figure 5.2.14).

Exercise 5.2.2

Determine $i_{D(\text { sat) })}$ for the MOSFET of Exercise 5.2.1 for the three values of $v_{G S}$ mentioned.
Answers: $165.6 \mu \mathrm{~A}, 1.49 \mathrm{~mA}, 4.14 \mathrm{~mA}$.

The basic symbol for an E-NMOS transistor is shown in Figure 5.2.8a. The broken line on which the arrow terminates denotes the channel of an enhancement type transistor, the arrow being in the forward direction of the $p n$ junction between the p-body and the

(d)

FIGURE 5.2.8
(a)-(d) illustrate various symbols for an E-NMOS transistor.
channel. The gate terminal is drawn closer to the source terminal. The symbol in Figure 5.2 .8 b is similar but assumes that the body is connected to the source. It can be simplified to that of Figure 5.2.8c, where the arrow is at the source and in the direction of actual current flow at this terminal. The symbol in Figure 5.2.8d is often used in digital circuits, without reference to the source or drain. The circuit is drawn so that the upper terminal is at a positive voltage with respect to the lower terminal, which means that the upper terminal is that of the drain.

p-Channel MOS Transistor

A p-channel enhancement-type MOSFET (E-PMOS) is of complementary structure, having an n-type body and p^{+}source and drain regions. Making the gate sufficiently negative with respect to the body repels electrons and induces a p-channel between source and drain. If the drain is made negative with respect to the source, a hole current flows from source to drain. This operation is completely analogous to that of an E-NMOS transistor, but with the roles of electrons and holes interchanged. Equations 5.2.2 and 5.2.4 apply but with hole mobility μ_{h} replacing electron mobility, and the process transconductance parameter defined as $k_{p}^{\prime}=\mu_{h} C_{o x}^{*}$. The symbol for an E-PMOS transistor is the same as that of an E-NMOS transistor shown in Figure 5.2.8a through c but with the direction of the arrows reversed. The symbol corresponding to that of Figure 5.2.8d is shown in Figure 5.2.9a, with a bubble at the gate to indicate that the gate voltage polarity is reversed with respect to that of an E-NMOS transistor. The circuit is drawn so that the upper terminal is at a positive voltage with respect to the lower terminal, and would, therefore, correspond to the source.

If the same positive directions of $i_{D}, v_{D S}$, and $v_{G S}$ are assigned for an E-PMOS transistor, as for an E-NMOS transistor (Figure 5.2.9b), then all these variables will have negative numerical values. To use positive numerical values, the assigned positive direction of i_{D} is reversed, so that it flows into the source terminal in the direction of the arrow (Figure 5.2.9c), and new terminal voltages are defined as $v_{S G}=-v_{G S}$ and $v_{S D}=-v_{D S}$. If the threshold is considered as $\bar{V}_{t p}=-V_{t p}>0$, Equations 5.2.2 and 5.2.4 will then apply in the form given, with $v_{S D}, v_{S G}$, and $\bar{V}_{t p}$ replacing $v_{D S}, v_{G S}$, and $V_{t n}$, respectively.

FIGURE 5.2.9
(a)-(c) illustrate symbols and polarities for an E-PMOS transistor.

In CMOS (Section 5.5), PMOS transistors are combined with NMOS transistors in the same circuit. Hole mobility is only about one-third of electron mobility in Si , and even less in GaAs (Table 2.3.1, Chapter 2), which means that, for the same magnitudes of terminal voltages, the current in a PMOS transistor is about one-third that in an NMOS transistor of the same W and L, and $r_{D S}$ is approximately three times as much. For the same current and resistance values, the W / L ratio of the NMOS transistor is about one-third that of the PMOS transistor. For this W / L ratio and the same L, the NMOS transistor occupies nearly one-third of the area of an equivalent PMOS transistor and can operate at faster speeds because of its smaller dimensions.

Exercise 5.2.3

An E-PMOS transistor has the same dimensions as the E-NMOS transistor of Exercise 5.2.2 but with $\mu_{h}=350 \mathrm{~cm}^{2} / V s$. Determine: (a) k_{p}^{\prime}; (b) k_{p}; and (c) $i_{D(\text { sat })}$ for $v_{S G}=3,5$, and 7 V , assuming $\bar{V}_{t p}=2 \mathrm{~V}$. Note the similarity of the voltage values to those of the E-NMOS transistor and compare the currents to those of Exercise 5.2.2.
Answers: (a) $12.08 \mu \mathrm{~A} / \mathrm{V}^{2}$; (b) $144.9 \mu \mathrm{~A} / \mathrm{V}^{2}$; and (c) $72.45 \mu \mathrm{~A}, 652 \mu \mathrm{~A}$, and 1.81 mA .

Small-Signal Operation

Consider an E-NMOS transistor in the circuit of Figure 5.2.10. Although, in practice, a MOSFET is biased differently to a desired operating point (Section 8.1, Chapter 8), the circuit is convenient for illustrating some basic concepts concerning small-signal operation.

Assume to begin with, that $v_{s r c}=0, v_{G S}=V_{G G}>V_{t n}$, and $v_{D S}$ is large enough so that a saturation dc drain current I_{D} flows. In the drain circuit, KVL under dc conditions gives:

$$
\begin{equation*}
V_{D S}+R_{D} I_{D}=V_{D D} \tag{5.2.6}
\end{equation*}
$$

Equation 5.2.6 is the constraint placed on I_{D} and $V_{D S}$ by the external drain circuit. In addition, I_{D} and $V_{D S}$ are related by the output characteristics, which can be formally expressed as $i_{D}=f\left(v_{D S}, v_{G S}\right)$. For dc conditions, with $v_{G S}=V_{G G}$, this relation becomes:

$$
\begin{equation*}
I_{D}=f\left(V_{D S}, V_{G G}\right) \tag{5.2.7}
\end{equation*}
$$

FIGURE 5.2.10
Basic circuit for small-signal analysis of an E-NMOS amplifier.

FIGURE 5.2.11
(a) Load line construction for determining the quiescent operating point Q on the output characteristics and (b) corresponding operating point on the transfer characteristic.

For a given $V_{G G}$ and $V_{D D}$, the two unknowns I_{D} and $V_{D S}$ are completely determined by Equations 5.2.6 and 5.2.7. Graphically, a load line can be drawn on the output characteristics from the point $\left(V_{D D}, 0\right)$ having a slope $-1 / R_{D}$ (Figure 5.2.11a). The intersection of this line with the particular characteristic having $v_{G S}=V_{G G}$ defines the quiescent operating point Q having coordinates of $V_{D S Q}$ and $I_{D Q}$, because at this point both Equations 5.2.6 and 5.2.7 are satisfied. Q corresponds to $\mathrm{P}\left(I_{D Q}, V_{G G}\right)$ on the transfer characteristic (Figure 5.2.11b).

When $v_{s r c}$ is applied, the instantaneous $v_{G S}$ is given by:

$$
\begin{equation*}
v_{G S}=V_{G G}+v_{g S} \tag{5.2.8}
\end{equation*}
$$

where $v_{g_{s}}=v_{s r c}$. As $v_{g^{s}}$ varies with time, the operating point traces a path on the transfer characteristic determined by the time variation of $v_{g^{s}}$, as illustrated in Figure 5.2.12, where it is assumed for the sake of argument, that $v_{g s}$ is a sinusoidal function of time of amplitude $V_{g m}$. The corresponding i_{d} can, in principle, be determined graphically, point by point from the transfer characteristic, or by substituting Equation 5.2.8 in Equation 5.2.4 to obtain:

$$
\begin{equation*}
i_{D}=\frac{1}{2} k_{n}\left(V_{G G}+v_{g s}-V_{t n}\right)^{2}=\frac{1}{2} k_{n}\left(V_{G G}-V_{t n}\right)^{2}+k_{n}\left(V_{G G}-V_{t n}\right) v_{g s}+\frac{1}{2} k_{n} v_{g s}^{2} \tag{5.2.9}
\end{equation*}
$$

FIGURE 5.2.12
Small-signal variations around the quiescent operating point on the transfer characteristic.

The first term on the RHS is the dc component I_{D} resulting from $V_{G G}$, with $v_{g_{s}}=0$. The second term is a component of i_{D} that is directly proportional to $v_{g s}$. The last term involves $v_{g s}^{2}$ and arises from the quadratic nature of Equation 5.2.4. In small-signal operation, it is assumed that the term in $v_{g s}^{2}$, and any terms in higher powers of $v_{g s}$ that may be present, are negligibly small compared to the term that is linear in $v_{g s}$. This is tantamount to assuming that $v_{g s}$ is small enough in magnitude so that the transfer characteristic in the vicinity of P can be approximated by the tangent to the curve at P. Equation 5.2.9 can then be expressed as:

$$
\begin{equation*}
i_{D}=I_{D}+i_{d} \tag{5.2.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{D}=\frac{1}{2} k_{n}\left(V_{G G}-V_{t n}\right)^{2} \text { is the dc component of } i_{D} \\
& i_{d}=k_{n}\left(V_{G G}-V_{t n}\right) v_{g s}=k_{n}\left(V_{G G}-V_{t n}\right) v_{s r c} \text { is the small-signal component, which is directly } \\
& \text { proportional to } v_{s r c}
\end{aligned}
$$

Equation 5.2.10 underlies an important concept in linearized, small-signal analysis.

Concept: In a linear system, currents and voltages of different frequencies do not interact, so that each frequency component can be considered separately.

In other words, linearization implies superposition, which allows considering the dc and ac components independently of one another and adding them algebraically to obtain the total instantaneous values in accordance with Equations 5.2.9 and 5.2.10.
More formally, we can regard i_{D} in the saturation region as a function of $v_{G S}$. Then $i_{D}\left(V_{G G}\right)=I_{D}$ at the quiescent point, and $i_{D}\left(V_{G G}+\Delta v_{G S}\right)$ is the value of i_{D} when $v_{G S}$ is varied by a small increment away from $V_{G G} ; i_{D}\left(V_{G G}+\Delta v_{G S}\right)$ can be expressed as the sum of the first two terms of a Taylor series (Appendix A) in the neighborhood of the operating point. Thus:

$$
\begin{equation*}
i_{D}\left(V_{G G}+\Delta v_{G S}\right)=I_{D}\left(V_{G G}\right)+\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}} \Delta v_{G S} \tag{5.2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
i_{D}\left(V_{G G}+\Delta v_{G S}\right)-I_{D}\left(V_{G G}\right)=\Delta i_{D}=\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}} \Delta v_{G S} \tag{5.2.12}
\end{equation*}
$$

We identify $\Delta v_{G S}$ with the small-signal $v_{g^{s}}=v_{s r c}$ and Δi_{D} with the small-signal i_{d}. From Equation 5.2.4, $\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}}=k_{n}\left(V_{G G}-V_{t n}\right)$. Equation 5.2.12 gives $i_{d}=k_{n}\left(V_{G G}-V_{t n}\right) v_{g_{s}}$, as in Equation 5.2.9. This is to be expected because $\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}}$ is the slope of the tangent at P. According to Figure 5.2.12, i_{d} is $v_{g_{s}}$ multiplied, point by point, by the slope of the tangent at P.

The slope $\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}}$ at any point on the transfer characteristic whose voltage intercept is $V_{G G}$ defines the transconductance g_{m} of the MOSFET:

$$
\begin{equation*}
g_{m}=\left.\frac{d i_{D}}{d v_{G S}}\right|_{v_{G S}=V_{G G}}=k_{n}\left(V_{G G}-V_{t n}\right) \tag{5.2.13}
\end{equation*}
$$

so that,

$$
\begin{equation*}
i_{d}=g_{m} v_{g s} \tag{5.2.14}
\end{equation*}
$$

If $v_{s r c}=V_{g m} \cos \omega t$, then $i_{d}=I_{d m} \cos \omega t$ where $I_{d m}=g_{m} V_{g m} ; v_{G S}$ varies between $V_{G G}+V_{g m}$ and $V_{G G}-V_{g m}$, whereas i_{D} varies between $I_{D}+I_{d m}$ and $I_{D}-I_{d m}$ on both the transfer and output characteristics (Figure 5.2.13). As the operating point moves between Q_{1} and Q_{2}, the small-signal $v_{d s}$ is given by the horizontal excursions of Q between Q_{1} and Q_{2}. In effect, the small-signal variation i_{d} is "reflected" off the load line to give the small-signal variation $v_{d s}=\Delta v_{D S}$.

KVL must also be satisfied in the drain circuit for instantaneous values. Thus:

$$
\begin{equation*}
v_{D S}+R_{D} i_{D}=V_{D D} \tag{5.2.15}
\end{equation*}
$$

For small-signal variations $\Delta V_{D D}=0$, because $V_{D D}$ is a constant supply voltage and has no small-signal component. In other words, the dc supply is considered to have zero source impedance, so that any small-signal current that flows through this supply will not cause a small-signal voltage across the supply. Hence, $\Delta v_{D S}+R_{D} \Delta i_{D}=0$, or:

$$
\begin{equation*}
v_{d s}=-R_{D} i_{d} \tag{5.2.16}
\end{equation*}
$$

FIGURE 5.2.13
Small-signal variations around the quiescent operating point on the output characteristics.

FIGURE 5.2.14
Small-signal equivalent circuit assuming a constant i_{D} in the saturation region.

The small-signal variation in $v_{d s}$ is in antiphase with i_{d}, because an increase in i_{d} increases the voltage drop across $R_{D} ; v_{D S}$ decreases, and $\Delta v_{D S}=v_{d s}$ is therefore negative. Equation 5.2.16 also follows from the fact that i_{d} is reflected by the load line of negative slope to give $v_{d s}$.

Equations 5.2.14 and 5.2.16 can be interpreted in terms of a small-signal equivalent circuit of the transistor that relates $v_{g_{s}}, i_{d}$, and $v_{d s}$ (Figure 5.2.14). Note that the assigned positive directions of these quantities are the same as $v_{G S}, i_{D}$, and $v_{D S}$, respectively, in the large-signal equivalent circuit (Figure 5.2.7) and in the transistor symbol (Figure 5.2.8c). Moreover, because an increase in $v_{g^{s}}$ increases i_{d}, the arrow of the dependent current source is in the direction from drain to source. Because the dc supply is assumed to have ideally zero source impedance, the dc supply is replaced by a short circuit in the small-signal equivalent circuit.

From Figure 5.2.14, $v_{d s}=-R_{D} i_{d}$, as in Equation 5.2.16. The small-signal voltage gain can be derived by substituting for i_{d} from Equation 5.2.14 in Equation 5.2.16 to obtain:

$$
\begin{equation*}
v_{d s}=-g_{m} R_{D} v_{g s} \tag{5.2.17}
\end{equation*}
$$

from which it follows that the small-signal voltage gain $v_{d s} / v_{g_{s}}$ is $-g_{m} R_{D}$.
Equation 5.2.17 can also be derived in accordance with the aforementioned concept on independence of components of different frequencies in a linear system. Substituting for instantaneous values $v_{D S}$ and i_{D} in Equation 5.2.15 gives:

$$
\begin{equation*}
\left(V_{D S}+v_{d s}\right)+R_{D}\left(I_{D}+i_{d}\right)=V_{D D} \tag{5.2.18}
\end{equation*}
$$

Equation 5.2.18 is a mixture of dc and small-signal quantities. The dc and ac quantities can each be equated separately to give Equations 5.2.6 and 5.2.16, respectively.

The small-signal equivalent circuit is the same for a PMOS transistor, in which the polarities of all currents and voltages are reversed. The reversal does not affect the relations between the small-signal quantities. Thus, in Figure 5.2.15 for a PMOS transistor,

FIGURE 5.2.15
Small-signal equivalent circuit of a PMOS transistor.
increasing $v_{S G}$ increases the current from source to drain, so that the polarity of the dependent source is from source to drain. Setting $v_{g s}=-v_{s g}$ in Figure 5.2.15 reverses the polarity of the current source in terms of $v_{g s}$, which gives Figure 5.2.14.

Exercise 5.2.4

If two of the three quantities $i_{D}, v_{D S}$, and $v_{G S}$ are given, formulate a general procedure for determining whether a MOSFET is cut off, or is operating in the triode region or in saturation.

Exercise 5.2.5

Consider the E-NMOS transistor of Exercise 5.2.2 with $v_{G S}=4 \mathrm{~V}$ and $v_{D S}$ varying from zero to 10 V . Derive the $i-v$ relation in the triode region and determine $v_{D S(\text { sat })}$ and $i_{D(\text { sat) }}$.

Answers: In the triode region, $i_{D}=331.2 v_{D S}\left(2-v_{D S} / 2\right) ; v_{D S(\text { sat })}=2 \mathrm{~V}, i_{D(\text { sat })}=0.66 \mathrm{~mA}$.

Exercise 5.2.6

Repeat Exercise 5.2.5 for the E-PMOS transistor of Exercise 5.2.3 with $v_{S G}=4 \mathrm{~V}$ and $v_{S D}$ varying from zero to 10 V .
Answers: $i_{D}=144.9 v_{S D}\left(2-v_{D S} / 2\right) \mu \mathrm{A} ; v_{S D(\text { sat })}=2 \mathrm{~V}, i_{D(\text { sat })}=0.29 \mathrm{~mA}$.

The power relations in small-signal, linear operation are discussed in Section ST5.2, where it is shown that the average power delivered by the supply is not changed in the presence of an applied signal and that the ac power delivered to the load comes from a reduction in the power dissipated in the transistor. A T-model is derived from Figure 5.2.14 in Section ST5.3.

5.3 Secondary Effects in MOSFETs

Channel-Length Modulation

This is an important effect that significantly modifies the output characteristics. As explained in connection with Figure 5.2.4, when $v_{D S}$ increases beyond pinch off, the pinch-off point moves toward the source, thereby reducing the channel length by ΔL (Figure 5.3.1). Since the saturation value of i_{D} is inversely proportional to the effective channel length (Equation 5.2.4), i_{D} is no longer independent of $v_{D S}$ but increases with $v_{D S}$ in the saturation region. The resulting channel-length modulation is evidently more

FIGURE 5.3.1
Reduction of the effective channel length with $v_{D S}$ in the saturation region.

pronounced, in proportion to channel length, in shorter channels. It is to be expected that as the channel becomes shorter with increasing $v_{D S}$, its resistance decreases and the drain current increases.

Channel-length modulation is investigated quantitatively in Section ST5.1, where it is shown that the effect is to make i_{D} increase in the saturation region at a rate $\lambda v_{D S}$, where λ is a constant for a given transistor and is typically in the range of $0.005-0.04 \mathrm{~V}^{-1}$. It would be thought that because channel-length modulation does not occur in the triode region, i_{D} in this region is still given by Equation 5.2.2. However, this causes a problem, because according to Equation 5.2.2, $\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}=0$ at the boundary between the triode and saturation regions ($\left.v_{D S}=v_{D S(\text { sat })}\right)$, whereas the effect of channel-length modulation is to make the slope $\lambda v_{D S(\text { sat }}$ nonzero at this boundary (Equation ST5.1.29, Section ST5.1). In SPICE level-1 model, based on the square-law approximation, i_{D} is considered to be given by (Appendix B):

$$
\begin{gather*}
i_{D}=\frac{1}{2} k_{n}\left(v_{G S}-V_{t n}\right)^{2}\left(1+\lambda v_{D S}\right) \text { (saturation region) } \tag{5.3.1}\\
i_{D}=k_{n}\left[\left(v_{G S}-V_{t n}\right) v_{D S}-\frac{1}{2} v_{D S}^{2}\right]\left(1+\lambda v_{D S}\right) \text { (triode region) } \tag{5.3.2}
\end{gather*}
$$

This makes the slope of the i_{D} vs. $v_{D S}$ characteristic continuous across the boundary between the triode and saturation regions (Problem P5.1.11). The expression for $i_{D(\text { sat })}$ is obtained by substituting $v_{D S(\text { sat })}=v_{G S}-V_{t n}$ in Equation 5.3.1 or 5.3.2:

$$
\begin{equation*}
i_{D(\text { sat })}=\frac{1}{2} k_{n} v_{D S(\mathrm{sat})}^{2}\left(1+\lambda v_{D S(\mathrm{sat})}\right) \tag{5.3.3}
\end{equation*}
$$

According to Equation 5.3.1, $i_{D}=0$ when $v_{D S}=-1 / \lambda$, irrespective of $v_{G S}$, which means that if the straight-line output characteristics in the saturation region are extended backward, they will all intersect the $v_{D S}$ axis at $-1 / \lambda$. Channel-length modulation also affects the transfer characteristic, which is no longer a single curve, independent of $v_{D S}$, but becomes a family of curves, each for a constant $v_{D S}$, in accordance with Equation 5.3.1 (Figure 5.3.3b).

From Equation 5.3.1, the output characteristics in the saturation region will have a slope $g_{d s}$ that increases with $v_{D S(\text { sat })}=v_{G S}-V_{t n}$ and hence with $v_{G S}$ (Figure 5.3.3a):

$$
\begin{equation*}
g_{d s}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}=\frac{\lambda}{2} k_{n} v_{D S(\text { sat })}^{2}=\frac{\lambda i_{D(\text { sat })}}{1+\lambda v_{D S(\text { sat })}} \cong \lambda i_{D(\text { sat })} \tag{5.3.4}
\end{equation*}
$$

In terms of the output resistance $r_{o}=1 / g_{d s}$, an approximate expression for r_{o} is:

$$
\begin{equation*}
r_{o}=\frac{1}{g_{d s}} \cong \frac{1}{\lambda i_{D(\text { sat })}}=\frac{V_{A}}{i_{D(\mathrm{sat})}} \cong \frac{V_{A}}{I_{D}} \tag{5.3.5}
\end{equation*}
$$

where $V_{A}=1 / \lambda$ and $I_{D} \cong i_{D(\text { sat) }} . r_{o}$ can be related to L by substituting for k_{n} in Equation 5.3.4:

$$
\begin{equation*}
r_{o}=\frac{1}{g_{d s}}=\frac{2}{\lambda k_{n} v_{D S(\text { sat })}^{2}}=\frac{2 L}{\lambda \mu_{e} C_{o x} W v_{D S(\mathrm{sat})}^{2}} \tag{5.3.6}
\end{equation*}
$$

From Equation ST5.1.28 (Section ST5.1), $\lambda \propto 1 / L$. Hence, with μ_{e} and $C_{o x}$ constant,

$$
\begin{equation*}
r_{o} \propto \frac{L^{2}}{W v_{D S(\text { sat })}^{2}} \tag{5.3.7}
\end{equation*}
$$

Since $\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}$ is no longer zero, we can regard i_{D} as a function of two variables, that is, $i_{D}=i_{D}\left(v_{G S}, v_{D S}\right)$. A Taylor series expansion (Appendix A) then gives:

$$
\begin{equation*}
\Delta i_{D}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}} \Delta v_{D S}+\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{D S}} \Delta v_{G S} \tag{5.3.8}
\end{equation*}
$$

where the partial derivative means that the independent variable that is not involved in the differentiation is kept constant. This is indicated, for emphasis, by the variable next to the vertical bar. The derivatives, which represent small variations, are taken at the quiescent point $\left.\mathrm{Q} \cdot \frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{D S}}$ is evaluated at constant $v_{D S}$ and around $v_{G S}=V_{G G}$. This is g_{m} in accordance with Equation 5.2.13, where it was assumed that the transfer characteristic is independent of $v_{D S}$ in the saturation region. Whereas on the transfer characteristic g_{m} is the slope at the operating point, it is on the output characteristics the limit of $\frac{\Delta i_{D}}{\Delta v_{G S}}$, along a vertical line of constant $v_{D S}$, as the small changes become infinitesimal. In terms of small-signal quantities, Equation 5.3 .8 becomes:

$$
\begin{equation*}
i_{d}=g_{d s} v_{d s}+g_{m} v_{g s} \tag{5.3.9}
\end{equation*}
$$

Consequently, the small-signal equivalent circuit of Figure 5.2.14 is modified to that shown in Figure 5.3.2. The transistor now has a finite output resistance $r_{o}=1 / g_{d s}$ in the saturation region. It follows from this figure that $v_{d s}=-\left(r_{o} \| R_{D}\right) g_{m} v_{g^{5}}$ or:

$$
\begin{align*}
\frac{v_{d s}}{v_{g s}} & =-g_{m}\left(r_{o} \| R_{D}\right)=-g_{m} \frac{r_{o} R_{D}}{r_{o}+R_{D}} \tag{5.3.10}\\
& =-g_{m} r_{o}, \quad R_{D} \gg r_{o}, \quad \text { or } \\
& =-g_{m} R_{D}, \quad R_{D} \ll r_{o}
\end{align*}
$$

It should be emphasized that whereas the dependent current source is $g_{m} v_{g s}$, directed from drain to source, $i_{d}=g_{m} v_{g s}$ only when r_{o} is large compared with R_{D}. Equation 5.3.10 is interpreted graphically in Section ST5.4.

FIGURE 5.3.2
Small-signal equivalent circuit taking into account channel-length modulation.

Transconductance

If the effect of channel-length modulation is included, the definition of transconductance is modified from that of Equation 5.2.13 to:

$$
\begin{equation*}
g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{D S}=V_{G S}} ^{v_{v_{G S}}}=k_{n}\left(V_{G S}-V_{t n}\right)\left(1+\lambda V_{D S}\right)=\frac{2 I_{D}}{V_{G S}-V_{t n}} \tag{5.3.11}
\end{equation*}
$$

where g_{m} is evaluated for $V_{G S}$ and $V_{D S}$ at a quiescent operating point Q in the saturation region, and I_{D}, the dc drain current at Q , is given by Equation 5.3.1 with $v_{G S}=V_{G S}$ and $v_{D S}=V_{D S}$. Substituting for $\left(V_{G S}-V_{t n}\right)$ in Equation 5.3.11 from the expression for I_{D} (Equation 5.3.1),

$$
\begin{equation*}
g_{m}=\sqrt{2 k_{n} I_{D}\left(1+\lambda V_{D S}\right)} \cong \sqrt{2 k_{n} I_{D}} \tag{5.3.12}
\end{equation*}
$$

The transconductance is an important figure of merit for the transistor, because it is a measure of how effectively the input signal modulates the drain current. It is seen from Equation 5.3.12 that g_{m} varies as the square root of I_{D}, at constant $V_{D S}$. If we consider $g_{m} r_{o}$, it follows from Equations 5.3.5 and 5.3.12 that:

$$
\begin{equation*}
g_{m} r_{o} \cong \frac{\sqrt{2 k_{n} I_{D}}}{\lambda I_{D}}=\frac{\sqrt{2 k_{n}}}{\lambda \sqrt{I_{D}}} \tag{5.3.13}
\end{equation*}
$$

Increasing I_{D} increases g_{m} but decreases $g_{m} r_{o}$, which is the maximum or open-circuit voltage gain. The gain $g_{m} R_{D}$, however (Equation 5.3.10), increases with g_{m} and hence I_{D}.

Simulation Example 5.3.1 E-NMOS Characteristics from Transistor Parameters

Given an E-NMOS transistor having the following parameters: $t_{o x}=0.05 \mu \mathrm{~m}, \varepsilon_{o x}=3.9 \times$ $8.85 \times 10^{-14}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}, \mu_{e}=580 \mathrm{~cm}^{2} / \mathrm{Vs}, V_{t n}=1 \mathrm{~V}, W / L=20 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$, and $\lambda=0.015 \mathrm{~V}^{-1}$. It is required to determine the characteristics of the device.

Solution

(a) $k_{n}^{\prime}=580 \mathrm{~cm}^{2} / \mathrm{Vs} \times 3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm} \times\left(1 / 5 \times 10^{-6} \mathrm{~cm}\right) \cong 40 \mu \mathrm{~A} / \mathrm{V}^{2} ; k_{n}=k_{n}^{\prime} W / L=$ $400 \mu \mathrm{~A} / \mathrm{V}^{2}$.
(b) $r_{D S}$ at small $v_{D S}$ (Equation 5.2.3): $r_{D S}=1 / 400(5-1) \equiv 625 \Omega$, when $v_{G S}=5 \mathrm{~V}$.
(c) Boundary between the triode and saturation regions: For a given $v_{G S}, v_{D S(\text { sat) }}$ is determined from the relation $v_{D S(\text { sat })}=v_{G S}-V_{t n}$, and $i_{D(\text { sat })}$ can then be calculated from Equation 5.3.3. Corresponding values of $v_{G S}, v_{D S(\text { sat) }}$, and $i_{D(\text { sat) }}$ are indicated in Table 5.3.1.

TABLE 5.3.1
$v_{G S}, v_{D S}$, and i_{D} at Edge of Saturation

$v_{G S}, \mathrm{~V}$	3	4	5	6	7	8	9
$v_{D S(\text { sat) })}, \mathrm{V}$	2	3	4	5	6	7	8
$i_{D(\text { sat) })} \mathrm{mA}$	0.824	1.881	3.392	5.375	7.848	10.829	14.336

(d) The output characteristics can be plotted using Equations 5.3.1 and 5.3.2.
(e) The transfer characteristics can be plotted from Equation 5.3.1 for various values of $v_{D S}$ in the saturation region.

To simulate the output and transfer characteristics, choose from the BREAKOUT library part MbreakN3, which is an E-NMOS transistor having its body and source terminals connected together. The schematic is entered with just the transistor and a VDC source connected between the gate and source and another VDC source connected between the drain and source. Click on the transistor symbol to select it, then right click and choose Edit PSpice Model. The window of the PSpice Model Editor shows only: model Mbreakn NMOS, without any parameters. Enter the parameters of the transistor under consideration as follows, after the word "NMOS": Vto $=1, \mathrm{kp}=40 \mathrm{u}$, lambda $=0.15$, and exit the PSpice Model Editor after saving the file. In the Property Editor spreadsheet, enter 2 u under L and 20 u under W . To obtain the output characteristics, perform a DC Sweep analysis, sweeping the $V_{D S}$ source from 0 to 16 V in increments of 1 mV , as linear primary sweep, and choose the $V_{G S}$ source as secondary sweep, entering 3, 4, 5, 6, 7, 8, and 9 in the Value list field. The output characteristics are shown in Figure 5.3.3a.

To obtain the transfer characteristics, select the $V_{G S}$ source for primary sweep between 0 and 10 V , and the $V_{D S}$ source as secondary sweep at 8 and 16 V . The transfer characteristics are shown in Figure 5.3.3b. The two characteristics for $v_{D S}=8 \mathrm{~V}$ and $v_{D S}=16 \mathrm{~V}$ are close together.
(f) Assume that the transistor is connected in the circuit of Figure 5.2.10, with $V_{G S}=5 \mathrm{~V}$, $V_{D D}=15 \mathrm{~V}$, and $R_{D}=1.5 \mathrm{k} \Omega$. The operating point Q can be determined graphically or by solving the load-line equation $V_{D S}+1.5 I_{D}=15$ and the characteristic for $v_{G S}=5 \mathrm{~V}$, which is $I_{D}=3.2+0.048 V_{D S}$ (Equation 5.3.1), assuming that the transistor is operating in saturation. This gives: $I_{D}=3.66 \mathrm{~mA}, V_{D S}=9.51 \mathrm{~V}$. Since $V_{D S}>V_{G S}-V_{t n}$, the assumption is justified. Otherwise, the load-line equation has to be solved with Equation 5.3.2 for operation in the triode region.
(g) Equation 5.3.4 gives for $V_{G S}=5 \mathrm{~V}, g_{d s}=(\lambda / 2) k_{n}\left(V_{G S}-V_{t n}\right)^{2}=0.048 \mathrm{mS}$, equivalent to $20.8 \mathrm{k} \Omega$. From Equation 5.3.11, $g_{m}=2 \times 3.66 /(5-1)=1.83 \mathrm{~mA} / \mathrm{V}$. Note that using $g_{m}=\sqrt{2 k_{n} I_{D}}$ (Equation 5.3.12) gives $g_{m}=1.71 \mathrm{~mA} / \mathrm{V}$.

FIGURE 5.3.3
Figure for Simulation Example 5.3.1. (a) Output characteristics; (b) transfer characteristics.

Exercise 5.3.1

Consider the E-NMOS transistor of Exercise 5.2.1, with $V_{D D}=12 \mathrm{~V}, R_{D}=2 \mathrm{k} \Omega$, and $\lambda=0.02 \mathrm{~V}^{-1}$. Determine $v_{D S(\text { sat })}, i_{D(\text { sat })}$, the quiescent values of I_{D} and $V_{D S}, r_{o}$, and g_{m} for $V_{G S}=4 \mathrm{~V}$. What happens if $V_{G S}$ is increased to 8 V ?
Answers: $v_{D S(\text { sat })}=2 \mathrm{~V}, i_{D(\text { sat })}=0.689 \mathrm{~mA}, I_{D}=0.8 \mathrm{~mA}, V_{D S}=10.40 \mathrm{~V}$, the transistor is in saturation, $r_{o}=72.6 \mathrm{k} \Omega, g_{m}=0.8 \mathrm{~mA} / \mathrm{V}$. If $V_{G S}$ is increased to 8 V , the transistor will be in the triode region.

Overdrive Voltage

It is convenient when discussing transistor circuits to define an overdrive voltage as:

$$
\begin{equation*}
V_{o v}=v_{G S}-V_{t n}=v_{D S(\mathrm{sat})} \tag{5.3.14}
\end{equation*}
$$

As its name implies, $V_{o v}$ is a measure of the excess $v_{G S}$ beyond threshold. Ignoring channellength modulation, it follows from Equation 5.2.4 that:

$$
\begin{equation*}
V_{o v}=\sqrt{\frac{2 I_{D}}{k_{n}^{\prime}(W / L)}}=\frac{g_{m}}{k_{n}^{\prime}(W / L)} \tag{5.3.15}
\end{equation*}
$$

Increasing $V_{G S}$ increases I_{D}, g_{m}, and $V_{o v}$. For given I_{D} and $k_{n}^{\prime}, V_{o v}$ is reduced by increasing W / L.
In terms of $V_{o v}$, it follows from Equations 5.3.6 and 5.3.11, ignoring channel-length modulation, that:

$$
\begin{equation*}
g_{m} r_{o} \cong\left(k_{n} V_{o v}\right) \frac{2}{\lambda k_{n} V_{o v}^{2}}=\frac{2}{\lambda V_{o v}} \tag{5.3.16}
\end{equation*}
$$

Temperature Effects

The effect of a rise in temperature is to decrease $V_{t n}$ by about $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (Section ST5.1), which tends to increase i_{D} for given bias conditions (Equation 5.3.1); however, μ_{e} and hence k_{n}^{\prime}, decrease with temperature (Equation 2.6.3, Chapter 2). The overall effect is that i_{D} increases with temperature at low currents, but decreases with temperature at large currents.

Breakdown

Avalanche breakdown can occur at high $v_{D S}$ in the reversebiased junction between the drain and the body, or in the pinch-off region of the channel (Figure 5.3.1). Typically, breakdown occurs in the pinch-off region first, when the electric field becomes so high that electrons acquire sufficient kinetic energy to initiate avalanche multiplication, as in a reverse-biased $p n$ junction (Section 3.2, Chapter 3). A large current flows between the drain and the body (Figure 5.3.4), and the gate effectively loses control over the drain current. Avalanche-generated electrons are swept to the drain, whereas avalanche-generated holes are swept into the body, resulting in current through the body terminal. The larger $v_{G S}$, the larger is the current i_{D} available for avalanche multiplication in the channel, so that breakdown is initiated at a smaller $v_{D S}$.

FIGURE 5.3.4
Modification of MOSFET output characteristics because of breakdown.

Body Effect

The body effect is the variation of I_{D} with a voltage between the source and body. It does not occur: (1) if the body is directly connected to the source, as in discrete MOSFETs and in MOSFETs formed in a well in the substrate, and (2) in fully depleted SOI MOSFETs (Figure 5.3.13). The body effect can occur when the source and drain are formed directly in the substrate. In order to ensure that the junctions between the substrate and MOSFETs on the chip are never forward biased, a p-substrate is connected to the most negative voltage supply on the chip, usually ground, whereas an n-type substrate is connected to the most positive supply. If the source of an E-NMOS transistor is at a voltage above ground, a reverse bias exists between the source and the substrate, which increases the width of the depletion region of the $p n$ junction between the substrate and source-channel-drain regions, the depletion region being narrowest at the source and widest at the drain. The increase in width of the depletion region occurs almost totally in the lightly doped substrate and increases in turn the exposed charge due to dopant atoms in the substrate, which have the same sign of charge as the carriers in the channel. Hence,

Concept: For a given $\left|v_{G S}\right|$, the charge on the gate is constant, which means that the sum of the induced charge in the channel and the exposed charge in the depletion region is constant. If the charge in the depletion region increases, the charge in the channel must decrease, and conversely.

As the source-to-substrate voltage $v_{S B}$ increases in an E-NMOS transistor, the charge in the channel decreases, and i_{D} is reduced for given $v_{G S}$ and $v_{D S}$. This means that the threshold has increased (Equation 5.3.1). The threshold is given by (Equation ST5.1.18):

$$
\begin{equation*}
V_{t}=V_{t 0}+\gamma\left(\sqrt{2\left|\varphi_{F}\right|+\left|V_{S B}\right|}-\sqrt{2\left|\varphi_{F}\right|}\right) \tag{5.3.17}
\end{equation*}
$$

where
$V_{S B}>0$ is the voltage of the source with respect to the substrate
$V_{t 0}$ is the threshold for $V_{S B}=0$
$\gamma=\sqrt{2|q| N_{A} \varepsilon_{S}} / C_{o x}$ is the body-effect parameter
$\left|\phi_{F}\right|$, usually about 0.3 V , is a constant for a given transistor at a given temperature and is equal to the junction potential of a substrate-intrinsic junction. In terms of absolute values, Equation 5.3.17 applies equally well to E-NMOS and E-PMOS transistors, where for an E-NMOS transistor, $V_{S B}$ is positive and $V_{t}=V_{t n}$, whereas for an E-PMOS transistor, $V_{S B}$ is negative, $V_{t 0}=\bar{V}_{t p 0}$, and $V_{t}=\bar{V}_{t p}$.

Simulation Example 5.3.2 Body Effect under dc Conditions

It is required to simulate the effect of body-source voltage on the transfer characteristic, assuming the same transistor parameters as in Example 5.3.1, with $\gamma=0.3 \mathrm{~V}^{1 / 2}$ and $2 \phi_{F}=0.6 \mathrm{~V}$.

Simulation

The schematic is shown in Figure 5.3.5 using the E-NMOS transistor Mbreakn from the BREAKOUT library. In the PSpice model editor, add gamma $=0.3$ phi $=0.6$. $V_{D S}$ is set to $16 \mathrm{~V}, v_{G S}$ is

FIGURE 5.3.5
Figure for Simulation Example 5.3.2.

FIGURE 5.3.6
Figure for Simulation Example 5.3.2.
swept between 0 and 10 V , with $V_{S B}=0,2,6$, and 10 V . The transfer characteristics are shown in Figure 5.3.6, the corresponding thresholds being: 1, 1.25, 1.54, and 1.74 V , respectively.

The bias supply to which the substrate is connected normally acts as a short circuit for time-varying signals, as explained for $V_{D D}$ in connection with Figure 5.2.14, and the substrate is said to be ac grounded. If the source is grounded, there is no ac signal between the source and substrate, and the small-signal equivalent circuit of the transistor is not affected, except for a change in g_{m} because of the change in $V_{t n}$. If the source is not grounded for timevarying signals, a signal voltage appears between the source and substrate, and the smallsignal equivalent circuit has to be modified accordingly, as discussed in Example 5.3.3.

Example 5.3.3 Small-Signal Equivalent Circuit Including Body Effect

It is required to determine how the small-signal equivalent circuit is modified because of the body effect.

Solution

Consider the circuit of Figure 5.3.7, in which the substrate is connected to a negative supply $V_{B B}$. Resistors R_{1}, R_{2}, and R_{S} and capacitor C are used for dc biasing, as explained later in

FIGURE 5.3.7
Figure for Example 5.3.3.

Section 8.1, Chapter 8. In this circuit $V_{S B}=R_{S} I_{D}-V_{B B}$, where $V_{B B}$ has a negative value. Because i_{D} has a signal component due to the applied ac signal, a time-varying signal $v_{b s}$ appears between the substrate and the source, which affects i_{d}. To take this into account, we consider i_{D} to be a function of the three variables, $v_{D S}, v_{G S}$, and $v_{B S}$. Equation 5.3 .8 becomes:

$$
\begin{equation*}
\Delta i_{D}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{V_{G B S}} \Delta v_{D S}+\left.\frac{\partial i_{D}}{\partial v_{C S}}\right|_{V_{V_{B S}}} \Delta v_{G S}+\left.\frac{\partial i_{D}}{\partial v_{B S}}\right|_{V_{V C S}} \Delta v_{B S} \tag{5.3.18}
\end{equation*}
$$

In terms of small signals, Equation 5.3.18 can be written as:

$$
\begin{equation*}
i_{d}=g_{d s} v_{d s}+g_{m} v_{g s}+g_{m b} v_{b s} \tag{5.3.19}
\end{equation*}
$$

where, $g_{d s}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{V_{G S}}=\frac{1}{r_{0}}, g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{V_{D S S}}$ and $g_{m b}=\left.\frac{\partial i_{D}}{\partial v_{B S}}\right|_{V_{V S}}$ is the body transconductance. According to Equation 5.3.19, the small-signal equivalent circuit of the transistor becomes as in Figure 5.3.8. In effect, the body terminal becomes the terminal of a second gate that draws a negligible current under normal conditions because of the reverse-biased source-substrate junction. Note that in terms of $v_{b s}$, the current source is directed from drain to source, like the current source due to $v_{g s}$. If the substrate becomes more positive with respect to the source, $v_{B S}$ increases, the body effect is reduced, and i_{d} increases. The effect is like an increase in $v_{g s}$.

If channel-width modulation is neglected, the relation between g_{m} and $g_{m b}$ is determined as (Equation ST5.1.19):

$$
\begin{equation*}
g_{m b}=g_{m} \frac{\gamma}{2 \sqrt{2\left|\phi_{F}\right|+\left|V_{S B}\right|}}=\chi g_{m} \tag{5.3.20}
\end{equation*}
$$

where $\chi=\gamma / 2 \sqrt{2\left|\phi_{F}\right|+\left|V_{S B}\right|}$. If $\gamma=0.3 \mathrm{~V}^{1 / 2},\left|\phi_{F}\right|=0.3 \mathrm{~V}$, and $V_{S B}=5 \mathrm{~V}$, then $\chi=0.06$. In most MOSFETs, χ is in the range 0.1-0.3.

FIGURE 5.3.8
Figure for Example 5.3.3.

Capacitances

The internal capacitances of a MOSFET arise because structures, such as the gate-oxidesemiconductor and the substrate-drain/source depletion regions, store electric charges. These internal capacitances critically affect the speed of operation of the MOSFET, because the stored charges change with voltage variations, which implies in turn, a flow of current associated with these changes. If the circuit cannot supply these currents with minimal voltage drops, the high-frequency performance and switching speed of the MOSFET will be compromised.

Consider a MOSFET operating in the triode region, with a small $v_{D S}$ that results in a channel of nearly uniform depth (Figure 5.3.9). The following capacitances can be identified:

1. The gate-channel capacitance $C_{g c}$ that we had identified earlier as $W L C_{o x}^{*}$ and which is considered to be divided equally between gate-source and gate-drain capacitances when the transistor is in the triode region.
2. An additional overlap capacitance $C_{o l}$, exists between the source or drain and gate, given by:

$$
\begin{equation*}
C_{o l}=C_{o v}+C_{f} \tag{5.3.21}
\end{equation*}
$$

where $C_{o v}=W L_{o v} C_{o x}^{*}$ is due to some inevitable lateral diffusion of the source and drain regions to a distance $L_{o v}$ under the gate (Section 4.6, Chapter 4), as illustrated in Figure 5.3.9, and C_{f} is a fringe capacitance between the source or drain and the sides of the gate (fringe capacitance is discussed in Section ST12.8, Chapter 12). Hence,

$$
\begin{equation*}
C_{g s}=C_{g d}=\frac{1}{2} W L C_{o x}^{*}+C_{o l} \quad \text { (triode region) } \tag{5.3.22}
\end{equation*}
$$

FIGURE 5.3.9
Capacitances of a MOSFET operating in the triode region.
3. The capacitances $C_{s b}$ and $C_{d b}$ are the depletion capacitances of the reverse-biased source-body and drain-body $p n$ junctions. The capacitances per unit area at zero bias, $C_{s b 0}^{*}$ and $C_{d b 0}^{*}$, are calculated using Equation 3.2.12, Chapter 3, with $N_{D} \gg N_{A}$, and assuming an abrupt junction:

$$
\begin{equation*}
C_{J 0}^{*}=C_{s b 0}^{*}=C_{d b 0}^{*}=\sqrt{\frac{\varepsilon_{s}|q| N_{A}}{2 V_{n p o}}} \tag{5.3.23}
\end{equation*}
$$

The depletion capacitances $C_{s b}$ and $C_{d b}$ are then obtained using Equation 3.2.13, Chapter 3:

$$
\begin{equation*}
C_{s b}, C_{d b}=A_{J} \frac{C_{J 0}^{*}}{\sqrt{1+V_{x} / V_{n p o}}} \tag{5.3.24}
\end{equation*}
$$

where $V_{x}=V_{S B}$ for the source and $V_{x}=V_{D B}$ for the drain. The area $A_{J}=W X+W D$, where X is the length of the source or drain regions and D is the depth of these regions. The area $W X$ is that between the bottom surface of the drain or source and the substrate, whereas $W D$ is the area of the sidewall between the drain or source and the substrate on the channel side. It is assumed in deriving Equation 5.3.24 that the sidewall junction is abrupt. This is not strictly correct but the error introduced is small. In modern transistors, the other three sidewalls of the source or drain are with the oxide separating neighboring transistors. The capacitance due to these sidewalls is negligible because of the relative thickness of the oxide (Section 4.6, Chapter 4).

When the transistor operates in the saturation region, the channel is tapered and pinched off near the drain. Under these conditions (Equation ST5.5.4, Section ST5.5):

$$
\begin{equation*}
C_{g s}=\frac{2}{3} W L C_{o x}^{*}+C_{o l}, \quad C_{g d}=C_{o l} \quad \text { (saturation region) } \tag{5.3.25}
\end{equation*}
$$

When the transistor is cut off with a sufficiently negative $v_{G S}$, holes are attracted under the gate oxide, resulting in a gate-body capacitance $C_{g b}$ of maximum value $W L C_{o x}^{*}$. Thus,

$$
\begin{equation*}
C_{g b(\max)}=W L C_{o x}^{*}, \quad C_{g s}=C_{o l}, \quad C_{g d}=C_{o l} \quad(\text { cutoff }) \tag{5.3.26}
\end{equation*}
$$

The MOSFET capacitances are included in the equivalent circuit of Figure 5.3.10. The following should be noted concerning these capacitances:

FIGURE 5.3.10
Small-signal equivalent circuit of a MOSFET, including capacitances and the body effect.

1. Except for $C_{o l}$, the capacitances are nonlinear, that is, voltage dependent. For largesignal operation, such as between saturation and cutoff, average values are often used. A more elaborate method is presented in Section ST13.2, Chapter 13.
2. The actual values of the capacitances in Figure 5.3.9 depend on the transistor size, structure, and method of fabrication. The capacitance of the gate/unit width of channel, $C_{g b}^{\prime}=C_{o x}^{*} L=\varepsilon_{o x} L / t_{o x}$ is relatively independent of the size of the transistor, because $t_{o x}$ is reduced by the same factor as L (Table 13.1.1, Chapter 13). $C_{o x}^{*} L$ has remained approximately constant at $1.5 \mathrm{fF} / \mu \mathrm{m}$.
3. $C_{g b}$ is maximum when $V_{G S}$ is sufficiently negative to attract holes under the gate. When $V_{G S}$ is only slightly negative, or is positive but less than $V_{t n}$, a depletion layer is formed under the channel, so that $C_{g b}$ is $C_{o x}$ in series with the channelsubstrate depletion capacitance. At $V_{G S}=0, C_{g b} \cong C_{o x} / 2$. The MOS capacitor is discussed in Section ST4.3, Chapter 4.
4. $C_{g d}$ in Figure 5.3 .10 provides a path from output to input, that is, changes in $v_{d s}$ can affect $v_{g^{s}}$, depending on the input circuit. We now have some reverse transmission (Section 7.1, Chapter 7), which is absent under dc conditions, with I_{G} being essentially zero.

Exercise 5.3.2

Calculate (a) $C_{g b}^{\prime}$, assuming $t_{o x}=0.02 L$ and a relative permittivity of the oxide of 3.9 ; (b) $C_{o l}^{\prime}$, the capacitance per unit width W, assuming $L_{o v}=0.05 L$, and $C_{f}^{\prime}=0.024 \mathrm{fF} /$ unit width W; (c) $C_{g s}$ and $C_{g d}$, assuming the transistor operates in the saturation region and $W=5 \mu \mathrm{~m}$; (d) $C_{s b}$ and $C_{d b}$, assuming, $N_{A}=10^{17} / \mathrm{cm}^{3}, N_{D}=10^{20} / \mathrm{cm}^{3}$ in the source and drain, the relative permittivity of silicon is 11.9, $X=1.5 \mu \mathrm{~m}, D=0.25 \mu \mathrm{~m}, V_{S B}=1 \mathrm{~V}$, and $V_{D S}=2 \mathrm{~V}$.

Answers: (a) $1.73 \mathrm{fF} / \mu \mathrm{m}$, independently of L; (b) $0.11 \mathrm{fF} / \mu \mathrm{m}$, independently of L; (c) $C_{g s}=$ $6.30 \mathrm{fF}, C_{g_{d}}=0.55 \mathrm{fF}$; (d) $C_{s b}=5.66 \mathrm{fF}$, and $C_{d b}=4.01 \mathrm{fF}$.

Unity-Gain Bandwidth

If the source and substrate are effectively connected together for time-varying signals, $v_{b s}=0, C_{s b}$ in Figure 5.3.10 is shorted out and $C_{d b}$ effectively becomes a drain-source capacitance $C_{d s}$. The resulting simplified equivalent circuit of Figure 5.3.11 can be used to derive an important parameter for the MOSFET, namely, the unity-gain bandwidth, defined as the frequency at which the magnitude of the short circuit current gain from the gate to drain becomes unity. Experimentally, the drain is short-circuited to the source

FIGURE 5.3.11
Simplified small-signal equivalent circuit of a MOSFET used for calculating the unity-gain bandwidth.
for the ac signal by connecting a large capacitor between them, while preserving dc bias conditions. It is seen that:

$$
\begin{equation*}
I_{g}=s\left(C_{g s}+C_{g d}\right) V_{g s} \tag{5.3.27}
\end{equation*}
$$

At the output node,

$$
\begin{equation*}
I_{d}=g_{m} V_{g^{s}}-s C_{g d} V_{g^{s}} \cong g_{m} V_{g^{s}} \tag{5.3.28}
\end{equation*}
$$

because $s C_{g^{d}} \ll g_{m}$ at the frequencies of interest. Eliminating $V_{g^{s}}$ between these two equations,

$$
\begin{equation*}
A_{i}=\frac{I_{d}}{I_{g}}=\frac{g_{m}}{s\left(C_{g s}+C_{g d}\right)} \tag{5.3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{i}\right|=\frac{g_{m}}{\omega\left(C_{g s}+C_{g d}\right)} \tag{5.3.30}
\end{equation*}
$$

$\left|A_{i}\right| \rightarrow \infty$ as $\omega \rightarrow 0$, because I_{G} is practically zero. $\left|A_{i}\right|=1$ at a frequency ω_{T} given by:

$$
\begin{equation*}
\omega_{T}=\frac{g_{m}}{C_{g^{s}}+C_{g d}} \tag{5.3.31}
\end{equation*}
$$

where ω_{T} is the unity-gain bandwidth. The larger ω_{T}, the larger is the response to high frequencies or to rapidly changing signals, that is, the faster is the response of the transistor. Modern MOSFETs have a unity-gain frequency $f_{T}=\omega_{T} / 2 \pi$ in the range of tens of GHz.

When the MOSFET operates in the saturation region, $C_{g s}=\frac{2}{3} W L C_{o x}^{*}$ and $C_{g d} \cong 0$ (Equation 5.3.25), neglecting $C_{o l}$. Substituting for $C_{g s}$ in Equation 5.3.31,

$$
\begin{equation*}
f_{T}=\frac{3 g_{m}}{4 \pi W L C_{o x}^{*}} \tag{5.3.32}
\end{equation*}
$$

Substituting $g_{m}=k_{n}\left(V_{G S}-V_{t}\right)=\mu_{e} C_{o x}^{*}(W / L) V_{o v}$,

$$
\begin{equation*}
f_{T}=\frac{3}{4 \pi} \mu_{e} \frac{V_{o v}}{L^{2}} \tag{5.3.33}
\end{equation*}
$$

f_{T} is increased by having large μ_{e} and $V_{o v}$ and small L. This is to be expected because a large μ_{e} and $V_{o v}$ mean a larger drain current, while a large μ_{e} and small L reduce the transit time of carriers through the channel. However, a smaller L and a larger $V_{o v}$ lead to a small r_{o} (Equation 5.3.7 with $V_{o v}=v_{D S(\text { sat })}$) and hence a reduced low-frequency gain (Equation 5.3.10). Moreover, a large $v_{D S(\text { sat })}$ means reduced voltage swing in both analog (Figure 5.2.13) and digital circuits, as will be discussed later.

A figure of merit for the MOSFET is the gain $\times f_{T}$ product (GFT). Multiplying f_{T} (Equation 5.3.32) by $g_{m} r_{o}$ (Equation 5.3.10), substituting $r_{o}=1 / \lambda i_{D(\text { sat })}$ (Equation 5.3.4), $g_{m} \cong \sqrt{2 k_{n} I_{D}}$ (Equation 5.3.12), and considering $I_{D} \cong i_{D(\text { sat })}$,

$$
\begin{equation*}
\mathrm{GFT} \cong \frac{3 \mu_{e}}{2 \pi L^{2} \lambda} \tag{5.3.34}
\end{equation*}
$$

From Equation ST5.1.28 (Section ST5.1), $\lambda \cong 1 / L$. Hence,

$$
\begin{equation*}
\mathrm{GFT} \propto \frac{\mu_{e}}{L} \tag{5.3.35}
\end{equation*}
$$

Again, it appears advantageous to have a small L. However, it will be shown later that a number of factors collectively referred to as short-channel effects come into play when the channel is too short. In particular, velocity saturation of carriers reduces mobility, so that μ_{e} / L becomes nearly constant and the GFT does not significantly improve. In fact, for analog applications, which are primarily concerned with gain, bandwidth, and a high r_{o} of the transistor, L must not be reduced to the point where short-channel effects significantly compromise analog circuit performance. This occurs for L of about $0.5-1 \mu \mathrm{~m}$.

In digital circuits on the other hand, the primary concerns are high packing density, fast speed of operation, and low power density, that is, power dissipated per unit area of the chip. Reducing L not only increases the packing density but speeds up the response as well, because of the reduction of capacitances, which are proportional to area. Capacitance has a major impact on the switching behavior of the MOSFET, as discussed in Chapters 12 and 13. Hence, the trend in digital circuits has been a steady reduction in channel length. The recent technologies are designated in terms of the minimum feature size, or minimum dimensions. These terms refer to the minimum resolvable metal line widths of the interconnections and to the half-pitch, or separation between adjacent metal lines, which determines how closely the transistors are packed. The minimum dimension is also the nominal channel width, although channel length can be considerably smaller than this dimension.

In 2007, 45 nm technology started replacing the 65 nm technology, and by 2010, 32 nm technology is expected to go into production. However, shortening the gate increases power dissipation by reducing the threshold voltage, as mentioned later, which in turn increases the leakage current when the MOSFET is off (Section 13.1, Chapter 13). Hence, in some cases gate length is slightly increased in logic paths that do not need high speed in a given chip.

Short-channel transistors are also referred to as submicron transistors and those of very short channels as deep submicron transistors.

Short-Channel Effects

Shortening the channel, while keeping other dimensions constant, degrades performance mainly due to a significant longitudinal electric field along the channel (Figure 5.3.12a). This longitudinal field, which is neglected in the gradual channel approximation that leads

FIGURE 5.3.12
Effect of shortening the channel (a) without scaling other dimensions of the transistor, and (b) with scaling.
to Equation 5.2.2, is due to $v_{D S}$ along the channel and to the lateral penetration into the channel of the electric field associated with source-body and drain-body voltages.

In principle, it should be possible to obtain long-channel behavior with shorter channels if measures are taken to maintain the validity of the gradual channel approximation. One obvious measure is to reduce the oxide thickness, as this increases the transverse electric field for a given gate-channel voltage. However, at oxide thicknesses less than about 1.5 nm , electrons can tunnel through the oxide, resulting in gate current. Moreover, the gate oxide begins to break down at about $10 \mathrm{MV} / \mathrm{cm}$, or $1 \mathrm{~V} / \mathrm{nm}$, so that the gate voltage across a 1.5 nm gate oxide layer should be limited to 1.5 V for reliable long-term operation. Another measure is to decrease the depth of the source and drain regions as well as the depth of the depletion region underneath them (Figure 5.3.12b). The effect is twofold: (1) it makes the transverse field more nearly perpendicular to the surface, as assumed in the gradual channel approximation, and (2) it reduces the lateral penetration, into the channel region, of electric field lines emanating from the source and drain. However, too shallow drain and source regions increase the series, parasitic resistance, and reduce the drain current. The upshot is that in modern short-channel devices the effect of the longitudinal field is appreciable, which invalidates the gradual channel approximation made in deriving the $i-v$ characteristics of the transistor (Section ST5.1).

Reducing all dimensions of the transistor by the same factor is referred to as scaling. The effects of scaling on transistor parameters that are relevant to digital circuits are indicated in Table 13.1.1, Chapter 13. Because of the nonlinear variation of many important parameters affecting the behavior of short-channel devices, and the empirical description of these relations, PSpice simulation is usually resorted to in the design of circuits involving these transistors.

Carrier Velocity Saturation and Hot Carriers

The longitudinal field accelerates carriers in the channel, thereby increasing their drift velocity $u_{\text {drift }}$. At low electric fields $u_{\text {drift }}=-\mu_{e} \xi$ for an electron, where μ_{e} is electron mobility (Equation 2.4.3, Chapter 2) and is substantially independent of ξ. However, quantum mechanical considerations indicate that at high electric fields $u_{\text {drift }}$ saturates at its scattering-limited value $u_{\text {sat }}$, which is nearly that of the thermal velocity of electrons ($\sim 10^{7} \mathrm{~cm} / \mathrm{s}$). In Si this happens at electric fields of about $10^{5} \mathrm{~V} / \mathrm{cm}$, which are encountered in short-channel devices. Velocity saturation obviously limits the increase of drain current with $v_{D S}$ at high values of $v_{D S}$. The variation of i_{D} with $\left(v_{G S}-V_{t n}\right)$, which is the transfer characteristic shifted by $V_{t n}$, becomes linear instead of quadratic as in Equation 5.3.3, and saturation occurs at lower $v_{D S}$ (Section ST5.1). The variation of i_{D} with $v_{G S}$ in the saturation region becomes (Equation ST5.1.47):

$$
\begin{equation*}
i_{D}=u_{\mathrm{sat}} W C_{o x}\left(v_{G S}-V_{t n}-V_{D S(\mathrm{sat})}\right) \tag{5.3.36}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{\substack{v_{g s} s=V_{G D} \\ i_{D}=I_{D}}}=u_{\mathrm{sat}} C_{o x} W \tag{5.3.37}
\end{equation*}
$$

According to Equation 5.3.37, g_{m} depends only on W, for a given technology and constant $u_{\text {sat }}$. In fact, $u_{\text {sat }}$ does not remain constant but increases somewhat with $v_{G S}$ or $v_{D S}$.

The saturation voltage becomes (Equation ST5.1.48):

$$
\begin{equation*}
v_{D S(\mathrm{sat})}=\frac{\left(v_{G S}-V_{t n}\right) \xi_{c} L}{v_{G S}-V_{t n}+\xi_{c} L} \tag{5.3.38}
\end{equation*}
$$

where $\xi_{c} \cong 10^{5} \mathrm{~V} / \mathrm{cm}$ is the critical electric field at which velocity saturates. It is seen that $v_{D S(\text { sat })}=v_{G S}-V_{t n}$ of the long-channel model is multiplied by $\xi_{c} L /\left(v_{G S}-V_{t n}+\xi_{c} L\right)$, which is less than 1.

Additional effects of the high electric field are due to hot carriers. In n-channel devices, these are high-velocity electrons in the pinch-off region near the drain. Because mobility decreases with temperature, electrons of high velocity and reduced mobility are effectively at a high temperature; hence the term "hot carrier." These high-velocity electrons can cause ionizing collisions with crystal atoms, though not leading to avalanche multiplication as in avalanche breakdown. The electrons generated by these collisions flow to the drain, where they increase i_{D}, whereas the holes flow to the body, resulting in a drain-to-body current. Moreover, some of these electrons may tunnel through to the conduction band of the oxide layer, where they are collected by the gate as gate current. Or, they may get trapped in the oxide, leading to a gradual increase in $V_{t n}$ and the consequent degradation of the long-term reliability of the transistor.

Reduced Output Resistance and Threshold

Channel-length modulation has a relatively larger effect in shorter channels, which reduces r_{o} (Equation 5.3.7). In addition, the following effects reduce both r_{o} and $V_{t n}$: (1) Because of the longitudinal field at the source and drain, less of the electric field lines due to the gatesource voltage terminate in the depletion region and more in the channel, thereby increasing i_{D} and decreasing $V_{t n}$. Moreover, this causes i_{D} to increase with $v_{D S}$, which implies a reduction in r_{o}. (2) As mentioned previously, current flows between the drain and body due to the ionizing collisions of hot carriers. In the presence of the body effect, the flow of this current through the substrate resistance, increases the voltage of the substrate adjoining the source and reduces $V_{S B}$. This decreases $V_{t n}$ (Equation 5.3.17) and increases the drain current, which again reduces r_{0}.

Other Effects

At high electric fields in short channel devices, the drain depletion region can extend all the way to the source, effectively reducing the channel length to zero and resulting in a large drain current. This phenomenon is referred to as punchthrough.

Moreover, the following effects, which are inconsequential in long-channel devices, become significant in deep submicron devices and can adversely affect the long-term reliability of the circuit:

1. As channel length approaches molecular dimensions, the position of Si atoms in the channel can affect channel resistance and heating. Note that the radius of a Si atom is about 0.118 nm and the side of the cube in Figure 2.3.1, Chapter 2, is 0.2715 nm .
2. Electromigration, or the displacement of metal atoms from their regular positions due to the momentum of current carriers, can be serious as the width of interconnections becomes very small and the current density exceeds a certain level that depends on the metal. Atoms accumulate in some places and voids form in other
places. Voids can lead to open circuits, whereas accumulations can lead to short circuits between neighboring lines on the same level or in adjacent levels of the chip.
3. Stress in various interconnection layers of the chip during fabrication can cause voids in these layers leading to breaks or to short circuits.
4. Slow degradation in the very thin gate oxide due to incipient breakdown and trapping of high-energy electrons.

Improved Performance

In modern SOI technology, each transistor is encased in a layer of insulator, usually silicon dioxide, as diagrammatically illustrated in Figure 5.3.13 (Section 4.6, Chapter 4). This not only simplifies chip layout and processing but results in a higher packing density and improved performance. The insulating layer effectively isolates adjacent transistors, thereby reducing internal capacitances and leakage current. Reduction of capacitances improves switching speeds because the same currents can charge and discharge the smaller capacitances at faster rates. For a given switching speed, reduction of capacitances reduces the power dissipated in charging and discharging these capacitances. Reduction of leakage currents reduces the quiescent power dissipation. Short-channel effects are also less pronounced, because the source and drain regions extend all the way to the buried part of the insulator layer, which reduces the longitudinal electric field due to the drainsubstrate and source-substrate depletion regions (Figure 5.3.6a). SOI technology eliminates latchup due to a parasitic pnpn structure (Section ST6.6, Chapter 6). Fully depleted SOI transistors (Section 4.6, Chapter 4) have no body effect and are less affected by radiation because of the small volume of Si between the source and drain.

Strained Si technology (Section 4.8, Chapter 4) has been used since the 90 nm process to enhance speed. Straining affects the electrical properties of the crystal. It distorts the lattice and changes the spatial distribution of the electric potential due to crystal ions and electrons in the crystal. Recall that the forces exerted by a crystal on a conduction electron are accounted for by the effective mass of the electron. When the crystal is distorted, these forces are modified in a way that reduces the effective mass of conduction electrons. A smaller effective mass means higher mobility (Example ST2.7, Chapter 2). Another effect

FIGURE 5.3.13
Diagrammatic illustration of the structure of a silicon-on-insulator MOSFET.

of distortion of the crystal lattice is to redistribute energy levels in the conduction band so that it becomes more difficult for electrons to move to higher energy levels, which means less variability in their kinetic energies and hence velocities. The fact that it is easier for conduction electrons to move in certain directions with less variability in their velocities means that in the presence of an electric field, the mean scattering time between collisions increases. The drift velocity therefore increases, which again leads to higher mobility. Similar considerations apply to holes. The result is that electron mobility is doubled in strained Si grown over SiGe with 25% Ge. The improvement in hole mobility is less, but increases more rapidly than electron mobility at higher strain levels. The increased mobility is utilized in MOSFETs by having the SiGe doped in the same way as the substrate in a normal transistor, with the strained Si layer constituting the channel.

Metal gates in combination with gate insulation of high dielectric constant, the so-called high- k dielectrics, have been used in the 45 nm and later technologies to enhance speed by up to 40%. A "figure of merit" for the improvement in switching speed is the ratio of the turn-on current of the channel to its leakage current when the transistor is off. This ratio is typically $700 \mu \mathrm{~A} / 1 \mathrm{nA}$ per $\mu \mathrm{m}$ for a polysilicon gate and about $1000 \mu \mathrm{~A} / 1 \mathrm{nA}$ per $\mu \mathrm{m}$ for the metal gate/high- k stack. The materials used for the stack and its method of fabrication vary between different manufacturers. Aluminum is used in some processes, but if the metal is to withstand the high temperature required to activate the dopants in the source and drain (Section 4.6, Chapter 4), a metal having a high melting point, such as molybdenum is used. The high- k dielectric could be a thin layer of hafnium dioxide on top of silicon dioxide, or a layer of dysprosium oxide on top of silicon oxynitride. For best performance, the work function of the metal has to be tuned differently for NMOS and PMOS transistors by some form of doping of the metal.

Application Window 5.3.1 Thin-Film Transistors

For better quality and stability of the image on an LCD display, every pixel of each of the three primary colors should have its own transistor switch. Because of the large area of the LCD panel, it is impractical to use conventional MOSFETs, having a common, single-crystal substrate. Instead, thin-film transistors (TFTs) of hydrogenated amorphous silicon Si (a-Si:H) are formed on a glass substrate. Because the silicon is noncrystalline, the motion of electrons is severely impeded, particularly by unsatisfied bonds of Si atoms, which capture conduction electrons. Hydrogenating the silicon provides hydrogen atoms that satisfy some of these bonds. Even then, electron mobility is very low, typically less than $1 \mathrm{~cm}^{2} / V \mathrm{~s}$. However, the main consideration is neither gain nor speed, but rather a low leakage current when the transistor is off, so that the charge on the pixel does not leak too rapidly.

The structure of a TFT is diagrammatically illustrated in Figure 5.3.14. The structure is inverted, so that the metal gate is at the bottom. Above the gate is an insulation layer of SiO_{2} or SiN , then a layer of undoped (intrinsic) i-a-Si:H that forms the channel. The reason

FIGURE 5.3.14
Diagramatic illustration of the structure of a thin-film transistor.
for the inverted structure is twofold: (1) it makes it easier to form the $n^{+}-\mathrm{a}-\mathrm{Si}: \mathrm{H}$ source and drain, and (2) it avoids damage to the channel if it is formed before the dielectric layer.

Other TFT structures are possible. Polysilicon on quartz can be used in a conventional, top-gate structure, which greatly increases electron mobility. TFTs can be combined with OLEDs in flexible displays (Application Window 3.4.1, Chapter 3). Interestingly, using high- k dielectrics for gate insulation allows the gate to be placed on the side of the channel, rather than on top of it, which simplifies fabrication.

5.4 Depletion-Type MOSFETs

In a depletion-type, n-channel MOSFET (D-NMOS), donor impurities are implanted at the semiconductor surface, so that a channel exists between the source and drain even with $v_{G S}=0$. Any $v_{D S}>0$ causes electrons to flow from source to drain, as in an E-NMOS transistor. To reduce $i_{D}, v_{G S}$ should be made negative so as to repel electrons from the channel and therefore deplete it of current carriers; hence the designation depletion type. At a sufficiently negative $v_{G S}$, equal to the threshold $V_{t n D}$, electron concentration, and hence i_{D}, become almost zero.

The behavior of the D-NMOS transistor is exactly analogous to that of an E-NMOS transistor and is described by the same equations, except that $V_{t n D}$ has a negative value. Figure 5.4.1 shows the characteristics of a D-NMOS transistor that is identical to the E-NMOS transistor of Figure 5.2.6 having $V_{t n}=1 \mathrm{~V}$, except that $V_{t n D}=-3 \mathrm{~V}$. The boundary between the saturation and triode regions on the output characteristics (Figure 5.4.1b) is still defined by $v_{D S(\text { sat })}=v_{G S}-V_{t n D}$ but is shifted to more positive $v_{D S}$ because $V_{t n D}$ is negative. When $v_{G S}=0, v_{D S(\text { sat })}=-V_{t n D}=\bar{V}_{t n D}=3 \mathrm{~V}$. Note that the transistor could also be operated in the enhancement mode, with $v_{G S}>0$, as long as the rated power dissipation of the transistor is not exceeded.

A value of i_{D} that is of special interest in a D-NMOS transistor is $I_{D S S}=i_{D(\text { sat })}$ for $v_{G S}=0$ (Figure 5.4.1a). It follows from Equation 5.2.4, neglecting channel-length modulation, that:

FIGURE 5.4.1
Depletion-type MOSFET: (a) transfer characteristic; (b) output characteristics.

$$
\begin{equation*}
I_{D S S}=\frac{1}{2} k_{n} V_{t n D}^{2} \tag{5.4.1}
\end{equation*}
$$

In terms of $I_{D S S}, i_{D}$ in the saturation region is given by:

$$
\begin{equation*}
i_{D}=I_{D S S}\left(1+\frac{v_{G S}}{\bar{V}_{t n D}}\right)^{2}\left(1+\lambda v_{D S}\right) \tag{5.4.2}
\end{equation*}
$$

The symbols for a D-NMOS transistor are illustrated in Figure 5.4.2. The main difference between the symbols of Figure 5.4.2a and b, and those of Figure 5.2.8a and b for an E-NMOS transistor, is that the vertical line representing the channel is solid rather than broken, which signifies the presence of a channel with no bias applied. This same feature is symbolized in Figure 5.4.2c and d by a thick vertical line. The transconductance is:

$$
\begin{equation*}
g_{m}=\frac{d i_{D}}{d v_{G S}}=2 \frac{I_{D S S}}{\bar{V}_{t n D}}\left(1+\frac{v_{G S}}{\bar{V}_{t n D}}\right)\left(1+\lambda v_{D S}\right) \tag{5.4.3}
\end{equation*}
$$

As in the case of the enhancement-type transistor, a depletion-type p-channel MOS (D-PMOS) transistor can be constructed having an n-type body and p^{+}source and drain regions, with acceptor impurities implanted at the surface of the semiconductor to create a p-channel between source and drain with no bias applied. Operation is completely analogous to that of a D-NMOS transistor, but with the roles of electrons and holes interchanged. The symbol for a D-PMOS transistor is the same as that of the D-NMOS transistor shown in Figure 5.4.2 but with the direction of the arrow reversed in Figure 5.4.2a through c. A bubble is placed on the gate in Figure 5.4.2d and the upper and lower terminals become the source and drain, respectively. If the same positive directions of $i_{D}, v_{D S}$, and $v_{G S}$ are assigned for a D-PMOS transistor, as for a D-NMOS transistor, then all these quantities will have negative numerical values. To use positive numerical values in the equations, then as in the case of an E-PMOS transistor, the assigned positive direction of i_{D} is reversed, and new terminal volt-

 ages are defined as $v_{S G}=-v_{G S}$ and $v_{S D}=-v_{D S}$. Note that the threshold of a D-PMOS transistor is positive.
Figure 5.4.3 summarizes the voltage polarities in MOSFETs. The shaded triangle depicts the normal operating range of $v_{G S}$. The direction of the $v_{G S}$ arrow is that of increasing conduction, so that the width of the triangle signifies the degree of conduction. The following generalizations can be made: (1) V_{t} is of the same polarity as $v_{D S}$ in enhancement-type devices and is of opposite polarity in depletion-type devices; (2) in all cases, the device becomes more conducting, that is, $\left|i_{D}\right|$ increases, as $v_{G S}$ changes toward $v_{D S}$; (3) in both n-channel and p-channel devices, current carriers, which are the majority carriers of the source and drain, flow from source to drain.
The relation that defines the edge of the saturation region for all MOSFETs is:

$$
\begin{equation*}
v_{D S(\text { sat })}=v_{G S}-V_{t} \tag{5.4.4}
\end{equation*}
$$

FIGURE 5.4.3
Relative polarities of terminal voltages for various types of MOSFETs.

TABLE 5.4.1

Relations for the Four Types of MOSFETs

MOSFET	V_{t}	Saturation Voltage	Saturation Current, $i_{D(\text { sat })}$	Threshold Modification by Body Effect
E-NMOS	>0	$v_{D S(\text { sat) }}=v_{G S}-V_{t n}$	$\frac{1}{2} k_{n} v_{D S(\text { sat) }}^{2}\left(1+\lambda v_{D S(\text { sat })}\right)$	$V_{t n}=V_{t n 0}+\gamma\left(\sqrt{2\left\|\phi_{F}\right\|+\left\|V_{S B}\right\|}-\sqrt{2\left\|\phi_{F}\right\|}\right)$
E-PMOS	<0	$v_{S D(\text { sat })}=v_{S G}-\bar{V}_{t p}$	$\frac{1}{2} k_{p} v_{S D(\text { sat) }}^{2}\left(1+\lambda v_{S D(\text { sat) })}\right)$	$\bar{V}_{t p}=\bar{V}_{t p 0}+\gamma\left(\sqrt{2\left\|\phi_{F}\right\|+\left\|V_{S B}\right\|}-\sqrt{2\left\|\phi_{F}\right\|}\right)$
D-NMOS	<0	$v_{D S(\text { sat }}=v_{G S}+\bar{V}_{t n D}$	$\frac{1}{2} k_{n} v_{D S(\text { sat) }}^{2}\left(1+\lambda v_{D S(\text { sat) })}\right)$	$\bar{V}_{t n D}=\bar{V}_{t n D 0}-\gamma\left(\sqrt{2\left\|\phi_{F}\right\|+\left\|V_{S B}\right\|}-\sqrt{2\left\|\phi_{F}\right\|}\right)$
D-PMOS	>0	$v_{S D(\text { sat) }}=v_{S G}+V_{t p D}$	$\frac{1}{2} k_{p} v_{S D(\text { sat) }}^{2}\left(1+\lambda v_{S D(\text { sat) })}\right)$	$V_{t p D}=V_{t p D 0}-\gamma\left(\sqrt{2\left\|\phi_{F}\right\|+\left\|V_{S B}\right\|}-\sqrt{2\left\|\phi_{F}\right\|}\right)$

Equation 5.4.4 is adapted to the four types of MOSFETs as indicated in Table 5.4.1. These relations can be derived from first principles (Exercise 5.4.1) and can be summarized as follows: (1) $v_{D S}$ and $v_{G S}$ are used for NMOS transistors, whereas $v_{S D}$ and $v_{S G}$ are used for PMOS transistors, so that all these terms are positive; (2) a positive value of threshold in Equation 5.4.4 is used for all transistors, which means using $\bar{V}_{t p}=-V_{t p}$ for E-PMOS transistors and $\bar{V}_{t n D}=-V_{t n D}$ for D-NMOS transistors; (3) For enhancement devices, the sign of the threshold term in Equation 5.4.4 is negative, whereas for depletion devices, the sign of the threshold term is positive. These signs follow readily from Equation 5.4.4. In the case of an E-PMOS transistor, for example, if both sides of the equation are negated, it becomes $-v_{D S(\text { sat })}=-v_{G S}+V_{t p}$. Changing to $v_{S D(\text { sat })}$ and $v_{S G}$ gives $v_{S D(\text { sat })}=v_{S G}+V_{t p}$. The relation in Table 5.4 .1 follows by substituting $\bar{V}_{t p}=-V_{t p}$. Note the variation in threshold due to the body effect. In all cases, the body effect reduces the drain current for given gate-source and drain-source voltages, as explained earlier, which means that the magnitude of $V_{o v}$ must decrease. The reduction in the magnitude of $V_{o v}$ implies an increase in the threshold in enhancement devices, and a decrease in the magnitude of the
threshold in depletion devices, in accordance with the sign of the threshold term in Table 5.4.1 (see Example SE5.2). It is seen that in n-channel MOSFETs (E-NMOS and D-NMOS), the body effect shifts the threshold in the positive direction, whereas in p-channel MOSFETs (E-PMOS and D-PMOS), the threshold is shifted in the negative direction.

Exercise 5.4.1

Derive the relations in the third column of Table 5.4.1 from first principles by setting the total voltage drop, from gate to source to drain, equal to the threshold.

Exercise 5.4.2

Given a D-NMOS transistor having a device transconductance parameter k_{n} of $400 \mu \mathrm{~A} / \mathrm{V}^{2}$ and a threshold of -3 V . Determine $I_{D S S}$.

Answer: 1.8 mA .

Exercise 5.4.3

By setting $v_{G S}=0$ in Equation 5.3.1, show that $I_{D S S}=\frac{1}{2} k_{n} V_{t n}^{2}$ in the absence of channel-length modulation. Note that since this is proportional to $V_{t n}^{2}$, it applies equally well to enhancementtype devices, where $I_{D S S E}$ denotes $I_{D S S}$ and $I_{D S S E} / V_{t n}^{2}$ simply becomes another way of writing $\frac{1}{2} k_{n}$. Show that for an enhancement-type device, Equation 5.3.1 can then be written as:

$$
\begin{equation*}
i=\frac{I_{D S S E}}{V_{t n}^{2}}\left(v_{G S}+\bar{V}_{t n}\right)^{2}\left(1+\lambda v_{D S}\right)=I_{D S S E}\left(1+\frac{v_{G S}}{\bar{V}_{t n}}\right)^{2}\left(1+\lambda v_{D S}\right) \tag{5.4.5}
\end{equation*}
$$

Diode Connection

In some applications, the MOSFET is connected as a two-terminal device. In such a diode connection, it is natural to connect together the gate and source of a depletion-type transistor, leaving the drain as the other terminal, as illustrated in Figure 5.4.4 for an n-channel transistor. The $i-v$ relation is the same as the output characteristic for $v_{G S}=0$ in Figure 5.4.1b. Once the transistor reaches saturation, $i=I_{D S S}$, as given by Equation 5.4.1. Beyond saturation, and taking into account channel-length modulation, it follows from Equation 5.3.1 that:

$$
\begin{equation*}
i=I_{D S S}(1+\lambda v) \tag{5.4.6}
\end{equation*}
$$

Diode connection of D-PMOS transistor.

FIGURE 5.4.5
Diode connection of E-NMOS transistor.

In enhancement-type devices, the gate cannot be connected directly to the source, as the transistor is cut off when $v_{G S}=0$. Although it is possible, in principle, to apply a suitable bias between gate and source, this is inconvenient in practice, and the device is no longer two terminal. The gate is therefore connected to the drain, as illustrated in Figure 5.4.5 for an n-channel transistor. In the saturation region, $v_{D S}>v_{G S}-V_{t n}$. If $v_{G S}$ is replaced by $v_{D S}$, this inequality becomes $v_{D S}>v_{D S}-V_{t n}$, which is always true, because $V_{t n}>0$. Hence, once $v_{D S}=v_{G S}$ exceeds $V_{t n}$, the transistor is always in saturation. The locus of points $v_{D S}=v_{G S}$ on the output characteristics is the $i-v$ relation for the diode-connected transistor, and is in fact, the transfer characteristic superposed on the output characteristics, neglecting channel-length modulation. If this effect is taken into account, the locus is given by Equation 5.3.1 with $v_{D S}=v_{G S}=v$.

It is seen that the major difference between diode-connected enhancement-type transistors and depletion-type transistors is in their incremental resistance, which is the reciprocal of the slope of the respective $i-v$ relation at a given operating point. For an enhancement-type transistor, the incremental output resistance is $\left(1 / g_{m}\right) \| r_{o} \cong 1 / g_{m}$ (Exercise 5.4.4) and is $1 / g_{m}$ if channel-width modulation is neglected ($r_{o} \rightarrow \infty$), in which case the i_{D} vs. $v_{D S}$ relation is the same as the transfer characteristic. Whereas $1 / g_{m}$ is typically about $1 \mathrm{k} \Omega$ (Example 5.3.1), the incremental output resistance for a depletiontype transistor is r_{o}, and is typically at least few tens of $\mathrm{k} \Omega$.

Exercise 5.4.4

(a) Consider the small-signal equivalent circuit of Figure 5.3 .2 with the gate connected to the drain, which makes the current of the dependent source $g_{m} v_{d s}$. Deduce that the source can be replaced by a resistance $1 / g_{m}$, so that the small-signal resistance of the diode-connected transistor is $\left(1 / g_{m}\right) \| r_{o}$. (b) Determine $d i / d v$ in Equation 5.3.1, where $v=v_{D S}=v_{G S}$, and show that it is equivalent to $g_{m}+1 / r_{o}$.

5.5 Complementary MOSFETs

CMOS technology, which involves fabricating both NMOS and PMOS transistors on the same chip (Section 4.6, Chapter 4), is at present the dominant technology for digital ICs. It offers many advantages over using NMOS or PMOS transistors alone, as explained in this section.

CMOS Amplifier

In a CMOS amplifier, the drain load for a given MOSFET is a complementary MOSFET. Figure 5.5.1a shows an example, where a diode-connected D-PMOS transistor Q_{p} is the drain load of an E-NMOS transistor Q_{n}. In ICs, the substrate of Q_{p} would normally be connected to $V_{D D}$, whereas that of Q_{n} would be grounded. There is no body effect in this case.
The $v_{O}-v_{I}$ relation, or voltage transfer characteristic (VTC), assuming zero output current, can be readily derived. From KVL in the output circuit, $v_{S D p}+v_{D S n}=V_{D D}$, where $v_{D S n}=v_{O}$. This is of the same form as Equation 5.2.15, with $R_{D} i_{D}$ replaced by $v_{S D p}$. Hence, the same type of graphical construction can be used to determine the operating point, with the load line replaced by a "load curve" (Figure 5.5.1b). In this figure, the $v_{S G p}=0$ output characteristic of Q_{p} is drawn "backward" with $V_{D D}$ as the origin, and the output characteristics of Q_{n} are labeled with v_{I} instead of $v_{G S}$. The intersection of the output characteristic for a particular v_{I} with the Q_{p} load curve defines the operating point P , because at this point, i_{D} is the same in both transistors, assuming zero load current, and $v_{S D p}+v_{D S n}=V_{D D}$.

It is seen from Figure 5.5.1b that for $v_{I}<V_{t n}, Q_{n}$ is cut off, $i_{D}=0$, and $v_{S D p}=0$, so that $v_{O}=V_{D D}$ (Figure 5.5.1c). When $v_{I}=V_{t n}, Q_{n}$ begins to conduct, and the operating point is at A with Q_{n} in saturation and Q_{p} at the beginning of the triode region. When v_{I} increases so that the operating point moves to B, Q_{p} is at the edge of the saturation region, $v_{S D p}=V_{t p D}$ with $V_{S G p}=0$, and $v_{O}=V_{D D}-V_{t p D}$, where $V_{t p D}>0$. A further small increase in v_{I} causes a large change in v_{O}, because the operating point P is the intersection of two nearly

FIGURE 5.5.1
CMOS amplifier having a diode-connected D-PMOS transistor load: (a) circuit diagram; (b) graphical construction based on output characteristics; and (c) transfer characteristic.

FIGURE 5.5.2
Small-signal equivalent circuit of the CMOS amplifier of Figure 5.5.1.

horizontal lines. At C, Q_{n} is at the edge of the triode region, $v_{D S}=v_{G S}-V_{t n}$, or $v_{O}=v_{I}-V_{t n}$. For large v_{I}, v_{O} is small.

Exercise 5.5.1

Determine the states of the two transistors in Figure 5.5.1a for the different parts of the transfer characteristic in Figure 5.5.1c.

Answers: $v_{I}<v_{I A}$: Q_{n} off, Q_{p} in triode region; $v_{I A}<v_{I}<v_{I B}$: Q_{n} in saturation, Q_{p} in triode region; $v_{I B}<v_{I}<v_{I C}$: both transistors in saturation; $v_{I}>v_{I C}: Q_{n}$ in triode region, Q_{p} in saturation.

For small-signal operation, the equivalent circuit is shown in Figure 5.5.2. Q_{p} is replaced by its incremental output resistance $r_{o p}$ at the operating point. The small-signal voltage gain is:

$$
\begin{equation*}
\frac{v_{0}}{v_{i}}=-g_{m n}\left(r_{o n} \| r_{o p}\right) \tag{5.5.1}
\end{equation*}
$$

The gain is largest in the steepest part of the VTC, when both transistors are in saturation.
What are the advantages of using a complementary transistor in the circuit of Figure 5.5.1a rather than a resistor? It is clear from Figure 5.5.1b that Q_{p} allows a larger $r_{o p}$, and hence a larger gain (Equation 5.5.1), but with a much smaller dc voltage drop than is possible with a fixed resistor. The dc voltage drop across Q_{p} can be in the range of few volts to less than 10 V , whereas $r_{o p}$ is at least few tens of $\mathrm{k} \Omega$. Suppose that $r_{o p}=20 \mathrm{k} \Omega$, and that a resistance R_{D} of this value is used to give the same small-signal voltage gain. Assume that in the CMOS case, $V_{D D}=12 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$, and $V_{O}=V_{D D} / 2=6 \mathrm{~V}$ at the operating point. When $R_{D}=20 \mathrm{k} \Omega$ is used, the voltage drop across R_{D} is 40 V , and $V_{D D}$ has to be 46 V instead of 12 V . Hence,

Concept: A diode-connected transistor load provides a higher voltage gain with a lower dc voltage drop than is possible with a linear resistor.

Another advantage is that to obtain a value of $R_{D}=r_{o p}$ in an IC would require a much larger chip area than the PMOS transistor.

Exercise 5.5.2

Assume that in Figure 5.5.1a an E-PMOS transistor is used as the load with proper biasing to give a high r_{0}. (a) Draw a suitable biasing circuit for this transistor. (b) How will the voltage gain change if the gate is connected to the drain? (c) How will v_{O} change for $v_{I} \leq V_{t n}$? (d) How will the VTC be different if an E-NMOS transistor is used instead of the E-PMOS transistor assuming that in both of these transistors are matched to the E-NMOS driver?

Answers: (a) Possible biasing schemes: (i) resistive voltage divider, (ii) an identical diodeconnected PMOS supplied by a current source, with the two gates joined together, which gives a current mirror (Section 8.1, Chapter 8). (b) The voltage gain becomes $g_{m n} r_{o n}\left\|r_{o p}\right\|\left(1 / g_{m p}\right)$ instead of $g_{m n}\left(r_{o n} \| r_{o p}\right)$. (c) $v_{O}=V_{D D}-\bar{V}_{t p}$ instead of $V_{D D}$. (d) No difference.

A possible limitation of the circuit of Figure 5.5.1a is that the $i-v$ relation of Q_{p} is limited to a single output characteristic, namely that of $v_{S G p}=0$. A current mirror (Section 8.1, Chapter 8) provides more flexibility by allowing the use of other output characteristics of Q_{p}.

Simulation Example 5.5.1 MOS Amplifier with Diode-Connected D-PMOS Transistor

It is required to simulate the $v_{O^{-}} v_{l}$ characteristic of an amplifier consisting of an $\mathrm{E}-\mathrm{NMOS}$ transistor with a D-PMOS load. Assume that $V_{D D}=12 \mathrm{~V}, k_{n}^{\prime}=40 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{n}=(10 \mu \mathrm{~m} / 1 \mu \mathrm{~m})$, $k_{p}^{\prime}=16 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{p}=(25 \mu \mathrm{~m} / 1 \mu \mathrm{~m}), V_{t n}=V_{t p D}=2 \mathrm{~V}$, and $\lambda_{n}=\lambda_{p}=0.015 \mathrm{~V}^{-1}$.

Simulation

MbreakN3 from the BREAKOUT library is used for the E-NMOS transistor and MbreakP3D for the D-PMOS transistor, both having the substrate connected to the source. The first simulation is based on the same circuit as in Figure 5.5.1a. After entering the schematic, select the E-NMOS transistor, right click on its symbol, and choose Edit/PSpice Model. In the window of the PSpice Model Editor enter in the first line after NMOS: $K p=40 u$ Vto $=2$ lambda $=0.015$. In the Property Editor spreadsheet, enter $1 u$ under L and $10 u$ under W. Repeat the same procedure for the D-PMOS transistor, entering $\mathrm{kp}=16 \mathrm{u}$ Vto $=2$ lambda $=0.015$ in the PSpice Model editor, and 1 u under L and 25 u under W in the Property Editor spreadsheet. In the simulation profile, select DC Sweep, and vary the input dc source between 0 and 8 V . Simulation results are shown in Figure 5.5.3.

The two transistors are matched, since $k_{n}=k_{p}$ and $V_{t n}=V_{t p D}$. The $v_{S G p}=0$ output characteristic of the PMOS transistor corresponds to $V_{o v}=2 \mathrm{~V}$. Hence, the corresponding output characteristic of the NMOS transistor has $v_{G S n}=v_{l}=2+V_{t n}=4 \mathrm{~V}$. The intersection of the two characteristics is at $V_{D D} / 2=6 \mathrm{~V}$. Analytically, $\left(k_{n} / 2\right)\left(V_{l}-V_{t n}\right)^{2}\left(1+\lambda V_{D D} / 2\right)=$ $\left(k_{p} / 2\right)\left(0+V_{t p D}\right)^{2}\left(1+\lambda V_{D D} / 2\right)$. With $k_{n}=k_{p}$ and $V_{t p D}=V_{t n}$, this gives $v_{l}=4 \mathrm{~V}, i_{D}=0.87 \mathrm{~mA}$. In Figure 5.5.3, the midpoint of the straight part of the characteristic is at $v_{l}=4 \mathrm{~V}$ and $v_{O}=6 \mathrm{~V}$.

FIGURE 5.5.3
Figure for Simulation Example 5.5.1.

The D-PMOS transistor enters saturation when $v_{O}=V_{D D}-V_{t p D}=10 \mathrm{~V}$, corresponding to $v_{l}=3.89 \mathrm{~V}$ and $i_{D p(\text { sat })}=0.824 \mathrm{~mA}$ (point B of Figure 5.5.3). This agrees with Equation 5.3.3, which gives: $i_{D p(\text { sat })}=\frac{1}{2} k_{p} v_{S D p(\text { sat })}^{2}\left(1+\lambda v_{S D p(\text { sat })}\right)=0.2(2)^{2}(1+0.015 \times 2)=0.824 \mathrm{~mA}$. With this value of $i_{D p(\text { sat })}$, Equation 5.3.1 gives $v_{l}=v_{G S n}=3.89 \mathrm{~V}$.
The E-NMOS transistor leaves saturation when $v_{D S n(\text { sat })}=v_{l}-V_{t n}$. To find $v_{O(\text { sat) })}$ we equate the saturation currents of the two transistors: $\frac{1}{2} k_{n} v_{D S n(\text { sat) }}^{2}\left(1+\lambda v_{D S n(\text { sat) })}\right)=\frac{1}{2} k_{p}$ $4\left[1+\lambda\left(12-v_{D S n(\text { sat })}\right)\right]$. This gives $v_{D S n(\text { sat) })}=2.11 \mathrm{~V}, v_{l}=4.11 \mathrm{~V}$ and $i_{D n(\text { sat })}=0.919 \mathrm{~mA}$, in agreement with the values for point C in Figure 5.5.3. The difference between $i_{D n(\text { sat })}$ and $i_{D p}$ (sat), which is 0.095 mA , is due to the nonzero slope of the $v_{S C p}=0$ output characteristic, which is $0.2(2)^{2} \times 0.015(10-2.11)=0.095 \mathrm{~mA}$.
For $v_{l}>4.11 \mathrm{~V}$, the E-NMOS transistor is in the triode region, v_{O} drops to a low value, $v_{S D P}$ varies little, and the current stays nearly constant. The limiting value of i_{D} is when $v_{O} \cong 0$. The saturation current of the PMOS transistor is $0.2 \times 4(1+0.015 \times 12)=0.944 \mathrm{~mA}$.

The small-signal voltage gain for any v_{l} i the slope of the VTC characteristic at the given v_{l}. The slope can be plotted by selecting Add Trace and entering - $\mathrm{D}(\mathrm{V}(\mathrm{VO})$). The largest magnitude of this slope occurs at point B (Problem P5.2.18) and is approximately 38.3. To apply Equation 5.5.1, we have, from Equation 5.3.11, $g_{m n}=2 \times 0.824 / 1.89=0.872 \mathrm{~mA} / \mathrm{V}$. From Equation 5.3.4, $\quad r_{o p}=(1+0.015 \times 2) /(0.015 \times 0.824) \equiv 83.3 \mathrm{k} \Omega$. From Equation 5.3.1, $g_{d s n}=0.2(1.89)^{2} \times 0.015$ and $r_{\text {on }}=1 /\left(0.015 \times 0.2 \times(1.89)^{2}\right) \equiv 93.3 \mathrm{k} \Omega$. The small-signal voltage gain is $0.872(83.3 \| 93.3)=38.4$.

CMOS Transmission Gate

Figure 5.5.4a shows a CMOS transmission gate using two complementary MOSFETs. The source and drain are not marked, since either terminal a or b of Q_{n} or Q_{p} can act as source, the other as drain, because of symmetry of the transistors. It is assumed that the control voltage v_{C} could be at either +5 V or -5 V , and that the input v_{I} is in the range of $\pm 5 \mathrm{~V}$. The substrates of the E-PMOS and E-NMOS transistors are connected to +5 V and -5 V , respectively.

When $v_{C}=-5 \mathrm{~V}$, and $-5 \mathrm{~V} \leq v_{I} \leq 0, Q_{n}$ cannot be conducting. This is because if Q_{n} is on, current would flow from ground, through the load and the transistor, to the input, making b_{n} the drain and a_{n} the source. The source voltage would equal v_{I}, which makes the gate-to-source voltage between zero and -5 V . Under these conditions, Q_{n} must be off.

With $v_{C}=-5 \mathrm{~V}$, and $0 \leq v_{I} \leq 5 \mathrm{~V}, Q_{n}$ again cannot be conducting. This is because if Q_{n} is on, current would flow from the input, through the transistor and load, to ground, making

FIGURE 5.5.4
CMOS transmission gate: (a) circuit; (b) symbol.

a_{n} the drain and b_{n} the source. The source voltage would also equal v_{I}, neglecting the voltage drop in the transistor compared to that of the load, which makes the gate-to-source voltage between -5 and -10 V . Q_{n} must again be off.

A similar argument can be applied to show that Q_{p} is also off (Exercise 5.5.3). In fact, one may argue, on the basis of complementarity, that if $v_{G n}=-5 \mathrm{~V}$ cuts off the NMOS transistor, then for the same range of v_{I}, the PMOS transistor must also be cut off when $v_{G p}=+5 \mathrm{~V}$. It follows that when $v_{C}=-5 \mathrm{~V}$, both transistors are off for inputs $-5 \mathrm{~V} \leq v_{I} \leq+5 \mathrm{~V}$. Theoretically, the transmission gate as a whole behaves as an open switch, and the load is effectively disconnected from the input v_{I}. In practice, the resistance between terminals x and y when both transistors are off is very much larger than the load resistance, so $v_{O} \cong 0$.

Consider next the case when $v_{C}=v_{G n}=+5 \mathrm{~V}$ and $v_{G p}=-5 \mathrm{~V}$. If $-5 \mathrm{~V} \leq v_{I} \leq 0$, then as argued previously on the basis of the direction of current flow, a_{n} is the source and b_{n} the drain. This makes $v_{G S n}=10 \mathrm{~V}$ when $v_{I}=-5 \mathrm{~V}$, and $v_{G S n}=5 \mathrm{~V}$ when $v_{I}=0$. Q_{n} will be turned hard on, as $V_{G S n}$ is considerably larger than $V_{t n}$. The transistor is in the triode region, $v_{D S n}$ is small compared to v_{O}, and $v_{O} \cong v_{I}$. As for Q_{p}, assume, for the sake of argument, that $V_{t p}=-2 \mathrm{~V}$ and that $v_{I}=-1 \mathrm{~V}$. Since Q_{n} is on, b_{p} will be slightly positive with respect to a_{p} by the small voltage $v_{D S n}$. With $v_{G p}=-5 \mathrm{~V}, Q_{p}$ gate will be more negative than a_{p} or b_{p} by about 4 V , which is more than the threshold. Q_{p} is therefore conducting, with b_{p} acting as the source and a_{p} as the drain. If v_{I} goes more negative than -3 V , say -4 V , then because Q_{n} is on, the voltage of b_{p} is about -4 V . The gate to source voltage of Q_{p} is now less than the threshold and this transistor will be off.

An analogous argument shows that when $0 \leq v_{I} \leq 5 \mathrm{~V}, Q_{p}$ is always on, but Q_{n} is on as long as $v_{I}<5-V_{t n}$ and is off when $v_{I}>5-V_{t n}$. The states of the two transistors are summarized in Figure 5.5.5, for the case $V_{t n}=+2 \mathrm{~V}$, and $V_{t p}=-2 \mathrm{~V}$. The width of the triangle is proportional to the magnitude of $v_{G S}$, so that the wider the triangle the more conducting is the respective transistor. As long as $v_{C}=+5 \mathrm{~V}$, a low-resistance path exists between the input and output terminals, through one or both transistors. Note that the transmission gate is symmetrical, or bilateral, that is, the input and output are interchangeable. This is reflected in the transmission gate symbol (Figure 5.5.4b), showing two superimposed triangles pointing in opposite directions.

Exercise 5.5.3

Verify that in the transmission gate Q_{p} is off when $v_{C}=-5 \mathrm{~V}$.

FIGURE 5.5.5
States of conduction of the transistors in a CMOS transmission gate.

It may be argued that either Q_{n} or Q_{p} alone can be used as a transmission gate. Whereas this is true, the CMOS combination has two advantages compared to using say Q_{n} alone: (1) In order to allow transmission of v_{I} in the range of $\pm 5 \mathrm{~V}, v_{C}$ must be ($5+V_{t n}$). In the CMOS combination, v_{C} is conveniently equal to the positive limit of v_{I}. (2) As v_{I} increases from $-5 \mathrm{~V}, Q_{n}$ becomes less conducting, and its on-resistance increases (Example 5.5.2). This not only decreases the magnitude of v_{O}, because of the voltage divider effect between the on-resistance and the load, but introduces phase shift as well when the load is not a pure resistance. In the CMOS transmission gate, the on-resistance is the parallel on-resistances of both transistors. As one transistor becomes less conducting, the other transistor becomes more conducting. Hence, the combined on-resistance stays more nearly constant than that of either transistor alone. This, in turn, makes the attenuation and phase shift more nearly independent of signal level.

Simulation Example 5.5.2 CMOS Transmission Gate

In a CMOS transmission gate $k_{n}=k_{p}=400 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=-V_{t p}=2 \mathrm{~V}$, and $R_{L}=40 \mathrm{k} \Omega$. It is required to determine v_{O} and the resistance of the switch, when conducting, for the following values of v_{l} : (a) 0 , (b) -1 V , (c) -2 V , (d) -3 V , and (e) -5 V , neglecting the body effect. It is also required to simulate the operation of the transmission gate, with and without the body effect.

Analysis

When the transmission gate conducts, with $v_{l} \leq 0, a_{n}$ and b_{p} in Figure 5.5.4a are sources, a_{p} and b_{n} are drains. The drain-source voltage is small, as long as the switch resistance $r_{x y}$ is small compared to the load resistance. Equation 5.2.3 can be used to calculate $r_{D S_{n}}$ and $r_{D S_{p}}$:

$$
\begin{equation*}
r_{D S n}=\frac{1}{k_{n}\left(V_{G S n}-V_{t n}\right)}, \quad r_{D S p}=\frac{1}{k_{n}\left(V_{S G p}-\bar{V}_{t p}\right)}, \quad r_{x y}=r_{D S n} \| r_{D S p} \tag{5.5.2}
\end{equation*}
$$

(a) If $v_{l}=0$, there is no voltage in the drain-source circuit to drive current. Hence, $v_{O}=0$. From Equation 5.5.2, $r_{D S n}=1 /(0.4(5-2))=0.83 \mathrm{k} \Omega, r_{D S p}=1 /(0.4(5-2))=0.83 \mathrm{k} \Omega$, $r_{x y}=0.42 \mathrm{k} \Omega$.
(b) If $v_{l}=-1 \mathrm{~V}, v_{G S n}=5-(-1)=6 \quad \mathrm{~V}, v_{G S p}=v_{O}-(-5)=v_{O}+5 \mathrm{~V}$. Hence, $r_{D S n}=$ $1 /(0.4(6-2))=0.625 \mathrm{k} \Omega, r_{D S p}=1 /\left(0.4\left(v_{O}+5-2\right)\right)=2.5 /\left(v_{O}+3\right) \mathrm{k} \Omega$, and $r_{x y}=2.5 /$ $\left(v_{O}+7\right)$. But $v_{O}=-1 \times 40 /\left(40+r_{x y}\right)$. Solving for v_{O} and $r_{x y}$ gives: $v_{O}=-0.99 \mathrm{~V}$ and $r_{x y}=0.416 \mathrm{k} \Omega$. Note that the assumption of small drain-source voltage is justified. Since $v_{D S n}<v_{G S n}-v_{t n}$ and $v_{D S n}<v_{G S n}-\bar{V}_{t p}$, both transistors operate in the triode region. $r_{D S P}=1.24 \mathrm{k} \Omega$, which is larger than $r_{D S n}$ because Q_{n} is more conducting than Q_{p}. The load current is $i_{L}=v_{O} / 40 \mathrm{k} \Omega \equiv 24.7 \mu \mathrm{~A}$.
(c) If $v_{I}=-2 \mathrm{~V}, v_{G S n}=5-(-2)=7 \mathrm{~V}, r_{D S n}=1 /(0.4(7-2))=0.5 \mathrm{k} \Omega, v_{C S p}=v_{O}+5 \mathrm{~V}$, $r_{D S p}=2.5 /\left(v_{O}+3\right) \mathrm{k} \Omega, r_{x y}=2.5 /\left(v_{O}+8\right)$, and $v_{O}=-2 \times 40 /\left(40+r_{x y}\right)$. Solving for v_{O} and $r_{x y}$ gives: $v_{O}=-1.98 \mathrm{~V}$ and $r_{x y}=0.413 \mathrm{k} \Omega ; r_{D S P}=2.38 \mathrm{k} \Omega$. Note that as $r_{D S n}$ decreased from 0.625 to $0.5 \mathrm{k} \Omega, r_{D S p}$ increased from 1.24 to $2.38 \mathrm{k} \Omega$, but $r_{x y}$ stayed almost constant.
(d) If $v_{l}=-3 \mathrm{~V}, v_{G S n}=5-(-3)=8 \mathrm{~V}, r_{D S n}=1 /(0.4(8-2))=0.417 \mathrm{k} \Omega, Q_{p}$ is now just off. Hence, $r_{x y}=0.417 \mathrm{k} \Omega$ and $v_{O}=-3 \times 40 /\left(40+r_{x y}\right)=-2.97 \mathrm{~V}$.
(e) If $v_{l}=-5 \quad \mathrm{~V}, v_{G S n}=5-(-5)=10 \quad \mathrm{~V}, r_{D S_{n}}=1 /(0.4(10-2))=0.313 \mathrm{k} \Omega$. Hence, $r_{x y}=0.313 \mathrm{k} \Omega$, and $v_{O}=-5 \times 40 /\left(40+r_{x y}\right)=-4.96 \mathrm{~V}$. Note that as long as both transistors are on, $r_{x y}$ does not change much. It decreases when Q_{p} is off and Q_{n} becomes more conducting.

As can be seen from Figure 5.5.5, the situation for $v_{l}>0$ is analogous, with the roles of the E-NMOS and E-PMOS transistors interchanged.

Simulation

The schematic is entered as in Figure 5.5.4a, the transistor parameters being as in Example 5.3.2. v_{l} is a VDC source that is swept between -5 V and +5 V . The plot of $v_{O} v s . v_{l}$ is a straight line passing through the origin, with $v_{O}=-4.96 \mathrm{~V}$ for $v_{l}=-5 \mathrm{~V}$ and $v_{O}=+4.96 \mathrm{~V}$ for $v_{l}=+5 \mathrm{~V}$. The body effect makes no noticeable difference to the v_{O} vs. v_{l} characteristic because of the large R_{L} (Problem 5.2.23).

Exercise 5.5.4

Include the body effect for the case $v_{I}=0$ in Example 5.5.2, assuming $\gamma=0.3 \mathrm{~V}^{1 / 2}$ and $2\left|\phi_{F}\right|=0.6 \mathrm{~V}$. What complicates taking the body effect into account when $v_{I} \neq 0$?

Answers: $r_{D S n}=r_{D S p}=0.99 \mathrm{k} \Omega$; the source voltage of one of the transistors is the unknown output voltage v_{O}, so that $\left|V_{S B}\right|$, and hence V_{t} of the transistor will be a function of v_{O}.

CMOS Inverter

The CMOS inverter consists of an E-NMOS transistor and an E-PMOS transistor connected between $V_{D D}$ and ground as in Figure 5.5.1a but with the gates of both transistors connected to v_{I}, which assumes one of two values: a low value, $v_{I L} \cong 0$, and a high value $v_{I H} \cong V_{D D}$. When v_{I} is low, v_{O} is high, and when v_{I} is high, v_{O} is low; hence, the name inverter. The inverter is a basic circuit in digital electronics, and its analysis provides a good indication of the performance of the logic family to which the inverter belongs. The CMOS inverter is considered in detail in Section 13.1, Chapter 13.

5.6 Junction Field-Effect Transistor

Structure

The basic structure of an n-channel JFET is illustrated in longitudinal section in Figure 5.6.1. Essentially, it consists of a slab of semiconductor having terminals at both ends, labeled source (S) and drain (D), and p^{+}regions on opposite faces, to which a gate terminal (G) is made. The region between source and drain forms the channel through which electrons, the

FIGURE 5.6.1
Diagrammatic illustration of the structure of an n-channel JFET.
majority carriers, can flow under the influence of an applied voltage. The source and drain terminals can be interchanged, as the structure is symmetrical.

Operation

Let us assume, to begin with, that the source, drain, and gate are all at zero voltage, that is, $V_{G S}=v_{S}=0$. The $p n$ junction formed between the n-channel and the p^{+}regions on both sides is at equilibrium. A depletion layer of small width extends mainly into the channel, because the p^{+}regions are much more heavily doped. If the gate is made negative with respect to the source ($v_{G S}<0$), the $p n$ junction becomes reverse biased, and the depletion region widens, reducing the channel depth $2 h$. The channel between drain and source thus behaves like a variable resistance $r_{D S}$ controlled by $v_{G S}$. The value of this resistance is simply $L / \sigma A$, where L is the channel length, $A=2 h \times W, W$ being the width of the channel, and σ is the conductivity given by $|q| N_{D} \mu_{e}$. For a sufficiently negative $v_{G S}=V_{t h}$, and in the absence of any current in the channel, the depletion layer extends all the way across the channel. $V_{t h}$ is the threshold voltage, and no current can flow under these conditions because the channel is depleted of carriers.

Example 5.6.1 JFET Threshold

It is required to calculate $V_{t h}$ for an n-channel JFET having $N_{D}=10^{15} / \mathrm{cm}^{3}, N_{A}=10^{18} / \mathrm{cm}^{3}$, and a channel depth of $4 \mu \mathrm{~m}$ in the absence of a depletion region $\left(\varepsilon_{s}=1.05 \times 10^{-12} \mathrm{~F} / \mathrm{cm}\right)$.

Solution

In a $p n$ junction having $N_{D} \ll N_{A}$, the width of the depletion region on the n-side is, from Equation 3.1.11, Chapter 3, $W_{d n}=\sqrt{2 \varepsilon_{s} V_{n p} /|q| N_{D}}$, where $V_{n p}$ is the effective voltage of the n side with respect to the p side. At equilibrium, with no externally applied voltage, $V_{n p}=V_{n p o}$ and is a positive quantity. When the gate-to-source voltage is $V_{t h}$, and is a negative quantity, $V_{n p}$ becomes $V_{n p o}-V_{t h}$, that is, the effective reverse voltage across the junction becomes $V_{n p o}+\left|V_{t h}\right|$. If the depth of the channel when there is no depletion region is $2 h$ and the gate is on both sides of the channel (Figure 5.6.2a), the channel is depleted, or pinched off, when $W_{d n}=h$. This gives

$$
\begin{equation*}
V_{n p}=h^{2}|q| N_{D} / 2 \varepsilon_{s} \tag{5.6.1}
\end{equation*}
$$

Substituting numerical values, $V_{n p}=\frac{\left(2 \times 10^{-4}\right)^{2} \times 1.6 \times 10^{-19} \times 10^{15}}{2 \times 1.05 \times 10^{-12}}=3.05 \mathrm{~V}$. From Equation 3.1.3, Chapter 3, $V_{n p o}=0.026 \ln \frac{10^{15} \times 10^{18}}{10^{20}}=0.78 \mathrm{~V}$. Hence, $V_{t h}=V_{n p o}-V_{n p}=-2.9 \mathrm{~V}$.
$V_{n p}$ at pinch off is referred to as the pinch-off voltage and denoted by V_{p}.

Exercise 5.6.1

Consider the n-channel JFET of Example 5.6.1, with $v_{G S}=0$. (a) Calculate the width of the depletion region in the channel; (b) channel resistance, assuming a channel area of $40 \mu \mathrm{~m}^{2}$, a length of $10 \mu \mathrm{~m}$, and $\mu_{e}=800 \mathrm{~cm}^{2} /$ Vs.
Answers: (a) $1 \mu \mathrm{~m}$; (b) $19.5 \mathrm{k} \Omega$.

Consider next the case where a constant, negative $v_{G S}>V_{t h}$ is applied. As $v_{D S}$ increases from zero, i_{D} increases linearly with $v_{D S}$, because $r_{D S}$ stays almost constant (region I of the

(a)

(b)

FIGURE 5.6.2
(a) JFET current-voltage relation and (b) channel profile for various values of drain-source voltage.
$i-v$ characteristic in Figure 5.6.2a). With further increase in $v_{D S}$, and hence i_{D}, the voltage drop along the channel becomes appreciable, so the reverse bias at the drain increases by $r_{D S} i_{D}$, the voltage drop along the channel. The channel therefore narrows near the drain (Figure 5.6.2b), and $r_{D S}$ is increased. This means that i_{D} does not increase as fast with $v_{D S}$ as when $v_{D S}$ is small (region II of the $i-v$ characteristic in Figure 5.6.2a). If $v_{D S}$ is increased further, the channel becomes pinched off at the drain, as happens in a MOSFET. i_{D} now flows through a small, constricted area under the influence of a larger electric field, as explained with the aid of the hydraulic analogy (Figure 5.2.5). Ideally, i_{D} stays constant as $v_{D S}$ increases, giving a saturation region III of the $i-v$ characteristic (Figure 5.6.2a). With higher $v_{D S}$, the constriction of the channel spreads toward the source, as in the MOSFET, thereby reducing the channel length and increasing i_{D} somewhat, which is analogous to channel-length modulation in a MOSFET. At a large enough $v_{D S}$, the drain-gate reverse voltage becomes high enough to cause avalanche breakdown at the drain, so i_{D} increases sharply (a region IV of the $i-v$ characteristic in Figure 5.6.2a). Saturation occurs when $v_{G S}-v_{D S}=V_{t h}$, so that in the saturation region, $v_{D S} \geq v_{G S}-V_{t h}$. Thus, if $V_{t h}=-4 \mathrm{~V}$, for example, and $v_{G S}=-3 \mathrm{~V}$, saturation occurs at $V_{D S(\text { sat) }}=1 \mathrm{~V}$.

The output characteristics of a JFET are illustrated in Figure 5.6.3a and are of the same shape as the $i_{D}-v_{D S}$ curve of Figure 5.6.2a. Since the saturation current is maximum when

FIGURE 5.6.3
(a) JFET output characteristics and (b) JFET transfer characteristic for a particular value of $v_{D S}$.
$v_{G S}=0$ and decreases for $v_{G S}<0$, the JFET is a depletion-type transistor. It is not operated in an enhancement mode, as in the case of a MOSFET, because $v_{G S}>0$ can only widen the channel to a small extent by reducing the width of the depletion region at equilibrium. If $v_{G S}$ becomes positive by more than the cut-in voltage of the $p n$ junction, a forward current flows that provides a low resistance path between the gate and source, and transistor action is abolished. Normally, the gate current is very small under reverse bias, of the order of 1 nA or less. Because it is the reverse current of a $p n$ junction, it approximately doubles for every $10^{\circ} \mathrm{C}$ rise in temperature.

Breakdown occurs when the reverse bias across the junction is large enough to initiate avalanche multiplication. At the onset of breakdown, the more negative $v_{G S}$, the larger is the maximum electric field in the depletion region at the drain end of the channel, and the smaller is $v_{D S}$ required to initiate breakdown.

Current-Voltage Relation

The $i-v$ characteristic is derived in Section ST5.6, where it is shown that, subject to some approximations, the drain current in the saturation region is given by the same expression as Equation 5.4.2 for a depletion-type MOSFET:

$$
\begin{equation*}
i_{D}=I_{D S S}\left(1-\frac{v_{G S}}{V_{t h}}\right)^{2}\left(1+\lambda v_{D S}\right) \tag{5.6.2}
\end{equation*}
$$

where $V_{t D}$ has been replaced by $V_{t h}$. Despite the assumptions made in deriving Equation 5.6.2, it is found experimentally that this relation is closely approximated.

It follows that the output conductance $g_{d s}=1 / r_{o}$ is given by:

$$
\begin{equation*}
g_{d s}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}=\lambda I_{D S S}\left(1-\frac{V_{G S}}{V_{t h}}\right)^{2} \cong \lambda I_{D} \tag{5.6.3}
\end{equation*}
$$

The transconductance $g_{m}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{D S}=V_{G G}} ^{v_{D S}}$ is:

$$
\begin{equation*}
g_{m}=\frac{2 I_{D}}{\left|V_{t h}\right|\left(1-V_{G S} / V_{t h}\right)} \tag{5.6.4}
\end{equation*}
$$

where g_{m} is evaluated at a quiescent point corresponding to the dc values I_{D} and $V_{G S}$. If we substitute for $\left(1-V_{G S} / V_{t h}\right)$ from Equation 5.6.2,

$$
\begin{equation*}
g_{m}=\left(\frac{2 I_{D S S}}{\left|V_{t h}\right|}\right) \sqrt{\frac{I_{D}}{I_{D S S}}\left(1+\lambda V_{D S}\right)} \cong\left(\frac{2 I_{D S S}}{\left|V_{t h}\right|}\right) \sqrt{\frac{I_{D}}{I_{D S S}}} \tag{5.6.5}
\end{equation*}
$$

The small-signal equivalent circuit of the JFET is the same as that of the MOSFET (Figure 5.3.2). $C_{g s}$ and $C_{d s}$ are in this case depletion capacitances that depend on the reverse bias across the $p n$ junction and are typically, in the ranges of $1-3$ and $0.1-0.5 \mathrm{pF}$, respectively.

A p-channel JFET is possible, in which the p^{+}and n regions of the n-channel JFET are replaced by n^{+}and p regions, respectively, so that all voltages and currents are reversed in polarity. The symbols for n-channel and p-channel JFETs are shown in Figure 5.6.4a and b,

FIGURE 5.6.4
Symbol for (a) n-channel JFET; (b) p-channel JFET.
respectively. The arrow is in the forward direction of the gate-channel $p n$ junction and is drawn at the same level as the source.

Because of the absence of an oxide layer at the gate, and the consequent gate voltage drop across this layer, the drain current is generally more effectively controlled than in a comparable MOSFET, resulting in a higher g_{m}. The capacitances are generally smaller, compared to a MOSFET of the same overall dimensions, because the gate can be made shorter than the channel and the depletion layer is wider than the oxide thickness. On the other hand, the gate current is many orders of magnitude larger than in a MOSFET. Overall, the JFET does not have decisive advantages over the MOSFET that warrant its use in ICs. It is mostly used in discrete form as an amplifier, as a switch, and as a current regulator diode.

Exercise 5.6.2

It can be shown that $I_{D S S}=\frac{\mu_{e} \varepsilon_{s}}{h} \frac{W}{L} V_{t h}^{2}$ (Equation ST5.6.14). Determine: (a) $I_{D S S}$ for a transistor having $\mu_{e}=800 \mathrm{~cm}^{2} / \mathrm{Vs}, \varepsilon_{s}=1.05 \times 10^{-12} \mathrm{~F} / \mathrm{cm}, h=2 \mu \mathrm{~m}, W / L=200$, and $V_{\text {th }}=-3 \mathrm{~V}$; (b) g_{m} for $V_{G S}=0$ and $V_{D S}$ that will cause pinch off; (c) I_{D} and g_{m} for $V_{G S}=-1 \mathrm{~V}$ and $V_{G S}=-2 \mathrm{~V}$, assuming $\lambda=0$; and (d) r_{o} at $V_{G S}=-1 \mathrm{~V}$ and $V_{G S}=-2 \mathrm{~V}$, assuming $\lambda=0.01 \mathrm{~V}^{-1}$.

Answers: (a) 7.56 mA ; (b) $5.04 \mathrm{~mA} / \mathrm{V}, 3 \mathrm{~V}$; (c) $3.36 \mathrm{~mA}, 3.36 \mathrm{~mA} / \mathrm{V}, 0.84 \mathrm{~mA}, 1.68 \mathrm{~mA} / \mathrm{V}$; (d) $29.8 \mathrm{k} \Omega, 119 \mathrm{k} \Omega$.

Application Window 5.6.1 Current Regulator Diode

A JFET is combined with an IC source resistance R_{S} to form a two-terminal device, a current regulator diode (Figure 5.6.5a) having the symbol shown. The $i_{F}-v_{F}$ curve is illustrated in Figure 5.6.5b. i_{F} is substantially constant over a voltage range from a fraction of a volt or so to a maximum of about 100 V , limited by breakdown. Nominally constant values of i_{F} range between few hundred $\mu \mathrm{As}$ and few mAs , the incremental output resistance being typically several hundred $\mathrm{k} \Omega$ to over $1 \mathrm{M} \Omega$. The device is useful for regulating current in a given circuit, that is, keeping it nearly constant, and as a current limiter.
The general shape of Figure 5.6 .5 b can be readily explained. At very low v_{F} and i_{F}, the curve nearly follows the transistor output characteristic for $v_{G S}=0$. As v_{F} and i_{F} increase, $v_{G S}$ becomes more negative, because it equals $-R_{S} i_{F}$, and the $i_{F}-v_{F}$ curve is determined by the transistor output characteristics in the triode region. When v_{F} is sufficiently high so that $v_{D S} \geq v_{G S}-V_{t h}$, the transistor is in saturation, and i_{F} remains substantially constant.

It would appear that R_{S} could be eliminated altogether, with the gate connected directly to the source. Under these conditions, $I_{F}=I_{D}$ for $v_{G S}=0$, which is nearly equal to $I_{D S S}$, and the output resistance is r_{o}. The disadvantage is that $I_{D S S}$ can vary considerably between

(a)

(b)

FIGURE 5.6.5
Figure for Application Window 5.6.1. (a) Circuit and symbol of current regulator diode; (b) current-voltage characteristic.
individual JFETs of the same type. R_{S} provides series-series negative feedback that keeps i_{F} more nearly constant and increases the output resistance (Section 7.3, Chapter 7). That the feedback is negative can be easily verified by considering what happens if v_{F} is increased, so that i_{F} tends to increase. The voltage drop $R_{S} i_{F}$ increases. But this makes $v_{G S}$ more negative, which opposes the change in i_{F}, and therefore keeps it more nearly constant. Since i_{F} is kept more nearly constant when v_{F} is increased, the effective output resistance appears larger.
The effect of the negative feedback can be analyzed with the help of the small-signal equivalent circuit (Figure 5.6.6a). A dependent current source $g_{m} v_{g s}$ appears in parallel with r_{o}, between the drain and source, where $v_{g s}=-R_{s} i_{f}$. The gate is assumed to be open circuited through the transistor. Although the circuit can be easily analyzed to determine

FIGURE 5.6.6
Figure for Application Window 5.6.1. (a) Small-signal equivalent circuit; (b) current source transformed to a voltage source.
the relation between v_{f} and i_{f}, it is more instructive to transform the current source in parallel with r_{o} to a voltage source (Figure 5.6.6b), whose polarity has been reversed to account for the negative sign relating $v_{g s}$ and i_{f}. The voltage of the dependent source is now a voltage drop in the direction of current and is proportional to the current through the source. The source can be replaced by a resistance $g_{m} r_{o} R_{S}$. It follows that the total incremental output resistance $r_{\text {out }}$ is

$$
\begin{equation*}
r_{\text {out }}=\frac{v_{f}}{r_{f}}=r_{o}+R_{s}\left(1+g_{m} r_{o}\right) \tag{5.6.6}
\end{equation*}
$$

Note if the gate is connected to the source, rather than to ground, through a battery that maintains the same gate-source dc bias, there is no feedback through R_{S}, and the incremental output resistance is $r_{o}+R_{S}$. The additional term $g_{m} r_{o} R_{S}$ is due to the feedback.

As a numerical example, consider a JFET having $V_{t h}=-3 \mathrm{~V}, I_{D S S}=10 \mathrm{~mA}$, and $R_{S}=1 \mathrm{k} \Omega$. The operating point can be determined graphically as the intersection of the line $V_{G S}=-R_{S} i_{F}$ with the transfer characteristic (Exercise 5.6.3). Analytically, $V_{G S}$ and i_{F} can be determined by substituting $V_{G S}=-R_{S} i_{F}$ in Equation 5.6.2, with $i_{D}=i_{F}$, neglecting λ. This gives $\left(\frac{R_{S}}{V_{t h}}\right)^{2} i_{F}^{2}-\left(\frac{1}{I_{D S S}}-\frac{2 R_{S}}{V_{\text {th }}}\right) i_{F}+1=0$. Substituting numerical values and solving, gives: $i_{F}=$ 5.15 and 1.75 mA . The larger value should be discarded because it makes $v_{G S}=-5.15 \mathrm{~V}<V_{\text {th }}$. It can be readily shown that if $I_{D S S}$ ranges between 5 and $15 \mathrm{~mA}, i_{F}$ varies between 1.41 and 1.93 mA , respectively. The variation in i_{F} is proportionately much less than that of $I_{D S S}$.

From Equation 5.6.5, $g_{m}=2.8 \mathrm{~mA} / \mathrm{V}$. If $r_{o}=300 \mathrm{k} \Omega, R_{S}\left(1+g_{m} r_{o}\right) \cong 2.8 \times 300=840 \mathrm{k} \Omega$, so $r_{\text {out }}$ becomes about $1.14 \mathrm{M} \Omega$.

Simulation Example 5.6.2 JFET Output Resistance

It is required to investigate, through simulation, the behavior of the 2 N 38918 JFET as a current regulator diode (Application Window 5.6.1).

Simulation

The schematic circuit of the current regulator is shown in Figure 5.6.7a, using for the JFET part number J2N3819 from the EVAL library. $R_{S}=885 \Omega$ so as make $I_{D} \cong 2 \mathrm{~mA}$. The VAC source applies a dc voltage of 12 V and an ac signal of 1 V . A current printer measures the ac current i_{d} as $1.129 \mu \mathrm{~A}$, using AC Sweep at 1 kHz . Hence, $r_{\text {out }}=1 \mathrm{~V} / 1.129 \mu \mathrm{~A}=886 \mathrm{k} \Omega$.

To apply Equation 5.6.6, we need g_{m} and r_{o} at $I_{D}=2 \mathrm{~mA}$. These are obtained using the schematic of Figure 5.6.7b. With $V_{C S}=0$ and 12 V applied between the drain and source, $I_{D S S}=11.96 \mathrm{~mA}$. With $V_{G S}=-1.773 \mathrm{~V}$, which makes $I_{D}=2 \mathrm{~mA}, i_{d}=4.388 \mu \mathrm{~A}$, so that $r_{o}=228 \mathrm{k} \Omega$. From the PSpice model of the JFET, $V_{t h}=-3 \mathrm{~V}$. Substituting in Equation 5.6.5, $g_{m}=3.26 \mathrm{~mA} / \mathrm{V}$. Applying Equation 5.6 .6 gives $r_{\text {out }}=887 \mathrm{k} \Omega$, in agreement with the measurement.

It may be thought that applying a 1 V ac signal violates small-signal conditions. This is not the case, because PSpice applies the ac signal to a linearized circuit, which makes the results independent of the magnitude of the ac signal.

Exercise 5.6.3

Plot Equation 5.6.2 for the JFET of Application Window 5.6.1 and determine i_{F} from the intersection with a line of slope $-1 / R_{S}$, where $R_{S}=1 \mathrm{k} \Omega$.

FIGURE 5.6.7
Figure for Simulation Example 5.6.2. Schematic circuit of current regulator (a), and for determining r_{o} (b).

Exercise 5.6.4

Draw the small-signal equivalent circuit of Figure 5.6 .5 a with a voltage v_{i} applied between gate and ground and derive Equation 5.6.6 from Thévenin's equivalent circuit between drain and ground, as $v_{o c} / i_{s c}$.

5.7 Metal-Semiconductor Field-Effect Transistor

The MESFET is a device based on GaAs technology. The advantages of GaAs over Si were noted in connection with Table 2.3.1, Chapter 2 . GaAs has a much lower intrinsic concentration than $\mathrm{Si}\left(2 \times 10^{6} / \mathrm{cm}^{3}\right.$ vs. $\left.10^{10} / \mathrm{cm}^{3}\right)$ and an electron mobility that is more than six times that in Si at electric fields less than few $\mathrm{kV} / \mathrm{cm}$. However, at electric fields of the order of $10^{5} \mathrm{~V} / \mathrm{cm}$, the mobility becomes almost inversely proportional to the electric field and the saturation electron velocity is about the same in both GaAs and Si. Higher electron mobility means increased conductivity due to electrons, so that for the same input voltages, GaAs devices whose operation depends on electron current have higher output currents, and hence higher g_{m}. However, hole mobility is less in GaAs than in Si , which means that the advantages of higher mobility apply only to GaAs devices whose operation depends on electron current, and as long as the electric field acting on the conduction electrons is not very high.

Because of the low intrinsic carrier concentration, undoped GaAs has a high resistivity ($\sim 10^{8} \Omega-\mathrm{cm}$) and is considered semi-insulating. This is an important advantage of GaAs technology, because it simplifies the isolation of transistors on the same chip from one another and reduces the internal capacitances encountered in Si MOSFETs. These capacitances are associated not only with the substrate-source and substrate-drain $p n$ junctions but also with the capacitances of the metallic interconnections between devices, because in Si devices these interconnections are isolated from the substrate by a layer of silicon dioxide that has a relatively high dielectric constant. The speed advantage of GaAs devices arises from two factors: (1) smaller internal capacitances, and (2) increased output currents due to higher electron mobilities, which allows faster charging and discharging of internal

FIGURE 5.7.1
Diagrammatic illustration of the structure of a MESFET.
and load capacitances. This makes GaAs devices useful as amplifiers at frequencies in the GHz range and in very-high-speed digital ICs.

Structure

Figure 5.7.1 illustrates the MESFET in longitudinal section. The n-channel is formed between the n^{+}source and the n^{+}drain. The gate metal used is usually tungsten or platinum, which reacts with Si to form a silicide (Section 4.3, Chapter 4). The length L of the channel and its width W (normal to the plane of the page) are determined by the dimensions of the gate electrode.

Operation

Operation of the MESFET is analogous to that of the JFET. When no voltages are applied, a depletion region exists in the channel, associated with the equilibrium potential of the metalsemiconductor contact, as in the Schottky diode (Section 3.6, Chapter 3). The depletion region expands when a negative, reverse voltage is applied between the gate and channel, which reduces the width of the channel and increases its resistance. At a threshold of -0.5 to -3 V , the channel is completely pinched off, when no drain current is flowing. The flow of drain current increases the reverse bias at the drain end, so the channel becomes tapered and narrower at the drain end. The output characteristics are similar in shape to those of the JFET. If the MESFET has a long channel ($L>10 \mu \mathrm{~m}$ or so), the same $i-v$ relation applies as the JFET, namely Equation ST5.6.4, Section ST5.6. However, high-speed MESFETs have short channels (L in the range of $0.2-1 \mu \mathrm{~m}$) in order to capitalize on the speed advantage of GaAs technology. In these devices the onset of current saturation is due to velocity saturation (Section 5.3) rather than channel pinch off.
MESFETs are normally depletion-type devices. In an enhancement-type MESFET the channel depth is small enough so that the channel is pinched off by the equilibrium depletion layer, and no current flows when $v_{G S}=0$. A positive $v_{G S}$ narrows the depletion layer and allows current flow. However, $v_{G S}$ cannot be made more positive than about 0.4 V , because that would forward bias the gate-channel Schottky diode and cause gate current to flow, thereby providing a low resistance path between the gate and source and abolishing transistor action. The gate input voltage range is thus limited, and manufacturing tolerances have to be tight. The symbols for depletion and enhancement MESFETs are shown in Figure 5.7.2a and b, respectively.

The variation of drift velocity with the electric field is rather complicated. Also, the longitudinal electric field in short-channel devices cannot be neglected compared with the transverse electric field, as discussed for the short-channel MOSFET. Consequently, it becomes practically impossible to derive analytical expressions that model the behavior

FIGURE 5.7.2
Symbols for: (a) depletion-type MESFET; and (b) enhancement-type MESFET.

of the MESFET. Therefore, empirical models of varying complexities are used for analysis and simulation.

High-Mobility Devices

An improvement over the simple MESFET is the modulation-doped field-effect transistor (MODFET), also known as high-electron-mobility transistor (HEMT), illustrated in longitudinal section in Figure 5.7.3. A layer of heavily doped n-type AlGaAs is formed underneath the gate, which together with the gate, source, and drain, form a MESFET structure. However, a very thin layer of undoped AlGaAs separates the heavily doped layer from the GaAs substrate. AlGaAs has a wider bandgap than GaAs. Hence, although the $n^{+}-\mathrm{AlGaAs}$ provides the conduction electrons, these electrons preferentially move to the GaAs, where their energies in the conduction band are lower because of the narrower energy gap. What is referred to as a two-dimensional (2-D)electron gas is formed in the GaAs boundary region, the current due to these electrons being controlled by the gate voltage. Electron mobility is considerably higher in the undoped GaAs, because electrons are not scattered by any impurity atoms (Section 2.6, Chapter 2). The purpose of the thin undoped AlGaAs layer is to enhance the isolation between the donor impurities of the n^{+}-AlGaAs layer and the 2-D electron gas.

The electron mobility advantage becomes more marked at lower temperatures, because mobility increases at lower temperatures due to less scattering by crystal ions. Electron mobilities exceeding $100,000 \mathrm{~cm}^{2} / \mathrm{V}$ in the 2-D electron gas have been observed at 77 K . As noted earlier, higher mobility means larger transconductance and faster operation. Moreover, less scattering means less noise, which is also an important advantage.

FIGURE 5.7.3
Diagrammatic illustration of the structure of a MODFET.

Summary of Main Concepts and Results

- In an enhancement-type MOSFET, $v_{G S}$ of the same polarity as $v_{D S}$ creates a conduction channel between the source and drain. In a depletion-type MOSFET, a relatively large current $I_{D S S}$ flows at $v_{G S}=0 . v_{G S}$ of polarity opposite to $v_{D S}$ must be applied to reduce the drain current.
- The output characteristics of FETs have four regions: (1) the cutoff region, where the output current is negligibly small; (2) the triode region where the output current is appreciable but the output voltage is small; (3) the saturation region where the output current increases relatively slowly with the output voltage; and (4) the breakdown region, where the output current increases rapidly with only a small increase in output voltage. Channel-length modulation causes the output current to increase with the output voltage in the saturation region.
- In small-signal operation, the device input and output characteristics are considered linear for small variations about the dc, or quiescent, operating point; dc conditions and small-signal variations can then be treated independently. The small-signal variations can be represented by an equivalent circuit consisting of ideal resistors and capacitors and a current source at the output that is controlled by the input voltage.
- The transconductance of a transistor is a measure of how effectively the input voltage controls the output current. The transconductance is relatively small in MOSFETs, because of the gate oxide layer. JFETs and MESFETs have higher transconductance because of increased effectiveness of the reverse-biased gatechannel junction in modulating the output current.
- A rise in temperature increases the drain current in MOSFETs at low current levels but decreases it at high current levels.
- In IC MOSFETs, the body effect, due to a voltage difference between the source and substrate, affects the threshold under dc conditions. In addition, if the substrate is not at ac ground, it acts as a second gate and adds to the transconductance.
- CMOS circuits have important advantages in both analog and digital applications. A CMOS amplifier having a diode-connected depletion-type MOSFET load gives higher gain at a lower supply voltage, and occupies a smaller area on the chip than one that uses the same driver transistor but with a passive resistive load. A CMOS transmission gate allows having control voltages at the two extremes of signal voltages and provides a resistance in the conducting state that is more nearly constant for different inputs.
- A JFET, in combination with a source resistance, is a useful two-terminal current regulator.
- The GaAs, n-channel MESFET is potentially a faster device than the MOSFET because of the higher electron mobility in GaAs and reduced internal capacitances.

Learning Outcomes

- Articulate the basic operation of various types of MOSFETs, the JFET, and the MESFET as well as some of the important secondary effects.

Supplementary Examples and Topics on Website

SE5.1 Drain Current for Small Drain-Source Voltages. Derives, from first principles, the expression for i_{D} when $v_{D S}$ is small.
SE5.2 Body Effect in MOSFETs. Simulates the body effect in the four types of MOSFETs and derives the corresponding thresholds.
SE5.3 Single-Transistor Equivalent of CMOS Pair. Derives a single-transistor equivalent for a CMOS pair operating in the saturation mode under large-signal conditions.

SE5.4 Linear Transconductance Amplifier. Derives a transconductance amplifier, based on the equivalent CMOS pair, which is ideally linear for large signals.

ST5.1 Basic Operation of MOSFETs. Derives the expressions for the threshold voltage, the relation between transconductance and body transconductance, and the current-voltage relation in a MOSFET, including the effect of channel-length modulation. Discusses subthreshold operation of the MOSFET.

ST5.2 Power Relations in Small-Signal Sinusoidal Operation. Investigates power relations in a transistor circuit assuming linear operation.

ST5.3 T-Model of MOSFET. Derives the T-model of a MOSFET.
ST5.4 Graphical Interpretation of Small-Signal Voltage Gain. Gives a graphical interpretation of Equation 5.3.10.

ST5.5 Gate-Source Capacitance in Saturation. Calculates $C_{g s}$ in the saturation region due to the pinched-off channel.

ST5.6 Junction Field-Effect Transistor. Derives the voltage-current relation for the JFET and shows how it can be approximated by a square law.

Problems and Exercises

P5.1 Operation and Parameters of FETs

P5.1.1 Identify the types of MOSFETs that can have a threshold of $\pm 2 \mathrm{~V}$ and a drain current of $\pm 1 \mathrm{~mA}$ in any of the four sign combinations, where a positive drain current is considered to flow into the drain.
P5.1.2 An E-NMOS transistor having $k_{n}=0.4 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=1 \mathrm{~V}$ is to be operated as a switch controlled by a gate-to-source voltage that can assume one of two values: 0 or v_{C}. If the voltage drop across the switch when closed is not to exceed 0.25 V while conducting 1 mA , what should be the minimum value of v_{C} ?
P5.1.3 An E-NMOS transistor having $k_{n}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=2 \mathrm{~V}$, and $\lambda=0$ is used for small signals to provide a linear resistance in the range $10-100 \mathrm{k} \Omega$. What range of $v_{G S}$ is required? If $v_{G S}=4 \mathrm{~V}$, at what $v_{D S}$ is the departure from linearity 5% ?
P5.1.4 Show that in the triode region, $g_{m(\text { triode })}=\left.\frac{\partial i_{D}}{\partial v_{G S}}\right|_{v_{D S}}=k_{n} v_{D S}$ and $g_{d s}=\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}=$ $k_{n}\left(v_{G S}-V_{t n}-v_{D S}\right), v_{G S} \geq V_{t}$. Explain why $g_{m(\text { triode })}$ is small for small $v_{D S}$. Note that $g_{d s}$ at small $v_{D S}$ equals g_{m} in the saturation region for the same $v_{G S}$.

P5.1.5 An E-NMOS transistor is to conduct in the saturation mode a current of 100 mA at a minimum $v_{D S}$ of 2 V . If $t_{o x}=0.02 \mu \mathrm{~m}$ and $V_{t n}=1 \mathrm{~V}$, what should be the W / L ratio of the transistor, assuming $\mu_{e}=600 \mathrm{~cm}^{2} / \mathrm{Vs}$? What would be the W / L ratio if the transistor were E-PMOS having $\mu_{h}=250 \mathrm{~cm}^{2} / \mathrm{Vs}$? Neglect channel-length modulation.
P5.1.6 Given an E-NMOS transistor having $V_{t n}=1 \mathrm{~V}$ and $V_{G S}=3 \mathrm{~V}$. Determine $v_{D S}$ at which i_{D} is: (a) 0.5 times, and (b) 0.25 times its saturation value. Neglect channel-length modulation.
P5.1.7 An E-PMOS transistor has $k_{n}^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=10, v_{G S}=-2 \mathrm{~V}, V_{t p}=-0.8 \mathrm{~V}$, and $\lambda=0.05 \mathrm{~V}^{-1}$. Determine $v_{S D(\text { sat) })} i_{D(\text { sat) }}$, and i_{D} when the magnitude of v_{D} exceeds $v_{S D(\text { sat })}$ by 1 V .
P5.1.8 An E-NMOS transistor has $k_{n}^{\prime}=90 \mu \mathrm{~A} / \mathrm{V}^{2}, W / L=10, v_{G S}=2 \mathrm{~V}, V_{t n 0}=1 \mathrm{~V}, v_{D S}=v_{D S(\text { sat })}+$ $1 \mathrm{~V}, \lambda=0.02 \mathrm{~V}^{-1}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $V_{S B}=0.5 \mathrm{~V}$. Determine $g_{m}, g_{m b}$, and r_{o}.
P5.1.9 Explain how the breakdown voltage varies with $v_{G S}$ and $v_{D S}$ in a MOSFET (Figure 5.3.4 and in a JFET (Figure 5.6.3a). What is the voltage that contributes to breakdown in the gate-channel junction of a JFET?
P5.1.10 Consider the E-NMOS transistor of Example 5.3.1 with $\lambda=0, V_{t n}=1 \mathrm{~V}$, and $v_{G S}=5 \mathrm{~V}$. If the temperature increases from 300 to 350 K , what is the change in $I_{D(\text { sat })}$ if: (a) μ_{e} remains constant and $V_{t n}$ decreases by $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; (b) $V_{t n}$ remains constant and μ_{e} varies in accordance with Equation 2.6.3; (c) both V_{t} and μ_{e} vary with temperature as in (a) and (b).
P5.1.11 Show that when i_{D} is given by Equations 5.3 .1 and 5.3.2, $\left.\frac{\partial i_{D}}{\partial v_{D S}}\right|_{v_{G S}}$ is continuous at the boundary between the triode and saturation regions.
P5.1.12 A JFET having $V_{t h}=-2 \mathrm{~V}, I_{D S S}=5 \mathrm{~mA}$, and $\lambda=0.02 \mathrm{~V}^{-1}$ is used as a current regulator with $R_{S}=1 \mathrm{k} \Omega$. Determine i_{F}, g_{m}, r_{o} of the transistor and $r_{o u t}$ of the regulator.
P5.1.13 For the JFET of Example 5.6.1, determine: (a) $v_{G S}$ that reduces the channel width by onehalf, if $v_{D S}=0$; and (b) $v_{G S}$ that causes pinch off when $v_{D S}=3 \mathrm{~V}$.
P5.1.14 Determine $I_{D S S}$ for the JFET of Problem P5.1.13, assuming $W=1 \mathrm{~mm}$ and $L=10 \mu \mathrm{~m}$.
P5.1.15 For the JFET of Problem P5.1.13, determine $I_{D(\text { sat })}$ and $v_{D S(\text { sat })}$ for $v_{G S}=0.5 V_{t h}$.

P5.2 $i=v$ Relations of FETs

P5.2.1 Given an E-NMOS transistor with the source grounded, a fixed voltage source $V_{G G}>$ $V_{t n}$ between the gate and source and a variable current source $I_{S R C}$ between the drain and source, the current direction being that of the drain current. Is this a valid connection? Explain your answer. Simulate with PSpice.
P5.2.2 Consider Problem P5.2.1 with the variable current source $I_{S R C}$ connected between source and ground, the voltage source $V_{G G}>V_{t n}$ connected between gate and ground, and the drain grounded. Is this a valid connection? Explain your answer. Simulate with PSpice.
P5.2.3 Consider an E-NMOS transistor in Figure 5.2.10, with $v_{s r c}=0$ and given R_{D} and $V_{D D}$. Assume $V_{G G}$ increases from zero. Determine when the transistor is at the edge of the saturation region. What is the limit of $V_{D S}$ as $V_{G G}$ becomes very large? What is the effect of including a resistance $R_{S G}$ in series with $V_{G G}$? Neglect channel-length modulation.
P5.2.4 An E-NMOS transistor has $\lambda=0.02 \mathrm{~V}^{-1}$ and operates in the triode region with $v_{D S}=$ 0.2 V . If $i_{D}=50 \mu \mathrm{~A}$ at $v_{G S}=2 \mathrm{~V}$, and $100 \mu \mathrm{~A}$ at $v_{G S}=3 \mathrm{~V}$, determine $V_{t n}$ and k_{n}.

P5.2.5 Consider the E-NMOS transistor of Example 5.3.1 at the quiescent point. How will r_{o} change if: (a) $V_{t n}$ is increased from 1 to 2 V ; (b) W is doubled; (c) L is doubled?
P5.2.6 Consider the E-NMOS transistor of Example 5.3.1 at the quiescent point. How will g_{m} change if: (a) W is doubled; (b) L is doubled?
P5.2.7 Given a MOSFET having $k=0.4 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=2 \mathrm{~V}$, and $\lambda=0$. The source is grounded, and the gate voltage is 1 V beyond threshold, in the conducting direction. The drain
voltage is varied from zero to 5 V in the same direction as the gate voltage. Sketch the transfer and output characteristics if the transistor is: (a) E-PMOS, (b) D-NMOS, or (c) D-PMOS. For the PMOS transistors, label the characteristics in terms of $v_{S G}, v_{S D}, i_{S D}$, and $\bar{V}_{t p}$. Simulate with PSpice.
P5.2.8 Given an E-PMOS transistor having $V_{G}=0$ and $V_{D}=-1 \mathrm{~V}$. If $k_{p}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t p}=-2 \mathrm{~V}$, and $\lambda=0.02 \mathrm{~V}^{-1}$, determine i_{D} if: v_{S} is (a) 1 V ; (b) 3 V ; or (c) 5 V . Neglect the body effect.
P5.2.9 A D-NMOS transistor has $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n D}=-2 \mathrm{~V}$, and $\lambda=0$, with its gate connected to one of the other terminals. Sketch the $i-v$ relation as v is varied from -5 V to +5 V . Identify the regions of operation, noting that the MOSFET is a symmetrical device. Simulate with PSpice.
P5.2.10 Repeat Problem P5.2.9 for a D-PMOS transistor having $k_{p}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t p}=2 \mathrm{~V}$.
P5.2.11 Consider the E-NMOS transistor of Example 5.3.1. If the gate is connected to the drain, what would be the value of voltage across the device if the current is 1 mA or 3 mA ? Solve the cubic equation using MATLAB ${ }^{\circledR}$ and compare with the voltage values assuming $\lambda=0$. Determine the incremental resistance at the two current values.
P5.2.12 An E-NMOS transistor having $k_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=2 \mathrm{~V}$, and $\lambda=0$ is biased as in Figure 5.3.7, with $R_{S}=0.5 \mathrm{k} \Omega$ and $V_{D D}=12 \mathrm{~V}$. It is desired to have $i_{D}=2 \mathrm{~mA}$ and $V_{D}=9 \mathrm{~V}$ with respect to ground, with the transistor in saturation. Determine all resistance values and g_{m}, neglecting the body effect. If the transistor is replaced in the same circuit with one having $k_{n}=0.75 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=2 \mathrm{~V}$, determine the new value of i_{D}. Simulate with PSpice.
P5.2.13 Repeat Problem P5.2.12 with $R_{S}=2 \mathrm{k} \Omega$. How does this compare with the results of Problem P5.2.12? How do you explain the difference?
P5.2.14 Draw the circuit diagram that is exactly analogous to that of Problem P5.2.12 using a matched E-PMOS transistor with $V_{D D}=-12 \mathrm{~V}$. Determine the quiescent conditions if the substrate is grounded and the transistor has $\gamma=0.3 \mathrm{~V}^{1 / 2}$.
P5.2.15 It is desired to use three diode-connected MOSFETs in series across a 12 V supply to obtain voltage division at 4 and 8 V . Bearing in mind the desirability of having a low output resistance, which transistor type should be used? If $\left|V_{t n}\right|=2 \mathrm{~V}, i_{D}=1 \mathrm{~mA}$, and $\lambda=0$, determine k of the transistors. What is the output resistance at the voltage taps? Simulate with PSpice.
P5.2.16 A D-PMOS transistor has $k_{p}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t p D}=2 \mathrm{~V}$. Assume $\lambda=0$. If $I_{D S S}$ of 10 mA is required, what should be W / L ? If the gate is joined to the source and the transistor is connected in series with a $1 \mathrm{k} \Omega$ across a supply $V_{C C} \mathrm{~V}$, what should be the minimum value of $V_{C C}$ for the transistor to conduct in the saturation region?
P5.2.17 Explain how the operation of the CMOS amplifier of Figure 5.5.1 would be affected if $\left|V_{S B}\right| \neq 0$, but sources and substrates are ac grounded. Simulate with PSpice and compare the VTCs with and without body effect, assuming the transistors have $k=0.5$ $\mathrm{mA} / \mathrm{V}^{2}, V_{t}=1 \mathrm{~V}, \lambda=0.05 \mathrm{~V}^{-1},\left|V_{S B}\right|=2 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $\left|\varphi_{F}\right|=0.3 \mathrm{~V}$.
P5.2.18 By equating the saturation currents of the two transistors in Example 5.5.1 and taking derivatives with respect to v_{I} show that the largest magnitude of the slope is at point B . How do you interpret this result? Compare the calculated values of the slope at points B and C with the values from the simulation.
P5.2.19 In the CMOS amplifier of Example 5.5.1, determine v_{O}, if: (a) $v_{I}=3.5 \mathrm{~V}$; (b) $v_{I}=4.5 \mathrm{~V}$. Compare with the simulation values.
P5.2.20 Repeat the simulation of Example 5.5.1 for the CMOS amplifier assuming: (a) $V_{t n}=1 \mathrm{~V}$, and (b) transistors are of equal dimensions. Compare with analysis.
P5.2.21 Simulate the current variation in Example 5.5.1 with an E-NMOS load and interpret all the results, as was done for the D-PMOS load.

P5.2.22 Given a CMOS transmission gate with matched transistors having $k_{n}=k_{p}=0.4 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{t n}=\bar{V}_{t p}=1.5 \mathrm{~V}, \lambda=0, v_{C}=5 \mathrm{~V}, R_{L}=20 \mathrm{k} \Omega$, and no body effect. Determine v_{O} and the switch resistance for: (a) $v_{I}=5 \mathrm{~V}$; (b) $v_{I}=2.5 \mathrm{~V}$; (c) $v_{I}=0$. Simulate with PSpice.
P5.2.23 Let $R_{L}=100 \Omega$ in Example 5.5.2. Simulate the v_{O} vs. v_{I} characteristic for: (a) gamma $=0$ (no body effect); (b) gamma $=0.3$; and (c) gamma $=0.5$, and compare v_{O} at $v_{I}= \pm 5 \mathrm{~V}$.
P5.2.24 The load in Example 5.5.2 is a 100 pF capacitor. The input suddenly changes from +5 V to -5 V while $v_{C}=5 \mathrm{~V}$. (a) Determine the initial capacitor current, assuming the capacitor is initially charged to 5 V . (b) What are the states of the two transistors during the discharge, and when do the transistors change state? Simulate with PSpice.
P5.2.25 A single E-NMOS transistor is to be used as a transmission gate with $-5 \leq v_{I} \geq 5 \mathrm{~V}$ and the substrate connected to a -5 supply. It is desired to have a minimum $v_{G S}$ of 1 V above threshold when the switch is on, so that the transistor conducts a sufficient current. Determine the range of gate control signal required, taking the body effect into account and neglecting any load impedance. Assume $k_{n}=0.4 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n 0}=1 \mathrm{~V}$, $\gamma=0.6 \mathrm{~V}^{1 / 2}$, and $\left|\varphi_{F}\right|=0.3 \mathrm{~V}$.
P5.2.26 In the circuit of Figure P5.2.26, $k_{n}=0.1 \mathrm{~mA} / \mathrm{V}^{2}, \lambda=0$, and $V_{t n}=1 \mathrm{~V}$. Determine (a) $V_{G S 1}$ if $I_{D 1}=0.1 \mathrm{~mA}$ and (b) $I_{D 2}$.

FIGURE P5.2.26

P5.2.27 The two transistors in Figure P5.2.27 are identical and have $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=1 \mathrm{~V}$. If $V_{I}=2 \mathrm{~V}$, determine V_{O}.

P5.3 Miscellaneous

P5.3.1 Neglecting channel-length modulation, show that Equation 5.3.12 for the g_{m} of a MOSFET is the same as Equation 5.6.5 for a JFET.
P5.3.2 Consider an E-NMOS transistor and an E-PMOS transistor having the same dimensions, with $t_{o x}=0.1 \mu \mathrm{~m}, \mu_{e}=1000 \mathrm{~cm}^{2} / \mathrm{Vs}, \mu_{h}=500 \mathrm{~cm}^{2} / \mathrm{Vs}, W / L=20, V_{t n}=1 \mathrm{~V}$, and $V_{t p}=-1.5 \mathrm{~V}$, determine $V_{t e q}$ and $K_{e q}$ of the composite transistor defined in SE5.3.
P5.3.3 Verify Equation ST5.6.8.
P5.3.4 Verify Equation ST5.6.11.
P5.3.5 Verify Equation ST5.6.12.

In the following problems, refer to Section ST5.1.

P5.3.6 Given an E-NMOS transistor having $t_{o x}=15 \mathrm{~nm}, N_{A}=10^{15} / \mathrm{cm}^{3}, N_{D g}=10^{20} / \mathrm{cm}^{3}$, and $Q_{o x}=10^{10} / \mathrm{cm}^{2}$. It is required to determine $V_{t n}$ assuming: (a) $V_{S B}=0$, or (b) $V_{S B}=5 \mathrm{~V}$.
P5.3.7 Consider an E-PMOS transistor forming a CMOS pair with that of Problem P5.3.6 using the same technology, that is, having $t_{o x}=15 \mathrm{~nm}, N_{D g}=10^{20} / \mathrm{cm}^{3}, Q_{o x}=10^{10} / \mathrm{cm}^{2}$, and $N_{D}=5 \times 10^{16} / \mathrm{cm}^{3}$. Determine $V_{t n}$, assuming: (a) $V_{B S}=0$, or (b) $V_{B S}=5 \mathrm{~V}$.
P5.3.8 Determine the concentration of impurities that must be implanted at the surfaces of the transistors of Problems P5.3.6 and P5.3.7 so that the thresholds of the two transistors are of equal magnitude but of opposite signs, with $V_{S B}=0$.
P5.3.9 An E-NMOS transistor has $t_{o x}=10 \mathrm{~nm}$ and $\gamma=0.2 \mathrm{~V}^{1 / 2}$. Determine N_{A} of the substrate.
P5.3.10 Determine the surface charge density of the transistor of Example ST5.1.1 when $V_{G S}=$ 2 V , with the acceptor impurities implanted.
P5.3.11 Determine the change in threshold in the transistor of Example ST5.1.1 when the temperature is raised to 400 K .

6

Bipolar Junction Transistor

The chapter explains the operation of the bipolar junction transistor (BJT). It is shown, to begin with, that the BJT is an amplifying device that basically amplifies power and voltage, albeit in a manner that is quite different from that of FETs. An important difference between BJTs and FETs is that the input current in the BJT is not negligible. In fact, in one of the BJT configurations, the common-base (CB) configuration, the output current is slightly less than the input current. However, considerable current amplification occurs in other BJT configurations.

The general approach in analyzing the behavior of the BJT is the same as that applied to the MOSFET, namely, to consider first the behavior of an idealized device based on physical principles, and derive its voltage-current relations and small-signal equivalent circuit. Effects that significantly influence device behavior are then considered, including secondary effects that become important under certain operating conditions. Mathematical treatment is kept to a minimum; derivations of transistor equations and other mathematical relations are left to Supplementary Examples and Topics on the website.

Analogous to channel-length modulation in FETs, base-width modulation in BJTs makes the incremental output resistance finite, rather than ideally infinite. Moreover, because of base-width modulation, the output of a BJT has a small effect on the input, even under dc conditions-an example of reverse transmission. High-frequency performance is limited by the effects of stored charges, which are modeled by incremental capacitances, and by physical considerations, such as the time it takes current carriers to move through the base of the BJT. An interesting, recent variation on the conventional BJT is the heterojunction bipolar transistor (HBT), which affords additional design flexibility and improved performance. BJT fabrication is discussed in Section 6.4.7, Chapter 6.

Learning Objectives

* To be familiar with:
- The symbols, terminology, and basic structure of the BJT.
- Various effects and some more advanced concepts that influence the behavior of the BJT.
- Noise considerations in transistors.
* To understand:
- The basic operation of the BJT, its current-voltage characteristics in the CB and common-emitter (CE) configurations, and the corresponding small-signal equivalent circuits.
- The effect of base-width modulation on BJT characteristics.
- The various capacitances that influence the behavior of the BJT at high frequencies.
- The basic Ebers-Moll model of the BJT and its interpretation.
- The behavior of the BJT in the saturation mode.
- The basic operation of the HBT.

6.1 Basic Operation of the BJT

Consider the $n^{+} p n$ structure illustrated in Figure 6.1.1 consisting of a p-region sandwiched between two n-regions, where the n^{+}, p, and n regions are the emitter (E), base (B), and collector (C), respectively. Superficially, the structure resembles two pn junctions connected back-to-back. The crucial difference, however, is that the base region is very thin so that the two $p n$ junctions are "coupled" in a special way.

Assume that the base-emitter $p n^{+}$junction is forward biased and the base-collector $p n$ junction is reverse biased, with the small-signal voltage $v_{s r c}=0$ to begin with. A forward current flows due to electrons injected from emitter to base and holes injected from base to emitter, as in any forward-biased $p n$ junction diode, bearing in mind that the electron current is in the opposite direction to electron flow. Because the emitter is much more heavily doped than the base, the electron concentration in the emitter is much larger than the hole concentration in the base. The forward electron emitter current $I_{e E}$ at the baseemitter junction (BEJ) is therefore much larger than the hole current $I_{h E}$ (Equations 3.2.5 and 3.2.6, Chapter 3). Moreover, in a normal $p n$ junction diode, the p - and n-regions are wide compared to the diffusion lengths of injected minority carriers, so that these carriers are eventually lost to recombination with majority carriers on the receiving side. In the BJT, the base is made narrow compared to the diffusion length of carriers injected into the base. Consequently, a small fraction $I_{e(\text { rec })}$ of the electron current $I_{e E}$ is lost to recombination in the base; most of the electrons cross the base region and arrive at the reverse-biased

FIGURE 6.1.1
Basic operation of an npn BJT.
base-collector junction (BCJ). In a reverse-biased $p n$ junction, the reverse current is a net drift current under the influence of the electric field in the depletion region. Electrons arriving at the edge of the base depletion region of the BCJ are, therefore, swept by the electric field into the collector region resulting in an electron current $I_{e C}$ in this region. In addition to this current, there is the small, reverse current $I_{C B O}$ of a reverse-biased $p n$ junction.

To see how the BJT acts as an amplifier, the following should be noted:

1. Because the BEJ is forward biased, the $i_{E}-v_{B E}$ relation is of the same shape as that of a forward-biased diode (Figure 1.1.2, Chapter 1). The bias voltage $V_{E E}$ defines an operating point P on the $i_{E}-v_{B E}$ curve (Figure 6.1.2a). A small change in the baseemitter voltage $\Delta v_{B E}=v_{\text {src }}$ produces a relatively large change in emitter current $\Delta i_{E}=\Delta v_{B E} / r_{e}$, where r_{e} is the small, incremental forward resistance of the BEJ once I_{E} becomes appreciable.
2. It is seen from the preceding discussion that $I_{E} \cong I_{e E} \cong I_{e C} \cong I_{C}$. In terms of instantaneous values, $i_{E} \cong i_{C}$ and $\Delta i_{E} \cong \Delta i_{C}$. That is, a change in emitter current produces an almost equal change in collector current, and the small-signal current gain is only slightly less than unity.
3. i_{C} is almost independent of the reverse base-collector bias, because all electrons arriving at the collector junction are swept by the dominant electric field anyway. Theoretically, increasing the reverse bias does not increase the collector current because there are no more electrons to sweep. The output characteristic for a given I_{E} is ideally a straight horizontal line whose intercept I_{C} is nearly equal to I_{E} (Figure 6.1.2b). This means that a relatively large load resistance R_{L} can be connected in series with the collector, with a suitable value of $V_{C C}$ to maintain I_{C}. The operating point Q is determined in the usual manner by a load line construction. A change $\Delta i_{E} \cong \Delta i_{C}$ can therefore cause a relatively large change $\Delta v_{C B}$ in the collector-base voltage, as long as the BCJ remains reverse biased. Hence,

FIGURE 6.1.2
Input characteristic (a) and output characteristic (b) of the transistor of Figure 6.1.1.
$\Delta v_{C B}=-R_{L} \Delta i_{C}$, the minus sign accounting for the decrease in $v_{C B}$ due to Δi_{C} and the resulting voltage drop $R_{L} \Delta i_{C}$ across R_{L}. R_{L} could be in the range of few tens of $k \Omega$, whereas r_{e} is in the range of few tens of ohms. The small-signal voltage gain $\Delta v_{C B} / \Delta v_{B E}$ is therefore $-R_{L} / r_{e}$, which could be quite large. As the small-signal current gain is nearly unity, the power gain would be large and the BJT acts as an amplifier.

Concept: In a BJT, an appreciable current through a reverse-biased pn junction can be controlled by small voltage variations across a forward-biased pn junction, resulting in substantial power amplification.

The complete output characteristics are shown in Figure 6.1.3, from which it is seen that the BJT can operate in a number of different modes:

1. Active mode in which the BEJ is biased into forward conduction $\left(v_{B E}>V_{\gamma E}\right.$, the cut-in voltage of the BEJ), whereas the BCJ is not forward biased, but $v_{C B}$ is less than the breakdown voltage of the BCJ .
2. Cutoff mode in which the BCJ and the BEJ are not forward biased. Only very small currents flow under these conditions, and the transistor is cut off. The BCJ reverse current $I_{\text {CBO }}$ referred to in Figures 6.1.1 and 6.1.3 is defined for $i_{E}=0$, that is, with the emitter terminal open circuited (hence the O subscript). $I_{C B O}$ is ideally the saturation current of the BCJ. In practice, the reverse current of the BCJ is $I_{C B O}$ plus a leakage component, as in the case of the $p n$ junction, and approximately doubles for every $10^{\circ} \mathrm{C}$ rise in temperature.
3. Saturation mode in which both the BEJ and the BCJ are forward biased beyond the cut-in voltage V_{γ}, but with I_{C} flowing into the collector. In this region, once $v_{B C}$ exceeds $V_{\gamma \mathrm{C}}$, which is normally $0.4-0.5 \mathrm{~V}$, electrons are injected from collector to base. These electrons oppose the flow of electrons from base to collector, and the collector current decreases, eventually becoming zero at a sufficiently large forward bias $v_{B C}$. It is to be expected that the larger i_{E}, the larger is the forward bias $v_{B C}$ that is required to reduce i_{C} to zero (Figure 6.1.3).

FIGURE 6.1.3
Output characteristics of the transistor of Figure 6.1.1.

TABLE 6.1.1
Modes of Transistor Operation
Is the Junction Forward
Biased to beyond Cut-In?

Mode	BEJ	BCJ	$\boldsymbol{I}_{\boldsymbol{C}}$
Active	Yes	No	>0
Saturation	Yes	Yes	>0
Cutoff	No	No	$\cong 0$
Inverse active	No	Yes	<0

Whereas the active mode is the normal mode for operating the BJT as an amplifier, the BJT as a switch operates in the cutoff or saturation modes. In principle, it is also possible to operate the BJT in the inverse active mode, in which the roles of emitter and collector are interchanged between the n^{+}and n regions. The four possible modes of transistor operation are summarized in Table 6.1.1. Other modes, namely, an inverse saturation mode and the base acting as anode of two forward-biased diodes, are also possible (Problem P6.1.2).

Common-Base dc Current Gains

Referring to Figure 6.1.1, the dc base current can be expressed as:

$$
\begin{equation*}
I_{B}=I_{h E}+I_{e(\text { rec })}-I_{C B O} \tag{6.1.1}
\end{equation*}
$$

The ratio of $I_{e E}$ to I_{E} is the emitter injection efficiency γ. Thus,

$$
\begin{equation*}
\gamma=\frac{I_{e E}}{I_{E}}=\frac{I_{e E}}{I_{h E}+I_{e E}} \cong 1 \tag{6.1.2}
\end{equation*}
$$

As mentioned earlier, γ is made close to unity by having the emitter much more heavily doped than the base, so that $I_{e E} \gg I_{h E}$ (Example 6.1.1).

The ratio of $I_{e C}$ to $I_{e E}$ is the base transport factor δ. Thus,

$$
\begin{equation*}
\delta=\frac{I_{e C}}{I_{e E}}=\frac{I_{e C}}{I_{e C}+I_{e(\text { rec })}} \tag{6.1.3}
\end{equation*}
$$

δ is made close to unity by having a thin base and a large collector junction area. The dc CB current gain α_{F} is defined as:

$$
\begin{equation*}
\alpha_{F}=\gamma \delta=\frac{I_{e C}}{I_{E}} \cong 1 \tag{6.1.4}
\end{equation*}
$$

The designation CB refers to the fact that the base terminal is common to input and output. The F subscript denotes the forward active mode. From Figure 6.1.1,

$$
\begin{equation*}
I_{C}=I_{e C}+I_{C B O} \tag{6.1.5}
\end{equation*}
$$

Substituting from Equation 6.1.4 in Equation 6.1.5,

$$
\begin{equation*}
I_{C}=\alpha_{F} I_{E}+I_{C B O} \tag{6.1.6}
\end{equation*}
$$

Concept: The dc CB current gain α_{F} is only slightly less than unity, being the product of two quantities γ and δ, each of which is in turn slightly less than unity.

Typical Structure

A typical structure of an IC npn transistor is shown in Figure 6.1.4. Connection to each region is made through a contact between metal and a highly doped semiconductor (Section 4.3, Chapter 4). If the collector consisted of the low-doped n-region only, the emitter current flowing to the collector encounters considerable resistance, which degrades the performance of the transistor, as clarified later. An n^{+}buried layer is therefore included that, together with the n^{+}sinker layer, provide a low-resistance path to the collector, thereby considerably reducing the collector resistance. The n^{+}buried layer also isolates the transistor from the p-substrate below, whereas lateral isolation from neighboring devices is provided in modern transistors by SiO_{2} barriers.

Note that, unlike the FETs previously discussed, the BJT is not a symmetrical structure. First, the emitter is much more heavily doped than the base, to make $I_{e E} \cong I_{E}$, and the collector is less heavily doped than the base, in order to control the breakdown voltage of the BCJ, as discussed later. Second, the area of the BCJ is considerably larger than that of the BEJ in order to have the BCJ collect practically all the electrons injected into the base, which reduces $I_{e(\text { rec) }}$, and makes $I_{e C} \cong I_{e E}$. Hence, interchanging the emitter and collector leads to poor performance and is avoided in analog circuits (Example 6.1.1). But in some digital circuits, the transistor operates in the inverse active mode under certain conditions (Section 13.6, Chapter 13), and this mode is also relevant to modeling transistor behavior (Section 6.3, Chapter 6).
The transistor of Figure 6.1.4 is an $n p n$ transistor. In contrast, a $p n p$ transistor has a complementary structure, in which the roles of electrons and holes are interchanged, so that all corresponding voltages and currents are reversed. The circuit symbols for both

FIGURE 6.1.4
Diagrammatic illustration of the structure of an npn IC transistor.

FIGURE 6.1.5
Terminal voltages and currents for an npn transistor (a), and a $p n p$ transistor (b).
types of transistor are shown in Figure 6.1.5, where the arrow at the emitter is in the actual direction of emitter current. The assigned positive directions of currents and voltage drops indicated for both transistors are actual directions in the active region and would have positive numerical values. An $n p n$ transistor has a larger α_{F} than a $p n p$ transistor of the same dimensions and doping levels because of higher electron mobility compared to hole mobility (Example 6.1.1).

Common-Emitter Configuration

Concept: Interchanging the input and common terminals of the BJT in the CB configurations allows both current and voltage amplification.

The resulting CE configuration is illustrated in Figure 6.1.6. The polarities indicated are actual polarities for an $n p n$ transistor in the active mode. Considering dc values to begin with, KCL gives:

$$
\begin{equation*}
I_{E}=I_{C}+I_{B} \tag{6.1.7}
\end{equation*}
$$

Substituting for I_{E} from Equation 6.1.7 in Equation 6.1.6 and collecting terms,

$$
\begin{equation*}
I_{C}=\frac{\alpha_{F}}{1-\alpha_{F}} I_{B}+\frac{1}{1-\alpha_{F}} I_{C B O} \tag{6.1.8}
\end{equation*}
$$

FIGURE 6.1.6
Terminal voltages and currents of an $n p n$ transistor in the CE configuration.
 the
$\alpha_{F} /\left(1-\alpha_{F}\right)$ in Equation 6.1.8 is the dc CE current gain, denoted by β_{F}. Note that as $\alpha_{F} \cong 1, \beta_{F}$ is a relatively large number and is very sensitive to variations in α_{F}. For example, if α_{F} varies between 0.99 and 0.995 , that is, a variation of about $0.5 \%, \beta_{F}$ varies between 99 and 199, a variation of about 100\% (Problem P6.1.5).
When the base is open circuited, $I_{B}=0$ and $I_{C}=I_{\text {CEO }}$, where,

$$
\begin{equation*}
I_{C E O}=\frac{1}{1-\alpha_{F}} I_{C B O}, \quad I_{B}=0 \tag{6.1.9}
\end{equation*}
$$

Equation 6.1 .8 becomes:

$$
\begin{equation*}
I_{C}=\beta_{F} I_{B}+I_{C E O} \tag{6.1.10}
\end{equation*}
$$

It would seem that $I_{\text {CEO }}$ is much larger than $I_{\text {CBO }}$ because of the $1 /\left(1-\alpha_{F}\right)$ factor. However, α_{F} at this low current is considerably less than unity, as explained later.

It is instructive to consider in terms of transistor action why $I_{\text {CEO }}=I_{\text {CBO }} /\left(1-\alpha_{F}\right)$ when the base is open circuited (Figure 6.1.8). The BCJ is reverse biased and $I_{C B O}$ flows from collector to base. But because $I_{\text {CEO }}$ flows out of the emitter, the BEJ must be forward biased to allow this current to flow. By transistor action, the collector component of $I_{\text {CEO }}$ is $\alpha_{F} I_{\text {CEO }}$. KCL applied to collector or base gives $I_{\text {CEO }}=I_{\text {CBO }}+$ $\alpha_{F} I_{C E O}$, and Equation 6.1.9 follows.

FIGURE 6.1.7
Figure for Exercise 6.1.3.

Exercise 6.1.1

Verify that $\alpha_{F}=\frac{\beta_{F}}{\beta_{F}+1}$ and that $\frac{1}{1-\alpha_{F}}=\beta_{F}+1$.

Exercise 6.1.2

Given a transistor having $\alpha_{F}=0.99, I_{C B O}=100 \mathrm{nA}$, and $I_{B}=50 \mu \mathrm{~A}$. Calculate: (a) β_{F}; (b) I_{C}; (c) I_{E}; (d) $I_{C E O}$ assuming that when $I_{B}=0, \beta_{F}$ has one-tenth of its value in (a); what is the corresponding α_{F} ? (see Problem P6.1.6).
Answers: (a) 99 ; (b) 9.91 mA ; (c) 10.01 mA ; (d) $1.09 \mu \mathrm{~A}, 0.908$.

Exercise 6.1.3

Show that the effect of $I_{C B O}$ can be modeled by a current source as in Figure 6.1.7, where the transistor is free of a BCJ leakage current so that $I_{C}^{\prime}=\alpha_{F} I_{E}$ and $I_{C}^{\prime}=\beta_{F} I_{B}^{\prime}$. Prove that Equations 6.1.6 and 6.1.8 apply.

Exercise 6.1.4

Assume that the transistor in Figure 6.1 .9 has $V_{B E}=0.7 \mathrm{~V}$ and a very large β_{F} so that $I_{B}=0$ and $I_{C}=I_{E}$. Determine (a) collector-to-emitter voltage; (b) transistor current; (c) in which mode is the transistor operating? (d) What happens if the $13.4 \mathrm{k} \Omega$ resistor is replaced by a $3.3 \mathrm{k} \Omega$ resistor? Verify by determining $V_{B E}$.

Answers: (a) 6.7 V ; (b) 0.5 mA ; (c) active mode, because $V_{B E}, V_{C E}>0$; (d) transistor cuts off.

Example 6.1.1 $\alpha_{\boldsymbol{F}}$ and $\boldsymbol{\beta}_{\boldsymbol{F}}$ from Transistors Parameters

Given an npn transistor having the following physical parameters: $N_{D E}=5 \times 10^{17} / \mathrm{cm}^{3}$, $N_{A B}=10^{16} / \mathrm{cm}^{3}, N_{D C}=10^{15} / \mathrm{cm}^{3}$, effective base width $W_{B}=1 \mu \mathrm{~m}$, minority-carrier lifetimes $\tau_{e B}=4 \times 10^{-7} \mathrm{~s}, \tau_{h E}=10^{-9} \mathrm{~s}, \tau_{h C}=5 \times 10^{-7} \mathrm{~s}$ in base, emitter, and collector, respectively, it is

FIGURE 6.1.9
Figure for Exercise 6.1.4.
required to derive the currents α_{F} and β_{F} : (a) in the active mode, (b) in the inverse active mode, and (c) α_{F} and β_{F} for a pnp transistor having the same dimensions, doping levels, and minor-ity-carrier lifetimes. Estimate the three components of base current, assuming $n_{i}=10^{10} / \mathrm{cm}^{3}, V_{B E}=0.7 \mathrm{~V}$, and area of BEJ and BCJ $A_{J}=0^{-4} \mathrm{~cm}^{2}$. Note that in the basic analysis of the BJT, a planar structure is assumed in which the BE and BC are parallel planes of equal area. Although real transistors do not have this structure, the general conclusions of the basic analysis still apply.

Solution

It is necessary first to calculate some of the physical parameters of the transistors. From Equations 2.6.1 and 2.6.2, Chapter 2, the mobilities are:

$$
\mu_{e B}=1345 \mathrm{~cm}^{2} / \mathrm{Vs}, \quad \mu_{h E}=209 \mathrm{~cm}^{2} / \mathrm{Vs}, \quad \mu_{h C}=478 \mathrm{~cm}^{2} / \mathrm{Vs}
$$

From these, we can derive the diffusion constants using the Nernst-Einstein relation $D=\mu k T \cong 0.02585 \mu$ at 300 K (Equation 2.4.5, Chapter 2). This gives:

$$
D_{e B}=34.77 \mathrm{~cm}^{2} / \mathrm{s}, \quad D_{h E}=5.40 \mathrm{~cm}^{2} / \mathrm{s}, \quad D_{h C}=12.36 \mathrm{~cm}^{2} / \mathrm{s}
$$

The diffusion lengths are calculated from the relation $L=\sqrt{D \tau}$, as:

$$
L_{e B}=3.73 \times 10^{-3} \mathrm{~cm}, \quad L_{h E}=0.735 \times 10^{-4} \mathrm{~cm}, \quad L_{h C}=2.486 \times 10^{-3} \mathrm{~cm}
$$

(a) $\frac{W_{B}}{L_{\text {e } B}}=\frac{10^{-4}}{36.09 \times 10^{-4}}$. From Equations ST6.1.23 and ST6.1.24, Section ST6.1, $\delta \cong \frac{1}{1+\left(W_{B} / L_{e B}\right)^{2} / 2}$ for small $\frac{W_{B}}{L_{e B}}$, and $\gamma \cong \frac{1}{1+D_{h E} W_{B} N_{A B} / D_{e B} L_{h E} N_{D E}}$. Substituting numerical values, $\delta \cong 0.9996$ and $\gamma=0.9958$, it follows that $\alpha_{F}=0.9954$ and $\beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}} \cong 216$.
(b) If the transistor is operated in the inverse active mode, it would appear that δ stays the same because it depends on W_{B} and $L_{e B}$. However, because in practice the collector has a much larger area than the emitter, a smaller fraction of the electrons injected from collector to base would be able to reach the emitter. A more realistic value of δ_{R} may be about 0.8. γ_{R} is obtained by replacing emitter quantities by corresponding collector quantities. Thus, $\gamma_{R} \cong \frac{1}{1+D_{h C} W_{B} N_{A B} / D_{e B} L_{h C} N_{D C}}=0.87$. It follows that $\alpha_{R}=\delta_{R} \gamma_{R} \cong 0.7$ and $\beta_{R} \cong 2.3$.
(c) From Equations 2.6.1 and 2.6.2, Chapter 2, the mobilities are:

$$
\mu_{h B}=465 \mathrm{~cm}^{2} / \mathrm{Vs}, \quad \mu_{e E}=419 \mathrm{~cm}^{2} / \mathrm{Vs}, \quad \mu_{\mathrm{eC}}=1421 \mathrm{~cm}^{2} / \mathrm{Vs}
$$

The diffusion constants are:

$$
D_{h B}=12.02 \mathrm{~cm}^{2} / \mathrm{s}, \quad D_{e E}=10.83 \mathrm{~cm}^{2} / \mathrm{s}, \quad D_{e E}=36.73 \mathrm{~cm}^{2} / \mathrm{s}
$$

The diffusion lengths are

$$
L_{h B}=2.193 \times 10^{-3} \mathrm{~cm}, \quad L_{e E}=1.04 \times 10^{-4} \mathrm{~cm}, \quad L_{e C}=4.285 \times 10^{-3} \mathrm{~cm}
$$

It follows that $\frac{W_{B}}{L_{h B}}=\frac{10^{-4}}{21.93 \times 10^{-4}}$ and $\delta=0.9990$. Interchanging donor and acceptor impurities, and electrons and holes, $\gamma \cong \frac{1}{1+D_{e E} W_{B} N_{D B} / D_{h B} L_{e E} N_{A E}}=0.9830$. Hence, $\alpha_{F}=0.9820$ and $\beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}} \cong 55$.

This example underscores the dramatic difference in current gains of a transistor operated in the active and in the inverse active modes. It also demonstrates how differences in electron and hole mobilities affect the current gains in otherwise identical npn and pnp transistors.
Let us calculate the components of the base current in Equation 6.1.1. From Equation 3.2.4, Chapter 3, $I_{C B O}=A_{\rho}|q|\left(\frac{D_{h C}}{L_{h C} N_{D C}}+\frac{D_{e B}}{L_{e B} N_{A B}}\right) n_{i}^{2}=9.4 \times 10^{-13} \mathrm{~A}$. From Equation ST6.1.1, Section ST6.1, $I_{h E}=\frac{|q| D_{h E} A \not n_{i}^{2}}{L_{h E} N_{D E}} e^{V_{B E} / V_{T}}=1.35 \times 10^{-4}$ A. From Equations ST6.1.21 and ST6.1.22, $\quad I_{e(\text { (rec })}=I_{e E}-I_{e C}=\frac{|q| D_{e B} A_{J} n_{i}^{2}}{L_{e B} N_{A B}} e^{V_{B E} / V_{T}}\left(\frac{\cosh \left(W_{B} / L_{e B}\right)-1}{\sinh \left(W_{B} / L_{e B}\right)}\right)=1.15 \times 10^{-5} \mathrm{~A}$. $I_{\text {CBO }}$ is thus negligible compared to the other components, and about $1.35 \times 100 /(1.35+0.115) \cong 92 \%$ of the base current is due to $I_{h E}$. In other words, $I_{B}=I_{\text {e(rec) }}(1.35+0.115) / 0.115 \cong 13 \times I_{\text {e(rec) }}$. In most IC npn transistors, $I_{\text {e(rec) }}$ is only a small fraction of I_{B}. At the other extreme are lateral pnp transistors (Section 4.7, Chapter 4), where most of I_{B} can be due to $I_{\text {e(rec) }}$. Such transistors have a low β_{F}, approximately in the range of 10-50, and a relatively low unity-gain bandwidth (Equation 6.2.38).

By reducing the base width to a sufficiently low value, and having a high ratio of emitter-to-base doping levels, super-beta transistors having β_{F} of several thousands are possible. Too thin a base, however, makes the transistor susceptible to punchthrough, as discussed later, so that such transistors can be used only in some special circuits (Section 10.5, Chapter 10). Another way of increasing β_{F} to several thousands is to have a reasonably narrow base that makes δ close to unity and increase γ by having a heterojunction for the BEJ, as discussed in Section 6.4.

Exercise 6.1.5

Calculate α_{F} and β_{F} if: (a) $W_{B}=5 \mu \mathrm{~m}$; (b) $N_{A B}=10^{17} / \mathrm{cm}^{3}$.
Answers: (a) 0.9945, 181; (b) 0.99, 99.

Small-Signal Current Gains

Formally, the output characteristics of Figure 6.1 .3 can be expressed in terms of the functional relation: $i_{C}=f\left(i_{E}, v_{C B}\right)$. From a Taylor series expansion in the neighborhood of the operating point (Appendix A):

$$
\begin{equation*}
\Delta i_{C}=\left.\frac{\partial i_{C}}{\partial i_{E}}\right|_{v_{C B}} \Delta i_{E}+\left.\frac{\partial i_{C}}{\partial v_{C B}}\right|_{i_{E}} \Delta v_{C B} \tag{6.1.11}
\end{equation*}
$$

The second term on the RHS is the slope of the CB output characteristics at constant i_{E} and is ideally zero if base-width modulation, considered later, is neglected. The first term is the limit of $\Delta i_{C} / \Delta i_{E}$ at constant $v_{C B}$, as the changes become infinitesimally small. It defines the small-signal, short-circuit, common-base current gain α. At constant $v_{C B}, v_{c b}=0$, which means that the collector and base are short-circuited for the ac small-signal.

In practice, this is achieved by connecting a large capacitor between base and collector, so that the two terminals are short-circuited by the capacitor for ac signals without disturbing dc bias conditions.

If I_{E} and I_{C} in Equation 6.1.6 are replaced by their instantaneous values i_{E} and i_{C}, and both sides of the equation are differentiated with respect to i_{E} bearing in mind that $I_{\text {CBO }}$ is independent of i_{E},

$$
\begin{equation*}
\alpha=\left.\frac{\partial i_{C}}{\partial i_{E}}\right|_{v_{C B}}=\alpha_{F}+\left.\frac{\partial \alpha_{F}}{\partial i_{E}}\right|_{v_{C B}} i_{E} \tag{6.1.12}
\end{equation*}
$$

If α_{F} is independent of i_{E}, then:

$$
\begin{equation*}
\alpha=\left.\frac{\partial i_{C}}{\partial i_{E}}\right|_{v_{C B}}=\alpha_{F} \tag{6.1.13}
\end{equation*}
$$

In fact, α_{F} can be considered independent of I_{E} over a fairly wide range of I_{E}. However, α_{F} decreases both at low and high I_{E}. The decrease at low I_{E} is mainly due to electronhole recombination in the depletion region of the BEJ. This recombination current is an appreciable fraction of I_{E} at low values of I_{E} so that less of I_{E} is injected into the base, which reduces γ and hence α_{F}. A large I_{E} implies high-level injection, so that the minority-carrier concentration in the base becomes comparable to that of majority carriers. In order to compensate for the increase in minority carrier concentration, the majority-carrier concentration rises above its equilibrium value. As a result, α_{F} is reduced in two ways: (1) The increase in majority-carrier concentration is akin to increasing the doping level in the base, which reduces γ, because as noted earlier, γ is made close to unity by having the doping level in the emitter much larger than that of the base (Example 6.1.1). (2) The increased carrier concentrations increase the recombination rate by increasing the probability of recombination of minority carriers, which in turn reduces the base transport factor δ. Moreover, both of these effects are aggravated by "crowding" of the emitter current at high injection levels, because of curvature of the BEJ in practice, leading to a nonuniform distribution of current across the BEJ. Because current at the emitter terminal is the average emitter current over the BEJ, emitter current crowding implies that the aforementioned effects of a high concentration of majority carriers in the base become manifest at a lower value of emitter current.

Neglecting the variation of α_{F} with i_{E}, Equation 6.1 .11 becomes:

$$
\begin{equation*}
i_{c}=\alpha i_{e} \tag{6.1.14}
\end{equation*}
$$

In the CE configuration, i_{C} can be expressed as the functional relation: $i_{C}=f\left(i_{B}, v_{C E}\right)$. From a Taylor series expansion in the neighborhood of the operating point (Appendix A):

$$
\begin{equation*}
\Delta i_{C}=\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{v_{C E}} \Delta i_{B}+\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{i_{B}} \Delta v_{C E} \tag{6.1.15}
\end{equation*}
$$

The second term is the slope of the output characteristics for constant i_{B}. Neglecting the effects of base-width modulation, considered later, this slope is ideally zero as in the CB configuration. The first term is the limit of $\Delta i_{C} / \Delta i_{B}$ at constant $v_{C E}$, as the changes become infinitesimally small. It defines the small-signal, short-circuit, CE current gain β. As in the case of α, constant $v_{C E}$ implies that the collector and emitter are short-circuited by a large capacitor for the ac small-signal only.

Replacing I_{B} and I_{C} in Equation 6.1.10 by the corresponding instantaneous values i_{B} and i_{C},

$$
\begin{equation*}
i_{C}=\beta_{F} i_{B}+\left(1+\beta_{F}\right) I_{C B O} \tag{6.1.16}
\end{equation*}
$$

Differentiating with respect to i_{B} at constant $v_{C E}$:

$$
\begin{equation*}
\beta=\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{v_{C E}}=\beta_{F}+\left.\left(i_{B}+I_{C B O}\right) \frac{\partial \beta_{F}}{\partial i_{B}}\right|_{v_{C E}} \tag{6.1.17}
\end{equation*}
$$

Whereas α_{F} could be considered constant over a wide range of transistor currents, there is much less justification for neglecting the variation of β_{F} with transistor currents because small variations in α_{F} are greatly amplified in β_{F}. As explained in connection with α_{F}, β_{F} decreases at low currents and at high currents. It follows that in using β_{F} or β, the appropriate value should be used for a given I_{B} or I_{C} because, strictly speaking, β_{F} and β cannot be considered constant over a wide range of currents. Bearing this in mind, Equation 6.1.15 can be written as:

$$
\begin{equation*}
i_{c}=\beta i_{b} \tag{6.1.18}
\end{equation*}
$$

Simulation Example 6.1.2 Variation of BJT Current Gains

It is desired to examine the variation of dc and small-signal current gains of a popular npn transistor, the 2N2222, using PSpice simulation.

Simulation

The part name of the transistor is Q2N2222 in the EVAL Library. For the CB configuration, a 15 V dc source is connected between collector and base. A dc current source of the same polarity as the emitter current is connected between emitter and base. The current source is swept in logarithmic sweep from $1 \mu \mathrm{~A}$ to 1 A at 20 points/decade. After the simulation is run, the traces selected are $\mathrm{IC}(\mathrm{Q} 1) / \mathrm{I}(11)$ for α_{F} and $\mathrm{D}(\mathrm{IC}(\mathrm{Q} 1))$ for α, where I 1 is the current source and Q1 is the transistor. The traces are shown in Figure 6.1.10a. α_{F} varies between 0.988 and a maximum of 0.9954 (at $i_{E}=22.4 \mathrm{~mA}$) over a current range of $4.08 \mu \mathrm{~A}$ to 802 mA , a variation of only about 0.75% over more than 5 decades of current. The difference between α and α_{\digamma} is small up to a few hundred mAs.

The simulation of the CE configuration is similar. The input current source is applied to the base and is swept over the range 10 nA to $100 \mu \mathrm{~A}$. The x-axis is changed to IC(Q1), the β_{F} trace is obtained as $\operatorname{IC}(\mathrm{Q} 1) / \mathrm{IB}(\mathrm{Q} 1)$, and the β trace as $1 / \mathrm{D}(\mathrm{IB}(\mathrm{Q} 1))$. The traces are shown in Figure 6.1.10b. β_{F} varies between 80 and a maximum of 210 (at $i_{C}=23.6 \mathrm{~mA}$) over a current range of $3.7 \mu \mathrm{~A}$ to 800 mA , a variation of more than 150%. The difference between β and β_{F} is about 20 in the lower part of the current range and about 40 in the range of few hundred mAs .

It should be noted that β_{F} was defined in connection with Equation 6.1.10 as $\frac{\alpha_{F}}{1-\alpha_{F}}$, α was defined as $\left.\frac{\partial i_{C}}{\partial i_{E}}\right|_{v_{C B}}$ (Equation 6.1.12), and β was defined as $\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{v_{C E}}$ (Equation 6.1.15). So what is the relationship between α and β ? This relationship can be derived from the basic KCL relation (Figure 6.1.1) $i_{C}+i_{B}=i_{E}$. Differentiating with respect to i_{C} at constant $v_{C E}$ gives:

$$
\begin{equation*}
1+\left.\frac{\partial i_{B}}{\partial i_{C}}\right|_{V_{C E}}=\left.\frac{\partial i_{E}}{\partial i_{C}}\right|_{V_{C E}} \tag{6.1.19}
\end{equation*}
$$

FIGURE 6.1.10
Figure for Example 6.1.2. (a) Variation of α and α_{F} with i_{E}; (b) variation of β and β_{F} with i_{C}.

The differential term on the LHS is $1 / \beta$, whereas the term on the RHS is $1 / \alpha$ if constant $v_{C E}$ is identified with constant $v_{C B}$. This equivalence is usually made for the BJT in the active mode. From KVL, $v_{C E}=v_{C B}+v_{B E}$. In normal operation, $v_{B E}$, being the forward voltage drop across a conducting $p n$ junction is nearly constant at about 0.7 V . Changes in $v_{B E}$ are small compared to $v_{C B}$, which means that if $v_{C B}$ is constant, $v_{C E}$ can be considered constant, and conversely (Exercise 6.1.5). With this assumption, Equation 6.1.19 gives:

$$
\begin{equation*}
1+\frac{1}{\beta}=\frac{1}{\alpha} \quad \text { or } \quad \beta=\frac{\alpha}{1-\alpha} \tag{6.1.20}
\end{equation*}
$$

which is the same as that between α_{F} and β_{F}.
The current gains for a BJT are summarized in Table 6.1.2 and apply to both npn and pnp transistors. For practical purposes, it is convenient to make following assumption:

TABLE 6.1.2
Summary of BJT Current Gain Relations (Neglecting Base-Width Modulation)

dc Values	Small-Signal Values
$\alpha_{F}=\gamma \delta=\frac{I_{e C}}{I_{E}}$ (by definition)	$\alpha=\left.\frac{\partial i_{C}}{\partial i_{E}}\right\|_{v_{C B}}=\alpha_{F}\left(\alpha_{F}\right.$ independent of $\left.I_{E}\right)$
$I_{C}=\alpha_{F} I_{E}$ (negligible $\left.I_{C B O}\right)$	$i_{c}=\alpha i_{e}\left(\alpha_{F}\right.$ independent of $\left.I_{E}\right)$
$\beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}}$ (by definition)	$\beta=\left.\frac{\partial i_{C}}{\partial i_{B}}\right\|_{v_{C E}}=\frac{\alpha}{1-\alpha}$ (constant $v_{C E}$
	implies constant $\left.v_{C B}\right)$
$I_{C}=\beta_{F} I_{B}$ (negligible $\left.\left(\beta_{F}+1\right) I_{C B O}\right)$	$i_{c}=\beta i_{b}(\beta$ evaluated at operating point)
$\left(\beta_{F}\right.$ evaluated at operating point)	
$I_{B}=\left(1-\alpha_{F}\right) I_{E}=I_{E} /\left(1+\beta_{F}\right)$	$i_{b}=(1-\alpha) i_{e}=i_{e} /(1+\beta)$ (follows from
(follows from preceding relations)	preceding relations)

Assumption: For many practical purposes, it is convenient to assume that $\alpha=\alpha_{F}$ and $\boldsymbol{\beta}=\boldsymbol{\beta}_{F}$. Nevertheless, the nature of the assumptions made must be kept in mind.

Exercise 6.1.6

Assume that $v_{B E}$ varies between 0.6 and 0.8 V from cutoff to saturation. Determine the percentage change in $v_{C E}$ if $v_{C B}$ is maintained constant at: (a) 5 V ; (b) 15 V . Repeat if i_{B} varies between $50 \mu \mathrm{~A}$ and 0.5 mA in Figure 6.2.4b, assuming that the curve for $v_{C E}=1 \mathrm{~V}$ applies.

Answers: For 0.2 V variation: (a) 3.6%; (b) 1.3%. If i_{B} varies between $50 \mu \mathrm{~A}$ and 0.5 mA as shown in Figure 6.2.4b, $v_{B E}$ varies between about 0.7 and 0.77 V . Then (a) 1.25%; (b) 0.45%.

Small-Signal Equivalent Circuits

The small-signal equivalent circuit can be readily derived from the preceding description of operation of the BJT. Considering the CB configuration first, it follows from Figure 6.1.2a that $\Delta v_{B E}=r_{e} \Delta i_{E}$, where r_{e} is the reciprocal of the slope of the $i_{E}-v_{B E}$ characteristic. In the small-signal equivalent circuit it is conventional to consider positive input current as entering the input terminal, in the direction of the small-signal voltage drop from the input terminal to the common terminal. Hence, if we define $i_{e}=-\Delta i_{E}$ and $v_{e b}=-\Delta v_{E B}$ (Figure 6.1.11), $v_{e b}=r_{e} i_{e}$, where r_{e} is still positive and represents the small-signal incremental resistance as seen at the emitter terminal.

FIGURE 6.1.11
Small-signal equivalent circuit of a BJT in the CB configuration.

FIGURE 6.1.12
Small-signal equivalent circuit of a BJT in the CE configuration.

Equation 6.1.14 can be represented by a current source αi_{e} directed from base to collector (Figure 6.1.11). With α positive and i_{e} flowing inward, i_{c} is considered positive when flowing out of the collector terminal. Physically, an increase in $v_{e b}$ reduces the baseemitter forward voltage and the current i_{E} flowing out of the emitter (Figure 6.1.1). This means that i_{e}, flowing inward, is increased ($i_{e}=-\Delta i_{E}$). By transistor action, i_{C}, flowing into the collector terminal is reduced. That is, i_{c} flowing out of the collector terminal in Figure 6.1.10 is increased.

In the $C E$ configuration, i_{B} is a function of $v_{B E}$ only; it is independent of $v_{C E}$ in the absence of base-width modulation. Hence, $\Delta i_{B}=\left(d i_{B} / d v_{B E}\right) \Delta v_{B E}$. In terms of small-signal quantities, this can be written as $i_{b}=v_{b e} / r_{\pi}$, where r_{π} is the reciprocal of the slope of the $i_{B}-v_{B E}$ input characteristic and appears as an input resistance in Figure 6.1.12. It is seen that $r_{\pi}=\frac{v_{b e}}{i_{b}}=\frac{i_{e}}{i_{b}} \frac{v_{b e}}{i_{e}}=(\beta+1) r_{e}$ (Table 6.1.2). In other words, r_{π} is the incremental input resistance of the BEJ referred to the base side.

Note that i_{b} is directed inward at the input terminal, in the direction of the voltage drop $v_{b e}$. Physically, an increase in i_{B} in Figure 6.1.1 implies an increase in both i_{C} and i_{E} in the directions indicated. Hence, i_{c} is also directed inward in Figure 6.1.12. On the output side, Equation 6.1.18 is represented by a current source βi_{b} directed from collector to emitter.

It is shown in Example 6.1.3 that the CE equivalent circuit of Figure 6.1.12 can be derived from the CB equivalent circuit of Figure 6.1.11 by simple circuit transformation.

Example 6.1.3 Transformation of CB to CE Small-Signal Equivalent Circuit

It is required to transform the CB equivalent circuit of Figure 6.1.11 to the CE equivalent circuit of Figure 6.1.12.

Solution

As the input current i_{e} is directed inward in Figure 6.1.11, the first step is to reverse the directions of currents and to redraw the circuit as in Figure 6.1.13a, with reversed polarity of the dependent current source. The modified circuit is the T-model of the BJT. In this circuit, $v_{b e}=r_{e} i_{e}$. But because $i_{e}=(\beta+1) i_{b}$ (Table 6.1.2), it follows that $v_{b e}=r_{e}(\beta+1) i_{b}$. In other words, $v_{b e}$ could equally well result from i_{b} flowing in a resistance $r_{\pi}=(1+\beta) r_{e}$, as in Figure 6.1.13b. The controlled current source is then reconnected between the collector and the emitter as the common terminal, so that only i_{b} flows in r_{π}. The value of the current source is similarly expressed in terms of i_{b} as $\alpha i_{e}=\alpha(1+\beta) i_{b}=\beta i_{b}$. Reconnecting the current source preserves the relation $i_{e}=i_{c}+i_{b}$ but changes the voltage across the source from $v_{c b}$ to $v_{c e}$. This is acceptable, because the voltage across an ideal current source is determined by the rest of the circuit and does not affect the source current. Redrawing the circuit gives Figure 6.1.12.

FIGURE 6.1.13
Figure for Example 11.6.3. (a) Figure 6.1.11 redrawn with all currents reversed; (b) circuit modified so that if flows in input resistor.

Exercise 6.1.7

Transform the circuit of Figure 6.1.12 to that of Figure 6.1.11.

6.2 Secondary Effects in BJTs

Base-Width Modulation

Base-width modulation, or the Early effect, is an important phenomenon that is analogous to channel-length modulation in FETs. Its primary effect is that it results in a nonzero slope of the output characteristics, that is, a finite output resistance, as in the case of FETs. However, in the BJT, base-width modulation has a small secondary effect that makes the output voltage affect the input side. This secondary effect is absent in the MOSFET because under dc conditions the input circuit is open ($I_{G} \cong 0$) so that changes in $v_{D S}$ or i_{D} do not affect the input. Both the primary and secondary effects arise from the change in the width of the depletion layer of the BCJ with reverse bias, as occurs in a reverse-biased $p n$ junction diode.

The BJT is analyzed in detail in Section ST6.1. For now, it suffices to note that in a $p n$ junction diode, the concentration of injected minority carriers falls exponentially with distance at a rate determined by the diffusion length of these carriers (Figure 3.2.1, Chapter 3). Because the base of a BJT is narrow compared to the diffusion length, the exponential variation can be considered almost linear over its initial part. The concentration of injected electrons in the base of an $n p n$ transistor can thus be represented as in Figure 6.2.1. At the edge of the depletion region of the BEJ in the base $(x=0)$, the electron concentration is $n_{p}(0)=n_{p o} e^{v_{B E} / V_{T}}$, whereas at the edge of the depletion region of the BCJ in the base the electron concentration is negligibly small. The electron current in the base is a diffusion current of density $|q| D_{e B} d n_{p}(x) / d x$, where $D_{e B}$ is the diffusion constant of electrons in the base (Equation 2.4.12, Chapter 2). Assuming a linear concentration profile, $d n_{p}(x) / d x \cong n_{p}(0) / W_{B}$. We therefore have:

$$
\begin{equation*}
i_{e E}=\frac{|q| A_{J} D_{e B}}{W_{B}} n_{p o} e^{v_{B E} / V_{T}}=I_{S} e^{v_{B E} / V_{T}} \cong i_{E}=i_{C} / \alpha_{F} \cong i_{C} \tag{6.2.1}
\end{equation*}
$$

FIGURE 6.2.1
Illustration of base-width modulation.
where A_{J} is the effective area of the emitter junction. Strictly speaking, the magnitude of the slope of the concentration profile at the edge of the depletion region on the base side of the BEJ is proportional to $i_{e E}$, whereas the magnitude of the slope at the edge of the depletion region on the base side of the BCJ is slightly less and proportional to $i_{e C}$. The difference between these currents is $i_{e(\text { rec })}$ and is proportional to the area under the curve, which represents the stored charge due to the injected electrons (Problem P6.3.1). Hence,

Concept: If the base current is neglected, the concentration profile of minority carriers in the base is linear, the slope of the profile being proportional to the emitter or collector current, and the area under the profile being proportional to the minority carriers stored in the base.

The approximations made in using Equation 6.2.1 are also examined in Example ST6.1.2, Section ST6.1. Note that W_{B}, the effective width of the base region, is the actual base width less than the widths of the depletion regions of the BEJ and the BCJ in the base. Although i_{C}, according to Figure 6.2.1 is in the negative x-direction and should therefore have a negative sign, this sign is omitted from Equation 6.2.1 to make i_{C} positive in conformity to the usual convention of considering the inward collector current positive.

It is seen from Equation 6.2.1 that i_{C} is inversely proportional to W_{B}. Thus, if $v_{C B}$ increases from $v_{C B 1}$ to $v_{C B 2}$, the width of the depletion region in the base increases from $W_{d p 1}$ to $W_{d p 2}$, and the effective base width decreases from $W_{B 1}$ to $W_{B 2}$ (Figure 6.2.1). i_{C} therefore increases with $v_{C B}$; this is the primary effect of base-width modulation. The secondary effect of base-width modulation, which is neglected in Equation 6.2.1 is the
variation of $i_{e(\text { rec })}$ with effective base width, because of the change in area under the concentration profile.
The BJT output characteristics that are analogous to those of FETs are the CE output characteristics, with $v_{B E}$ as parameter, illustrated in Figure 6.2.2 in exaggerated form. Compared to the CB characteristics (Figure 6.1.2), not only do they have a larger slope, but they are also shifted to the right by $v_{B E}$, because $v_{C E}=v_{C B}+v_{B E}$. The saturation region occurs at small values of $v_{C E}$ because in this region, both the BEJ and BCJ are forward biased in the range of $0.6-0.8 \mathrm{~V}$, but with $v_{B C}<v_{B E}$, mainly because the BCJ is larger in area than the BEJ (Figure 6.1.4). Hence, $v_{C E(\mathrm{sat)}}=v_{B E}-v_{B C} \cong 0.2 \mathrm{~V}$. Note that the region where the output current increases rapidly with the output voltage is the triode region in the FET and the saturation region in the BJT, whereas the region where the changes in output current are small is the saturation region in the FET and the active region in the BJT.

The variation of i_{C} with $v_{C E}$ at constant $v_{B E}$ can be expressed as:

$$
\begin{equation*}
\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}=\left.\left.\frac{\partial i_{C}}{\partial W_{B}}\right|_{v_{B E}} \frac{\partial W_{B}}{\partial v_{C E}}\right|_{v_{B E}} \tag{6.2.2}
\end{equation*}
$$

From Equation 6.2.1, $\left.\frac{\partial i_{C}}{\partial W_{B}}\right|_{v_{B E}}=-\frac{i_{C}}{W_{B}}$. Hence,

$$
\begin{equation*}
\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}=\left.\frac{-i_{C}}{W_{B}} \frac{\partial W_{B}}{\partial v_{C E}}\right|_{v_{B E}} \tag{6.2.3}
\end{equation*}
$$

In the saturation region, where the BCJ is forward biased, base-width modulation is negligible. If the quantities on the RHS of Equation 6.2.3 are evaluated at the edge of active region, just as the transistor comes out of saturation, with the values of i_{C} and W_{B} denoted by $I_{C(\text { sat })}$ and $W_{B(\text { sat) }}$, respectively, Equation 6.2.3 can be expressed as:

$$
\begin{equation*}
\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}=\left.\frac{-i_{C \text { (sat) }}}{W_{B(\text { sat })}} \frac{\partial W_{B}}{\partial v_{C E}}\right|_{v_{B E}} \tag{6.2.4}
\end{equation*}
$$

FIGURE 6.2.2
Output characteristics of a BJT in the CE configuration with $v_{B E}$ as parameter.

Note that $\left.\frac{\partial W_{B}}{\partial v_{C E}}\right|_{v_{B E}} p<0$, because W_{B} decreases with $v_{C E}$, so that $\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}>0$ and increases with $v_{B E}$, at a constant $v_{C E}$, due to the increase in $i_{C \text { (sat) }}$ (Equation 6.2.1).

Since $\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}$ is proportional to $i_{C(\text { sat })}$ (Equation 6.2.4), and $i_{C(\text { sat })}$ increases exponentially with $v_{B E}$ (Equation 6.2.1), this means that as $v_{B E}$ increases, the output characteristics for constant $v_{B E}$ have: (1) larger $I_{C(\text { sat })}$, and (2) slope more in the active region (Figure 6.2.2). However, the ratio $i_{C \text { (sat) }} /\left(\left.\frac{\partial i_{C}}{\partial v_{C E}}\right|_{v_{B E}}\right)=-\left.W_{B(\text { sat) }} \frac{\partial v_{C E}}{\partial W_{B}}\right|_{v_{B E}}$ is nearly independent of $i_{C \text { (sat) }}$. Hence, if the straight parts of the output characteristics in the active region are extended backward to negative voltages, they would all intersect the voltage axis at a point $-V_{A}$ (Figure $6.2 .2) . V_{A}$ is the early voltage and is a positive quantity, typically in the range of $50-100 \mathrm{~V}$. It is analogous to $1 / \lambda$ in the case of MOSFETs (Equation 5.3.1, Chapter 5) and is given by:

$$
\begin{equation*}
V_{A}=-\left.W_{B(\text { sat })} \frac{\partial v_{C E}}{\partial W_{B}}\right|_{v_{B E}} \tag{6.2.5}
\end{equation*}
$$

The output characteristics in the active region at constant $v_{B E}$ can then be expressed as:

$$
\begin{align*}
i_{C} & =i_{C(\text { sat) }}\left(1+\frac{v_{C E}-v_{C E(\text { sat })}}{V_{A}}\right), \quad v_{C E} \geq v_{C E(\text { sat })} \tag{6.2.6}\\
& \cong i_{C(\text { sat) }}\left(1+\frac{v_{C E}}{V_{A}}\right), \quad v_{C E} \gg v_{C E(\text { sat })}
\end{align*}
$$

Equation 6.2.6 implies that $i_{C}=0$ at $v_{C E}=v_{C E(\text { sat })}-V_{A} \cong-V_{A}$, independently of $v_{B E}$.
The input characteristics of the CE configuration are affected by base-width modulation. When $v_{C E}=0$, the $i_{B}-v_{B E}$ relation has the general shape of the $i-v$ relation of a forwardbiased $p n$ junction (Figure 6.2.3a). With $v_{C E}$ greater than about 0.8 V , the BCJ becomes reverse biased, and the secondary effect of base-width modulation comes into play. As $v_{C E}$ increases at constant $v_{B E}$, the minority-carrier stored charge in the base decreases because the effective base width is reduced. $i_{e(\text { rec })}$, and hence i_{B}, decrease (Equation 6.1.1). The decrease in i_{B} at constant $v_{B E}$ means that the input characteristics for constant $v_{C E}$ are

FIGURE 6.2.3
Input characteristics (a) and output characteristics (b) of a BJT in the CE configuration.
shifted to the right, as illustrated in Figure 6.2.3a in exaggerated form. The extent of this shift depends on how much the recombination current contributes to the base current (Example 6.1.1). Moreover, the characteristics for $v_{C E}>0$ no longer pass through the origin. This is because when $v_{B E}=0$, that is, the base is shorted to the emitter, and if $v_{C E}>0$, a small negative base current flows (Example ST6.1.1, Section ST6.1).

The output characteristics of the CE configuration are conventionally plotted as a family of curves at constant i_{B} (Figure 6.2.3b) rather than constant $v_{B E}$. They have the same general shape as the constant $v_{B E}$ curves of Figure 6.2 .2 but with somewhat larger slopes in the active region (Section ST6.2).

Simulation Example 6.2.1 CE Characteristics

It is desired to simulate the characteristics of a 2 N 2222 transistor in the CE configuration.

Simulation

To obtain the output characteristics, a VDC source is applied between collector and emitter and an IDC source between base and emitter. The voltage source is swept, as primary sweep, between 0 and 20 V in steps of 0.01 V . The current source is swept, as secondary sweep, between 0 and 0.5 mA in steps of $50 \mu \mathrm{~A}$. Figure 6.2.4a shows the resulting output characteristics. Considering the 0.5 mA characteristic, $i_{C(\text { sat) }}=79.15 \mathrm{~mA}, v_{C E(\text { sat) }}=0.35 \mathrm{~V}$, and $V_{A}=73.1 \mathrm{~V}$.
The input characteristics are obtained by connecting a VDC source between base and emitter and sweeping it, as primary sweep, between 0 and 1 V . The collector-emitter voltage source is swept as secondary sweep using a list of values $0,0.1,1,5$, and 20 V . The resulting characteristics are shown in Figure 6.2.4b. With the voltage and current scales used in this figure, the input characteristics for $v_{C E}>1 \mathrm{~V}$ are too close together to be differentiated, and the reverse base current for very small $v_{B E}$ and $v_{C E}>0$ is too small to be seen. The change in input characteristics occurs in the saturation region, but once the BCJ becomes reverse biased i_{B} changes very little with $v_{C E}$ because the base recombination current is a small fraction of i_{B}.

The saturation region is shown on an expanded scale in Figure 6.2.5. It is seen that the saturation voltage is between about 0.2 and 0.35 V for the current range considered.
Figure 6.2.6 illustrates the variation of β_{F} with $v_{C E}$ and temperature. If $v_{C E}$ increases at constant $v_{B E}, i_{C}$ increases due to base-width modulation. To maintain the same $i_{C}, v_{B E}$ should decrease in order to have the same slope of the concentration profile as before the increase in $v_{C E}$. The decrease in $v_{B E}$ reduces i_{B}. In other words, the same i_{C} at a larger $v_{C E}$ requires less i_{B}, which means that β_{F} has increased. The variation of β_{F} with temperature is discussed in the next section in connection with temperature effects.

Hybrid- π Equivalent Circuit

The hybrid- π, low-frequency, small-signal equivalent circuit of the transistor, shown in Figure 6.2.7, is derived in detail in Section ST6.2 and related to the effective output resistances of the CB and CE configurations. The term "hybrid" refers to the voltagecontrolled current source $g_{m} v_{b e}$, which relates a current on the output side to the input voltage. r_{μ}, shown dotted, is a relatively large resistance (Example 6.2.2) that accounts for the secondary effect of base-width modulation, and is usually omitted in simplified analysis. Unlike the effect of channel-length modulation in a MOSFET, r_{μ} introduces a conducting path between base and collector.
$g_{m}=\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{v_{C E}}$ is the small-signal transconductance. Assuming a linear concentration profile of minority carriers in the base (Figure 6.2.1), g_{m} is derived from Equation 6.2.1 as:

FIGURE 6.2.4
Figure for Example 6.2.1. (a) Output characteristics; (b) input characteristics.

$$
\begin{equation*}
g_{m}=\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{v_{C E}}=\left.\frac{I_{C}}{V_{T}}\right|_{v_{C E}} \tag{6.2.7}
\end{equation*}
$$

The definition and interpretation of g_{m} are analogous to that for the FET. If a vertical line representing constant $v_{C E}$ is drawn on the output characteristics of Figure 6.2.2, g_{m} is the limit of $\Delta i_{C} / \Delta v_{B E}$ as the changes become infinitesimally small. As in the FET, g_{m} is a measure of how effective is the input voltage, $v_{B E}$ in this case, in controlling the output current. As $V_{T} \cong 0.026 \mathrm{~V}$ at $300 \mathrm{~K}, g_{m}$ for the BJT is much higher than that of the FET (Example 6.2.2). Moreover, g_{m} increases faster with I_{C}, being proportional to I_{C}, compared to $\sqrt{I_{D}}$ in the FET. $r_{\pi}=\left.\frac{\partial v_{B E}}{\partial i_{B}}\right|_{v_{C E}}$, as previously defined, is the reciprocal of the slope of the input characteristics of Figure 6.2.4b at constant $v_{C E}$. If r_{μ} is omitted, it follows from Figure 6.2.7 that r_{π} is the incremental input resistance, irrespective of whether the output is open circuited

FIGURE 6.2.5
Figure for Example 6.2.1.

FIGURE 6.2.6
Figure for Example 6.2.1.

FIGURE 6.2.7

Hybrid- π, small-signal equivalent circuit of a BJT.

or short-circuited for the ac signal. A relation between g_{m}, r_{π}, and β can readily be derived. Thus,

$$
\begin{equation*}
\left.\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{v_{C E}} \frac{\partial v_{B E}}{\partial i_{B}}\right|_{v_{C E}}=\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{v_{C E}} \quad \text { or } \quad g_{m} r_{\pi}=\beta \tag{6.2.8}
\end{equation*}
$$

If r_{μ} is omitted, $v_{e b}=r_{\pi} i_{b}$ and $g_{m} v_{b e}=g_{m} r_{\pi} i_{b}=i_{b}=\beta i_{b}$. The $g_{m} v_{b e}$ VCCS can therefore be replaced by a βi_{b} CCCS (Figure 6.2.8), but only with r_{μ} omitted.

If $v_{b e}=0$ in Figure 6.2.7 and r_{μ} is neglected, $r_{o}=\left.\frac{\partial v_{C E}}{\partial i_{C}}\right|_{v_{B E}}$ is the reciprocal of the slope of the output characteristics with $v_{B E}$ as parameter. Neglecting the secondary effect of base-width modulation ($r_{\mu} \rightarrow \infty$), which is not included in Equation 6.2.1, r_{o} is, from Equation 6.2.6:

$$
\begin{equation*}
r_{o}=\frac{V_{A}}{i_{C(\mathrm{sat})}} \tag{6.2.9}
\end{equation*}
$$

Note that in the absence of r_{μ}, r_{o} is the incremental output resistance with the input either short-circuited to small signals ($v_{b e}=0$) or open circuited ($i_{b}=0$), corresponding to the CE characteristics with constant $v_{B E}$ or constant i_{B}, respectively. Typical values are in the ranges of a few hundred ohms to several $\mathrm{k} \Omega$ for r_{π}, few tens of $\mathrm{k} \Omega$ to several hundred $\mathrm{k} \Omega$ for r_{o}, and hundreds of $\mathrm{k} \Omega$ to several hundred $\mathrm{m} \Omega$ for r_{μ}.

If g_{m} is evaluated at $i_{C}=i_{C(\text { sat })}$, then combining Equations 6.2.7 and 6.2.9,

$$
\begin{equation*}
g_{m} r_{o}=\frac{V_{A}}{V_{T}} \tag{6.2.10}
\end{equation*}
$$

Table 6.2.1 summarizes the expressions for small-signal parameters and their interrelations, the relations in bold being particularly useful in practice. The approximations involved in these relations are commonly made, as by assuming $I_{C} \cong I_{C(\text { sat })}$. It should be emphasized

FIGURE 6.2.8
Replacement of the $g_{m} v_{b e}$ current source by a βi_{b} source.

TABLE 6.2.1
Parameters of the CE Hybrid- π
Equivalent Circuit
$g_{m}=\frac{\boldsymbol{I}_{C}}{\boldsymbol{V}_{\boldsymbol{T}}}=\frac{\beta}{r_{\pi}}=\frac{\alpha}{r_{e}}=\frac{1}{r_{o}} \frac{V_{A}}{V_{T}}$
$r_{\pi}=\frac{\beta}{g_{m}}=\frac{V_{T}}{I_{B}}=\beta \frac{V_{T}}{I_{C}}=\frac{V_{T}}{I_{B}}=(\beta+1) r_{e}$
$\boldsymbol{r}_{\boldsymbol{o}}=\frac{\boldsymbol{V}_{A}}{\boldsymbol{I}_{C(\text { sat })}}=\frac{1}{g_{m}} \frac{V_{A}}{V_{T}}$
$\underline{\boldsymbol{r}_{e}=\frac{r_{\pi}}{\beta+\boldsymbol{1}}=\frac{\boldsymbol{V}_{T}}{\boldsymbol{I}_{\boldsymbol{E}}}=\alpha \frac{V_{T}}{I_{C}}=\frac{\alpha}{g_{m}} \quad \text { and } \quad \frac{1}{r_{e}}=g_{m}+\frac{1}{r_{\pi}}}$
that for small signals $i_{c}=\beta i_{b}$ only when r_{o} is omitted (Figure 6.2.8), whereas for dc or instantaneous values, $i_{C}=\beta_{F} i_{B}$, as long as $I_{C E O}$ can be neglected (Equation 6.1.10). This also illustrates the distinction that should, strictly speaking, be made between β and β_{F}.

Exercise 6.2.1

Verify all the relations in Table 6.2.1.

Example 6.2.2 Determination of Transistor Parameters

Given $i_{C(\text { sat })}=1 \mathrm{~mA}, \beta=200$, and $V_{A}=80 \mathrm{~V}$. Determine: (a) $g_{m}, r_{\pi}, r_{e}, r_{o}$; (b) r_{μ}; (c) input and output resistances.

Solution

(a) From Equation 6.2.7, $g_{m}=1 / 0.026=38.5 \mathrm{~mA} / \mathrm{V}$. From Equation 6.2.8, $r_{\pi}=$ $200 / 38.5=5.2 \mathrm{k} \Omega$. From Equation 6.2.9, $r_{o}=80 / 1=80 \mathrm{k} \Omega$. From Example 6.1.3 and Equation 6.2.8, $r_{e} \cong r_{\pi} / \beta \cong 1 / g_{m} \cong 26 \Omega$.
(b) $r_{\mu}=\left.\frac{\partial V_{B C}}{\partial i_{B}}\right|_{V_{B E}}$ and accounts for the effect of base-collector voltage on the recombination component $i_{\text {e(rec) }}$. It can be expressed as:

$$
\begin{equation*}
r_{\mu}=\left.\frac{\partial v_{B C}}{\partial i_{B}}\right|_{V_{B E}}=-\left.\left.\frac{\partial v_{B C}}{\partial i_{C}}\right|_{V_{B E}} \frac{\partial i_{C}}{\partial i_{B}}\right|_{V_{B E}}=\left.\left.\frac{\partial v_{C E}}{\partial i_{C}}\right|_{V_{B E}} \frac{\partial i_{C}}{i_{B}}\right|_{V_{B E}}=\left.r_{o} \frac{\partial i_{C}}{\partial i_{B}}\right|_{V_{B E}} \tag{6.2.11}
\end{equation*}
$$

where the minus sign accounts for the decrease of i_{C} with $v_{B C}$ (or increase with $v_{C B}$) due to the primary effect of base-width modulation, and the change in $v_{C E}$ is the same as the change in $v_{C B}$ at constant $v_{B E}$. Consider $\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{V_{B E}} . \beta$ is defined as $\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{V_{C E}}$. In normal transistor operation at constant $v_{C E}$, the change in i_{B} is $\Delta i_{B}=\Delta i_{h E}+\Delta i_{\text {e(rec) }}$ (Equation 6.1.1). β is then given by $\Delta i_{C} /\left(\Delta i_{h E}+\Delta i_{\text {e(rec) }}\right)$. When $v_{B E}$ is constant, $\Delta i_{h E}=0$ (Example 6.1.1) and $\left.\frac{\partial i_{C}}{\partial i_{B}}\right|_{V_{B E}} \cong \frac{\Delta i_{C}}{\Delta i_{\text {erec) }}}$ and is considerably larger than β. Hence $r_{\mu}>\beta r_{o}$. How much larger depends on what fraction of i_{B} is $i_{e(\text { rec })}$, as explained at the end of Example 6.1.1. If we assume that $i_{B}=10 i_{\text {e(rec), }}$, then $r_{\mu} \cong 10 \times 200 \times 80 \equiv 160 \mathrm{M} \Omega$.
(c) Because r_{μ} is very much larger than r_{π}, r_{π} is effectively the input resistance, irrespective of whether the output is open circuited or short-circuited for small signals (Figure 6.2.7).

It may be noted that if $v_{b e}=0$, then the output resistance looking into terminal C in Figure 6.2.7 is $\left(r_{o} \| r_{\mu}\right)$. This means that the slope of the output characteristics at constant $v_{B E}$ is $\left(r_{o} \| r_{\mu}\right)$ and not r_{o} as defined by $r_{o}=\left.\frac{\partial V_{C E}}{\partial i_{C}}\right|_{V_{B E}}$. The discrepancy is due to a small approximation made in the derivation of the circuit of Figure 6.2.7, as explained in Section ST6.2. It is also argued in Section ST6.2 that the output resistance at constant i_{B} is very nearly $r_{o} \|\left(r_{\mu} / \beta\right)$ and the output resistance for the CB configuration is $r_{\mu} \| \beta r_{o}$. If the secondary effect of base-width modulation is neglected, $r_{\mu} \rightarrow \infty$, and the output resistance of the CE configuration is r_{o} at constant $v_{B E}$ or i_{B}, which means that the slopes of the output characteristics for constant $v_{B E}$ or i_{B} are equal. Moreover, if $r_{\mu} \rightarrow \infty$, the output resistance of the CB configuration becomes βr_{o} and is the slope of the CB output characteristics.

Considering the numerical values derived above, it is seen that $\left(r_{o} \| r_{\mu}\right)=(80 \mathrm{k} \Omega \| 160 \mathrm{M} \Omega) \cong$ $80 \mathrm{k} \Omega ;\left(r_{o} \| r_{\mu} / \beta\right)=(80 \mathrm{k} \Omega \| 800 \mathrm{k} \Omega)=72.7 \mathrm{k} \Omega$; and $\left(r_{\mu} \| \beta r_{o}\right)=(160 \mathrm{M} \Omega \| 16 \mathrm{M} \Omega)=15.5 \mathrm{M} \Omega$.

Variation of i_{C} with $v_{b e}$
It is instructive to derive an expression for i_{c} as a function of $v_{b e}$. Equation 6.2.1 can be expressed in terms of dc values as $I_{C}=\frac{I_{S}}{\alpha_{F}} e^{V_{B E} / V_{T}}$, or in terms of instantaneous values as $i_{C}=\frac{I_{S}}{\alpha_{F}} e^{v_{B E} / V_{T}}$. Substituting $v_{B E}=V_{B E}+v_{b e}$ gives:

$$
\begin{equation*}
i_{C}=\frac{I_{S}}{\alpha_{F}} e^{V_{B E} / V_{T}} e^{v_{b e} / V_{T}}=I_{C} e^{v_{b e} / V_{T}} \tag{6.2.12}
\end{equation*}
$$

But $i_{C}=I_{C}+i_{c}$. It follows that:

$$
\begin{equation*}
i_{c}=I_{C}\left(e^{v_{b e} / V_{T}}-1\right) \tag{6.2.13}
\end{equation*}
$$

Suppose, for argument's sake, that $i_{C}=10 \mathrm{~mA}$ for $v_{B E}=0.7 \mathrm{~V}$. Let $v_{B E}$ change by 1%, that is, $v_{b e}=7 \mathrm{mV}$. Equation 6.2.13 gives for $V_{T}=26 \mathrm{mV}, i_{c} \cong 0.31 I_{C}$. That is, a change of only 7 mV changes i_{C} by about 31%, from 10 to 13.1 mA . It follows that:

Concept: Because of the exponential variation of i_{C} with $v_{b e}$ a small change in $v_{b e}$ causes a relatively large change in i_{C}, which gives the BJT a large g_{m}.

h-Parameter Equivalent Circuit

Transistor parameters are often specified by the h parameters of two-port circuits (Section 7.1, Chapter 7), where h_{11}, h_{12}, h_{21}, and h_{22} are denoted as $h_{i e}, h_{r e}, h_{f e}$, and $h_{o e}$, respectively. The relationships between these parameters and those of the hybrid- π equivalent circuit are derived in Section ST6.3 for the CE configuration and summarized in Table 6.2.2. If $r_{\mu} \rightarrow \infty$, $h_{r e} \cong 0$, and the h-parameter equivalent circuit is that of Figure 6.2 .8 with $r_{\pi}=h_{i e \prime}, \beta=h_{f e r}$ and $r_{o}=1 / h_{o e}$. The measurement of h parameters is discussed in Section ST6.4.

Temperature Effects

As in the case of a $p n$ junction diode, the effect of a rise in temperature is to make the reverse current of the BCJ approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature, and to make $v_{B E}$ decrease by about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ at constant current. Usually, $v_{B E}$ opposes the voltage driving i_{B} at the input, so that the decrease in $v_{B E}$ increases i_{B} and hence i_{C}. A rise in temperature also increases β_{F} (Figure 6.2.6) and hence i_{C} for a given i_{B}, because of the effect

TABLE 6.2.2
Relations between h Parameters and Hybrid- π Parameters

\boldsymbol{h} Parameter	Hybrid- $\boldsymbol{\pi}$ Parameter	
$h_{f e}$	β	
$h_{i e}$	$\left(r_{\pi} \\| r_{\mu}\right) \cong r_{\pi}$	
$h_{o e}$	$\frac{1}{r_{o}}+\frac{\beta+1}{r_{\pi}+r_{\mu}} \cong \frac{1}{r_{o}}$	
$h_{r e}$	$\frac{r_{\pi}}{r_{\pi}+r_{\mu}} \cong \frac{r_{\pi}}{r_{\mu}}$	

of the high doping level on the bandgap in the emitter. High doping levels decrease the bandgap due to several effects, including formation of an impurity energy band, rather than a discrete level, increased lattice deformation, and coulombic interactions of carriers at high concentrations. A reduced emitter bandgap makes ΔE_{g} negative in Equation 6.4.5 for a heterojunction, which reduces β_{F} but makes it increase with temperature. The temperature coefficient of β_{F} is typically about 0.7% per ${ }^{\circ} \mathrm{C}$.

Breakdown

When avalanche multiplication sets in, Equation 6.1.6 can be expressed as:

$$
\begin{equation*}
i_{C}=M\left(\alpha_{F} i_{E}+I_{C B O}\right) \tag{6.2.14}
\end{equation*}
$$

M in Equation 6.2.14 is an empirically-determined multiplication factor of the form:

$$
\begin{equation*}
M=\frac{1}{1-\left(v_{C B} / B V\right)^{n}} \tag{6.2.15}
\end{equation*}
$$

where
$v_{C B}$ is the reverse voltage across the BCJ
$B V$ is the breakdown voltage of this junction for a given i_{C}
n assumes values between 3 and 6
As $v_{C B} \rightarrow B V, M \rightarrow \infty$, and i_{C} increases rapidly, being limited only by the external circuit. If the breakdown voltage in the CB configuration, with $i_{E}=0$, is denoted by $B V_{C B O}$ (Figure 6.1.2), Equation 6.2.15 becomes:

$$
\begin{equation*}
M=\frac{1}{1-\left(v_{C B} / B V_{C B O}\right)^{n}} \tag{6.2.16}
\end{equation*}
$$

It is seen from Equation 6.2.14 that, for a given M, i_{C} increases with i_{E}, which means that a larger current contributes to avalanche multiplication so that breakdown sets in at lower values of $v_{C B}$. As illustrated in Figure 6.1.2, the larger i_{E}, the lower is the breakdown voltage.

For the CE configuration, breakdown is specified at $i_{B}=0$. Substituting $i_{E}=i_{C}$ in Equation 6.2.14, and solving for i_{C},

$$
\begin{equation*}
i_{C}=\frac{M}{1-\alpha_{F} M} I_{C B O} \tag{6.2.17}
\end{equation*}
$$

where M is given by Equation 6.2 .16 with $v_{C B}$ replaced by $B V_{C E O}$. This is because $v_{C E} \cong$ $v_{C B}$, and breakdown occurs in the CE configuration when $v_{C E}=B V_{C E O}$. Thus,

$$
\begin{equation*}
M=\frac{1}{1-\left(B V_{C E O} / B V_{C B O}\right)^{n}} \tag{6.2.18}
\end{equation*}
$$

From Equation 6.2.17, breakdown occurs when $\alpha_{F} M=1$, or, from Equation 6.2.18, $\alpha_{F}=1-\left(B V_{C E O} / B V_{C B O}\right)^{n}$. This gives:

$$
\begin{equation*}
B V_{C E O}=B V_{C B O} \sqrt[n]{1-\alpha_{F}} \tag{6.2.19}
\end{equation*}
$$

It is seen that $B V_{C E O}$ is considerably less than $B V_{C B O}$. For example, if $n=4$, and $\alpha_{F}=0.99$, $B V_{C E O}=0.32 B V_{C B O}$. The reason for this is that avalanche multiplication is amplified by
transistor action in the CE configuration. As electron-hole pairs are generated in the depletion region of the BCJ , electrons are swept into the collector and holes into the base. To compensate for the positive charge in the base due to these holes, electrons are injected into the base from the emitter. But, by transistor action, a fraction $\left(1-\alpha_{F}\right)$ of these electrons recombine with the holes swept into the base, whereas the remainder, which is α_{F} times, diffuses to the BCJ , where they increase the collector current and result in more multiplicative collisions. Breakdown therefore sets in at a lower reverse voltage across the BCJ. In practice, the effect is not as marked as Equation 6.2.19 suggests. This is because in actual transistor structures, as opposed to the plane-junction structures assumed in analysis, there are regions of the BCJ that are not adjacent to the emitter (Figure 6.1.4) and which, therefore, do not cause amplification of the avalanche current of the BCJ, as just described.

In a reverse-biased $p n$ junction, the breakdown voltage is determined by the doping on the more lightly doped side (Section 3.2, Chapter 3 and Example 6.2.3). Hence, the collector is less heavily doped than the base in order to control $B V_{C B O}$ and obtain values that are normally in the range of 100 V . In the case of the BEJ, the emitter is much more heavily doped in order to obtain an injection efficiency close to unity (Equation 6.1.2). The doping of the base therefore determines the BEJ breakdown voltage. As this voltage is normally less than about 8 V , zener breakdown plays a significant role (Section 3.2, Chapter 3).

Exercise 6.2.2

If $\alpha_{F}=0.99$, determine $B V_{\text {CEO }}$ in terms of $B V_{C B O}$, assuming (a) $n=3$; (b) $n=6$.
Answers: (a) 0.22; (b) 0.46 .

Example 6.2.3 Determination of Breakdown Voltages

Given $N_{A B}=10^{16} / \mathrm{cm}^{3}, N_{D C}=10^{15} / \mathrm{cm}^{3}$, and a breakdown electric field $\xi_{\text {brk }}$ of 2×10^{5} V / cm, it is required to determine $B V_{C B O}$ and $B V_{C E O}$, assuming that $n=4$ in Equation 6.2.19 and $\beta=50$ at the low value of $I_{\text {CEO }}$.

Solution

According to the depletion approximation (Section 3.1, Chapter 3), the voltages V_{p} and V_{n} across the depletion region on the p-side and n-side, respectively, of a $p n$ junction are from Equations 3.1.9 and 3.1.10, Chapter 3:

$$
\begin{equation*}
V_{p}=\frac{1}{2} W_{p}\left|\xi_{\max }\right| \quad \text { and } \quad V_{n}=\frac{1}{2} W_{n}\left|\xi_{\max }\right| \tag{6.2.20}
\end{equation*}
$$

where $\xi_{\text {max }}$ is the maximum electric field in the depletion region, which is at the metallurgical junction. The total reverse bias $V_{R}=V_{p}+V_{n}$. Hence,

$$
\begin{equation*}
\frac{V_{n}}{V_{p}+V_{n}}=\frac{1}{1+W_{p} / W_{n}} \tag{6.2.21}
\end{equation*}
$$

Using the relations of Equation 3.1.11, Chapter 3,

$$
\begin{equation*}
\frac{V_{n}}{V_{p}+V_{n}}=\frac{1}{1+N_{D} / N_{A}} \tag{6.2.22}
\end{equation*}
$$

If $N_{D} \ll N_{A}$, then $V_{R} \cong V_{n}$. Thus, if $N_{D}=0.1 N_{A}, V_{R}=0.91 V_{n}$. The breakdown voltage is therefore determined by the voltage across the depletion layer on the more lightly doped side.

With $N_{D} \ll N_{A}$, it follows from Equation 3.1.12 that $\xi_{\max }=\sqrt{2|q| N_{D}\left(V_{R}+V_{n p o}\right) / \varepsilon_{s}}$. Identifying N_{D} with collector doping $N_{D C}, V_{R}$ with $B V_{C B O}$, and neglecting $V_{n p o}$ compared to $B V_{C B O}$:

$$
\begin{equation*}
B V_{C B O}=\frac{\varepsilon_{s} \xi_{\text {brk }}^{2}}{2|q| N_{D C}} \tag{6.2.23}
\end{equation*}
$$

Substituting numerical values gives $B V_{C B O} \cong 131 \mathrm{~V}$. The actual breakdown voltage is generally less than that given by Equation 6.2.23, because in real transistors, the $B C J$ is not planar but necessarily has some curvature at the edges. The electric field in these regions can be markedly higher than that in the planar parts of the junction, so breakdown occurs at lower voltages than predicted by Equation 6.2.23.

If we replace $\left(1-\alpha_{F}\right)$ by its equivalent $1 /\left(1+\beta_{F}\right)$, Equation 6.2.19 becomes:

$$
B V_{C E O}=\frac{B V_{C B O}}{\sqrt[4]{1+\beta_{F}}}=\frac{131}{\sqrt[4]{51}}=49 \mathrm{~V}
$$

Equation 6.2.19 can also be used to explain the "kink" in the CE characteristic for $i_{B}=0$ at voltages near breakdown (Figure 6.2.3b). As $B V_{\text {CEO }}$ is approached with only $I_{\text {CEO }}$ flowing, α_{F} is small at this low current, as explained in connection with Equation 6.1.13, and $B V_{\text {CEO }}$ as given by Equation 6.2.19 is relatively high. As breakdown sets in, the current increases so α_{F} increases, and $B V_{\text {CEO }}$ decreases, causing the characteristic to bend back as shown. At higher collector currents, α_{F} assumes an almost constant value, and $B V_{\text {CEO }}$ stays constant.

Punchthrough

This occurs when, with a sufficiently large reverse bias, the depletion region of the BCJ extends all across the base and merges with the depletion layer of the BEJ. Normally, avalanche breakdown occurs before this happens. But if the base is very thin or very lightly doped, punchthrough can occur. The base effectively ceases to have any control on the current. An increase of $v_{C E}$ beyond the punchthrough value causes a large current to flow between collector and emitter, usually with catastrophic effects.

The depletion regions of the BEJ and the BCJ of an npn transistor at punchthrough are illustrated in Figure 6.2.9 together with the energy band diagram. The increase in current can be readily understood with reference to Figure 6.2.1. At punchthrough, the effective base width W_{B} becomes zero, so that, according to Equation 6.2.1 the diffusion current approaches infinity. Once in the base, electrons flow from the base to the collector under the influence of the large electric field due to the reverse bias.

BJT Capacitances

The effect of stored charges in a BJT can be simulated, for small changes, by incremental capacitances. Considering the diffusion capacitance of the forward-biased BEJ, and because the hole current injected into the emitter is small compared to the electron current injected into the base, the charge due to hole storage in the transition region on the emitter side of an $n p n$ transistor is neglected in comparison with the charge $Q_{e B}$ due to electron storage in the base. $\left|Q_{e B}\right|$ can be readily related to i_{C}. If τ_{F} is the average time it takes an electron at the emitter end of the base to move to the collector end of the base, then the total charge

FIGURE 6.2.9
Depletion regions and energy band diagram of an $n p n$ transistor just before punchthrough.
transferred during this time is $\left|Q_{e B}\right|$, and the collector current is the charge transferred per unit time. Thus,

$$
\begin{equation*}
\left|Q_{e B}\right|=\tau_{F} i_{C} \tag{6.2.24}
\end{equation*}
$$

where i_{C} is a positive current flowing into the collector. Equation 6.2.24 is more rigorously derived in Section ST6.1. τ_{F} is the mean forward transit time through the base.

An incremental capacitance can be defined as:

$$
\begin{equation*}
C_{d E}=\left.\frac{\partial\left|Q_{e B}\right|}{\partial v_{B E}}\right|_{v_{C E}}=\left.\tau_{F} \frac{\partial i_{C}}{\partial v_{B E}}\right|_{v_{C E}}=\tau_{F} g_{m}=\tau_{F} \frac{I_{C}}{V_{T}} \tag{6.2.25}
\end{equation*}
$$

where τ_{F} is assumed to be independent of $v_{B E}$ because electrons flow in the base predominantly by diffusion (Example ST6.1.4, Section ST6.1). $C_{d E}$ appears between the base and emitter because it is defined with respect to changes in $v_{B E}$. To this capacitance must be added the capacitance $C_{j E}$ that accounts for the change in the width of the depletion layer of the BEJ due to a change in $v_{B E}$. From Equation 3.2.6, Chapter 3,

$$
\begin{equation*}
C_{j E}=\frac{C_{j E 0}}{\left(1-V_{B E} / V_{j E o}\right)^{m}} \tag{6.2.26}
\end{equation*}
$$

where
$C_{j E 0}$ is the capacitance when $V_{B E}=0$
$V_{j E o}$ is the equilibrium junction potential m depends on the grading of the BEJ and is typically between 0.2 and 0.5

As a rule of thumb, $C_{j E}$ is approximately twice $C_{j E 0}$. The total capacitance between base and emitter terminals is:

$$
\begin{equation*}
C_{\pi}=C_{d E}+C_{j E} \tag{6.2.27}
\end{equation*}
$$

At the reverse-biased BCJ the diffusion capacitance is negligible (Section 3.2, Chapter 3). The depletion capacitance $C_{j c}$ is:

$$
\begin{equation*}
C_{j C}=\frac{C_{j C 0}}{\left(1+V_{C B} / V_{j C_{0}}\right)^{m}} \tag{6.2.28}
\end{equation*}
$$

where
$C_{j C 0}$ is the capacitance when $V_{C B}=0$
$V_{j C o}$ is the equilibrium potential of the BCJ
Because the charge stored in the base varies with $v_{B C}$, there is an additional capacitance $C_{b \mu}$ that must be considered and is given by:

$$
\begin{equation*}
C_{b \mu}=\left|\frac{\partial Q_{e B}}{\partial v_{B C}}\right|_{v_{B E}}=\left.\frac{\partial\left(\tau_{F} i_{C}\right)}{\partial v_{C B}}\right|_{v_{B E}}=\left.\tau_{F} \frac{\partial\left(i_{C}\right)}{\partial v_{C E}}\right|_{v_{B E}}=\tau_{F} \frac{I_{C}}{V_{A}} \tag{6.2.29}
\end{equation*}
$$

where τ_{F} is assumed to be independent of $v_{B C}$, and hence of $v_{C E}$ at constant $v_{B E}$, and Equation 6.2.9 was used, assuming $I_{C}=I_{C \text { (sat) }}$. As explained earlier, electrons in the base flow by diffusion, and the dependence of τ_{F} on $v_{B C}$ is small and mainly due to the variation in the width of the depletion region with $v_{B C} . \tau_{F} I_{C}$ can be substituted from Equation 6.2.25 to obtain:

$$
\begin{equation*}
C_{b \mu}=C_{d E} \frac{V_{T}}{V_{A}} \tag{6.2.30}
\end{equation*}
$$

As V_{T} is about 0.026 V at 300 K , whereas V_{A} is generally $50-100 \mathrm{~V}, C_{b \mu} \ll C_{d E}$. The total capacitance between base and collector is then:

$$
\begin{equation*}
C_{\mu}=C_{j C}+C_{b \mu} \cong C_{j C} \tag{6.2.31}
\end{equation*}
$$

The complete small-signal equivalent circuit is shown in Figure 6.2.10. A capacitance $C_{c s}$ has been included to account for the capacitance between the collector and substrate, which in modern ICs is quite small (Figure 6.1.4). Typical values of C_{μ} are in the range of a fraction of a pF to a few pFs , and the corresponding range for C_{π} is a few pFs to a few tens of pFs .

Figure 6.2.10 also shows "parasitic resistances" r_{B}, r_{C}, and r_{E}. As in the case of the bulk resistance of the $p n$ junction diode, these include the resistance of the metallic contact and of the bulk region of the semiconductor, all the way to the active region of the base, collector, or emitter, respectively. The resistances generally vary with current in a complex manner depending on the structure of the BJT. Typically, r_{B} is in the range of a few tens to a few hundred ohms, r_{C} is in the range of a few ohms to a few tens of ohms, and r_{E} is a few ohms or less.

Note that whereas reverse transmission is due to r_{μ} under dc conditions, it is due under ac conditions to the parallel combination of r_{μ} and C_{μ}.

Exercise 6.2.3

Deduce from Figure 6.2.1 that $\left|Q_{e B}\right|=\frac{1}{2} n_{p}(0) W_{B} A_{J}|q|$ and show that:

$$
\begin{equation*}
\frac{\left|Q_{e B}\right|}{i_{C}}=\tau_{F}=\frac{W_{B}^{2}}{2 D_{e B}} \tag{6.2.32}
\end{equation*}
$$

FIGURE 6.2.10
Small-signal equivalent circuit of the BJT including parasitic resistances and internal capacitances.
and,

$$
\begin{equation*}
C_{d E}=\left.\frac{\partial\left|Q_{e B}\right|}{\partial v_{B E} \mid}\right|_{v_{C E}}=\frac{1}{2 V_{T}} W_{B} A_{J}|q| n_{p o} e^{v_{B E} / V_{T}} \tag{6.2.33}
\end{equation*}
$$

Unity-Gain Bandwidth

An important figure of merit of the BJT is the unity-gain bandwidth, determined using the small-signal equivalent circuit of Figure 6.2.11, with the collector ac short-circuited to the emitter. This equivalent circuit is that of Figure 6.2.10, ignoring r_{μ} and the parasitic resistances. It follows from Figure 6.2.11 that:

$$
\begin{equation*}
I_{c}(j \omega)=\left(g_{m}-j \omega C_{\mu}\right) V_{\pi}(j \omega) \tag{6.2.34}
\end{equation*}
$$

and,

$$
\begin{equation*}
I_{b}(j \omega)=\left(\frac{1}{r_{\pi}}+j \omega\left(C_{\pi}+C_{\mu}\right)\right) V_{\pi}(j \omega) \tag{6.2.35}
\end{equation*}
$$

Dividing and assuming that at the frequencies of interest $g_{m} \gg \omega C_{\mu}$,

$$
\begin{equation*}
\beta=\frac{I_{c}(j \omega)}{I_{b}(j \omega)} \cong \frac{\beta_{0}}{1+j \omega\left(C_{\pi}+C_{\mu}\right) r_{\pi}} \tag{6.2.36}
\end{equation*}
$$

A simplified version of the equivalent circuit of Figure 6.2.10.

FIGURE 6.2.12
Frequency variation of the magnitude of the short circuit CE current gain.

where $\beta_{0}=g_{m} r_{\pi}$ is the value of β at zero frequency. It is usual to refer to β in Equation 6.2 .36 as $h_{f e}$. A Bode plot of $\left|h_{f e}\right|$ is shown in Figure 6.2.12. The 3-dB cutoff frequency ω_{β} is given by:

$$
\begin{equation*}
\omega_{\beta}=\frac{1}{\left(C_{\pi}+C_{\mu}\right) r_{\pi}} \tag{6.2.37}
\end{equation*}
$$

The unity-gain bandwidth ω_{T} is the frequency at which $\left|h_{f e}\right|=1$. From Equations 6.2.36 and 6.2.37, this occurs when $\beta_{0}=\sqrt{1+\left(\omega_{T} / \omega_{\beta}\right)^{2}}$. As $\beta_{0} \gg 1$, it follows that $\omega_{T} \gg \omega_{\beta}$, so that:

$$
\begin{equation*}
\omega_{T}=\beta_{0} \omega_{\beta}=\frac{\beta_{0}}{\left(C_{\pi}+C_{\mu}\right) r_{\pi}}=\frac{g_{m}}{\left(C_{\pi}+C_{\mu}\right)} \tag{6.2.38}
\end{equation*}
$$

As discussed in the case of the MOSFET (Equation 6.2.19, Chapter 6), the larger ω_{T}, the better is the "quality" of the transistor in terms of a high gain and a large bandwidth. ω_{T} represents the maximum theoretically attainable gain-bandwidth product of the amplifying stage using the given transistor. ω_{T} increases with g_{m} and decreases with the capacitances, as in the case of the MOSFET. C_{μ} is largely made up of the depletion capacitance of the BCJ and depends on the grading and levels of doping as well as on the reverse bias across the junction. C_{π} is made up of a depletion capacitance $C_{j E}$ and a diffusion capacitance $C_{d E}$, which is usually considerably larger than $C_{j E}$, because the BEJ is forward biased. Equation 6.2.38 can be written as:

$$
\begin{equation*}
\frac{1}{\omega_{T}} \cong \frac{C_{d E}+C_{j E}+C_{j C}}{g_{m}}=\tau_{F}+\frac{C_{j E}+C_{j C}}{g_{m}} \tag{6.2.39}
\end{equation*}
$$

where $C_{d E}=g_{m} \tau_{F}$ (Equation 6.2.25). Generally, $\tau_{F}>\left(C_{j E}+C_{j C}\right) / g_{m}$ in the active region (Example 6.2.4) so that ω_{T} is dominated by $1 / \tau_{F}$. It is seen that:

Concept: The mean forward transit time τ_{F} is a critical parameter in determining the high-frequency performance of the BJT.

Physically, if the signal frequency is high enough, the motion of electrons through the base cannot follow the signal and the current gain of the transistor falls off. Evidently, τ_{F} is reduced by having a small W_{B} and a large $D_{e B}$, in accordance with Equation 6.2.32.

At a given T, the diffusion constant is directly proportional to mobility (Equation 2.4.5, Chapter 2). As electron mobilities are approximately three times hole mobilities in Si, highfrequency BJTs are $n p n$, rather than $p n p . \tau_{F}$ can be reduced by graded doping in the base, the doping concentration decreasing from the BEJ to the BCJ. At equilibrium, holes nearer the emitter in a p-type base are at a higher chemical potential, so they must be at a lower electric potential. This means that there will be a built-in electric field in the base, directed from collector to emitter, which accelerates electrons injected into the base and reduces τ_{F}. Typically, $f_{T}=\omega_{T} / 2 \pi$ is in the range of a few hundred MHz to tens of GHz or more.
f_{T} decreases at high and low values of I_{C}. For intermediate values of I_{C}, where τ_{F} dominates in Equation 6.2.39, $f_{T}=1 / 2 \pi \tau_{F}$. At low values of I_{C}, the term $\left(C_{j E}+C_{j C}\right) / g_{m}$ dominates in Equation 6.2.39 because g_{m} decreases with I_{C} (Equation 6.2.7), which decreases f_{T} as I_{C} decreases. At high values of I_{C} the effects of high-level injection, which decrease β_{F}, also decrease β_{0}, and hence f_{T} (Equation 6.2.38).
It is seen from the more complete circuit of Figure 6.2.10 that r_{B} plays an important role at high frequencies. It forms, in conjunction with the capacitances appearing at node b, a time constant that limits the high-frequency response (Section 8.3, Chapter 8). Recall that in an $n p n$ transistor, i_{B} provides the holes that: (1) are injected into the emitter under forward bias of the BEJ, and (2) recombine with some of the electrons injected into the base. The path of i_{B} is diagrammatically illustrated in Figure 6.1.4. r_{B} is the resistance encountered by i_{B}. If the base is made very thin so as to decrease τ_{F}, r_{B} increases and limits the high frequency response. Moreover, reducing the base width magnifies the effect of base-width modulation and lowers V_{A}. If the doping level in the base is increased so as to reduce the width of the depletion region in the base, and hence the effect of base-width modulation, the higher doping reduces the emitter injection efficiency, increases $C_{j E 0}$, and reduces electron mobility in the base, which degrades the high-frequency performance. Hence in trying to maximize f_{T}, a compromise is made between all these factors. A heterojunction (Section 6.4) offers improved performance. It should be noted that realistic modeling of r_{B} at very high frequencies is complicated by the strictly distributed nature of r_{B} and C_{μ}. A simple, lumped-parameter representation may not be adequate in some cases.
r_{C}, in conjunction with any load capacitance, also limits the high frequency response. When transistors are cascaded, r_{C} adds to r_{B} of the following stage, again adversely affecting the high-frequency response. Having an n^{+}buried layer (Figure 6.1.4) reduces r_{C}.

Example 6.2.4 Calculation of Unity-Gain Frequency

Given $I_{C}=1.1 \mathrm{~mA}, \tau_{F}=50 \mathrm{ps}, C_{j e}=0.1 \mathrm{pF}, C_{j C}=0.02 \mathrm{pF}$, and $V_{A}=100 \mathrm{~V}$, calculate $C_{d E}$, $C_{b \mu}$, and f_{T}.

Solution

From Equation 6.2.7, $g_{m}=I_{C(\text { sat })} / V_{T}=1.1 / 0.026=42.3 \mathrm{~mA} / \mathrm{V}$. From Equation 6.2.25, $C_{d E}=\tau_{B} I_{C} / V_{T}=50 \times 10^{-12} \times 1.1 \times 10^{-3} / 0.026 \equiv 2.1 \mathrm{pF}$. Note that $C_{b \mu}=C_{d E} \frac{V_{T}}{V_{A}}=$ $2.1 \times 0.026 / 100=0.55 \mathrm{fF}$, which is much less than $C_{j C}$. In Equation 6.2.39, $\left(C_{j E}+C_{j C}\right) / g_{m}=0.12 \times 10^{-12} / 42.3 \times 10^{-3} \equiv 2.8 \mathrm{pS}$, which is much smaller than τ_{F}. From Equation 6.2.39, $\omega_{T}=1 / 52.8 \mathrm{pS}$, and $f_{T}=3.0 \mathrm{GHz}$.

Simulation Example 6.2.5 High-Frequency Response

It is required to obtain by simulation the $3-\mathrm{dB}$ and unity-gain frequencies of the 2 N 2222 .

Solution

The schematic is shown in Figure 6.2.13. An IAC source applies a $53.75 \mu \mathrm{~A}$ dc current and $1 \mu \mathrm{~A}$ ac current to the base. The dc current is adjusted to give a 10 mA dc collector current and a high β. The collector is ac short-circuited to ground by a 1 F capacitor. An ac sweep is performed over the frequency range 1 kHz to 1 GHz , and $20 \log _{10}[(\mathrm{Q} 1: \mathrm{c}) / \mathrm{l}(\mathrm{Q} 1: \mathrm{b})]$ is plotted (Figure 6.2.14). From measurement on the plot, $h_{f e}$ at low frequencies $=45.75 \mathrm{~dB}$, a $3-\mathrm{dB}$ cutoff frequency of 1.557 MHz , and a unity-gain frequency of 302.7 MHz are obtained.
From probe measurements at low frequencies, $i_{c}=(\mathrm{Q} 1: c)=0.194 \mathrm{~mA}$ and $v_{b e}=\mathrm{V}(\mathrm{Q} 1: \mathrm{b})=$ 0.528 mV . It follows from these values that: $\beta=0.194 \mathrm{~mA} / 1 \mu \mathrm{~A}=194, g_{m}=$ $0.194 \mathrm{~mA} / 0.528 \mathrm{mV} \equiv 367 \mathrm{~mA} / \mathrm{V}$, and $r_{\pi}=0.528 \mathrm{mV} / 1 \mu \mathrm{~A}=528 \Omega$. We can compare these figures with calculated values. Thus, $20 \log _{10} \beta=45.76 \mathrm{~dB}$ compared with 45.75 dB from the plot of Figure 6.2.14; $g_{m}=I_{C} / V_{T}=10 \mathrm{~mA} / 0.026 \mathrm{~V}=385 \mathrm{~mA} / \mathrm{V} ; r_{\pi}=\beta / g_{m}=$ $194 / 367 \mathrm{~mA} / \mathrm{V} \equiv 529 \Omega$.

FIGURE 6.2.13
Figure for Example 6.2.5.

FIGURE 6.2.14
Figure for Example 6.2.5.

From the PSpice model of the $2 \mathrm{~N} 2222: C_{j C}=7.306 \mathrm{pF}, C_{j E}=22.01 \mathrm{pF}$, and $\tau_{F}=411.1 \mathrm{ps}$. From Equation 6.2.25, $C_{d E}=\tau_{B} g_{m}=(411.1 \mathrm{ps}) \times(385 \mathrm{~mA} / \mathrm{V})=158 \mathrm{pF}$ so that $C_{\pi}=C_{d E}+$ $C_{j E}=158+22=180 \mathrm{pF}$. Considering $C_{\mu} \cong C_{j C}=7.31 \mathrm{pF}$, it follows from Equation 6.2.37 that $f_{\beta}=1 /\left(2 \pi\left(C_{\pi}+C_{\mu}\right) r_{\pi}\right)=1 /(2 \pi \times(187 \mathrm{pF}) \times 529)=1.61 \mathrm{MHz}$ compared to a value of 1.557 MHz in Figure 6.2.14. From Equation 6.2.39, $\frac{1}{\omega_{T}}=411+\frac{(22+7.3) \mathrm{pF}}{385 \mathrm{~mA} / \mathrm{V}}=$ $411+76.1=487 \mathrm{ps}$. This gives $f_{T}=1 /(2 \pi \times 487 \mathrm{ps})=327 \mathrm{MHz}$, compared to a value of 302.7 MHz in Figure 6.2.14.

Because PSpice performs the simulation on a linearized model, using an IAC of 1 A rather $1 \mu \mathrm{~A}$ gives the same values for β and r_{π}, although the simulation values of i_{c} and $v_{b e}$ would seem "unnatural." Note that an IPRINT printer can be used to measure i_{c} and a VPRINT printer to measure $v_{b e}$, the AC Sweep being performed at a single frequency of, say, 1 kHz .

Application Window 6.2.1 Voltage Proportional to Absolute Temperature

A voltage proportional to absolute temperature (PTAT), based on Equation 6.2.1, is at the heart of today's digital thermometers. If two transistors are matched, except for their BEJ areas, and carry the same current, it follows from Equation 6.2.1 that:

$$
\begin{equation*}
V_{\mathrm{PTAT}}=V_{B E 2}-V_{B E 1}=\frac{k T}{|q|} \ln \frac{A_{1}}{A_{2}} \tag{6.2.40}
\end{equation*}
$$

where, if transistor Q_{1} has a BEJ area A_{1} larger than the BEJ area A_{2} of Q_{2}, it will have a smaller $V_{B E}$ for the same emitter current. The temperature coefficient of $V_{\text {PTAT }}$ is:

$$
\begin{equation*}
\frac{d V_{\mathrm{PTAT}}}{d T}=\frac{V_{\mathrm{PTAT}}}{T} \tag{6.2.41}
\end{equation*}
$$

A basic circuit for generating a $V_{\text {PTAT }}$ is illustrated in Figure 6.2.15. Q_{1} has 10 times the BEJ area of Q_{2}. A high-gain current amplifier A_{I} equalizes the currents in Q_{1} and Q_{2} by producing the appropriate $V_{B E 2}-V_{B E 1}$ across R_{1}. The $V_{\text {PTAT }}$ at Q_{1} base is $\left(V_{B E 2}-V_{B E 1}\right) \times\left(R_{2} / R_{1}\right)$, neglecting the base current of Q_{1}. This voltage is processed, converted to digital form, and displayed as temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.

6.3 BJT Large-Signal Models

Ebers-Moll Model

The Ebers-Moll (EM) equations are extensively used to model the large-signal, nonlinear behavior of a BJT in all modes of operation. In their most basic form, they apply

FIGURE 6.2.15
Figure for Application Window 6.2.1.
at low frequencies to an "ideal transistor," that is, one having uniform doping, abrupt, parallel-plane junctions, low-level injection, no recombination and generation in the depletion regions, and no base-width modulation. These equations are derived in Section ST6.1 and can be written in terms of instantaneous values for an $n p n$ transistor as:

$$
\begin{gather*}
i_{C}=\alpha_{F} I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)-I_{S C}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.1}\\
\bar{i}_{E}=-I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)+\alpha_{R} I_{S C}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.2}
\end{gather*}
$$

where
α_{R} is the dc CB current gain with the transistor in inverse active mode
$I_{S C}$ is the saturation current of the base-collector $p n$ junction ($e^{v_{B C}} / V_{T} \ll 1$) with the base short-circuited to the emitter $\left(V_{B E}=0\right)$
$I_{S E}$ is similarly defined as the saturation current of the base-emitter $p n$ junction with the base short-circuited to the collector

The assigned positive direction of \bar{i}_{E} is that flowing into the emitter junction, so $\bar{i}_{E}=-i_{E}$, as has been used for an npn transistor. The four parameters in these equations are not independent because:

$$
\begin{equation*}
\alpha_{F} I_{S E}=\alpha_{R} I_{S C} \tag{6.3.3}
\end{equation*}
$$

(Section ST6.1). Equations 6.3.1 and 6.3.2 can be represented by the equivalent circuit of Figure 6.3.1, which is the static, injection version of the EM model. Diodes D_{E} and D_{C} represent the BEJ and $B C J$, respectively, whereas the current sources account for transistor action due to the narrow base. The forward currents of the two diodes are:

$$
\begin{equation*}
i_{D E}=I_{S E}\left(e^{v_{B E} / V_{T}}-1\right) \quad \text { and } \quad i_{D C}=I_{S C}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.4}
\end{equation*}
$$

In terms of $i_{D E}$ and $i_{D C}$, Equations 6.3.1 and 6.3 .2 become:

$$
\begin{align*}
& i_{C}=\alpha_{F} i_{D E}-i_{D C} \tag{6.3.5}\\
& \bar{i}_{E}=\alpha_{R} i_{D C}-i_{D E} \tag{6.3.6}
\end{align*}
$$

FIGURE 6.3.1
Injection version of the Ebers-Moll model.

FIGURE 6.3.2
Transport version of the Ebers-Moll model.

In the normal active region $\left(v_{B E}>0, v_{B C}<0\right), i_{D C}=-I_{S C}$, so that $i_{C}=\alpha_{F} i_{D E}+I_{S C}$. This is of the form of Equation 6.1.6, although $i_{D E}$ is not the same as i_{E}, and $I_{S C}$ is not the same as $I_{C B O}$. Also, $i_{E}=i_{D E}+\alpha_{R} I_{S C}$. The emitter current is thus the sum of the forward current of the emitter diode and the collector saturation current multiplied by α_{R}.

The injection version of Figure 6.3.1 can be transformed to the simpler, transport version of Figure 6.3.2 (Section ST6.1), in which $I_{S}=\alpha_{F} I_{S E}=\alpha_{R} I_{S C}$ and i_{T} is defined as:

$$
\begin{align*}
i_{T} & =\alpha_{F} I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)-\alpha_{R} I_{S C}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.7}\\
& =I_{S}\left(e^{v_{B E} / V_{T}}-1\right)-I_{S}\left(e^{v_{B C} / V_{T}}-1\right)=I_{S}\left(e^{v_{B E} / V_{T}}-e^{v_{B C} / V_{T}}\right) \tag{6.3.8}
\end{align*}
$$

$\beta_{F}=\alpha_{F} /\left(1-\alpha_{F}\right)$ is the CE current gain in the normal active mode, and $\beta_{R}=\alpha_{R} /\left(1-\alpha_{R}\right)$ is the corresponding current gain in the inverse active mode.
In Equation 6.3.7, $I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)$ is the diffusion current across the forward-biased BEJ, and $\alpha_{F} I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)$ is the fraction of this current that reaches the collector junction. Similarly, $I_{S C}\left(e^{v_{B C}} / V_{T}-1\right)$ is the diffusion current across the forward-biased BCJ, and $\alpha_{R} I_{S C}\left(e^{v_{B C} / V_{T}}-1\right)$ is the fraction of this current that reaches the emitter junction.

It follows from Figure 6.3.2 that the terminal currents can be expressed as:

$$
\begin{gather*}
\bar{i}_{E}=-i_{T}-\frac{I_{S}}{\beta_{F}}\left(e^{v_{B E} / V_{T}}-1\right)=-\frac{I_{S}}{\alpha_{F}}\left(e^{v_{B E} / V_{T}}-1\right)+I_{S}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.9}\\
i_{C}=i_{T}-\frac{I_{S}}{\beta_{R}}\left(e^{v_{B C} / V_{T}}-1\right)=I_{S}\left(e^{v_{B E} / V_{T}}-1\right)-\frac{I_{S}}{\alpha_{R}}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.10}\\
i_{B}=-\bar{i}_{E}-i_{C}=\frac{1}{\beta_{F}} I_{S}\left(e^{v_{B E} / V_{T}}-1\right)+\frac{1}{\beta_{R}} I_{S}\left(e^{v_{B C} / V_{T}}-1\right) \tag{6.3.11}
\end{gather*}
$$

In the normal active mode $e^{v_{B C} / V_{T}} \ll 1$, so that these equations become:

$$
\begin{gather*}
i_{E} \cong \frac{I_{S}}{\alpha_{F}} e^{v_{B E} / V_{T}}-\frac{I_{S}}{\beta_{F}} \cong \frac{I_{S}}{\alpha_{F}} e^{v_{B E} / V_{T}} \tag{6.3.12}\\
i_{C} \cong I_{S} e^{v_{B E} / V_{T}}+\frac{I_{S}}{\beta_{R}} \cong I_{S} e^{v_{B E} / V_{T}} \tag{6.3.13}\\
i_{B} \cong \frac{I_{S}}{\beta_{F}} e^{v_{B E} / V_{T}}-I_{S}\left(\frac{1}{\beta_{F}}+\frac{1}{\beta_{R}}\right) \cong \frac{I_{S}}{\beta_{F}} e^{v_{B E} / V_{T}} \tag{6.3.14}
\end{gather*}
$$

(a) $i_{B}=\frac{I_{S}}{\beta_{F}} e^{v_{B E} / V_{T}}$

(b)

$$
i_{B}=\frac{I_{S}}{\beta_{F}} e^{-v_{B E} / V_{T}}
$$

FIGURE 6.3.3
Approximate large-signal models for an $n p n$ transistors (a) and a pnp transistor (b).

The relations on the RHS of these equations are those commonly used to characterize the active mode. Equations 6.3.12 and 6.3.13 should be compared with Equation 6.2.1. In the active mode, the current through D_{C} is very small, so this branch may be open circuited and $i_{T} \cong i_{C}$. The circuit reduces to the approximate large-signal models sometimes used, as shown in Figure 6.3.3a and b for $n p n$ and $p n p$ transistors, respectively. Note that whereas small-signal models are the same for complementary transistors, large-signal models are not.

To further illustrate the connection between the EM equations and the relations used in Section 6.1, it is shown in Example ST6.1.1, Section ST6.1, that the EM equations give $I_{C E O}=I_{C B O} /\left(1-\alpha_{F}\right)$ and $I_{S C}=I_{C B O} /\left(1-\alpha_{F} \alpha_{R}\right)$, where $I_{S C}$ is the collector current with the base and emitter terminals short-circuited. The emitter currents are compared in Example ST6.1.2 and the equivalent circuits in Example ST6.1.3.

Saturation Mode

Figure 6.3.4a is the basic circuit of a BJT inverter, analyzed in detail in Section ST6.5. When $v_{B}=0$, then $i_{B} \cong 0$, and $i_{C}=\frac{I_{C B O}}{1-\alpha_{F} \alpha_{R}}<I_{C E O} \cong 0$ (Example ST6.1.1, Section ST6.1). The operating point \mathbf{Q}_{1} (Figure 6.3.4b) is practically on the voltage axis, with $v_{C E} \cong V_{D D}$. As v_{B} is increased, i_{B} begins to flow. The transistor is now in active mode, the operating point being Q_{2}, say, at the intersection of the $i_{B}=i_{B 2}$ output characteristic and a load line of slope $-1 / R_{C}$. With further increase in v_{B}, i_{B} and i_{C} increase, which decreases $v_{C E}$ and $v_{C B}$. The operating point eventually moves to the edge of the saturation region $\left(Q_{3}\right.$ in Figure 6.3.4b), where i_{B}, i_{C}, and $v_{C E}$ have values of $i_{B(\text { sat })}, i_{C(\text { sat })}$, and $v_{C E(\text { sat })}$, respectively. At this point, the BCJ is forward biased to the forward cut-in voltage. Any further increase in v_{B} beyond $v_{B(\text { sat })}$ moves the transistor into saturation.

In the saturation region, which has been greatly exaggerated in Figure 6.3.4b for clarity, the individual characteristics for constant i_{B} are crowded together (Figure 6.2.4a). The forward voltage drop $v_{B C}$ is slightly less than the forward voltage drop $v_{B E}$ because the area of the BCJ is larger than that of the BEJ, and for a given forward current, the forward voltage across a $p n$ junction is inversely proportional to the area of the junction (Equation ST3.5.10, Section ST3.5, Chapter 3). Hence, $v_{C E(\text { sat })}=v_{B E}-v_{B C}$ is normally in the range of $0.1-0.3 \mathrm{~V}$. Thus, when $v_{B}=0, v_{B E} \cong 0$, the transistor is practically cutoff and $v_{C E} \cong V_{C C}$.

FIGURE 6.3.4
Basic circuit of a BJT inverter: (a) speed-up capacitor is shown dotted; (b) output characteristics with load line.

When v_{B} is sufficiently large, the transistor goes into saturation, and $v_{C E}$ is small. The change in v_{B} is inverted at the collector, which gives the inverter its name.

The collector current in the saturation region is determined by the external circuit as:

$$
\begin{equation*}
i_{C}=\frac{V_{C C}-v_{C E(\text { sat })}}{R_{C}} \tag{6.3.15}
\end{equation*}
$$

Because $v_{C E(\text { sat })}$ is small, in the range of $0.1-0.3 \mathrm{~V}$, and can only decrease very slightly as i_{B} increases (Figure 6.2.5), it follows from Equation 6.3.15 that i_{C} increases very little in the saturation region. The base current at the edge of saturation is:

$$
\begin{equation*}
i_{B(\mathrm{sat})}=\frac{v_{B(\mathrm{sat})}-v_{B E(\mathrm{sat})}}{R_{B}} \tag{6.3.16}
\end{equation*}
$$

If v_{B} is increased, i_{B} is determined by the base circuit as:

$$
\begin{equation*}
i_{B} \cong \frac{v_{B}-v_{B E(\text { sat })}}{R_{B}} \tag{6.3.17}
\end{equation*}
$$

where $v_{B E(\text { sat })}$ is considered to be about 0.1 V larger than its value in the active mode. The reason $v_{B E}$ increases slightly with i_{B} in saturation is simply due to the shape of the $i_{B}-v_{B E}$ characteristic. As i_{B} increases, with i_{C} staying almost constant, i_{E} increases with i_{B}, and the ratio i_{C} / i_{B} decreases. A $\beta_{\text {forced }}$ is defined in the saturation region as:

$$
\begin{equation*}
\beta_{\text {forced }}=\frac{i_{C}}{i_{B}}, \quad i_{B}>i_{B(\text { sat })} \tag{6.3.18}
\end{equation*}
$$

where $i_{B(\text { sat })}=i_{C(\text { sat })} / \beta_{F}$ at the edge of the saturation region.
Because in the saturation mode $v_{C E(\text { sat })}$ is small and i_{B} is relatively large, the parasitic resistances r_{B}, r_{C}, and r_{E} may have to be considered. Figure 6.3.5 shows the equivalent circuit of an $n p n$ transistor in saturation, where r_{E} is omitted because it is usually quite

FIGURE 6.3.5
Equivalent circuit of a BJT in saturation.

small, and $v_{B E J \text { (sat) }}$ and $v_{C E J \text { (sat) }}$ are the voltage drops between base and emitter and collector and emitter, respectively, exclusive of the voltage drops in the parasitic resistances.

Neglecting the voltage drops in parasitic resistances, $v_{C E(\text { sat })}$ can be determined from Equations 6.3.10 and 6.3.11 assuming that in the saturation mode $e^{v_{B E(s a t)} / V_{T}} \gg 1$ and $e^{v_{B C(s a t)} / V_{T}} \gg 1 ; e^{v_{B E[s a t} / V_{T}}$ and $e^{v_{B C(s a t)} / V_{T}}$ can then be determined from the expressions for i_{C} and i_{B}, and $v_{C E(\text { sat })}=v_{B E(\text { sat })}-v_{B C(\text { sat) })}$ evaluated, with $\beta_{\text {forced }}=i_{C} / i_{B}$. This gives:

$$
\begin{equation*}
v_{C E(\text { sat })}=V_{T} \ln \frac{1+\left(\beta_{\text {forced }}+1\right) / \beta_{R}}{1-\beta_{\text {forced }} / \beta_{F}} \tag{6.3.19}
\end{equation*}
$$

Example 6.3.1 Transistor in Saturation Mode

Determine $v_{C E(\text { sat) }}$ in Figure 6.3.4a if $V_{C C}=12 \mathrm{~V}, R_{C}=4.8 \mathrm{k} \Omega, v_{B}=6 \mathrm{~V}$, and $R_{B}=20 \mathrm{k} \Omega$, assuming $r_{C}=50 \Omega, r_{E}=5 \Omega, \beta_{F}=200$, and $\beta_{R}=1$.

Solution

i_{C} and i_{B} are determined from Equations 6.3.15 and 6.3.16, respectively, assuming for a start that $v_{C E \text { (sat) }}=0.2 \mathrm{~V}$ and $v_{B E(\text { sat) }}=0.7 \mathrm{~V}$. This gives $i_{C}=(12-0.2) / 4.8=2.46 \mathrm{~mA}$ and $i_{B}=(6-0.7) / 20=0.27 \mathrm{~mA}$. It follows from Equation 6.3.18 that $\beta_{\text {forced }}=2.46 / 0.27=9.1$. Substituting in Equation 6.3.19 and adding the voltage drops in r_{C} and $r_{E}: v_{C E}=0.026 \times$ $\ln 11.63+2.46 \times 10^{-3} \times 50+(2.46+0.27) \times 10^{-3} \times 5=0.064+0.123+0.014=0.201 \mathrm{~V}$ which is close to the assumed value of 0.2 V , so no new iteration is needed.

Eliminating $v_{B C}$ between the expressions for i_{C} and i_{B} in Equations 6.3.10 and 6.3.11, assuming $\quad e^{V_{B E \text { saat }} / V_{T}} \gg 1 \quad$ and $\quad e^{v_{B C \text { (sat }} / V_{T}} \gg 1, \quad v_{B E \text { (sat) }}=V_{T} \ln \frac{i_{B}}{I_{S}} \frac{1+\beta_{\text {forced }}+\beta_{R}}{1+\left(\beta_{R}+1\right) / \boldsymbol{\beta}_{F}}$, where $I_{S}=\frac{\beta_{F}}{\beta_{F}+1} I_{S E}$ and $I_{S E} \cong \frac{|q| A_{E} D_{e B}}{W_{B}} n_{p o}$. Substituting numerical values from Example 6.1.1 gives $v_{B E(\text { sat })} \cong 0.6 \mathrm{~V}$, which does not significantly affect the value used for i_{B}.

The distribution of minority carriers in the base region in the saturation mode is illustrated in Figure 6.3.6. The concentrations of injected electrons at the edges of the depletion regions of the BEJ and BCJ are $n_{p}(0)=n_{p o} e^{v_{B E} / V_{T}}$ and $n_{p}\left(W_{B}\right)=n_{p o} e^{v_{B C} / V_{T}}$, respectively. Neglecting the recombination current in the base, the concentration profile of minority carriers is linear, represented by the line AC. Using Equation 6.2.1,

$$
\begin{equation*}
|q| A_{J} D_{e B} \frac{d n_{p}(x)}{d x}=\frac{|q| A_{J} D_{e B}}{W_{B}} n_{p o}\left(e^{v_{B E} / V_{T}}-e^{v_{B C} / V_{T}}\right) \tag{6.3.20}
\end{equation*}
$$

FIGURE 6.3.6
Electron concentration profile of a BJT in saturation.

When the transistor is just at the edge of saturation, corresponding to Q_{3} in Figure 6.3.4b, the concentration profile is that of the dotted line $A^{\prime} \mathrm{B}$, with $i_{C}=i_{C(\text { sat })}$ and $i_{B(\text { sat })}=i_{C(\text { sat })} / \beta_{F}$. The BCJ is not forward biased beyond the cut-in voltage and the injection of electrons from collector to base is negligible. The area of triangle A^{\prime} BD in Figure 6.3.6 represents the charge stored in the base. If $v_{B E}$ is increased, with i_{C} staying almost constant in saturation, as discussed earlier, the line $\mathrm{A}^{\prime} \mathrm{B}$ moves vertically upward to become AC. i_{C} is now the difference between the currents due to electrons injected from emitter to base (represented by the line $A B$) and electrons injected from collector to base (represented by the line $C D$). i_{B} is larger and equals $i_{C} / \beta_{\text {forced }}$ (Equation 6.3.18). The larger i_{B} causes more minority carriers to be stored in the base, corresponding to the additional area CBDE. This means that if the transistor is to be turned off, it would take longer to do so, because more stored charge has to be removed from the base.

The BJT as a Switch

The inverter circuit of Figure 6.3.4a is a basic circuit of the BJT as a switch that can turn on and off a load connected in series with the collector. When the transistor is saturated, corresponding to switch closure, an offset voltage remains across the switch equal to $v_{C E(\text { sat }}$ in the range of $0.1-0.3 \mathrm{~V}$. Turn-on and turn-off times of the BJT inverter are discussed in Section ST6.5. The turn-on time, or the time it takes the BJT to conduct from an initially cutoff state, is reduced by: (1) a large i_{B} to turn the transistor on, (2) a small $i_{C \text { (sat), }}$ where both of these conditions imply that the transistor saturates sooner, and (3) a small minority-carrier lifetime $\tau_{e B}$; this is because $\left|Q_{e B}\right| / \tau_{e B}$ is the rate of recombination of the charge stored in the base (Equation 3.2.8, Chapter 3) and equals $i_{e(\text { rec })}$, which is a component of i_{B} (Equation 6.1.1). Thus, for a given i_{B} and hence $i_{e(\text { rec })}$, the smaller $\tau_{e B}$, the smaller is the charge stored in the base. The turn-off time depends on the charge stored in the base. It is reduced by having: (1) a small i_{B}, and hence a lower degree of saturation, and (2) a small $\tau_{e B}$ so that the stored charge decays faster. The turn-on and turn-off times also depend on the external base circuit. For example, the turn-off time is reduced if the BEJ is reverse biased on switching so that the stored charge is removed more rapidly. A speed-up capacitor C_{B} across R_{B} (Figure 6.3.4a) considerably reduces turn-on and turn-off times. To appreciate the effect of C_{B}, assume that v_{B} is initially low, with C_{B} discharged through R_{B}. When v_{B} suddenly goes high, the capacitor voltage does not change instantaneously, so that v_{B} is applied across the BEJ causing a large i_{B} to flow through C_{B}, which charges rapidly to nearly v_{B} through the low
resistance of the BEJ. This satisfies requirement (1) for reducing the turnon time. R_{B} is chosen to satisfy requirement (2). When v_{B} returns to zero, the full voltage across C_{B} is applied as a reverse bias across the BEJ, thereby reducing the turn-off time. The value of C_{B} is normally chosen so that the time constant $C_{B} r_{\pi}$ is much smaller than the duration of the on or off periods, whichever is smaller.

Because of the adverse effects of saturation on switching speed, measures are taken in BJT digital logic families to prevent saturation. One approach, used in the Schottky transistor-transistor logic (TTL) family is to incorporate a Schottky diode in parallel with the BCJ (Figure 6.3.7). The diode conducts at about 0.3 V and effectively clamps $v_{B C}$ at this voltage. As this is less than the cut-in voltage of the BCJ, the BCJ is prevented from conducting in the forward direction. The diode diverts current that would otherwise flow into the base if the transistor were allowed to saturate. The Schottky diode is itself majority-carrier operated and does not suffer from minority-carrier storage (Section 3.6, Chapter 3). Another approach is to use emitter-coupled logic (ECL) based on the differential pair (Section 13.7, Chapter 13).

Diode Connection

An IC transistor with the base connected internally to the collector (Figure 6.3.8) is often used in place of a $p n$ junction diode, although it occupies slightly more surface area on the chip. The reason is that the IC transistor structure gives lower series resistance and faster switching time. From the expression for \bar{i}_{E} (Equation 6.3.9) with $v_{B C}=0$ and $i=-\bar{i}_{E}$, it follows that:

FIGURE 6.3.7
Schottky transistor.

FIGURE 6.3.8
Diode connection of BJT transistor.

$$
\begin{equation*}
i=\frac{I_{S}}{\alpha_{F}}\left(e^{v / V_{T}}-1\right) \cong I_{S} e^{v / V_{T}} \tag{6.3.21}
\end{equation*}
$$

The emission coefficient η in a diode-connected transistor is close to unity except at low and high current values. At low values of current, i_{B} varies nearly as $e^{v_{B E} / 2 V_{T}}$, because the recombination current in the depletion region of the BEJ varies with $v_{B E}$ in this manner and is an appreciable fraction of the base current at low values of the base current (Section ST3.6, Chapter 3). At larger base currents the recombination current is swamped by the normal base current that varies with $v_{B E}$ as $e^{v_{B E} / V_{T}}$ in accordance with Equation 6.3.14. At high currents, i_{C} varies nearly as $e^{v_{B E} / 2 V_{T}}$ due to high-level injection (Example ST3.7, Chapter 3). These are the same considerations that reduce β at low and high values of current, respectively. An example of the use of a diode-connected transistor in log/antilog amplifiers is given in Example SE6.1.

Regenerative Pair

In the regenerative pair, a $p n p$ and an $n p n$ transistor are connected in a positive feedback configuration (Figure 6.3.9). The circuit can be used to explain the operation of pnpn devices and the latching that can occur in complementary transistor circuits (CMOS) and BJT devices (Section ST6.6).

FIGURE 6.3.9
Regenerative pair.

Example 6.3.2 Regenerative Pair

It is required to investigate the basic operation of the regenerative pair of Figure 6.3.9.

Analysis

Using Equation 6.2.14,

$$
\begin{gathered}
i_{C 1}=M_{1}\left(\alpha_{F 1} i_{A}+l_{C B O 1}\right), \quad i_{C 2}=M_{2}\left(\alpha_{F 2} i_{A}+I_{C B O 2}\right) \\
i_{B 1}=i_{A}-i_{C 1}, \quad i_{B 2}=i_{A}-i_{C 2}, \quad i_{B 1}=i_{C 2}, \quad i_{B 2}=i_{C 1}
\end{gathered}
$$

where M is the avalanche multiplication factor and the gate terminal G is assumed to be open. Solving for i_{A} :

$$
\begin{equation*}
i_{A}=\frac{M_{1} I_{C B O 1}+M_{2} I_{C B O 2}}{1-\alpha_{F 1} M_{1}-\alpha_{F 2} M_{2}} \tag{6.3.22}
\end{equation*}
$$

At low voltages, M_{1} and M_{2} are unity, and at low currents, $\alpha_{F 1}$ and $\alpha_{F 2}$ are small. Hence, $\left(\alpha_{F 1}+\alpha_{F 2}\right)$ is small and i_{A} is small. However, if:

$$
\begin{equation*}
\alpha_{F 1} M_{1}+\alpha_{F 2} M_{2}=1 \tag{6.3.23}
\end{equation*}
$$

then $i_{A} \rightarrow \infty$. The connection is that of positive feedback. Thus, an increase in $i_{C 1}$, say, increases $i_{C 2}$, which in turn increases $i_{C 1}$, and so on. As a result, the transistors are driven hard into saturation. The condition of Equation 6.3.23 makes the gain in the positive feedback loop equal to unity. Thus, if α_{F} is replaced by $\alpha_{F} M$, Equation 6.1 .8 becomes:

$$
\begin{equation*}
i_{C}=\frac{\alpha_{F} M}{1-\alpha_{F} M} i_{B}+\frac{1}{1-\alpha_{F} M} I_{C B O}=\beta^{\prime} i_{B}+\frac{1}{1-\alpha_{F} M} I_{C B O} \tag{6.3.24}
\end{equation*}
$$

Neglecting the second term on the RHS with respect to the first, $\frac{i_{C 1}}{i_{B 1}}=\beta_{1}^{\prime}=\frac{\alpha_{F 1} M_{1}}{1-\alpha_{F 1} M_{1}}$ and $\frac{i_{C 2}}{i_{B 2}}=\beta_{2}^{\prime}=\frac{\alpha_{F 2} M_{2}}{1-\alpha_{F 2} M_{2}}$. The loop gain, from the base of Q_{2} to its collector and back through Q_{1}, is $\frac{i_{C 2}}{i_{B 2}} \times \frac{i_{C 1}}{i_{B 1}}=\beta_{2}^{\prime} \beta_{1}^{\prime}$. Substituting and equating this product to unity gives Equation 6.3.23.
Once the transistors go into saturation, the current is limited by the resistance in the external circuit. The transistors can be turned off either by interrupting the current externally, or by reducing the voltage across the transistors so that the current is reduced to make the α^{\prime} s sufficiently small. The transistors can be turned on by any mechanism that increases the current so that Equation 6.3.23 is satisfied (Section 11.10, Chapter 11).

Augmented Models

The basic EM model can be augmented by adding the capacitances and parasitic resistances used in the small-signal equivalent circuit of Figure 6.2.10. The effects of base-width modulation can be included by modifying the saturation current I_{S} (Equation 6.3.8) to become:

$$
\begin{equation*}
I_{S}=I_{S 0}\left(1-\frac{v_{B C}}{V_{A}}\right) \tag{6.3.25}
\end{equation*}
$$

It is also possible to include the emission coefficients η that multiply V_{T} in the exponents involving $v_{B E}$ and $v_{B C}$. The EM model, augmented as mentioned, is the simplest BJT model used by PSpice (Appendix B). In actual fact, PSpice uses a more complex model, the Gummel-Poon model, which includes the variation of current gain with collector current, due to the effects of recombination in the depletion region of the BEJ at low currents and the effects of high-level injection at high currents (Section ST6.1). However, when the parameters required by the Gummel-Poon model are not specified, PSpice uses the simpler augmented model described.

6.4 Heterojunction Bipolar Transistor

In a Si $n p n$ heterojunction bipolar transistor (HBT), the emitter is made of n-type Si , whereas the base is a thin layer of p-type SiGe (Section 4.8, Chapter 4). The major effect of the heterojunction is on the emitter injection efficiency γ. Thus,

$$
\begin{equation*}
\beta_{F}=\frac{\alpha_{F}}{1-\alpha_{F}}=\frac{\gamma \delta}{1-\gamma \delta} \cong \frac{\gamma}{1-\gamma} \tag{6.4.1}
\end{equation*}
$$

assuming that the base transport factor $\delta \cong 1$. From Equation ST6.1.24,

$$
\begin{equation*}
\gamma=\frac{1}{1+D_{h E} W_{B} p_{n o} / D_{e B} L_{h E} n_{p o}} \tag{6.4.2}
\end{equation*}
$$

Substituting for γ in Equation 6.4.1, with $n_{p o}=n_{i B}^{2} / N_{A B}$ and $p_{n o}=n_{i E}^{2} / N_{D E}$,

$$
\begin{equation*}
\beta_{F}=\frac{D_{e B} L_{h E}}{D_{h E} W_{B}} \frac{n_{i B}^{2}}{N_{A B}} \frac{N_{D E}}{n_{i E}^{2}} \tag{6.4.3}
\end{equation*}
$$

From Equation 3.7.17, Chapter 3, the ratio of the $n_{i}{ }^{\prime} s$ in the emitter and the base is:

$$
\begin{equation*}
\frac{n_{i B}^{2}}{n_{i E}^{2}}=\frac{N_{c B} N_{v B}}{N_{c E} N_{v E}} e^{\Delta E_{g} / k T} \tag{6.4.4}
\end{equation*}
$$

where
N_{c} and N_{v} refer to the effective densities of states in the conduction and valence bands, respectively
$\Delta E_{g}=E_{g E}-E_{g B}>0$ is the difference in the bandgap energies between the emitter and base

Substituting in Equation 6.4.3, $\boldsymbol{\beta}_{F}$ can be written as:

$$
\begin{equation*}
\beta_{F}=\left(\frac{D_{e B} L_{h E} N_{c B} N_{v B}}{D_{h E} W_{B} N_{c E} N_{v E}}\right) \frac{N_{D E}}{N_{A B}} e^{\Delta E_{g} / k T} \tag{6.4.5}
\end{equation*}
$$

Assuming that the terms other than the exponential in Equation 6.4.5 are not much different from those in a homojunction transistor having $\Delta E_{g}=0, \beta_{F}$ is increased by the exponential factor. Thus β_{F} is multiplied by approximately 2300 for $\Delta E_{g}=0.2 \mathrm{eV}$ and by approximately 11,000 for $\Delta E_{g}=0.3 \mathrm{eV}$. Physically, the difference in bandgap energies facilitates injection of electrons from emitter to base because conduction electrons have lower energies in the base, and opposes the injection of holes from base to emitter, thereby increasing γ. However, too large ΔE_{g} is undesirable because it accentuates the temperature dependence of β_{F} and enhances the spike in the conduction band at the emitter-base heterojunction (Figure 3.7.1b, Chapter 3). This spike constitutes a barrier that impedes the motion of electrons from emitter to base.

The exponential term in Equation 6.4.5 increases β_{F} when $\Delta E_{g}>0$ but gives β_{F} a negative temperature coefficient. A high level of doping of the emitter of a normal, homojunction transistor makes ΔE_{g} slightly negative so that β_{F} increases with temperature.

For the same or somewhat larger β_{F}, the doping concentration $N_{A B}$ in the base can be increased. The resulting increase in conductivity of the base has two desirable consequences: (1) reduction in r_{B}, which as explained earlier, improves the high-frequency response; (2) the depletion region on the base side of the $B C J$ becomes narrower, which reduces base-width modulation and increases the early voltage V_{A} as well as the punchthrough voltage. Alternatively, the doping concentration $N_{D E}$ in the emitter can be reduced. This increases the width of the depletion region on the emitter side of the BEJ, which reduces $C_{j e}$. It is seen that the HBT gives more flexibility in tailoring transistor performance to particular applications.

Having the base made of SiGe increases electron mobility in the base. Electron and hole mobilities are higher in Ge than in Si so that carrier mobilities in SiGe are higher than in Si , which reduces the base transit time (Equation ST6.1.35) and increases the unitygain bandwidth (Equation 6.2.39). The base transit time can be decreased further by grading the concentration of Ge in the base. If this concentration increases from the emitter toward the collector, the bandgap becomes correspondingly narrower. The lowering of the energy of the edge of the conduction band means that the electric potential energy of
conduction electrons in the base is reduced as one goes from emitter to collector. In other words, an electric field is created that accelerates electrons as they cross the base. An f_{T} in excess of 100 GHz can be achieved with Si HBTs.

6.5 Noise in Semiconductors

Noise in semiconductors should be briefly mentioned, although the subject is too specialized to be discussed here. Noise is important because it sets a limit to the maximum useful amplifier gain and to the smallest signals that can be handled by an electronic device. If the gain is sufficiently high, the output stages can be "swamped," or saturated, by noise from the input stages. If the signal is weak compared to the noise, that is, the signal-to-noise ratio is small, the signal cannot be usefully amplified, as the output will be mostly noise.

The types of noise encountered in semiconductor devices are:

1. Thermal noise, also referred to as Johnson noise or Nyquist noise, arises because of current fluctuations due to random motion of electrons. This type of noise is present in all conductors, whether metals or semiconductors. The conducting channels of junction field-effect transistors (JFETs) and MOSFETs exhibit this type of noise, as do the parasitic resistances of BJTs. Resistances such as r_{π} and r_{o}, are fictitious resistances introduced for modeling purpose only and do not exhibit this type of noise.
2. Shot noise arises because the flow of even a dc current through a space charge region, as in a $p n$ junction, is not perfectly smooth but is subject to "pulsations" due to the discrete nature of current carriers, like a stream of gunshots hitting a target. The noise increases with the dc current. The base and collector currents of a BJT, as well as the small gate input current of a JFET exhibit this type of noise.
3. Flicker noise, or $\mathbf{1} / \boldsymbol{f}$ noise, is associated with a dc current flowing through an imperfect medium, such as a medium having impurities or crystal defects. In semiconductors it is mainly due to surface traps. The noise is generated when current carriers are held in the traps for some time and then released. This type of noise is significant in MOSFETs because of the surface states that occur at the semiconductor-oxide interface, and is usually negligible in BJTs and JFETs. Typically, p-channel devices have less $1 / f$ noise than n-channel devices because holes are less likely to be trapped in surface states.
4. Other types of noise include avalanche noise and burst noise, or "popcorn" noise. Avalanche noise is due to avalanche multiplication, which occurs in shortchannel MOSFETs (Section 5.3, Chapter 5) and in zener diodes having breakdown voltages larger than about 7 V (Section 3.2, Chapter 3). Burst noise is associated with the presence of heavy-metal impurities such as gold. These introduce additional generation-recombination centers (Section 2.7, Chapter 2), which cause random fluctuations in current.

Thermal noise is modeled by means of a noise voltage generator in series with the input, whereas shot noise, flicker noise, and burst noise are modeled by means of noise current generators in parallel with the input. Thus, noise behavior depends not only on the bandwidth of the circuit but also on the resistance of the signal source (see Problem P10.3.10).

6.6 Comparison of BJTs and FETs

Before comparing BJTs and FETs, it should be stressed that FETs are basically unipolar devices, in which operation depends essentially on one type of carrier: electrons in n-channel devices or holes in p-channel devices. In contrast, BJTs are so called because both types of carriers are involved in their operation. Although in an $n p n$ transistor the output current is mainly an electron current, storage of electrons in the base, as minority carriers, and the resulting electron-hole recombination play an important role in device operation.

BJTs and FETs can be compared in different respects. The manufacturing process of MOSFETs is comparatively simple, and a MOSFET typically occupies one-tenth of the chip area as a BJT. Functionally, the following comparison can be made between the two types of transistor:

1. The effective, active area of a BJT is that through which the emitter current flows. The active area of a MOSFET is restricted by the depth of the channel, which is small because of the limited penetration of the electric field into the semiconductor under the gate. Hence, the BJT structure can handle larger currents and therefore higher power signals. Although power MOSFETs have a different structure from low-power MOSFETs (Section 11.9, Chapter 11), they still cannot handle high powers like a BJT.
2. $v_{B E}$ of the BJT is much more effective in controlling the output current than $v_{G S}$ of a MOSFET, thereby resulting in a higher g_{m}. A change in $v_{B E}$ of approximately 0.2 V is sufficient to drive the output current from practically zero to its maximum value. In a MOSFET, a considerably larger change in $v_{G S}$ is needed to achieve the same effect because of the presence of the gate oxide. The reverse-biased $p n$ junction of a JFET is more effective in controlling the output current that the gate of a MOSFET, which makes g_{m} of a JFET larger than that of a MOSFET but still less than that of a BJT. A higher transconductance means higher gain, for a given load resistance, and larger currents to charge and discharge parasitic capacitances, thereby reducing switching times.
3. BJTs offer faster operating speeds, where the operating speed is essentially determined by the carrier transit time through the base. In MOSFETs, the transit time of electrons through the channel is $L / u_{\text {sat }}$, where L is the length of the channel and $u_{\text {sat }}$ is the scatter-limited velocity at high electric fields, which is close to the thermal velocity of about $10^{7} \mathrm{~cm} / \mathrm{s}$. As a result, the maximum operating frequency is not as high as that possible with BJTs. That is why ECL is the fastest logic family in silicon (Section 13.7, Chapter 13).
4. The big advantage of the FET is the high input impedance, particularly of the MOSFET.
5. In switching applications, a FET does not have an offset voltage in the conducting state, whereas in a BJT, $v_{E C(\text { sat })}$ is present across the closed switch. Moreover, a MOSFET maintains the conducting state without the need for significant input and output currents, and hence significant power, as in the BJT. Because the nonconducting state does not require power either, complementary MOSFETs require no power to maintain a logic state. Low power consumption, low manufacturing cost, and the possibility of reducing transistor size so as to pack a larger number on the chip, without significantly degrading performance, make the MOSFET, particularly CMOS technology, highly suitable for very-large-scale-integration (VLSI).

BiCMOS technology (Section 4.7, Chapter 4) combines many of the advantages of bipolar and CMOS technologies. Moreover, the insulated gate BJT (IGBJT) is a useful power device (Section 11.9, Chapter 11).

Summary of Main Concepts

- In a BJT, a small voltage across a low-resistance, forward-biased junction controls the current through a high resistance, reverse-biased junction resulting in considerable voltage and power amplification. Terminal voltages and output current in a CE $n p n$ transistor are analogous to those of an enhancement-type n-channel MOSFET.
- In the BJT output characteristics, the region where the output current is appreciable but the output voltage is small is the saturation region, whereas the region where the output current increases relatively slowly with the output voltage is the active region. Base-width modulation causes the output current to increase with the output voltage in the active region.
- In small-signal operation, small-signal variations can be represented by an equivalent circuit consisting of linear time-invariant (LTI) resistances and capacitances and a dependent current source at the output that is controlled by the input voltage, or by the input current if the input is isolated from the output.
- The BJT has higher transconductance than FET because the forward-biased BEJ is more effective in modulating the output current.
- A rise in temperature increases the collector current due to reduction in $v_{B E}$ and increase in β_{F}.
- Diode-connected BJTs have smaller resistances, faster speeds of operation, and a more nearly logarithmic $i-v$ relation than comparable $p n$ junction diodes.
- Whereas FETs are unipolar devices that depend for their operation on one type of current carriers, BJTs are bipolar devices in which minority-carrier storage and recombination in the base play an important role in device operation. BJT turn-off is considerably slowed down in the saturation mode because of increased minority carrier storage in the base.
- Compared to MOSFETs, BJTs have the advantages of: (1) greater current and power handling capabilities, (2) a larger transconductance, and hence larger amplifier gains and, for a given change in input voltage, larger currents that can charge and discharge parasitic capacitances more rapidly, and (3) potentially faster operating speeds, as gauged by transit time through the base. MOSFETs have the advantages of: (1) negligible input current, (2) no offset voltage in the state of maximal conduction, (3) low steady-state power consumption in CMOS circuits, and (4) simpler and lower cost of manufacturing. These factors make the MOSFET, particularly CMOS technology, highly suitable for VLSI.
- An HBT offers considerable flexibility in tailoring transistor performance to particular applications. In particular, it is possible to increase β_{F}, reduce r_{B}, increase V_{A}, and reduce $C_{j e}$.

Learning Outcomes

- Articulate the basic operation of the BJT as well as some of the important secondary effects.

Supplementary Examples and Topics on Website

SE6.1 Log/Antilog Amplifiers. Analyzes ideal op amp circuits that use the exponential variation of the $i-v$ relation of a $p n$ junction to construct logarithmic and antilogarithmic amplifiers.

ST6.1 Basic Analysis of BJT. Derives the Ebers-Moll equations, in both the injection and transport versions, and applies them to deriving: (1) the collector current when the base is open circuited or short-circuited to the emitter, (2) Equation 6.2.1, and (3) the small signal equivalent circuit. Expresses transistor operation in terms of charge-control relations and determines the transit time through the base.

ST6.2 Hybrid- π, Small-Signal BJT Equivalent Circuit. Derives the hybrid- π, lowfrequency, small-signal equivalent circuit of a BJT.

ST6.3 h-Parameter, Small-Signal BJT Equivalent Circuit. Expresses the parameters of the hybrid- π, small-signal equivalent circuit in terms of the h parameters.

ST6.4 Measurement of Transistor h-parameters. Describes how transistor h-parameters can be measured using an ac signal while supplying the transistor input and output with a dc bias.

ST6.5 Analysis and PSpice Simulation of BJT Inverter. Investigates the steady-state and transient behavior of the BJT inverter ad simulates it using a 2 N 2222 transistor.

ST6.6 Parasitic Transistors. Shows how parasitic transistor structures in CMOS and BJT devices can behave as regenerative pairs that cause latchup.

ST6.7 Kirk Effect. Explains the Kirk effect, which causes a decrease in the collector current under high-level injection.

Problems and Exercises

P6.1 Operation and Parameters of BJTs

P6.1.1 Assume that an enhancement mode of operation is defined as one in which the output current is zero when the input terminals are shorted together, and the output current increases as the voltage of the input terminal moves toward that of the output terminal. How would this definition apply to npn or pnp BJTs in the CB or CE configurations?
P6.1.2 In Figure P6.1.2, $V_{B B}=0$ and $V_{C C}$ and $V_{E E}$ can assume values of $-5 \mathrm{~V}, 0$, and +5 V . Determine the transistor mode for all combinations of $V_{C C}$ and $V_{E E}$.
P6.1.3 Repeat Problem P6.1.2 for a $p n p$ transistor.
P6.1.4 When the base of an npn transistor is open circuited, $I_{\text {CEO }}=I_{\text {CBO }} /\left(1-\alpha_{F}\right)$ (Equation 6.1.9). If the base is now shorted to the emitter, do you expect i_{C} to increase or decrease? Justify your answer based on a simple consideration of transistor action. When the base is shorted to the emitter, in which direction do you expect base current to flow, from basic circuit considerations?

FIGURE P6.1.2

P6.1.5 Using the relation $(\beta+1)(1-\alpha)=1$, show that if $\beta \gg 1, \Delta \beta / \beta \cong \beta(\Delta \alpha / \alpha)$.
P6.1.6 If in Exercise 6.1.2, $I_{C E O}$ is calculated from $I_{C B O}$ using $\beta_{F}=99$ instead of 9.9, what is the percentage error in determining I_{C} from the relation: $I_{C}=\beta_{F} I_{B}+I_{C E O}$?
P6.1.7 Show that: (a) $I_{B}=\frac{I_{E}}{\beta_{F}+1}-I_{C B O}$; (b) $I_{E}=\frac{\beta_{F}+1}{\beta_{F}}\left(I_{C}-I_{C B O}\right)$.
P6.1.8 Given a transistor having $\beta_{F}=100, I_{C B O}=1 \mu \mathrm{~A}$, and $I_{B}=100 \mu \mathrm{~A}$ at 300 K . If I_{B} remains constant, determine the percentage increase in I_{C} at 375 K , assuming that $I_{C B O}$ doubles every $10^{\circ} \mathrm{C}$ and β_{F} increases by 0.7% per ${ }^{\circ} \mathrm{C}$.
P6.1.9 Simulate: (a) the output characteristics of the 2N2222 transistor in the CB configuration for v_{C} in the range of $0-20 \mathrm{~V}$ and for I_{E} in the range of $0-100 \mathrm{~mA}$, in steps of 10 mA ; (b) the input characteristics for $v_{B E}$ in the range of $0-0.8 \mathrm{~A}$ and for $v_{C B}=0,1$, and 20 V .
P6.1.10 The collector current of a transistor is 10 mA at $v_{B E}=0.7 \mathrm{~V}$. What is the collector current if: (a) $v_{B E}=0.65 \mathrm{~V}$; (b) the doping level in the base is reduced by a factor of 10 ; (c) the carrier mobility becomes one-third of its value.
P6.1.11 A transistor has $I_{C(\text { sat })}=10 \mathrm{~mA}$ for a particular value of $v_{B E}$. Determine V_{A} if $i_{C}=12.4$ mA at $v_{C E}=12 \mathrm{~V}$, assuming $V_{C E(\text { sat })}=0.2 \mathrm{~V}$.
P6.1.12 A transistor has $g_{m}=0.4 \mathrm{~A} / \mathrm{V}$ at 300 K . At what value of I_{C} is g_{m} measured? Determine g_{m} at 350 K if I_{C} increases by 15%.
P6.1.13 A transistor has $g_{m}=0.4 \mathrm{~A} / \mathrm{V}$ and $\beta=150$. Neglecting r_{μ}, determine the input resistance: (a) in the CE configuration; (b) in the CB configuration.
P6.1.14 In the transistor of Problem P6.1.13, determine r_{o} if $V_{A}=80 \mathrm{~V}$.
P6.1.15 In the transistor of Problem P6.1.14, if $i_{B}=5 i_{e(\text { rec })}$, estimate r_{μ}.
P6.1.16 In the transistor of Problem P6.1.15, determine the output resistance: (a) in the CE configuration, with i_{B} as parameter; (b) in the CB configuration.
P6.1.17 Determine the h parameters of the transistor in Problems P6.1.13 through P6.1.15.
P6.1.18 Using PSpice simulation, determine $\beta_{F}, \beta, g_{m}, r_{\pi}, r_{o}$, and V_{A} for the Q2N3904 at $I_{C}=20$ mA and $V_{C E}=20 \mathrm{~V}$.
P6.1.19 Repeat Problem P6.1.18 for the Q2N3906 pnp transistor in the EVAL library.
P6.1.20 Using the hybrid- π equivalent circuit (Figure 6.2.7), show that the small-signal output resistance of a diode connected BJT is $r_{e} \| r_{o} \cong r_{e}$.
P6.1.21 Repeat Problem P6.1.20 using the T-model (Figure 6.1.13a), including r_{o}.
P6.1.22 Determine $B V_{C E O}$ in terms of $B V_{C B O}$ if $n=5$ and: (a) $\alpha_{F}=0.99$; (b) 0.995 .
P6.1.23 For the transistor of Example 6.2.3, determine W_{B} at which punchthrough occurs, assuming a reverse voltage of 100 V . Neglect the width of the depletion region of the BEJ.
P6.1.24 Derive Equation 6.3.19 from the EM equations.
P6.1.25 A transistor having $\beta_{F}=100$ and $\beta_{R}=2$ is to be operated as a switch. If $v_{C E(\text { sat })}$ is equal to 0.2 V , with $i_{C}=20 \mathrm{~mA}, r_{C}=6 \Omega$, and negligible r_{E}, what should be $\beta_{\text {forced }}$?
P6.1.26 Consider the expanded characteristics of Figure 6.2 .5 with $I_{B}=0.5 \mathrm{~mA}$. (a) Estimate r_{o} in the saturation region as $v_{C E(\text { sat })}$ varies between 100 and 150 mV ; (b) Determine $v_{C E(\text { sat })}$ assuming $\beta_{F}=150, \beta_{R}=3$, and $\beta_{\text {forced }}=15$.
P6.1.27 Using Equation 6.2.32, and assuming $W_{B}=5 \mu \mathrm{~m}$ and $D_{e B}=30 \mathrm{~cm}^{2} / \mathrm{s}$, calculate τ_{F}. Determine the stored charge in the base when $I_{C}=10 \mathrm{~mA}$.
P6.1.28 If the transistor of Problem P6.1.27 operates at $I_{C}=10 \mathrm{~mA}$ and $C_{j e}+C_{j c}=0.2 \mathrm{pF}$, determine f_{T}.
P6.1.29 Deduce from Equation ST6.1.34, Section ST6.1, that $\alpha_{F}=1 /\left(1+\tau_{F} / \tau_{e B}\right)$.
P6.1.30 Determine α_{F} and β_{F} in Example 6.1.1 if the base width doubled to $2 \mu \mathrm{~m}$.
P6.1.31 If in Example 6.1.1 $\tau_{e B}$ is multiplied by 10 , what is the effect on: (a) β_{F}; (b) $I_{e(\text { rec })} / I_{B}$?
P6.1.32 If in Example 6.1.1 $\tau_{h E}$ is multiplied by 10, what is the effect on: (a) β_{F}; (b) $I_{e(\text { rec })} / I_{B}$?

P6.2 i-v Relations of Bipolar Junction Transistors

P6.2.1 Given that $\beta=\left.\frac{d i_{C}}{d i_{B}}\right|_{v_{C E}}$ and the variation of β with i_{C}, how do you expect the spacing of the BJT CE output characteristics for constant I_{B} to vary with increasing i_{C} at constant $v_{C E}$?
P6.2.2 In Figure P6.1.2, $V_{C C}=12 \mathrm{~V}, V_{E E}=-12 \mathrm{~V}, R_{B}=30 \mathrm{k} \Omega, R_{C}=1 \mathrm{k} \Omega, R_{E}=2 \mathrm{k} \Omega$, and $\beta=100$. Determine $V_{B B}$ that will cut off the transistor with $V_{B E}=0.5 \mathrm{~V}$ neglecting transistor currents in the cutoff state.
P6.2.3 Find $V_{C E}$ in Problem P6.2.2 if $V_{B B}=0$ and $V_{B E}=0.7 \mathrm{~V}$. Simulate with PSpice.
P6.2.4 Consider Problem P6.1.2 with $V_{E E}=0$. Determine $V_{B B}$ that will just bring the transistor to saturation, assuming $V_{B E}=0.7 \mathrm{~V}$. Simulate with PSpice.
P6.2.5 In Figure P6.2.5, $V_{C C}=12 \mathrm{~V}, V_{B B}=-12 \mathrm{~V}, R_{C}=2 \mathrm{k} \Omega$, $R_{E}=0, R_{B 1}=20 \mathrm{k} \Omega$, and $R_{B 2}=100 \mathrm{k} \Omega$. Determine V_{B} that will cut off the transistor with $V_{B E}=0.5 \mathrm{~V}$, neglecting transistor currents in the cutoff state.
P6.2.6 Consider Figure P6.2.5 with $R_{E}=100 \Omega$ and $\beta=100$. Determine V_{B} that will just bring the transistor to saturation, assuming $V_{B E A}=0.7 \mathrm{~V}$. Simulate with PSpice.
P6.2.7 Consider Figure P6.2.5 with $V_{B}=3.5 \mathrm{~V}$. Assuming $V_{B E}=0.7 \mathrm{~V}$, determine I_{C} if: (a) $\beta=100$; (b) $\beta=200$. What is the percentage variation of I_{C} when β is doubled? Simulate with PSpice.
P6.2.8 Repeat Problem P6.2.7 with $R_{E}=1 \mathrm{k} \Omega$. Simulate with PSpice. How do you explain the effect of larger R_{E} ?

FIGURE P6.2.5

P6.2.9 The circuit of Figure P6.2.5, with $\beta=100, R_{E}=0, R_{C}=2$ $\mathrm{k} \Omega, V_{C C}=5 \mathrm{~V}$, and $V_{B B}=-5 \mathrm{~V}$, is to be operated as an inverter. Determine $R_{B 1}$ and $R_{B 2}$ so that when $v_{B}=0, v_{B E}=-1 \mathrm{~V}$ but when $v_{B}=5 \mathrm{~V}, v_{B E}=0.8 \mathrm{~V}$ assuming $\beta_{\text {forced }}=10$. Simulate with PSpice.
P6.2.10 With the values of $R_{B 1}$ and $R_{B 2}$ selected as in Problem P6.2.9, determine the output voltage levels for: (a) $v_{B}=0.8 \mathrm{~V}$; (b) $v_{B}=3.8 \mathrm{~V}$. What should be the minimum β to ensure saturation? Simulate with PSpice.
P6.2.11 In Figure P6.2.11, the voltage across the $1 \mathrm{k} \Omega$ resistor is 1 V and $V_{B E}=0.7 \mathrm{~V}$. Determine: (a) $V_{C E} ;$ (b) $V_{C B}$; (c) $I_{B} ;$ (d) I_{C}; (e) β_{F}.

P6.2.12 Repeat Problem P6.2.11 using a $p n p$ transistor, replacing the +12 V supply with a -12 V supply, and label the actual directions and polarities of all currents and voltages.
P6.2.13 If the transistor in Figure P6.2.13 has $\beta_{F}=500$, determine the voltages at all the transistor terminals.
P6.2.14 Repeat Problem P6.2.13 with the $n p n$ transistor replaced by a $p n p$ transistor having $\beta_{F}=100$ and with the +15 V supply replaced by a -15 V supply.
P6.2.15 Consider the inverter circuit of Figure 6.3.4a with $V_{C C}=5 \mathrm{~V}$, $R_{C}=1 \mathrm{k} \Omega$, and a resistor R_{L} connected between collector and ground. If $v_{B}=0$, what is the minimum value of R_{L} that will maintain the output voltage across R_{L} above 4 V ? Transistor currents in the cutoff state may be neglected at these low values of resistances.
P6.2.16 Assume that in the inverter circuit of Figure 6.3.4a, i_{C}, β, v_{B}, and $v_{B E}$ can vary over a range of values whose extremes may

FIGURE P6.2.11
be denoted by "max" and "min" subscripts. Derive an expression for the maximum value of R_{B} that ensures saturation.
P6.2.17 Assume that in the inverter circuit of Figure 6.3.4a, $V_{C C}=V_{B}=5 \mathrm{~V}, R_{C}=1 \mathrm{k} \Omega, R_{B}=20 \mathrm{k} \Omega, v_{C E S}=0.2 \mathrm{~V}$, and $\beta=100$. Determine whether or not the transistor is saturated, and if so, $\beta_{\text {forced }}$. What is the minimum β that ensures saturation? Simulate with PSpice.
P6.2.18 Assume an inverter with circuit values as in Problem P6.2.17 connected at its output to a number N of identical inverters. What is the upper limit on N when the transistor is saturated? What is the upper limit when the transistor is cut off and all the inverters connected

FIGURE P6.2.13 to the output are saturated with $\beta_{\text {forced }}$ of 50?
P6.2.19 Assume that the inverter of Problem P6.2.17 is supplying the maximum number of identical inverters. Determine the power dissipated in the collector circuit when the transistor is: (a) saturated, and (b) cut off.
P6.2.20 Consider that a number of transistors in the circuit of Figure 6.3.4a are paralleled at their collectors so that they share the same R_{C} but have separate base resistors and inputs. What logic function is performed on the inputs? How would you convert this function to OR?
P6.2.21 Referring to Equations 6.3.1 and 6.3.2, show that

$$
\begin{gathered}
i_{C}=\alpha_{F} i_{E}-\left(1-\alpha_{F} \alpha_{R}\right) I_{S C}\left(e^{v_{B C} / V_{T}}-1\right) \\
i_{E}=-\bar{i}_{E}=\alpha_{R} i_{C}+\left(1-\alpha_{F} \alpha_{R}\right) I_{S E}\left(e^{v_{B E} / V_{T}}-1\right)
\end{gathered}
$$

P6.2.22 Using the results of Problem P6.2.21, show that $v_{B E}=V_{T} \ln \left(1+\frac{i_{E}-\alpha_{R} i_{C}}{\left(1-\alpha_{F} \alpha_{R}\right) I_{S E}}\right)$.
P6.2.23 Show that if a transistor is diode-connected by joining the base to the emitter $i \cong \frac{I_{S}}{\alpha_{R}} e^{v / V_{T}}$, where $v=v_{B C}$ and i is the current flowing out of the collector.
P6.2.24 The parameters of the EB model are $I_{S}=1 \mathrm{pA}, \beta_{F}=500$, and $\beta_{R}=1$. Determine I_{C} and I_{T} if (a) $V_{B E}=0.3 \mathrm{~V}, V_{C B}=5 \mathrm{~V}$; (b) $V_{B E}=0.65 \mathrm{~V}, V_{C B}=5 \mathrm{~V}$; (c) $V_{E B}=0.8 \mathrm{~V}, V_{B C}=0.5 \mathrm{~V}$.
P6.2.25 An npn transistor has $\alpha_{F}=0.98$ and $\alpha_{R}=0.8$. When the emitter is open, the reverse current of the BEJ is $0.1 \mu \mathrm{~A}$. Determine: (a) $I_{C B O}$; (b) the collector and base currents when the emitter is short-circuited to the base.
P6.2.26 Identifying $I_{S E}$ in Example ST6.1.2 (Section ST6.1) with $|q| A_{E} D_{e B} n_{p o} / W_{B}$ in Equation 6.2.1, determine $I_{S E}$ using the values in Example 6.1.1. Calculate i_{C} if $v_{B E}=0.7 \mathrm{~V}$.

P6.2.27 Determine β_{F} for a transistor having the same parameters as in Example 6.1.1, except that the BEJ is a heterojunction having $\Delta E_{g}=0.1 \mathrm{~V}$. Assume the same effective densities of states in the valence and conduction bands in the base and the emitter.

P6.3 Miscellaneous

P6.3.1 Consider an exponential function $A e^{-a x}$, where A and a are constants. Show that the area under the curve from $x=0$ to x is proportional to the difference in magnitudes between the slopes at $x=0$, and apply this to the concentration profile of minority carriers injected into the base.
P6.3.2 Implement Equation ST6.2.4, Section ST6.2, without disturbing Equation ST6.2.2 by isolating r_{μ} using a unity-gain follower whose input is connected to terminal C and the parallel branches and whose output is connected to r_{μ}. Show that under these conditions,
the output resistance is: (a) r_{o} at constant $v_{B E} ;$ (b) $r_{o}\left\|\left(r_{\mu}+r_{\pi}\right) / \beta \cong r_{o}\right\|\left(r_{\mu} / \beta\right)$ at constant i_{B}, since the current flowing in at the C terminal is $\left(\frac{1}{r_{o}}+\frac{\beta}{r_{\mu}+r_{\pi}}\right) v_{c e ;}$ (c) $r_{\pi}+(1+\beta) r_{o} \cong \beta r_{o}$ at constant i_{E} since the current flowing in at the C terminal is $\left(\frac{1}{r_{\pi}+(1+\beta) r_{o}}\right) v_{c b}$.
P6.3.3 Consider a transistor turning off from a saturated state with $i_{B}=-I_{B L}$. Show that $t_{S}=\tau_{e B} \ln \left(\frac{\left|Q_{e B}(0)\right|+I_{B L} \tau_{e B}}{\left|Q_{e B(\text { sat })}\right|+I_{B L} \tau_{e B}}\right)$, where t_{S} is the time when $\left|Q_{e B}\left(t_{s}\right)\right|=\left|Q_{e B(\text { sat) }}\right|$ (Section ST6.5). Note that if $I_{B L} \tau_{e B} \gg\left|Q_{e B}(0)\right|, t_{S} \rightarrow 0$.

7

Two-Port Circuits, Amplifiers, and Feedback

The purpose of the present chapter is to introduce some topics that are needed for proper understanding of amplifier circuits in the following chapters. As these circuits are basically two-port in nature, it is appropriate to discuss them within the framework of two-port circuit theory. Although this theory offers, in addition, some powerful methods for analyzing circuits, other than the conventional mesh-current and node voltage methods, these methods are rarely applied to electronic circuits.

The chapter begins by reviewing two-port circuit equations, parameters, and equivalent circuits. The two-port circuit description naturally leads to the representation of the four ideal amplifier types, namely, ideal voltage, current, transresistance, and transconductance amplifiers. It is then shown how a practical amplifier can be made to approach any of these ideal types by appropriate negative feedback connections. This also illustrates the great importance of negative feedback in conferring desirable characteristics on an amplifier circuit.

The chapter ends with a discussion of the ideal operational amplifier, in both the noninverting and inverting configurations, in terms of negative feedback and signal-flow diagrams. This illustrates some important features of operational amplifiers and the role that negative feedback plays in the improvement of some aspects of the performance of practical operational amplifiers, particularly input impedance, output impedance, response to extraneous signals, and frequency response.

Learning Objectives

* To be familiar with:
- The terminology and description of two-port circuits.
- The broad range of applications of operational amplifiers.
* To understand:
- The interpretation of the parameters of two-port circuits and their representation in terms of equivalent circuits.
- The interpretation of ideal controlled sources as two-port circuits and the resulting classification of the four ideal types of amplifiers.
- The treatment of feedback amplifiers as interconnected two-port circuits and the effects of the various forms of negative feedback on circuit behavior.
- The essential features of the noninverting and inverting operational amplifier configurations.
- The role negative feedback can play in the improvement of some aspects of amplifier performance, particularly input impedance, output impedance, response to extraneous signals, and frequency response.

7.1 Two-Port Circuits*

Two-port circuits have a pair of input terminals, or input ports, and a pair of output terminals, or output ports, as illustrated in Figure 7.1.1, where the subscripts 1 and 2 refer to the input and output, respectively. The assigned positive directions of voltages and currents are conventionally as shown in the figure. It is understood that a two-port circuit can contain passive circuit elements and dependent sources but no independent sources other than those applied at the input or output. The voltage and current variables are to be considered, in general, as Laplace transforms of the corresponding time functions. They reduce to dc variables under dc conditions and to phasors in the sinusoidal steady state.

Clearly, if a voltage V_{1} is applied to a given two-port circuit of known parameters, such as a simple, resistive T-circuit, I_{1}, V_{2}, and I_{2} are not determined unless another constraint is imposed, such as $I_{2}=0$ or a relation between V_{2} and I_{2}. In general, two of the four terminal variables may be specified independently, in which case the other two variables are determined by the parameters of the given circuit. The two-port circuit can therefore be described in terms of two simultaneous equations. However, as four variables are involved, there are six ways of choosing two of these variables as independent, which gives rise to six sets of simultaneous equations, listed in Table 7.1.1. Each of these equations is written in terms of four coefficients, or parameters, that characterize the equation. Thus, one speaks of the z-parameter equations, the y-parameter equations, etc.

The sets of two equations in each row of Table 7.1.1 are inversely related, in the sense that the independent variables in one set of equations are the dependent variables in the other set. This makes the corresponding matrices of parameters inversely related. Thus,

$$
\begin{align*}
& \left|\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right|=\left|\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right|^{-1}, \\
& \left|\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right|^{-1}=\left|\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right| \tag{7.1.1}
\end{align*}
$$

The other sets of parameters are similarly related.

Interpretation of Parameters

The parameters of two-port circuits can be interpreted in terms of voltage and current ratios under specified open-circuit or short-circuit terminations, as indicated in Table 7.1.2. Thus, z_{11} is the input impedance looking into port 1 , with port 2 open-circuited, and y_{11} is the input admittance looking into port 1 , with port 2 short-circuited. These interpretations provide a convenient means for the evaluation or measurement of the respective parameters.

As the same circuit variables are involved in the six sets of equations, the parameters in these equations must be related, as discussed in Section ST7.1.

FIGURE 7.1.1
Two-port circuit and assigned positive direction.

[^0]
TABLE 7.1.1

Two-Port Circuit Equations

$V_{1}=z_{11} I_{1}+z_{12} I_{2}$	$I_{1}=y_{11} V_{1}+y_{12} V_{2}$
$V_{2}=z_{21} I_{1}+z_{22} I_{2}$	$I_{2}=y_{21} V_{1}+y_{22} V_{2}$
$V_{1}=a_{11} V_{2}-a_{12} I_{2}$	$V_{2}=b_{11} V_{1}-b_{12} I_{1}$
$I_{1}=a_{21} V_{2}-a_{22} I_{2}$	$I_{2}=b_{21} V_{1}-b_{22} I_{1}$
$V_{1}=h_{11} I_{1}+h_{12} V_{2}$	$I_{1}=g_{11} V_{1}+g_{12} I_{2}$
$I_{2}=h_{21} I_{1}+h_{22} V_{2}$	$V_{2}=g_{21} V_{1}+g_{22 I} I_{2}$

TABLE 7.1.2

Interpretation of Two-Port Parameters

$$
\begin{array}{lll}
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \Omega & z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \Omega & y_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{V_{2}=0} \\
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \Omega & z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \Omega & y_{21}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0} \mathrm{~S} \\
a_{11}=\left.\frac{V_{1}}{V_{2}}\right|_{V_{2}=0} \mathrm{~S} & y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0} \mathrm{~S} \\
a_{21}=\left.\frac{I_{1}}{V_{2}}\right|_{I_{2}=0} \mathrm{~S} & a_{22}=-\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0} \Omega & b_{11}=\left.\frac{V_{2}}{V_{1}}\right|_{I_{2}=0} \\
b_{12}=-\left.\frac{V_{2}}{I_{1}}\right|_{V_{1}=0} \Omega \\
h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} \Omega & h_{21}=\left.\frac{I_{2}}{V_{1}}\right|_{I_{1}=0} \mathrm{~S} & b_{22}=-\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \\
h_{21}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} & g_{11}=\left.\frac{I_{1}}{V_{1}}\right|_{I_{2}=0}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0} \mathrm{~S} & g_{12}=\left.\frac{I_{1}}{I_{2}}\right|_{V_{1}=0} \\
\hline
\end{array}
$$

Example 7.1.1 Determination of \boldsymbol{h}-Parameters

The following dc measurements were made on a two-port resistive circuit:
Port 2 open-circuited: $V_{1}=10 \mathrm{mV}, I_{1}=50 \mu \mathrm{~A}, V_{2}=20 \mathrm{~V}$
Port 2 short-circuited: $V_{1}=40 \mathrm{mV}, I_{1}=100 \mu \mathrm{~A}, I_{2}=-1 \mathrm{~mA}$
It is required to find the h-parameters of the circuit.

Solution

With port 2 short-circuited, $\quad h_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0}=\frac{40 \mathrm{mV}}{100 \mu \mathrm{~A}} \equiv 400 \Omega$, and $\quad h_{21}=\left.\frac{I_{2}}{l_{1}}\right|_{V_{2}=0}=$ $-\frac{1 \mathrm{~mA}}{100 \mu \mathrm{~A}} \equiv-10 . h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{l_{1}=0}$ and $h_{22}=\left.\frac{l_{2}}{V_{2}}\right|_{l_{1}=0}$ cannot be obtained from the given measurements because these do not include the case of port 1 open-circuited. However, we can obtain the a-parameters from the given measurements. Thus, $a_{11}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{2}=0}=$ $\frac{10 \times 10^{-3} \mathrm{~V}}{20 \mathrm{~V}}=5 \times 10^{-4} ; \quad a_{12}=-\left.\frac{V_{1}}{I_{2}}\right|_{V_{2}=0}=-\frac{40 \mathrm{mV}}{-1 \mathrm{~mA}}=40 \Omega ; \quad a_{21}=\left.\frac{l_{1}}{V_{2}}\right|_{I_{2}=0}=\frac{50 \mu \mathrm{~A}}{20 \mathrm{~V}} \equiv$
$2.5 \times 10^{-6} \mathrm{~S} ; \quad \mathrm{a}_{22}=-\left.\frac{l_{1}}{I_{2}}\right|_{V_{2}=0}=-\frac{100 \times 10^{-3} \mathrm{~mA}}{-1 \mathrm{~mA}}=0.1, \quad$ and $\quad \Delta \mathrm{a}=\mathrm{a}_{11} \mathrm{a}_{22}-\mathrm{a}_{12} \mathrm{a}_{21}=$ $5 \times 10^{-4} \times 0.1-40 \times 2.5 \times 10^{-6}=-5 \times 10^{-5}$. From the relations between parameters

FIGURE 7.1.2
Equivalent circuits representing the two-port equations in terms of the z-parameters (a), y-parameters (b), h-parameters (c), and g-parameters (d).
(Section ST7.1): $h_{12}=\Delta a / a_{22}=-5 \times 10^{-5} / 0.1=-5 \times 10^{-4} \quad$ and $\quad h_{22}=a_{21} / a_{22}=$ $2.5 \times 10^{-6} / 0.1 \equiv 25 \mu \mathrm{~S}$.

Equivalent Circuits

The $z-, y$-, h-, and g-parameter equations can be represented in terms of the equivalent circuits shown in Figure 7.1.2a through d. The effect of the input on the output side, that is, the forward transmission, is expressed by the dependent source on the output side and its associated " 21 " subscript parameter. On the other hand, the effect of the output on the input side, that is, the reverse transmission, is expressed by the dependent source on the input side and its associated " 12 " subscript parameter. The remaining parameters can be readily interpreted in terms of these circuits. The " 11 " subscript parameter describes an input impedance or admittance when the dependent source on the input side is set to zero, which imposes an open-circuit or a short-circuit constraint on the output port. Similarly, the " 22 " subscript parameter describes an output impedance or admittance when the dependent source on the output side is set to zero, which imposes an opencircuit or a short-circuit constraint on the input port. In the case of the h-parameters, for example, if the output is short-circuited ($V_{2}=0$), it is seen from Figure 7.1.2c that the seriesconnected h_{11} is the input impedance under these conditions. Similarly, when the input is open-circuited $\left(I_{1}=0\right)$, it is seen from Figure 7.1.2c that the shunt-connected h_{22} is the output admittance under these conditions.

Note that all the equivalent circuits of Figure 7.1.2 become three-terminal circuits if the lower input and output terminals are connected together.

7.2 Ideal Amplifiers

Consider next the form that an ideal amplifier would take as a two-port circuit. An ideal amplifier can be derived from each of the equivalent circuits of Figure 7.1.2 by setting all

TABLE 7.2.1
Ideal Amplifier Types

Parameter	Equations	Equivalent Circuit	
z (Figure 7.1.2a)	$v_{I}=0$		Amplifier Type
$z_{11}=0 ; z_{12}=0$,	$v_{O}=R_{m} i_{I}$		I_{I}
$z_{21}=R_{m} ; z_{22}=0$			

the coefficients in the corresponding two-port equations to zero, except the " 21 " parameter, which represents the gain of the amplifier, and is denoted by some constant. The " 1 " and " 2 " subscripts are replaced, respectively, by " I," for input, and " O," for output, as illustrated in Table 7.2.1.

The following should be noted concerning these ideal amplifiers:

1. That they are amplifiers is evident from the fact that the input power is zero, whereas the output power is finite. This makes the power amplification theoretically infinite.
2. The transresistance amplifier is so called because its output is a voltage and its input is a current, whereas the transconductance amplifier is so called because its output is a current and its input is a voltage.
3. In all cases, there is no reverse transmission, that is; the output does not affect the input. We will see in future chapters that in real amplifiers there is, in general, a small reverse transmission.
4. In transresistance and voltage amplifiers, the output is an ideal, dependent voltage source controlled by an input current or voltage.
5. In transconductance and current amplifiers, the output is an ideal, dependent current source controlled by an input current or voltage.
6. Where the controlling input is a voltage, as in transconductance and voltage amplifiers, and if the input circuit is represented by its Thevenin's equivalent, $i_{I}=0$ ensures that v_{I} equals the Thevenin source voltage, irrespective of the Thevenin source impedance. In other words, the Thevenin source is ideally terminated.
7. Where the controlling input is a current, as in transresistance and current amplifiers, and if the input circuit is represented by its Norton's equivalent, $v_{I}=0$ ensures that i_{I} equals the Norton source current, irrespective of the Norton source admittance. In other words, the Norton source is ideally terminated.

7.3 Negative Feedback*

A matter of great practical importance is the following: given an amplifier that is represented by any of the circuits of Figure 7.1.2, is it possible to make the amplifier approach any of the ideal amplifier types of Table 7.2.1? We will show that this is indeed possible under the following conditions:

1. Very high gain, or forward transmission
2. Negligible reverse transmission
3. An appropriate negative feedback connection
4. Negligible loading effect of the feedback circuit on the amplifier

As its name implies, feedback involves feeding part of the output back to the input. We can understand by the word "negative" at this stage that the fed back signal is of a polarity that opposes the applied input. A more general definition will be given later. It is necessary to specify that the feedback is negative, because it could alternatively be positive. But positive feedback serves quite different purposes that will be discussed in future chapters.
We will also show that negative feedback can be applied in one of four configurations, corresponding to the four ideal amplifier types of Table 7.2.1. The four feedback configurations derive from the fact that the output signal that is sampled could be a voltage or a current, whereas the signal that is fed back could also be a voltage or a current, leading to four possible combinations. But we must first decide on the form of the "nonideal" amplifier to which the negative feedback is going to be applied to make it "ideal." We note in this regard that when reverse transmission is neglected, the following applies to all four circuits of Figure 7.1.2:

[^1]1. The input reduces to an input impedance z_{i} or an input admittance y_{i} that is independent of the output circuit.
2. At the output, we have either a dependent voltage source in series with an output impedance z_{0}, or a dependent current source in parallel with an output admittance y_{0}. Either output circuit can of course be transformed to the other.
3. Since the input consists of an impedance or an admittance, the controlling variable of the dependent source at the output can be considered as either the input current or the input voltage, since these two variables are related by the input impedance or admittance.

It follows that any of the representations referred to in the preceding items 1-3 can be used for the nonideal amplifier, whichever is most convenient for the purpose.

Series-Shunt Feedback

Figure 7.3.1 shows the z-equivalent circuit with zero reverse transmission, z_{i} at the input, and a dependent voltage source in series with z_{o} at the output. The dependent source is expressed in terms of the input voltage ε across z_{i}. Thus, $z_{21} I_{s r c}=z_{21} \varepsilon / z_{i}=A_{v a} \varepsilon$, where $A_{v a}$ is the open-circuit voltage gain from the input to output of the amplifier proper, without feedback. The feedback circuit feeds a fraction $\beta_{f} V_{o}$ of the output back to the input as a voltage-controlled dependent voltage source, where β_{f} is the feedback factor. The feedback is negative because $\beta_{f} V_{o}$ is of a polarity that subtracts from the source input $V_{s r c}$, so that the net input to the amplifier proper is $\varepsilon=V_{s r c}-\beta_{f} V_{o}$. In the presence of negative feedback, the amplifier is referred to as a feedback amplifier. Note the change in notation in Figure 7.3.1 from instantaneous value symbols to Laplace transform symbols because the circuits being considered generally have impedances.

The negative feedback configuration of Figure 7.3.1 is series-shunt feedback, because current $I_{s r c}$ flows in series through the amplifier input and $\beta_{f} V_{o}$ source. At the output, the feedback is shunt because the feedback circuit is connected in shunt across the output, thereby sampling the output voltage.

FIGURE 7.3.1
Ideal series-shunt, negative feedback configuration.

Ideally, the shunt feedback circuit draws no current from the output. Assuming no load at the output, $I_{o}=0$, and $V_{o}=A_{v a} \varepsilon$. At the input, $V_{s r c}=\varepsilon+\beta_{f} V_{o}$. Eliminating ε between these two relations gives:

$$
\begin{align*}
\frac{V_{o}}{V_{s r c}} & =\frac{A_{v a}}{1+\beta_{f} A_{v a}} \tag{7.3.1}\\
& \cong \frac{1}{\beta_{f}}, \quad \text { if } A_{v a} \rightarrow \infty \tag{7.3.2}
\end{align*}
$$

The interpretation of Equation 7.3.2 is that if $A_{v a} \rightarrow \infty$, then for any finite $V_{o}, \varepsilon \rightarrow 0$, since $\varepsilon=V_{o} / A_{v a}$. KVL on the input side then gives $V_{s r c}=\beta_{f} V_{o}$ and Equation 7.3.2 follows. Note that with $\varepsilon \rightarrow 0, V_{s r c}=\beta_{f} V_{o}$ independently of I_{o}. Equation 7.3.2 underlies an important concept.

Concept: In a high-gain amplifier with negative feedback, the overall gain of the feedback amplifier is determined by the feedback circuit.

The practical implication is that if β_{f} is made to depend on ratios of resistances, for example, the overall gain $1 / \beta_{f}$ can be precise and stable, irrespective of variations in the actual gain $A_{v a}$ of the amplifier proper. These variations may be due, for example, to changes in internal components caused by environmental factors or "aging," or due to changes in supply voltages, or due to differences between amplifiers of the same type because of manufacturing tolerances.

Let us look next at the input and output impedances. KVL at the input is $V_{s r c}=z_{i} I_{s r c}+$ $\beta_{f} V_{o}$. Substituting for V_{o} from Equation 7.3.1, which is based on $I_{o}=0$, and rearranging,

$$
\begin{equation*}
\frac{V_{s r c}}{I_{s r c}}=Z_{i n}=z_{i}\left(1+\beta_{f} A_{v a}\right) \tag{7.3.3}
\end{equation*}
$$

If $A_{v a} \rightarrow \infty$, then $Z_{i n} \rightarrow \infty$. This is to be expected, because if $A_{v a} \rightarrow \infty$, then $\varepsilon \rightarrow 0$, as explained earlier, which means $I_{\text {src }} \rightarrow 0$ and $Z_{\text {in }} \rightarrow \infty$. The input behaves as an open circuit.

To determine $Z_{\text {out }}$, we note that the general definition of $Z_{\text {out }}$ is Thevenin's impedance seen at the output terminals. $Z_{\text {out }}$ can also be determined by applying a test voltage (current) source at the output, with $V_{s r c}=0$ and determining the resulting source current (voltage). If a test source I_{x} is applied (Figure 7.3.2), it follows that $\varepsilon=-\beta_{f} V_{x}$ and $V_{x}=z_{0} I_{x}+A_{v a} \varepsilon$. Eliminating ε and rearranging,

$$
\begin{equation*}
\frac{V_{x}}{I_{x}}=Z_{\text {out }}=\frac{z_{o}}{1+\beta_{f} A_{v a}} \tag{7.3.4}
\end{equation*}
$$

As $A_{v a} \rightarrow \infty, Z_{\text {out }} \rightarrow 0$. This follows from the fact that $\varepsilon \rightarrow 0$ when $A_{v a} \rightarrow \infty$, which gives $\beta_{f} V_{x}=0$ independently of I_{0}. In other words, the output behaves as a short circuit $\left(V_{x}=0\right)$. When $A_{v a}$ is finite, with $V_{s r c}$ constant, then if I_{o} increases in Figure 7.3.1, due to a load for example, V_{o} increases because of the voltage drop in z_{0}. This increases the feedback signal $\beta_{f} V_{o}$, which decreases ε and $A_{v a} \varepsilon$, and nearly restores V_{o} to its original value. Having nearly the same V_{o} despite changes in I_{o} is tantamount to saying that the

FIGURE 7.3.2
Application of a test current source I_{x} for determining output impedance.
effective output impedance seen at the output terminals is small. This feedback action can be generalized to an important concept.

Concept: In a high-gain amplifier with negative feedback, the output variable that is sampled by the feedback circuit is maintained practically constant for a constant input, despite load variations.

In the series-shunt feedback configuration of Figure 7.3.1, V_{o} is the output variable being sampled and is maintained nearly constant for a constant $V_{s r c}$ despite variations in I_{o}.

It is seen that a high-gain amplifier having $A_{v a} \rightarrow \infty$ in series-shunt feedback has $Z_{\text {in }} \rightarrow \infty$ and $Z_{\text {out }} \rightarrow 0$. It is equivalent to the ideal voltage amplifier of Table 7.2.1, with $A_{v}=1 / \beta_{f}$. When $A_{v a}$ is finite, the effect of series-shunt feedback is to: (1) divide the gain of the amplifier by a factor $\left(1+\beta_{f} A_{v a}\right)$ (Equation 7.3.1), (2) multiply the input impedance by the same factor $\left(1+\beta_{f} A_{v a}\right)$ (Equation 7.3.3), and (3) divide the output impedance by the same factor ($1+\beta_{f} A_{v a}$) (Equation 7.3.4). Before proceeding to the other feedback configurations, we will clarify the significance of the term $\left(1+\beta_{f} A_{v a}\right)$.

Signal-Flow Diagrams

The relationships between the variables in a feedback system can be conveniently represented diagrammatically by means of a signal-flow diagram, illustrated in Figure 7.3.3 for the series-shunt feedback configuration of Figure 7.3.1 with $I_{o}=0$. The encircled variables are arranged in the order of signal flow, with the direction of this flow indicated by arrows joining the circles. Each arrow in the signal-flow diagram is labeled with a multiplying factor in accordance with the relationship between variables in the direction of signal flow. Thus, the arrow from ε to V_{o} is marked with $A_{v a}$ to indicate that $V_{o}=A_{v a} \times \varepsilon$. The signal that is fed back is $\beta_{f} V_{o}$. The relation $\varepsilon=V_{s r c}-\beta_{f} V_{o}$ is represented by an arrow labeled 1 from $V_{s r c}$ to ε and another arrow labeled -1 from $\beta_{f} V_{o}$ to ε. The convergence of the two lines on ε signifies summation. The negative feedback is represented in Figure 7.3.3 by a loop having a product of multipliers around the loop of $-\beta_{f} A_{v a}$, where the term $-\beta_{f} A_{v a}$ is the loop gain. This underscores an important concept.

FIGURE 7.3.3
Signal-flow diagram for the feedback amplifier of Figure 7.3.1.

Concept: In a negative feedback system, the sign of the loop gain must be negative.

A negative sign of the loop gain means that if a disturbance starts at any point in the loop and propagates around the loop, it must return to its point of origin with a phase opposite that with which it started, so that the disturbance is "squashed." This is, in fact, the more general definition of a negative feedback system. If the sign of the loop gain is positive, the system is a positive feedback system, the disturbance will be reinforced if the magnitude of the loop gain exceeds unity, leading to instability, as will be discussed later. Note that negative feedback can equally will be obtained by having the -1 in Figure 7.3.3 replaced by +1 and $A_{v a}$ replaced by $-A_{v a}$.
In addition to showing the interrelations between the variables involved, signal-flow diagrams are useful for determining directly the relations between the variables, using some well-defined rules that are elaborated in books on control systems. It suffices for our purposes to use the following simple rule:

> Rule: The value of a given variable equals the value of another variable upstream along the signal path, multiplied by the forward gain between the two variables, and divided by (1 - loop gain) of any feedback loop encountered anywhere along the path between the two variables, as long as the variables in the loop do not have additional inputs.

In going from $V_{s r c}$ to V_{O} in Figure 7.3.3, for example, the forward gain is the product of all the factors on the arrows from $V_{s r c}$ to V_{O}, which is $1 \times A_{v a}=A_{v a}$. Moreover, there is a feedback loop of gain $-\beta_{0} A_{v}$ in going from $V_{s r c}$ to V_{O}, the gain around this loop being the loop gain $-\beta_{0} A_{v}$. The variables in the loop, ε and V_{o}, do not have inputs additional to those under consideration. Hence, according to Rule 7.3.5, $\frac{V_{o}}{V_{s r c}}=\frac{A_{v a}}{1+\beta_{f} A_{v a}}$, which is the same as Equation 7.3.1. The justification of this result, of course, is that the relations between the variables in Figure 7.3.3 are precisely those leading to Equation 7.3.1. When additional inputs are present, superposition can be applied, as illustrated later in connection with Figure 7.4.18.

The signal-flow diagram can be also be used to derive Equations 7.3.3 and 7.3.4. Figure 7.3.4a shows the signal-flow diagram with the addition of the input current $I_{s r c}$. Applying Rule 7.3.5 in going from $V_{s r c}$ to $I_{s r c}$ gives $I_{s r c}=\frac{v_{s r c}}{z_{i}} \frac{1}{1+\beta_{f} A_{v a}}$, which is the same as Equation 7.3.3. Figure 7.3.4b shows the signal-flow diagram for determining $Z_{\text {out }}$. KVL at the output in Figure 7.3.2 is $V_{x}=A_{v a} \varepsilon+z_{0} I_{x}$. Hence, the arrow from I_{x} to V_{x} is labeled z_{0}. Applying

FIGURE 7.3.4
Signal-flow diagrams for determining input impedance (a), and output impedance (b) of the feedback amplifier of Figure 7.3.1.

Rule 7.3 .5 to the signal-flow diagram of Figure 7.4.3 gives $V_{x}=\frac{z_{0} I_{x}}{1+\beta_{f} A_{v a}}$, which is the same as Equation 7.3.4.

Exercise 7.3.1

Determine $Z_{\text {out }}$ in Figure 7.3.2 as the ratio $V_{o(o \mathrm{oc})} / I_{s c}$ derived: (1) analytically, and (2) from the corresponding signal-flow diagrams.

Series-Series Feedback

Figure 7.3.5 illustrates a series-series feedback configuration in which the feedback signal is derived from the output current rather than the output voltage. Because the output current I_{o} is being sampled, it is more appropriate to represent the output as a current

FIGURE 7.3.5
Ideal series-series, negative feedback configuration.
source $A_{g a} \varepsilon$ in parallel with an output admittance y_{o}, where g is added to the subscript to emphasize that $A_{g a}$ has the dimensions of conductance. It is assumed that the output is short-circuited ($V_{o}=0$), which is the ideal termination for a current drive. The series connection at the output implies that the same current I_{o} flows in the amplifier output and in the feedback circuit. Moreover, the series feedback circuit ideally presents a short circuit at the amplifier output so that the voltage across y_{0} is 0 . From Kirchhoff's current law (KCL) at the output, $I_{o}=A_{g a} \varepsilon$. At the input, the feedback is series, as in the preceding case, so that $V_{s r c}=\varepsilon+\beta_{f} I_{o}$. Eliminating ε and rearranging,

$$
\begin{align*}
\frac{I_{o}}{V_{s r c}} & =\frac{A_{g a}}{1+\beta_{f} A_{g a}} \tag{7.3.6}\\
& \cong \frac{1}{\beta_{f}}, \quad \text { if } A_{g a} \rightarrow \infty \tag{7.3.7}
\end{align*}
$$

As in the preceding case, when $A_{g a}$ is large, the overall gain $I_{o} / V_{s r c}$ depends on the feedback circuit and not on the gain $A_{g a}$. The interpretation is that if $A_{g a} \rightarrow \infty$, then for any finite $I_{o}, \varepsilon \rightarrow 0$. KVL on the input side then gives $V_{s r c}=\beta_{f} I_{o}$ and Equation 7.3.7 follows.

To determine $Z_{i n}$, KVL at the input is written as $V_{s r c}=z_{i} I_{s r c}+\beta_{f} I_{o}$. Substituting for I_{o} from Equation 7.3.6, which is based on $V_{o}=0$, and rearranging,

$$
\begin{equation*}
\frac{V_{s r c}}{I_{s r c}}=Z_{i n}=z_{i}\left(1+\beta_{f} A_{g a}\right) \tag{7.3.8}
\end{equation*}
$$

If $A_{g a} \rightarrow \infty$, then $Z_{i n} \rightarrow \infty$. This is to be expected, because if $A_{g a} \rightarrow \infty$, then $\varepsilon \rightarrow 0$, which means $I_{s r c} \rightarrow 0$ and $Z_{i n} \rightarrow \infty$. The input behaves as an open circuit.

To determine $Y_{\text {out }}$, a test source V_{x} is applied at the output, with $V_{\text {src }}=0$ (Figure 7.3.6). $y_{o} V_{x}=I_{x}-A_{g a} \varepsilon$. Substituting $\varepsilon=-\beta_{f} I_{x}$ and rearranging,

$$
\begin{equation*}
\frac{I_{x}}{V_{x}}=Y_{o u t}=\frac{y_{o}}{1+\beta_{f} A_{g a}} \tag{7.3.9}
\end{equation*}
$$

As $A_{g a} \rightarrow \infty, Y_{\text {out }} \rightarrow 0$. Referring to Figure 7.3.5, the interpretation is that $\varepsilon \rightarrow 0$ when $A_{g a} \rightarrow \infty$, which gives $\beta_{f} I_{o}=0$ when $V_{s r c}=0$, independently of V_{o}. In other words, the

FIGURE 7.3.6
Application of a test voltage source V_{x} for determining the output admittance.
output behaves as an open circuit $\left(I_{o}=0\right)$. When $A_{g a}$ is finite, with $V_{s r c}$ constant, then if I_{o} increases, for example, in Figure 7.3.5, the feedback signal βI_{o} increases, which decreases ε and $A_{g a} \varepsilon$, and nearly restores I_{o} to its original value. The effective admittance at the output is therefore small; that is, the output appears as a current source. This is in accordance with the concept emphasized earlier that I_{o}, the output variable being sampled, is maintained practically constant by the negative feedback, for a constant $V_{s r c}$, despite load variations.

It is seen that a high-gain amplifier having $A_{g a} \rightarrow \infty$ in series-series feedback has $Z_{\text {in }} \rightarrow \infty$ and $Y_{\text {out }} \rightarrow 0$. The feedback amplifier is equivalent to the ideal transconductance amplifier of Table 7.2.1, with $G_{m}=1 / \beta_{f}$. When $A_{g a}$ is finite, the effect of series-shunt feedback is to: (1) divide the gain of the amplifier by a factor $\left(1+\beta_{f} A_{g a}\right)$ (Equation 7.3.6), (2) multiply the input impedance by the factor $\left(1+\beta_{f} A_{g a}\right)$ (Equation 7.3.8), and (3) divide the output admittance by the factor $\left(1+\beta_{f} A_{g a}\right)$ (Equation 7.3.9).

Exercise 7.3.2

Derive Equations 7.3.6, 7.3.8, and 7.3.9 from corresponding signal-flow diagrams for the seriesseries feedback configuration.

Exercise 7.3.3

Determine $Y_{\text {out }}$ in Figure 7.3.6 as $I_{s c} / V_{o c}$.

Shunt-Series Feedback

Figure 7.3.7 illustrates shunt-series feedback, in which the input is considered a current $I_{s r c}$ and the feedback source $\beta_{f} I_{o}$ appears in shunt with the input. The source $\beta_{f} I_{o}$ subtracts from $I_{s r c}$ so that the net input current to the amplifier proper is $\delta=I_{s r c}-\beta_{f} I_{o}$. At the output, with $V_{o}=0$ as in the preceding case, $I_{o}=A_{i a} \delta$. Eliminating δ and rearranging,

$$
\begin{align*}
\frac{I_{o}}{I_{s r c}} & =\frac{A_{i a}}{1+\beta_{f} A_{i a}} \tag{7.3.10}\\
& \cong \frac{1}{\beta_{f}}, \quad \text { if } A_{i a} \rightarrow \infty \tag{7.3.11}
\end{align*}
$$

FIGURE 7.3.7
Ideal shunt-series, negative feedback configuration.

As in the preceding cases, when $A_{i a}$ is large, the overall gain $I_{o} / I_{s r c}$ depends on the feedback circuit and not on the gain $A_{i a}$. The interpretation is that if $A_{i a} \rightarrow \infty$, then for any finite I_{o}, $\delta \rightarrow 0$. KCL on the input side then gives $I_{s r c}=\beta_{f} I_{o}$ and Equation 7.3.10 follows.

To determine $Y_{i n}$, KCL at the input is written as $I_{s r c}=y_{i} V_{i}+\beta_{f} I_{o}$. Substituting for I_{o} from Equation 7.3.10, which is based on $V_{o}=0$, and rearranging,

$$
\begin{equation*}
\frac{I_{s r c}}{V_{i}}=Y_{i n}=y_{i}\left(1+\beta_{f} A_{i a}\right) \tag{7.3.12}
\end{equation*}
$$

If $A_{i a} \rightarrow \infty$, then $Y_{i n} \rightarrow \infty$. This is to be expected, because if $A_{i a} \rightarrow \infty$, then $\delta \rightarrow 0$, which means $V_{i} \rightarrow 0$ and $Y_{i n} \rightarrow \infty$. The input behaves as a short circuit, which is the ideal termination for a current-source input.

If a test voltage source is applied at the output in Figure 7.3.7, but with the input opencircuited, $\delta=-\beta_{f} I_{x}$ and $I_{x}=y_{o} V_{x}+A_{i a} \delta$. This gives:

$$
\begin{equation*}
\frac{I_{x}}{V_{x}}=Y_{\text {out }}=\frac{y_{o}}{1+\beta A_{\text {ia }}} \tag{7.3.13}
\end{equation*}
$$

As $A_{\text {ia }} \rightarrow \infty, Y_{\text {out }} \rightarrow 0$, the interpretation being as explained previously.
It is seen that a high-gain amplifier having $A_{i a} \rightarrow \infty$ in shunt-series feedback has $Y_{\text {in }} \rightarrow \infty$ and $Y_{\text {out }} \rightarrow 0$. The feedback amplifier is equivalent to the ideal current amplifier of Table 7.2.1, with $R_{m}=1 / \beta_{f}$. When $A_{i a}$ is finite, the effect of series-shunt feedback is to: (1) divide the gain of the amplifier by a factor $\left(1+\beta_{f} A_{i a}\right)$ (Equation 7.3.10), (2) multiply the input admittance by the factor $\left(1+\beta_{f} A_{i a}\right)$ (Equation 7.3.12), and (3) divide the output admittance by the factor $\left(1+\beta_{f} A_{i a}\right)$ (Equation 7.3.13).

Exercise 7.3.4

Derive Equations 7.3.10, 7.3.12, and 7.3.13 from corresponding signal-flow diagrams for the shunt-series feedback configuration.

Exercise 7.3.5

Determine $Y_{\text {out }}$ in Figure 7.3.6 as $I_{\text {sc }} / V_{o c}$.

Shunt-Shunt Feedback

Finally, Figure 7.3 .8 shows a shunt-shunt feedback configuration. With the same assumptions as before, KVL at the output gives $V_{o}=A_{r a} \delta$, with $I_{o}=0$. At the input, $I_{s r c}=\beta_{f} V_{o}+\delta$. Substituting for δ and rearranging,

$$
\begin{align*}
\frac{V_{o}}{I_{s r c}} & =\frac{A_{r a}}{1+\beta_{f} A_{r a}} \tag{7.3.14}\\
& \cong \frac{1}{\beta_{f}}, \quad \text { if } A_{r a} \rightarrow \infty \tag{7.3.15}
\end{align*}
$$

As in the preceding cases, when $A_{r a}$ is large, the overall gain $V_{o} / I_{s r c}$ depends on the feedback circuit and not on the gain $A_{r a}$. The interpretation is that if $A_{r a} \rightarrow \infty$, then for any finite V_{o}, $\delta \rightarrow 0$. KCL on the input side then gives $I_{s r c}=\beta_{f} V_{o}$ and Equation 7.3.15 follows.

FIGURE 7.3.8
Ideal shunt-shunt, negative feedback configuration.

To determine $Y_{i n}$, KCL at the input is written as $I_{s r c}=y_{i} V_{i}+\beta_{f} V_{o}$. Substituting for V_{o} from Equation 7.3.14, which is based on $I_{o}=0$, and rearranging,

$$
\begin{equation*}
\frac{I_{s r c}}{V_{i}}=Y_{i n}=y_{i}\left(1+\beta_{f} A_{r a}\right) \tag{7.3.16}
\end{equation*}
$$

If $A_{r a} \rightarrow \infty$, then $Y_{i n} \rightarrow \infty$. This is to be expected, because if $A_{r a} \rightarrow \infty$, then $\delta \rightarrow 0$, which means $V_{i} \rightarrow 0$ and $Y_{\text {in }} \rightarrow \infty$. The input behaves as a short circuit.

If a test current source is applied at the output in Figure 7.3.8, with the input opencircuited, $\beta_{f} V_{x}=-\delta$ and $V_{x}=z_{0} I_{x}+A_{r a} \delta$. Eliminating δ and rearranging,

$$
\begin{equation*}
\frac{V_{x}}{I_{x}}=Z_{\text {out }}=\frac{z_{o}}{1+\beta_{f} A_{r a}} \tag{7.3.17}
\end{equation*}
$$

As $A_{r a} \rightarrow \infty, Z_{\text {out }} \rightarrow 0$, the interpretation being as explained previously.
It is seen that a high-gain amplifier having $A_{r a} \rightarrow \infty$ in shunt-shunt feedback has $Y_{i n} \rightarrow \infty$ and $Z_{\text {out }} \rightarrow 0$. The feedback amplifier is equivalent to the ideal transresistance amplifier of Table 7.2.1, with $A_{r a}=1 / \beta_{f}$. When $A_{r a}$ is finite, the effect of shunt-shunt feedback is to: (1) divide the gain of the amplifier by a factor $\left(1+\beta_{f} A_{r a}\right)$ (Equation 7.3.14), (2) multiply the input admittance by the factor $\left(1+\beta_{f} A_{r a}\right)$ (Equation 7.3.16), and (3) divide the output impedance by the factor $\left(1+\beta_{f} A_{r a}\right)$ (Equation 7.3.17).

Exercise 7.3.6

Derive Equations 7.3.14, 7.3.16, and 7.3.17 from corresponding signal-flow diagrams for the shunt-shunt feedback configuration.

Exercise 7.3.7

Derive $Z_{\text {out }}$ of the shunt-shunt feedback amplifier from Thevenin's equivalent circuit, as in Exercise 7.3.1.

TABLE 7.3.1
Effect of Type of Feedback on Input and Output Impedances

Type of Feedback	Input Impedance	Output Impedance
Series-shunt	High	Low
Series-series	High	High
Shunt-series	Low	High
Shunt-shunt	Low	Low

The effect of the four negative feedback configurations on an amplifier can be summarized as follows:

Summary

1. In all cases, negative feedback divides the gain of the amplifier by (1-loop gain).
2. Series feedback, whether at the input or output, multiplies the corresponding impedance of the amplifier by (1 - loop gain).
3. Shunt feedback, whether at the input or output, divides the corresponding impedance of the amplifier by (1-loop gain).
4. Shunt feedback at the output makes the output behave as a voltage source, whereas series feedback at the output makes the output behave as a current source.
5. Series feedback at the input is associated with voltage input and voltage feedback, whereas shunt feedback at the input is associated with current input and current feedback.

The effects of the type of feedback on the input and output impedances are summarized qualitatively in Table 7.3.1.

7.4 Ideal Operational Amplifier*

Definition: In an operational amplifier, or op amp, the output voltage is directly proportional to the difference between the voltages applied to its two input terminals.

The op amp has an output terminal and two input terminals: a noninverting terminal denoted by the $(+)$ sign, and an inverting terminal denoted by the $(-)$ sign, as illustrated in the symbol for an op amp in Figure 7.4.1. According to the preceding definition,

$$
\begin{equation*}
v_{O}=A_{v}\left(v_{P}-v_{N}\right)=A_{v} \varepsilon \tag{7.4.1}
\end{equation*}
$$

[^2]

FIGURE 7.4.1
Operational amplifier.
where A_{v} is the voltage gain of the amplifier. The following should be noted concerning this definition:

1. Because the output is determined by the difference between the two inputs, the op amp is an example of a differential amplifier.
2. The two terminals are designated as noninverting and inverting, because v_{O} is of the same polarity as the input v_{P} applied to the noninverting terminal, and is of opposite polarity to the input v_{N} applied to the inverting terminal.

The ideal operational amplifier is a very useful idealization that can serve as an initial design step and which is also commonly invoked to illustrate some important circuit concepts. Many practical op amps approach the ideal in several respects, so the concept is not as farfetched as it may seem.

Concept: An ideal op amp has the following properties:

1. The output is an ideal voltage source of voltage $v_{O}=A_{v}\left(v_{P}-v_{N}\right)$, with $A_{v} \rightarrow \infty$.
2. Like an ideal voltage source, the amplifier has zero output resistance and can deliver any output voltage or current, at any frequency.
3. Both inputs behave as open circuits.
4. The amplifier is free from any imperfections.

The symbol for an ideal operational amplifier used in this book is that of Figure 7.4.1 but without indicating A_{v}. There are two basic op-amp configurations, noninverting and inverting, which are discussed next.

Noninverting Configuration

Consider an ideal op amp connected as shown in Figure 7.4.2. This is a series-shunt feedback configuration, where the feedback circuit is the voltage divider consisting of R_{f} and R_{r} connected in shunt across the output. The feedback signal taken from the output of

FIGURE 7.4.2
Noninverting operational amplifier.

FIGURE 7.4.3
Signal-flow diagram for noninverting operational amplifier.

the voltage divider is $\beta_{o} v_{O}$, where $\beta_{o}=R_{r} /\left(R_{r}+R_{f}\right)$ is the feedback factor, and the small o subscript refers to an operational amplifier. The feedback signal is applied to the inverting input so that it effectively subtracts from v_{I} applied to the noninverting input. It follows from Equation 7.3.2 that, with $A_{v} \rightarrow \infty$, that the overall voltage gain:

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=\frac{1}{\beta_{o}}=1+\frac{R_{f}}{R_{r}} \tag{7.4.2}
\end{equation*}
$$

Because the sign of v_{O} is the same as that of $v_{s r c}$, the configuration is noninverting. To determine the voltage gain for finite A_{v}, we note that in Figure 7.4.2, $v_{P}=v_{S R C}$ and $v_{N}=\beta_{o} v_{O}$. Equation 7.4.1 is represented by the dependent source shown dotted. Substituting for v_{P} and v_{N} in Equation 7.4.1 and rearranging,

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=\frac{A_{v}}{1+\beta_{0} A_{v}} \tag{7.4.3}
\end{equation*}
$$

If $A_{v} \rightarrow \infty$, Equation 7.4.3 reduces to Equation 7.4.2. $\varepsilon=0$ under these conditions, so that $v_{P}=v_{N}$. This is tantamount to having a virtual short-circuit between the two input terminals, without their being actually connected together. The fact that $v_{P}=v_{N}$ in an ideal op amp greatly simplifies the analysis of ideal op-amp circuits.

The voltage gain $v_{O} / v_{S R C}$ cannot be less than unity. If $R_{r}=1 \mathrm{k} \Omega$ and $R_{f}=4 \mathrm{k} \Omega$, for example, $\beta_{o}=1 / 5$ and $v_{O} / v_{I}=5$. A_{v} for a general purpose, low-frequency op amp is typically about 10^{5}. Substituting for β and A_{v} in Equation 7.4.3 gives $v_{O} / v_{S R C}=4.99975$.

The signal-flow diagram for the noninverting configuration is illustrated in Figure 7.4.3. The relations between the variables conform to those of the circuit of Figure 7.4.2. Applying Rule 7.3.5 to the signal-flow diagram gives Equation 7.4.3.

Exercise 7.4.1

Determine V in Figure 7.4 .4 so that no current flows in the $2 \mathrm{k} \Omega$ resistor.
Answer: 10 V .

FIGURE 7.4.4
Figure for Exercise 7.4.1.

Unity-Gain amplifier

An important special case of the noninverting configuration is the unity-gain amplifier, also known as a voltage follower, in which $R_{f}=0$, so that the output is directly connected to the inverting input (Figure 7.4.5). R_{r} across the output of the op amp becomes redundant and is removed. With $\beta_{o}=1$, the overall gain is very nearly unity when A_{v} is high (Equation 7.4.3).

The unity-gain amplifier is extremely useful for isolating a source from a load. Isolation is desirable in many cases for the following reasons:

1. When the load resistance is much smaller than the source resistance, the signal at the load is considerably attenuated, and the power delivered to the load is limited. In Figure 7.4.6a, for example, the voltage v_{O} across the load is only $6 \times 0.1 / 1.2=0.5 \mathrm{~V}$ compared to an open-circuit source voltage of 6 V , and the power delivered to the load is 2.5 mW . With a unity-gain amplifier connected between the source and load (Figure 7.4.6b), the source current is ideally zero, independently of load variations. The voltage across the load is now 6 V , because the amplifier appears as a voltage source, and the power delivered to the load is 360 mW , assuming that the op amp is capable of delivering the required power.
2. Changes in the load do not affect the source current and hence the source voltage.

FIGURE 7.4.5
Unity-gain amplifier.

FIGURE 7.4.6
Effect of isolation of a load whose resistance is much smaller than that of the source. The load is connected to the source directly in (a) and through a unity-gain amplifier in (b).
3. In case of mismatch between the frequency dependence of the source and load impedances, the voltage across the load varies with frequency. Connecting a unitygain amplifier having a high input impedance and a low output impedance overcomes this problem and makes the voltage across the load virtually independent of frequency.

Inverting Configuration

Figure 7.4.7a illustrates an op amp shunt-shunt feedback configuration. The noninverting input is connected to the common reference, which is usually grounded. With $v_{P}=0$ and $\varepsilon_{n}=-\varepsilon=v_{N}$, Equation 7.4.1 gives $v_{O}=-A_{v} \varepsilon_{n}$. As $A_{v} \rightarrow \infty, \varepsilon_{n} \rightarrow 0$, which makes the inverting input a virtual ground: it is at ground potential without being actually grounded. Because of the virtual ground, no current flows in R_{r} and $i_{r}=i_{S R C}$. Connecting the output to the inverting input gives negative feedback, the feedback current i_{f}, being equal to $-v_{O} / R_{f}$, is proportional to v_{O} in accordance with shunt feedback at the output. Assume, for the moment, a finite input resistance between the inverting and noninverting inputs so that $i_{i N} \neq 0$. If v_{O} increases in the positive direction, i_{f} decreases, which increases $i_{i N}$ and hence ε_{n}. This will make v_{O} more negative, thereby opposing the increase in v_{O}, because of the negative feedback. Note that when the op amp is ideal, the circuit of Figure 7.4.7a transforms a nonideal current source to an ideal voltage source at the op-amp output, the current source being ideally terminated in a short circuit.
Transforming the current source in parallel with R_{r} to a voltage source $v_{S R C}$ in series with R_{r}, transforms the shunt-shunt transresistance amplifier to a voltage amplifier (Figure 7.4.7b). The input current is $i_{r}=v_{S R C} / R_{r}$ and is forced to flow through R_{f}, because the inverting input behaves as an open circuit. It follows that $i_{r}=i_{f}=-v_{O} / R_{f}$. Eliminating i_{r} between the two preceding relations,

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=-\frac{R_{f}}{R_{r}} \tag{7.4.4}
\end{equation*}
$$

Because the sign of v_{O} is opposite to that of v_{I}, the configuration is inverting.
To analyze the circuit when A_{v} is finite, KVL at the input gives $v_{S R C}=R_{r} i_{r}+\varepsilon_{n}$. From KVL at the output: $\varepsilon_{n}=R_{f} i_{r}+v_{O}$. For the op amp, $v_{O}=-A_{v} \varepsilon_{n}$. Eliminating ε_{n} and i_{r} between these three equations and rearranging,

FIGURE 7.4.7
(a) Shunt-shunt operational amplifier connection; (b) inverting operational amplifier.

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=-\frac{R_{f}}{R_{r}} \frac{\beta_{0} A_{v}}{1+\beta_{0} A_{v}} \tag{7.4.5}
\end{equation*}
$$

where $\beta_{o}=R_{r} /\left(R_{r}+R_{f}\right)$, as for the noninverting configuration. If $A_{v} \rightarrow \infty$, Equation 7.4.5 reduces to Equation 7.4.4.

An alternative and useful way of looking at the inverting configuration is to consider that a fraction of the input and a fraction of the output are superposed at the inverting input of the op amp. To determine the contribution $\varepsilon_{n 1}$ at the amplifier input due to $v_{S R C}$ acting alone, we set $v_{O}=0$ by imagining the op amp to be modified internally so that $A_{v}=0$. This effectively connects the output end of R_{f} to the common reference through the short circuit of the ideal dependent voltage source (Figure 7.4.8a). It follows that $\varepsilon_{n 1}=v_{S R C} R_{f} /\left(R_{r}+R_{f}\right)$. Next we imagine R_{f} to be disconnected from the amplifier output and connected to a voltage source v_{O}, with $v_{S R C}=0$ (Figure 7.4.8b). This gives $\varepsilon_{n 2}=v_{O} R_{r} /\left(R_{r}+R_{f}\right)=\beta_{0} v_{O}$. In normal operation,

$$
\begin{equation*}
\varepsilon_{n}=\varepsilon_{n 1}+\varepsilon_{n 2}=\frac{R_{f}}{R_{r}+R_{f}} v_{S R C}+\frac{R_{r}}{R_{r}+R_{f}} v_{O} \tag{7.4.6}
\end{equation*}
$$

In the ideal case, $\varepsilon_{n}=0$, and Equation 7.4.6 reduces to Equation 7.4.4.
Equation 7.4.6 can be represented on a signal-flow diagram as in Figure 7.4.9a. Note that the forward transmission $-A_{v}$ is negative. But the sign of the feedback path, from the output to the inverting input of the op amp is positive, so that the loop gain $-\beta_{f} A_{v}$, is negative, as it should be for a negative feedback system. Applying Rule 7.3.5 to this diagram gives Equation 7.4.5. We can make this signal-flow diagram formally look more like that of the noninverting amplifier, by changing ε_{n} to $\varepsilon=-\varepsilon_{n}$. This negates all the multiplying factors in Figure 7.4.9a leading to the signal-flow diagram of Figure 7.4.9b. The relation between v_{O} and $v_{S R C}$ remains unchanged.

The signal-flow diagrams of the two configurations, as depicted in Figures 7.4.3 and 7.4.9b, respectively, differ only in the forward transmission from $V_{S R C}$ to ε, this being unity in the noninverting configuration and $-R_{f} /\left(R_{r}+R_{f}\right)$ in the inverting configuration.

(a)

(b)

FIGURE 7.4.8
Applying superposition to the inverting operational amplifier: (a) output set to zero; (b) input source set to zero.

FIGURE 7.4.9
(a) Signal-flow diagram of the inverting configuration; (b) the signal-flow diagram with ε_{n} negated.

Exercise 7.4.2

Determine i_{O} in Figure 7.4.10.
Answer: 2.5 mA .

Exercise 7.4.3

Show that in Figure 7.4.11, $i_{L}=-\frac{v_{S R C}}{R_{S r C}}\left(1+\frac{R_{1}}{R_{2}}\right)$. Note that i_{L} is in this case larger than the current drawn from the source and is independent of R_{L}.

Exercise 7.4.4

Show that in Figure 7.4.12, $i_{L}=v_{S R C} / R$. Note that the voltage source is ideally terminated with an open circuit.

FIGURE 7.4.10
Figure for Exercise 7.4.2.

FIGURE 7.4.11
Figure for Exercise 7.4.3.

FIGURE 7.4.12
Figure for Exercise 7.4.4.

The fact that the inverting input of the op amp in the inverting configuration is a virtual ground is highly important and leads to many useful applications, the underlying concept being:

Concept: When the inverting input is a virtual ground, the input current is determined solely by the input circuit. The input current is forced to flow through the circuit element connected between the inverting input and the output, irrespective of the value or nature of this element. The output voltage is then the negation of the voltage drop across the feedback element.

In other words, the circuit element connected between the inverting terminal and output sees a current source whose value is the input current. This leads to a number of useful applications, such as adders, integrators, and differentiators, which are considered in detail in Chapter 10, taking into account op-amp imperfections. We will consider here integrators and differentiators based on op amps that are ideal except for finite gain. This will further illustrate some feedback principles that are needed in a later discussion.

Integrator

The basic circuit of an op-amp integrator is shown in Figure 7.4.13a and its signal-flow diagram in Figure 7.4.13b, based on Figure 7.4.9a. The relations for the integrator are

FIGURE 7.4.13
(a) Ideal op-amp integrator and (b) signal-flow diagram.
derived from those for the inverting amplifier of Figure 7.4 .6 by replacing R_{f} with $Z_{f}=1 / j \omega C_{f}$. Equation 7.4.5 becomes, in Laplace transform notation:

$$
\begin{equation*}
\frac{V_{o}}{V_{s r c}}=-\frac{Z_{f}}{R_{r}} \frac{\beta_{0} A_{v}}{1+\beta_{o} A_{v}} \tag{7.4.7}
\end{equation*}
$$

where $\beta_{o}=R_{r} /\left(R_{r}+Z_{f}\right)=j \omega C_{f} R_{r} /\left(1+j \omega C_{f} R_{r}\right)$. If $\beta_{o} A_{v} \rightarrow \infty$, Equation 7.4.5 reduces to:

$$
\begin{equation*}
\frac{V_{o}}{V_{s r c}}=-\frac{Z_{f}}{R_{r}}=-\frac{1}{j \omega C_{f} R_{r}} \tag{7.4.8}
\end{equation*}
$$

which represents perfect integration in the frequency domain, with phase inversion, equivalent to $v_{O}=-\frac{1}{C_{f} R_{r}} \int v_{S R C} d t$ in the time domain. This relation readily follows from Figure 7.4.13a by writing $i_{r}=\frac{v_{S R C}}{R_{r}}, v_{O}=-\frac{1}{C_{f}} \int i_{r} d t$, and substituting for i_{r}.

If A_{v} is finite, $\left|\beta_{o} A_{v}\right|=A_{v} \omega C_{f} R_{r} / \sqrt{1+\left(\omega C_{f} R_{r}\right)^{2}}$. As long as $\left|\beta_{o} A_{v}\right| \gg 1$ in Equation 7.4.7, integration is near-perfect. At a sufficiently low ω, however, $\left|\beta_{o} A_{v}\right|$ becomes small enough to introduce appreciable error. Hence,

Concept: Near-perfect integration down to very low frequencies requires very high values of amplifier gain.

For example, if a low-frequency square wave is integrated to give a triangular wave, insufficient amplifier gain will make the sides of the triangular wave exponential rather than linear. Practical integrators are analyzed in Section 10.3, Chapter 10.

Differentiator

The basic circuit of an op-amp differentiator is shown in Figure 7.4.14a and its signal-flow diagram in Figure 7.4.14b, based on Figure 7.4.9a. The relations for the differentiator are derived from those for the inverting amplifier of Figure 7.4 .6 by replacing R_{r} with $Z_{r}=1 / j \omega C_{r}$. Equation 7.4 .5 becomes:

FIGURE 7.4.14
(a) Ideal op-amp differentiator, and (b) signal-flow diagram.

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=-\frac{R_{f}}{Z_{r}} \frac{\beta_{0} A_{v}}{1+\beta_{0} A_{v}} \tag{7.4.9}
\end{equation*}
$$

where $\beta_{o}=Z_{r} /\left(Z_{r}+R_{f}\right)=1 /\left(1+j \omega C_{f} R_{r}\right)$. If $\beta_{o} A_{v} \rightarrow \infty$, Equation 7.4.9 reduces to:

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=-\frac{R_{f}}{Z_{r}}=-j \omega C_{r} R_{f}, \tag{7.4.10}
\end{equation*}
$$

which represents perfect differentiation in the frequency domain, with phase inversion, equivalent to $v_{O}=-C_{r} R_{f} d v_{S R C} / d t$ in the time domain. This relation readily follows from Figure 7.4.14a by writing $i_{r}=C_{r} d v_{S R C} / d t, v_{O}=-R_{f} i_{r}$, and substituting for i_{r}.
If A_{v} is finite, $\left|\beta_{o} A_{v}\right|=A_{v} / \sqrt{1+\left(\omega C_{r} R_{f}\right)^{2}}$. As long as $\left|\beta_{o} A_{v}\right| \gg 1$ in Equation 7.4.9, differentiation is near-perfect. At a sufficiently high ω, however, $\left|\beta_{0} A_{v}\right|$ becomes small enough to introduce appreciable error. Hence,

Concept: Near-perfect differentiation up to very high frequencies requires very high values of amplifier gain.

For example, if a square wave is differentiated, insufficient amplifier gain will give an initially sharp edge, coinciding with transitions of the square wave, followed by a slowly decaying exponential tail.

Exercise 7.4.5

Show that the circuit of Figure 7.4.15 is a noninverting integrator in which C_{f} is multiplied by the magnitude of the gain of the inverting amplifier. Note that the inverting input of the integrator is now a virtual ground.

Example 7.4.1 Output and Input Impedances of Op-Amp Configurations

It is required to determine, for both the noninverting and inverting configurations: (a) the output resistance, assuming a finite output resistance of the op amp, and (b) the input resistance, assuming a finite input resistance of the op amp. The op amp is considered to have a finite gain in both cases.

FIGURE 7.4.15
Figure for Exercise 7.4.5.

Solution

(a) The output impedance of an op amp is essentially resistive and is denoted by R_{o}. Since the feedback is shunt type at the output in both configurations, the effect of the feedback on R_{o} is the same. This effect can be determined from the signal-flow diagram of Figure 7.4.16, which applies to both configurations, the only difference being in the value of k, as follows from Figures 7.4.3 and 7.4.9b.
If a test source I_{x} is applied at the output, as in Figure 7.3.2, KVL gives $V_{x}=A_{v} \varepsilon+R_{o} I_{x}$, for either op-amp configuration. V_{x} is related to I_{x} by R_{o}, as in Figure 7.3.4b. Applying Rule 7.3.5, $V_{x}=R_{o} I_{x} /\left(1+\beta_{o} A_{v}\right)$. The effective output resistance in the presence of feedback is:

$$
\begin{equation*}
\frac{V_{x}}{I_{x}}=R_{\text {out }}=\frac{R_{o}}{1+\beta_{o} A_{v}} \tag{7.4.11}
\end{equation*}
$$

If $A_{v} \rightarrow \infty$, then $R_{\text {out }} \rightarrow 0$, as it should for shunt feedback at the output.
(b) Let the differential input impedance of the noninverting configuration be Z_{i} (Figure 7.4.17a). Assuming $Z_{i} \gg\left(R_{f} \| R_{r}\right)$, as is normally the case, the effect of $I_{s r c}$ on the $R_{r} R_{f}$ voltage divider can be neglected. Hence, $\varepsilon=V_{s r c}-\beta_{o} V_{o}$, where $\varepsilon=Z_{i} I_{s r c}$, as depicted in the signal-flow diagram of Figure 7.4.17b, which is essentially the same as that of Figure 7.3.4a. It follows that $I_{s r c}=\frac{1}{Z_{i}} V_{s r c} \times \frac{1}{1+\beta_{o} A_{v}}$, which gives $\frac{V_{s r c}}{I_{s r c}}=Z_{i n}=Z_{i}\left(1+\beta_{o} A_{v}\right)$. If $A_{v} \rightarrow \infty$, then $Z_{\text {in }} \rightarrow \infty$, as it should for series-feedback at the input.

For the inverting configuration, it follows from Figure 7.4.7a and b with Z_{i} connected at the input of the op amp, that Equation 7.4.6 is modified to $\varepsilon_{n}=R_{f}^{\prime} V_{s r c}+\beta_{o}^{\prime} V_{o}$, where

FIGURE 7.4.16

FIGURE 7.4.17
Figure for Example 7.4.1.

FIGURE 7.4.18
Signal-flow diagram for the inverting or noninverting configuration including an extraneous signal v_{E}.
$R_{f}^{\prime}=\frac{R_{f} \| Z_{i}}{R_{r}+R_{f} \| Z_{i}}$ and $\quad \beta_{o}^{\prime}=\frac{R_{r} \| Z_{i}}{R_{f}+R_{r} \| Z_{i}}$. From Figure
7.4.6b, $V_{\text {src }}=\varepsilon_{n}+R_{r} I_{r}$ and $V_{o}=-A_{\checkmark} \varepsilon_{n}$. Substituting for V_{o}, eliminating ε_{n}, and rearranging,

$$
\begin{equation*}
\frac{V_{s r c}}{I_{r}}=Z_{i n}=\frac{R_{r}}{1-R_{f}^{\prime} /\left(1+\beta_{o}^{\prime} A_{v}\right)} \tag{7.4.12}
\end{equation*}
$$

If $A_{v} \rightarrow \infty, Z_{i n}=R_{r}$, as expected from the virtual ground at the inverting terminal.

Extraneous Signals

These signals may be due, for example, to: (1) interference from the surroundings, (2) nonlinear distortion, which generates harmonic frequencies in the amplifier, or (3) improper filtering of the rectified ac supply that provides the dc bias supplies of the op amp. Let us assume that an extraneous signal v_{E} appears at a point where the gain to the output is A_{e} (Figure 7.4.18). In this figure, $k=1$ for the noninverting configuration and $k=-R_{f} /\left(R_{r}+R_{f}\right)$ for the inverting configuration. Applying superposition and Rule 7.3.5,

$$
\begin{equation*}
v_{O}=\frac{k A_{v}}{1+\beta_{0} A_{v}} v_{S R C}+\frac{A_{e}}{1+\beta_{0} A_{v}} v_{E} \tag{7.4.13}
\end{equation*}
$$

The extraneous signal at the output is $A_{e} / k A_{v}$ relative to the input signal. Hence,

Concept: In a negative feedback system, both the input and extraneous signals are attenuated by (1 - loop gain). The closer the source of the extraneous signal is to the output, the smaller is the gain A_{e} relative to A_{v}, and the smaller is the extraneous signal at the output, relative to the input signal.

Simulation Example 7.4.2 Extraneous Signal

It is required to simulate the effect of an extraneous signal on the output of an op-amp feedback amplifier.

Simulation

The schematic circuit is that of the noninverting configuration with a $1 \mathrm{~V}, 1 \mathrm{kHz}$ signal applied to the noninverting input and a $1 \mathrm{~V}, 10 \mathrm{kHz}$ extraneous signal that appears as a perturbation of the output voltage of the op amp (Figure 7.4.19). PSpice has an "ideal op amp" part that is listed as OPAMP in the ANALOG library. The op amp has a default gain of 10^{6} and default dc bias supplies of $\pm 15 \mathrm{~V}$, both of which can be changed in the Property Editor spreadsheet.

Figure 7.4.20 shows the output of the op amp over a period of $0-5 \mathrm{~ms}$. The $1 \mathrm{~V}, 1 \mathrm{kHz}$ input appears at the output with a gain of 2 , as expected. Since $\beta_{o}=1 / 2$, and (1 - loop gain) is $\left(1+10^{6} / 2\right)$, the $1 \mathrm{~V}, 10 \mathrm{kHz}$ signal is attenuated by this factor so that its amplitude will be nearly $2 \mu \mathrm{~V}$ and is not visible in the figure.

FIGURE 7.4.19
Figure for Simulation Example 7.4.2.

FIGURE 7.4.20
Figure for Simulation Example 7.4.2.

Gain-Bandwidth Product

Assume that A_{v} of the op amp is frequency dependent and is given by:

$$
\begin{equation*}
A_{v}(f)=\frac{A_{v 0}}{1+j f / f_{c}} \tag{7.4.14}
\end{equation*}
$$

where
f_{c} is the $3-\mathrm{dB}$ cutoff frequency
$A_{v 0}$ is the gain at low frequencies
The asymptotic magnitude Bode plot (Appendix SC) is shown in Figure 7.4.21 as a plot of $20 \log _{10}\left|A_{v}(f)\right|$ in dB against $\log _{10} f$. The gain-bandwidth product (GB product),

FIGURE 7.4.21
The effect of negative feedback on frequency response.
considered as $A_{v 0} f_{c}$ (Exercise 7.4.7), is an important figure of merit of an amplifier; the larger this product, the better is the performance of the amplifier.

For the noninverting configuration, substituting for $A_{v}(f)$ from Equation 7.4.14,

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C}}=\frac{A_{v}(f)}{1+\beta_{0} A_{v}(f)}=\frac{A_{v 0}}{1+\beta_{0} A_{v 0}+j f / f_{c}}=\frac{A_{v 0}}{1+\beta_{0} A_{v 0}} \frac{1}{1+j f / f_{c}\left(1+\beta_{0} A_{v 0}\right)} \tag{7.4.15}
\end{equation*}
$$

It is seen from Equation 7.4.15 that the 3-dB cutoff frequency is multiplied by the factor $\left(1+\beta_{o}\right)$ to become $f_{c}^{\prime}=f_{c}\left(1+\beta_{o} A_{v 0}\right)$. In other words, the bandwidth is multiplied by $\left(1+\beta_{0} A_{v 0}\right)$, but the dc gain $A_{v 0}$ is divided by the same factor and becomes $A_{v 0} /\left(1+\beta_{0} A_{v 0}\right)$. The magnitude of the gain $\left|\frac{A_{v}(f)}{1+\beta_{0} A_{v}(f)}\right|$ is nearly $1 / \beta_{o}$, independent of frequency as long as $\left|\beta_{o} A_{v 0}\right| \gg 1$. The gain therefore remains substantially constant at $1 / \beta_{o}$ as long as the magnitude of the loop gain is considerably larger than unity. In the asymptotic plot, the gain is shown as essentially $1 / \beta_{o}$ all the way to f_{c}^{\prime}. It must be kept in mind, however, that for the first-order response under consideration, the gain at the corner frequency f_{c}^{\prime} is actually 3 dB less than its value at low frequencies, or $1 / \sqrt{2}$ of this value. Note that for high frequencies both Equations 7.4 .14 and 7.4 .15 reduce to $\frac{A_{v 0}}{j f / f_{c}}$, which means that both responses have the same high-frequency asymptote.

The GB in the presence of negative feedback is $\frac{A_{v 0}}{1+\beta_{0} A_{v 0}} \times\left(1+\beta_{0} A_{\nu 0}\right) f_{c}=A_{v 0} f_{c}$, which is the same as for the op amp without the feedback. Thus,

Concept: Negative feedback trades gain for bandwidth, without improving the GB product of an amplifier, which is an inherent characteristic of the amplifier.

The GB product of a given amplifier circuit can be less than the theoretical maximum but cannot exceed this maximum (Exercise 7.4.8).

Exercise 7.4.6

Consider an op amp having $A_{\nu 0}=10^{5}$ and $f_{c}=10 \mathrm{~Hz}$. What is the minimum β_{o} that makes the $3-\mathrm{dB}$ cutoff frequency of the feedback amplifier at least 100 kHz ?

Answer: 0.1.

Exercise 7.4.7

Show that the unity-gain frequency f_{T} in Figure 9.2.3 is given by $f_{T}=f_{c} \sqrt{A_{v 0}^{2}-1} \cong A_{v 0} f_{c}$, as to be expected from the GB product, since at unity gain, the bandwidth is expected to be $A_{v 0} f_{c}$. If an op amp has $A_{v 0}=10^{5}$ and $f_{T}=1 \mathrm{MHz}$, determine f_{c}.

Answer: 10 Hz .

Exercise 7.4.8

Show that for the inverting configuration, the gain bandwidth product is $|k| A_{\nu 0} f_{c}$, where $k=-R_{f} /\left(R_{r}+R_{f}\right)$.

Simulation Example 7.4.3 Frequency Response

It is required to simulate the effect of a finite frequency response of an op amp, as well as the effect of feedback, on the output impedance of an op-amp feedback amplifier.

Simulation

An OPAMP from the ANALOG library is used in an inverting configuration having a gain of -1 (Figure 7.4.22). An $R C$ lowpass circuit of $10 \mathrm{rad} / \mathrm{s}$ corner frequency is connected at the output of the op amp, and a $1 \mathrm{k} \Omega$ load connected at the output of the feedback amplifier. The gain of the op amp is the default value of 10^{6}.
The frequency response, shown in Figure 7.4.23, gives a $3-\mathrm{dB}$ cutoff frequency of 0.794 MHz . The $3-\mathrm{dB}$ cutoff frequency of the $R C$ circuit is 1.59 Hz . Multiplied by $(1-$ loop gain $)=\left(1+\frac{10^{6}}{2}\right)$ gives a corner frequency of 0.796 MHz . The gain is -1 at low frequencies despite the $1 \mathrm{k} \Omega$ load and the $100 \mathrm{k} \Omega$ resistance in series with the output of the op amp, which means that the feedback amplifier has a low output resistance. The

FIGURE 7.4.22
Figure for Simulation Example 7.4.3.

FIGURE 7.4.23
Figure for Simulation Example 7.4.3.
$100 \mathrm{k} \Omega$ divided by (1 - loop gain) is only 0.2Ω. This may be ascertained by replacing the input source by a short circuit and applying a 1 V VAC source at the output. If this source is denoted by V 2 , a plot of $-\mathrm{V}(\mathrm{V} 2:+) / \mathrm{l}(\mathrm{V} 2)$ gives a low-frequency value of 0.2Ω.

Summary of Main Concepts and Results

- A two-port circuit can be specified in terms of one of six sets of two simultaneous equations, each of which involves four parameters. In general, these parameters are nonzero and independent.
- The z-parameter, y-parameter, h-parameter, and g-parameter equations can be represented in terms of equivalent circuits in which forward and reverse transmissions are described by dependent sources on the output and input sides, respectively.
- The four ideal types of amplifiers are: ideal voltage, current, transresistance, and transconductance amplifiers. They follow from the $g-, h-, z$-, and y-parameter equations, respectively, by setting to zero all the parameters except the " $21^{\prime \prime}$ parameters.
- An amplifier circuit can be made to approach any of the aforementioned ideal amplifier types under conditions of very high gain of the amplifier proper, a negligible reverse transmission, an appropriate negative feedback connection, and a negligible loading effect of the feedback circuit on the amplifier.
- In a high-gain amplifier with negative feedback, the overall gain of the feedback amplifier is determined by the feedback circuit.
- In a high-gain amplifier with negative feedback, the output variable that is sampled by the feedback circuit is maintained practically constant for a constant input, despite load variations.
- An ideal operational amplifier is an ideal voltage amplifier having a differential input.
- A unity-gain op amp is useful for isolation purposes.
- Near-perfect integration down to very low frequencies requires very high values of amplifier gain, whereas near-perfect differentiation up to very high frequencies requires very high values of amplifier gain.
- Negative feedback reduces distortion and increases the 3-dB cutoff frequency without affecting the maximum gain-bandwidth product of the op amp.

Learning Outcomes

- Derive the parameters of a two-port circuit.
- Articulate the benefits of negative feedback.
- Analyze ideal op-amp circuits.

Supplementary Topics and Examples on Website

ST7.1 Relations between Two-Port Parameters. Derives the relations between the six sets of two-port circuit parameters (Sabah 2008, pp. 521-524).
ST7.2 Two-Port Parameters of Linear and Ideal Transformers. Derives the two-port parameters for: (1) a linear transformer, including the case of perfect coupling, and (2) an ideal transformer. It is shown that in the former case the y-parameters do not exist, whereas in the latter case the z - and y-parameters do not exist (Sabah 2008, Example SE14.1, p. 554).
ST7.3 Ideal Transformer and Gyrator. Shows how consideration of lossless, two-port circuits that do not store energy naturally leads to the circuit characterization of an ideal transformer as well as another important device of theoretical and practical interest, namely, the gyrator, which converts capacitance to inductance, and conversely (Sabah 2008, Section ST14.5, p. 554).

Problems and Exercises

P7.1 Two-Port Circuits

P7.1.1 Determine the z - and y-parameters of the circuit of Figure P7.1.1 and verify matrix inversion (Equation 7.1.1). Note that $z_{12}=z_{21}$ and $y_{12}=y_{21}$. This defines a reciprocal two-port circuit that does not contain any dependent sources.
P7.1.2 Repeat Problem P7.1.1 for the h - and g-parameters. Note that reciprocity now implies that $h_{12}=-h_{21}$ and $g_{12}=-g_{21}$.
P7.1.3 Repeat Problem P7.1.1 for the a - and b-parameters. Note that reciprocity now implies that $\Delta a=a_{11} a_{22}-a_{12} a_{21}=1$ and $\Delta b=b_{11} b_{22}-b_{12} b_{21}=1$.

FIGURE P7.1.1

FIGURE P7.1.4

FIGURE P7.1.7

P7.1.4 Determine the z - and y-parameters of the circuit of Figure P7.1.4 and verify matrix inversion (Equation 7.1.1). Note that the circuit is now symmetric, that is, the input and output ports can be interchanged without affecting the voltage-current relations. In addition to the reciprocity relations, $z_{11}=z_{22}$ and $y_{11}=y_{22}$.
P7.1.5 Repeat Problem P7.1.4 for the h - and g-parameters. Note that symmetry now implies, in addition to the reciprocity relations, that $\Delta h=h_{11} h_{22}-h_{12} h_{21}=1$ and $\Delta g=g_{11} g_{22}-g_{12} g_{21}=1$.
P7.1.6 Repeat Problem P7.1.4 for the a - and b-parameters. Note that symmetry now implies, in addition to the reciprocity relations that $a_{11}=a_{22}$ and $b_{11}=b_{22}$. Verify these reciprocity relations from Table ST7.1.1.
P7.1.7 Determine the z - and y-parameters of the circuit of Figure P7.1.7. Note that the circuit is neither reciprocal nor symmetric.
P7.1.8 Repeat Problem P7.1.7 for the h - and g-parameters.
P7.1.9 Repeat Problem P7.1.7 for the a - and b-parameters.
P7.1.10 Determine the h-parameters of the high-frequency equivalent circuit of a bipolar junction transistor shown in Figure P7.1.10.

FIGURE P7.1.10

P7.2 Ideal Op-Amp Circuits

P7.2.1 If $v_{S R C}=10 \mathrm{~V}$ in Figure P7.2.1, determine R so that the current in R_{L} is 1 mA . Note that this current is independent of R_{L}, as long as the op-amp is not in saturation, which means that R_{L} sees a current source. If the output saturates at 15 V , what is the maximum R_{L} that can be used?

P7.2.2 In Figure P7.2.2 a T-circuit is used in the feedback path of the inverting configuration. Determine the voltage gain $v_{O} / v_{S R C}$. Note that, by providing a shunt path to ground through the 100Ω resistor, the T-circuit simulates a large feedback resistor.

FIGURE P7.2.2

P7.2.3 Determine v_{O} in Figure P7.2.3 as a function of v_{1}, v_{2}, and v_{3}.

FIGURE P7.2.3

P7.2.4 In Figure P7.2.4, α is the fraction of the total resistance R_{p} of the potentiometer that appears between terminal a of the potentiometer and its slider. Show that $C_{i n}=C / \alpha$.

P7.2.5 Determine i_{O} in Figure P7.2.5. Simulate with PSpice.

FIGURE P7.2.5

P7.2.6 Determine I_{L} in Figure P7.2.6.

FIGURE P7.2.6

P7.2.7 Determine $R_{i n}$ in Figure P7.2.7.

P7.2.8 Figure P7.2.8 illustrates a circuit that can be used with a strain gauge bridge. Show that $v_{O}=\frac{R}{R_{o}} \frac{\alpha}{(1+\alpha)\left(1+R_{o} / R\right)+1} V_{D C}$. Note that if $\frac{R_{o}}{R} \ll 1$ and $\alpha \ll 1$, then $v_{O} \cong V_{D C} \alpha R / 2 R_{0}$.

FIGURE P7.2.8

P7.2.9 Show that i_{L} in Figure P7.2.9 is given by $i_{L}=\left(v_{2}-v_{1}\right) / R_{2}$. Note that the load sees a current source whose value is determined by the differential input $\left(v_{2}-v_{1}\right)$.

FIGURE P7.2.9

P7.2.10 Determine v_{O} in Figure P7.2.10. Simulate with PSpice.

P7.2.11 Determine v_{O} in Figure P7.2.11. Simulate with PSpice.

FIGURE P7.2.11

P7.2.12 Determine R in Figure P7.2.12 for zero $I_{S R C}$.

FIGURE P7.2.12

P7.2.13 Determine v_{O} in Figure 7.2.13. Simulate with PSpice.

P7.2.14 Determine v_{O} in Figure P7.2.14. Simulate with PSpice.

FIGURE P7.2.14

P7.2.15 In Figure P7.2.15, the switch is closed at $t=0$ with no initial energy storage in the capacitor and inductor. Determine v_{O} for $t \geq 0$. Simulate with PSpice.

FIGURE P7.2.15

P7.2.16 Show that V_{o} in Figure P7.2.16 is given by $V_{o}=-\frac{1}{s C_{f} R_{r}} \frac{s C_{f} R_{f}}{1+s C_{f} R_{f}} \frac{s C_{r} R_{r}}{1+s C_{r} R_{r}} V_{s r c}$. Note that if $C_{f} R_{f}=C_{r} R_{r}=\tau$, then $V_{o}=-\frac{1}{s \tau}\left(\frac{s \tau}{1+s \tau}\right)^{2} V_{s r c}$.

P7.2.17 The circuit of Figure P7.2.17 is referred to as a charge amplifier that can be used with capacitive transducers, where $v_{s r c}, C_{s r c}$, and $R_{s r c}$ represent the transducer voltage, capacitance and resistance, respectively. R provides a dc path for the input bias current and should be large compared to the reactance of C at the lowest operating frequency.

FIGURE P7.2.17

A change in either $v_{s r c}$ or $C_{s r c}$ changes the charge on $C_{s r c}$. This charge is transmitted to C, thereby causing a change in the output voltage. Ignoring R, show that $\Delta v_{O}=-\frac{\Delta C_{S r C}}{C} v_{S R C}-\frac{C_{S r C}}{C} \Delta v_{S R C}$. Note that this relation is not affected by a shunt capacitance at the virtual ground, which means that a long shielded cable can be used between the transducer and amplifier.
P7.2.18 Show that the circuit of Figure P7.2.18 acts as a gyrator (Section ST7.3). Simulate with PSpice.

P7.2.19 Show that the circuit of Figure P7.2.19 acts as a gyrator (Section ST7.3). Simulate with PSpice.

8

Single-Stage Transistor Amplifiers

After having considered the basic principles of operation of FETs and BJTs in the preceding chapters, the present chapter focuses on using transistors for amplifying small signals, with BJT and FET amplifiers integrated together in the discussion as much as possible. Amplification of large signals, as in the case of power amplifiers, is considered in Chapter 11.

In switching applications, the transistor is either cut off or fully turned on, whereas in amplifiers the quiescent operating point is chosen in the intermediate range of conduction on the basis of such requirements as maximum voltage gain, or high input resistance in case of BJTs, or small current drain from the power supply, which is particularly important in battery-operated equipment. After choosing the quiescent operating point, measures should be taken to ensure that this point is stabilized, that is, remains within specified limits despite variations in temperature, power supplies, or in transistor parameters because of inevitable manufacturing tolerances. The quiescent operating point is stabilized mainly by negative feedback in discrete amplifiers, and by some form of constant current source in IC amplifiers.

Depending on which of the three transistor terminals is common between input and output, three amplifier configurations are possible. Each of these configurations confers special advantages in terms of voltage gain, current gain, input and output resistances, and other features that are of importance in amplifier circuits. Of particular interest in amplifiers is the bandwidth, which is the frequency range of signals that can be amplified with a variation of gain within 3 dB . The reduced gain at high frequencies is fundamentally due to the effects associated with stored charges and to limitations on the speed of response of physical phenomena underlying transistor operation. An important measure of the performance of an amplifier at high frequencies is not the gain per se, but rather, the gain-bandwidth product.

Improved performance over that of a single-transistor amplifier can be achieved by using composite transistors consisting of two transistors that are directly connected together in a particular way. Several composite connections are considered and their salient features highlighted. Cascaded amplifying stages are discussed in the following chapter.

Learning Objectives

* To be familiar with:
- Terminology commonly used with amplifier circuits.
* To understand:
- The purpose and techniques of biasing BJTs and FETs in low-power amplifiers, both in discrete circuits and ICs.
- The essential features of the three basic amplifier configurations and the effects of an emitter/source resistor.
- The factors that determine the frequency response of an amplifier.
- How the three basic transistor amplifier configurations compare in terms of bandwidth and gain-bandwidth product.
- How some of the limitations of a single BJT or MOSFET can be overcome by using composite transistor connections, such as the CC-CE cascade, cascodes, Darlington pairs, and BiCMOS combinations.

8.1 Transistor Biasing

Concept: The purpose of transistor biasing is to select an appropriate quiescent, or operating, point on the transistor output characteristics, and to stabilize this operating point despite variations in temperature, bias supplies, or transistor parameters, such as $\boldsymbol{\beta}_{F}$ or V_{t}, because of manufacturing tolerances. The stabilization entails minimizing the change in output current despite these variations.

Biasing of Discrete Transistors

To appreciate the need for proper biasing, consider the basic CE amplifier of Figure 8.1.1a and the corresponding load-line construction on the output characteristics (Figure 8.1.1b). For best performance as an amplifier, the quiescent point Q is chosen so that: (1) the quiescent collector current $I_{C Q}$ corresponds to a high value of β (Figure 7.1.9, Chapter 7), and (2) the distortion in the output signal is minimized for the desired magnitude of output. The latter condition implies that for small-signal amplification, the quiescent point should be located on the output characteristics where nonlinear distortion is small. Moreover, variations in temperature, bias supplies, or transistor parameters should keep

FIGURE 8.1.1
(a) Basic CE amplifier; (b) load-line construction on output characteristics.
the changes in the chosen quiescent point within acceptable limits. For example, if the operating point moves to Q_{1} or Q_{2} as in Figure 8.1.1b, where the output characteristics are not as equally spaced for equal changes in I_{B} as around Q, the output may be considerably distorted. The same applied signal can drive the transistor into the saturation region during part of the cycle $\left(Q_{1}\right)$ or can cut it off $\left(Q_{2}\right)$. If this happens, the signal will be severely distorted, the amplitude of the output signal reduced, and the gain decreased.

The quiescent operating point is stabilized in practice by keeping the quiescent output current, $I_{C Q}$ in Figure 8.1.1, as nearly constant as possible. Ideally, this could be done by replacing R_{C} in Figure 8.1.1a by a current source $I_{C Q}$, which would have the additional advantage of making the load resistance for small-signal operation virtually infinite, thereby increasing the voltage gain. However, this may be precluded because of increased circuit complexity or because of the nature of the load. In practice, a nearly constant current is maintained in discrete transistor circuits using some form of negative feedback, whereas in ICs a current mirror circuit is used.

A biasing arrangement commonly used with discrete transistors is shown in Figure 8.1.2a. The voltage divider $R_{1} R_{2}$ provides the required voltage bias at the base. R_{E} introduces series-series negative feedback that stabilizes the transistor output current I_{C}. Thus, an increase in I_{C} increases the voltage drop across R_{E}, which makes the emitter more positive with respect to the base, thereby reducing $V_{B E}$ and opposing the increase in $I_{C} . C$ is a dc blocking capacitor for dc isolation of the source from the amplifier input. If C is not included, the signal source, assumed to have a small source resistance, will act like a dc short circuit across R_{2}, which will make $V_{B E} \cong 0$ and cuts off the transistor. The value of C is made large enough so as not to significantly affect the circuit at the lowest signal frequency (Section 9.2, Chapter 9).

The dc analysis begins with converting the voltage divider in Figure 8.1.2a to its Thevenin's equivalent circuit (TEC, Figure 8.1.2b), where $V_{B B}=V_{C C} R_{2} /\left(R_{1}+R_{2}\right)$ and $R_{B}=R_{1} \| R_{2}$. From KVL, $\quad V_{B B}=R_{B} I_{B}+V_{B E}+R_{E} I_{E}$. Neglecting $I_{C B O}, I_{B}=I_{C} / \beta_{F}, I_{E}=$ $I_{C}\left(\beta_{F}+1\right) / \beta_{F}$, which gives:

$$
\begin{equation*}
I_{C}=\beta_{F} \frac{V_{B B}-V_{B E}}{R_{E}\left(\beta_{F}+1\right)+R_{B}} \tag{8.1.1}
\end{equation*}
$$

FIGURE 8.1.2
(a) Basic biasing circuit for discrete transistors; (b) Thevenin's equivalent circuit of voltage divider $R_{1} R_{2}$.

According to Equation 8.1.1, I_{C} can change because of variation in $V_{B E}$ or β_{F}. Having $V_{B E} \ll V_{B B}$ minimizes the effect of variation in $V_{B E}$. The effect of variation in β_{F} is minimized if:

$$
\begin{equation*}
R_{E}\left(\beta_{F}+1\right) \gg R_{B} \tag{8.1.2}
\end{equation*}
$$

This makes $I_{C} \cong \frac{\beta_{F}}{\beta_{F}+1} \frac{V_{B B}-V_{B E}}{R_{E}}$, which is independent of β_{F}, for $\beta_{F} \gg 1$. In other words, when R_{B} is small, $I_{E} \cong\left(V_{B B}-V_{B E}\right) / R_{E}$, independently of β_{F}, and $I_{C}=I_{E} \beta_{F} /\left(\beta_{F}+1\right)$ is also independent of β_{F}, as long as β_{F} is large.

Exercise 8.1.1

Consider KVL in the base-emitter circuit of Figure 8.1.2b. Substitute $I_{E}=\left(I_{C}-I_{C B O}\right)\left(\beta_{F}+1\right) / \beta_{F}$ (Equation 7.1.6, Chapter 7) and $I_{B}=\left(I_{C} / \beta_{F}\right)-I_{C B O}\left(\beta_{F}+1\right) / \beta_{F}$. Deduce that Equation 8.1.1 becomes $I_{C}=\beta_{F} \frac{V_{B B}-V_{B E}}{R_{E}\left(\beta_{F}+1\right)+R_{B}}+\left(\beta_{F}+1\right) \frac{I_{C B O}\left(R_{E}+R_{B}\right)}{R_{E}\left(\beta_{F}+1\right)+R_{B}}$.

Design Example 8.1.1 Discrete Transistor Biasing Using Voltage Divider

It is desired to design the biasing circuit of Figure 8.1.2 to give $I_{C}=2 \mathrm{~mA}$ at which β_{F} is nominally 200. Consider $V_{C C}=12 \mathrm{~V}$, the voltage drops across each of R_{E} and R_{C} to about 4 V , or onethird of $V_{C C}$, and $V_{B E}=0.7 \mathrm{~V}$, independently of transistor current. The effect on I_{C} is to be determined for: (a) a $50^{\circ} \mathrm{C}$ rise in temperature, taking into account $I_{C B O}=1 \mathrm{nA}$, and (b) replacing the transistor with one having $\beta_{F}=100$. The case is to be compared with that of $R_{E}=0$.

Solution

If $I_{C}=2 \mathrm{~mA}$, then $I_{B}=I_{C} / \beta_{F}=0.01 \mathrm{~mA}$, and $I_{E}=I_{C}+I_{B}=2.01 \mathrm{~mA} . R_{C}=4 / 2=2 \mathrm{k} \Omega$ and $R_{E}=$ $4 / 2.01=1.99 \cong 2 \mathrm{k} \Omega$. To satisfy inequality 8.1 .2 , we may choose $R_{B}=0.1\left(\beta_{F}+1\right) R_{E}=40.2 \mathrm{k} \Omega$. Applying KVL to the input circuit, $V_{B B}=0.01 \times 40.2+0.7+4=5.1 \mathrm{~V}$. Dividing $R_{B}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ by $V_{B B}=12 R_{2} /\left(R_{1}+R_{2}\right)$ gives $R_{1}=40.2 \times 12 / 5.1=94.6 \mathrm{k} \Omega$. Substituting in the expression for $R_{B}, R_{2}=69.9 \mathrm{k} \Omega$. Standard 5% tolerance resistors can be chosen so that $R_{1}=91 \mathrm{k} \Omega$ and $R_{2}=68 \mathrm{k} \Omega$. These resistance values give $R_{B}=38.92 \mathrm{k} \Omega$, $V_{B B}=5.13 \mathrm{~V}, I_{E}=I_{E}=\frac{5.13-0.7}{2+38.92 / 201}=2.02 \mathrm{~mA}, I_{C}=2.01 \mathrm{~mA}$, and $I_{B}=0.01 \mathrm{~mA}$. From KVL in the output circuit $V_{C C}=R_{C} I_{C}+V_{C E}+R_{E} I_{E}=I_{C}\left(R_{C}+\frac{\beta_{F}+1}{\beta_{F}} R_{E}\right)+V_{C E}$. This gives $V_{C E}=3.9 \mathrm{~V}$. Note that the resistance $R_{C}+R_{E}\left(\boldsymbol{\beta}_{F}+1\right) / \boldsymbol{\beta}_{F}$ is the reciprocal of the slope of dc load line drawn on the transistor output characteristics.
(a) Consider first the effect of a temperature rise of $50^{\circ} \mathrm{C}$ on $I_{C B O}$ alone. Assuming $I_{C B O}$ doubles every $10^{\circ} \mathrm{C}$, then it becomes $I_{\text {CBOH }}=1 \times 2^{5}=32 \mathrm{nA}$ at $50^{\circ} \mathrm{C}$. From the result of Exercise 8.1.1, the increase in I_{C} due to $I_{C B O}$ is $\frac{I_{C B O H}\left(R_{E}+R_{B}\right)}{R_{E}+R_{B} /\left(\beta_{F}+1\right)}=$ $\frac{32 \times 40.92}{2+38.92 / 201}=0.6 \mu \mathrm{~A}$, which represents an increase of only about 0.03% in I_{C}.
Next consider the effect of β_{\digamma} acting alone. Assuming that β_{\digamma} increases at a rate of $0.7 \% /{ }^{\circ} \mathrm{C}, \beta_{F H}=200(1+50 \times 0.7 / 100)=270$. From Equation 8.1.1, the new value of I_{C} is $I_{C H 1}=270(5.13-0.7) /(2 \times 271+38.92)=2.06 \mathrm{~mA}$. Thus, I_{C} increases by about 2.5% due to the change in β_{F} alone. If $V_{B E}$ decreases by $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, then $V_{B E H}=0.7-50 \times$ $0.002=0.6 \mathrm{~V}$ and $I_{C H 2}=200(5.13-0.6) /(2 \times 201+38.92)=2.05 \mathrm{~mA}$. That is, I_{C}

FIGURE 8.1.3
Figure for Design Example 8.1.1.
increases by about 2% due to the change in $V_{B E}$ alone. The combined effects of the temperature rise is to make $I_{C H}=2.11 \mu \mathrm{~A}$, which is an increase of about 5%.
If β_{F} becomes $100, I_{C}=100(5.13-0.7) /(2 \times 101+$ $38.92)=1.84 \mathrm{~mA}$, representing a decrease of about 8.5%. Note that $R_{E}\left(\beta_{F}+1\right)$ is now $5 R_{B}$ compared to about $10 R_{B}$ when $\beta_{F}=200$.
(b) If $R_{E}=0, R_{2}$ can be dispensed with altogether, the biasing circuit becomes as shown in Figure 8.1.3. To give a base current of $0.01 \mathrm{~mA}, R_{B}=(12-0.7) /$ $0.01 \mathrm{~mA}=1.13 \mathrm{M} \Omega$, and to give the same value of $V_{C E}$ requires $R_{C}=(12-3.9) / 2.01 \mathrm{~mA}=4 \mathrm{k} \Omega$. On the input side, $I_{B}=\left(12-V_{B E}\right) / 1.13 \times 10^{3} \mathrm{~mA}$, so $I_{C}=\beta_{F}\left(12-V_{B E}\right) / 1.13 \times 10^{3} \mathrm{~mA}$. If $\beta_{F}=270$ and $V_{B E}=0.6 \mathrm{~V}$ due to a temperature rise of $50^{\circ} \mathrm{C}, I_{C}=2.7 \mathrm{~mA}$, which is an increase of about 35%. If β_{F} changes to $100, I_{C}$ decreases by 50% to 1 mA .

Exercise 8.1.2

Assume that in Figure 8.1.2a, $R_{E}=0, V_{C C}=12 \mathrm{~V}, I_{B}=0.01 \mathrm{~mA}, \beta_{F}=200, R_{C}=4 \mathrm{k} \Omega, R_{1}+$ $R_{2}=160 \mathrm{k} \Omega$, and the values of R_{1} and R_{2} are adjusted so that $V_{B E}=0.7 \mathrm{~V}$. Verify that the transistor is driven into saturation by a temperature rise of $50^{\circ} \mathrm{C}$ and explain why.

If both positive and negative power supplies are available, the biasing circuit of Figure 8.1.4 can be used. In the presence of a dc blocking capacitor, R_{B} provides a dc path for I_{B}. R_{B} cannot be set to zero because the ac input will then be shorted to ground and will not be applied to the transistor. KVL around the base-emitter circuit gives $R_{B} I_{B}+V_{B E}+$ $R_{E} I_{E}=V_{E E}$. Neglecting $I_{C B O}$, substituting $I_{B}=I_{C} / \beta_{F}, I_{E}=I_{C}\left(\beta_{F}+1\right) / \beta_{F}$, and solving for I_{C} :

$$
\begin{equation*}
I_{C}=\beta_{F} \frac{V_{E E}-V_{B E}}{R_{E}\left(\beta_{F}+1\right)+R_{B}} \tag{8.1.3}
\end{equation*}
$$

FIGURE 8.1.4
Biasing using a negative voltage supply.

This is the same as Equation 8.1.1 with $V_{B B}$ replaced by a larger $V_{E E}$, which reduces the effect of a change in $V_{B E}$. Moreover, for the same I_{E}, R_{E} is larger, which reduces the effects of changes in β_{F} for the same R_{B} (Equation 8.1.2). The drain on V_{CC} due to R_{1} and R_{2} is eliminated at the expense of the additional power supply.
If $V_{E E}$ and R_{E} are large, changes in R_{C} or $V_{B E}$ will have little effect on I_{E}. This is equivalent to connecting a current source I_{E} in series with the emitter, which makes I_{E} independent of variations in temperature or in transistor parameters. $I_{C}=I_{E} \beta_{F} /\left(\beta_{F}+1\right)$ and is only slightly affected by variations in β_{F}.
Negative feedback for bias stabilization can also be provided by connecting R_{B} to the collector (Figure 8.1.5). An increase in I_{C}, for example, reduces the collector voltage and hence I_{B}, which opposes the increase in I_{C}, as discussed in the following example.

Design Example 8.1.2 Transistor Biasing Using Shunt Feedback

Choose R_{B} and R_{C} in Figure 8.1.5 so that $I_{C}=2 \mathrm{~mA}$ and $V_{C E}=3.9 \mathrm{~V}$, with $\beta_{F}=200$, as in Example 8.1.1, and determine the effect of a temperature rise of $50^{\circ} \mathrm{C}$ and a change of β_{F} to 100 .

Solution

Bearing in mind that the current in R_{C} is I_{E}, KVL gives $R_{C} I_{E}+$ $R_{B} I_{B}+V_{B E}=V_{C C}$. Substituting $I_{B}=I_{C} / \beta_{F}, I_{E}=I_{C}\left(\beta_{F}+1\right) / \beta_{F}$, and solving for I_{C} :

$$
\begin{equation*}
I_{C}=\beta_{F} \frac{V_{C C}-V_{B E}}{R_{C}\left(\beta_{F}+1\right)+R_{B}} \tag{8.1.4}
\end{equation*}
$$

FIGURE 8.1.5
Figure for Design Example 8.1.2.
which is the same as Equation 8.1.1, but with $V_{B B}$ replaced by $V_{C C}$ and R_{E} replaced by R_{C}. To have $V_{C E}=3.9 \vee$ and $I_{B}=0.01 \mathrm{~mA}, R_{B}=(3.9-0.7) / 0.01=320 \mathrm{k} \Omega$ and $R_{C}=(12-3.9) /(0.01 \times 201)=4.03 \mathrm{k} \Omega$. Choosing $R_{B}=330 \mathrm{k} \Omega$ and $R_{C}=4 \mathrm{k} \Omega$ gives $I_{C}=1.99 \mathrm{~mA}$ and $I_{B}=0.01 \mathrm{~mA}$. Note that $\left(\beta_{F}+1\right) R_{C} / R_{B}=201 \times 4 / 330=2.44$.

If β_{F} increases to 270 (Example 8.1.1), $I_{C}=270(12-0.7) /(4 \times 271+330)=2.16 \mathrm{~mA}$. This is an increase of about 8%. If $V_{B E}$ decreases to 0.6 V as before, I_{C} increases by less 1% to 2.01 mA . If β_{F} becomes $100, I_{C}$ decreases by about 23% to 1.54 mA . It is seen that overall, the performance of this biasing circuit is not as good as that of the voltage divider, but it does reduce the current drain on the power supply.

Exercise 8.1.3

It would appear from Equation 8.1.4 that in order to make I_{C} independent of $\beta_{F}, R_{C}\left(\beta_{F}+1\right) \gg R_{B}$. Deduce that this would make $R_{C} I_{C}$ close to $V_{C C}$ so that the transistor will be near saturation.

In the circuits of Figures 8.1.2a, 8.1.4, and 8.1.5, the $n p n$ transistor can be replaced by an E-NMOS transistor. The MOSFET circuit of Figure 8.1.2a is analyzed in Section ST8.1, including the body effect, and that of Figure 8.1 .5 is left as a problem (Problem P8.1.11). Although the effects of changes in temperature are generally not as marked in a MOSFET as in a BJT (Section 5.3, Chapter 5, and Section 6.2, Chapter 6), particularly in the region of operation where the drain current changes little with temperature, introducing negative feedback is advantageous in many respects (Section 7.3, Chapter 7). The effect of a source resistance in mitigating the effects of a change in threshold is illustrated in the following example.

Design Example 8.1.3 Effect of Source Resistance on Threshold Variations

An E-NMOS transistor having $k_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$ is to be biased in the two circuits of Figure 8.1.6 to $I_{D}=1 \mathrm{~mA}, V_{D S}=8 \mathrm{~V}$. The resistors are to be selected in both circuits, and it is required to determine the effect on I_{D} of a change in threshold from 2 to 1.8 V .

FIGURE 8.1.6
Figure for Design Example 8.1.3. E-NMOS biesing without a source resistor $R_{s}(a)$, and with $R_{s}(b)$.

Solution

Neglecting channel-length modulation, $I_{D}=\left(k_{n} / 2\right)\left(V_{G G}-V_{t n}\right)^{2}$ in the circuit of Figure 8.1.6a. Substituting $I_{D}=1 \mathrm{~mA}$ and $V_{t n}=2 \mathrm{~V}$ gives $V_{G C}=4 \mathrm{~V}$. It follows that $R_{D}=(20-8) / 1=12 \mathrm{k} \Omega$. If $V_{t n}$ changes to $1.8 \mathrm{~V}, I_{D L}=0.25(4-1.8)^{2}=1.21 \mathrm{~mA}$, an increase of 21%. $V_{D S}$ is reduced to about 5.5 V . Since $I_{G}=0, R_{G}$ may be chosen to be $1 \mathrm{M} \Omega$.

In the circuit of Figure 8.1.6b, $V_{G}=0$. If $V_{G S}=4 \mathrm{~V}$ as before, the source voltage is -4 V , and $R_{S}=16 \mathrm{k} \Omega$. The drain voltage is +4 V , and $R_{D}=16 \mathrm{k} \Omega$. If $V_{t n}$ changes to $1.8 \mathrm{~V}, I_{D L}$ and $V_{G S L}$ are obtained by solving the equation of the transfer characteristic $I_{D L}=0.25\left(V_{G S L}-1.8\right)^{2}$ and KVL in the gate-source circuit, $V_{G S L}+16 I_{D L}=20$. This gives $I_{D L}=1.01 \mathrm{~mA}$ and $V_{D S L}=40-32 \times$ $1.01=7.68 \mathrm{~V}$. The change in I_{D} is only about 1% because of the negative feedback due R_{S}.

Current Mirror

Concept: In a current mirror, a reference current applied to a diode-connected transistor establishes a voltage at the input of this transistor. If this voltage is applied to the input of an identical transistor, the output current of this transistor will be equal to, or will mirror, the reference current.

BJT Current Mirror

Biasing IC transistors relies on a different philosophy altogether in order to avoid using multiple resistors for biasing and large capacitors for coupling signals. In ICs, these elements would take up a large chip area and the tolerance on their values would be rather high, typically around 20%. Instead, transistors are used in a current mirror circuit to provide constant-current biasing, which as we have seen earlier, is very effective in maintaining a constant output current.

The basic BJT current mirror is illustrated in Figure 8.1.7a, where Q_{1} and Q_{2} are matched transistors. Q_{1} is diode connected in series with a resistor R. Neglecting base-width modulation to begin with, Equation 6.2.1, Chapter 6, gives:

$$
\begin{equation*}
\frac{I_{C 2}}{I_{C 1}}=e^{\left(V_{B E 2}-V_{B E 1}\right) / V_{T}}=1 \tag{8.1.5}
\end{equation*}
$$

FIGURE 8.1.7
(a) Basic BJT current mirror; (b) Widlar current mirror.
because $V_{B E 1}=V_{B E 2}=V_{B E}$. From Figure 8.1.7a,

$$
\begin{equation*}
I_{\mathrm{REF}}=\frac{V_{C C}-V_{B E}}{R} \tag{8.1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\text {REF }}=I_{C 1}+I_{B 1}+I_{B 2}=I_{M}+2 I_{B} \tag{8.1.7}
\end{equation*}
$$

where $I_{C 1}=I_{C 2}=I_{M}$ and $I_{B 1}=I_{B 2}=I_{B}$. Substituting $I_{M}=\beta_{F} I_{B}$, neglecting $I_{C B O}$,

$$
\begin{equation*}
I_{M}=\frac{\beta_{F}}{\beta_{F}+2} I_{\mathrm{REF}}=\frac{\beta_{F}}{\beta_{F}+2} \frac{V_{\mathrm{CC}}-V_{B E}}{R} \tag{8.1.8}
\end{equation*}
$$

If β_{F} is large, then $I_{M} \cong I_{\text {REF }}$, and if $V_{C C} \gg V_{B E}$,

$$
\begin{equation*}
I_{M} \cong I_{\mathrm{REF}} \cong \frac{V_{\mathrm{CC}}}{R} \tag{8.1.9}
\end{equation*}
$$

Thus, $V_{C C}$ and R set the value of $I_{\text {REF }}$, and I_{M} reflects, or "mirrors," this value. The physical interpretation is that if β_{F} is large, the base currents are negligible, which makes $I_{C 1}=I_{\text {REF }}$. But because the transistors are identical and have the same $V_{B E}$, they must have the same collector current, neglecting base-width modulation.

It follows from Equation 8.1.8 that the effect of temperature variation on I_{M} is mainly due to variation in $V_{B E}$ affecting I_{REF}. Changes in β_{F} due to temperature variation, or other causes, have little effect on I_{M} as long as β_{F} is large.

In Figure 8.1.7a, $V_{C B 1}=0$ and $V_{C E 1} \cong 0.7 \mathrm{~V}$. However, $V_{C E 2}$ depends on the circuit to which Q_{2} is connected and may vary over a wide range. In practice, this would affect $I_{C 2}$ because of base-width modulation. Adding an emitter resistor to Q_{2} increases the effective output resistance, and therefore minimizes the variation of $I_{C 2}$ with $V_{C E 2}$, while reducing R for a given I_{M}. The resulting circuit is the Widlar current mirror of Figure 8.1.7b (Example 8.1.4), also referred to as a Widlar current source, because of its enhanced output resistance.

Example 8.1.4 Comparison between Basic and Widlar Current Mirrors

A current $I_{M}=50 \mu \mathrm{~A}$ is to be derived from the basic and the Widlar current mirror, with $V_{C C}=12 \mathrm{~V}$. It is required to compare R and $r_{\text {out }}$ in both cases, assuming that at $I_{M}=50 \mu \mathrm{~A}$, $r_{o}=2 \mathrm{M} \Omega, r_{\pi}=50 \mathrm{k} \Omega$, and $\beta=100$, and that $V_{B E}=0.7 \mathrm{~V}$ at $I_{C}=1 \mathrm{~mA}$.

Solution

(a) Basic current mirror: Using Equation $8.1 .5, \frac{1}{0.05}=e^{\left(0.7-V_{B E}\right) / 0.026}$, or $V_{B E}=0.7-0.026 \times$ $\ln (20)=0.62 \mathrm{~V}$. Hence, $R=(12-0.62) / 0.05=228 \mathrm{k} \Omega . r_{\text {out }}=r_{o}=2 \mathrm{M} \Omega$.
(b) Widlar current mirror: From Equation 6.2.1, Chapter $6, V_{B E 1}=V_{T} \ln \left(I_{\text {REF }} / I_{S}\right)$ and $V_{B E 2}=V_{T} \ln \left(I_{M} / I_{S}\right)$. Hence, $V_{B E 1}-V_{B E 2}=V_{T} \ln \left(I_{\text {REF }} / I_{M}\right)$. But $V_{B E 1}=V_{B E 2}+R_{E} I_{M}$. It follows that $R_{E}=\left(V_{T} / I_{M}\right) \ln \left(I_{\text {REF }} / I_{M}\right)$. We may choose $I_{\text {REF }}=1 \mathrm{~mA}$, in which case, $R=(12-0.7) / 1=11.3 \mathrm{k} \Omega$, and $R_{E}=(0.026 / 0.05) \ln (1 / 0.05)=1.56 \mathrm{k} \Omega$. It is advantageous to use lower resistance values in ICs because they would generally occupy a smaller chip area.
To determine the output resistance, we note that B is grounded through a diode connected to transistor Q_{1}, which presents a resistance of $r_{\mathrm{e}} \| R \cong r_{\mathrm{e}}$ to ground (Problem P6.1.20, Chapter 6). As the current in Q_{1} is 20 times that in Q_{2}, r_{e} of Q_{1} is one-twentieth r_{e} of Q_{2}. Because this is small compared with r_{π} of Q_{2}, we may consider B to be effectively grounded.
The small-signal equivalent circuit is shown in Figure 8.1.8. Let $R_{E}^{\prime}=R_{E} \| r_{\pi}$ and transform the dependent current source $g_{m} v_{b e}$ in parallel with r_{o} to a dependent voltage source $g_{m} r_{o} v_{e b}$, of reversed polarity, in series with r_{o}. The voltage source $g_{m} r_{o} v_{e b}$ in series with $v_{e b}$ gives a voltage drop $\left(1+g_{m} r_{o}\right) v_{e b}=\left(1+g_{m} r_{o}\right) R_{E}^{\prime} i$, where i is the current in the series combination. This voltage drop is therefore equivalent to a resistance $\left(1+g_{m} r_{o}\right) R_{E}^{\prime}$ through which i flows. It follows that $r_{\text {out }}=r_{o}+R_{E}^{\prime}\left(1+g_{m} r_{o}\right) \cong r_{o}\left(1+g_{m} R_{E}^{\prime}\right)$. Substituting numerical values, with $g_{m}=100 / 50=2 \mathrm{~mA} / \mathrm{V}$, gives $r_{\text {out }}=2(1+2 \times 1.51)=8 \mathrm{M} \Omega$.

Concept: Although, strictly speaking, $r_{\text {out }}$ is defined under small-signal conditions, it gives a useful indication of how much the output current varies with the output voltage.

In Example 8.1.4, $r_{\text {out }}$ was found to be $8 \mathrm{M} \Omega$. This implies that if the output voltage at Q_{2} collector changes by 2 V , the output current through the load changes by $0.25 \mu \mathrm{~A}$.

FIGURE 8.1.8
Figure for Example 8.1.4. (a) Small-signal equivalent circuit; (b) current source transformed to a voltage source.

Exercise 8.1.4

In Example 8.1.4, determine the following, for both the current mirrors of Figure 8.1.7: (a) the change in I_{M} if V_{O} (the collector voltage of Q_{2}) varies by 5 V , assuming that $r_{\text {out }}$ applies over this voltage range; (b) R assuming that $\beta_{F}=100$ and using Equation 8.1.8 with $V_{B E}=0.7 \mathrm{~V}$.

Answers: (a) $2.5 \mu \mathrm{~A}$ and $0.63 \mu \mathrm{~A}$; (b) $222 \mathrm{k} \Omega$ and $11.2 \mathrm{k} \Omega$.

Exercise 8.1.5

Starting with I_{M} in Figure 8.1.9, express currents in terms of β_{F} and show that $\frac{I_{M}}{I_{\text {REF }}} \cong\left(1-2 / \beta_{F}^{2}\right)$, compared to $\frac{I_{M}}{I_{\text {REF }}} \cong\left(1-2 / \beta_{F}\right)$ for the

FIGURE 8.1.9
Figure for Exercise 8.1.5. basic current mirror. In effect, Q_{3} supplies base current to Q_{1} and Q_{2}, in a composite transistor type of connection.

It is possible to use the same Q_{r} with a number of transistors in a current-steering circuit in order to derive multiple current sinks (Figure 8.1.10a). The term current sink rather than current source is used when I_{M} draws current from the load toward a lower voltage. If Q_{1} to Q_{3} are identical, then by analogy with Figure 8.1.7a, $I_{M 1}=I_{M 2}=I_{M 3}=I_{\mathrm{REF}} \beta_{F} /\left(\beta_{F}+4\right)$, since $I_{\text {REF }}$ supplies base current to four transistors. The currents $I_{M 1}$ to $I_{M 3}$ could be made different by having different emitter areas of Q_{1} to Q_{3} (Equation 6.2.1, Chapter 6). It is also possible to combine transistors Q_{1} to Q_{3} in a single device having a common emitter and base but multiple collectors of different areas (Figure 8.1.10b).

MOSFET Current Mirror

MOSFET current mirrors are analogous to their BJT counterparts, as illustrated in Figure 8.1.11 for a basic E-NMOS current mirror. Q_{1} is diode connected, and is in saturation as long as $V_{D S 1}=V_{G S}>V_{t n 1}$ (Section 5.4, Chapter 5), which will always be satisfied if Q_{1} is conducting. Q_{2} is in saturation as long as $V_{D S 2} \geq V_{G S}-V_{t n 2}$. From Figure 8.1.11,

$$
\begin{equation*}
I_{D 1}=I_{\mathrm{REF}}=\frac{V_{D D}-V_{G S}}{R} \tag{8.1.10}
\end{equation*}
$$

FIGURE 8.1.10
Current-steering circuit using: (a) separate transistors, (b) a single transistor with multiple collectors.

FIGURE 8.1.11
MOSFET current mirror.

Assuming that I_{D} of each transistor is given by Equation 5.3.1, Chapter 5, it follows that:

$$
\begin{equation*}
\frac{I_{M}}{I_{\mathrm{REF}}}=\frac{I_{D 2}}{I_{D 1}}=\frac{k_{n 2}^{\prime}}{k_{n 1}^{\prime}} \frac{(\mathrm{W} / L)_{2}}{(W / L)_{1}}\left(\frac{V_{G S}-V_{\mathrm{tn} 2}}{V_{G S}-V_{\mathrm{tn} 1}}\right)^{2}\left(\frac{1+\lambda V_{D S 2}}{1+\lambda V_{D S 1}}\right) \tag{8.1.11}
\end{equation*}
$$

If the transistors are identical in every respect and $V_{D S 2}=V_{D S 1}$, the current ratio is unity and $I_{M}=I_{\text {REF }}$. If the transistors differ only by their aspect ratios,

$$
\begin{equation*}
\frac{I_{M}}{I_{\mathrm{REF}}}=\frac{(W / L)_{2}}{(W / L)_{1}} \tag{8.1.12}
\end{equation*}
$$

This provides a convenient way of scaling I_{M} to be larger or smaller than $I_{\text {REF }}$.

Example 8.1.5 Basic MOSFET Current Mirror

In Figure 8.1.11, $V_{D D}=5 \mathrm{~V}, Q_{1}$ and Q_{2} are perfectly matched and have $k_{n}=0.4 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{t n}=1 \mathrm{~V}$, and $\lambda=0.01 \mathrm{~V}^{-1}$. It is required to determine R and $r_{\text {out }}$ for a nominal $I_{M}=0.2 \mathrm{~mA}$.

Solution

In order to determine R from Equation 8.1.10, we need $V_{G S}$. This can be determined from the transfer characteristic, neglecting channel-width modulation. Thus $I_{D 1}=0.2=(0.4 / 2)$ $\left(V_{G S}-1\right)^{2}$, so $V_{G S}=2$, since, $V_{D S 1}=V_{G S,}\left(1+\lambda V_{D S 1}\right)=1.02$ and will not make a significant difference. From Equation 8.1.10, $R=(5-2) / 0.2=15 \mathrm{k} \Omega$. The minimum output voltage that will maintain Q_{2} in saturation is $V_{C S}-V_{t n}=1 \mathrm{~V} . I_{M}=0.2 \mathrm{~mA}$ when $v_{O}=V_{D S 2}=V_{D S 1}=2 \mathrm{~V}$. $r_{\text {out }}=r_{o}=1 / \lambda I_{D S 2(\text { sat) }} \cong 1 / 0.01 \times 0.2 \equiv 500 \mathrm{k} \Omega$. If v_{O} increases by 2 V , the change in I_{M} is $2 \mathrm{~V} / 500 \mathrm{k} \Omega \equiv 4 \mu \mathrm{~A}$.

In Figure 8.1.12 the diode-connected E-NMOS and E-PMOS transistors Q_{1} and Q_{3} of the current mirrors share the same resistor R for $I_{\text {REF }} . Q_{2}$ and Q_{4}, and any other transistors paralleled with them, provide current sources and sinks. The currents in the paralleled

FIGURE 8.1.12
E-NMOS and E-PMOS current mirrors sharing the same R.
transistors could be made different by varying the widths of these transistors. The substrates of the n-channel and the p-channel transistors are connected to $-V_{S S}$, and $+V_{D D}$, respectively, which eliminates the body effect. If source resistors are added to the basic current mirror, the body effect modifies the thresholds and the effective transconductances of the transistors (Section 5.5, Chapter 5).
In comparing BJT and MOS current mirrors, it is seen that: (1) BJT current mirrors suffer from the effect of finite β_{F}, whereas MOS current mirrors may be subject to the body effect, as in the case of the Widlar current source; (2) $r_{\text {out }}$ is generally higher for BJT current mirrors because V_{A} of BJTs is larger than $1 / \lambda$ of MOSFETs for the same current; (3) the collector voltage of a BJT can swing to within $V_{C E(\text { sat })}$ of about 0.2 V from the emitter voltage, whereas the drain-gate voltage of an E-NMOS transistor cannot be more negative than $V_{t n}$, if the transistor is to remain in saturation. More elaborate MOS current mirrors are discussed in Sections 8.4 and ST8.3.

8.2 Basic Amplifier Configurations

General Considerations

We will begin our analysis of basic transistor amplifiers with generalizations that are used later. An amplifier can be represented at its output terminals by a Thevenin equivalent circuit (TEC, Figure 8.2.1a) or a Norton equivalent circuit (NEC, Figure 8.2.1b) having a dependent source controlled, in general, by $v_{s r c}^{\prime}$, where $v_{s r c}^{\prime}$ and $R_{s r c}^{\prime}$ are TECs of the input circuit. The following small-signal parameters are of interest:

FIGURE 8.2.1
Representation of an amplifier output by a Thevenin-like equivalent circuit (a), or Nortonlike equivalent circuit (b).

$r_{i n}$: amplifier input resistance between input terminal and ground.
$r_{\text {out }}$: resistance looking into the output terminal of the amplifier proper, with $v_{s r c}^{\prime}=0$ and excluding all external resistances connected between the output terminal and ac ground.
$r_{\text {out }}^{\prime}$: output resistance seen by the load, with $v_{\text {src }}^{\prime}=0 . r_{\text {out }}^{\prime}$ is $r_{\text {out }}$ in parallel with any resistance between the output terminal and the ac ground, other than the load, such as R_{C} in Figure 8.2.3.
$R_{\text {out }}$: total resistance between output terminal and ground, including the load resistance R_{L}. Thus, $R_{\text {out }}=R_{L} \| r_{\text {out }}^{\prime}$.
A_{v} : voltage gain from input terminal to output, $A_{v}=v_{o} / v_{i}$.
A_{v}^{\prime} : voltage gain from source to output, $A_{v}^{\prime}=v_{o} / v_{s r c}^{\prime}$.
$A_{v o}$: Open-circuit voltage gain from source to output.
A_{i} : current gain, $A_{i}=i_{o} / i_{i}$.
$G_{m}:$ equivalent transconductance of the amplifier, $G_{m}=\left.\frac{i_{o}}{v_{s r c}^{\prime}}\right|_{v_{o}=0}$, that is, G_{m} is the ratio of the short-circuit output current to the source voltage.

It is seen from Figure 8.2.1 that:

$$
\begin{equation*}
v_{o}=\frac{R_{L}}{r_{\text {out }}^{\prime}+R_{L}} A_{v o} v_{s r c}^{\prime}=G_{m}\left(r_{\text {out }}^{\prime} \| R_{L}\right) v_{\text {src }}^{\prime}=G_{m} R_{\text {out }} v_{\text {src }}^{\prime} \tag{8.2.1}
\end{equation*}
$$

The following relations apply between A_{v}, A_{v}^{\prime}, and A_{i} (Exercise 8.2.1):

$$
\begin{equation*}
A_{v}^{\prime}=\frac{r_{i n}}{r_{i n}+R_{s r c}^{\prime}} A_{v}, \quad A_{v}=-\frac{R_{L}}{r_{i n}} A_{i}, \quad \text { and } \quad A_{v}^{\prime}=-\frac{R_{L}}{r_{i n}+R_{s r c}^{\prime}} A_{i} \tag{8.2.2}
\end{equation*}
$$

The following should be noted in connection with the circuit of Figure 8.2.1:

1. In order to keep G_{m} positive, then for an inverting amplifier, the direction of the dependent current source $G_{m} v_{s r c}^{\prime}$ is reversed, which makes $v_{o}=-G_{m} R_{\text {out }}$.
2. When $i_{i}=0$, as when the input is applied to the gate of a MOSFET at low frequencies, $v_{s r c}^{\prime}=v_{i}$, the output source can be expressed as $A_{v 0} v_{i}$ or $G_{m} v_{i}$, where G_{m} and $r_{\text {out }}$ are evaluated with $v_{i}=0$.

FIGURE 8.2.2
Circuit for determining $r_{\text {out }}$. When $i_{i} \neq 0, A_{v o}, G_{m}$ and, in general, $r_{\text {out }}^{\prime}$ depend on $R_{s r c}^{\prime}$. If under these conditions, the output source is considered to be $A_{v o} v_{i}$ or $G_{m} v_{i}$, and G_{m} and $r_{\text {out }}^{\prime}$ are evaluated with $R_{s r c}^{\prime}=0$, then this implies that an ideal voltage source, of zero source resistance, is applied directly to the amplifier input.
3. If any of the output resistances is required with $v_{i}=0$, it can be obtained from the expressions for the corresponding output resistances with $v_{s r c}^{\prime}=0$ by setting $R_{s r c}^{\prime}=0$ in these expressions.

The circuit of Figure 8.2.2 is often encountered in amplifier circuits, where r_{o} is the output resistance of the transistor, $R_{E / S(\text { eff })}$ is the effective resistance between emitter or source and ground, $g_{m \text { (eff) }}$ is the effective transconductance of the transistor, and v_{y} is $v_{b e}$ for an $n p n$ BJT and $v_{g s}$ for
an n-channel MOSFET transistor. Following the procedure applied to Figure 8.1.8b in transforming the dependent current source to a dependent voltage source controlled by the voltage across $R_{E / S(\text { eff }}$ and then representing this source by a resistance, $r_{\text {out }}$ can be expressed as:

$$
\begin{align*}
r_{\text {out }} & =r_{o}+R_{E / S(\mathrm{eff})}+g_{m(\mathrm{eff})} r_{0} R_{E / S(\text { eff }} \tag{8.2.3}\\
& \cong r_{o}\left(1+g_{m(\mathrm{eff})} R_{E / S(\mathrm{eff})}\right), \quad \text { when } R_{E / S(\text { eff })} \ll r_{o} \tag{8.2.4}
\end{align*}
$$

$R_{E / S(\text { eff })}$ and $g_{m \text { (eff) }}$ depend on the particular amplifier, as will be discussed later.

Exercise 8.2.1

Verify Equations 8.2.2.

Common-Emitter Amplifier

The CE configuration is widely used, because it provides both current and voltage gains as well as a moderately high input resistance. Its output resistance, however, is rather high, which attenuates the output voltage when the load resistance is relatively low.

A typical discrete, CE amplifier configuration is illustrated in Figure 8.2.3a using the biasing circuit of Figure 8.1.2a. The signal source is coupled to the base through a large dc blocking capacitor, as discussed earlier. The load R_{L} is similarly coupled to the collector through a large capacitor so as to isolate the load from the dc collector voltage. The large bypass capacitor C_{E} eliminates the effect of R_{E} at signal frequencies, as discussed later.
To perform small-signal analysis on the circuit of Figure 8.2.3a, the circuit is converted to the ac circuit of Figure 8.2.3b as follows: (1) The $V_{C C}$ dc bias supply is replaced by a shortcircuit, since its impedance is assumed to be zero. (2) The large coupling and emitter capacitors ($C_{P I}, C_{P O}$, and C_{E}) are replaced by short circuits, because their reactances at the signal frequencies are assumed to be negligibly small. (3) The circuit connected to the base is replaced by its TEC so that $v_{s r c}^{\prime}=\frac{R_{1} \| R_{2}}{R_{s r c}+R_{1} \| R_{2}} v_{s r c}$ and $R_{s r c}^{\prime}=\left(R_{s r c}\left\|R_{1}\right\| R_{2}\right)$. (4) The transistor is considered as having an input resistance r_{π} between base and emitter

FIGURE 8.2.3
(a) Typical discrete CE amplifier circuit; (b) the circuit under ac conditions.
terminals and a resistance r_{o} between collector and emitter terminals, leaving an "ideal" BJT, shown dotted, that does not draw any base current and which behaves between collector and emitter as a dependent current source $g_{m} v_{b e}$ directed from collector to emitter. This is essentially the same as invoking the small-signal equivalent circuit of Figure 7.2.7, Chapter 7, but highlights the role of the transistor in the circuit and facilitates performing small-signal analysis more or less by inspection.

It is evident from the circuit of Figure 8.2.3b that the input resistance $r_{i n}$ is:

$$
\begin{equation*}
r_{i n}=\frac{v_{b e}}{i_{b}}=r_{\pi} \tag{8.2.5}
\end{equation*}
$$

To determine A_{i}, it follows from current division that $i_{o}=g_{m} v_{b e}\left(r_{o}\left\|R_{C}\right\| R_{L}\right) / R_{L}$. Hence,

$$
\begin{equation*}
A_{i}=\frac{i_{o}}{i_{b}}=\frac{g_{m} v_{b e}\left(r_{o}\left\|R_{C}\right\| R_{L}\right) / R_{L}}{v_{b e} / r_{\pi}}=\beta \frac{r_{o}\left\|R_{C}\right\| R_{L}}{R_{L}} \tag{8.2.6}
\end{equation*}
$$

If $R_{L} \ll r_{o}$ and R_{C}, the collector is effectively short circuited to ground for ac signals, and $A_{i}=\beta$, which agrees with the definition of β as the CE short-circuit current gain.

If $v_{s r c}^{\prime}=0$, then $v_{b e}=0, g_{m} v_{b e}=0$, and the source $g_{m} v_{b e}$ does not contribute to $r_{o u t}$. Thus,

$$
\begin{equation*}
r_{\text {out }}=r_{o} \tag{8.2.7}
\end{equation*}
$$

It is seen that $r_{\text {out }}^{\prime}=r_{o} \| R_{\mathrm{C}}$. If $r_{o} \rightarrow \infty$, then $r_{\text {out }} \rightarrow \infty$ and $r_{\text {out }}^{\prime} \cong R_{\mathrm{C}}$.
The voltage gain A_{v} from base to collector is:

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{b e}}=\frac{-g_{m} v_{b e}\left(r_{o} \| R_{L}^{\prime}\right)}{v_{b e}}=-g_{m}\left(r_{o} \| R_{L}^{\prime}\right)=-g_{m} R_{o u t} \tag{8.2.8}
\end{equation*}
$$

where $R_{L}^{\prime}=\left(R_{C} \| R_{L}\right)$ and $R_{\text {out }}=r_{o}\left\|R_{C}\right\| R_{L}$. To evaluate G_{m}, we reverse the direction of the source $G_{m} v_{s r c}^{\prime}$ in Figure 8.2.1b because the amplifier is inverting. Since $v_{b e}=v_{s r c}^{\prime} r_{\pi} /\left(r_{\pi}+R_{s r c}^{\prime}\right)$ and when the output is short circuited, $i_{s c}=g_{m} v_{b e}=v_{s r c}^{\prime} g_{m} r_{\pi} /\left(r_{\pi}+R_{s r c}^{\prime}\right)$, it follows from Figure 8.2.1 that:

$$
\begin{gather*}
G_{m}=\frac{i_{s c}}{v_{s r c}^{\prime}}=\frac{g_{m} r_{\pi}}{r_{\pi}+R_{s r c}^{\prime}}=\frac{\beta}{r_{\pi}+R_{s r c}^{\prime}} \tag{8.2.9}\\
A_{v}^{\prime}=G_{m} R_{\text {out }}=\frac{-\beta\left(r_{o} \| R_{L}^{\prime}\right)}{r_{\pi}+R_{s r c}^{\prime}}=A_{v} \frac{r_{\pi}}{r_{\pi}+R_{s r c}^{\prime}} \tag{8.2.10}
\end{gather*}
$$

in accordance with Equations 8.2.2. The following should be noted concerning Equation 8.2.10:

1. If $R_{s r c}^{\prime} \gg r_{\pi}$, the input is essentially a current drive, so $i_{b}=v_{s r c}^{\prime} / R_{s r c}^{\prime}$. If the source $g_{m} v_{b e}$ is represented as βi_{b} (Figure 6.1.12, Chapter 6), $v_{o}=-\beta\left(r_{o} \| R_{L}^{\prime}\right) i_{b}=$ $\frac{-\beta\left(r_{o} \| R_{L}^{\prime}\right)}{R_{s r c}^{\prime}} v_{s r c}^{\prime}$, as in Equation 8.2.10.
2. On the other hand, if $R_{s r c}^{\prime} \ll r_{\pi}$, the input is essentially a voltage drive, $v_{s r c}^{\prime}=v_{b e}$, and $A_{v}^{\prime}=A_{v}=-g_{m}\left(r_{o} \| R_{L}^{\prime}\right)$, as in Equation 8.2.8.
3. The maximum possible gain $A_{v(\max)}$ occurs when $R_{L}^{\prime} \gg r_{o}$. Using Equation 6.2.10, Chapter 6:

$$
\begin{equation*}
A_{v(\max)}=-g_{m} r_{o}=-\frac{V_{A}}{V_{T}} \tag{8.2.11}
\end{equation*}
$$

4. The overall gain from $v_{s r c}$, rather than $v_{s r c}^{\prime}$, to the output, is A_{v}^{\prime} multiplied by $\left(R_{1} \| R_{2}\right) /\left(R_{s r c}+R_{1} \| R_{2}\right)$.

Common-Source Amplifier

In the case of the CS amplifier, the same circuit of Figure 8.2.3b applies but without r_{π}, which makes $r_{i n}$ and A_{i} theoretically infinite. Again, when $v_{s r c}=0, g_{m} v_{g_{s}}=0$ and the dependent current source does not contribute to $r_{\text {out }}$. Thus,

$$
\begin{equation*}
r_{\text {out }}=r_{o} \tag{8.2.12}
\end{equation*}
$$

It follows that $r_{\text {out }}^{\prime}=r_{o} \| R_{D}$, and $R_{\text {out }}=r_{o}\left\|R_{D}\right\| R_{L}$.
The voltage gain from gate to collector is:

$$
\begin{equation*}
A_{v}=-g_{m}\left(r_{o} \| R_{L}^{\prime}\right)=-g_{m}\left(r_{\text {out }}^{\prime} \| R_{L}\right)=-g_{m} R_{\text {out }} \tag{8.2.13}
\end{equation*}
$$

where $R_{L}^{\prime}=R_{D} \| R_{L}$. To evaluate G_{m}, we note that when the output is short circuited, $i_{s c}=g_{m} v_{g s}=g_{m} v_{s r c}^{\prime}$. It follows from Figure 8.2.1b, with the polarity of the source $G_{m} v_{s r c}^{\prime}$ reversed, that:

$$
\begin{equation*}
G_{m}=g_{m} \tag{8.2.14}
\end{equation*}
$$

This result is in accordance with Equation 8.2.9, because for a MOSFET, β and r_{π} of a BJT both tend to infinity but their ratio remains finite and equal to g_{m}.

The maximum possible gain is $-g_{m} r_{o}$ (Equation 5.3.16, Chapter 5). Setting $V_{A}=1 / \lambda$,

$$
\begin{equation*}
A_{\nu(\max)}=-g_{m} r_{o}=-\frac{2 V_{A}}{V_{o v}} \tag{8.2.15}
\end{equation*}
$$

Not only is V_{A} of the BJT generally higher than that of the MOSFET but $V_{o v} / 2 \gg V_{T}$, so that $A_{v \max }$ of the BJT is normally much greater than that of the MOSFET.

Exercise 8.2.2

Verify that if $r_{o} \rightarrow \infty$, then $r_{\text {out }} \rightarrow \infty$, with $v_{s r c}=0$ in Figure 8.2.3a, by applying a test source and determining the test current.

Exercise 8.2.3

Verify Equations 8.2.2 for the CE and CS amplifiers.

Common-Drain Amplifier

In some cases, it is desirable to have both a high-input resistance, so as not to overload a driving stage, and a low-output resistance that provides the load drive capability of a

FIGURE 8.2.4
(a) An implementation of a CD amplifier; (b) the circuit under ac conditions.
voltage source. The common-drain (CD)/common-collector (CC) amplifiers fulfill this requirement.

Figure 8.2.4a illustrates a CD amplifier. Compared to a CS amplifier, R_{D} is zero and the output is taken directly from the source. The drain is thus common between input and output, which gives the circuit its name. The entire output voltage is fed back in series opposition to the input, which gives a series-shunt, negative feedback configuration. As discussed in Section 7.3, Chapter 7, such a configuration increases the input resistance and reduces the output resistance, while reducing the voltage gain. Although the gate input resistance of a MOSFET is theoretically infinite, with or without feedback, the output resistance is advantageously reduced.

The circuit for small-signal analysis, corresponding to Figure 8.2.4a, is shown in Figure 8.2.4b, where $v_{s r c}^{\prime}=\frac{R_{1} \| R_{2}}{R_{s r c}+R_{1} \| R_{2}} v_{s r c}$ and $R_{s r c}^{\prime}=\left(R_{s r c}\left\|R_{1}\right\| R_{2}\right)$.

If the body effect is neglected for the moment, it is seen from Figure 8.2.4b that $v_{g_{s}}=$ $v_{i}-v_{o}$ and $v_{o}=g_{m} v_{g S} R_{S}^{\prime}$, where $R_{S}^{\prime}=r_{o}\left\|R_{S}\right\| R_{L}$. These relations can be represented by a signal-flow diagram (Figure 8.2.5). Applying Rule 7.3.5, Chapter 7, gives:

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{i}}=\frac{g_{m} R_{S}^{\prime}}{1+g_{m} R_{S}^{\prime}} \tag{8.2.16}
\end{equation*}
$$

If $g_{m} R_{S}^{\prime} \gg 1, A_{v} \cong 1$, which means that the source voltage ideally follows the gate voltage. For this reason, the CD amplifier is also known as a source follower.

To account for the body effect, the small-signal equivalent circuit of Figure 5.3.8, Chapter 5, is applied to give the small-signal equivalent circuit of Figure 8.2.6a for the amplifier. The circuit can be readily converted to the form of Figure 8.2.1b, as shown in

FIGURE 8.2.5
Signal-flow diagram of the CD amplifier, neglecting channel-length modulation.

FIGURE 8.2.6
(a) Small-signal equivalent circuit of the CD amplifier taking channel-length modulation into account; (b) reduced small-signal equivalent circuit.

Figure 8.2.6b. R_{S} is paralleled with R_{L} to give R_{L}^{\prime}. Since $v_{b s}=-v_{o}$, the source $g_{m b} v_{b s}$ becomes $g_{m b} v_{o}$ directed upward. Moreover, $v_{g^{s}}=v_{i}-v_{o}$, so that $g_{m} v_{g^{s}}=g_{m} v_{i}-g_{m} v_{o}$. Thus, the source $g_{m} v_{g^{s}}$ can be replaced by two sources: (1) a source $g_{m} v_{i}$ directed downward in Figure 8.2.6a, and (2) a source $g_{m} v_{o}$ directed upward, which can be combined with the $g_{m b} v_{o}$ source to give a source $g_{m}(1+\chi) v_{o}$ directed upward, where $g_{m b}=\chi g_{m}$. Since this combined source is in the direction of a voltage droop v_{o}, it can be replaced by a resistance $1 / g_{m}(1+\chi)$ (Exercise 8.2.4). This resistance is then combined with r_{o} to give $r_{\text {out }}$. Thus:

$$
\begin{align*}
r_{\text {out }} & =r_{o} \|\left[1 / g_{m}(1+\chi)\right]=\frac{r_{o}}{1+g_{m}(1+\chi) r_{o}} \tag{8.2.17}\\
& \cong \frac{1}{g_{m}(1+\chi)}, \quad \text { if } 1 / g_{m}(1+\chi) \ll r_{o} \tag{8.2.18}
\end{align*}
$$

Comparing Figure 8.2.6b with Figure 8.2.1b with $v_{i}=v_{s r c}^{\prime}$, it follows that:

$$
\begin{equation*}
G_{m}=g_{m} \tag{8.2.19}
\end{equation*}
$$

because when the source is shorted to the drain there is no body effect (Figure 8.2.26a). $R_{\text {out }}$ is:

$$
\begin{align*}
R_{\text {out }} & =R_{S}\left\|R_{L}\right\| r_{o}\left\|\left[1 / g_{m}(1+\chi)\right]=R_{S}^{\prime}\right\| 1 / g_{m}(1+\chi)=\frac{R_{S}^{\prime}}{1+g_{m}(1+\chi) R_{S}^{\prime}} \tag{8.2.20}\\
& \cong \frac{1}{g_{m}(1+\chi)^{\prime}}, \quad \text { if } 1+g_{m}(1+\chi) R_{S}^{\prime} \gg 1 \tag{8.2.21}
\end{align*}
$$

From Figure 8.2.1, $A_{v}=A_{v}^{\prime}=G_{m} R_{\text {out }}$. Hence,

$$
\begin{align*}
A_{v} & =g_{m} R_{\text {out }}=g_{m} R_{S}^{\prime} \| 1 / g_{m}(1+\chi)=\frac{g_{m} R_{S}^{\prime}}{1+g_{m}(1+\chi) R_{S}^{\prime}} \\
& \cong \frac{1}{(1+\chi)}, \quad \text { for } g_{m}(1+\chi) R_{S}^{\prime} \gg 1 \tag{8.2.22}
\end{align*}
$$

The following should be noted concerning the source follower:

1. The body effect reduces A_{v} because of the $(1+\chi)$ factor, thus degrading performance. Without the body effect, and assuming $1 / g_{m} \ll R_{S}^{\prime}, R_{\text {out }} \cong 1 / g_{m}$ and $A_{v} \cong 1$.
2. In Equation 8.2.22, the $(1+\chi)$ factor multiplies g_{m} in the denominator only because $r_{\text {out }}$ is affected by this factor but not the source $g_{m} v_{i}$ in Figure 8.2.6. The signalflow diagram (Figure 8.2.5) is modified by multiplying the forward gain from $v_{g s}$ to v_{O} by $(1+\chi)$ and dividing the forward gain from v_{i} to $v_{g^{s}}$ by this factor (Exercise 8.2.4).
3. In the absence of feedback, as when the ac input v_{i} is applied between gate and source (Figure 8.2.4b), rather than between gate and ground, $v_{o}=g_{m} R_{S}^{\prime} v_{s r c}^{\prime}$ and $R_{\text {out }}=R_{S}^{\prime}$. The effect of the shunt negative feedback is to divide $R_{\text {out }}$ and A_{v} by the factor $1+g_{m}(1+\chi) R_{S}^{\prime}$. This is ($1-$ loop gain) of the modified signal-flow diagram. The negative feedback reduces the gain by this factor because, for the same $v_{g s}, v_{i}$ must be increased to counteract the feedback voltage across R_{S}^{\prime}.
4. The resistance seen by R_{L} is $r_{\text {out }}^{\prime}=r_{\text {out }} \| R_{S}$.

A CD amplifier with a current mirror active load is analyzed in Section ST8.4 and a super source follower of low output resistance is analyzed in Section ST8.5.

Exercise 8.2.4

(a) Verify that $R_{\text {out }}$ can be derived by applying a test source v_{x} as in Figure 8.2.7. What is the effective resistance of the two current sources? (b) Modify Figure 8.2.5 to account for the body effect.

Common-Collector Amplifier

The circuit for small-signal analysis of the CC amplifier, corresponding to Figure 8.2.4b, is shown in Figure 8.2.8, where r_{π} has been added to the input. This allows a simple derivation of the input resistance and the voltage gain.

KVL at the input gives $v_{i}=r_{\pi} i_{b}+R_{E}^{\prime}\left[(\beta+1) i_{b}\right]$, where $R_{E}^{\prime}=R_{E}\left\|R_{L}\right\| r_{o}$ (Figure 8.2.9a). This can equally be expressed as $v_{i}=r_{\pi} i_{b}+\left[(\beta+1) R_{E}^{\prime}\right] i_{b}$, where the $(\beta+1)$ factor is associated with R_{E}^{\prime} rather than i_{b} (Figure 8.2.9b), which leads to an important interpretation in BJT circuits:

FIGURE 8.2.7
Determining the output resistance by applying a test source.

FIGURE 8.2.8
The CC amplifier under ac conditions.

FIGURE 8.2.9

(a) i_{e} flowing through R_{E}^{\prime}, as in Figure 8.2.9; (b) i_{b} flowing through $(\beta+1) R_{E}^{\prime}$ representing R_{E}^{\prime} reflected to the base circuit.

Concept: A resistance in the emitter circuit can be reflected to the base circuit by multiplying it by $(\beta+1)$. Conversely, a resistance in the base circuit can be reflected to the emitter circuit by dividing it by $(\boldsymbol{\beta}+1)$.

It is seen from Figure 8.2.8b that:

$$
\begin{equation*}
r_{i n}=\frac{v_{i}}{i_{b}}=r_{\pi}+(\beta+1) R_{E}^{\prime} \cong(\beta+1) R_{E}^{\prime} \cong r_{\pi}\left(1+g_{m} R_{E}^{\prime}\right) \tag{8.2.23}
\end{equation*}
$$

The input resistance is increased by $(\beta+1) R_{E}^{\prime}$, or multiplied by the factor $\left(1+g_{m} R_{E}^{\prime}\right)$ because of the series-shunt negative feedback.

It also follows from voltage division in Figure 8.2.9b that:

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{i}}=\frac{(\beta+1) R_{E}^{\prime}}{r_{i n}}=\frac{(\beta+1) R_{E}^{\prime}}{r_{\pi}+(\beta+1) R_{E}^{\prime}} \cong \frac{g_{m} R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}} \cong 1 \tag{8.2.24}
\end{equation*}
$$

Because of this near-unity gain, the circuit is also known as an emitter follower. If the numerator and the denominator of Equation 8.2.24 are divided by $r_{\pi}, A_{v} \cong \frac{g_{m} R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}}$.

From Equation 8.2.2,

$$
\begin{equation*}
A_{v}^{\prime}=\frac{v_{o}}{v_{s r c}^{\prime}}=\frac{r_{i n}}{r_{i n}+R_{s r c}^{\prime}} A_{v}=\frac{(\beta+1) R_{E}^{\prime}}{r_{i n}+R_{s r c}^{\prime}}=\frac{(\beta+1) R_{E}^{\prime}}{r_{\pi}+R_{s r c}^{\prime}+(\beta+1) R_{E}^{\prime}} \tag{8.2.25}
\end{equation*}
$$

Applying current division at the output in Figure 8.2.8, the current gain is:

$$
\begin{equation*}
A_{i}=\frac{i_{o}}{i_{b}}=-(\beta+1) \frac{R_{E}^{\prime}}{R_{L}} \tag{8.2.26}
\end{equation*}
$$

If $R_{L}=0$, then $R_{E}^{\prime} / R_{L}=1$, and the short-circuit current gain is $-(\beta+1)$, as expected, the minus sign being due to the direction of i_{o} in Figure 8.2.8. When the emitter is shortcircuited to ground, the short-circuit current flowing out of the emitter is $i_{s c}=(\beta+1) i_{b}$, where, $i_{b}=v_{s r c}^{\prime} /\left(r_{\pi}+R_{s r c}^{\prime}\right)$. Hence,

$$
\begin{equation*}
i_{s c}=\frac{\beta+1}{r_{\pi}+R_{s r c}^{\prime}} v_{s r c}^{\prime} \tag{8.2.27}
\end{equation*}
$$

Comparing with Figure 8.2.1b, it is seen that:

$$
\begin{equation*}
G_{m}=\frac{\beta+1}{r_{\pi}+R_{s r c}^{\prime}} \tag{8.2.28}
\end{equation*}
$$

This is consistent with the result for the source follower because $G_{m}=g_{m}$ as β and r_{π} tend to infinity but their ratio is finite and equal to g_{m}.
$R_{\text {out }}$ can be determined from Equations 8.2.18 and 8.2.25 since $A_{v}^{\prime}=G_{m} R_{\text {out }}$ when the current source in Figure 8.2.1 is $G_{m} v_{s r c}^{\prime}$. It follows that:

$$
\begin{align*}
R_{\text {out }} & =\frac{A_{v}^{\prime}}{G_{m}}=R_{E}^{\prime} \|\left(\frac{r_{\pi}+R_{s r c}^{\prime}}{\beta+1}\right) \tag{8.2.29}\\
& \cong \frac{R_{E}^{\prime}}{1+g_{m} R_{E}^{\prime}}, \quad \text { for large } \beta \text { and } r_{\pi} \tag{8.2.30}
\end{align*}
$$

As $R_{E}^{\prime}=R_{E}\left\|R_{L}\right\| r_{o}$, and $\frac{1}{R_{\text {out }}}=\frac{1}{R_{E}}+\frac{1}{R_{L}}+\frac{1}{r_{o}}+\frac{\beta+1}{r_{\pi}+R_{\text {src }}^{\prime}}$, then $\frac{1}{r_{\text {out }}}=\frac{1}{r_{o}}+\frac{\beta+1}{r_{\pi}+R_{\text {src }}^{\prime}}$, or:

$$
\begin{align*}
r_{\text {out }} & =r_{o}\left\|\left(\frac{r_{\pi}+R_{s r c}^{\prime}}{\beta+1}\right)=r_{o}\right\|\left(r_{e}+\frac{R_{s r c}^{\prime}}{\beta+1}\right) \tag{8.2.31}\\
& \cong r_{o} \|\left(\frac{1}{g_{m}}+\frac{R_{s r c}^{\prime}}{\beta+1}\right) \cong \frac{r_{o}}{1+g_{m} r_{o}} \cong \frac{1}{g_{m}} \text { when } \beta \text { and } r_{o} \text { are large } \tag{8.2.32}
\end{align*}
$$

where $\left(r_{\pi}+R_{s r c}^{\prime}\right) /(\beta+1)$ is $\left(r_{\pi}+R_{\text {src }}^{\prime}\right)$ reflected to the emitter. $r_{\text {out }}$ can also be derived from $v_{o c} / i_{s c}$ or by applying a test source between emitter and ground (Exercises 8.2.6 and 8.2.7).

Note that $r_{i n}$ is multiplied by nearly $\left(1+g_{m} R_{E}^{\prime}\right)$, while A_{v} and $R_{\text {out }}$ are divided by nearly the same factor, all in accordance with what is to be expected of series-shunt feedback.

Exercise 8.2.5

(a) The βi_{b} current source in Figure 8.2.8 appears in parallel with R_{E}^{\prime}. Transform this current source to a voltage source $\beta i_{b} R_{E}^{\prime}$, which will be in series with r_{π} and R_{E}^{\prime}, the current in the series combination being i_{b}. The voltage source $\beta i_{b} R_{E}^{\prime}$, being a voltage drop in the direction of i_{b}, is equivalent to a resistance of $\beta i_{b} R_{E}^{\prime}$. It follows that $r_{i n}=r_{\pi}+\beta R_{E}^{\prime}+R_{E}^{\prime}$ as in Equation 8.2.23.
(b) Replace the βi_{b} source in Figure 8.2 .8 by $g_{m} v_{\pi}$, where v_{π}, is the voltage across r_{π}. Transform this current source to a voltage source $g_{m} R_{E}^{\prime} v_{\pi}$. Note that r_{π} in series with a voltage source that is proportional to v_{π} is equivalent to a resistance $r_{\pi}\left(1+g_{m} R_{E}^{\prime}\right)$. This is the same as Equation 8.2.23 when the substitution $\beta=g_{m} r_{\pi}$ is made and R_{E}^{\prime} is added.

Exercise 8.2.6

Derive Equation 8.2.29 by applying a test source v_{x} between emitter and ground. Deduce that in the absence of the "ideal" transistor, the resistance between emitter and ground is $R_{E}^{\prime} \|\left(r_{\pi}+R_{s r c}^{\prime}\right)$, and it becomes $R_{\text {out }}$ in the presence of the transistor. Note also that reflection of $\left(r_{\pi}+R_{s r c}^{\prime}\right)$ accounts for the presence of the dependent current source of the transistor.

Exercise 8.2.7

Derive $r_{o u t}$ (Equation 8.2.31) from $i_{s c}$ (Equation 8.2.27) and $v_{o c}$ in Figure 8.2.8.

Common-Source Amplifier with Source Resistor

If the source bypass capacitor (corresponding to C_{E} in Figure 8.2.3a) is omitted, the configuration becomes that of series-series, negative feedback, since the output is taken from the drain instead of the source. Because of the voltage drop across R_{D}, then for the same dc supply and a passive R_{S}, this resistor is generally smaller than that of CD amplifier. A_{v} will therefore be intermediate between that of the CS amplifier and the CD amplifier. However, $r_{\text {out }}$ will now exceed that of the CS amplifier because of the series feedback due to R_{s}.

The small-signal equivalent circuit (Figure 8.2.10) is that of Figure 8.2.6a modified by moving R_{L} from source to ungrounded drain, with $R_{L}^{\prime}=R_{D} \| R_{L}$. We will first determine $r_{\text {out }}$,

FIGURE 8.2.10
Small-signal equivalent circuit of the CS amplifier with unbypassed source resistor.

FIGURE 8.2.11
Determining the output resistance by applying a test source.

FIGURE 8.2.12
The small-signal equivalent circuit of Figure 8.2.10 under open circuit conditions.
the resistance looking into the drain with $v_{s r c}^{\prime}=v_{i}=0$. When the gate is grounded, $v_{g s}=v_{b s}$, so that the two sources can be combined in a single source $g_{m}(1+\chi) v_{g s}$. If a test source v_{x} is applied between drain and ground (Figure 8.2.11), then since $v_{g s}=-R_{S} i_{x}$, the current source becomes $g_{m}(1+\chi) R_{S} i_{x}$ of reversed polarity. Applying Equation 8.2.3, with $R_{E / S(\text { eff })}=R_{S}$ and $g_{m(\text { eff })}=g_{m}(1+\chi)$:

$$
\begin{equation*}
r_{\text {out }}=r_{o}+R_{S}+g_{m}(1+\chi) r_{o} R_{S} \cong r_{o}\left[1+g_{m}(1+\chi) R_{S}\right] \tag{8.2.33}
\end{equation*}
$$

The resistance seen by the load is $r_{\text {out }}^{\prime}=r_{\text {out }}| | R_{D}$.
We will determine $A_{v o}$ in this case with the drain terminal open circuited, the small-signal circuit becoming as shown in Figure 8.2.12. No current flows through R_{S}, so there is neither a body effect nor a feedback signal. $v_{i}=v_{g^{s}}$, the source $g_{m} v_{g s}$ flows through r_{o}, and $v_{o}=-g_{m} r_{o} v_{i}$. This gives $A_{v o}=-g_{m} r_{o}$. In Figure 8.2.1b, $r_{\text {out }}^{\prime}=r_{\text {out }}$ on open circuit of the drain terminal, and $v_{o}=-G_{m} r_{o u t} v_{i}$, with the polarity of the $G_{m} v_{s r c}^{\prime}$ reversed because the amplifier is inverting. Hence,

$$
\begin{equation*}
G_{m}=g_{m} \frac{r_{o}}{r_{\text {out }}} \cong \frac{g_{m}}{1+g_{m}(1+\chi) R_{S}} \tag{8.2.34}
\end{equation*}
$$

When $R_{S}=0, r_{o u t}=r_{o}$ and $G_{m}=g_{m}$ as expected.
The series-series negative feedback due to R_{S} has multiplied r_{o} by a factor of nearly $\left[1+g_{m}(1+\chi) R_{S}\right]$ and has divided the transconductance G_{m} by nearly the same factor. G_{m} is reduced because, for the same $v_{g s}, v_{i}$ has to be increased to counteract the feedback voltage across R_{S}.

It follows from Equations 8.2.2 that:

$$
\begin{align*}
A_{v}^{\prime} & =A_{v}=\frac{v_{o}}{v_{i}}=-G_{m}\left(r_{\text {out }}^{\prime} \| R_{L}\right)=-G_{m}\left(r_{\text {out }} \| R_{L}^{\prime}\right)=-G_{m} R_{\text {out }} \\
& =-g_{m} \frac{r_{o}\left(r_{\text {out }} \| R_{L}^{\prime}\right)}{r_{\text {out }}}=-\frac{g_{m} r_{o} R_{L}^{\prime}}{R_{L}^{\prime}+r_{o}+R_{S}+g_{m}(1+\chi) r_{o} R_{S}} \\
& \cong-\frac{g_{m} R_{L}^{\prime}}{1+g_{m}(1+\chi) R_{S}}, \quad r_{o} \gg R_{L}^{\prime}+R_{S} \tag{8.2.35}
\end{align*}
$$

where $R_{\text {out }}$ is the total resistance to ground at the drain, including the effect of the transistor. If $R_{S}=0, r_{\text {out }}=r_{o}$, and $A_{v}=-g_{m}\left(r_{o} \| R_{L}^{\prime}\right)$, as expected.

Exercise 8.2.8

Ignore r_{o} and assume that g_{m} associated with R_{S} becomes $g_{m}(1+\chi)$. Draw the signal-flow diagram for the CS amplifier with source resistance and deduce that $A_{v}=-\frac{g_{m} R_{L}^{\prime}}{1+g_{m}(1+\chi) R_{S}} \cong-\frac{R_{L}^{\prime}}{R_{S}}$ if $g_{m}(1+\chi) R_{S} \gg 1$. Compare with Equation 8.2.35 with $r_{o} \rightarrow \infty$.

Exercise 8.2.9

Since $A_{v \mathrm{o}}=g_{m} r_{o}$, TEC at the output of the amplifier, with $R_{L}^{\prime} \rightarrow \infty$, is a voltage source $A_{v o} v_{i}$ in series with $r_{\text {out }}$. Transform this to a current source, then add R_{L}^{\prime} in parallel with $r_{o u t}$ as in Figure 8.2.1, and show that Equation 8.2.35 results.

Common-Emitter Amplifier with Emitter Resistor

The circuit for the small-signal analysis of the CE amplifier with emitter resistor is shown in Figure 8.2.13. To derive $r_{i n}$, the circuit can be redrawn as in Figure 8.2.14, where $R_{L}^{\prime}=R_{C} \| R_{L}$ and the dependent current source has been transformed to the voltage source. From KVL around the mesh on the RHS, the current gain is:

$$
\begin{align*}
A_{i} & =\frac{i_{o}}{i_{b}}=\frac{i_{c}}{i_{b}} \frac{i_{o}}{i_{c}}=\frac{\beta r_{o}-R_{E}}{r_{o}+R_{E}+R_{L}^{\prime}} \times \frac{R_{L}^{\prime}}{R_{L}} \\
& \cong \beta \text { if } \beta, \quad r_{o} \gg R_{E}+R_{L}^{\prime} \quad \text { and } \quad R_{L} \ll R_{C} \tag{8.2.36}
\end{align*}
$$

From KVL around the LHS mesh in Figure 8.2.14 and i_{c} / i_{b} from Equation 8.2.36,

$$
\begin{align*}
r_{i n} & =\frac{v_{i}}{i_{b}}=r_{\pi}+R_{E}(\beta+1) \frac{r_{o}+R_{L}^{\prime} /(\beta+1)}{r_{o}+R_{E}+R_{L}^{\prime}} \tag{8.2.37}\\
& \cong r_{\pi}+(\beta+1) R_{E}, \quad \text { for large } r_{o} \\
& \cong r_{\pi}\left(1+g_{m} R_{E}\right), \quad \text { for large } r_{o} \text { and } \beta
\end{align*}
$$

FIGURE 8.2.13
The CE amplifier with unbypassed emitter resistor under ac conditions.

FIGURE 8.2.14
The small-signal equivalent circuit for determining the input resistance.

FIGURE 8.2.15
The small-signal equivalent circuit for determining the output resistance.

To apply Equation 8.2.3 and Figure 8.2.2 to determine $r_{\text {out }}$, we note that with $v_{s r c}^{\prime}=0$, the circuit becomes as shown in Figure 8.2.15. It is seen that $R_{E / S(\text { eff })}=R_{E} \|\left(r_{\pi}+R_{s r c}^{\prime}\right)$ and the current source in terms of v_{y} is $g_{m} v_{y} r_{\pi} /\left(r_{\pi}+R_{s r c}^{\prime}\right)$ so that $g_{m(\text { eff })}=g_{m} r_{\pi} /\left(r_{\pi}+R_{s r c}^{\prime}\right)$. Substituting in Equation 8.2.3:

$$
\begin{align*}
r_{\text {out }} & =r_{o}+R_{E /(\text { (eff })}+g_{m} r_{o} \frac{R_{E / S(\text { eff }} r_{\pi}}{r_{\pi}+R_{s r c}^{\prime}} \\
& =r_{o}+\frac{R_{E}}{R_{E}+r_{\pi}+R_{s r c}^{\prime}}\left[R_{s r c}^{\prime}+r_{\pi}\left(1+g_{m} r_{o}\right)\right]=r_{o}+\frac{R_{E}}{r_{\pi}+R_{s r c}^{\prime}+R_{E}}\left[r_{\pi}+R_{s r c}^{\prime}+\beta r_{o}\right] \tag{8.2.38}\\
& \cong r_{o}\left(1+g_{m} R_{E}\right), \quad \text { for large } \beta, \text { and } r_{\pi} \text { large compared to } R_{E} \text { and } R_{s r c}^{\prime} . \tag{8.2.39}
\end{align*}
$$

If $R_{s r c}^{\prime}=0$, Equation 8.2.38 reduces to $r_{\text {out }}=r_{o}+\left(1+g_{m} r_{o}\right)\left(R_{E} \| r_{\pi}\right)$, as expected. It follows from Figure 8.2.13 that $r_{\text {out }}^{\prime}=r_{\text {out }} \| R_{C}$.
When the collector terminal is open circuited in Figure 8.2.14, $v_{o}=-\beta r_{o} i_{b}+R_{E} i_{b}$, where $i_{b}=\frac{v_{s r c}^{\prime}}{r_{\pi}+R_{s r c}^{\prime}+R_{E}}$. This gives:

$$
\begin{equation*}
A_{v o}=-\frac{\beta r_{o}-R_{E}}{r_{\pi}+R_{s r c}^{\prime}+R_{E}} \tag{8.2.40}
\end{equation*}
$$

When the collector terminal is open circuited in Figure 8.2.1, $r_{\text {out }}^{\prime}=r_{\text {out }}$. With the polarity of the $G_{m} v_{s r c}^{\prime}$ reversed because the amplifier is inverting, $G_{m}=-A_{v o} / r_{o u t}$, so that,

$$
\begin{align*}
G_{m} & =\frac{\beta r_{o}-R_{E}}{r_{o}\left(r_{\pi}+R_{s r c}^{\prime}+R_{E}\right)+R_{E}\left(r_{\pi}+R_{s r c}^{\prime}+\beta r_{o}\right)} \tag{8.2.41}\\
& \cong \frac{g_{m}}{1+g_{m} R_{E}} \quad \text { for large } \beta, \text { and } r_{\pi} \text { large compared with } R_{E} \text { and } R_{s r c}^{\prime} \tag{8.2.42}
\end{align*}
$$

It is seen from Equations 8.2.37, 8.2.39, and 8.2.42 that the factor $\left(1+g_{m} R_{E}\right)$ multiplies $r_{i n}$ and $r_{\text {out }}$ and divides G_{m}, because of the series-series feedback introduced by R_{E}.
From Figure 8.2.1, with the polarity of $G_{m} v_{s r c}^{\prime}$ reversed,

$$
\begin{equation*}
A_{v}^{\prime}=\frac{v_{o}}{v_{\text {src }}}=-G_{m}\left(r_{\text {out }}^{\prime} \| R_{L}\right)=-G_{m}\left(r_{\text {out }} \| R_{L}^{\prime}\right)=-G_{m} R_{\text {out }} \tag{8.2.43}
\end{equation*}
$$

A_{v} can be determined from the relation $A_{v}=-G_{m}\left(r_{o u t} \| R_{L}^{\prime}\right)$, with $R_{s r c}^{\prime}=0$, or from conventional circuit analysis (Problem P8.2.2), as:

$$
\begin{equation*}
A_{v}=-\frac{\beta r_{o}-R_{E}}{r_{\pi}\left(r_{o}+R_{L}^{\prime}+R_{E}\right)+R_{E}\left[r_{o}(1+\beta)+R_{L}^{\prime}\right]} R_{L}^{\prime} \tag{8.2.44}
\end{equation*}
$$

If $r_{o} \rightarrow \infty$, the input is isolated from the load by the current source, with the following consequences: (1) $r_{\text {out }} \rightarrow \infty$, (2) R_{E} can be reflected to the input side to give $r_{i n}=r_{\pi}+$ $R_{E}(\beta+1)$, as for the CC amplifier (Equation 8.2.23). A finite r_{o} therefore reduces $r_{i n}$, as given by Equation 8.2.37, by diverting current away from R_{E}. (3) From Equation 8.2.36, $A_{i}=\beta$, in accordance with the definition of β. (4) From Equation 8.2.41,

$$
\begin{equation*}
G_{m}=\frac{\beta}{r_{\pi}+R_{s r c}^{\prime}+R_{E}(\beta+1)} \tag{8.2.45}
\end{equation*}
$$

(5) From Equation 8.2.43,

$$
\begin{equation*}
A_{v}^{\prime}=-G_{m} R_{L}^{\prime}=-\frac{\beta R_{L}^{\prime}}{r_{\pi}+R_{s r c}^{\prime}+R_{E}(\beta+1)} \tag{8.2.46}
\end{equation*}
$$

(6) From Equation 8.2.2, $A_{v}=\frac{r_{i n}+R_{s r c}^{\prime}}{r_{i n}} A_{v}^{\prime}=-\frac{\beta R_{L}^{\prime}}{r_{\pi}+R_{E}(\beta+1)} \cong-\frac{g_{m} R_{L}^{\prime}}{1+g_{m} R_{E}}$. If β is large, which implies that r_{π} is large,

$$
\begin{equation*}
A_{v}^{\prime} \cong A_{v} \cong-\frac{R_{L}^{\prime}}{R_{E}} \tag{8.2.47}
\end{equation*}
$$

The interpretation is that if β is large, $i_{b} \cong 0$ and $\alpha \cong 1$. The voltage drop in r_{π} is negligible so that the input voltage is nearly equal to the voltage across R_{E}. Equation 8.2.47 follows since the same current flows in R_{L}^{\prime} and R_{E}.

Common-Gate Amplifier

A CG amplifier is illustrated in Figure 8.2.16a, its ac circuit in Figure 8.2.16b, and its smallsignal equivalent circuit in Figure 8.2.16c, where $v_{s r c}^{\prime}=v_{s r c} R_{S} /\left(R_{s r c}+R_{S}\right), R_{s r c}^{\prime}=R_{S} \| R_{s r c}, R_{L}^{\prime}=$ $R_{D} \| R_{L}$, and the dependent current source is reversed in terms of $v_{s g}$. Note that since the gate is grounded and the body terminal is at ac small-signal ground, the effective transconductance is $g_{m}(1+\chi)$, as indicated in Figure 8.2.16c, which means that the factor $(1+\chi)$ multiplies all occurrences of g_{m}. In the CD amplifier and in the CS amplifier with unbypassed $R_{S}, v_{g^{s}} \neq v_{b s}$, so that $(1+\chi)$ does not multiply all occurrences of g_{m}.

To determine $r_{i n}$, we remove the source $v_{s r c}^{\prime}$ and $R_{s r c}^{\prime}$, and apply a test source v_{x} between S and G. The source current is $i_{x}=-i_{d}$ in Figure 8.2.16c. The current in R_{L}^{\prime} is i_{x} and that in r_{o} is $i_{x}-g_{m}(1+\chi) v_{x}$. From KVL, $v_{x}=R_{L}^{\prime} i_{x}+r_{o}\left[i_{x}-g_{m}(1+\chi) v_{x}\right]$, which gives:

$$
\begin{align*}
r_{i n} & =\frac{v_{x}}{i_{x}}=\frac{r_{o}+R_{L}^{\prime}}{1+g_{m}(1+\chi) r_{o}} \tag{8.2.48}\\
& \cong \frac{1}{g_{m}(1+\chi)} \quad \text { for } R_{L}^{\prime} \ll r_{o} \text { and } g_{m}(1+\chi) r_{o} \gg 1 \tag{8.2.49}
\end{align*}
$$

The term $r_{o} /\left[1+g_{m}(1+\chi) r_{o}\right]$ in Equation 8.2.48 is $r_{o}| |\left[1 / g_{m}(1+\chi)\right]$ so that the current source contributes a resistance $1 /\left[g_{m}(1+\chi)\right]$ in parallel with r_{o}. The term $R_{L}^{\prime} /\left[1+g_{m}(1+\chi) r_{o}\right]$ is R_{L}^{\prime} reflected to the input (Exercise 8.2.10).

FIGURE 8.2.16
(a) CG amplifier; (b) ac circuit; (c) small-signal equivalent circuit.

When a source v_{x} is applied between S and $\mathrm{G}, i_{x}=v_{x} / r_{i n}$ and $v_{o}=R_{L}^{\prime} i_{x}$, so that,

$$
\begin{equation*}
A_{v}=\frac{R_{L}^{\prime}}{r_{i n}}=\frac{R_{L}^{\prime}\left[1+g_{m}(1+\chi) r_{o}\right]}{r_{o}+R_{L}^{\prime}} \cong g_{m}(1+\chi)\left(R_{L}^{\prime} \| r_{o}\right) \quad \text { for } g_{m}(1+\chi) r_{o} \gg 1 \tag{8.2.50}
\end{equation*}
$$

A_{v} is very similar to that of the CS amplifier (Equation 8.2.13), with g_{m} multiplied by $(1+\chi)$, and no phase inversion. Referring to Figure 8.2.16b, if the source voltage increases, i_{d} decreases, which increases v_{0}, without phase inversion.
The gain $A_{v}^{\prime}=v_{o} / v_{s r c}^{\prime}$ is:

$$
\begin{align*}
A_{v}^{\prime} & =\frac{r_{i n}}{r_{i n}+R_{s r c}^{\prime}} A_{v}=\frac{R_{L}^{\prime}}{r_{i n}+R_{s r c}^{\prime}}=\frac{R_{L}^{\prime}\left[1+g_{m}(1+\chi) r_{o}\right]}{R_{s r c}^{\prime}+R_{L}^{\prime}+r_{o}+g_{m}(1+\chi) r_{o} R_{s r c}^{\prime}} \tag{8.2.51}\\
& \cong \frac{R_{L}^{\prime}}{R_{s r c}^{\prime}} \quad \text { for } R_{s r c}^{\prime} \gg r_{i n} \tag{8.2.52}
\end{align*}
$$

The approximate result of Equation 8.2.52 is to be expected on the basis that the input and output currents are approximately $v_{s r c}^{\prime} / R_{s r c}^{\prime}$ so that the output voltage is nearly $\left(R_{L}^{\prime} / R_{s r c}^{\prime}\right) v_{s r c}^{\prime}$.

To determine the output resistance, we apply Equation 8.2.3 to obtain:

$$
\begin{equation*}
r_{\text {out }}=r_{o}+R_{s r c}^{\prime}+g_{m}(1+\chi) r_{o} R_{\text {src }}^{\prime} \cong r_{o}\left[1+g_{m}(1+\chi) R_{s r c}^{\prime}\right] \tag{8.2.53}
\end{equation*}
$$

This result is significant in that $r_{\text {out }}$ increases with $R_{\text {src }}^{\prime}$ virtually without limit. Again, it is useful to think of the source resistance as being reflected at the output by multiplying it by $1+g_{m}(1+\chi) r_{o}$. It follows that $R_{\text {out }}=r_{\text {out }} \| R_{L}^{\prime}$.

If the drain in Figure 8.2.16c is short circuited to ground, $i_{s c}=v_{s r c}^{\prime} /\left(r_{i n}+R_{s r c}^{\prime}\right)$, where $r_{i n}$ is given by Equation 8.2.48 with $R_{L}^{\prime}=0$. It follows that:

$$
\begin{align*}
G_{m} & =\frac{1}{r_{i n}+R_{s r c}^{\prime}}=\frac{1+g_{m}(1+\chi) r_{o}}{R_{s r c}^{\prime}+r_{o}+g_{m}(1+\chi) r_{o} R_{s r c}^{\prime}}=\frac{1}{R_{s r c}^{\prime}+r_{o} \|\left[1 / g_{m}(1+\chi)\right]} \tag{8.2.54}\\
& \cong \frac{1}{R_{s r c}^{\prime}}, \quad \text { for } 1 / g_{m}(1+\chi) \ll r_{o} \text { and } R_{s r c}^{\prime} \tag{8.2.55}
\end{align*}
$$

It can be readily verified that $v_{o}=G_{m} R_{\text {out }} v_{s r c}^{\prime}=G_{m}\left(R_{\text {out }}=r_{\text {out }} \| R_{L}^{\prime}\right) v_{s r c}^{\prime}=A_{\text {src }}^{\prime} v_{s r c}^{\prime}$.
From Figure 8.2.16c the current gain is $i_{d} /\left(-i_{d}\right)$, which is -1 .

Exercise 8.2.10

Transform the current source in Figure 8.2.16c to a voltage source in series with r_{o}, then show that the resistance seen at the source is given by Equation 8.2.48.

Exercise 8.2.11

Deduce from Figure 8.2.16c that $A_{v o}=1+g_{m}(1+\chi) r_{o}$

FIGURE 8.2.17
Small-signal equivalent circuit of CB amplifier.

Exercise 8.2.12

Show that Equations 8.5.53, 8.5.54, and $A_{v}^{\prime}=G_{m}\left(R_{L}^{\prime} \| r_{o u t}\right)$ are consistent with $A_{v}^{\prime}=R_{L}^{\prime} /\left(r_{i n}+R_{s r c}^{\prime}\right)$ from Equations 8.2.2.

Common-Base Amplifier

The analysis of the CB amplifier closely parallels that of the CG amplifier. The small-signal equivalent circuit is shown in Figure 8.2.17, from which it follows that $r_{i n}$ is that of the MOSFET (Equation 8.2.48) in parallel with r_{π}, ignoring χ. Thus,

$$
\begin{align*}
r_{i n} & =r_{\pi} \|\left(\frac{r_{o}+R_{L}^{\prime}}{1+g_{m} r_{o}}\right)=\frac{r_{\pi}\left(r_{o}+R_{L}^{\prime}\right)}{r_{o}+R_{L}^{\prime}+r_{\pi}\left(1+g_{m} r_{o}\right)}=\frac{r_{o}+R_{L}^{\prime}}{1+\left(r_{o} / r_{e}\right)+R_{L}^{\prime} / r_{\pi}} \tag{8.2.56}\\
& \cong r_{e} \cong \frac{1}{g_{m}}, \quad \text { for } R_{L}^{\prime} \ll r_{o} \tag{8.2.57}
\end{align*}
$$

If $R_{L}^{\prime} \ll r_{o}$, the collector is effectively short-circuited to the base. $r_{i n}$ is then the parallel combination of r_{o}, r_{π}, and $1 / g_{m}$ due to the source, where $r_{\pi} \|\left(1 / g_{m}\right)=r_{e}$. Note that $r_{i n}=r_{e}$ was derived in Section 6.1, Chapter 6, for the CB amplifier in the absence of base-width modulation.

If a voltage source $v_{e b}$ is applied in Figure 8.2.17, r_{π} is redundant, and A_{v} is the same as for the CG amplifier. From Equation 8.2.50, ignoring χ,

$$
\begin{equation*}
A_{v}=\frac{v_{o}}{v_{e}}=\frac{R_{L}^{\prime}\left(1+g_{m} r_{o}\right)}{r_{o}+R_{L}^{\prime}} \cong g_{m}\left(r_{o} \| R_{L}^{\prime}\right), \quad \text { for } g_{m} r_{o} \gg 1 \tag{8.2.58}
\end{equation*}
$$

This is the same as $A_{v}=-g_{m}\left(r_{o} \| R_{L}^{\prime}\right)$ for the CE configuration (Equation 8.2.8) but without phase inversion. The gain $A_{v}^{\prime}=v_{o} / v_{s r c}^{\prime}$ is:

$$
\begin{align*}
A_{v}^{\prime} & =\frac{r_{i n}}{r_{i n}+R_{s r c}^{\prime}} A_{v}=\frac{R_{L}^{\prime} r_{\pi}\left(1+g_{m} r_{o}\right)}{R_{s r c}^{\prime}\left[r_{o}+R_{L}^{\prime}+r_{\pi}\left(1+g_{m} r_{o}\right)\right]+r_{\pi}\left(r_{o}+R_{L}^{\prime}\right)} \tag{8.2.59}\\
& \cong \frac{R_{L}^{\prime}}{R_{s r c}^{\prime}}, \quad \text { for large } r_{o} \gg R_{s r c}^{\prime} \text { and } g_{m} r_{o} \gg 1 \tag{8.2.60}
\end{align*}
$$

The approximate result of Equation 8.2.60 is to be expected on the basis that the input and output currents are approximately $v_{s r c}^{\prime} / R_{s r c}^{\prime}$ so that the output voltage is nearly $\left(R_{L}^{\prime} / R_{s r c}^{\prime}\right) v_{s r c}^{\prime}$.

The output resistance $r_{\text {out }}$ can be determined from Equation 8.2.3 noting that $R_{E / S(\text { eff })}=R_{s r c}^{\prime} \| r_{\pi}$ and $g_{m(\text { eff })}=g_{m}$. Thus,

$$
\begin{align*}
r_{\text {out }} & =r_{o}+\left(R_{s r r}^{\prime} \| r_{\pi}\right)+g_{m} r_{o}\left(R_{s r c}^{\prime} \| r_{\pi}\right) \cong r_{o}\left[1+g_{m}\left(R_{s r c}^{\prime} \| r_{\pi}\right)\right] \\
& \cong \beta r_{o} \quad \text { for large } \beta, \text { and } r_{\pi} \ll R_{s r c}^{\prime} \text { and } r_{0} \tag{8.2.61}
\end{align*}
$$

Concept: Whereas $r_{\text {out }}$ of the CG amplifier increases virtually without limit with $R_{s r c}^{\prime}$, $r_{\text {out }}$ of the CB amplifier is limited for large $R_{s r c}^{\prime}$ to $\boldsymbol{\beta} r_{o}$ because of r_{π} (Equation 8.2.61).
G_{m} can be determined from the short-circuit current in Figure 8.2.17. With $R_{L}^{\prime}=0$, $i_{s r c}=-i_{e} \frac{v_{s r c}^{\prime}}{R_{s r c}^{\prime}+r_{\pi}\left\|r_{o}\right\|\left(1 / g_{m}\right)}$ and $i_{s c}=\frac{r_{\pi}}{r_{\pi}+r_{o} \|\left(1 / g_{m}\right)} i_{s r c}$. This gives:

$$
\begin{align*}
G_{m} & =\frac{1}{R_{s r c}^{\prime}+r_{o} \|\left(1 / g_{m}\right)\left[1+R_{s r c}^{\prime} / r_{\pi}\right]} \tag{8.2.62}\\
& \cong \frac{1}{R_{s r c}^{\prime}}, \quad \text { for large } \beta \text {, and } 1 / g_{m} \text { small compared to } r_{o} \text { and to } R_{s r c}^{\prime} \tag{8.2.63}
\end{align*}
$$

From Equations 8.2.2, $A_{i}=-A_{v} r_{i n} / R_{L}$, which gives:

$$
\begin{equation*}
A_{i}=-\frac{r_{\pi}\left(1+g_{m} r_{o}\right)}{R_{L}^{\prime}+r_{o}+r_{\pi}\left(1+g_{m} r_{o}\right)} \tag{8.2.64}
\end{equation*}
$$

If $R_{L}^{\prime}=0$ and $r_{o} \rightarrow \infty, A_{i}=-\alpha$, as expected.
The CG/CB amplifier has low input resistance, high output resistance, and, ideally, unity current gain. This is in contrast to the CD/CC amplifier, which has high input resistance, low output resistance and, ideally, unity voltage gain. If the input to a CG/CB amplifier is a current source of relatively low source resistance, the output is a current source of almost the same value but of a high source resistance. In this sense, the CG/CB amplifier can act as a current buffer, just as the CD/CC amplifier can act as a voltage buffer that transforms a voltage source of relatively high source resistance to a voltage source of almost the same value but of low source resistance.

Table 8.2.1 shows the relations for the three amplifier configurations, the way they are derived, and the approximations that apply under specified conditions. It is an important exercise to derive the approximate relations directly from the relevant ac or small-signal equivalent circuit (Exercise 8.2.13). The properties of the three transistor amplifier are summarized qualitatively in Table 8.2.2 and are examined quantitatively in Exercises 8.2.14 and 8.2.15, as a straightforward application of the equations derived in this section.

Exercise 8.2.13

Derive the approximate relations in Table 8.2.1 directly from the relevant ac or small-signal equivalent circuit.
TABLE 8.2.1
Small Signal Relations for Amplifier Configurations

Configuration	$r_{\text {in }}$	$r_{\text {out }}$	A_{i}	A_{v}	G_{m}			
CE	r_{π} (Equation 8.2.5)	r_{o} (Equation 8.2.7)	$\beta \frac{r_{o}\left\\|R_{C}\right\\| R_{L}}{R_{L}}$ (Equation 8.2.6), from $r_{i n}$ and current division	$\begin{aligned} & -g_{m}\left(r_{o} \\| R_{L}^{\prime}\right) \\ & \quad \text { (Equation 8.2.8) } \end{aligned}$	$G_{m}=\frac{g_{m} r_{\pi}}{r_{\pi}+R_{s r c}^{\prime}}$ (Equation 8.2.9) $\cong g_{m}, r_{\pi} \gg R_{s r c}^{\prime}$			
CS	∞	$r_{o}($ Equation 8.2.12)	$\begin{aligned} & \cong \beta, R_{L} \ll R_{C} \text { and } r_{o} \\ & \infty \end{aligned}$	$\begin{aligned} & -g_{m}\left(r_{\\|} \\| R_{L}^{\prime}\right) \\ & \text { (Equation 8.2.13) } \end{aligned}$	$G_{m}=g_{m}$			
$\mathrm{CE}+\mathrm{R}_{\mathrm{E}}$	$r_{\pi}+R_{E}(\beta+1) \frac{r_{o}+R_{L}^{\prime} /(\beta+1)}{r_{o}+R_{E}+R_{L}^{\prime}}$ (Equation 8.2.37), from Figure 8.2.14	$r_{o}+R_{E} \frac{R_{s r c}^{\prime}+r_{\pi}\left(1+g_{m} r_{o}\right)}{R_{E}+r_{\pi}+R_{s r c}^{\prime}}$ (Equation 8.2.38), from (Equation 8.2.3)	$\begin{aligned} & \frac{\left(\beta r_{o}-R_{E}\right) R_{L}^{\prime}}{R_{L}\left(r_{o}+R_{E}+R_{L}^{\prime}\right)} \\ & \text { (Equation 8.2.36), } \\ & \text { from Figure 8.2.14 } \end{aligned}$	$\begin{aligned} & -\frac{\left(\beta r_{o}-R_{E}\right) R_{L}^{\prime}}{r_{\pi}\left(R_{L}^{\prime \prime}+R_{E}\right)+R_{E}\left(R_{L}^{\prime \prime}+\beta r_{o}\right)} \\ & (\text { Equation 8.2.44), } \\ & \text { from } G_{m} R_{\text {out, }} \\ & \text { with } R_{L}^{\prime \prime}=r_{o}+R_{L}^{\prime} \end{aligned}$	$\frac{\beta r_{o}-R_{E}}{r_{o}\left(R_{s r c}^{\prime \prime}+R_{E}\right)+R_{E}\left(R_{s r c}^{\prime \prime}+\beta r_{o}\right)}$ (Equation 8.2.41), from $A_{v o}$, with $R_{s r c}^{\prime \prime}=r_{\pi}+R_{s r c}^{\prime}$			
	$\begin{gathered} \cong r_{\pi}\left(1+g_{m} R_{e}\right), \\ \text { large } \beta \text { and } r_{o} \end{gathered}$	$\begin{aligned} & \cong r_{o}\left(1+g_{m} R_{e}\right), \\ & \quad \text { large } \beta, r_{\pi} \gg R_{E} \text { and } R_{s r c}^{\prime} \end{aligned}$	$\begin{gathered} \cong \beta, r_{o} \gg R_{E}+R_{L}^{\prime} \\ \text { and } R_{L} \ll R_{C} \end{gathered}$	$\cong-\frac{g_{m} R_{L}^{\prime}}{1+g_{m} R_{E}} \text { large } \beta \text { and } r_{o}$	$\begin{aligned} & \cong \frac{g_{m}}{1+g_{m} R_{E}}, \text { large } \\ & \beta, r_{\pi}>R_{E} \\ & \text { and } R_{s r c}^{\prime} \end{aligned}$			
$\mathrm{CS}+\mathrm{R}_{S}$	∞	$r_{o}+R_{S}+g_{m}(1+\chi) r_{o} R_{S}$ (Equation 8.2.33), from (Equation 8.2.3)	∞	$\begin{aligned} & -G_{m}\left(r_{\text {out }} \\| R_{L}^{\prime}\right) \\ & \text { (Equation 8.2.35) } \end{aligned}$	$\begin{aligned} & g_{m} \frac{r_{o}}{r_{\text {out }}} \text { (Equation 8.2.34), } \\ & \text { from } A_{v o} \end{aligned}$			
		$\cong r_{o}\left[1+g_{m}(1+\chi) R_{S}\right] r_{o} \gg R_{S}$		$\cong-\frac{g_{m} R_{L}^{\prime}}{1+g_{m}(1+\chi) R_{S}}, r_{o} \gg R_{L}+R_{S}$	$\cong \frac{g_{m}}{1+g_{m}(1+\chi) R_{S}}, r_{o} \gg R_{S}$			
CC	$r_{\pi}+(\beta+1) R_{E}^{\prime}$ (Equation 8.2.23), resistance in emitter reflected to base in Figure 8.2.8	$r_{o} \\|\left(r_{e}+\frac{R_{s c}^{\prime}}{\beta+1}\right)$ (Equation 8.2.31), from the reflection of resistance in base to emitter	$-(\beta+1) \frac{R_{E}^{\prime}}{R_{L}}$ (Equation 8.2.26), from current division in Figure 8.2.8	$\frac{(\beta+1) R_{E}^{\prime}}{r_{\pi}+(\beta+1) R_{E}^{\prime}}$ (Equation 8.2.24), from voltage division in Figure 8.2.8	$G_{m}=\frac{\beta+1}{r_{\pi}+R_{s r c}^{\prime}}$ (Equation 8.2.28), from Figure 8.2.8			
		$\cong 1 / g_{m}$, large β and r_{o}	$\cong-(\beta+1), R_{E}^{\prime} \gg R_{L}$	$\cong 1,(\beta+1) R_{E}^{\prime} \gg r_{\pi}$				

TABLE 8.2.1 (continued)
Small Signal Relations for Amplifier Configurations

Configuration	$r_{\text {in }}$	$r_{\text {out }}$	A_{i}	A_{v}	G_{m}		
CD	∞	$\frac{r_{o}}{1+g_{m}(1+\chi) r_{o}}$ (Equation 8.2.17), from Figure 8.2.6a and b $\cong \frac{1}{g_{m}(1+\chi)^{\prime}}, g_{m}(1+\chi) r_{o} \gg 1$	∞	$\frac{g_{m} R_{S}^{\prime}}{1+g_{m}(1+\chi) R_{S}^{\prime}}$ (Equation 8.2.22), from Figure 8.2.6a and b, with $R_{S}^{\prime}=r_{o}\left\\|R_{S}\right\\| R_{L}$ $\cong \frac{1}{(1+\chi)}, g_{m}(1+\chi) R_{S}^{\prime} \gg 1$	$G_{m}=g_{m}$ (Equation 8.2.19), from Figure 8.2.6b		
Св	$\begin{aligned} & \frac{r_{o}+R_{L}^{\prime}}{1+\left(r_{o} / r_{e}\right)+R_{L}^{\prime} / r_{\pi}} \\ & \text { (Equatioon 8.2.56), } \\ & \text { from figure 8.2.17 } \end{aligned}$	$\begin{aligned} & r_{0}+\left(R_{s c c t}^{\prime} s r_{\pi}\right)+g_{m} r_{0}\left(R_{s r c c}^{\prime} \\| r_{\pi}\right) \\ & (\text { Equation 8.2.61), } \\ & \text { from Equation 8.2.3 } \end{aligned}$	$\begin{aligned} & -\frac{r_{\pi}\left(1+g_{m} r_{o}\right)}{-R_{L}^{\prime}+r_{o}+r_{\pi}\left(1+g_{m} r_{o}\right)} \\ & \text { (Equation 8.2.64), } \\ & \text { from Figure 8.2.17 } \end{aligned}$	$\frac{R_{L}^{\prime}\left(1+g_{m} r_{0}\right)}{r_{o}+R_{L}^{\prime}} \text { (Equation 8.2.58), }$ from figure 8.2.17	$\begin{aligned} & \frac{1}{R_{s t r}^{\prime}+r_{r} \\|\left(1 / g_{m}\right)\left[1+R_{s c c}^{\prime} / r_{\pi}\right]} \\ & \text { (Equation 8.2.62), } \\ & \text { from Figure 8.2.17 } \end{aligned}$		
	$r_{e} \cong 1 / g_{m}, R_{L}^{\prime} \ll r_{0}$	$\begin{aligned} & \cong \beta r_{o} \text { large } \beta, r_{\pi} \ll R_{s r c}^{\prime} \\ & \text { and } r_{o} \end{aligned}$	$\begin{gathered} \cong-\alpha, R_{L}^{\prime}=0 \\ \text { and } r_{o} \rightarrow \infty \end{gathered}$	$\cong g_{m}\left(r_{0} \\| R_{L}^{\prime}\right), g_{m} r_{o} \gg 1$	$\begin{aligned} & G_{m} \cong \frac{1}{R_{s_{s c c}^{\prime}}^{\prime}}, \text { large } \\ & \beta, 1 / S_{m} \ll r_{o} \\ & \text { and } R_{s s c}^{\prime} \end{aligned}$		
CG	$\frac{r_{o}+R_{L}^{\prime}}{1+g_{m}(1+\chi) r_{o}}$ (Equation 8.2.48), from Figure 8.2.16c	$r_{o}+R_{s c c}^{\prime}+g_{m}(1+\chi) r_{o} R_{s c c}^{\prime}$ (Equation 8.2.53), from Equation 8.2.3	-1	$\begin{aligned} & \frac{R_{L}^{\prime}\left[1+g_{m}(1+\chi) r_{o}\right]}{r_{o}+R_{L}^{\prime}} \\ & \text { (Equation 8.2.50), } \\ & \text { from Figure 8.2.16c } \end{aligned}$	$\frac{1}{\frac{1}{R_{s s c}^{\prime}+r_{0} \\|\left[1 / g_{m}(1+\chi)\right]}} \begin{aligned} & \text { (Equation 8.2.54), } \\ & \text { from Figure 8.2.16c } \end{aligned}$		
	$\begin{aligned} & \cong \frac{1}{g_{m}(1+\chi)} R_{L}^{\prime} \ll r_{0} \\ & \text { and } g_{m}\left(1+\chi r_{o} \gg 1\right. \end{aligned}$	$\cong r_{o}\left[1+g_{m}(1+\chi) R_{s c}^{\prime}\right] r_{o} \gg R_{s s c}^{\prime}$		$\begin{gathered} \cong g_{m}(1+\chi) R_{L}^{\prime} R_{L}^{\prime} \ll r_{o} \\ \text { and } g_{m}(1+\chi) r_{0} \gg 1 \end{gathered}$	$\begin{aligned} & \cong \frac{1}{R_{s c}^{\prime}}, 1 / g_{m}(1+\chi) \ll r_{o} \\ & \text { and } R_{s s c}^{\prime} \end{aligned}$		

TABLE 8.2.2
Comparison of Amplifier Configurations

Property	CE/CS	CC/CD	CB/CG
Voltage gain	High	Virtually 1	Moderate to high, depending on source resistance
Current gain	High for CE, virtually infinite for CS Moderate for CE, virtually infinite for CS	High for CC, virtually infinite for CD Very high for CC, virtually infinite for CD	Low
Output resistance	Moderate	Low	High

Exercise 8.2.14

Given a BJT having the following parameters: $\beta=100, V_{A}=100 \mathrm{~V}$, and $I_{C}=2 \mathrm{~mA}$. It is required to compare $r_{i n}, r_{\text {out }}, A_{v}^{\prime}$, and A_{i} for the (a) CE, (b) CE with $R_{E}=0.5 \mathrm{k} \Omega, r_{o} \rightarrow \infty$; (c) CC, and (d) CB amplifiers, assuming in all cases $R_{s r c}=0.5 \mathrm{k} \Omega, R_{C}=2 \mathrm{k} \Omega$, and R_{L} infinite.

Answers: (a) $1.3 \mathrm{k} \Omega, 50 \mathrm{k} \Omega,-107,96$; (b) $51.8 \mathrm{k} \Omega, \infty,-3.8,100$; (c) $203 \mathrm{k} \Omega, 18 \Omega ; 0.99,101$; (d) $13 \Omega, 5 \mathrm{M} \Omega, 3.9,-0.99$.

Exercise 8.2.15

Given an E-NMOS transistor having $k_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=2 \mathrm{~V}, r_{o}=100 \mathrm{k} \Omega, \chi=0.2$, and $I_{D}=1$ mA . It is required to compare A_{v} and $r_{o u t}$ for the (a) $\mathrm{CS},(\mathrm{b}) \mathrm{CS}$ with $R_{S}=0.5 \mathrm{k} \Omega$, (c) CD, and (d) CG amplifiers, assuming an active load equivalent to $R_{D}=100 \mathrm{k} \Omega$.

Answers: (a) $-50,100 \mathrm{k} \Omega$; (b) $38.5,160 \mathrm{k} \Omega$; (c) $0.82,0.82 \mathrm{k} \Omega$; (d) $61,50 \mathrm{k} \Omega$.

Before ending this section, it is of interest to highlight some expressions that have been repeatedly encountered in several cases. Consider the BJT small-signal equivalent circuit of Figure 8.2.18, in which the base and collector are connected together to ground and a test source v_{x} is applied to determine the resistance seen looking into the emitter. From KCL, $i_{x}=-\frac{v_{b e}}{r_{\pi}}-\frac{v_{b e}}{r_{o}}-g_{m} v_{b e}=v_{x}\left(\frac{1}{r_{\pi}}+\frac{1}{r_{o}}+g_{m}\right)$. It follows that the effective resistance $r_{\text {eff }}$ seen by the source is:

$$
\begin{equation*}
r_{\mathrm{eff}}=r_{\pi}\left\|r_{o}\right\|\left(1 / g_{m}\right)=\left(\frac{r_{\pi}}{\beta+1}\right)\left\|r_{o}=r_{e}\right\| r_{o} \cong r_{e} \cong 1 / g_{m}, \quad \text { for } r_{o} \gg r_{e} \tag{8.2.65}
\end{equation*}
$$

FIGURE 8.2.18
Small-signal equivalent circuit for determining resistance seen by the source.

FIGURE 8.2.19
AC circuit for (a) CE amplifier with unbypassed emitter resistor, and (b) CB amplifier.

(a)

(b)

For a MOSFET, $r_{\pi} \rightarrow \infty$, so that,

$$
\begin{equation*}
r_{\mathrm{eff}}=r_{o} \|\left(1 / g_{m}\right) \cong 1 / g_{m}, \quad \text { for } r_{o} \gg 1 / g_{m} \tag{8.2.66}
\end{equation*}
$$

But what does $r_{\text {eff }}$ represent? It can, in fact, represent one of three resistances:

1. The resistance between the two terminals of a diode-connected BJT transistor (Figure 6.3.8, Chapter 6) or a diode-connected enhancement MOSFET (Figure 5.4.5, Chapter 5). Clearly, the small-signal equivalent circuit is of the form of Figure 8.2.18 in both cases.
2. The output resistance $r_{\text {out }}$ of a CC/CD amplifier when $R_{s r c} \rightarrow 0$, as can be seen from Figure 8.2.4b for a MOSFET and Figure 8.2.8 for a BJT. If $R_{s r c}=0$ and $r_{\text {out }}$ is to be determined with $v_{s r c}=0$, the base and collector will be connected together to ground.
3. The input resistance $r_{i n}$ of a CB/CG amplifier when $R_{L}^{\prime} \rightarrow 0$, that is, when the output is short-circuited to the ac signal, as can be seen from Figure 8.2.16b for a MOSFET or a BJT.

Another set of common relations is $r_{\text {out }}$ as determined by Equation 8.2.2. We have seen that $r_{\text {out }} \cong r_{o}\left(1+g_{m} R\right)$ for an unbypassed emitter/source resistor, where $R=R_{E}$ for a BJT and $R=R_{S}$ for a MOSFET. This same expression for $r_{\text {out }}$ applies to the CB amplifier, as can be seen from comparing the ac circuits for the two BJT cases (Figure 8.2.19). Similar considerations apply to the CG amplifier. Note that if $R_{E}=R_{s r c}^{\prime}=0, r_{o u t}=r_{o}$ in both cases.

8.3 High-Frequency Response

The frequency response of dc amplifiers, including IC operational amplifiers, extends down to zero frequency. At high frequencies, the response decreases with frequency because of the effects of stored charges and the practical limits on physical processes involved, such as carrier transit time through the base a BJT or through the channel of a MOSFET. The high-frequency effects are accounted for in small-signal equivalent circuits by the addition of internal capacitances, as discussed in Section 5.3, Chapter 5, and in Section 6.2, Chapter 6.

Miller's Theorem

This is a useful theorem that allows rearranging an impedance or admittance so as to simplify the analysis of an amplifier circuit. In Figure 8.3.1a, a voltage v_{1} between nodes a

$$
\begin{gathered}
Y_{1}=(1-K) Y \\
Y_{2}=(1-1 / K) Y
\end{gathered}
$$

(a)

(b)

FIGURE 8.3.1
(a) Admittance between two nodes related by a voltage amplification factor K; (b) equivalent admittances Y_{1} and Y_{2} in accordance with Miller's theorem.
and c appears amplified by a factor K between nodes b and c, as when port ac is the input port of an amplifier and port bc its output port. It follows that $i_{1}=\left(v_{1}-v_{2}\right) Y=v_{1}(1-K) Y$ and $i_{2}=\left(v_{2}-v_{1}\right) Y=v_{1}(K-1) Y=v_{2}(1-1 / K) Y$. The admittance Y can therefore be replaced by two admittances Y_{1} and Y_{2}, as in Figure 8.3.1b, where $Y_{1}=Y(1-K)$ and $Y_{2}=Y(1-1 / K)$, without altering i_{1} and i_{2}. If K is negative and $|K| \gg 1$, then,

$$
\begin{equation*}
Y_{1} \cong|K| Y \quad \text { and } \quad Y_{2} \cong Y \tag{8.3.1}
\end{equation*}
$$

The effective admittance between nodes a and c is Y magnified by nearly $|K|$. This is known as Miller's theorem, or the Miller effect, whose importance is in the following:

Concept: The magnification of internal capacitances between input and output by the Miller effect limits the high-frequency response of some simple amplifier stages.

It should be pointed out that when applying the Miller effect to amplifiers, then, strictly speaking, K is the voltage amplification in the presence of the capacitance between input and output. This makes K, in general, a function of the capacitance, and hence of frequency, and defeats the purpose of applying the Miller effect to simplify analysis. Hence the Miller approximation is usually applied, whereby K is considered to be the amplifier gain with no capacitances in the circuit. This inevitably introduces some error in the calculation.

Poles and Zeros of Transfer Function

Before deriving expressions for frequency response, it is important to clarify the nature of poles and zeros of the transfer functions of amplifiers. The transfer function of a single amplifier stage can be represented, simply but without loss of generality, as having a zero and two poles:

$$
\begin{equation*}
H(s)=K \frac{s+\omega_{z}}{\left(s+\omega_{p 1}\right)\left(s+\omega_{p 2}\right)} \tag{8.3.2}
\end{equation*}
$$

where the zero is at $-\omega_{z}$ and the poles are at $-\omega_{p 1}$ and $-\omega_{p 2}$. The following should be noted:

1. In a stable amplifier, $\omega_{p 1}$ and $\omega_{p 2}$ are positive real numbers, and the poles are on the negative real axis of the s plane. ω_{z} is a real number, which could be positive, negative, or zero.
2. The poles $-\omega_{p 1}$ and $-\omega_{p 2}$ are formal poles and not true poles. A true pole arises from a term, such as $\left(s^{2}+\omega_{p}^{2}\right)$ so that if $s= \pm j \omega_{p}$, the term is zero and $H(s) \rightarrow \infty$. The poles $\pm j \omega_{p}$ are on the imaginary axis of the s plane and represent a physically realizable frequency ω_{p} that can be physically generated or measured. Poles that are not on the imaginary axis do not represent physically realizable frequencies (Sabah, 2008, p. 608). Thus, when $s=-\omega_{p 1}$ in Equation 8.3.2, for example, $H(s) \rightarrow \infty$, but $-\omega_{p 1}$ is not a physically realizable frequency. If, at the physical frequency $\omega_{p 1}$, we substitute $s=j \omega_{p 1}$ in Equation 8.3.2 we obtain:

$$
\begin{equation*}
|H(s)|=K \frac{\sqrt{\omega_{p 1}^{2}+\omega_{z}^{2}}}{\sqrt{2 \omega_{p 1}^{2}\left(\omega_{p 1}^{2}+\omega_{p 2}^{2}\right)}} \tag{8.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\angle H(s)=\tan ^{-1}\left(\frac{\omega_{p 1}}{\omega_{z}}\right)-\tan ^{-1}(1)-\tan ^{-1}\left(\frac{\omega_{p 1}}{\omega_{p 2}}\right) \tag{8.3.4}
\end{equation*}
$$

3. Similar comments apply to the zero $-\omega_{z}$. When $\omega_{z}=0$, the s term in the numerator of Equation is a true zero at the origin of the s plane and is on the imaginary axis. It makes $H(s)=0$ at $s=0$, corresponding to dc conditions.
4. It is customary in frequency response analysis of amplifiers to refer to the poles and zeros in Equation 8.3.2 as positive quantities. Thus, a term such as $(s+3000)$ in the denominator is said to correspond to a pole frequency of $+3000 \mathrm{rad} / \mathrm{s}$. Equation 8.3.3 is independent of the signs of ω_{p} and ω_{z}. In Equation 8.3.4, the argument of the arctan function is the ratio of the imaginary part to the real part so that the correct signs of ω_{p} and ω_{z} are automatically included.

Common Emitter/Source Amplifier

The basic, small-signal CE circuit to be analyzed, shown in Figure 8.3.2a, is that of Figure 6.2.10, Chapter 6 , but ignoring r_{μ}, which is normally very large, and r_{E} and r_{C}, which are normally small in modern transistors. r_{B} can be included, in a simplified manner, with the source resistance. $R_{L}^{\prime}=R_{L} \| R_{C}$, and C_{L} is the sum of $C_{c s}$, which is small in modern IC transistors, and load capacitance, which includes the wiring capacitance and the input capacitance of any succeeding amplifier stage. Note that because C_{μ} appears between base and collector, the replacement of the $g_{m} v_{b e}$ current source by a βi_{b} current source (Figure 6.2.7, Chapter 6) is not valid.

The circuit of Figure 8.3.2a can be simplified to that in Figure 8.3.2b, where $V_{s r c}^{\prime}=V_{s r c} r_{\pi} /\left(r_{\pi}+r_{B}+R_{s r c}\right), R_{s r c}^{\prime}=r_{\pi}\left\|\left(r_{B}+R_{s r c}\right), R_{\text {out }}=r_{o}\right\| R_{C} \| R_{L}$, and $Z_{L}=R_{\text {out }} \|\left(1 / s C_{L}\right)$.

The circuit of Figure 8.3.2b is analyzed rigorously in Section ST8.7. It can also be analyzed using the method of open-circuit and short-circuit time constants (OCSCTC) (Section ST8.9). This is an exact method for determining the poles of the response without deriving the transfer function. Where one of the poles is dominant, an approximate procedure can be applied based on the open-circuit time constants only (OCTC). We will pursue here an approximate analysis using Miller's theorem.

To apply Miller's theorem using the Miller approximation, the following assumptions are made: (1) $1 / s C_{L} \gg R_{\text {out }}$ over the frequency range of interest, so that Z_{L} is approximated by

FIGURE 8.3.2
(a) High-frequency, small-signal equivalent circuit of CE amplifier; (b) simplified equivalent circuit (a).
$R_{\text {out. }}$. (2) $R_{\text {out }} \ll 1 / s C_{\mu}$ so that the current in $R_{\text {out }}$ is mainly due to the source $g_{m} V_{\pi}(s)$, and the current in C_{μ} is negligible in comparison. Under these conditions, $V_{o}(s)=-g_{m} R_{o u t} V_{\pi}(s)$, and Miller's theorem can be applied to nodes B^{\prime} and C , with $Y=s C_{\mu}$ and $K=-g_{m} R_{\text {out }}$. It follows that C_{μ} is effectively multiplied by $\left(1+g_{m} R_{o u t}\right)$ so that the capacitance between B^{\prime} and E is:

$$
\begin{equation*}
C_{T}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{\text {out }}\right) \tag{8.3.5}
\end{equation*}
$$

Moreover, a capacitance $C_{\mu}\left[1+1 /\left(1+g_{m} R_{\text {out }}\right)\right] \cong C_{\mu}$ appears in parallel with C_{L}. The circuit becomes as shown in Figure 8.3.3, where $C_{L}^{\prime}=C_{L}+C_{\mu}$. By multiplying the transfer functions $V_{\pi}(s) / V_{s r c}^{\prime}(s)$ and $V_{o}(s) / V_{\pi}(s)$, it follows that:

$$
\begin{equation*}
A_{v}^{\prime}(s)=\frac{V_{o}(s)}{V_{s r c}^{\prime}(s)}=-\frac{g_{m} R_{\text {out }}}{\left(1+s C_{T} R_{s r c}^{\prime}\right)\left(1+s C_{L}^{\prime} R_{\text {out }}\right)}=-\frac{g_{m} R_{\text {out }}}{\left(1+s / \omega_{p 1}\right)\left(1+s / \omega_{p 2}\right)} \tag{8.3.6}
\end{equation*}
$$

FIGURE 8.3.3
Small-signal equivalent circuit for determining frequency response.

The following should be noted:

1. The poles are at $\omega_{p 1}=1 / C_{T} R_{s r c}^{\prime}$ and $\omega_{p 2}=1 / C_{L}^{\prime} R_{\text {out }}$. If $\omega_{p 1}$ is dominant, the 3-dB cutoff frequency of $A_{v}^{\prime}(s)$ is nearly $\omega_{p 1}$. If $\omega_{p 1}$ and $\omega_{p 2}$ are close together, the $3-\mathrm{dB}$ cutoff frequency is determined as the frequency that makes the denominator of Equation 8.3.6 equal to $\sqrt{2}$.
2. The Miller approximation neglected C_{μ} in calculating the gain K. In fact, C_{μ} couples the input and output, with the following consequences: (a) $\omega_{p 1}$ is no longer dependent on C_{T} only and $\omega_{p 2}$ on C_{L}^{\prime} only. When $\omega_{p 1}$ is dominant, a rigorous analysis (Section ST8.7) gives $\omega_{p 1}$ as the reciprocal of the coefficient of s in the denominator of Equation 8.3.6. This is because the coefficient of s is $\left(\frac{1}{\omega_{p 1}}+\frac{1}{\omega_{p 2}}\right)$ and that of s^{2} is $\frac{1}{\omega_{p 1} \omega_{p 2}}$. If $\omega_{p 1} \gg \omega_{p 2}$, the coefficient of s^{2} can be neglected in the vicinity of $\omega_{p 1}$, and $1 / \omega_{p 2}$ can be neglected in the coefficient of s, so that,

$$
\begin{equation*}
\omega_{p 1}=\frac{1}{C_{T} R_{s r c}^{\prime}+\left(C_{\mu}+C_{L}\right) R_{\text {out }}} \tag{8.3.7}
\end{equation*}
$$

(b) The response has a zero that is absent from Figure 8.3.3 based on the Miller approximation, but which can be determined from the circuit of Figure 8.3.2b. If $V_{o}(s)$ is zero and the output terminals are short-circuited, the current in the short circuit is zero. This means that $g_{m} V_{\pi}(s)-s C_{\mu} V_{\pi}(s)=0$, which gives a zero at $s_{z}=g_{m} / C_{\mu}$, or at a frequency:

$$
\begin{equation*}
\omega_{z}=\frac{g_{m}}{C_{\mu}} \tag{8.3.8}
\end{equation*}
$$

3. Because the circuit of Figure 8.3.2b has three capacitors, it may be thought that the response has three poles. However, the three capacitors form a loop so that the voltages across them are not independent, and the response in fact has only two poles.
4. $\omega_{p 1}$ varies inversely with $R_{s r c}^{\prime}$. If $R_{s r c}^{\prime} \rightarrow 0, C_{T}$ appears across an ideal voltage source and will not affect the frequency response. A rigorous analysis of the circuit of Figure 8.3.2b under these conditions indicates that the response has a pole at $1 / R_{\text {out }}$ $\left(C_{\mu}+C_{L}\right)$ and a zero at a higher frequency of g_{m} / C_{μ} (Exercise 8.3.2). This shifting of the dominant pole to high frequencies when the source resistance is small should be kept in mind when comparing the response of the $\mathrm{CE} / \mathrm{CS}$ amplifier with other amplifiers. Note that minimum $R_{s r c}^{\prime}$ is $r_{B} \| r_{\pi}$. When $R_{s r c}^{\prime} \rightarrow \infty$, the worst-case 3-dB cutoff frequency is $1 /\left(2 \pi \beta r_{o} C_{\mu}\right)$ (Problem P8.3.4).

Exercise 8.3.1

How does Equation 8.3.6 compare with Equation 8.2.10 at very low frequencies?

Exercise 8.3.2

Exercise 8.3.2
Show that if $R_{s r c}^{\prime}=0$ in Figure 8.3.2b, $\frac{V_{o}(s)}{V_{\pi}(s)}=-\frac{g_{m} R_{\text {out }}\left(1-s C_{\mu} / g_{m}\right)}{1+s\left(C_{\mu}+C_{L}\right) R_{\text {out }}}$, where a pole occurs at
$\omega_{p 1}^{\prime}=1 / R_{\text {out }}\left(C_{\mu}+C_{L}\right)$.

Example 8.3.1 Frequency Response of CE Amplifier

It is required to investigate the high-frequency response of the CE amplifier of Exercise 8.2.14, having $g_{m}=77 \mathrm{~mA} / \mathrm{V}, C_{\mu}=1.5 \mathrm{pF}, C_{\pi}=12 \mathrm{pF}, C_{L}=20 \mathrm{pF}, R_{\text {out }}=2 \mathrm{k} \Omega$, and $R_{\text {src }}^{\prime}=1 \mathrm{k} \Omega$.

Solution

From Equation 8.3.5, $C_{T}=C_{\pi}+C_{\mu}\left(1+g_{m} R_{\text {out }}\right)=12+1.5(1+154) \cong 245 \mathrm{pF}$. Assuming one pole is dominant, it follows from Equation 8.3.7 that $f_{p 1}=\frac{1}{2 \pi} \frac{1}{\left[C_{T} R_{\text {srC }}^{\prime}+\left(C_{\mu}+C_{L}\right) R_{\text {out }}\right]}=$ $\frac{1}{2 \pi(245 \times 1+21.5 \times 2)}=\frac{1}{2 \pi \times 288 \times 10^{-9}} \cong 533 \mathrm{kHz}$. From Equation ST8.7.4, $f_{p 2}=\frac{1}{2 \pi} \frac{C_{T} R_{s r c}^{\prime}+\left(C_{L}+C_{\pi}\right) R_{\text {out }}}{\left[\left(C_{L}+C_{\mu}\right) C_{\pi}+C_{L} C_{\mu}\right] R_{s r c}^{\prime} R_{\text {out }}}=\frac{245+32 \times 2}{2 \pi \times(21.5 \times 12+20 \times 1.5) \times 1 \times 2} \cong 85.4 \mathrm{MHz}$. $f_{z}=\frac{g_{m}}{2 \pi C_{\mu}}=\frac{77}{2 \pi \times 1.5} \cong 8.17 \mathrm{GHz}$. It is seen that $f_{p 1}$ is much smaller than $f_{p 2}$, so it is indeed a dominant pole. Since $f_{p 1}$ is small compared to $f_{p 2}$ and f_{z}, the $3-\mathrm{dB}$ cutoff frequency is very nearly $f_{p 1}$. A more accurate, but still approximate, expression of the $3-\mathrm{dB}$ frequency is $\frac{1}{\sqrt{1 / f_{p 1}^{2}+1 / f_{p 2}^{2}-2 / f_{Z}^{2}}}$ (Equation ST8.8.8, Section ST8.8).
Let us examine the approximations made. In deriving the capacitance due to the Miller effect it was assumed that $R_{\text {out }} \ll 1 / s C_{\mu}$. At $\omega_{p 1}, \frac{1}{\omega_{p 1} C_{\mu}}=\frac{288 \times 10^{-9}}{1.5 \times 10^{-12}}=192 \gg 2$. It was also assumed that $1 / s C_{L} \gg R_{\text {out, }}$ or, $\frac{288 \times 10^{-9}}{20 \times 10^{-12}}=14.4 \gg 2$. Finally, let us estimate the frequency $f_{T}=\frac{g_{m}}{2 \pi\left(C_{\pi}+C_{\mu}\right)}$, the frequency at which the short-circuit current gain becomes unity (Equation 7.2.35, Chapter 7). Substituting, $f_{T}=77 /(2 \pi \times 13.5) \cong 908 \mathrm{MHz}$.

The CS amplifier is analyzed in the same manner. The circuits of Figures 8.3.2 and 8.3.3, and the results derived earlier, apply, with $R_{s r c}^{\prime}=R_{G} \| R_{s r c}\left(r_{\pi} \rightarrow \infty, r_{B}=0\right), C_{\pi}$ replaced by $C_{g s}$, and C_{μ} by $C_{g d}$. In summary,

Concept: In a CE/CS amplifier stage, C_{μ} or $C_{g d}$ is magnified by the Miller effect and introduces a dominant pole that reduces the high-frequency response of the amplifier stage to an extent that depends on the source resistance.

Common Collector/Drain Amplifier

The small-signal equivalent circuit for the CE amplifier (Figure 8.3.2a) can be readily modified as shown in Figure 8.3.4a for the CC amplifier by grounding the collector and adding R_{E}^{\prime} in series with the emitter, where $R_{E}^{\prime}=R_{E}\left\|R_{L}\right\| r_{o}$. The circuit can be redrawn as in Figure 8.3.4b, where $R_{s r c}^{\prime}=R_{s r c}+r_{B}$. C_{μ} now appears between B^{\prime} and ground. As in the case of the CE amplifier, the three capacitors form a loop so that only two poles are present. The circuit of Figure 8.3.4b is analyzed in Section ST8.7. As done previously, we will pursue here an approximate analysis based on Miller's theorem.

Since $V_{\pi}(s)=V_{b}^{\prime}(s)-V_{o}(s)$ in Figure 8.3.4b, the current source $g_{m} V_{\pi}(s)$ can be expressed as two components $g_{m} V_{b}^{\prime}(s)$ directed upward and a component $g_{m} V_{o}(s)$ directed downward. Since the latter component is in the direction of a voltage drop $V_{o}(s)$, it can be replaced by a

FIGURE 8.3.4
(a) High-frequency, small-signal equivalent circuit of CC amplifier; (b) the circuit of (a) redrawn.

FIGURE 8.3.5
Modified equivalent circuit for application of Miller's theorem.
resistance $1 / g_{m}$. The circuit becomes as in Figure 8.3.5, where $R_{E}^{\prime \prime}=R_{E}^{\prime} \|\left(1 / g_{m}\right)$ is the small output resistance of the CC amplifier as found previously (Equation 8.2.30). The smallness of this resistance justifies neglecting capacitance at the output because of the small time constant.
The circuit of Figure 8.3.5 is of the form to which Miller's theorem can be applied, considering that the gain from B^{\prime} to E is $V_{o}(s) / V_{b}^{\prime}(s)=g_{m} R_{E}^{\prime \prime}=g_{m} R_{E}^{\prime} /\left(1+g_{m} R_{E}^{\prime}\right)$. It follows that $Y_{\pi}=1 / Z_{\pi}$ appears at the input multiplied by $1-g_{m} R_{E}^{\prime} /\left(1+g_{m} R_{E}^{\prime}\right)=1 /\left(1+g_{m} R_{E}^{\prime}\right)$. This means that C_{π} will be divided by $\left(1+g_{m} R_{E}^{\prime}\right)$ and r_{π} will be multiplied by this factor, as was in fact found previously on the basis of negative feedback considerations (Equation 8.2.23). The total input capacitance is thus $C_{\mu}+C_{\pi} /\left(1+g_{m} R_{E}^{\prime}\right) \cong C_{\mu}$ and the resistance at the input,
between $\quad \mathrm{B}^{\prime}$ and ground, with $V_{s r c}(s)=0$ is $R_{s r c}^{\prime} \| r_{\pi}\left(1+g_{m} R_{E}^{\prime}\right) \cong R_{s r c}^{\prime}$, assuming $r_{\pi}\left(1+g_{m} R_{E}^{\prime}\right) \gg R_{s r c}^{\prime}$. A pole of the input circuit is at:

$$
\begin{equation*}
\omega_{p 1} \cong \frac{1}{C_{\mu} R_{s r c}^{\prime}} \tag{8.3.9}
\end{equation*}
$$

This is in sharp contrast to the CE amplifier, where the dominant pole occurs at a much lower frequency because of the magnification of C_{μ} due to the Miller effect. For the same transistor in Example 8.3.1, $f_{p 1} \cong 100 \mathrm{MHz}$, compared to about 550 kHz for the CE configuration. As to be expected, gain has been traded for bandwidth through negative feedback.

Following the same argument as for the CE amplifier, a zero exists at the frequency at which the current in Z_{π} plus that due to $g_{m} V_{b}^{\prime}(s)$ is zero in Figure 8.3.5. This gives $s_{z}=-\left(g_{m}+1 / r_{\pi}\right) / C_{\pi}=-1 / C_{\pi} r_{e}$, the corresponding frequency being:

$$
\begin{equation*}
\omega_{z}=\frac{1}{C_{\pi} r_{e}} \tag{8.3.10}
\end{equation*}
$$

which is close to the unity-gain frequency ω_{T}.
The same conclusions apply to the CD amplifier, with $r_{\pi} \rightarrow \infty$, and replacing $R_{s r c}^{\prime}$ by $R_{s r c}$, R_{E}^{\prime} by R_{S}^{\prime}, C_{μ} by $C_{g d}$, and C_{π} by $C_{g s}$. The effect of the negative feedback is to divide $C_{g s}$ at the input by the factor $\left(1+g_{m} R_{S}^{\prime}\right)$. The body effect adds a resistance $1 / g_{m}(1+\chi)$ in parallel with R_{S}^{\prime}, as in Figure 8.2.6b, instead of $1 / g_{m}$, to give $R_{S}^{\prime \prime}$.

Concept: In a $C C / C D$ amplifier stage, $C_{\mu}\left(C_{g d}\right)$ appears between input and ground, with no Miller effect. The impedance between base and emitter, or between gate and source, is magnified by approximately $g_{m} R_{E / S}$ because of the negative feedback.

Common-Emitter/Source Amplifier with Feedback Resistor

The small-signal equivalent BJT circuit is shown in Figure 8.3.6, where $R_{L}^{\prime}=R_{L}| | R_{C}$. The poles are obtained in Example ST8.9.1, Section ST8.9, by the method of OCSCTC. An instructive approximation is to apply Miller's approximation to derive an expression for the frequency of the dominant pole at the input due to both C_{μ} and C_{π}.
$r_{i n}$ at dc is given by Equation 8.2.37 and is approximately $r_{\pi}\left(1+g_{m} R_{E}\right)$ for large r_{o} and β. The effective resistance at the input, between B^{\prime} and ground with $v_{s r c}=0$, is $R_{s r c}^{\prime} \| r_{\pi}\left(1+g_{m} R_{E}\right)$ as for the CC amplifier, where $R_{s r c}^{\prime}=R_{s r c}+r_{B}$, bearing in mind that R_{E} is generally smaller in this case. Ignoring C_{L}, the gain from base to collector is given by Equation 8.2.44 and is

FIGURE 8.3.6
High-frequency, small-signal equivalent circuit of CE amplifier with unbypassed emitter resistor.
nearly $-g_{m} R_{L}^{\prime} /\left(1+g_{m} R_{E}\right)$ for large r_{o}, as explained in connection with Equation 8.2.47. According to Miller's theorem, C_{μ} is magnified to $C_{\mu}^{\prime}=C_{\mu}\left[1+g_{m} R_{L}^{\prime} /\left(1+g_{m} R_{E}\right)\right]$. The gain from base to emitter is very nearly $\frac{g_{m} R_{E}}{1+g_{m} R_{E}}$ (Equation 8.2.24), so that C_{π} is reduced, because there is no phase inversion, to $C_{\pi}^{\prime}=C_{\pi}\left[1-g_{m} R_{E} /\left(1+g_{m} R_{E}\right)\right]=\frac{C_{\pi}}{1+g_{m} R_{E}}$. The frequency of the dominant pole is, therefore:

$$
\begin{equation*}
\omega_{p 1}=\frac{1}{\left[R_{\text {src }}^{\prime} \| r_{\pi}\left(1+g_{m} R_{E}\right)\right]\left(C_{\mu}^{\prime}+C_{\pi}^{\prime}\right)} \tag{8.3.11}
\end{equation*}
$$

As in the case of the CE amplifier (Equation 8.3.7), a better approximation is obtained if $\left(C_{\mu}+C_{L}\right) R_{L}^{\prime}$ is added in the denominator.

The CS amplifier with a source resistor can be analyzed in the same manner. The results derived earlier, apply, with $R_{s r c}^{\prime}$ replaced by $R_{s r c}\left(r_{\pi} \rightarrow \infty, r_{B}=0\right), C_{\pi}$ by $C_{g^{s}}$, and C_{μ} by $C_{g d}$.

Common-Base/Gate Amplifier

The small-signal equivalent circuit of a CB amplifier is shown in Figure 8.3.7a, neglecting r_{B}. The circuit is redrawn in Figure 8.3.7b, using $V_{e}(s)=-V_{\pi}(s)$ and reversing the polarity of the current source. From KCL at node C, $\frac{V_{o}(s)}{Z_{L}}=g_{m} V_{e}(s)+\frac{V_{e}(s)-V_{o}(s)}{r_{o}}$, or:

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{e}(s)}=\frac{g_{m}+1 / r_{o}}{1 / Z_{L}+1 / r_{o}} \cong g_{m} Z_{L} \tag{8.3.12}
\end{equation*}
$$

because normally, r_{o} is much larger than $1 / g_{m}$ and Z_{L}, where $Z_{L}=R_{L} /\left[1+s\left(C_{\mu}+C_{L}\right) R_{L}\right]$. This approximation is tantamount to neglecting the current through r_{o} compared to $g_{m} V_{e}(s)$. With r_{o} removed, the source $g_{m} V_{e}(s)$ can be rearranged as two sources, as in Figure 8.3.7c (Sabah 2008, p. 124). The source between collector and base gives Equation 8.3.12 with $r_{o} \rightarrow \infty$, whereas the source between emitter and base is equivalent to a conductance g_{m}. Hence,

$$
\begin{equation*}
\frac{1}{Z_{i n}}=\frac{I_{e}(s)}{V_{e}(s)}=g_{m}+\frac{1}{Z_{\pi}}=g_{m}+\frac{1}{r_{\pi}}+s C_{\pi}=\frac{1}{r_{e}}+s C_{\pi} \tag{8.3.13}
\end{equation*}
$$

The input impedance is r_{e} in parallel with C_{π}. No Miller effect is present.
To derive $A_{v}^{\prime}(s)$, we note that $V_{e}(s) / V_{s r c}(s)=Z_{i n} /\left(Z_{i n}+R_{s r c}\right)$. Substituting $V_{o}(s) / V_{e}(s)=g_{m} Z_{L}$ from Equation 8.3.12 and for $Z_{\text {in }}$ from Equation 8.3.13 gives:

$$
\begin{equation*}
A_{v}^{\prime}(s)=\frac{V_{o}(s)}{V_{s r c}(s)}=\frac{\beta}{\beta+1} \frac{R_{L}}{r_{e}+R_{s r c}} \frac{1}{\left(1+s / \omega_{p 1}\right)\left(1+s / \omega_{p 2}\right)} \tag{8.3.14}
\end{equation*}
$$

where,

$$
\begin{equation*}
\omega_{p 1}=\frac{1}{\left(C_{\mu}+C_{L}\right) R_{L}} \quad \text { and } \quad \omega_{p 2}=\frac{1}{C_{\pi}\left(r_{e} \| R_{s r c}\right)} \tag{8.3.15}
\end{equation*}
$$

where the dominant pole is generally $\omega_{p 1}$.
The CG amplifier can be analyzed in the same manner, with $r_{\pi} \rightarrow \infty, \beta \rightarrow \infty$, and replacing C_{μ} by $C_{g d}$, and C_{π} by $C_{g s}$. The body effect multiplies g_{m} by $(1+\chi)$.

FIGURE 8.3.7
(a) High-frequency, small-signal equivalent circuit of CB amplifier; (b) the circuit of (a) redrawn; (c) $g_{m} V_{e}(s)$ source rearranged as two sources.

Concept: In a CB/CG amplifier, $C_{\mu}\left(C_{g d}\right)$ appears between output and ground. The low input impedance gives a pole at much higher frequencies than the input pole of CE/CS amplifier.

Simulation Example 8.3.2 Frequency Response of BJT Amplifiers

It is required to simulate the high-frequency responses of the CE, CC, and CB amplifiers for the same dc emitter current, load, and source, using a 2N3904 BJT.

Simulation

The schematics of the CE, CC, and CB circuits are shown in Figure 8.3.8a through c, respectively. In all cases, a VAC source applies a 1 V ac signal and its dc voltage is adjusted to give an emitter current of 1 mA . The frequency responses are shown in Figure 8.3.9.

FIGURE 8.3.8
Figure for Simulation Example 8.3.2. Schematics of CE (a), CC (b), and CB (c) configurations.

FIGURE 8.3.9
Figure for Simulation Example 8.3.2.

The low-frequency gain of the CE configuration is nearly $40-\mathrm{dB}$ and its $3-\mathrm{dB}$ cutoff frequency is approximately 76 kHz . The low-frequency gains of the CC and CB configurations are practically unity, because in the CB configuration the source and load resistances are equal, and the $3-\mathrm{dB}$ cutoff frequency is 7.73 MHz for both configurations. The GB product is practically the same for all three configurations, since the CE configuration has nearly 100 times the gain but its $3-\mathrm{dB}$ cutoff frequency is $1 / 100$ as much. Alternatively, it can be seen that the unity gain frequency of the CE configuration is the same as the $3-\mathrm{dB}$ cutoff frequency of the CC and CB configurations having a gain of unity. Note how for the CE configuration the slope increases at about 100 MHZ because of the contribution of the higher-frequency pole.

Conclusion: The CE/CS amplifier has a high gain but a relatively narrow bandwidth because of the Miller effect. The CC/CD and CB/CG amplifiers have a lower gain but a larger bandwidth. However, the gain-bandwidth product is practically the same for the three cases because it fundamentally depends on the unity-gain bandwidth of the transistor used.

8.4 Composite Transistor Connections

Composite transistors result when two transistors, not necessarily of the same type, are directly connected together so as to obtain a performance that is superior in some respects to that of a single transistor. Several types of composite transistor connections are possible.

Darlington Pair

The Darlington pair, or CC-CC cascade (Figure 8.4.1a), is commonly used to increase the current gain of IC BJTs. It is also available in discrete form as a packaged unit with the three terminals of the composite transistor brought out. The composite transistor has a β_{c} given by:

$$
\begin{equation*}
\beta_{c}=\beta_{1}+\beta_{2}+\beta_{1} \beta_{2} \cong \beta_{1} \beta_{2} \tag{8.4.1}
\end{equation*}
$$

(Exercise 8.4.1) and almost twice the $V_{B E}$ of a single transistor having the same emitter current. When Q_{1} saturates, its saturation voltage is the collector-base voltage of Q_{2}, so the $B C J$ of this transistor cannot become forward biased. A resistor may be connected between Q_{2} base and emitter to decrease the turn-off time by providing a path for reverse base current. However, the overall current gain is reduced because the resistor diverts some current from the base of Q_{2}. Moreover, β_{1} may be low because of the low current of Q_{1}, in which case a bias current source may connected to the emitter of Q_{1} to increase the current in this transistor and hence β_{1}. The input and output resistances of a Darlington pair source follower are derived in Problem P8.2.28.

An alternative compound configuration using an $n p n$ and a $p n p$ transistor is shown in Figure 8.4.1b. Current flows into the upper terminal, whose voltage is one $V_{B E}$ higher than that of the base terminal. The upper terminal therefore acts as the emitter of a composite pnp transistor and the lower terminal as its collector, although the output transistor Q_{2}

FIGURE 8.4.1
Darlington pair: (a) composite npn transistor; (b) composite pnp transistor.
is $n p n$. This feature is sometimes an advantage because of the inferior performance of a single, equivalent $p n p$ transistor. The composite transistor has a $V_{B E}$ of a single transistor and a β_{c} given by:

$$
\begin{equation*}
\beta_{c}=\beta_{1}\left(1+\beta_{2}\right) \cong \beta_{1} \beta_{2} \tag{8.4.2}
\end{equation*}
$$

(Exercise 8.4.1). Again, the $B C J$ of Q_{2} cannot become forward biased.

Exercise 8.4.1

Starting with i_{B} in Figure 8.4.1a and Figure 8.4.1b, verify Equations 8.4 .1 and 8.4 .2 by deriving i_{C} in terms of i_{B}, β_{1}, and β_{2}, neglecting.

Exercise 8.4.2

Draw the circuit diagrams of a pnp Darlington pair and an npn composite transistor that is complementary to that of Figure 8.4.1b.

Application Window 8.4.1 Optoisolators

An optoisolator or optocoupler consists of an LED and a phototransistor mounted in an opaque case (Figure 8.4.2). The base is biased by R_{1} and R_{2} so as to control the dark current, that is, the transistor current in the absence of light. When the LED is energized by its controlling circuit, the incident light generates electron-hole pairs mainly in the depletion region on the collector side of the reverse-biased BCJ. The photocurrent that crosses the BCJ into the base region is amplified by transistor action by a factor $\left(1+\beta_{F}\right)$, like $I_{C B O}$, as explained in connection with Equation 6.1.9, Chapter 6. To increase the current gain further, the phototransistor may be followed by another transistor in a Darlington pair connection. The two transistors are packaged together as a photodarlington pair. As its name implies, the optoisolator provides a high degree of electrical isolation between the LED and transistor circuits.

When a control signal is applied to the LED so as to turn the transistor load on and off, the optoisolator becomes a form of solid-state relay. The optoisolator can also be used as an amplifier to amplify signals that modulate the intensity of light of the LED. Compared to a two-winding transformer, the optoisolator not only provides a higher degree of isolation but can be used to transmit dc and low-frequency signals without the need to

FIGURE 8.4.2

Figure for Application Window 8.4.1.

FIGURE 8.4.3
Common-collector common-emitter cascade.
have these signals modulate a carrier of relatively high frequency. The LED and phototransistor can be separate and optically coupled by means of an optical fiber.

Composite transistors are important for improving high-frequency performance. It was demonstrated in the preceding section that the CE/CS configuration has high current and voltage gains but a poor high-frequency performance because of the Miller effect. The $C C / C D$ and $C B / C G$ configurations, on the other hand, have low voltage gain but do not suffer from the Miller effect. It stands to reason, therefore, that much better overall performance can be obtained if the CE/CS configuration is combined with either the $C C / C D$ configuration or the $C B / C G$ configuration.

Common Collector-Common Emitter Cascade

Figure 8.4.3 illustrates a CC-CE cascade commonly used in ICs, using a current source for biasing purposes. Although, in principle, $I_{E E}$ could be dispensed with, because the emitter current of Q_{1} can directly flow into the base of Q_{2}, this would generally result in a low current level in Q_{1}, and hence a low β, which reduces the overall voltage gain. Neglecting $r_{o 1}$, and considering $\beta \gg 1$, the voltage gain from base to emitter of Q_{1} becomes $\frac{r_{\pi 2}}{r_{\pi 2}+r_{\pi 1} / \beta}$. This is close to unity as long as $r_{\pi 1}$ is not much different from $r_{\pi 2}$, which is the case when a bias source for Q_{1} is included. If not, then $i_{c 1} \cong i_{c 2} / \beta$. This means that $g_{m 1} \cong$ $g_{m 2} / \beta$, or $r_{\pi 1} / \beta \cong r_{\pi 2}$. It follows that if Q_{1} is not biased to the same current level as Q_{2}, the voltage gain from base to emitter of Q_{1} is nearly $1 / 2$ instead of being close to unity.

The superior high-frequency performance of the CC-CE cascade is due mainly to the small input capacitance of Q_{1} and its low output resistance, which means a low $R_{\text {src }}^{\prime}$ associated with C_{T}. This moves the pole of Q_{2} to higher frequencies (Exercise 8.3.2).

Example 8.4.1 Comparative Performance of CC-CE Cascade

It is required to compare the performance of the CC-CE cascade with the transistor amplifiers considered earlier, assuming $R_{s r C}=1 \mathrm{k} \Omega$ and $R_{C}=2 \mathrm{k} \Omega$ (Figure 8.4.1), although these values are likely to be much higher in ICs. As in previous examples, let $\beta=100, r_{e}=12.9 \Omega, r_{\pi}=1.3$ $\mathrm{k} \Omega, r_{o}=50 \mathrm{k} \Omega, g_{m}=77 \mathrm{~mA} / \mathrm{V}, \mathrm{C}_{\mu}=1.5 \mathrm{pF}$, and $C_{\pi}=12 \mathrm{pF}$ for both transistors.

Solution

The voltage gain from source to Q_{2} collector can be readily determined from Figure 8.4.3. The effective load at the base of Q_{2} is $r_{\pi_{2}} \| r_{01}$. The voltage gain from source to Q_{2} base is, from voltage division (Equation 8.2.17), $\frac{(\beta+1)\left(r_{22} \| r_{01}\right)}{R_{s r c}+r_{\pi 1}+(\beta+1)\left(r_{\pi 2} \| r_{01}\right)}=0.982$. The voltage gain from Q_{2} base to Q_{2} collector is $-g_{m}\left(r_{o 2} \| R_{C}\right)=-148$. The overall gain is thus $-0.982 \times 148=-145$.
The high-frequency equivalent circuit is shown in Figure 8.4.4a. Since $C_{\mu 2}$ is a small capacitance, we can assume that the current through it is small compared with $g_{m 2} V_{\pi 2}$, so that the voltage between C_{2} and ground is $-K V_{\pi 2}$, where $K=g_{m 2}\left(r_{o 2} \| R_{C}\right)=77 \times 1.92=148$ $\gg 1$. In accordance with Miller's theorem, $C_{\mu 2}$ can be split into two capacitances, $(1+K) C_{\mu 2}$ between B_{2} and ground, and $(1+1 / K) C_{\mu 2} \cong C_{\mu 2}$ between C_{2} and ground. $(1+K) C_{\mu 2}$ can be combined with $C_{\pi 2}$ to give $C_{T}=C_{\pi 2}+(1+K) C_{\mu 2}$, as shown in Figure 8.4.4b. We next apply the OCTC method (Section ST8.9). With $C_{\pi 1}, C_{T}$, and $C_{\mu 2}$ replaced by open circuits and $v_{s r c}$ by a short circuit, the resistance appearing across $C_{\mu 1}$ is $R_{s r c}\left\|r_{\text {in } 1}=1\right\| 129=0.99 \mathrm{k} \Omega$. The open-circuit time constant associated with $C_{\mu 1}$ is therefore $\tau_{\mu 1}=0.99 \times 1.5 \cong 1.5 \mathrm{~ns}$. The resistance appearing across $C_{\pi 1}$ is $r_{\pi 1}$ in parallel with the resistance seen by a source $V_{\pi 1}$ applied in place of $r_{\pi 1}$. By transforming the current source to voltage source, it readily follows that the resistance seen by the $V_{\pi 1}$ source is $\frac{R_{s r c}+\left(r_{o 1} \| r_{\pi 2}\right)}{1+g_{m 1}\left(r_{o 1} \| r_{\pi 2}\right)} \cong 23 \Omega$, which remains practically unaltered when paralleled with $r_{\pi 1}$. The open-circuit time constant associated with $C_{\pi 1}$ is $\tau_{\pi 1}=0.023 \times 12 \cong 0.28$ ns. The capacitance $C_{T}=C_{\pi 2}+(1+K) C_{\mu 2}=234 \mathrm{pF}$. The resistance appearing across C_{T} is ($r_{o 1} \| r_{o 2}$) in parallel with the output resistance of Q_{1}, which is $\left(r_{\pi 1}+R_{\text {src }}\right) /(\beta+1)=22.8 \Omega$. The total resistance is about 22Ω so that the open-circuit time constant associated with C_{T} is $0.022 \times 234=5.1 \mathrm{~ns}$. Finally, the resistance appearing

FIGURE 8.4.4
Figure for Example 8.4.1. (a) Small-signal equivalent circuit; (b) circuit simplified for application of Miller's theorem.
across $C_{\mu 2}$, with $v_{s r c}=0$, is $r_{o 2} \| R_{C}=1.92 \mathrm{k} \Omega$, which gives an open-circuit time constant of $1.92 \times 1.5=2.9 \mathrm{~ns}$. The total time constant is: $1.5+0.28+5.1+2.9=9.78 \mathrm{~ns}$. Considering one pole to be dominant, the $3-\mathrm{dB}$ cutoff frequency is approximately $1 /(2 \pi \times 9.78) \cong 16 \mathrm{MHz}$, compared to a CE amplifier of $3-\mathrm{dB}$ cutoff frequency of hundreds of kHz . If a pole is not dominant, the more rigorous OCSCTC method should be used (Section ST8.9).

We can examine the current through $C_{\mu 2}$ compared to $g_{m} V_{\pi_{2}}$ at a frequency of about 20 MHz . Taking the voltage across $C_{\mu 2}$ to be approximately $150 V_{\pi_{2}}$, the current through $C_{\mu 2}$ is $150 \times 2 \pi \times$ $20 \times 10^{6} \times 1.5 \times 10^{-12} V_{\pi 2}=0.028 V_{\pi 2}$, which is much smaller than $g_{m} V_{\pi 2}=77 V_{\pi 2}$.

The CD-CS cascade can be analyzed in the same manner (Problem P8.4.2).

Simulation Example 8.4.2 Frequency Response of CC-CE Cascade

It is required to simulate the high-frequency response of the CC-CE Cascade using the same dc emitter current, load, and source as in Simulation Example 8.3.2.

Simulation

The schematic is shown in Figure 8.4.5. The VAC source applies a 1 V ac signal and its dc voltage is adjusted to give an emitter current of 1 mA in Q2. The frequency response is shown in Figure 8.4.6. The low-frequency gain is nearly 50.3 dB and the $3-\mathrm{dB}$ cutoff frequency is 2.33 MHz . The slope is $-40 \mathrm{~dB} /$ decade, which indicates that two poles are very close together.

FIGURE 8.4.5
Figure for Simulation Example 8.4.2.

FIGURE 8.4.6
Figure for Simulation Example 8.4.2.

The frequency response for a CE amplifier having the same source and load resistances and dc bias is shown dashed. The low-frequency gain is 40 dB and the $3-\mathrm{dB}$ cutoff frequency is about 76 kHz . The GB product of the CC-CE cascode is nearly a 100 times that of the CE amplifier. Note that part of the improvement in overall gain, from source to output, is due to the larger input resistance of the CC amplifier, relative to $R_{s r c}$. Moreover, the location of the dominant pole of the CE amplifier depends on $R_{\text {src }}$.

Cascode Amplifier

The cascode amplifier consists of a transistor in the CE/CS configuration coupled to a transistor in the CB/CG configuration. The basic circuit is illustrated in Figure 8.4.7, where it is assumed that the transistors are properly biased. In discrete amplifiers, Q_{1} is biased as for CE amplifiers (Section 8.1), and $V_{\text {BIAS }}$ is normally

FIGURE 8.4.7
Basic cascode amplifier. derived from $V_{C C}$, with the base decoupled to ground through a large capacitor. In ICs, a current mirror could be used for biasing, as illustrated later.

As in the CC-CE cascade, the superior high-frequency response of the cascode amplifier is due to the reduction of the Miller effect. This is achieved by having the CE transistor Q_{1} loaded by the low input resistance of the CB transistor Q_{2}, thereby greatly reducing the voltage gain and hence the Miller effect. However, voltage gain at the output is restored because the collector and emitter currents of Q_{2} are very nearly equal so that the collector current of Q_{1} essentially flows through R_{L}. In effect, the load R_{L} is isolated from the collector of Q_{1} by the low input resistance of Q_{2}, thus mitigating the Miller effect. This not only improves the frequency response but reduces the reverse transmission from output to input through C_{μ}, which is an important consideration in high-frequency amplifiers, such as tuned amplifiers (Section 9.5, Chapter 9).
There are two other important advantages of the cascode amplifier. First, the commonbase output resistance is relatively high. This is desirable for high voltage gain with active loads (Section ST8.4) and for improved current mirrors (Section ST8.3). Second, the fact that the input transistor is loaded by the low input resistance of the $C B / C G$ transistor limits the voltage amplitude at the output of the input transistor. Effects of base-width modula-tion/channel-length modulation, or excessive output voltages, are much less severe. This is particularly important, for example, in the case of transistors having short channels or very thin bases.

MOSFET Cascode

The MOSFET cascode is conveniently analyzed in terms of the open-circuit voltage and the output resistance. When the output is open circuited (Figure 8.4.8), $v_{o 1}=-g_{m 1} r_{o 1} v_{g s 1}$. Recall that for the CG amplifier (Figure 8.2.16c), the body effect is accounted for by replacing g_{m} by $g_{m}(1+\chi)$. Hence, $v_{o 2}=-g_{m 2}(1+\chi) r_{o 2} v_{g \mathrm{~s} 2}$, where $v_{g \mathrm{~s} 2}=-v_{o 1}$. Substituting and adding $v_{o 1}$ and v_{02},

$$
\begin{equation*}
v_{o c}=-g_{m 1} r_{o 1}\left[1+g_{m 2} r_{o 2}(1+\chi)\right] v_{g s 1} \tag{8.4.3}
\end{equation*}
$$

From Equation 8.2.3, with $v_{g s 1}=0, R_{E / S(\mathrm{eff})}=r_{o 1}$, and $g_{m(\mathrm{eff})}=g_{m 2}(1+\chi)$, it follows that:

$$
\begin{equation*}
r_{o u t}=r_{o 2}+r_{o 1}\left[1+g_{m 2}(1+\chi) r_{o 2}\right] \cong g_{m 2}(1+\chi) r_{o 1} r_{o 2} \tag{8.4.4}
\end{equation*}
$$

FIGURE 8.4.8
Small-signal equivalent circuit of the MOSFET cascode.

Knowing $v_{o c}$ and $R_{T h}=r_{o u t}$, the voltage gain can be determined for any R_{L}. The transconductance G_{m} can be readily found as:

$$
\begin{equation*}
G_{m}=-\frac{v_{o c}}{r_{o u t} v_{g s 1}}=\frac{g_{m 1} r_{o 1}\left[1+g_{m 2} r_{o 2}(1+\chi)\right]}{r_{o 1}+r_{o 2}+g_{m 2}(1+\chi) r_{o 1} r_{o 2}}=g_{m 1} \frac{1+g_{m 2} r_{o 2}(1+\chi)}{r_{o 2} / r_{o 1}+1+g_{m 2}(1+\chi) r_{o 2}} \tag{8.4.5}
\end{equation*}
$$

It is seen that $G_{m}<g_{m 1}$ but the difference is small as long as $g_{m 2}(1+\chi) r_{o 2} \gg 1+r_{o 2} / r_{o 1}$.
It is important to note that if $g_{m 2}(1+\chi) r_{o 2} \gg 1+r_{o 2} / r_{o 1}, G_{m} \cong g_{m 1}$ and if $R_{L} \ll r_{o}$, the voltage gain is $G_{m} R_{L}$, as for a CS amplifier having $R_{L} \ll r_{o}$. On the other hand, if R_{L} is very large, the voltage gain is $v_{o c} / v_{g s 1}$, which is nearly $-\left(g_{m 1} r_{o 1}\right)\left(g_{m 2} r_{o 2}\right)(1+\chi)$, and is much larger in magnitude than the gain $-g_{m 1} r_{o 1}$ of a CS amplifier. This emphasizes that:

Concept: In order to achieve the high voltage gain possible with a cascode amplifier, the load resistance must be large.

However, a large R_{L} means a large input resistance of the CG transistor (Equation 8.2.48), and hence a larger gain of the CS transistor and an enhanced Miller effect.

The high-frequency, small-signal equivalent circuit is shown in Figure 8.4.9, where $v_{\text {src }}^{\prime}$ and $R_{s r c}^{\prime}$ represent the small-signal TEC at the input, and the internal capacitances of the transistor are indicated together with C_{L}. Note that although four capacitors are shown, there are only three poles, because three capacitors form a closed loop around $\mathrm{G}_{1} \mathrm{D}_{1} \mathrm{~S}_{2} \mathrm{~S}_{1}$. A rigorous analysis of this circuit can be made based on the method of OCSCTC.
It is important to note that the increase in the GB product of a cascode amplifier compared to a CS amplifier depends on $R_{s r c}^{\prime}$, because the dominant pole due to the Miller effect in a CS amplifier varies inversely with $R_{s r c}^{\prime}$ (Equation 8.3.6). Thus if $R_{s r c}^{\prime}=0$, and $v_{s r c}^{\prime}$ appears across $C_{g s 1}$, this capacitance has no effect on the frequency response. Moreover, if $R_{L} \rightarrow \infty$ and $C_{L}^{\prime}=C_{d b 2}+C_{g d 2}+C_{L}$ is large compared to $\left(C_{d b 1}+C_{g s 2}+C_{s b 2}\right)$ and $C_{g d 1}$, these capacitances can be neglected, so that the circuit reduces to that shown in Figure 8.4.10. The dc voltage gain is that given by Equation 8.4.3 and is approximately $-\left(g_{m} r_{o}\right)^{2}$,

FIGURE 8.4.9
High-frequency small-signal equivalent circuit of the MOSFET cascode.

FIGURE 8.4.10
Simplified circuit of Figure 8.4.9.

assuming identical transistors. The resistance seen by the capacitor is $r_{\text {out }}$ of Equation 8.4.4 and is approximately $g_{m} r_{o}^{2}$. The 3-dB cutoff frequency is thus $1 / C_{L}^{\prime} g_{m} r_{o}^{2}$. The dc voltage gain of a CS amplifier of large R_{L} is $-g_{m} r_{o}$ and when $R_{s r c}^{\prime}=0$, the pole of the high frequency response is $1 / C_{L}^{\prime} r_{o}$ (Exercise 8.3.2). It is seen that the cascode connection has increased the dc gain by $g_{m} r_{o}$ but has also reduced the 3-dB cutoff frequency by the same factor. Under these conditions, the GB product is practically the same for the cascode as for the CS amplifier. The advantage of the cascode becomes manifest in the case of a substantial source resistance and high gain, as will also be demonstrated for the BJT cascode.

BJT Cascode

The analysis of the BJT cascode is complicated by the presence of r_{π}. Referring to Figure 8.4.11, $v_{o 1}=-r_{o 1}\left(g_{m 1} v_{b e 1}-i_{b 2}\right)$. Substituting $i_{b 2}=-v_{o 1} / r_{\pi 2}$ gives:

$$
\begin{equation*}
v_{o 1}=-g_{m 1}\left(r_{o 1} \| r_{\pi 2}\right) v_{b e 1} \tag{8.4.6}
\end{equation*}
$$

Equation 8.4.6 implies that the resistance between looking into E_{2} is $r_{\pi 2}$ (Exercise 8.4.3). Moreover,

$$
\begin{equation*}
v_{o 2}=g_{m 2} r_{o 2} v_{o 1} \tag{8.4.7}
\end{equation*}
$$

FIGURE 8.4.11
High-frequency small-signal equivalent circuit of the BJT cascode.
and, $v_{o c}=v_{o 1}+v_{o 2}=\left(1+g_{m 2} r_{o 2}\right) v_{o 1}=-g_{m 1}\left(1+g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right) v_{b e 1}$. This gives:

$$
\begin{equation*}
A_{v 0}=\frac{v_{o c}}{v_{b e 1}}=-g_{m_{1}}\left(1+g_{m_{2}} r_{o 2}\right)\left(r_{o 1}| | r_{\pi 2}\right) \cong-g_{m 1} \beta_{2} r_{o 2} \text { for } g_{m_{2}} r_{o 2} \gg 1 \text { and } r_{\pi 2} \ll r_{o 1} \tag{8.4.8}
\end{equation*}
$$

The open-circuit voltage gain from source to output is:

$$
\begin{equation*}
A_{v 0}^{\prime}=\frac{v_{o c}}{v_{b e 1}} \frac{r_{\pi 1}}{R_{s r c}+r_{\pi 1}}=-\beta_{1} \frac{\left(1+g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right)}{R_{s r c}+r_{\pi 1}} \tag{8.4.9}
\end{equation*}
$$

From Equation 8.2.3, with $R_{E / S(\text { eff })}=\left(r_{o 1} \| r_{\pi 2}\right)$ and $g_{m(\text { eff })}=g_{m 2}$

$$
\begin{equation*}
r_{\text {out }}=r_{o 2}+\left(r_{o 1} \| r_{\pi 2}\right)\left[1+g_{m 2} r_{o 2}\right] \tag{8.4.10}
\end{equation*}
$$

If the transistors are identical, with $r_{o} \gg r_{\pi}$, and $g_{m} r_{0} \gg 1$,

$$
\begin{equation*}
A_{\nu 0} \cong \frac{\beta^{2} r_{o}}{R_{s r c}+r_{\pi 1}}, \quad r_{\text {out }}=\beta r_{o}, \quad \text { and } \quad G_{m} \cong \frac{\beta}{R_{s r c}+r_{\pi 1}} \tag{8.4.11}
\end{equation*}
$$

As expected, the maximum output resistance is βr_{o}, as for the CB amplifier. An approximate result, $v_{o} \cong-g_{m 1} R_{L} v_{b e 1}$, can be simply derived as indicated in Exercise 8.4.4.

Exercise 8.4.3

(a) By applying a test source to Q_{2} emitter in Figure 8.4.11, show that the resistance looking into E_{2}, with $v_{b e 1}=0$, is $r_{\pi 2}$. Note that the $g_{m 2} v_{b e 2} / r_{o 2}$ mesh does not contribute to this resistance, since no source current flows through it; (b) Derive Equation 8.4.8 directly from Figure 8.4.11.

FIGURE 8.4.12
Figure for Exercise 8.4.2.

Exercise 8.4.4

(a) Show that if $g_{m 2} r_{o 2} \gg 1$, then $v_{o 2} \gg v_{o 1}$ and if $r_{o 1} \gg r_{\pi 2}$, then $v_{o c} \cong-g_{m 1} \beta_{2} r_{o 2} v_{b e 1}$ and $r_{\text {out }} \cong \beta_{2} r_{\text {o2 }}$ as for a CB amplifier. (b) By applying these approximations, with $\beta_{2} r_{\text {o2 }} \gg R_{L}$, show that $v_{o}=-g_{m 1} R_{L} v_{b e 1}$. Deduce that this result can be derived from the small-signal equivalent circuit of Figure 8.4.12, assuming $\alpha_{2} \cong 1$.

A high-frequency analysis of the cascode amplifier can be made based on the method of OCSCTC, as in Example SE8.2. We will undertake here an approximate analysis based on the simplified equivalent circuit of Figure 8.4.12 with the addition of the internal capacitances and representing the source $\alpha_{2} i_{e 2}$ as $g_{m 2} v_{b e 2}$ (Figure 8.4.13a). If the small current through $C_{\mu 1}$ is neglected compared to $g_{m 1} V_{\pi 1}$, and with $r_{e 2} \ll 1 / s C_{\pi 2}$ over the frequency range of interest, the voltage $V_{e b 2}(s)$ at the emitter of Q_{2} is approximately $-g_{m 1} r_{e 2} V_{\pi 1}(s) \cong-V_{\pi 1}(s)$, assuming that $r_{e 2} \cong r_{e 1}$. We can therefore apply Miller's theorem between nodes B_{1}^{\prime} and C_{1}, replacing $C_{\mu 1}$ by a capacitance $2 C_{\mu 1}$ between B_{1}^{\prime} and E_{1} and

FIGURE 8.4.13
(a) Approximate high-frequency small-signal equivalent of the BJT cascode; (b) the circuit of (a) after application of Miller's theorem.
another capacitance of $2 C_{\mu 1}$ between E_{2} and B_{2} (Figure 8.4.13b). A pole $\omega_{p 1}$ of frequency $f_{p 1}=\frac{1}{2 \pi R_{s r c}^{\prime} C_{B 1}}=\frac{1}{2 \pi R_{s r c}^{\prime}\left(C_{\pi 1}+2 C_{\mu 1}\right)}$ can therefore be separated from the other poles whose frequencies are $f_{p 2}=\frac{1}{2 \pi r_{e 2} C_{E 2}}=\frac{1}{2 \pi r_{e 2}\left(C_{\pi 2}+2 C_{\mu 1}\right)}$ and $f_{p 3}=\frac{1}{2 \pi R_{2} C_{\mu 2}}$. The pole at $f_{p 1}$ is usually dominant, so the $3-\mathrm{dB}$ cutoff frequency is approximately that of the dominant pole. Note that the ratio $f_{p 2} / f_{p 1}=R_{s r c}^{\prime} / r_{e 2}$ and depends on the source resistance. Similarly $f_{p 3}$ depends on the load resistance. Moreover, because $C_{\mu 1}$ is small, $\omega_{p 2}$ is practically equal to $\omega_{T 2}$, the unity-gain bandwidth of Q_{2}.

Simulation Example 8.4.3 Frequency Response of Cascode Amplifier

It is required to simulate the frequency response of a cascode amplifier and to compare it with that of a CE amplifier, the source and load impedances being $10 \mathrm{k} \Omega$ in both cases.

Simulation

The schematic of the cascode is shown in Figure 8.4.14 using Q2N3904 transistors from the PSpice EVAL library. A 1 mA dc source provides the biasing current and is bypassed by a very large capacitor. A 3 V dc bias is applied to Q_{2} base in order to have an adequate $V_{C E}$ for Q_{1}. The frequency response of the cascode over the range 10 kHz to 10 MHz is shown in Figure 8.4.15. Again, it appears from the $-40 \mathrm{~dB} /$ decade slope that two poles are close together.

With the relatively low load resistance used, the low-frequency gain is approximately 40 dB , the same as the CE amplifier, and the $3-\mathrm{dB}$ cutoff frequency is 2.14 MHz . The $3-\mathrm{dB}$ cutoff frequency, and the GB product, is about $2.14 \mathrm{MHz} / 76.6 \mathrm{kHZ} \cong 28$ times that of the CE amplifier. The GB is not as high as that of the CC-CE cascade, and the effect of a higher frequency pole becomes evident at about 100 MHz , as in the CE amplifier.

BiCMOS Cascode

A MOSFET and a BJT can be combined in a cascode configuration, as in Figure 8.4.16, where an active current source is used as a load. The input transistor is the MOSFET, so as

FIGURE 8.4.14
Figure for Simulation Example 8.4.3.

FIGURE 8.4.15
Figure for Simulation Example 8.4.3.
to take advantage of its practically infinite input resistance. Using a BJT for the second transistor, rather than a CG MOSFET, gives higher gain, wider bandwidth, and a large output resistance. Q_{1} sees the low input resistance of the CB transistor Q_{2}, which is smaller than that of a MOSFET Q_{2}. The Miller effect is therefore reduced and the bandwidth improved.

Considering the output of Q_{1} to be effectively short circuited for small signals, the small-signal drain current is $g_{m 1} v_{i}$. This is practically the same as the collector current of Q_{2} and is applied to an output resistance $r_{o b}$ that is nearly $\beta r_{o(\mathrm{BJT})}$. Hence, the open-circuit output voltage v_{o} equals $-g_{m 1} r_{o b} v_{i}$. Not only is $r_{o(\mathrm{BJT})} \gg r_{o(\mathrm{MOS}),}$ but is multiplied by β in the CB configuration.

As for the frequency response, it was shown in Example 8.4.2 that the pole $\omega_{p 2}$ is equal to the unity-gain bandwidth of Q_{2}. It occurs at a very high frequency and does not affect the bandwidth. If Q_{2} is a MOSFET, the corresponding pole will be at a lower frequency and will therefore reduce the $3-\mathrm{dB}$ cutoff frequency.

The cascode combining a MOSFET and a BJT clearly has some advantages over an all-BJT or all-MOSFET amplifiers. This is true of many other BiCMOS circuits. The BiCMOS technology allows combining the two types of transistor in the same IC (Section 4.7, Chapter 4).

Exercise 8.4.5

(a) Draw the small-signal equivalent circuit of BiCMOS cascode of Figure 8.4.16, deduce that the open-circuit gain is $-g_{m 1} \beta r_{o(\mathrm{BJT})}$, and show that it can be expressed as $-2 \beta V_{A} / V_{o v}$.
(b) Consider a BJT cascode, as in Figure 8.4.7 but with the addition of a CG CMOS transistor and a current source in place of R_{L}. Deduce that $G_{m}=-g_{m 1}$, that $r_{\text {out }}$ of the modified cascode is nearly $g_{m 3} r_{o 3} \beta_{2} r_{o 2}$, and that the open-circuit gain is $-g_{m 1} g_{m 3} r_{o 3} \beta_{2} r_{o 2}$.

8.5 Cascode Current Sources and Mirrors

The output resistance of an IC current mirror or a transistor current source, which is normally r_{0}, can be increased by adding a CB/CG transistor in a cascode configuration, as illustrated in Figure 8.5.1a. $V_{\text {BIAS1 }}$ and $V_{\text {BIAS2 }}$ for a cascode current source could be derived using the diode-connected transistors Q_{3} and Q_{4}, as in the cascode current mirror shown, or by using more elaborate biasing arrangements (Section 10.4, Chapter 10). Q_{3} and Q_{4} present a resistance of nearly $1 / g_{m}$ between drain/gate and source, which is low enough to consider the gates of Q_{1} and Q_{2} to be grounded for ac signals. $r_{o u t 1}$ of Q_{1} is $r_{o 1}$ and is the source resistance for the CG transistor Q_{2} so that $r_{\text {out } 2}$ of this transistor is approximately $g_{m 2} r_{o 2} r_{o 1}$ (Equation 8.2.3), neglecting the body effect. $r_{o 1}$ is therefore multiplied by $g_{m 2} r_{o 2}$. The high $r_{o u t 2}$ will of course cause much less variation of I_{M} with the output voltage, $V_{D 2}$. Similarly, adding another CG transistor, say Q_{5}, on top of Q_{2} will result in a double cascode and will make $r_{o u t 5}=g_{m 5} r_{o 5}\left(g_{m 2} r_{o 2} r_{o 1}\right)$ so that the output resistance is further multiplied by $g_{m 5} r_{o 5}$. If the transistors are identical, then each level of cascoding multiplies the output resistance by $g_{m} r_{0}$. BJTs generally have larger r_{o} compared to MOSFETs, because of a larger V_{A}. If BJTs are used in Figure 8.5.1a, $r_{o u t 2} \cong g_{m 2} r_{o 2} r_{\pi 2}$, that is, $r_{o 2}$ is multiplied by β_{2}, so that it is rarely necessary to have more than one cascode transistor.

A disadvantage of the cascode arrangement of Figure 8.5.1a is that, in the absence of Q_{2}, the output of Q_{1} can swing in the negative direction to $V_{D S(\text { sat }) 1}=V_{G S 1}-V_{t n 1}=V_{o v 1}$ above ground, with Q_{1} remaining in saturation. Adding Q_{2} reduces the swing in the negative direction. When $I_{M}=I_{\text {REF }}, V_{D S 1}=V_{D S 3}=V_{G S 1}$. Moreover, $V_{G 2}=V_{G S 4}+V_{G S 1}$. Q_{2} will be at the edge of saturation when $V_{D 2}=V_{G 2}-V_{t n 2}=V_{G S 4}+V_{G S 1}-V_{t n 2}$. If all the transistors are identical, then Q_{2} is at the edge of saturation when $V_{D 2}=2 V_{o v}+V_{t n}$ and the swing is reduced by $\left(V_{o v}+V_{t n}\right)$. Each additional level of cascoding further reduces the swing by $\left(V_{o v}+V_{t n}\right)$. This can be a serious limitation for low $V_{D D}$, as is the trend at present.

The wide-swing current mirror of Figure 8.5.1b eliminates the threshold term from the most negative swing of the cascode mirror of Figure 8.5.1a. If the gate of Q_{2} is biased to $2 V_{o v}+V_{t n}, Q_{2}$ will be at the edge of saturation when its drain voltage

FIGURE 8.5.1
(a) Cascode current mirror; (b) wide-swing current mirror.
is $2 V_{o v}+V_{t n}-V_{t n}=2 V_{o v}$. Under these conditions, Q_{3} drain is at $2 V_{o v}+V_{t n}-V_{G S}=V_{o v}$. With $I_{M}=I_{\text {REF }}, Q_{1}$ drain is at the same voltage. Hence Q_{1} will also be at the edge of saturation. Note that the gate of Q_{3} cannot be connected to its drain because of the differences in voltage. The gate of Q_{3} is connected instead to the drain of $Q_{4} . V_{G D}$ of Q_{4} is $V_{o v}$ so that Q_{4} will be in saturation as long as $V_{o v}<V_{t n}$, which is normally the case. Cascode mirrors are discussed in more detail in Section ST8.3.

Summary of Main Concepts and Results

- The purpose of transistor biasing is to select a quiescent point and stabilize it despite variations in temperature and transistor parameters. There are two general techniques for stabilizing the quiescent point. The technique used in discrete amplifiers is based on negative feedback, whereas in ICs an essentially constant current source is used.
- The three basic amplifier configurations are $\mathrm{CE} / \mathrm{CS}, \mathrm{CC} / \mathrm{CD}$, and $\mathrm{CB} / \mathrm{CG}$. The CC configuration has nearly unity voltage gain, high current gain, high input resistance and low output resistance. The CB configuration has high voltage gain, low current gain, low input resistance and very high output resistance. The CE configuration has high voltage gain and high current gain. Its input and output resistances are intermediate between those of the CC and CB configurations. The voltage gains and output resistances of the CS, CD, and CG configurations follow the same pattern as their BJT counterparts. The effect of an emitter/source resistor is to reduce the voltage gain and increase the output resistance as well as the input resistance of the BJT amplifier. The negative feedback introduced by an emitter/source resistor in the $\mathrm{CE} / \mathrm{CS}$ and $\mathrm{CC} / \mathrm{CD}$ amplifiers reduces distortion and improves the frequency response.
- The high-frequency response of amplifiers is limited by the effects associated with stored charges and by the speed of response of physical processes. These effects are manifested by internal capacitances.
- The magnification of internal capacitances between input and output by the Miller effect limits the high-frequency response of simple amplifier stages.
- The bandwidth is narrowest for the CE/CS configuration, widest for the CC/CD configuration, and intermediate for the CB/CG configuration with voltage gain larger than unity. However, the gain-bandwidth product is comparable for the three configurations.
- The Darlington connection allows a much higher current gain than is possible with a single, conventional BJT.
- The CC-CE cascade, and its MOSFET counterpart, achieve a wide bandwidth by associating the Miller capacitance of the CE/CS stage with the low output resistance of the CC/CD stage.
- In the cascode amplifier, the Miller effect is mitigated by having a low gain of the $\mathrm{CE} / \mathrm{CS}$ transistor, which also limits the voltage amplitude at the output of this transistor. In addition, the cascode has the advantages of a high output resistance and a reduced reverse transmission.
- The BiCMOS technology allows combining the advantages of BJTs and MOSFETs in many types of amplifier circuits.
- A cascode current mirror, particularly of the wide-swing type, is commonly used in ICs for improved performance compared to a simple current mirror.

Learning Outcomes

- Design simple amplifying stages based on CE/CS, CC/CD, or CB/CG configurations.
- Articulate the salient features, advantages, and limitations of the three basic transistor configurations and those of composite transistor connections.

Supplementary Examples and Topics on Website

SE8.1 Translinear Gain Cell and Multiplier. Describes the operation of a translinear gain cell that uses current control differentially in order to overcome the dependence of the BJT current on $V_{B E}$, which introduces nonlinearity and variation with temperature. It is then shown how the translinear gain cell can be used as a four-quadrant multiplier.

SE8.2 High-Frequency Response of Cascode Amplifier. Analyzes the response of a cascode amplifier using the OCSCTC method.

ST8.1 E-NMOS Biasing. Discusses the design of an E-NMOS discrete amplifier using a voltage divider and a source resistance, including the body effect.

ST8.2 MOS Current Mirror with Source Resistors. Analyzes the MOS current mirror when source resistors are included.

ST8.3 Wilson and Cascode Current Mirrors. Analyzes the Wilson current mirror and discusses some aspects of cascode current mirrors.

ST8.4 Common-Drain Amplifier with Current Mirror Load. Analyzes a common-drain amplifier having a current mirror load, including the body effect.

ST8.5 Super Source Follower. Analyzes a source follower circuit having a very low output resistance.

ST8.6 Common-Gate amplifier with Current Mirror load. Analyzes a common-gate amplifier having a current mirror load, including the body effect.

ST8.7 High-Frequency Response of Amplifiers. Analyzes in some detail the high-frequency response of the three amplifier configurations.

ST8.8 3-dB Cutoff Frequency in Terms of Poles and Zeros. Derives approximate expressions for the low-frequency and high-frequency 3-dB cutoff frequencies when the poles and zeros at either frequency extreme are not far apart.

ST8.9 Method of Open-Circuit and Short-Circuit Time Constants for Determining the Frequency Response. Shows how the method can be used for determining the poles of a circuit without having to derive and solve the node-voltage or mesh-current equations of the circuit.

Problems and Exercises

P8.1 Transistor Biasing

P8.1.1 Determine R_{B}, R_{C}, and R_{E} in Figure 8.1.4 so as to give the same quiescent point as in Example 8.1.1, assuming $\pm 12 \mathrm{~V}$ supplies and $R_{E}\left(\beta_{F}+1\right)=10 R_{B}$. Compare the effects of a $50^{\circ} \mathrm{C}$ rise in temperature and a reduction in β_{F} to 100 .
P8.1.2 Derive Equations 8.1.3 and 8.1.4 including $I_{C B O}$.
P8.1.3 Consider the common-base circuit of Figure 8.2.16a under quiescent conditions, with the E-NMOS transistor replaced by a BJT, R_{S} replaced by R_{E}, and R_{D} replaced by R_{C}. Show that $I_{C}=\frac{\beta_{F}}{\beta_{F}+1} \frac{V_{E E}-V_{B E}}{R_{E}}+I_{C B O}$, which is largely independent of β_{F} as long as β_{F} is large. How do you explain this result? Consider a circuit having $V_{E E}=5 \mathrm{~V}$, $\beta_{F}=50, R_{E}=2 \mathrm{k} \Omega$, and $I_{C B O}=0.1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$. Determine I_{C} at this temperature and at $125^{\circ} \mathrm{C}$.
P8.1.4 Assume that a Darlington pair is used in Figure 8.1.2. Derive an expression for I_{C} in terms of $V_{B E}, \beta_{F}$, and $I_{C B O}$ of the two transistors. How does this compare with the result of Exercise 8.1.1? What are the relative contributions of $I_{C B O 1}$ and $I_{C B O 2}$?
P8.1.5 Consider that a forward-conducting diode represented by a battery $V_{D D}$ to be connected in series with a resistance $R_{D D}$ between base and ground in Figure 8.1.2a. Derive an expression for I_{C}, neglecting $I_{C B O}$. Show that: (1) I_{C} is independent of $V_{B E}$, if $R_{D D} \ll R_{B}$ and $V_{D D}=V_{B E}$; (2) I_{C} is independent of β_{F}, if $R_{E} \gg R_{D D} / \beta_{F}$ and $\beta_{F} \gg 1$.
P8.1.6 Assume that in Problem P8.1.5 two identical diodes are connected in series with $R_{D D}$. Show that $d I_{C} / d T=0$ if $R_{B}=R_{D D}$, and $d V_{B E} / d T=d V_{D D} / d T$, neglecting the variation of β_{F} with temperature.
DP8.1.7 Consider the bias circuit of Figure 8.1.2a with $V_{C C}=12 \mathrm{~V}, R_{C}=10 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega$, and $\beta_{F}=100$. Assume $V_{B E}=0.7 \mathrm{~V}$ and that for the required bias stability, $\left(\beta_{F}+1\right)$ $R_{E}=10 R_{B}$. Determine R_{1} and R_{2} so that the transistor operates in the middle of the active region, halfway between saturation and cutoff. Simulate with PSpice.
DP8.1.8 Consider the transistor of Problem P8.1.7 connected in Figure 8.1.4 with $\pm 12 \mathrm{~V}$ supplies and $R_{C}=10 \mathrm{k} \Omega$. Choose $R_{B}=100 \mathrm{k} \Omega$ so as to give a high input resistance, the transistor currents being the same. Determine R_{E} and $V_{C E}$. How does the ratio $\left(\beta_{F}+1\right) R_{E} / R_{B}$ compare with that of Problem P8.1.7? Simulate with PSpice.
P8.1.9 Consider the transistor of Problem P8.1.7 connected as in Figure 8.1.5 with $V_{C C}=$ 12 V and $R_{C}=10 \mathrm{k} \Omega$. If $V_{C E}=4 \mathrm{~V}$, what will be the ratio $\left(\beta_{F}+1\right) R_{E} / R_{B}$? Determine I_{C} and simulate with PSpice.
DP8.1.10 Consider the same transistor of Problem P8.1.7 connected as an emitter follower, with $V_{C C}=12 \mathrm{~V}, R_{E}=10 \mathrm{k} \Omega$, and R_{B} connected between $V_{C C}$ and the base. Derive the expression for I_{E} corresponding to Equation 8.1.1, neglecting $I_{C B O}$. How does it compare with Equation 8.1.1? Select R_{B} so that $V_{C E}=4 \mathrm{~V}$. How does the ratio $\left(\beta_{F}+1\right) R_{E} / R_{B}$ compare with that of Problem P8.1.9? Simulate with PSpice.
P8.1.11 Let the transistor of Example 8.1.3 be connected in the biasing circuit of Figure 8.1.5. Determine: (a) R_{D} that makes $I_{D}=1 \mathrm{~mA}$; (b) I_{D} when $V_{t n}$ changes to 1.8 V .
P8.1.12 An E-NMOS transistor Q_{1} having $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=2.5 \mathrm{~V}$ is used in the circuit analogous to that of Figure 8.1.2a with $V_{D D}=12 \mathrm{~V}, R_{1}=R_{2}=1 \mathrm{M} \Omega, R_{D}=1 \mathrm{k} \Omega$, and $R_{S}=1 \mathrm{k} \Omega$. Determine the quiescent operating of Q_{1} and for a replacement transistor Q_{2} that has $k_{n}=0.8 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=3.0 \mathrm{~V}$, neglecting channel-width modulation. Rework this example assuming $R_{S}=1.5 \mathrm{k} \Omega$ and R_{1} and R_{2} are adjusted to give the same drain current in Q_{1} as before. How does the change in drain current compare in
the two cases when Q_{1} is replaced by Q_{2} ? Interpret these results graphically by drawing a load line of slope $1 / R_{S}$ on the transfer characteristics.
P8.1.13 A D-NMOS transistor Q_{1} having $I_{D S S}=5 \mathrm{~mA} / \mathrm{V}^{2}$ and $\bar{V}_{t n D}=3 \mathrm{~V}$ is used in the circuit of Figure 8.1.6b with $V_{D D}=18 \mathrm{~V}, R_{D}=2 \mathrm{k} \Omega, R_{G}=5 \mathrm{M} \Omega$, and $R_{S}=1 \mathrm{k} \Omega$ connected to ground instead of a negative supply. Determine the quiescent operating of Q_{1} and of a replacement transistor Q_{2} that has $I_{D S S}=8 \mathrm{~mA} / \mathrm{V}^{2}, \bar{V}_{t n D}=4 \mathrm{~V}$, neglecting channelwidth modulation. Rework this example with $R_{S}=1.5 \mathrm{k} \Omega$ and compare the change in I_{D} between Q_{1} and Q_{2} when: (1) $R_{S}=0$, (2) $R_{S}=1 \mathrm{k} \Omega$, or (3) $R_{S}=1.5 \mathrm{k} \Omega$.
P8.1.14 Consider Q_{1} and Q_{2} of Problem P8.1.13 to be connected in the circuit of Figure 8.1.2a with $V_{D D}=12 \mathrm{~V}, R_{1}=R_{2}=1 \mathrm{M} \Omega, R_{D}=1 \mathrm{k} \Omega$, and $R_{S}=1 \mathrm{k} \Omega$. Determine the quiescent operating points of Q_{1} and Q_{2}. Rework this example assuming $R_{S}=1.5 \mathrm{k} \Omega$, and the same R_{1} and R_{2}. How does the percentage change compare in the two cases? Simulate with PSpice.
P8.1.15 Consider the BJT current mirror of Figure 8.1.7a with $V_{C C}=12 \mathrm{~V}$ and the emitters returned to -12 V ; determine: (a) $V_{B E}$ that results in an output current of $100 \mu \mathrm{~A}$, assuming $I_{S}=6.7 \mathrm{fA}, V_{A}=75 \mathrm{~V}$, and $V_{O}=-0.6 \mathrm{~V}$; (b) R, assuming $\beta=100$. Simulate with PSpice.
P8.1.16 In the MOSFET current mirror of Figure 8.1.11, $V_{D D}=5 \mathrm{~V}, Q_{1}$ and Q_{2} have $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{t n}=1 \mathrm{~V}$, and $\lambda=0.02 \mathrm{~V}^{-1}$. Determine: (a) R for $I_{\text {REF }}=100 \mu \mathrm{~A}$; (b) I_{M} for $V_{O}=3 \mathrm{~V}$.
P8.1.17 Consider the Widlar circuit of Figure 8.1.7b with emitter resistors $R_{E 1}$ and $R_{E 2}$ included for both transistors. Show that $\frac{I_{\mathrm{REF}}}{I_{M}}=\frac{R_{E 2}}{R_{E 1}}\left(1-\frac{V_{T}}{R_{E 2} I_{M}} \ln \frac{I_{\mathrm{REF}}}{I_{M}}\right) \cong \frac{R_{E 2}}{R_{E 1}}$, as would be the case if $V_{B E}$ of the transistors is negligible compared to the voltage drop across the emitter resistors. How would the output resistance change from that of Figure 8.1.6b? Simulate with PSpice.
P8.1.18 Determine the effective resistance between B and ground, excluding Q_{2}, in the Widlar circuit of Figure 8.1.7b.
DP8.1.19 Using BJTs instead of MOSFETs in Figure 8.1.12, design a current mirror that provides current sinks of $100 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$, and 1 mA , using npn transistors, and current sources of 50,100 , and $500 \mu \mathrm{~A}$ using pnp transistors. Assume voltage supplies of $\pm 5 \mathrm{~V}$, a large β_{F}, negligible base-width modulation, and $V_{B E}=0.7 \mathrm{~V}$ at 1 mA for all transistors. Specify R for $I_{\text {REF }}=100 \mu \mathrm{~A}$ and the ratios of the BEJ areas required of all the transistors.
P8.1.20 The variation of transistor output current with variation in a particular transistor parameter can be expressed in terms of sensitivity. Thus, the sensitivity of I_{D} with respect to the device transconductance parameter k in a MOSFET is defined as $S_{k}^{I_{D}}=\frac{d I_{D}}{d k} \frac{k}{I_{D}}$. Show that for the biasing scheme of Figure 8.1.5 $S_{k}^{I_{D}}=\frac{1}{1+R_{D} \sqrt{2 k I_{D}}}$, assuming constant threshold. Determine $S_{k}^{I_{D}}$ if $k=0.2 \mathrm{~mA} / \mathrm{V}^{2}$, with a percentage variability $(\Delta k / k) 100=10 \%$ and $I_{D}=0.2 \mathrm{~mA}$, with a desired percentage variability of $\left(\Delta I_{D} / I_{D}\right) 100=2 \%$, and calculate the required value of R_{D}.

P8.2 Basic Amplifier Configurations

P8.2.1 A voltage amplifier having $r_{i n}=10 \mathrm{k} \Omega, r_{\text {out }}=1 \mathrm{k} \Omega$, and $A_{v o}=100$ is loaded by a $5 \mathrm{k} \Omega$ resistor and supplied from a source of $5 \mathrm{k} \Omega$ resistance. Determine: (a) voltage gain from source to output, (b) current gain, (c) power gain, and (d) NEC at the output.
P8.2.2 Verify that for the CE configuration with emitter resistor R_{E} and finite r_{o}, A_{v} is given by $-\frac{\beta r_{o}-R_{E}}{r_{\pi}\left(r_{o}+R_{L}^{\prime}+R_{E}\right)+R_{E}\left[r_{o}(1+\beta)+R_{L}^{\prime}\right]} R_{L}^{\prime}$, (a) using conventional circuit analysis, and, (b) from the relation, $A_{v}=-G_{m}\left(r_{o u t} \| R_{L}^{\prime}\right)$, with $R_{s r c}^{\prime}=0$.

P8.2.3 By applying a test source v_{x}, verify Equation 8.2 .38 for $r_{\text {out }}$ of the CE configuration with emitter resistor R_{E}, considering r_{o} to be finite.
P8.2.4 Verify that for the CS configuration with emitter resistor R_{S} and finite r_{o}, A_{v} is given by $-\frac{g_{m} r_{o} R_{L}^{\prime}}{r_{o}\left(1+g_{m} R_{S}\right)+R_{S}+R_{L}^{\prime}}$, ignoring the body effect. Show that this can be obtained from the result of Problem P8.2.2 by letting $r_{\pi} \rightarrow \infty$.
P8.2.5 Rework Exercise 8.2.14 for the CE configuration with emitter resistor and finite r_{o}, using the results of Problems P8.2.2 and P8.2.3.
P8.2.6 Using the T-model, show that for a CD amplifier $r_{\text {out }}=1 / g_{m}$.
P8.2.7 Consider the CE amplifier of Figure 8.1.4 with $V_{C C}=12 \mathrm{~V}, R_{B}=10 \mathrm{k} \Omega, R_{C}=5 \mathrm{k} \Omega$, $\beta=100$, and $V_{A}=100 \mathrm{~V} . R_{E}$ is replaced by a current source of 1 mA that is bypassed to ground by a very large capacitor. The signal source connected to the base has a source resistance of $10 \mathrm{k} \Omega$ and the load resistance is large. Determine, $r_{i n}, r_{\text {out }}, R_{\text {out }}, A_{v}$, and A_{v}^{\prime}. Simulate with PSpice.
P8.2.8 For the circuit of Figure P8.2.8, determine: (a) $r_{i n}$, (b) the small-signal gain v_{o} / v_{i}, and (c) the current gain i_{o} / i_{i}. Assume $\beta=100, V_{B E}=0.7 \mathrm{~V}$, and neglect base-width modulation.

FIGURE P8.2.8
DP8.2.9 It is desired to design a CE amplifier, as in Figure 8.2.3, that gives A_{v}^{\prime} of approximately -10 between a $10 \mathrm{k} \Omega$ source and a load $R_{L}=2 \mathrm{k} \Omega$ using a 12 V supply and a transistor having $\beta=100$ and $V_{A}=100$. It is assumed that R_{E} is bypassed by a large capacitor. The design guidelines are: (i) the current in R_{1} and R_{2} is not to exceed one-tenth of the transistor current; (ii) R_{E} is to be selected for good bias stability. Choose the transistor current to give an appropriate g_{m} and R_{C} to have the $V_{C E}$ of the transistor at least 2 V away from saturation or cutoff. How much is A_{v} ? What is the reason for the difference between A_{v} and A_{v}^{\prime} ? Simulate with PSpice.
P8.2.10 If the emitter bypass capacitor in Problem DP8.2.9 is omitted, what are the new values of $r_{i n}, A_{v}$, and A_{v}^{\prime} ? Simulate with PSpice.
P8.2.11 Determine $r_{\text {out }}$ of the transistor in Problem P8.2.10. How does $r_{\text {out }}$ change if the biasing is varied so that the collector current is: (a) doubled, (b) halved? Assume that β remains constant.
P8.2.12 The CE amplifier of Example 8.1.1 has $R_{E}=R_{C}=2 \mathrm{k}, R_{s r c}=1 \mathrm{k} \Omega$, and $V_{A}=80 \mathrm{~V}$. Determine $r_{i n} r_{\text {out }}$, and A_{v} before and after the $50^{\circ} \mathrm{C}$ rise in temperature. Simulate with PSpice.
P8.2.13 Replace the BJT in Problem P8.2.7 with an E-NMOS transistor having $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{t n}=3 \mathrm{~V}, r_{o}=50 \mathrm{k} \Omega$, and R_{S} adjusted to give $I_{D}=1 \mathrm{~mA}$. Determine R_{S}, A_{v} and compare with A_{v}^{\prime} in Problem P8.2.7. Neglect channel-width modulation and simulate with PSpice.

P8.2.14 Derive the expressions for $r_{i n}, r_{o u t}, A_{i}$, and A_{v} for the amplifier configuration of Figure 8.1.5. Deduce the corresponding expressions for a MOSFET amplifier.

P8.2.15 Given the circuit of Figure 8.1.6b. If an input voltage v_{i} is applied between gate and ground, and output voltages at the drain and the source are denoted by $v_{o d}$ and $v_{o s}$, respectively, derive expressions for the voltage gains $v_{o d} / v_{i}$ and $v_{o s} / v_{i}$. Note that the circuit allows the generation of two signals of equal magnitudes but opposite phases.
P8.2.16 Given an E-NMOS CS amplifier having an E-PMOS current mirror load supplied from a current source $I_{\text {REF }}=50 \mu \mathrm{~A}$ and operating between a supply voltage of +3 V and ground. The MOSFET parameters are $W / L=20$ for all transistors, $k_{n}^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2}$, $k_{p}^{\prime}=10 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda_{n}=0.04 \mathrm{~V}^{-1}, \lambda_{p}=0.08 \mathrm{~V}^{-1}, V_{t n}=0.7 \mathrm{~V}$, and $V_{t p}=-0.8 \mathrm{~V}$. Determine: (a) $V_{S G}$ of the E-PMOS transistors, (b) the limits of v_{O} that will keep the transistors in saturation, and the corresponding values of v_{I}, (c) the output resistance $r_{\text {out }}$ assuming the output current is $I_{\text {REF }}$, and (d) the small-signal gain v_{o} / v_{i} at $v_{O}=1.5 \mathrm{~V}$.
P8.2.17 From a PSpice simulation of the circuit of Problem P8.2.16, (a) derive the $v_{O}-v_{I}$ transfer characteristic; how does the linear range compare with the range in (b) of Problem P8.2.16, and how does the slope compare with the small-signal gain in (c)? (b) Bias the input to the middle of the output characteristic, and apply a small signal input of 1 kHz and peak of (i) 20 mV , (ii) 50 mv and observe the resulting waveforms.
P8.2.18 Given an E-NMOS CS amplifier with an E-PMOS current mirror load having $I_{\text {REF }}=$ $100 \mu \mathrm{~A}$ and operating between a supply voltage of +12 V and ground. Assume that $k_{n}=2 k_{p}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=\bar{V}_{t p}=15 \mathrm{~V}$, and $\lambda_{n}=\lambda_{p}=0.01 \mathrm{~V}^{-1}$. (a) Determine $V_{S G p}$ of the current-mirror transistors; (b) sketch the load curve on the output characteristics of the E-NMOS transistor, similar to that of Figure 5.5.1b, Chapter 5; (c) neglecting channel-length modulation, determine the output voltage corresponding to point B in Figure 5.5.1b, Chapter 5; (d) derive the relation between input and output voltages over the region BC of the input-output characteristic (Figure 5.5.1c, Chapter 5), by equating the drain currents of the two transistors at the output; (e) from this relation, determine the input voltage corresponding to point B, and the input and output voltages corresponding to the point C ; (f) calculate the large-signal voltage gain and compare it to the small-signal voltage gain.
P8.2.19 Consider a CC amplifier that is the BJT counterpart of Figure 8.2.4a with bias provided by a single resistor R_{1} adjusted to give $I_{C}=1 \mathrm{~mA}$. Assume $V_{C C}=5 \mathrm{~V}, R_{E}=2 \mathrm{k} \Omega$, $\beta=100, V_{A}=100 \mathrm{~V}, R_{s r c}=10 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V}$, and very large R_{L}. Determine $r_{\text {in }}, R_{\text {out }}$, A_{v}, and A_{v}^{\prime}. What is the ratio of $\beta R_{E} / R_{1}$? Simulate with PSpice.
P8.2.20 Repeat Problem P8.2.19 assuming a voltage divider $R_{1} R_{2}$ designed to give $I_{C}=1 \mathrm{~mA}$, the current through R_{1} being $100 \mu \mathrm{~A}$. Compare with the results of Problem P8.2.19.
P8.2.21 Compare $A_{v}, A_{i}, r_{i n}$, and $r_{\text {out }}$ of the CB and CE amplifiers if β changes at constant I_{C}.
P8.2.22 It is desired to use a single voltage supply to bias an ac CG amplifier using an E-NMOS transistor. How would you modify the circuit of Figure 8.2.16a for this purpose?
P8.2.23 Assume that in the CB small-signal equivalent circuit of the CB amplifier $r_{o b}$ can be omitted but a base-spreading resistance r_{b} appears between base terminal and ground. Determine the expressions for $A_{v}, A_{i}, r_{\text {in }}, r_{\text {out }}$, and $R_{\text {out }}$.
P8.2.24 The CB amplifier of Figure P8.2.24 is used to match the 50Ω source and provide a small-signal voltage gain of 30 . Determine R_{E} and R_{C} assuming $\beta=100, V_{E B}=0.7 \mathrm{~V}$, and neglecting base-width modulation.

FIGURE P8.2.24

P8.2.25 Determine: (a) v_{o} / v_{i}, and (b) v_{i} / i_{i} in Figure P8.2.25, assuming $\beta=100$ and $V_{B E}=0.7 \mathrm{~V}$.

FIGURE P8.2.25

P8.2.26 A source follower has an E-NMOS current-mirror load, voltage supplies of $\pm 6 \mathrm{~V}, I_{\text {REF }}=$ $80 \mu \mathrm{~A}$, with all transistors having $V_{t n}=1 \mathrm{~V}$ and $k_{n}=1 \mathrm{~mA} / \mathrm{V}$. Determine: (a) $v_{\text {Omax }}$, $v_{\text {Omin }}, v_{I \text { Imax }} v_{\text {Imin }}$; and the large-signal voltage gain, neglecting the body effect and channel-length modulation; (b) the small-signal v_{o} / v_{i}, if $\lambda=0.05 \mathrm{~V}^{-1}$ and $\chi=0.15$. Simulate with PSpice.
P8.2.27 The transistor parameters in Figure P8.2.27 are $\beta=50, g_{m}=60 \mathrm{~mA} / \mathrm{V}$, and $V_{A}=78 \mathrm{~V}$. Determine: (a) I_{C}, assuming $V_{B E}=0.7 \mathrm{~V}$, and (b) $v_{o} / v_{s r c}$.

FIGURE P8.2.27

FIGURE P8.2.29

FIGURE P8.2.30

P8.2.28 Show that if a Darlington pair is used in an source follower, $r_{i n} \cong \beta_{1} \beta_{2} R_{E}^{\prime}$ and $r_{\text {out }} \cong r_{e 2}+r_{e 1} / \beta_{2}+R_{\text {src }}^{\prime} / \beta_{1} \beta_{2}$.
P8.2.29 Show that $r_{i n}$ in Figure P8.2.29 is $2 / g_{m}$, assuming all transistors are identical and neglecting channel-length modulation and the body effect.
P8.2.30 Figure P8.2.30 shows a BJT Wilson current mirror (Section ST8.3), where all transistors are assumed identical. Show that: (a) $\frac{I_{M}}{I_{\text {REF }}} \cong\left(1-\frac{2}{\beta_{F}^{2}}\right)$, as in Exercise 8.1.5; (b) the smallsignal input resistance seen by $I_{\text {REF }}$ is approximately $2 V_{T} / I_{\text {REF }}$, neglecting base-width modulation; (c) the output resistance at Q_{1} collector is approximately $\beta r_{o} / 2$.

P8.3 Frequency Response

P8.3.1 Determine $r_{\text {in }}$ in Figure P8.3.1 using Miller's theorem, if V_{2} / V_{1} is -5 .

FIGURE P8.3.1

P8.3.2 Consider an ideal amplifier of gain +2 and a 100 pF capacitor connected between input and output. What capacitance is reflected at the input of the amplifier? Note that such a connection is sometimes used to neutralize a shunt capacitance at the input of the amplifier.
P8.3.3 The transfer function of an amplifier is $H(s)=\frac{10^{7}}{(s+1000)(s+2000)}$. Determine: (a) the poles of the response; (b) the exact 3-dB cutoff frequency; (c) the GB product, and (d) the $3-\mathrm{dB}$ cutoff frequency when two such amplifiers are cascaded without loading effects.
P8.3.4 Consider a CE amplifier driven from an ideal current source and having an ideal current source as a load. Show that the $3-\mathrm{dB}$ frequency is very nearly $1 /\left(2 \pi \beta r_{o} C_{\mu}\right)$.
P8.3.5 A CE transistor has $I_{C}=2.5 \mathrm{~mA}, R_{C}=8 \mathrm{k} \Omega, \beta=100, V_{A}=40 \mathrm{~V}, C_{\mu}=1 \mathrm{pF}$, and $f_{T}=$ 300 MHz . Apply Miller's theorem to determine the effective capacitance at the base of the transistor.

P8.3.6 In the diode-connected transistor of Figure P8.3.6, r_{o} can be neglected because it appears in parallel with the much smaller r_{π} and C_{μ} is short-circuited. Let $Z_{\pi}=r_{\pi} \|\left(1 / s C_{\pi}\right)$ be the impedance between base and emitter in the absence of transistor action. Deduce that due to transistor action $Z_{i n}=Z_{\pi} /\left(1+g_{m} Z_{\pi}\right)$. Show that $Z_{i n}$ can be expressed as $Z_{i n}=r_{e} /\left(1+s C_{\pi} r_{e}\right)$.
P8.3.7 Consider the CE amplifier of Figure 8.2.3a, with $V_{C C}=12 \mathrm{~V}, R_{E}$ replaced by a 1 mA current source, $R_{s r c}=4.7 \mathrm{k} \Omega, R_{C}=8.2 \mathrm{k} \Omega$,

FIGURE P8.3.6 $R_{L}=10 \mathrm{k} \Omega, C_{\pi}=52 \mathrm{pF}, \mathrm{C}_{\mu}=3.9 \mathrm{pF}, \beta=170$, and $V_{A}=74 \mathrm{~V}$. Determine: (a) the low-frequency gain, (b) the $3-\mathrm{dB}$ cutoff frequency, using (i) Miller's theorem, (ii) the open-circuit time constant method, (iii) rigorous circuit analysis.
P8.3.8 Given the CE amplifier of Figure 8.2.3a with $R_{s r c}=5 \mathrm{k} \Omega, R_{1}=56 \mathrm{k} \Omega, R_{2}=22 \mathrm{k} \Omega$, $R_{E}=2 \mathrm{k} \Omega, R_{C}=4.7 \mathrm{k} \Omega, R_{L}=10 \mathrm{k} \Omega, I_{C}=1 \mathrm{~mA}, \beta=150, f_{T}=800 \mathrm{MHz}$, and $C_{\mu}=1 \mathrm{pF}$. Neglecting r_{o}, determine the low-frequency gain, the frequencies of the two poles and zero, and the $3-\mathrm{dB}$ cutoff frequency. Simulate with PSpice.
P8.3.9 A CS amplifier has $R_{G}=1 \mathrm{M} \Omega, g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=50 \mathrm{k} \Omega, R_{D}=20 \mathrm{k} \Omega, C_{g s}=2 \mathrm{pF}$, and $C_{g d}=1 \mathrm{pF}, R_{s r c}=200 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. Determine the low-frequency gain, the frequencies of the two poles and zero, and the $3-\mathrm{dB}$ cutoff frequency. Simulate with PSpice.
P8.3.10 Determine the frequency response of a source follower having $R_{s r c}=50 \mathrm{k} \Omega, R_{S}=50 \mathrm{k} \Omega$, $g_{m}=1 \mathrm{~mA} / \mathrm{V}, \chi=0.15, r_{o}=100 \mathrm{k} \Omega, C_{g s}=0.5 \mathrm{pF}$, and $C_{g d}=0.1 \mathrm{pF}$.
P8.3.11 An emitter follower has $R_{s r c}=10 \mathrm{k} \Omega, R_{E}=1 \mathrm{k} \Omega, f_{T}=1 \mathrm{GHz}, C_{\mu}=0.8 \mathrm{pF}, I_{C}=1 \mathrm{~mA}$, $V_{A}=100 \mathrm{~V}$, and $\beta=120$. Determine: (1) f_{z}, (2) $f_{p 1}$ and $f_{p 2}$ using the method of OCSCTC, (3) the $3-\mathrm{dB}$ cutoff frequency. Compare with the results of rigorous analysis. Simulate with PSpice.
P8.3.12 A CD amplifier has a current mirror load, as in Problem 8.2.26, with $R_{s r c}=80 \mathrm{k} \Omega$ and $C_{L}=10 \mathrm{pF}$. Determine: (1) f_{z} and (2) the $3-\mathrm{dB}$ cutoff frequency assuming a dominant pole and using the ОСТС method. It is given that $g_{m}=1 \mathrm{~mA} / \mathrm{V}, \chi=0.15$, and $r_{o}=100 \mathrm{k} \Omega$ for all transistors, with $C_{g s}=0.5 \mathrm{pF}$ and $C_{g d}=0.1 \mathrm{pF}$.
P8.3.13 Consider the CS amplifier with $R_{G}=5 \mathrm{M} \Omega$ connected between gate and drain, as in Figure 8.1.5, $R_{s r c}=50 \mathrm{k} \Omega, R_{D}=20 \mathrm{k} \Omega, g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=80 \mathrm{k} \Omega, C_{g_{s}}=0.2 \mathrm{pF}$, and $C_{g d}=0.05 \mathrm{pF}$. Determine: (a) f_{z}, the poles, and the $3-\mathrm{dB}$ cutoff frequency from a rigorous analysis; (b) the poles using (i) the OCSCTC method and (ii) the OCTC method.
P8.3.14 Apply Miller's approximation to Problem P8.3.13 considering the Miller admittance to be $Y_{g d}=s C_{g d}+1 / R_{G}$. Determine the pole at the amplifier input and compare with the dominant pole found in Problem P8.3.13.
P8.3.15 A CG amplifier has $C_{g s}=2.2 \mathrm{pF}, C_{g d}=0.12 \mathrm{pF}, C_{L}=3 \mathrm{pF}, g_{m}=4 \mathrm{~mA} / \mathrm{V}, \chi=0.15, R_{s r c}=1$ $\mathrm{k} \Omega$, and $R_{L}=20 \mathrm{k} \Omega$. Neglect r_{o} and use Figure 8.3.7c to determine: (a) $Z_{i n}$; (b) V_{o} / V_{s}; (c) $V_{o} / V_{s r c}$ and the poles of the response; and (d) the 3-dB cutoff frequency.

P8.3.16 Write the node-voltage equations for the circuit of Figure ST8.9.1, Section ST8.9, for the three nodes G, D, and S, assuming a current source excitation. Show that the coefficient of s^{3} is zero in the determinant of the equations.

P8.4 Composite Transistors

P8.4.1 Show that for the CC/CE cascade of Figure 8.4.3, $G_{m}=\frac{g_{m 2}}{1+\left(r_{\pi 1}+R_{s r c}\right) /\left(\beta_{1}+1\right) r_{\pi 2}}$, defined as the ratio of the short-circuit output current to $v_{s r c}$. Ignore r_{0}.
P8.4.2 Derive the voltage gain of a CD-CS amplifier that is the MOSFET counterpart of Figure 8.4.3. Assume an ideal biasing current source but account for finite r_{o} and the body effect.

FIGURE P8.4.3

FIGURE P8.4.4

P8.4.3 Figure P8.4.3 shows an active cascode (Säckinger and Guggenbühl, 1990) that realizes a high $r_{\text {out }}$ without increasing the number of cascading levels, and hence reducing the output swing. What is $r_{\text {out }}$ if the op amp were ideal? Derive $r_{\text {out }}$ for finite A_{v}.
P8.4.4 Assume that Q_{1} and Q_{2} in Figure P8.4.4 are identical and have $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=$ 1 V , with $I_{\text {REF }}=100 \mu \mathrm{~A}$. Because Q_{2} is diode connected, it must operate in the active region. Deduce that Q_{1} operates in the triode region and determine $V_{G S 2}, V_{D S 1}$, and $V_{G S 1}$, neglecting channel-length modulation. Simulate with PSpice.
P8.4.5 Show that if Q_{1} and Q_{2} in Figure P8.4.4 are identical but the aspect ratio of Q_{1} is onethird that of $Q_{2}, V_{D S 1}=V_{o v 2}=V_{G S 2}-V_{t n}$.
P8.4.6 Figure P8.4.6 shows a BiCMOS Darlington. Determine: (a) $V_{\text {BIAS }}$ so that the dc output voltage is 2 V , assuming β_{F} to be very large, $V_{B E}=0.7 \mathrm{~V}, k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n 0}=1 \mathrm{~V}, \chi=0.1$, and neglecting channel-length modulation and base-width modulation; (b) the smallsignal gain, assuming, $r_{\pi}=2 \mathrm{k} \Omega, \beta=200, \lambda=0.05 / \mathrm{V}$, and $V_{A}=50 \mathrm{~V}$. Simulate with PSpice.
P8.4.7 Consider a MOSFET cascode consisting of two identical transistors having $g_{m}=$ $2 \mathrm{~mA} / \mathrm{V}, \chi=0.2, r_{o}=50 \mathrm{k} \Omega, C_{\mu}=0.1 \mathrm{pF}, C_{g s}=1 \mathrm{pF}$, and $C_{L}=10 \mathrm{pF} . R_{s r c}^{\prime}$ is small, R_{L} is infinite, and $C_{L}=5 \mathrm{pF}$. Determine: (a) $r_{\text {outi }}$ (b) low-frequency gain; (c) the approximate $3-\mathrm{dB}$ cutoff frequency.
P8.4.8 Figure P8.4.8 shows a cascode amplifier with an E-PMOS load. (a) Determine: the maximum and minimum values of v_{o} for which the transistors remain in saturation.

FIGURE P8.4.6

FIGURE P8.4.8

Derive the small-signal, low-frequency equivalent circuit neglecting the body effect of Q_{2} and show that $\frac{v_{o}}{v_{i}}=-g_{m 1} \frac{r_{01} r_{03}\left[1+g_{m 2}(1+\chi) r_{o 2}\right]}{r_{03}+r_{02}+r_{01}\left[1+g_{m 2}(1+\chi) r_{o 2}\right]}$. Deduce that $v_{o} / v_{i} \cong-g_{m} r_{o}$ if all transistors are identical, $\chi=0$, and $r_{o} \gg 1 / g_{m}$. How do you interpret this result?
P8.4.9 Investigate the high-frequency response of the cascode amplifier of Problem P8.4.8 by adding to the small-signal equivalent circuit capacitors C_{1} between G_{1} and D_{1}, C_{2} between D_{1} and ground, and C_{3} between D_{2} and ground. (a) What do these capacitances represent? (b) How many poles do you expect the response v_{o} / v_{i} to have? (c) Assuming identical transistors, $\chi=0, g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=50 \mathrm{k} \Omega, \mathrm{C}_{1}=0.5 \mathrm{pF}, \mathrm{C}_{2}=2 \mathrm{pf}$, and $C_{3}=10 \mathrm{pF}$, use the OCSCTC method to determine the poles and the $3-\mathrm{dB}$ cutoff frequency. Which of the poles is dominant?
P8.4.10 Given the BiCMOS cascode of Figure P8.4.10 with $R_{s r c}=20 \mathrm{k} \Omega$. For the MOSFET, $g_{m}=4 \mathrm{~mA} / \mathrm{V}, C_{g s}=2 \mathrm{pF}$, and $C_{g d}=0.1 \mathrm{pF}$. For the BJT, $\beta=100, g_{m}=40 \mathrm{~mA} / \mathrm{V}$, $C_{\pi}=2.5 \mathrm{pF}$, and $C_{\mu}=0.5 \mathrm{pF}$, and $C_{L}=2 \mathrm{pF}$. Neglect chan-nel-length and base-width modulations. Determine: (a) the low- frequency gain $v_{o} / v_{s r c}$; (b) the zero and poles of the CS stage using the OCSCTC method; (c) the pole at the amplifier output; and (d) the 3 - dB cutoff frequency.

P8.5 Cascode Current Sources and Mirrors

P8.5.1 In the cascode mirror of Figure 8.5.1a, all transistors have $k_{n}=0.5 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=0.8 \mathrm{~V}, V_{A}=20 \mathrm{~V}, I_{\mathrm{REF}}=80 \mu \mathrm{~A}$, and $V_{O}=4 \mathrm{~V}$. Determine: (a) I_{M} and compare with that of a simple mirror; (b) output resistance of the mirror; (c) lowest allowable output voltage. Neglect the body effect.
P8.5.2 Consider double-cascode current mirror having a transis-

FIGURE P8.4.10 tor added on top of Q_{2} in Figure 8.5.1a and another diode connected transistor added on top of Q_{4}. Assume $I_{\text {REF }}=0.2 \mathrm{~mA}, V_{D 3}=6 \mathrm{~V}$, and $k_{n}=$ $0.4 \mathrm{~mA} / \mathrm{V}, V_{t n}=1 \mathrm{~V}$, and $\lambda=0.02 \mathrm{~V}^{-1}$ for all transistors. Neglecting the body effect, determine: (a) $I_{M}, V_{D 1}$, and $V_{D 2}$, neglecting channel-length modulation, (b) minimum value of $V_{D 3}$, and (c) the output resistance.
P8.5.3 The technique of Problem P8.4.3 is often used to increase the output resistance of a current mirror, as illustrated in Figure P8.5.3. Show that the output resistance becomes: $r_{o u t}=r_{o 1}+r_{o 2}+g_{m 2} r_{o 1} r_{o 2}\left(A_{v}+1\right)$.

FIGURE P8.5.3

P8.6 Miscellaneous

P8.6.1 The transistors in Figure P8.6.1 are identical and have large β. Show that if a current I is forced into A and a voltage V is applied at B , then the current I flows into B and the voltage V appears at A . Such a circuit is known as a current conveyor. If B is grounded, then A will be a virtual ground. If A is connected to a supply voltage V_{CC} through a resistance $R, I=V_{\mathrm{CC}} / R$ and this will also be the collector current of an identical transistor whose base and emitter are connected to the respective terminals of Q_{1} and Q_{2}.
P8.6.2 Figure P8.6.2 shows a peaking current

FIGURE P.8.6.1

FIGURE P8.6.2
source that can be used to produce an extremely small source current I_{M} using reasonable values of $I_{\text {REF }}$ and R (Kwok, 1985), even smaller than those attainable with the Widlar current source. Assuming that the two transistors are identical, of very high β, and that for each transistor $i_{C}=I_{S} e^{v_{B E} / V_{T}}$, show that $I_{M}=I_{\text {REF }} e^{-R I_{R E F} / V_{T}}$. Simulate with PSpice and plot I_{M} vs. $I_{\text {REF }}$ in the range $0-10 \mu \mathrm{~A}$, with $R=10 \mathrm{k} \Omega$, and determine the value of $I_{\text {REF }}$ for which I_{M} is a maximum.
P8.6.3 Figure P8.6.3 illustrates a simple offset-bias transconductor circuit that produces a current difference that is proportional to a voltage signal (Bult and Wallinga, 1987). Assuming that the transistors are identical and are in the saturation mode, show that $i_{2}-i_{1}=k_{n} / 2\left(V_{B}-2 V_{t}\right)\left(2 v_{I}-V_{B}\right)$. Neglect chan-nel-length modulation.
P8.6.4 Consider a CE amplifier having a load of admittance $Y_{L}=G_{L}+j B_{L} \gg s C_{\mu}$ so that the amplifier gain may be assumed to be $-g_{m} / Y_{L}$. Show that the admittance reflected on the input side is $\frac{\omega C_{\mu} g_{m} B_{L}}{G_{L}^{2}+B_{L}^{2}}+j \omega C_{\mu}$

FIGURE P8.6.3 $\left(1+\frac{g_{m} G_{L}}{G_{L}^{2}+B_{L}^{2}}\right)$. Note that if the load is inductive, $B_{L}<0$, and the real part is a negative conductance. If the magnitude of this conductance is larger than the positive conductance at the input, the net conductance is negative and will result in oscillations.

9

Multistage and Feedback Amplifiers

The basic design of an amplifier stage was considered in Chapter 8 using a single-transistor or a composite-transistor connection. In many cases, more voltage gain may be required than can be provided by a single amplifier stage, which necessitates cascading amplifier stages. Even if only a modest overall gain is required, it is advantageous to cascade stages for high gain and apply negative feedback to trade some of the gain for better overall performance, such as modified input or output resistance, reduced distortion, and wider bandwidth.

Amplifying stages can be cascaded in a number of ways, depending on the application and type of amplifier. In IC amplifiers, cascaded stages are dc coupled. In discrete amplifiers, stages can be ac coupled using capacitors, magnetic coupling, or opto-coupling. Each of these methods of coupling has its advantages but poses problems that must be addressed.

In calculating the input resistance, output resistance, and overall gain of transistor feedback amplifiers, it is necessary, in general, to account for the loading effect of the feedback circuit on the input and output of the amplifier proper. To accomplish this, a generalized systematic procedure can be applied to the four types of feedback configurations.

When discussing negative feedback in amplifiers, the effect of the inevitable phase shifts due to parasitic capacitances must be considered. These can turn negative feedback into positive feedback at some frequency, thereby causing oscillations. While this is to be avoided in amplifiers, it can be utilized to implement feedback oscillators.

A particular type of ac coupling between cascaded stages is encountered in tuned amplifiers, which are widely used to provide the required gain and frequency selectivity in communication receivers. Introducing positive feedback in what are essentially tuned amplifiers results in another class of widely used oscillators, namely LC oscillators.

Learning Objectives

* To be familiar with:
- Terminology commonly used with cascaded amplifiers, feedback amplifiers, and oscillators.
* To understand:
- How amplifiers are cascaded and dc levels are shifted in the case of dc coupling.
- The shortcut intuitive method of analyzing cascaded amplifiers.
- The effect of coupling capacitors and emitter/source bypass capacitors on the lowfrequency response of amplifiers.
- The methods of analyzing transistor feedback amplifiers in the four basic feedback configurations.
- Stability considerations in feedback amplifiers.
- The principle of operation of feedback oscillators.
- The basic features of tuned amplifiers.
- The principle of operation of $L C$ oscillators.

9.1 Cascaded Amplifiers

The following coupling methods are used to cascade amplifier stages:

1. Direct coupling, in which the output of one stage is directly coupled to the input of the next stage so that dc signals are transmitted between stages. This can raise two problems: (1) The dc level at the output of a given stage is generally incompatible with the dc level at the input of the next stage, which necessitates some form of dc level shifting. (2) The dc level at the input may be subject to drift, that is, a slow, undesirable variation with time, as may be due, for example, to changes in temperature. The drift, if allowed through a high-gain amplifier, may overload later stages, thereby seriously interfering with the amplification of desired signals.
2. Capacitive coupling, in which series capacitors are used between successive stages. Not only are undesirable dc voltages blocked, but the dc level at the output of a given stage is isolated from the input of the next stage. However, capacitive coupling does have its own disadvantages. Evidently, genuine dc signals cannot be amplified. The presence of capacitors can have undesirable effects on the performance of the amplifier, as will be discussed later. Moreover, because the values of these capacitances are relatively large, they are impractical in ICs. This limits capacitive coupling to discrete amplifier stages. In electrocardiogram (ECG) recording, for example, the ECG signal amplitude is less than a few mVs, and the frequency components of interest are in the range of a fraction of a Hz to about 150 Hz . However, the electrodes that are applied to the body to pick up the ECG signals have a dc offset potential that is subject to drift. Hence ac coupling is used, at least beyond the first stage of amplification.
3. Some form of transformer coupling, also limited to discrete amplifiers. Mutual inductance coupling at high frequencies is used in tuned amplifiers, as discussed in Section 9.4.
4. Optical coupling using an LED as a transmitter and a phototransistor as a receiver (Application Window 8.4.1, Chapter 8).

Cascaded stages can, in general, be analyzed by the method illustrated in Figure 9.1.1 for a two-stage amplifier and outlined as follows:

1. Working forward from the first stage, the output impedance $Z_{\text {out } 1}$ is determined, taking $Z_{\text {src }}$ into account, and $Z_{\text {out2 }}$ is determined, taking $Z_{\text {out } 1}$ into account.
2. Working backward from the last stage, the input impedance $Z_{i n 2}$ of stage 2 is determined, taking Z_{L} into account, then $Z_{i n 1}$ is determined, taking $Z_{i n 2}$ into account.

FIGURE 9.1.1
Cascaded amplifier stages.
3. $V_{T h 1}(s)$ and $V_{T h 2}(s)$ are determined, where $V_{T h 1}(s)$ is Thevenin's voltage at the open-circuited output of stage 1 , with the source connected, and $V_{T h 2}(s)$ is Thevenin's voltage at the open-circuited output of stage 2 with stage 1 connected.

Let $A_{v 10}(s)=V_{T h 1}(s) / V_{i 1}(s)$ and $A_{v 2 o}(s)=V_{T h 2}(s) / V_{i 2}(s)$, be the open-circuit voltage gains of stages 1 and 2, respectively, from the input of the stage to its open-circuited output. It follows that:

$$
\begin{align*}
V_{i 1}(s) & =\frac{Z_{\text {in } 1}}{Z_{\text {in } 1}+Z_{\text {src }}} V_{\text {src }}(s) \tag{9.1.1}\\
V_{\text {i2 }}(s) & =\frac{Z_{\text {in } 2}}{Z_{\text {in } 2}+Z_{\text {out } 1}} V_{\text {Th1 } 1}(s) \tag{9.1.2}\\
V_{o}(s) & =\frac{Z_{L}}{Z_{L}+Z_{\text {out } 2}} V_{\text {Th2 }}(s) \tag{9.1.3}
\end{align*}
$$

Eliminating, through substitution, the intermediate voltages between the source and output:

$$
\begin{equation*}
A_{v}(s)=\frac{V_{o}(s)}{V_{\text {src }}(s)}=\frac{Z_{\text {in } 1}}{Z_{\text {in } 1}+Z_{\text {src }}} \frac{Z_{\text {in } 2}}{Z_{\text {in } 2}+Z_{\text {out } 1}} \frac{Z_{L}}{Z_{L}+Z_{\text {out } 2}} A_{v 1 o}(s) A_{v 2 o}(s) \tag{9.1.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{v 10}(s)=V_{T h 1}(s) / V_{i 1}(s) \\
& A_{v 20}(s)=V_{T h 2}(s) / V_{i 2}(s)
\end{aligned}
$$

If $Z_{\text {in } 1} \gg Z_{\text {src }}, Z_{\text {in } 2} \gg Z_{\text {out } 1}, Z_{L} \gg Z_{\text {out } 2}$, then $A_{v}(s) \cong A_{\text {v10 }}(s) A_{\text {v2o }}(s)$. Hence,

Concept: When the load impedance at every amplifier node, such $Z_{i n 1}, Z_{i n 2}$, or Z_{L} is large compared to the source impedance at the given node, the overall transfer function is the product of the open-circuit transfer functions of the individual stages.

The current gain is:

$$
\begin{equation*}
A_{i}(s)=-\frac{I_{o}(s)}{I_{s r c}(s)}=-\frac{V_{o}(s)}{Z_{L}} / \frac{V_{s r c}(s)}{Z_{s r c}+Z_{i n 1}}=-\frac{Z_{s r c}+Z_{i n 1}}{Z_{L}} A_{v}(s) \tag{9.1.5}
\end{equation*}
$$

Cascaded stages can also be analyzed by the powerful matrix methods based on two-port circuit theory. In practice, however, short-cut intuitive methods are used for quick, firstorder results, as illustrated by Example 9.1.1.

Example 9.1.1 Analysis of Cascaded Amplifier Stages

It is required to determine quickly the small-signal gain v_{o} / v_{i} in the circuit of Figure 9.1.2, assuming all transistors have $\beta=100$ and $r_{\pi}=1 \mathrm{k} \Omega$.

Solution

The method is based on working with small-signal input resistances of stages, and current ratios. The latter are determined by current division at the inputs of transistors and by current gains in the transistors, neglecting r_{o} of the transistors.
In Figure 9.1.2, Q_{3} is connected as an emitter follower. Its input resistance $r_{\text {in3 }} \cong(\beta+1) R_{E 3}$ $\gg R_{C 2}$. Hence, $v_{o}=v_{C 2} \cong R_{C 2} i_{c 2}$, or,

$$
\begin{equation*}
\frac{v_{o}}{i_{\mathrm{C} 2}}=R_{C 2}=10 \mathrm{k} \Omega \tag{9.1.6}
\end{equation*}
$$

For the pnp transistor $Q_{2}, i_{b 2}$ and $i_{c 2}$ flow out of the base and collector, respectively, and,

$$
\begin{equation*}
\frac{i_{c 2}}{i_{b 2}}=\beta=100 \tag{9.1.7}
\end{equation*}
$$

The input resistance of Q_{2} is $r_{\text {in2 }}=r_{\pi}+(\beta+1) R_{E 2} \cong 52 \mathrm{k} \Omega$. Hence,

$$
\begin{equation*}
\frac{i_{b 2}}{i_{c 1}}=\frac{R_{C 1}}{R_{C 1}+r_{i n 2}}=\frac{10}{52} \tag{9.1.8}
\end{equation*}
$$

For Q_{1},

$$
\begin{equation*}
\frac{i_{c 1}}{i_{b 1}}=\beta=100 \tag{9.1.9}
\end{equation*}
$$

FIGURE 9.1.2
Direct-coupled BJT amplifier stages.

The input resistance of Q_{1} is $r_{i n 1}=r_{\pi}+(\beta+1) R_{E 1} \cong 122 \mathrm{k} \Omega$. Hence,

$$
\begin{equation*}
\frac{i_{b 1}}{v_{i}}=\frac{1}{r_{i n 1}}=\frac{1}{122} \mathrm{mS} \tag{9.1.10}
\end{equation*}
$$

Multiplying Equations 9.1.6 through 9.1.10 gives $v_{o} / v_{i}=10 \times 100 \times(10 / 52) 100 \times$ $(1 / 122) \cong 160$.

dc Level Shifting

Complementary transistors allow simple dc level shifting. In Figure 9.1.3, Q_{1} base is effectively at zero dc voltage. Its emitter is approximately at -0.7 V , which means Q_{1} emitter current is 1 mA . Neglecting base currents, Q_{1} collector is at +3.8 V dc, and Q_{2} emitter is at 4.5 V . The emitter current of Q_{2} is also 1 mA , so that the dc output voltage is essentially zero.

Complementary MOSFETs in a folded cascode (Figure 9.1.4) are often used in ICs to increase the common-mode input range of differential amplifiers (Section 10.3, Chapter 10). The folded cascode also allows shifting the dc level of the output signal with respect to that of the input signal. In Figure 9.1.4, $I_{D 1}$ is determined by the dc level of v_{I}. The dc level of v_{O} is determined by $I_{S 2}$, which is determined, in turn, by $V_{\text {BIAS }}$ and the drain voltage of Q_{1}. The dc level of the output can therefore be set, mainly by proper choice of $V_{\text {BIAS }}$ (Exercise 9.1.1). Compared to the telescopic cascode of Figure 8.4.7, Chapter 8, that utilizes two E-NMOS transistors, the cascode of Figure 9.1.4 is "folded" so that both $I_{D 1}$ and $I_{S 2}$ flow away from node a.

Exercise 9.1.1

Assume that in Figure 9.1.4, the supply voltages are $\pm 5 \mathrm{~V}$, and the transistors have $k_{n, p}=$ $100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\left|V_{t}\right|=1 \mathrm{~V}, R_{1}=50 \mathrm{k} \Omega$, and $R_{2}=100 \mathrm{k} \Omega$. If the dc level of v_{I} is such that the quiescent current of Q_{1} is $10 \mu \mathrm{~A}$, determine $V_{\text {BIAS }}$ so that Q_{2} drain is at a dc voltage of zero.

Answer: 0 V .

FIGURE 9.1.3
Complementary BJT, direct-coupled amplifier stages.

FIGURE 9.1.4
Folded cascode amplifier stage.

Exercise 9.1.2

Draw the low-frequency small-signal equivalent circuit of Figure 9.1.4 with R_{1} replaced by an ideal current source $I_{\text {BIAS }}$ and show that it is identical to that of a telescopic cascode. What is the effect of including a finite resistance of $I_{\text {BIAs }}$?

Emitter followers can be used to shift dc levels. In an $п р и$ emitter follower, the voltage of the emitter is approximately 0.7 V less than that of the base. Larger voltage differences can be obtained by including, between the emitter and output, devices or subcircuits that can drop substantial dc voltages but have small incremental resistance, so that the small-signal gain is not significantly reduced. For example, several forward-conducting diodes can be connected in series between a and b in Figure 9.1.5, each diode dropping about 0.7 V . Or, a zener diode can be used to drop a larger voltage V_{Z} (Section 1.4, Chapter 1).

A useful circuit that can drop a substantial dc voltage but has a relatively small incremental resistance is the $V_{B E}$ multiplier illustrated in Figure 9.1.6. Neglecting the base current, $V_{B E}=V R_{2} /$ $\left(R_{1}+R_{2}\right)$, or $V=\left(1+R_{1} / R_{2}\right) V_{B E}$. Hence, V is the voltage $V_{B E}$ multiplied by the factor ($1+R_{1} / R_{2}$). Neglecting r_{0}, and assuming a large β, the incremental input resistance, is:

$$
\begin{equation*}
\frac{v}{i}=\frac{R_{1}+R_{2}}{1+g_{m} R_{2}} \tag{9.1.11}
\end{equation*}
$$

(Exercise 9.1.3). An attractive feature of this circuit is that the multiplying factor depends on the ratio of two resistances, which can be accurately controlled in an IC. The disadvantage is that the temperature dependence of V is that of $V_{B E}$ multiplied by $\left(1+R_{1} / R_{2}\right)$.

FIGURE 9.1.5
Emitter follower with dc level shifting.

FIGURE 9.1.6
$V_{B E}$ multiplier.

Exercise 9.1.3

Neglecting r_{0}, show that the incremental input resistance of the $V_{B E}$ multiplier is $\frac{v}{i}=\frac{R_{1}+\left(R_{2} \| r_{\pi}\right)}{1+g_{m}\left(R_{2} \| r_{\pi}\right)}$ and that it reduces to Equation 9.1.11 for very large β.

9.2 RC-Coupled Amplifiers

Coupling and bypass capacitors have been assumed so far to have infinitely large capacitance, which is clearly unrealistic. We will investigate in this section the effect of coupling and emitter/source bypass capacitors on the frequency response of $\mathrm{CE} / \mathrm{CS}$ amplifiers.

Common-Source Amplifier

Assuming a biasing circuit as in Figure 8.2.3a, Chapter 8, but with the BJT replaced by an E-NMOS transistor, and the resistors labeled accordingly, the small-signal equivalent circuit is shown in Figure 9.2.1. The circuit can be analyzed in a number of ways:

1. "Brute force" circuit analysis using the node-voltage method to derive the overall transfer function $V_{o}(s) / V_{s r c}(s)$. The algebra is laborious and the resulting expressions are too complex to give good insight into circuitbehavior. A more" tractable" approach is to derive $A_{v o}(s)$ and $Z_{\text {out }}$ in a manner similar to that of Section 8.2, Chapter 8.
2. The exact OCSCTC method for determining the poles, as described in Section ST8.9, Chapter 8. In practice, one pole is made dominant by design, in which case the simpler, approximate procedure of short-circuit time constants (SCTCs) can be used. This method is applied later to several cases.
3. An approximate procedure that provides considerable insight into circuit behavior, based on considering each of the three capacitor subcircuits in Figure 9.2.1 in isolation. The input capacitive subcircuit is naturally isolated by the infinite low-frequency

FIGURE 9.2.1
Low-frequency, small-signal equivalent circuit of common-source amplifier.
impedance at the gate of a MOSFET, which allows a straightforward derivation of the transfer function $V_{g}(s) / V_{s r c}(s)$. If r_{o} is not present across the current source, then this source will effectively isolate the two capacitive subcircuits at the output, which allows separate derivations of the transfer functions $I_{o}(s) / V_{g}(s)$ and $V_{o}(s) / I_{o}(s)$. The overall transfer function is then the product of these three individual transfer functions. r_{o} can be neglected altogether if the source current $g_{m} V_{g_{s}}(s)$ is much larger than the current through r_{0}. A better approximation is to consider r_{o} to be in parallel with R_{D}. This is tantamount to assuming that $g_{m} v_{g_{s}}$ is large compared to the difference in the current in r_{o} between the two cases, when r_{o} is connected between drain and source or between drain and ground.

The transfer function of the capacitive subcircuit at the input is:

$$
\begin{equation*}
\frac{V_{g}(s)}{V_{s r c}(s)}=\frac{s C_{P I} R_{G}}{1+s C_{P I}\left(R_{s r c}+R_{G}\right)} \tag{9.2.1}
\end{equation*}
$$

$C_{P I}$ introduces a zero at $s=0$, because it blocks dc voltages, and a pole at $\omega_{p I}=1 / C_{P I}\left(R_{s r c}+R_{G}\right)$.

When r_{o} is paralleled with $R_{D}, I_{o}(s)=g_{m} V_{g s}(s)=g_{m}\left[V_{g}(s)-Z_{S} I_{o}(s)\right]$. This gives:

$$
\begin{equation*}
\frac{I_{0}(s)}{V_{g}(s)}=\frac{1}{Z_{S}+1 / g_{m}}=\frac{g_{m}}{1+g_{m} R_{S}} \frac{1+s C_{S} R_{S}}{1+s C_{S} R_{S} /\left(1+g_{m} R_{S}\right)} \tag{9.2.2}
\end{equation*}
$$

The interpretation of Equation 9.2.2 is that $\omega_{z E}$, the zero of $I_{o}(s)$, occurs when the sum of the currents in R_{S} and C_{S} is zero, that is, when $s C_{S} V_{S}(s)+V_{S}(s) / R_{S}=0$, which gives $\omega_{z E}=1 / C_{S} R_{S}$. The output resistance at the transistor source is $1 / g_{m}$, so that the resistance across C_{S} is $\left(R_{S} \| 1 / g_{m}\right)=R_{S} /\left(1+g_{m} R_{S}\right)$, which gives a pole at $\omega_{p E}=1 / C_{S}\left(R_{S} \| 1 / g_{m}\right)$, with $\omega_{z E}<\omega_{p E}$ (Figure 9.2.2). Moreover, $\left|I_{o}(s) / V_{g}(s)\right|=g_{m} /\left(1+g_{m} R_{S}\right)$, as $s \rightarrow 0$, and $\left|I_{o}(s) / V_{g}(s)\right|=g_{m}$, as $s \rightarrow \infty$.

The transfer function from $I_{o}(\mathrm{~s})$ to $V_{o}(\mathrm{~s})$ is:

$$
\begin{equation*}
\frac{V_{o}(s)}{I_{o}(s)}=-\frac{s C_{P O} R_{D}^{\prime} R_{L}}{1+s C_{P O}\left(R_{D}^{\prime}+R_{L}\right)} \tag{9.2.3}
\end{equation*}
$$

where $R_{D}^{\prime}=\left(R_{D} \| r_{o}\right)$. The overall transfer function is the product of three transfer functions:

$$
\begin{equation*}
\frac{V_{o}(s)}{V_{s r c}(s)}=-\frac{g_{m}}{1+g_{m} R_{S}} \frac{s^{2} C_{P I} C_{P O} R_{D}^{\prime} R_{L} R_{G}\left(1+s C_{S} R_{S}\right)}{\left[1+s C_{P I}\left(R_{s r c}+R_{G}\right)\right]\left[1+s C_{S} R_{S} /\left(1+g_{m} R_{S}\right)\right]\left[1+s C_{P O}\left(R_{D}^{\prime}+R_{L}\right)\right]} \tag{9.2.4}
\end{equation*}
$$

FIGURE 9.2.2
Frequency response due to source-resistor bypass capacitor.

The three independent capacitances give rise to three low-frequency poles. At high frequencies, $s \rightarrow \infty$, and the reactances of the capacitors become zero. Since the highest power of s is s^{3} in both the numerator and the denominator of Equation 9.2.4, the voltage gain as $s \rightarrow \infty$, is $\left[-g_{m} R_{G} /\left(R_{G}+R_{s r c}\right)\right]\left(R_{D}^{\prime} \| R_{L}\right)$, as expected for a CS amplifier. The magnitude of the low-frequency voltage gain as $s \rightarrow \infty$ is the midband gain, because at high enough frequencies the response is dominated by the internal capacitances of the transistor, as discussed in Section 8.3, Chapter 8.

In practice, the lower $3-\mathrm{dB}$ cutoff frequency should be less than a certain value. Since the resistance associated with C_{E} is generally much smaller than that associated with $C_{P I}$ or $C_{P O}, \omega_{P E}$ is made the dominant pole, of highest frequency, in order to keep C_{E} as small as possible. The $3-\mathrm{dB}$ cutoff frequency will then be nearly that of the dominant pole (Section ST8.8). The other two poles can be chosen to be at the frequency of the zero, which cancels one pole and minimizes the capacitance associated with the other pole (Example 9.2.1).

Design Example 9.2.1 Low-Frequency Response of D-NMOS Amplifier

It is required to design an $R C$-coupled amplifier stage using a D-NMOS transistor in the circuit of Figure 8.2.3a, assuming $V_{D D}=15 \mathrm{~V}, R_{s r c}=50 \mathrm{k} \Omega, R_{L}=10 \mathrm{k} \Omega, r_{o}=100 \mathrm{k} \Omega$, $I_{D S S}=8 \mathrm{~mA}$, and $V_{t n D}=-2 \mathrm{~V}$. It is desired to operate the MOSFET at a quiescent point having $I_{D}=2 \mathrm{~mA}$, and $V_{D S}=5 \mathrm{~V}$, with R_{S} at least $2 \mathrm{k} \Omega$, to achieve good insensitivity to variations in transistor parameters. The low 3-dB cutoff frequency should not exceed 50 Hz .

Solution

Neglecting channel-length modulation, $I_{D}=I_{D S S}\left(1-V_{G S} / V_{t n D}\right)^{2}$. Substituting numerical values, $V_{G S}=-1 \mathrm{~V}$. If $R_{S}=2 \mathrm{k} \Omega$, the voltage across R_{D} is $V_{C C}-V_{D S}-R_{S} I_{D}=15-5-4=6$ V , so $R_{D}=2 \mathrm{k} \Omega$. It remains to determine $R_{G 1}$ and $R_{G 2}$. Since $V_{S}=4 \mathrm{~V}$, and $V_{G S}=-1 \mathrm{~V}$, $V_{G}=3 \mathrm{~V} . R_{G 1}$ and $R_{G 2}$ are chosen at a conveniently high value so as to maximize $R_{G}=R_{G 1} \| R_{G 2}$. Let $R_{G 1}=1.5 \mathrm{M} \Omega$. Then $R_{G 2}=375 \mathrm{k} \Omega$, so that $V_{G}=3 \mathrm{~V}$ and $R_{G}=300 \mathrm{k} \Omega$.

From Equation 6.5.5, $g_{m}=\frac{2 I_{D S S}}{\left|V_{t}\right|} \sqrt{\frac{I_{D}}{I_{D S S}}}=\frac{16}{2} \sqrt{\frac{2}{8}}=4 \mathrm{~mA} / \mathrm{V}$. The midband gain from the source to collector, when the reactances of all capacitors are negligibly small, is $A_{v m}^{\prime}=-\frac{R_{G}}{R_{s r c}+R_{C}} g_{m}\left(R_{D}\left\|r_{o}\right\| R_{L}\right)=-\frac{300}{350} \times 4 \times(2\|100\| 10)=5.6$.

As explained previously, the pole due to C_{S} is dominant at 50 Hz . It follows from Equation 9.2.2 that $C_{S}=1 /\left[2 \pi f_{p S}\left(R_{S} \| 1 / g_{m}\right)\right]=1 /[100 \pi(2 \| 0.25)] \equiv 14.3 \mu \mathrm{~F}$, so a standard value $16 \mu \mathrm{~F}$ may be used. This moves the pole to $50 \times(14.3 / 16)=44.7 \mathrm{kHz}$. From Equation 9.2 .2 , the zero due to C_{S} is at $f_{z}=1 / 2 \pi R_{S} C_{S}=1 /\left(2 \pi \times 2 \times 10^{3} \times 16 \times 10^{-6}\right) \cong 5 \mathrm{~Hz}$. We can make this zero cancel one of the poles due to $C_{P I}$ or $C_{P O}$. The other pole can also be chosen at this frequency so as to minimize the value of the capacitance. It follows from Equation 9.2.1 that $C_{P l}=1 /\left[2 \pi f_{z}\left(R_{s r c}+R_{G}\right)\right]=91 \mathrm{nF}$. From Equation 9.2.3, $C_{P O}=\frac{1}{2 \pi f_{Z}\left[R_{L}+\left(R_{D} \| r_{o}\right)\right]}=\frac{1}{10 \pi \times 11.96 \times 10^{3}} \equiv 2.7 \mu \mathrm{~F}$. The $3-\mathrm{dB}$ frequency can be approximated as $f_{L}=\sqrt{(47.7)^{2}+(5)^{2}} \cong 48 \mathrm{~Hz}$ (Section ST8.7, Chapter 8).

Common-Emitter Amplifier

The small-signal equivalent circuit of the CE amplifier of Figure 8.2.3a is shown in Figure 9.2.3. The input and the output circuits are no longer isolated from one another

FIGURE 9.2.3
Low-frequency, small-signal equivalent circuit of common-emitter amplifier.
because of r_{π}. The poles can be determined using the exact OCSCTC method (Section ST8.9, Chapter 8), but since one pole is intentionally made dominant, the simpler SCTC method can be applied. According to this method, the resistance across one capacitor at a time is determined, with the other capacitors short circuited and $V_{s r c}(s)$ set to zero.

When C_{E}, is short-circuited, the input circuit is isolated from the output. The resistance appearing across $C_{P I}$, with $V_{s r c}=O$, is $R_{P I}=R_{s r c}+R_{B} \| r_{\pi}$. With CPI and C_{E} short circuited, the resistance appearing across $C_{P O}$ is $R_{P O}=R_{L}+R_{C} \| r_{o}$. With $C_{P I}$ and $C_{P O}$ shortcircuited, the resistance $R_{C E}$ across C_{E} can be determined from Figure 9.2.4, where $i_{b}^{\prime}=-i_{b}$ and the polarity of the current source is reversed accordingly. If a test source v_{x} is applied in place of $C_{E}, i_{x}=\frac{v_{x}}{R_{E}}+\frac{(\beta+1) v_{x}}{r_{\pi}+R_{B} \| R_{s r c}}+i$, and $v_{x}=r_{o} i+\left(\beta i_{b}^{\prime}+i\right)\left(R_{C} \| R_{L}\right)$. Solving for v_{x} and simplifying,

$$
\begin{equation*}
R_{C E}=R_{E}\left\|\left(r_{o}+R_{C} \| R_{L}\right)\right\|\left(\frac{\left(r_{\pi}+R_{B} \| R_{s r c}\right)\left(r_{o}+R_{C} \| R_{L}\right.}{(\beta+1) r_{o}+R_{C} \| R_{L}}\right) \tag{9.2.5}
\end{equation*}
$$

FIGURE 9.2.4
Resistance appearing across the emitter-resistor bypass capacitor.

The 3-dB cutoff frequency $\omega_{c l}$ is then:

$$
\begin{equation*}
\omega_{c l} \cong \frac{1}{C_{P I} R_{P I}}+\frac{1}{C_{P O} R_{P O}}+\frac{1}{C_{E} R_{C E}} \tag{9.2.6}
\end{equation*}
$$

Each of the terms in Equation 9.2.6 is the contribution of the respective time constant. The pole due to C_{E} can be made dominant, that is slightly less than $\omega_{c l}$, and the other two poles placed at the zero due to C_{E}, as illustrated by the following Example.

Design and Simulation Example 9.2.2 Frequency Response of RC-Coupled CE Amplifier

It is required to simulate the frequency response of a CE amplifier in the circuit of Figure 8.2.3a using a 2 N 2222 transistor with $V_{C C}=12 \mathrm{~V}, R_{s r c}=1 \mathrm{k} \Omega, R_{1}=24 \mathrm{k} \Omega, R_{2}=12 \mathrm{k} \Omega$, $R_{C}=2.7 \mathrm{k} \Omega, R_{E}=2 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$.

Simulation

From the dc bias point of the simulation, the quiescent values are $I_{B}=10 \mu \mathrm{~A}, I_{C}=1.62 \mathrm{~mA}$, $I_{E}=1.63 \mathrm{~mA}, V_{B}=3.96 \mathrm{~V}, V_{C}=7.62 \mathrm{~V}, V_{E}=3.26 \mathrm{~V}$, which gives $g_{m}=1.62 / 0.026=64.8$ mA / V and $\beta_{F}=162$. The measured small-signal β is 177 . Using this value, $r_{\pi}=2.73 \mathrm{k} \Omega$. Figure 9.2.5 shows the output characteristics with the dc and ac load lines. The quiescent operating point is the intersection of the $I_{B}=10 \mu \mathrm{~A}$ characteristic with the dc load line having a slope of $1 /\left(R_{C}+R_{E}\right)=1 / 4.7 \mathrm{k} \Omega$. The slope of the $10 \mu \mathrm{~A}$ characteristic gives $r_{o}=61.5 \mathrm{k} \Omega$.

FIGURE 9.2.5
Figure for Design and Simulation Example 9.2.2.

FIGURE 9.2.6
Figure for Design and Simulation Example 9.2.2.
In the midband region, all reactances can be neglected, and the ac load line has a slope of $1 /\left(R_{C} \| R_{L}\right)=1 / 2.13 \mathrm{k} \Omega$. The maximum value of $v_{C E}$ is reduced to about 7.84 V because of the smaller resistance of the ac load line. From Equation 8.2.10, Chapter 8, and using TEC to allow for R_{B} gives $A_{v}^{\prime}=-\frac{177(61.5\|2.7\| 10)}{2.73+1 \| 8} \times \frac{8}{9}=89.3$. The measured gain at 10 kHz is 85.5 .

Suppose a low 3-dB cutoff frequency of less than 100 Hz is desired. From Equation 9.2.5, $R_{C E} \cong R_{E} \|\left\lfloor\left(r_{\pi}+R_{B g}\right) /(\beta+1)\right\rfloor=20.8 \Omega$. Hence, $C_{E}=1 /(2 \pi \times 100 \times 20.8)=76.5 \mu \mathrm{~F}$, say $80 \mu \mathrm{~F}$. The zero is at $1 / 2 \pi C_{E} R_{E}=1 /\left(2 \pi \times 80 \times 10^{-6} \times 2 \times 10^{3}\right) \cong 1 \mathrm{~Hz}$. Placing the poles due to $C_{p l}$ and $C_{p O}$ at this frequency gives $C_{p l}=1 /\left[2 \pi(1+8 \| 2.73) \times 10^{3}\right] \cong 50 \mu \mathrm{~F}$, and $C_{p o}=1 /[2 \pi(10+2.7 \| 61.5)] \cong 13 \mu \mathrm{~F}$. The resulting $f_{c l}$, from Equation 9.2.6, is about 98 Hz . Note that for the CE amplifier, the zero due to C_{E} is much less than the pole. A smaller $C_{P I}$ is obtained if the pole due to this capacitor is placed at say 10 Hz .
The amplifier frequency response over the range 0.1 Hz to 100 MHz is shown in Figure 9.2.6. The corner frequencies are approximately at 93 Hz to 400 kHz . The reduced response at high frequencies is of course due to the internal capacitances of the transistor.

The CB/CG and CC/CD amplifiers are easier to analyze as they generally have only a coupling capacitor at the input and another at the output. They are left to problems at the end of this chapter.

9.3 Feedback Amplifiers

In cascaded amplifier stages, it is advantageous to use negative feedback to trade gain for some desirable characteristics of the amplifier, such as modified input or output resistances, reduced distortion, and greater bandwidth, as discussed in Sections 7.3 and 7.4, Chapter 7.

The four basic, negative feedback configurations were introduced in Section 7.3 as two-port circuit implementations of voltage, current, transresistance, and transconductance amplifiers under idealized conditions. In considering practical transistor feedback amplifiers, account should be taken of finite gain, finite load, and the loading effects of the feedback circuit at the input and output of the amplifier. We will still assume, however, negligible reverse transmission in the amplifier and negligible forward transmission in the feedback circuit.

Series-Shunt Feedback

Series-shunt feedback is most conveniently discussed in terms of the h parameters, because the h-parameter equivalent circuit (Figure 7.1.2c, Chapter 7) has series-connected elements at the input and parallel-connected elements at the output. Figure 9.3.1 illustrates a general series-shunt feedback configuration in terms of the h-parameter equivalent circuit of Figure 7.1.2c, where the input ports of both the amplifier and feedback circuits are on the LHS and the output ports are on the RHS. $h_{21 f}$, representing forward transmission through the feedback circuit, is neglected compared to the much larger forward transmission through the amplifier. $h_{12 a}$, representing reverse transmission through the amplifier is also neglected. Some reverse transmission can occur in the CE amplifier, particularly at high frequencies, through r_{μ} and C_{μ}, and in the CS amplifier through $C_{g d}$. However, such transmission is practically absent in the cascode amplifier.

It should be noted that with the assigned positive directions of $I_{i}, h_{21 a} I_{i}$, and V_{o} in Figure 9.3.1, the feedback is in fact positive. Thus, if V_{o} decreases, the feedback signal $h_{12 f} V_{o}$ decreases, which increases I_{i} and $h_{21 a} I_{i}$. But the increase in $h_{21 a} I_{i}$ further decreases V_{o}. That the feedback is positive in Figure 9.3 .1 should not be surprising since the assigned positive directions are those of two-port circuits and are not intended to give negative feedback. To maintain consistency with the polarity of the feedback signal at the input and with the polarity of the current source in the standard case (Figure 7.3.1, Chapter 7), we

FIGURE 9.3.1
Two-port circuit representation of series-shunt feedback configuration.

FIGURE 9.3.2
Two-port circuit representation of series-shunt negative feedback configuration: (a) the input impedance and the output admittance of feedback circuit moved to amplifier; and (b) standard form.
will reverse the polarity of the source $h_{21 a} I_{i}$, as in Figure 9.3.2a. $h_{11 f}$ and $h_{22 f}$ are moved to the amplifier circuit so that (Figure 9.3.2b):

$$
\begin{equation*}
R_{i a}=R_{s r c}+h_{11 \mathrm{a}}+h_{11 f}, \quad R_{o a}=1 /\left(h_{22 a}+h_{22 f}+G_{L}\right) \tag{9.3.1}
\end{equation*}
$$

The dependent current source at the output can then be transformed to a voltage source, as in Figure 9.3.2b, where $A_{v a} V_{i}=h_{21 a} R_{o a} I_{i}=h_{21 a}\left(R_{o a} / R_{i a}\right) V_{i}$, which gives:

$$
\begin{equation*}
A_{v a}=h_{21 a} \frac{R_{o a}}{R_{i a}} \tag{9.3.2}
\end{equation*}
$$

With the amplifier proper modified as shown, the series-shunt feedback amplifier is now in the standard form of Figure 7.3.1, Chapter 7. The feedback circuit does not load the
output, and the feedback signal at the input is applied through a voltage-controlled dependent voltage source. Moreover, because the source and load resistances have been included within the modified amplifier, the feedback amplifier is effectively open-circuited at the output and is supplied at the input from an ideal source of zero source impedance. The objective of the aforementioned procedure is:

Concept: When the feedback amplifier is represented in standard form, the gain, input resistance, and output resistance of the feedback amplifier can be determined quite simply from the corresponding expressions for the standard feedback amplifier.

The signal-flow diagram of the series-shunt feedback amplifier of Figure 9.3.2b is illustrated in Figure 9.3.3. From Equations 7.3.1, 7.3.3, and 7.3.4, Chapter 7,

$$
\begin{equation*}
A_{v f a}=\frac{V_{o}}{V_{s r c}}=\frac{A_{v a}}{1+\beta_{f} A_{v a}}, \quad R_{i f a}=R_{i a}\left(1+\beta_{f} A_{v a}\right), \quad R_{o f a}=\frac{R_{o a}}{1+\beta_{f} A_{v a}} \tag{9.3.3}
\end{equation*}
$$

where the a, f, and $f a$ subscripts refer to the modified amplifier, feedback circuit, and feedback amplifier, respectively.

The aforementioned procedure will be illustrated by the noninverting op-amp circuit (Figure 9.3.4), taking into account the differential input resistance $R_{i d}$, the output resistance R_{o} of the amplifier, and the finite gain A_{v}. Note that the direction of I_{o} is reversed in this case, as is usual in op amps. The analysis proceeds in a number of steps based on the basic circuit of Figure 9.3.1.

1. To find $h_{11 f}$, as defined in Figure 7.1.2c, Chapter 7, we set the source $h_{12 f} V_{o}$ to zero by short-circuiting the output for the ac signal and determining the resistance of the feedback circuit at the input side. From Figure 9.3.4, this is $\left(R_{r} \| R_{f}\right)$ and

FIGURE 9.3.3
Signal-flow diagram of series-shunt feedback amplifier.

FIGURE 9.3.4
Nonideal, noninverting op-amp circuit.
represents the loading effect of the feedback circuit at the amplifier input. Because of the series connection at the input,

$$
\begin{equation*}
R_{i a}=R_{s r c}+R_{i d}+\left(R_{r} \| R_{f}\right) \tag{9.3.4}
\end{equation*}
$$

2. To find $h_{22 f}$, as defined in Figure 7.1.2c, Chapter 7, we set the source $h_{21 a} I_{i}$ to zero by open-circuiting the input for the ac signal $\left(I_{i}=0\right)$ and determining the resistance of the feedback circuit at the output side. From Figure 9.3.4, this is $\left(R_{r}+R_{f}\right)$ and represents the loading effect of the feedback circuit at the amplifier output. Because of the shunt connection at the output,

$$
\begin{equation*}
R_{o a}=R_{o}\left\|R_{L}\right\|\left(R_{r}+R_{f}\right) \tag{9.3.5}
\end{equation*}
$$

3. To find $h_{12 f}$, as defined in Figure 7.1.2c, Chapter 7, we apply a voltage V_{o} at the output of the feedback circuit, open-circuit the input, and determine the opencircuit voltage at the input of the feedback circuit. From Figure 9.3.4, $h_{12 f}$ is the feedback factor β_{f} given by:

$$
\begin{equation*}
\beta_{f}=\frac{R_{r}}{R_{r}+R_{f}} \tag{9.3.6}
\end{equation*}
$$

4. The feedback amplifier becomes as in Figure 9.3.5. The modified amplifier is the circuit of Figure 9.3.5 with the feedback source $\beta_{f} V_{o}$ set to zero (Figure 9.3.2b). The forward transmission $A_{v a}$ of the modified amplifier is $V_{o} / V_{s r c}$ in Figure 9.3.5 with $\beta_{f} V_{o}=0$. It follows from this figure that $\varepsilon=V_{s r c}\left(R_{i d} / R_{i a}\right)$ and $V_{o}=A_{v} \varepsilon \frac{R_{L} \|\left(R_{f}+R_{r}\right)}{R_{o}+R_{L} \|\left(R_{f}+R_{r}\right)}=A_{v} \varepsilon \frac{R_{o a}}{R_{o}}$. Substituting for ε,

$$
\begin{equation*}
\frac{V_{o}}{V_{s r c}}=A_{v a}=A_{v} \frac{R_{i d} R_{o a}}{R_{o} R_{i a}} \tag{9.3.7}
\end{equation*}
$$

5. Relations 9.3.3 are used to determine $A_{v f a}, R_{i f a}$ and $R_{o f a}$.

FIGURE 9.3.5
The circuit of Figure 9.3.4 in standard form of a series-shunt feedback amplifier.

Note that Relations 9.3.3 apply to $R_{s r c}$ and R_{L} included as part of the modified amplifier (Figure 9.3.2b). The input resistance $R_{i f a}^{\prime}$ of the feedback amplifier, not including $R_{s r c}$, is:

$$
\begin{equation*}
R_{i f a}^{\prime}=R_{i f a}-R_{s r c} \tag{9.3.8}
\end{equation*}
$$

Similarly, the output resistance $R_{o f a}^{\prime}$ of the feedback amplifier seen by the load R_{L} is such that $R_{o f a}=R_{o f a}^{\prime}| | R_{L}$. Hence,

$$
\begin{equation*}
\frac{1}{R_{o f a}^{\prime}}=\frac{1}{R_{o f a}}-\frac{1}{R_{L}} \tag{9.3.9}
\end{equation*}
$$

Exercise 9.3.1

An op amp in the noninverting configuration has $A_{v}=5,000, R_{s r c}=10 \mathrm{k} \Omega, R_{i d}=100 \mathrm{k} \Omega$, $R_{o}=1 \mathrm{k} \Omega, R_{L}=2 \mathrm{k} \Omega, R_{r}=5 \mathrm{k} \Omega$, and $R_{f}=20 \mathrm{k} \Omega$. Determine $A_{v f a}, R_{i f a}^{\prime}$, and $R_{o f a}^{\prime}$.
Answers: $A_{f a}=5 ; R_{i f a}^{\prime}=64.9 \mathrm{M} \Omega$; and $R_{o f a}^{\prime}=1.14 \Omega$.

The procedure just outlined can be generalized to apply to the other three feedback configurations, as summarized in Table 9.3.1. The second column identifies the circuit variable at the input or output that is common to both the amplifier and feedback circuit. Evidently, current is the common variable in a series connection, and voltage is the common variable in a shunt connection. The third column emphasizes that when the feedback connection at the input (or output) is series type, the resistances of the source (or load), amplifier, and feedback circuit are added. Similarly, when the feedback connection at the input (or output) is shunt type, the conductances of the source (or load), amplifier, and feedback circuit are added. The fourth column specifies the procedure for determining the loading effect of the feedback circuit at the input. In the case of series-shunt feedback, the resistance at the input of the feedback circuit is determined with the common circuit variable at the output (which is voltage) set to zero, that is, with

TABLE 9.3.1
Determining the Loading Effect of the Feedback Circuit and the Feedback Factor

Connection at Input or Output	Common Circuit Variable at Input or Output	Input or Output Resistance at Amplifier Input or Output	To Determine Loading Effect of Feedback Circuit at Input	To Determine Loading Effect of Feedback Circuit at Output	To Derive the Feedback Factor
Series	Current (factual output)	Resistances add	Determine resistance at input of feedback circuit with common circuit variable at output set to zero	Determine resistance at output of feedback circuit with common circuit variable at input set to zero	With the common circuit variable at input set to zero, determine the other circuit variable at input of feedback circuit when the common circuit variable at output is applied
Shunt	Voltage (factual output)	Conductances add			

the output short circuited. The fifth column specifies the procedure for determining the loading effect of the feedback circuit at the output. In the case of series-shunt feedback, the resistance at the output of the feedback circuit is determined with the common circuit variable at the input (which is current) set to zero, that is, with the input open circuited. The last column specifies the procedure for determining the feedback factor. In the case of series-shunt feedback, the input is open-circuited and the voltage at the input of the feedback circuit is determined when a voltage is applied at the output of this circuit. The following should be noted:

1. Open-circuiting or short-circuiting the input or output refers to the ac signal only, without disturbing the dc bias conditions. A large capacitor can be used for an ac short circuit that does not affect dc voltages on either side of the capacitor, whereas a large inductor can be used for an ac open circuit that does not affect the dc current through the inductor.
2. If the feedback at the output is series, the factual output is the current that is common to both the amplifier and the feedback circuit and is the current used in feedback analysis. The designated output, on the other hand, could be another current or voltage, depending on the circuit. In a CE/CS amplifier with an emitter/ source resistor, for example, the feedback is series at the output and the factual output is current, but the designated output is the voltage at the collector/drain. After the feedback analysis is performed using the factual output variable, the voltage gain or output resistance at the designated output is determined, as illustrated in Example 9.3.2. Similarly, if the feedback at the output is shunt, the factual output is voltage.
3. When determining the feedback factor, it must be kept in mind that the assigned positive direction of current is inward at both the input and output terminals of the feedback circuit, in accordance with the convention for two-port circuits.

It should be noted that the preceding analysis is based on the assumptions of negligible reverse transmission in the amplifier and negligible forward transmission in the feedback network. These can be ascertained by comparing the relevant two-port parameters, which in all cases are the " 12 " parameter of the amplifier compared to that of the feedback circuit, and the " 21 " parameter of the feedback circuit compared to that of the amplifier. If these assumptions are not justified, the more general method based on two-port circuit theory should be used.

Example 9.3.1 Series-Shunt Feedback of Transistor Amplifier

Figure 9.3.6a is a variation on the "series-series triple" (Example 9.3.2) in which two transistor stages Q_{1} and Q_{2} are followed by an emitter follower Q_{3}. Part of the output signal v_{o} is fed back via R_{f} to the emitter of Q_{1}. That the feedback is negative can be readily ascertained. An increase in $v_{b e 1}$ through an increase in $v_{\text {src }}$, increases the collector current of Q_{1}, decreases that of Q_{2}, and increases v_{o}. The feedback increases $v_{\mathrm{e} 1}$, which opposes the increase in $v_{b e 1}$. Note that the feedback circuit is not connected directly to the input terminal, that is, Q_{1} base. However, it is connected to the emitter of Q_{1} and is therefore still in the base-emitter input circuit of Q_{1} and subtracts from the applied input. This is similar to applying the source input to the noninverting input of an op amp and the feedback signal to the inverting input.

FIGURE 9.3.6
Figure for Example 9.3.1. (a) Feedback amplifier circuit; (b) modified amplifier and feedback source.

It is required to determine $A_{f a}, R_{\text {ifa }}$, and $R_{\text {ofa }}$, assuming that $I_{C 1}=0.6 \mathrm{~mA}, I_{C 2}=1 \mathrm{~mA}, I_{C 3}=0.8$ mA and that $\beta_{f}=100, R_{E 1}=100 \Omega, R_{C 1}=9 \mathrm{k} \Omega, R_{C 2}=5 \mathrm{k} \Omega, R_{L}=3 \mathrm{k} \Omega, R_{f}=640 \Omega$, and $R_{s r C}=0$. Circuit variables are lowercase with small subscripts to emphasize small-signal operation.

Solution

The procedure outlined in Table 9.3.1 is applied to Figure 9.3.6a. To determine the loading effect of the feedback circuit at the input of the amplifier, we short circuit the output for ac signals. The input resistance of the feedback circuit, at Q_{1} emitter, is $R_{E 1} \| R_{f}$. To determine the loading effect at the output of the amplifier, we open circuit the input for ac signals. The resistance looking into the output of the feedback circuit, at Q_{3} emitter, is $R_{E 1}+R_{f}$. To determine the feedback factor, we open circuit the input as before and determine the voltage at the input of the feedback circuit when v_{o} is applied. This voltage is $\beta_{f} v_{o}=v_{o} R_{E 1} /$ ($R_{E 1}+R_{f}$), which gives $\beta_{f}=R_{E 1} /\left(R_{E 1}+R_{f}\right)$. Figure 9.3 .6b shows the modified amplifier circuit and the feedback voltage source $v_{o} R_{E 1} /\left(R_{E 1}+R_{f}\right)$. As ac operation is assumed, the $V_{C C}$ line is shorted to ground.
The small-signal equivalent circuit of the modified amplifier is shown in Figure 9.3.7, neglecting r_{o}, which is large compared to the resistance in series with the collectors of Q_{1} and Q_{2}.

FIGURE 9.3.7
Figure for Example 9.3.1.

From the values given, $g_{m 1}=0.6 / 0.026=23 \mathrm{~mA} / V, r_{\pi 1}=4.33 \mathrm{k} \Omega, g_{m 2}=1 / 0.026=$ $38.5 \mathrm{~mA} / V, r_{\pi 2}=2.6 \mathrm{k} \Omega, g_{m 3}=0.8 / 0.026=31 \mathrm{~mA} / V, r_{\pi 3}=3.25 \mathrm{k} \Omega, R_{E 1} \| R_{f}=86.5 \Omega$, $r_{\pi 2} \| R_{C 1}=2 \mathrm{k} \Omega$, and $\left(R_{E}+R_{f}\right)\left|\mid R_{L}=594 \Omega\right.$. The forward transmission through the amplifier $A=v_{o} / v_{i}$ is calculated from the voltage gains of the three stages. For the first stage, $v_{\pi 2} / v_{i}=$ $-100 \times 2 /\left[4.33+101 \times 86.5 \times 10^{-3}\right]=-15.3$ (Equation 8.2.46, Chapter 8). For the second stage we consider the voltage across $R_{C 2}$ with Q_{3} disconnected. This gain is simply $-g_{m 2} R_{C 2}=$ $38.5 \times 5=-192.5$. The voltage at this collector, with Q_{3} disconnected, is $192.5 \times 15.3 v_{i}$. As far as Q_{3} is concerned, this is the open-circuit voltage of a source having a source resistance of $5 \mathrm{k} \Omega$. From Equation 8.2.24, Chapter 8, the voltage gain from the source to emitter of the CC configuration is $101 \times 0.594 /(5+3.25+101 \times 0.594)=0.88$. Alternatively, we can calculate the voltage at Q_{2} collector to be $v_{c 2}=-g_{m 2} v_{\pi 2} R_{C 2} \|\left[r_{\pi 3}+(\beta+1) R_{E}^{\prime}\right]$, where $R_{E}^{\prime}=R_{L} \|$ $\left(R_{E 1}+R_{\mathrm{f}}\right)$, and $v_{o}=\frac{(\beta+1) R_{E}^{\prime}}{r_{\pi 3}+(\beta+1) R_{E}^{\prime}} v_{C 2}$, which gives $v_{o}=-g_{m 2} \frac{R_{C 2}(\beta+1) R_{E}^{\prime}}{R_{C 2}+r_{\pi 3}+(\beta+1) R_{E}^{\prime}} v_{\pi 2}$, as before.

The forward transmission is therefore $192.5 \times 15.3 \times 0.88=2590 . \beta_{f}=100 / 740=0.135$, so that $1+\beta_{f} A_{\text {gfa }}=350$. It follows $A_{\text {gfa }}=2590 / 350=7.4$. The input resistance of the modified amplifier is $4.33+101 \times 0.0865=13.1 \mathrm{k} \Omega$. Hence, $R_{i f a}=13.1 \times 350=4.6 \mathrm{M} \Omega$. Since $R_{s r c}=0, R_{\text {ifa }}^{\prime}=R_{\text {ifa }}$. The output resistance of the CC stage, with a source resistance of $5 \mathrm{k} \Omega$ is $0.594\left|\mid[(3.25+5) / 101] \equiv 72 \Omega\right.$. This gives $R_{\text {ofa }}=72 / 350=0.21 \Omega$. From Equation 9.3.9, $R_{\text {outfa }}^{\prime} \cong R_{\text {outfa }}$.

Series-Series Feedback

Series-series feedback is most conveniently discussed in terms of the z parameters. Figure 9.3.8 illustrates a general series-series feedback configuration based on the z-parameter equivalent circuit of Figure 7.1.2a, Chapter 7, ignoring $z_{12 a}$ and $z_{21 f}$. As in the case of series-shunt feedback, the feedback is positive. Thus, if I_{o} decreases, the feedback signal $z_{12 f} I_{o}$ decreases, which increases I_{i} and $z_{21 a} I_{i}$. But the increase in $z_{21 a} I_{i}$ further decreases I_{0}. To maintain consistency with the polarity of the feedback signal at the input

FIGURE 9.3.8
Two-port circuit representation of series-series feedback configuration.

FIGURE 9.3.9
Two-port circuit representation of series-series negative feedback configuration: (a) input and output impedances of feedback circuit moved to amplifier; (b) standard form.
and with the polarity of the current source in the ideal case (Figure 7.3.5, Chapter 7), we will reverse the polarity of the source $z_{21 a} I_{i}$.

The procedure of Table 9.3.1 applies to the derivation of $z_{11 f}$ and $z_{22 f}$ from Figure 9.3.8. Thus, because of the series connection, current is the common variable at the input and output. If the output is open-circuited, $z_{12 f} I_{o}=0$, and the resistance seen at the input of the feedback circuit is $z_{11 \mathrm{f}}$. If the input is open-circuited, $z_{21 a} I_{i}=0$, and the resistance seen at the output of the feedback circuit is $z_{22 f}$. With $I_{i}=0$, and if a current I_{x} is applied in the output circuit, the voltage measured at the input of the feedback circuit is $z_{12 f} I_{x}$. The feedback factor is $z_{12 f}=\beta_{f}$.

Figure 9.3.9a depicts the feedback amplifier with the polarity of the source $z_{21 a} I_{i}$ reversed and with $z_{11 f}$ and $z_{22 f}$ moved to the amplifier circuit to give:

$$
\begin{equation*}
R_{i a}=R_{s r c}+z_{11 \mathrm{a}}+z_{11 f}, \quad R_{o a}=z_{22 a}+z_{22 f}+R_{L} \tag{9.3.10}
\end{equation*}
$$

The voltage source $z_{21 a} I_{i}$ is transformed to a current source in Figure 9.3.39b and expressed as $A_{g a} V_{i}$, where and $A_{g a} V_{i}=\left(z_{21 a} / R_{o a}\right) I_{i}=\left(z_{21 a} / R_{o a}\right)\left(V_{i} / R_{i a}\right)$, so that,

$$
\begin{equation*}
A_{g a}=\frac{I_{o}}{V_{i}}=\frac{z_{21 a}}{R_{i a} R_{o a}} \tag{9.3.11}
\end{equation*}
$$

The amplifier of Figure 9.3.9 is now in the standard form of Figure 7.3.5, Chapter 7, the signal-flow diagram being as in Figure 9.3.10, Equations 7.3.6, 7.3.8, and 7.3.9, Chapter 7, of the standard series-series feedback amplifier can then be applied to give:

$$
\begin{equation*}
A_{g f a}=\frac{I_{o}}{V_{s r c}}=\frac{A_{g a}}{1+\beta_{f} A_{g a}}, \quad R_{i f a}=R_{i a}\left(1+\beta_{f} A_{g a}\right), \quad R_{o f a}=R_{o a}\left(1+\beta_{f} A_{g a}\right) \tag{9.3.12}
\end{equation*}
$$

FIGURE 9.3.10
Signal-flow diagram of series-series feedback amplifier.

The input resistance $R_{i f a}^{\prime}$ of the feedback amplifier, not including $R_{s r c}$, is given by Equation 9.3.8. The output resistance $R_{o f a}^{\prime}$ of the feedback amplifier, not including R_{L}, is:

$$
\begin{equation*}
R_{o f a}^{\prime}=R_{o f a}-R_{L} \tag{9.3.13}
\end{equation*}
$$

Example 9.3.2 Series-Series Feedback of Transistor Amplifier

Figure 9.3.11 shows the "series-series triple" with the output taken from Q_{3} collector. This is the circuit used in the MC1553 wideband amplifier having a bandwidth of 50 MHz and a gain of 50 . In the MC1553, the actual output is taken from an emitter follower stage that follows Q_{3}. It is required to determine $A_{\text {gfa }}, R_{\text {ifa }}$, and $R_{\text {ofa }}$. Assume that the transistors are biased so that $I_{C 1}=0.6 \mathrm{~mA}, I_{C 2}=1 \mathrm{~mA}$, and $I_{C 3}=4 \mathrm{~mA}$ and that $\beta=100, R_{E 1}=100 \Omega, R_{C 1}=9 \mathrm{k} \Omega$, $R_{C 2}=5 \mathrm{k} \Omega, R_{C 3}=600 \Omega, R_{E 3}=100 \Omega, R_{f}=640 \Omega$, and $R_{s r c}=0$.

Solution

As in Example 9.3.1, the feedback signal is applied to the emitter of Q_{1}. It is derived from the voltage across $R_{E 3}$, which is directly proportional to i_{o}. This makes the feedback series-type at the output, $R_{E 3}$ being part of the feedback circuit. However, the designated output is v_{o} taken from Q_{3} collector. The analysis as a feedback system is therefore based on the factual output i_{o}. After this analysis is made, the designated output is considered.

To determine the loading effect of the feedback circuit at the input of the amplifier, we open-circuit the output for ac signals at, for example, $X X^{\prime}$. The resistance appearing at the input of the feedback circuit, at the emitter of Q_{1}, due to the feedback circuit is $R_{E 1} \|\left(R_{f}+R_{E 3}\right)$. To determine the loading effect at the output of the amplifier, we open-circuit the input for ac signals. The resistance appearing at the output of the feedback circuit, at the emitter of Q_{3}, due to the feedback circuit is $R_{E 3} \|\left(R_{f}+R_{E 1}\right)$. To determine the feedback factor, we open circuit the input for ac signals and determine the voltage at the input when i_{o} is applied at the output of the feedback circuit. The voltage at the input of the feedback circuit is $\beta_{f} i_{o}=i_{o} R_{E 1} R_{E 3} /\left(R_{E 1}+R_{f}+R_{E 3}\right)$, so the feedback factor is $\beta_{f}=R_{E 1} R_{E 3} /\left(R_{E 1}+R_{f}+R_{E 3}\right)$.

The small-signal equivalent circuit of the modified amplifier is shown in Figure 9.3.12 neglecting r_{o} and assuming that $R_{s r c}=0$. From the values given, $g_{m 1}=0.6 / 0.026=23 \mathrm{~mA} / \mathrm{V}$,

FIGURE 9.3.11
Figure for Example 9.3.2.

FIGURE 9.3.12
Figure for Example 9.3.2.
$r_{\pi 1}=4.33 \mathrm{k} \Omega, g_{m 2}=1 / 0.026=38.5 \mathrm{~mA} / \mathrm{V}, r_{\pi 2}=2.6 \mathrm{k} \Omega, g_{m 3}=4 / 0.026=154 \mathrm{~mA} / \mathrm{V}$, $r_{\mathrm{e} 3}=6.44 \Omega, R_{E 1}\left\|\left(R_{f}+R_{E 3}\right)=R_{E 3}\right\|\left(R_{f}+R_{E 1}\right)=88 \Omega$, and $r_{\pi 2} \| R_{C 1}=2 \mathrm{k} \Omega$. For the first stage, $v_{\pi 2} / v_{i}=-100 \times 2 /\left(4.33+101 \times 88 \times 10^{-3}\right)=-15.1$ (Equation 8.2.46, Chapter 8). The resistance between Q_{3} base and ground is $(6.44+88) \times 101 \equiv 9.54 \mathrm{k} \Omega$. The collector load of Q_{2} is $9.54 \| 5=3.28 \mathrm{k} \Omega$, and the gain of this stage is $-38.5 \times 3.28=-126$. Hence, the voltage at Q_{3} base $v_{b 3}=15.1 \times 126 v_{i}$. For the last stage, $i_{o}=v_{b 3} /\left[r_{e 3}+R_{E 3} \|\left(R_{f}+R_{E 1}\right)\right]=$ $v_{b 3} /(6.44+88)=v_{b 3} / 94.4 \mathrm{~A}$. It follows that the forward transmission is $15.1 \times$ $126 / 94.4=20.2 \mathrm{~S}$.

The feedback factor $\beta_{f}=100 \times 100 / 840=11.9 \Omega$. The gain with feedback is $A_{f a}=20.2 /(1+11.9 \times 20.2)=20.2 / 241.4=83.7 \mathrm{mS}$. The voltage gain, assuming $\beta=100$, is $-\alpha_{3} R_{C 3} A_{f a}=-49.7$.

The input resistance of the modified amplifier is $R_{i}=4.33+101 \times 88 \times 10^{-3}=13.22 \mathrm{k} \Omega$. Hence, $R_{i f a}=13.22 \times 241.4=3.19 \mathrm{M} \Omega$. Since $R_{s r c}=0, R_{i f a}^{\prime}=R_{i f a}$. To determine the output resistance of the modified amplifier, we break the connection at $X X^{\prime}$ and determine the resistance $R_{\text {out }}$ between these points, with zero input, so that $g_{m 2} v_{\pi 2}=0$. Because r_{o} is neglected, $R_{C 3}$ does not contribute to $R_{\text {out }}$. It is seen from the equivalent circuit that $R_{o a}=R_{E 3} \|\left(R_{f}+R_{E 1}\right)+r_{e 3}+R_{C 2} /(\beta+1)=88+6.44+5 \times 10^{3} / 101=144 \Omega$, where the resistance in the base circuit has been referred to the emitter. Hence, $R_{\text {ofa }}=144 \times 241.4=34.7 \mathrm{k} \Omega$. To determine the resistance looking into Q_{3} collector, we have to assume a certain value for r_{o}, say $25 \mathrm{k} \Omega$. Equation 8.2.38, Chapter 8 , can then be applied to the modified amplifier to determine the resistance looking into Q_{3} collector with zero input. Substituting $R_{s r c}^{\prime}=5 \| 25=4.2 \mathrm{k} \Omega, r_{\pi 3}=6.44 \times 101 \equiv 0.65 \mathrm{k} \Omega$, and $R_{E}=0.088 \mathrm{k} \Omega$ gives $25+\frac{0.088}{0.65+4.2+0.088}[0.65+4.2+(100 \times 25)]=69.64 \mathrm{k} \Omega$. Multiplying this by (1 - loop gain), because the feedback tends to keep the collector current constant, gives $69.64 \times 241.4=16.6 \mathrm{M} \Omega$. The total resistance between Q_{3} collector and ground is this resistance in parallel with 600Ω, which is practically 600Ω. It may be noted that this is the source resistance for the emitter follower at the output of the MC1553. This stage has an emitter resistor of $3 \mathrm{k} \Omega$ and a collector current of 3.2 mA , so that $r_{\mathrm{e} 4}=8 \Omega$. From Equation 8.2.31, Chapter 8 the resistance looking into the emitter of the emitter follower is $8+\frac{600}{101}=13.9 \Omega$. When paralleled with the $3 \mathrm{k} \Omega$ resistor, the output resistance of the MC1553 is nearly 13.9Ω.

Having determined $i_{O}, v_{O}=-R_{C 3} \alpha_{3} i_{o}$.

Exercise 9.3.2

The basic amplifier in a series-series feedback configuration has a short-circuit current gain $\left(-z_{21 a} / z_{22 a}\right)$ of -4000 , an input resistance of $2 \mathrm{k} \Omega$, and an output resistance of $1 \mathrm{k} \Omega$. The feedback circuit has an input resistance of $1 \mathrm{k} \Omega$, with port 2 open-circuited, an output resistance of $1 \mathrm{k} \Omega$, and a feedback factor of $0.1 \mathrm{~V} / \mathrm{mA}$. The source has a resistance of $2 \mathrm{k} \Omega$ and the load is a $4 \mathrm{k} \Omega$ resistor. Determine $A_{g a}, A_{g f a}, R_{i f a}$, and $R_{\text {ofa }}$.

Answers: $A_{g a}=133 \mathrm{~mA} / \mathrm{V} ; A_{g f a}=9.3 \mathrm{~mA} / \mathrm{V} ; R_{i f a}=71.5 \mathrm{k} \Omega ; R_{o f a}=85.8 \mathrm{k} \Omega$.

Shunt-Series Feedback

Shunt-series feedback is most conveniently discussed in terms of the g parameters. Figure 9.3.13 illustrates a general shunt-series feedback configuration based on the g-parameter equivalent circuit of Figure 7.1.2d, ignoring $g_{12 a}$ and $g_{21 f}$. As discussed in connection with series-series feedback, polarities in Figure 9.3.13 are such that the feedback is in fact positive. Thus, if I_{o} decreases, the feedback current $g_{12 f} I_{o}$ decreases. More current is diverted to $g_{11 a}$, which increases V_{i} and $g_{21 a} V_{i}$. But the increase in $g_{21 a} V_{i}$ further decreases I_{o}. To maintain consistency with the polarity of the feedback signal at the input and with the polarity of the current source in the standard case (Figure 7.3.7, Chapter 7), we will reverse the sign of the source $g_{21 a} V_{i}$.

It can be readily verified that the procedure of Table 9.3.1 applies to the derivation of $g_{11 f}$ and $g_{22 f}$ from Figure 9.3.13. Thus, because of the series connection at the output, current is the common variable at the output. If the output is open-circuited, $g_{12 f} I_{o}=0$, and the conductance seen at the input of the feedback circuit is $g_{11 \mathrm{f}}$. Voltage is the common variable at the input. If the input is short-circuited, $g_{21 a} V_{i}=0$, and the resistance seen at the output of the feedback circuit is $g_{22 f}$. With $V_{i}=0$, and if a current I_{x} is applied in the output circuit, the input current of the feedback circuit is $g_{21 f} I_{x}$. The feedback factor is $g_{12 f}=\beta_{f}$.

Figure 9.3.14a depicts the feedback amplifier with the polarity of the source $g_{21 a} V_{i}$ reversed and with $g_{11 f}$ and $g_{22 f}$ moved to the amplifier circuit to give:

FIGURE 9.3.13
Two-port circuit representation of shunt-series feedback configuration.

FIGURE 9.3.14
Two-port circuit representation of shunt-series negative feedback configuration: (a) input and output impedances of feedback circuit moved to amplifier; (b) standard form.

$$
\begin{equation*}
\frac{1}{R_{i a}}=G_{s r c}+g_{11 f}+g_{11 a,} \quad R_{o a}=R_{L}+g_{22 a}+g_{22 f} \tag{9.3.14}
\end{equation*}
$$

The voltage source $g_{21 a} V_{i}$ is transformed in Figure 9.3.14b to a current source and expressed as $A_{i a} V_{i}$, where and $A_{i a} I_{i}=\left(g_{21 a} / R_{o a}\right) V_{i}=\left(g_{21 a} / R_{o a}\right) R_{i a} I_{i}$, so that,

$$
\begin{equation*}
A_{i a}=\frac{I_{o}}{I_{i}}=\frac{g_{21 a} R_{i a}}{R_{o a}} \tag{9.3.15}
\end{equation*}
$$

The amplifier of Figure 9.3.14b is now in the standard form of Figure 7.3.7, Chapter 7, the signal-flow diagram being as in Figure 9.3.15. Equations 7.3.10, 7.3.12, and 7.3.13, Chapter 7, of the standard shunt-series feedback amplifier can then be applied to give:

$$
\begin{equation*}
A_{i f a}=\frac{I_{o}}{I_{s r c i}}=\frac{A_{i a}}{1+\beta_{f} A_{i a}}, \quad R_{i f a}=R_{i a} /\left(1+\beta_{f} A_{i a}\right), \quad R_{o f a}=R_{o a}\left(1+\beta_{f} A_{i a}\right) \tag{9.3.16}
\end{equation*}
$$

FIGURE 9.3.15
Signal-flow diagram of shunt-series feedback amplifier.

The input resistance $R_{i f}$ of the feedback amplifier, not including $R_{s r c}$, is:

$$
\begin{equation*}
\frac{1}{R_{i f a}^{\prime}}=\frac{1}{R_{i f a}}-\frac{1}{R_{s r c}} \tag{9.3.17}
\end{equation*}
$$

The output resistance $R_{o f a}^{\prime}$, not including R_{L}, is given by Equation 9.3.13.

Simulation Example 9.3.3 Shunt-Series Feedback of Transistor Amplifier

Figure 9.3.16 shows a "current feedback pair" that is used in ICs, the feedback circuit consisting of R_{E} and R_{f}. It is required to determine $A_{\text {ifa }}, R_{i f a}$, and $R_{o f a}$. Assume that the transistors are properly biased so that $I_{C 1}=1 \mathrm{~mA}, I_{C 2}=1.85 \mathrm{~mA}$, with $\beta=140, r_{01}=100 \mathrm{k} \Omega$, $r_{o 2}=50 \mathrm{k} \Omega, R_{s r c}=10 \mathrm{k} \Omega, R_{C}=9 \mathrm{k} \Omega, R_{f}=10 \mathrm{k} \Omega, R_{L}=5 \mathrm{k} \Omega$, and $R_{E}=3.3 \mathrm{k} \Omega$.

Solution

As in Example 9.3.2, the factual output is i_{o}, whereas the designated output is v_{o}. To determine the loading effect of the feedback circuit at the input of the amplifier, we open-circuit the output for the ac signal. The input resistance of the feedback circuit, at Q_{1} base, is $R_{f}+R_{E}$. To determine the loading effect at the output of the amplifier, we short-circuit the input for the ac signal at Q_{1} base. The resistance looking into the output of the feedback circuit, at Q_{2} emitter, is $R_{E} \| R_{f}$. To determine the feedback factor, we short-circuit the input for the ac signal and determine the current at the input when i_{o} is applied at the output of the feedback circuit. According to the convention for two-port circuits, as shown in Figure 9.3.14, the assigned positive direction of current at the input of the feedback circuit is inward. This current is $\beta_{f} i_{o}=-i_{o} R_{E} /\left(R_{E}+R_{f}\right)$, so the feedback factor is $\beta_{f}=-R_{E} /\left(R_{E}+R_{f}\right)=-3.3 / 13.3=-0.248$.

FIGURE 9.3.16
Figure for Example 9.3.3.

FIGURE 9.3.17
Figure for Example 9.3.3.
The feedback current due to i_{o} is directed outward at the base of Q_{1} so it adds to the source current. That is, the actual sign in the feedback path is positive. This is in accordance with β_{f} having a negative value, so that $-\beta_{f}$ in the feedback path is positive. To have a negative loop gain, the forward gain of the modified amplifier should have a negative value.
The small-signal equivalent circuit is shown in Figure 9.3.17. From the values given, $g_{m 1}=1 / 0.026=38.5 \mathrm{~mA} / \mathrm{V}, g_{m 2}=1.85 / 0.026=71.2 \mathrm{~mA} / \mathrm{V}, r_{\pi 1}=3.64 \mathrm{k} \Omega, r_{01}=100 \mathrm{k} \Omega$, $r_{\pi 2}=1.97 \mathrm{k} \Omega, R_{f}+R_{E}=13.3 \mathrm{k} \Omega$, and $R_{E} \| R_{f}=2.48 \mathrm{k} \Omega$. It is seen that $v_{\pi 1}=\left[R_{s r c}\left\|\left(R_{f}+R_{E}\right)\right\|\right.$ $\left.r_{\pi 1}\right] \times i_{i}=(10| | 13.3 \| 3.64) i_{i}=2.22 i_{i}$. Neglecting $r_{o 2}$, which is relatively large, introduces little error in calculating the forward transmission, but is very convenient. Hence, $v_{b 2}=-g_{m 1} v_{\pi 1} R_{\mathrm{C}}\left\|r_{o 1}\right\|\left[r_{\pi 2}+(\beta+1)\left(R_{E} \| R_{f}\right]=-38.5(9\|100\| \mid 351.6) v_{\pi 1}=-310.6 v_{\pi 1}\right.$. In addition, $i_{o}=v_{b 2} /\left[r_{e 2}+R_{E} \| R_{f}\right]=v_{b 2} / 2.49$. Multiplying out gives $A_{i a}=i_{o} / i_{i}=-276.9$, which is negative, as it should be. The loop gain $-\beta_{f} A_{i a}$ is $0.248 \times(-276.9)=-68.7$. The gain with feedback is $A_{i f a}=-276.9 /(1+68.7)=-3.97$. The input resistance of the modified amplifier is $R_{i a}=R_{s r c}\left\|\left(R_{f}+R_{E}\right)\right\| r_{\pi 1}=2.22 \mathrm{k} \Omega$. Hence, $R_{i f a}=2.22 / 69.7 \equiv 31.9 \Omega$. From Equation 9.3.17, $R_{i f a}^{\prime} \cong R_{i f a}=31.9 \Omega$. The voltage gain from Q_{1} base to Q_{2} collector is $-\alpha i_{o} R_{L} / i_{i} R_{\text {ifa }}=0.99 \times 3.97 \times 5 \times 10^{3} / 31.9=616$.
To determine the output resistance of the modified amplifier, we open-circuit the output for small signals at Q_{2} emitter (X in Figure 9.3.17). The resistance at the output of the feedback circuit, is $R_{E} \| R_{f}=2.48 \mathrm{k} \Omega$. Neglecting the large $r_{o 2}$, the output resistance of the amplifier proper, looking into the emitter, is $\left[r_{\pi_{2}}+R_{C} \| r_{01}\right] /(\beta+1)=10.23 / 141=0.07 \mathrm{k} \Omega$. Hence, the resistance that appears in series with Q_{2} emitter in the presence of feedback is $(2.48+0.07) \times 69.7=178 \mathrm{k} \Omega$. This is the resistance seen by a voltage source inserted between X and X^{\prime} in Figure 9.3.16. To determine the resistance looking into Q_{2} collector, we use Equation 8.2 .38 , with $R_{\text {scr }}^{\prime}=9 \| 100=8.26 \mathrm{k} \Omega, r_{\pi 2}=1.97 \mathrm{k} \Omega$, and $R_{E}=0.07 \mathrm{k} \Omega$. This gives $50+\frac{2.48}{1.97+8.26+2.48}[1.97+8.26+(140 \times 50)]=1.42 \mathrm{M} \Omega$. Multiplied by (1-loop gain), as in Example 9.3.2, the resistance becomes nearly $100 \mathrm{M} \Omega$. The total resistance between Q_{2} collector and ground is this resistance in parallel with $5 \mathrm{k} \Omega$, which is practically $5 \mathrm{k} \Omega$.

Simulation

When the feedback loop is opened for the purpose of determining the open-loop transfer function, the loop must be properly terminated on either side of the break, that is, by the effective source resistance, where the input voltage is applied, and by the effective load impedance, where the voltage is measured. Otherwise, the system will be disturbed by the break and the correct loop gain will not be measured. Where it is not easy to determine these

FIGURE 9.3.18
Figure for Example 9.3.3. Schematic for determining the open-circuit voltage transfer function (a), and the shortcircuit current transfer function (b).
termination impedances when the loop is opened, the method of determining the open-circuit voltage transfer function and the short-circuit current transfer function of the loop can be used. This method is explained in Section ST9.1 and is particularly convenient for simulations.

The schematic of the circuit used for determining the open-circuit voltage transfer function is shown in Figure 9.3.18a. The transistor currents and parameters of Example 9.3.3 are close to those of the simulated circuit using the Q2N3904 transistors from the PSpice EVAL library. The loop is broken between Q_{1} collector and Q_{2} base and a large inductor is inserted at this location. In this manner, dc conditions are preserved but the inductor presents an open circuit to the ac signal. A voltage signal of 1 kHz is applied at Q_{2} base through a large capacitor and the open circuit voltage is measured at Q_{1} collector. The simulation gives -68.59 as the ratio of the output voltage to the input voltage, which is the open-circuit voltage gain of the loop. The schematic of the circuit used for determining the short-circuit current transfer function is shown in Figure 9.3.18b. A current input is applied at the base of Q_{2} and the ac short-circuit current is measured at Q_{2} collector. The simulation gives -3085 as the ratio of the output current to the input current, which is the short-circuit current gain of the loop. It follows from Equation ST9.1.5 that the magnitude of the loop gain is given by $\frac{1}{|A \beta|}=\left(\frac{1}{68.59}+\frac{1}{3085}\right)$, or $|A \beta|=67.1$, in good agreement with the value of 68.7 calculated earlier.

It should be emphasized that in Example 9.3.3 the feedback factor has a negative value, so that $-\beta_{f}$ has a positive value, which means that the feedback current adds to the source current. However, since the forward gain through the amplifier has a negative value, the loop gain is negative, as it should be in a negative feedback system.

Exercise 9.3.3

The basic amplifier in a shunt-series feedback configuration has a short-circuit gain $\left(-g_{21 a} / g_{22 a}\right)$ of $-400 \mathrm{~mA} / \mathrm{V}$, an input resistance of $1 \mathrm{k} \Omega$, and an output resistance of $2 \mathrm{k} \Omega$. The feedback circuit has an input resistance of $10 \mathrm{k} \Omega$, with port 2 open-circuited, an output resistance of $10 \mathrm{k} \Omega$, and a feedback factor of -0.1 . The source has a resistance of $10 \mathrm{k} \Omega$ and the load is a $10 \mathrm{k} \Omega$ resistor. Determine $A, A_{f a}, R_{i f a}$, and $R_{o f a}$.
Answers: $A_{i a}=-15.1 ; A_{i f a}=-6.0 ; R_{i f a}=327 \Omega$; and $R_{o f a}=55.2 \mathrm{k} \Omega$.

Shunt-Shunt Feedback

Figure 9.3.19 illustrates a general shunt-shunt feedback configuration in terms of the y-parameter equivalent circuit of Figure 7.2.1b, Chapter 7, ignoring $y_{12 a}$ and $y_{21 f}$. As discussed in connection with shunt-series feedback, polarities in Figure 9.3.19 are such that the feedback is positive. Thus, if V_{o} decreases, the feedback current $y_{12 f} I_{o}$ decreases. More current is diverted to $y_{11 a}$, which increases V_{i} and $y_{21 a} V_{i}$. But the increase in $y_{21 a} V_{i}$ further decreases V_{o}. To maintain consistency with the polarity of the feedback signal at the input and with the polarity of the voltage source in the standard case (Figure 7.3.8, Chapter 7), we will reverse the sign of the source $y_{21 a} V_{i}$.

It can be readily verified that the procedure of Table 9.3 .1 applies to the derivation of $y_{11 f}$ and $y_{22 f}$ from Figure 9.3.19. Because of the shunt connection, voltage is the common variable at the input and output. If the output is short circuited, $y_{12 f} V_{o}=0$, and the conductance seen at the input of the feedback circuit is $y_{11 f}$. If the input is short-circuited, $y_{21 a} V_{i}=0$, and the conductance seen at the output of the feedback circuit is $y_{22 f}$. With $V_{i}=0$, and if a voltage V_{x} is applied at the output, the current at the input of the feedback circuit is $y_{12 f} V_{o}$, so that the feedback factor is $y_{12 f}=\beta_{f}$.

Figure 9.3.20a depicts the feedback amplifier with the polarity of the source $y_{21 a} V_{i}$ reversed and with $y_{11 f}$ and $y_{22 f}$ moved to the amplifier circuit to give:

$$
\begin{equation*}
\frac{1}{R_{i a}}=G_{s r c}+y_{11 f}+y_{11 a}, \quad \frac{1}{R_{o a}}=G_{L}+y_{22 f}+y_{22 a} \tag{9.3.18}
\end{equation*}
$$

The current source $y_{21 a} V_{\mathrm{i}}$ is transformed in Figure 9.3.20b to a voltage source and expressed as $A_{r a} I_{i}$, where $A_{r a} I_{i}=y_{21 a} R_{o a} V_{i}=y_{21 a} R_{o a i} R_{i a} I_{i}$, so that,

$$
\begin{equation*}
A_{r a}=\frac{V_{o}}{I_{i}}=y_{21 a} R_{o a} R_{i a} \tag{9.3.19}
\end{equation*}
$$

FIGURE 9.3.19
Two-port circuit representation of shunt-shunt feedback configuration.

FIGURE 9.3.20
Two-port circuit representation of shunt-shunt negative feedback configuration: (a) input and output impedances of feedback circuit moved to amplifier; (b) standard form.

The amplifier of Figure 9.3.20b is now in the standard form of Figure 7.3.8, Chapter 7, the signal-flow diagram being as in Figure 9.3.21. Equations 7.3.14, 7.3.16, and 7.3.17, Chapter 7, of the standard shunt-shunt feedback amplifier can then be applied to give:

$$
\begin{equation*}
A_{r a f}=\frac{V_{o}}{I_{s r c}}=\frac{A_{r a}}{1+\beta_{f} A_{r a}}, \quad R_{i a f}=\frac{R_{i a}}{1+\beta_{f} A_{i a}}, \quad R_{o a f}=\frac{R_{o a}}{1+\beta_{f} A_{i a}} \tag{9.3.20}
\end{equation*}
$$

$R_{i f a}^{\prime}$ of the feedback amplifier, not including $R_{s r c}$, is given by Equation 9.3.17, and $R_{o f a}^{\prime}$ of the feedback amplifier, not including R_{L}, is given by Equation 9.3.9.

Example 9.3.4 Shunt-Shunt Feedback of Transistor Amplifier

As an example of shunt-shunt feedback, consider the single transistor biasing scheme in which the base is connected to the collector through a resistor. The circuit is shown in

FIGURE 9.3.21
Signal-flow diagram of series-shunt feedback amplifier.

FIGURE 9.3.22

Figure 9.3 .22 for the ac signal, with $V_{C C}$ grounded. It is required to determine $A_{r a}, R_{i f a}$, and $R_{\text {ofa }}$. Assume that $I_{C 1}=2 \mathrm{~mA}$, with $\beta=100, R_{\text {srC }}=10 \mathrm{k} \Omega, R_{C}=5 \mathrm{k} \Omega, R_{f}=50 \mathrm{k} \Omega$, and r_{o} large.

Solution

To determine the loading effect of the feedback circuit at the base of the transistor, we short circuit the collector to ground for the ac signal. The resistance appearing at the base due R_{f} is simply R_{f}. To determine the loading effect at the collector, we short circuit the base to the ground for the ac signal. The resistance appearing at the collector due to R_{f} is again R_{f}. To determine the feedback factor, we short circuit the base and determine the current at the input when v_{o} is applied at the collector. As in Example 9.3.2, the assigned positive direction of current at the input is inward. This current is $\beta_{f} v_{o}=-v_{o} / R_{f}$, so the feedback factor is $\beta_{f}=-1 / R_{f}=-0.02 \mathrm{mS}$.

The small-signal equivalent circuit is shown in Figure 9.3.23, neglecting r_{o}. From the values given, $g_{m}=2 / 0.026=77 \mathrm{~mA} / \mathrm{V}$ and $r_{\pi}=1.3 \mathrm{k} \Omega$. It follows that $v_{\pi}=\left(R_{g}\left\|R_{f}\right\| r_{\pi}\right)$ $i_{i}=(10\|50\| 1.3) i_{i}=1.12 i_{i}$, and $v_{o}=-g_{m} v_{\pi}\left(R_{C} \| R_{f}\right)=-77(5 \| 50) v_{\pi}=-350 v_{\pi}$. This gives $A_{r a}=v_{o} / i_{i}=-392 \mathrm{k} \Omega$. The loop gain $-A_{r a} \beta_{f}$ is $-(-392)(-1 / 50)$, and ($1-$ loop gain) is $1+392 / 50=8.84$, and $A_{\text {rfa }}=-392 / 8.84=-44.3 \mathrm{k} \Omega$.

The input resistance of the modified amplifier is $R_{i a}=\left(R_{\text {src }}\left\|R_{f}\right\| r_{\pi}\right)=1.12 \mathrm{k} \Omega$. Hence, $R_{i f a}=1.12 / 8.84 \equiv 126.7 \Omega$. From Equation 9.3.17, $R_{\text {ifa }}^{\prime} \cong 126.7 \Omega$.

The output resistance $R_{o a}$ of the modified amplifier is $R_{o a}=R_{C}\left\|R_{f}=5\right\| 50=4.55 \mathrm{k} \Omega$. Hence, $R_{\text {ofa }}=4.55 / 8.84=515 \Omega$.

FIGURE 9.3.23
Figure for Example 9.3.4.

Exercise 9.3.4

The basic amplifier in a shunt-shunt feedback configuration has an open-circuit voltage gain $\left(-y_{21 a} / y_{22 a}\right)$ of -200 , an input resistance of $5 \mathrm{k} \Omega$, and an output resistance of $1 \mathrm{k} \Omega$. The feedback circuit has an input resistance of $10 \mathrm{k} \Omega$, with port 2 short-circuited, an output resistance of $10 \mathrm{k} \Omega$, and a feedback factor of $-0.1 \mathrm{~mA} / \mathrm{V}$. The source has a resistance of $10 \mathrm{k} \Omega$ and the load is a $10 \mathrm{k} \Omega$ resistor. Determine $A_{r a}, A_{v f a}, R_{i f a}$, and $R_{o f a}$.

Answers: $A_{r a}=-417 \mathrm{~V} / \mathrm{mA} ; A_{r f a}=-9.77 \mathrm{~V} / \mathrm{mA} ; R_{i f a}=58.5 \Omega$; and $R_{o f a}=19.5 \Omega$.

9.4 Closed-Loop Stability

Concept: A feedback amplifier is susceptible to instability because of unavoidable phase lags due to parasitic capacitances. The feedback becomes positive when the additional phase lag is 180°. If at this frequency the loop gain is at least unity, the amplifier breaks into oscillations.

To clarify this concept, consider the signal-flow diagram of an amplifier with feedback (Figure 9.4.1a), where A_{v} represents the voltage gain of an amplifier having a net input voltage ε, and an output voltage v_{0}. It follows that $v_{O} / v_{I}=A_{v} /\left(1-\beta_{f} A_{v}\right)$. Assuming that β_{f} and A_{v} are positive, real constants, this means that the feedback is positive. Suppose that while v_{I} remains constant, v_{O} increases by a positive increment Δv_{O} due to a transient disturbance to the circuit, such as interference pick up or a switch-on transient. To sustain the change Δv_{O} in the output requires a change in ε of $\Delta \varepsilon=\Delta v_{O} / A_{v}$. The change Δv_{O} causes $\Delta \varepsilon=\beta_{f} \Delta v_{O}$. Hence, to sustain the change Δv_{0}, we should have $\Delta v_{O}\left(\beta_{f} A_{v}\right)=\Delta v_{O}$, or $\beta_{f} A_{v}=1$. If $\beta_{f} A_{v}<1$, the fed-back signal is not sufficient to sustain the transient, which therefore dies out.
If $\beta_{f} A_{v}=1$, the fed-back signal is just sufficient to sustain the transient, which will theoretically persist. However, this is a situation of marginal stability, or metastable equilibrium. In practice, $\beta_{f} A_{v}$ cannot exactly equal unity for any appreciable time; it is bound to become either slightly less, or slightly more, than unity. If $\beta_{f} A_{v}>1$, the fed-back signal is more than sufficient to sustain the transient, which will therefore continue to grow. Eventually, some nonlinearity limits the magnitude of v_{0}, as when the amplifier saturates. It is seen that positive feedback causes instability if the loop gain exceeds unity.

FIGURE 9.4.1
Signal-flow diagrams of positive feedback amplifier (a) and of a negative feedback amplifier (b).

Suppose that the sign of β_{f} is negative (Figure 9.4.1b), so that the feedback is negative. We may assume then that the system is stable. That may well be true under some, but not all, conditions. Consider a more realistic situation where A_{v} is frequency dependent, because of shunt capacitances associated with transistor amplifier stages. Let us assume, for the sake of argument, that A_{v} has three poles at frequencies $\omega_{p 1}, \omega_{p 2}$, and $\omega_{p 3}$, and that the dc gain is $A_{\nu 0}$, so that:

$$
\begin{equation*}
A_{v}=\frac{A_{v 0}}{\left(1+s / \omega_{p 1}\right)\left(1+s / \omega_{p 2}\right)\left(1+s / \omega_{p 3}\right)} \tag{9.4.1}
\end{equation*}
$$

Figure 9.4.2 shows the asymptotic magnitude plot and phase plot of A_{v}, where,

$$
\begin{equation*}
\left|A_{v}(j \omega)\right|=\frac{A_{v 0}}{\sqrt{\left(1+\left(\omega / \omega_{p 1}\right)^{2}\right)\left(1+\left(\omega / \omega_{p 2}\right)^{2}\right)\left(1+\left(\omega / \omega_{p 3}\right)^{2}\right)}} \tag{9.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=-\left[\tan ^{-1}\left(\omega / \omega_{p 1}\right)+\tan ^{-1}\left(\omega / \omega_{p 2}\right)+\tan ^{-1}\left(\omega / \omega_{p 3}\right)\right] \tag{9.4.3}
\end{equation*}
$$

There exists a frequency ω_{-}at which $\phi=180^{\circ}$ so that $A_{v}\left(j \omega_{-}\right)=-\left|A_{v}\left(j \omega_{-}\right)\right|$, and is a negative real number. Since the sign of β_{f} is negative, the loop gain, and hence the feedback, becomes positive at the frequency ω_{-}. As discussed earlier for positive feedback, the amplifier is stable if $\beta_{f}\left|A_{v}\left(j \omega_{-}\right)\right|<1$, but if $\beta_{f}\left|A_{v}\left(j \omega_{-}\right)\right|>1$, the output signal grows in amplitude until limited by some nonlinearity that is inevitably present in the circuit.

The same argument applies if β_{f} is frequency dependent. ω_{-}is now the frequency at which the phase angle of $\left|\beta_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)\right|$is 180°. Since the sign of β_{f} in Figure 9.4.1b is negative, then when $\angle \beta_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)=180^{\circ}$, the total phase shift around the loop is zero. Hence:

Criterion of Stability: A negative feedback system is stable if $\left|\beta_{f}\left(j \omega_{-}\right) A v\left(j \omega_{-}\right)\right|<1$, at the frequency ω_{-}at which $\angle \beta_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)=180^{\circ}$, or the total phase shift around the loop is zero. It is unstable if $\left|\boldsymbol{\beta}_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)\right|>1$, and is marginally stable if $\left|\boldsymbol{\beta}_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)\right|=1$.

FIGURE 9.4.2
Asymptotic Bode magnitude and phase plots of amplifier gain.

The following should be noted:

1. If the open-loop transfer function is two-pole, rather than three-pole as in Equation 9.4.1, the frequency ω_{-}would occur at infinity, where the magnitude of the gain is effectively zero. The amplifier will be stable. However, its performance may not be satisfactory because of excessive, underdamped oscillations, as will be discussed later (see Exercise 9.3.1).
2. Since the total phase shift around the loop is zero at a single frequency ω_{-}, and the only periodic signal that has a single frequency is a sinusoid, the resulting oscillations are essentially sinusoidal. There will be some distortion, however, because of the nonlinearity that limits the amplitude of oscillation.

Stability from Bode Magnitude Plots

The transfer function of a general negative feedback system, as in Figure 9.4.1b, is:

$$
\begin{equation*}
G(s)=\frac{A_{v}(s)}{1+\beta_{f}(s) A_{v}(s)} \tag{9.4.5}
\end{equation*}
$$

The stability of any system is related to the location of the poles of the transfer function in the s-plane. The poles of $G(s)$ are the roots of the denominator, that is the values of s that make $1+\beta_{f}(s) A_{v}(s)=0$. The system is stable if the poles are located in the left half of the s plane, is unstable if at least one pole is located in the right half of the s-plane, and is marginally stable if the poles are located on the imaginary axis. Stability is examined in Section ST9.2 in terms of the Nyquist plot and the locations of the poles of the closed-loop transfer function of a three-pole system. We will, in what follows, discuss stability in terms of Bode plots.

The magnitude of the loop gain $\left|\beta_{f}(j \omega) A_{v}(j \omega)\right|$ can be drawn on an asymptotic magnitude Bode plot as the sum of the plots of $20 \log _{10}\left|\beta_{f}(j \omega)\right|$ and $20 \log _{10}\left|A_{v}(j \omega)\right|$. However, this does not lend itself to a convenient assessment of stability, as demonstrated later. It is more convenient to plot $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ on the same graph as $20 \log _{10}\left|A_{v}(j \omega)\right|$. Where the two curves intersect, $20 \log _{10}\left|A_{v}(j \omega)\right|=20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$, so that $\left|\beta_{f}(j \omega) A_{v}(j \omega)\right|=1$. This is illustrated in Figure 9.4.3, where it is assumed, for simplicity at this stage, that β_{f} is independent of frequency, so that the phase angle variation is due to $A_{v}(j \omega)$ alone. If $\beta_{f}=1$, the line $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ coincides with the $0-\mathrm{dB}$ line, that is the x-axis. The line $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ moves upward as β_{f} decreases. An added advantage of drawing $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ is that when the loop gain is reasonably high, the gain of the feedback amplifier is very nearly $1 / \beta_{f}$.

With reference to Figure 9.4.3, and to the Stability Criterion 9.4.4, Case 1 represents a stable system, because the phase angle is less than 180° at the point of intersection, when $\left|\beta_{f}(j \omega) A_{v}(j \omega)\right|=1$, which means that $\left|\beta_{f}(j \omega) A_{v}(j \omega)\right|<1$ when $\angle \beta_{f}(j \omega) A_{v}(j \omega)=180^{\circ}$. Case 2 represents the boundary of instability since the phase angle equals 180° at the point of intersection, whereas Case 3 represents an unstable system, because the phase angle corresponding to the intersection point exceeds 180°, which means that $\left|\beta_{f}(j \omega) A_{v}(j \omega)\right|>1$ when $\angle \beta_{f}(j \omega) A_{v}(j \omega)=180^{\circ}$. It is seen that the circuit becomes more stable as β_{f}, and hence the loop gain, is decreased.

Stability of the amplifier circuit does not, by itself, guarantee an acceptable performance. If, for example, the phase angle at unity magnitude loop gain is only slightly less than 180°, the poles of the closed-loop transfer function (Equation 9.4.5) are in the left half

FIGURE 9.4.3
Asymptotic Bode magnitude and phase plots of amplifier gain and $1 / \beta_{f}$.
of the s plane but are very close to the imaginary axis, Q may be unacceptably large (Exercise 9.4.1), so that the response to a sudden disturbance can be markedly underdamped, having objectionable oscillations. To guarantee an acceptable performance, the phase angle should not exceed $\left(180^{\circ}-\theta\right)$ at the frequency at which the magnitude of the loop gain is unity, where θ is referred to as the phase margin. Alternatively, an acceptable performance can be expressed in terms of the gain margin, or the difference between unity and the magnitude of the gain $\left|\beta_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)\right|$at the frequency ω_{-}. The phase and gain margins are illustrated in Figure 9.4.4 based on plots of the magnitude and the phase angle of the loop gain $\beta_{f}\left(j \omega_{-}\right) A_{v}\left(j \omega_{-}\right)$. Acceptable gain or phase margins depend on the particular application. Generally speaking, a phase margin not less than 45° is considered acceptable, so that the phase shift at the frequency at which the magnitude of the loop gain is unity should not exceed 135°.

FIGURE 9.4.4
Gain and phase margins.

Exercise 9.4.1

Determine Q in a two-pole system having poles at $-1+j 10^{3}$ and $-1-j 10^{3} \mathrm{rad} / \mathrm{s}$.
Answer: 500.

Working with both magnitude and phase plots is awkward. It would be very convenient, if stability could be assessed from the magnitude plot alone. This is possible, because of the relationship between phase magnitude and phase for the type of system we are dealing with.

Consider the three-pole system presented earlier, where the phase angle at any frequency ω is given by Equation 9.4.3. At $\omega=\omega_{p 2}$, the contribution of the pole at $\omega_{p 2}$ to the phase shift is $-\tan ^{-1}\left(\omega_{p 2} / \omega_{p 2}\right)=-45^{\circ}$. The contribution of the pole at $\omega_{p 1}$ to the phase shift at $\omega=\omega_{p 2}$ is $-\tan ^{-1}\left(\omega_{p 2} / \omega_{p 1}\right)$ and increases in magnitude as $\omega_{p 1}$ is located at lower frequencies, further away from $\omega_{p 2}$. It approaches a limit of -90° for $\omega_{p 1} \ll \omega_{p 2}$. If $\omega_{p 1}=0.1 \omega_{p 2}$, the contribution of the pole $\omega_{p 1}$ to the phase shift at $\omega=\omega_{p 2}$ is $-\tan ^{-1}(10) \cong-84.3^{\circ}$. The contribution of the pole at $\omega_{p 3}$ to the phase shift at $\omega=\omega_{p 2}$ is $-\tan ^{-1}\left(\omega_{p 2} / \omega_{p 3}\right)$ and decreases in magnitude as $\omega_{p 3}$ is located at higher frequencies, further away from $\omega_{p 2}$. It becomes zero in the limit for $\omega_{p 3} \gg \omega_{p 2}$. The contribution is -5.7° if $\omega_{p 3}=10 \omega_{p 2}$. In fact, if $\omega_{p 3}=k \omega_{p 2}$ and $\omega_{p 1}=\omega_{p 2} / k$, where k is a positive constant, the phase shift at $\omega_{p 2}$ due to $\omega_{p 3}$ and $\omega_{p 1}$ is $-\tan ^{-1}(1 / k)-\tan ^{-1}(k)=-90^{\circ}$, and the total phase shift at $\omega_{p 2}$ is $-45^{\circ}-90^{\circ}=-135^{\circ}$. This is illustrated by line L_{2} in Figure 9.4.5. The phase margin is increased if the intersection point is at a lower frequency on the line of slope $-20 \mathrm{~dB} /$ decade (line L_{1}) and is reduced if the intersection point is on the line having a slope of $-40 \mathrm{~dB} /$ decade (line L_{3}).

Based on the preceding, an often applied "rule of thumb" is that closed-loop stability is adequate if the frequency-independent $20 \log _{10}\left|1 / \beta_{f}\right|$ plot intersects the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot at a point on the $-20 \mathrm{~dB} /$ decade segment, assuming that poles of higher frequency are not close to the frequency at which the intersection occurs.

When β_{f} is frequency dependent, its phase angle adds algebraically to that of $A_{\nu}(f)$. For simplicity, let $A_{v}(j \omega)=\frac{A_{v 0}}{\left(1+j \omega / \omega_{p 1 A}\right)\left(1+j \omega / \omega_{p 2 A}\right)}$ and $\beta_{f}(j \omega)=\frac{1}{1+j \omega / \omega_{p \beta}}$. Figure 9.4.6

FIGURE 9.4.5
Stability from Bode magnitude plot.

FIGURE 9.4.6
Stability when both amplifier gain and feedback factor are frequency dependent.
illustrates the asymptotic Bode plots for $20 \log _{10}\left|A_{v}(j \omega)\right|, 20 \log _{10}\left|\beta_{f}(j \omega)\right|$, and $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$. To simplify the argument further, let the point of intersection of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ and the $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ plots be at $\omega_{p 1 A}$. Applying the same preceding reasoning to the phase shift of $\beta_{f}(j \omega) A_{v}(j \omega)$, the phase shift at $\omega_{p 1 A}$ due to the pole itself is -45°, whereas the total phase shift due to $\omega_{p 2 A}$ and $\omega_{p \beta}$ is -90° if these poles are, respectively, at $k \omega_{p 1 A}$ and $\omega_{p 1 A} / k$, and will be less than -90° if either pole is further away from $\omega_{p 1 A}$. It is seen that to achieve the phase margin of 45°, the slope of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot minus that of $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ plot, at a frequency just below the point of intersection should not be more negative than $-20 \mathrm{~dB} /$ decade. In Figure 9.4.6, the slope of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot at a frequency just less than $\omega_{p 1 A}$ is 0 , whereas the slope of the $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ plot at this frequency is $+20 \mathrm{~dB} /$ decade. Hence $0-20=-20$ gives a phase margin of at least 45°, assuming that $\omega_{p 2 A}$ and $\omega_{p \beta}$ are adequately spaced from $\omega_{p 1 A}$. The criterion of adequate stability can be generalized as follows:

> Criterion of Adequate Stability: A circuit has adequate stability if the slope of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot minus that of the $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$
> plot at their point of intersection, is not more negative
> than $-20 \mathrm{~dB} /$ decade, the slopes considered being the those
> of the asymptotes of the two plots
> at frequencies just below the point of intersection

It should be kept in mind that at the corner frequency where two asymptotes of the same function intersect, the gain is actually 3 dB less than that at the corner frequency, and the slope is the average of the slopes of the two asymptotes.

Frequency Compensation

The technique of shaping the frequency variation of $\left|A_{v}(j \omega)\right|$ and $/$ or $\left|\beta_{f}(j \omega)\right|$ to achieve desired gain or phase margins is frequency compensation. In principle, it is possible to introduce zeros that cancel poles in the open-loop transfer function, as illustrated by problems at the end of the chapter. Simpler and more common techniques are discussed in this section.

In dominant-pole compensation, a new, low-frequency pole is introduced at a frequency $\omega_{p d}$ so that the slope of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot is $-20 \mathrm{~dB} /$ decade all the way down to 0 dB at $\omega_{p 1}$, the lowest pole frequency of the uncompensated amplifier (Figure 9.4.7). The amplifier will be unconditionally stable, even if $\beta_{f}=1$. Although stability is assured, the bandwidth of

FIGURE 9.4.7
Dominant-pole and shifted-pole frequency compensation.

the amplifier is severely reduced, which compromises the speed of response and decreases the loop gain available for improving performance at higher frequencies.

A generally better approach is to shift the lowest frequency pole $\omega_{p 1}$ of the amplifier to a lower frequency $\omega_{p 1}^{\prime}$, as illustrated in Figure 9.4.7, resulting in increased bandwidth compared to dominant pole compensation. To determine $\omega_{p 1}^{\prime}$, the line representing $20 \log _{10}\left(1 / \beta_{f}^{\prime}\right)$ is drawn, where β_{f}^{\prime} is the desired β_{f}. At the frequency $\omega_{p 2}$ on this line, a line having a slope of $-20 \mathrm{~dB} /$ decade is drawn. Where this line intersects the lowfrequency asymptote of the amplifier gain is the frequency $\omega_{p 1}^{\prime}$. Example 9.4.1 illustrates these methods of frequency compensation.

In general, the lowest frequency pole can be shifted to a lower frequency by adding capacitance. In amplifiers, a pole usually arises because of series resistance and shunt capacitance. The transfer function of a simple $R C$ voltage divider is $(1 / s C) /(R+1 / s C)=$ $1 /(1+s C R)$, which gives a pole at $\omega=1 / C R$. Adding a capacitance C_{x} in parallel with C shifts the pole to a lower frequency $1 /\left(C+C_{x}\right) R$. Another possibility is to add capacitance to enhance the Miller effect. This can shift one pole to a lower frequency and another pole to a higher frequency (Section ST8.7, Chapter 8, and Section 10.2, Chapter 10).

In practice, IC op amps may be internally compensated or may have terminals brought out for connection of suitable values of R and C so as to achieve a degree of compensation that is appropriate for a particular application.

Example 9.4.1 Amplifier Stability

Assume that in Equation 9.4.1, $A_{\nu 0}=10^{5}, \omega_{p 1}=1, \omega_{p 2}=10$, and $\omega_{p 3}=100$, all in rad $/ \mathrm{s}$. It is required to investigate the stability of this amplifier when used in a noninverting configuration.

Solution

It follows from Equation 9.4.2 that:

$$
\begin{equation*}
\left|A_{\nu}(j \omega)\right|=\frac{10^{5}}{\sqrt{\left[1+\omega^{2}\right]\left[1+(\omega / 10)^{2}\right]\left[1+(\omega / 100)^{2}\right]}} \tag{9.4.7}
\end{equation*}
$$

and the phase angle ϕ of A_{v} is given by:

$$
\begin{equation*}
\phi=-\left[\tan ^{-1} \omega+\tan ^{-1}(\omega / 10)+\tan ^{-1}(\omega / 100)\right] \tag{9.4.8}
\end{equation*}
$$

The magnitude and phase plots are illustrated diagrammatically in Figure 9.4.8. If used as a unity-gain amplifier, the $20 \log _{10}(1 / \beta)$ line coincides with the $\log _{10} \omega$ axis, and Criterion 9.4.6 gives a slope of $-60 \mathrm{~dB} /$ decade, so that the amplifier is unstable. We can confirm this by determining the phase shift at ω_{T}, where the $20 \log _{10}\left|A_{v}\left(j \omega_{0}\right)\right|$ plot intersects the x-axis. ω_{T} is obtained from Equation 9.4 .7 by setting $\left|A_{v}\left(j \omega_{T}\right)\right|=1$ and solving for ω_{T}. Using the roots(p) command of MATLAB gives $\omega_{T}=461 \mathrm{rad} / \mathrm{s}$. From Equation 9.4.8, the phase shift at ω_{T} is -256°. This means that when the phase shift is -180°, the loop gain exceeds unity, which confirms instability.

The poles of the closed-loop transfer function, with $\beta_{f}=1$, are the roots of the equation: $1+A_{v}(s)=0$, where $A_{v}(s)=\frac{10^{5}}{(1+s)(1+s / 10)(1+s / 100)}$. Using the roots (p) command of MATLAB gives the roots of this equation as $-503.4,(196.2+j 4.002)$, and ($196.2-j 4.002$) $\mathrm{rad} / \mathrm{s}$. A complex pair of roots has positive real parts, which again confirms instability.

Let us choose β_{f} such that the $20 \log _{10}\left|A_{v}(j \omega)\right|$ line intersects the $20 \log _{10}\left(1 / \beta_{f}\right)$ at the second corner frequency $\omega_{p 2}=10 \mathrm{rad} / \mathrm{s}$, which, on the asymptotic plots, is the limit of the $-20 \mathrm{~dB} /$ decade slope. The ordinate is therefore 20 dB below that of $20 \log _{10}\left|A_{v 0}\right|$, that is, at 80 dB (Figure 9.4.8). Setting $20 \log _{10}\left(1 / \beta_{f}\right)=80$, gives $\beta_{f}=10^{-4}$. The low-frequency gain of the feedback amplifier will be $10^{5} /\left(1+10^{-4} \times 10^{5}\right) \cong 10^{4}$, or 80 dB . The phase angle at $\omega=10 \mathrm{rad} / \mathrm{s}$ is, from Equation 9.4.8, 135°. The feedback amplifier is stable under these conditions, the phase margin being $180^{\circ}-135^{\circ}=45^{\circ}$.

It should be noted that the preceding calculations are based on nominal values using asymptotic plots. Thus, from Equation 9.4.7, $\left|A_{\nu}(j 10)\right|=76.9 \mathrm{~dB}$, and $\beta_{f}=10^{-4}$ gives

FIGURE 9.4.8
Figure for Example 9.4.1.
a low-frequency gain of 79.2 dB for the feedback amplifier, whereas the phase shift at $\omega_{p 2}=10 \mathrm{rad} / \mathrm{s}$ is, from Equation 9.4.8, exactly -135°.

To find the gain margin, we have to determine the frequency at which the phase angle of the loop gain becomes 180° and the gain at this frequency. From Equation 9.4.8, or by determining the frequency at which the imaginary part of the polynomial $P(s)$ of the denominator of $A_{\downarrow}(s)$ vanishes, we find $\omega_{-}=\sqrt{1110}=33.32 \mathrm{rad} / \mathrm{s}$. From Equation 9.4.7, the amplifier gain, $20 \log _{10}\left|A_{\nu}\left(j \omega_{-}\right)\right|$, at this frequency is 58.3 dB . The magnitude of the loop gain, $20 \log _{10}\left|\beta_{f} A_{\nu}\left(j \omega_{-}\right)\right|$, is therefore, $58.3-80=-21.7 \mathrm{~dB}$. The gain margin is therefore 21.7 dB .
We can determine the location of the poles of the closed-loop response by finding the roots of the equation $1+10^{-4} A_{\nu}(s)=0$. These are $(-4.95+j 9.18)$, $(-4.95-j 9.18)$, and -101.1 . Since all the poles have negative real parts, the stability of the feedback amplifier is confirmed under these conditions.

To stabilize the amplifier unconditionally using dominant pole compensation, we have to ensure that the slope of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot is $20 \mathrm{~dB} /$ decade at 0 dB , which means locating the $0-\mathrm{dB}$ crossing frequency at $1 \mathrm{rad} / \mathrm{s}$. Since $20 \log _{10}\left|A_{\nu}(j \omega)\right|=100 \mathrm{~dB}$, the corner frequency of the dominant pole $\omega_{p d}$ must occur at a frequency that is $100 / 20=5$ decades below $\omega_{p 1}$. Thus, $\omega_{p d}=1 \times 10^{-5}=10^{-5} \mathrm{rad} / \mathrm{s}$. With dominant pole compensation, a pole at $\omega_{p d}$ must be added. Equation 9.4.7 becomes:

$$
\begin{equation*}
\left|A_{v}(j \omega)\right|=\frac{10^{5}}{\sqrt{\left[1+\left(\omega / 10^{-5}\right)^{2}\right]\left[1+\omega^{2}\right]\left[1+(\omega / 10)^{2}\right]\left[1+(\omega / 100)^{2}\right]}} \tag{9.4.9}
\end{equation*}
$$

If the frequency scaling factor is $10^{5} / 2 \pi$, so that $f_{p 1}=10^{5} \mathrm{~Hz}$, then $f_{p d}=1 \mathrm{~Hz}$.
Better performance is obtained by shifting the pole at $1 \mathrm{rad} / \mathrm{s}$. Suppose β_{f}^{\prime} is to be 10^{-2}, corresponding to a closed-loop gain of $10^{5} /\left(1+10^{-2} \times 10^{5}\right) \cong 10^{2}$. We draw the line $20 \log _{10}\left(1 / \beta_{f}^{\prime}\right)=40 \mathrm{~dB}$. At $10 \mathrm{rad} / \mathrm{s}$ on this line, we draw a line having a slope of -20 $\mathrm{dB} /$ decade. Since this line is 60 dB below the low-frequency asymptote of the amplifier, it intersects this asymptote at $10 \times 10^{-3}=10^{-2} \mathrm{rad} / \mathrm{s}$. Hence, the pole at $1 \mathrm{rad} / \mathrm{s}$ should be shifted to this frequency.

Application Window Oscillations in Amplifiers

A high-gain amplifier that should be stable may break into oscillations as soon as it is switched on. This is usually caused by some inadvertent feedback from output to input, as through a small but finite impedance of the dc supplies. The feedback becomes positive at some frequency, resulting in oscillations at this frequency. The usual remedy is to "decouple" the dc power supplies by connecting a capacitor of appropriate size between the dc supplies and ground as close as possible to where these supplies feed into the amplifier. In some cases it may be necessary to connect additional decoupling capacitors at appropriate locations along dc supply lines. Decoupling capacitors should be of a type that has very low impedance at the frequency of oscillation. It must be kept in mind that a seemingly innocuous length of wire can have sufficient inductance at high frequencies to act as a coupling impedance between output and input stages. That is, the voltage developed across this impedance due to current from a later amplifier stage can provide a feedback signal to an earlier stage that is sufficient to cause instability. Hence, the physical layout of a high-gain amplifier is important in practice.

It must not be assumed that instability only occurs at high frequencies. In multistage $R C$-coupled amplifiers, dc blocking and emitter/source bypass capacitors introduce poles at low frequencies, and if these poles are not properly located, there may be sufficient gain and phase shift at some low frequency to cause oscillation.

Feedback Oscillators

A sinusoidal oscillator can be implemented by connecting an amplifier and a frequency selective circuit in cascade in a positive feedback loop. The criterion for oscillation is derived from Criterion 9.4.4 as the Barkhausen criterion:

$$
\begin{equation*}
\left.A\left(j \omega_{0}\right) \beta_{f}\left(j \omega_{0}\right)=1, \quad \text { where } \angle \beta_{f}\left(j \omega_{0}\right) A_{v}\left(j \omega_{0}\right)\right)=0 \tag{9.4.10}
\end{equation*}
$$

In words, the circuit oscillates at a frequency ω_{0} at which the phase shift around the loop is zero, and the magnitude of the loop gain is unity.

In practice, the gain is made greater than unity to ensure oscillation. The output increases until limited by some nonlinearity that effectively reduces the loop gain to unity. The nonlinearity introduces distortion, however, so that some measures must be taken to minimize this distortion, as illustrated later for the Wien-bridge oscillator and the high- Q oscillator.

It is evident from the Barkhausen criterion that the stability of the frequency of oscillation depends on $\left.\frac{d \phi}{d \omega}\right|_{\omega=\omega_{0}}$, where ϕ is the phase shift around the loop. Thus, if ϕ changes by $\Delta \phi$ for any reason, such as a change in the value of some circuit component, the resulting change in frequency is $\Delta \phi /\left(\left.\frac{d \phi}{d \omega}\right|_{\omega=\omega_{0}}\right)$, which is small if $d \phi / d \omega$ is large. Hence, for good frequency stability it is desirable to have a large $d \phi / d \omega$ at the frequency of oscillation.

Wien-Bridge Oscillator

An oscillator can be built using a Wien-bridge and a noninverting op-amp circuit (Figure 9.4.9a). The signal-flow diagram is shown in Figure 9.4.9b. $\beta_{f}(s)=V_{p} / V_{o}=H(s)$ is the transfer function of the bridge, which can be easily shown to be $\frac{s / C R}{s^{2}+(3 s / C R)+\omega_{0}^{2}}$, where $\omega_{0}=1 / R C$. The loop gain can be expressed as: $\frac{1}{3} \frac{(3 s / R C)}{s^{2}+(3 s / R C)+\omega_{0}^{2}}\left(1+\frac{R_{f}}{R_{r}}\right)$ and is $\frac{1}{3}\left(1+\frac{R_{f}}{R_{r}}\right)$ at $s=j \omega_{0}$. Setting this equal to unity, gives $R_{f}=2 R_{r}$ as the criterion for oscillation at the frequency ω_{0}.

In order to stabilize the amplitude, thermistors (temperature-sensitive resistors whose resistance changes markedly with temperature and hence power dissipated) can be used. Thus, a resistor having a positive temperature coefficient (PTC) of resistance can be used for R_{r}, or a resistor having a negative temperature coefficient (NTC) of resistance used for R_{f}. In either case, if the output voltage increases, because the loop gain exceeds unity, the power dissipated in R_{r} and R_{f} will increase. As a result either R_{r} increases, if it is PTC type, or R_{f} decreases, if it is NTC type. In either case, the negative feedback voltage to the inverting input increases and the overall gain is reduced back to unity.

(b)

FIGURE 9.4.9
Wien-bridge oscillator. (a) circuit; (b) signal-flow diagram.

The output voltage would thus be maintained nearly constant, with relatively low distortion.

The amplitude of oscillation can also be stabilized by means of diode-limiting circuits. Temperature-sensitive resistors, as well as diodes, are affected by ambient temperature, so that the amplitude of oscillation would change with temperature.

Exercise 9.4.2

Consider three, identical first-order lag circuits as in Figure 9.4.10, where in each circuit, $R_{f}=R$, $R_{r}=R / 2$, and $C_{f}=2 C$. Show that if these circuits are connected in a ring, a sinusoidal oscillator results, in which the three outputs form a balanced three-phase system. Determine the frequency of oscillation and verify that at this frequency the loop gain is unity.

Answer: $\sqrt{3} / 2 C R \mathrm{rad} / \mathrm{s}$

High-Q Oscillator

An alternative form of feedback oscillator consists of a high- Q bandpass filter of center frequency ω_{0}, connected to a limiter circuit in a positive feedback loop whose gain exceeds

FIGURE 9.4.10
Figure for Exercise 9.4.2.

FIGURE 9.4.11
High-Q oscillator.
unity at the frequency ω_{0} (Figure 9.4.11). The limiter circuit (Section 1.5, Chapter 1) "clips" the sinusoidal output voltage to a certain level $V_{\text {LIM }}$, as shown in Figure 9.4.11. Since the clipped waveform is periodic of frequency ω_{0}, it consists of a fundamental component at this frequency and higher harmonics. The high frequency selectivity of the bandpass filter heavily attenuates the harmonics, so that the output of the filter is nearly a pure sinusoid. The high- Q oscillator is simulated in Example 9.4.2. Additional examples of these oscillators are given in the problems at the end of the chapter.

Simulation Example 9.4.2 High-Q Oscillator

It is required to simulate the High- Q oscillator of Figure 9.4.11.

Simulation

This example illustrates the use of the Analog Behavioral Modeling (ABM) feature of PSpice, which allows the use of functional blocks to perform some mathematical operations. The ABM parts are located in the ABM library. Three of these parts are used in the present simulation: LAPLACE (for implementation of a transfer function), GLIMIT (for gain with output clipped at specified limits), and SUM (for summing two signals).

When LAPLACE is placed in the schematic, the default function is of the form $1 /(s+1)$. To change the numerator, double click on it and enter 50 s in the value field of the Display Properties window. To change the denominator, double click on it and enter $s^{*} s+50^{*} s+\operatorname{PWR}(10,8)$. The transfer function is now $50 s /\left(s^{2}+50 s+10^{8}\right)$, which is a unity gain, bandpass response centered at $10^{4} \mathrm{rad} / \mathrm{s}$ and having a Q of $10^{4} / 50=200$. The gain of GLIMIT is set to 1.5 and the voltage limits to $\pm 1 \mathrm{~V}$.

In a real circuit, oscillation is started by the inevitable disturbances due to switching-on or noise. To ensure oscillations in a simulation, the circuit can be given an initial "kick," by applying a short pulse the SUM part using the VPULSE source, as shown in Figure 9.4.12. The parameters of this source were set as follows: $\mathrm{V} 1=0, \mathrm{~V} 2=5, \mathrm{TD}=0, \mathrm{TR}=1 \mathrm{u}, \mathrm{TF}=1 \mathrm{u}$, $P W=100 u$, and PER $=1 \mathrm{~s}$. A Time Domain (transient) analysis is performed with a "Run to time" of 1 s , because the oscillations take some time to build up to a steady value.

Figure 9.4.13 shows v_{O} over the interval $0.6-0.602 \mathrm{~s}$. The frequency is 1.59 kHz corresponding to $\omega_{0}=10^{4}$. A Fourier analysis of the segment from 0.6 to 1 s gives an amplitude of 0.946 V and a total harmonic distortion of 1.18% up to and including the ninth harmonic.

FIGURE 9.4.12
Figure for Example 9.4.2.

FIGURE 9.4.13
Figure for Example 9.4.2.

9.5 Tuned Amplifiers

When a radio, television, or communication receiver is tuned to a particular rf (radio frequency) input signal, the frequency of the local oscillator in the receiver is set so that when the oscillator output is mixed with the received signal, a fixed frequency, called the intermediate frequency (i-f) is obtained. The bulk of amplification of the received signal and discrimination against unwanted frequencies is then conveniently done at this single, fixed frequency. The i-f amplifier has a bandpass response of center frequency in the range of a few hundred kHz to a few hundred MHz , depending on the system, and a bandwidth that depends on the type of modulation used. Tuned amplifiers are usually used to obtain the required bandpass response.

Tuned amplifiers utilize the bandpass properties of parallel RLC circuits, which allow high gain for frequencies within the passband, while rejecting frequencies outside the passband. Figure 9.5.1 illustrates a basic tuned-circuit amplifier, where it is assumed that the transistor is properly biased and that the parallel RLC circuit is of high Q, so that inductor losses are represented by a parallel resistance R_{p}, in accordance with the high- Q

FIGURE 9.5.1
Tuned amplifier.
approximation (Example SE9.2). It follows that at the center frequency $\omega_{0}=1 / \sqrt{L C}$ the gain from base to collector is:

$$
\begin{equation*}
\frac{v_{o}}{v_{i}}=-g_{m} R_{L} \tag{9.5.1}
\end{equation*}
$$

where R_{L} is the effective load resistance that is the parallel combination of R_{p}, r_{o} of the transistor, and any resistance that may be added to obtain the desired bandwidth.
The maximum theoretical gain is of interest. Evidently, the maximum R_{L} is R_{p}. Substituting $R_{p}=Q / \omega_{0} C$ for the parallel tuned circuit, and $\mathrm{BW}=\omega_{0} / Q$,

$$
\begin{equation*}
\frac{v_{o}}{v_{i}}=-\frac{g_{m}}{\mathrm{BW} \times \mathrm{C}} \tag{9.5.2}
\end{equation*}
$$

For given BW and g_{m}, the highest gain is obtained by having the smallest C, which in the limit is that due solely to the internal capacitances of the transistor. Considering the Miller effect, recall that the capacitance C_{μ} between the base and collector is equivalent to a capacitor $C_{\mu}(1-K)$ at the base of the transistor, and to a capacitor $C_{\mu}(1-1 / K)$ at the collector, where $K=-g_{m} R_{p}$ is the gain. If $|K|$ is large, C_{μ} appears in parallel with the tuned circuit (Figure 9.5.1). To this capacitance must be added that due to the load. Assuming that the transistor is connected to another amplifying stage having an identical transistor, as is usually the case, and that the Miller effect of this stage is negligible, as in the case of a cascode amplifier, for example, the smallest additional capacitance can be considered to be C_{π}. The minimum total capacitance in Equation 9.5.2 is therefore $C_{\mu}+C_{\pi}$, so that,

$$
\begin{equation*}
|G|=\frac{g_{m}}{\mathrm{BW} \times\left(\mathrm{C}_{\mu}+\mathrm{C}_{\pi}\right)} \tag{9.5.3}
\end{equation*}
$$

where G is the gain. Equation 9.5 .3 is significant in not only giving the maximum gain for a given transistor and bandwidth but also in showing that the maximum gain-bandwidth product is $g_{m} /\left(\mathrm{C}_{\mu}+\mathrm{C}_{\pi}\right)$ as given by Equation 6.2.38, Chapter 6 . This is a limit on the maximum attainable gain for a given bandwidth and was encountered earlier in connection with various amplifier configurations. Equation 9.5.3 is yet another expression of the following fundamental concept.

Concept: Gain and bandwidth can be traded for one another, but the limit on their product is set by the transistor.

Exercise 9.5.1

A tuned amplifier such as that of Figure 9.5 .1 is to have a gain of -50 at a center frequency of 5 MHz and a bandwidth of 50 kHz using a transistor of $g_{m}=50 \mathrm{~mA} / \mathrm{V}$. Determine L and C , and R that must be added, assuming the Q of the coil is 150 at 50 MHz and neglecting r_{o} and the capacitances of the transistor.

Answers: $3.18 \mathrm{nF} ; 79.6 \mathrm{nH} ; 1.36 \mathrm{k} \Omega$.

The gain and selectivity required of tuned amplifiers cannot in practice be obtained from a single tuned circuit or from a single stage. This means that there will, in general, be tuned circuits at the inputs as well as the outputs of transistors, which causes two problems:

1. In $\mathrm{CE} / \mathrm{CS}$ stages, the Miller effect adds appreciable capacitance across the input tuned circuit, which will change the frequency and bandwidth of this circuit and can even cause instability (Problem P9.3.6).
2. If all the circuits are tuned to the same frequency, the bandwidth is reduced (Section ST9.4).

The problem of the Miller effect is avoided by using amplifier stages that do not suffer from this effect, such as a cascode. In the CC-CE cascade the Miller effect is mitigated by the low output impedance of the CC transistor. Another useful configuration that does not suffer from the Miller effect is the CC-CB cascade, illustrated in Figure 9.5.2, where the voltage source at the input has been transformed to the equivalent current source. C_{μ} of the first transistor appears between base and ground and C_{μ} of the second transistor appears between collector and ground. Each adds to the capacitance of the respective tuned circuit at the input and the output, but neither capacitance is multiplied by the Miller effect. The input and output tuned circuits are effectively isolated from one another. Note that the configuration can equally be viewed as a differential pair with zero collector load for one transistor and with the base of the other transistor grounded (Section 10.1, Chapter 10). Since C_{μ} is not a precisely known capacitance and is subject to variations with operating conditions and with different transistors of the same type, C_{μ} is kept small compared to the capacitance of the tuned circuit.

The problem of selectivity can be solved in two ways: (1) magnetic coupling between the tuned circuit at the output of a given stage and the tuned circuit at the input of the following stage (Section ST9.3); (2) stagger tuning the various tuned circuits (Section ST9.4).

FIGURE 9.5.2
CC-CB cascade tuned amplifier.

9.6 LC Oscillators

If part of the voltage developed across the RLC circuit of a tuned amplifier is fed back to the transistor input, sustained sinusoidal oscillations will result. In the Colpitts oscillator, C is replaced by two capacitors in series, the feedback voltage being the voltage across one of these capacitors. In the Hartley oscillator, L is replaced by two inductors in series, with or without coupling between them, the feedback voltage being the voltage across one of these inductors. Both types of oscillators are widely used in practice, particularly in broadcast receivers.

Figure 9.6.1 illustrates one form of biasing for the Colpitts oscillator. A radio-frequency choke (RFC) presents very high impedance at the oscillation frequency, thereby effectively isolating the circuit from the power supply. Without the RFC, C_{2} is effectively grounded at both ends. C_{B} and C_{E} have low impedance at the oscillation frequency and therefore appear as short circuits across the corresponding resistors. The conditions for oscillation can be derived from the equivalent circuit of Figure 9.6.2, in which several simplifications have been made to highlight the basic principles involved. R_{2} and r_{π}, both of which appear in parallel with C_{2} are neglected on the assumption that they are large compared with the reactance of C_{2} at the oscillation frequency. This frequency is assumed not to be high

FIGURE 9.6.1
Colpitts oscillator with biasing.

FIGURE 9.6.2
Simplified, small-signal equivalent circuit of Colpitts oscillator.
enough for C_{μ} to have a significant effect. C_{π}, which is normally much larger than C_{μ}, can be included with C_{2}. R accounts for r_{o} of the transistor, R_{p} of the coil, and load resistance.

Assume that the feedback loop is interrupted at X, a voltage source $V_{\pi}(s)$ is applied between base and emitter (Figure 9.6.2), and the voltage $V_{f}(s)$ determined. Note that breaking the loop at an open circuit obviates the need for any terminations at the breakpoint. Thus, the voltage $V_{f}(s)$ is measured at an open circuit, as when the loop is closed, and any source impedance that is associated with the source $V_{\pi}(s)$ is immaterial because the source is applied at an open circuit. The condition for sustained oscillation is that the voltage $V_{f}(s)$ that is fed back equals $V_{\pi}(s)$. Applying KCL to node C: $g_{m} V_{\pi}(s)+$ $\left(s C_{1}+1 / R\right) V_{o}(s)+s C_{2} V_{f}(s)=0$. From voltage division, $V_{f}(s)=V_{o}(s) /\left(1+s^{2} L C_{2}\right)$. Eliminating $V_{o}(s)$ gives:

$$
\begin{equation*}
V_{\pi}(s)=-\frac{1}{g_{m}}\left[s C_{2}+\left(\frac{1}{R}+s C_{1}\right)\left(1+s^{2} L C_{2}\right)\right] V_{f}(s) \tag{9.6.1}
\end{equation*}
$$

To have sustained oscillations, the quantity in square brackets must equal -1 . Replacing s by $j \omega$ and setting the imaginary part to zero and the real part in square brackets to -1 ,

$$
\begin{gather*}
\omega_{o}=1 / \sqrt{L \frac{C_{1} C_{2}}{C_{1}+C_{2}}} \tag{9.6.2}\\
g_{m} R=C_{2} / C_{1} \tag{9.6.3}
\end{gather*}
$$

Equation 9.6 .2 gives the frequency of oscillation ω_{o} as that of L in series with C_{1} and C_{2}.
To get a better insight into the operation of the circuit, let us calculate $I_{x}(s)$ in Figure 9.6.2 with the loop closed. It is seen that $I_{x}(s)=s C_{1} V_{o}(s)+s C_{2} V_{\pi}(x)$, where $V_{\pi}(s)=$ $V_{o}(s) /\left(1+s^{2} L C_{2}\right)$. Or, $I_{x}(s)=V_{\pi}(s)\left[s C_{2}+s C_{1}\left(1+s^{2} L C_{2}\right)\right]$. The bracketed quantity on the RHS is the imaginary part of the quantity in the square brackets of Equation 9.6.1 and is zero. This means that $I_{x}(s)=0$, which explains why ω_{o} (Equation 9.6.2) depends only on L, C_{1}, and C_{2}. But if $I_{x}(s)=0$, then the current source must present a resistance $-R$, so that R in parallel with $-R$ gives an infinite resistance. This can be verified, since the resistance presented by the current source is $V_{0}(s) / g_{m} V_{\pi}(s)$, which, from voltage division, equals $\left(1+s^{2} L C_{2} / g_{m}\right)$. The real part that was set to -1 in Equation 9.6.1 is: $\frac{1+s^{2} L C_{2}}{g_{m} R}=-1$. Hence, $\frac{V_{o}(s)}{g_{m} V_{\pi}(s)}=-R$. A negative resistance delivers power. Hence,

Concept: The positive feedback through the transistor - an active device - supplies power that compensates for the power loss in the oscillating circuit.

With R and the current source neutralizing one another, the circuit becomes a lossless, $L C$ circuit. The power delivered by the source is $-g_{m} V_{\pi}(s) V_{o}(s)$, and that dissipated in R is $V_{o}^{2}(s) / R$. Equating these powers and substituting $V_{\pi}(s) / V_{o}(s)=-C_{1} / C_{2}$ at the frequency of oscillation, gives Equation 9.6.3.

It should be kept in mind that accounting for the losses in an inductor by means of a parallel resistance involves an approximation that, strictly speaking, makes the equivalent
parallel inductance and resistance functions of frequency. Hence, the parallel circuit representation is an idealization that becomes more valid the higher the Q of the circuit.

The conditions for oscillation can also be determined from the circuit equations without opening the loop. This is convenient when it is awkward to determine the proper terminations on either side of the loop break point. The argument is that KVL and KCL must be satisfied even in the presence of oscillations. Referring to Figure 9.6.2, KCL at node C can be written as:

$$
s C_{1} V_{o}(s)+\frac{V_{o}(s)}{R}+\frac{V_{o}(s)}{s L+1 / s C_{2}}+\frac{g_{m} V_{o}(s) / s C_{2}}{s L+1 / s C_{2}}=0
$$

Multiplying out and collecting terms,

$$
V_{o}(s)\left[\left(1+s C_{1} R\right)\left(1+s^{2} L C_{2}\right)+R\left(g_{m}+s C_{2}\right)\right]=0
$$

In the presence of oscillations $V_{o}(s) \neq 0$, so that the quantity in brackets is zero. Replacing s by $j \omega$ and equating the real and imaginary parts to zero yields Equations 9.6.2 and 9.6.3.
In practice, in order for the oscillations to start and continue reliably, it is necessary to have $g_{m}>C_{2} /\left(C_{1} R\right)$. The oscillations grow in amplitude until transistor nonlinearities reduce g_{m} to the level required by Equation 9.6.3. Nonlinearities imply distortion. However, the fundamental at the oscillation frequency is amplified by $\left|g_{m} R\right|$, whereas harmonics are relatively attenuated because of the frequency selectivity of the oscillating circuit. The harmonic distortion is therefore low, typically less than 1%. Since the oscillations are limited by transistor nonlinearities rather than special amplitude-limiting circuitry, as in the case of op-amp oscillators, the Colpitts oscillator is an example of a self-limiting oscillator.

The Hartley oscillator can be similarly analyzed, as illustrated by Example 9.6.1. Note that when the oscillation frequency exceeds about a quarter of the unity-gain bandwidth of the transistor, a more accurate transistor model that includes internal capacitances should be used.

Example 9.6.1 Hartley Oscillator

Consider the Hartley oscillator in the circuit of Figure 9.6.3, in which it is assumed that the transistor is properly biased. The two coils are usually wound in the same sense on a common former, so that they are mutually coupled as shown. It is required to determine the oscillation frequency as well as the condition for oscillation.

Solution

Method 1: The small-signal equivalent circuit is shown in Figure 9.6.4. Because of mutual coupling, it is more convenient to represent the transistor in terms of $I_{b}(s)$ and $\beta J_{b}(s) . r_{\pi}$ includes the resistance reflected from the L_{1} side, which accounts for r_{0}, load resistance, and losses in the coils. The dot markings are those required for positive feedback. Thus, an increase in $I_{b}(s)$ increases the

FIGURE 9.6.3
Figure for Example 9.6.1.

FIGURE 9.6.4
Figure for Example 9.6.1.
collector current $\beta I_{b}(s)$, which increases $V_{1}(s)$. According to the dot markings, this increases $V_{2}(s)$, which in turn increases $I_{b}(s)$. From KCL at nodes B and C , and equating the currents on both sides of the capacitor, gives:

$$
\begin{equation*}
(\beta+1) I_{b}(s)=I_{1}(s)-I_{2}(s) \tag{9.6.4}
\end{equation*}
$$

From KVL around the outer loop,

$$
\begin{equation*}
V_{1}(s)+V_{2}(s)+\left[I_{2}(s)+I_{b}(s)\right] / j \omega C=0 \tag{9.6.5}
\end{equation*}
$$

where,

$$
\begin{equation*}
V_{1}(s)=j \omega L_{1} I_{1}(s)+j \omega L_{2} I_{2}(s) \tag{9.6.6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}(s)=j \omega L_{2} I_{2}(s)+j \omega M I_{1}(s) \tag{9.6.7}
\end{equation*}
$$

Substituting $V_{1}(s)+V_{2}(s)$ from Equations 9.6 .6 and 9.6 .7 in Equation 9.6.5, eliminating $I_{b}(s)$ using Equation 9.6.4, and collecting terms, gives the following equation involving $I_{1}(s)$ and $I_{2}(s)$:

$$
\begin{equation*}
\left[\omega^{2} C\left(L_{1}+M\right)-\frac{1}{\beta+1}\right] I_{1}(s)+\left[\omega^{2} C\left(L_{2}+M\right)-\frac{\beta}{\beta+1}\right] I_{2}(s)=0 \tag{9.6.8}
\end{equation*}
$$

From KVL around the loop containing L_{2} and r_{π} :

$$
\begin{equation*}
V_{2}(s)-r_{\pi} I_{b}(s)=0 \tag{9.6.9}
\end{equation*}
$$

Substituting for $V_{2}(s)$ from Equation 9.6.7, and for $I_{b}(s)$ from Equation 9.6.4 gives a second equation involving $I_{1}(s)$ and $I_{2}(s)$:

$$
\begin{equation*}
\left[j \omega M-\frac{r_{\pi}}{\beta+1}\right] I_{1}(s)+\left[j \omega L_{2}+\frac{r_{\pi}}{\beta+1}\right] I_{2}(s)=0 \tag{9.6.10}
\end{equation*}
$$

In the presence of oscillations, $I_{1}(s)$ and $I_{2}(s)$ are not zero. But since the RHS of Equations 9.6.8 and 9.6 .10 is zero, it means that the determinant of the coefficients of $I_{1}(s)$ and $I_{2}(s)$ in Equations 9.6.8 and 9.6.10 must be zero. Equating the real part of the determinant to zero, gives the frequency of oscillation:

$$
\begin{equation*}
\omega_{o}=1 / \sqrt{C\left(L_{1}+L_{2}+2 M\right)} \tag{9.6.11}
\end{equation*}
$$

Equating the imaginary part to zero, gives the condition for oscillation:

$$
\begin{equation*}
\beta=\frac{L_{2}+M}{L_{1}+M} \tag{9.6.12}
\end{equation*}
$$

To ensure oscillations, β should be larger than this value.
Equation 9.6.11 is that of an $L C$ circuit having a total inductance $L_{1}+L_{2}+2 M$, which is that of two coupled coils in series. If there is no coupling between the coils, $M=0$ in Equations 9.6.11 and 9.6.12. The condition for oscillation is interpreted in connection with Method 2.

Method 2: The simplicity of Equations 9.6.11 and 9.6.12 suggests a simpler derivation based on the argument that under conditions of oscillation, the amplifier delivers power that compensates for the power dissipated in the circuit. The power delivered by the current source is $\beta I_{b}(s) V_{1}(s)$, and that dissipated in r_{π} is $V_{2}(s) l_{b}(s)$. Equating these powers, $\beta=V_{2}(s) / V_{1}(s)$. With the current source and r_{π} neutralizing one another, they can both be removed from the circuit, leaving a lossless $L C$ circuit having two coupled coils L_{1} and L_{2} in series. As the effective inductance is ($L_{1}+L_{2}+2 M$), the resonant frequency is given by Equation 9.6.11. The ratio $V_{2}(s) / V_{1}(s)$ is $\left(L_{2}+M\right) /\left(L_{1}+M\right)$, which gives Equation 9.6.12.

Figure 9.6.5 shows a circuit for a variable frequency Hartley oscillator. A three-coil transformer is used, with a step-up turns ratio from the collector to the tuned circuit. The advantage of such an arrangement is that the base-collector capacitance of the transistor, which varies with $V_{C C}$, appears as a reduced capacitance across the tuned circuit, and will therefore cause less variation in the frequency of oscillation.

FIGURE 9.6.5
Figure for Example 9.6.1.

9.7 Crystal Oscillators

Some crystals, such as naturally occurring quartz crystals, or artificial ceramic crystals, notably barium titanate, exhibit a piezoelectric effect. When a slab cut from the parent crystal is subjected to mechanical deformation in the appropriate direction, a voltage is generated between opposite faces of the slab due to movement of charges. The effect is reversible, so that an applied voltage will cause a change in the dimensions of the slab, the strength of the piezoelectric effect depending on the crystallographic axes along which the crystal is cut. Piezoelectric transducers are extensively used to generate and receive ultrasound waves. The deformable piezoelectric slab exhibits mechanical resonance due to its inertance, which is the mechanical equivalent of inductance, and to its elastance, which is the mechanical equivalent of capacitance. The mechanical resonance can be reinforced, through the piezoelectric effect, to produce sustained oscillations. Thus, a voltage across the crystal at or near the mechanical resonant frequency will produce a magnified mechanical deformation that will in turn, through the piezoelectric effect, reinforce the voltage across the crystal. The resulting oscillations are very stable and have a small temperature coefficient of the order of 1 cycle per million per ${ }^{\circ} \mathrm{C}$. The frequency of oscillation depends on the dimensions of the crystal and the type of mounting and can range between a few kHz and hundreds of MHz . The waveform of oscillations is rich in harmonics, so that multiples of the fundamental frequency can be selected by appropriate bandpass filters.

The electrical equivalent circuit of the crystal is shown in Figure 9.7.1 together with the crystal symbol. L_{m}, C_{m}, and R_{m} are the electrical equivalents of the mechanical inertance, elastance, and damping, respectively. C_{p} and R_{p} are the capacitance and the leakage resistance, respectively, between the faces of the crystal. Typically, L_{m} can be as large as hundreds of H, R_{p} in the range of $\mathrm{G} \Omega, C_{m}$ as small as a fraction of a fF , and C_{p} of the order of a few pF , being much larger than C_{m}. The series resonant circuit has $Q=\omega_{0} L_{m} / R_{m}$, which is typically several hundred thousand, so that R_{m} is very small compared to $\omega_{0} L_{m}$. Ignoring R_{m} and R_{p}, the reactance between nodes a and b of the equivalent circuit is:

$$
\begin{align*}
X_{a b} & =\left(\frac{1}{s C_{p}}\right) \|\left(s L_{m}+\frac{1}{s C_{m}}\right) \\
& =\frac{1}{s C_{p}} \frac{s^{2}+1 / L_{m} C_{m}}{s^{2}+1 / L_{m}\left(C_{m} \| C_{p}\right)} \tag{9.7.1}
\end{align*}
$$

The reactance $X_{a b}$, illustrated in Figure 9.7.2, has a zero at a frequency:

$$
\begin{equation*}
\omega_{s}=\frac{1}{\sqrt{L_{m} C_{m}}} \tag{9.7.2}
\end{equation*}
$$

FIGURE 9.7. 1
Symbol and electrical equivalent circuit of piezoelectric crystal.

FIGURE 9.7.2
Reactance of piezoelectric crystal.

FIGURE 9.7.3
Crystal oscillator.
corresponding to series resonance of L_{m} and C_{m}. At a frequency $\omega_{p}>\omega_{s}$, the series reactance of L_{m} and C_{m} is inductive and will be in parallel resonance with C_{p} giving a pole of $X_{a b}$ at:

$$
\begin{equation*}
\omega_{p}=\frac{1}{\sqrt{L_{m}\left(C_{m}<>C_{p}\right)}} \tag{9.7.3}
\end{equation*}
$$

where $C_{s}<>C_{p}$ is the series capacitance of C_{s} and C_{p}. Since $C_{p} \gg C_{m}, \omega_{s}$ and ω_{p} are very close together (Exercise 9.7.1). When the crystal is substituted for the inductance in a Colpitts oscillator, the frequency of oscillation will be between ω_{s} and ω_{p}. The basic circuit, represented as in Figure 9.7.3, is referred to as a Pierce oscillator. Inversion could be obtained between the base and emitter of a BJT, as in Figure 9.6.1, or by using a CMOS inverter that is biased for high-gain by connecting a resistor between its input and output terminals (Section 13.1, Chapter 13). As in Figure 9.6.2, the current that flows in $L C_{1} C_{2}$ is such that the voltages across C_{1} and C_{2} are in antiphase, so that the connection of the inverter results in positive feedback that reinforces these voltages and compensates for power dissipation, as discussed for the Colpitts oscillator.

Exercise 9.7.1

(a) Express Equation 9.7.1 in terms of the reactance $X_{a b}$, where $Z_{a b}=j X_{a b}$, and sketch $X_{a b}$ as a function of ω.
(b) Determine ω_{s} and ω_{p} if $L_{m}=100 \mathrm{H}, C_{m}=1 \mathrm{fF}$, and $C_{p}=1 \mathrm{pF}$.

Answers: (a) 503.292 kHz ; and (b) 503.544 kHz .

Summary of Main Concepts and Results

- Transistor amplifier stages can be directly coupled or coupled using capacitors, transformers, or optical coupling. In dc coupling, the dc level at the output of a given stage may have to be shifted so as to be compatible with the dc level at the input of the following stage. This can be done using diodes, an emitter follower, or a $V_{B E}$ multiplier.
- The low-frequency response of amplifiers is affected by coupling capacitors and emitter/source bypass capacitors. Coupling capacitors introduce a zero at zero frequency and a pole at low frequencies. Emitter/source bypass capacitors introduce a zero at low frequencies and a pole at a higher frequency.
- Transistor feedback amplifiers are conveniently analyzed by neglecting the reverse transmission through the amplifier proper and the forward transmission through the feedback circuit. The feedback configuration can then be reduced to one of four standard configurations, taking into account the loading effects of the feedback circuit at the input and output of the amplifier. These effects, together with the feedback factor, can be determined following some simple, generalized rules. The feedback factor is the " 12 " two-port parameter of the feedback circuit. The gain, input and output resistances in the presence of feedback follow from the corresponding quantities without feedback, as modified by the loop gain.
- Feedback amplifiers should have an adequate degree of stability. This can be conveniently achieved by having the slope of the asymptote of the $20 \log _{10}\left|A_{v}(j \omega)\right|$ plot, minus that of the $20 \log _{10}\left|1 / \beta_{f}(j \omega)\right|$ plot at their point of intersection, not more negative than $-20 \mathrm{~dB} /$ decade.
- In feedback oscillators, the phase shift around the loop at the oscillating frequency is zero and the gain is nominally unity.
- In a tuned amplifier, tuned circuits are connected at the input and output of transistor amplifier stages. To increase the bandwidth, the circuits can be stagger tuned, or magnetically coupled. The maximum gain-bandwidth product in a tuned amplifier is that of the transistor.
- In an $L C$ oscillator, the transistor provides, through positive feedback, the energy required to compensate for the dissipation in the tuned circuit.
- A piezoelectric crystal can replace the inductor in an LC oscillator, resulting in oscillations of high stability and low temperature coefficient.

Learning Outcomes

- Analyze and design basic, dc-coupled or ac-coupled, cascaded stages.
- Analyze feedback amplifiers.
- Articulate the principles of operation of feedback oscillators, tuned amplifiers, and LC oscillators.

Supplementary Examples and Topics on Website

SE9.1 Triangular-Waveform Generator. Describes a two-op-amp square-wave/triangularwave generator.
SE9.2 High- Q approximation. Expresses a series $R L$ circuit of high Q as a parallel $R L$ circuit (Sabah 2008, Example SE10.2, p. 393).
SE9.3 High-Performance Source Follower. Analyzes a source follower using an op amp in a series-shunt configuration to enhance the performance of a source follower. A method that is simply based on signal-flow diagrams is presented, as well as a more conventional method.

ST9.1 Determination of Loop Gain from Open-Circuit and Short-Circuit Transfer Functions. Describes a method for deriving the loop gain from the measurement of the open-circuit voltage transfer function and the short-circuit current transfer function.
ST9.2 Stability in Terms of Poles of Closed-Loop Transfer Function. Examines stability in terms of the Nyquist plot and the locations of the poles of the closed-loop transfer function of a three-pole system.

ST9.3 Magnetically Coupled Tuned Circuits. Analyzes magnetically coupled tuned circuits and applies the analysis to the design of an i-f stage in an AM radio receiver (Sabah 2008, Section ST10.7, p. 393).

ST9.4 Stagger-Tuned Circuits. Discusses lowpass-to-narrowband bandpass transformation and applies it to the design of a stagger-tuned i-f amplifier (Sabah 2008, Section ST10.6, p. 393).

Problems and Exercises

P9.1 Cascaded and Feedback Amplifiers

P9.1.1 In the discrete amplifier stage of Figure P9.1.1 the E-NMOS

FIGURE P9.1.1 transistor has $k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=2 \mathrm{~V}$, and $\lambda=0.05 \mathrm{~V}^{-1}$, the capacitors being very large. (a) Determine I_{D} and g_{m}, neglecting channel-length modulation. (b) The amplifier stage is cascaded with an identical stage and connected between a small-signal voltage source of $50 \mathrm{k} \Omega$ source resistance and a $10 \mathrm{k} \Omega$ load. Determine the overall smallsignal voltage gain from the source to load.
P9.1.2 The transistors in Figure P9.1.2 have $\beta=100, V_{B E}=0.7 \mathrm{~V}$, the capacitor and r_{o} being very large. Determine v_{o} / v_{i}, the resistance looking into the bases of Q_{2} and Q_{1}, and i_{o} / i_{i}.

FIGURE P9.1.2
P9.1.3 Determine: (a) the dc currents in each transistor in Figure P9.1.3 assuming $\left|V_{B E}\right|=0.7 \mathrm{~V}$ and very large β; (b) the small-signal input resistance, current gain, and voltage gain, assuming $\beta=100$ for all transistors, and neglecting r_{o}.

FIGURE P9.1.3

FIGURE P9.1.4

P9.1.4 Derive the expression for the voltage gain v_{o} / v_{i} in Figure P9.1.4, neglecting r_{o}.
P9.1.5 Figure P9.1.5 shows a two-stage dc coupled emitter follower. Calculate V_{O}, the dc output voltage for zero dc input assuming $V_{E B}$ of Q_{2} is 0.7 V and $V_{B E}$ of Q_{1} is 0.7 V at 1 mA . Determine $r_{\text {in }}, r_{\text {out }}^{\prime}, A_{v}$ and A_{v}^{\prime}, neglecting r_{o} and assuming $\beta_{1}=30$ and $\beta_{2}=100$. Simulate with PSpice.

FIGURE P9.1.5

P9.1.6 A CS amplifier with a gate-drain feedback resistor, as in the BJT circuit of Figure 8.1.5, Chapter 8 , has $R_{G}=5 \mathrm{M} \Omega, R_{D}=20 \mathrm{k} \Omega, g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=80 \mathrm{k} \Omega$, and coupling capacitors $C_{P I}$ and $C_{P O}$ at the input and output, respectively. If the load resistance is $50 \mathrm{k} \Omega$, determine $C_{P I}$ and $C_{P O}$ using the SCTC method to give a pole at 15 Hz , the second pole being at least a decade lower.
P9.1.7 Consider the two-cascaded stages of Problem P9.1.1, but with the source bypass capacitors removed, the capacitor connected to the source being $5 \mu \mathrm{~F}$, and the remaining coupling capacitors being $1 \mu \mathrm{~F}$. Use the SCTC method to find the $3-\mathrm{dB}$ cutoff frequency.
P9.1.8 Consider the circuit of Figure 8.1.4, Chapter 8, with the base connected to a source of $2 \mathrm{k} \Omega$ resistance, the output coupled by a capacitor $C_{P O}$ to a $10 \mathrm{k} \Omega$ load, and the emitter bypassed to ground by a capacitor $C_{E} \cdot R_{C}=R_{E}=5 \mathrm{k} \Omega, I_{C}=1 \mathrm{~mA}$, and $\beta=100$. Neglecting r_{o}, determine C_{E} and $C_{P O}$ so that the lower $3-\mathrm{dB}$ frequency is at 50 Hz , the contribution of the nondominant pole to this frequency not exceeding 5%, and the total capacitance is minimized.
P9.1.9 Given a CE amplifier as in Figure 8.2.1a, Chapter 8, having $R_{s r c}=2 \mathrm{k} \Omega, R_{C}=5.1 \mathrm{k} \Omega$, $R_{E}=3.9 \mathrm{k} \Omega, R_{L}=8.2 \mathrm{k} \Omega, R_{1} \| R_{2}=20 \mathrm{k} \Omega, I_{C}=0.5 \mathrm{~mA}, \beta=100, r_{o}=100 \mathrm{k} \Omega, C_{E}=10 \mu \mathrm{~F}$, $C_{P I}=5 \mu \mathrm{~F}$, and $C_{P O}=1 \mu \mathrm{~F}$. Evaluate the SCTCs and estimate the lower 3-dB cutoff frequency. Simulate with PSpice.
P9.1.10 Repeat Problem P9.1.9 for an E-NMOS transistor having $g_{m}=1 \mathrm{~mA} / \mathrm{V}, r_{o}=100 \mathrm{k} \Omega$, and the same circuit components as in Problem P9.1.9 in but with $R_{G}=1 \mathrm{M} \Omega$. Determine the SCTCs, and the lower 3-dB cutoff frequency. Simulate with PSpice.
P9.1.11 In the PSpice simulation of the CE amplifier in Problem P9.1.9, observe the waveforms of i_{B}, i_{C}, and $v_{C E}$ at maximum swing, noting the considerable distortion of the sinusoidal waveform. Observe the same waveforms without the emitter bypass
capacitor and note the reduction of distortion. As the transistor enters saturation, the i_{B} waveform has a narrow, peaked excursion superposed on the positive maximum of the sinusoid, whose amplitude and width increase with the degree of saturation. What do you ascribe this to? Compare the midband, small-signal voltage gain, and bandwidth with and without the emitter bypass capacitor.
P9.1.12 An amplifier of midband gain of -25 has a phase shift of 135° at 50 Hz and 225° at 500 kHz . Determine: (a) the bandwidth; and (b) the frequency range over which the gain exceeds unity.
P9.1.13 An amplifier has the transfer function $H(s)=\frac{10^{11} s^{2}}{(s+1)(s+5)\left(s+10^{4}\right)\left(s+5 \times 10^{4}\right)}$. Determine: (a) the midband gain in dB ; (b) the lower 3-dB cutoff frequency; (c) the upper 3-dB cutoff frequency. (Hint: express $H(s)$ as: $\left.\frac{200}{(1+1 / s)(1+5 / s)\left(1+s / 10^{4}\right)\left(1+s /\left(5 \times 10^{4}\right)\right)}\right)$.
P9.1.14 A wideband amplifier can be realized by cascading low-gain stages, as in Figure P9.1.14 (Steininger, 1990), where Q_{1} and Q_{2} are identical, except for the channel width W, and are biased to the same $V_{G S}$. Neglect r_{o} and assume that $C_{g d} \gg C_{g s}$, and the gain of the stage v_{o} / v_{i} is small so that the Miller effect is negligible. The small-signal equivalent circuit of the MOSFET can be then represented by a current source $g_{m} v_{g s}$ at the output and a capacitance g_{m} / ω_{T} at the input, where ω_{T} is the unity-gain bandwidth and is independent of W. Show that if the stage of Figure P9.1.14 is followed by an identical stage, $\frac{v_{o}}{v_{i}}=-\frac{A_{0}}{1+\frac{s}{\omega_{T} /\left(A_{0}+1\right)}}$, where $A_{0}=\frac{g_{m 1}}{g_{m 2}}=\frac{W_{1}}{W_{2}}$.
P9.1.15 Consider a source follower as a series-shunt feed-

FIGURE P9.1.14 back circuit. Derive $A_{v a}, R_{o a}, A_{v f a}$, and $R_{o f a}$ neglecting the body effect. Compare with Equations 8.2.16 and 8.2.20.
P9.1.16 In the circuit of Figure P9.1.16, the series-shunt feedback of the D-NMOS source follower is augmented by Q_{2}. Assume that Q_{1} has $I_{D S S}=5 \mathrm{~mA}$ and $V_{t D}=-2 \mathrm{~V}$, whereas Q_{2} has $V_{E B}=0.7 \mathrm{~V}$, a large β, and $g_{m 2}=30 \mathrm{~mA} / \mathrm{V}$. (a) Determine the quiescent currents

of Q_{1} and Q_{2} for zero dc input. (b) Derive $A_{v a}, R_{o a}, A_{v f a}$, and $R_{o f a}$ neglecting the body effect, channel-length width modulation, and base-width modulation. What is the effective g_{m} of Q_{1} ?
P9.1.17 Figure P9.1.17 shows the ac circuit of a shunt-shunt feedback amplifier. Assume that the drain/collector currents are 1 mA . Q_{1} has $k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}$ and $\lambda=0.02 \mathrm{~V}^{-1}$, whereas Q_{2} and Q_{3} have $\beta=100$ and $V_{A}=50 \mathrm{~V}$. Determine $\beta_{f}, v_{o} / v_{s r c}, R_{i f a}$, and $R_{o f a}$.

FIGURE P9.1.17

P9.1.18 (a) Specify the feedback configuration in Figure P9.1.18. (b) Determine $i_{o} / v_{s r c}$ from feedback analysis assuming that the current mirror is ideal, $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=1 \mathrm{~V}$, very large r_{o} for all transistors, and neglecting the body effect. (c) Verify the result in (b) by direct analysis.

P9.1.19 (a) Specify the feedback configuration in Figure P9.1.19. (b) Apply feedback analysis to determine $v_{o} / v_{s r c}$ and the output resistance looking into Q_{2} collector. Assume $g_{m 1}=g_{m 2}=2 \mathrm{~mA} / \mathrm{V}, r_{o 1} \rightarrow \infty, r_{o 2}=40 \mathrm{k} \Omega$ and neglect the body effect.

FIGURE P9.1.19

P9.1.20 The h-parameter two-port circuit equations are: $V_{1}=h_{11} I_{1}+h_{12} V_{2}$ and $I_{2}=h_{21} I_{1}+h_{22} V_{2}$, as follows from Figure 7.1.2c. Apply these equations to the series-shunt circuit of Figure 9.3.1 to show that the equations for the feedback amplifier are $V_{s r c}=h_{11 f a} I_{i}+$ $h_{12 f a} V_{o}$ and $I_{2}=h_{21 f a} I_{i}+h_{22 f a} V_{o}$, where $h_{11 f a}=R_{s r c}+h_{11 a}+h_{11 f}, \quad h_{12 f a}=h_{12 \mathrm{a}}+h_{12 f}$, $h_{21 f a}=h_{21 a}+h_{21 f}$, and $h_{22 f a}=h_{22 a}+h_{22 f}$. Setting $h_{12 a}$ and $h_{21 f}$ to zero, show that $A_{v f a}$, $R_{i f a}$, and $R_{o f a}$ derived from the h-parameter equations are the same as those obtained from feedback analysis. Note that the same procedure can be applied to the other feedback configurations using the z-, y-, and g-parameters.

P9.2 Closed-Loop Stability and Feedback Oscillators

P9.2.1 Show that a capacitive load in conjunction with the op-amp output resistance makes the amplifier less stable, in both the inverting and noninverting configurations. Assume that $A_{v}(f)=\frac{A_{v 0}}{\left(1+j \omega / \omega_{c 1}\right)\left(1+j \omega / \omega_{2}\right)}$, an otherwise ideal op amp, and a purely resistive β_{o}.
P9.2.2 The op amp shown in Figure P9.2.2 has infinite input resistance, an output resistance of $500 \Omega, A_{\nu}(f)=10^{4} /(s+50)$, and $C_{L}=1 \mu \mathrm{~F}$. Determine the phase margin.

FIGURE P9.2.2

P9.2.3 An op amp has $A_{v 0}=10^{5}$, a one-pole transfer function, and a unity-gain bandwidth of 1 MHz . Determine: (a) $\left|A_{v}(f)\right|$ at 1 kHz ; and (b) the low-frequency closed-loop gain for a $3-\mathrm{dB}$ cutoff frequency of 50 kHz .
P9.2.4 An op amp having the transfer function $A_{v 0} /\left(1+j \frac{f}{100}\right)^{3}$, where f is in Hz , is to be used as a noninverting amplifier with a feedback factor of 0.01 . Determine $A_{\nu 0}$ for: (a) a phase margin of 45°; and (b) a gain margin of 20 dB .

P9.2.5 An amplifier having $A_{v}(f)=\frac{10^{4}}{(1+j f / 10)(1+j f / 1000)}$, where f is in Hz, is used in a negative feedback configuration with $\beta_{f}=0.1$. Determine: (a) the low-frequency gain of the feedback amplifier; (b) the phase margin; and (c) the gain margin.
P9.2.6 An op amp having $A_{\nu}(f)=10^{4} /\left(1+j f / f_{p 1}\right)^{4}$, where $f_{p 1}=10 \mathrm{kHz}$, is used in a noninverting configuration of $\beta_{o}=0.01$. Working with asymptotes, (a) show that the amplifier is unstable, (b) determine the frequency of a dominant pole that will stabilize the amplifier even for $\beta_{o}=1$, and (c) find the low-frequency gain of the feedback amplifier.
P9.2.7 Let $A_{v}(f)=\frac{A_{v 0}}{\left(1+j f / f_{p 1}\right)\left(1+j f / f_{p 2}\right)\left(1+j f / f_{p 3}\right)}$. (a) Show that the imaginary part of $A_{v}(f)$ vanishes at $f=\sqrt{f_{p 1} f_{p 2}+f_{p 2} f_{p 3}+f_{p 3} f_{p 1}}$ and that the real part at this frequency is $-\frac{A_{\nu 0}}{2+\frac{f_{p 2}+f_{p 3}}{f_{p 1}}+\frac{f_{p 1}+f_{p 3}}{f_{p 2}}+\frac{f_{p 1}+f_{p 2}}{f_{p 3}}}$. (b) Assuming β_{f} is frequency independent, deduce that the stability criterion can be expressed as $\beta_{f}<\frac{1}{A_{v 0}}\left(2+\frac{f_{p 2}+f_{p 3}}{f_{p 1}}+\frac{f_{p 1}+f_{p 3}}{f_{p 2}}+\frac{f_{p 1}+f_{p 2}}{f_{p 3}}\right)$.
P9.2.8 An op amp having $A_{v}(f)=10^{4} /\left(1+j f / f_{p 1}\right)^{3}$, where $f_{p 1}=10 \mathrm{kHz}$, is to be used in a noninverting configuration of $\beta_{f}=0.01$. (a) Use the result of Problem P9.2.7 to show that the amplifier is unstable. (b) A lead-lag circuit having a transfer function $\left(1+j f / f_{p 1}\right) /\left(1+j f / f_{p 0}\right)$ is used to cancel one of the $f_{p 1}$ poles and add a pole at $f_{p 0}$. Show that the criterion of stability of Problem P9.2.7 becomes $\beta_{f}<\frac{1}{A_{\nu 0}} \times$ $\left[4+2\left(\frac{f_{p 0}}{f_{p 1}}+\frac{f_{p 1}}{f_{p 0}}\right)\right]$. (c) Determine that largest possible value of $f_{p 0}$ that assures stability and calculate the GB product.
P9.2.9 An op amp having $A_{v}(f)=\frac{10^{4}}{\left(1+j f / f_{p 1}\right)\left(1+j f / f_{p 2}\right)\left(1+j f / f_{p 3}\right)^{\prime}}$, where $f_{p 1}=1 \mathrm{kHz}, f_{p 2}=5$ kHz , and $f_{p 3}=40 \mathrm{kHz}$, is used in an inverting configuration of $\beta_{o}=0.01$. Apply the criterion of Problem P9.2.7 and confirm instability by finding the phase shift for $\left|\beta_{o} A_{v}(f)\right|=1$.
P9.2.10 Lead-lag compensation is applied to the op amp of Problem P9.2.9, the transfer function multiplying $A_{v}(f)$ being $\frac{1+j f / f_{p 1}}{1+j f / f_{p 0}} \frac{1+j f / f_{p 2}}{1+j f / f_{p 3}}$. Determine the largest possible value of $f_{p 0}$ that assures stability and calculate the GB product.
P9.2.11 Assume that the amplifier in Problem P9.2.9 is compensated by introducing a dominant pole for $\beta_{o}=0.01$. Determine the frequency of this pole and the resulting GB product.
P9.2.12 Assume that the amplifier in Problem P9.2.10 is compensated by shifting $f_{p 1}$ to a lower frequency. Determine this frequency and the resulting GB product. How does the GB product compare with those of Problems P9.2.10 and P9.2.11?
P9.2.13 Determine the low-frequency closed-loop gain of the amplifier of Problem P9.2.9 for a phase margin of 45°. What is the resulting gain margin?
P9.2.14 In Problem P9.2.9, assume that the low-frequency open-loop gain is increased from a low value. Determine the value of this gain at which poles become located on the imaginary axis.
P9.2.15 The amplifier of Problem P9.2.9 is to be used as an integrator having a time constant $C_{f} R_{r}=2.5 \mu \mathrm{~s}$. What is the smallest low-frequency open-loop gain that ensures stability? Is the integrator more stable than the amplifier?
P9.2.16 Repeat Problem P9.2.15 for a differentiator having the same time constant. Is the differentiator more stable than the amplifier?

P9.2.17 An oscillator consists of an $R C$ lag circuit, a phase shifter that introduces a phase lag of θ°, without affecting the gain, and an amplifier of gain $-A$, as shown in Figure P9.2.17. If a frequency of oscillation of 16 kHz is required, determine: (a) θ; and (b) the minimum value of A.

FIGURE P9.2.17

P9.2.18 Show that if the output is connected to the input in Figure P9.2.18, the Barkhausen criterion is satisfied. Determine the frequency of oscillation.

FIGURE P9.2.18
P9.2.19 Figure P9.2.19 illustrates a phase-shift oscillator. Derive the expression for the open-loop gain and deduce the frequency and condition for oscillation.

FIGURE P9.2.19

P9.2.2 For the phase-shift oscillator of Figure P9.2.20, $R=10 \mathrm{k} \Omega$ and $C=0.5 \mathrm{nF}$. Determine the frequency of oscillation and the value of R_{f} required to sustain oscillation.
P9.2.21 Figure P9.2.21 illustrates a quadrature oscillator based on an integrator and the current source circuit of Figure P7.2.7, Chapter 7. Determine the frequency of oscillation and show that v_{O} and v_{O}^{\prime} are in phase quadrature.

FIGURE P9.2.20

FIGURE P9.2.21

P9.2.22 A Colpitts oscillator has $L=0.3 \mu \mathrm{H}, \mathrm{C}_{1}=18 \mathrm{pF}$, and uses for C_{2} a varactor diode of capacitance $30 / \sqrt{1+V_{D} / 0.7} \mathrm{pF}$, where V_{D} is the reverse diode voltage. Determine V_{D} for oscillation in the FM radio band $88-108 \mathrm{MHz}$.

P9.3 Tuned and Magnetically Coupled Circuits

P9.3.1 Show that if n identical tuned circuits of $3-\mathrm{dB}$ bandwidth BW are cascaded with isolation, the overall $3-\mathrm{dB}$ bandwidth is reduced as $\mathrm{BW} \sqrt{2^{1 / n}-1}$, assuming Q is large.
P9.3.2 Consider three identical, isolated, cascaded tuned circuits. Select C and R_{p} for each circuit so as to have a center frequency of 480 kHz and an overall $3-\mathrm{dB}$ bandwidth of 8 kHz , using inductors of $10 \mu \mathrm{H}$. Obtain the Bode plots using PSpice.
P9.3.3 Show that for critical coupling $(k Q=1)$, the bandwidth is given by Equation ST9.3.15.
P9.3.4 A pair of coupled tuned circuits having $Q=40$ and $k=0.025$ (critical coupling) is cascaded with an identical pair having $k=(\sqrt{2}+1) / 40(3-\mathrm{dB}$ sag). Estimate the maximum variation of gain in the passband using PSpice simulation.
P9.3.5 Obtain the response of Example ST9.3.1 using three stagger-tuned circuits having a center frequency of 470 kHz and a nominally maximally flat response. Derive the $3-\mathrm{dB}$ bandwidth, simulate with PSpice, and compare with Example ST9.3.1.
P9.3.6 A CE amplifier has a load of admittance $Y_{L}=G_{L}+j B_{L}$ that is large compared with that of C_{μ} so that the amplifier gain may be assumed to be $-g_{m} / Y_{L}$. Show that the admittance reflected at the input is $\frac{\omega C_{\mu} g_{m} B_{L}}{G_{L}^{2}+B_{L}^{2}}+j \omega C_{\mu}\left(1+\frac{g_{m} G_{L}}{G_{L}^{2}+B_{L}^{2}}\right)$. Note that if the load is inductive, $B_{L}<0$, and the real part is a negative conductance. If the magnitude of this conductance is larger than the positive conductance at the input, the net conductance is negative and will result in oscillations.

10

Differential and Operational Amplifiers

Differential amplifiers are a special and important class of amplifiers, particularly in the form of IC operational amplifiers, because they inherently respond to the difference between two signals applied to their two inputs. This not only lends itself to many useful applications, but it also means that, ideally, an unwanted signal, or interference, that is superimposed on the two inputs will be subtracted out and will not contribute to the output. The basic building block of differential amplifiers is the differential pair, which is a special connection of two transistors.

The chapter therefore starts with a basic analysis of the differential pair, using BJTs or MOSFETs, and examines its essential features, both in terms of the transfer function between input and output and in small-signal operation. Some of the op-amp imperfections, or departures from the ideal, are due to the differential pair and are introduced at this stage. The next logical step is to show how differential pairs are used in IC op amps. This is done for some basic types of CMOS op amps. The essential features of BJT op-amp circuits are considered next, the detailed analysis being left to Supplementary Examples and Topics on the website.

Having introduced nonideal op amps, the behavior of these op amps is examined in some important op-amp applications, namely, inverting or noninverting amplifiers, adders, difference amplifiers, and integrators. The chapter ends by considering two types of circuits in which op amps play an essential role, namely, switched-capacitor circuits and digital/analog converters (DACs).

Learning Objectives

* To be familiar with:
- Terminology commonly used with differential and operational amplifiers.
- Principle of operation of switched-capacitor circuits, DAC and analog-to-digital converter (ADC).
* To understand:
- The basic features of differential amplifiers, using BJTs or MOSFETs, how they respond to differential and common-mode inputs, and the imperfections they exhibit.
- The essential features and performance limitations of representative CMOS and BJT op amps.
- The effect of op-amp imperfections on the performance of inverting and noninverting amplifiers, adders, difference amplifiers, integrators, and instrumentation amplifiers (IAs).

10.1 Differential Pair

Basic Operation

The BJT differential pair, or emitter-coupled pair, is an important building block in both analog ICs, where it is extensively used in operational amplifiers, and in digital ICs in the form of emitter-coupled logic (ECL, Section 13.7, Chapter 13). To appreciate the basics of the BJT differential pair, consider Figure 10.1.1, in which Q_{1} and Q_{2} are matched transistors connected to a current source $I_{E E}$ and have a matched load R_{C}. Assume that the same dc voltage $V_{B}=v_{B 1}=v_{B 2}$ is applied to the bases of Q_{1} and Q_{2}. The common emitter voltage V_{E} with respect to ground is $V_{E}=V_{B}-V_{B E}$, where $V_{B E} \cong 0.7 \mathrm{~V}$. Since the circuit is symmetrical, the current $I_{E E}$ divides equally between Q_{1} and Q_{2}. The two transistors have a base current, $I_{B}=I_{E E} / 2\left(\beta_{F}+1\right)$, the same collector current, $\alpha_{F} I_{E E} / 2$, and the same collector voltage, $V_{C 1}=V_{C 2}=V_{C C}-\alpha_{F} I_{E E} R_{C} / 2$. It follows that if V_{B} is replaced by a time-varying $v_{c m}$, applied in parallel to the bases of both transistors, as indicated by the dotted line in Figure 10.1.1, $v_{E}=v_{c m}-0.7$. The voltage v_{E} changes the voltage across the ideal current source but does not change $I_{E E}$. The collector currents remain the same, and the collector voltages with respect to ground remain at $V_{C C}-\alpha_{F} I_{E E} R_{C} / 2$. No signal voltage appears between the collectors and ground. In other words, the ideal differential pair completely rejects a common-mode voltage $v_{c m}$ that is applied to both base terminals.
Since collector voltages do not depend on a common-mode input, suppose that $V_{B}=0$ and a small-signal voltage v_{i} is applied in antiphase to the base terminals (Figure 10.1.2). Assuming linearity and operation in the active region, if v_{i} increases the base current of Q_{1} by i_{b} then $-v_{i}$ decreases the base current of Q_{2} by i_{b}. The emitter currents of Q_{1} and Q_{2} are $\left(I_{E E} / 2\right)+(\beta+1) i_{b}$ and $\left(I_{E E} / 2\right)-(\beta+1) i_{b}$, respectively, their sum being $I_{E E}$. Neglecting r_{o}, there will now be a small-signal $v_{c 1}=-\beta R_{C} i_{b}$ and $v_{c 2}=+\beta R_{C} i_{b}$. It can be readily argued that small-signal $v_{e}=0$. Let v_{i} be applied to Q_{1} base with $v_{B 2}=0$ and let the resulting v_{e} be denoted as $v_{e 1}$. If $-v_{i}$ is applied to Q_{2} base with $v_{B 1}=0$, the resulting $v_{e 2}$ equals $-v_{e 1}$, from

FIGURE 10.1.1
Basic BJT differential pair.

FIGURE 10.1.2
Basic BJT differential pair with equal input signals applied in antiphase.
symmetry. If both inputs are applied together, $v_{e}=0$, assuming linearity. Thus, the emitters are effectively grounded for small, antiphase signals.

Concept: An ideal differential pair completely rejects a common-mode input, which will appear at the common emitters. Equal, antiphase input signals result in equal antiphase output signals and no signal voltage appears at the common emitters.

If two arbitrary inputs $v_{B 1}$ and $v_{B 2}$ are applied, we define two inputs $v_{c m}$ and v_{i} as:

$$
\begin{equation*}
v_{c m}=\frac{1}{2}\left(v_{B 1}+v_{B 2}\right) \quad \text { and } \quad v_{i}=\frac{1}{2}\left(v_{B 1}-v_{B 2}\right) \tag{10.1.1}
\end{equation*}
$$

Solving for $v_{B 1}$ and $v_{B 2}$:

$$
\begin{equation*}
v_{B 1}=v_{c m}+v_{i} \quad \text { and } \quad v_{B 2}=v_{c m}-v_{i} \tag{10.1.2}
\end{equation*}
$$

Since v_{i} in Figure 10.1.2 is balanced with respect to ground, it could just as well be applied as a differential input $v_{i d}=v_{i}-\left(-v_{i}\right)=2 v_{i}=v_{B 1}-v_{B 2}$ between the base of Q_{1} and that of Q_{2} (Figure 10.1.3a). The currents are the same as before. The output voltage could be taken, as a single-ended output, between either collector and ground, or as a differential output $v_{o d}=v_{c 1}-v_{c 2}=2 \beta R_{C} i_{b}$ that is balanced with respect to ground.

Concept: Arbitrary inputs applied to the base terminals of a differential pair can be resolved into a common-mode input that is the average of the two inputs, and a differential input that is the difference of the two inputs.

Thus, a differential input $v_{i d}$ can be replaced by two inputs $v_{i d} / 2$ applied in antiphase as in Figure 10.1.2. Moreover, small-signal currents and voltages of Q_{1} and Q_{2} in Figure 10.1.3a are equal in magnitude but opposite in sign, the common emitter being a signal ground.

FIGURE 10.1.3
(a) Basic BJT differential pair with differential input and output; (b) equivalent, differential half circuit.

Hence, for the differential small-signal input, we need only to consider a differential half circuit consisting of a single transistor (Figure 10.1.3b). If the source that is applied differentially has a source resistance $R_{s r c}$, the voltage between the bases B_{1} and B_{2} is $v_{i d}-R_{s r c} i_{b}$. Dividing this voltage by 2, it follows that in the differential half circuit the source $v_{i d} / 2$ has a source resistance $R_{\text {src }} / 2$.

Example 10.1.1 Differential Pair

It is required to analyze a differential pair having $v_{B 1}=v_{i}$, with $v_{B 2}=0$.

Solution

Let i_{b} denote Q_{1} base current. Q_{1} emitter current is $I_{E E} / 2+(\beta+1) i_{b}$, as in Figure 10.1.2. Since the total emitter current remains at $I_{E E}, Q_{2}$ emitter current must be $I_{E E} / 2-(\beta+1) i_{b}$. This implies that $v_{e}=v_{i} / 2$. In effect, v_{i} divides as $v_{i} / 2$ between the base and emitter of Q_{1} and $v_{i} / 2$ between the emitter and base of Q_{2} so that Q_{1} emitter current increases by $(\beta+1) i_{b}$, while Q_{2} emitter current decreases by $(\beta+1) i_{b}$. The result is the same as having $+v_{i} / 2$ applied to the base of Q_{1} in Figure 10.1.2 and $-v_{i} / 2$ applied to the base of Q_{2}.
Alternatively, we can apply Equation 10.1.1 to deduce that v_{i} is equivalent to $v_{c m}=v_{i} / 2$, with $v_{i} / 2$ applied at B_{1}, and $-v_{i} / 2$ applied at B_{2}. The signals add to v_{i} at B_{1} and zero at B_{2}. The differential signal has no effect on v_{E}, and $v_{c m}$ gives $v_{e}=v_{i} / 2$.

Transfer Characteristic

The variation of output current with differential input voltage can be derived using the Ebers-Moll equations (Section 6.3, Chapter 6). From Equation 6.3.2, Chapter 6 with $e^{v_{B C} / V_{T}} \ll 1$ and $e^{v_{B E} / V_{T}} \gg 1$ in the active region, $i_{E 1}=I_{S E}\left(e^{v_{B E 1} / V_{T}}\right)$, and $i_{E 2}=I_{S E}\left(e^{v_{B E 2}} / V_{T}\right)$. Hence,

$$
\begin{equation*}
\frac{i_{E 1}}{i_{E 2}}=e^{\left(v_{\mathrm{BE} 1}-v_{\mathrm{BE} 2}\right) / V_{T}}=e^{v_{i d} / V_{T}} \tag{10.1.3}
\end{equation*}
$$

where $v_{B E 1}=v_{B 1}-v_{E}$ and $v_{B E 2}=v_{B 2}-v_{E}$ so that $v_{B E 1}-v_{B E 2}=v_{B 1}-v_{B 2}=v_{i d}$ (Equation 10.1.1).

FIGURE 10.1.4
Transfer characteristic of BJT differential pair.

By setting $i_{E 1}+i_{E 2}=I_{E E}$, and solving for $i_{E 1}$ and $i_{E 2}$ using Equation 10.1.3:

$$
\begin{equation*}
i_{C 1}=\alpha_{F} i_{E 1}=\frac{\alpha_{F} I_{E E}}{1+e^{-v_{i d} / V_{T}}} \quad \text { and } \quad i_{C 2}=\alpha_{F} i_{E 2}=\frac{\alpha_{F} I_{E E}}{1+e^{v_{i d} / V_{T}}} \tag{10.1.4}
\end{equation*}
$$

The exponential in the denominators makes $i_{C 1}$ and $i_{C 2}$ change rapidly with $v_{i d}$. At $v_{i d}=0$, $i_{C 1}=\alpha_{F} I_{E E} / 2$, and $v_{C 1}=V_{C C}-\alpha_{F} I_{E E} R_{C} / 2$. As $v_{i d}$ varies from $-4 V_{T}$ to $+4 V_{T}, i_{C 1}$ swings between approximately $0.02 \alpha_{F} I_{E E}$ and $0.98 \alpha_{F} I_{E E}$, whereas $v_{C 1}$ swings between $V_{C C}-0.02 R_{C 1} \alpha_{F} I_{E E} R_{C} \cong V_{C C}$ and $V_{C C}-0.98 \alpha_{F} I_{E E} R_{C} \cong V_{C C}-\alpha_{F} I_{E E} R_{C}$ (Figure 10.1.4). The changes in $i_{C 2}$ and $v_{C 2}$ are the mirror images about the $v_{i d}$ axis of the changes in $i_{C 1}$ and $v_{C 1}$, respectively. This large excursion of output for a small change in differential input is utilized for switching in digital ECL circuits (Section 13.7, Chapter 13). The switching is fast since the transistors are in the active region and do not suffer from delays due to saturation. The transfer characteristic has a nearly linear region for small $v_{i d}$ of either polarity, which makes the differential pair suitable for amplification as well and validates using the small-signal equivalent circuit for small changes (Exercise 10.1.1).

Exercise 10.1.1

Using the relationship $v_{C 1}=V_{C C}-\frac{\alpha_{F} R_{C} I_{E E}}{1+e^{-v_{i d} / V_{T}}}$, derive the slope $d v_{C 1} / d v_{i d}$ and deduce that the departure from linearity at $v_{i d}=V_{T}$ is $1-4 /(1+e) \cong 7.5 \%$.

Small-Signal Differential Operation

We will now introduce the first deviation from the ideal conditions assumed until now, namely, the finite resistance $R_{E E}$ of the $I_{E E}$ source. Note that $R_{E E}$ is a small-signal resistance that does not affect dc conditions so that the dc emitter current of each transistor is still $I_{E E} / 2$.

By invoking symmetry and superposition, it can be readily argued that, when $v_{i d}$ is applied, $v_{e}=0$ in exactly the same manner as when $R_{E E} \rightarrow \infty$. The same differential half circuit of Figure 10.1.3b applies, so that $v_{c 1}=-g_{m}\left(R_{C} \| r_{o}\right) v_{i d} / 2$. For the other half circuit, $v_{c 2}=+g_{m}\left(R_{C} \| r_{o}\right) v_{i d} / 2$. The differential gain $A_{d d 0}$, assuming a differential output, is:

$$
\begin{equation*}
A_{d d 0}=\frac{v_{c 1}-v_{c 2}}{v_{d}}=-g_{m}\left(R_{C} \| r_{o}\right)=-\frac{\beta\left(R_{C} \| r_{o}\right)}{r_{\pi}} \tag{10.1.5}
\end{equation*}
$$

Although $A_{d d 0}$ increases with R_{C}, the voltage drop $V_{R_{C}}=R_{C} I_{E E} / 2$ sets a limit to the maximum $V_{c m}$ that can be applied before Q_{1} and Q_{2} saturate. For these transistors to
remain in the active region, we must have $V_{C B}=\left(V_{C C}-V_{R_{C}}\right)-V_{c m}>0$, or $V_{c m}<V_{C C}-V_{R_{C}}$. Note that if R_{C} is an active load, $V_{R_{C}}$ can be kept low, while the small-signal differential load resistance is high.

If the input is applied differentially, but the output is single ended, then the gain $A_{d s 0}$ is:

$$
\begin{equation*}
A_{d s 0}=\frac{v_{c 1}}{v_{i d}}=\frac{A_{d d 0}}{2}=-\frac{g_{m}\left(R_{C} \| r_{o}\right)}{2} \tag{10.1.6}
\end{equation*}
$$

Exercise 10.1.2

Neglecting r_{o}, Equation 10.1.6 gives $A_{d s 0}=-g_{m} R_{C} / 2$. Use the results of Exercise 10.1.1 to show that this is the same as the slope of the transfer characteristic at $v_{i d}=0$. Consider that $g_{m}=\alpha_{F} I_{E E} / 2 V_{T}$, which identifies α with α_{F}.

Since $v_{e}=0$, the differential input resistance seen between B_{1} and B_{2} is the sum of the two $r_{\pi}{ }^{\prime}$ s (Equation 8.2.5, Chapter 8):

$$
\begin{equation*}
r_{i n d}=2 r_{\pi}=2 \frac{\beta}{g_{m}} \cong \beta \frac{V_{T}}{I_{E E}} \tag{10.1.7}
\end{equation*}
$$

For a large $r_{\text {ind }}, I_{E E}$ should be small, which reduces g_{m}. Note that, Equation 10.1.7 ignores r_{μ}. Although r_{μ} may be large, the Miller effect divides r_{μ} by $1+\left|A_{\nu}\right|$ so that $r_{\mu} /\left(1+\left|A_{v}\right|\right)$ may not be negligible compared to r_{π} (Example 10.1.2).

The output resistance between either collector and ground is $r_{o} \| R_{C}$ and the differential output resistance is $2\left(r_{o} \| R_{C}\right)$.

High-Frequency Response

The high-frequency, differential response of the differential pair also follows from that of the differential half circuit. By analogy to Equation 8.3.7, Chapter 8, the gain as a function of frequency is determined by a dominant pole $\omega_{p d}$, so that,

$$
\begin{equation*}
A_{d d}=\frac{A_{d d 0}}{1+s / \omega_{p d}} \tag{10.1.8}
\end{equation*}
$$

with,

$$
\begin{equation*}
\omega_{p d}=\frac{1}{\left(C_{T} R_{s r c}^{\prime}+\left(C_{\mu}+C_{L}\right) R_{C}^{\prime}\right)} \tag{10.1.9}
\end{equation*}
$$

where $R_{s r c}^{\prime}=\left[\left(R_{s r c} / 2\right) \| r_{\pi}\right]$ and $R_{C}^{\prime}=r_{o} \| R_{C}$. The zero and the other pole occur at much higher frequencies, as for the CE amplifier.

Small-Signal Common-Mode Response

Concept: Although the resistance $R_{E E}$ does not affect the small-signal differential response, it has a significant effect on the small-signal, single-ended, common-mode response.

With $v_{c m}$ applied to the differential pair, it follows from symmetry that, for small signals, the circuit can be split into two half circuits (Figure 10.1.5), without changing

FIGURE 10.1.5
The BJT differential pair with a finite resistance of $I_{E E}$ split into two half circuits.
any conditions in the circuit. Note the large capacitor included in series with $2 R_{E E}$ to account for the fact that this resistance affects small-signal operation but not dc conditions. The small-signal gain from base to collector is given by Equation 8.2.44, Chapter 8. When βr_{o} is large compared to R_{C} and $2 R_{E E}$, it follows from Equation 8.2.47, Chapter 8, that:

$$
\begin{equation*}
v_{c 1}=v_{c 2} \cong-\frac{\alpha R_{C}}{r_{e}+2 R_{E E}} \cong-\frac{R_{C}}{2 R_{E E}} v_{c m} \tag{10.1.10}
\end{equation*}
$$

The differential output $v_{c 1}-v_{c 2}$ is zero. Thus, although there is a single-ended common-mode response at each collector, the differential common-mode response is zero, assuming that the two common-mode half circuits are identical. The common-mode gain of the half circuit is:

$$
\begin{equation*}
A_{c m 0}=\frac{v_{c 1}}{v_{c m}} \cong-\frac{\alpha R_{C}}{r_{e}+2 R_{E E}} \cong-\frac{R_{C}}{2 R_{E E}} \tag{10.1.11}
\end{equation*}
$$

It is important to appreciate that dissymmetry between the two halves of the differential pair will result in a common-mode differential output. Thus, if $R_{C 1}=R_{C}+\Delta R_{C} / 2$, and $R_{C 2}=R_{C}-\Delta R_{C} / 2$, the dc collector voltages will not be equal. For small signals, Equation 10.1.10 gives:

$$
\begin{equation*}
v_{c 1}-v_{c 2}=-\frac{R_{C}+\Delta R_{C} / 2}{2 R_{E E}}+\frac{R_{C}-\Delta R_{C} / 2}{2 R_{E E}}=-\frac{\Delta R_{C}}{2 R_{E E}} v_{c m} \tag{10.1.12}
\end{equation*}
$$

The common-mode rejection ratio (CMRR) is the magnitude of the ratio of the differential gain to the common-mode gain. The differential gain could be $A_{d d 0}$ or $A_{d s 0}$ depending on the circuit being considered. In the case of the differential half-circuit of Figure 10.1.5, it is appropriate to use $A_{d s 0}$ since $A_{c m 0}$ is taken with respect to a single-ended output, the singleended differential gain should be used. Assuming $r_{o} \gg R_{C}$ in Equation 10.1.6:

$$
\begin{equation*}
\mathrm{CMRR}_{0}=\left|\frac{A_{d s 0}}{A_{c m 0}}\right| \cong g_{m} R_{E E} \tag{10.1.13}
\end{equation*}
$$

A large CMRR is served by having large g_{m} and $R_{E E}$.

A useful relation involving the CMRR is the differential input $v_{d c m}$ that is equivalent to a given $v_{c m} . v_{O c m}$ due to $v_{c m}$ is $A_{c m 0} v_{c m}$. Hence, $v_{d c m}$ is this voltage divided by the differential gain, which is generally $A_{d d 0}$. Thus, $v_{d c m}=A_{c m 0} v_{c m} / A_{d d 0}$. Using Equation 10.1.13, with $A_{d d 0}$ replacing $A_{d 50}$,

$$
\begin{equation*}
v_{d c m}=\frac{v_{c m}}{\mathrm{CMRR}_{0}} \tag{10.1.14}
\end{equation*}
$$

If the common-mode input resistance of the differential pair is $r_{i n(\mathrm{~cm})}$, the input resistance of the common-mode half circuit is $2 r_{i n(\mathrm{~cm})}$, because when a common-mode input is applied to B_{1} and B_{2} joined together, the two half circuits are paralleled. Since $r_{i n(\mathrm{~cm})}$ is usually very high, r_{o} and r_{μ} may have to be taken into account, as shown in the equivalent circuit of Figure 10.1.6a. A useful approximation is to assume that the common-mode gain is low enough so that the collector is essentially at signal ground, as indicated by the dotted ground at the collector. r_{μ} then appears across the input, R_{C} is shorted out, and r_{o} is in parallel with $2 R_{E E}$ (Figure 10.1.6b). Transforming the current source to a voltage source, which is then replaced by an equivalent resistance, $r_{\text {in }}^{\prime}=r_{\pi}+(\beta+1)\left(2 R_{E E} \| r_{o}\right)$. Neglecting $r_{\pi}, 2 r_{i n(\mathrm{~cm})}=r_{\mu} \|\left[(\beta+1)\left(2 R_{E E} \| r_{o}\right)\right]$, and,

$$
\begin{equation*}
r_{i n(\mathrm{~cm})}=\left(\frac{r_{\mu}}{2}\right) \|\left[(\beta+1)\left(R_{E E} \| r_{o} / 2\right)\right] \tag{10.1.15}
\end{equation*}
$$

High-Frequency Response

Because of the usually large value of $R_{E E}$, even small values of output capacitance $C_{E E}$ of the $I_{E E}$ source can have a significant effect on the frequency response of the amplifier. In the common-mode half circuit, $C_{E E}$ appears as $C_{E E} / 2$, and the small-signal equivalent circuit becomes as in Figure 10.1.7. Neglecting r_{μ} and r_{o} in order to gain better insight into circuit behavior, the gain from the base to collector is simply that given by Equation 10.1.11 with $2 R_{E E}$ replaced by $2 Z_{E E}$, where $Z_{E E}=\left(R_{E E} \| 1 / s C_{E E}\right)=R_{E E} /\left(1+s C_{E E} R_{E E}\right)$. Substituting,

$$
\begin{equation*}
A_{c m}=\frac{V_{c 1}(s)}{V_{c m}(s)}=-\frac{\alpha R_{C}}{r_{e}+2 R_{E E}} \frac{1+s C_{E E} R_{E E}}{1+\left(s C_{E E} / 2\right)\left(r_{e} \| 2 R_{E E}\right)} \tag{10.1.16}
\end{equation*}
$$

FIGURE 10.1.6
(a) Small-signal equivalent circuit of the common-mode half circuit of the BJT differential pair, including r_{o} and r_{μ};
(b) approximate small-signal equivalent circuit, assuming small common-mode gain.

FIGURE 10.1.7
Small-signal equivalent circuit of the common-mode half circuit of the BJT differential pair, taking $C_{E E}$ into account.
At very low frequencies $A_{c m}=A_{c m 0}$, whereas at high frequencies, the gain approaches $-\alpha R_{C} / r_{e}=-g_{m} R_{C}$, as for a CE amplifier without an emitter resistor. The response has a zero at:

$$
\begin{equation*}
\omega_{z(\mathrm{~cm})}=\frac{1}{C_{E E} R_{E E}} \tag{10.1.17}
\end{equation*}
$$

and a pole at:

$$
\begin{equation*}
\omega_{p(\mathrm{~cm})}=\frac{2}{C_{E E}\left(r_{e} \| 2 R_{E E}\right)} \cong \frac{2}{C_{E E} r_{e}} \tag{10.1.18}
\end{equation*}
$$

where $\omega_{p(\mathrm{~cm})} \gg \omega_{z(\mathrm{~cm})}$ (Figure 10.1.8). At higher frequencies, the effects of C_{π} and C_{μ} become significant. The response can then be determined using the methods of Section 9.2, Chapter 9.

Considering that $\omega_{p(\mathrm{~cm})}$ is much higher than the frequency range of interest, Equation 10.1.16 can be expressed as $A_{c m}=A_{c m 0}\left(1+s / \omega_{z(\mathrm{~cm})}\right)$. From Equation 10.1.8, $A_{d d}=A_{d d 0} /\left(1+s / \omega_{p d}\right)$. If we denote $A_{d d 0} / A_{c m 0}$ by CMRR_{0}, the CMRR as a function of frequency becomes:

$$
\begin{equation*}
\mathrm{CMRR}=\operatorname{CMRR}_{0} \frac{1}{\left(1+s / \omega_{z(\mathrm{~cm})}\right)\left(1+s / \omega_{p d}\right)} \tag{10.1.19}
\end{equation*}
$$

The CMRR therefore decreases with frequency over the frequency range of interest so that common-mode high-frequency signals are not rejected as well as low-frequency signals.

FIGURE 10.1.8
Frequency response of common-mode gain.

Exercise 10.1.3

Assume that in the circuit of Figure 10.1.1, $I_{E E}=0.5 \mathrm{~mA}, V_{C C}=12 \mathrm{~V}, V_{E E}=-12 \mathrm{~V}, R_{C}=10 \mathrm{k} \Omega$, and $\beta=100$. Determine: (a) differential gain; (b) differential input resistance; (c) largest com-mon-mode input. Assume $V_{T}=0.025 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}, V_{C E(\text { sat) }}=0.2 \mathrm{~V}$, and neglect r_{o}.

Answers: (a) 100; (b) $20 \mathrm{k} \Omega$; (c) $\cong 8 \mathrm{~V}$.

Input Bias Currents

When the transistors are perfectly matched,

$$
\begin{equation*}
I_{B 1}=I_{B 2}=\frac{I_{E E}}{2\left(\beta_{F}+1\right)} \tag{10.1.20}
\end{equation*}
$$

If the β_{F} 's of Q_{1} and Q_{2} are unequal so that $\beta_{F 1}=\beta_{F}+\Delta \beta_{F} / 2$ and $\beta_{F 2}=\beta_{F}-\Delta \beta_{F} / 2$, then substituting in Equation 10.1.20, and assuming that $\beta_{F} \gg 1$ and $\Delta \beta_{F} / \beta_{F}$ is small:

$$
\begin{equation*}
I_{B 1}=\frac{I_{E E}}{2\left(\beta_{F}+1+\Delta \beta_{F} / 2\right)} \cong \frac{I_{E E}}{2\left(\beta_{F}+1\right)}\left(1-\frac{\Delta \beta_{F}}{2 \beta_{F}}\right) \tag{10.1.21}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{B 2}=\frac{I_{E E}}{2\left(\beta_{F}+1-\Delta \beta_{F} / 2\right)} \cong \frac{I_{E E}}{2\left(\beta_{F}+1\right)}\left(1+\frac{\Delta \beta_{F}}{2 \beta_{F}}\right) \tag{10.1.22}
\end{equation*}
$$

The input bias current $I_{i b}$ is the average of the two input bias currents $I_{B 1}$ and $I_{B 2}$. Thus,

$$
\begin{equation*}
I_{i b}=\frac{I_{B 1}+I_{B 2}}{2} \cong \frac{I_{E E}}{2\left(\beta_{F}+1\right)} \tag{10.1.23}
\end{equation*}
$$

which is the same as Equation 10.1.20 considering β_{F} to be the average for the two transistors.

The input offset current $I_{i o}$ is the magnitude of the difference between $I_{B 1}$ and $I_{B 2}$. Hence,

$$
\begin{equation*}
I_{i o}=\left|I_{B 1}-I_{B 2}\right| \cong I_{i b}\left(\frac{\Delta \beta_{F}}{\beta_{F}}\right) \tag{10.1.24}
\end{equation*}
$$

Input Offset Voltage

When the inputs are grounded, $V_{C 1}-V_{C 2}=V_{O d(\text { offset })} \neq 0$ because of dissymmetry. If divided by $A_{d d 0}, V_{\text {Od(offset) }}$ is referred to the input as an input offset voltage $V_{i o}$. Clearly, if $-V_{i o}$ is applied between the two inputs, $V_{O d}=0$. As $V_{O d(\text { offset })}$ could be negative or positive, the sign is usually ignored and $V_{i o}$ is considered as a positive quantity. It can be readily shown that:

1. If the two R_{C} 's differ by ΔR_{C}, their average being $R_{C}, V_{i o}$ is (Problem P10.1.18):

$$
\begin{equation*}
V_{i o}=\left(\frac{\Delta R_{C}}{R_{C}}\right) V_{T} \tag{10.1.25}
\end{equation*}
$$

2. If the BEJ areas of Q_{1} and Q_{2} are unequal so that the saturation currents differ by ΔI_{S}, their average being $I_{S}, V_{i o}$ is (Problem P10.1.19):

$$
\begin{equation*}
V_{i o} \cong\left(\frac{\Delta I_{S}}{I_{S}}\right) V_{T} \tag{10.1.26}
\end{equation*}
$$

3. If the $\beta_{F}{ }^{\prime}$'s of Q_{1} and Q_{2} are $\beta_{F 1}$ and $\beta_{F 2}$, respectively, $V_{i o}$ is (Problem P10.1.20):

$$
\begin{equation*}
V_{i o} \cong\left(\frac{1}{\beta_{F 1}}-\frac{1}{\beta_{F 2}}\right) V_{T} \tag{10.1.27}
\end{equation*}
$$

In precision applications, it is the drift in $V_{i o}$, or its variation with temperature, that is of more concern than the magnitude of $V_{i o}$ per se (Section 10.6). Assuming that the main variation due to temperature in Equations 10.1.25 through 10.1.27 is due to V_{T}, it follows that:

$$
\begin{equation*}
\frac{d V_{i o}}{d T}=\frac{V_{i o}}{T} \tag{10.1.28}
\end{equation*}
$$

The drift in $V_{i o}$ will therefore be small, if $V_{i o}$ is itself small. When the components $V_{i o 1}, V_{i o 2}$, etc. of $V_{i o}$ are uncorrelated, that is, they occur independently of one another, $V_{i o}$ is given by:

$$
\begin{equation*}
V_{i o}=\sqrt{V_{i 01}^{2}+V_{i 02}^{2}+\cdots} \tag{10.1.29}
\end{equation*}
$$

Example 10.1.2 Performance of a BJT Differential Pair

Given the differential amplifier of Figure 10.1.9, with $\beta_{F}=\beta=100, r_{o}=100 \mathrm{k} \Omega$, and $r_{\mu}=2 \beta r_{o}$, it is required to determine: (a) the differential gain and output; (b) the commonmode gain, output, and CMRR_{0}; (c) the common mode gain, output, and CMRR_{0}, assuming a differential output, with a mismatch of 2% in $R_{C}{ }^{\prime} s$; (d) the input resistance seen by the source, taking r_{μ} into account; (e) the common-mode input resistance; (f) the input offset voltage, assuming a mismatch of 2% in R_{C} and a mismatch of 5% in the emitter-base junction areas

FIGURE 10.1.9
Figure for Example 10.1.2.
of the two transistors; (g) the input bias and offset currents, assuming a mismatch in β of 4%; (h) $f_{d p}, f_{\mathrm{zcm}}$, and $\omega_{p c m}$, assuming $C_{\mu}=1.5 \mathrm{pF}$ and $C_{\pi}=12 \mathrm{pF}$, and $C_{E E}=20 \mathrm{pF}$.

Solution

$g_{m}=I_{C} / V_{T}=(0.5 / 2) / 0.026=9.6 \mathrm{~mA} / \mathrm{V}, r_{\pi}=100 / 9.6 \cong 10 \mathrm{k} \Omega, r_{e} \cong 100 \Omega$, and $r_{\mu}=2 \times$ $100 \times 100 \cong 20 \mathrm{M} \Omega$. The resistance looking into Q_{2} emitter is the input resistance of a CB amplifier and is very nearly r_{e}, or 100Ω (Equation 8.2.18, Chapter 8). The effective resistance between Q_{1} emitter and ground is therefore $r_{e} \| R_{E E} \cong r_{e}$. The input resistance at the base of Q_{1} is that of a CE amplifier with an emitter resistance r_{e}. From Equation 8.2.37, Chapter 8, this is equal to $r_{\pi}+(\beta+1) r_{e}=2 r_{\pi}=20 \mathrm{k} \Omega$, if r_{0}, R_{C}, and r_{μ}, are neglected. If r_{o} and R_{C}, are taken into account (Equation 8.2.37), the input resistance becomes $18.4 \mathrm{k} \Omega$. Since the source sees this resistance, it follows that $v_{B 1}=\frac{18.4}{10+18.4} \times 3=1.94 \cong 2 \mathrm{mV}$. As explained in Example 10.1.1, this is equivalent to a differential input of 2 mV and a common-mode input of 1 mV .
(a) From Equation 10.1.5, $A_{d d 0}=-9.6(20 \| 100)=160$. The differential output $v_{c 1}-v_{c 2}$ is -320 mV . The common-mode output cancels out, assuming that the two halves are symmetrical.
(b) From Equation 10.1.11, the common-mode gain $A_{c m 0}=v_{c 1} / v_{c m}=-\alpha R_{C} /\left(2 R_{E E}+r_{e}\right) \cong$ -0.045 . The common-mode output is $0.045 \times 1 \mathrm{mV}=-45 \mu \mathrm{~V} ; A_{d 50}=A_{d d 0} / 2=-80$; CMRR $_{0}=80 / 0.045 \cong 1800$.
(c) From Equation 10.1.12, the common-mode differential output is $\alpha \Delta R_{C} /\left(2 R_{E E}+r_{e}\right) v_{c m}=$ $0.9 \mu \mathrm{~V}$, the common-mode gain being approximately $9 \times 10^{-4} ; \mathrm{CMRR}_{0}=\frac{160}{9 \times 10^{-4}}=$ $1.78 \times 10^{5} \equiv 105 \mathrm{~dB}$.
(d) $v_{B 1} \cong 2 \mathrm{mV}$, as determined previously, and $v_{\mathrm{C} 1} \cong-160 \mathrm{mV} . r_{\mu}$ is reduced by the Miller effect by a factor of $1 /(1+160 / 2)=1 / 81$, which gives a resistance of $20 \mathrm{M} \Omega / 81 \equiv$ $247 \mathrm{k} \Omega$ in parallel with the $18.4 \mathrm{k} \Omega$ determined above, or $17 \mathrm{k} \Omega$. This makes the input voltage about 1.9 mV , which may still be taken as 2 mV . It should be noted that taking $r_{\mu}=2 \beta_{r o}$ is generally on the low side.
(e) From Equation 10.1.15, $r_{\text {in(cm })}=10 \|[101 \times(0.22 \| 0.050]=2.9 \mathrm{M} \Omega$.
(f) $V_{i o}$ due to mismatch in R_{C} is $\left(\Delta R_{C} / R_{C}\right) V_{T}=0.02 \times 26=0.5 \mathrm{mV}$ (Problem P10.1.18). $V_{i o}$ due to mismatch in emitter-base junctions is $(\Delta A / A) V_{T}=0.05 \times 26 \cong 1.3 \mathrm{mV}$ (Problem P 10.1 .19). Since the two components $V_{i o}$ are uncorrelated, the total $V_{i o}$ is $\sqrt{(0.5)^{2}+(1.3)^{2}}=1.4 \mathrm{mV}$.
(g) From Equations 10.1.23 and 10.1.24, $I_{i b}=0.5 /(2 \times 101) \cong 2.5 \mu \mathrm{~A}$ and $I_{i o}=2.5 \times 0.04=$ $0.1 \mu \mathrm{~A}$.
(h) $R_{\text {src }}^{\prime}=\left(R_{\text {src }} / 2\right)\left\|r_{\pi}=5\right\| 10=3.33 \mathrm{k} \Omega$ and $R_{C}^{\prime}=R_{C}\left\|r_{o}=10\right\| 100=9.1 \mathrm{k} \Omega$. From Equation 10.1.9, neglecting the term $C_{\mu} R_{C}^{\prime}, f_{p d}=1 / 2 \pi C_{T} R_{s r C}^{\prime}=1 / 2 \pi\left[C_{\pi}+\left(1+g_{m} R_{C}^{\prime}\right) C_{\mu}\right] R_{s r C}^{\prime}=$ $1 / 2 \pi[12+(1+9.6 \times 9.1) 1.5] 3.33 \cong 330 \mathrm{kHz}$. From Equation 10.1.17, $f_{z(\mathrm{~cm})}=$ $1 / 2 \pi C_{E E} R_{E E}=1 / 2 \pi \times 20 \times 220 \cong 36 \mathrm{kHz}$. From Equation 10.1.18, $f_{p(\mathrm{~cm})}=2 / 2 \pi C_{E E}$ $\left(r_{e} \| 2 R_{E E}\right) \cong 1 / \pi \times 20 \times 100 \equiv 160 \mathrm{MHz}$.

Current-Mirror Load

Concept: A current mirror load doubles the single-ended voltage gain of a differential pair, and significantly increases common-mode rejection.

FIGURE 10.1.10
Differential pair with current-mirror load. (a) inputs grounded; (b) differential input applied; (c) test source applied.

The current mirror load therefore has some important advantages. In order to highlight these important features a somewhat simplified analysis will be made.

With the bases of Q_{1} and Q_{2} grounded in Figure 10.1.10a, $I_{E E}$ divides equally between Q_{1} and Q_{2}, because, ideally, the collector current of Q_{4} mirrors that of Q_{1}. With perfect matching, the collector voltages of Q_{3} and Q_{4} are equal so that on open circuit, $V_{O}=V_{C C}-V_{E B 3}$.

When a small-signal differential input is applied (Figure 10.1.10b), the resistance R_{03} seen by Q_{1} collector is nearly $1 / g_{m 3}=r_{e 3}$ (Equation 10.1.30). This node is therefore almost a signal ground, so only a single-ended output from Q_{2} / Q_{4} collector is feasible. Note that because of the differences between $R_{o 3}$ and $R_{o 4}$, the circuit is no longer symmetrical. We can, however, assume that if the output is short-circuited to ground, the circuit will be nearly symmetrical because the voltage at Q_{1} / Q_{3} collectors is small, and the voltage at Q_{2} / Q_{4} collectors is zero. The common emitters will then be at nearly signal ground, as are the emitters of the current mirror. Under these conditions, the currents flowing in the $r_{o}{ }^{\prime}$ s of the transistors can be neglected. Assuming that the parameters of all transistors are the same, the small-signal currents $i_{c 1}$ and $i_{c 2}$ will have a magnitude of $g_{m} v_{i d} / 2$ and direction as shown in Figure 10.1.10b. Assuming large β^{\prime} s, $i_{c 4}$ mirrors $i_{c 1}$ and adds to $i_{c 2}$ resulting in a short circuit current of $g_{m} v_{i d}$. The effective transconductance G_{m} for the differential input $v_{i d}$ is therefore g_{m}.

Knowing G_{m}, then in order to calculate v_{O} for a given load we need $r_{\text {out }}$, which is the resistance looking into the output node with the inputs grounded. The resistance looking into Q_{1} emitter is nearly $1 / g_{m 1}$. Hence, both the common emitter node of Q_{1} and Q_{2}, and the common base node of Q_{3} and Q_{4}, can be considered a signal ground. This gives $r_{\text {out }}=r_{o 2} \| r_{o 4}$, to a first approximation. Nevertheless, it is instructive to determine $r_{\text {out }}$ by applying a test source v_{x}, with both bases grounded. Figure 10.1.10c shows the ac circuit, with Q_{3} replaced by its equivalent resistance $R_{o 3}$. By inspection in Figure 10.1.10a, R_{03} consists of the following parallel components: (1) r_{π} 's of Q_{3} and Q_{4}, (2) r_{0} of Q_{3}, and (3) controlled current source $g_{m 3} v_{e b 3}$ of Q_{3}, equivalent to a resistance $1 / g_{m 3}$ (Equation 8.2.65, Chapter 8). Hence,

$$
\begin{equation*}
R_{o 3}=r_{\pi 3}\left\|r_{\pi 4}\right\|\left(\frac{1}{g_{m 3}}\right) \| r_{03} \cong \frac{1}{g_{m 3}} \tag{10.1.30}
\end{equation*}
$$

We next determine $R_{o 2}$ in Figure 10.1.10c. Q_{1} is a CB transistor having a load resistance $1 / g_{m 3}$. Its input resistance is very nearly $1 / g_{m 1}$ (Equation 8.2.57, Chapter 8). Q_{2} is a CB transistor whose source resistance is $1 / g_{m 1}$ in parallel with a much larger $R_{E E}$ of $I_{E E}$. From Equation 8.2.61, Chapter 8 , with $1 / g_{m 1}=r_{e 1} \ll r_{\pi 2}$ and $g_{m 2}=g_{m 1}$,

$$
\begin{equation*}
R_{o 2} \cong r_{o 2}+g_{m 2} r_{o 2}\left(\frac{1}{g_{m 1}}\right)=2 r_{o 2} \tag{10.1.31}
\end{equation*}
$$

In Figure 10.1.10c, $i_{c 3}=i_{1}=g_{m 3} v_{b e 3}=g_{m 4} v_{b e 4}$, since $v_{b e 3}=v_{b e 4}$ and $g_{m 3}$ is assumed equal to $g_{m 4}$. It follows that $i_{x}=2 i_{1}+v_{x} / r_{o 4}$. Substituting $i_{1}=v_{x} / 2 r_{o 2}$ (Equation 10.1.31), we obtain:

$$
\begin{equation*}
r_{\text {out }}=r_{o 2} \| r_{o 4}=\frac{r_{o}}{2} \tag{10.1.32}
\end{equation*}
$$

Since $v_{o}=g_{m} v_{i d} r_{\text {out }}$, the voltage gain is:

$$
\begin{equation*}
\frac{v_{o}}{v_{i d}}=g_{m} r_{o u t}=\frac{g_{m} r_{o}}{2} \tag{10.1.33}
\end{equation*}
$$

If Q_{3} and Q_{4} were separate transistor loads, $v_{o}=g_{m}\left(v_{i d} / 2\right)\left(r_{o} / 2\right)=\left(g_{m} r_{o} / 4\right) v_{i d}$. Thus, the coupling between the two currents of a current mirror load doubles the single-ended voltage gain.

This coupling has a more dramatic effect on the common-mode response. In Figure 10.1.11, a positive $v_{c m}$ increases the collector currents of Q_{1} and Q_{2} by $i_{c m 1}=g_{m} v_{c m}=i_{c m 2}$, neglecting r_{o}. For an ideal mirror, $i_{c m 4}=i_{c m 1}=i_{c m 2}$. No current flows into any load at the output, which means that the common-mode output voltage is zero. The CMRR is thus infinite, although $R_{E E}$ is finite. In practice, the mirror is not ideal, so that the CMRR is finite but large.

For a more realistic estimate of the CMRR, we first consider the gain $i_{c m 4} / i_{c m 1}$ of the current mirror. In Figure 10.1.11 $v_{e b 3}=R_{o 3} i_{c m 1}=v_{e b 4}$, with $i_{c m 4}=g_{m 4} v_{e b 4}$, neglecting r_{o}. From Equation 10.1.30, with r_{o} neglected, $R_{o 3}=r_{\pi 3}\left\|r_{\pi 4}\right\|\left(1 / g_{m 3}\right)$. It follows that:

$$
\begin{equation*}
\frac{i_{c m 4}}{i_{c m 1}}=g_{m 4} R_{03}=\frac{\beta}{\beta+2}, \quad \text { for } g_{m 3}=g_{m 4} \quad \text { and } \quad r_{\pi 3}=r_{\pi 4} \tag{10.1.34}
\end{equation*}
$$

(as in Equation 8.1.8, Chapter 8). v_{E} essentially follows $v_{c m}$ so that the small-signal current in $R_{E E}$ is $v_{c m} / R_{E E}$. Because the emitter voltage follows $v_{c m}, Q_{1}$ and Q_{2} effectively behave as

FIGURE 10.1.11
Common-mode input applied to a differential pair with current-mirror load.

CE amplifiers, each with a source resistance $2 R_{E E}$. The output resistance of Q_{1} and Q_{2} (Equation 8.2.38, Chapter 8) is much larger than the resistances presented by Q_{3} and Q_{4}, which implies that the small-signal current in $R_{E E}$ almost divides equally between Q_{1} and Q_{2}. Hence,

$$
\begin{equation*}
i_{c m 1} \cong i_{c m 2}=\frac{v_{c m}}{2 R_{E E}} \tag{10.1.35}
\end{equation*}
$$

The effective resistance at the output is $r_{o 4}$, and the common-mode output voltage is:

$$
\begin{equation*}
v_{o c m}=\left(i_{c m 4}-i_{c m 2}\right) r_{o 4} \tag{10.1.36}
\end{equation*}
$$

Substituting from Equations 10.1.34 and 10.1.35 in Equation 10.1.36, with $r_{o 4}=r_{o}$:

$$
\begin{equation*}
A_{c m}=\frac{v_{o c m}}{v_{c m}}=\frac{r_{o}}{2 R_{E E}}\left(\frac{\beta}{\beta+2}-1\right) \cong-\frac{r_{o}}{\beta R_{E E}} \tag{10.1.37}
\end{equation*}
$$

From Equations 10.1.13, 10.1.33, and 10.1.37

$$
\begin{equation*}
\mathrm{CMRR}_{0}=\frac{\beta g_{m} R_{E E}}{2} \tag{10.1.38}
\end{equation*}
$$

Compared to Equation 10.1.13, CMRR_{0} is multiplied by $\beta / 2$.
The BJT differential pair having a current-mirror load demonstrates that an input offset voltage can result from inherent circuit features, even though the components in the two half circuits are perfectly matched. This type of input offset voltage is a systematic input offset voltage, in contrast to the random input offset voltage due to a mismatch between corresponding components of the two half circuits. Thus, if both base terminals in Figure 10.1.11 are grounded, and assuming $I_{C 1}=I_{C 2}$, there will be a current difference
$\Delta I_{C}=I_{C 4}-I_{C 2}=\left(\frac{\beta_{F}}{\beta_{F}+2}-1\right) I_{C 2} \cong-\frac{2}{\beta_{F}} I_{C 2}$ (Equation 8.1.8, Chapter 8). ΔI_{C} can flow through an externally connected load so that $V_{O} \neq 0$. To make $V_{O}=0$, we should apply a voltage $g_{m} \Delta I_{C}=-\left(2 g_{m} / \beta_{F}\right) I_{C 2}$ to Q_{2} base so as to reduce $I_{C 2}$ to make $\Delta I_{C}=0$. The magnitude of this voltage is $V_{i o}$. Substituting, $g_{m}=V_{T} / I_{\mathrm{C} 2}$,

$$
\begin{equation*}
V_{i o}=\frac{2 V_{T}}{\beta_{F}} \tag{10.1.39}
\end{equation*}
$$

Systematic $V_{i o}$ is thus due to finite β_{F}. If $\beta_{F}=100, V_{i o}$ is about 0.5 mV .
More elaborate current mirrors (Section ST8.3, Chapter 8) can be used to increase the load resistance of the differential pair, or give a very large $R_{E E}$. Other improvements to the performance of the differential pair are discussed in Section ST10.1.

Simulation Example 10.1.3 Differential Amplifier with Resistors Added to Each Emitter

The circuit is that of the differential amplifier of Figure 10.1.3, with $V_{C C}=5 \mathrm{~V}, I_{E E}=0.25 \mathrm{~mA}$, $R_{C}=20 \mathrm{k} \Omega$, and R_{E} included in series with each emitter. The transistors are Q2N3904 from PSpice EVAL library. A dc source is connected differentially between the bases of the transistors and is swept between -250 and +250 mV . The output is taken differentially as $v_{C 2}-v_{C 1}$. The transfer characteristics for $R_{E}=0,0.5$ and $1 \mathrm{k} \Omega$ are shown in Figure 10.1.12.

It is seen that R_{E} extends the linear range of operation because of the negative feedback. Thus, if $v_{i d}$ is such that Q_{2} is cut off, so its emitter current is zero, then $v_{i d}$ must increase by $R_{E} I_{E E}$, which makes the characteristic more linear by shifting it in the direction of positive $v_{i d}$ by $R_{E} I_{E E}$. However, this shift also reduces the slope of the characteristic and hence the gain.

The differential half circuit of Figure 10.1.3b applies with R_{E} included and becomes a CE amplifier with unbypassed emitter resistor (Section 8.2, Chapter 8). The differential amplifier with emitter/source resistors is left to problems at the end of the chapter.

FIGURE 10.1.12
Basic MOSFET differential pair.

MOSFET Differential Pair

A MOSFET differential pair is illustrated in Figure 10.1.13, where it is assumed that Q_{1} and Q_{2} are perfectly matched and in saturation. In the quiescent state, with both gates grounded, $I_{S S}$ divides equally between Q_{1} and Q_{2}. If a common-mode voltage $v_{c m}$ is applied, the two drain currents must be equal and sum to $I_{S S}$. Hence, each drain current must remain equal to $I_{S S} / 2$. If the drain currents do not change with $v_{c m}$, then neglecting channel-length modulation, the gate-source voltages must not change so that the common source voltage v_{S} must follow $v_{c m}$. If a small-signal differential input is applied, $v_{g 1}=v_{i d} / 2$ and $v_{g 2}=-v_{i d} / 2$. Neglecting $r_{o}, i_{D 1}=\left(I_{S S} / 2\right)+\left(g_{m} v_{i d} / 2\right)$ and $i_{D 2}=\left(I_{S S} / 2\right)-\left(g_{m} v_{i d} / 2\right)$.

To derive the transfer characteristic, the drain currents are expressed as:

$$
\begin{equation*}
i_{D 1}=\frac{k_{n}}{2}\left(v_{G S 1}-V_{t n}\right)^{2} \quad \text { and } \quad i_{d 2}=\frac{k_{n}}{2}\left(v_{G S 2}-V_{t n}\right)^{2} \tag{10.1.40}
\end{equation*}
$$

or,

$$
\begin{equation*}
\sqrt{i_{D 1}}=\sqrt{k_{n} / 2}\left(v_{G S 1}-V_{t n}\right) \quad \text { and } \quad \sqrt{i_{D 2}}=\sqrt{k_{n} / 2}\left(v_{G S 2}-V_{t n}\right) \tag{10.1.41}
\end{equation*}
$$

Since $v_{G S 1}-v_{G S 2}=v_{i d}$, Equations 10.1.41 give:

$$
\begin{equation*}
\sqrt{i_{D 1}}-\sqrt{i_{D 2}}=\left(\sqrt{k_{n} / 2}\right) v_{d} \tag{10.1.42}
\end{equation*}
$$

If we denote $v_{G S 1}=v_{G S 2}=V_{G S}$ when $v_{i d}=0$, then $i_{D 1}=i_{D 2}=I_{S S} / 2$, and,

$$
\begin{equation*}
\frac{I_{S S}}{2}=\frac{k_{n}}{2}\left(V_{G S}-V_{t n}\right)^{2}=\frac{1}{2} k_{n} V_{o v}^{2} \tag{10.1.43}
\end{equation*}
$$

Equation 10.1.42 can be solved with $i_{D 1}+i_{D 2}=I_{S S}$ for $i_{D 1}$ and $i_{D 2} . k_{n} / 2$ is then eliminated using Equation 10.1.43 to give:

$$
\begin{equation*}
i_{D 1}=\frac{I_{S S}}{2}\left[1+\frac{v_{i d}}{V_{o v}} \sqrt{1-\left(\frac{v_{i d}}{2 V_{o v}}\right)^{2}}\right] \quad \text { and } \quad i_{D 2}=\frac{I_{S S}}{2}\left[1-\frac{v_{i d}}{V_{o v}} \sqrt{1-\left(\frac{v_{i d}}{2 V_{o v}}\right)^{2}}\right] \tag{10.1.44}
\end{equation*}
$$

FIGURE 10.1.13
Transfer characteristic of BJT differential pair.

FIGURE 10.1.14
Variation of drain currents with differential input for an MOSFET differential pair.

A plot of $i_{D 1}$ and $i_{D 2}$ vs. $v_{i d} / V_{o v}$ is illustrated in Figure 10.1.14. For small $v_{i d}$, the square root terms in Equation 10.1.44 are very nearly unity so that $i_{D 1}$ and $i_{D 2}$ vary linearly with $v_{i d}$, the magnitude of the slope being $I_{S S} / 2 V_{o v}$. To change $i_{D 1}$ or $i_{D 2}$ between zero and $I_{S S}$, the term $\left(v_{i d} / V_{o v}\right) \sqrt{1-\left(v_{i d} / V_{o v}\right)^{2}}$ must change between -1 and +1 . The term equals 1 at $v_{i d}=\left|v_{i d}\right|_{\text {max }}$ given by:

$$
\begin{equation*}
\left|v_{i d}\right|_{\max }=\sqrt{2} V_{o v}=\sqrt{2} \frac{I_{S S}}{g_{m}} \tag{10.1.45}
\end{equation*}
$$

where $g_{m}=2 I_{D} / V_{o v}=I_{S S} / V_{v v}$ (Equation 5.3.11, Chapter 5). Whereas full switching of a BJT depends only on V_{T}, full switching of a MOSFET depends on $I_{S S}$ and g_{m}.

The small-signal analysis of the MOSFET differential pair closely follows that of the BJT differential pair. For a differential input $v_{i d}$, the input voltage to each transistor is $v_{i d} / 2$, the change in drain current is $g_{m} v_{i d} / 2$, assuming a large r_{o}, and the drain voltage $v_{d 1}$ is:

$$
\begin{equation*}
v_{d 1}=\frac{-g_{m} R_{D} v_{i d}}{2} \tag{10.1.46}
\end{equation*}
$$

$v_{d 2}=-v_{d 1}$ and $v_{o d}=v_{d 1}-v_{d 2}=2 v_{d 1}$. Note that v_{S} varies with the common-mode signal but not with the differential signal, since the common source is ideally at signal ground for the differential input. Hence, the body effect is manifest for common-mode, but not for differential signals. The frequency response of the MOS differential pair closely parallels that of the BJT and is left to problems at the end of the chapter.

Exercise 10.1.4

Show that the magnitude of the slope $d i_{D 1} / d v_{i d}$ of the transfer characteristic at $v_{i d}=0$ is $g_{m} / 2$.

As in the case of the BJT, an input offset voltage $V_{i o}$ arises from a mismatch between the two halves of the circuit. However, $V_{i o}$ is considerably larger for the MOSFET case, compared to its BJT counterpart, in the ratio of $V_{o v} / 2$ to V_{T}. It can be readily shown that:

1. If the two R_{D} resistors differ by ΔR_{D}, the input offset voltage $V_{i o}$ is (Problem P10.1.21):

$$
\begin{equation*}
V_{i o}=\left(\frac{\Delta R_{D}}{R_{D}}\right) \frac{V_{o v}}{2} \tag{10.1.47}
\end{equation*}
$$

2. If W / L of the two transistors differ by $\Delta(W / L), W / L$ being the average aspect ratio, the input offset voltage $V_{i o}$, neglecting r_{o} is (Problem P10.1.22):

$$
\begin{equation*}
V_{i o} \cong\left(\frac{\Delta(W / L)}{W / L}\right) \frac{V_{o v}}{2} \tag{10.1.48}
\end{equation*}
$$

3. If the thresholds of Q_{1} and Q_{2} differ by $\Delta V_{t n} \ll V_{o v}, V_{i o}$ is (Problem P10.1.23):

$$
\begin{equation*}
V_{i o} \cong \Delta V_{t n} \tag{10.1.49}
\end{equation*}
$$

The MOSFET differential pair with a current-mirror load is analogous to its BJT counterpart. Assuming all MOSFETs have the same parameters (Section ST10.2):

$$
\begin{equation*}
\mathrm{CMRR}_{0}=g_{m}^{2} r_{o} R_{S S} \tag{10.1.50}
\end{equation*}
$$

Note that from Equations 8.2.11 and 8.2.15, Chapter 8, the maximum gain $g_{m} r_{o}$ is considerably higher for a BJT differential pair compared to a MOSFET differential pair.

Simulation Example 10.1.4 MOSFET Differential Amplifier with Current Mirror Load

Given the MOSFET differential amplifier with a current-mirror load (Figure 10.1.15), $V_{t n}=\bar{V}_{t p}=0.7 \mathrm{~V}, k_{n}=k_{p}=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $\lambda=0.01 \mathrm{~V}^{-1}$ for all transistors. Neglecting the body effect, it is required to simulate the circuit and determine: (a) $r_{o u t}$, (b) $v_{o} / v_{i d}$, (c) $A_{c m}$ and CMRR, assuming $R_{S S}=200 \mathrm{k} \Omega$, and (d) $v_{c m(\max)}$.

Analysis and Simulation

Q_{1} to Q_{4} have a drain current of $I_{S S} / 2=0.5 \mathrm{~mA}$ and $r_{o}=1 / \lambda I_{D}=200 \mathrm{k} \Omega$. The schematic is that of Figure 10.1.15; the MOSFETs are from the BREAKOUT library, and their parameters are entered in the PSpice model and the Property Editor spreadsheet.
(a) From Equation 10.1.32, $r_{\text {out }}=r_{o 2} \| r_{o 4}=100 \mathrm{k} \Omega$.
(b) Neglecting channel-length modulation, $g_{m}=\sqrt{2 k_{n, p} I_{D}}=\sqrt{2 \times 1 \times 0.5}=1 \mathrm{~mA} / \mathrm{V}$, $v_{o} / v_{\text {id }}=g_{m n} r_{\text {out }} / 2=100$. The simulation gives 105.6 , taking channel-length modulation into account.

Figure for Simulation Example 10.1.4.
(c) From Equation 10.1.33, the differential gain is $g_{m} r_{o} / 2$. Substituting in Equation 10.1.50, $\left|A_{c m}\right|=1 /\left(2 g_{m} R_{S S}\right)=1 /(2 \times 200)=0.025 ; \quad \mathrm{CMRR}=100 / 0.025=4000$. The measured $A_{\text {cm }}$ is 0.0245 , so that the $\mathrm{CMRR}=105.6 / 0.0245=4310$.
(d) $v_{c m \text { (max) }}$ is determined by Q_{1} or Q_{2} going out of saturation. To decide which, we note that for Q_{1} and $Q_{3}, v_{D D}=v_{S G 3}+v_{D G 1}+v_{c m}$. At the edge of the saturation region, $v_{D G 1}=-v_{t n}$. This gives $v_{c m(\max)}=V_{D D}-v_{S C 3}+V_{t n}$. Considering Q_{2} and $Q_{4}, V_{D D}=v_{S D 4(\text { sat) })}+v_{D C 2}+$ $v_{c m}$, where $v_{S D 4 \text { (sat) }}$ is the source-drain voltage of Q_{4} at the edge of saturation and equals $V_{o v 4}$. This gives $v_{c m(\max)}=V_{D D}-V_{o v 4}+V_{t n}$. Since $V_{o v 4}<v_{S G 3}$, it follows that Q_{1} will go out of saturation before Q_{2}. For $Q_{3}, v_{S C 3}=v_{S C 3}=\sqrt{2 i_{D} / k_{n}}+\bar{V}_{t p}=\sqrt{2 \times 0.5 / 1}+0.7=1.7 \mathrm{~V}$. This gives $v_{c m(\max)}=5-1.7+0.7=4 \mathrm{~V}$.

10.2 Two-Stage CMOS Op Amp

We will illustrate in this section and the next how differential pairs, active loads, and other circuits previously discussed can be used in two examples of basic CMOS op amps.

Figure 10.2.1 illustrates a basic two-stage CMOS op amp consisting of a PMOS differential input stage (Q_{1} and Q_{2}) having an NMOS current mirror (Q_{3} and Q_{4}), followed by an output stage. Q_{5}, Q_{6}, and Q_{7} are current-steering circuits (Figure 8.1.10, Chapter 8), whereby Q_{6} biases the differential pair, and Q_{7} acts as a current-source load for the NMOS CS output transistor $Q_{8} . I_{\text {REF }}$ can be of a form described in Section 10.4. C_{C} is used for frequency compensation. A complementary configuration is also possible as discussed at the end of this section.

The output resistance, $r_{o 7} \| r_{o 8}$ is relatively high, and is therefore appropriate for highimpedance loads only, such as capacitive loads in CMOS ICs. A CD output stage of relatively low output resistance can be added for increased drive capability.

Input-Offset Voltage

To have $V_{i o}=0$, the output voltage should be zero when both inputs are grounded. Apart from having matched transistors, certain relations between transistor sizes must be satisfied.

FIGURE 10.2.1
Basic two-stage CMOS op amp.

When the gates of Q_{1} and Q_{2} are grounded, the drain currents of Q_{3} and Q_{4} are $I_{D D} / 2$. Q_{3}, Q_{4}, and Q_{8} have the same k_{n}^{\prime} and $V_{t n}$. It follows that $V_{D S 4}=V_{D S 3}=V_{G S 3,4}$, the common gate-source voltages of Q_{3} and Q_{4}. Hence, $V_{G S 8}=V_{G S 3,4}$, so that the drain current I_{8} of Q_{8} is related to the drain current $I_{D D} / 2$ of Q_{4} by their aspect ratios, neglecting channel-width modulation:

$$
\begin{equation*}
\frac{I_{8}}{I_{D D} / 2}=\frac{(W / L)_{8}}{(W / L)_{4}} \tag{10.2.1}
\end{equation*}
$$

Q_{5}, Q_{6}, and Q_{7} also have the same $k_{p}^{\prime}, V_{t p}$, and $V_{S G}$. The drain currents of Q_{6} and Q_{7} are therefore related by their aspect ratios, neglecting channel-width modulation:

$$
\begin{equation*}
\frac{I_{7}}{I_{D D}}=\frac{(W / L)_{7}}{(W / L)_{6}} \tag{10.2.2}
\end{equation*}
$$

On open circuit, $I_{7}=I_{8}$. Dividing Equation 10.2.1 by Equation 10.2.2 and rearranging,

$$
\begin{equation*}
\frac{(W / L)_{8}}{(W / L)_{4}}=2 \frac{(W / L)_{7}}{(W / L)_{6}} \tag{10.2.3}
\end{equation*}
$$

In order to have zero output voltage, assuming $V_{D D}=V_{S S}$, then $V_{S D 7}=V_{D S 8}$. Equating the drain currents of Q_{7} and Q_{8},

$$
\begin{equation*}
\frac{1}{2} k_{n}^{\prime}\left(\frac{W}{L}\right)_{8}\left(V_{\text {oon }}\right)^{2}\left(1+\lambda_{n 8} V_{D S 8}\right)=\frac{1}{2} k_{p}^{\prime}\left(\frac{W}{L}\right)_{7}\left(V_{\text {ovp }}\right)^{2}\left(1+\lambda_{p 7} V_{S D 7}\right) \tag{10.2.4}
\end{equation*}
$$

where
$V_{\text {ovn }}=V_{G S n}-V_{t n}$
$V_{\text {ovp }}=V_{S G p}-\bar{V}_{t p}$
Equation 10.2.4 can be satisfied by having $\lambda_{n 7}=\lambda_{p 8}$, and $\mu_{e}(W / L)_{8}\left(V_{\text {ovn }}\right)^{2}=\mu_{h}(W / L)_{7}\left(V_{\text {ovp }}\right)^{2}$. Combining with Equation 10.2.3, the condition $V_{i o}=0$ is:

$$
\begin{equation*}
2 \mu_{e}\left(\frac{W}{L}\right)_{4}\left(V_{\text {ovn }}\right)^{2}=\mu_{h}\left(\frac{W}{L}\right)_{6}\left(V_{\text {ovp }}\right)^{2} \quad \text { and } \quad \lambda_{n 7}=\lambda_{p 8} \tag{10.2.5}
\end{equation*}
$$

Voltage Gain and Output Swing

Analogous to Equation 10.1.33, the low-frequency voltage gain from the differential input $V_{i d}$ to the single-ended output of the differential stage is:

$$
\begin{equation*}
\frac{v_{8} 8}{v_{i d}}=-g_{m p}\left(r_{o 2} \| r_{o 4}\right) \tag{10.2.6}
\end{equation*}
$$

where $g_{m p}=2 I_{D} / V_{o v 1,2}$ (Equation 5.3.11, Chapter 5) and $V_{o v 1,2}$ is the overdrive voltage od Q_{1} and Q_{2}, assumed to have equal thresholds. Substituting $r_{o}=V_{A} / I_{D}$,

$$
\begin{equation*}
\frac{v_{g} 8}{v_{i d}}=-\frac{v_{A 2,4}}{v_{o v 1,2}} \tag{10.2.7}
\end{equation*}
$$

where $V_{A 2,4}$ is the Early voltage of Q_{2} and Q_{4}, asumed to be equal.

The gain of the output stage is:

$$
\begin{equation*}
\frac{v_{o}}{v_{g 8}}=-g_{m n}\left(r_{07} \| r_{08}\right) \tag{10.2.8}
\end{equation*}
$$

where $g_{m n}$ is g_{m} of Q_{8}. Analogous to Equation 10.2.7, Equation 10.2.8 may be written as:

$$
\begin{equation*}
\frac{v_{o}}{v_{g 8}}=-\frac{v_{A 7,8}}{v_{o v 8}} \tag{10.2.9}
\end{equation*}
$$

where $V_{A 7}$ and $V_{A 8}$ are assumed to be equal, in accordance with Equation 10.2.5. It follows that the overall gain is the product of the gains of the two stages:

$$
\begin{equation*}
A_{v 0}=g_{m p} g_{m n}\left(r_{o 2} \| r_{o 4}\right)\left(r_{o 7} \| r_{o 8}\right)=\frac{V_{A 2,4}}{V_{o v 1,2}} \frac{V_{A 7,8}}{V_{o v 8}} \tag{10.2.10}
\end{equation*}
$$

To have a large $A_{v 0}, V_{o v}$'s should be small and V_{A} 's large. V_{A} is increased by increasing L, and $V_{o v}$ is reduced by increasing W / L (Equations 5.3.7 and 5.3.15, Chapter 5). Typically, $A_{v 0}$ is in the range of 1000 to about 5000.
Q_{8} is at the edge of the saturation region when $v_{D S 8}=v_{G S 8}-V_{t n 8}=V_{o v 8}$, or $v_{o}^{-}=-V_{S S}+V_{\text {ov8 }}$. Similarly, Q_{7} is at the edge of the saturation region when $v_{S D 7}=v_{S G 7}-\bar{V}_{t p 7}=V_{o v 7}$, or $v_{O}^{+}=V_{D D}-V_{o v 7}$. Thus,

$$
\begin{equation*}
-V_{S S}+V_{o v 8} \leq v_{O} \leq V_{D D}-V_{o v 7} \tag{10.2.11}
\end{equation*}
$$

The output can swing to the magnitude of each supply voltage less $V_{o v}$ of an output transistor. Beyond these limits, one or both transistors will enter the triode region, which will significantly reduce the overall gain.

Common-Mode Response

From Equation 10.1.50, with $R_{S S}=r_{o}$, the CMRR is approximately $\left(g_{m} r_{o}\right)^{2}$.
The maximum positive swing, $v_{c m}^{+}$, of $v_{c m}$ is that which brings Q_{6} to the edge of the saturation region, that is, when $v_{D S 6}=V_{o v 6}$. Under these conditions, $v_{c m}^{+}+V_{S G 1,2}+$ $V_{o v 6}=V_{D D}$, or $v_{c m}^{+}=V_{D D}-V_{o v 1}-\bar{V}_{t p 1}-V_{o v 6}$. The most negative swing, $v_{c m}^{-}$, of $v_{c m}$ is that which brings Q_{1} to the edge of the saturation region, as explained in Simulation Example 10.1.4, which happens when $v_{G D 1}=\bar{V}_{t p 1}$, that is, when $v_{c m}^{-}+\bar{V}_{t p 1}-V_{G S 3}=-V_{S S}$, or $v_{c m}^{-}=V_{o v 3}+V_{t n 3}-\bar{V}_{t p 1}-V_{S S}$. Thus,

$$
\begin{equation*}
V_{o v 3}+V_{t n 3}-\bar{V}_{t p 1}-V_{S S} \leq v_{c m} \leq V_{D D}-V_{o v 1}-\bar{V}_{t p 1}-V_{o v 6} \tag{10.2.12}
\end{equation*}
$$

The $V_{o v}$'s reduce the swing of both v_{O} and $v_{c m}$. The swing in v_{O} and the swing in $v_{c m}$ should ideally be equal because in a unity-gain op amp the output is connected to the inverting input, which under dc conditions makes $V_{c m}=V_{O}$.

Frequency Response

The small-signal equivalent circuit is shown in Figure 10.2.2, where $g_{m i}=g_{m 1}=g_{m 2}$, $g_{m o}=g_{m 8}, R_{1}=r_{o 2}\left\|r_{o 4}, R_{2}=r_{o 7}\right\| r_{o 8}, C_{1}$ is the total capacitance to ground at node D_{2}, and C_{2} is the total capacitance to ground at node D_{8} (Figure 10.2.1):

FIGURE 10.2.2
High-frequency, small-signal equivalent circuit of the two-stage CMOS op amp.

$$
\begin{align*}
& C_{1}=C_{g d 4}+C_{d b 4}+C_{g d 2}+C_{d b 2}+C_{g s 8} \tag{10.2.13}\\
& C_{2}=C_{d b 8}+C_{g d 7}+C_{d b 7}+C_{L} \tag{10.2.14}
\end{align*}
$$

where C_{L} is the load capacitance. The following should be noted concerning these capacitances: (1) The substrates of the NMOS and PMOS transistors are normally connected to the $-V_{S S}$ and $+V_{D D}$ supplies, respectively, which are at ac ground. The well bodies are connected to the sources, which are also at ac ground. Hence, drain-body capacitances are with respect to ground. (2) The gates of the diode-connected transistors Q_{3} and Q_{5} have a low resitance of $1 / g_{m}$ between the gates and the dc supplies. Hence these gates may be considered grounded so that the drain-gate capacitances of Q_{4} and Q_{7} are with respect to ground. The gate of Q_{2} is assumed to be grounded through the applied source. (3) $C_{g d}$ of Q_{8} is in parallel with C_{C} and is normally small compared to C_{C}. (4) C_{2} includes the load capacitance, which is normally larger than the internal capacitances of the transistors so that C_{2} is considerably larger than C_{1}.

The node-voltage equations for the circuit of Figure 10.2.2 are:

$$
\begin{align*}
\left(\frac{1}{R_{1}}+s C_{1}+s C_{C}\right) V_{o 1}-s C_{C} V_{o} & =-g_{m i} V_{i d} \\
-s C_{C} V_{o 1}+\left(\frac{1}{R_{2}}+s C_{2}+s C_{c}\right) V_{o} & =-g_{m o} V_{o 1} \tag{10.2.15}
\end{align*}
$$

The transfer function can be derived from these equations as:

$$
\begin{equation*}
\frac{V_{o}}{V_{i d}}=\frac{g_{m i}\left(g_{m o}-s C_{C}\right) R_{1} R_{2}}{1+s\left[C_{1} R_{1}+C_{2} R_{2}+C_{C}\left(g_{m o} R_{1} R_{2}+R_{1}+R_{2}\right)\right]+s^{2}\left[C_{1} C_{2}+C_{C}\left(C_{1}+C_{2}\right)\right] R_{1} R_{2}} \tag{10.2.16}
\end{equation*}
$$

The transfer function has a zero and two poles. The zero occurs when $g_{m o}=s C_{C}$. The interpretation is that when $V_{o}=0, R_{2}$ and C_{2} can be replaced by a short circuit through which the current is zero. But the current through the short circuit can be considered as the sum of two components that flow in opposite directions: one component being equal to $g_{m o} V_{o 1}$, the other equal to $s C_{C} V_{o 1}$. Equating these currents gives $g_{m o}=s C_{C}$. Note that the zero does not occur at a real frequency, since $g_{m o} V_{o 1}$ has zero phase angle whereas $j \omega C_{C} V_{o 1}$ has a phase angle of 90°.

The denominator $D(s)$ of the transfer function can be expressed as:

$$
\begin{equation*}
D(s)=\left(1+\frac{s}{\omega_{p 1}}\right)\left(1+\frac{s}{\omega_{p 2}}\right)=1+s\left(\frac{1}{\omega_{p 1}}+\frac{1}{\omega_{p 2}}\right)+\frac{s^{2}}{\omega_{p 1} \omega_{p 2}} \tag{10.2.17}
\end{equation*}
$$

If the amplifier has adequate stability, one pole, say $\omega_{p 1}$, is dominant $\left(\omega_{p 1} \ll \omega_{p 2}\right)$ so that $\omega_{p 1}$ is approximately the reciprocal of the coefficient of s in $D(s)$. Moreover, $g_{m 0} R_{1} R_{2}$ is much larger than either R_{1} and R_{2}, and $g_{m o} C_{C} R_{1} R_{2}$ is normally much larger than $C_{1} R_{1}$ and $C_{2} R_{2}$. Hence,

$$
\begin{equation*}
\omega_{p 1} \cong \frac{1}{\left(g_{m o} R_{2} C_{C}\right) R_{1}} \tag{10.2.18}
\end{equation*}
$$

The interpretation of Equation 10.2.18 is that if $C_{2} R_{2}$ is negligible, C_{2} can be ignored. The gain of the second stage, from $V_{o 1}$ to V_{o} is $-g_{m o} R_{2}$. The capacitance appearing in parallel with R_{1} due to the Miller effect is $C_{C}\left(1+g_{m o} R_{2}\right) \cong C_{C} g_{m o} R_{2}$, which is assumed to be much larger than C_{1}.

The second pole is $\omega_{p 2}=1 /\left(\omega_{p 1} \times\right.$ coefficient of s^{2} in the transfer function $)$. It follows that:

$$
\begin{equation*}
\omega_{p 2} \cong \frac{g_{m o} C_{C}}{C_{1} C_{2}+C_{C}\left(C_{1}+C_{2}\right)} \tag{10.2.19}
\end{equation*}
$$

C_{C} causes pole splitting by decreasing $\omega_{p 1}$ and increasing $\omega_{p 2}$. The increase in $\omega_{p 2}$ depends on the relative magnitudes of the terms in the denominator. If $C_{2} \gg C_{1}$, the second term becomes $C_{C} C_{2}$, and if $C_{C} \gg C_{1}$, the denominator reduces to $C_{C} C_{2}$. C_{C} then cancels out, giving:

$$
\begin{equation*}
\omega_{p 2} \cong \frac{g_{m o}}{C_{2}} \tag{10.2.20}
\end{equation*}
$$

For adequate stability of the amplifier, $\omega_{p 1}$ should be such that if a line of slope $-20 \mathrm{~dB} /$ decade is drawn from the point $\left(\omega_{p 1}, A_{v 0}\right)$ on the $\log A_{v}$ vs. $\log \omega$ plot, it intersects the unitygain line at a frequency ω_{T} that is sufficiently removed from ω_{z} and $\omega_{p 2}$, so that ω_{z} and $\omega_{p 2}$ do not add more than 45° of phase lag, to give a phase margin of at least 45° (Figure 10.2.3). Note that the zero is of the form $\left(1-j \omega / \omega_{z}\right)$ and adds a phase lag $-\tan ^{-1}\left(\omega / \omega_{z}\right)$ like a pole. A slope of magnitude $20 \mathrm{~dB} /$ decade is of unity slope on a $\log -\log$ plot, because moving a decade along the abscissa moves a decade along the ordinate, since $20 \log _{10} 10=20 \mathrm{~dB}$. It follows from Figure 10.2.3 that $\frac{\log \left(A_{v 0}\right)-\log 1}{\log \omega_{p 1}-\log \omega_{T}}=1$, or $\frac{A_{v 0}}{1}=\frac{\omega_{T}}{\omega_{p 1}}$. From Equation 10.2.10,

$$
\begin{equation*}
\omega_{T}=\left(g_{m i} g_{m o} R_{1} R_{2}\right) \omega_{p 1} \tag{10.2.21}
\end{equation*}
$$

FIGURE 10.2.3
Asymptotic Bode magnitude plot of the gain of the twostage CMOS op amp.

Substituting for $\omega_{p 1}$ from Equation 10.2.18,

$$
\begin{equation*}
\omega_{T} \cong \frac{g_{m i}}{C_{C}} \tag{10.2.22}
\end{equation*}
$$

C_{C}, and hence $\omega_{p 1}$, should be chosen so that ω_{z} and $\omega_{p 2}$ are sufficiently larger than $\omega_{T} . \omega_{z}$ is moved by adding a resistance R_{Z} in series with C_{C}. This replaces $s C_{C}$ in Equation 10.2.16 by $1 /\left(R_{Z}+1 / s C_{C}\right)$. The $\left(g_{m o}-s C_{C}\right)$ term becomes $\frac{g_{m o}-s C_{c}\left(1-g_{m o} R_{Z}\right)}{1+s C_{c} R_{z}}$. The new zero is moved to

$$
\begin{equation*}
\omega_{Z} \cong 1 /\left(C_{C}\left(\frac{1}{g_{m o}}-R_{Z}\right)\right) \tag{10.2.23}
\end{equation*}
$$

If $R_{Z}=1 / g_{m o}, \omega_{z} \rightarrow \infty . R_{Z}$ is thus a zero-nulling resistor. If $R_{Z}>1 / g_{m o}, \omega_{Z}$ will be on the negative real axis and will add to the phase margin. Adding R_{Z} also adds another pole $\omega_{p 3}$ at $1 / C_{C} R_{Z}$, which is normally at a frequency considerably higher than $\omega_{p 2}$.

Slew Rate*

The slew rate (SR) is a large-signal frequency response limitation of the op amp. It is usually measured by configuring the op amp as a unity-gain amplifier, connecting it to a specified load, and applying to the noninverting input a square wave of relatively large, specified amplitude (Figure 10.2.4). Ideally, the amplifier output should follow the input. In practice, the output is trapezoidal in shape, rising and falling at rates v_{o} / t_{1} and v_{o} / t_{2} (Figure 10.2.4b). The smaller of these two rates is the slew rate of the amplifier and is usually expressed in $\mathrm{V} / \mu \mathrm{s}$. The slew rate arises because a rapid change in output requires an equally rapid charging or discharging of capacitors associated with the amplifier.

If a large, positive step is applied to the base of Q_{2} in Figure 10.2.1, Q_{2} will turn off and $I_{D D}$ flows through Q_{1} and Q_{3}. Q_{4} will mirror this current, which will flow through C_{C}.

FIGURE 10.2.4
(a) Circuit for measuring the slew rate of an op amp; (b) response to a square-wave input because of slew rate.

[^3]The voltage at v_{O} will therefore initially increase at a rate $I_{D D} / C_{C}$. Roughly speaking, this may be considered to be the SR. Thus,

$$
\begin{equation*}
\mathrm{SR} \cong \frac{I_{D D}}{C_{C}} \tag{10.2.24}
\end{equation*}
$$

Substituting $I_{D D}=g_{m 1,2} V_{o v 1,2}$ and $g_{m 1,2}=k_{p}^{\prime}(W / L) V_{o v 1,2}$

$$
\begin{equation*}
\mathrm{SR} \cong \frac{\left(V_{o v 1,2}\right)^{2} k_{p}^{\prime}(W / L)}{C_{C}} \tag{10.2.25}
\end{equation*}
$$

A large $V_{o v}$ increases SR as well as f_{T} (Equation 5.2.33, Chapter 5) but reduces the swings of v_{O} and $v_{c m}$ as well as the gain.

Compared to the complementary configuration in which the input transistors are NMOS and the CS amplifier is PMOS, the circuit of Figure 10.2.1 has the following advantages: (1) For the same maximum W, the smaller k_{p}^{\prime} of PMOS transistors means a larger $V_{o v}$ (Equation 5.2.15, Chapter 5) and hence a larger $\left(V_{o v 1,2}\right)^{2} k^{\prime}$ and higher SR, (2) PMOS transistors have less flicker ($1 / f$) noise than NMOS transistors (Section 6.5, Chapter 6), and (3) the NMOS CS transistor has a higher $g_{m o}$, which enhances pole splitting (Equations 10.2.18 and 10.2.19).

10.3 Folded Cascode CMOS Op Amp

As another example of a CMOS op amp, we will consider the basic folded-cascode CMOS op amp illustrated in Figure 10.3.1. Q_{1} and Q_{2} are the input differential pair, with Q_{3} and Q_{4} connected in folded cascode to Q_{1} and Q_{2}, respectively (Section 9.1, Chapter 9). The bias current of Q_{1} and Q_{2} is $I_{S S} / 2$, whereas the bias current of Q_{3} and Q_{4} is $I_{D D}-I_{S S} / 2$, the current sources being derived from single transistors Q_{a} to Q_{c} in CS configuration. Q_{d} to Q_{g} is a wide-swing current mirror (Figure 8.4.12b, Chapter 8). C_{L} includes the internal capacitances of the output transistors, load capacitance, and any capacitance that may be added to obtain a desired frequency response. The bias voltages are generally derived as described in Section 10.4.

Common-Mode Input Range

An important advantage of the folded cascode is a wider common-mode input range, which is relevant, for example, to a unity-gain amplifier. When $v_{c m}$ is applied to both inputs connected together, the maximum positive swing, $v_{c m}^{+}$, of $v_{c m}$ is determined by the requirement that Q_{1} and Q_{2} remain in saturation. At the edge of saturation, $v_{G D}$ of these transistors is $V_{t n}$ so that their drain voltage with respect to ground is $v_{c m}^{+}-V_{t n}$. If Q_{b} or Q_{c} is at the edge of saturation with $v_{c m}^{+}$applied, $v_{S D}$ of these transistors is equal to their overdrive voltage $V_{o v b, c}=v_{S G b, c}-\bar{V}_{t p 1}$. Hence $v_{c m}^{+}-V_{t n}+V_{o v b, c}=V_{D D}$, or

$$
\begin{equation*}
v_{c m}^{+}=V_{D D}+V_{t n}-V_{o v b, c} \tag{10.3.1}
\end{equation*}
$$

FIGURE 10.3.1
Basic folded-cascode CMOS op amp.
$V_{\text {BIAS1 }}$ is chosen to give the required $I_{D D}$ while keeping $V_{o v b, c}$ small, say about 0.2 V . If $V_{o v b, c}<V_{t n}$, then $v_{c m}^{+}>V_{D D}$. The following may be noted concerning Equation 10.3.1:

1. If Q_{b} and Q_{c} are realized using a current mirror, with the gate of Q_{b} connected to its drain, then $v_{c m}^{+}-V_{t n}+V_{S G b}=V_{D D}$, or $v_{c m}^{+}=V_{D D}+V_{t n}-V_{S G b}$, which is less than in Equation 10.3.1.
2. If a normal cascode is used instead of the folded cascode, then Q_{3} and Q_{4} would be NMOS transistors interposed between Q_{1} and Q_{b}, and between Q_{2} and Q_{c}, respectively. Assuming that Q_{3} and Q_{4} will be at the edge of saturation, then Equation 10.3.1 becomes $v_{c m}^{+}-V_{t n}+V_{o v b, c}+V_{o v 3,4}=V_{D D}$. This would reduce $v_{c m}^{+}$in Equation 10.3.1 by $V_{o v 3,4}$.

The most negative swing, $v_{c m}^{-}$, of $v_{c m}$ is determined by the requirement that Q_{a} remains in saturation. The voltage to ground of the common sources of Q_{1} and Q_{2} is: $v_{c m}^{-}-v_{G s 1,2}=$ $v_{c m}^{-}-V_{o v 1,2}-V_{t n}$. Hence, $v_{c m}^{-}-V_{o v 1,2}-V_{t n}-V_{o v a}=-V_{S S}$, or,

$$
\begin{equation*}
v_{c m}^{-}=-V_{S S}+V_{o v 1,2}+V_{o v a}+V_{t n} \tag{10.3.2}
\end{equation*}
$$

Again, $V_{\text {BIAS2 }}$ is chosen to give the required $I_{S S}$ while keeping $V_{\text {ova }}$ small. It is seen that $V_{t n}$ reduces the magnitude of $v_{c m}^{-}$, but this is due to the differential pair and not the folded cascode. In fact, the folded cascode offers a solution to this problem. For if a complementary circuit is used, where NMOS and PMOS transistors are interchanged, $v_{c m}^{-}$is given by an expression of the form of Equation 10.3.1 and $v_{c m}^{-}$is given by an expression of the form of Equation 10.3.2. If two complementary input circuits are paralleled together, then both $v_{c m}^{+}$and $v_{c m}^{-}$are given by expressions of the form of Equation 10.3.1 so that $v_{c m}^{+}$can exceed $V_{D D}$ and $v_{c m}^{-}$can exceed $V_{S S}$. This rail-to-rail folded cascode structure is discussed in Section ST10.3.

Output Voltage Swing

The most positive swing, v_{O}^{+}, of v_{O} is determined by the requirement that Q_{4} and Q_{c} remain in saturation. This means that $v_{O}^{+}+V_{o v 4}+V_{o v c}=V_{D D}$, or,

$$
\begin{equation*}
v_{O}^{+}=V_{D D}-V_{o v 4}-V_{o v c} \tag{10.3.3}
\end{equation*}
$$

v_{O}^{+}is thus two overdrive voltages less than $V_{D D}$.
The most negative swing, v_{O}^{-}, of v_{O} is also two overdrive voltages more than $-V_{S S}$, as described in connection with the wide-swing cascode mirror of Figure 8.4.12b. Thus,

$$
\begin{equation*}
-V_{S S}+2 V_{o v} \leq v_{O} \leq V_{D D}-2 V_{o v} \tag{10.3.4}
\end{equation*}
$$

where the same $V_{o v}$ is assumed. If $V_{o v}=0.2 \mathrm{~V}$ and a peak-to-peak output swing of 2 V is required, then the output swing in each direction is 1 V , and the magnitude of the positive and supply voltages should be at least 1.4 V .

Voltage Gain

Assuming, for simplicity, that $I_{D D}=I_{S S}=I_{D S}$, the four folded cascode transistors have the same drain current of $I_{D S} / 2$ and hence the same g_{m}. Assuming they have the same $V_{o v}$,

$$
\begin{equation*}
g_{m}=g_{m 1}=g_{m 2}=g_{m 3}=g_{m 4}=\frac{2\left(I_{D S} / 2\right)}{V_{o v}}=\frac{I_{D S}}{V_{o v}} \tag{10.3.5}
\end{equation*}
$$

Neglecting the output resistances of Q_{b} and Q_{c} and the body effect, the low-frequency voltage gain $A_{\nu 0}$ with a cascode current mirror load is approximately (Equation 10.1.33):

$$
\begin{equation*}
A_{v 0}=\frac{v_{O}}{v_{i d}}=g_{m}\left(r_{o u t 4} \| r_{\text {oute }}\right) \tag{10.3.6}
\end{equation*}
$$

where $r_{\text {out }}$ and $r_{\text {oute }}$ are the resistances looking into Q_{4} drain and Q_{e} drain, respectively, with zero input (Figure 10.3.1). To determine $r_{\text {out4 }}$, we note that Q_{4} is a CG transistor whose source resistance is $\left(r_{o 2} \| r_{o c}\right)$. From Equation 8.2.53, Chapter 8, $r_{o u t 4} \cong g_{m 4} r_{o 4}\left(r_{o 2} \| r_{o c}\right)$. From Equation 8.4.4, Chapter 8, the output resistance of the cascode, is $r_{\text {oute }} \cong g_{m} r_{o e} r_{o g}$. It follows that $r_{\text {out }}$, the output resistance of the amplifier, is:

$$
\begin{equation*}
r_{\text {out }}=r_{\text {out } 4}\left\|r_{\text {oute }}=\left[g_{m} r_{o 4}\left(r_{o 2} \| r_{o c}\right)\right]\right\|\left(g_{m e} r_{o e} r_{o g}\right) \tag{10.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\nu 0}=g_{m} r_{o u t}=g_{m}\left\{\left[g_{m} r_{o 4}\left(r_{o 2} \| r_{o c}\right)\right] \|\left(g_{m e} r_{o e} r_{o g}\right)\right\} \tag{10.3.8}
\end{equation*}
$$

The following should be noted concerning this gain expression:

1. $A_{v 0}$ is of the order of $\left(g_{m} r_{o}\right)^{2}$. Because of the relatively large $r_{o u t}$, the gain can be quite high. Thus, if $g_{m}=1 \mathrm{~mA} / \mathrm{V}$ and $r_{o}=100 \mathrm{k} \Omega$ for all the transistors, $A_{\nu 0} \cong 3300$. $A_{v 0}$'s of more than 10,000 are feasible. If used as a unity-gain follower, with $A_{\nu 0}=3300$, the closed-loop gain is 3300/3301, which is within 0.03% from unity.

Hence, a single amplifying stage as in Figure 10.3.1 is quite sufficient for most purposes. Where additional gain is needed, another amplifying stage may be added, although this would complicate somewhat frequency compensation.
2. Using the same figures for g_{m} and r_{o}, the output resistance $r_{\text {out }}$ is $3.33 \mathrm{M} \Omega$. Although this is high, the output resistance with feedback is much lower. For a unity-gain follower, it is reduced to $R_{o f a} \cong R_{o a} / A_{\nu 0}=1 / g_{m}=1 \mathrm{k} \Omega$, using Equation 10.3.6. Such an output resistance is acceptable where the load is the relatively small capacitance of other CMOS inputs. If a low output resistance is required, an output CD stage could be added.

The folded-cascode CMOS op amp is an example of an operational transconductance amplifier (OTA), defined as an op amp having high-impedance nodes only at the input and output, all other nodes having a much lower impedance level. In Figure 10.3.1, the impedance level at the three internal signal nodes A, B, and C is nearly $1 / g_{m}$, as they involve inputs of CG transistors. The advantage of low-impedance internal nodes is that internal capacitances will introduce only high-frequency poles. The frequency response is then determined by a dominant pole due to load capacitance, which could be augmented by additional capacitance, if necessary, to obtain a desired frequency response.

Frequency Response

Since the frequency response is determined by the dominant pole due to C_{L},

$$
\begin{equation*}
\frac{V_{o}}{V_{\text {id }}}=\frac{g_{m} r_{\text {out }}}{1+s C_{L} r_{\text {out }}} \tag{10.3.9}
\end{equation*}
$$

as illustrated in Figure 10.3.2, where the frequency f_{p} of the dominant pole is given by:

$$
\begin{equation*}
f_{p}=\frac{1}{2 \pi C_{L} r_{\text {out }}} \tag{10.3.10}
\end{equation*}
$$

At the unity-gain frequency $f_{T}: f_{T} \times 1=f_{p} A_{v o}$, so that,

$$
\begin{equation*}
f_{T}=g_{m} r_{o u t} f_{p}=\frac{g_{m}}{2 \pi C_{L}} \tag{10.3.11}
\end{equation*}
$$

If $C_{L}=5 \mathrm{pF}, r_{\text {out }}=3.33 \mathrm{M} \Omega$, and $g_{m}=1 \mathrm{~mA} / \mathrm{V}$, then $f_{p} \cong 9.5 \mathrm{kHz}$ and $f_{T} \cong 32 \mathrm{MHz}$.
At f_{T}, the phase lag due to the dominant pole is -90°. If the phase lag due to higher frequency poles is small, the phase margin is nearly 90°.

Slew Rate

When a large differential signal is applied, Q_{2} is cut off and $I_{S S}$ is diverted to Q_{1}. The current through Q_{3} is $I_{D D}-I_{S S}$ and that through Q_{4} is $I_{D D}$. The current through Q_{d} is $I_{D D}-I_{S S}$, which

FIGURE 10.3.2
Small-signal equivalent circuit of the amplifier of Figure 10.3.1.
is the mirrored current through Q_{e} and Q_{g}. The current into C_{L} is $I_{D D}-\left(I_{D D}-I_{S S}\right)=I_{S S}$. The output voltage increases linearly as $I_{S S} t / C_{L}$, so that $S R$ is roughly given by:

$$
\begin{equation*}
\mathrm{SR}=\frac{I_{S S}}{C_{L}} \tag{10.3.12}
\end{equation*}
$$

If $I_{S S}=0.2 \mathrm{~mA}$ and $C_{L}=5 \mathrm{pF}$, then $\mathrm{SR}=0.4 \mathrm{~V} / \mu \mathrm{s}$.
As mentioned earlier, the bias current of Q_{1} and Q_{2} is $I_{S S} / 2$, and that in Q_{3} and Q_{4} is $I_{D D}-I_{S S} / 2$. If $I_{D D}=I_{S S}$, the bias current in all the transistors is nominally $I_{S S} / 2$. However, if $I_{D D}=I_{S S}$ the mirror will turn off when a large differential signal is applied, which is undesirable, because of the distortion that is introduced. Hence, $I_{D D}$ is made about $10 \%-20 \%$ higher than $I_{S S}$.
As in the case of the two-stage CMOS op amp, the CMRR is of the order of $\left(g_{m} r_{o}\right)^{2}$. Using the figures quoted previously, gives a CMRR of approximately 80 dB .

Simulation Example 10.3.1 Basic Operational Transconductance Amplifier

A basic OTA amplifier is shown in Figure 10.3.3, where it is seen that the internal signal nodes have either a gate-drain or a source connection, which makes them low-impedance nodes.

Analysis

It is assumed that g_{m} is the same for all MOSFETs, and that Q_{6} and Q_{8} have widths that are K times those of the other PMOS and NMOS transistors, respectively. When a differential input $v_{i d}$ is applied, and since r_{o} is much larger than the load resistance of nearly $1 / g_{m}$ of Q_{1} and Q_{2},

$$
\begin{equation*}
i_{d}=\frac{g_{m}}{2} v_{i d} \tag{10.3.13}
\end{equation*}
$$

Because of coupling through the current mirrors, $i_{o}=2 K i_{d}$. At low frequencies, and assuming Q_{6} and Q_{8} have the same r_{0},

$$
\begin{equation*}
v_{o}=\frac{r_{o}}{2} i_{o}=K r_{o} i_{d} \tag{10.3.14}
\end{equation*}
$$

The low-frequency voltage gain is:

$$
\begin{equation*}
A_{v 0}=\frac{v_{o}}{v_{i d}}=\frac{v_{o}}{i_{o}} \frac{i_{o}}{i_{d}} \frac{i_{d}}{v_{i d}}=\left(\frac{r_{o}}{2}\right)(2 K)\left(\frac{g_{m}}{2}\right)=\frac{K g_{m} r_{o}}{2} \tag{10.3.15}
\end{equation*}
$$

The transconductance of the op amp is:

$$
\begin{equation*}
G_{m}=\frac{i_{o}}{v_{i d}}=\frac{i_{o}}{i_{d}} \frac{i_{d}}{v_{i d}}=(2 K)\left(\frac{g_{m}}{2}\right)=K g_{m} \tag{10.3.16}
\end{equation*}
$$

In an OTA, the pole due to C_{L} is dominant. It is given for the op amp of Figure 10.3.3 by

$$
\begin{equation*}
\omega_{p}=\frac{2}{r_{o} C_{L}} \tag{10.3.17}
\end{equation*}
$$

It follows that the gain at any frequency is:

$$
\begin{equation*}
A_{v}=\frac{A_{v 0}}{1+s / \omega_{p}} \tag{10.3.18}
\end{equation*}
$$

This is the same expression that results from replacing $r_{o} / 2$ in Equation 10.3.15 by $\left(r_{o} / 2\right) \|$ $\left(1 / s C_{L}\right)$. If a large differential step input is applied, Q_{1} is turned off and the drain current of Q_{2} is $I_{S S}$. The output current is $K I_{S S}$ and the maximum slew rate is:

$$
\begin{equation*}
\mathrm{SR}=\frac{v_{O}}{t}=\frac{i_{O}}{C_{L}}=\frac{K I_{S S}}{C_{L}} \tag{10.3.19}
\end{equation*}
$$

Simulation

The schematic corresponds to Figure 10.3.3, with $V_{D D}=V_{S S}=5 \mathrm{~V}$ and $C_{L}=0.1 \mathrm{pF}$. The transistor parameters used correspond to $k_{n}=k_{p}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=\bar{V}_{t p}=1 \mathrm{~V}, \lambda=0.01 \mathrm{~V}^{-1}$, and $K=10 . V_{B I A S}=-3.38 \mathrm{~V}$ to have $I_{S S} \cong 200 \mu \mathrm{~A}$. Thus, $g_{m 1,2}=\sqrt{2 \times 0.1}=0.45 \mathrm{~mA} / \mathrm{V}$, neglecting channel-width modulation, and $r_{0}=1 /(0.01 \times 1) \equiv 100 \mathrm{k} \Omega$ for Q_{6} and Q_{8}. From Equation 10.3.15, $A_{v 0}=(10 \times 0.45 \times 100) / 2=225$, and from Equation 10.3.17, $f_{p}=31.8 \mathrm{MHz}$. The simulation values are 239 and 32.2 MHz , respectively. From Equation 10.3.19, $\mathrm{SR}=2000 \mathrm{~V} / \mu \mathrm{s}$. When a differential step of 5 V is applied, v_{O} changes at an initial rate of about $2000 \mathrm{~V} / \mu \mathrm{s}$ as shown in Figure 10.3.4. Note that the quiescent output voltage is about -3.54 V , which is the gate voltage of Q_{7} and Q_{8} and equals the drain voltages of these transistors.

Figure for Simulation Example 10.3.1.

10.4 CMOS Current and Voltage Biasing

We have encountered many circuits that require current biasing or voltage biasing. As a matter of terminology, when a biasing current or voltage is stabilized with respect to variations in supply voltages and temperature, it is usually referred to as a current reference or a voltage reference, respectively. In ICs, current biasing is generally of basic importance, since a voltage bias can be derived from a specified current bias applied to an appropriately sized, diode-connected MOSFET. This is illustrated in Figure 8.5.1a, Chapter 8, where two bias voltages are derived from the

FIGURE 10.4.1
A simple method of obtaining a voltage bias from a reference current. two diode-connected transistors of a cascode current mirror.

In Figure 10.4.1, $I_{\operatorname{REF}(\boldsymbol{B})}=\left(k_{n}^{\prime} / 2\right)(W / L)_{B}\left(V_{\mathrm{BIAS}}-V_{t n}\right)^{2}$, so that $V_{\mathrm{BIAS}}=V_{t n}+\sqrt{2 I_{\mathrm{REF}(B)} / k_{n}^{\prime}(W / L)_{B}}$. If a transistor Q_{X} has the same k_{n}^{\prime}, a bias current $I_{\text {REF }}$, and an overdrive voltage $V_{o v}$, then $I_{\text {REF }}=k_{n}^{\prime} / 2(W / L)_{X}\left(V_{o v}\right)^{2}$. Substituting for $2 / k_{n}^{\prime}$,

$$
\begin{equation*}
V_{\mathrm{BIAS}}=V_{t n}+V_{o v} \sqrt{\frac{I_{\mathrm{REF}(B)}(W / L)_{X}}{I_{\mathrm{REF}}(W / L)_{B}}} \tag{10.4.1}
\end{equation*}
$$

If $I_{\operatorname{REF}(\boldsymbol{B})}=I_{\mathrm{REF}}$, and $\left(\frac{W}{L}\right)_{B}=\frac{1}{4}\left(\frac{W}{L}\right)_{\mathrm{X}}, V_{\mathrm{BIAS}}=V_{t n}+2 V_{o v}$. This is the bias for the wideswing cascode in Figure 8.5.1b and could be derived from a diode-connected MOSFET having the same $I_{\text {REF }}$ in Figure 8.5.1b and a (W / L) that is a quarter of the (W / L) of transistors Q_{1} to Q_{4}.

Self-Biasing

The simple current mirror that relies on a resistor to set the reference current suffers from an appreciable sensitivity to variations in supply voltages and temperature. To reduce sensitivity to supply voltage variations, a self-biasing scheme is used in which the reference current is made to depend on the output current, and not directly on the supply voltages. The basic circuit, illustrated in Figure 10.4.2, consists of transistors Q_{1} and Q_{2} forming a Widlar current source that is connected to a PMOS current mirror. Transistors Q_{a}, Q_{b},

FIGURE 10.4.2
Basic self-biasing circuit.

and Q_{c} are not involved in normal circuit operation but are required for starting the circuit, as will be discussed later.

It is convenient to denote I_{I} and I_{O} as the input and output currents, respectively, of the Widlar current source. The loop formed by Q_{1} to Q_{4} is a positive feedback loop. Thus, if I_{I} increases, $V_{G S 1}$ increases, which in turn increases I_{O}. But I_{O} is the reference current for the PMOS mirror so that the increase in I_{O} further increases I_{I}. Because of the positive feedback, the circuit will be unstable if the loop gain exceeds unity (Section 9.4, Chapter 9). The gain of the PMOS current mirror is ideally unity. The small-signal gain of the Widlar current source, from $V_{G S 1}$ to I_{O}, depends on $\frac{g_{m 2}}{1+g_{m 2}(1+\chi) R^{\prime}}$, ignoring $r_{o 2}$ (Exercise 8.2.8, Chapter 8). If $g_{m 2}(1+\chi) R \gg 1$, which increases the negative feedback due to R, the gain becomes $1 /(1+\chi) R ; g_{m 2}$ is increased by increasing $(W / L)_{2}$. Typically, $(W / L)_{2}=4(W / L)_{1}$.
The circuit can be readily analyzed neglecting channel-length modulation. Thus,

$$
\begin{align*}
& I_{O}=\frac{k_{n}^{\prime}}{2}\left(\frac{W}{L}\right)_{2}\left(V_{G S 2}-V_{t n}\right)^{2} \tag{10.4.2}\\
& I_{I}=\frac{k_{n}^{\prime}}{2}\left(\frac{W}{L}\right)_{1}\left(V_{G S 1}-V_{t n}\right)^{2} \tag{10.4.3}
\end{align*}
$$

and

$$
\begin{equation*}
V_{G S 1}=V_{G S 2}+R I_{O} \tag{10.4.4}
\end{equation*}
$$

If $V_{t n}$ is subtracted from both sides of Equation 10.4.4, $\left(V_{G S 2}-V_{t n}\right)$ and $\left(V_{G S 1}-V_{t n}\right)$ can be substituted from Equations 10.4.2 and 10.4.3, respectively. Setting $I_{O}=I_{I}=I_{\text {REF }}$, $K=(W / L)_{2} /(W / L)_{1}$, and rearranging gives:

$$
\begin{equation*}
I_{\mathrm{REF}}=\frac{2}{k_{n}^{\prime}(W / L)_{2} R^{2}}(\sqrt{K-1})^{2} \tag{10.4.5}
\end{equation*}
$$

For a given $k_{n}^{\prime}, I_{\text {REF }}$ is seen to depend on $R,(W / L)_{2}$ and K. It is independent of $V_{\text {tn }}$ and supply voltages in the absence of channel-length modulation. Since R should be a stable and accurate resistor, it is often an off-chip resistor. However, this can add considerable capacitance at Q_{2} source, which bypasses R and may increase the gain sufficiently at some frequency to cause oscillation. The circuit of Figure 10.4.2 is also referred to as a beta multiplier reference circuit, because $k_{n}^{\prime}(W / L)$ is sometimes denoted by β, and β of Q_{2} is that of Q_{1} multiplied by K.
$g_{m 2}$ of Q_{2} equals $\sqrt{2 k_{n}^{\prime}(W / L)_{2} I_{\mathrm{REF}}}$. It follows from Equation 10.4.5 that:

$$
\begin{equation*}
g_{m 2}=\frac{2}{R}(\sqrt{K}-1) \tag{10.4.6}
\end{equation*}
$$

Thus, $g_{m 2}$ depends only on R and K. Since $g_{m x}$ of any MOSFET Q_{x} is $\sqrt{2 k_{n, p}^{\prime}(W / L)_{x} I_{D x}}$, then any transistor whose bias current is derived from $I_{\text {REF }}$ will have $g_{m x}$ given by:

$$
\begin{equation*}
g_{m x}=g_{m 2} \sqrt{\frac{k_{n, p}^{\prime} I_{D x}(W / L)_{x}}{k_{n}^{\prime} I_{\mathrm{REF}}(W / L)_{2}}} \tag{10.4.7}
\end{equation*}
$$

where $k_{n, p}^{\prime} / k_{n}^{\prime}=1$ for an NMOS transistor and $k_{n, p}^{\prime} / k_{n}^{\prime}=\mu_{e} / \mu_{h}$ for a PMOS transistor. $g_{m x}$ will also be independent of threshold and supply voltages
From Equations 10.4.3 and 10.4.5, with $I_{I}=I_{\mathrm{REF}}$:

$$
\begin{equation*}
V_{\mathrm{BIAS} n}=V_{G S 1}=V_{t n}+\frac{2}{k_{n}^{\prime}(W / L)_{1} R}\left(1-\frac{1}{\sqrt{K}}\right)^{2} \tag{10.4.8}
\end{equation*}
$$

A self-biasing circuit is not, in general, self-starting, because the state in which $I_{I}=I_{O}=0$ is a stable state, in addition to the normal operating state. Transistors Q_{a} to Q_{c} are included in the self-biasing circuit of Figure 10.4.2 for starting purposes. At the start, with $I_{I}=I_{O}=0$, Q_{3}, Q_{1}, and hence Q_{b} are cut off. Q_{a} will be turned on but does not conduct, because Q_{b} is off, which makes the drain voltage of Q_{a} equal to $V_{D D}$. This turns on Q_{c}, which pulls up the gates of Q_{1} and Q_{2}, and establishes normal operation. In this state, $V_{G S c} \simeq 0, Q_{c}$ is essentially cut off and does not affect circuit operation.

Let us consider temperature dependence next. Differentiating Equation 10.4.5 with respect to T, where R and k_{n}^{\prime} are the only temperature-dependent quantities, and dividing by $I_{\text {REF }}$ to obtain the temperature coefficient:

$$
\begin{equation*}
\frac{1}{I_{\mathrm{REF}}} \frac{d I_{\mathrm{REF}}}{d T}=-2\left(\frac{1}{R} \frac{d R}{d T}\right)-\frac{1}{k_{n}^{\prime}} \frac{d k_{n}^{\prime}}{d T} \tag{10.4.9}
\end{equation*}
$$

where $\frac{1}{R} \frac{d R}{d T}$ is the temperature coefficient of R and $\frac{1}{k_{n}^{\prime}} \frac{d k_{n}^{\prime}}{d T}=\frac{1}{\mu_{e}} \frac{d \mu_{e}}{d T}=-\frac{2.5}{T}$ (Equation 2.6.3, Chapter 2). Hence, if $\frac{1}{R} \frac{d R}{d T}=\frac{1.25}{T}$, the temperature coefficient of $I_{\text {REF }}$ will be zero.

Differentiating Equation 10.4 .8 with respect to T :

$$
\begin{equation*}
\frac{d V_{\text {BIAS }}}{d T}=\frac{d V_{\text {tn }}}{d T}-\frac{2}{R k_{n}^{\prime}(W / L)_{1}}\left(1-\frac{1}{\sqrt{K}}\right)^{2}\left(\frac{1}{R} \frac{d R}{d T}+\frac{1}{k_{n}^{\prime}} \frac{d k_{n}^{\prime}}{d T}\right) \tag{10.4.10}
\end{equation*}
$$

To have $d V_{\mathrm{BIAS}_{n}} / d T=0$, we choose R to be:

$$
\begin{equation*}
R=\frac{2}{\left(d V_{t n} / d T\right) k_{n}^{\prime}(W / L)_{1}}\left(1-\frac{1}{\sqrt{K}}\right)^{2}\left(\frac{1}{R} \frac{d R}{d T}+\frac{1}{k_{n}^{\prime}} \frac{d k_{n}^{\prime}}{d T}\right) \tag{10.4.11}
\end{equation*}
$$

where $d V_{t n} / d T$ is in the range -0.5 to $-1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and K is generally equal to 4 , which means that $\left|\frac{1}{R} \frac{d R}{d T}\right|<\left|\frac{1}{k_{n}^{\prime}} \frac{d k_{n}^{\prime}}{d T}\right|=\frac{1.5}{T}$, so $R>0$. This inequality is satisfied if $\frac{1}{R} \frac{d R}{d T}=\frac{1.25}{T}$ in order to have a zero temperature coefficient of $I_{\text {REF }}$.

Although the self-biasing circuit of Figure 10.4.2 considerably reduces the effect of supply voltage variations, it does not eliminate it entirely because of channel-length modulation. Changes in supply voltages will affect the drain-source voltages of the transistors and hence the currents in the circuit. These variations are more pronounced with short-channel transistors because of their increased susceptibility to channel-length modulation. The effect of changes in the supply voltages on the drain-source voltages of Q_{1} and Q_{2} can be reduced by adding a cascode layer to Q_{1} and Q_{2} and by making I_{I} and I_{O} more nearly equal despite supply voltage variations. There are two approaches to enforcing the equality I_{I} and I_{O} : (1) Adding a cascode layer to Q_{3} and Q_{4} leading to four
transistor stacks across the voltage supplies when the Widlar current source is also cascoded. Although four bias supplies become available, from each of the four diodeconnected transistors, the transistor stacks set a limit to the smallest supply voltages that can be used. (2) Using an op amp to force equality of the drain voltages of Q_{3} and Q_{4}. The op amp need not be more elaborate than two CS transistors sharing a current-mirror load. Improvements to the basic self-biasing circuit of Figure 10.4.2 are discussed in Section ST10.4 as well as bandgap voltage references having very low temperature coefficients.

Exercise 10.4.1

Determine the temperature coefficient of R in Equation 10.4.9 that will make the temperature coefficient of $I_{\text {REF }}$ zero at $T=300 \mathrm{~K}$.

Answer: $4167 \mathrm{ppm} / \mathrm{K}$.

10.5 BJT Op Amps

A BJT op amp can be constructed along almost exactly the same lines as the two-stage CMOS op amp described in Section 10.3. Another possibility is the four-stage op amp illustrated in Figure 10.5.1. The first two stages are differential amplifiers formed by $Q_{1}-Q_{2}$ and $Q_{4}-Q_{5}$. These stages are differentially coupled and biased by the current mirror formed by Q_{9}, Q_{3}, and Q_{6}. A single-ended output is taken from the collector of Q_{5} to the third stage formed by Q_{7}. The pnp transistor shifts the dc level, as discussed in Section 9.1, Chapter 9. The fourth stage is the emitter follower transistor Q_{8}, which provides a low output resistance and allows the output to swing both positively and negatively. This op amp is analyzed in Section ST10.5 together with the popular, general-purpose $\mu \mathrm{A} 741$ op amp. Some of the characteristics of the $\mu \mathrm{A} 741$ are explored in Simulation Example 10.5.1, which also serves to illustrate some op-amp imperfections and their simulations. In the remainder of this section, we will discuss some circuit techniques that are of special importance in BJT op amps, particularly the input and output stages.

FIGURE 10.5.1
Basic BJT four-stage op amp.

Input Resistance and Bias Current

Evidently, the input stage in a BJT op amp determines the input resistance and the input bias current. Figure 10.5.2 illustrates an input stage based on that of the $\mu \mathrm{A} 741$ op amp (Section ST10.5). Q_{1} and Q_{2} are emitter followers that increase the input resistance. It can be argued, in exactly the same manner as in Figure 10.1.2, that when a differential input is applied, node A is at signal ground. Hence, Q_{3} and Q_{4} constitute a differentially connected common-base pair whose load is the current mirror formed by Q_{5} and Q_{6}. As discussed in connection with Figures 10.1.10 and 10.1.11, the current mirror load results in high common-mode rejection and no loss of gain in converting the differential input to a single-ended output. For reasons of lowering manufacturing cost by not adding process steps to those involved in the manufacture of $n p n$ transistors, Q_{3} and Q_{4} are of the lateral type (Section 4.7, Chapter 4) having a lightly doped, relatively wide base, with consequent reduction of current gain and unity-gain frequency. However, since the CB configuration has a better high-frequency response than CE stages used in the rest of the amplifier, the overall frequency response is not seriously impaired. Q_{3} and Q_{4} shift the dc level of the input, but more importantly, having their BEJs in series with the BEJs of Q_{1} and Q_{2} protects the BEJs of Q_{1} and Q_{2} from breakdown if a relatively high voltage is accidentally connected between the input terminals. The reverse-voltage breakdown of BEJs of npn transistors is normally less than 10 V , whereas that of the lateral $n p n$ transistors is in the range of 50 V .

An obvious measure to reduce the input bias currents to practically zero is to have a differential MOSFET first stage. The MOSFET transistors, however, will have a lower transconductance than the BJTs they replace. A better approach is to connect the MOSFET transistors as source followers feeding into a BJT differential stage, as illustrated in Figure 10.5.3. Although input bias currents are practically eliminated, the input offset voltage will be increased because of some inevitable mismatch of the MOS transistors and their bias currents.

Another approach to reducing the input bias currents is to use input transistors of very high β_{F}. HBTs (Section 7.4, Chapter 7) are a possibility, although this would considerably complicate the manufacturing process and add to the cost. Another possibility is to use superbeta transistors of very narrow base width, of about $0.1 \mu \mathrm{~m}$, which increases both the base transport factor and the emitter injection efficiency (Example 6.1.1, Chapter 6) leading to β_{F} 's in the range of a few thousands. At this base width, however, the transistor is

FIGURE 10.5.2
An input stage of a BJT op amp.

FIGURE 10.5.3
A MOSFET source follower input stage of a BJT op amp.
susceptible to punchthrough (Section 6.2, Chapter 6) and to pronounced base-width modulation. Hence, they should be operated at a base-collector voltage that is near zero. An appropriate cascode arrangement is illustrated in Figure 10.5.4, where Q_{1} and Q_{2} are superbeta transistors and $I_{\text {BIAS }}$ biases the diode-connected transistors D_{1} and D_{2}, which in turn bias the common-base transistors Q_{3} and Q_{4}. D_{1} drops almost the same voltage as $V_{B E 3}$ and $V_{B E 4}$, whereas D_{2} limits $V_{C E 1}$ and $V_{C E 2}$ to one diode voltage drop. Hence, the base-collector voltage of Q_{1} and Q_{2} is near zero. Considering that $I_{\text {BIAS }}$ flows mainly through D_{1} and D_{2}, the current through Q_{1} and Q_{2} is $I_{E E}-I_{\text {BIAs. If }}$. this current is in the range of $\mu \mathrm{As}$, the input bias current is a few nAs, and the input offset current is an order of magnitude smaller.

Input Offset Voltage

Op amps such as the $\mu A 741$ have connections for an external potentiometer for counteracting the input offset voltage and zeroing the output (Section ST10.5). However, in

FIGURE 10.5.4
An input stage of a BJT op amp using superbeta transistors Q_{1} and Q_{2}.
precision applications, it is the drift in input offset voltage and input offset current that sets a limit to the stability of the output of a given op amp (Example 10.6.1). These drift components are essentially unpredictable and cannot be compensated. We have seen earlier how to minimize the input bias currents and hence the input offset currents. We will consider next how to minimize the input offset voltage, which will also minimize the drift in this voltage (Equation 10.1.28).

When the gain of the input stage is relatively high, this stage determines the input offset voltage, because the contribution of the stages that follows will be relatively small. Thus, if the gain of the first stage is 20, the contribution of the input offset voltage of the second stage is divided by 20 when referred to the input. The input offset voltage in the first stage arises mainly from mismatch in the components of this stage. Hence, it is desirable to have a simple first stage with the fewest of components, such as the differential pair of Figure 10.5.1. In this case, the mismatch can occur only from the input transistors and their collector resistors. A basic limit is set by the BEJ area of the input transistors and of the dimensions of the resistors relative to the photolithographic resolution of the fabrication process (Section 4.2, Chapter 4). In general, the smaller are these dimensions relative to process resolution, the larger is the proportional effect of a fixed uncertainty in these dimensions, and the greater is the degree of mismatch.

One approach to reducing the input offset voltage is to trim the collector resistors of the input stage on-chip so as to counteract the input offset voltage. This can be done by having one or both collector resistors made up of a fixed component $R_{c f}$ and a number of increments $\Delta R_{c 1}, \Delta R_{c 2}$, etc. that are shorted by fusible metallic links, as illustrated in Figure 10.5.5. The increments could be equal in value or could be binary-weighted, that is progress in multiples of two. Trimming takes place by testing the die and melting the required number of fusible links using a laser or current pulses. Another measure is to use a layout that compensates for process-related gradients along the die, as illustrated in Figure 10.5.6. The input transistors are divided into two parts each, the parts being diagonally distributed as shown. The horizontal and vertical variations of the properties of the die are evened out, leading to better matching.

FIGURE 10.5.5
Fusible links across increments of resistance used to trim the value of the total resistance.

FIGURE 10.5.6
Method of compensation for process-related manufacturing gradients.

Simulation Example 10.5.1 The $\mu \mathrm{A} 741$ in PSpice

This example illustrates simulation techniques for investigating op-amp characteristics and imperfections.

Simulation

The $\mu \mathrm{A} 741$ is listed in PSpice EVAL library. Figure 10.5 .7 shows the schematic of the op amp with two dc bias supplies of +15 V and -15 V shown connected to pins 7 and 4, respectively. Note the use of VCC_ARROW power connectors from the CAPSYM library so as to avoid cluttering the figure with wiring to the dc supplies (Appendix SB). Also, the output voltage is designated by an off-page connector. The inverting terminal is grounded and a 1 V ac source is connected to the noninverting terminal to obtain $A_{v}(f)$ of the op amp. In the simulation settings, AC Sweep/Noise type of analysis is selected with logarithmic sweep from 0.1 Hz to 1 MHz , using 100 points per decade. A temperature of $25^{\circ} \mathrm{C}$ is entered in the Temperature(Sweep) under Options in the Simulation settings window. In Figure 10.5.8

VCC-

VCC-

FIGURE 10.5.7
Figure for Simulation Example 10.5.1.

FIGURE 10.5.8
Figure for Simulation Example 10.5.1.
showing $A_{v}(f)$, the vertical scale extends to tens of megavolts. This does not mean of course that the op amp is capable of such an output. A linear model is assumed in AC Sweep, so the output voltage is not limited by the dc supplies or the physical limitations of the device.
Using Probe cursor, the low-frequency gain $A_{\nu 0}$ is found to be almost 2×10^{5}. The cursor search command sle(max-3) gives very nearly 5 Hz for the $3-\mathrm{dB}$ corner frequency. The cursor search command sle(0) gives 888.2 kHz for f_{T}, at which $\left|A_{V}(f)\right|=1$. This is somewhat less than the 1 MHz expected from the product of $A_{v o}$ and the corner frequency, because the magnitude of the slope starts to increase slightly before f_{T} due to the influence of higher frequency poles. The $\mu \mathrm{A} 741$ is internally compensated so that the slope of the frequency response is only slightly more negative than $-20 \mathrm{~dB} /$ decade at f_{T}.

The schematic of Figure 10.5 .9 is used for measuring input bias currents, input offset voltage, and the CMRR. With $\mathrm{V} 1=0=\mathrm{V} 2$, a bias point simulation is run at $25^{\circ} \mathrm{C}$ and then at $100^{\circ} \mathrm{C}$. The input bias currents and the output voltages are found to be:

$$
\begin{aligned}
& T=25^{\circ} \mathrm{C}: \quad I_{i b P}=I_{b N}=710.54 \mathrm{nA}, \quad V_{o}=3.861 \mathrm{~V} \\
& T=100^{\circ} \mathrm{C}: \quad I_{i b P}=I_{b N}=710.59 \mathrm{nA}, \quad V_{o}=2.911 \mathrm{~V}
\end{aligned}
$$

The bias currents are well matched in the simulation and do not vary much with T. Their polarity can be determined from the polarity of the source currents of V 1 and V 2 in the output file. Since these currents are negative, they flow from the negative to the positive terminal of the source. Hence, the bias currents flow inward at the op-amp inputs. With $\mathrm{V} 1=0=\mathrm{V} 2$, the output voltage is due to the input offset voltage and decreases by about 25% between $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$.
With $V 1=0$, a few trials with $V 2$ indicate that a value of around $20 \mu \mathrm{~V}$ reduces V_{O} to zero at $25^{\circ} \mathrm{C}$. A DC sweep is therefore performed that varies V 2 from 0 to $20 \mu \mathrm{~V}$ at both temperatures. The resulting plots are shown in Figure 10.5.10. Using the cursor command sle(0), it is found that the values of V 2 that reduce V_{O} to zero are 19.29 and $16.91 \mu \mathrm{~V}$, at $25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively. These are the input offset voltages. $A_{\nu 0}$ may be determined from the ratio of V_{O}, when $\mathrm{V} 2=0$, to the value of V 2 that reduces V_{O} to zero. The figures obtained give an $A_{v 0}$ that is almost 2×10^{5} at $25^{\circ} \mathrm{C}$, in agreement with that derived from the frequency response. At $100^{\circ} \mathrm{C}, A_{v 0}$ is reduced to about 1.72×10^{5}.

To estimate the CMRR , we set V 1 to 5 V and determine the value of V 2 that makes V_{O} zero, using DC sweep at $25^{\circ} \mathrm{C}$, as was done above. This value is found to be $-136.2 \mu \mathrm{~V}$. The difference between this and the input offset voltage of $+19.29 \mu \mathrm{~V}$ is $155.5 \mu \mathrm{~V}$ and is the differential equivalent of the common-mode voltage. This gives a CMRR of $5 \mathrm{~V} / 155.5 \mu \mathrm{~V}=3.2 \times 10^{4}$.

FIGURE 10.5.9
Figure for Simulation Example 10.5.1.

FIGURE 10.5.10
Figure for Simulation Example 10.5.1.

10.6 Some Basic Practical Op-Amp Circuits

We will consider in this section some basic op-amp circuits taking into account op-amp imperfections such as input bias currents, input offset voltage, and finite gain.

Concept: It is possible, at least in principle, to compensate for the effects of steady input bias currents and offset voltage of an op amp. However, it is impractical to compensate for drift of these quantities, which therefore sets a limit on the output stability of an op-amp circuit.

In precision op-amp circuits, the drift of input bias current and offset voltage is usually more significant than the absolute values of these quantities. Noise in op amps, which is mostly attributable to the input stage (Section 6.5, Chapter 6), is accounted for by adding a noise voltage source in series with the input offset voltage and noise current sources in parallel with the input bias currents $I_{b p}$ and $I_{b N}$. An example of noise calculations is given in Problem P10.3.10.

Inverting and Noninverting Op-amp Circuits

In Example 10.6.1 illustrating the design of an inverting amplifier, it is shown that:

Concept: In order to minimize the effect of input bias currents, the dc resistances in the external circuit, between either op amp input and ground, should be equal. This is true in both the inverting and noninverting configurations.

Design Example 10.6.1 Practical Inverting Amplifier*

In a given op amp, $A_{v}=10,000, V_{i o}=2 \mathrm{mV}, I_{i b}=200 \mathrm{nA}, I_{i o}=30 \mathrm{nA}$, temperature dependence is $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for $V_{i o}, 10 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ for $I_{i b}$, and $0.5 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ for $I_{i o}$. It is required to design an

[^4]FIGURE 10.6.1
Figure for Design Example 10.6.1.

amplifier that inverts a 100 mV dc signal at unity gain, the amplifier input impedance to be at least $10 \mathrm{k} \Omega$, and to determine the effect on the output of a $50^{\circ} \mathrm{C}$ change in temperature.

Solution

Figure 10.6.1 shows the inverting configuration taking into account the input offset voltage $V_{i o}$ and the input bias currents $I_{b N}$ and $I_{b P}$. The reason for adding R_{e} will soon become apparent. It can be readily shown (Exercise 10.6.1) that:

$$
\begin{equation*}
v_{O}=\left(-\frac{R_{f}}{R_{r}} v_{S R C}+\frac{R_{r}+R_{f}}{R_{r}} v_{i o}-R_{f} I_{b N}+\frac{R_{e}\left(R_{r}+R_{f}\right)}{R_{r}} I_{b P}\right) \frac{1}{1+1 / \beta_{o} A_{v}} \tag{10.6.1}
\end{equation*}
$$

If $I_{b P}=I_{b N}$, their effects cancel out when $R_{e}=\left(R_{r} \| R_{f}\right)$. If $I_{b P} \neq I_{b N}$, as in fact is the case, the best that can be done is to still satisfy this relation, which makes the contributions of the bias currents equal $\left(R_{r} \| R_{f}\right)_{i o}$, where $I_{i o}=\left|I_{b P}-I_{b N}\right|$ is the input offset current and is generally an order of magnitude smaller than $I_{b P}$ or $I_{b N}$.

Differentiating v_{O} with respect to T, neglecting the temperature effects on the resistances and on $A_{v}, \frac{d v_{O}}{d T}=\left(\frac{R_{r}+R_{f}}{R_{r}} \frac{d V_{i o}}{d T}+R_{f} \frac{d l_{i o}}{d T}\right) \frac{1}{1+1 / \beta_{o} A_{v}}=(2 \times 5+10 \times 0.5)$ $\frac{1}{1+1 / 5000} \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \cong 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Over a $50^{\circ} \mathrm{C}$ change in temperature, this amounts to about 0.75 mV , or about 0.75% change in V_{O}. A worst case has been assumed in which $V_{i o}$ drift and $I_{i o}$ drift are directly additive.
It is seen that in order to minimize the effects of drift in $V_{i o}$ and $I_{i o}, R_{f}$ should be kept as small as possible. Since an input impedance of $10 \mathrm{k} \Omega$ is acceptable with unity gain, we may choose $R_{r}=R_{f}=10 \mathrm{k} \Omega$. The effective dc resistance seen at the inverting input is $5 \mathrm{k} \Omega$, so a $5 \mathrm{k} \Omega$ resistance is inserted in series with the noninverting input.
If finite $A_{\nu 0}$ is taken into account, then from Equation 7.4.5, Chapter 7, with $\beta_{o}=0.5$, $V_{O}=-100 /(1+1 / 5000)=99.98 \mathrm{mV}$. If we include 0.1% resistance tolerances, the worstcase output is $99.98 \times 9.99 / 10.01=99.78 \mathrm{mV}$. The effect of 0.1% resistance tolerances is 0.22 mV , whereas the effect of finite A_{v} is 0.02 mV , even though the assumed A_{v} is on the low side for a good IC op amp.

Exercise 10.6.1

Verify that the governing equations in Figure 10.6.1 are: $v_{P}=R_{e} I_{b P}+V_{i o,} v_{N}=v_{S R C}-R_{r} i_{r}$, $v_{O}=-R_{f}\left(i_{r}+I_{b N}\right)+v_{N}$, and $v_{O}=A_{v} \varepsilon=A_{v}\left(v_{P}-v_{N}\right)$. Derive Equation 10.6.1 by eliminating

FIGURE 10.6.2
Figure for Exercise 10.6.2.
v_{P}, v_{N}, and i_{r} between these four equations. Note that in Equation 10.6.1, $V_{i o}$ is accentuated relative to $v_{S R C}$ by $\left(R_{r}+R_{f}\right) / R_{f}$, which can be large if $R_{r} \gg R_{f}$, as when amplifier gain is much less than 1.

Exercise 10.6.2

Verify that the governing equations for the noninverting amplifier of Figure 10.6.2 are $v_{P}=v_{S R C}+R_{S r c} I_{b P}+V_{i o}, v_{N}=R_{r}\left(i_{f}+I_{b N}\right), v_{O}=R_{f} i_{f}+v_{N}, v_{O}=A_{v} \varepsilon=A_{v}\left(v_{P}-v_{N}\right)$. Eliminate the three unknowns v_{P}, v_{N}, and i_{f} to show that:

$$
\begin{equation*}
v_{O}=\frac{1}{\beta}\left(v_{S R C}+V_{i o}+R_{S r C} I_{b P}-\frac{R_{r} R_{f}}{R_{r}+R_{f}} I_{b N}\right) \frac{1}{1+1 / \beta_{o} A_{v}} \tag{10.6.2}
\end{equation*}
$$

Note that $V_{i o}$ is amplified by the same factor as $v_{S R C}$ and that in order to minimize the effect of input bias currents, $R_{s r c}=R_{r} \| R_{f}$.

The inverting and noninverting adders are analyzed in Section ST10.6 taking into account $V_{i o}, I_{i b}$, and finite A_{v}. Similar conclusions apply concerning the relative effects of $V_{i o}$ and the minimization of the effect of $I_{i b}$.

Integrator

Input offset voltage and bias currents have a drastic effect on integrators, as they saturate the op-amp output, even when no input is applied. Moreover, to amplify down to very low frequencies, or over long periods, the op-amp gain must be very high (Section 7.4, Chapter 7). The practical limitations of integrators are illustrated by Example 10.6.2.

Design Example 10.6.2 Practical integrator*

It is required to investigate the effects of $V_{i o}$, input bias currents, and finite A_{v} on the performance of an integrator, and deduce some design guidelines and constraints.

[^5]
Solution

In the integrator circuit of Figure 10.6.3, a resistance R is connected in series with the noninverting input to minimize the effect of input bias currents (Example 10.6.1), which makes $v_{P}=R I_{b P}+v_{i o}$. Considering $v_{S R C}=0$, then $v_{N}=R\left(I_{b N}+i_{f}\right)$, where i_{f} is the current through C. Assuming that $A_{v} \rightarrow \infty, v_{P}=v_{N}$ and,

$$
\begin{equation*}
i_{f}=\frac{1}{R}\left(V_{i o}+R l_{i o}\right)=\frac{V_{i b}}{R} \tag{10.6.3}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
v_{O}=\frac{1}{C} \int_{0}^{i} i_{f} d t+v_{O 0}=\frac{t}{R C} v_{i b}+v_{O 0} \tag{10.6.4}
\end{equation*}
$$

where v_{OO} is v_{O} at $t=0$. As t increases, v_{O} eventually reaches saturation, even though $v_{S R C}=0$.
$V_{i o}$ and $I_{i o}$ thus have a drastic effect on the integrator. In practice a switch, such as a MOSFET, is connected across the capacitor so as to keep v_{O} at a small initial voltage $v_{O 0}=v_{P}=v_{N}$, when no input is applied $\left(v_{S R C}=0\right)$. The switch is opened at the start of integration ($t=0$).
Consider next the effect of finite $A_{\vee 0}$. The governing equations are:

$$
\begin{gather*}
v_{N}=v_{S R C}+R\left(l_{b N}+i_{f}\right) \tag{10.6.5}\\
v_{N}=v_{P}-\varepsilon=v_{P}-\frac{v_{O}}{A_{v 0}} \tag{10.6.6}\\
v_{P}=R I_{b P}+v_{i o} \tag{10.6.7}\\
v_{O}=v_{N}+\frac{1}{C} \int i_{f} d t=v_{P}-\frac{v_{O}}{A_{v 0}}+\frac{1}{C} \int i_{f} d t \tag{10.6.8}
\end{gather*}
$$

Eliminating v_{N} and v_{P} between Equations 10.6.5 through 10.6.7:

$$
\begin{equation*}
V_{i b}-v_{S R C}=R i_{f}+\frac{v_{O}}{A_{v 0}} \tag{10.6.9}
\end{equation*}
$$

FIGURE 10.6.3
Figure for Design Example 10.6.2.

where $V_{i b}=V_{i o}+R\left(I_{b P}-I_{b N}\right)$. Differentiating Equation 10.6 .8 bearing in mind that v_{P} is constant,

$$
\begin{equation*}
\frac{d v_{O}}{d t}\left(1+\frac{1}{A_{v 0}}\right)=\frac{i_{f}}{C} \tag{10.6.10}
\end{equation*}
$$

Eliminating i_{f} between Equations 10.6.9 and 10.6.10,

$$
\begin{equation*}
\frac{d v_{O}}{d t}+\frac{v_{O}}{R C\left(1+A_{v 0}\right)}=\frac{1}{R C}\left(\frac{A_{v 0}}{1+A_{v 0}}\right)\left(v_{i b}-v_{S R C}\right) \tag{10.6.11}
\end{equation*}
$$

Assuming $v_{O O}=0$ and $v_{S R C}$ is a step function $V_{S R C}$, the solution to this equation is:

$$
\begin{equation*}
v_{O}=A_{v O}\left(V_{i b}-V_{S R C}\right)\left(1-\mathrm{e}^{-t / R C\left(1+A_{v o}\right)}\right) \tag{10.6.12}
\end{equation*}
$$

If $A_{v 0}$ is very large, $1-e^{-t / R C\left(1+A_{v 0}\right)} \cong t / R C A_{v 0}$ and if, in addition, $V_{i b}=0$ Equation 10.6.12 reduces to $v_{O}=-V_{S R C} t / R C$ for a perfect op-amp integrator. It is seen from Equation 10.6.12 that $V_{i b}$ adds algebraically to $V_{S R C}$. If $V_{i o}=1 \mathrm{mV}, I_{i o}=20 \mathrm{nA}$, and $R=100 \mathrm{k} \Omega$, then $V_{i b}=3 \mathrm{mV}$, assuming that the effects of $V_{i o}$ and $I_{i o}$ are additive. $V_{i b}$ sets a lower limit on the magnitude of the input signal.

Let $V_{S R C}^{\prime}=V_{S R C}-V_{i b}$ and let $t^{\prime}=1 / R C$ so as to normalize time. From Equation 10.6.12,

$$
\begin{equation*}
v_{O}=-A_{v 0} V_{S R C}^{\prime}\left(1-e^{-t^{\prime} /\left(1+A_{v 0}\right)}\right) \tag{10.6.13}
\end{equation*}
$$

The deviation Δv_{O} of v_{O} from $-V_{S R C}^{\prime} t^{\prime}$ is

$$
\begin{equation*}
\Delta v_{O}=-V_{S R C}^{\prime}\left\lfloor t^{\prime}-A_{v 0}\left(1-e^{-t^{\prime} /\left(1+A_{v 0}\right)}\right)\right\rfloor \tag{10.6.14}
\end{equation*}
$$

Expanding the exponential as a power series and neglecting powers of the exponent greater than 2, Equation 10.6.14 becomes:

$$
\begin{equation*}
\Delta v_{O}=-V_{S R C}^{\prime}\left(\frac{t^{\prime}}{1+A_{v 0}}+\frac{A_{v 0}}{\left(1+A_{v 0}\right)^{2}} \frac{\left(t^{\prime}\right)^{2}}{2}\right) \cong-\frac{V_{S R C}^{\prime} t^{\prime}}{A_{v 0}}\left(1+\frac{t^{\prime}}{2 A_{v 0}}\right) \tag{10.6.15}
\end{equation*}
$$

According to Equation 10.6.15, no matter how large is a finite $A_{v 0}$, there will come a time when the deviation from linearity becomes significant. For example, if $\left|\Delta v_{0} / V_{S R C}^{\prime}\right|=0.005$, which is a 0.5% deviation from linearity, and $A_{\vee 0}=10^{5}$, the deviation occurs at $t^{\prime}=500 \mathrm{~s}$. If $R=100 \mathrm{k} \Omega$ and $C=0.1 \mu \mathrm{~F}, t=5 \mathrm{~s}$. This emphasizes that in order to perform an accurate integration over a long period, $A_{\nu 0}$ must be appropriately large or $R C$ large.
The integrator is considered in Section ST10.7 in the frequency domain, taking into consideration the variation of A_{v} with frequency. It is shown that the effective frequency range for integration is from $f_{1}=1 / 2 \pi R C A_{v 0}$ to $f_{T}=A_{v 0} f_{c}$, where f_{c} is the corner frequency of A_{v} and f_{T} is the frequency at which $\left|A_{v}(f)\right|=1$ (Exercise 7.4.6, Chapter 7).

Difference Amplifier*

A basic difference amplifier is shown in Figure 10.6.4. Assuming an ideal op amp to begin with, v_{P} at the noninverting input is simply the output of a voltage divider:

[^6]FIGURE 10.6.4
Basic op-amp difference amplifier.

$v_{P}=v_{S R C 2} R_{d} /\left(R_{c}+R_{d}\right)$. Applying KCL at the inverting input, $\left(v_{S R C 1}-v_{N}\right) / R_{a}=$ $\left(v_{N}-v_{O}\right) / R_{b}$. Setting $v_{P}=v_{N}$, and eliminating v_{N},

$$
\begin{equation*}
v_{O}=-\frac{R_{b}}{R_{a}} v_{S R C 1}+\frac{1+R_{b} / R_{a}}{1+R_{c} / R_{d}} v_{S R C 2} \tag{10.6.16}
\end{equation*}
$$

Equation 10.6.16 follows from superposition. When $v_{S R C 2}=0, v_{O 1}=-v_{S R C 1} R_{b} / R_{a}$. When $v_{S R C 1}=0$, the circuit reduces to a noninverting op amp with $v_{S R C 2}$ applied through a voltage divider. It follows that $v_{\mathrm{O} 2}=\frac{R_{d}}{R_{c}+R_{d}}\left(1+\frac{R_{b}}{R_{a}}\right) v_{S R C 2}$. Adding $v_{O 1}$ and $v_{O 2}$ gives Equation 10.6.16.

If $R_{b} / R_{a}=R_{d} / R_{c}=k$, Equation 10.6.16 reduces to:

$$
\begin{equation*}
v_{O}=k\left(v_{S R C 2}-v_{S R C 1}\right) \tag{10.6.17}
\end{equation*}
$$

The circuit can therefore be used for directly subtracting one signal from another. Resistance ratios can be closely matched in an IC (Section 4.5, Chapter 4). Signals can also be subtracted by inverting one signal and adding it to the other signal.

It is instructive to derive Equation 10.6.16 from a modification of the relation for an inverting amplifier having $v_{S R C 2}=0$ in Figure 10.6.4, so that $v_{O}^{\prime}=-v_{S R C 1} R_{b} / R_{a}$. With $v_{S R C 2}$ applied, $v_{P}=v_{S R C 2} R_{d} /\left(R_{c}+R_{d}\right)$. Since $v_{N}=v_{P}$ in the ideal case, v_{N} must change from zero, under virtual ground conditions, to the new v_{p}. But because of the voltage-divider effect with shunt feedback as illustrated in Figure 7.4.8, Chapter 7, then in order for v_{N} to change by $v_{S R C 2} R_{d} /\left(R_{c}+R_{d}\right)$, v_{O} must change by an amount $v_{O}^{\prime \prime}$ such that $v_{O}^{\prime \prime} R_{a} /\left(R_{a}+R_{b}\right)=v_{S R C 2} R_{d} /\left(R_{c}+R_{d}\right)$. Hence, $v_{O}^{\prime \prime}=\left[R_{d} /\left(R_{c}+R_{d}\right)\right]\left[\left(R_{a}+R_{b}\right) / R_{a}\right] v_{\text {SRC1 }}$. Adding v_{O}^{\prime} and $v_{O}^{\prime \prime}$ gives Equation 10.6.16.

Exercise 10.6.3

Using the same reasoning as above, show that if an input $v_{S R C 3}$ is added in series with R_{d} in Figure 10.6.4, the output is given by:

$$
v_{O}=-\frac{R_{b}}{R_{a}} v_{S R C 1}+\frac{R_{d}}{R_{c}+R_{d}} \frac{R_{a}+R_{b}}{R_{a}} v_{S R C 2}+\frac{R_{c}}{R_{c}+R_{d}} \frac{R_{a}+R_{b}}{R_{a}} v_{S R C 3}
$$

FIGURE 10.6.5
Signal-flow diagram of difference amplifier.
When A_{v} is finite, we can apply superposition to derive the signal-flow diagram of Figure 10.6.5. If $v_{S R C 2}=0$ in Figure 10.6.4, the signal-flow diagram is that of the inverting configuration shown in Figure 7.4.9b, Chapter 7, with $R_{r}=R_{a}, R_{f}=R_{b}$, and $v_{S R C}=v_{S R C 1}$. If $v_{S R C 1}=0$, the circuit and the signal-flow diagram is that of the noninverting configuration (Figure 7.4.3, Chapter 7), with v_{P} omitted and the multiplier $R_{d} /\left(R_{c}+R_{d}\right)$ included between $v_{S R C 2}$ and v_{P} because of voltage division. The two signal-flow diagrams can now be combined as in Figure 10.6 .5 where $\beta_{o}=R_{a} /\left(R_{a}+R_{b}\right)$.

With both $v_{S R C 1}$ and $v_{S R C 2}$ applied, it follows from Figure 10.6.5 that:

$$
\begin{equation*}
v_{O}=-\frac{R_{b}}{R_{a}+R_{b}} \frac{A_{v}}{1+\beta_{o} A_{v}} v_{S R C 1}+\frac{R_{d}}{R_{c}+R_{d}} \frac{A_{v}}{1+\beta_{0} A_{v}} v_{S R C 2} \tag{10.6.18}
\end{equation*}
$$

This can be simplified to give:

$$
\begin{equation*}
v_{O}=\left(-\frac{R_{b}}{R_{a}} v_{S R C 1}+\frac{1+R_{b} / R_{a}}{1+R_{c} / R_{d}} v_{S R C 2}\right) \frac{1}{1+1 / \beta_{o} A_{v}} \tag{10.6.19}
\end{equation*}
$$

As $A_{v} \rightarrow \infty$, Equation 10.6.19 reduces to Equation 10.6.16, as expected.
The effect of input bias currents is minimized by equalizing the dc resistances seen by the two inputs, that is, $R_{a}\left\|R_{b}=R_{c}\right\| R_{d}$. This is satisfied if $R_{b} / R_{a}=R_{d} / R_{c}=k$.

Because significant voltages may be applied to both inputs of a difference amplifier, the common-mode response should be taken into consideration. Note that a common-mode response can arise not only due to inherent limitations in the amplifier, as discussed for the differential amplifier in Section 10.1, but also from a common-mode input that causes a differential input because of impedance unbalance at the inputs of the op amp. This is illustrated in Figure 10.6.6, where the input impedances Z_{1}, Z_{2}, and Z_{3} account for the

FIGURE 10.6.6
A common-mode input can cause a differential input because of impedance imbalance at the input of an op amp.
differential input impedance $Z_{i d}$ between the two inputs, and for the impedances $Z_{P G}$ and $Z_{N G}$ between the noninverting and inverting inputs, respectively, and the common reference. When the two inputs are joined together, $Z_{P G} \| Z_{N G}$ is the common-mode impedance. As discussed for the differential pair, $Z_{i d}$ is normally much smaller than $Z_{P G}$ or $Z_{N G}$. All these impedances are largely resistive but could have small capacitive components due to the internal capacitances of the transistors.
$Z_{\text {src1 }}$ and $Z_{\text {src } 2}$ are due to differential sources connected to the op amp, with the differential input signals in series with these impedences set to zero. If $Z_{\text {src1 }}=Z_{\text {src } 2}$ and $Z_{2}=Z_{3}$, it follows from symmetry that $v_{P}=v_{N}$, so that the differential input due to $v_{c m}$ is zero. More generally, $v_{P}=v_{N}$ if a bridge balance condition is satisfied, that is, $Z_{s r c 1} / Z_{s r c 2}=Z_{2} / Z_{3}$. Otherwise, a differential input arises due to $v_{c m}$ that gives rise to a corresponding output. Example SE10.2 illustrates a practical example from ECG recording.

Instrumentation Amplifier*

A useful amplifier is the IC instrumentation amplifier (IA) shown in Figure 10.6.7. The input stage consists of two noninverting op amps connected so as to provide a differential input, with their feedback resistors combined to provide a differential output. The second stage is the difference amplifier considered previously. Since the inputs are applied to the noninverting terminals, the input impedance is high. Moreover, as shown later, the overall gain is determined by R_{1} only. To minimize the common-mode response, the resistors having the same subscript number should be well matched, as when all components are manufactured on the same chip.

If ideal op amps are assumed, the differential gain of the first stage can be very simply derived by noting that, because of the virtual short circuit at the inputs of an ideal op amp, $v_{P 1}=v_{N 1}$ and $v_{P 2}=v_{N 2}$. This means that the voltage across R_{1} equals the differential input voltage $v_{S R C 1}-v_{S R C 2}$, so the current in R_{1} is $\left(v_{S R C 1}-v_{S R C 2}\right) / R_{1}$. This same current flows in the two resistances R_{1} and R_{2}. Hence, $v_{O 1}-v_{O 2}=\left[\left(v_{S R C 1}-v_{S R C 2}\right) / R_{1}\right]\left(R_{1}+2 R_{2}\right)$. The differential gain of the first stage is therefore:

FIGURE 10.6.7
Instrumentation amplifier.

[^7]\[

$$
\begin{equation*}
\frac{v_{O 1}-v_{O 2}}{v_{S R C 1}-v_{S R C 2}}=1+2 \frac{R_{2}}{R_{1}} \tag{10.6.20}
\end{equation*}
$$

\]

In order to obtain the overall gain, this differential gain has to be multiplied by that of the difference amplifier, as given by Equation 10.6 .17 with $k=R_{4} / R_{3}$:

$$
\begin{equation*}
\frac{v_{O}}{v_{S R C 1}-v_{S R C 2}}=\left(1+2 \frac{R_{2}}{R_{1}}\right) \frac{R_{4}}{R_{3}} \tag{10.6.21}
\end{equation*}
$$

It is seen that the gain can be varied by varying only R_{1}, which does not have be to be matched to any other resistance.

To determine the effects of amplifier imperfections, consider the first stage, with both op amps having a finite A_{v}, as shown in Figure 10.6.8. The governing equations are: $v_{S R C 1}-v_{S R C 2}=\varepsilon_{1}+R_{1} i_{1}-\varepsilon_{2}, \quad v_{O 1}-v_{O 2}=\left(R_{1}+2 R_{2}\right) i_{1}, \quad \varepsilon_{1}=v_{O 1} / A_{v}, \quad$ and $\quad \varepsilon_{2}=v_{O 2} / A_{v}$. Eliminating i_{1}, ε_{1}, and ε_{2} gives:

$$
\begin{equation*}
\frac{v_{\mathrm{O} 1}-v_{\mathrm{O} 2}}{v_{S R C 1}-v_{S R C 2}}=\frac{A_{v}}{1+\beta_{0} A_{v}}=\frac{1}{\beta_{o}} \frac{1}{1+1 / \beta_{0} A_{v}} \tag{10.6.22}
\end{equation*}
$$

where $\beta_{o}=R_{1} /\left(R_{1}+2 R_{2}\right)$. If $A_{v} \rightarrow \infty$, Equation 10.6.22 reduces to Equation 10.6.20.
If we express β_{o} as $\frac{R_{1} / 2}{\left(R_{1}+2\right)+R_{2}}$, the first stage can be considered as consisting of two half circuits, as indicated in Figure 10.6.8 by the dotted line. Thus, $v_{O 1}=\frac{1}{\beta_{0}} \frac{1}{1+1 / \beta_{0} A_{v}} v_{S R C 1}$ and $v_{\mathrm{O} 2}=\frac{1}{\beta_{0}} \frac{1}{1+1 / \beta_{0} A_{v}} v_{S R C 2}$. Subtracting these equations gives Equation 10.6.22.

It is clear from symmetry in Figure 10.6 .8 that the effects of $V_{i o}$ in the two amplifiers cancel out at the outputs, as long as the two halves are identical. Similarly, the common-mode

FIGURE 10.6.8
The input stage of the IA divided into two half circuits.

FIGURE 10.6.9

Figure for Application Window 10.6.1.

response at the outputs cancels out so that the common-mode response at the output of the IA depends on the common-mode response of the second stage. In order to minimize the effects of input bias currents, the source resistances $R_{s r c 1}$ and $R_{s r c 2}$ must be equal. It is seen that, as long as the two halves of the IA are properly matched, the IA is a high-performance amplifier.

Application Window 10.6.1 Bridge Amplifier*

An IA can be used to amplify the output of a transducer bridge, as illustrated in Figure 10.6.9 for a strain-gauge bridge. When the resistance of one strain-gauge element increases by αR_{0}, as a result of strain in a given direction, the resistance of the other element decreases by αR_{o}, where R_{o} is the nominal resistance of the elements in the rest position. The upper two resistors are dummy strain gauges that are identical to the active strain gauges but are not subjected to any strain. Such a bridge configuration has two advantages: (1) since the resistances of the lower, active strain-gauge elements change in opposite directions, the bridge output for a given strain is essentially doubled, and (2) because the four elements have the same resistance at rest and are made of the same material, they are equally affected by changes in ambient temperature so that the bridge output is independent of these changes.

10.7 Switched-Capacitor Circuits ${ }^{\dagger}$

Analog IC filters can be implemented as switched-capacitor circuits, the objective being to replace resistors by capacitors and MOSFET switches (Chapter 5). Not only does this enable simulation of large resistors but it also results in improved accuracy of the frequency response, good linearity, and extended dynamic range. The improved accuracy of frequency response is due to filter parameters being determined by capacitance ratios which can be set in ICs to a precision as high as 0.1% compared to a variation as large as 20% for $R C$ time constants.
To appreciate the underlying principle, consider a capacitor C connected to a changeover switch S and to two dc voltage sources V_{1} and V_{2} (Figure 10.7.1). Assume that the switch is

[^8]

FIGURE 10.7.1
A capacitor used to transfer charge between two voltage sources.
moved from position a to position b and back to a at a frequency f_{S}, or period $T_{S}=1 / f_{S}$, and that for the sake of argument, $V_{1}>V_{2}$. When the switch moves to position b , it acquires a charge $C V_{1}$, and when it moves to position a, the charge on the capacitor is $C V_{2}$. Since $V_{1}>V_{2}$, charge is transferred from V_{1} to V_{2}. The rate at which this charge is transferred constitutes a "steady" current given by $I=C\left(V_{1}-V_{2}\right) / T_{S}=C\left(V_{1}-V_{2}\right) f_{S}$. If this current were due to a resistance R, then $I=\left(V_{1}-V_{2}\right) / R$, where R is an equivalent resistance of the capacitor-switch combination and is given by:

$$
\begin{equation*}
R=\frac{1}{C f_{S}} \tag{10.7.1}
\end{equation*}
$$

As an example of a basic switched-capacitor circuit, consider the integrator of Figure 10.7.2a. Switches are implemented in practice using MOSFETs, which are wellsuited for this purpose because they can have a high off resistance, a relatively low on resistance, and zero offset voltage. Although a single MOSFET can be used as a single-pole, single-throw switch, a transmission gate is more advantageous (Section 5.4, Chapter 5). The changeover switch of Figure 10.7.1 is implemented by two transmission gates

FIGURE 10.7.2
(a) Basic switched-capacitor integrator; (b) control voltage waveforms applied to the circuit in (a); (c) variation of output voltage with respect to time.
controlled by clock signals ϕ_{1} and its negation $\bar{\phi}_{1}$ for one transmission gate, and by the combination $\phi_{2}-\bar{\phi}_{2}$ for the other gate. The clock signals are nonoverlapping (Figure 10.7.2b), which means that at no time are the two clocks simultaneously high, which prevents the two switches from being closed simultaneously.
C_{f} establishes a feedback path at signal frequency, so that the inverting terminal of the op amp is a virtual ground, and V_{2} in Figure 10.7.1 is zero. A charge $C V_{1}$ is transferred to C_{f} every T_{S}, resulting in a stepwise variation in the output voltage v_{O} of $-V_{1} C / C_{f}$ per step. The average rate of change of v_{O} per unit time is $-\left(V_{1} / T_{S}\right)\left(C / C_{f}\right)=-V_{1} f_{S} C / C_{f}$, equivalent to a continuous variation with time of $-V_{1} f_{s}\left(C / C_{f}\right)$ (Figure 10.7.2c), or to an integrator gain of $-1 /\left(R C_{f}\right)=-f_{S}\left(C / C_{f}\right)$ (Equation 10.7.1) that depends only on f_{S} and capacitance ratios.

It should be noted that the above analysis, based on charge transfer, is valid for an input signal v_{I} that varies at a frequency that is much smaller than f_{S}, say one-tenth of f_{s}. For signal frequencies that are comparable to f_{S}, the circuit is analyzed using the z-transform. This is essentially the Laplace transform in discrete time and is beyond the scope of our discussion.

A limitation of the circuit of Figure 10.7.2a is that it is sensitive to stray capacitances, which are mainly due to: (1) internal capacitances associated with the inputs and outputs of the transmission gates and op amp, and (2) capacitance of interconnections. Some of these capacitances are voltage dependent, so it would not be possible to account for them by adjusting the values of C and C_{f}. In practice, the circuit is modified as in Figure 10.7.3 to make it insensitive to the dotted stray capacitances. C is now connected in series rather than in shunt, as in Figure 10.7.2, which necessitates the use of four transistor switches instead of two.

Let us first investigate the operation of this circuit ignoring the stray capacitances to begin with. When ϕ_{2} goes high, switches 2 and 3 are closed, while switches 1 and 4 are open (Figure 10.7.2b). C is completely discharged, since both of its terminals are grounded. C_{f} retains the charge it had previously acquired because switch 4 is open. When ϕ_{1} is high, one end of C is connected to v_{I} whereas the other end is connected to virtual ground. C is therefore charged to v_{I}, but the charging current flows through C_{f}, effectively adding positive charge to the LHS plate of C_{f} and negative charge to its RHS plate. The integrator is therefore inverting; the transfer of charge is the same as that in Figure 10.7.2a and the effective gain is $-f_{S}\left(C / C_{f}\right)$.
Let us verify that the parasitic capacitances do not affect operation, other than slightly prolonging settling times. C_{c} is permanently connected between true ground and virtual ground. The upper plate of C_{b} is connected to true ground when ϕ_{2} is high and to virtual ground when ϕ_{1} is high. C_{a} is charged and discharged with C, but its charging and discharging currents do not flow through C_{f}. Thus, parasitic insensitivity is achieved by having C series-connected, whereas the parasitic capacitances are shunt-connected.

FIGURE 10.7.3
Modified switched-capacitor, inverting integrator that is insensitive to stray capacitances.

FIGURE 10.7.4
The circuit of Figure 10.7.3 modified to give a noninverting integrator.

An interesting feature of Figure 10.7 .3 is that it can be converted to a noninverting integrator by having switch 3 controlled by ϕ_{1} and switch 4 by ϕ_{2}, as illustrated in Figure 10.7.4. C is charged when ϕ_{1} goes high and is discharged when ϕ_{2} goes high, but the discharge current flows away from virtual ground making the RHS plate of C_{f} positive and its LHS plate negative.

Exercise 10.7.1

If $f_{S}=10^{5} \mathrm{kHz}, C_{f}=1 \mu \mathrm{~F}, C=0.01 \mu \mathrm{~F}$, and $V_{1}=5 \mathrm{~V}$ in Figure 10.7.2a, determine: (a) the step size of v_{O}; (b) the steady time variation of v_{O}; (c) the equivalent charging resistance.
Answers: (a) -50 mV ; (b) $-5000 t \mathrm{~V}$; (c) $1 \mathrm{k} \Omega$.

10.8 Digital-Analog Conversion*

It is assumed in what follows that the decimal equivalent of an n-bit word is given by:

$$
\begin{equation*}
D=b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{2} 2^{2}+b_{1} 2^{1}+b_{0} 2^{0} \tag{10.8.1}
\end{equation*}
$$

Thus, if n-bit word is 1110 , the decimal equivalent is $1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=14$.
A digital-to-analog (DAC) converter converts an n-bit word, where n depends on the particular system, to a voltage in the range of 0 and a limit $V_{\max }$. Since $V_{\max }$ would correspond to the maximum value $\left(2^{n}-1\right)$ of the binary word, it follows that a change in the binary word of one least significant bit would correspond to $\Delta V=V_{\max } /\left(2^{n}-1\right)$, where ΔV is the resolution of the DAC. Thus, if $n=8$ and $V_{\max }=12 \mathrm{~V}, \Delta V=10 / 255=39.2 \mathrm{mV}$.

A fairly obvious way of implementing a DAC is to use an inverting adder with the bits controlling resistances weighted in powers of 2 . However, when n is larger than 4 , it becomes awkward to have exact values for all the resistances. It becomes preferable to use an $R-2 R$ ladder for the resistances, as shown in Figure 10.8.1. Starting from node b_{0}, it can be readily verified that the resistance to the right of each node is $2 R$ and the resistance connecting the node directly to ground, or virtual ground, is also $2 R$. Thus, current divides equally at each node, and the currents flowing to ground or virtual ground at each node increase in powers of 2 , from right to left.

Considering node $b_{n-1}, V_{\text {REF }}=2 R \times 2^{n-1} \times I_{O}$, or,

$$
\begin{equation*}
I_{O}=\frac{V_{\mathrm{REF}}}{2^{n} R} \tag{10.8.2}
\end{equation*}
$$

[^9]

FIGURE 10.8.1
DAC using an inverting op amp adder and an R-2R ladder.
A given switch is placed in the right position, or in the left position, depending on whether the value of the corresponding bit is 1 or 0 , respectively. It follows that:

$$
\begin{equation*}
I_{r}=\frac{V_{\mathrm{REF}}}{2^{n} R}\left[b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{2} 2^{2}+b_{1} 2^{1}+b_{0} 2^{0}\right] \tag{10.8.3}
\end{equation*}
$$

and,

$$
\begin{equation*}
V_{O}=-\frac{V_{\mathrm{REF}} R_{f}}{2^{n} R}\left[b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{2} 2^{2}+b_{1} 2^{1}+b_{0} 2^{0}\right] \tag{10.8.4}
\end{equation*}
$$

where b_{m} is 0 or 1 , if the m th bit is 0 or 1 , respectively, and $m=0,1,2, \ldots, n-1$ for an n-bit word. Equation 10.8.4 confirms that V_{O} is proportional to the decimal value of the binary word. If all the bits are 1 , it follows from Equation 10.8.4 that:

$$
\begin{equation*}
V_{O}=-\frac{R_{f}}{R} \frac{2^{n}-1}{2^{n}} V_{\mathrm{REF}}=-V_{\max } \tag{10.8.5}
\end{equation*}
$$

As a simple example, consider the case of $n=4, V_{\max }=15 \mathrm{~V}$, and $V_{\mathrm{REF}}=5 \mathrm{~V}$. If $R=10 \mathrm{k} \Omega$, then $R_{f}=(15 / 5) \times(16 / 15) \times 10=32 \mathrm{k} \Omega$. The resolution is $\Delta V=V_{\max } /\left(2^{n}-1\right)=15 / 15=1 \mathrm{~V}$. In other words, if the binary word increases from zero in steps of 1 least significant bit, the analog output increases in steps of 1 V from zero to 15 V . The resolution in terms of currents is I_{O}, which, from Equation 10.8 .2 , is $5 /(16 \times 20)=1 / 32 \mathrm{~mA}$. It follows that $\Delta V=R_{f} I_{O}=32 / 32=1 \mathrm{~V}$, as found previously.

Figure 10.8.2 illustrates a DAC based on a current steering circuit using MOSFETs of widths that increase in powers of 2. Q_{r} is the diode transistor carrying a current $I_{\text {REF }}=V_{\text {REF }} / R$. The gate and drain of Q_{r} are at virtual ground, and the output of op amp A_{1} is such that $V_{G S}$ of Q_{r}, and all the other MOSFETs, is that required for the current $I_{\text {REFF }}$. Normally, $I_{\text {REF }}=I_{O}$ so that

FIGURE 10.8.2
DAC based on a current steering circuit using MOSFETs of widths that increase in powers of 2.
transistors Q_{r} and Q_{0} have the same width, whereas the widths of transistors $Q_{0} \ldots Q_{n-1}$ increase in powers of 2 . The drains of these transistors are connected to single-pole, doublethrow switches so that the currents either flow to ground or to the virtual ground of op amp A_{2}, as in Figure 10.8.1. A given switch is placed in the right position, or in the left position, if the value of the corresponding bit is 1 or 0 , respectively. It follows that:

$$
\begin{equation*}
I_{r}=-I_{O}\left\lfloor b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{2} 2^{2}+b_{1} 2^{1}+b_{0} 2^{0}\right\rfloor \tag{10.8.6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{O}=\frac{V_{\mathrm{REF}} R_{f}}{R}\left[b_{n-1} 2^{n-1}+b_{n-2} 2^{n-2}+\cdots+b_{2} 2^{2}+b_{1} 2^{1}+b_{0} 2^{0}\right] \tag{10.8.7}
\end{equation*}
$$

which is proportional to the decimal equivalent of the binary number. Note that the drains of $Q_{0} \ldots Q_{n-1}$ are nominally at ground voltage, like the drain of Q_{r}, which ensures good current matching.

A single-pole, double-throw switche can be implemented by a differential pair in which the current is switched between two transistors. Figure 10.8.3 illustrates S_{m} for the m th bit. $V_{\text {BIAS }}$ is applied to the gate of $Q_{m r}$ whose drain is permanently grounded. $Q_{m s}$ drain is connected to the inverting terminal of A_{2}, and a voltage $V_{\text {BIAs }}+v_{b m}$ is applied to $Q_{m s}$ gate, where $v_{b m}$ represents the value of b_{m}. If $b_{m}=0, v_{b m}$ is sufficiently negative so that $Q_{m s}$ is turned off and I_{m}, the drain current of Q_{m}, is diverted to ground, corresponding to S_{m} being in the left-hand position. On the other hand, if $b_{m}=1, v_{b m}$ is sufficiently positive so that $Q_{m s}$ is turned on and $Q_{m r}$ is turned off. I_{m} is diverted to the inverting input of A_{2}, corresponding to S_{m} being in the right-hand position.

FIGURE 10.8.3
MOSFET differential-pair implementation of a single-pole, double-throw switch.

FIGURE 10.8.4

An implementation of an ADC.

The inverse operation, that is, analog-digital conversion can be implemented as in Figure 10.8.4. The analog input v_{I} is applied to one input of a comparator, the output of which controls an up/down counter fed from a clock generator. The counter output is applied to a DAC, whose output v_{O} is connected to the other input of the comparator, thus completing the negative feedback loop. If $v_{O}<v_{I}$, the comparator output is of one polarity and causes the counter to count clock pulses upward, that is, as an increasing number. The input to the DAC increases and v_{O} increases until it just exceeds v_{I}. The output of the comparator then changes polarity, causing the counter to count downward, that is, in a decreasing number of counts. v_{I} is generally time varying, so the feedback keeps v_{O} close to v_{I}, and v_{O} is said to "track" v_{I}. Since v_{O} is the output of a DAC, the input to the DAC, which is the counter output, must be the digital equivalent of v_{I}.

This implementation of the analog-to-digital converter (ADC) illustrates a useful technique, namely, the insertion of a functional block in a negative feedback loop so as to generate the inverse function of that block.

Summary of Main Concepts and Results

- Arbitrary inputs applied to the base terminals of a differential pair can be resolved into a common-mode input that is the average of the two inputs, and a differential input that is the difference between the two inputs.
- Differential amplifiers discriminate between differential and common-mode inputs, the latter inputs generally being undesirable. The CMRR is the magnitude of the ratio of the differential gain to the common-mode gain.
- Analysis of the differential pair is facilitated by using a differential half circuit that is a CE/CS amplifier, and a common-mode half circuit that is a CE/CS amplifier with a feedback resistor.
- The input bias current $I_{i b}$ is the average of the two input bias currents $I_{B 1}$ and $I_{B 2}$, whereas the input offset current $I_{i o}$ is the magnitude of the difference between $I_{B 1}$ and $I_{B 2}$.
- The input offset voltage is the output offset voltage, measured at the output for zero input, referred to the input. A random input offset voltage arises from dissymmetry in the two halves of the differential amplifier because of random mismatch between components. A systematic input offset voltage can arise from inherent features of the circuit, as in a current-mirror load.
- The performance of the basic differential amplifier can be improved by using active loads and composite transistor connections. In particular, a current mirror
load doubles the single-ended voltage gain of a differential pair, and significantly increases common-mode rejection.
- In comparing BJT and MOSFET differential pairs, $v_{i d(\max)}$ for full switching is nearly $4 V_{T}$ for the BJT and $\sqrt{2} V_{o v}$ for the MOSFET. In the corresponding expressions for input offset voltage, V_{T} in the case of the BJT is replaced by $V_{o v} / 2$ for the MOSFET.
- The folded cascode op amp has the advantage of a relatively wide common-mode input range.
- Operational transconductance amplifiers have low-impedance internal nodes so that the frequency response is determined by a dominant pole due to the highimpedance output node.
- Self-biasing schemes are much less sensitive to variations in supply voltage and temperature.
- Whereas it is possible, at least in principle, to compensate for the effects of steady input bias currents and offset voltage of an op amp, it is impractical to compensate for drift of these quantities, which therefore sets a limit on the output stability of an op-amp circuit.
- In order to minimize the effect of input bias currents in op-amp circuits, the dc resistances in the external circuit, between either op-amp input and ground, should be equal. A common-mode response may be not only due to dissymmetry in the amplifier, but could also arise from a common-mode input that causes a differential input because of impedance unbalance at the inputs of the op amp.
- Input offset voltage and bias currents have a drastic effect on integrators, as they saturate the op-amp output, even when no input is applied. Moreover, to amplify down to very low frequencies, or over long periods, the op-amp gain must be very high.
- The IA is a high-performance IC op amp that has a noninverting differential input stage followed by a difference amplifier as a second stage.
- In switched-capacitor circuits, resistors are replaced by capacitors and MOSFET switches, which allows simulation of large resistors and results in improved accuracy of the frequency response, good linearity, and extended dynamic range.
- A DAC can be based on an inverting adder and an $R-2 R$ resistive ladder or MOSFETs of widths that increase in powers of 2. An ADC can be implemented by connecting a DAC converter in a negative feedback loop.

Learning Outcomes

- Articulate the basic properties of the differential pair.
- Articulate the effects of op-amp imperfections on the performance of op-amp amplifiers, adders, and integrators.
- Articulate the basic principles of operation of switched-capacitor circuits, DAC and ADC.

Supplementary Examples and Topics on Website

SE10.1 Simulation of Large Feedback Resistor. A T-circuit is used to simulate a large R_{f} in an inverting configuration. The performance of the circuit is compared with that using a
single resistor for R_{f} when finite A_{v}, input bias current, and input offset voltage are taken into account (Sabah 2008, Example SE18.1, p. 756).

SE10.2 ECG Recording. Gives an example of ECG recording that emphasizes the commonmode response of the amplifier due to pick-up from installation wiring (Sabah 2008, Example SE18.3, p. 756).

ST10.1 Improvement of Performance of Differential Pair. Discusses measures for improving the performance of differential amplifiers, including active loads and composite transistors.

ST10.2 CMRR of CMOS Differential Pair. Derives the CMRR for a CMOS differential pair having a current-mirror load.

ST10.3 Improvement of Performance of Folded Cascode Op Amp. Discusses various techniques for improving the performance of the basic folded-cascode op amp.
ST10.4 Improved CMOS Biasing Circuits. Discusses various techniques for improving the performance of the self-bias circuit of Figure 10.4.2 as well as bandgap references.

ST10.5 BJT Op Amps. Analyzes examples of BJT op amps, including the μ A741.
ST10.6 Noninverting and Inverting Adders. Analyzes the two types of adders and compares them taking into account input offset voltage, input bias currents, and finite A_{v} (Sabah 2008, Section ST18.2, p. 755).
ST10.7 Integrator in Frequency Domain. Analyzes an integrator in the frequency domain, including the frequency variation of the op amp gain, and derives the frequency range over which integration is nominally ideal (Sabah 2008, Section ST18.3, p. 755).

Problems and Exercises

P10.1 Differential Pair

P10.1.1 In the differential amplifier of Figure 10.1.1, $V_{C C}=V_{E E}=10 \mathrm{~V}, I_{E E}=2 \mathrm{~mA}$ with $R_{E E}=$ $50 \mathrm{k} \Omega, R_{C}=5 \mathrm{k} \Omega, \beta=150, V_{A}=100 \mathrm{~V}$, and $r_{\mu}=5 \mathrm{M} \Omega$. Determine: (a) the dc base currents when the two bases are grounded; (b) the differential input signal currents, $A_{d d 0}$, and $r_{i n d}$ when $v_{i d}=10 \sin \omega t \mathrm{mV}$ is applied; (c) the common-mode input signal currents, $A_{c m 0}$, and $r_{i n(\mathrm{~cm})}$ when a common-mode signal $v_{c m}=100 \sin \omega t \mathrm{mV}$ is applied. Simulate with PSpice.
P10.1.2 A differential amplifier has $V_{C C}=15 \mathrm{~V}, V_{E E}=15 \mathrm{~V}, R_{C}=10 \mathrm{k} \Omega$, with $I_{E E}$ provided by $R_{E E}=20 \mathrm{k} \Omega$ resistor connected between the emitters and $-V_{E E}$. Determine the singleended differential gain, common-mode gain, and CMRR, assuming $V_{B E}=0.7 \mathrm{~V}, \alpha_{F} \cong 1$, and large r_{0}.
P10.1.3 A $20 \mathrm{k} \Omega$ resistor is connected between the two collectors in Problem P10.1.2. Derive the differential and common-mode half circuits.
P10.1.4 $R_{E E}$ in Problem P10.1.2 is replaced by the π-circuit shown in Figure P10.1.4. Derive the differential and common-mode half circuits.

FIGURE P10.1.4

P10.1.5 A differential amplifier has a CMRR of 70 dB . The single-ended output voltage is 100 mV when the inputs are $v_{1}=21.5 \mathrm{mV}$ and $v_{2}=20 \mathrm{mV}$. Determine the largest magnitude of the differential gain.
P10.1.6 When the inputs to a differential amplifier are $(\sin t-\cos t) \mathrm{mV}$ and $(\sin t+\cos t) \mathrm{mV}$, the single-ended output is $(20,000 \cos t-\sin t) \mathrm{mV}$. Determine the CMRR.
P10.1.7 In a given differential pair having $I_{E E}=2 \mathrm{~mA}$, the BEJ areas are mismatched by 25%. Determine: (a) the emitter currents of the two transistors for zero input; (b) the differential input that equalizes the currents in the two transistors.
P10.1.8 Consider the differential amplifier of Figure 10.1.1 with $V_{C C}=15 \mathrm{~V}, I_{E E}=1 \mathrm{~mA}$, $V_{B E}=0.7 \mathrm{~V}, \beta=100$, and large r_{0}. (a) What $v_{i d}$ will cause i_{E} of Q_{1} to become 1% that of Q_{2} ? (b) Under these conditions, what value of R_{C} will cause Q_{2} to reach saturation with $v_{C B}=0$? (c) For this value of R_{C}, what is the largest $v_{c m}$ that will not cause the saturation of the transistors with $v_{C B}=0$? (d) If the negative of $v_{c m}$ found in (c) is applied, what is the common-emitter voltage, and what are the collector-emitter voltages? (e) What is $A_{d d 0}$? Note that the larger R_{C}, the larger is the differential gain but the lower is the largest common-mode voltage that will not cause the saturation.
P10.1.9 Determine the largest $v_{i d}$ that can be applied to a BJT differential amplifier if the departure from linearity is not to exceed 1%, assuming $V_{T}=26 \mathrm{mV}$. Simulate with PSpice.
P10.1.10 A differential amplifier has $V_{C C}=V_{E E}=12 \mathrm{~V}, I_{E E}=2 \mathrm{~mA}, R_{C}=10 \mathrm{k} \Omega$, and $R_{E}=0.5 \mathrm{k} \Omega$ in series with each emitter. The transistors have $\beta=150$, and large r_{o}. (a) Derive the differential half circuit. (b) Determine $A_{d d 0}$ and $r_{i n d}$.

DP10.1.11 A differential amplifier is required to have $A_{d d 0}=25, v_{o d}=2 \mathrm{~V}$, and $r_{i n d}=50 \mathrm{k} \Omega$ using transistors having $\beta=100$ and large r_{o}. The signal amplitude across each BEJ is to be limited to 5 mV for good linearity. Design a suitable amplifier using emitter resistors.
P10.1.12 A MOSFET differential amplifier has $V_{D D}=12 \mathrm{~V}, V_{t n}=1 \mathrm{~V}, I_{S S}=9 \mathrm{~mA}, r_{o}=0.01 \mathrm{~V}^{-1}$, $R_{D}=2 \mathrm{k} \Omega$, and $k_{n}=4 \mathrm{~mA} / \mathrm{V}^{2}$. Determine: (a) g_{m} for zero input; (b) $A_{d s 0}$. Simulate with PSpice.
P10.1.13 Determine the largest common-mode signal that can be applied to the differential amplifier of Problem P10.1.12 without the transistors going into saturation, (a) neglecting the body effect, (b) assuming $\gamma=0.6 \mathrm{~V}^{1 / 2},\left|\varphi_{F}\right|=0.3 \mathrm{~V}$, and the body connected to -12 V .

P10.1.14 A MOSFET differential amplifier has $V_{D D}=V_{S S}=10 \mathrm{~V}, I_{S S}=4 \mathrm{~mA}$ with $R_{S S}=50 \mathrm{k} \Omega$, $R_{D}=5 \mathrm{k} \Omega, k_{n}=4 \mathrm{~mA} / \mathrm{V}^{2}$, and $V_{t n}=1.2 \mathrm{~V}$. Determine: (a) $v_{o d}$ for $v_{i d}=10 \sin \omega t \mathrm{mV}$; (b) v_{o} for $v_{c m}=100 \sin \omega t \mathrm{mV}$, assuming $\lambda=0.02 \mathrm{~V}^{-1}$ and no body effect; and (c) CMRR.

P10.1.15 A MOSFET differential amplifier has $I_{S S}=400 \mu \mathrm{~A}, k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=1 \mathrm{~V}$, and large r_{o}. Determine: (a) $V_{G S}$ and g_{m} for zero input; (b) $v_{i d}$ for full current switching; (c) $I_{S S}$ for full switching to occur for half the $v i_{d}$ found in (b); (d) $i_{D 1}, i_{D 2}$ and v_{S} for $v_{G 1}=2.5 \mathrm{~V}$ and $v_{G 2}=2 \mathrm{~V}$, neglecting the body effect; (e) if $R_{D}=10 \mathrm{k} \Omega$, what is $V_{D D(\min)}$ that would allow a common-mode input of 2 V with the transistors remaining in saturation? Simulate with PSpice.
P10.1.16 Consider the MOSFET differential amplifier with a current mirror load, as in Figure 10.1.10a, with $V_{D D}=5 \mathrm{~V}, I_{S S}=200 \mu \mathrm{~A}, k_{n, p}=0.4 \mathrm{~mA} / \mathrm{V}^{2},\left|V_{t}\right|=0.8 \mathrm{~V}$ and $\lambda=0.02 \mathrm{~V}^{-1}$. Determine: (a) g_{m} of the transistors, open circuit V_{O}, and V_{S}, assuming perfect matching and zero input; (b) if the output is short-circuited, write down the governing equations. Simulate with PSpice.
P10.1.17 For the amplifier of Problem P10.1.16, determine: (a) G_{m}; (b) the small-signal, open circuit voltage gain; (c) the CMRR. Simulate with PSpice.
P10.1.18 Assume that the two R_{C} 's of a BJT differential amplifier differ by ΔR_{C}, their average being R_{C}. Derive $V_{C 1}$ and $V_{C 2}$ in terms of $R_{C 1}, R_{C 2}$, and the collector current $\alpha_{F} I_{E E} / 2$. Determine $V_{\text {od }}$ when both inputs are grounded, neglecting r_{o}, and show that $V_{i o}=V_{\text {od }} / A_{d d 0}=\left(\Delta R_{C} / R_{C}\right) V_{T}$.
P10.1.19 Assume that the saturation currents $I_{S 1}$ and $I_{S 2}$ of a BJT differential pair differ by ΔI_{S} so that $I_{C 1}=\left(\alpha_{F} I_{E E} / 2\right)\left(1+\Delta \mathrm{I}_{S} / 2 I_{S}\right)$ and $I_{C 2}=\left(\alpha_{F} I_{E E} / 2\right)\left(1-\Delta \mathrm{I}_{S} / 2 I_{S}\right)$. Neglecting r_{o}, show that $V_{i o}=\left(\Delta \mathrm{I}_{S} / I_{S}\right) V_{T}$.
P10.1.20 Show that if the two transistors of a BJT differential amplifier have large, unequal β_{F} S that are denoted by $\beta_{F 1}$ and $\beta_{F 2}$, (a) $V_{i o} \cong V_{T}\left(1 / \beta_{F 1}-1 / \beta_{F 2}\right)$, neglecting r_{o}, and (b) $I_{i o} \cong$ $I_{i B}\left(\Delta \beta_{F} / \beta_{F}\right)$.
P10.1.21 Assume that the two R_{D} 's of a MOSFET differential amplifier differ by ΔR_{D}, their average being R_{D}. Divide $V_{o d}$ by $A_{d d 0}$, neglecting r_{o}, and use the relation $g_{m}=I_{S S} / V_{o v}$ to show that $V_{i o}=\left(\Delta R_{D} / R_{D}\right)\left(V_{o v} / 2\right)$. Compare with the result of Problem P10.1.18.
P10.1.22 Consider that the two MOSFETs of a differential amplifier differ by $\Delta(W / L)$. Show that $I_{D 1}=\frac{I_{S S}}{2}\left[1+\left(\frac{\Delta(W / L)}{2(W / L)}\right)\right]$ and $I_{D 2}=\frac{I_{S S}}{2}\left[1-\left(\frac{\Delta(W / L)}{2(W / L)}\right)\right]$, the average aspect ratio being W / L. Divide $V_{o d}$ by $A_{d d 0}$, and use the relation $g_{m}=I_{S S} / V_{o v}$ to show that $V_{i o}=\left(\frac{\Delta(W / L)}{2(W / L)}\right) \frac{V_{o v}}{2}$.
P10.1.23 Consider that the thresholds of a MOSFET differential pair differ by $\Delta V_{t n} \ll 2 V_{o v}$, the average being $V_{t n}$. Divide $V_{o d}$ by $g_{m} R_{D}$, and use the relation $g_{m}=I_{S S} / V_{o v}$ to show that $V_{i o}=\Delta V_{t n}$.
P10.1.24 A BJT differential amplifier has $I_{E E}=1 \mathrm{~mA}, R_{C}=10 \mathrm{k} \Omega, \beta=200$, large $r_{o}, C_{\mu}=0.8 \mathrm{pF}$, and $f_{T}=900 \mathrm{MHz}$. A source of $10 \mathrm{k} \Omega$ source resistance is applied differentially. Determine the low-frequency gain from $v_{s r c}$ to $v_{o d}$, the $3-\mathrm{dB}$ cutoff frequency, and the gain-bandwidth product.
P10.1.25 Repeat Problem P10.1.24 assuming that $R_{E}=50 \Omega$ is included in series with each emitter.
P10.1.26 Assume that $I_{S S}$ of Problem P10.1.24 has a source resistance of $200 \mathrm{k} \Omega$ and $C_{E E}=5 \mathrm{pF}$. Determine the poles of the CMRR and $f_{p(\mathrm{~cm})}$ (Equation 10.1.18).
P10.1.27 A MOSFET differential pair has $I_{S S}=500 \mu \mathrm{~A}, R_{D}=20 \mathrm{k} \Omega, k_{n}=2 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=1 \mathrm{~V}$, $r_{o}=500 \mathrm{k} \Omega, C_{g^{s}}=0.2 \mathrm{pF}, C_{g^{d}}=0.04 \mathrm{pF}$, and a differential source resistance of $100 \mathrm{k} \Omega$. Determine $A_{d d 0}$ and the $3-\mathrm{dB}$ cutoff frequency.
P10.1.28 Assume that $I_{S S}$ of Problem P10.1.27 has $R_{S S}=2 \mathrm{M} \Omega$ and $C_{S S}=5 \mathrm{pF}$. Determine the poles of the CMRR.

P10.1.29 Show that if r_{μ} is taken into account in the small-signal hybrid- π model of the differential half circuit, $r_{\text {ind }}=2\left[r_{\pi} \|\left(\frac{r_{\mu}+\left(r_{o} \| R_{C}\right)}{1+g_{m}\left(r_{o} \| R_{C}\right)}\right)\right]$.
P10.1.30 Add r_{o} and r_{μ} to the small-signal T-model of the common-mode half circuit. Neglecting r_{e} and assuming $R_{C} \ll r_{\mu}$, and $(1-\alpha) R_{C} \ll r_{o}$, show that $A_{c m 0}=-\frac{\alpha R_{C}}{2 R_{E E}}\left[1-R\left(\frac{1}{\beta r_{o}}+\frac{1}{\alpha r_{\mu}}\right)\right]$, where $R=2 R_{E E}+\alpha R_{C}$. Note that if the second term inside the square brackets is small compared with unity, $A_{c m 0}$ reduces to that given by Equation 10.1.11.

P10.2 IC Op Amps

P10.2.1 Draw the circuit diagram of a two-stage op amp similar to that of Figure 10.2.1 but using complementary transistors. Assume that $V_{D D}=V_{S S}=2.5 \mathrm{~V}, k_{n}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}$, $V_{t n}=0.5 \mathrm{~V}, \lambda_{n}=0.05 \mathrm{~V}^{-1}, k_{p}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.6 \mathrm{~V}, \lambda_{p}=0.1 \mathrm{~V}^{-1}, I_{\mathrm{REF}}=100 \mu \mathrm{~A}$, $(W / L)=20$ for all the transistors except Q_{8}, and perfect matching. Neglect the body effect. Determine: (a) I_{D} and $V_{o v}$ of all the transistors and $(W / L)_{8}$ to make $V_{O}=0$ for zero input, neglecting channel-width modulation except in Q_{7} and Q_{8}; (b) the overall gain for a differential input; (c) the common-mode gain and the CMRR; (d) the range of common-mode input; (e) the range of output voltage; and (f) C_{c} required to give a dominant pole at 100 Hz based on Equation 10.2.18 and the resulting slew rate.
P10.2.2 Add a source follower stage to the op amp of Problem P10.2.1 consisting of two NMOS transistors Q_{9} and Q_{10} of $(W / L)=20$, with Q_{9} base connected to Q_{7} base. Determine under the same conditions as in Problem P10.2.1: (a) $(W / L)_{8}$ to make $V_{O}=0$ for zero input, (b) the overall gain for a differential input; (c) the range of v_{O}; and (e) $r_{\text {out }}$ compared to Problem P10.2.1.
P10.2.3 In the op amp shown in Figure P10.2.3, $k_{n}^{\prime}=25 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=10 \mu \mathrm{~A} / \mathrm{V}^{2},\left|V_{t}\right|=$ $0.75 \mathrm{~V}, \lambda=0.05 \mathrm{~V}^{-1}$, $I_{\text {REF }}=100 \mu \mathrm{~A}$, and (W / L) of the MOSFETs in $\mu \mathrm{m} / \mu \mathrm{m}$ as indicated. Determine: (a) the noninverting input; (b) I_{D} and $V_{o v}$ of all the transistors and V_{O} for zero input, neglecting channel-width modulation and the body effect and assuming perfect matching; (c) the overall gain for a differential input; and (d) $r_{\text {out }}$.

FIGURE P10.2.3
P10.2.4 Consider the folded-cascode op amp of Figure 10.3.1 with $\pm 2.5 \mathrm{~V}$ power supplies, $I_{D D}=200 \mu \mathrm{~A}, I_{S S}=160 \mu \mathrm{~A}, k_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.4 \mathrm{~V}, V_{t p}=-0.5 \mathrm{~V}$,
$V_{o v}=0.2 \mathrm{~V}, \lambda=0.04 \mathrm{~V}^{-1}$ for all transistors, and negligible body effect. Determine: (a) $V_{\mathrm{BIAS} 1}(\mathrm{~W} / L)_{b, c}(W / L)_{3,4}$, and V_{BIAS3} assuming $V_{S D c}=V_{S D 4}=1.25$ for $V_{O}=0$, and a zero input; (b) $(W / L)_{1,2}(W / L)_{a}$, and $V_{\text {BIAS2 }}$; (c) $V_{\text {BIAS4 }}$ and $(W / L)_{d-g}$; (d) $v_{c m}^{+}, v_{c m}^{-}, v_{O}^{+}$, and v_{O}^{-}; and (e) $A_{v 0}$.
P10.2.5 (a) Determine f_{p} and f_{T} for the op amp of Problem P10.2.4, assuming $C_{L}=50 \mathrm{pF}$;
(b) show that if R_{Z} is added in series with C_{L}, the transfer function is modified to $\frac{r_{\text {out }}\left(1+s C_{L} R_{Z}\right)}{1+s C_{L}\left(r_{\text {out }}+R_{Z}\right)}$; choose R_{z} to place the zero at $1.3 f_{T}$; (c) SR .
P10.2.6 Consider a two-stage BJT op amp similar to that of Figure 10.2.1. Assume that $V_{D D}=V_{S S}=10 \mathrm{~V}, I_{\text {REF }}=200 \mu \mathrm{~A}$, and $\beta=100, r_{\pi}=2 \mathrm{k} \Omega,\left|V_{B E}\right|=0.7 \mathrm{~V}, V_{C E(\text { sat })}=0.3 \mathrm{~V}$, and $V_{A}=100 \mathrm{~V}$ for all transistors. Determine: (a) I_{C} of all the transistors for zero input, neglecting base-width modulation and considering that $V_{O}=0$ for zero input; (b) the overall gain for a differential input; (c) $A_{c m}$ and the CMRR; (d) the range of $v_{c m}$; (e) the range of v_{O}; and (f) C_{c} required to give a dominant pole at 100 Hz and the resulting SR.
P10.2.7 For the op amp shown in Figure P10.2.7, assume that $V_{D}=0.7 \mathrm{~V}$ for a conducting diode, $V_{B E}=0.7 \mathrm{~V}$, and $V_{C E(\text { sat })}=0.3 \mathrm{~V}$. The BJTs are identical and have negligible base current. The FETs are identical with $k_{n}=1 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t n}=1 \mathrm{~V}$. Neglecting base-width and channel-length modulation and the body effect, determine: (a) the noninverting input; (b) V_{O} when $V_{1}=V_{2}=0$; (c) the total circuit power dissipation when $V_{1}=V_{2}=0$; and (d) range of $v_{c m}$.

FIGURE P10.2.7
P10.2.8 Assume that in Figure 10.5.2 $I_{C 1}=I_{C 2}=10 \mu \mathrm{~A}, \beta_{1}$ and β_{2} have a 5% variation from their average value of 200. Determine: (a) bias and offset currents; (b) $r_{i d}$; and (c) G_{m} of the input stage, assuming $\alpha=0.98$ for Q_{3} and Q_{4}.

P10.3 Op Amp Circuits

P10.3.1 An op amp having $V_{i o}=2 \mathrm{mV}$ is to be used for amplifying a signal of 50 mV , the magnitude of gain being 100. Determine the possible values of output voltage if the amplifier is used in: (a) an inverting configuration; (b) a noninverting configuration. Assume $\beta_{0} A_{v} \gg 1$.

P10.3.2 An op amp has input bias currents of 1.2 and $1 \mu \mathrm{~A}$ at the inverting and noninverting terminals, respectively, and an input offset voltage of 2 mV . It is to be used to amplify a signal of 50 mV at unity magnitude of gain. Determine the possible values of output voltage if the amplifier is used in: (a) an inverting configuration with $10 \mathrm{k} \Omega$ resistors; (b) a noninverting configuration with $R_{s r c}=$ $10 \mathrm{k} \Omega=R_{f}$. Assume $\beta_{0} A_{v} \gg 1$.
DP10.3.3 The circuit of Figure P10.3.3 can be used to compensate for the effects of input offset voltage and bias currents in an inverting configuration. The two resistors R_{a} allow good sensitivity of zero adjustment of V_{O} by means of the potentiometer. Normally, R_{3} is much larger, say 20 times, than R_{2} and is also large compared to R_{p}. Under these conditions, show that suitable guidelines for choosing the resistances in the compensating circuit are: (1) $R_{1}+R_{2}=R_{r} \| R_{f}$ and (2) $\left|V_{p}\right| R_{2} / R_{3}$ is slightly larger than $\left|V_{i o}\right|$, where $\left|V_{p}\right| \cong\left|V_{C C}\right| R_{p} /\left(2 R_{a}+R_{p}\right)$ is the magnitude of the voltage at either end of the potentiometer with respect to ground. Determine suitable values for the compensating circuit, assuming $R_{r}=10 \mathrm{k} \Omega, R_{f}=100 \mathrm{k} \Omega, V_{i o(\max)}=5 \mathrm{mV}$, $I_{i o}=0.2 \mu \mathrm{~A}$, and the voltage supplies to be $\pm 10 \mathrm{~V}$.

FIGURE P10.3.3

FIGURE P10.3.4

P10.3.4 Consider the circuit of Figure P10.3.4 with the effects of input offset voltage and bias currents included. Determine v_{O} when: (a) S_{1} and S_{2} are closed; (b) S_{1} is open and S_{2} is closed; (c) S_{1} is closed and S_{2} is open; and (d) S_{1} and S_{2} are open.
P10.3.5 An op amp having $A_{v}=10^{5}$ and CMRR $=1000$ is used in a noninverting configuration with $R_{r}=R_{f}=10 \mathrm{k} \Omega$. The input is $v_{i d}=100 \mathrm{mV}$ and $v_{c m}=1 \mathrm{~V}$. Determine the percentage error due to finite A_{v} and due to the com-mon-mode response.
P10.3.6 An op amp has a differential gain of 10^{5} and a CMRR of 80 dB . If $v_{P}=10 \mu \mathrm{~V}, v_{N}=-10 \mu \mathrm{~V}$, and $v_{c m}=0.1 \mathrm{~V}$, determine $A_{c m}$ and v_{0}, assuming addition at the output.

P10.3.7 Assume that in Figure 10.6.4 $R_{a}=R_{c}=1 \mathrm{k} \Omega, R_{b}=R_{d}=10 \mathrm{k} \Omega, \mathrm{CMRR}=100 \mathrm{~dB}$, and large $A_{v 0}$. Determine the worst-case CMRR for $\pm 1 \%$ resistor tolerance. Simulate with PSpice.
P10.3.8 The slew rate of an amplifier is $2 \mathrm{~V} / \mu \mathrm{s}$. What is the maximum frequency for an undistorted sinusoidal output voltage of: (a) 1 V peak, (b) 5 V peak.
P10.3.9 A train of 0-1 V rectangular pulses is applied to a noninverting amplifier using an op amp of $S R=10 \mathrm{~V} / \mu \mathrm{s}$, the voltage gain being 2 . Assuming equal SR on the leading and trailing edges of pulses, determine the minimum pulse width for a rectangular pulse output.
P10.3.10 This problem illustrates noise calculations. Consider an op amp in the inverting configuration having $R_{r}=1 \mathrm{k} \Omega$ and $R_{f}=10 \mathrm{k} \Omega$ so that the input resistance is R_{r} and the gain is -10 . The total (rms) ${ }^{2}$ noise voltage per unit bandwidth (BW) is given by:

$$
v_{n}^{2}=4 k_{J} T R_{r}+v_{n i}^{2}+\left(R_{r} i_{n i}\right)^{2}
$$

where k_{J} is Boltzmann's constant and T is the absolute temperature. The first term on the RHS is due to R_{r}, and the second and third terms are due, respectively, to the noise voltage and current of the op amp. Assuming $4 k_{J} T=0.3 \times 10^{-20} \mathrm{VA} / \mathrm{Hz}, v_{n i}=20 \mathrm{nV} / \sqrt{\mathrm{Hz}}, i_{n i}=10 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and that $\mathrm{BW}=1 \mathrm{kHz}$, determine: (a) the input noise power $P_{n}=\left(v_{n}^{2} / R_{r}\right) \times(\mathrm{BW})$; (b) the rms noise voltage at the input, $\sqrt{P_{n} R_{r}}$; and (c) the rms noise voltage at the output.

FIGURE P10.4.1

FIGURE P10.4.2

Power Amplifiers and Switches

The preceding chapters were chiefly concerned with low-power semiconductor devices. However, in a host of applications in control, communications, and power conversion, semiconductor devices handle substantial power that can exceed tens of kilowatts. In these applications, the semiconductor device may operate in a continuous mode, as was discussed in the preceding chapter, or in a switching mode, that is, being either fully conducting or cutoff. When the device is cutoff, power dissipation is insignificant, whereas in full conduction, the voltage across the device is small and power dissipation is low; however, substantial power can be dissipated in the semiconductor device during switching, when both the current through the device and the voltage across it may be appreciable. Continuous signals, such as audio signals, can still be amplified in the switching mode, using an appropriate modulation scheme.
To enable them to meet the demanding requirements of power amplification and switching, power diodes, MOSFETs and BJTs embody some special structural features that alter their mode of operation and characteristics. The effects of these modifications readily follow from the basic concepts previously discussed. Special precautions have to be taken to ensure that the devices operate within safe limits of current, voltage, and power dissipation. In power amplifiers, signal levels are no longer small, so that issues such as power-conversion efficiency and signal distortion become important. The switching mode entails several additional precautions, particularly concerning maximum allowable rates of change of voltage and current. Because power MOSFETs and BJTs have their advantages and limitations, a device that combines some of the advantages of both, the insulated gate bipolar transistor (IGBT), has gained popularity for medium power applications. In addition, a whole class of semiconductor power latches having some very useful properties can be used in certain power applications.

Learning Objectives

* To be familiar with:
- The safe operating area of transistors.
- The power derating curve of semiconductor devices.
- The terminology used in dc-dc and dc-ac power conversion.
- The terminology associated with power latches.
* To understand:
- The physical considerations that determine the maximum allowed limits on transistor output current, voltage, and power.
- The dependence of the maximum allowed power dissipation in a semiconductor device on the total thermal resistance with respect to the ambient environment.
- The factors that contribute to thermal instability and how stability may be achieved.
- The distinguishing features of class $\mathrm{A}, \mathrm{B}, \mathrm{AB}$, and C operation, particularly in terms of power-conversion efficiency.
- The advantages of push-pull operation of power output stages.
- How transistor output stages may be used to augment the current, voltage, and power delivered by a small-signal op amp.
- The advantages of switching in power applications.
- The basic schemes of class D amplification, dc-dc, and dc-ac conversion.
- The nature and effects of structural modifications of power diodes and power transistors and the departure of the behavior of these devices from their small-signal counterparts.
- The principle of operation of IGBTs and several types of power latches.

11.1 General Considerations

Safe Operating Limits

Power transistors have safe operating limits defined in terms of the maximum allowable current, voltage, and power dissipation. On the plot of output current vs. output voltage, these limits define a safe operating area (SOA), as in Figure 11.1.1. $v_{\text {out(max) }}$ is the maximum instantaneous value that will cause avalanche breakdown if exceeded. $i_{\text {out(max) }}$ is the maximum continuous value that, if exceeded, will generate sufficient heat to cause damage (Application Window 11.1.1). Whereas $i_{\text {out (max) }}$ is a usable current in a MOSFET, it may not be in a BJT, because at this high current level, β_{F} may be too low and the base current correspondingly large.

The thermal dissipation hyperbola is defined by $P_{D(\max)}$, the maximum power that can be safely dissipated in the transistor. For a MOSFET, $P_{D(\max)}=v_{D S} i_{D S}=v_{o u t} i_{o u t}$. For a BJT, $P_{D(\max)}=v_{B E} i_{E}+v_{C B} i_{C} \cong v_{C E} i_{C}=v_{\text {out }} i_{\text {out }}$ if $v_{B E} i_{B}$ is negligible compared to $v_{C B} i_{C} . P_{D(\max)}$ is

Safe operating limits of a transistor.

limited by the maximum junction temperature $T_{J(\max)}$, which for Si transistors is in the range $150^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$. Beyond this temperature, semiconductor devices are irreversibly damaged (Application Window 11.1.1). A lower limit exists in BJTs, referred to as second breakdown, due to current crowding at the emitter-base junction (Section 6.1, Chapter 6), which results in localized heating and necessitates reducing $P_{D(\max)}$ so that $T_{J(\max)}$ is not exceeded at these hot spots. Generally speaking, BJTs have larger $i_{\text {out (max) }}, v_{\text {out (max) }}$, and $P_{D(\max)}$, than MOSFETs.

Because of the thermal nature of their effects, $i_{o u t(\max)}$ and $P_{D(\max)}$ are dc or rms values for continuous operation. When operation is intermittent, these values may safely be exceeded to an extent that depends on the duty cycle.

Application Window 11.1.1 Effects of Temperature on Semiconductor Devices

Semiconductor devices are affected by high temperatures, low temperatures, and sudden changes in temperature. Military specifications typically specify an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. High ambient temperatures are encountered in automotive applications, where electronic circuits may be housed close to an internal combustion engine. Space applications expose semiconductors to extreme temperatures in addition to radiation. When a satellite is in earth orbit but in shadow from the sun, temperature can drop to around $-230^{\circ} \mathrm{C}$, whereas a probe on Venus may be subjected to a temperature of $+500^{\circ} \mathrm{C}$. The conventional approach has been to use heaters or coolers to keep the temperature of electronic circuits within safe limits, but at the expense of added cost and weight. The recent trend has been to dispense with temperature control in favor of materials and fabrication methods that can cope with extreme temperatures. SiGe and GaAs improve the low-temperature operation of bipolar devices. Silicon carbide shows promise as a semiconductor for very high temperatures.

A rise in temperature generates electron-hole pairs; the additional minority carriers can seriously affect the operation of bipolar devices and can cause thermal runaway at high enough temperatures. MOSFET devices, being unipolar, are much less affected by carrier generation. In SOI technology, the silicon oxide barriers further limit the effect of generated carriers. High temperatures greatly accelerate aging effects in semiconductor devices, leading to rapid deterioration and failure. The high temperatures can melt the solder in contact metallization or the wires that bond the transistor chip to the package. These bond wires can also break due to temperature cycling. The effects of low temperatures are not as clear cut, and may be beneficial under certain conditions, but tests have indicated that bipolar devices fail below about $-200^{\circ} \mathrm{C}$ and CMOS devices below about $-230^{\circ} \mathrm{C}$.

Thermal Resistance

The relationship between heat flow and temperature can be expressed in terms of thermal resistance, considering that heat flow is analogous to current and temperature difference is analogous to voltage difference (Sabah 2008, p. 783). Hence, thermal resistance θ in ${ }^{\circ} \mathrm{C} / \mathrm{W}$ is temperature difference in ${ }^{\circ} \mathrm{C}$ divided by heat flow in watts.

Typically, power transistors are designed and mounted so as to remove heat efficiently from collector or drain, which have a large area and are in direct contact with a metal side or case of the transistor. Heat is generally removed in the following ways that are progressively more efficient thermally: (1) Where power dissipation is small, the transistor is simply mounted in free air. Heat is lost from the exposed plastic case or metal side to the surrounding air through radiation and convection. A small, finned, heat sink may be fitted to the transistor case to increase heat loss. (2) The transistor is bolted to the metal chassis so that the metal side or case

FIGURE 11.1.2
Thermal equivalent circuit of a transistor.

is in intimate contact with the chassis. A thermally conductive paste is usually applied to fill any voids between the two metallic surfaces, which results in better heat conduction from the transistor to chassis. Since the chassis is normally grounded, whereas the collector or drain generally are not, a thin mica wafer is inserted between the transistor and chassis to provide electrical insulation with good thermal conduction. Insulating sleeves or bushings are used to prevent contact between transistor leads and the chassis. (3) The transistor is bolted to a relatively large, finned heat sink that dissipates heat efficiently through radiation and convection. To improve heat loss through radiation, the heat sink is blackened. The same electrical insulation precautions are taken as in the case of direct bolting to the chassis. (4) A fan is used to blow air over the heat sink for more efficient heat removal through convection. (5) A liquid coolant is used to conduct heat away.

In the typical thermal equivalent circuit of Figure 11.1.2, the current source P_{D} represents the power dissipated in the transistor. Four nodes are identified: junction (J), case (C), heat sink (S), and ambient environment (A). A thermal resistance θ connects adjacent nodes. In the steady state, heat is generated at a rate P_{D} and removed at an equal rate $P_{\text {REM }}$. It follows that:

$$
\begin{equation*}
P_{D(\max)}=P_{\mathrm{REM}}=\frac{T_{J(\max)}-T_{A}}{\theta_{J A}}=\frac{T_{J(\max)}-T_{A}}{\theta_{J C}+\theta_{\mathrm{CS}}+\theta_{S A}} \tag{11.1.1}
\end{equation*}
$$

where
$T_{J(\max)}$ is the maximum allowed junction temperature
$P_{D(\max)}$ is the corresponding power dissipation
For a given $\left(T_{J(\max)}-T_{A}\right)$, the lower $\theta_{J A}$, the higher is $P_{D(\max)}$. If the transistor is mounted in free air, $\theta_{J C}$ is unchanged, because it depends on the transistor, but $\theta_{C A}=\theta_{C S}+\theta_{S A}$ is much larger than that with an efficient heat sink, so that $P_{D(\max)}$ is much lower.

Exercise 11.1.1

A transistor has $\theta_{J C}=2.5^{\circ} \mathrm{C} / \mathrm{W}, \theta_{C S}=0.4^{\circ} \mathrm{C} / \mathrm{W}$, and $\theta_{S A}=3.6^{\circ} \mathrm{C} / \mathrm{W}$. (a) If the transistor dissipates 25 W at $T_{A}=25^{\circ} \mathrm{C}$, what is T_{J} ? (b) When mounted without a heat sink, $\theta_{C A}=27.5^{\circ} \mathrm{C} / \mathrm{W}$. What is $P_{D(\max)}$ at $T_{A}=25^{\circ} \mathrm{C}$, if $T_{J(\text { max })}=150^{\circ} \mathrm{C}$?

Answers: (a) $187.5^{\circ} \mathrm{C}$; (b) 4.17 W .

FIGURE 11.1.3

Transistor derating curve.

Manufacturer's data sheets usually specify $\theta_{J C}$ and $P_{D(\max)}\left(T_{C(\mathrm{REF})}\right)$, either explicitly or through a power derating curve that relates $P_{D(\max)}$ to T_{C} (Figure 11.1.3), where $T_{C(\text { REF })}$ is a reference case temperature. As it is generally impractical to maintain T_{C} at a temperature below $T_{C(\text { REF })}, P_{D(\max)}$ is considered constant at $P_{D(\max)}\left(T_{C(\mathrm{REF})}\right)$ for $T_{C} \leq T_{C(\mathrm{REF})}$. For $T_{C} \geq T_{\mathcal{C (R E F)}}$:

$$
\begin{equation*}
P_{D(\max)}=\frac{T_{J(\max)}-T_{C}}{\theta_{J C}}, \quad T_{C} \geq T_{C(\mathrm{REF})} \tag{11.1.2}
\end{equation*}
$$

If $T_{C}=T_{J(\max)}$, then $P_{D(\max)}=0$, that is, no power dissipation is allowed.

Example 11.1.1 Transistor Derating

A transistor has $T_{/(\max)}=150^{\circ} \mathrm{C}, P_{D(\text { max })}=30 \mathrm{~W}$ at $T_{C(\text { REF })}=25^{\circ} \mathrm{C}, \theta_{/ C}=3^{\circ} \mathrm{C} / \mathrm{W}$, and $\theta_{C A}=42^{\circ} \mathrm{C} / \mathrm{W}$ when operated in free air, and $T_{A}=50^{\circ} \mathrm{C}$. It is required to determine: (a) the maximum power that can be safely dissipated; (b) the thermal resistance of a heat sink that would allow the transistor to safely dissipate 15 W , assuming $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$.

Solution

(a) In free air, $\theta_{J A}=3+42=45^{\circ} \mathrm{C} / \mathrm{W}$. Hence, $P_{D}=\frac{150-50}{45}=2.2 \mathrm{~W}$.
(b) To dissipate 15 W for a temperature rise of junction of $100^{\circ} \mathrm{C}$ requires a total junction-to-ambient thermal resistance $\theta_{J A}$ of $100 / 15=6.7^{\circ} \mathrm{C} / \mathrm{W}$. With $\theta_{/ C}=3^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$, the thermal resistance of the heat sink should not exceed $6.7-3-0.5=$ $3.2^{\circ} \mathrm{C} / \mathrm{W}$.

Exercise 11.1.2

The derating curve of a transistor indicates $P_{D(\max)}=50 \mathrm{~W}$ at $T_{C \text { ref }}=25^{\circ} \mathrm{C}$, and $T_{J(\max)}=175^{\circ} \mathrm{C}$. What is the maximum $\theta_{C A}$ so that the junction temperature will not exceed $175^{\circ} \mathrm{C}$ when the transistor dissipates 10 W at $T_{A}=50^{\circ} \mathrm{C}$?

Answer: $9.5^{\circ} \mathrm{C} / \mathrm{W}$.

Thermal Stability

Concept: If the output current of a power transistor increases with temperature, then under certain conditions, thermal instability, or thermal runaway, can occur.

This is because the increase in output current increases power dissipation. If heat is not removed fast enough, the rise in temperature increases the output current, which further increases the temperature, and so on, leading to destruction of the transistor. i_{C} of a BJT increases with T (Section 6.2, Chapter 6), whereas i_{D} for a MOSFET increases with T for low i_{D} and decreases with T for high i_{D} (Section 5.3, Chapter 5). When the output current increases with temperature, thermal stability is assured by having a low enough thermal resistance from the junction to the ambient environment, or by having a sufficiently high electrical resistance in the output circuit (Section ST11.1). In this case, an increase in the output current leads to a large enough decrease in output voltage, so that power dissipation decreases.

Nonlinear Distortion

Relatively high power outputs imply large-signal operation that departs from linearity and introduces nonlinear distortion. In a BJT, for example, the output characteristics are more crowded at larger values of currents, so that the variation of i_{C} with i_{B} is nonlinear and leads to distortion in large-signal operation. This variation can be expressed as a power relation:

$$
\begin{equation*}
i_{c}=b_{1} i_{b}+b_{2} i_{b}^{2}+b_{3} i_{b}^{3}+\cdots \tag{11.1.3}
\end{equation*}
$$

where $b_{1}, b_{2}, b_{3}, \ldots$ are constant coefficients. For small-signal variations, higher powers of i_{b} are neglected, so that $b_{1}=\beta$ in this case. If $i_{b}=i_{b m} \cos \omega t$, then i_{c} is obtained by substituting for i_{b} in Equation 11.1.3, leading to the following deductions: (1) Even powers of $\cos \omega t$, such as $\cos ^{2} \omega t$, introduce a dc component, since $\cos ^{2} \omega t=(1+\cos 2 \omega t) / 2$. Because the ac signal changes the dc collector current, rectification is said to occur. The nonlinearity is such that rectification decreases the quiescent current. (2) A term in $\cos n \omega t, n=2,3, \ldots$, introduces an nth harmonic as well as lower-order harmonics that are odd or even, depending on whether n is odd or even, respectively. For example, a term in $\cos ^{3} \omega t$ introduces a third harmonic as well as a fundamental component. A term in $\cos ^{4} \omega t$ introduces a fourth harmonic as well as a second harmonic and a dc component (Appendix SA). (3) If the input signal has more than one frequency, as is usually the case, the nonlinearity also introduces intermodulation products having frequencies that are the sums and differences of input frequencies and their harmonics (Example SE1.5, Chapter 1).

Distortion in FET amplifiers is generally greater than in BJT amplifiers, because of the quadratic relation between i_{D} and $v_{G S}$. In the presence of distortion, the output current of either a FET or a BJT amplifier can be expressed as a Fourier Series Expansion (FSE):

$$
\begin{equation*}
i_{\text {out }}=a_{0}+a_{1} \cos \omega t+a_{2} \cos 2 \omega t+a_{3} \cos 3 \omega t+\cdots \tag{11.1.4}
\end{equation*}
$$

The Fourier coefficients can be determined graphically from the i_{C} waveform, as explained in Section ST11.2. The harmonic distortion D_{n} due to the nth harmonic is defined as:

$$
\begin{equation*}
D_{n}=\left|\frac{a_{n}}{a_{1}}\right| \tag{11.1.5}
\end{equation*}
$$

or as a percentage. The total harmonic distortion (THD) D is obtained by considering the total power dissipated in a resistance R_{L} due to the ac component:

$$
\begin{equation*}
P=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+\cdots\right) \frac{R_{L}}{2}=\left(1+D_{2}^{2}+D_{3}^{2}+\cdots\right) P_{1}=\left(1+D^{2}\right) P_{1} \tag{11.1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
D=\sqrt{D_{2}^{2}+D_{3}^{2}+D_{4}^{2}+\cdots} \tag{11.1.7}
\end{equation*}
$$

and

$$
P_{1}=a_{1}^{2} R_{L} / 2
$$

Because of D^{2} in Equation 11.1.6, the power due to harmonics is generally negligible compared to that due to the fundamental. Thus, if $D=0.1$, corresponding to 10% THD, the power due to the harmonics is only $0.01 P_{1}$.

Distortion meters are available for measuring harmonic distortion, which for good fidelity should not exceed a total of 0.1%. Distortion is usually reduced by applying negative feedback from the output to earlier stages of voltage amplification (Problems P.11.2.3 through P11.2.5).

Power-Conversion Efficiency

The power-conversion efficiency of an output stage is defined as:

$$
\begin{equation*}
\eta=\frac{P_{1}}{P_{S}} \times 100 \tag{11.1.8}
\end{equation*}
$$

where $P_{S}=V_{C C} a_{0}$ (Equation 11.1.4) is the power delivered by the dc power supply to the output stage, neglecting the small power due to the base current in the case of a BJT.

Concept: Not only is high power-conversion efficiency desirable, but also low power dissipation in the absence of the signal.

Both measures reduce the cost of the power supply, prolong battery life in batterypowered equipment, and reduce the amount of heat that has to be removed through cooling.

Simulation Example 11.1.2 Performance of Power Darlington Pair

Consider a 2N6059 power Darlington pair that is very simply biased as in Figure 11.1.4. It is desired to investigate distortion using PSpice.

Solution

The 2N6059, part number Q2N6059 in PSpice EVAL library, is rated at $100 \mathrm{~V}, 12 \mathrm{~A}$, 150 W. Its output characteristics, derived from PSpice as in Example 6.2.1, Chapter 6, are shown in Figure 11.1.5, with a 4Ω load line. Note that $V_{C(\text { sat })}=1.25 \mathrm{~V}$ at $i_{C}=4.2 \mathrm{~A}$. For illustration purposes, the quiescent point Q is chosen at $V_{C}=6.7 \mathrm{~V}$ and $I_{C Q}=2.82 \mathrm{~A}$, $I_{B O}=0.4 \mathrm{~mA}$. The corresponding, measured input voltage is 1.56 V , so a base resistor of $(18-1.56) / 0.4=41.1 \mathrm{k} \Omega$ is required.

A sinusoidal current source of 0.25 mA amplitude, 1 kHz , is applied. Because the input resistance is determined to be about $0.6 \mathrm{k} \Omega$, about 98.6% of the source current is the base current of the transistor. The results of a Fourier analysis of the collector current are as follows:

DC component $=2.486682 \mathrm{E}+00$

FIGURE 11.1.4
Figure for Example 11.1.2.

FIGURE 11.1.5
Figure for Example 11.1.2.

Harmonic No	Frequency $(H z)$	Fourier Component	Normalized Component	Phase (Deg)	Normalized Phase (Deg)
1	$1.000 \mathrm{E}+03$	$1.361 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	$-4.897 \mathrm{E}+00$	$0.000 \mathrm{E}+00$
2	$2.000 \mathrm{E}+03$	$3.827 \mathrm{E}-01$	$2.812 \mathrm{E}-01$	$7.663 \mathrm{E}+01$	$8.643 \mathrm{E}+01$
3	$3.000 \mathrm{E}+03$	$1.460 \mathrm{E}-01$	$1.073 \mathrm{E}-01$	$1.566 \mathrm{E}+02$	$1.712 \mathrm{E}+02$
4	$4.000 \mathrm{E}+03$	$6.297 \mathrm{E}-02$	$4.627 \mathrm{E}-02$	$-1.243 \mathrm{E}+02$	$-1.047 \mathrm{E}+02$
5	$5.000 \mathrm{E}+03$	$2.921 \mathrm{E}-02$	$2.146 \mathrm{E}-02$	$-4.577 \mathrm{E}+01$	$-2.129 \mathrm{E}+01$
6	$6.000 \mathrm{E}+03$	$1.420 \mathrm{E}-02$	$1.043 \mathrm{E}-02$	$3.277 \mathrm{E}+01$	$6.215 \mathrm{E}+01$
7	$7.000 \mathrm{E}+03$	$7.152 \mathrm{E}-03$	$5.256 \mathrm{E}-03$	$1.107 \mathrm{E}+02$	$1.449 \mathrm{E}+02$
8	$8.000 \mathrm{E}+03$	$3.664 \mathrm{E}-03$	$2.693 \mathrm{E}-03$	$-1.716 \mathrm{E}+02$	$-1.324 \mathrm{E}+02$
9	$9.000 \mathrm{E}+03$	$1.967 \mathrm{E}-03$	$1.445 \mathrm{E}-03$	$-9.664 \mathrm{E}+01$	$-5.257 \mathrm{E}+01$
10	$1.000 \mathrm{E}+04$	$9.990 \mathrm{E}-04$	$7.341 \mathrm{E}-04$	$-2.604 \mathrm{E}+01$	$2.293 \mathrm{E}+01$

FIGURE 11.1.6
Figure for Example 11.1.2.

Total Harmonic Distortion = 3.055424E+01\%

The applied signal decreases the dc collector current from a quiescent value of 2.82 A to 2.49 A. Total harmonic distortion is about 30.5%. The signal power dissipated in the 4Ω collector resistor is $(1.361)^{2} \times 4=7.41 \mathrm{~W}$. The dc supply delivers 50.8 W , which gives a power-conversion efficiency of about 14.6%. The dc power dissipated in the base resistor is only about 6.6 mW and that dissipated in the base input is $0.4 \times 1.56=0.6 \mathrm{~mW}$.

The distortion arises from the nonlinear relation between i_{C} and i_{B} (Figure 11.1.6). Since the curvature of this plot is similar to that of the $v_{B E}-i_{B}$ relation, it would be expected that a voltage drive produces less distortion in i_{C} than a current drive (Exercise 11.1.3).

Exercise 11.1.3

Compare the i_{C} waveforms for: (a) a current drive as in Example 11.1.4, and (b) a voltage drive that gives the same peak-to-peak variation in i_{C} as in (a). What is the total harmonic distortion in the case of voltage drive?

11.2 Class A Operation

Concept: In class A operation, the output current of the power transistor flows throughout the signal cycle, as in small-signal operation, except that the swings in output current and output voltage are not small.

In the CE amplifier of Figure 11.2.1, the input circuit is the dc and low-frequency ac Thevenin's equivalent circuit (TEC) of the biasing network and the applied source. From KVL in the output circuit under dc conditions,

$$
\begin{equation*}
V_{C E Q}=V_{C C}-R_{C} I_{C Q}-R_{E} I_{E Q}=V_{C C}-I_{C Q}\left(R_{C}+\frac{\beta_{F}+1}{\beta_{F}} R_{E}\right)=V_{\mathrm{CC}}-R_{d c} I_{C Q} \tag{11.2.1}
\end{equation*}
$$

FIGURE 11.2.1
Basic class A amplifier.
where,

$$
\begin{equation*}
R_{d c}=R_{C}+\frac{\beta_{F}+1}{\beta_{F}} R_{E} \cong R_{C}+R_{E} \tag{11.2.2}
\end{equation*}
$$

The quiescent point Q (Figure 11.2.2a) is the intersection of the output characteristic for the given I_{B} with the dc load line of slope $-1 / R_{d c}$. With large coupling and emitter by-pass capacitors, the ac load is $R_{a c}=R_{L} \| R_{C}$, so that when an ac signal is applied, the operating point moves along an ac load line of slope $-1 / R_{a c}$. Figure 11.2.2a is redrawn in Figure 11.2.2b to show only the ac load line, assuming that $v_{C E(\text { sat })}$ is negligibly small, so that the operating point can move all the way to the vertical axis. Suppose that a sinusoidal base current is applied and that harmonic distortion is negligible; the variations in i_{C} and $v_{C E}$ are sinusoidal and the operating point moves between the two limits Q^{\prime} and $\mathrm{Q}^{\prime \prime}$, the peak values of i_{C} and $v_{C E}$ being $I_{c m}$ and $V_{c e m}$, respectively. Maximum signal amplitude occurs when the quiescent point Q is at the midpoint of the ac load line, and Q^{\prime} and $Q^{\prime \prime}$ lie on the current and voltage axes, respectively, which gives:

$$
\begin{equation*}
V_{C E Q}=R_{a c} I_{C Q} \tag{11.2.3}
\end{equation*}
$$

FIGURE 11.2.2
(a) dc and ac load line construction; (b) idealized ac operation.

This is the case of maximum symmetrical swing, neglecting distortion and assuming $v_{C E(\text { sat })}=0$. It can be shown that when Q is chosen for maximum symmetrical swing, the ac load line is tangent to the maximum dissipation hyperbola at Q (Problem P11.3.2).
It follows from Equations 11.2.1 and 11.2.3 that:

$$
\begin{equation*}
I_{C Q}=\frac{V_{C C}}{R_{d c}+R_{a c}} \quad \text { and } \quad V_{C E Q}=\frac{R_{a c}}{R_{d c}+R_{a c}} V_{C C} \tag{11.2.4}
\end{equation*}
$$

The ac power delivered to the load is $V_{c e m} I_{c m} / 2$. The power delivered by the dc power supply is $V_{C C} I_{C}$, neglecting the power supplied to the base circuit. Applying Equation 11.1.8,

$$
\begin{equation*}
\eta=\frac{1}{2} \frac{V_{c e m} I_{c m}}{V_{C C} I_{S}} \times 100 \tag{11.2.5}
\end{equation*}
$$

where I_{S} is the supply current. η increases with signal amplitude. Under conditions of maximum symmetrical swing, $I_{c m(\max)}=I_{C Q}=I_{S}$ and $V_{c e m(\max)}=V_{C E Q}$. If, in addition, $R_{a c}=R_{d c}$, then $V_{C E Q}=V_{C C} / 2$ (Equation 11.2.4). Substituting in Equation 11.2.5 gives $\eta_{\text {max }}=25 \%$.

When $R_{E} \neq 0, \eta_{\max }=R_{L} /\left(4 R_{L}+2 R_{E}\right) 100$ (Problem P11.3.3). Moreover, the power delivered by the dc supply in the absence of a signal is $V_{C C} I_{C}$, the same as in the presence of a signal, neglecting distortion and the power supplied to the base circuit.

Exercise 11.2.1

Verify Equations 11.2.4. Note that in Figure 11.2.2b, $i_{C(\max)}=2 I_{C Q}$ and $v_{C E(\max)}=2 V_{C E Q}$.

Example 11.2.1 Capacitively Coupled Class A Amplifier

Given a load of 50Ω that is to be supplied from a CE output stage having $R_{E}=5 \Omega$ for good bias stability. If $\beta_{F}=50$ and the power supply is 28 V , it is required to determine the maximum power that can be delivered to the load using capacitive coupling such that the ac power dissipated in R_{C} does not exceed 25% of the power dissipated in R_{L}.

Solution

The ac output voltage signal appears across R_{C} in parallel with R_{L}. If the ac power dissipated in R_{C} is not to exceed 25% of the power dissipated in $R_{L}, R_{C}=4 R_{L}=200 \Omega$. Hence, $R_{\mathrm{ac}}=200 \| 50=40 \Omega$, and $R_{d c}=200+5(51 / 50)=205.1 \Omega$. It follows from Equations 11.2.4 that $I_{C Q}=28 /(40+205.1)=114 \mathrm{~mA}$ and $V_{C E Q}=4.57 \mathrm{~V}$. The maximum ac power is $\frac{1}{2} V_{\text {CEQ }} I_{C Q}=0.114 \times 4.57=0.52 \mathrm{~W}$. The power delivered to the 50Ω load is $0.52 \times 40 / 50=0.42 \mathrm{~W}$ and that dissipated in R_{C} is 0.11 W . The power delivered by the supply, neglecting that in the base circuit, is $V_{C C} \times I_{C Q}=3.19 \mathrm{~W}$. The maximum powerconversion efficiency is $(0.42 / 3.19) \times 100 \cong 13 \%$.

Note that the main reason for this low efficiency is the presence of R_{C}. If the load R_{L} is dc coupled, that is, R_{L} is connected in place of $R_{C}, P_{L(\max)}$ increases to 1.78 W and $\eta_{\max }$ becomes 23.8%. If $R_{E}=0, P_{L(\max)}$ increases to 1.96 W and $\eta_{\max }$ becomes 25% (Exercise 11.2.2).

Exercise 11.2.2

Determine $I_{C Q}, V_{C E Q}$, and $\eta_{\max }$ in Example 11.2.1 if the 50Ω load is dc coupled: (a) in the presence of R_{E}; (b) when $R_{E}=0$.

Answers: (a) $I_{C Q}=267 \mathrm{~mA}, V_{C E Q}=11.3 \mathrm{~V}, P_{L(\max)}=1.78 \mathrm{~W} ; \eta_{\max }=23.8 \%$; (a) $I_{C Q}=280 \mathrm{~mA}$, $V_{C E Q}=14 \mathrm{~V}, P_{L(\max)}=1.96 \mathrm{~W} ; \eta_{\max }=25 \%$.

Transformer Coupling

Concept: The maximum theoretical power-conversion efficiency can be doubled by coupling the load through a transformer, basically because of elimination of power dissipation in R_{C}.

Transformer coupling of the load is illustrated in Figure 11.2.3a. Applying KVL to the output circuit under dc conditions,

$$
\begin{equation*}
V_{C E Q}=V_{C C}-r_{p} I_{C Q}-R_{E} I_{E Q}=V_{C C}-I_{C Q}\left(r_{p}+\frac{\beta_{F}+1}{\beta_{F}} R_{E}\right)=V_{C C}-R_{d c} I_{C Q} \tag{11.2.6}
\end{equation*}
$$

where
r_{P} is the small dc resistance of the primary winding

$$
R_{d c}=r_{p}+R_{E}\left(\beta_{F}+1\right) / \beta_{F} \cong r_{p}+R_{E} \text { (Figure 11.2.3b) }
$$

If the primary-to-secondary turns ratio is n, the resistance reflected to the primary circuit is $R_{P}=n^{2} R_{L}$, irrespective of the dot markings of the transformer. If $i_{c}=I_{c m} \cos \omega t$, the signal voltage across the primary is: $v_{p}=V_{p m} \cos \omega t$, where $V_{p m}=R_{p} I_{c m}$, neglecting the small $r_{p} i_{c}$ voltage drop. For the ac signal: $v_{c e}=-v_{p}=-R_{P} i_{c}$. The operating point moves along an ac load line passing through Q and having a slope $-1 / R_{P}$. The ac load line is in this case less steep than the dc load line.

The power delivered to the transformer primary is $V_{c e m} I_{c m} / 2$, where $V_{c e m}=V_{p m}=R_{p} I_{c m}$. This is the same as the power delivered to the load, neglecting losses in the transformer. The power-conversion efficiency is still given by Equation 11.2.5, but with an important difference. During one half-cycle, while i_{C} increases and the operating point moves toward $\mathrm{Q}^{\prime}, v_{p}$ opposes the increase in i_{C} and subtracts from $V_{C C}$. But during the other half-cycle,

FIGURE 11.2.3
(a) Transformer-coupled, class A amplifier; (b) load-line construction.
while i_{C} decreases and the operating point moves toward $\mathrm{Q}^{\prime \prime}, v_{p}$ opposes the decrease in i_{C} and adds to $V_{C C}$. This means that $v_{C E}$, the instantaneous collector-emitter voltage now exceeds $V_{\text {Cc }}$.

If $R_{E}=0=r_{p}$ the dc load line is a vertical line at $v_{C E}=V_{C C}$, so that $V_{C E Q}=V_{C C}$. Neglecting the saturation voltage of the transistor, distortion, the power supplied to the base circuit, and transformer losses, the maximum value of $I_{c m}$ is $I_{c m(\max)}=I_{C Q}=I_{S}$, the maximum value of $V_{c e m}$ is $V_{c e m(\max)}=V_{C E Q}=V_{C C}$, and the power supplied is $V_{C C} I_{S}$. Substituting in Equation 11.2.5, gives a maximum theoretical efficiency of 50% rather than 25%.
$R_{a c}$ for maximum symmetrical swing is given by Equation 11.2 .3 and can be determined in a number of ways. If $i_{C(\max)}$ is specified, then $I_{C Q}=i_{C(\max)} / 2$, as in the ac-coupled case. Once $I_{C Q}$ is fixed, $V_{C E Q}$ can be determined from Equation 11.2.6. Or, if $v_{C E(\max)}$ is specified, $V_{C E Q}=v_{C(\max)} / 2$, and $I_{C Q}$ can then be determined from Equation 11.2.6. Alternatively, the quiescent operating point can be determined from the maximum power dissipation hyperbola using the basic geometrical property that the tangent to a hyperbola is bisected by the point of tangency (Problem P11.3.2). The ac load line may be drawn tangential to the hyperbola and passing through $Q, i_{C(\max)}$, or $v_{C E(\max)}$. Examples of these methods are considered in Problems P11.3.9 through P11.3.14. Once $R_{a c}$ is selected, and R_{L} is given, n is found from the relation $R_{a c}=n^{2} R_{L}$.

Design Example 11.2.2 Transformer-Coupled Class A Amplifier

A 6.6Ω load is coupled through a transformer having $r_{p}=0.9 \Omega$ using the same supply and transistor as in Example 11.2.1. It is required to determine the turns ratio, the maximum power delivered to the load, and the power-conversion efficiency, assuming that $i_{C(\max)}=0.5 \mathrm{~A}$.

Solution

Under conditions of maximum symmetrical swing, $I_{C Q}=i_{C(\max)} / 2=0.25 \mathrm{~A} . R_{d c}=0.9+5 \times$ $51 / 50=6 \Omega$. From Equation 11.2.6, $V_{C E Q}=28-6 \times 0.25=26.5 \mathrm{~V}$. Hence, $R_{a c}=26.5 /$ $0.25=106 \Omega$. This gives: $n=\sqrt{106 / 6.6}=4$. The maximum power delivered to the load, assuming no losses in the transformer is $V_{C E Q} I_{C Q} / 2=3.31 \mathrm{~W}$, and $\eta=100 \times 3.31 /$ $(28 \times 0.25)=47.3 \%$. If $R_{E}=0$ and r_{p} is neglected, $V_{C E Q}=28 \mathrm{~V}$, the maximum load power delivered to the transformer is $0.5 \times 28 \times 0.25=3.5 \mathrm{~W}$, and $\eta=100 \times 3.5 /(28 \times 0.25)=50 \%$.

Exercise 11.2.3

Verify that Equations 11.2.4 apply to Example 11.2.2.

Emitter Follower

The emitter follower is a useful class A output stage because of its high input resistance and low output resistance, which means that most of the signal voltage appears across the load. Figure 11.2.4a shows an emitter follower biased with what is effectively a dc current source $I_{E E}$. Figure 11.2.4b corresponds to Figure 11.2.2b and shows only the ac load line drawn with respect to i_{E} and $v_{C E}$ axes. The quiescent point Q is located on the midpoint of the load line for maximum symmetrical swing. Neglecting the small-signal variation $v_{e b}, v_{o}$ follows v_{i}. Assuming sinusoidal operation, the operating point swings between Q^{\prime} and $\mathrm{Q}^{\prime \prime}$,

FIGURE 11.2.4
(a) Emitter follower power amplifier; (b) ac load line construction.
where $V_{o m}=V_{i m}$ and $I_{o m}=V_{o m} / R_{L}$. The load power is $P_{L}=V_{e m} I_{o m} / 2$. The power delivered by the supply is $V_{C C} I_{E E}$. Hence,

$$
\begin{equation*}
\eta=\frac{P_{L}}{P_{S}} \times 100=\frac{1}{2} \frac{V_{o m} I_{o m}}{V_{C C} I_{E E}} \times 100=\frac{1}{2} \frac{V_{o m}^{2}}{R_{L} V_{C C} I_{E E}} \times 100 \tag{11.2.7}
\end{equation*}
$$

Under conditions of maximum symmetrical swing, $V_{o m(\max)}=V_{C C} / 2$ and $I_{o m(\max)}=I_{E E}$ assuming, as before, that $v_{C E(\max)}=0$. It follows from Equation 11.2.6 that $\eta_{\max }=25 \%$. Note that the positive excursion of v_{o} is limited by transistor saturation, whereas the negative excursion of v_{o} is limited by the transistor cutting off, when $I_{o(\max)}=I_{E E}$.

It was implicitly assumed in all class A operation that the input drive can be adjusted to give maximum swing in the output current and voltage, and hence maximum power output. If the transistor input is fixed, maximum power in the load occurs when the load resistance equals $r_{\text {out }}$, the output resistance of the transistor. This is the condition for maximum power transfer between the source and load as derived in electric circuit analysis.

Example 11.2.3 Emitter Follower Class A Amplifier

Consider Example 11.2.1, with $\beta_{F}=50, V_{C C}=12 \mathrm{~V}$, and the 100Ω load capacitively coupled to an emitter follower. It is required to determine the maximum power delivered to the load and the maximum efficiency.

Solution

With a +12 V supply, $V_{C E Q}=6 \mathrm{~V}$, and $V_{o m(\max)}$ may be, 5.8 V , at the saturation limit. The power delivered to the load is $(1 / 2)\left[(5.8)^{2} / 100\right] \cong 170 \mathrm{~mW}$. The current source should be at least $I_{\text {om(max) }}=5.8 / R_{L}=58 \mathrm{~mA}$, say 60 mA . The power delivered by the dc power supply is $12 \times 0.060=0.72 \mathrm{~W}$. The power-conversion efficiency is $100 \times 0.17 / 0.72 \cong 23 \%$. Had we taken the maximum amplitude of load voltage to be 6 V , the load power would be $(1 / 2)\left[(6)^{2} / 100\right] \cong 0.18 \mathrm{~W}$ and the power-conversion efficiency would be 25%.
The power delivered by the power supply is $0.72 \mathrm{~W}, 0.36 \mathrm{~W}$ being dissipated in the current source, and 0.36 W in the transistor when no signal is applied. With the maximum signal
applied, and neglecting nonlinearities, the power delivered by the supply, and that dissipated in the source, does not change. When 0.17 W of ac power is delivered to the load, then from conservation of energy, the power dissipated by the transistor must decrease by 0.17 W .

Exercise 11.2.4

Consider the emitter-coupled amplifier of Figure 11.2.4a operating with maximum symmetrical swing, negligible saturation voltage, and with the lower limit set by the transistor cutting off. Assuming a sinusoidal input, describe the time variation of $v_{C E}, i_{C}$, the voltage across the current source, and the instantaneous power dissipation in the transistor, and in the current source.

11.3 Class B Operation

Concept: In class B operation, two output transistors are used in push-pull so that the current of each transistor flows for only half a cycle.

Suppose that the current source in the emitter follower circuit of Figure 11.2.4a is replaced by a matched complementary transistor, with the bases of the two transistors connected to the input v_{I} (Figure 11.3.1a). When $v_{I}=0$, both transistors are cut off, and $v_{O}=0 . Q_{n}$ begins to conduct when v_{I} equals the cut-in voltage V_{γ} of about 0.5 to 0.6 V . When Q_{n} conducts, it acts as an emitter follower, and $v_{O}=v_{I}-0.7 \mathrm{~V}$ (Figure 11.3.1b). While Q_{n} conducts, the BEJ of Q_{p} is reverse biased by 0.7 V , so Q_{p} is cut off. When v_{I} increases in the negative direction, the sequence of events is reversed. Q_{p} does not conduct until $v_{I} \cong-0.6 \mathrm{~V}$, and when Q_{p} is fully conducting, Q_{n} is cut off. This type of operation is described as push-pull, since the two transistors are essentially connected to the load in phase opposition. Because the collector current of each transistor flows practically for half a cycle, the operation is class B.

With no signal applied, both transistors are cut off, so $P_{S}=0$. When a transistor conducts, the dc supply current equals the load current, so $\eta_{\max }$ is high, theoretically 78.5% (Section ST11.3). If the two transistors are perfectly matched, even harmonics cancel out from the output (Example SE11.1). A serious drawback, however, is crossover distortion that occurs at the zero crossings of v_{I}, because v_{O} does not change from zero until $\left|v_{I}\right|>V_{\gamma}$

FIGURE 11.3.1
(a) Basic class B amplifier; (b) voltage waveforms.
(Figure 11.3.1b). Crossover distortion can be substantially reduced by negative feedback (Problem P11.4.2). In principle, it can be eliminated by biasing the transistors so that they are just on the verge of conduction when no signal is applied. However, variations in circuit and transistor parameters make this impractical. Instead, Q_{n} and Q_{p} are biased slightly into conduction, so as to eliminate crossover distortion. Since operation is now intermediate between class A and class B, it is class $A B$.

Exercise 11.3.1

Assume that in Figure 11.3.1 $V_{C C}=12 \mathrm{~V}, V_{\gamma}=0.6 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$ when the transistor is conducting, and that the circuit is operating under ideal conditions with maximum input. (a) At what percentage of the input amplitude does conduction begin? (b) What is the width in degrees of the deadband due to crossover distortion?

Answers: (a) 4.72%; (b) 5.42°.

11.4 Class AB Operation

A basic IC, class AB output stage is illustrated in Figure 11.4.1. In the quiescent state, $V_{D D}$ across the conducting diodes, which are normally diode-connected transistors, biases Q_{n} and Q_{p} to conduct a quiescent current $I_{E Q}$ that is related to $I_{D D}$, the current in the diodes, by:

$$
\begin{equation*}
I_{E Q}=k I_{D D} \cong k I_{B B} \tag{11.4.1}
\end{equation*}
$$

where
k is the ratio of the BEJ area of Q_{n} and Q_{p} to that of the diodes
$I_{B B}$ is a biasing current source that is normally much larger than $I_{B n}$, the quiescent base current of Q_{n}

In the quiescent state, $v_{O}=0$, the emitter current of Q_{n} and Q_{p} is $I_{E Q}$, and $v_{I}=-V_{E B p Q}$ of Q_{p}.

The largest positive excursion of output voltage occurs when Q_{n} is at the edge of saturation and is supplying load current $I_{o m(\max)}$, with $I_{B n}=I_{o m(\max)} /\left(\beta_{F}+1\right)$. $I_{B B}$ should then at least equal $I_{B n}$. Substituting for $I_{B B}$ from Equation 11.4.1:

$$
\begin{equation*}
k<\left(\beta_{F}+1\right) \frac{I_{E Q}}{I_{o m(\max)}} \tag{11.4.2}
\end{equation*}
$$

If $I_{E Q}$ is to be a small fraction of $I_{o m(\max)}$, so as to avoid excessive quiescent power dissipation, then for a given β_{F}, Equation 11.4.2 sets an upper limit on k.

An advantage of diode biasing in Figure 11.4.1 is that the temperature variation of the voltage drop across the biasing diodes nearly matches that of $V_{B E}{ }^{\prime}$ s of Q_{n} and Q_{p}, so as to practically eliminate the variation of $I_{E Q}$ due to the effect of temperature on the $V_{B E}$'s.

Exercise 11.4.1

Under quiescent conditions, $v_{O}=0$ in Figure 11.4.1. What is the current that the source v_{I} must sink, taking into account the base currents of the two transistors? Verify this result by applying KCL to a surface that encloses the two diodes and the two transistors. Does the source v_{I} deliver or absorb power under quiescent conditions?

Answer: $I_{B B}$; deliver power.

Example 11.4.1 Class AB Amplifier

Consider the basic circuit of Figure 11.4.1 with $\pm 12 \mathrm{~V}$ supplies, $I_{B B}=2.2 \mathrm{~mA}$, and a 100Ω load. Let Q_{n} and Q_{p} have a saturation current $I_{S}=0.2 \mathrm{pA}$ and a constant $\beta_{F}=50$. The amplitude of the sinusoidal voltage v_{O} is to be 10 V , with the quiescent current of Q_{n} and Q_{p} not exceeding 5% of the peak current. It is required to analyze circuit operation.

Solution

Since the amplitude of the load current is $10 / 0.1=100 \mathrm{~mA}$, then $I_{E Q}=5 \mathrm{~mA}$, and the maximum base current is $100 / 51=1.96 \mathrm{~mA}$. If $I_{B B}=2.2 \mathrm{~mA}$, then the minimum current through the diodes is $2.2-1.96=0.24 \mathrm{~mA}$.

Under quiescent conditions, the base current is $5 / 51 \cong 0.1 \mathrm{~mA}$, which is much less than $I_{B B}$, and the current through the diodes is $2.2-0.1=2.1 \mathrm{~mA}$. This means that $k=5 / 2.1=2.4$, and I_{S} of the diodes is about $0.2 / 2.4=0.083 \mathrm{pA}$. The power delivered by the supplies is: $2 \times 12 \times(2.2+5 \times 50 / 51) \cong 170 \mathrm{~mW}$. The average signal current of each supply at full load is $(100 / \pi) \times(50 / 51)=31.2 \mathrm{~mA}$, and the power delivered by the supplies is $2 \times 12 \times(31.2+2.2) \cong 802 \mathrm{~mW}$. The load power is $(10)^{2} / 200 \cong 500 \mathrm{~mW}$, so $\eta=$ $(500 / 802) \times 100 \cong 62 \%$. The efficiency could be improved by driving the transistors to near saturation, at the expense of increased distortion.

Under quiescent conditions, $V_{D D Q}=2 V_{T} \ln (2.1 \mathrm{~mA} / 0.083 \mathrm{pA})=1.246 \mathrm{~V}$. Since $V_{O}=0$, $V_{B p Q}=-V_{D D Q} / 2=v_{I Q}=-0.623 \mathrm{~V}$, and $V_{B n Q}=0.623 \mathrm{~V}$. The current that the v_{l} source must sink is 2.2 mA , and the power delivered by the source is $2.2 \times 0.623=1.37 \mathrm{~mW}$.

When $v_{O}=+10 \mathrm{~V}, Q_{n}$ base current is 1.96 mA , and the diode current drops to 0.24 mA , as determined above. $v_{D D}^{+}=2 V_{T} \ln (0.24 \mathrm{~mA} / 0.083 \mathrm{pA})=1.133 \mathrm{~V}$. The emitter currents and base-emitter voltages of Q_{n} and Q_{p} can be determined from: $v_{D D}^{+}=v_{B E n}^{+}+v_{E B P}^{+}=$ $V_{T} \ln \frac{i_{E n}^{+}}{l_{S}}+V_{T} \ln \frac{i_{E n}^{+}}{l_{S}}$. This gives: $V_{T} \ln \frac{i_{E n}^{+}\left(i_{E n}^{+}-l_{I m}\right)}{l_{S}^{2}}=2 V_{T} \ln \frac{0.24 \mathrm{~mA}}{0.083 \mathrm{pA}^{\prime}}$ or $\frac{i_{E n}^{+}\left(i_{E n}^{+}-100\right)}{l_{S}^{2}}=$
$\left(\frac{0.24}{0.083}\right)^{2}$, or $i_{E n}^{+}\left(i_{E n}^{+}-100\right)=0.33$. Solving this quadratic equation, we obtain $i_{E n}^{+}$very close to 100 mA , as assumed above, and $v_{B E n}^{+}=V_{T} \ln (100 \mathrm{~mA} / 0.2 \mathrm{pA}) \cong 0.700 \mathrm{~V} ; v_{E B p}^{+}=$ $1.133-0.7=0.433 \mathrm{~V}$, so that $i_{E p}^{+} \cong 0 . v_{B p}^{+}=v_{1}^{+}=v_{O}-v_{E B p}^{+}=9.57 \mathrm{~V}$. The positive excursion of v_{l} is $9.57-V_{B P Q}=9.57-(-0.623) \cong 10.2 \mathrm{~V}$. The swing in $i_{E n}$ is from 5 to 100 mA .
When $v_{O}=-10 \mathrm{~V}, Q_{n}$ base current can be neglected, so $I_{B B}$ passes through the diodes. $v_{D D}^{-}=2 V_{T} \ln (2.2 \mathrm{~mA} / 0.083 \mathrm{pA})=1.248 \mathrm{~V}$. Following the same procedure as above, $i_{E p}^{-}\left(i_{E p}^{-}-100\right) / I_{S}^{2}=(2.2 / 0.083)^{2}$, or $i_{\overline{E p}}^{-}\left(i_{E p}^{-}-100\right)=28.1$. This gives $i_{E p}^{-}=100.28 \mathrm{~mA}$ and $v_{E B P}^{-}=V_{T} \ln (100.28 \mathrm{~mA} / 0.2 \mathrm{pA}) \cong 0.700 \mathrm{~V}$. Hence, $i_{E n}^{-}=0.28 \mathrm{~mA}$, and $v_{B E n}^{-}=$ $1.248-0.7=0.548 \mathrm{~V} . v_{B p}^{-}=v_{I}^{-}=v_{O}-v_{E B p}^{-}=-10-0.7=-10.7 \mathrm{~V}$. The negative excursion of v_{l} is $-10.7-(-0.62) \cong-10.1$, which is slightly different in magnitude from the positive excursion, because $v_{D D}$ is not constant. $V_{D D}$ can be maintained more nearly constant by having $I_{B B}$ large compared to $i_{B n}$, which implies that either $I_{B B}$ or β_{F} should be large. The total swing in v_{l} is 20.27 V , so that the large-signal gain is $20 / 20.27=0.99$.
If the load is accidentally shorted to ground while the drive signal is applied, then at the peak of the positive excursion, $v_{B p+}=9.57 \mathrm{~V}$, as determined above. If $v_{O}=0, V_{E B p}=-9.57 \mathrm{~V}$. $v_{B n+} \cong 0.7 \mathrm{~V}$, so the diode-connected transistors are also off. The base drive of Q_{n} is therefore limited by $I_{B B}$ and the current through the short circuit is approximately $51 \times 2.2 \cong 112 \mathrm{~mA}$. A small value of $I_{B B}$ therefore limits the current through Q_{n} under these conditions. At the peak of the negative excursion, $v_{B p-}$ becomes about -0.7 V , and the base drive of Q_{p} depends on the current that the circuit providing v_{l} can sink. Q_{n} and Q_{p} can be protected against short circuits, as described later.
It is of interest to determine the small signal output resistance of Q_{n} and Q_{p}, assuming the ac resistance between the bases of both transistors and ground is negligibly small. Under quiescent conditions, $r_{e}=V_{T} / I_{E Q}=26 / 5=5.2 \Omega$, and $r_{\text {out }}=5.2 / 2=2.6 \Omega$. At a current of $100 \mathrm{~mA}, r_{e}=r_{\text {out }}=26 / 100=0.26 \Omega$, since only one transistor is conducting.

An adaptation of the circuit of Figure 11.4.1 for discrete transistors and a single power supply is shown in Figure 11.4.2. Under quiescent conditions, the voltage of node A is $V_{C C} / 2$, assuming that the transistors and the resistors R_{E} are matched. These resistors,

FIGURE 11.4.2

Class AB amplifier having a single power supply.

FIGURE 11.4.3
Excess current protection of output transistor.
typically less than 1Ω each, introduce negative feedback that reduces the effects of mismatches in the transistors, particularly β_{F}, and also reduces $d I_{E Q} / d T_{J}$, which helps protect against thermal runaway.
The output transistors can be protected against excess current by connecting a transistor as in Figure 11.4.3 for Q_{n}, with a similar arrangement for Q_{p}. With the rated maximum output current flowing through Q_{n}, R_{E} is chosen so that the voltage drop across it is about 0.5 V , and the protection transistor is normally off. An excess output current biases the protection transistor into conduction, so that its collector current draws the current away from the base of Q_{n} and limits the output current. The voltage drop across R_{E} reduces the maximum swing of v_{O} by about 0.5 V .

Exercise 11.4.2

Assume that in Figure 11.4.3, $R_{E}=0.5 \Omega, \beta_{F}$ of Q_{n} is 20 and its normal peak emitter current is 1 A . It is required that the protection transistor draw 50 mA from the base drive of Q_{n} when the peak emitter current of Q_{n} reaches 1.2 A . (a) What should be I_{S} of the protection transistor? (b) What current would this transistor draw from the base drive of Q_{n} when the peak emitter current of Q_{n} reaches is 1 A ?

Answers: (a) 4.75 pA ; (b) 1.1 mA .

In order to reduce the base current drive requirement of the output transistors, a composite transistor is sometimes used. A circuit using matched complementary Darlington pairs is analyzed in Example SE11.4. MOSFETs can also be used in class AB amplifiers, as discussed in Examples SE11.5 and SE11.6. The output MOSFETs can be driven by a complementary BJT emitter follower that rapidly charges and discharges the gate capacitors. This is particularly important in high-speed switching and operation at relatively high frequencies.

11.5 Class C Operation

In a class C amplifier, illustrated in Figure 11.5.1a, the output transistor is biased well into cut off so that, in response to a sinusoidal input voltage, the output current flows only for short intervals near the peaks of the input voltage (Figure 11.5.1b). If this current were to flow in a normal resistive load, the load voltage would be severely distorted compared to the sinusoidal input voltage. Hence, class C amplifiers are used only at radio frequencies with a tuned circuit load whose resonant frequency is equal to that of the input signal. The selectivity of the tuned circuit heavily attenuates the harmonics so that the output voltage is nearly sinusoidal. Because the dc power supply delivers power only when collector current flows, the power-conversion efficiency is very high, typically in excess of 90%.

Class C amplifiers are commonly used for power amplification of carrier-modulated radio frequency (rf) signals in transmitters for radio, TV, and mobile phones. The modulated signal is generally narrow-band around the carrier frequency, so that a tuned-circuit load is acceptable. The design of class C amplifiers is a specialized topic that will not be pursued here.

FIGURE 11.5.1
(a) Basic class C amplifier; (b) waveform of collector current.

11.6 Power Operational Amplifiers

Small-signal op amps are generally capable of delivering up to about 300 mW at voltages close to maximum supply voltages of $\pm 20 \mathrm{~V}$. These op amps can be augmented with an appropriate power output stage for delivering substantial power to a low-impedance load. Figure 11.6.1 illustrates an op amp connected to a class AB output stage through an emitter follower transistor Q_{3}, with negative feedback from the output to the inverting input of the op amp. Zener diodes protect the output of the op amp in case of accidental connection to the higher voltages $\pm V_{C C O} . R_{o}$ is a small resistance that limits the maximum op-amp current.

Current and voltage boosting may be incorporated internally in an IC power op amp, allowing power outputs of tens of watts, with an appropriate heat sink, at currents of few amperes and voltages in excess of a hundred volts. The op amp may be protected by a thermal

FIGURE 11.6.1
Op amp with class AB power output stage.

FIGURE 11.6.2
Basic thermal shut-down circuit.
shutdown circuit such as that illustrated in Figure 11.6.2. As the temperature of the chip rises, V_{Z} increases, because of its positive temperature coefficient, while $V_{B E}$ of Q_{1} decreases. This increases the current through Q_{1} and hence the voltage drop across R_{2}. When this becomes sufficiently large, Q_{2} conducts and diverts current from some input stage, thereby reducing the drive to the output stages. Limiting the maximum temperature of the chip is important so as not to adversely affect the long-term reliability of the IC power op amp.

Exercise 11.6.1

The circuit of Figure 11.6 .2 is required to shut down the amplifier at $125^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}, V_{Z}=7.2 \mathrm{~V}$ and Q_{1} and Q_{2} have $V_{B E}=0.7 \mathrm{~V}$ at a current of 0.2 mA . (a) Choose R_{1} and R_{2} so that a current of 0.2 mA flows in Q_{1} and Q_{2} at $125^{\circ} \mathrm{C}$; (b) Determine the current in Q_{2} at $25^{\circ} \mathrm{C}$, assuming that the transistor β^{\prime} s are high and that the temperature coefficients are $+2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for the zener diode, $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for $V_{B E}$.
Answers: (a) $R_{1}=32 \mathrm{k} \Omega, R_{2}=2.5 \mathrm{k} \Omega$; (b) $0.03 \mu \mathrm{~A}$.

Exercise 11.6.2

Figure 11.6 .3 shows two power op amps having equal magnitude of voltage gain connected to a load in a bridge configuration. Show that the load voltage and the slew rate are doubled.

FIGURE 11.6.3
Power op amps connected in bridge configuration.

11.7 Power Switching

In many applications, the power transistor is operated in a switching mode, in which it is repeatedly turned on and off. The main advantage is that power efficiency is high because the transistor is either fully conducting or cut off. In either case, the power dissipated in the device is low, so that devices of relatively small power rating are capable of controlling much larger load power. On the negative side, switching inevitably generates noise in the system and generally slows down the response. Power switching is the domain of power electronics. A detailed discussion is beyond the scope of this book, so only some basic principles will be covered.

Class D Amplifier

In a class D amplifier, the power transistors are connected in push-pull and operated in a switching mode, as illustrated in Figure 11.7.1a. To allow amplification of a continuously varying signal v_{S}, such an audio signal, the signal is applied to one input of an op amp, and a triangular waveform v_{Δ}, of frequency much higher than the highest frequency of v_{S}, is applied to the other input. For the polarities shown, the op-amp output v_{G} is at its positive limit V^{+}when $v_{S}>v_{\Delta}$, and is at its negative limit V^{-}when $v_{S}<v_{\Delta}$, where V^{+}and V^{-}have the same magnitude but opposite polarities. The output v_{G} is pulse-width modulated (PWM), consisting of rectangular pulses whose amplitude alternates between V^{+}and V^{-}, the width of each pulse varying with the instantaneous value of v_{S} (Figure 11.7.1b).
v_{G} is applied to the common gate terminal of CS, matched MOSFETs Q_{1} and Q_{2} connected in push-pull. When $v_{G}=-V^{-}, Q_{1}$ is on and Q_{2} is off, v_{D} is less than $V_{S S}$ by the voltage drop across Q_{1}. Conversely, when $v_{G}=V^{+}, Q_{2}$ is on, Q_{1} is off. When $v_{S}=0$, v_{D} is a square wave of high frequency and zero average value, so that the output of the low-pass filter is ideally zero, and no signal is applied to the load. When v_{S} is applied, the output of the low-pass filter is the average of the PWM waveform, which ideally reproduces the signal v_{S}. In practice, more elaborate circuits are used to improve performance.

(b)

FIGURE 11.7.1
(a) Basic class D amplifier; (b) voltage waveforms in (a).

FIGURE 11.7.2
Basic switching voltage regulator.

Switched Regulated Supplies

A basic switching voltage regulator is illustrated in Figure 11.7.2, where the input V_{I} is an unregulated but well-filtered dc supply. A fraction $\beta_{f} V_{O}$ of the dc output voltage, where $\beta_{f}=R_{2} /\left(R_{1}+R_{2}\right)$, is compared with a reference voltage $V_{\text {REF }}$. The difference between $\beta_{f} V_{O}$ and $V_{\text {REF }}$, that is, the error signal, is amplified by a differential amplifier and applied to a controlled oscillator connected to Q_{2} and Q_{1} in a sense that reduces the error through negative feedback. If the loop gain is large enough, the steady-state error is almost zero, so that $\beta_{f} V_{O}=V_{\text {REF }}$, or,

$$
\begin{equation*}
V_{O}=\left(1+\frac{R_{1}}{R_{2}}\right) V_{\mathrm{REF}} \tag{11.7.1}
\end{equation*}
$$

The controlled oscillator turns Q_{2} on and off for predetermined intervals at frequencies in the range of few tens of kilohertz to more than a hundred kilohertz. The emitter current of Q_{2} establishes through R_{3} the base-emitter voltage of the power transistor Q_{1}, switching this transistor between cut off and saturation. When Q_{1} is in saturation, V_{I} is applied to the $L C$ filter, and current flows through L to the load. Freewheeling diode D is reverse-biased under these conditions. Assuming Q_{1} cuts off instantly, the current in L does not change at the instant of switching and is diverted through D. If the forward voltage drop in D is neglected, the input voltage to the $L C$ filter is now zero. It follows that the input to the filter is a rectangular waveform of amplitude V_{I} during the interval $t_{\text {on }}$ and is zero during the interval $t_{\text {off. }}$ The average value of this rectangular waveform is the dc output voltage V_{O}. Thus:

$$
\begin{equation*}
V_{O}=\frac{t_{\mathrm{on}}}{t_{\mathrm{on}}+t_{\mathrm{off}}} V_{I}=V_{I} \mathrm{~T} \tag{11.7.2}
\end{equation*}
$$

where $T=t_{\mathrm{on}} /\left(t_{\mathrm{on}}+t_{\mathrm{off}}\right)$ is the duty cycle. The reactance of L at the switching frequency $f_{S}=1 /\left(t_{\text {on }}+t_{\text {off }}\right)$ is much larger than the reactance of C, which means that the fundamental and harmonics are heavily attenuated. The controlled oscillator varies T so as to make $V_{O}=V_{\mathrm{REF}} / \beta$, in accordance with Equation 11.7.1. For example, if V_{O} tends to decrease because of increased load current, the error increases and the controlled oscillator

FIGURE 11.7.3
Inductor voltage and current in basic switching voltage regulator.

increases T. As a result, V_{O} increases (Equation 11.7.2) and maintains $V_{O}=V_{\text {REF }} / \beta$. The output of the controlled oscillator is usually a pulse-modulated signal in which t_{on} is varied while keeping ($t_{\text {on }}+t_{\text {off }}$) constant. Turn-off and turn-on are examined in more detail in Section ST11.4.

It is seen that the voltage across the inductor v_{L} is (Figure 11.7.3):

$$
\begin{equation*}
v_{L}=V_{I}-V_{O}, \quad 0 \leq t \leq t_{\mathrm{on}} \quad \text { and } \quad v_{L}=-V_{O}, \quad t_{\mathrm{on}} \leq t \leq t_{\mathrm{on}}+t_{\mathrm{off}} \tag{11.7.3}
\end{equation*}
$$

Since v_{L} is constant during $t_{\text {on }}$ and $t_{\text {off, }} i_{L}=(1 / L) \int v_{L} d t$ varies linearly as shown in Figure 11.7.3. In the steady state, Δi_{L} is of constant magnitude, which implies that the positive and negative areas of v_{L} have equal magnitudes. Moreover, the average current I_{L} equals the average load current I_{O} because the average current through C is zero and R_{1} and R_{2} are relatively large compared to R_{L}. Hence,

$$
\begin{equation*}
I_{L}=I_{O} \tag{11.7.4}
\end{equation*}
$$

As long as I_{L} is sufficiently large, i_{L} always flows (Figure 11.7.3). However, if I_{L} falls below a certain value (Problem P11.6.1), i_{L} becomes zero before the end of $t_{\text {off, }}$, leading to a discontinuous mode of operation, and the above analysis is no longer valid.

Since Q_{1} is either in saturation or is cut off, power dissipation is small, and the power efficiency is typically more than 90%, much higher than that of a linear voltage regulator (Example SE11.9). Switching regulators are available as ICs, some including Q_{1}. An added advantage of the switching regulator is its versatility, as discussed later. Switching regulators are extensively used to provide dc power in electronic equipment and in chargers for rechargeable batteries used in many portables, such as electric shavers and cellular phones. These regulators readily accommodate a range of voltages and frequencies, typically 100$240 \mathrm{~V}, 50-60 \mathrm{~Hz}$.

Example 11.7.1 Output Ripple of Switching Regulator

It is required to determine the output ripple of the switching regulator of Figure 11.7.2.

Solution

The ac component of i_{L} in Figure 11.7.3 can be assumed to flow through C (Figure 11.7.4), since the reactance of C is much smaller than R_{L} at the switching frequency. The variation

FIGURE 11.7.4

Figure for Example 11.7.1.
in v_{O} is related to i_{C} by: $\Delta v_{O}=(1 / C) \int_{t_{1}}^{t_{2}} i_{C} d t$. The integral, which is the shaded area shown is $(1 / 2)\left(\Delta i_{L} / 2\right)\left(T_{S} / 2\right)$. Hence, $\Delta v_{O}=\left(T_{S} / 8 C\right) \Delta i_{L}$. From Figure 11.7.3, $\Delta i_{L}=\left(t_{\text {off }} / L\right) V_{O}$. Eliminating Δi_{L} gives:

$$
\begin{equation*}
\frac{\Delta v_{O}}{V_{O}}=\frac{T_{S}}{8 L C} t_{\mathrm{off}}=\frac{T_{S}^{2}}{8 L C} \frac{t_{\mathrm{off}}}{t_{\mathrm{on}}+t_{\mathrm{off}}}=\frac{\pi^{2}}{2}\left(\frac{f_{o}}{f_{S}}\right)^{2} \frac{t_{\mathrm{off}}}{t_{\mathrm{on}}+t_{\mathrm{off}}}=\frac{\pi^{2}}{2}\left(\frac{f_{o}}{f_{S}}\right)^{2}(1-T) \tag{11.7.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{S}=1 / T_{S} \text { is the switching frequency } \\
& f_{o}=1 / 2 \pi \sqrt{L C}
\end{aligned}
$$

As to be expected, the ripple is small when $f_{o} \ll f_{C}$ and $t_{\text {off }} \ll t_{\text {on }}$, that is, when the duty cycle is almost unity.

Exercise 11.7.1

In the steady state, the increase in i_{L} during the on period must equal its decrease during the off period, which implies that the two shaded areas in Figure 11.7.3 must be equal. Show that Equation 11.7.2 follows from this equality.

Exercise 11.7.2

Neglecting power losses in the circuit, deduce from conservation of power that: $\left(I_{O} / I_{I}\right)=\left(V_{I} / V_{O}\right)=1 / T$, where I_{I} is the average input current. This relation may be considered as that of a step-down dc transformer having an electronically variable turns ratio a.

The configuration of Figure 11.7.2 is that of a step-down regulator, or a buck converter, in which $V_{O}<V_{I}$ (Equation 11.7.2). If the power switch is connected in shunt, after the inductor, a step-up regulator, or boost converter, is obtained, in which $V_{O}>V_{I}$, as illustrated in Figure 11.7.5, where the regulator is shown controlling the switch. Feedback

FIGURE 11.7.5
Basic step-up regulator.

is derived from the output voltage as before. During $t_{\text {on }}$, the switch is closed, and V_{I} causes i_{L} to flow through the switch. D is reverse biased, and C discharges through R_{L}. The time constant $R_{L} C$ is made much larger than $t_{\text {on }}$, so that the variation in V_{O} is small. When Q_{1} turns off, i_{L} does not change at the instant of switching and flows in D, but tends to decrease because the voltage at node A has changed from zero to nearly V_{O}. The polarity of the induced voltage in L is now that of a voltage rise in the direction of i_{L} so as to keep it flowing. The induced voltage therefore adds to V_{I}, so that $V_{O}>V_{I}$. The v_{L} and i_{L} waveforms are very similar to those of Figure 11.7.3, except that during $t_{\text {on }}$, when the switch is closed, the positive amplitude of v_{L} is V_{I} and, during $t_{\text {off }}$, when the switch is open, the negative amplitude of v_{L} is $-\left(V_{O}-V_{I}\right)$.

Exercise 11.7.3

Assuming a lossless system, deduce from conservation of power that: $\left(I_{O} / I_{I}\right)=\left(V_{I} / V_{O}\right)=1-T$, for the step-up regulator, analogous to that of Exercise 13.7.2.

dc-to-ac Converters

Also known as inverters, dc-to-ac converters transform a dc input to an ideally sinusoidal output of desired amplitude and frequency. They are extensively used in diverse applications such as variable speed ac-motor drives, standby and uninterruptible power supplies (UPS), and high voltage dc transmission. If followed by a rectifier, a dc-to-dc converter is obtained, in which the output voltage can be of the same polarity, or of opposite polarity, as the input voltage, and whose magnitude is less than, equal to, or greater than, that of the input voltage. Moreover, the transformer in these converters isolates the input from the output. Although switched regulated supplies are a form of dc-to-dc converter, they are not as versatile as the two-stage dc-ac-dc converters. In addition to regulated power supplies, dc-to-dc converters are used in sophisticated dc-motor drives. The ac inputs and outputs could be single-phase or three-phase, but only single-phase is discussed here in order to illustrate the basic concepts involved.

A simple converter is illustrated in Figure 11.7.6a, in which two semiconductor switches Q_{1} and Q_{2} are activated by a control circuit. When Q_{1} is turned on, with Q_{2} off, V_{I} is impressed across one-half of the transformer primary winding, and $v_{P 1}=V_{I}$ (Figure 11.7.6b). When Q_{2} is turned on, with Q_{1} off, v_{I} is impressed across the second half of the transformer primary winding, and $v_{P 2}=-V_{I}$. Because of the configuration of dotted terminals of the transformer, and assuming the transformer is ideal, a square ac waveform appears across the transformer secondary, whose amplitude depends on the transformer turns ratio. The square-wave output can be readily converted to a dc output using rectifier diodes as shown. In practice, of course, the square wave is distorted by the inductances and capacitances of the transformer.

FIGURE 11.7.6
(a) A simple dc-to-dc converter; (b) voltages of transformer primary.

A more complex arrangement is that of the half-bridge illustrated in Figure 11.7.7a. A general load is shown, which could be the transformer-rectifier-load of Figure 11.7.6a. Ignoring D_{1} and D_{2} for the moment, it is seen that $v_{O}=V_{I} / 2$ when Q_{1} is turned on, and $v_{O}=-V_{I} / 2$ when Q_{2} is turned on (Figure 11.7.7b). The control circuitry ensures that Q_{1} and Q_{2} are not turned on simultaneously, so as not to short-circuit the input.

For a purely inductive load, $v_{O}=L d i_{O} / d t$. Hence, when $v_{O}=V_{I} / 2, i_{O}$ increases linearly at a rate of $V_{I} / 2 L$ (Figure 11.7.7b). Under steady-state conditions, the change in i_{O} over half a period is $\left(V_{I} / 2 L\right)(T / 2)=V_{I} T / 4 L$, from $-V_{I} T / 8 L$ to $+V_{I} T / 8 L$. For $0 \leq t \leq T / 4, i_{O}<0$, and $v_{O} i_{O}<0$, which means the inductor is returning stored energy to the supply. Negative i_{O} cannot flow through Q_{1} because the npn transistor cannot conduct current from the emitter to collector while its BEJ is forward biased. Hence, D_{1} is provided to allow a negative i_{O} that returns energy to the supply. For $(T / 4) \leq t \leq(T / 2), i_{O}>0$, and passes through Q_{1} but not D_{1}. In an analogous manner, for $(T / 2) \leq t \leq(3 T / 4), i_{O}>0$ but $v_{O} i_{O}<0$, so that the inductor returns energy to the supply. Q_{2} is on, but cannot pass positive i_{0}. Hence, D_{2} is provided for this purpose. When the load is purely resistive, i_{O} is a square waveform in phase with v_{0}, and the diodes do not conduct. As shown in Figure 11.7.7a, a center-tapped supply is needed, but in some cases, a single supply can be used together with two large capacitors of equal value connected as a voltage divider.

Example 11.7.2 Half-Bridge Inverter with Resistive Load

Consider that the half-bridge inverter of Figure 11.7.7a has $V_{I}=48 \mathrm{~V}$ and a 3Ω resistive load. It is required to analyze the circuit, assuming ideal conditions.

Solution

The output v_{O} is a square wave of amplitude 24 V . The rms value of this waveform is the same as the amplitude, that is, 24 V . The total output power is $(24)^{2} / 3=192 \mathrm{~W}$. From the Fourier series expansion of a square wave, the fundamental has an amplitude of $2 V_{l} / \pi=30.6 \mathrm{~V}$ and

FIGURE 11.7.7
(a) Half-bridge configuration; (b) waveforms of output voltage and current.
an rms value of $2 V_{1} / \pi \sqrt{2}=21.6 \mathrm{~V}$. The output power due to the fundamental is $(21.6)^{2} / 3 \cong$ 156 W . The total harmonic distortion is $D=\sqrt{(\pi / 2 \sqrt{2})^{2}-1}=0.483$. The waveform has odd harmonics only, the lowest-order harmonic being the third, and the amplitude of the nth order harmonic is $1 / n$ that of the fundamental. The peak current of each transistor is $24 / 3=8$ A , and the average current is half of this, that is, 4 A . The peak $V_{C E}$ voltage across a transistor while the other transistor is conducting is $V_{l}=48 \mathrm{~V}$.

The extension of the half-bridge to a full-bridge, or \mathbf{H}-bridge is illustrated in Figure 11.7.8, the operation being analogous to that of Figure 11.7.7a. In one half-cycle, Q_{1} and Q_{3} are on, whereas Q_{2} and Q_{4} are off, and $v_{O}=V_{I}$. In the second half-cycle, Q_{2} and Q_{4} are on, whereas Q_{1} and Q_{3} are off, and $v_{O}=-V_{I}$. Diodes $D_{1}-D_{4}$ are provided to feed power back to the supply as in the half-bridge. The diagram of Figure 11.7.7b applies with the transistors and diodes having the odd subscripts 1 and 3 working together, and the transistors and diodes having the even subscripts 2 and 4 working together.

Ideally, the voltage across the load is a square wave of amplitude $V_{I} / 2$ for the half-bridge and of amplitude V_{I} for the full bridge. The full bridge does not need a center-tapped supply and supplies four times as much power to the same load as the half bridge, the peak

FIGURE 11.7.8
H -bridge configuration.
and average transistor currents being twice as much. Voltage control of outputs of converters is usually based on PWM (Section ST11.4).

Exercise 11.7.4

Consider that the full-bridge rectifier is used with $V_{I}=48 \mathrm{~V}$ and $R_{L}=3 \Omega$. As in Example 11.7.2, determine under ideal conditions: (a) the rms value of v_{0}; (b) the total output power; (c) the rms of the fundamental; (d) the output power associated with the fundamental; (e) peak current per transistor; (f) peak $V_{C E}$ voltage per transistor.
Answers: (a) 48 V ; (b) 768 W ; (c) 43.2 V ; (d) 623 W ; (e) 16 A ; (f) 48 V.

Application Window 11.7.1 Uninterruptible Power Supplies

In many cases, an emergency power supply is required to supply loads in case of failure of the mains supply. ac generators driven by gasoline or diesel engines are used for this purpose when it is acceptable to interrupt power for the time it takes to start the engine and bring the ac generator online, the whole process being performed automatically on power outage. There are critical loads, however, where the supply should not be interrupted, as in the case of computers performing important functions and medical equipment in operating rooms or for intensive care. In such cases, an uninterruptible power supply (UPS) is used. These supplies may also be used to protect against under-voltage, overvoltage, frequency variations, transients, and noise.

Figure 11.7.9 illustrates the block diagram of a UPS. Basically, a battery supplies an inverter that provides ac power to the load. The battery is kept charged by a rectifier from the ac mains supply, which could be single-phase or three-phase. ac static switches (Application Window 11.10.1) connect the load to the mains supply or to the inverter

FIGURE 11.7.9
Figure for Application Window 11.7.1.
output. The system can be operated in one of two modes: (1) Standby mode, in which under normal conditions, the inverter and switch T_{1} are off, while switch T_{2} connects the load to the mains supply. The battery is trickle charged, that is, at a low enough current that maintains it fully charged. When the mains supply is interrupted, T_{2} disconnects this supply from the load, and T_{1} connects the load to the inverter output. The transfer is automatic and may take a few milliseconds, but the inverter output should be synchronized with the mains supply for minimal supply disturbance to the load. (2) Online mode, in which the load is normally connected to the inverter, and the battery is continuously charged from the mains supply. In case the UPS fails for some reason, the static switches disconnect the load from the inverter and connect it to the mains supply. Not only is the load completely oblivious to the state of the mains supply, but the inverter allows close control of the amplitude, waveform, and frequency of load voltage.

The battery is normally of the lead-acid, nickel-cadmium, or more recently, lithium ion type. Although more expensive, the latter two types have the advantages of no emission of corrosive and flammable gas, and ability to better withstand overheating and excessive discharging. The inverter usually includes an isolation transformer at its output as well as an ac filter to minimize the harmonic content of the output.

11.8 Power Diodes

The forward current of a power diode can be more than several kA and the reverse voltage in excess of 1 kV . A typical structure of a power diode designed to handle such currents and voltages is illustrated in Figure 11.8.1. It consists of a heavily doped n^{+}substrate ($N_{D} \cong$ $10^{19} / \mathrm{cm}^{3}$) to which the cathode contact is made. A lightly doped n^{-}epitaxial layer ($N_{D} \cong$ $10^{14} / \mathrm{cm}^{3}$, Section 4.3, Chapter 4) is grown on top of the substrate. Acceptor impurities are

FIGURE 11.8.1
Diagrammatic structure of power diode.
then added to form a heavily doped p^{+}region $\left(N_{A} \cong 10^{19} / \mathrm{cm}^{3}\right)$ to which the anode contact is made. p-type guard rings are also formed around the anode.

The large current-carrying capacity is subserved by a large junction area. The depletion region extends much more into the lightly doped n^{-}side, which is made wide enough ($100 \mu \mathrm{~m}$ or more), to support the required reverse voltage (Example 11.8.1). The diffusion of acceptor impurities to form the p^{+}region leads to a $p^{+} n^{-}$junction with some curvature (Figure 11.8.1), so that the electric field becomes nonuniform and of larger magnitude in the region of curvature than in a plane $p^{+} n^{-}$junction. Breakdown will then occur at a lower voltage. The guard ring is electrically floating and acquires a reverse voltage with respect to the anode that is less than the cathode-anode voltage. Its depletion layer merges with that of the $p^{+} n^{-}$junction and flattens it, thereby making the electric field more uniform and increasing the reverse breakdown voltage.

The presence of the n^{-}region significantly affects diode behavior in the steady-state and under transient conditions. It would appear that the low conductivity and the relatively large depth of this region will increase the ohmic drop across the diode and hence the power dissipation. In fact, holes are injected in the forward direction from the p^{+}region at a density that far exceeds the low equilibrium concentration $n_{n 0^{-}}$of electrons in the n^{-} region, so high-level injection occurs at modest values of current. The positive charge due to injected holes attracts electrons from the n^{+}region so as to maintain the n^{-}region almost electrically neutral. Assuming the diffusion length $L=\sqrt{D \tau}>W_{d}$, the concentrations of electrons and holes in the n^{-}region, also referred to as a drift region, are almost equal, uniform, and typically a hundred times $n_{n 0^{-}}$. The resulting increase in conductivity, or conductivity modulation, reduces the voltage drop and power dissipation significantly. Nevertheless, these remain appreciable, so that power loss in the on-state is what determines the diode's power handling capability. Moreover, the voltage drop $v_{\text {drift }}$ across the n^{-}region varies almost linearly with the current i_{D} at relatively large currents. Thus,

$$
i_{D}=\frac{\sigma_{n}-A v_{\mathrm{drift}}}{W_{d}}=\frac{|q|\left(\mu_{e}+\mu_{h}\right) n_{n^{-}} A v_{\mathrm{drift}}}{W_{d}}
$$

or,

$$
\begin{equation*}
v_{\mathrm{drift}}=\frac{W_{d}}{|q|\left(\mu_{e}+\mu_{h}\right) n_{n^{-}} A} i_{D} \tag{11.8.1}
\end{equation*}
$$

where
$n_{n^{-}}$is the concentration of electrons or holes in the n^{-}region
A is the cross-sectional area of the diode
At low to moderate i_{D}, and hence relatively low $n_{n^{-}}$, the mobilities change little with $n_{n^{-}}$; $v_{\text {drift }}$ does not change much with i_{D} since $n_{n^{-}}$increases with i_{D} in Equation 11.8.1. However, at high $n_{n^{-}}$, the mobilities become almost inversely proportional to $n_{n^{-}}$and $v_{\text {drift }}$ becomes nearly directly proportional to i_{D}.

The total diode voltage drop v_{D} in the forward direction is the sum of v_{J}-the voltage across the $p^{+} n^{-}$junction-and the near-ohmic voltage drop $R_{\text {on }} i_{D}$ due to all the resistive paths in the diode. As v_{D} increases, v_{J} increases at a slow rate, since it varies as $\ln i_{D}$, and is eventually swamped by $R_{\text {on }} i_{D}$, making the forward $i-v$ characteristic more linear as v_{D} increases.

FIGURE 11.8.2
Transient response of power diode.

Concept: A low-conductivity "drift" region is used in practically all power semiconductor devices to control the breakdown voltage. In bipolar devices, conductivity modulation reduces the voltage drop across this region in the on state.

The n^{-}region affects the transient behavior of the diode, as illustrated in Figure 11.8.2. Assume that a forward current I_{F} is applied at $t=0$ from an initially reverse state. After the space charge under reverse bias is neutralized, the $p^{+} n^{-}$junction becomes forward biased. However, conduction modulation has not yet set in, so the resistance of the n^{-}region is relatively high, and v_{D} increases rapidly to values that could reach few tens of volts. As charge in the n^{-}region builds up and the conductivity increases, v_{D} drops to almost its onstate value $v_{\text {Don }}$ in few μ s.

At turn-off, current is reversed to I_{R}. Stored charge is removed by recombination and by I_{R}. The junction remains forward biased as long as carrier concentrations are above equilibrium values. v_{D} drops because of the now opposing voltage drop in the n^{-}region due to I_{R}. When carrier concentrations at the junction are near zero, the diode becomes reverse biased, and the depletion region rapidly expands into the n^{-}region. The total time from initiation of diode turn-off to its completion is the diode reverse recovery time $t_{r r}$, which is quoted in manufacturer's data sheets for specified reverse-bias conditions.

Example 11.8.1 Breakdown Voltage in a Power Diode

It is required to derive a relation between the width of the drift region and the diode breakdown voltage.

Solution

Assuming the depletion approximation applies and that $N_{A} \gg N_{D}$, the breakdown voltage $B V$ is the area of a triangle whose base is W_{d}, the width of the drift region and whose height is the breakdown electric field $\xi_{\text {brk }}$ (Figure 3.1.3, Chapter 3). Thus,

$$
\begin{equation*}
W_{d}=\frac{2 B V}{\xi_{\mathrm{brk}}} \tag{11.8.2}
\end{equation*}
$$

where the sign of ξ is being disregarded for convenience, since only magnitudes are being considered. If $\xi_{\text {brk }}=2 \times 10^{5} \mathrm{~V} / \mathrm{cm}$, then $W_{d}=10^{-5} \mathrm{BV} \mathrm{cm}$. If the breakdown voltage is to be 1 kV , for example, the width of the drift region must be at least $10^{-2} \mathrm{~cm}$, or $100 \mu \mathrm{~m}$.
In a punchthrough diode (Section ST11.5), the width of the drift region is reduced by decreasing its conductivity and allowing the depletion region to extend to the $n^{-} n^{+}$junction before voltage breakdown occurs.

11.9 Power Transistors

Bipolar Junction Transistors

Power BJTs can have current and voltage ratings in excess of few hundred amps and 1.5 kV , respectively. As in the case of power diodes, such ratings necessitate some special structures.

The typical, vertical-type structure of an npn power transistor illustrated in Figure 11.9.1a provides a large cross-sectional area that supports a high current with minimal voltage drop and hence power dissipation. It also minimizes thermal resistance, as required to maintain a low junction temperature for a given power dissipation (Section 11.1). The doping levels of the n^{+}emitter and the collector terminal regions are high, typically about $10^{19} / \mathrm{cm}^{3}$. The base region, as usual, has a much lower doping level $\left(N_{A} \cong 10^{16}\right.$ to $10^{17} / \mathrm{cm}^{3}$) for high emitter efficiency (Section 6.1, Chapter 6). An n^{-}drift region ($N_{D} \cong$ $10^{14} / \mathrm{cm}^{3}$) is interposed between the base and n^{+}region of the collector, for the same reason as in power diodes, namely, to control the breakdown voltage. Depending on this voltage, the width of the n^{-}region ranges from several tens to few hundred microns. However, the base cannot be made too thin in order to have a large transport factor. Otherwise, the depletion region in the base expands all the way to the emitter junction, leading to punchthrough (Section 6.2, Chapter 6). The usual base thickness of several microns to few tens of microns is a compromise between β_{F} and punchthrough. When the base is

FIGURE 11.9.1
(a) Diagrammatic structure of power transistor; (b) interleaving of base and emitter regions.

FIGURE 11.9.2
Output characteristics of power BJT.

relatively wide, β_{F} may be quite low, about 10 or so. In such cases it is not unusual to combine two transistors as a Darlington pair in order to have an acceptably large current gain.

Another structural feature of power BJTs is the interleaving of emitter and base regions (Figure 11.9.1b). The interleaving shortens the path of the base current, which reduces the base spreading-parasitic resistance and the base-emitter voltage drop. More importantly interleaving reduces current crowding, and hence the possibility of second breakdown (Figure 11.1.1).

The n^{-}region also affects the steady-state and transient behavior of the BJT. The transition from the active region to the saturation region becomes more gradual, leading to a distinction between quasi saturation and hard saturation (Figure 11.9.2). To appreciate this distinction, suppose that $v_{C E}$ is decreased in the active region at constant $v_{B E}$. For a given i_{C} :

$$
\begin{equation*}
v_{C E}=v_{n^{-}}+v_{C B}+v_{B E} \tag{11.9.1}
\end{equation*}
$$

where $v_{n^{-}}$and $v_{C B}$ are the voltage drops across the n^{-}region and $C B n^{-} p$ junction, respectively. Because of the additional voltage drop $v_{n^{-}}$, the CBJ becomes forward biased at a higher $v_{C E}$ than in the absence of the n^{-}region. When the CBJ just becomes forward biased, the excess minority carrier concentration at the CBJ is zero (Figure 11.9.3a), and i_{C} is proportional to the slope of the nearly linear concentration profile of excess carriers in the base. As $v_{C E}$ decreases further and the CBJ becomes forward biased, holes are injected from the base to the n^{-}region. There will be more recombination with electrons injected from the emitter, and which cross the base into the n^{-}region. In effect, the base spreads into this region (Figure 11.9.3b). i_{C} is reduced, as indicated by the reduced magnitude of the slope of the concentration profile, and the transistor is now in quasi saturation. The added recombination implies of course a smaller β_{F}. The limit of quasi saturation is illustrated by line AB when the excess carrier concentration just reaches the n^{+}region. Further increase of forward bias of the CBJ leads to additional charge storage, as illustrated by line AC in Figure 11.9.3c. The transistor is now in hard saturation, the n^{-}region being part of the base, and the ratio of i_{C} to i_{B} is $\beta_{\text {forced }}$, as in a low-power transistor.

Quasi saturation sets in when $v_{C B}=0$, and the n^{-}region is part of the collector. From Equation 11.9.1, this occurs when $v_{n^{-}}=R_{n^{-}} i_{C}$, or,

$$
\begin{equation*}
i_{C}=\frac{v_{C E}-v_{B E}}{R_{n^{-}}} \tag{11.9.2}
\end{equation*}
$$

FIGURE 11.9.3
(a) Onset of quasi saturation; (b) quasi saturation; (c) hard saturation.
where $R_{n^{-}}$is the ohmic resistance of the n^{-}region (Figure 11.9.2). Since, for a given $i_{C}, v_{C E}$ is larger in quasi saturation than in hard saturation, more power is dissipated. Hence it is desirable to have the transistor in hard saturation when switched on.

The voltage across the transistor when in hard saturation is given by:

$$
\begin{equation*}
v_{C E(\text { sat })}=v_{B E(\mathrm{on})}-v_{B C(\text { sat })}+v_{n^{-}(\mathrm{on})}+\left(R_{e n^{+}}+R_{c n^{+}}\right) i_{C(\mathrm{on})} \tag{11.9.3}
\end{equation*}
$$

where
$v_{B C(\text { sat })}$ is the forward voltage drop across the BCJ
$R_{e n^{+}}$and $R_{c n^{+}}$are the ohmic resistances of the n^{+}emitter and collector regions, respectively
At large currents, the voltage drops across the n^{+}regions may become significant. However, the major contribution to $v_{C E(\text { sat })}$ at large currents is from $v_{n^{-} \text {(on) }}$. As noted for the power diode, this increases rather rapidly at large currents because of the decrease in mobilities and lifetime (Equation 11.8.1). Note that the current becomes proportional to $e^{v_{B E} / 2 V_{T}}$ under conditions of high-level injection.

The additional charge stored in the n^{-}region clearly increases the turn-on and turn-off times, essentially because it takes more time to build up this charge during turn-on and to remove it during turn-off. The manner in which the voltages and currents change depends not only on the parasitic elements of the transistor but also on the external circuit. The interactions can be quite complex and are beyond the scope of the present discussion. However, the following points should be noted: (1) the parasitic transistor elements that play a significant role in switching are the resistances and capacitances previously discussed as well as inductances of leads that carry a substantial current, such as emitter and collector leads. (2) When the transistor is conducting in the steady state, the current is large but the voltage across the transistor is low. When the transistor is off, the current is negligible but the voltage may be high. In both cases, the power dissipated is relatively low. However, under transient conditions, there may be short periods when the transistor

FIGURE 11.9.4
(a) Connection of a speed-up capacitor; (b) voltage and current waveforms.
is subjected to both a large current and a high voltage (Section ST11.11). The instantaneous power dissipation is high and the transistor may be particularly susceptible to second breakdown. (3) The transistor may be subject to a high rate of rise of current during turn-on and a high rate of rise of voltage during turn-off. If these fast rates are more than the transistor can handle, they have to be limited by means of additional circuitry (Section ST11.11).

Turn-off and turn-on times can be reduced by using some form of a speed-up capacitor circuit, as explained in connection with Figure 6.3.4a, Chapter 6, and illustrated by the more versatile circuit in Figure 11.9.4a. It can be readily shown that when v_{I} suddenly assumes the value $v_{I 1}$ (Figure 11.9.4b), the capacitor voltage does not change at that instant, so that,

$$
\begin{equation*}
i_{B i}=\frac{v_{i 1}}{R_{1}} \tag{11.9.4}
\end{equation*}
$$

where $i_{B i}$ is the initial peak of i_{B}, assuming that $v_{B E} \cong 0$ when $i_{B i}$ starts to flow. The capacitor charges with a time constant $C_{2}\left(R_{1} \| R_{2}\right)$ to a final voltage $v_{C_{2}}=\left(v_{\text {I1 }}-v_{B E(\text { sat })}\right) R_{2} /\left(R_{1}+R_{2}\right)$, neglecting source and base-emitter resistance.

When the capacitor is fully charged, the final value of i_{B} is:

$$
\begin{equation*}
i_{B f}=\frac{v_{i 1}-v_{B E(\mathrm{sat})}}{R_{1}+R_{2}} \tag{11.9.5}
\end{equation*}
$$

When v_{I} changes to $-v_{I 2}$, the initial reverse base current is:

$$
\begin{equation*}
i_{B r}=\frac{v_{C_{2}}+v_{I 2}+v_{B E(\text { sat })}}{R_{1}} \tag{11.9.6}
\end{equation*}
$$

$i_{B r}$ removes the charge stored in the BEJ. Once this charge is removed and the BEJ becomes reverse biased, i_{B} drops to a low value. C_{2} discharges through R_{2} and the reverse bias across the BEJ is practically $-v_{12}$. Reverse base current is effective in removing the charge stored in the p-region of the base but not from the n^{-}drift region. The latter charge is removed mainly through the relatively slow process of recombination, so that the collector current decays with a rather long tail (Figure 11.9.4b).

MOSFETs

A large MOSFET current requires a large W / L ratio. L cannot be made too small, as this would severely limit the breakdown voltage because of punchthrough. A different structure is therefore required if the transistor is to handle large currents and high voltages. Most power MOSFETs in common use are of the vertical, double-diffused type (VDMOS), diagrammed in Figure 11.9.5, which allows a large cross-sectional area that minimizes the electrical and thermal resistances of the drain. An epitaxial (Section 4.3, Chapter 4) n^{-}drift region is grown on an n^{+}substrate, with p and n^{+}regions diffused in succession in the n^{-} region to form the body and source, respectively. The doping concentrations are roughly the same as in the BJT, about $10^{19} / \mathrm{cm}^{3}$ for the n^{+}region, $10^{16} / \mathrm{cm}^{3}$ for the p-region, and $10^{14} / \mathrm{cm}^{3}$ for the n^{-}region. The oxide thickness is usually $0.1 \mu \mathrm{~m}$. The channel is induced in the p-body underneath the gate, its length being in the range of 1.5 to few $\mu \mathrm{m}$. The source consists of a large number, which could be many thousands, of small, polygon-shaped areas, or cells, often hexagonal, that are connected in parallel. W becomes roughly equal to the perimeter of a source cell multiplied by the number of cells. This gives a large W so the W / L ratio is correspondingly large, typically 10^{5} or more.

The gate extends over the n^{-}region. When the transistor is turned on, the gate is positive with respect to the source, and electrons are attracted to the n^{-}region, forming an accumulation layer underneath the gate, which reduces the on-resistance $r_{D S(o n)}$. When the transistor is cutoff, with $V_{G S} \cong 0$, a depletion region is formed in the n^{-}region, underneath the gate, which merges with the pn^{-}depletion region and flattens it, thereby making the electric field more uniform, as in the case of the power diode. Contrary to a low-power MOSFET, the structure of Figure 11.9.5 is not symmetrical, that is, the drain and source cannot be interchanged.

The MOSFET has two parasitic, active structures (Figure 11.9.6). A parasitic JFET is formed in the current path between the source and drain, with the n^{-}region acting as the channel of the JFET and the p-body acting as the gate. Pinch-off can occur in the JFET channel, which increases $r_{D S(\text { on })}$. The n^{+}source, p-body, and n^{-}drift region form an $n p n$ BJT, which can adversely affect performance. First, the base of this transistor is open-circuited, so that the drain-source breakdown voltage is reduced to $B V_{C E O}$ (Section 6.2, Chapter 6). Second,

FIGURE 11.9.5
Vertical, double-diffused power MOSFET.

FIGURE 11.9.6
Parasitic structure in power MOSFET.
if this transistor conducts, it provides a current path between source and drain that is not controlled by the gate. Not only is power dissipation increased, but conduction in this path can only be stopped by interrupting the drain current in the external circuit. To prevent these undesirable effects, a "hole" is formed in the middle of each source cell, so that the p-body reaches the source metallization (Figure 11.9.5), which cuts off the $n p n$ transistor by shorting its emitter and base. A diode structure is also created between the source and drain. In normal operation, this diode is reverse biased, but it may be used as the antiparallel diode in half-bridge and full-bridge circuits (Figures 11.7.7 and 11.7.8).

As in the power diode and BJT, the n^{-}region increases the breakdown voltage. But there is no conductivity modulation, because the MOSFET is a majority-carrier device. Punchthrough occurs when the depletion region in the p-body extends all the way to the source, which creates a current path between the drain and source and results in soft breakdown, characterized by a gradual increase of i_{D} with $v_{D S}$. Reachthrough occurs when the depletion layer in the n^{-}region extends all the way to the $n^{-} n^{+}$junction. Any further increase in $v_{D S}$ rapidly increases the electric field to its breakdown value, as in the punchthrough diode (Section ST11.5).
$r_{D S(\text { on })}$ is made up of several components, as illustrated in Figure 11.9.7:

$$
\begin{equation*}
r_{D S(\text { on })}=r_{S}+r_{c h}+r_{A}+r_{J}+r_{d r f}+r_{s u b}+r_{c o n} \tag{11.9.7}
\end{equation*}
$$

where the resistances are those of the source region $\left(r_{S}\right)$, the channel $\left(r_{c h}\right)$, the accumulation layer in the n^{-}region under the gate $\left(r_{A}\right)$, the parasitic JFET channel between the p-body regions (r_{J}), the rest of the n^{-}region $\left(r_{d r f}\right)$, the substrate ($r_{\text {sub }}$), and the connections and

FIGURE 11.9.7
Components of the on resistance of a power MOSFET.
contacts $\left(r_{\text {con }}\right)$. For power MOSFETs having a low breakdown voltage of about $50 \mathrm{~V}, r_{D S(\mathrm{on})}$ is a few tens of $\mathrm{m} \Omega$ and is dominated by $r_{c h}(\cong 30 \%), r_{J}+r_{d r f}(\cong 30 \%)$, and $r_{\text {con }}(\cong 20 \%)$. In power MOSFETS having breakdown voltages of $500-1000 \mathrm{~V}$, the n^{-}region is wide. $r_{D S(\text { on })}$ may be as high as 10Ω and is dominated by $r_{d r f}(\cong 65 \%)$ and $r_{J}(\cong 20 \%)$, with $r_{c h}$ contributing only about 5%. It can be shown that ideally, the resistance of a drift region varies as $B V^{2}$ in a majority-carrier device, such as a MOSFET, and as $B V$ in a bipolar device (Section ST11.6). For a given $B V$, therefore, a BJT has a lower on-resistance, and hence power loss, than a MOSFET.
$r_{D S(o n)}$ has a positive temperature coefficient, because mobility decreases with temperature. This is of practical importance, as it automatically ensures safe current sharing between paralleled power MOSFETs of the same type. If the current in a given MOSFET increases, its temperature rises because of increased power loss. The increase in $r_{D S(\text { on })}$ reduces current in the given MOSFET, which tends to equalize currents among the paralleled MOSFETs.

The transfer characteristic of a power MOSFET departs from the square law at large currents, where it becomes almost linear, mainly because of the decrease in mobility at large carrier densities and high electric field in the pinch-off region of the channel.

The comparison between power MOSFETs and BJTs can be summarized as follows: BJTs can handle larger currents and higher voltages, have lower losses in the on-state, especially when voltage ratings are high, but require large base-drive currents, and are subject to second breakdown. Being majority carrier devices, MOSFETs can be turned on and off much faster. Moreover, they require practically zero gate power in the conducting state, but sufficient current must be supplied to rapidly charge and discharge the input capacitance. The maximum switching frequency is a few tens of kHz for power BJTs but more than 1 MHz for power MOSFETs. Complementary pnp power BJTs and p-channel power MOSFETs are available. The switching behavior of a power MOSFET in a step-down regulator circuit is examined in Section ST11.7.

Insulated Gate Bipolar Transistors (IGBTs)

IGBTs combine the advantages of MOSFETs and BJTs while having intermediate power handling capability and speed of response. The basic IGBT structure and symbol are shown in Figure 11.9.8 together with the polarities of voltage and current in the on state. The structure is similar to that of a power MOSFET (Figure 11.9.5) with the addition of a p^{+} hole injecting layer at the collector terminal. A complementary structure to that of Figure 11.9.8 is possible, and its symbol will have an inward pointing arrow at the emitter, as in a pиp transistor.

When $v_{G E}$ is less than the threshold, no channel is formed in the p-region underneath the gate, and the device is in the off-state. When $v_{G E}$ exceeds the threshold, a channel is formed in the p-region. With the collector positive with respect to the emitter, electrons flow from the n^{+}emitter, through the channel and the n^{-}region, toward the collector, as in any MOSFET (Figure 11.9.8). However, since J_{1} is forward biased, holes are injected from the p^{+} region through the thin n^{+}region and are attracted by electrons injected into the n^{-}region. Conductivity modulation occurs in this region since the equilibrium concentration of electrons is low and is much smaller than that of injected electrons and holes. The total voltage drop in the on-state can be expressed as:

$$
\begin{equation*}
v_{C E(\text { on })}=v_{B E(\text { on })}+v_{n^{-}}+v_{\text {channel }} \tag{11.9.8}
\end{equation*}
$$

[^10] $v_{\text {channel }}$ is comparable to that in a power MOSFET, but $v_{n^{-}}$is much less, due to conductivity

FIGURE 11.9.8
Diagrammatic structure and symbol of IGBT.
modulation. It could be further reduced by allowing reachthrough in the n^{+}layer. The low $v_{\text {CE(on) }}$, comparable to that of a power BJT, gives the IGBT its principal advantage over the MOSFET.

Consider the forward and reverse voltages that can be blocked in the off state, assuming to begin with that there is no n^{+}buffer layer. In the forward blocking state ($v_{C E}>0$), the voltage is supported by the J_{2} junction between the p-body and the n^{-}region. In the reverse blocking state ($v_{C E}<0$), the voltage is supported by the junction between the n^{-}and p^{+}regions. In both cases, the depletion layer extends mainly in the n^{-}region, because it is the more lightly doped. The forward and reverse blocking voltages would be the same. Adding the n^{+}layer makes the forward blocking depend on junction J_{1} and is only about few tens of volts because both sides of the junction are heavily doped. The purpose of the n^{+}buffer layer is to reduce the thickness of the drift region by reducing its conductivity and allowing the depletion region to extend all through the drift region at voltages considerably less than the breakdown voltage, as in the case of the punchthrough diode (Section 11.8). The n^{+}buffer layer prevents reachthrough of the depletion region to the p^{+}layer.

Although the main path for holes is as shown in Figure 11.9.8, an alternative path exists through the p-body to the emitter metallization. At large currents, or when the IGBT is suddenly turned off, latchup may occur, which can be explained by the action of parasitic $n p n$ and pnp transistors, as discussed in Section ST11.8. Doping levels and profiles would then have to be adjusted for optimum performance.

Simulation Example 11.9.1 IGBT Characteristics

The IXGH40N60 from the PSpice EVAL library is a high-speed IGBT rated at a maximum $V_{C E}$ of 600 V and a maximum I_{C} of 75 A at $25^{\circ} \mathrm{C}$. To simulate the output characteristics, a dc $V_{C E}$ source is swept from 0 to 20 V , while a dc $V_{G E}$ source in secondary sweep is stepped at the
values indicated in Figure 11.9.9. It is seen that the output characteristics are similar to those of an npn BJT, except that the parameter of the characteristics is $v_{G E}$ rather than the base current. The transfer characteristic is shown in Figure 11.9.10 for $V_{C E}=20 \mathrm{~V}$ and at two junction temperatures of $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$. The characteristic is similar to that of a MOSFET. It is seen that the threshold is about 4.2 V and that between $V_{G E}=4.8 \mathrm{~V}$ and $5.8 \mathrm{~V} I_{C}$ varies from about 15 to 95 A , giving an average transconductance of about $80 \mathrm{~A} / \mathrm{V}$.

FIGURE 11.9.9
Figure for Example 11.9.1.

FIGURE 11.9.10
Figure for Example 11.9.1.

11.10 Power Latches

In all the transistor switches discussed so far, the input must be applied in order to maintain the device in the on state. In contrast, after a latching device is turned on, the input may be removed, but the device remains on, that is, it "latches" in the on state, until turned off by some means. This can be an advantage in some applications, particularly since the device can be turned on by a narrow trigger pulse, so little power is expended by the drive circuitry. However, unlike transistors, latching devices are not useful for amplifying continuous signals. The most important power latch is the thyristor and its many variations.

Thyristor

Also known as a silicon controlled rectifier (SCR), or a reverse blocking triode thyristor, the thyristor is a four-layer pnpn device having the general structure and symbol illustrated in Figure 11.10.1. The heavily doped p^{+}and n^{+}regions have doping concentrations of about $10^{19} / \mathrm{cm}^{3}$, the p-region about $10^{17} / \mathrm{cm}^{3}$, and the n^{-}region about $10^{13}-10^{15} / \mathrm{cm}^{3}$. Although the maximum switching frequency of 1 kHz or so makes thyristors the slowest of all power semiconductor switching devices; they nevertheless, have the greatest current and voltage capabilities, in excess of 3 kA and 5 kV , respectively.

The $i-v$ characteristic of a thyristor is illustrated in somewhat exaggerated form in Figure 11.10.2. In the reverse direction ($v_{A K}<0$), only a small current flows, until a breakdown voltage $V_{\text {brk }}$ is reached, when the current rapidly increases. Junctions J_{1} and J_{3} are reversebiased, with J_{1} supporting the reverse voltage, because of the n^{-}layer. In the forward direction $\left(v_{A K}>0\right)$, and with the gate open-circuited ($i_{G}=0$) only a small current flows as long as $v_{A K}<V_{B O}$, the breakover voltage, and the thyristor is in the forward blocking state. Junction J_{2} supports the forward blocking voltage, again with the depletion region being

FIGURE 11.10.1
Diagrammatic structure and symbol of thyristor.

FIGURE 11.10.2
Illustration of $i-v$ characteristic of thyristor.
mostly in the n^{-}layer. Hence the n^{-}layer is made thick in order to support high forward and reverse blocking voltages.

Once $V_{B O}$ is exceeded, the characteristic exhibits an unstable, negative resistance region, followed by a positive resistance region of small resistance. This is the forward on-state, in which a large i_{A} can flow with only a small voltage drop of few volts or less. When a gate trigger pulse of sufficient duration is applied, the thyristor turns on at a lower $v_{A K}$ that depends on the magnitude of i_{G}, as illustrated in Figure 11.10.2 by the dotted curves a and b . The latching current I_{L} is the smallest i_{A} that results just when the thyristor changes state from forward blocking to forward conduction, with $i_{G}=0$. Once the thyristor is in the onstate, i_{A} must be reduced to a smaller current I_{H}, the holding current, before the thyristor can revert to the forward blocking state. Once turned on, the thyristor can only be turned off by reducing i_{A} to less than I_{H} for a minimum duration. In ac circuits, the thyristor automatically turns off when $v_{A K}$ goes through zero, resulting in natural commutation. In dc circuits i_{A} must be sufficiently reduced or potentially reversed, resulting in forced commutation (Section ST11.9).
The operation of the thyristor is conveniently described in terms of an equivalent circuit consisting of a pnp-npn regenerative pair (Example 6.3.2, Chapter 6), as illustrated in Figure 11.10.3. The turn-on condition is (Equation 6.3.23, Chapter 6):

$$
\begin{equation*}
\alpha_{F 1}+\alpha_{F 2}=1 \tag{11.10.1}
\end{equation*}
$$

FIGURE 11.10.3
The thyristor considered as a regenerative pair.
considering the avalanche multiplication factors to be unity. In terms of the equivalent circuit, the current through the transistors is small in the forward blocking state. This makes the α^{\prime} s small, so $\alpha_{F 1}+\alpha_{F 2}<1$. In normal thyristor operation, a momentary i_{G} increases $i_{B 2}$ and $i_{C 2}$, and hence $i_{C 1}$. The α 's increase sufficiently so that their sum reaches unity, regeneration takes place, and both transistors are driven hard into saturation.
In terms of the pnpn structure (Figure 11.10.1), assume that in the presence of a given, forward $v_{A K}, i_{G}$ of sufficient magnitude is applied for an appropriate duration. This causes the flow of an appreciable forward current across the forward-biased J_{3} junction, from the p-region to the n^{+}region. The current is mainly due to electron injection from the n^{+}region to the p region, because of the large difference in doping levels of the two regions. The injected electrons diffuse through the p-region and are swept at the reverse-biased junction J_{2} into the n^{-}region. The negative charge due to these electrons induces a forward hole current to flow across junction J_{1} into the n^{-}region to maintain near space-charge neutrality. The injected holes diffuse across the n^{-}region and are swept at junction J_{2} into the p region, where they further induce electron injection across junction J_{3}. A regenerative process is thus established, which results in a large i_{A} that is limited only by external circuit resistance. When i_{A} exceeds the latching current, it injects enough carriers into the base regions to latch the thyristor on, with junctions J_{1} and J_{3} forward biased. Because of its low equilibrium carrier concentration, the n^{-}region becomes heavily conductivity modulated, the p base region of J_{3} less so.

In the on-state, the voltage across the thyristor can be expressed as:

$$
\begin{equation*}
v_{A K(\mathrm{on})}=v_{J_{1}}-v_{\mathrm{J}_{2}}+v_{\mathrm{J}_{3}}+v_{n^{-}}+v_{\mathrm{par}} \tag{11.10.2}
\end{equation*}
$$

where the $v_{J}^{\prime} \mathrm{s}$ are forward voltage drops across the respective junctions and v_{par} is a parasitic resistance that accounts for the remaining voltage drops in the body and contacts of the thyristor.

Once the thyristor is turned on, the gate loses all control over the current. A negative gate current cannot turn off the thyristor, because of the relatively large cathode area. A negative gate current can divert some current away from the cathode, but the diverted current is normally not sufficient to remove the forward bias from the whole of J_{3}. In a gate turn-off (GTO) switch, the structure is modified to allow the gate to turn off the thyristor (Section ST11.10).

Other than by a gate pulse, a pnpn device can be turned on in a number of ways, resulting in a number of practical devices. In a silicon unilateral switch (SUS), also known as a Schokley diode, a current latch, or a reverse blocking diode thyristor, conduction occurs because of avalanche breakdown initiated by $v_{A K}$, which increases M (Example 6.3.2, Chapter 6). Conduction can be initiated by radiant energy generating electron-hole pairs, as in a light-activated silicon-controlled rectifier (LASCR). Two SUS's in inverse parallel, so that conduction is bilateral, constitute a diac. A triac consists essentially of two thyristors in inverse parallel, with their gates connected together. It can be triggered in either direction by a positive or a negative voltage of appropriate magnitude applied between its gate and the electrode that is closer to the gate in the triac symbol (Figure 11.10.4). Once triggered, the triac conducts in the direction determined by the polarity of the trigger voltage and will continue to conduct until the current falls below the holding current.

A thyristor may be triggered inadvertently by a rise in temperature. The reverse current of J_{2} in the forward blocking state approximately doubles for every $10^{\circ} \mathrm{C}$ rise in temperature, so a sufficiently high temperature may raise the current to a level that turns on the

FIGURE 11.10.4
Figure for Application Window 11.10.1.
thyristor. A similar effect may be caused by a large $d v_{A K} / d t$ that increases the device current through capacitances of the junctions. Thyristors are also subject at turn-on to a maximum $d i_{A K} / d t$ limitation, because of the finite time it takes to spread the current uniformly throughout the junctions. If the rate of rise is too high, localized hot spots may occur, which may cause excessive heating and lead to device failure.

Application Window 11.10.1 Static Switches

Semiconductor switches are extensively used in electric power systems and in industrial electronics to replace electromechanical switches. They offer the advantages of: (1) very high switching speeds, (2) accurate timing of closure of the circuit, and (3) elimination of moving parts and mechanical contacts, which are generally noisy and subject to wear. Contacts generally produce arcing or sparking, which can be hazardous in flammable surroundings, and which damages the contact with time and increases the contact resistance. Moreover, mechanical contacts usually bounce upon closing, that is, they rapidly open and close the circuit many times before settling to a closed position, which can be very troublesome in digital circuits.

For low-power dc applications, transistors are used. But for high power dc and for ac applications thyristors or triacs are generally the natural choice. Figure 11.10.4 illustrates the use of triacs to reverse the phase sequence to a three-phase motor so as to reverse its direction of rotation. When $T R_{1}, T R_{2}$, and $T R_{3}$ are activated by gate pulses, while gate pulses to $T R_{4}$ and $T R_{5}$ are suppressed, the phase sequence abc is seen at load terminals 123. But when $T R_{1}, T R_{4}$, and $T R_{5}$ are activated by gate pulses, while gate pulses to $T R_{2}$ and $T R_{3}$ are suppressed, the phase sequence acb is seen at load terminals 123. If the load is resistive, gate pulses are applied at the zero voltage crossing on each half cycle. With a switching time of few microseconds, the whole ac voltage is applied to the load as if the switch were absent. In the case of an inductive load, switching should occur on the zero crossings of current so as to eliminate switching transients.

Application Window 11.10.2 Incandescent Lamp Dimmer

The mechanical switch that controls lamps can be replaced by an ac switch having the added feature of continuous dimming of the light with very little expenditure of energy. Figure 11.10.5a illustrates a simple circuit for dimming an incandescent lamp. The triac is triggered by a diac designed to break down when the voltage across it exceeds a certain level, usually about 10 V of either polarity, as illustrated in Figure 11.10.5b. Once it breaks down, the voltage across the diac drops to about 1 V .

The circuit operates as follows: At the beginning of a half-cycle, the triac is off, because the current through it has just passed through zero. Negligible current passes through the lamp, so the full supply voltage is impressed across the gate trigger circuit consisting of the diac, C, and variable resistance R. C is charged through R by the supply voltage. When the voltage across C just exceeds the breakover voltage of the diac, the diac conducts at $\omega t=\theta$, triggering the triac and discharging C. The diac stops conducting when the current through it drops to below the holding current. R_{G} limits the discharge current through the diac and the triac gate. When the triac conducts, practically the full supply voltage is applied to the lamp until the end of the half cycle, when the triac again turns off, and the whole process is repeated over the next half cycle (Figure 11.10.5c). The supply voltage is thus applied to the lamp at a conduction angle θ after the beginning of a half cycle and until the end of the half cycle. θ can be varied within a range that is nominally $0^{\circ}-180^{\circ}$ by varying R. This method of controlling power in a load by varying the fraction of the half-cycle during which the supply voltage is impressed across the load is an example of phase control. It should be noted that the first and last 30° of each half cycle contribute only a total of

FIGURE 11.10.5
Figure for Application Window 11.10.2. (a) Dimming circuit; (b) diac $i-v$ characteristic; (c) load voltage wave form.
about 6% of the power (Problem P11.7.6). Thus, varying θ from 30° to 150° during each half-cycle in Figure 11.10.5c varies the load power from nearly 97% to 3% of full power.

Summary of Main Concepts and Results

- Transistors have a safe operating area (SOA) delimited by a maximum output current, maximum output voltage, and maximum power dissipation. In addition, BJTs have a second breakdown because of current crowding at the base-emitter junction.
- For a given maximum allowed junction temperature above the ambient temperature, the lower the thermal resistance with respect to the ambient environment, the larger is the maximum allowed power dissipation in the semiconductor device.
- Thermal runaway can occur if the output current increases with temperature. Thermal stability is assured by having a low enough thermal resistance from the junction to ambient environment, or by having a sufficiently high electrical resistance in the output circuit.
- Harmonic distortion occurs in large-signal operation because the output current varies nonlinearly with the input quantity, which is the base current in a BJT and the gate-source voltage in a MOSFET. Distortion in MOSFETs is generally larger than in BJTs.
- Power conversion efficiency is the ratio of the power delivered at signal frequency to the power supplied by the dc power supply. Not only is high power-conversion efficiency desirable, but also low power dissipation in the absence of the signal.
- In class A operation, the output current of the power transistor flows throughout the signal cycle. The maximum power-conversion efficiency is 25% for a capacitively coupled load and 50% for a transformer-coupled load.
- In ideal class B operation, the output transistor current flows for half a signal cycle and no current flows in the absence of a signal. The output voltage has a deadband around the zero crossing, because of the cut-in voltage of the transistors, which results in cross-over distortion.
- In class $A B$ operation, the output transistors are biased so as to have a small quiescent current. The output current flows for slightly less than half a cycle, and the power-conversion efficiency is higher than that of class A operation.
- Class AB amplifiers are normally operated in push-pull so as to combine the half cycles of output from each transistor. Even harmonics are eliminated by push-pull operation.
- In class C operation, the output current flows for only a small fraction of a cycle. The power-conversion efficiency is high, but the load can only be a tuned circuit of high selectivity so as to reduce distortion to an acceptable level.
- Switching enables a transistor of a given power rating to control much larger load power. Switching is used for class D amplification, dc-dc conversion, and dc-ac conversion.
- A lightly doped drift region is introduced in power diodes to increase the breakdown voltage. Conductivity modulation occurs in this drift region so that the voltage drop across it is much less than what would be expected from its dimensions and equilibrium carrier concentrations. The presence of the drift region
affects the transient response and causes a prominent peak in the voltage across the diode at turn on.
- Power BJTs also have an n^{-}collector drift region that allows a large breakdown voltage. In addition to affecting the transient behavior, the n^{-}region introduces a quasi-saturation region in the output characteristics. The base and emitter regions are interleaved to reduce the base spreading resistance and minimize current crowding.
- The structure of a power MOSFET differs from that of a low-power MOSFET. An n^{-}region is again used to increase the breakdown voltage. The transfer characteristic departs from the square law at large currents, becoming almost linear.
- Compared to MOSFETs, BJTs can handle larger currents and higher voltages, have lower losses in the on-state, especially at higher blocking voltage ratings, but require large base-drive currents, and are subject to second breakdown. On the other hand, MOSFETs can be turned on and off much faster and require practically zero gate power in the conducting state.
- IGBTs are intermediate between BJTs and MOSFETs in terms of power handling capability and speed of operation. Like MOSFETs they do not require any gate power in the on state. They are liable to latchup at high currents and high current turn-off rates.
- Power latches are based on a pnpn structure. Various structural modifications lead to a number of useful devices having particular features.

Learning Outcomes

- Design basic types of class A and class AB power amplifiers.
- Articulate the special features of power amplifiers and power semiconductor devices.

Supplementary Examples and Topics and on Website

SE11.1 Distortion in Push-Pull Amplifier. Shows that if the two output transistors are matched, even harmonics cancel out in the output current.

SE11.2 Transformer-Coupled Push-Pull Amplifiers. Analyzes such an amplifier for class A and ideal class B operation.
SE11.3 Complementary Symmetry BJT Power Amplifier. Analyzes Class AB operation, under conditions of no load and finite load, of such an amplifier having CE driving transistors.

SE11.4 Complementary Symmetry Darlington Pair Power Amplifier with $V_{B E}$ Multiplier. Analyzed class AB operation of such an amplifier.

SE11.5 Complementary Symmetry MOSFET Power Amplifier with Current Mirror. The amplifier that is the MOSFET analog of that of Figure 11.4.1 is analyzed for class AB operation and small-signal operation around the quiescent operating point.
SE11.6 Complementary Symmetry MOSFET Power Amplifier with BJT Drive. Analyzes Class AB operation of such an amplifier.

SE11.7 Heat Sink Selection. Discusses the selection of a heat sink for a power transistor for both natural and forced cooling.

SE11.8 Basic Regulated Supply with Series Transistor. Analyzes a basic regulated power supply consisting of a zener diode and a series pass transistor.

SE11.9 Feedback Regulated Power Supply. Discusses a regulated power supply of the type used in IC regulators.

ST11.1 Thermal Runaway. Derives the condition for thermal runaway.
ST11.2 Graphical Determination of Fourier Coefficients of Output Current. Shows how the Fourier coefficients can be determined graphically from a recorded waveform of the output current.

ST11.3 Theoretical Maximum Efficiency in Class B Operation. Derives the condition for maximum power efficiency in ideal class B operation.

ST11.4 Pulse-Width Modulation Control. Explains how PWM is used in the control of regulated supplies and converters.

ST11.5 Punchthrough Diode. Analyzes the operation of this type of power diode, in which the drift region is reduced by decreasing its conductivity and allowing the depletion region to extend to the $n^{-} n^{+}$junction before voltage breakdown occurs.

ST11.6 Relation between On-resistance and Breakdown Voltage. Derives the relation between the on-resistance of the drift region and the breakdown voltage in a majoritycarrier device and in a bipolar device under conditions of conductivity modulation.

ST11.7 Switching Behavior of a Power MOSFET in a Step-down Regulator. Investigates the switching behavior of a power MOSFET in a step-down regulator.

ST11.8 Latchup in IGBT. Investigates latchup in an IGBT and how it can be avoided.
ST11.9 Forced Commutation of Thyristors. Illustrates a simple method of forced commutation, in which the firing of one thyristor turns off the other thyristor.
ST11.10 Modified Thyristors. Discusses modified thyristors, such the reverse-conducting thyristor (RCT), the gate-turn-off thyristor (GTO), and the MOS-controlled thyristor (MCT).

ST11.11 Snubbers. Considers circuits that are used to limit $d i / d t$ and $d v / d t$ in power semiconductor devices to safe levels.

Problems and Exercises

P11.1 Thermal Considerations

P11.1.1 Identify from manufacturer data sheets on the Web various power transistor cases.
P11.1.2 A power transistor in a TO-3 case has $\theta_{J C}=1.8^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{C A}=25^{\circ} \mathrm{C} / \mathrm{W}$ when mounted in free air. Determine the case and junction temperatures when the transistor dissipates 5 W at an ambient temperature of $30^{\circ} \mathrm{C}$, with the transistor: (a) mounted in free air; (b) used with a heat sink having $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{S A}=2.5^{\circ} \mathrm{C} / \mathrm{W}$.

P11.1.3 A transistor has $T_{J(\max)}$ of $120^{\circ} \mathrm{C}$ and $P_{D(\max)}$ of 160 W at $T_{C(\mathrm{REF})}=40^{\circ} \mathrm{C}$. If $\theta_{C S}=0.3^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{S A}=0.2^{\circ} \mathrm{C} / \mathrm{W}$, determine the maximum allowed power dissipation at $80^{\circ} \mathrm{C}$ ambient temperature.
P11.1.4 A transistor has $T_{J(\max)}=120^{\circ} \mathrm{C}$ and $P_{D(\max)}=5 \mathrm{~W}$ at $T_{C(\mathrm{REF})}=25^{\circ} \mathrm{C}$ in free air. Determine $\theta_{J C}$ and the power dissipation when the case temperature is $80^{\circ} \mathrm{C}$.
P11.1.5 For the transistor of Problem P11.1.4, if $\theta_{C S}=0.5^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{S A}=5^{\circ} \mathrm{C} / \mathrm{W}$, what is the maximum allowed power dissipation at an ambient temperature of $40^{\circ} \mathrm{C}$?
P11.1.6 A transistor is rated at 115 W at $25^{\circ} \mathrm{C}\left(T_{C(\mathrm{REF})}\right)$ and is derated above this temperature at the rate of $0.8^{\circ} \mathrm{C} / \mathrm{W}$. Determine: (a) $T_{J(\max) ;}$ (b) the maximum power dissipation at a case temperature of $80^{\circ} \mathrm{C}$.

P11.2 Distortion in Amplifiers

P11.2.1 Show that if $V_{\text {rms }}$ and $V_{1 \mathrm{rms}}$ are, respectively, the rms values of a periodic waveform and its fundamental, the total harmonic distortion is given by: $D=\sqrt{\left(V_{\text {rms }} / V_{1 \mathrm{rms}}\right)^{2}-1}$.
P11.2.2 Show that if two amplifying stages having harmonic distortion D_{a} and D_{b}, respectively, are cascaded, the overall harmonic distortion is approximately $\sqrt{D_{a}^{2}+D_{b}^{2}}$, provided $D_{a} D_{b} \ll 1$.
P11.2.3 From a signal flow diagram showing the distortion signal at the output of a power amplifier, deduce that the harmonic distortion in the presence of negative feedback is reduced by $\left(1+\beta A_{v}\right)$ where βA_{v} is the loop gain.
P11.2.4 Given a feedback power amplifier having an open-loop gain of 100 and a feedback of 9% (feedback factor $\beta=0.09$). (a) If 10% harmonic distortion is produced when the magnitude of the fundamental at the amplifier output is 10 V , determine the harmonic distortion in the presence of feedback. (b) Compare the input signal with and without negative feedback. What is the price paid for the reduction in harmonic distortion?
P11.2.5 Given two amplifying stages, each of gain 100. Assume that the percentage distortion in the output is 1% at an output level of 10 V and is negligible at smaller levels. Consider two cases: (a) the two stages are cascaded with 9% feedback in each stage and a final output level of 10 V ; (b) the two stages are cascaded without feedback in each stage but with feedback from the output of the second stage to the input of the first stage so as to give the same percentage distortion as in case (a) at an output level of 10 V . Compare the input signal in both cases.

P11.3 Class A Amplifiers

P11.3.1 Show that the maximum signal power output in class A operation, according to Figure 11.2.2b is $V_{C C}^{2} / 8 R_{C}$, assuming the load is R_{C} and $R_{E}=0$.

P11.3.2 Show that when the quiescent point of a class A amplifier is biased for maximum symmetrical swing as in Figure 11.2.2b, the ac load line is tangent to the maximum dissipation hyperbola at the Q point. Deduce that $I_{C Q}=\sqrt{P_{D(\max)} / R_{\mathrm{AC}}}$ and $V_{C E Q}=\sqrt{P_{D(\max)} R_{\mathrm{AC}}}$.
P11.3.3 Consider a class A amplifier having the circuit of Figure 11.2.1a but with the load R_{L} connected in place of R_{C}. Neglecting distortion and the small base current, show that: (a) $P_{S}=V_{C C}^{2} /\left(2 R_{L}+R_{E}\right)$; (b) $P_{L(\max)}=V_{C C}^{2} R_{L} / 2\left(2 R_{L}+R_{E}\right)^{2}$; and (c) $\eta_{\max }=100 R_{L} /$ $\left(4 R_{L}+2 R_{E}\right)$. How is $P_{L(\max)}$ related to the quiescent power dissipated in the transistor?
P11.3.4 Given a class A direct-coupled amplifier as in Problem P11.3.3, with $R_{E}=1 \Omega$, $R_{L}=10 \Omega$, and $V_{C C}=24 \mathrm{~V}$. Determine $I_{C Q}, V_{C E Q}, P_{S}, P_{L(\max)}$, and $\eta_{\max }$. Neglecting the power dissipated in the bias network supplied from $V_{C C}$ and the power due to the base current, what are the maximum and minimum values of the power dissipated in the transistor?

P11.3.5 Consider the ac coupled amplifier of Figure 11.2.1 with $R_{E}=2 \Omega, \beta_{F}=50, R_{C}=150 \Omega$, $R_{L}=220 \Omega$, and $V_{C C}=24 \mathrm{~V}$. Determine under conditions of maximum symmetrical swing, as in Example 11.2.1, $I_{C Q}, V_{C E Q}, P_{S}, P_{L(\max)}$, and $\eta_{\text {max }}$.
P11.3.6 If R_{L} in Problem P11.3.5 is variable, under what conditions will $\eta_{\max }$ be maximum?
P11.3.7 $\quad \eta_{\max }$ of the class A amplifier of Figure 11.2.1 can be increased by reducing the power dissipated in R_{C}, as when R_{C} is replaced by an inductor of small dc resistance $R_{\text {ind }}$ and whose reactance at the lowest signal frequency is much larger than R_{L}. (a) Sketch the dc and ac load lines; (b) derive the expressions corresponding to Equations 11.2.4; (c) determine $\eta_{\text {max }}$.

P11.3.8 The amplifier of Problem P11.3.7 has $R_{E}=1 \Omega, R_{\text {ind }}=0.8 \Omega, V_{C C}=18 \mathrm{~V}, \beta_{F}=50$, and $P_{D(\max)}=10 \mathrm{~W}$. Determine R_{L} for maximum symmetrical swing, $P_{S}, P_{L(\max)}$, and $\eta_{\max }$.
P11.3.9 Given a transformer-coupled amplifier as in Figure 11.2.3a having $R_{E}=0.5 \Omega, R_{L}=2 \Omega$, $\beta_{F}=40, V_{C C}=18 \mathrm{~V}, r_{p}=1.5 \Omega$, the secondary resistance is 0.2Ω, the transformer turns ratio is $4: 1$, and the transformer leakage reactance is negligible at the frequencies of interest. Determine $I_{C Q}, P_{S}$, the minimum values of $i_{C(\max)}, B V_{C E O}, P_{L(\max)}$, and $P_{D(\max)}$.
P11.3.10 If the transistor of Problem P11.3.9 is to be operated with an $i_{C(\max)}$ of 0.5 A , determine the transformer ratio for maximum symmetrical swing, $P_{L(\max)}$, and $\eta_{\text {max }}$, assuming $r_{p}=1.5 \Omega$ and neglecting the transformer secondary resistance.
P11.3.11 The transistor of Problem P11.3.9 has biasing resistors $R_{1}=220 \Omega, R_{2}=33 \Omega$, with $V_{B E Q}=0.73 \mathrm{~V}$. Determine $I_{C Q}$ for maximum symmetrical swing and the transformer ratio for maximum load power, assuming $r_{p}=0.5 \Omega, R_{L}=1.5 \Omega$, and negligible secondary resistance.
P11.3.12 A transformer-coupled amplifier uses a transistor whose $P_{D(\max)}=5 \mathrm{~W}, i_{C(\max)}=1 \mathrm{~A}$, and $V_{C E(\max)}=50 \mathrm{~V} . R_{E}=0$, and the transformer resistances may be neglected. Choose the quiescent operating point for maximum symmetrical swing based on $P_{D(\max)}=5 \mathrm{~W}$ and $i_{C(\max)}$. Determine the transformer ratio for a load of $1.25 \Omega, V_{C C}, P_{L(\max)}$, and $\eta_{\max }$.
P11.3.13 Repeat Problem P11.3.12, choosing the quiescent operating point for maximum symmetrical swing based on $P_{D(\max)}=5 \mathrm{~W}$ and $v_{C E(\max)}=20 \mathrm{~V}$.
P11.3.14 Assume that $V_{C C}=15 \mathrm{~V}$ in the circuit of Problem P11.3.12. Choose the quiescent operating point for maximum symmetrical swing based on $P_{D(\max)}=5 \mathrm{~W}$. What are $i_{C(\max)}$ and $V_{C E(\max)}$ in this case?
P11.3.15 Given a power amplifier in which $v_{C E}$ and i_{C} have minimum instantaneous values of $v_{C E(\text { min })}$ and $i_{C(\text { min })}$, respectively. Deduce that for maximum symmetrical swing between $v_{C E(\text { min })}$ and $i_{C(\min)}, R_{a c}=\frac{V_{C E Q}}{I_{C Q}}=\frac{v_{C E(\text { min })}}{i_{C(\min)}}$. If the second relation between $V_{C E Q}$ and $I_{C Q}$ is KVL under dc conditions, show that $I_{C Q}=\frac{V_{C C} i_{C(\min)}}{v_{C E(\text { min })}+R_{d c} i_{C(\text { min })}}$ and $V_{C E Q}=\frac{V_{C C} v_{C E(\text { min })}}{v_{C E(\text { min })}+R_{d c} c_{C \text { (min })}}$.
P11.3.16 Repeat Problem P11.3.15 considering that the second relation between $V_{C E Q}$ and $I_{C Q}$ is
$V_{C E Q} \times I_{C Q}=P_{D(\max)}$. Show that $I_{C Q}=\sqrt{\frac{i_{C(\min)}}{v_{C E(\text { min })}} P_{D(\max)}}$ and $V_{C E Q}=\sqrt{\frac{v_{C E(\min)}}{i_{C(\text { min })}} P_{D(\max)}}$.
P11.3.17 A transistor as in Problem P11.3.16 has $v_{C E(\min)}=0.5 \mathrm{~V}, i_{C(\min)}=5 \mathrm{~mA}$, and $P_{D(\max)}=1 \mathrm{~W}$. Determine: (a) $R_{a c}, V_{C E Q}$, and $I_{C Q}$ for maximum symmetrical swing; (b) $V_{C C}$ if $R_{d c}=4 \Omega$.
P11.3.18 Figure P11.3.18 shows a dc coupled emitter follower having a current-mirror connected to the source. Assume $V_{C C}=V_{E E}=12 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega$, with $v_{C E(\text { sat })}=0.4 \mathrm{~V}$, $v_{B E}=0.75 \mathrm{~V}$, and $\beta_{F}=40$ for all transistors. Determine R for maximum symmetrical output voltage swing, with the lower limit set by: (a) Q_{2} saturating; (b) Q_{1} cutting off. Specify the corresponding $v_{I(\min)}$.

FIGURE P11.3.18

P11.3.19 Consider the emitter follower of Figure P11.3.18 operating under conditions of maximum symmetrical swing, with negligible $v_{C E(\text { sat })}$, and with the negative limit set by Q_{1} cutting off. If $V_{C C}=V_{E E}=12 \mathrm{~V}, R_{L}=50$, determine $P_{L}, \eta_{\max }$, and the power dissipated in the output transistor. What would these quantities be if the signal amplitude is reduced to one-half?
P11.3.20 Repeat Problem P11.2.19 for maximum swing and $V_{C C}=V_{E E}$: (a) 6 V , and (b) 18 V .
P11.3.21 The BJT in Figure 11.2.4 is replaced by an E-NMOS transistor having $V_{t n}=2 \mathrm{~V}$, $k_{n}=20 \mathrm{~mA} / \mathrm{V}^{2}$, with $V_{D D}=12 \mathrm{~V}, R_{L}=100 \Omega$. For symmetrical swing, determine: (a) $I_{D Q}$; (b) $v_{O(\max)}$ and $v_{I(\max)}$; (c) $v_{O(\min)}$ and $v_{I(\min)}$; (d) η. Neglect the body effect and channel-length modulation.
P11.3.22 Two transistors having the same parameters as in Problem P11.3.12 are used in a transformer-coupled class A push-pull amplifier (Section SE11.2). Choose the quiescent operating point for maximum symmetrical swing based on $P_{D(\max)}=5 \mathrm{~W}$ and $i_{C(\max)}$. Determine the transformer ratio for a load of $1.25 \Omega, V_{C C}, P_{L(\max)}$, and $\eta_{\text {max }}$.

P11.4 Class B Amplifiers

P11.4.1 Analyze the behavior of the circuit of Figure 11.3.1a when a single $V_{C C}$ supply is used, with the collector of Q_{p} connected to ground and R_{L} coupled through a large capacitor.
P11.4.2 Consider the input terminals of the amplifier of Figure 11.3.1a to be connected to the output of an op amp of voltage gain A_{v}. Let the output of the transistor amplifier be connected to the inverting input of the op amp so as to provide negative feedback, the input signal v_{I} being applied to the noninverting input of the op amp. Show that the width of the deadband due to crossover distortion is reduced to $1 / A_{v}$ of its value without feedback.
P11.4.3 Simulate the circuit of Figure 11.3.1a using the matched Darlington pair QN6502 and QN6509 from the PSpice EVAL library, with $V_{C C}=12 \mathrm{~V}$ and $R_{L}=100 \Omega$. Determine the width of the deadband and the effect of negative feedback using an ideal op amp as in Problem P11.4.2.
P11.4.4 The complementary symmetry amplifier of Figure 11.3.1a is biased for ideal class B operation, with $V_{C C}=12 \mathrm{~V}$ and $R_{L}=50 \Omega$. Assuming ideal operation, with the largest sinusoidal input signal, negligible cross-over distortion and negligible $v_{\text {CEsat }}$ determine (a) P_{L}, P_{S}, P_{D} for each transistor and $\eta_{\max }$ (b) $P_{D(\max)}$ and the corresponding $V_{o m}, P_{L}, P_{S}$, and η.
P11.4.5 Repeat Problem P11.4.4 assuming $v_{C E}=0.4 \mathrm{~V}$.

P11.4.6 The complementary symmetry amplifier of Figure 11.3.1a is biased for ideal class B operation, with $V_{C C}=5 \mathrm{~V}$ and $R_{L}=10 \Omega$. Assuming ideal operation, with a square-wave input signal and negligible $v_{C E(\text { sat) })}$, determine P_{L}, P_{S}, P_{D} for each transistor and η when a maximum signal is applied. Repeat for an output signal that is half the maximum.
P11.4.7 The BJTs in Figure 11.3.1a are replaced by matched MOSFETs. (a) What is the quantity corresponding to V_{γ} that determines the start of conduction? (b) What peak value of v_{I} will bring Q_{n} to the edge of saturation? (c) What is the influence of the body effect?
P11.4.8 The MOSFETs in Problem P 11.4.7 have $\left|V_{t}\right|=1 \mathrm{~V}, k_{n, p}=1 \mathrm{~mA} / \mathrm{V}^{2}$, with $\pm 5 \mathrm{~V}$ supplies and, $R_{L}=10 \mathrm{k} \Omega$. Assuming the largest sinusoidal output for which the transistors remain in saturation, determine $v_{i}, P_{L}, P_{S}, P_{D}$ for each transistor. Neglect body effect and channel-length modulation.

P11.5 Class AB Amplifiers

P11.5.1 The amplifier of Figure 11.4.1 is required to have an incremental output resistance about the quiescent operating point of 6.5Ω. If $I_{B B}=0.2 \mathrm{~mA}$, determine k in Equation 11.4.2.
P11.5.2 The amplifier of Figure 11.4.1 has $R_{L}=100 \Omega$. The incremental gain for small signals about the quiescent operating point is to be at least 0.98 . Determine: (a) the quiescent current, assuming $\beta=50$. (b) $V_{D D}$, assuming the saturation current of the transistors is 10 pA .
P11.5.3 In the circuit of Figure 11.4.1, what limits the largest negative swing in v_{O} ? What limits the largest positive swing in v_{O} if $I_{B B}$ is large? If $I_{B B}$ is small?
P11.5.4 Repeat Example 11.4.1 assuming that $I_{B B}$ is doubled to 4.4 mA .
P11.5.5 Repeat Example 11.4.1 assuming that β_{F} is doubled to 100.
P11.5.6 Consider the circuit of Figure 11.4.2. For the output transistors, assume a quiescent current of $5 \mathrm{~mA}, v_{O}= \pm 5 \mathrm{~V}, V_{C C}=15 \mathrm{~V}, R_{L}=50 \Omega, R_{E}=0.47 \Omega, \beta_{F}=50$, and $V_{B E}=0.7 \mathrm{~V}$ at 10 mA . Assume $V_{B E}=0.6 \mathrm{~V}$ at 1 mA for the diode-connected transistors, and for $Q_{1}, V_{B E}=0.7 \mathrm{~V}$ and $\beta_{F}=100$. Determine: (a) R_{3} such that the minimum current through it is approximately 0.2 mA larger than needed to drive $Q_{n} ;(\mathrm{b}) R_{4}$ such that the minimum $v_{C E}$ of Q_{1} is not less than 0.4 V ; (c) base voltage of Q_{1} under quiescent conditions; (d) v_{I} for $v_{O}= \pm 5 \mathrm{~V}$?
P11.5.7 Assume that for the output transistors of Figure 11.6.1, the quiescent current is 5 mA , $v_{O}= \pm 5 \mathrm{~V}, V_{C C O}=15 \mathrm{~V}, R_{L}=50 \Omega, R_{E}=0.47 \Omega, \beta_{F}=50$, and $V_{B E}=0.7 \mathrm{~V}$ at 10 mA . Assume $V_{B E}=0.6 \mathrm{~V}$ at 1 mA for the diode-connected transistors and $V_{B E}=0.7$ and $\beta_{F}=100$ for Q_{3}.
(a) Determine R_{3} such that the current through it at minimum output is 2.5 mA ;
(b) calculate the output of the operational amplifier for $v_{O}= \pm 5 \mathrm{~V}$, neglecting the voltage drop across R_{o}; (c) what are the corresponding values of v_{I} if $R_{r}=10 \mathrm{k} \Omega$ and $R_{f}=100 \mathrm{k} \Omega$?

P11.6 Power Switching

P11.6.1 The limit for continuous operation of the switched regulator of Figure 11.7.2 is when i_{L} in Figure 11.7.3 becomes zero at the end of the off period. Let the average value of i_{L} under these conditions, which is also the average load current, be denoted by $I_{O(L I M)}$. Show that $I_{\text {O(LIM) }}=\left(t_{\text {on }} / 2 L\right)\left(V_{I}-V_{O}\right)=(T / 2 L)\left(V_{I}-V_{O}\right) T_{S}$, where T_{S} is the switching period and $T=t_{\text {on }} /\left(t_{\text {on }}+t_{\text {off }}\right)$ is the duty cycle. Deduce that when V_{O} is constant, $I_{\text {O(LIM) }}=\left(T_{S} V_{O} / 2 L\right)(1-T)$.
P11.6.2 Consider the switching regulator of Figure 11.7.2 having an output voltage of 18 V . $f_{S}=50 \mathrm{kHz}, L=1 \mathrm{mH}$, and T in the range 0.1-0.9. (a) Using the result of Problem P11.6.1, what is the maximum load resistance that allows continuous operation? (b) From Equation 11.7.5, what value of C will give a maximum ripple of 1%.
P11.6.3 Sketch the variation of i_{L} during the on and off periods for the step-up regulator, analogous to Figure 11.7.3. Show that at the limit for continuous operation of the step-up regulator $I_{L(\mathrm{LM})}=(1 / 2)\left(V_{I} / L\right) t_{\mathrm{on}}=T_{S} V_{O} T(1-T) / 2 L$ using the result of Exercise 11.7.3. Recognizing that in the step-up regulator, the average inductor current is equal to the average input current, deduce that at the limit of continuous operation, $I_{O(L I M)}=T_{S} V_{O} T(I-T)^{2} / 2 L$.

P11.6.4 A full bridge rectifier having $V_{I}=48 \mathrm{~V}$ supplies an inductive load of impedance $3+j 5$ Ω at 1 kHz . Determine: (a) the amplitudes of the fundamental, third harmonic and fifth harmonic of the load current; (b) the power delivered by each of these components. Which of these is useful power for a heating load? An ac motor?
P11.6.5 Consider the step down regulator of Figure 11.7.2 with a MOSFET used as the switching transistor. When the MOSFET is on, the source voltage is close to the drain voltage V_{I}. The gate voltage must then be higher than V_{I} to turn the MOSFET on. The higher voltage is usually derived from V_{I} using a charge pump, an example of which is illustrated in Figure P11.6.5. Describe how the circuit operates, noting that it is essentially a voltage doubler that is supplied from a dc voltage through the dual switch $Q_{n 1}$ and $Q_{p 1}$, instead of an ac supply. Assume that the MOSFET gate and circuitry require a rate of charge transfer equivalent to $i_{G}=10 \mu \mathrm{~A}$, that $V_{I}=18 \mathrm{~V}$ and that $V_{G G}$ is to be 24 V , neglecting the voltage drops of the diodes and the saturation voltages of the transistors. Deduce that, theoretically, $C_{1(\min)}$ is given by $f_{S} C_{1(\min)} V_{I}=i_{G}$, where $f_{S}=100 \mathrm{kHz}$ is the frequency of the control voltage. Choose $C_{1}=10 C_{1(\min)}$, and choose C_{2} so that $C_{2}>10 C_{1}$ and $C_{2} R_{L}$ is large compared with the rate at which the gate is turned on and off, say $C_{2} R_{L} \geq 1 \mathrm{~ms}$. Simulate using PSpice and observe the build-up of voltage across C_{2}.

FIGURE P11.6.5

P11.7 Miscellaneous

P11.7.1 A power diode is to have a breakdown voltage of 2 kV . Determine W_{d} and N_{D}, assuming $\xi_{\text {brk }}=2 \times 10^{5} \mathrm{~V} / \mathrm{cm}, N_{A}=10^{19} / \mathrm{cm}^{3}$, and $N_{A} \gg N_{D}$.
P11.7.2 The effect of differences in paralleled transistors can be mitigated by connecting small resistances in series with the sources or emitters. Two E-NMOS power transistors having $k_{n}=2 \mathrm{~A} / \mathrm{V}^{2}, V_{t n 1}=3 \mathrm{~V}$, and $V_{t 2}=3.5 \mathrm{~V}$ are paralleled to conduct a total current of 20 A . Determine the current in each transistors if: (a) the corresponding terminals are connected together; (b) 0.1Ω resistors are included in series with each source.
P11.7.3 A power Darlington transistor pair is switched on and off at 10 kHz . The off state lasts for $76 \mu \mathrm{~s}$, with $I_{C E O}=5 \mathrm{~mA}$ and $V_{C E}=200 \mathrm{~V}$. The on-state lasts for $20 \mu \mathrm{~s}$, with and $V_{C E(\text { sat) }}=2 \mathrm{~V}$ and $I_{C(\text { sat })}=100 \mathrm{~A} . I_{C}$ and $V_{C E}$ can be assumed to change linearly for 1 and $3 \mu \mathrm{~s}$ during turn-on and turn-off, respectively. Determine the average collector power dissipation during each of these four periods.
P11.7.4 Determine the average base power dissipation in Problem P11.7.3 if $v_{B E(\mathrm{sat})}=2.2 \mathrm{~V}$, $\beta_{\text {forced }}=20$, bearing in mind that the base current is applied for $21 \mu \mathrm{~s}$.
P11.7.5 Assuming v_{I} changes between $\pm 6 \mathrm{~V}$ and $v_{B E(\text { sat })}=2 \mathrm{~V}$, choose R_{1}, R_{2}, and C in Figure 11.9.4 so that: (1) $i_{B f}=5 \mathrm{~A}$, (2) $i_{B i}=10 \mathrm{~A}$, and (3) the time constant is $1 \mu \mathrm{~s}$. Determine $i_{B r}$.

P11.7.6 Consider a switched supply where conduction starts at an angle θ after the start of each half-cycle and continues to the end of the half-cycle. Show that if such a voltage
waveform is applied across a resistor R, the ratio of the power dissipated in the resistor to that dissipated for full conduction is $1-(2 \theta-\sin 2 \theta) / 2 \pi$. (a) Calculate this ratio for $\theta=30^{\circ}$ and $\theta=150^{\circ}$. (b) If the diac in Figure 11.10.5a triggers at 10 V and $C=1 \mathrm{mF}$, determine the range of values of R required to vary the conduction angle from 30° to 150° in each half-cycle, assuming that C discharges fully when the diac conducts. Simulate using PSpice.
P11.7.7 Consider the turn-off snubber of Figure ST11.11.2, Section ST11.11 and assume that $v_{C E}$ increases quadratically with time during $t_{\text {off }}$ as shown in Figure ST11.11.1b and in accordance with Equation ST11.11.3. Assume that C_{s} is determined by the need to limit power dissipation during turn off. Show that the energy dissipated in the transistor is $\frac{1}{12} \eta V_{I} I_{O} t_{\text {off }}$, where ηV_{I} is the voltage across the capacitor at $t=t_{\text {off }}$, when $i_{C}=0$. Deduce that $C_{s}=I_{O} t_{\text {off }} / 2 \eta V_{I}$. Calculate C_{s} if $V_{I}=200 \mathrm{~V}, I_{O}=100 \mathrm{~A}, t_{\text {off }}=1 \mu \mathrm{~s}$, and $\eta=0.2$. What is the average power dissipated in the transistor during turn-off at a switching frequency of 50 kHz ?
P11.7.8 Consider the combined snubber of Figure ST11.11.3a, Section ST11.11 during turn-on and assume that $v_{C E}$ decreases linearly as shown in Figure ST11.11.1b and that the capacitor current can be neglected compared to i_{C}. If L_{s} is determined by the need to limit power dissipation during turn on, show that $L_{s}=V_{I} t_{\text {on }} / 2 \gamma I_{O}$, where γI_{O} is the transistor current at $t=t_{\text {on }}$, when $v_{C E}=0$. Calculate L_{s} if $V_{I}=200 \mathrm{~V}, I_{O}=100 \mathrm{~A}$, $t_{\text {on }}=0.5 \mu \mathrm{~s}$, and $\gamma=0.3$.

12

Basic Elements of Digital Circuits

This chapter and the next deal exclusively with digital circuits. The present chapter begins with a brief review of some basic principles of digital signals and processing in order to emphasize some fundamental features of digital systems. Some basic elements of digital systems are then discussed, namely, gates, flip-flops, and memories.

Logic gates are the essential components of combinational digital circuits and are discussed in terms of the main gate types and the properties of ideal gates, irrespective of how the gates are implemented. However, to make the discussion more concrete, CMOS inverters and basic gates are used for illustration purposes. Special emphasis is placed on properties such as the voltage transfer characteristic, noise margins, propagation delays, and power dissipation.

The essential component of sequential digital circuits is the latch, or its clocked version, the flip-flop. After discussing the basic latch, various types of flip-flops are presented with emphasis on any undesirable features of each type and how they are overcome. The discussion serves to illustrate some important points concerning edge-triggering, timing of signals, and circuit implementation in contrast to logic implementation.

Memory circuits that store program instructions and data are essential elements of practically all digital systems. The most important attributes and features of memory are first discussed in general terms, followed by the main features of static and dynamic read/write memory (R / W memory) and its peripheral circuits. Read-only memories (ROMs) of various types are then presented with special emphasis on flash memory, which is commonly used as an electrically erasable and programmable type of ROM.

Learning Objectives

* To be familiar with:
- Terminology used with digital circuits.
- The properties of ideal gates.
- Some general features of digital memory.
* To understand:
- Some of the fundamental principles and features of digital signals and processing.
- Gate properties such as the voltage transfer characteristic, noise margins, propagation delays, and power dissipation.
- Why a latch has two stable states.
- The operation of the JK-FF and the D-FF, including the master-slave configuration.
- The essential features of R / W memory and ROM.

12.1 Digital Signals and Processing

Digital Signals

Concept: The distinguishing characteristic of analog signals is that they assume values over a continuous range.

This is true, for example, of physical quantities such as displacement, temperature, or pressure. Voltages or currents are described as analog if they are analogous to physical quantities in that they are also defined over a continuum of values. Consider, for example, a simple, analog sound reproduction system in which the input sound waves applied to a microphone generate a voltage or current signal that is subsequently processed through amplification and possibly frequency shaping. The air pressure variations of the sound signal at the microphone assume, at every instant, values over a continuous range. The same is true of the voltage and current signals in the analog sound reproduction system.

The conversion of an analog signal to a digital signal involves the following three essential steps:

1. Sampling: The analog signal is sampled at a regular rate $f_{S}=1 / T_{S}$, where T_{S} is the sampling period, or interval between successive samples, as illustrated in Figure 12.1.1. According to the sampling theorem, f_{S} must be at least equal to the Nyquist rate, $2 f_{B}$, where f_{B} is the highest frequency present in the signal. This means that the highest frequency component in the signal is sampled, on average, at least twice per period, so that no information in the signal is lost because of sampling. In practice, the sampling rate is considerably larger than the Nyquist rate. The sampled signal can then be represented as a sequence of values: $\ldots, f_{n-2}, f_{n-1}, f_{n}$, f_{n+1}, f_{n+2}, \ldots
2. Quantization: The range of values of the samples is divided into a number of discrete levels, and the value of each sample is expressed as a number equal to that of the nearest, or lower, discrete level. The sample values are thus quantized.
3. Coding: The quantized value of each sample is coded in the form of some digital code, usually a binary code in which a number is expressed as a string of 1 's and 0 's.

To illustrate steps 2 and 3 , suppose that the range of values of a signal is divided into 8 levels, including the 0 level, and consider three sample values, say, 6.2,7.3, and 3.4, as in Figure 12.1.2. The three samples are assigned value of 6,7 , and 3 , respectively. In binary code, these numbers are expressed in the binary number system, in which only the binary digits, or

FIGURE 12.1.2
Quantization of analog samples.
bits, 0 and 1 are used. Since we have 8 levels 0 to 7 , and $2^{3}=8$, we need three bits to represent a number in the range of $0-7$. The number is expressed as the sum of three terms, where each term is a bit multiplied by 2 raised to a power equal to the position of the bit in the number, starting from a power of zero for the least significant position. The number 4 , for example, is represented as 100 , since $1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}=4$. The three values 6,7 , and 3 are represented, respectively, by the sequence of three binary numbers $110\left(1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=6\right)$, $111\left(1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=7\right)$, and $011\left(0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=3\right)$. In practice, many more bits are used, typically 32 or 64 bits. A group of 8 bits is a byte. In digital circuits, a binary digit of 0 is represented by a low voltage level that is close to zero, whereas a binary digit of 1 , or logic 1 , is represented by a higher voltage level that may be close to +5 V , say.

Concept: The distinguishing characteristic of digital systems is that digital signals are represented in binary code and processed according to the rules of Boolean algebra.

Processing in analog systems is performed by specialized units, such as adders, integrators, amplifiers, etc., as discussed in preceding chapters. Digital signals, on the other hand are processed according to the rules of Boolean algebra, as will be explained later.

Digital systems possess some highly important advantages over analog systems, which can be summarized as follows:

1. Accuracy: The accuracy of a digital system is determined by the number of bits used for digital representation. In a 16 -bit system, for example, there are 2^{16}, or 65,536 , levels. The corresponding accuracy is $100 / 2^{16}=0.0015 \%$. In analog systems, on the other hand, elaborate measures are generally necessary for accuracies of 0.1% or better. It should be noted, however, that in digital computations, errors can accumulate, so that the overall accuracy may not be as high as suggested by the number of bits used.
2. Reliability: Voltage levels of 1 or 0 correspond to electronic devices such as transistors being either fully turned on, or fully turned off. Noise immunity is high because misreading a 0 level as a 1 level, or conversely, can occur with only relatively large noise inputs. In analog circuits, on the other hand, transistors operate on a continuum of levels over a given range, so that errors and corruption by noise are more likely to occur.
3. Versatility: Digital systems are more versatile than analog systems in several respects:
a. In combinational digital circuits, whose outputs depend only on present inputs, all Boolean logic can theoretically be performed by only one type of logic gate (NAND or NOR). In sequential digital circuits, whose outputs depend on present as well as past inputs, and which therefore incorporate
some memory elements, only a single type of memory element (a bistable) need, in theory, be used.
b. The processing in digital systems can be controlled by software. In other words, an operation, or the parameters of a given operation can be altered, not by changing or adjusting hardware, as in analog systems, but by programming, as in the case of digital computers, digital filters, or computer-controlled communication and control systems.
c. Some operations, such as data storage, data compression, error detection, and correction, are implemented much more conveniently and effectively in digital systems than in analog systems.
4. Large-Scale Integration: Digital circuits lend themselves very effectively to "modular design." Gates, gate assemblies, memory blocks, or blocks performing complex functions can be used as "generic" blocks that are readily connected together based on some relatively simple rules or guidelines that the designer adheres to. This has contributed to increasing levels of integration, from small-scale-integration (SSI), of about 10 gates per chip, to medium-scale-integration (MSI), of about 10-100 gates per chip, to large-scale-integration (LSI), of about 100-10 ${ }^{3}$ gates per chip, to very-large-scale-integration (VLSI), of about $10^{3}-10^{4}$ gates per chip, and to ultra-large-scale-integration (ULSI), of more than 10^{4} gates per chip. 100 million gates per chip are projected for the near future.

Boolean Algebra

Digital signals are processed according to the rules of Boolean algebra, which is the algebra of two-valued logic. This type of logic deals exclusively with statements that are unambiguously either true or false, such as: "It is raining outside." If this statement is denoted by a logic variable, say A, then A can assume one of two values: true (T) or false (F). If a statement is true, its negation is evidently false. Thus, if the statement "It is raining outside" is true, its negation, "It is not raining outside" is false.

Logic variables can be combined to form logic expressions of arbitrary complexity using two fundamental operations: conjunction and disjunction.

Definition: The conjunction of two or more logic variables A, B, C, etc. is true only if each of the statements involved is true. The conjunction of two or more logic variables is written as ABC... and read as A AND B AND C, etc.

For example, if A is the statement: "It is raining outside" and B is the statement: "The temperature is less than $15^{\circ} \mathrm{C}$," the compound statement: "It is raining outside and the temperature is less than $15^{\circ} \mathrm{C}, "$ is true only if both sub-statements are true. Logic relations can be illustrated by means of a truth table, as shown in Table 12.1.1 for the conjunction of two variables. The four possible combinations of values of A and B are entered, together with the value of $A B$ for each combination.

Definition: The disjunction of two or more logic variables A, B, C, etc. is false only if each of the statements involved is false. The disjunction of two or more logic variables is written as $A+B+$ C... and read as A OR B OR C, etc.

TABLE 12.1.1
Conjunction of Two Logic Variables

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A B}$
F	F	F
T	F	F
F	T	F
T	T	T

For example, if A is the statement: "He did not come because he was busy" and B is the statement: "He did not come because he forgot," the compound statement: "He did not come because he was busy or because he forgot" is true if either statement, or both, are true. It is false only if both sub-statements are false. The corresponding truth table is shown in Table 12.1.2.

The three basic operations of negation, conjunction, and disjunction are not independent. Conjunction can be expressed in terms of disjunction and negation, and disjunction can be expressed in terms of conjunction and negation. To illustrate this, let us evaluate the expression $\overline{\bar{A}}+\bar{B}$ by constructing its truth table, as shown in Table 12.1.3, where a bar above a logic variable, or expression, denotes the negation of that variable, or expression. The first two columns show the four combinations of A and B. The next two columns are their negations. The fifth column is the disjunction of \bar{A} and \bar{B}, and the last column is the negation of this disjunction. Comparing this column with the rightmost column of Table 12.1.1, it follows that:

$$
\begin{equation*}
\overline{\bar{A}+\bar{B}}=A B \tag{12.1.1}
\end{equation*}
$$

Similarly, it can be shown that:

$$
\begin{equation*}
\overline{\bar{A} \bar{B}}=A+B \tag{12.1.2}
\end{equation*}
$$

(Exercise 12.1.1). Equations 12.1.1 and 12.1.2 are an expression of:

De Morgan's law: If an expression is negated, conjunction or disjunction immediately beneath the negation symbol is replaced, respectively, by disjunction or conjunction of the negated variables or expressions.

For example, if the LHS of Equation 12.1.1 is negated, it becomes $\bar{A}+\bar{B}$. The conjunction of the negated variables is $A B$, as in Equation 12.1.1.

Exercise 12.1.1

Verify Equation 12.1.2 by constructing the corresponding truth table.

TABLE 12.1.2

Disjunction of Two Logic Variables

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A B}$
F	F	F
T	F	T
F	T	T
T	T	T

TABLE 12.1.3
Conjunction in Terms of Disjunction and Negation

\boldsymbol{A}	\boldsymbol{B}	$\overline{\boldsymbol{A}}$	$\overline{\boldsymbol{B}}$	$\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}$	$\overline{\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}}$
F	F	T	T	T	F
T	F	F	T	T	F
F	T	T	F	T	F
T	T	F	F	F	T

Boolean algebra is related to digital signal processing by the following conceptual step:
Concept: Since the binary number system uses only two bits, 1 and 0 , and the logic variables in two-valued logic assume only two values, T and F, then if the 1 and 0 are identified with true and false, digital signals consisting of strings of 1's and 0's can be processed according to the rules of Boolean algebra.

Conventionally, positive logic is used, in which 1 and 0 are identified with T and F , respectively. Negative logic, in which 1 and 0 are identified with F and T, respectively, is also possible, but is seldom used. Examples of digital signal processing using the laws of Boolean algebra are considered in the next section. Boolean algebra is expounded in Section ST12.1.

12.2 Logic Gates

Gate Types

Logic gates are electronic circuits that perform some logic, or related, function. The main types of logic gates are shown in Table 12.2.1 together with their symbols, the operations they perform, and the corresponding truth tables. The inverter performs logic negation, which is denoted as usual by a bubble. Conjunction and disjunction are performed by AND gates and OR gates, respectively. A NAND gate is an AND gate with inverted output and is logically equivalent to an AND gate followed by an inverter; similarly for a NOR gate. The Exclusive-OR (XOR) gate differs from an OR gate, which is sometimes referred to as inclusive-OR gate, in that when all of its input are 1, the output is zero. The XOR operation is denoted by a circled plus sign. Although it can be implemented using the aforementioned gates (Exercise 12.2.1), the XOR gate is encountered in many important operations (Example 12.1.1), so that it is convenient to show it as a separate gate. If its output is inverted, the XOR gate becomes an exclusive-NOR (XNOR) gate. The transmission gate was discussed in Section 5.5, Chapter 5 . When the control input C is 1, the gate

TABLE 12.2.1
Logic Gates

Gate	Symbol	Operation	Truth Table		
Inverter	$A>0-O$	$O=\bar{A}$	A	0	
			0	1	
			1	0	
AND		$O=A B$	A	B	0
			0	0	0
			1	0	0
			0	1	0
			1	1	1

TABLE 12.2.1 (continued)
Logic Gates

Gate	Symbol	Operation	Truth Table		
NAND		$O=\overline{A B}$	A	B	0
			0	0	1
			1	0	1
			0	1	1
			1	1	0
OR	$B \backsim O$	$O=A+B$	A	B	0
			0	0	0
			1	0	1
			0	1	1
			1	1	1

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{O}
0	0	1
1	0	0
0	1	0
1	1	0

XOR

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{O}
0	0	0
1	0	1
0	1	1
1	1	0

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{O}
0	0	1
1	0	0
0	1	0
1	1	1

Transmission gate

Output is controlled by a control signal

\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{O}
1	0	0
1	1	1
0	0	FL
0	1	FL

(a)

(b)

FIGURE 12.2.1
Figure for Exercise 12.2.1. Implementation of XOR function using complemented variables (a), uncomplemented variables (b), and transmission gates (c).
input A is transmitted to the output. But when C is 0 , both transistors of the gate are off, and the gate output is floating, that is, it has a high impedance to ground and will appear as an open circuit to whatever is connected to the output. The transmission gate is therefore useful for connecting together and disconnecting subcircuits of a system. An output that can have a high-impedance state, in addition to high and low, is referred to as tristate.

When increased current drive capability is required, which also speeds up the response because of increased rates of capacitor charging and discharging, buffer gates are used whose output transistors can source or sink larger currents. An example is a buffer inverter. A pure buffer has a single input and a single output and is implemented as two inverters in cascade, the output inverter having increased drive capability (Example 13.1.5, Chapter 13). Its logic symbol is like that of an inverter but without the bubble at the output.

It was mentioned in Section 12.1 that Boolean expressions can be implemented using inversion and conjunction or inversion and disjunction. If all the inputs of a NAND gate, or a NOR gate, are connected together, an inverter results. If a NAND gate is followed by an inverter, the overall logic function is conjunction. Similarly, if a NOR gate is followed by an inverter, the overall logic function is disjunction. It follows that, in principle, Boolean expressions can be implemented using only NAND gates or only NOR gates.

Exercise 12.2.1

Verify using truth tables that the circuits in Figure 12.2.1 are equivalent to an XOR gate.

Example 12.2.1 Applications of XOR Logic

It is required to use XOR gates to: (a) add two bits; (b) generate an odd parity bit.

Solution

(a) From the truth table for adding two bits A and B (Table 12.2.2), the sum digit $S=A \oplus B$, whereas the carry digit $C D=A B$. These digits can be derived as in Figure 12.2.2a.
(b) Given four bits A, B, C, and D, it is required to generate an output bit only if the number of 1 's in ABCD is odd. Three

TABLE 12.2.2
Addition of Two Bits

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{S}	$\boldsymbol{C D}$
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

FIGURE 12.2.2
Figure for Example 12.2.1. Using XOR gates to generate a sumbit (a), or an odd-parity bit.

XOR gates can be used for this purpose, as in Figure 12.2.2b. The output O_{1} is 1 only if A and B have an odd number of 1's. Similarly, the output O_{2} is 1 only if the number of 1 's in $A B C$ is odd, and the output O is 1 only if the number of 1 's in $A B C D$ is odd.

CMOS Gate Examples

In order to have some concrete idea about gates before we discuss gate characteristics, we will illustrate how some of the logic gates can be implemented in CMOS. The basic CMOS logic inverter, mentioned in Section 5.5, Chapter 5 is illustrated in Figure 12.2.3 and is analyzed in detail in Section 13.1, Chapter 13. When v_{I} is "high," corresponding to logic 1, the E-NMOS transistor is fully on, whereas the E-PMOS transistor is off. The output is "low" and is connected to ground through the E-NMOS transistor, which sinks current at the gate output. Conversely, when v_{I} is "low," corresponding to logic 0 , the E-NMOS transistor is off, whereas the E-PMOS transistor is fully on. The output is high and is connected to $V_{D D}$ through the E-PMOS transistor, which sources current at the gate output. In gate terminology, the E-PMOS transistor is an active pullup transistor, whereas the E-NMOS transistor is an active pull-down transistor.
Figure 12.2.4 illustrates a CMOS two-input NAND gate, formed from the inverter by adding an E-NMOS transistor in series, and an E-PMOS transistor in parallel, with the transistors of the inverter, and connecting their gates together to provide an additional input. If either input A or B is low, the corresponding E-NMOS transistor is off, whereas the corresponding E-PMOS transistor is on. The output O is high. The output goes low only if both inputs are high, so that the two series E-NMOS transistors will be on. The logic implemented is NAND.

Figure 12.2.5 illustrates a CMOS two-input NOR gate, formed from the inverter by adding an E-NMOS transistor in parallel, and a E-PMOS transistor in series, with the transistors of the inverter, and connecting their gates together to provide an additional input. If either input A or B is high, or both are high, then one or both E-NMOS transistors will be on, whereas one or both E-PMOS transistor will be off. The output O is low, that the logic implemented is NOR.

FIGURE 12.2.3
Basic CMOS logic inverter.

FIGURE 12.2.4
CMOS two-input NAND gate.

FIGURE 12.2.5
CMOS two-input NOR gate.

CMOS gates are discussed in more detail in Chapter 13. Note that in CMOS, NAND and NOR gates are more "natural" than AND and OR gates. To implement the latter gates, an additional inverting stage is needed.

Gate Performance

An ideal gate has the following properties:

1. It can have an unlimited number of inputs.
2. It can drive any number of gates connected to its output.
3. It performs the required logic function on its inputs with zero delay at the output.
4. The high voltage level, corresponding to logic 1, equals the positive supply voltage, whereas the low voltage level, corresponding to logic 0 , equals the most negative supply voltage, which is usually zero. This results in the maximum possible logic swing, referred to as rail-to-rail.
5. The voltage transfer characteristic has an abrupt transition between high and low levels in the middle of the voltage swing. This maximizes noise immunity at both high and low levels.
6. It should have good noise performance. This is governed by the following factors:
a. Relatively large and equal high and low noise margins, as discussed later.
b. Low impedance levels of signal lines, whether in the high or low states. As illustrated in Figure 12.2.6, a low resistance to ground of a signal line that is at a low voltage level reduces both the magnitude and time constant of the noise voltage induced through capacitive, or inductive, coupling. Similar considerations apply to the high voltage level, because the $V_{D D}$ supply is an ac ground.
c. When the gate output changes between high and low levels, the current drawn from the voltage supply should remain constant. As will be discussed in Chapter 13, the change in output can cause current pulses, or "spikes" through the supply, which necessitates careful decoupling and layout of the supply lines, so as not to induce noise in other gates.
7. The gate should not dissipate any power.

Practical gates deviate from ideal gates to different extents depending on the logic family involved, that is, the type of circuit that implements the gate. For example, the gate circuit could use MOS transistors or BJTs in different types of circuits, as explained in Chapter 13. For present purposes, we will examine some general aspects of performance of practical gates, irrespective of the logic family to which they belong.

FIGURE 12.2.6
Effect of low gate output resistance on induced noise.

The number of inputs to a gate is the fan-in. The fan-out is the number of similar gates connected to the output of a given gate, all gates being of the same logic family. The maximum fan-in and fan-out depend on device characteristics and circuit configuration of the gates under consideration. The constraints on maximum fan-out could apply under static, that is, dc conditions, or under dynamic, that is, time-varying, conditions because of capacitive loading, as discussed in Chapter 13. Having a large fan-in and fan-out can simplify chip design and reduce the total number of gates required. A gate is often specified by adding the fan-in to the gate type. Thus, a two-input NAND gate has a fanin of 2 and is designated as a NAND2 gate.

The voltage transfer characteristic relating the input of a gate to its output under dc, or quasi-static, conditions gives some important information about the behavior of all the gates belonging to a particular logic family. Consider, for example, one inverter driving another (Figure 12.2.7a), the inverter transfer characteristic being as in Figure 12.2.7b. $V_{O L}$ and $V_{O H}$ are the low and high voltage levels, respectively. For the CMOS inverter of Figure 12.2.4, these are nominally zero and $V_{D D}$, respectively. When $v_{I 2}=V_{O L}$ from the output of inverter $1, v_{\mathrm{O} 2}=V_{\mathrm{OH}}$, and when $v_{I 2}=V_{\mathrm{OH}}, v_{\mathrm{O} 2}=V_{\mathrm{OL}}$. At the threshold voltage $V_{T H}, v_{I 2}=v_{\mathrm{O} 2}$, which represents a "boundary point" above or below which the input and output are inversely related.

The logic swing is:

$$
\begin{equation*}
\mathrm{LS}=V_{O H}-V_{O L} \tag{12.2.1}
\end{equation*}
$$

As $v_{I 2}$ increases above $V_{O L}$, a level $V_{I L}$ is reached at which the slope of the transfer characteristic is -1 . Similarly, as $v_{I 2}$ decreases below $V_{O H}$, a level $V_{I H}$ is reached, at which the slope of the transfer characteristic is -1 . For $V_{I L}<v_{I}<v_{I H}$, the magnitude of the small-signal voltage gain $d v_{O} / d v_{I}$ exceeds unity, so that noise is amplified. The range between $V_{I L}$ and $V_{I H}$ is therefore avoided in normal operation. A low-level noise margin is defined as:

$$
\begin{equation*}
\mathrm{NM}_{\mathrm{L}}=V_{I L}-V_{O L} \tag{1.2.2}
\end{equation*}
$$

FIGURE 12.2.7
(a) One inverter driving another; (b) inverter transfer characteristic.

FIGURE 12.2.8
Idealized inverter transfer characteristic.

Similarly, a high-level noise margin is defined as:

$$
\begin{equation*}
\mathrm{NM}_{\mathrm{H}}=V_{O H}-V_{I H} \tag{12.2.3}
\end{equation*}
$$

Clearly, it is desirable to have $\mathrm{NM}_{\mathrm{L}}=\mathrm{NM}_{\mathrm{H}}$ so as to have the same noise immunity in both logic states, assuming that other factors contributing to noise immunity, such as the impedance level to ground, are the same.

The following should be noted concerning the transfer characteristic:

1. An idealized inverter transfer characteristic is illustrated in Figure 12.2.8. The transition between the two levels is sharp and occurs in the middle of the LS, at $V_{T H}=\left(V_{O H}+V_{O L}\right) / 2$. Moreover, $V_{I L}=V_{I H}=V_{T H}$, and $\mathrm{NM}_{\mathrm{L}}=\mathrm{NM}_{\mathrm{H}}=\left(V_{O H}-V_{O L}\right) / 2$. If $V_{O L}=0$ and $V_{O H}=5 \mathrm{~V}, \mathrm{NM}_{\mathrm{L}}$ and NM_{H} will have the maximum value of 2.5 V .
2. In the case of gates of fan-in larger than 1, inactive inputs are tied to logic one or logic zero, as appropriate. For a NAND3 gate, for example, inactive inputs are tied to the positive supply, whereas for a NOR3 gate, inactive inputs are grounded.
3. The transfer characteristic of a noninverting gate is the mirror image of that of Figure 12.2.7b about a vertical line through the middle of the LS (Figure 12.3.1b). The same considerations discussed for the inverting transfer characteristic apply.

The dynamic behavior of a gate is described by the propagation delay from input to output and depends in part on the rise and fall times of the transitions between the two levels. Inverters are usually used for describing dynamic behavior. Consider an inverter driven by a gate, which could be another inverter, as in Figure 12.2.7a. The upper waveform in Figure 12.2.9 represents the input to the inverter and changes from $V_{O H}$ to $V_{O L}$ and back to $V_{O H}$. The inverter output changes in the opposite direction, as in the lower trace. Rise and fall times, t_{r} and t_{f}, respectively, are defined in terms of transitions between the 10% and 90% levels of the LS, as in Figure 12.2.9. There is a propagation delay $t_{p L H}$ for the low-to-high transition of the inverter output, and another propagation delay $t_{p H L}$ for the high-to-low transition. Both $t_{p L H}$ and $t_{p H L}$ are measured from the 50%

FIGURE 12.2.9
Gate propagation delay.
level in the middle of the LS, as in Figure 12.2.9. In general, $t_{p L H} \neq t_{p H L}$, so that an average propagation delay is defined as:

$$
\begin{equation*}
t_{p}=\frac{1}{2}\left(t_{p L H}+t_{p H L}\right) \tag{12.2.4}
\end{equation*}
$$

Concept: The propagation delay sets a limit to the maximum frequency of operation of the gate.

At a high enough frequency, the low-to-high and high-to-low transitions become sufficiently close together so that the interpretation of a logic 1 or a logic 0 becomes uncertain. When gates are cascaded, the total propagation delay is the sum of the individual propagation delays plus the delays due to the interconnections between the gates.

The propagation delay of a gate has, in general, two components: (1) a component due to internal capacitances of the gate, and (2) a component due to the output resistance $r_{\text {out }}$ of the gate in conjunction with the total capacitance at the output of the gate. If the gate output is an emitter follower, as in the case of emitter-coupled logic (ECL) the second component is relatively unimportant. On the other hand, small MOSFET output transistors have a relatively large $r_{\text {out }}$. The propagation delay in this case may be dominated by the second component.

The power dissipation of a gate belonging to a particular logic family is an important figure that sets a limit to the maximum number of gates that can be included on a chip without having to take special measures for cooling. Power dissipation may have a static, or dc, component $P_{d c}$ proportional to the supply voltage, and a dynamic component $P_{a c}$ proportional to frequency. When $P_{d c}$ is different for the high and low states, an average $P_{d c}$ is taken. In the case of CMOS gates, the static power dissipation is negligible, as there is never a nonconducting path between $V_{D D}$ and ground because of some transistors being cutoff (Figures 12.2.4 through 12.2.6). During switching, however, current flows and power is dissipated that depends on the capacitance appearing at the gate output. In Figure 12.2.10, C charges from a supply of voltage $V_{D D}$ through a nonlinear resistor representing a conducting pull-up transistor. The energy stored in C, when fully charged, is $\frac{1}{2} C V_{D D}^{2}$. The instantaneous power delivered by the supply during charging is $V_{D D} i_{C}$, and the total energy delivered during charging is $V_{D D} \int_{0}^{\infty} i_{C} d t=V_{D D} Q_{C f}$, where $Q_{C f}$ is the charge delivered to C. Assuming that C is initially uncharged and that when C is fully
charged, the voltage drop across $R_{p u}$ is zero, $Q_{C f}=C V_{D D}$. The energy delivered by the supply is, therefore, $C V_{D D}^{2}$, which means that the energy dissipated in R during charging is $\frac{1}{2} C V_{D D}^{2}$, the same as the final energy stored in C. During discharge, the energy dissipated in the pull-down transistor is $\frac{1}{2} C V_{D D}^{2}$, the energy stored in C. The total energy dissipated in the output transistors is thus $C V_{D D}^{2}$. If the gate operates at a frequency f, the dynamic dissipated power is:

$$
\begin{equation*}
P_{a c}=f C V_{D D}^{2} \tag{12.2.5}
\end{equation*}
$$

According to Equation 12.2.5, $P_{a c}$ increases as $V_{D D}^{2}$. This implies that where $P_{a c}$ is dominant compared to $P_{d c}$, as in CMOS, it is particularly advantageous to reduce $V_{D D}$ as much as possible. Modern CMOS circuit are designed to operate with $V_{D D}=1.5 \mathrm{~V}$. Note that dynamic power dissipation can also result from

FIGURE 12.2.10
Charging and discharging of capacitor at output of gate. glitches that occur in multilevel gates because of propagation delays (Problem P12.2.16).

In general, dc power dissipation can be reduced by increasing resistance values in the circuit. However, for given capacitances, the propagation delay is increased, and conversely. Thus, if the output transistors are resized so as to double their resistance, the dc power dissipation is halved, but the reduced source and sink currents approximately double the propagation delay. A figure of merit for the gate is the power-delay product (PDP), where,

$$
\begin{equation*}
\mathrm{PDP}=\left(P_{d c}+P_{a c}\right) t_{p} \tag{12.2.6}
\end{equation*}
$$

PDP can only be significantly improved by using transistors with a higher gain-bandwidth product and by reducing t_{p} through improved circuit configuration and layout. In adiabatic logic (Section ST12.2) charge is partly conserved when capacitors discharge.

Simulation Example 12.2.1 Ring Oscillator

It is required to explain the behavior of a three-inverter ring oscillator and to simulate it.

Explanation

If the input and output terminals of an inverter are connected together, both terminals will be at a voltage $V_{T H}$, since this is the voltage at which $v_{I}=v_{O}$ (Figure 12.2.7). The circuit is stable, like connecting the output of an op amp to the inverting input. Similarly, when three or more inverters are connected in a ring, the feedback around the ring is negative at dc. However, the output resistances of the inverters, in conjunction with the capacitances at the inverter outputs, introduce a phase shift which turns the feedback positive at some frequency, resulting in sustained oscillations at this frequency. Figure 12.2.11a shows three inverters, assumed identical, connected in a ring. The resistance and capacitance associated with the output of each inverter are illustrated in Figure 12.2.11b. The phase shift of each of the three $R C$ circuits is less than 90°, so that at some frequency ω_{0} the total phase shift due to the three $R C$ circuits becomes 180°. The net phase shift around the ring becomes zero, resulting in oscillations at the frequency ω_{0}. The period of oscillation can be expressed in terms of the total propagation delay, as illustrated in Figure 12.2.11c, where the waveforms involved are idealized for simplicity and clarity. When v_{1} at the input of inverter 1 changes

FIGURE 12.2.11
Figure for Example 12.2.1. (a) Three inverters connected in a ring; (b) resistance and capacitance at the output of an inverter; (c) waveforms of inverters.
from low to high, the output of this inverter changes from high to low after a propagation delay $t_{p H L 1}$. This change is propagated though inverters 2 and 3 and back to inverter 1 as a change from high to low of v_{1}. This again propagates through inverters 2 and 3 and back to inverter 1 as a change from low to high of v_{1}, thereby completing the cycle. The period T is: $T=t_{p H L 1}+t_{p L H 1}+t_{p H L 2}+t_{p L H 2}+t_{p H L 3}+t_{p L H 3}$. Since the three inverters are assumed identical, $T=2 \times 3 \times t_{p}$, where t_{p} is the average propagation delay of the inverter. When an odd number N of identical inverters are connected in a ring, $f_{0}=1 / 2 N t_{p}$.
The ring oscillator is used in practice for the measurement of inverter propagation delay. N is made large enough to bring the frequency down to a value that is convenient to measure.

Simulation

The schematic of the three-inverter ring oscillator is shown in Figure 12.2.12, where a 10 pF capacitor is connected at the three inverter outputs. The E-NMOS transistors are MBreakN3 from the BREAKOUT library whose parameters entered in the PSpice Model are: $K p=50 \mathrm{u}$, Vto $=-1$, lambda $=0.015$, with $\mathrm{L}=1 \mathrm{u}, \mathrm{W}=2 \mathrm{u}$ entered in the Property Editor spreadsheet. The corresponding parameters of the E-PMOS transistor are: $\mathrm{Kp}=20 \mathrm{u}$, Vto $=-1$, lambda $=0.015, \mathrm{~L}=1 \mathrm{u}, \mathrm{W}=5 \mathrm{u}$. The waveform of the oscillations is practically sinusoidal because the total phase shift around the loop is zero at a single frequency. Taking the output V_{o} from a fourth inverter restores the waveform to nearly square (Figure 12.2.13). $f_{0} \cong 3 \mathrm{MHz}$.

FIGURE 12.2.12
Figure for Example 12.2.1.

FIGURE 12.2.13
Figure for Example 12.2.1.

12.3 Flip-Flops

Basic Latch

Consider two inverters connected in a loop (Figure 12.3.1a). Figure 12.3.1b illustrates the voltage transfer characteristic v_{O} vs. v_{I} when the loop is broken at X. As to be expected, v_{O} is low when v_{I} is low and is high when v_{O} is high. When the loop is closed, $v_{O}=v_{I}$, and the operating point can be determined from the intersections of the line $v_{O}=v_{I}$ with the transfer characteristic. Point P_{1} is a stable operating point, for if v_{I} increases, for example, due to noise fluctuations, v_{O} must increase by an equal amount, along the line $v_{O}=v_{I}$, in order to at least sustain the change in v_{I}. In actual fact, v_{O} increases very little, along the transfer characteristic. The increase in v_{O} is therefore insufficient to sustain the increase with v_{I}, because the gain is less than 1 , so that v_{I} reverts back to its value at P_{1}. Similarly, P_{2} is a stable operating point. On the other hand, Q represents an unstable operating point. For if v_{I} increases, the increase in v_{O} is more than that required to sustain the increase in v_{I},

FIGURE 12.3.1
(a) A two-inverter loop; (b) voltage transfer characteristic of two cascaded inverters.
because the transfer characteristic at Q is steeper than the line $v_{O}=v_{I}$, that is, the gain is more than 1 . The increase in v_{I} is reinforced, so that both v_{I} and v_{O} increase until point P_{2} is reached. Similarly, if v_{I} decreases, the operating point moves to P_{1}. The circuit is a latch, or bistable, since it has two stable states, one with v_{O} high, the other with v_{O} low. If v_{I} is set to zero, by temporarily grounding the input of the first inverter, for example, the stable state of the latch corresponds to P_{1} in Figure 12.3.1b. Similarly, if the input of the first inverter is temporarily connected to $V_{D D}$, the state of the latch changes to the stable state corresponding to P_{2} in Figure 12.3.1b.

Concept: The latch is a memory element in that it "remembers" its last state and keeps this state until it is forced to change it.

The reason the circuit latches to one of the two stable states is due to the positive feedback, which maintains the given state despite the removal of the cause of the change of state.

The presence of memory elements is the distinguishing feature of sequential digital circuits. In combinational circuits, consisting of interconnected logic gates without positive feedback, the output at any instant depends on the inputs at that instant. In sequential circuits, the output at any instant depends not only on inputs at that instant but also on the state of the memory elements at that instant.

The bistable is a member of the family of multivibrator circuits, which includes, in addition, the astable, and monostable. The astable does not have a stable state but continuously oscillates between these two states. The monostable has a single stable state. When triggered into the other state, it remains in this state for a preset interval, after which it reverts to the stable state. An output pulse is produced whose duration T is determined by the value of a capacitor C, as illustrated in Figure 12.3.2. Each of the trigger and output pulses can be positive or negative depending on the particular monostable.

The Schmitt trigger is a special type of bistable that exhibits hysteresis, so that transitions between states have different thresholds (Figure 12.3.3). When $v_{I}=0, v_{O}=V_{\text {LIM }}^{+}$(point A). If v_{I} increases to a threshold voltage $V_{T h}^{+}, v_{O}$ switches to a negative voltage $V_{\text {LIM }}^{-}$(point B). If v_{I} decreases to $V_{T h}^{-}, v_{O}$ reverts to V_{LIM}^{+}. A hysteresis loop results because $V_{T h}^{-}<V_{T h}^{+}$. This hysteresis loop is useful in that, once v_{I} exceeds $V_{T h}^{+} v_{O}$ stays at $V_{\text {LIM }}^{-}$, despite fluctuations in v_{I}, as long as v_{I} does not decrease to less than V_{LM}^{-}. All the four voltages $V_{\mathrm{LIM}}^{+}, V_{\mathrm{LIM}}^{-}, V_{T h}^{+}$, and $V_{T h}^{-}$can be set to suit a particular application, and the hysteresis loop can be centered anywhere along the v_{I} axis. The characteristic of Figure 12.3.3 is described as inverting, because an increasing v_{I} decreases v_{O} from the positive limit to the negative limit. The symbol for the inverting Schmitt trigger is an inverter with a hysteresis loop. Noninverting Schmitt triggers are also possible.

FIGURE 12.3.2
Monostable multivibrator.

FIGURE 12.3.3
Voltage transfer characteristic of the Schmitt trigger.

The principles of operation of multivibrators and the Schmitt trigger are discussed in Section ST12.2.3. CMOS versions of the monostable, astable, and Schmitt trigger are presented in Problems P12.3.8, P12.3.9, and Example SE12.1, respectively. A versatile IC, the 555 timer, which can be used as a timer, monostable, or astable, is discussed in Section ST12.4.

Exercise 12.3.1

Refer to Simulation Example 12.2.1. Connect two inverters in a loop, as in Figure 12.3.1a. Verify that upon starting the simulation, the inverters will be in the state corresponding to Q in Figure 12.3.1b. This is because there is no "noise" in the simulation to force the state to that of P_{1} or P_{2}. Use a normally closed switch that opens at $t=0$ to force the inverters to be in either of these states.

SR Latch

The basic latch of Figure 12.3.1 does not allow a convenient means for changing the state. This can be achieved by replacing the inverters of the basic latch with two-input inverting gates, which provides additional inputs to the latch, as illustrated in Figure 12.3.4 using NOR2 gates. When the S and R inputs are both 0 , they are inactive, that is, they have no effect on the output, and the circuit reduces essentially to the two inverters of the basic latch (Figure 12.3.1). The complementary outputs Q and \bar{Q} remain in whatever state they were in. This is indicated in the truth table (Table 12.3.1) by having Q_{n+1}, the output after the change of input takes place, the same as Q_{n}, the output before the change is applied.

FIGURE 12.3.4
SR latch and symbol.

TABLE 12.3.1
Truth Table for SR Latch

\boldsymbol{S}	\boldsymbol{R}	$\boldsymbol{Q}_{n+\mathbf{1}}$	$\overline{\boldsymbol{Q}}_{\boldsymbol{n + 1}}$	Operation
0	0	Q_{n}	\bar{Q}_{n}	Hold
1	0	1	0	Set
0	1	0	1	Reset
1	1	0	0	Not used

The operation is a hold. When the set input S is $1, \bar{Q}$ is forced to 0 if it is 1 and remains at 0 if it is 0 , and if $R=0$, then $Q=1$. The latch is said to be set. Similarly, when the reset input $R=1, Q$ is forced to 0 if it is 1 and remains at 0 if it is 0 , and if $S=0$, then $Q=0$. The latch is said to be reset. If both S and R are $1, Q$ and \bar{Q} become 0 simultaneously and are no longer complementary outputs. If S and R both return to zero at exactly the same time, the state is indeterminate. In practice, however, S and R do not return to zero exactly simultaneously, and the state of the latch is determined by whichever input is 1 when the other input is zero. For these reasons the inputs $S=1$ and $R=1$ are not normally used. The block symbol of the SR latch is shown in Figure 12.3.4. The SR latch can also be implemented using NAND2 gates rather than NOR2 gates (Exercise 12.3.2).

Figure 12.3.5 illustrates how the SR latch can be used in a simple example in which a timer is available that starts timing when its input is connected to logic 1 (high) but stops timing and is reset when its input is logic 0 (low). When PB_{1} is pressed, $S=1, Q=1$, and the timer starts timing. When PB_{1} is released, the latch maintains $Q=1$. To stop timing and reset the timer, PB_{2} is pressed, which makes $R=1$ and $Q=0$. Releasing PB_{2} does not change this state.

The operation of the SR latch just described is asynchronous, in the sense that outputs can change, after some propagation delay, following a change in S or R, in accordance with the truth table. In synchronous digital circuits, the outputs should only change at particular instants defined by a master timing signal, or clock (CK). This can be arranged using additional gates, as in Figure 12.3.6. When CK is low, the outputs of the AND gates are forced to zero, which isolates R and S from the NOR2 gates. Only when $C K$ is high can the levels of R and S affect the NOR2 gates in accordance with the truth table (Table 12.3.1). A clocked latch is referred to as a flip-flop (FF), although the terms flip-flop and latch are often used interchangeably.

Exercise 12.3.2

Implement the basic SR latch using NAND2 gates and label S, R, Q, and \bar{Q}.

FIGURE 12.3.5
Illustration of the latching property of an SR latch.

FIGURE 12.3.6
SR flip-flop.

JK Flip-Flop

The clocked SR-FF still suffers from the inconsistency of having both Q and \bar{Q} zero when S and R are 1 . This situation can be avoided in one of two ways: (1) if R and S are the negation of one another, they cannot be 1 simultaneously, but neither can they be 0 simultaneously. This method is implemented in the D-FF, as discussed later. (2) A feedback connection is added so that Q and \bar{Q} would block one of the two inputs S and R, resulting in a JK-FF, as illustrated in Figure 12.3.7. If $J=0$ and $K=0, R$ and S are forced to zero irrespective of Q and \bar{Q}. The flip-flop retains its state, as in the case of the clocked SR-FF discussed previously. When $J=1$ and $K=0, R$ is forced to zero. If $Q=0$, which means $Q=1, S$ becomes 1 one propagation delay after $C K=1$, as shown in the truth table (Table 12.3.2). After a second propagation delay, \bar{Q} becomes 0 , with Q still momentarily zero. After a third propagation delay two changes occur simultaneously: (1) $Q=1$, because $R=0$, and (2) $S=0$ because $\bar{Q}=0$. The FF is set, and its state will not change thereafter. If the FF was set to begin with, it remains set.

When $J=0$ and $K=1, S$ is forced to zero. If $Q=1$, which means $\bar{Q}=0, R$ becomes 1 one propagation delay after $C K=1$, as shown in the truth table. After a second propagation delay, Q becomes zero, with \bar{Q} still momentarily zero. After a third propagation delay two changes occur simultaneously: (1) $\bar{Q}=1$, because $S=0$, and (2) $R=0$, because $Q=0$. The FF is reset, and its state will not change thereafter. If the FF was reset to begin with, it remains reset.

Finally, if $J=1$ and $K=1$, these inputs will be neutral. When $C K=0$, both R and S are 0 . The behavior of the FF after $C K$ becomes 1 at $t=0$ can be followed on the timing diagram illustrated in Figure 12.3.8. If $Q=1$, which means, $\bar{Q}=0, R$ becomes 1 one propagation delay after $C K=1$. After a second propagation delay, Q becomes zero, with \bar{Q} still momentarily zero. After a third propagation delay, $\bar{Q}=1$, with $Q=0$, so that the $F F$ changes state. If $C K$ becomes zero, $\bar{Q}=1$ is not transmitted back to S, through the lower AND3 gate, and the FF remains in the new state. However, if $C K$ remain 1 then after a fourth propagation delay, $S=1$, and after a fifth propagation delay, $\bar{Q}=0$, with Q still momentarily zero. After a sixth propagation delay, $Q=1, \bar{Q}=0, R=0$, and $S=0$, so that the FF changes back to the initial state. As long as $C K=1$, the FF toggles between the two states at a rate that depends

FIGURE 12.3.7
JK flip-flop and symbol.

TABLE 12.3.2
Truth Table for JK Flip-Flop

\boldsymbol{J}	\boldsymbol{K}	$\boldsymbol{Q}_{\boldsymbol{n}}$	\boldsymbol{S}	\boldsymbol{R}	$\boldsymbol{Q}_{\boldsymbol{n + 1}}$	Operation
0	0	0	0	0	0	Hold
		1	0	0	1	
1	0	0	1	0	1	Set
		1	0	0	1	
0	1	0	0	0	0	Reset
		1	0	1	0	
1	1	0	1	0	1	Toggle
		1	0	1	0	

FIGURE 12.3.8
Timing diagram of JK flip-flop.
on the propagation delays. The final state depends on the duration of the 1 state of the clock, which is undesirable. This problem can be solved using a master-slave configuration, illustrated in Figure 12.3.9.
Two JK-FFs are cascaded, the CK signal being applied to the first, or master FF, whereas $\overline{C K}=1$ is applied to the second, or slave FF. The feedback is applied from the output of the slave FF to the input gates of the master FF. Let us illustrate the operation of this FF when $J=1, K=0, Q=0$, and $\bar{Q}=1$. When $C K=1$, the master FF is set, so that $Q_{m}=1$ and $\bar{Q}_{m}=0$,

FIGURE 12.3.9
Master-slave JK flip-flop.
as described previously in connection with Figure 12.3.7. When $\overline{C K}=1$, the J and K inputs to the master FF are disabled. The slave FF is set, as in the SR-FF of Figure 12.3.6. Next, let us check the operation if $J=1, K=1, Q=1$, and $\bar{Q}=0$. When $C K=1$, the operation proceeds as discussed with reference to Figure 12.3.8 until after the third propagation delay. But, because feedback to the lower AND3 gate is taken from \bar{Q} and not \bar{Q}_{m}, the master FF remains in the new state, $Q_{m}=0$, and $\bar{Q}_{m}=1=1$. When $\overline{C K}=1$, the state of the master FF is transmitted to the slave FF, so that $Q=0$, and $\bar{Q}=1$. When $C K=1$, the master FF toggles to the new state $Q_{m}=1$, and $\bar{Q}_{m}=0$. When $\overline{C K}=1$, the state of the master FF is transmitted to the slave FF, so that $Q=1$, and $\bar{Q}=0$. The master-slave flip-flop thus toggles between the two states with each clock pulse, irrespective of the duration of the 1 or 0 states of the clock pulse.

The following should be noted concerning the master-slave JK-FF:

1. While $C K=1$, changes in J and K affect the output of the master FF, after one propagation delay. In this sense, the master FF is said to be level sensitive. The changes in J and K may be "glitches" due to noise and may cause unwanted transitions in the output of the master FF.
2. On the other hand, the output of the slave FF changes when $C K$ goes low and is not affected by changes in J and K. It appears, therefore, that the output of the master-slave FF changes on the negative-going transition of the clock pulse. Such operation is described as edge-triggered. The operation can be changed from negative-edge-triggered to positive-edge-triggered simply by applying $C K$ to the master and CK to the slave.

A FF that toggles with each clock pulse is a T flip-flop. As just described, such a FF can be realized by connecting together the J and K terminals of a master-slave JK-FF and labeling them as a T input (Figure 12.3.10). If $T=0$, the FF retains its state, but if $T=1$, the FF toggles with each clock pulse. The symbol $>$ at the $C K$ terminal denotes positive-edge triggering. Adding a bubble as shown denotes negative edge triggering.

D Flip-Flop

The data or D-FF is an important type of FF that is used for temporary storage of data or as a delay element. Logically, it can be derived from the JK-FF of Figure 12.3.7 simply by labeling the J terminal as D and connecting it to the K terminal through an inverter (Figure 12.3.11). If $D=0$, the FF is reset when $C K=1$, corresponding to $J=0, K=1$ in Figure 12.3.7. On the other hand, if $D=1$, the FF is set when $C K=1$, corresponding to $J=1, K=0$. When $C K=0$, the state of the FF is preserved. The cases $J=0, K=0$, or $J=1, K=1$ do not arise.

We will use the D-FF to illustrate two important concepts concerning FFs in general.

Concept: In practice, FFs can be implemented based on a circuit representation that uses a smaller number of transistors than that suggested by the logic representation.

If the D-FF is to be implemented in CMOS according to Figure 12.3.7, the NOR2 gates would require four transistors each.

FIGURE 12.3.10
Negative-edge-triggered T flipflop.

FIGURE 12.3.11
D flip-flop.

FIGURE 12.3.12
D flip-flop implementation using transmission gates.

An AND3 gate can be implemented using a six-transistor NAND3 gate followed by an inverter. A total number of 25 transistors would be required, including the inverter between the J and K inputs. Now consider the circuit of Figure 12.3.12 consisting of two inverters and two transmission gates, or a total of 10 transistors, including the inverter for $\overline{C K}$. We will show that such a circuit implements a D-FF. When $C K=1$, TG1 is closed and TG2 is open. The input D is transmitted through TG1 and the two inverters so that $Q=D$. If $D=0$, the FF is reset and if $D=1$, the FF is set. When $C K=0$, TG1 is opened isolating the D input. TG2 is closed, so that the two-inverter loop behaves as a latch and preserves the last state. If when $C K=1$ again, D is still $1, Q$ remains 1 . If D has changed to $0, Q$ will change to 0 and will be maintained at zero when $C K=0$.

Concept: Because of propagation delays, an active input must be stable for a short time before and a short time after the active clock transition.

These times are referred to as the setup time, $t_{s t}$, and the hold time, $t_{h d}$, respectively. The need for a setup time and a hold time can be appreciated with reference to Figure 12.3.12. Clearly, when $C K$ goes to zero, the input D should have reached the output Q. Hence D should be set up at a certain time $t_{s t}$ before $C K$ goes low to account for the delays in TG1 and the two inverters. Similarly, should TG1 close slightly after TG2 opens, D should be held for a certain time $t_{h d}$. Otherwise, if D changes while TG1 and TG2 are open, the change in D will be transmitted to Q. The setup and hold times are illustrated in Figure 12.3.13. For CMOS, these times are typically about few nanoseconds. IC manufacturers provide these figures for their chips. To avoid uncertain operation of FFs, the setup and hold times should be carefully adhered to.

The circuit of Figure 12.3.12 is level sensitive, since changes in the D input will affect Q as long as $C K=1$. It can be made into an edge-triggered FF by cascading it with another FF in a master-slave configuration (Figure 12.3.14a). NAND2 gates are used to provide the set and rest inputs, \bar{S} and \bar{R}, respectively. These inputs are active low, which means that the corresponding change in the output takes place when \bar{S} or \bar{R} is zero. When $\bar{S}=1=\bar{R}$,

FIGURE 12.3.13
Timing diagram of D flip-flop.

these inputs are neutral, and the NAND2 gates will behave as inverters with respect to the other inputs not connected to \bar{S} or \bar{R}. Moreover, these inputs are asynchronous, that is, the change in the output will follow the change in these inputs, after some propagation delay, independently of the state of the clock. When $C K=0$, TG1 and TG4 are closed whereas and TG2 and TG3 are open. Input D appears inverted at B and the previous output Q is held by the positive feedback in the second, slave stage. When $C K=1$, TG1 and TG4 are open whereas TG2 and TG3 are closed. The first, master stage holds the output at B and transmits this to the output Q, which is now the same as D during the preceding $C K=0$ phase. The change in D while $C K=0$ is thus transmitted to Q at the next low-to-high transition when $C K=1$. The FF is therefore positive-edge triggered. Inverting $C K$ makes the FF negative-edge triggered.

When $\bar{R}=0$ in Figure 12.3.14a, the outputs of gates 1 and 4 are forced to 1 . If TG3 is closed (which means that TG4 is open), $Q=0$ and is held when TG4 closes. If TG4 is closed when $\bar{R}=0$, then $Q=0$ and is held. Similarly, if $\bar{S}=0$, then $Q=1$ and the output of gate 2 is 1 . If TG4 is closed the output $Q=1$ is held. If TG4 is open, TG2 and TG3 are closed, so that B is held at 0 and transmitted to the second stage as $Q=1$, which ensure that Q remains 1 . If both R and S are 1 , then both Q and \bar{Q} will be 1 , which may or may not be desirable, depending on the rest of the circuit. The asynchronous set and reset inputs can of course be made into synchronous inputs by gating them with a clock signal (Exercise 12.3.3).

FIGURE 12.3.14
Positive-edge-triggered D flip-flop with active low S and R inputs (a) and its symbol (b).

For proper operation of the D-FF of Figure 12.3.14a, the transmission gates should turn on and off in the proper timing sequence, otherwise there could be an interval when all gates are closed, which would cause malfunctioning. Two factors may contribute to improper timing of clock signals: (1) appreciable rise and fall times of the clock pulses, which necessarily cause an overlap between a clock signal and its complement during their rise and fall times; hence clock signals should have short rise and fall times; (2) the delay in long clock lines causes differences in arrival times of clock signals to their targets, an effect known as clock skew. A common remedy is to use separate and nonoverlapping clock signals. Thus, the clock signal applied to TG1 and TG4 could be distinct from that applied to TG2 and TG3, with the two clock signals nonoverlapping, that is, their transitions are sufficiently separated in time so that that it would not be possible to have all the transmission gates closed at the same time. Edge-triggering can also be achieved in another way, as described for the D-FF in Section ST12.5.

The symbol for a positive-edge triggered D-FF is shown in Figure 12.3.14b, where a bubble at the S and R inputs indicates that these inputs are active low.

Exercise 12.3.3

Show how the set and reset inputs in Figure 12.3.14 can be made synchronous

12.4 Digital System Memories

Various types of memory are almost universally used in digital systems to store and retrieve digital information. This information is generally of two types: (1) program instructions that direct the operation of the system, and (2) data on which instructions operate. The most important attributes that determine the type of memory to be used for a particular purpose are:

1. Volatility, which refers to the ability of memory to retain the stored information in the absence of power to the memory. Volatile memory loses stored information when power is removed, whereas nonvolatile memory does not. Clearly, memory for long-term storage of information should be nonvolatile, but memory used for temporary storage can be volatile.
2. Read/write ability; read/write (R/W) memory allows storage and retrieval of information at comparable speeds. On the other hand, read-only memory (ROM) allows retrieval of information at high speeds but restricts writing of information. In some types of ROM, such as CD-ROM, information can be written only once. In erasable ROMs, on the other hand, data can be written repeatedly but at reduced speed. ROM is generally nonvolatile.
3. Access time is the time between the initiation of a read operation and the retrieval of the read information. This is a crucial factor that determines the overall speed of operation of the digital system. It depends not only on how the bits of information are actually stored in the various memory locations but also on how the locations are accessed. The fastest access is in random access memory (RAM), in which the access time is independent of the physical location of the information in memory. In contrast, in serial memory, as in magnetic tape, information
can be written or read only sequentially, which increases average access time quite considerably. In disc drives, which are used for mass storage in computers, information is stored on circular tracks. The tracks are accessed essentially randomly by R / W heads, but the data in each track is accessed essentially sequentially.

In general, the larger the memory capacity, the longer is the access time. In computers and large digital systems, the highest memory capacity is provided by magnetic or optical disc drives. These are nonvolatile but slow. The working or main memory in computer systems is volatile RAM but should be more properly referred to as R/W memory, because semiconductor ROM memory is also random access. Some memory is provided on the processor chip itself. Although limited in capacity, this memory is optimized for speed of access.
4. Power consumption under static and dynamic conditions is important for limiting power dissipation in memory chips and in low-power applications.
5. Cost per bit, which depends on the number of stored bits per unit area of the chip. Single-chip semiconductor memory represents the densest packing of transistors per chip, because of the regularity of memory structure and the relatively low percentage area occupied by interconnections. Single-chip memory capacity has been approximately doubling every two years and is expected to reach several tens of gigabits by the year 2015.

Classification of Semiconductor Memories

Figure 12.4.1 shows the classification of semiconductor memories, which are discussed in the following sections. R/W memory is of two types: static RAM (SRAM) and dynamic RAM. SRAM stores information bits in latches. Dynamic RAM stores information as charges on capacitors, which means that these charges must be refreshed periodically to compensate for inevitable charge leakage. Mask ROM is factory programmed using a photo mask and cannot subsequently be erased or reprogrammed. Programmable ROM (PROM) is similar except that it is programmed by the user, as in fuse ROM. Erasable PROM (EPROM) is erased by ultraviolet radiation, which requires removal of the chip from the board. In contrast electrically erasable PROM (EEPROM) is erased in place. Flash memory is a special type of EEPROM that allows quick erasure of large blocks of stored information. The number of allowable write operations in EPROM and EEPROM is of the order of a million or so.

FIGURE 12.4.1
Classification of RAM.

Organization of RAM

RAM, particularly that in the form of a single chip, is generally organized as illustrated in Figure 12.4.2. Memory locations or cells are arranged in a rectangular array of 2^{M} rows and 2^{N} columns, which gives a total of 2^{M+N} cells, each cell storing a single bit and located at the intersection of a row and a column. A $64-\mathrm{Mbit}$ chip would have $M+N=26$, since $1 \mathrm{Mb}=1024 \times 1024=1,048,576=2^{20}$ bits and $64 \times 2^{20}=2^{26}$. Such a memory is designated as $64 \mathrm{M} \times 1$ memory, or simply a $64-\mathrm{Mb}$ memory. If each word in this memory is 16 bits, the memory is designated as $4 \mathrm{M} \times 16$ and would have $2^{2} \times 2^{20}$ addresses.
A row decoder (described later) receives the M address bits and selects just one of the 2^{M} row lines. When a row is selected, all the 2^{N} cells in this row are also selected. Similarly, a column decoder decodes the column address. The column decoder also transfers the stored data in and out of the memory chip. For this reason, the 2^{N} column lines are referred to as bit lines, whereas the 2^{M} row lines are referred to as word lines. In addition, writing/reading of information requires some sort of a driver/sense amplifier as discussed in Section 12.5.

A memory chip can have all the bits individually addressable, in which case one of the 2^{N} lines is selected at a time. The data relevant to L of these one-bit memory chips are combined into L-bit words, where L is typically 8,16 , or 32 . In some cases, the memory chip may be organized around L-bit words, in which case L bit lines are selected together. The cell or L cells whose word lines and bit lines are simultaneously selected can then be accessed for reading or writing.

As the number of cells in the memory array increases, the lengths of the word lines and bit lines also increase, which increases the resistance and capacitance of these lines and hence memory access time. The memory on the chip is then split into a number of "banks," and each bank may be subdivided into arrays, as in Figure 12.4.2. A 1-Gb memory, for example, may be divided into eight banks of $128 \mathrm{Mb}\left(2^{3} \times 2^{7} \times 2^{20}=2^{30}\right)$; each 128 Mb bank may be further divided into $512,256-\mathrm{kb}$ arrays $\left(2^{9} \times 2^{8} \times 2^{10}=2^{27}\right)$, each array having 512, or 2^{9}, word lines and 512 bit lines.

FIGURE 12.4.2
Organization of RAM.

12.5 Read/Write Memory

Static Memory Cell

A six-transistor cell of a CMOS SRAM is illustrated in Figure 12.5.1. Q_{1} to Q_{4} are two crosscoupled inverters that constitute a latch, as in Figure 12.3.1a. The NMOS and PMOS transistors of the inverters are matched. $Q_{T 1}$ and $Q_{T 2}$ are access transistors connecting the inverter outputs and the complementary bit lines. Typically $Q_{T 1}$ and $Q_{T 2}$ have two to three times the width of Q_{1} and Q_{3}. When the word line is not selected, it is low and $Q_{T 1}$ and $Q_{T 2}$ are off. All capacitors shown in broken lines are parasitic. The sequence of events during a read operation can be summarized as follows:

1. The B and \bar{B} lines are precharged, usually to $V_{D D} / 2$, for better noise immunity and reduced power consumption. After precharging, the bit lines are left to float.
2. The word line for the given cell goes high, which turns on $Q_{T 1}$ and $Q_{T 2}$.
3. Assuming $Q=1, \bar{Q}=0, Q_{2}$ is turned on but is not conducting because its drain is at $V_{D D}$. Current initially flows from C_{Q}, through $Q_{T 1}$ to the B line, thereby charging C_{B} and increasing the B line voltage to more than $V_{D D} / 2$ (Figure 12.5.2a). As C_{Q} discharges, current flows through Q_{2}. Simultaneously, current initially flows from the \bar{B} line through $Q_{T 2}$ and to $C_{\bar{Q}}$, at 0 V , discharging $C_{\bar{B}}$ and decreasing the \bar{B} line voltage to less than $V_{D D} / 2$ (Figure 12.5.2b). As $C_{\bar{Q}}$ charges, current flows through Q_{3}. The differential voltage $v_{B \bar{B}}$, of magnitude normally less than 100 mV for $V_{D D}=5 \mathrm{~V}$, is positive if $Q=1, \bar{Q}=0$, and is negative if $Q=0, \bar{Q}=1$.
4. The sense amplifier detects the voltage change $v_{B \bar{B}}$ and amplifies it to a full logic swing, making the B line at $V_{D D}$ and the \bar{B} line at 0 , if $Q=1, \bar{Q}=0$, and making the B line at 0 and the \bar{B} line at $V_{D D}$, if $Q=0, \bar{Q}=1$. The stored bit is thus read and transmitted the output line.
5. World line goes low.

The read operation is nondestructive, that is, it does not change the stored bit. When a 1 is read, for example, with Q_{2} and Q_{3} on, and Q_{1} and Q_{4} off, the drop in voltage at Q_{2} drain,

FIGURE 12.5.1
A six-transistor cell of a CMOS SRAM.

FIGURE 12.5.2
Read operation with $Q=1$ (a) and $\bar{Q}=0$ (b).
should not make Q_{4} conduct an appreciable current, while the sense amplifier pulls the voltage of the B line to $V_{D D}$. The state of the latch will change if the input to the $Q_{3}-Q_{4}$ inverter falls below $V_{T H}$. Similarly, the rise in voltage at Q_{3} drain should not make Q_{1} conduct an appreciable current while the sense amplifier pulls the voltage of the \bar{B} line to 0 .

To illustrate a write operation assume that $Q=1, \bar{Q}=0$, and a 0 is to be written in the cell. The sequence of events during this write operation can be summarized as follows:

1. The B line is pulled to 0 and the \bar{B} line to $V_{D D}$.
2. The word line goes high, turning on $Q_{T 1}$ and $Q_{T 2}$. Both transistors will be in saturation, having $v_{D S}=v_{G S}=V_{D D}$ (Figure 12.5.3). Current initially flows from C_{Q} through $Q_{T 1}$ to the B line. As C_{Q} discharges, Q_{2} conducts and the voltage Q falls toward $V_{D D} / 2$, the threshold of the $Q_{3}-Q_{4}$ inverter. Simultaneously, current initially flows from the \bar{B} line through $Q_{T 2}$ to $C_{\bar{Q}}$, which charges it and makes Q_{3} conduct, and the voltage \bar{Q} rises toward $V_{D D} / 2$, the threshold of the $Q_{1}-Q_{2}$

FIGURE 12.5.3
Write operation with $Q=1$ and $\bar{Q}=0$.
inverter. The source of $Q_{T 1}$ is held at 0 V by the buffer driving the B line, so there is no body effect, whereas the voltage of $Q_{T 2}$ source increases with \bar{Q}. Hence, $Q_{T 2}$ remains in saturation, but with its threshold increased and its current reduced. This means that Q reaches $V_{D D} / 2$ before \bar{Q}. The $Q_{3}-Q_{4}$ inverter will switch first and force a change of state of the latch. A 1 is thus written into the cell.
3. The word line goes low.

The write time depends on: (1) the rise time of the voltage on the word line, (2) the time it takes to change the voltage of C_{Q} or $C_{\bar{Q}}$ by $V_{D D} / 2$, and (3) the time it takes the inverters to switch, which is essentially t_{d} of the inverter. The read time depends on: (1) the rise time of the voltage on the word line, (2) the time it takes to change the voltage of C_{B} or $C_{\bar{B}}$ by the $v_{B \bar{B}}$ needed to activate the sense amplifier, and (3) the time taken by this amplifier to drive the respective bit lines to $V_{D D}$ and 0 . Note that $C_{B} \gg C_{Q}$ (Problem 12.4.2).

Dynamic Memory Cell

A dynamic memory (DRAM) cell consists of an E-NMOS access transistor Q_{A} and a capacitor C_{S} associated with Q_{A}, often in the form of a trench capacitor in the IC that adds to the parasitic capacitance of the transistor (Figure 12.5.4). Only a B line is used, with no \bar{B} line. The overall result is a very high density of memory cells on the chip, so that DRAMs have the highest level of integration of all ICs and typically occupy a quarter of the area of an SRAM of the same memory capacity.

If 1 is to be written in the cell, the B line is first raised to $V_{D D}$, then the W line, which turns Q_{A} on. If C_{S} is not fully charged, current flows from B line, charging C_{S} to $V_{D D}-V_{t n}$, because Q_{A} stops conducting when the voltage across C_{S} is $V_{D D}-V_{t n}$. Note that $V_{t n}>V_{t n 0}$ due to the body effect. Q_{A} is in saturation since its drain, connected to the B line, is at the same voltage as its gate. In order to charge C_{S} more rapidly, and to $V_{D D}$, the voltage on the W line is often boosted to at least $V_{D D}+V_{t n}$ (Problem 12.4.8).

If 0 is to be written in the cell, the B line is held at zero. When the W line is raised to $V_{D D}$, Q_{A} is turned on. If C_{S} is charged, it is discharged to 0 , with the terminal connected to the B line acting as the source. Q_{A} is in the triode region, because its maximum $v_{D S}$ is $V_{D D}-V_{t n}$, whereas its $v_{G S}$ is $V_{D D}$, and the threshold is $V_{t n 0}<V_{t n}$.

A complication of the DRAM is that the charge on C_{S} leaks, through the channel of Q_{A} and its source-substrate and drain-substrate junctions. The charge on C_{S} must therefore be refreshed every few ms or so, as specified for the particular chip. Refreshing involves rewriting the stored bits and is done by the sense amplifier, as explained later. The periodic refresh is performed one row at a time, with the memory block not available

FIGURE 12.5.4
A dynamic memory cell.

for reading and writing during the periodic refresh. This is not a serious limitation, however, because the time required to refresh the entire block is typically less than about 2% of the time between refresh cycles, so that the block is available for reading or writing nearly 98% of the time. Note that when a cell is to be read or written into, and the W line is raised to $V_{D D}$, all the access transistors in the selected row are turned on, which connects the storage capacitors of all the cells in the selected row to their respective B lines. The resulting change in voltage on each of these bit lines is detected and amplified by the corresponding sense amplifier. The amplifier output signal, whether 0 or $V_{D D}$, is reapplied to the bit line, thus restoring the signal to its original level and automatically refreshing all the cells in the selected row.

If a cell is to be read, the B line is precharged to $V_{D D} / 2$ and left to float. When the W line is pulled to $V_{D D}$ and Q_{A} is turned on, C_{B} and C_{S} are connected together (Figure 12.5.4), with $C_{B} \gg C_{S} . C_{B}$ is partly due to the metal-substrate capacitance of the B line but mostly due to the depletion capacitance of the drain or source of each access transistor connected to the B line. C_{S} is typically about 20 fF , and C_{B} is about 1 pF . Connecting C_{S} to C_{B} changes the voltage on the B line by ΔV_{B}, where from conservation of charge:

$$
\begin{equation*}
C_{S} V_{C S}+C_{B} \frac{V_{D D}}{2}=C_{S}+C_{B}\left(\frac{V_{D D}}{2}+\Delta V_{B}\right) \tag{12.5.1}
\end{equation*}
$$

and $V_{C S}$ is the initial charge on C_{S}. Solving for ΔV_{B} :

$$
\begin{equation*}
\Delta V_{B}=\frac{C_{S}}{C_{B}+C_{S}}\left(V_{C S}-\frac{V_{D D}}{2}\right) \cong \frac{C_{S}}{C_{B}}\left(V_{C S}-\frac{V_{D D}}{2}\right) \tag{12.5.2}
\end{equation*}
$$

If 1 is to be read, and the voltage on the W line is $V_{D D}$, then $V_{C S}=V_{D D}-V_{t n}$, so that,

$$
\begin{equation*}
\Delta V_{B}(1)=\frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}-V_{t n}\right) \tag{12.5.3}
\end{equation*}
$$

If 0 is to be read, $V_{C S}=0$, so that,

$$
\begin{equation*}
\Delta V_{B}(0)=-\frac{C_{S}}{C_{B}}\left(\frac{V_{D D}}{2}\right) \tag{12.5.4}
\end{equation*}
$$

If $C_{S} / C_{B}=1 / 40, V_{D D}=5 \mathrm{~V}$, and $V_{\text {tn }}=1.2 \mathrm{~V}, \Delta V_{B}(1)=32.5 \mathrm{mV}$ and $\Delta V_{B}(0)=-62.5 \mathrm{mV}$. It is seen that ΔV_{B} is quite small. Moreover, because the voltage on C_{S} changes to $\left(V_{D D} / 2+\Delta V_{B}\right)$ during read, the read operation of a DRAM is destructive.

Sense Amplifier and Precharge Circuit

A precharge and equalization circuit is illustrated in Figure 12.5.5 for an SRAM. When the control signal $C S_{P}$ goes high at the beginning of a read operation, all three transistors are turned on. $Q_{P 1}$ and $Q_{P 2}$ apply $V_{D D} / 2$ to the B and \bar{B} lines. Q_{E} equalizes the voltage between the two bit lines, this being a critical condition for correct operation of the sense amplifier.

A sense amplifier for an SRAM, based on the regenerative action of a latch, is illustrated in Figure 12.5.6. When the control signal $C S_{S}$ is low, Q_{5} and Q_{6} are off, and the latch is isolated from $V_{D D}$ and ground, so that no power is dissipated. But, when $C S_{S}$ goes high, Q_{5} and Q_{6} are turned on, and the sense amplifier is powered. With Q_{E} in Figure 12.5.5 turned

FIGURE 12.5.5
Precharge and equalization circuit.

A sense amplifier for SRAM.

on, the B and \bar{B} nodes of the sense amplifier are forced to be at the same voltage, so that when Q_{E} is turned off, the state of the latch is that of unstable equilibrium, corresponding to point Q in Figure 12.3.1. Whether the state of the latch moves to P_{1} or P_{2} depends on the differential signal $v_{B \bar{B}}$ applied to the bit lines by the cell being read. If $v_{B \bar{B}}>0$, the regenerative action brings the B line to $V_{D D}$ and the \bar{B} line to zero (point P_{2}). Conversely, if $v_{B \bar{B}}<0$, the regenerative action brings the \bar{B} line to $V_{D D}$ and the B line to zero (point P_{1}). The following should be noted:

1. The regenerative action is speeded up by the gain of the latch at Q, which is the slope of the voltage transfer characteristic at this point.
2. Since $v_{B \bar{B}}$ is differential, a common-mode input due to coupling from the word line or other parts of the circuit, is rejected as long as the components of the latch are well matched.
3. While Q_{E} is turned on and the latch is powered, the four transistors of the latch are in saturation, and power is dissipated (Problem P12.4.10). Although this power is small, the number of sense amplifiers that could be active at the same time can be several thousands. Hence, the time during which the amplifier is in precharge must be kept small. More complex clocked sense amplifiers are used in practice to minimize this power dissipation (Section ST12.6).

Since the DRAM cell does not have a \bar{B} line, some means should be provided to have the single-ended output of the cell applied differentially to the sense amplifier. To do so, each B line is split into two halves and a dummy cell consisting of a transistor and a capacitor $C_{D}=C_{S}$ is added to each half, as illustrated in Figure 12.5.7. When a cell connected to the right half of a B line, say, is to be read, the two halves of the B line are precharged to $V_{D D} / 2$ and their voltages are equalized. Simultaneously, the capacitors of the two dummy cells are precharged to $V_{D D} / 2$. The word line of the given cell is selected and the control signal $C P_{D}$ is made high, so that the dummy cell on the other half of the B line, that is the left half in this case, is connected to the left half of the B line. As a result, a voltage $V_{D D} / 2$ appears on the input of the sense amplifier from the dummy cell connected to the left half of the B line, and a voltage $V_{D D} / 2+\Delta V_{B}$ appears on the input of the sense amplifier from the given cell connected to the right half of the B line. The sense amplifier detects a differential input when enabled and changes the B-line voltage, through regenerative action, to $V_{D D}$ if 1 is read, or to 0 if 0 is read. This also serves to refresh the memory cell and counteract the "destructiveness" of the read operation.

As mentioned previously, the read operation not only refreshes the cell being read, but all the cells in the selected row are refreshed at the same time. This is because when a cell is read, and the voltage of the word line is raised to $V_{D D}$, all the access transistors in the selected row are turned on and connect the storage capacitors of all the cells in the selected row to their respective bit lines. As just described, the sense amplifiers connected to these bit lines would automatically make the B-line voltage go to $V_{D D}$ if 1 is stored in the respective cell, or leave it at 0 if 0 is stored.

FIGURE 12.5.7
Sense amplifier connections for DRAM using dummy cells.

Simulation Example 12.5.1 Sense Amplifier

It is required to simulate the operation of the sense amplifier.

Simulation

The schematic is shown in Figure 12.5.8. The transistors are the same as in Example 12.2.1. The bit line capacitances are assumed to be 1 pF and are precharged to 2.5 V . The current source disturbs the voltage on one B line by applying 1 mA for 1 ps . The resulting V_{o} is shown in Figure 12.5.9. For the indicated polarity of the current source, the voltage V_{o} increases from 2.5 to 5 V . For the opposite polarity of the current source V_{o} decreases from 2.5 to 0 V .

Row Decoder

A row address decoder decodes an M-bit address so that only one of 2^{M} word lines is selected. Several decoding schemes may be used, one of which is the decoder based on NOR logic and illustrated in Figure 12.5.10 for a three-bit word address. The objective is to select the W_{0} line, that is make it high, when the address word $A_{2} A_{1} A_{0}$ is 000 , to select the W_{1} line when the address word is 001 , to select the W_{2} line when the address word

FIGURE 12.5.8
Figure for Simulation Example 12.5.1.

FIGURE 12.5.9
Figure for Simulation Example 12.5.1.

FIGURE 12.5.10
Row-address decoder based on NOR logic.
is 010, etc. The logic is $W_{0}=\overline{A_{0}+A_{1}+A_{2}}, W_{1}=\overline{\bar{A}_{0}+A_{1}+A_{2}}, W_{2}=\overline{A_{0}+\bar{A}_{1}+A_{2}}$, etc., which is NOR. Basically, the three transistors connected to a given word line behave as a 3-input NOR gate whose inputs are connected to the address bits or their complements, as appropriate.
Prior to a word line selection, all the row address lines and their complements are low so that all the E-NMOS transistors in the array are off. The precharge control signal $\overline{C S}_{p}$ is high, which means that the E-PMOS transistors are also off. Hence, no static power is dissipated in the circuit. Prior to initiating a decoding operation $\overline{C S}_{p}$ goes low, which charges all the word line capacitances to $V_{D D} \cdot \overline{C S}_{p}$ then goes high again. Following this, the row address bits and their complements are applied to the address lines. All the word lines will be discharged, except the one corresponding to the selected address. Thus, if the address is $001, A_{2}, A_{1}$, and \bar{A}_{0} will be low, the three transistors connected to W_{1} will remain off and W_{1} will be high. All the other word lines will be discharged by at least one conducting transistor and will therefore go low.

After the decoder outputs are stabilized, the word lines are connected to the word lines of the memory cells, usually through clock-controlled buffers. The following should be noted:

1. If there are M uncomplemented address lines, M E-NMOS transistors are required for each of 2^{M} word lines, or a total of $M 2^{M}$ E-NMOS transistors, plus 2^{M} E-PMOS transistors.
2. If $\overline{C S}_{p}$ is permanently low, then when the address bits and their complements are applied, there will be a path to ground from $V_{D D}$ through the conducting E-NMOS transistors, and power is dissipated. But, because the $\overline{C S}_{p}$ signal is temporary there is no path between $V_{D D}$ and ground when E-NMOS transistors conduct, which significantly reduces power dissipation.

Concept: Static power dissipation can be eliminated by using dynamic logic.

The operation of the NOR decoder just described is an example of dynamic logic, which relies on charging and discharging of parasitic capacitances (Section 13.4, Chapter 13).

Exercise 12.5.1

Construct a decoder similar to that of Figure 12.5.6 but based on NAND logic.

Column Decoder

The column decoder is required to transfer data in and out of the memory cells selected. This can be accomplished by a NOR type decoder, as previously described (Figure 12.5.10), together with a multiplexer (Problem 12.2.7), as illustrated in Figure 12.5.11. Having just one I/O data line is in accordance with the assumption that each memory location stores one bit. When a row is selected, all the cells in the row are connected to their respective B lines. However, only the line selected by the column decoder, out of the 2^{N} output lines of the decoder, will go high. This line will therefore turn on the corresponding E-NMOS transistor of the multiplexer and connect the B line of the selected cell to the I/O data line.

The operation of the E-NMOS transistor of the multiplexer, also referred to as a pass transistor, is illustrated in Figure 12.5.12. If the gate is at $V_{D D}$ and the input is zero (Figure 12.5.12a), the transistor is turned on and the capacitance at the output is discharged, the output terminal acting as the drain and the input terminal as the source. The drain voltage becomes zero when the output capacitance is fully discharged. If the input is at $V_{D D}$, the transistor is still turned on, but the input now acts as the drain and the output as the

FIGURE 12.5.11
Column decoder and multiplexer.

FIGURE 12.5.12
Operation of the pass transistor when the input is 0 (a) or 1 (b).
source. The output voltage is $V_{D D}-V_{t n}$, where $V_{t n}>V_{t 0}$ because of the body effect (Figure 12.5.8b). If the gate is grounded, the transistor is off and the output line is in a high-impedance state. When a 1 is being written, the I/O line (corresponding to the input line in Figure 12.5.12b) is at $V_{D D}$ and the B line goes to $V_{D D}-V_{t n}$. The regenerative sense amplifier can be used to pull the data up to $V_{D D}$. When a 1 is being read, the B line (now corresponding to the input line in Figure 12.5.12b) is at $V_{D D}$. The data buffer of the I/O line can be made to boost the $V_{D D}-V_{t n}$ output of the pass transistor to $V_{D D}$.

It may be noted that in large memory chips row and column addresses may be multiplexed, that is the same pins are used to pass the row and column addresses at different times in order to reduce the total number of pins required. A 1-Gb memory, for example, would require a 15 -bit row address and another 15 -bit column address to access the 2^{30} memory locations. But only 15 pins need be used if the row address is clocked by a signal into a 15 -bit latch to hold the row address, and the same 15 pins are used to clock at a different time the column address into another 15-bit latch to hold the column address. Clearly, multiplexing is most efficient when the memory array is square, having the same number of rows and columns.

12.6 Read Only Memory

ROM is nonvolatile memory that is extensively used to store program instructions and data in microprocessor and dedicated processor systems as well as in many consumer applications such as computer game cartridges, personal digital assistants (PDAs), digital cameras, media players, mobile phones, and smart cards. A ROM can be considered as a combinational digital circuit whose input is the address of a given memory location and whose output is the information that is stored in that location. The memory locations are randomly accessed, as in RAM. Various types of ROM are discussed in this section.

Mask ROM

A simple diode ROM that stores eight 4-bit words is shown in Figure 12.6.1. The output bit lines $B_{0}-B_{3}$ are pulled down to 0 voltage through resistors. The eight locations are accessed by a 3-bit word address through a decoder, so that for each of the eight addresses one of the eight lines $W_{0}-W_{7}$ goes high. When a given W line goes high, the B lines go high if a diode is connected at the junctions between the W line and the four B lines. If no diode is present the B line remains low. If line W_{7}, for example, goes high because of a 111 address applied to the decoder, the bit lines $B_{3} B_{2} B_{1} B_{0}$ will read 1001.

Two points should be noted about this ROM:

1. When a memory location is accessed, current flows to ground through conducting diodes, with consequent power dissipation.
2. The 4 -bit words that are stored in the ROM are set during fabrication. However, rather than locate diodes at certain junctions of the W and B lines according to the words to be stored, it is more economical to include during manufacturing a diode at each junction. Then after the final metallization coating of the wafer, a mask is used to selectively etch away portions of the metal, thereby disconnecting some diodes from the lines so as to obtain the desired diode connections. Hence, the ROM is referred to as a mask-programmable ROM or a mask ROM.

FIGURE 12.6.1
Diode ROM.

A dynamic CMOS ROM that stores eight 4-bit words is shown in Figure 12.6.2. Prior to reading, $\overline{C S}_{p}$ goes low, thereby charging the B line capacitances, then goes high again. When one of the W lines goes high, the E-NMOS transistors whose gates are connected to this line will conduct and discharge the corresponding B line capacitances. The remaining B lines

FIGURE 12.6.2
NOR ROM.
remain high as long as their capacitances retain charge. It follows that a given B line, say B_{k}, is low if any of the $n W$ lines goes high and has a transistor between it and the B_{k} line. The logic performed is: $\bar{B}_{k}=W_{0}+W_{1}+\cdots+W_{n}$, or $B_{k}=\overline{W_{1}+W_{2}+\cdots+W_{n}}$, which is NOR logic. The ROM is referred to as a NOR ROM. The same words can be stored in a NAND ROM, as illustrated in Figure 12.6.3. In this case a given B_{k} is high if any of the transistors connected in series with this line is off, that is if any of the $n W$ lines is low. The logic performed is $B_{k}=\bar{W}_{0}+\bar{W}_{1}+\cdots+\bar{W}_{n}=\bar{W}_{0} W_{1} \ldots W_{n}$, which is NAND logic. In this case, the bit line capacitances are precharged, with all W lines low. During reading, the selected W line is kept low while the remaining W lines go high. If W_{0} is low, for example, the transistor at the intersection of the W_{0} and B_{3} lines is turned off and keeps B_{3} high. The other bit lines are discharged low by the series-connected transistors that are turned on by the remaining high W lines. The advantage of the NAND ROM is that it is more compact than the NOR ROM because of elimination of the ground line through the array, the disadvantage being a reduction in the read speed because of the series connection.

Exercise 12.6.1

Compare the 4 -bit words stored at the same address locations in the three ROMs of Figures 12.6.1 through 12.6.3.

Programmable ROM

For small volumes, or for prototyping purposes, it is convenient to have the ROM programmed by the user. Figure 12.6.4 illustrates a cell in a BJT ROM. This is similar to the diode ROM of Figure 12.6.1 but with the BEJ replacing the diode and with a microfuse in

FIGURE 12.6.3
NAND ROM.

FIGURE 12.6.4
Programmable BJT ROM.

series with the emitter. Where a BJT is connected at the junction of a W line and a B line, and when the W line goes high the transistor conducts and pulls the B line high. If no BJT is present at the junction the B line is low. The ROM is manufactured with a BJT at every junction and a microfuse in series with each emitter. The microfuse could be made from polysilicon or nichrome wire. Where it is desired not to have a BJT the transistor is made to conduct heavily, thereby blowing the fuse. Compared to the diode ROM of Figure 12.6.1, the BJT ROM output is that of an emitter follower, which provides better noise immunity and dynamic performance.

Microfuses can also be used with MOS ROMs. Programming with microfuses is of course irreversible.

Erasable Programmable ROM

An erasable programmable ROM (EPROM) can be erased and reprogrammed up to about a million times. It is based on a specially designed E-NMOS transistor having a second, floating gate, the transistor symbol being as shown (Figure 12.6.5). If the floating gate is uncharged, the threshold is increased only slightly because of the reduced capacitance between the normal gate and substrate. The transistor will turn on as usual when $V_{D D}$ is applied to the gate. If, however, the floating gate is charged negatively, the threshold is increased, because a larger positive voltage is now required to form an n-channel between the source and drain. If the threshold exceeds $V_{D D}$, the transistor will never turn on in normal operation and will behave as if it has been removed from the circuit. A programmed floating gate transistor (FGT) can be considered to store logic 0 or logic 1 depending on whether it pulls the bit line to ground or to $V_{D D}$, respectively. Whether this occurs due to a transistor being on or off depends on the type of ROM, that is, NOR or NAND, as explained in connection with Figures 12.6.2 and 12.6.3. An unprogrammed or erased FGT would of course store the complementary bit compared to a programmed FGT. The FGT is included during fabrication at the junction of every W and B line for programming by the user.

FIGURE 12.6.5
FGT used in erasable, programmable ROM.

To select a given transistor for programming a voltage of about 25 V is applied to the W line (Figure 12.6.2 or Figure 12.6.3). The gates of all the transistors connected to the same line will be at this voltage. A voltage of about $20-25 \mathrm{~V}$ is applied to the B line connected to the given transistor, which applies this voltage to the drain of the given transistor, the remaining B lines being at zero voltage. The selected transistor will conduct, the high drain-source voltage accelerating the electrons in the channel to a high velocity in the pinch off region near the drain. The energy of these "hot electrons" can be sufficient to overcome the energy barrier between the channel and the floating gate. Electrons that reach the floating gate get trapped in this gate, charging it negatively. The effect is self-limiting in that the accumulating negative charge on the floating gate increases the threshold voltage, which reduces the current and hence the rate of accumulation of electrons in the floating gate to practically zero. Because of the excellent insulating properties of the silicon dioxide, the trapped charge on the floating gate is retained virtually indefinitely.

To erase the FGT, ultraviolet radiation of appropriate wavelength is applied, typically 253.7 nm . The radiation imparts enough energy to the electrons trapped in the floating gate to enable them to overcome the energy barrier and return to the substrate. To allow application of the ultraviolet radiation, the EPROM package is provided with a quartz window. However, the EPROM has to be removed from the board for erasure.

Flash ROM

An EEPROM can be erased in situ. It is based on a floating gate tunnel oxide (FLOTOX) transistor, which is a modification of the FGT transistor in which the thickness of the oxide between the floating gate and the substrate is reduced to 1 nm or less. This allows programming and erasure of the transistor by electron tunneling (Section 2.1, Chapter 2) between the floating gate and the substrate, although programming can still be done by hot electron injection as in the EPROM. A flash memory is the most common type of EEPROM as it allows quick erasure of large blocks of stored information. It is extensively used to store and erase information in cell phones, digital cameras, media players, and as a portable memory that can be plugged to USB ports of computers. The symbol for a FLOTOX transistor is a modification of that of a FGT transistor, as indicated in Figure 12.6.6.

Figure 12.6.6a illustrates the programming of a FLOTOX transistor. With source floating and the drain, p-well, and n-substrate grounded, a voltage of $15-20 \mathrm{~V}$ is applied to the gate, which is sufficient to cause tunneling of electrons from the p-well to the floating gate. As this gate acquires negative charge the voltage driving tunneling is reduced, so that the operation is self-limiting, as in the EPROM. To erase the transistor, the gate is grounded, with the drain and source floating, and 20 V is applied between the p-well contact and n-substrate connected together and ground (Figure 12.6.6b). The tunneling voltage is now reversed and electrons tunnel back from the floating gate to the substrate. Again the tunnel current drops as the floating gate becomes less negative. For the erasure times normally used, the floating gate acquires a net positive charge. This makes the threshold of the FLOTOX transistor negative and turns it into a depletion device. Note that when 20 V is applied to the p-well, and if the source and drain are not isolated, the junctions between the well and the source and drain will be forward biased.

Figure 12.6.7 shows a memory cell of a four-word NAND ROM having four FLOTOX transistors connected to four word lines $W_{0}-W_{3}$. Two E-NMOS select transistors are used. The Select 1 transistor reduces the capacitive loading of the B line and provides better isolation between this line and the memory cell, whereas the Select 2 transistor is required in the control of programming and erasing operations, as explained later. As in

FIGURE 12.6.6
Programming (a) and erasure (b) of a FLOTOX transistor used in flash memory.

FIGURE 12.6.7
A memory cell in a four-word NAND ROM showing a B line and four FLOTOX transistors connected to four word lines W0-W3.
the NAND ROM of Figure 12.6.3, a read operation begins with precharging the B line to $V_{D D}$. During read, the source line, p-well line, and n-substrate line are grounded, whereas the Select 1 line and the Select 2 lines are pulled to $V_{D D}$, as are all the word lines, except the selected word line, say W_{0}, which is held low. The transistors connected to lines $W_{1}-W_{3}$ are therefore turned on. If the transistor connected to line W_{0} is programmed, that is stores 1 , its threshold is high and the 0 V at its gate would turn it off. The precharge of the B line is held and 1 is read on this line. If the transistor is erased, that is it stores 0 , its threshold is negative, and the 0 V at its gate will turn it on. A path will therefore exist to ground through all the transistors, the B line is discharged, and 0 is read on this line.

The programming of the memory cell is illustrated in Figure 12.6.8 and follows the scheme of Figure 12.6.6a. The transistor, shown in gray, at the junction of the B_{k} line and the W_{0} word is to be programmed. Its gate is pulled to 20 V , whereas the gates of the other FLOTOX transistors and the Select 1 transistor are at 5 V , which turns these transistors on. The B_{k} line is grounded, so that the drain of the given transistor is grounded through the on transistors. The gate of the Select 2 transistor is grounded so that this transistor is off and the source of the given transistor is floating. Electron tunneling occurs in the given transistor, thereby programming it. It will be noted that the gates of the other transistors at

FIGURE 12.6.8
Programming of a FLOTOX cell.
the junction of the W_{0} line and the other B lines will also be at 20 V . To prevent undesired tunneling in these transistors, the corresponding B line, shown as B_{k+1} line in Figure 12.6.8 is held at a high enough voltage, say 10 V , so that tunneling does not occur in this transistor, which if erased will remain erased.

Erasure is illustrated in Figure 12.6 .9 and is performed as in Figure 12.6.6b. The p-well and the n-substrate are driven to 20 V , the B line is floated, and Select 1 and Select 2 transistors are turned off, which floats the sources and the drains. The gates of the transistors connected to the W lines are grounded. Since the p-well and the n-substrate are common to all the memory cells, and not just to the cell shown, the whole memory can be erased in this way. It is this bulk erasure feature that gives a flash memory its name. Note that the voltage converters required for the higher voltages are included in the chip.

Simulation Example 12.6.1 Charge Pump

It is required to analyze and simulate the voltage multiplier circuit of Figure 12.6.10, referred to as a Dickson charge pump, which can be used to generate arbitrarily high voltages, limited by breakdown of the capacitors or the gate oxide of the MOSFETs.

Analysis

Each of the E-NMOS transistors is diode connected. At the beginning, with all capacitors discharged and the $C K$ line at $0 \mathrm{~V}, C_{1}$ is charged to $V_{1}=V_{D D}-V_{t 1}$; when $C K=V_{D D}, \overline{C K}=0$,

FIGURE 12.6.9
Erasure of a FLOTOX cell.

FIGURE 12.6.10
Figure for Simulation Example 10.6.1.
V_{1} is boosted to $2 V_{D D}-V_{t 1}$ and C_{2} is charged to $V_{2}=2 V_{D D}-\left(V_{t 1}+V_{t 2}\right)$; when $C K=0$, $\overline{C K}=V_{D D}, V_{2}$ is boosted $3 V_{D D}-\left(V_{t 1}+V_{t 2}\right)$ and C_{3} is charged to $V_{3}=3 V_{D D}-\left(V_{t 1}+V_{t 2}+V_{t 3}\right)$, and so on. Eventually, when $C K=0, \overrightarrow{C K}=V_{D D}, C_{n}$ is charged to $V_{n}=n V_{D D}-\left(V_{t 1}+V_{t 2}+\right.$ $\left.\cdots+V_{t n}\right)$ and when $C K=V_{D D}, \overline{C K}=0, V_{n}$ becomes $(n+1) V_{D D}-\left(V_{t 1}+V_{t 2}+\cdots+V_{t n}\right) . V_{n}$ therefore fluctuates by $V_{D D}$ between these two limits. In practice, C_{n} can be made larger than the other capacitors so as to reduce the ripple. Note that the thresholds of the transistors may be different because of the body effect.

Simulation

A three-stage charge pump is simulated having $n=3$ (Figure 12.6.11). The transistors are MbreakN from the BREAKOUT library. $\mathrm{kp}=50 \mathrm{u}$ and $\mathrm{Vto}=1$ are entered in the PSpice model and $\mathrm{L}=1 \mathrm{u}$ and $\mathrm{W}=10 \mathrm{u}$ are entered in the Property Editor spreadsheet. The parameters of VSRC1 are: $\mathrm{V} 1=0, \mathrm{~V} 2=5, \mathrm{TD}=0, \mathrm{TR}=1 \mathrm{n}, \mathrm{TF}=1 \mathrm{n}, \mathrm{PW}=0.5 \mathrm{u}$, and $\mathrm{PER}=1 \mathrm{u} . \mathrm{VSRC2}$ has the same parameters except that $\mathrm{V} 1=5$ and $\mathrm{V} 2=0$. The plot of the output V 3 is shown in Figure 12.6.12. Since no parameters were entered for the body effect, this effect is not involved in the simulation. The steady-state voltage of V 3 is seen to fluctuate between 12 V and 17 V , in accordance with the results of the analysis for $n=3$ and $V_{t 1}=V_{t 2}=V_{t 3}=1 \mathrm{~V}$. Other circuits for generating positive or negative voltages are discussed in Section ST12.7.

FIGURE 12.6.11
Figure for Simulation Example 10.6.1.

FIGURE 12.6.12
Figure for Simulation Example 10.6.1.

12.7 Ferroelectric RAM

The principal disadvantage of semiconductor flash memories is that the number of erase-program cycles is limited to about a million. Whereas such a number of eraseprogram cycles is adequate for many consumer applications, where programming frequency is of the order of once per day, it is not suitable for computationally intensive applications, as in digital computers. Hence, other types of nonsemiconductor, nonvolatile, and electrically erasable and programmable memories have been developed. A common example is the ferroelectric RAM (FRAM), capable of at least a billion write-erase cycles.

A ferroelectric material, made from compounds such as lead zirconium titanate, is the electric analog of a ferromagnetic material. It exhibits hysteresis and retains a residual polarization after removal of a bias voltage. Because of hysteresis, this polarization can be of either polarity. Hence, if the ferroelectric material is used as the dielectric of a capacitor, one polarity of the capacitor voltage indicates storage of 1 , whereas the opposite polarity indicates storage of 0 .

An FRAM cell consists of a ferroelectric capacitor and an access transistor (Figure 12.7.1). The selection of the word line turns on the access transistor for reading or writing. To store a bit, a voltage of appropriate polarity is applied to the bit line and an equal voltage of opposite polarity is applied to the plate line. To read the stored bit, the word line and bit line are driven high. A positive voltage pulse is applied to the plate line and the magnitude of the resulting current pulse indicates whether a 1 or a 0 is stored. Because the read operation is destructive, the cell has to be refreshed after the read operation.

FIGURE 12.7.1
Memory cell of FRAM.

12.8 Metallic Interconnect

Aluminum, copper, and sometimes doped polysilicon, provide the necessary connections between transistors on a chip and to the chip's terminals. These are referred to as the interconnect. Increasing attention is being paid to the role that the interconnect plays in the overall performance of digital circuits because, as chips get larger in size and contain an increasing number of transistors of smaller dimensions and faster speeds, the effects of interconnect become more marked, particularly as it becomes necessary to run the interconnect at different levels in the chip. These effects are due to the parasitic capacitance, resistance, and inductance of the conductors. A detailed treatment of the interconnect is beyond the scope of this chapter; instead, we will briefly outline some of the main considerations involved.

Capacitance

Capacitance of the interconnect takes three main forms:

1. Capacitance to grounded structures such as substrates, which generally are either grounded directly or are at ac ground because they are connected to a dc supply. This capacitance has two components: a parallel-plate capacitance due to the width of the interconnect and a fringing field capacitance due to the electric field at the sides of the interconnect (Section ST12.8).
2. Interlevel capacitance between conductors at different levels in the chip, the most significant being usually between adjacent levels. Chips may contain ten levels or more of the interconnect to allow all the required routing of connections.
3. Interwire capacitance between wires at the same level. As the width and spacing of the wires were decreased, the wire thickness did not decrease in the same proportion, so that adjacent wires came to look more like parallel-plate capacitors.

As previously discussed, capacitance to ground at circuit nodes, especially output nodes, increases propagation delay of logic gates and the dynamic power dissipation. Interwire capacitance and interlevel capacitance can increase the effective capacitance to ground (Problem 12.5.1) and can distort and delay signals because of cross talk, which is interference due to coupling of signals between neighboring lines. This coupling is not only capacitive but could be magnetic as well. Cross talk is minimized by avoiding long stretches of parallel, adjacent signal lines and by having signal lines on adjacent levels run in orthogonal directions. Parasitic capacitance of interconnect can be reduced by using low-k dielectrics of relative permittivity less that of $\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$, which is about 3.9. Doping with carbon reduces the relative permittivity of the oxide to about 2.8 , and silicon-based polymers have a relative permittivity of 2.2 or less.

Resistance

Based on a bulk resistivity of $1.7 \times 10^{-6} \Omega \mathrm{~cm}$ for copper, $2.8 \times 10^{-6} \Omega \mathrm{~cm}$ for aluminum, and $10^{-2} \Omega \mathrm{~cm}$ for n-type polysilicon, the resistance per unit length of a connection $0.5 \mu \mathrm{~m}$ high and $1 \mu \mathrm{~m}$ wide is $340 \Omega / \mathrm{cm}$ for copper, $560 \Omega / \mathrm{cm}$ for aluminum, and $2 \mathrm{M} \Omega / \mathrm{cm}$ for n-type polysilicon, at low frequencies. At high frequencies, the resistance is increased by the skin effect. This effect can be understood in a simplified manner by considering
the conductor to be made up of a large number of parallel, current-carrying filaments. If the current density were to be uniform in all the filaments, then the magnetic flux surrounding the filaments near the center of the conductor will be greater than that surrounding the filaments near the surface. The central filaments will therefore have an inductance that is larger than that of the filaments near the surface and will consequently carry less current. As a result, the current will be nonuniformly distributed across the cross section of the conductor, being more concentrated toward the surface, which reduces the effective crosssectional area and increases the resistance. The bulk of the current flows through a skin depth δ given at a frequency f by (Section ST12.9):

$$
\begin{equation*}
\delta=\sqrt{\frac{\rho}{\pi f \mu}} \tag{12.8.1}
\end{equation*}
$$

where
ρ is the resistivity
μ is the permeability

This means that a conductor of rectangular section of width w and thickness h has an effective area at high frequencies of $2 \delta(w+h-2 \delta)$ instead of $w h$ (Problem P12.5.2). For aluminum δ is $2.7 \mu \mathrm{~m}$ at 1 GHz and $0.27 \mu \mathrm{~m}$ at 100 GHz .

The resistance of interconnect should not cause a voltage drop that exceeds a specified value when the interconnect carries its maximum current. The maximum allowed current density in an interconnect is limited by metal electromigration (Section 5.3, Chapter 5).

Distributed Models

Strictly speaking, voltage and current signals propagate along an interconnect as waves traveling at a speed $u=u_{\text {light }} / \sqrt{\mu_{r} \varepsilon_{r}}$, where μ_{r} and ε_{r} are, respectively, the relative permittivity and relative permeability of the dielectric and $u_{\text {light }}$ is the speed of light in vacuum. If these are assumed to be unity and 3.9 , respectively, for $\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$, then $u \cong u_{\text {light }} / 2$. Moreover, R, L, and C of the interconnect are distributed along the length of the interconnect and cannot be considered as lumped at nodes or between nodes unless the wave nature of the propagation can be neglected.

The distributed nature of R, L, and C is accounted for by considering the interconnect as a transmission line. A basic property of a transmission line is its characteristic impedance Z_{0} :

$$
\begin{equation*}
Z_{0}=\sqrt{\frac{r+j \omega l_{w}}{g+j \omega c}} \tag{12.8.2}
\end{equation*}
$$

where
r, l_{w}, and c are, respectively, the resistance, inductance, and capacitance per unit length of the conductor
g is the conductance per unit length of the dielectric
If the transmission line is lossless, $r=g=0$, and $Z_{0}=R_{0}=\sqrt{l_{w} / c}$. In the case of IC interconnect, g is practically zero but r is generally not negligible. When the line is terminated at its receiving end by Z_{0}, there is no reflection of signals. Otherwise, a fraction of the signal is reflected back to the sending end, where it is partially reflected again if the
impedance at the transmitting end is not equal to Z_{0}, and so on, until the reflected signal becomes negligibly small. In the case of pulse-type signals, reflections cause damped oscillations, or ringing, about the final value. Intuitively, if the reflected signal occurs during the rise time of the pulse at the transmitting end, it may only slow the rising edge of the pulse and make it less smooth. However, if the reflection arrives after the rising edge, then it will corrupt the signal level and may cause logic gates to malfunction.

Most of the interconnect on a chip is short and dense, of length less than a millimeter or so, and having minimum line widths and spacing dictated by the technology used. For these lines, the resistance can be neglected and the interconnect represented by a capacitance C_{w} that is part of the load capacitance C_{L} considered thus far.

For a longer interconnect, whose resistance is not negligible, a so-called distributed $R C$ model is used, according to which the line is represented by one or more $R C$ sections (Figure 12.8.1). For a uniform line of length l, represented by N identical sections, the delay is approximated as (Example 12.8.1):

$$
\begin{equation*}
t_{p l}=(\ln 2) r c l^{2} \frac{N+1}{2 N} \tag{12.8.3}
\end{equation*}
$$

Note that the propagation delay $t_{P l}$ varies as l^{2}. That is why long lines, such as clock, data, and control lines are usually broken into shorter segments separated by buffer gates called repeaters. Equation 12.8.3 is a simple form of the Elmore delay. It is interpreted in Example 12.8.1 and considered more generally in Section ST12.9.

The total delay of a gate, plus interconnect, can be considered as:

$$
\begin{equation*}
\text { Total delay }=t_{p g a t e}+(\ln 2) \frac{r c l^{2}}{2} \tag{12.8.4}
\end{equation*}
$$

where the second term on the RHS is the limit of $t_{p l}$ (Equation 12.8.3) for large $N . t_{p g a t e}$ is the gate delay due to a total capacitance at the output that includes cl . If $t_{p g a t e}$ is dominant in Equation 12.8.4, the second term in Equation 12.8.4 is ignored, and the interconnect is modeled as a single lumped capacitance that is included in $t_{p g a t e}$. If not, then a distributed $R C$ model or a transmission line model is used.

As a rule of thumb, a transmission line model, rather than a distributed RC model, is used if the time of flight $t_{\text {flight }}$ exceeds $t_{p g a t e}$, where $t_{\text {flight }}=l / u$ is the time it takes the wave of speed u to travel the length l of the line. For a gate having $t_{p g a t e}$ of $25 \mathrm{ps}, l \cong 3.75 \mathrm{~mm}$.

It should be noted that minimizing delay along interconnect is not the only consideration. Cross talk should be minimized as well. These are sometimes conflicting requirements. For example, using wider interconnect, which has less resistance per unit length, and driving it by low output resistance devices reduces the delay but can aggravate crosstalk due to magnetic coupling between lines.

FIGURE 12.8.1
$R C$ representation of distributed parameters of an interconnect.

Simulation Example 12.8.1 Delay of RC Distributed Line

It is required to interpret Equation 12.8.3 and to simulate it for a five-section and a ten-section $100 \mu \mathrm{~m}$ distributed line having a resistance of $560 \Omega / \mathrm{cm}$ and a capacitance of $1 \mathrm{pf} / \mathrm{cm}$.

Analysis

Consider first a single $R C$ section to which a pulse of amplitude V_{p} is applied. The voltage across C is:

$$
\begin{equation*}
v(t)=V_{p}\left(1-\mathrm{e}^{-t / R C}\right) \tag{12.8.5}
\end{equation*}
$$

The delay t_{p} for this section is estimated by setting $v(t)=0.5 V_{p}$ and solving for t_{p} :

$$
\begin{equation*}
t_{p}=(\ln 2) R C \cong 0.7 R C \tag{12.8.6}
\end{equation*}
$$

If the line is represented by a single section, then Equation 12.8 .6 gives the delay at terminal node 1 , with $R=R_{T}=r l$, the total resistance of the line, and $C=C_{T}=C l$, the total capacitance. If the line is represented by two sections, each having a resistance $R_{T / 2}$ and a capacitance $C_{T / 2}$, where $R_{T / 2}=R_{T / 2}$ and $C_{T / 2}=C_{T / 2}$, the delay at terminal node 2 is considered as:

$$
\begin{equation*}
t_{p 2}=(\ln 2)\left[R_{T / 2} C_{T / 2}+2 R_{T / 2} C_{T / 2}\right] \tag{12.8.7}
\end{equation*}
$$

Following the same argument, if the line represented by N sections, the delay at terminal node N is:

$$
\begin{equation*}
t_{p N}=(\ln 2)\left[R_{T / N} C_{T / N}+2 R_{T / N} C_{T / N}+\cdots+k R_{T / N} C_{T / N}+\cdots+N R_{T / N} C_{T / N}\right] \tag{12.8.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{T / N}=R_{T} / N \\
& C_{T / N}=C_{T} / N
\end{aligned}
$$

The k th term on the RHS of Equation 12.8 .8 is the product of the capacitance $C_{T / N}$ at node k and the total resistance $k R_{T / N}$ from the input to node k, where $k=1,2, \ldots, N$. Substituting for $R_{T / N}$ and $C_{T / N}$, Equation 12.8 .8 becomes:

$$
\begin{equation*}
t_{p N}=(\ln 2) r c \frac{R^{2}}{N^{2}}(1+2+\cdots+N)=(\ln 2) r C^{2} \frac{N+1}{2 N} \tag{12.8.9}
\end{equation*}
$$

as in Equation 12.8.3.
For the given line, $R_{T}=560 \times 10^{-4} \times 100=5.6 \Omega$ and $C_{T}=1 \times 10^{-4} \times 100 \times 10^{3}=10 \mathrm{fF}$. It follows that the delay for a single section is $(\log 2) \times 5.6 \times 10=38.8 \mathrm{fs}$ (Equation 12.8.6). For a large number the sections, the delay is $(\ln 2)\left(R_{T} C_{T} / 2\right)=19.4 \mathrm{fs}$ (Equation 12.8.4), which is half as much as the delay assuming a lumped parameter representation. For $N=5$, the delay is $(\ln 2) R_{T} C_{T}[(5+1) / 10]=23.3 \mathrm{fs}$.

Simulation

The simulation results are shown in Figure 12.8.2. For the five-section $R C$ line, the simulated propagation delay is 25.4 fs , compared to the calculated value of 23.3 fs , which is about 8% less. For the ten-section line the simulated propagation delay is 23.3 fs , compared to the calculated value of 21.3 fs , which is also about 8% less.

FIGURE 12.8.2
Figure for Example 12.8.1.

Summary of Main Concepts and Results

- The distinguishing characteristic of analog signals is that they assume values over a continuous range.
- The distinguishing characteristic of digital systems is that digital signals are represented in binary code and processed according to the rules of Boolean algebra.
- The major advantages of digital systems are: accuracy, reliability, versatility, and large-scale integration.
- An ideal gate has unlimited fan-in and fan-out, no propagation delay, no static or dynamic power dissipation, rail-to-rail logic swing, a step-shaped voltage transfer characteristic, maximal and equal high-level and low-level noise margins, and low impedance levels of signal lines in both the high and low states.
- Since gate power dissipation and propagation delay are, in general, inversely related, an important figure of merit for a gate is the power-delay product.
- The latch has two stable states that are maintained by positive feedback. It is a memory element in that it "remembers" its last state and keeps this state until it is forced to change it.
- The master-slave clocked JK-FF is a general type of flip-flop that could be made into an SR-FF, a T-FF, or a D-FF. Its output appears to be edge triggered.
- Flip-flops can be implemented based on a circuit representation that uses a smaller number of transistors than that suggested by the logic representation.
- Because of propagation delays, an active input must be stable for a short time before, and a short time after, the active clock transition.
- The most important attributes that determine the type of memory to be used for a particular purpose are: volatility, read/write ability, access time, power consumption, and cost per bit.
- R / W memory can be of the static or dynamic type, the latter representing the highest density of storage but requires periodic refreshing. Static power dissipation can be eliminated by using dynamic logic.
- The most versatile type of ROM is flash memory based on a special type of E-NMOS transistor using an additional floating gate that allows programming and erasure of stored information through electron tunneling between the floating gate and the substrate.
- Interconnect plays an increasingly important role in the overall performance of digital circuits as chips get larger in size and include an increasing number of transistors of smaller dimensions and faster speeds. The interconnect not only affects the signal in or between chips but also crosstalk due to capacitive and inductive coupling between conductors. The interconnect can be represented by a single capacitor, a distributed $R C$ line, or a transmission line, depending on the length, resistance, capacitance, and inductance of the interconnect, and on the gate delay.

Learning Outcomes

- Articulate the types of logic gates and the properties of an ideal gate.
- Articulate the basic types of flip-flops, R/W memory, and ROM and their main features.

Supplementary Examples and Topics on Website

SE12.1 CMOS Schmitt Trigger. Analyzes the operation of a CMOS Schmitt trigger.
ST12.1 Boolean Algebra. Discusses some aspects of Boolean algebra, including axioms, theorems, duality, and properties.
ST12.2 Adiabatic Logic. Presents the basic principles of adiabatic logic.
ST12.3 Multivibrators and Schmitt trigger. Discusses the basic principles of operation of multivibrators and Schmitt trigger in terms of op amps (Sabah 2008, p. 752).

ST12.4 The 555 Timer. Describes the basic operation of the 555 timer IC and its use as a monostable or astable.

ST12.5 Edge-Triggered D-FF. Presents an alternative version of this FF.
ST12.6 Clocked sense amplifiers. Discusses various aspects of these amplifiers.
ST12.7 Voltage-Generating circuits. Discusses various types of on-chip voltage-generating circuits.

ST12.8 Fringe Capacitance and Elmore Delay. Gives the expression for the fringe capacitance of a conductor and discusses the general form of the Elmore delay.
ST12.9 Skin Depth. Derives the expression for the skin depth in a conductor.

Problems and Exercises

P12.1 Digital Signals and Boolean Algebra

P12.1.1 Given the function $f(t)=\sin (100 \pi t)+\sin ^{3}(100 \pi t)$. (a) What is the Nyquist frequency? (b) Obtain samples of the function over half a period at 10/3 times the Nyquist frequency.
(c) Scale the samples to a maximum value of 15 , quantize them to the nearest integer, and express them as 4 -bit binary numbers.
P12.1.2 Show that: $\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} C D=\overline{A+B}$.
P12.1.3 Show that: $(A+B+C) \overline{(A B+A C+B C)}=A \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} C$.
P12.1.4 A room has three doors with a two-position light switch at each door. It is desired to be able to turn the light in the room on or off by changing the position of any one of the switches. If $f=1$ denotes the light is on and $f=0$ denotes the light is off, a value of 1 for each of the switch variables A, B, and C denotes the "up" position, and a value of zero denotes the "down" position, and assuming that the light is initially off with all switches in the down position, show that the required logic is given by: $f=A B C+A \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} C=A \oplus B \oplus C$ or by its dual form: $f=$ $(A+B+C)(A+\bar{B}+\bar{C})(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C)$.
P12.1.5 Show that when three bits A, B, and C are added, the sum digit S is given by: $S=A \oplus B \oplus C=A B C+A \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} \bar{B} C=A B C+(A+B+C) \bar{C} \bar{D}$, and the carry digit is given by: $C D=A B+A C+B C$; this function is also known as a majority function because it equals 1 when any of the two inputs are 1 .

P12.2 Logic Gates

P12.2.1 Show that with negative logic (low level $\equiv 1$ and high level $\equiv 0$), AND, OR, NAND, NOR, XOR, and XNOR gates perform, respectively, OR, AND, NOR, NAND, XNOR, and XOR operations.
P12.2.2 Verify that the circuit of Figure P12.2.2 implements XOR logic.

FIGURE P12.2.2

P12.2.3 Derive the output $O_{3} \mathrm{O}_{2} \mathrm{O}_{1}$ in Figure P12.2.3 when the input bits $C B A$ increase progressively from 0 (000) to 7 (111). The output is a 3-bit Gray code, in which consecutive numbers differ by only one bit.

FIGURE P12.2.3

P12.2.4 Modify the circuit of Figure P12.2.3 so that the input is: (a) 4-bit binary; (b) a 3-bit Gray code, as determined in Problem P12.2.3, and the output is a binary number.
P12.2.5 Verify that the expression for f in Problem P12.1.4 can be implemented by a cascade of two XOR2 gates.
P12.2.6 Implement 3-bit addition (Problem P12.1.5) using AND and OR gates.

P12.2.7 A multiplexer is a logic circuit whose output equals one of several inputs depending on the binary value of a select input, S. Figure P12.2.7 shows the symbol of a 2 -to-1 multiplexer and its truth table. The output equals X_{1} or X_{2}, depending on whether S is 0 or 1, respectively. Implement a 2 -to-1 multiplexer using two AND2 gates, one NOR2 gate, and an inverter.

S	O
0	X_{1}
1	X_{2}

FIGURE P12.2.7

P12.2.8 Show that the circuit of Figure P12.2.8 implements the majority function $O=X_{1} X_{2}+$ $X_{1} X_{3}+X_{2} X_{3}$.

FIGURE P12.2.8
P12.2.9 Show that the circuit of Figure P12.2.9 implements the function $O=X_{1} \oplus X_{2} \oplus X_{3}$.

FIGURE P12.2.9

P12.2.10 Figure P12.2.10a shows a 4-to-1 multiplexer and its truth table. Show that the circuit in Figure P12.2.10a implements the function $O=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}$.

(a)

$S_{1} S_{2}$	O
00	X_{1}
01	X_{2}
10	X_{3}
11	X_{4}

(b)

P12.2.11 Figure P12.2.11 shows a general connection of two transmission gates as a 2 -to-1 multiplexer, where $O=A$ if $S=0$ and $O=B$ if $S=1$. Show how the circuit can be made to implement the following gates: (a) OR; (b) AND; (c) XOR; and (d) XNOR.

FIGURE P12.2.11

P12.2.12 Sketch the voltage transfer characteristic of a buffer and identify the input and output voltage levels corresponding to Figure 12.2.7b. If the output is connected to the input, will the circuit be stable? Explain.
P12.2.13 An inverting gate operating from a 1.5 V supply has a symmetrical voltage transfer characteristic, a logic swing of 80% of the supply voltage, with $V_{I H}-V_{I L}$ being 20% of the logic swing. Determine $V_{T H}, V_{I L}, V_{I H}, V_{O L}, V_{O H}$ and the noise margins.
P12.2.14 An inverter has $t_{p}=2$ ns. (a) Determine $t_{p L H}$ and $t_{p H L}$ if the charging resistance is 1.5 times the discharging resistance. (b) If adding a 1.2 pF capacitor at the output of the inverter increases t_{p} by 40%, determine the effective capacitance at the inverter output, assuming t_{p} is directly proportional to capacitance.
P12.2.15 A gate operating from a 3 V supply at 100 MHz has $t_{p}=1.5 \mathrm{~ns}$ and $\mathrm{PDP}=0.9 \mathrm{pJ}$. The gate draws under static conditions a current of $75 \mu \mathrm{~A}$ in one state and $25 \mu \mathrm{~A}$ in the other state. Determine: (a) the current drawn from the supply; (b) the effective capacitance at the gate output; (c) the frequency, if the supply is increased to 5 V but keeping the same power dissipation.
P12.2.16 The AND2 gates in Figure P12.2.16 have a finite t_{p}. At $t=t_{o}, A$ and B change from high to low and C changes from low to high. Show that a spurious pulse of width t_{p} is produced. Note that this "glitch" will not arise if an AND3 gate is used.

FIGURE P12.2.16

P12.3 Flip-Flops

P12.3.1 Mechanical switches bounce from their contacts when switched from one position to another. The switch rapidly opens and closes a number of times for up to about 10 ms before settling to its final position. If the switch is connected to a digital circuit, a series of high and low levels will be applied that may cause the circuit to malfunction. Figure P12.3.1 illustrates a switch debouncing circuit using a simple SR latch. Explain how the circuit operates.

FIGURE P12.3.1

P12.3.2 A register is a set of FFs that are used for temporary storage of data. In a shift register, the stored bits can be shifted between successive FFs. Figure P12.3.2 illustrates a 3-bit shift register using positive-edge-triggered D-FFs. Assuming an initial state of 000, determine the outputs of each FF for an input sequence of $1,0,1,1,0$. Note that shifting bits to the right is equivalent to multiplication by 2 , whereas shifting bits to the left is equivalent to division by 2 .

FIGURE P12.3.2

P12.3.3 Figure P12.3.3 illustrates a 3-bit, up, ripple counter using negative-edge-triggered T-FFs. Verify counter operation, starting with an initial 000 count. How would you modify the circuit to use positive-edge-triggered T-FFs?

FIGURE P12.3.3

P12.3.4 Modify the connections of the FFs in Figure P12.3.3 to make the counter count downward starting with 111, and verify operation by drawing a timing diagram.
P12.3.5 Based on the connections in Problems P12.3.3 and P12.3.4, suggest a gating scheme that will make the counter count up if a control input $C=1$ and count down if $C=0$.
P12.3.6 Figure P12.3.6 illustrates an arbiter circuit in which O_{1} goes high if X_{1} goes high before X_{2}, and O_{2} goes high if X_{2} goes high before X_{1}. The inverters can be as in Figure 12.2.3, but with the supply voltage of the inverter is taken from one of the NAND gates as shown. This ensures that O_{1} and O_{2} can never be high at the same time. Verify circuit operation.

FIGURE P12.3.6

P12.3.7 Implement a type of clocked D-FF in CMOS using two inverters (Figure 12.2.3), whereby the output of one inverter is connected to the input of the other inverter. Add at each output a MOSFET having its gate connected to $C K$, and its remaining terminal to S or R where $R=\bar{S}$. Label the S and R inputs and describe circuit operation. Note the similarity to the static memory cell (Figure 12.5.1).
P12.3.8 Figure P12.3.8 illustrates a CMOS monostable. Sketch the time course of the voltages in the circuit following a trigger pulse, assuming the inverter threshold is $V_{D D} / 2$ and neglecting the output resistance of the inverter and propagation delays. Show that the duration of the output pulse is $T=R C \ln (2)$. If $V_{D D}=5 \mathrm{~V}$ and $R=10 \mathrm{k} \Omega$, determine C for $T=1 \mathrm{~ms}$.

FIGURE P12.3.8

P12.3.9 (a) In the monostable of Figure P12.3.8, what is the effect of a finite inverter output resistance? (b) If the total propagation delay through the inverters is t_{p}, what should be the minimum width of the trigger pulse? (c) What determines the recovery time of the monostable, that is, the time after which a trigger pulse would produce a normal output pulse? Assume that the input of the second inverter is protected against electrostatic discharge (Figure 4.6.4, Chapter 4), draw the circuit that applies during capacitor discharge and show how to analyze it assuming the diode can be modeled by a battery $V_{D 0}$.
P12.3.10 Figure P12.3.10 illustrates a two-inverter, CMOS astable. Assuming that the two transistors of the inverters are matched, show that the frequency of oscillation is $1 / 2 R C \ln 3$.

FIGURE P12.3.10

P12.3.11 A D-FF on a chip has a setup time of 3 ns and a hold time of 2 ns . If the change in the data signal and the corresponding active clock transition occur at the same time at the chip terminals, and if change in the data signal is delayed by 1 ns from the chip terminal to the D terminal of the flip-flop, what is the minimum delay of the active
clock transition that will not violate the setup time of the flip-flop? What should be the minimum duration of the change in the data signal that will not violate the hold time?

P12.4 Semiconductor Memories

P12.4.1 A 1-Gb memory is divided into 16 banks, each of which is divided into 256 square arrays having the same number of word and bit lines. Determine the number address bits required: (a) within each array, (b) within each bank, and (c) for the whole chip.
P12.4.2 Consider a bit line in an array of Problem P12.4.1. Let the capacitance of the access transistor connected to the bit line be 0.3 fF for each memory cell. Assume the cells are spaced 300 nm apart along the bit line and that this line has a capacitance of $10 \mathrm{aF} / \mu \mathrm{m}$.
(a) Estimate the total capacitance of a bit line. (b) If the average current through the access transistor is $50 \mu \mathrm{~A}$, estimate the time required to change the voltage on the bit line by 50 mV .
P12.4.3 A six-transistor SRAM cell has $k_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{n}=(5 / 1)$ for the access transistors, $V_{D D}=3 \mathrm{~V}, V_{t n 0}=0.7 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $2 \phi_{F}=0.6 \mathrm{~V}$. Determine the initial currents in the access transistors when 1 is read, assuming a step change in the word line voltage.
P12.4.4 Consider the SRAM of Problem P12.4.3 with 0 being written when $Q=1$ (Figure 12.5.3). Determine: (a) the initial current through C_{Q}; (b) the current through C_{Q} when $V_{Q}=V_{D D} / 2$, assuming $k_{p}^{\prime}=20 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{p}=(5 / 1)$; (c) the time it takes V_{Q} to become, $V_{D D} / 2$, using the average of the currents calculated in (a) and (b), and assuming $C_{Q}=60 \mathrm{fF}$.
P12.4.5 A DRAM cell has $k_{n}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{D D}=3.3 \mathrm{~V}, V_{t 0}=0.7 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}, 2 \phi_{F}=0.6 \mathrm{~V}$, and $C_{S}=20 \mathrm{fF}$. If 1 is to be written in a cell that stores 0 , (a) determine the final $V_{C S}$; (b) estimate the time it takes to reach $V_{C S}$ using the average charging current. (c) If 0 is to be written in the cell after 1 is stored as in (a), estimate the time it takes to discharge C_{S}.
P12.4.6 If in Problem P12.4.5, $C_{B}=1 \mathrm{pF}$, determine $\Delta V_{B}(1)$ and $\Delta V_{B}(0)$ if the B line is precharged to: (a) $V_{D D} / 2$; (b) to half the maximum $V_{C S}$.
P12.4.7 If in Problem P12.4.5 a 25% loss of voltage of a stored 1 can be tolerated, and if the average leakage current is 1.2 pA , what should be the maximum refresh cycle?
P12.4.8 Consider the DRAM cell of P12.4.5 with the W line voltage boosted to charge C_{S} to $V_{D D}$. (a) Determine the voltage that should be applied to the W line; (b) recalculate the charging time determined in Problem P12.4.5, part (b).
P12.4.9 A square, 1-Mb DRAM memory bank has a 4 ms refresh cycle and is to be available 98% of the time for reading and writing. What is maximum time for refreshing a row?
P12.4.10 The transistors in the latch of the sense amplifier of Figure 12.5 .6 are matched and have $k_{n, p}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t 0}=0.7 \mathrm{~V}$, with $V_{D D}=3.3 \mathrm{~V}$. Determine the current through the supply and the power dissipated during precharge, neglecting the voltage drops in Q_{5} and Q_{6}.
P12.4.11 Extend the row decoder of Figure 12.5.10 to 512 word lines. How many NMOS and how many PMOS transistors are required, including inverters for the address bits?
P12.4.12 Compare the number of transistors required for a 512 column decoder if: (1) one multiplexer is used and each bit is separately inverted, (2) two multiplexers are used, one for the true I/O bit and another for its complement.
P12.4.13 Figure P12.4.13 illustrates a tree decoder for column decoding. How many transistors are required for decoding 512 bit lines? Note that although fewer transistors are required compared to a NOR decoder/multiplexer, the N levels involved reduce the speed of operation.

FIGURE P12.4.13
P12.4.14 The E-PMOS transistors of the dynamic ROMs of Figures 12.6.2 and 12.6.3 have $k_{p}^{\prime}=20$ $\mu \mathrm{A} / \mathrm{V}^{2},(\mathrm{~W} / L)_{p}=(10 / 1)$, and $V_{t p}=-0.7 \mathrm{~V}$, with $V_{D D}=3 \mathrm{~V}$. If $C_{B}=1.2 \mathrm{pF}$, estimate the precharge time using an average current that is one-half the initial E-PMOS current.

P12.5 Interconnect

P12.5.1 Consider a line L adjacent to another line L_{x}, the coupling capacitance between the two wires being C_{x} and the capacitance to ground of L being C_{G} (Figure P12.5.1). Determine the effective capacitance C_{w} to ground of L when L_{x} : (a) is a ground line or a voltage supply line, (b) carries the same signal as L, and (c) carries a signal that is in antiphase with that carried by L.

FIGURE P12.5.1

P12.5.2 Compare the resistance per unit length at 100 GHz of aluminum and copper interconnects of $0.8 \mu \mathrm{~m}$ height and $1.2 \mu \mathrm{~m}$ width. Assume that the metal has the permeability of vacuum $\left(4 \pi \times 10^{-9}\right.$ H / cm) and that ρ is $2.8 \times 10^{-6} \Omega \mathrm{~cm}$ for aluminum and $1.7 \times 10^{-6} \Omega \mathrm{~cm}$ for copper.
P12.5.3 Determine the capacitance to ground per unit length for a metallic interconnect $0.25 \mu \mathrm{~m}$ high and $0.3 \mu \mathrm{~m}$ wide separated from a grounded substrate by a $0.5 \mu \mathrm{~m}$ thick layer of $\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$. Include the fringing field capacitance (refer to Section ST12.8).
P12.5.4 Consider an aluminum interconnect 0.5 mm long of dimensions as in Problem P12.5.3. Compare the delays calculated by considering the line to be: (a) a single $R C$ section; (b) two RC sections using Equation 12.8.7.
P12.5.5 Determine $t_{\text {flight }}$ for a copper interconnect 0.5 cm long.
P12.5.6 Consider the interconnect of Example 13.8.1 and let half the line be of reduced width so that it has four times the resistance and 0.3 times the capacitance per unit length. Determine the delay in either direction of propagation by simulation and by calculation using the Elmore delay.

P12.6 Miscellaneous

P12.6.1 Consider a CMOS circuit that is connected to $V_{D D}$ and ground through wires having resistances R_{1} and R_{2}. No current flows in the wires under static conditions. But, under dynamic conditions, the circuit draws $100 \mu \mathrm{~A}$ for 10 ns . What size of decoupling
capacitor should placed across the circuit so that the voltage across the circuit does not drop by more than 50 mV ?
P12.6.2 Using a signal flow diagram, show that for the differential sensing amplifier (Figure 12.5.6), $\frac{V_{o}(s)}{V_{i}(s)}=\frac{-s C_{B} G_{m}}{1-\left(s C_{B} G_{m}\right)^{2}}$, at small t, where $V_{i}(s)$ and $V_{o}(s)$ are, respectively, the Laplace transform of the variations in input and output voltages, and $G_{m}=g_{m n}+g_{m p}$ of the identical inverters. Deduce that if v_{i} is a negative unit impulse, the output voltage is $\frac{V_{D D}}{2}+\frac{G_{m}}{C_{B}} \cosh \left(\frac{G_{m}}{C_{B}} t\right)$. Note that at $t=0, \mathrm{~d} v_{O} / \mathrm{d} t=0$ and that for small t, v_{O} is nearly exponential.

13

Digital Logic Circuit Families

The designation "digital logic circuit family" refers to digital ICs that are manufactured using the same technology and have the same circuit structure, such as the CMOS logic family. The circuits of a given logic family share common features that are characteristic of the given family, including the voltage levels that represent logic 1 and logic 0 , noise immunity, propagation delay, rise and fall times of pulse signals, power dissipation, operating temperature range, availability of complex functions, and cost. The circuit modules of the same family can be readily connected together, but interconnecting modules from different families require special interface circuits because of differences in the voltages representing logic 1 and logic 0 . The basic features of the important logic families at present are considered in this chapter.

Because CMOS is the dominant logic family today, it is discussed in considerable detail, together with some of its variations that are intended for special purposes, namely, pseudo NMOS, pass transistor logic, and dynamic logic. BiCMOS is considered next as a logic family that is basically CMOS based but has a bipolar junction transistor (BJT) output stage that enhances the current-drive capability. For the most part, long-channel behavior is assumed so as to provide some insight into the fundamental concepts involved. Deviations due to short-channel behavior are emphasized where appropriate, with the understanding that in view of the approximations and the empirically derived nonlinear relations that govern short-channel behavior, practically useful results for short-channel transistors are normally obtained through simulation. A popular program for this purpose is SPICE level 4, also known as BSIM (acronym for Berkeley Short-Channel IGFET Model), which has evolved through several versions.

Two BJT families are considered: transistor-transistor logic (TTL) and emitter-coupled logic (ECL). A version of TTL that is still popular to some extent is briefly discussed as an example of a weakly saturating BJT logic. ECL deserves special mention as an example of nonsaturating transistor logic and the fastest logic family in silicon at present.

Learning Objectives

* To be familiar with:
- The terminology used in connection with various logic families.
- The approximations made in deriving some important performance parameters of digital ICs.
* To understand:
- The static and dynamic behavior of the CMOS inverter, including the voltage transfer characteristic (VTC), noise margins, propagation delay, and power dissipation.
- The basic concepts underlying the design and sizing of CMOS gates.
- The effects of sizing and scaling of CMOS transistor parameters.
- The advantages and limitations of pseudo NMOS logic, pass-transistor logic, dynamic logic, and BiCMOS logic.
- The basic operation and essential features of TTL and ECL gates.

13.1 CMOS

CMOS Inverter

Static Behavior

The CMOS inverter (Figure 13.1.1) embodies most of the salient features of the CMOS logic circuit family. It was briefly considered in Section 5.5, Chapter 5, and in Section 12.2, Chapter 12. It is analyzed in detail in this section, beginning with its transfer characteristic.

When $v_{I}=V_{D D}, v_{S G p}=0<\bar{V}_{t p} . Q_{p}$ is cut off, so no current flows through the transistors. $v_{G S n}=V_{D D}>V_{t n} . Q_{n}$ is turned on, but since its drain current is zero, its quiescent point is at the origin, in the triode region of its output characteristics. It follows that $V_{O L}=v_{D S n}=0$. The output is isolated from $V_{D D}$ and is connected to ground through a low resistance $\left.r_{D S n}\right|_{V_{D S n}=0}$ (Equation 5.2.3, Chapter 5).

When v_{I} is low, $v_{G S n}=0<V_{t n}$. Q_{n} is cut off, so again no current flows through the transistors. $v_{S G p}=V_{D D}>\bar{V}_{t p}$. The quiescent point of Q_{p} on its output characteristics is the origin, so $v_{S D p}=0$. It follows that $V_{O H}=V_{D D}-v_{S D p}=V_{D D}$. The output is isolated from ground and connected to $V_{D D}$ through a low resistance $\left.r_{D S p}\right|_{V_{S D P}=0}$ (Equation 5.2.3, Chapter 5).

If v_{I} is such that the magnitude of the gate-source voltage of both transistors exceeds its threshold, both transistors conduct and current flows from $V_{D D}$ to ground. But this happens only under dynamic conditions, when v_{I} is changing between logic 0 and 1 . The VTC under static conditions can be determined using the load-curve construction of Figure 5.5.1, Chapter 5. As v_{I} increases from zero, Q_{n} remains off, and $v_{O}=V_{D D}$, until $v_{I}=V_{t n}$ (Point B, Figure 13.1.2a). A small further increase in v_{I} causes i_{D} to flow, Q_{n} being in saturation and Q_{p} in the triode region. As v_{I} continues to increase, $v_{G S n}$ increases and $v_{S G p}$ decreases. The "active" output characteristic of Q_{n} moves upward, while that of Q_{p} moves downward. v_{O} decreases as the operating point moves from $V_{D D}$ to lower values of $v_{D S n}$. There will come a point when Q_{p} just enters the saturation region so that both transistors are in saturation (Point C, Figure 13.1.2a). Because the output characteristics in the saturation region are almost horizontal, a small additional increase in v_{I} moves the quiescent point all the way to D (Figure 13.1.2b), where Q_{p} is in saturation, but Q_{n} is just about to enter the triode region. Further increase in v_{I} causes Q_{n} to enter the triode region, and v_{O} eventually falls to zero (Point E, Figure 13.1.2b). The VTC (Figure 13.1.3) is simulated in the following example.

FIGURE 13.1.1
CMOS inverter.

FIGURE 13.1.2
Graphical construction for deriving the VTC of the CMOS inverter. (a) Q_{p} at the edge of the transition region; (b) Q_{n} at the edge of the transition region.

FIGURE 13.1.3
Figure for Example 13.1.1.

Simulation Example 13.1.1 Transfer Characteristic of CMOS Inverter

It is required to simulate the VTC of a CMOS inverter and the variation of i_{D} with v_{l}.

Simulation

The NMOS and PMOS transistors are based on $0.25 \mu \mathrm{~m}$ technology. The NMOS transistor parameters entered in the PSpice Model are $\mathrm{Kp}=0.286 \mathrm{~m}, \mathrm{~V}$ to $=0.5$, and lambda $=0.05$, with $\mathrm{L}=0.25 \mathrm{u}$ and $\mathrm{W}=0.9 \mathrm{u}$ entered in the Property Editor spreadsheet. The PMOS transistor parameters entered in the PSpice Model are $K p=0.117 \mathrm{~m}$, $\mathrm{Vto}=-0.5$, and lambda $=0.05$, with $\mathrm{L}=0.25 \mathrm{u}$ and $\mathrm{W}=2.2 \mathrm{u}$ entered in the Property Editor spreadsheet. A VDC source connected as v_{l} is swept from 0 to $\mathrm{VDD}=2.5 \mathrm{~V}$. The plots of the VTC and of i_{D} are shown in Figure 13.1.3.
The transistors are matched, because $k_{n}^{\prime}(W / L)_{n}=k_{p}^{\prime}(W / L)_{p}$ and $V_{t n}=\bar{V}_{t p}$, so the VTC is symmetrical about the midpoint at $v_{I}=v_{O}=1.25 \mathrm{~V}$. i_{D} is symmetrical and is maximum at the midpoint. This maximum value is determined by applying Equation 5.3.1. For the NMOS transistor, with $v_{G S}=v_{D S}=1.25 \quad \mathrm{~V}, i_{D \max }=(0.286 / 2)(0.9 / 0.25)(1.25-0.5)^{2}$ $(1+0.05 \times 1.25) \equiv 0.31 \mathrm{~mA}$, which agrees with the value from the plot.

It is seen that there are five segments of the VTC:
Segment AB: Q_{n} is cut off, Q_{p} is in the triode region
Segment $\mathrm{BC}: Q_{n}$ is in saturation, Q_{p} is in the triode region
Segment CD: Both transistors are in saturation
Segment DE: Q_{n} is in the triode region, Q_{p} is in saturation
Segment EF: Q_{n} is in the triode region, Q_{p} is cut off
Basically, there are two unknowns in the inverter circuit under static conditions, namely, i_{D} and v_{O} for a given v_{I}. Assuming long-channel behavior, Equations 5.3.1 and 5.3.2, Chapter 5, apply to the two transistors in their respective regions. In these equations, $v_{G S n}=v_{I}, v_{S G p}=V_{D D}-v_{I}, v_{D S n}=v_{O}, v_{S D p}=V_{D D}-v_{O}$. Making these substitutions and setting $i_{D}=i_{D n}=i_{D p}$ gives an equation for determining v_{O} for a given v_{I}. Once v_{O} is known, i_{D} can be determined from either Equation 5.3.1 or 5.3.2, Chapter 5, as applicable.
$V_{T H}$, the threshold of the inverter, is derived by equating the currents of both transistors in the saturation region, setting $v_{I}=v_{O}=V_{T H}$, and solving for $V_{T H}$. This gives (Exercise 13.1.2):

$$
\begin{equation*}
V_{T H}=\frac{V_{D D}-\bar{V}_{t p}+V_{t n} \sqrt{r}}{1+\sqrt{r}} \tag{13.1.1}
\end{equation*}
$$

where $r=k_{n} / k_{p}$ and channel-length modulation is neglected.
Some aspects of the static behavior of the long-channel inverter are explored in Example 13.1.2. For the short-channel inverter, the current in the triode and saturation regions is given by Equations ST5.1.46 and ST5.1.47, respectively. In view of the approximations made and the empirically derived nonlinear relations involved, practically useful results for the short-channel inverter are normally obtained through simulation.

Exercise 13.1.1

Assuming that $k_{n}=k_{p} \cong 1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=\bar{V}_{t p}=0.5 \mathrm{~V}$, and $V_{D D}=2.5 \mathrm{~V}$, as in Simulation Example 13.1.1, determine $\left.r_{D S n}\right|_{V_{D S n}=0}$ and $\left.r_{D S p}\right|_{V_{S D P}=0}$ (Equation 5.2.3).

Answer: 500Ω.

Exercise 13.1.2

Derive Equation 13.1.1. Note that if the two transistors are matched, $V_{T H}=V_{D D} / 2$.

Example 13.1.2 Static Behavior of CMOS Inverter

It is required to determine: (a) the coordinates of points C and D on the VTC (Figure 13.1.3), and (b) the $v_{O}-v_{l}$ relation over the segments $B C$ and $D E$, neglecting channel-width modulation and assuming matched transistors.

Solution

(a) At C, Q_{p} is at the edge of the triode region (Figure 13.1.2a) so that $v_{S D p}=v_{S G p}-\bar{V}_{t p}$. But $v_{S D P}=v_{D D}-v_{O C}$ and $v_{S G P}=V_{D D}-v_{I C}$, where $v_{O C}$ and $v_{I C}$ are the output and input voltages, respectively, at point C. Substituting for $v_{S D p}$ and $v_{S G p}$ gives:

$$
\begin{equation*}
v_{O C}=v_{I C}+v_{t} \tag{13.1.2}
\end{equation*}
$$

where $V_{t}=\bar{V}_{t p}=-V_{t p}=V_{t n}$. Similarly, at $\mathrm{D}, \mathrm{Q}_{n}$ is at the edge of the triode region, so that $v_{D S n}=v_{G S n}-v_{t n}$. But $v_{D S n}=v_{O D}$ and $v_{G S n}=v_{I D}$. Substituting for $v_{D S n}$ and $v_{G S n}$ gives:

$$
\begin{equation*}
v_{O D}=v_{I D}-V_{t} \tag{13.1.3}
\end{equation*}
$$

If $\lambda=0$, the output characteristics have zero slope so that C and D lie on the same horizontal line in Figure 13.1.2a and b. The segment CD in Figure 13.1.3 is vertical and occurs at $v_{l}=V_{T H}$, with $v_{G S n}=V_{T H}$ and $v_{S G p}=V_{D D}-V_{T H}$. Since the two transistor currents are equal, and the transistors are matched, $v_{G S n}=v_{S G p}$, which gives $V_{T H}=V_{D D} / 2$. When the segment CD in Figure 13.1.3 is vertical, $v_{I C}=v_{I D}=V_{T H}$. It follows from Equations 13.1.2 and 13.1.3 that $v_{O C}=V_{T H}+V_{t}$ and $v_{O D}=V_{T H}-V_{t}$.
(b) Over segment $\mathrm{BC}, i_{D}=\frac{1}{2} k_{n, p}\left(v_{l}-V_{t}\right)^{2}$ for the NMOS transistor in saturation, where $k_{n, p}=k_{n}=k_{p}$. For the PMOS transistor, $i_{D}=k_{n, p}\left[\left(v_{S G p}-v_{t}\right) v_{S D p}-\frac{1}{2} v_{S D p}^{2}\right]$ in the triode region. Solving for $v_{S D p}$ gives, $v_{S D p}=\left(v_{S G p}-V_{t}\right) \pm \sqrt{\left(v_{S G p}-V_{t}\right)^{2}-2 i_{D} / k_{n, p}}$. Substituting $2 i_{D} / k_{n, p}=\left(v_{l}-V_{t}\right)^{2}$ and $v_{S C p}=V_{D D}-v_{l}$ gives, $v_{S D p}=\left(V_{D D}-v_{l}-V_{t}\right) \pm$ $\sqrt{\left(V_{D D}-2 V_{t}\right)\left(\left(V_{D D}-2 v_{l}\right)\right.}$. The minus sign should be retained, because when $v_{l}=V_{t}$ (point B) $v_{S D p}=0$. It follows that $v_{O}=V_{D D}-v_{S D p}$ is:

$$
\begin{equation*}
v_{O}=v_{1}+V_{t}+\sqrt{\left(V_{D D}-2 V_{t}\right)\left(V_{D D}-2 v_{l}\right)} \tag{13.1.4}
\end{equation*}
$$

When $\lambda=0$, segment $C D$ is vertical, and $v_{I C}=V_{D D} / 2$. Equation 13.1.4 gives $v_{O C}=v_{l}+V_{t}$, (Equation 13.1.2). With $v_{l}=1.25 \mathrm{~V}$ and $V_{t}=0.5 \mathrm{~V}, v_{O C}=1.75 \mathrm{~V}$.
Over segment DE, a procedure similar to the preceding gives (Problem P13.1.1):

$$
\begin{equation*}
v_{O}=v_{l}-v_{t}-\sqrt{\left(V_{D D}-2 V_{t}\right)\left(2 v_{l}-V_{D D}\right)} \tag{13.1.5}
\end{equation*}
$$

Noise Margins

The noise margins are normally determined by assuming matched transistors and $\lambda=0$. Equation 13.1.4 applies over segment AB (Figure 13.1.3). Differentiating, gives:

$$
\begin{equation*}
\frac{d v_{O}}{d v_{I}}=1-\frac{V_{D D}-2 V_{t}}{\sqrt{\left(V_{D D}-2 V_{t}\right)\left(V_{D D}-2 v_{I}\right)}} \tag{13.1.6}
\end{equation*}
$$

Setting $d v_{O} / d v_{I}=-1$ and multiplying out,

$$
\begin{equation*}
2 \sqrt{\left(V_{D D}-2 V_{t}\right)\left(V_{D D}-2 v_{I}\right)}=V_{D D}-2 V_{t} \tag{13.1.7}
\end{equation*}
$$

Squaring both sides and canceling a $\left(V_{D D}-2 V_{t}\right)$ term,

$$
\begin{equation*}
4\left(V_{D D}-2 v_{I}\right)= \pm\left(V_{D D}-2 V_{t}\right) \tag{13.1.8}
\end{equation*}
$$

Solving for v_{I} gives two values, the larger being $V_{I H}$ and the smaller being $V_{I L}$. Thus,

$$
\begin{equation*}
V_{I H}=\frac{1}{8}\left(5 V_{D D}-2 V_{t}\right) \quad \text { and } \quad V_{I L}=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right) \tag{13.1.9}
\end{equation*}
$$

A simple check on these values is that from symmetry, $V_{I H}-V_{D D} / 2=V_{D D} / 2-V_{I L}$, or $V_{I L}+V_{I H}=V_{D D}$, which agrees with Equation 13.1.9. It follows that the noise margins are:

$$
\begin{align*}
& \mathrm{NM}_{\mathrm{H}}=V_{O H}-V_{I H}=V_{D D}-V_{I H}=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right) \tag{13.1.10}\\
& \mathrm{NM}_{\mathrm{L}}=V_{I L}-V_{O L}=V_{I L}-0=\frac{1}{8}\left(3 V_{D D}+2 V_{t}\right) \tag{13.1.11}
\end{align*}
$$

It is seen that $\mathrm{NM}_{\mathrm{L}}=\mathrm{NM}_{\mathrm{H}}$, as expected from symmetry.

Exercise 13.1.3

Derive Equations 13.1.9 in the same manner as Equation 13.1.5.

The ideal, symmetrical VTC of an inverter (Figure 12.2.8, Chapter 12) is reproduced in Figure 13.1.4. It has a logic swing of $V_{D D}$ and $V_{T H}=V_{I H}=V_{I L}=V_{D D} / 2$, which makes both noise margins $V_{D D} / 2$. The CMOS inverter has a logic swing of $V_{D D}$ and the two transistors can be matched to make $V_{T H}=V_{D D} / 2$ and $\mathrm{NM}_{\mathrm{H}}=\mathrm{NM}_{\mathrm{L}}=0.375 V_{D D}+0.25 V_{t}=0.425 V_{D D}$ if $V_{t}=0.2 V_{D D}$.

Summary: CMOS has a rail-to-rail logic swing, and can be designed to have a threshold of $V_{D D} / 2$ and near-ideal noise margins. On the downside: (1) a relatively high output resistance in the range of a few hundred ohms to a few $k \Omega$, and (2) i_{D} during switching results in current pulses through the voltage supply lines.

FIGURE 13.1.4
Ideal VTC of an inverter.

Propagation Delay

When input and output voltages alternate between their high and low values, the behavior of the inverter is very much affected by the load capacitance C_{L}, generally expressed as:

$$
\begin{equation*}
C_{L}=C_{o}+C_{i}+C_{w} \tag{13.1.12}
\end{equation*}
$$

where
C_{o} is the output capacitance of the inverter
C_{i} is the input capacitance of the gates that are driven by the inverter
C_{w} is the capacitance due to wiring between the inverter and these gates
C_{o} and C_{i} are expressed in terms of the transistor capacitances in Section ST13.2.

Concept: The effect of C_{L} is twofold: (1) the charging and discharging times slow down the rate at which the inverter can be switched between the two states, and (2) power is dissipated in the inverter during charging and discharging.

The power dissipation due to C_{L} is generally much greater than that due to the current in the two transistors during switching.

The effect of C_{L} on the speed of response is illustrated in Figure 13.1.5a. If v_{I} changes instantaneously between 0 and $V_{D D}, v_{O}$ takes a finite time for a full swing (Figure 13.1.5a). Since the time for complete charging or discharging of a capacitor is not well defined, it is usual to consider the time $t_{P H L}$ it takes v_{O} to change from $V_{D D}$ to $V_{D D} / 2$, and the time $t_{P L H}$ it takes v_{O} to change from 0 to $V_{D D} / 2 . t_{P H L}=t_{P L H}$ if the transistors are matched and C_{L} is constant during charging and discharging. In general, the propagation delay, t_{P}, is $\left(t_{P H L}+t_{P L H}\right) / 2$ (Equation 12.2.4, Chapter 12). The calculation of $t_{P H L}$ and $t_{P L H}$ is complicated by the following factors:

FIGURE 13.1.5
Effect of C_{L} on the speed of response of the CMOS inverter. (a) Variation of output with time; (b) charging and discharging of C_{L}.

1. In general, C_{L} is voltage dependent (Section 5.3, Chapter 5). Only if C_{L} is dominated by a large, fixed capacitance, as in the case of a long off-chip interconnection, can it be considered constant. Hence, C_{L} is approximated in various ways, as discussed in Section ST13.2.
2. i_{C} is not constant during charging and discharging. For example, if v_{I} increases stepwise from zero to $V_{D D}, v_{O}$ is initially maintained at $V_{D D}$ by C_{L} and Q_{n} will be in saturation, because $V_{D D}>V_{D D}-V_{t n}$. However, as C_{L} discharges, Q_{n} will move into the triode region if $v_{D S(\text { sat })}>V_{D D} / 2$. This is generally true of long-channel devices, where $v_{D S(\text { sat })}=V_{D D}-V_{t n}$. If, for example, $V_{D D}=5 \mathrm{~V}$ and $V_{t n}=1 \mathrm{~V}$, then $v_{D S(\text { sat })}=4 \mathrm{~V}$, and the transistor will go into the triode region before $V_{D D} / 2$ is reached. In short-channel devices, however, $v_{D S(\text { sat) })}$ is low and the relation $v_{D S(\text { sat })}=V_{D D}-V_{t n}$ no longer holds (Section 5.3, Chapter 5). Applying Equation 5.3.32, Chapter 5, for example, to a $0.13 \mu \mathrm{~m}$ device, considering $V_{D D}=1.2 \mathrm{~V}, V_{t n}=0.4 \mathrm{~V}$, and $\xi_{c}=10^{5}$ V / cm, gives $v_{D S(\text { sat })}=0.5 \mathrm{~V}$, which is less than $V_{D D} / 2$. This means that Q_{n} will be in saturation when $V_{D D} / 2$ is reached. Even then, i_{C} cannot be considered constant because of the relatively large variation of i_{C} with $v_{D S}$ in the saturation region of a short-channel transistor (Section 5.3, Chapter 5). It is usual to consider an average i_{C} during charging and discharging in both long-channel and short-channel devices.
3. A step input is assumed in calculating $t_{P H L}$ and $t_{P L H}$, which implies that when the input changes suddenly from low to high, Q_{p} cuts off instantly and only conduction through Q_{n} need be considered. Similarly, when the input changes suddenly from high to low, Q_{n} cuts off instantly and only conduction through Q_{p} needs to be considered. In actual fact, the input changes with finite rise and fall times (Figure 12.2.9, Chapter 12), so that both transistors conduct during the gradual transition. An empirical approximation is sometimes used to correct $t_{P H L}$ and $t_{P L H}$ to take into account the finite rise and fall times, t_{r} and t_{f}, of the input. Thus,

$$
\begin{equation*}
t_{P H L}(\text { corrected })=\sqrt{t_{P H L}^{2}+\left(\frac{t_{r}}{2}\right)^{2}} \quad{ }_{P L H}(\text { corrected })=\sqrt{t_{P L H}^{2}+\left(\frac{t_{f}}{2}\right)^{2}} \tag{13.1.13}
\end{equation*}
$$

$t_{P H L}$ and $t_{P L H}$ are calculated in Section ST13.3 assuming constant C_{L}, a step input, and i_{C} to be partly a saturation current and partly a current in the triode region. Various approximation methods are also discussed. In all cases, it remains true that:

$$
\begin{equation*}
t_{P H L} \propto \frac{C_{L}}{k_{n} V_{D D}} f\left(V_{t n} / V_{D D}\right) \tag{13.1.14}
\end{equation*}
$$

where $f\left(V_{t n} / V_{D D}\right)$ is some function of the ratio $V_{t n} / V_{D D}$. A similar expression applies for $t_{P L H}$ and to the PMOS transistor. It is seen that $t_{P H L}$ is directly proportional to C_{L} and inversely proportional to k_{n} and to $V_{D D}$. Larger k_{n} and $V_{D D}$ means a larger current and hence faster discharging of $C_{L} ; t_{P H L}$ also decreases with $V_{t n} / V_{D D}$ over the normal range of values of $V_{t n}$, again because a smaller $V_{t n}$ for a given $V_{D D}$ means larger transistor currents. However, too small a $V_{t n}$ would mean that when the NMOS transistor is cut off, $v_{G S}$ is close to $V_{t n}$, so that the subthreshold current and power dissipation will increase (Equation 13.1.18); similarly for the PMOS transistor. Typically, $V_{t n}=0.2 V_{D D}$, so that Equation 13.1.14 becomes:

$$
\begin{equation*}
t_{P} \equiv \frac{1.6 C_{L}}{k_{n} V_{D D}} \tag{13.1.15}
\end{equation*}
$$

Concept: $\quad t_{P}$ sets an upper limit to the frequency f of operation, because when $1 /$ f becomes comparable to $t_{P H L}+t_{P L H}$, the voltage levels are no longer 0 and $V_{D D}$, so operation becomes unreliable. Moreover, the maximum allowed propagation delay determines the maximum fan-out under dynamic conditions.

Thus, if the maximum propagation delay is $t_{P \max }$ for a maximum load capacitance of $C_{\text {Lmax, }}$, and if C_{i} is the input capacitance of a CMOS load gate, then the maximum fan-out of the given gate is the largest integer that is less than $C_{L \max } / C_{i}$.

Exercise 13.1.4

Determine the propagation delay for a long-channel inverter having matched transistors of $k_{n, p}=0.5 \mathrm{~mA} / \mathrm{V}^{2}$ and $V_{t}=1 \mathrm{~V}$, with $V_{D D}=5 \mathrm{~V}$ and $C_{L}=20 \mathrm{pF}$. Use the average value of i_{C} for $v_{O}=5 \mathrm{~V}$ and $v_{O}=2.5 \mathrm{~V}$.

Answer: 13.4 ns.

Simulation Example 13.1.3 Propagation Delay of CMOS Inverter

It is required to simulate the propagation delay of a CMOS inverter.

Simulation

The same inverter of Simulation Example 13.1.1 is used with $C_{L}=2 \mathrm{pF}$. The input voltage is VPULSE with $\mathrm{V} 1=0, \mathrm{~V} 2=2.5, \mathrm{TD}=0, \mathrm{TR}=1 \mathrm{p}, \mathrm{TF}=1 \mathrm{p}, \mathrm{PW}=100 \mathrm{n}, \mathrm{PER}=500 \mathrm{n}$. The output voltage is shown in Figure 13.1.6. The propagation delay from the simulation is 11.45 ns. Equations 13.1.15 and ST13.3.4, Section ST13.3, give 12.8 ns and 11.13 ns, respectively.

Power Dissipation

As discussed in Section 12.2, Chapter 12, the total power dissipation is, in general, the sum of $P_{D C}$, the static power dissipation, and $P_{A C}$, the dynamic power dissipation. $P_{A C}$ has two components: (1) a component $P_{S W}$ due to the current during switching (Figure 13.1.3), and

FIGURE 13.1.6
Figure for Example 13.1.3.
(2) a dominant component P_{C} due to the capacitance at the switching nodes (Equation 12.2.5, Chapter 12), given by:

$$
\begin{equation*}
P_{C}=f_{C K} V_{D D} \sum_{i=1}^{n} \alpha_{i} C_{i} V_{S W i} \tag{13.1.16}
\end{equation*}
$$

where
α_{i} is an activity factor of the i th node that takes into account that in complex CMOS gates, not all the nodes switch at the clock frequency $f_{C K}$
$V_{S W i}$ is the average voltage swing of the i th node, which could be less than the maximum swing $V_{D D}$
P_{C} varies nearly as $V_{D D}^{2}$. Whereas $V_{D D}$ can be as low as $1 \mathrm{~V}, f_{C K}$ has been steadily increasing in the GHz range. P_{C} is typically a few tens of $\mu \mathrm{W}$ for an inverter operating at 500 MHz with $V_{D C}=2.5 \mathrm{~V}$ and C of about 10 fF .

The component $P_{S W}$ of $P_{A C}$ can be calculated assuming a symmetrical inverter and a linear variation of v_{I} between 0 and $V_{D D}$ over an interval τ (Figure 13.1.7). For $V_{t}<v_{I}<$ $V_{D D} / 2, Q_{n}$ is in saturation, whereas for $V_{D D} / 2<v_{I}<V_{D D}-V_{t}, Q_{p}$ is in saturation. Multiplying the saturation currents by $V_{D D}$ and integrating over the corresponding time intervals gives (Problem P13.1.12):

$$
\begin{equation*}
P_{S W}=\frac{k \tau f_{C K}}{12}\left(V_{D D}-2 V_{t}\right)^{3}, \quad V_{D D}>2 V_{t} \tag{13.1.17}
\end{equation*}
$$

An important feature of CMOS gates is that $P_{D C}$ is negligible compared to $P_{A C}$, because under static conditions, only leakage currents flow between $V_{D D}$ and ground. The three leakage currents, in decreasing order of importance, are: (1) the subthreshold leakage current in the nonconducting transistor, (2) the leakage current through the reverse-biased drain-substrate or source-substrate junction, as the case may be, and (3) the leakage current through the gate oxide.
The subthreshold power dissipation in a CMOS inverter can be expressed as:

$$
\begin{equation*}
P_{\text {subthr }}=\frac{W}{L} V_{D D} I_{t} e^{\left(v_{G S}-V_{t}\right) / \zeta V_{T}} \tag{13.1.18}
\end{equation*}
$$

where $\zeta=1+C_{j s} / C_{o x}, C_{j s}$ is the gate-channel depletion capacitance, and I_{t} is the drain current when $v_{G S}=V_{t}, W=L$, and $v_{D S} \gg V_{T}$ (Equation ST5.1.37, Section ST5.1.).

FIGURE 13.1.7
Calculation of power dissipation in an inverter assuming linear rise and fall times of input voltage.

In subthreshold operation $v_{G S}<V_{t}$, so that the exponent is negative. When the transistor is cut off in a CMOS gate, $v_{G S}=0$ and $P_{\text {subthr }}$ depends on V_{t}. Note that for SOI MOS transistors $\zeta \cong 1$ (Section 4.6, Chapter 4), which reduces $P_{\text {subthr }}$.

In the CMOS inverter, when Q_{n} is off, with its substrate grounded, $V_{D D}$ appears between drain and substrate. There will be a leakage current through the reverse-biased drain-substrate junction equal to the saturation current of this junction (Equation 3.2.15, Chapter 3). Similar considerations apply when Q_{p} is off.

The gate oxide leakage current is negligible when the gate oxide is thicker than about 1.5 nm . As the oxide thickness is reduced, electron tunneling through the oxide can become significant and sets a limit to the minimum oxide thickness.

CMOS Gates

NAND and NOR Gates

The scheme of Figures 12.2.5 and 12.2.6, Chapter 12, can be extended to m input NAND gates and m input NOR gates as illustrated in Figures 13.1.8 and 13.1.9, respectively, where a pull-up network (PUN) of E-PMOS transistors is connected between O and $V_{D D}$, and a pull-down network (PDN) of E-NMOS transistors is connected between O and ground. The following should be noted concerning these gates:

1. The transistors are sized so that the gate has at least the same current-sourcing or current-sinking capability as the inverter, which means that the output resistance of the gate should not exceed that of the inverter in either state. Since L is nominally the same for all transistors of the gate, sizing means choosing a suitable W. The conductance of an MOS transistor is proportional to W, so that when m identical transistors are paralleled, W is effectively multiplied by m, and when they are connected in series W is effectively divided by m. If one input of the NAND gate is low, the PDN isolates the output from ground, and the output is pulled up high by one of the paralleled transistors in the PUN. To have at least the same current-sourcing capability as the inverter, all the PMOS transistors of the PUN should have the same size as that of an inverter. On the other hand,

FIGURE 13.1.8
CMOS NAND gate.

FIGURE 13.1.9
CMOS NOR gate.

when all inputs are high, the PUN isolates the output from $V_{D D}$, and the output is pulled low by m transistors in series. To have the same current-sinking capability as an inverter, each of the NMOS transistors in the PDN network should have its W sized to m times that of the inverter. Similarly, in the case of the NOR gate of Figure 13.1.9, each paralleled NMOS transistor of the PDN can have the same W as that of the inverter, but each series PMOS transistor of the PUN should have its W sized to m times that of the inverter.
2. With this sizing, a NAND gate occupies less area on the chip than a NOR gate of the same fan-in. This is because W of the PMOS transistors is already $2.5-3$ times that of the NMOS transistors to compensate for a smaller μ_{h}. Multiplying W of the PMOS transistors by m results in a larger area than multiplying the smaller W of the NMOS transistors by the same factor.
3. Adding one input to a CMOS gate adds the input capacitances of two transistors, one NMOS and one PMOS. The increase in the size of transistors to maintain current-drive capability also increases the input capacitance.
3. If we consider inputs A_{1} and A_{2} to a 2-input gate, the PUN implements a logic function $(O=1)$ on the complemented variables \bar{A}_{1} and \bar{A}_{2}, because the inputs A and B are essentially inverted by the PMOS transistors, as indicated by the bubble at the gates. Thus, a PUN of two PMOS transistors in parallel implements the function $O=\bar{A}_{1}+\bar{A}_{2}$, since O goes high if either input A_{1} or A_{2} is low, whereas a PUN of two PMOS transistors in series implements the function $O=\bar{A}_{1} \bar{A}_{2}$, since O goes high only if both inputs A_{1} and A_{2} are low.
4. Similarly, the PDN implements a logic function $(\bar{O}=1)$ on the uncomplemented variables using NMOS transistors whose inputs are not inverted by the transistors. Thus, a PDN of two NMOS transistors in parallel having inputs A_{1} and A_{2} implements the function $\bar{O}=A_{1}+A_{2}$, since O goes low if either of the inputs A_{1} and A_{2} is high, whereas, a PDN of two NMOS transistors in series implements the function $\bar{O}=A_{1} A_{2}$, since O goes low if both inputs A_{1} and A_{2} are high.
5. The same PUN and PDN configurations implement complementary functions on the complemented variables. Thus, if $O=\bar{A}_{1}+\bar{A}_{2}=\overline{A_{1} A_{2}}$ for a PUN of two PMOS
transistors in parallel, a PDN of two NMOS transistors in parallel implements the function $O=\bar{A}_{1} \bar{A}_{2}=\overline{A_{1}+A_{2}}$, which is NOR. The complementary function is OR, and the OR of the complemented variables is $\bar{A}_{1}+\bar{A}_{2}=\overline{A A_{2}}$, which is the same NAND function implemented by the PUN.
6. Comparing the PUNs and PDNs of each of the NAND and NOR gates, it is seen that:

Concept: In a CMOS gate the PUN and PDN are dual circuits.

This follows from the fact that the dual of a series connection of one type of transistor is a parallel connection of the complementary type of transistor, and the dual of a parallel connection of one type of transistor is a series connection of the complementary type of transistor. Once the PUN or PDN is designed, the other network can be derived from duality (Sabah 2008, p. 403).

CMOS Gate Design

The design of CMOS gates that implement a given logic function is based on the preceding observations. For example, suppose an XOR function $O=A \bar{B}+\bar{A} B$ is required. Starting with the PUN, the term $A \bar{B}=\overline{\bar{A}} \bar{B}$ is implemented as a series connection of two PMOS transistors having the complementary inputs \bar{A} and B. Similarly, the term $\bar{A} B$ is implemented as a series connection of two PMOS transistors having the complementary inputs A and \bar{B}. The PUN is then the parallel combination of these two series branches (Figure 13.1.10).

The PDN can be derived as the dual circuit of the PUN just considered (Exercise 13.1.4), or by expressing the XOR function in terms of \bar{O}. Thus $\bar{O}=\overline{A \bar{B}+\bar{A} B}=\overline{(A \bar{B})} \overline{(\bar{A} B)}=$ $(\bar{A}+B)(A+\bar{B})=A B+\bar{A} \bar{B}$. The term $A B$ is implemented as a series connection of two NMOS transistors having inputs A and B. Similarly, the term $\bar{A} \bar{B}$ is implemented as a series connection of two NMOS transistors having inputs \bar{A} and \bar{B}. The PDN is then the parallel connection of these series branches (Figure 13.1.10). Note that 12 transistors are required

FIGURE 13.1.10
CMOS XOR gate.
for this CMOS XOR gate, including 4 transistors for the inverters for \bar{A} and \bar{B}. Only eight transistors are required for transmission gate implementation of Figure 12.2.1c, Chapter 12.

Exercise 13.1.5

Derive the PDN that is the dual of the PUN of Figure 13.1.10.
Answer: The circuit of Figure 13.1.11.

Design Example 13.1.4 Design of CMOS Gate

It is required to design a CMOS gate that implements the function $O=A(B C+D)$.

Design

Suppose we start with the PDN in terms of \bar{O}. Thus $\bar{O}=$ $\overline{A(B C+D)}=\bar{A}+\overline{B C+D}=\bar{A}+\overline{(B C)} \bar{D}=\bar{A}+(\bar{B}+\bar{C}) \bar{D}$. All the inputs of the PDN transistors will have to be inverted. It is better, therefore, to implement the function $O^{\prime}=\bar{O}$ and use a single inverter to obtain O. The expression $O^{\prime}=\bar{A}+(\bar{B}+\bar{C}) \bar{D}$ is then that of a PUN having PMOS transistors whose inputs are the complemented variables, without inversion (Figure 13.1.12a).

The PDN follows from $\bar{O}^{\prime}=A(B C+D)$. It can also be derived as the dual of the PUN. $Q_{p 1}$ is a PMOS transistor in parallel with a subcircuit of other transistors. Its dual is an NMOS transistor in series with a subcircuit of other transistors (Figure 13.1.12b).

FIGURE 13.1.11
Figure for Exercise 13.1.5. In the PUN, the subcircuit is $Q_{p 4}$ in series with a parallel combination of $Q_{p 2}$ and $Q_{p 3}$. The dual subcircuit is $Q_{n 4}$ in parallel with a series combination of $Q_{n 2}$ and $Q_{n 3}$. The same inputs are applied to transistors of the same number in the PUN and PDN.

(a)

To PDN

(b)

FIGURE 13.1.12
Figure for Example 13.1.4. (a) PUN; (b) PDN.

The sizing of the transistors to have the same current-drive capability as an inverter is based on worst cases. Since $Q_{p 1}$ can conduct alone, its W should be the same as that of the PMOS transistor of the inverter. $Q_{p 4}$ can conduct in series with $Q_{p 2}$ or $Q_{p 3}$. Hence, W of each of these transistors should be twice that of the PMOS transistor of the inverter. In the PDN, the worst case is when $Q_{n 1}, Q_{n 2}$, and $Q_{n 3}$ conduct in series. Hence, W of each of these transistors must be three times that of NMOS of the inverter. W of $Q_{n 4}$ can be one-half that of $Q_{n 2}$ or $Q_{n 3}$.

Exercise 13.1.6

Verify that the gate circuit of Figure 13.1.12 followed by an inverter implements the function $O=A(B C+D)$.

Effects of Sizing and Scaling

It is instructive to consider the effects on some CMOS transistor parameters of: (1) sizing, that is, multiplying W by λ, (2) scaling by κ, that is, dividing all dimensions by κ and dividing $V_{D D}$ by the same factor, and (3) scaling by κ while keeping $V_{D D}$ constant. The results are shown in Table 13.1.1. The following should be noted:

1. Only a very small fraction of the gates on the chip have off-chip loads that can be considered to have a fixed C_{L} that is not affected by sizing or scaling. Almost all the gates on the chip have a C_{L} that is given by Equation 13.1.12. If C_{w} is negligible, and if the gate under consideration and the gates connected to it are sized or scaled by the same factor, C_{L} is affected as C_{i} in Table 13.1.1, in which the overlap capacitance $C_{o l}$ (Equation 5.3.21, Chapter 5) is neglected.
2. Sizing multiplies $k_{n, p}$ and C_{L} by $\lambda ; t_{P}$ is not affected, and $P_{A C}$ of the sized gate is multiplied by λ. The effect on the packing density and the power density, or the power per unit area, depends on the number of transistors being sized.

TABLE 13.1.1
Effect of Sizing and Scaling on CMOS Transistor Parameters

		Multiplying Factor				
		Selation	Sizing	Scaling		Scaling
:---:						
(Same $V_{D D}$)						

3. Three highly important parameters are t_{P}, the packing density, and the power density. Scaling by κ, including $V_{D D}$, multiplies the packing density by κ^{2} while dividing t_{P} and the power density by κ, which is highly advantageous.
4. Scaling by κ at constant $V_{D D}$ also multiplies the packing density by κ^{2} but is more advantageous in that t_{p} is divided by κ^{2} because of larger currents. However, power density is multiplied by κ, which may necessitate special cooling measures such as heat sinks and fans.
5. Scaling dimensions and $V_{D D}$ by the same factor keeps the electric field nearly constant. From Poisson's equation in the form $d \xi / d x=\rho / \varepsilon$, if ξ is kept constant while x is reduced by κ, then the charge density ρ, and hence doping concentrations, must be increased by κ. If $V_{D D}$ is maintained constant, ξ increases by κ, so that ρ must be increased by κ^{2} to maintain the same relation.

Example 13.1.5 CMOS Buffer

It is required to analyze the behavior of a CMOS buffer (Figure 13.1.13) consisting of an inverter driving another inverter whose transistors have five times W, with $C_{L}=50 \mathrm{pF}$.

Solution

$Q_{p 1}$ and $Q_{p 2}$ parameters are based on the $0.25 \mu \mathrm{~m}$ technology having $L=0.25 \mu \mathrm{~m}$, $W_{n}=0.9 \mu \mathrm{~m}, W_{p}=2.2 \mu \mathrm{~m}, t_{o x}=7 \mathrm{~nm}$, and $V_{t}= \pm 0.5 \mathrm{~V}$, with $V_{D D}=1.8 \mathrm{~V}$.

$$
\begin{gathered}
k_{p 1}^{\prime}=\frac{\mu_{p} \varepsilon_{o x}}{t_{o x}}=\frac{230 \times 3.9 \times 8.85 \times 10^{-14}}{7 \times 10^{-7}} \equiv 0.113 \mathrm{~mA} / \mathrm{V}^{2} ; \\
k_{p}==k_{p}^{\prime}\left(\frac{2.2}{0.25}\right)=0.998 \mathrm{~mA} / \mathrm{V}^{2} . \\
k_{n 1}^{\prime}=\frac{\mu_{n} \varepsilon_{o x}}{t_{o x}}=\frac{580 \times 3.9 \times 8.85 \times 10^{-14}}{7 \times 10^{-7}} \equiv 0.286 \mathrm{~mA} / \mathrm{V}^{2} ; \quad k_{n}==k_{n}^{\prime}\left(\frac{0.9}{0.25}\right)=1.03 \mathrm{~mA} / \mathrm{V}^{2} .
\end{gathered}
$$

Hence, we can assume that $k_{n, p}=1 \mathrm{~mA} / \mathrm{V}^{2}$ for both input transistors. Neglecting the overlap capacitance $C_{o l}$, the input capacitance of the second inverter is (Equation ST13.2.2) $C_{i 2}=$ $L C_{o x}^{*}\left(W_{n 2}+W_{p 2}\right)=0.25 \times 10^{-4} \times 3.9 \times 8.85 \times 10^{-14}(11+4.5) \times 10^{-4} /\left(7 \times 10^{-7}\right)=19.1 \mathrm{fF}$.

FIGURE 13.1.13
Figure for Example 13.1.5.

$C_{o 1}$ of the first inverter is mostly due to the drain-substrate junction capacitance of both transistors (Section ST13.2). Although these can be calculated as explained in Section 5.3, Chapter 5, we will calculate $C_{i 1}$ of the first inverter and consider $C_{o 1}=C_{i 1}$. This is an overestimate of $C_{o 1}$, since $C_{o 1}$ is typically $0.5-0.7$ times $C_{i 1}$. In any case, the propagation delay is completely dominated by C_{L}, as will be demonstrated shortly. By analogy with $C_{i 2}, C_{o 1}=C_{i 1}=L C_{o x}^{*}\left(W_{n 1}+W_{p 1}\right)=0.25 \times 10^{-4} \times 3.9 \times 8.85 \times 10^{-14}(2.2+0.9) \times 10^{-4} /$ $\left(7 \times 10^{-7}\right)=3.82 \mathrm{fF}$. Neglecting the wiring capacitance between the two inverters, $C_{L 1}=19.1+3.82=22.9 \mathrm{fF}$.
To calculate the propagation delay, we check $v_{D S(\text { sat) }}$ for the short-channel transistor at $V_{D D}=1.8 \mathrm{~V}$ and $\xi_{\mathrm{c}} L=10^{5} \times 0.25 \times 10^{-4}=2.5 \mathrm{~V}$. From Equation 5.3.32, Chapter 5, $v_{D S(\text { sat) }}=$ $2.5(1.8-0.5) /(1.8-0.5+2.5)=0.86 \mathrm{~V}$. Since this is less than $V_{D D} / 2$, we can assume that the output transistor remains in saturation during charging and discharging. $i_{D}=0.5$ $(1.8-0.5)^{2}=0.85 \mathrm{~mA}$. Assuming i_{D} remains constant, $t_{P 1}=22.9 \times 10^{-15} \times 0.9 /\left(0.85 \times 10^{-3}\right)=$ 24.2 ps.

For the second inverter, $C_{o 2}$ is negligible compared to $C_{L}, k_{n, p}=5 \mathrm{~mA} / \mathrm{V}^{2}$, and $i_{D}=2.5(1.8-0.5)^{2}=4.23 \mathrm{~mA}$. Hence, $t_{P 2}=50 \times 10^{-12} \times 0.9 /\left(4.23 \times 10^{-3}\right)=10.64 \mathrm{~ns}$. The total propagation delay $t_{P 1}+t_{P 2}$ remains at 10.6 ns , to three significant figures. If the sizing of the output stage is 10 instead of $5, t_{P 2}$ is halved. The penalty paid is a larger area on the chip.

Low-Power CMOS

Low-power CMOS is becoming increasingly important for reducing battery drain in portable devices, and for ameliorating problems associated with power dissipation and cooling in large ICs. Basically, the most effective way to reduce power in CMOS circuits is scaling, including $V_{D D}$, since this reduces $P_{A C}$ by $1 / \kappa^{3}$ (Table 13.1.1). Reducing $V_{D D}$ further, without scaling transistor dimensions, reduces power dissipation but increases t_{d}. SOI technology is particularly effective in addressing these problems because of the following considerations: (1) Drain-substrate capacitance is substantially reduced, which reduces $P_{A C}$ by at least 20%.
(2) In fully depleted SOI MOSFETs (Figure 4.6.5, Chapter 4), a depletion layer exists all the way to the isolating oxide layer. The depletion capacitance $C_{j S}$ is practically zero, which makes ζ in Equation 13.1.18 nearly 1 . Since ζ appears in the exponential, the subthreshold power dissipation is typically reduced by an order of magnitude. The reduction in subthreshold leakage allows the reduction of $V_{t n}$, which improves the dynamic performance, as noted in connection with Equation 13.1.14. Thresholds of 0.1 V , with $V_{D D}=0.4 \mathrm{~V}$, are possible with SOI CMOS.

Summary

CMOS has almost ideal characteristics for a logic circuit family. It has the maximum possible logic swing (rail-to-rail), relatively large and equal noise margins, and practically zero static power dissipation. It can have equal $t_{P H L}$ and $t_{P L H}$, and with continued decrease in transistor sizes, CMOS can have on-chip gate delays in the ps range. It is relatively easy to fabricate, which reduces cost. Its main disadvantages are: (1) two transistors are needed for each additional gate input, so that high fan-in gates would require considerable additional chip area, with consequent increase in total capacitance and attendant increase in propagation delay and dynamic power dissipation, (2) limited current-drive capability, because of relatively large output resistance, and (3) increased susceptibility to noise because of this relatively large output resistance and the current pulses that occur during switching.

13.2 Pseudo NMOS

Pseudo NMOS and pass-transistor logic (Section 13.3) are essentially a form of CMOS that is not intended so much to replace conventional CMOS but rather to supplement it for special purposes by overcoming some of the disadvantages of CMOS noted previously.

The pseudo NMOS inverter (Figure 13.2.1) differs from the CMOS inverter in that the gate of the E-PMOS transistor is grounded instead of being connected to the input. It is called pseudo NMOS to distinguish it from NMOS logic that was popular in the 1970s and 1980s. The earlier form of NMOS had a diode-connected E-NMOS load transistor, whereas the later form had a diode-connected D-NMOS load transistor. Depletion MOSFETs may require an additional ion-implantation

FIGURE 13.2.1
Pseudo NMOS inverter. processing step, which increases fabrication cost.

Since $v_{S G P}=V_{D D}, Q_{p}$ is always on. When v_{I} is low, Q_{n} is off, no current flows, and $v_{O}=V_{D D}$, as in the CMOS inverter. When v_{I} is high, Q_{n} is on, v_{O} is low, but a conduction path exists between $V_{D D}$ and ground. The resulting static power dissipation is a disadvantage of pseudo NMOS. To see a principal advantage, consider Figure 13.2.2. The output O is low if any of the inputs $A_{1} \ldots A_{m}$ is high, which implements a NOR function. Only $m+1$ transistors are required, without sizing, compared to $2 m$ transistors in CMOS, which also requires sizing of m series-connected transistors. The packing density of pseudo NMOS can be four times that of CMOS.

Pseudo NMOS gates are implemented by designing an appropriate PDN. If the $A_{1} \ldots A_{m}$ transistors of Figure 13.2.2 are connected in series, a NAND results, which, however, requires sizing of the PDN transistors to have the same current-sinking capability as an inverter. Figure 13.2.3 illustrates an XOR2 gate that requires only five transistors. If B is low and A is high, Q_{1} conducts, with Q_{2} off, and Y is pulled low. If B is high and A is low, Q_{2} conducts, with Q_{1} off, and Y is again pulled low. If A and B are both high or low, Q_{1} and Q_{2} are off. The logic performed is XNOR: $\bar{Y}=A \bar{B}+\bar{A} B$. Adding an inverter gives an XOR2 gate.

Since the D-PMOS transistor is not activated by gate inputs, it is considered a passive load.

FIGURE 13.2.2
Pseudo NMOS NOR gate.

FIGURE 13.2.3
Pseudo NMOS XOR2 gate

Concept: An active PDN and a passive load allow wired-AND logic, whereas an active
PUN and a passive load allow wired-OR logic.

Wired logic is useful in that it can save transistors. Figure 13.2.4 shows two NAND2 gates sharing a common passive load. O will be low if both A_{1} and A_{2} are high, or if both B_{1} and B_{2} are high, that is $\bar{O}=A_{1} A_{2}+B_{1} B_{2}$, or $O=\overline{A_{1} A_{2}+B_{1} B_{2}}=\overline{A_{1} A_{2}} \overline{B_{1} B_{2}}$. If each gate has its own passive load, the gate outputs are $O_{1}=\overline{A_{1} A_{2}}$ and $O_{2}=\overline{B_{1} B_{2}}$. Hence, $O=O_{1} O_{2}$, the AND of O_{1} and O_{2}. Using wired logic has saved on using three NAND2 gates, for O_{1}, O_{2}, and their AND combination, followed by an inverter, a total saving of six transistors.

With an active PUN, as in CMOS, wired-AND logic is not feasible, because of the possibility that both the PUN and PDN may conduct for some combination of inputs, which results in a short between $V_{D D}$ and ground. The ECL family having active PUN and passive PDN allows wired-OR logic (Section 13.7).

Exercise 13.2.1

Figure 13.2.5 illustrates a NOR4 gate. Show that it can be regarded as two NOR2 gates that are wire-ANDed together.

Static Operation

The VTC characteristic of the pseudo NMOS inverter can be derived in the same manner as that of the CMOS inverter by drawing the $v_{S G p}=V_{D D}$ characteristic of the PMOS transistor as a load curve on the output characteristics of the NMOS transistor (Figure 13.2.6). An important feature of these curves is that the saturation current of Q_{p} is made considerably smaller than that of Q_{n} by having $k_{n}=r k_{p}$, where r is typically between 4 and 10 . This reduces the current when both transistors are on and keeps $V_{O L}$ low. When $v_{I}<V_{t n}, Q_{n}$ is off and $v_{O}=V_{D D}$. As v_{I} increases beyond $V_{t n}, Q_{n}$ conducts in the saturation region, and Q_{p} in the triode region. For larger v_{I}, there is a small part of the

FIGURE 13.2.4
Pseudo NMOS wired-AND logic.

FIGURE 13.2.5
Figure for Exercise 13.2.1.

FIGURE 13.2.6
Graphical construction for deriving the VTC of the pseudo NMOS inverter.

VTC when both transistors are in saturation. For larger v_{I} still, Q_{n} is in the triode region and Q_{p} in saturation.

The VTC of the pseudo NMOS inverter is derived in Section ST13.4 based on longchannel behavior. The extension to short-channel behavior is also discussed. The static current $I_{\text {stat }}$ of the long-channel transistor, when $v_{I}=V_{D D}$, is the saturation current of Q_{p} :

$$
\begin{equation*}
I_{\mathrm{stat}}=i_{D \max }=\frac{1}{2} k_{p}\left(V_{D D}-V_{t}\right)^{2} \tag{13.2.1}
\end{equation*}
$$

where $V_{t}=V_{t n}=\bar{V}_{t p}$. It is shown in Section ST13.4 that:

$$
\begin{equation*}
V_{O L}=\left(V_{D D}-V_{t}\right)(1-\sqrt{1-1 / r}) \tag{13.2.2}
\end{equation*}
$$

where $r=k_{n} / k_{p}$ is the ratio of device transconductance parameters,

$$
\begin{gather*}
V_{T H}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r+1}} \tag{13.2.3}\\
V_{I L}=V_{t}+\frac{V_{D D}-V_{t}}{\sqrt{r(r+1)}} \tag{13.2.4}\\
V_{I H}=V_{t}+\frac{2\left(V_{D D}-V_{t}\right)}{\sqrt{3 r}} \tag{13.2.5}
\end{gather*}
$$

$$
\begin{gather*}
\mathrm{NM}_{\mathrm{L}}=V_{I L}-V_{O L}=V_{t}-\left(V_{D D}-V_{t}\right)\left(1-\frac{1}{\sqrt{r(r+1)}}-\sqrt{1-\frac{1}{r}}\right) \tag{13.2.6}\\
\mathrm{NM}_{\mathrm{H}}=V_{D D}-V_{I H}=\left(V_{D D}-V_{t}\right)\left(1-\frac{2}{\sqrt{3 r}}\right) \tag{13.2.7}
\end{gather*}
$$

Because of the dependence of $V_{O L}$ on r, pseudo NMOS is said to be a ratioed logic family. In CMOS, on the other hand, $V_{O L}$ does not depend on the ratio of k_{n} / k_{p}, so CMOS is ratioless. Since $V_{D D}, k_{n}^{\prime}, k_{p}^{\prime}$, and V_{t} are governed by process technology, r and (W / L) are the main design parameters. A large r reduces $V_{O L}$, increases the noise margins, and for a given $(W / L)_{n}$, reduces $I_{\text {stat }}$ and the static power dissipation. However, too large an r increases the asymmetry in the dynamic response between $t_{P L H}$ and $t_{P H L}$ (Equations 13.2.9 and 13.2.10) and increases the gate area for a given $(W / L)_{p}$. Larger gate area means larger C_{i} and C_{0}.

For short-channel transistors,

$$
\begin{equation*}
V_{O L}=\frac{I_{D p(\mathrm{sat})}}{k_{n}\left(V_{D D}-V_{t n}\right)} \tag{13.2.8}
\end{equation*}
$$

where $I_{D p(\text { sat })}$ is the saturation current of the PMOS transistor (Equation ST13.4.13).

Exercise 13.2.2

Show that if the two transistors are matched, $V_{O L}=V_{D D}-V_{t}$.

Dynamic Operation

The dynamic operation of the pseudo NMOS inverter can be analyzed following the same procedure as for the CMOS inverter. If $V_{t}=0.2 V_{D D}$, it can be shown that (Problem 13.2.1):

$$
\begin{align*}
t_{P L H} & \cong \frac{1.7 C_{L}}{k_{p} V_{D D}} \tag{13.2.9}\\
t_{P H L} & \cong \frac{1.7 C_{L}}{k_{n}(1-0.46 / r) V_{D D}} \tag{13.2.10}
\end{align*}
$$

$t_{p L H}=t_{P H L}$ for $r=1.46$. If r is large, then $t_{P L H} \cong r t_{P H L}$, so that a large r increases the asymmetry between $t_{P L H}$ and $t_{P H L}$.

Simulation Example 13.2.1 Static and Dynamic Operation of Pseudo NMOS Inverter

It is required to simulate a pseudo NMOS inverter and derive its VTC and the variation of i_{D} with v_{l}.

Simulation

The transistor parameters are $k_{n}^{\prime}=120 \mathrm{u}, k_{p}^{\prime}=40 \mathrm{u},(W / L)_{n}=(0.375 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m})$, and $(W / L)_{p}=(0.125 \mu \mathrm{~m} / 0.25 \mu \mathrm{~m})$, which makes $r=9 . \lambda=0.05 \mathrm{~V}^{-1}$ and $V_{D D}=2.5 \mathrm{~V}$. The VTC and the current are shown in Figure 13.2.7, from which $I_{D \text { stat }}=44.7 \mu \mathrm{~A}, V_{O L}=0.128 \mathrm{~V}$, $V_{T H}=1.14 \mathrm{~V}, V_{I L}=0.69 \mathrm{~V}, V_{I H}=1.29 \mathrm{~V}, \mathrm{NM}_{\mathrm{H}}=1.21 \mathrm{~V}, \mathrm{NM}_{\mathrm{L}}=0.56 \mathrm{~V}$.
The dynamic behavior of the inverter is simulated as in Simulation Example 13.1.2 using $C_{L}=2 \mathrm{pF}$. The simulated values of $t_{P H L}$ and $t_{P L H}$ are indicated in Figure 13.2.8.

FIGURE 13.2.7
Figure for Example 13.2.1.

FIGURE 13.2.8
Figure for Example 13.2.1.

13.3 Pass-Transistor Logic

Pass-transistor logic, or transmission-gate logic, uses single, pass transistors or CMOS transmission gates for logic operations. A pass transistor was encountered in the column decoder (Section 12.5, Chapter 12) and its operation explained in connection with Figure 12.5.8, Chapter 12. Transmission-gate logic was illustrated by the XOR gate (Figure 12.2.1c, Chapter 12) and the D-FF (Figures 12.3.12 and 12.3.14, Chapter 12). We will consider in this section the operation of these logic elements in more detail, particularly under dynamic conditions.

Figure 13.3.1 illustrates a pass transistor $Q_{P T}$ whose gate is connected to $V_{D D}$ and whose input is suddenly changed from 0 to $V_{D D}, v_{O}$ being initially zero. The following should be noted:

FIGURE 13.3.1
Time variation of output of an NMOS pass transistor when the input changes from 0 to $V_{D D}$.

1. When v_{I} changes to $V_{D D}$, with C_{L} initially discharged, the transistor source and drain will be as shown, $Q_{P T}$ is initially in saturation and maximum i_{D} flows. As v_{O} increases, i_{D} decreases partly because of reduced $v_{G S}$ and $v_{D S}$ and partly because of increased $V_{t n}$ due to the body effect (Section 5.3, Chapter 5). Hence, v_{O} increases at a slower rate than if there were no body effect, which increases $t_{P L H}$.
2. When $i_{D}=0, C_{L}$ is charged to a maximum voltage of $V_{D D}-V_{t n}$, with $v_{G S}=V_{t n}=v_{D S} . Q_{P T}$ remains in saturation throughout the charging of C since $\left(v_{D S}=V_{D D}-v_{O}\right)>\left(v_{G S}=V_{D D}-v_{O}\right)-V_{t n}$, where $V_{t n}$ is larger than $V_{t n 0}$ because of the body effect. The reduced output voltage of $V_{D D}-V_{t n}$ can cause conduction in a CMOS gate connected to the output node resulting in static power dissipation. Thus, if an inverter is connected to the output node, an output of $V_{D D}-V_{t n}$, with $V_{t n}>\bar{V}_{t p}$ of the PMOS transistor of the inverter, will make the inverter operate in the region DE of its VTC (Figure 13.1.3) resulting in current flow through the inverter. It would seem possible to reduce $V_{t n}$ of $Q_{P T}$ to zero and therefore have the voltage of the output node equal to $V_{D D}$. However, this would make $Q_{P T}$ sensitive to noise and would increase its subthreshold current (Equation 13.1.18). This problem can be avoided in a number of ways, as will be discussed later.
3. If both v_{I} and the gate voltage go low, which can occur if the gate is driven by a clock signal, two things happen if there is no conducting path between the output node and ground: (a) $Q_{P T}$ is turned off and the output node will go into a highimpedance state, which may or may not be desirable, depending on the circuit, and (b) v_{O} will be initially maintained by C_{L} at $V_{D D}-V_{t n}$. It will not follow v_{I} and will go low only after the charge on C_{L} has leaked. The current that discharges C_{L} when both v_{I} and the gate voltage go low, is due to: (a) leakage between what is now the drain terminal of $Q_{P T}$ and the substrate, and (b) the subthreshold current of $Q_{P T}$ between the new drain and the source. Noise coupled from neighboring interconnect (Section 12.8, Chapter 12) can also contribute to discharging C_{L}. Radiation generates electron-hole pairs in the silicon substrate, with electrons flowing to the drain and holes to the substrate terminal, which constitutes a current that aids in discharging C_{L}.

The situation when v_{I} goes low, with the gate maintained at $V_{D D}$, and $v_{O}=V_{D D}-V_{t n}$, is illustrated in Figure 13.3.2. Since what is now the source is at 0 V , there is no body effect. Initially, $v_{D S}=V_{D D}-V_{t n}$, where $V_{t n}$ is the threshold at that end of the charging process and is larger than $V_{t n 0}$. Because $V_{D D}-V_{t n}<V_{D D}-V_{t n 0}, Q_{P T}$ will initially be in the triode region and will remain in this region as $v_{D S}$ decreases while C_{L} discharges to 0 .

FIGURE 13.3.2
Time variation of output of an NMOS pass transistor when the input changes from $V_{D D}$ to 0 .

The output voltage can be boosted to $V_{D D}$ by making $v_{I}=V_{D D}+V_{t n}$, as is sometimes done in semiconductor memories (Section ST12.5, Chapter 12). Alternatively, positive feedback can be used, as in Figure 13.3.3. If $v_{I}=0, v_{C}=0$ with C_{L} discharged, and $v_{O}=V_{D D}$, which turns off Q_{F}. If v_{I} is high, then as v_{C} increases, v_{O} falls, and Q_{F} conducts and contributes to the charging of C_{L}. Eventually, with v_{O} low, and the current through C_{L} is zero, $v_{C}=V_{D D}$. Circuit behavior is analyzed in more detail in Example SE13.2.
$t_{P L H}$ and $t_{P H L}$ can be readily calculated using the approximation based on the average current (Exercise 13.3.1).

The case of a PMOS transistor is similar (Figure 13.3.4). When v_{I} changes from low to high the transistor is turned on with $v_{S G}=V_{D D}$. The capacitor charges to $V_{D D}$ because

FIGURE 13.3.3
Boosting of capacitor voltage to $V_{D D}$ using positive feedback.

FIGURE 13.3.4
Output of a PMOS pass transistor when input changes from (a) 0 to $V_{D D}$; (b) $V_{D D}$ to 0 .
$v_{S G}>\bar{V}_{t p}$. When v_{I} returns to zero, the output terminal is the source. As v_{O} decreases, the transistor cuts off when $v_{S G}=\bar{V}_{t p}$.

Based on Figures 13.3.1, 13.3.2, and 13.3.4, it is said that an NMOS transistor passes a logic 0 well but not a logic 1, whereas a PMOS transistor passes a logic 1 well but not a logic 0 . It follows that a transmission gate, which combines the two types of transistor, will pass both logic levels equally well. In fact, the performance of transmission gates as switches is far superior to that of a pass transistor. As discussed in Section 5.5, Chapter 5, the on-resistance remains practically constant for a wide range of input voltage, and C_{L} charges to $V_{D D}$ and not to a lower voltage. The dynamic operation of the transmission gate is considered in Example 13.3.1.

A versatile pass-transistor gate is analyzed in Example SE13.2.

Example 13.3.1 Dynamic Operation of Transmission Gate

It is required to analyze and simulate the operation of the transmission gate under dynamic conditions, assuming $k_{n}^{\prime}=0.286 \mathrm{~mA} / \mathrm{V}^{2}, k_{p}^{\prime}=0.117 \mathrm{~mA} / \mathrm{V}^{2},(W / \mathrm{L})_{n}=(W / \mathrm{L})_{p}=(0.75 \mu \mathrm{~m} /$ $0.25 \mu \mathrm{~m}), V_{t n 0}=\bar{V}_{t p 0}=0.5 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $\phi_{f}=0.3 \mathrm{~V}$, with $V_{D D}=2.5 \mathrm{~V}$ and $C_{L}=1 \mathrm{pF}$.

Analysis

At $t=0, v_{l}$ changes from 0 to $V_{D D}$, with v_{O} initially 0 (Figure 13.3.5). Consider Q_{p} for $t>0$. $v_{S G}$ is constant at $V_{D D}$, and the substrate is at $V_{D D}$, which means that there is no body effect. $v_{S D}$ is initially at $V_{D D}$, so Q_{p} is in saturation, and $i_{D p}(0)=\frac{1}{2}(0.117 \times 3)(2.5-0.5)^{2}=$ 0.702 mA . As v_{O} increases, $v_{S D}$ decreases and the transistor goes into the triode region. When $\quad v_{O}=1.25 \mathrm{~V}, \quad i_{D P}\left(t_{P L H}\right)=(0.117 \times 3)\left[(2.5-0.5) 1.25-\frac{1}{2}(1.25)^{2}\right]=0.603 \mathrm{~mA} . \quad Q_{p}$ stops conducting when $v_{S D}=0$, that is, when C is charged to $V_{D D}$, because $v_{S C}=V_{D D}>\bar{V}_{t p}$.
Consider Q_{n}. Initially, $v_{D S}=V_{D D}=v_{G S,}$ and $V_{B S}=0 . \quad i_{D n}(0)=i_{D n}(0)=\frac{1}{2}(0.286 \times 3)$ $(2.5-0.5)^{2}=1.716 \mathrm{~mA}$. As v_{O} increases, $v_{D S}$ and $v_{G S}$ decrease by the same amount

FIGURE 13.3.5
Figure for Example 13.3.1.

FIGURE 13.3.6
Figure for Example 13.3.1.
while the threshold increases because of the body effect. Q_{n} remains in saturation and stops conducting when $v_{G S}=V_{t n}$, that is when $v_{O}=V_{D D}-V_{t n}$. When $v_{O}=1.25 \mathrm{~V}$, $V_{S B}=1.25 \mathrm{~V}$ and $V_{t n}=0.5+0.5(\sqrt{1.25+0.6}-\sqrt{0.6})=0.793 \mathrm{~V}$. Hence, $i_{D n}\left(t_{P L H}\right)=$ $\frac{1}{2}(0.286 \times 3)(1.25-0.793)^{2}=0.090 \mathrm{~mA}$. This gives $i_{C}(0)=1.716+0.702=2.418 \mathrm{~mA}$, $i_{C}\left(t_{P L H}\right)=0.603+0.09=0.693 \mathrm{~mA} \quad$ and $\quad i_{\text {Cavg }}=\frac{1}{2}(2.418+0.693)=1.556 \mathrm{~mA} \cdot t_{\text {PLH }}=$ $C\left(V_{D D} / 2\right) / i_{\text {Cavg }}=10^{-12} \times 1.25 /\left(1.556 \times 10^{-3}\right)=0.803 \mathrm{~ns}$.
When v_{l} changes from $V_{D D}$ to 0 , with v_{O} initially at $V_{D D}$ (Figure 13.3.6), then for $t>0, v_{G S}$ of Q_{n} remains at $V_{D D}$, with $V_{S B}=0$ and $V_{D S}$ initially at $V_{D D}$. Q_{n} is initially in saturation but goes into the triode region as v_{O} and hence $v_{D S}$ decrease. Thus $i_{D n}(0)=\frac{1}{2}(0.286 \times 3)$ $(2.5-0.5)^{2}=1.716 \mathrm{~mA}$, and $i_{D n}\left(t_{P H L}\right)=(0.286 \times 3)\left[(2.5-0.5) 1.25-\frac{1}{2}(1.25)^{2}\right]=1.475 \mathrm{~mA}$. Q_{p} is initially in saturation, since $v_{S D}=V_{D D}=v_{S G}$, with $V_{B S}=0$. Thus, $i_{D p}(0)=$ $\frac{1}{2}(0.117 \times 3)(2.5-0.5)^{2}=0.702 \mathrm{~mA}$. As v_{O} decreases, both $v_{S D}=v_{D D}=v_{S C}$ decrease by the same amount while the threshold increases because of the body effect. Q_{p} remains in saturation. When $v_{O}=1.25 \mathrm{~V}, V_{B S}=1.25 \mathrm{~V}$, and $\bar{V}_{t p}=0.5+0.5(\sqrt{1.25+0.6}-\sqrt{0.6})=$ 0.793 V . Hence, $\quad i_{D p}\left(t_{P H L}\right)=\frac{1}{2}(0.117 \times 3)(1.25-0.793)^{2}=0.0367 \mathrm{~mA}$. This gives $i_{C}(0)=0.702+1.716=2.418 \mathrm{~mA}, \quad i_{C}\left(t_{\text {PHL }}\right)=1.475+0.0367=1.512 \mathrm{~mA}, \quad$ and $\quad i_{\text {Cavg }}=$ $\frac{1}{2}(2.418+1.512)=1.965 \mathrm{~mA} . t_{P H L}=C\left(V_{D D} / 2\right) / i_{C \text { Cavg }}=10^{-12} \times 1.25 /\left(1.965 \times 10^{-3}\right)=$ 0.636 ns . The propagation delay $t_{P}=\frac{1}{2}(0.803+0.636)=0.72 \mathrm{~ns}$.

Simulation

The schematic for the low-to-high change in the input is shown in Figure 13.3.7. The NMOS transistor parameters entered in the PSpice model are $\mathrm{kp}=0.286 \mathrm{~m}$, Vto $=0.5$, gamma $=0.5$, phi $=0.6$, whereas those of the PMOS transistor are $\mathrm{kp}=0.117 \mathrm{~m}, \mathrm{Vto}=-0.5$, gamma $=0.5, \mathrm{phi}=0.6 \mathrm{~L}=0.25 \mathrm{u}$ and $\mathrm{W}=0.75 \mathrm{u}$ are entered for both transistors in the

$$
\begin{aligned}
& \mathrm{V} 1=0 \\
& \mathrm{~V} 2=2.5 \\
& \mathrm{TD}=0 \\
& \mathrm{TR}=1 \mathrm{p} \\
& \mathrm{TF}=1 \mathrm{p} \\
& \mathrm{PW}=1 \mathrm{u} \\
& \mathrm{PER}=2 \mathrm{u}
\end{aligned}
$$

FIGURE 13.3.7
Figure for Example 13.3.1.

FIGURE 13.3.8
Figure for Example 13.3.1.

Property Editor spreadsheet. The schematic for the high-to-low change in the input is the same except that IC of C is 2.5 V , and V 1 and V 2 of the source are 2.5 V and 0 , respectively. The simulation results are shown in Figure 13.3.8, from which it is seen that $t_{P L H}=1.015 \mathrm{~ns}$ and $t_{P H L}=0.648 \mathrm{~ns}$.

Exercise 13.3.1

Consider a pass transistor having $k_{n}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n 0}=1 \mathrm{~V}$, with $V_{D D}=5 \mathrm{~V}, C_{L}=30 \mathrm{fF}, \gamma=0.5$ $\mathrm{V}^{1 / 2}$ and $\phi_{F}=0.3 \mathrm{~V}$. Determine (a) $t_{P L H}$, (b) $t_{P H L}$ assuming that v_{O} is initially equal to $V_{D D}$. In both cases consider i_{D} through C_{L} to be the average of $i_{D}(0)$ and $i_{D}\left(t_{P L H}\right)$ or $i_{D}\left(t_{P H L}\right)$, as appropriate, so that the average i_{D} flowing for a duration $t_{P L H}$ or $t_{P H L}$ changes v_{C} by $V_{D D} / 2$.

Answers: (a) $0.18 \mathrm{~ns} ;(b) 0.1 \mathrm{~ns}$.

Exercise 13.3.2

Determine v_{O} at which Q_{p} cuts off in Figure 13.3.5.
Answer: 0.861 V

13.4 Dynamic Logic

In dynamic logic, logic 1 is represented as a voltage on what is essentially a parasitic capacitance, which reduces the number of transistors required to implement a given logic function and increases the packing density. In contrast to pseudo NMOS, the static power dissipation is zero. Dynamic logic was encountered in the dynamic decoder and dynamic ROMs discussed in Sections 12.5 and 12.6, Chapter 12.

Basic Configuration

The basic configuration of a dynamic logic gate is illustrated in Figure 13.4.1. When CK is low, the NMOS evaluate transistor $Q_{E V}$ is turned off, whereas the PMOS precharge transistor $Q_{P R}$ is turned on, charging the capacitor C_{L} at the output node to $V_{D D}$. When $C K$ goes high, $Q_{P R}$ is turned off and $Q_{E V}$ is turned on. The logic function implemented by the PDN appears at the output O during this phase. For example, if the PDN consists of a single NMOS transistor (Figure 13.4.2a), then the logic implemented is inversion, $\bar{O}=A$. If A is low, Q_{A} is off and O remains high during the evaluate phase when $C K$ goes high. If A is high, then Q_{A} is on and C_{L} is discharged when $Q_{E V}$ conducts during the evaluate phase,

FIGURE 13.4.1
Basic dynamic logic gate.

FIGURE 13.4.2
PDNs for dynamic logic gates. (a) Inverter; (b) NOR2 gate; (c) NAND2 gate.
pulling O low. For the PDN of Figure 13.4.2b, $\bar{O}=A+B$, that is, C_{L} is discharged if A or B is high, so that Q_{A}, Q_{B}, or both conduct. The logic implemented is NOR. Similarly, the logic function implemented in Figure 13.4.2c is NAND, $\bar{O}=A B$, because C_{L} is discharged only if both A and B are high, so that both Q_{A} and Q_{B} conduct. The following should be noted concerning dynamic logic:

1. There is no static power dissipation, since $Q_{P R}$ and $Q_{E V}$ are not turned on simultaneously. There is, however, dynamic power dissipation due to charging and discharging of capacitors.
2. The output is available only during the evaluate phase, the precharge phase being "dead time."

Exercise 13.4.1

Verify that the PDN of Figure 13.1.12b, when used in the circuit of Figure 13.4.1, implements the logic function $O=\overline{A(B C+D)}$.

Limitations of Dynamic Logic

Consider the NAND2 gate of Figure 13.4.3. With $Q_{P R}$ and Q_{A} off, the charge on C_{L} leaks mainly through the reverse-biased drain-substrate junctions of these transistors. The leakage currents may be of the order of pA , and approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature. The charge on C_{L} must be replenished at a minimum frequency so that the output voltage, if high, will not fall below a certain level. Another problem is that if Q_{A} turns on, while $Q_{P R}$ and Q_{B} are off, the charge on C_{L} will be distributed between C_{L} and C_{X}, the capacitance appearing at the junction between Q_{A} and Q_{B}, causing the voltage at O to fall below $V_{D D}$. This charge sharing can be of critical importance in the design of dynamic logic circuits. It can be eliminated by precharging internal nodes at the expense of added circuit complexity and node capacitances.

In the case of the inverter (Figure 13.4.2a), Q_{A} begins to conduct during the evaluate phase when $v_{A}=V_{t n}$, and C_{L} begins to discharge. Hence, we may consider both $V_{I L}$ and $V_{I H}$ to be approximately equal to $V_{t n}$ (see Figure 13.1.4), which gives,

$$
\begin{equation*}
\mathrm{NM}_{\mathrm{L}} \cong V_{t n} \quad \text { and } \quad \mathrm{NM}_{\mathrm{H}} \cong V_{D D}-V_{t n} \tag{13.4.1}
\end{equation*}
$$

FIGURE 13.4.3
Charge sharing in a dynamic logic gate.

FIGURE 13.4.4
Cascaded dynamic logic inverters.

This makes NM_{L} low and NM_{H} high, although a high output may be reduced because of leakage and charge sharing. Moreover, a high output is necessarily a high impedance node except during precharging and discharging, which makes it susceptible to noise.

A serious limitation of dynamic logic circuits is that they cannot be readily cascaded. To appreciate the reason, consider two cascaded inverters (Figure 13.4.4). Assume that A is high, so that O should also be high. At the end of the precharge phase, $C_{L 1}$ and C_{L} will be charged to $V_{D D}$. Ideally, $C_{L 1}$ discharges instantly at the start of the evaluate phase, so that O_{1} is pulled low, Q_{2} is turned off, and O remains high. But $C_{L 1}$ takes time to discharge. As long as the voltage of O_{1} is higher than $V_{t n}$ of Q_{2} plus the small voltage drop across the conducting $Q_{E V 2}, Q_{2}$ is on and C_{L} will discharge. Consequently, the output voltage may no longer be interpreted as high. To allow cascading of dynamic circuits, various schemes may be used, as described next.

Domino Logic

In one form of domino logic, also known as NP Domino logic or NORA CMOS logic, dynamic logic gates are alternated between those using PDNs and PUNs, with an inverted CK applied to the gates having PUNs. Figure 13.4.5 illustrates two inverters cascaded in this manner. When $C K$ is low, $\overline{C K}$ is high, $C_{L 1}$ is precharged to $V_{D D}$, whereas C_{L} is "precharged" by $Q_{P R 2}$ by discharging it to 0 . During the evaluate phase, $C K$ is high and

FIGURE 13.4.5
Cascaded inverters in NP domino logic.

$\overline{C K}$ is low. If A is high, $C_{L 1}$ discharges, pulling O_{1} low. As the voltage of O_{1} falls, Q_{2} is turned on, and with $Q_{E V 2}$ on, C_{L} charges to $V_{D D}$, making O high. If A is low, $C_{L 1}$ remains high, Q_{2} is off, and O remains low.

In the general case, cascaded stages have alternating PDNs and PUNs that implement a desired logic function. During the evaluate phase, the output of each stage is applied to the next stage. In effect, evaluated outputs ripple through the cascade, like a chain of falling dominos.

Other implementations of domino logic are possible (see Problem P13.2.17).

Pipelined Single-Phase Clock Architecture

An interesting variation of domino logic is the pipelined single-phase clock architecture of Figure 13.4.6. The "single-phase clock" refers to using only CK, without $\overline{C K}$. This avoids clock timing problems (Section 12.3, Chapter 12) and therefore allows a higher clock frequency. In contrast to domino logic, in which the output of one stage ripples through the other stages during the evaluate phase, the precharge phase and the evaluate phase alternate between successive stages in a pipelined architecture so that consecutive sets of data are processed in alternating stages of the pipelined system during the two phases of the clock cycle.
In Figure 13.4.6, each of the n-stage and the p-stage consists of a precharge-evaluate circuit followed by what is effectively a tristate inverter that maintains the output voltage at its last value, subject to charge leakage. When $C K$ is low, output O_{1}^{\prime} is precharged, while O_{1} is maintained at its previous value by the cutoff transistors Q_{1} and Q_{1}^{\prime} at the output. At the same time, O_{1} is applied to the p-stage, which is in the evaluate phase. The evaluate output O_{2}^{\prime} appears inverted at O_{2}. When $C K$ goes high, O_{2}^{\prime} is precharged, O_{2} is maintained, while O_{1}^{\prime} is evaluated and appears inverted at O_{1}. Problem P13.2.19 illustrates a D-FF based on this architecture.

FIGURE 13.4.6
Illustration of pipelined single-phase clock architecture for dynamic logic.

13.5 BiCMOS Logic

Basic Operation

BiCMOS is an important technology that seeks to combine the advantages of CMOS and BJTs. CMOS has advanced to the stage where propagation delays between gates on a chip are in ps. However, when it comes to driving appreciable loads, of capacitance greater than about 1 pF , for example, CMOS is slow because of its limited current-drive capability. Such appreciable loads may be encountered off-chip, that is, at the chip's outputs, or on-chip by gates having a large fan-out. BJTs, on the other hand, can provide the necessary currents to charge and discharge capacitors at high speeds. This is where BiCMOS can be advantageous, although a BJT typically occupies 10 times the area of a MOSFET.

The basic BiCMOS inverter, illustrated in Figure 13.5.1, differs from the CMOS inverter (Figure 13.1.1) by having two npn transistors that amplify the currents of Q_{p} and Q_{n}. The transistor combinations $Q_{p}-Q_{1}$ and $Q_{n}-Q_{2}$ are reminiscent of the Darlington pair (Section 8.4, Chapter 8). That the circuit behaves as an inverter can be readily verified. If v_{I} is low, Q_{n} and Q_{2} are turned off, Q_{p} conducts, supplying base current to Q_{1}, which in turn conducts and supplies a relatively large current that rapidly charges C_{L}. When C_{L} is fully charged, the base current of Q_{1} is practically zero, so that $v_{S D}$ of Q_{p} is negligibly small, $v_{B E 1}$ equals the cut-in voltage of the BEJ of Q_{1}, and $v_{O}=V_{D D}-v_{B E 1 \gamma}$. If v_{I} goes high, Q_{p} and Q_{1} are turned off, while Q_{n} and Q_{2} are turned on, discharging C_{L}. When C_{L} is fully discharged, the base current of Q_{2} is practically zero, so that $v_{D S}$ of Q_{n} is negligibly small, and $v_{O}=v_{B E 2 \gamma}$ where $v_{B E 2 \gamma}$ is the cut-in voltage of the BEJ of Q_{2}. The following should be noted concerning the circuit of Figure 13.5.1:

1. Q_{1} and Q_{2} do not conduct simultaneously under static conditions. However, a current from $V_{D D}$ to ground flows through them under dynamic conditions, as in a CMOS inverter.
2. Q_{1} and Q_{2} are not normally driven to saturation, since their BCJs cannot become forward biased because of Q_{p} and Q_{n} that are connected across these junctions. However, Q_{1} and Q_{2} may saturate if their collector resistances (r_{c}) are high and

FIGURE 13.5.1
Basic BiCMOS inverter.

their collector currents are large. Under these conditions, and considering $Q_{p}-Q_{1}$ for example, $v_{D S} \cong 0=r_{c 1} i_{c 1}+v_{c b 1}$, so that Q_{1} saturates if $v_{c b 1}$ is sufficiently negative. Saturation is undesirable as it reduces β and slows the turn-off of Q_{1}.

The basic circuit of Figure 13.5.1 suffers from two disadvantages: (1) The logic swing at the output is $V_{D D}-2 V_{B E \gamma}$, where $V_{B E \gamma}=V_{B E 1 \gamma}=V_{B E 2 \gamma} \cong 0.6 \mathrm{~V}$. This precludes small values of $V_{D D}$, because of too small a logic swing and correspondingly reduced noise margins. (2) Although the turn-on times of Q_{1} and Q_{2} can be small, their turn-off times are prolonged due to the absence of a circuit path for fast removal of base charge.

The second disadvantage is overcome by adding transistors Q_{3} and Q_{4} (Figure 13.5.2). If v_{I} goes high, Q_{p} and Q_{1} turn off and Q_{3} turns on, which provides a path for rapid removal of charge stored in Q_{1} base. If v_{1} goes low, Q_{3}, Q_{n}, and Q_{2} turn off, whereas Q_{p}, Q_{4}, and Q_{1} turn on, with Q_{4} providing a path for rapid removal of charge stored in Q_{2} base. When Q_{3} is on, Q_{4} is off.

The circuit of Figure 13.5.3 is an example of rail-to-rail BiCMOS that overcomes the first disadvantage as well, though not completely satisfactorily. R_{1} and R_{2} clearly provide a path for the leakage of charge stored in the bases of Q_{1} and Q_{2}. Moreover, when C_{L} is fully charged, and Q_{1} stops conducting, there will not be any voltage drop in Q_{p} and R_{1}, which means that C_{L} will charge to $V_{D D}$. However, after Q_{1} turns off, when $v_{O}=V_{D D}-$ $v_{B E 1 \gamma}, C_{L}$ will continue to charge to $V_{D D}$ through the relatively high resistance of R_{1} but at a slower rate than when Q_{1} is conducting. Similarly, R_{2} will allow C_{L} to discharge all the way to zero, but at a slower rate after Q_{2} stops conducting. Moreover, when Q_{p} or Q_{n} turns on, R_{1} and R_{2} divert current from the bases of Q_{1} and Q_{2}, which slows somewhat the turn-on process. The current diversion sets a lower limit to R_{1} and R_{2}, which are typically in the range of few hundred ohms to few kilo-ohms. When $V_{D D}$ is small, the range over which Q_{1} and Q_{2} conduct is limited, and the speed advantage of BiCMOS is severely compromised. If $V_{D D}=1.5 \mathrm{~V}$, for example, Q_{1} and Q_{2} conduct over the range $0.6 \leq v_{O} \leq 0.9 \mathrm{~V}$, and most of the charging and discharging occurs through R_{1} and R_{2}.

FIGURE 13.5.2
BiCMOS inverter with turnoff transistors Q_{3} and Q_{4}.

FIGURE 13.5.3
Rail-to-rail BiCMOS inverter.

Propagation Delay

The analysis of the BiCMOS inverter to determine the propagation delay is complicated by operation of the transistors in different modes during the charging and discharging of C_{L}, so that simulation is usually resorted to (Example 13.5.1). Nevertheless, the following conclusions apply: (1) For C_{L} larger than about $1 \mathrm{pF}, \mathrm{BiCMOS}$ is clearly faster than CMOS, even buffered CMOS in which the output transistors are sized to occupy the same chip area as the BJTs. The larger C_{L} the more marked is the speed advantage of BiCMOS. (2) For on-chip loads, which are typically less than 100 fF , CMOS is actually faster because the added junction capacitances of the BJTs at the internal node offset the speed advantage of the BJTs. (3) BiCMOS dissipates more power than CMOS, so that the power-delay product is practically the same for both.

BiCMOS is being continually improved. Operation from $V_{D D}$ of 3 V or less is now possible, and SiGe is used (Section 4.8, Chapter 4) for better performance of the BJTs.

Simulation Example 13.5.1 Static and Dynamic Behavior of BiCMOS Inverter

It is required to simulate the static and dynamic behavior of the BiCMOS inverter.

Simulation

The inverter simulated is that of Figure 13.5.3, with $R_{1}=R_{2}=500 \Omega, C_{L}=2 \mathrm{pF}$, and $V_{D D}=2.5 \mathrm{~V}$. The MOSFET parameters are the same as those of Example 13.1.1, for comparison. The BJT parameters are $I S=1.0 f, \mathrm{BF}=100, \mathrm{BR}=1, \mathrm{TF}=0.2 \mathrm{n}, \mathrm{CJE}=0.5 \mathrm{p}$, $\mathrm{CJC}=0.75 \mathrm{p}, \mathrm{VAF}=100$. The VTC, shown in Figure 13.5.4a, confirms that the logic swing is rail to rail, 0 to 2.5 V . Note that the circuit is not symmetrical because of R_{1}, R_{2}, and the two npn BJTs. The propagation delays are shown in Figure 13.5.4b. $t_{P H L}=3.27 \mathrm{~ns}$ and $t_{P L H}=2.22 \mathrm{~ns}$, compared to 10.54 ns for the CMOS inverter alone. The difference becomes more pronounced for larger C_{L}.

BiCMOS Gates

The logic performed by BiCMOS gates is based on the same PUNs and PDNs as in CMOS gates, with the addition of the BJTs at the output and the discharge resistors across the BEJs

FIGURE 13.5.4
Figure for Example 13.5.1. (a) Voltage transfer characteristic; (b) propagation delays.

FIGURE 13.5.5
NAND2, rail-to-rail BiCMOS gate.
of these transistors in the case of rail-to-rail BiCMOS. For a NAND2 BiCMOS gate, for example, Q_{p} is replaced by two PMOS transistors in parallel and two Q_{n} NMOS transistors in series (Figure 13.5.5). The same remarks concerning sizing apply as for CMOS gates.

Application Window 13.5.1 Low Voltage to High Voltage Level Shifting

It is sometimes required to interface CMOS gates having a low supply voltage to CMOS or BiCMOS gates having a higher supply voltage. The circuit of Figure 13.5.6 can be used for this purpose, where $v_{I L}$ is the input from the circuit having a low-voltage supply $V_{D D L}$ and v_{OH} is the output of the circuit having a high-voltage supply $V_{D D H}$, which also supplies the two inverters. When $v_{I L}=0, Q_{n 1}$ is off, $Q_{n 2}$ is on, and $v_{O H}=0$. Conversely, when $v_{I L}=V_{D D L}, Q_{n 1}$ is on, $Q_{n 2}$ is off, and $v_{O H}=V_{D D H}$, as required. The pseudo NMOS inverter is designed to have a threshold of $V_{D D L} / 2$, which requires that (Problem P13.2.27):

$$
\begin{equation*}
\frac{k_{n 1}}{k_{p 1}}=\frac{\left(V_{D D H}-V_{t}\right)\left(V_{D D H}-V_{D D L} / 2\right)-\left(V_{D D H}-V_{D D L} / 2\right)^{2} / 2}{\left(V_{D D L} / 2-V_{t}\right)^{2} / 2} \tag{13.5.1}
\end{equation*}
$$

FIGURE 13.5.6
Figure for Application Window 13.5.1.

where $V_{t}=V_{t n 1}=\bar{V}_{t p 1}$. The absolute values of $k_{n 1}$ and $k_{p 1}$ are chosen so as to minimize the static power dissipation due to $Q_{p 1}$ while maintaining the drive to the CMOS inverter at the required bit rate. A high voltage level to low voltage level shifter is analyzed in Example SE13.4.

13.6 Transistor-Transistor Logic

TTL was for many years the dominant logic family. But with the advent of VLSI, TTL was no match to CMOS, which had some decisive advantages: (1) high packing density, since a MOSFET typically occupies one-tenth of the chip area as a BJT, (2) low power dissipation of the order of nanowatts per gate, and (3) fewer fabrication steps, and hence lower cost. Moreover, the speed of standard TTL is rather slow because of transistor saturation. On the other hand, the output BJT transistors of TTL have a relatively high current-drive capability. To meet the requirements of some applications, TTL has evolved into several versions, some of which are still the preferred choice in some cases. One of these versions is the advanced low-power Schottky TTL, which will be briefly and qualitatively presented in this section, after discussing the basic TTL inverter.

Basic TTL Inverter

The basic, standard TTL inverter is shown in Figure 13.6.1. It is seen that $V_{O L}=0.2 \mathrm{~V}$, that of Q_{3} in saturation. If v_{I} is at this level, then Q_{1} is forward biased. The base of Q_{1} will therefore be at about 0.9 V with respect to ground. The 0.9 V is applied across the BCJ of Q_{1}, in the forward direction, in series with the BEJ of Q_{2}, and the BEJ of Q_{3} in parallel with a $1 \mathrm{k} \Omega$ resistor. This means that BEJs of Q_{2} and Q_{3} are biased to less than the cut-in voltage so that these transistors are cut off, and the collector current of Q_{1} is practically zero. The base current of Q_{1} is $(5-0.9) / 4 \cong 1 \mathrm{~mA}$, which is also the emitter current of Q_{1} sourced by the low input.

With Q_{2} and Q_{3} cut off, the steady state output current is very small, as will be argued shortly, which means that the base and collector currents of Q_{4} are very small, with negligible voltage drops across the $1.6 \mathrm{k} \Omega$ and 130Ω resistors. The collector-to-base voltage of Q_{4} is nearly zero. The BEJ of Q_{4} is just above its cut-in voltage, say 0.6 V . The voltage across D_{2} is also just above its cut-in voltage, say 0.5 V . The high-level output voltage is $v_{\mathrm{OH}} \cong 5-0.6-0.5=3.9 \mathrm{~V}$.

FIGURE 13.6.1
Basic, standard TTL inverter.

If the input suddenly becomes high, the BEJ of Q_{1} is reverse biased, whereas its BCJ remains forward biased. Q_{1} is therefore in the inverse active mode, with $\beta_{R} \cong 0.02$. The base voltage of Q_{1} is $(0.7+2 \times 0.8)=2.3 \mathrm{~V}$, where $V_{B C}$ of Q_{1} is considered to be 0.7 V and $V_{B E}$ of Q_{2} and Q_{3} is 0.8 V , assuming Q_{2} and Q_{3} are in saturation. To check this, $I_{B 1}=(5-2.3) / 4 \cong 0.7 \mathrm{~mA}$, and $I_{B 2}=\left(1+\beta_{R}\right) I_{B 1} \cong I_{B 1}$, since the collector of Q_{1} is now acting as an emitter. $I_{B 2}$ is large enough to saturate Q_{2}, which in turn applies a voltage of about 0.8 V to the base of Q_{3}. The emitter current of Q_{1} is $\beta_{R} I_{B 1} \cong 0.02 \times 0.7 \equiv 14 \mu \mathrm{~A}$ directed into the emitter, which is now acting as a collector.

When Q_{2} is saturated, with Q_{3} base at $0.8 \mathrm{~V}, Q_{2}$ collector is at about $0.8+0.2=1 \mathrm{~V}$, which is also the base voltage of Q_{4}. The collector of Q_{3} is initially maintained at about 3.9 V by C_{L}, so a reverse bias of about 3 V is applied to D_{2} and the BEJ of Q_{4} is therefore cut off. The current through the $1.6 \mathrm{k} \Omega$ resistor is $(5-1 / 1.6)=2.5 \mathrm{~mA}$. Since Q_{4} is cut off, its base current can be neglected, so that the collector current of Q_{2} is 2.5 mA . With $I_{B 2}=0.7 \mathrm{~mA}$, as determined above, $I_{E 2}$ is 3.2 mA . Thus, $I_{B 3}=3.2-0.8 / 1=2.4 \mathrm{~mA}$. Q_{3} is initially in the active mode, and its collector current starts the discharge of C_{L}, which proceeds rapidly at nearly constant current. Eventually, as C_{L} discharges and the output voltage falls, Q_{3} is saturated.

In the steady state, Q_{2} and Q_{3} are saturated and Q_{4} is cut off. The output voltage drops to the low voltage level of about 0.2 V . The maximum fan-out of a TTL gate is determined by the need to keep Q_{3} saturated and prevent the output from rising significantly above 0.2 V while sinking the current that is sourced by all inputs connected to the low output of the gate.

With $V_{C 3}=V_{O L}=0.2 \mathrm{~V}$ and $V_{B 4}=1 \mathrm{~V}$, this leaves 0.8 V across both D_{2} and the BEJ of Q_{4}, so that D_{2} and Q_{4} will be cut off. D_{2} is included to ensure that Q_{4} is cut off in the steady state. If D_{2} is omitted, Q_{4} will conduct. This would increase power dissipation in Q_{3} and reduce the maximum fan-out by increasing the collector current of Q_{3}, without serving any useful purpose.

When v_{I} goes low, Q_{1} base voltage instantly becomes $0.2+0.7=0.9 \mathrm{~V}$, and its collector-to-base voltage becomes $0.8+0.8-0.9=0.7 \mathrm{~V}$, because the base-emitter voltages of Q_{2} and Q_{3} remain at 0.8 V while the charge stored in the base is removed. Q_{1} is now in the forward active mode and its collector current is a reverse base current of Q_{2}, which rapidly removes the charge stored in Q_{2} base. The $1 \mathrm{k} \Omega$ resistor from base of Q_{3} to ground helps to reduce the turn-off time of this transistor. After Q_{2} turns off, the collector current of Q_{1} becomes very small.

When Q_{2} and Q_{3} are cut off, the output voltage is maintained momentarily at 0.2 V by C_{L}. It can be readily shown that Q_{4} will go into saturation. Assuming that it does, $I_{B 4}=(5-0.8-0.7-0.2) / 1.6 \cong 2 \mathrm{~mA}$, whereas $I_{C 4}=(5-0.2-0.7-0.2) / 0.13 \cong 30 \mathrm{~mA}$. Hence as long as its β_{F} exceeds $30 / 2=15, Q_{4}$ will be in saturation, as assumed. While Q_{4} is in saturation, C_{L} rapidly charges toward $V_{C C}$. As the output voltage increases, the current in Q_{4} decreases, and Q_{4} comes out of saturation. In the steady state, the current of Q_{4} is small, as assumed earlier, since Q_{4} only supplies the $14 \mu \mathrm{~A}$ currents of the TTL gate inputs connected to the high output.

Using the combination of the 130Ω resistor, Q_{4}, and D_{2} has two advantages: (1) When the output is low, Q_{4} and D_{2} do not conduct and do not add to the current that Q_{3} is sinking. This current equals the current that the input of a TTL gate sources, which is approximately $(5-0.8) / 4 \cong 1 \mathrm{~mA}$, multiplied by the number of gates connected to the output. (2) If a resistor is used in place of the $D_{2}-Q_{4}-130 \Omega$ resistor combination, the value of this resistor must be at least a few $\mathrm{k} \Omega$ in order to keep the additional current through Q_{3} at a reasonable value. With such a resistance, the charging time of C_{L} is considerably increased. Q_{4} acts as an emitter follower and provides active pull-up at the gate output, which decreases the charging time of C_{L} and hence $t_{P L H}$. Q_{3} provides active pull-down. The rapid charging and discharging of C_{L} plus the rapid removal of the stored charge in the bases of Q_{2} and Q_{3} improve the speed of response. Heavy saturation of the transistors is avoided by using Schottky transistors, as discussed later. The output circuit of the TTL gate of Figure 13.6.1 is referred to as a totem-pole output.

As discussed earlier, the 130Ω resistor limits the current in the output circuit when Q_{4} turns on or in the event of accidentally short-circuiting the output when high. Even in the absence of C_{L}, Q_{4} turns on slightly before Q_{3} turns off, because of the storage delay of Q_{3}. In the absence of the 130Ω resistor, there will be a short interval during which a lowresistance path exists between $V_{C C}$ and ground. The 130Ω resistor limits the current during the low-to-high transition. Even then, the current pulses are undesirable because they generate noise in the system and cause dynamic power dissipation that increases with frequency. Since the $V_{C C}$ supply inevitably has some source impedance, the pulses result in negative-going voltage spikes in the supply line. These are transmitted to other circuits connected to the same supply and may cause false switching elsewhere. The voltage spikes are minimized by connecting by-pass capacitors at several locations between $V_{C C}$ and ground. The capacitors are large enough to be able to supply the current spikes with only a small change in capacitor voltage.

Transistor Q_{2} acts as a phase-splitter that drives Q_{3} and Q_{4} in antiphase. An antiringing diode D_{1} is used to damp down oscillations, or ringing, that can occur at high frequencies due to the inductance of the interconnect (Section 12.8, Chapter 12). The oscillations can swing the input voltage positively to more than $v_{I H}$ or negatively to less than zero. The positive swing is harmless because it will only increase the reverse-bias of the BEJ of Q_{1}, the reverse current being limited by the $4 \mathrm{k} \Omega$ resistor. The negative swing, however, can forward bias the $p n$ junction isolating Q_{1} collector from the substrate, which can cause malfunctioning or even damage to the IC. The diode limits the negative excursion to about -0.7 V .

It may be noted that TTL allows wired-AND logic, as discussed in connection with Figure 13.2.4, by having open collector outputs in which the output consists of Q_{3} alone, with its collector terminal brought out for connection to a passive pull-up load resistance R_{L} between this terminal and $V_{D D}$, as in Figure 13.6.2. If $O_{1}, O_{2}, \ldots, O_{n}$ are the outputs of the individual gates, O goes low if any of the outputs of the individual gates goes low. The logic performed is $\bar{O}=\bar{O}_{1}+\bar{O}_{2}+\cdots+\bar{O}_{n}$, or $O=O_{1} O_{2} \ldots O_{n}$.

FIGURE 13.6.2
TTL wired-AND logic.

Exercise 13.6.1

Based on the currents and voltages calculated above for the basic TTL inverter, and assuming a fan-out of 8, determine the dc power dissipation when the output is: (a) high; (b) low.

Answers: (a) 5.7 mW ; (b) 17.2 mW .

Advanced Low-Power Schottky TTL

In advanced low-power Schottky (ALS) TTL, heavy saturation of transistors is avoided by paralleling the BCJ with a Schottky diode (Section 3.6, Chapter 3). The low forward voltage of about 0.3 V for a silicon-platinum silicide Schottky diode limits the forward voltage of the BCJ. Moreover, since this diode is majority-carrier operated, it has a fast turnoff.

Figure 13.6.3 shows a NAND2 ALS TTL gate that, apart from using Schottky transistors where saturation occurs, has several important features. pnp emitter followers at the input reduce the input current for low inputs. Q_{2} is an $n p n$ emitter follower whose $V_{B E}$

FIGURE 13.6.3
NAND2 ALS TTL gate.
compensates for the $V_{E B}$ of the pnp transistors, which increases $V_{I L}$ and $V_{I H}$. This, in turn, increases NM_{L} and brings it closer to $\mathrm{NM}_{\mathrm{H}} \cdot Q_{2}$ also provides a higher current drive to the phase splitter transistor Q_{3}. Diodes D_{3} and D_{4} remove base charge from Q_{3} when v_{I} goes low and Q_{3} is turned off. Q_{5} provides emitter follower drive to Q_{6}, as does Q_{3} to Q_{7}.
Q_{4} together with the 2.8 and $5.6 \mathrm{k} \Omega$ resistors improves the static and dynamic performance. Compared to a resistor between the base and emitter of Q_{7}, the conduction of Q_{3} is delayed until $V_{B E}$ of Q_{7} exceeds the cut-in voltage, which makes the VTC more square, thereby further increasing $V_{I L}$ and NM_{L}. Q_{4} speeds up the turn-on of Q_{7} by initially being off, so that the current of Q_{3} flows into the base of Q_{7} and is not partly diverted through a resistor between the base and emitter of $Q_{7} . Q_{4}$ also speeds up the turnoff of Q_{7} by being initially in the active mode, its collector current rapidly removing the stored charge of Q_{7}. The $5.6 \mathrm{k} \Omega$ resistor prevents $v_{B E}$ of Q_{7} from being clamped at $v_{C E}$ of Q_{4}.

Transistors Q_{5} and Q_{6} constitute a Darlington pair which increases the current gain, and hence the current sourcing capability of Q_{6}, thereby reducing $t_{\text {PLH }}$. Q_{5} prevents saturation of Q_{6}, so that this transistor need not be Schottky clamped. Q_{5} also obviates the need for a diode in series with Q_{6} so as to prevent its conduction when the output is low. Diode D_{5} speeds up the discharge of C_{L} and improves $t_{P H L}$. Antiringing Schottky diodes, which function as described for the standard TTL gate, are added at the input and output.

The resistors are scaled to reduce power dissipation, and the transistors are reduced in size and are isolated using $\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$ rather than a $p n$ junction, which decreases parasitic capacitances. Typically, $P_{D C}=1 \mathrm{~mW}$ for an ALP TTL gate and $t_{p}=4 \mathrm{~ns}$ for $C_{L}=15 \mathrm{pF}$.

13.7 Emitter-Coupled Logic

ECL is the fastest logic family in silicon, surpassed in speed only by GaAs circuits. ECL gates can have an off-gate propagation delay of less than 25 ps , comparable to the on-gate delay of CMOS, and a power-delay product of less than 100 fJ . Even faster rates can be achieved by using heterojunction bipolar transistors in ECL. The main application of ECL at present is in high-speed interchip and intermodule links in massively parallel architectures and in some critical digital communications applications that require high off-chip bit rates. We will discuss in this section the basic operation of ECL before considering in more detail one of the fully compensated versions, the ECL 100k.

Basic Circuit

ECL is based on the BJT differential pair considered in Section 10.1, Chapter 10, where it was shown that current can be diverted from one transistor to another by applying a small differential voltage of about $8 V_{T}$ (Figure 10.1.4, Chapter 10). The input v_{I} is applied to one transistor, while the input of the other transistor is held at a fixed voltage $V_{\text {REF }}$ (Figure 13.7.1). The high and low levels of v_{I} are centered around $V_{\text {REF }}$ and differ by less than 1 V .

When v_{I} is low, Q_{1} is off and $I_{E E}$ flows through Q_{R}, so that $v_{C 1}=V_{C C}$ and $v_{C 2}=V_{C C}-$ $R_{C} I_{E E}$. When v_{I} is high, Q_{1} is on, Q_{R} is off, and $I_{E E}$ flows through Q_{1}, so that $v_{C 1}=$ $V_{C C}-R_{C} I_{E E}$ and $v_{C 2}=V_{C C}$. The following should be noted about this basic circuit:

1. In the two states, one transistor is off and the other transistor is in the active region. The avoidance of saturation and the relatively small logic swing result in very fast switching.

FIGURE 13.7.1
Basic ECL gate.
2. $v_{\mathrm{C} 1}$ and $v_{\mathrm{C} 2}$ switch in opposite directions, so that complementary outputs are available simultaneously. This simplifies logic design and obviates the need for an additional inverter.
3. The high and low outputs are $V_{C C}$ and $V_{C C}-R_{C} I_{E E}$. They can be made independent of variations of $V_{C C}$, even transiently, by grounding the upper rail, that is making $V_{C C}=0$.
4. The current through the upper, grounded rail is constant at $I_{E E E}$. This, coupled with the rejection of common signals, significantly improves noise performance.
5. With $V_{C C}=0$, all voltages are negative with respect to ground. To make the output voltage levels compatible with the input voltage levels, each of the outputs is taken through an emitter follower, which, in addition, provides a high current-drive capability at low output resistance.
6. The ECL gate is affected by temperature, mainly because of the variation of $V_{B E}$ by about -1.5 to $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Hence, measures have to be taken to ensure that the output voltage levels remain centered around $V_{\text {REF }}$ so as not to adversely affect the noise margins.

ECL 100k

The ECL 100k family is an improved ECL version. Its lower supply voltage reduces power consumption, and the speed is improved because of smaller parasitic capacitances due to the isolation of transistors using SiO_{2} rather than a $p n$ junction. The basic ECL 100k inverter-buffer shown in Figure 13.7.2 has two separate ground lines, to prevent switching transients on the $V_{C C 1}$ line from affecting the $V_{C C 2}$ line, which does not have switching transients, as noted earlier. Diodes D_{1} and D_{2} in conjunction with the 500Ω resistor improve temperature compensation resulting in a temperature variation of $V_{O L}$ and $V_{O H}$ of less than $0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C} . V_{\text {REF1 }}$ is independent of temperature and supply voltage. $V_{\text {REF2 }}$ is independent of temperature but varies directly with $V_{E E}$ so that $V_{\text {REF2 }}-V_{E E}$ is constant, which makes $I_{E E}$ independent of $V_{E E}$. Thus,

$$
\begin{equation*}
I_{E E}=\frac{V_{\text {REF } 2}-V_{B E A}\left(Q_{E}\right)-V_{E E}}{R_{E}}=\frac{-3.2-0.7+4.5}{300} \equiv 2 \mathrm{~mA} \tag{13.7.1}
\end{equation*}
$$

FIGURE 13.7.2
ECL 100k inverter-buffer.

When v_{I} is low, Q_{1} is off and Q_{R} conducts, its collector voltage going low. The output at the emitter of $Q_{\text {NINV }}$ is $V_{O L}$. From KVL: $0=R I_{2}+V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O L}$, where $V_{B E A}$ is $V_{B E}$ in the active region. This gives:

$$
\begin{equation*}
I_{2}=-\frac{V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O L}}{R} \tag{13.7.2}
\end{equation*}
$$

Since Q_{1} is cut off, $0=2 R I_{1}+V_{D 2}+V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O L}$, so that,

$$
\begin{equation*}
I_{1}=-\frac{V_{D 2}+V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O L}}{2 R} \tag{13.7.3}
\end{equation*}
$$

Neglecting the base current of $Q_{\text {NINV }}, I_{1}+I_{2}=I_{E E}$. Solving for $V_{O L}$,

$$
\begin{equation*}
V_{O L}=-\frac{2 R I_{E E}}{3}-\frac{V_{D 2}}{3}-V_{B E A}\left(Q_{N I N V}\right) \tag{13.7.4}
\end{equation*}
$$

Assuming $V_{D 2}=V_{B E A}\left(Q_{\text {NINV }}\right)=0.7 \mathrm{~V}, V_{O L}$ is nominally -1.6 V .
When v_{I} is high, Q_{1} conducts and Q_{R} is off, its collector voltage going high. The output voltage at the emitter of $Q_{\text {NINV }}$ is $V_{O H}$. As before, $0=R I_{2}+V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O H}$, which gives:

$$
\begin{equation*}
I_{2}=-\frac{V_{B E A}\left(Q_{\mathrm{NINV}}\right)+V_{\mathrm{OH}}}{R} \tag{13.7.5}
\end{equation*}
$$

With Q_{R} cut off and the collector of Q_{1} low, I_{2} flows through D_{1}, so that $2 R I_{2}+V_{D 1}=R I_{1}$. Substituting for I_{2} from Equation 13.7.4,

$$
\begin{equation*}
I_{1}=\frac{-2\left(V_{B E A}\left(Q_{\text {NINV }}\right)+V_{O H}\right)+V_{D 1}}{R} \tag{13.7.6}
\end{equation*}
$$

Neglecting the base current of $Q_{I N V}, I_{1}+I_{2}=I_{E E}$. Solving for $V_{O H}$,

$$
\begin{equation*}
V_{O H}=-\frac{R I_{E E}}{3}+\frac{V_{D 1}}{3}-V_{B E A}\left(Q_{N I N V}\right) \tag{13.7.7}
\end{equation*}
$$

Assuming $V_{D 1}=V_{B E A}\left(Q_{\text {NINV }}\right)=0.7 \mathrm{~V}, V_{\text {OH }}$ is nominally -0.8 V . The logic swing is:

$$
\begin{equation*}
\mathrm{LS}=V_{O H}-V_{O L}=\frac{R I_{E E}}{3}+\frac{2 V_{D}}{3} \tag{13.7.8}
\end{equation*}
$$

Assuming $V_{D 1}=V_{D 2}=0.7 \mathrm{~V}$, LS is nominally 0.8 V .
The average of $V_{O H}$ and $V_{O L}$ is:

$$
\begin{equation*}
\frac{V_{O H}+V_{O L}}{2}=-\frac{R I_{E E}}{2}-V_{B E A}\left(Q_{\mathrm{NINV}}\right) \tag{13.7.9}
\end{equation*}
$$

Using the nominal values of $V_{O L}$ and $V_{O H}, V_{\text {REF } 1}$ is midway between $V_{O H}$ and $V_{O L}$.
As for temperature compensation, it is seen from Equation 13.7.1 that:

$$
\begin{equation*}
\frac{d I_{E E}}{d T}=-\frac{1}{R_{E}} \frac{d V_{B E A}\left(Q_{E}\right)}{d T} \tag{13.7.10}
\end{equation*}
$$

Assume that $V_{E E}$ is temperature compensated. Since $\frac{d V_{B E A}\left(Q_{E}\right)}{d T}<0, I_{E E}$ has a positive temperature coefficient. Substituting in Equations 13.7.4 and 13.7.7,

$$
\begin{align*}
& \frac{d V_{O L}}{d T}=\frac{2 R}{3 R_{E}} \frac{d V_{B E A}\left(Q_{E}\right)}{d T}-\frac{1}{3} \frac{d V_{D 2}}{d T}-\frac{d V_{B E A}\left(Q_{N I N V}\right)}{d T} \tag{13.7.11}\\
& \frac{d V_{O H}}{d T}=\frac{R}{3 R_{E}} \frac{d V_{B E A}\left(Q_{E}\right)}{d T}+\frac{1}{3} \frac{d V_{D 1}}{d T}-\frac{d V_{B E A}\left(Q_{N I N V}\right)}{d T} \tag{13.7.12}
\end{align*}
$$

The variation of the diode forward voltage drop with temperature depends on the emission coefficient η and on the current (Section 3.2, Chapter 3). The terms of opposite signs on the RHS of Equations 13.7.11 and 13.7.12 can be made to nearly cancel one another, giving a magnitude of temperature variation of $V_{O L}$ and $V_{O H}$ of less than $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

The ECL 100k bias driver is illustrated in Figure 13.7.3. $Q_{S H}$ is a shunt regulator that maintains $I_{C S 1}$ through R_{2} constant at a value:

$$
\begin{equation*}
I_{C S 1}=\frac{V_{B E A}\left(Q_{S H}\right)}{R_{2}} \tag{13.7.13}
\end{equation*}
$$

Thus, if $I_{C S 1}$ increases, $V_{B E A}\left(Q_{S H}\right)$ increases, which increases $Q_{S H}$ emitter current and the current through R_{1}, thereby reducing $Q_{S H}$ emitter voltage and restoring $I_{C S 1}$ to its original

FIGURE 13.7.3
ECL 100k bias driver.

value. With $I_{C S 1}$ constant, $V_{B E A}\left(Q_{S 1}\right)$ is maintained constant, so that the currents in $Q_{S 2}$ and $Q_{B 3}$ are also stabilized against variations in $V_{E E}$.

As for temperature compensation, the voltage drop across D_{L} exceeds $V_{B E}\left(Q_{S 2}\right)$, so that,

$$
\begin{equation*}
I_{C B 3}=\frac{V_{D L}-V_{B E A}\left(Q_{S 2}\right)}{R_{E 2}} \tag{13.7.14}
\end{equation*}
$$

neglecting the base current flowing in R_{X}. This resistor is used to compensate for variations in transistor parameters due to the manufacturing process.

Neglecting base currents,

$$
\begin{equation*}
V_{\text {REF1 }}=-R_{B H} I_{C B 3}-V_{B E A}\left(Q_{B 1}\right) \tag{13.7.15}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\text {REF2 }}=V_{E E}+V_{B E A}\left(Q_{S 1}\right)+R I_{C B 3}+V_{B E A}\left(Q_{B 3}\right)-V_{B E A}\left(Q_{B 2}\right) \tag{13.7.16}
\end{equation*}
$$

$I_{C B 3}$ in Equation 13.7.14 is made to have a positive temperature coefficient, so that $R_{B H} I_{C B 3}=R I_{C B 3}$ compensates for the negative temperature coefficient of $V_{B E A}\left(Q_{B 1}\right)$ and $V_{B E A}\left(Q_{B 2}\right)$. This makes $V_{\text {REF1 }}$ and $V_{\text {REF2 }}$ independent of temperature. Moreover, $V_{\text {REF2 }}$ varies directly with $V_{E E}$, so that $I_{E E}$ is independent of $V_{E E}$, as noted earlier (Equation 13.7.1).

For a differential pair, $V_{I L}$ and $V_{I H}$ are considered to be the input voltages when one transistor conducts 1% of $I_{E E}$, the other 99%. From Equation 10.1.4, Chapter 10:

$$
\begin{equation*}
\left.V_{B E}\right|_{Q_{R}}-\left.V_{B E}\right|_{Q_{1}}=V_{T} \ln 99=0.115 \mathrm{~V} \tag{13.7.17}
\end{equation*}
$$

Since $V_{\text {REF } 1}$ is in the middle of the transition region, $V_{I L} \cong-1.2-0.115=-1.315$ and $V_{I H}=-1.2+0.115=-1.085$. It follows that NM_{L} is nominally $-1.315-(-1.6)=0.285 \mathrm{~V}$, and NM_{H} is nominally $-0.8-(-1.085)=0.285 \mathrm{~V}$.

ECL Gates

With complementary outputs available, the ECL inverter of Figure 13.7.2 is an inverterbuffer. OR-NOR gates can be implemented quite simply by paralleling identical transistors at the input, as illustrated in Figure 13.7.4 for an OR2-NOR2 gate, where Q_{1} of Figure 13.7.2 has been replaced by two parallel transistors $Q_{1 A}$ and $Q_{1 B}$, the two inputs A and B being applied to the bases of these transistors. Clearly, if either A or B goes high, the corresponding transistor is turned on and Q_{R} is turned off. Only if both A and B go low with Q_{R} turned on, its collector will go low. The logic implemented is OR at the NINIV output and NOR at the INV output.

AND-NAND functions can be implemented by having a series connection of input transistors rather than a parallel connection, as illustrated in Figure 13.7.5 for an AND2NAND2 gate. However, this introduces some complications. If input B is applied directly to the gate of $Q_{1 B}$, then when A and B are high, $Q_{1 A}$ and $Q_{1 B}$ are turned on, but because their bases are at the same voltage, the collector of $Q_{1 B}$ will be at a negative voltage of $V_{B E}\left(Q_{1 A}\right)$ with respect to its base. In other words, $Q_{1 B}$ will be in saturation. To prevent this, the emitter follower $Q_{I B}$ is used to shift the base voltage of $Q_{1 B}$ negatively by $V_{B E}$. Moreover, it becomes necessary to have two reference transistors, $Q_{R A}$ for $Q_{1 A}$ and $Q_{R B}$ for $Q_{1 B}$, with $V_{\text {REF1B }}$ also shifted negatively by $V_{B E}$ so that it remains centered between the high and low voltage levels applied to the base of $Q_{1 B}$. The number of series stages is limited by $V_{E E}$ and the voltage drop across the current source $I_{E E}$ (Problem P13.3.16). Alternatively, since inverted inputs are available, AND-NAND can be implemented as OR-NOR of the inverted inputs. Thus, $\overline{\bar{A}}+\bar{B}=A B$, and $\bar{A}+\bar{B}=\overline{A B}$.

Since conventional ECL has passive pull-down, wired OR logic is possible by simply tying the NINV or INV outputs of gates together (Section 13.2). In Figure 13.7.6,

FIGURE 13.7.4
Input for OR2-NOR2 ECL gate.

FIGURE 13.7.5
Basic AND2-NAND2 ECL gate.

FIGURE 13.7.6
ECL wired-OR logic.

for example, if one gate has an output $O^{\prime}=A+B$ and the other gate has an output $O^{\prime \prime}=\overline{X+Y}$, then tying these outputs together to a common load resistance gives $O=(A+B)+\overline{X+Y}$.

ECL gate inputs are usually connected internally to $V_{E E}$ through a $50 \mathrm{k} \Omega$ resistor. This means that an unused input that should be permanently low can be left open. The $50 \mathrm{k} \Omega$ resistor will not interfere with high or low active inputs. If the unused input is to be permanently high, it should not be connected to grounded $V_{C C 1}$ or $V_{C C 2}$, because this will saturate the associated transistor and can damage internal circuitry. The gate input is connected to a resistive, or diode-resistor, voltage divider that applies -0.7 to -0.9 V to the input. ECL outputs can be connected to standard transmission lines of 50Ω characteristic impedance (Section 12.8, Chapter 12), in which case the line is terminated at the input of another ECL gate with a 50Ω resistor tied to a negative supply that is usually -2 V (Figure 13.7.7). Outputs not connected to transmission lines are terminated in the same manner, as shown in the figure. The -2 V limits the current through the output emitter follower and reduces the dc power dissipation.

Several modifications of ECL exist. ECL can operate at voltages as low as 3.3 V and with positive voltages instead of negative. Active pull-down can be used to speed up the high-to-low transition at the output. This is desirable, because when the base of the emitterfollower transistor goes low, the emitter voltage is initially held high by the output capacitance, which turns off the transistor. The voltage across this capacitance decreases passively through the resistance connected to the output, which is usually 50Ω, until the emitter voltage of the output transistor drops sufficiently for this transistor to conduct (Problem P13.3.17).

FIGURE 13.7.7
Input and output terminations of ECL gates.

Summary of Main Concepts and Results

- In any logic family, the effect of capacitance at a node is to slow the rate at which the voltage at the node can be switched between the two states, and to dissipate power because of charging and discharging. This capacitance is unavoidable and consists of the output capacitance of the driving gate, the input capacitance of the driven gates, and the capacitance of the wiring involved.
- The propagation delay sets an upper limit to the frequency of operation and determines the maximum fan-out under dynamic conditions.
- CMOS is an almost ideal logic circuit family. It has a rail-to-rail logic swing, practically zero static power dissipation, can be designed to have a threshold of $V_{D D} / 2$ and nearideal noise margins, and can be produced at low cost. Its main limitations are limited drive capability, the need for two transistors for each added gate input, and the current pulses through the voltage supply lines during switching.
- Pseudo NMOS gives a higher packing density compared to conventional CMOS, but has static power dissipation, asymmetrical noise margins, and a relatively large $V_{O L}$.
- Pass-transistor logic can be used to reduce the number of transistors required to implement a given logic function. Unless special measures are taken, or transmission gates used, the output voltage is reduced by the threshold of the pass transistor.
- Dynamic logic reduces to a minimum the number of transistors required to implement a given logic function, with zero static power dissipation. A limitation of dynamic logic is that periodic refreshing by a clock signal is required. The high output is a high-impedance output, except during capacitor charging and discharging, which makes it susceptible to noise. The output is available only during the evaluate phase. Dynamic logic gates cannot be cascaded except through some special circuit arrangements.
- In BiCMOS logic, npn BJTs are used at the output to speed up charging and discharging of relatively large load capacitances. The disadvantage is that the logic swing is reduced by the sum of the cut-in voltages of the BEJs of the output BJTs, unless special measures are taken, which may reduce somewhat the speed advantage.
- In advanced low-power Schottky TTL, heavy saturation of BJTs is avoided by using Schottky diodes. The totem pole output stage allows rapid charging and discharging of load capacitance. Objectionable current spikes occur on switching, which necessitates special precautions in decoupling the power supply lines.
- In ECL, very fast switching is achieved by avoiding saturation and by having a small logic swing. Emitter-followers at the complementary outputs provide highcurrent drive capability and low output resistance. The noise performance is improved by this low output resistance and by having a constant current through the voltage supply during switching. Measures are taken to ensure that the output voltages do not vary with temperature.
- An active PDN and a passive load allow wired AND logic, whereas an active PUN and a passive load allow wired OR logic.

Learning Outcomes

- Articulate the basic operation and principal features of various logic circuit families.

Supplementary Examples and Topics on Website

SE13.1 Minimum Delay for Large Capacitive Loads. Shows that a large capacitive load can be driven with minimum delay by a string of inverters in which transistor widths are successively multiplied by a factor e.

SE13.2 Analysis of Booster Circuit. Analyzes in more detail the booster circuit of Figure 13.3.3.
SE13.3 A Versatile Pass-Transistor Logic Gate. Analyzes the operation of a pass-transistor gate that can implant AND/NAND, OR/NOR, and XOR/XNOR by interchanging the signals and their complements.
SE13.4 A high Voltage to Low Voltage Level Shifter. Discusses the design of an inverter that can be used for shifting from a high voltage level to a low voltage level.

ST13.1 Small-Signal Equivalent Circuit CMOS Inverter. Derives and discusses the smallsignal equivalent circuit of the CMOS inverter.

ST13.2 Input and Output Capacitances of CMOS Inverter. The capacitance is expressed in terms of the capacitances of the individual transistors for the case of an inverter driving another inverter. A method is presented for taking into account the voltage dependence of the depletion capacitance.
ST13.3 Propagation Delay of CMOS Inverter. Presents various methods for determining the propagation delay of a CMOS inverter.
ST13.4 VTC of Pseudo NMOS inverter. Derives the transfer characteristic of the pseudo NMOS inverter and the most important associated quantities for long-channel and shortchannel behavior.

Problems and Exercises

P13.1 CMOS Logic Circuits

P13.1.1 Verify Equation 13.1.5
P13.1.2 Show that when the transistors of a CMOS inverter are not matched, segment BC of the VTC is given by: $v_{O}=v_{I}+\bar{V}_{t p}+\sqrt{\left(V_{D D}-\bar{V}_{t p}-v_{I}\right)^{2}-r\left(v_{I}-V_{t n}\right)^{2}}$, where $r=k_{n} / k_{p}$. Hence deduce that $V_{I L}$ satisfies the equation: $V_{D D}-\bar{V}_{t p}-r V_{t n}+(r-1) V_{I L}-2 \sqrt{\left(V_{D D}-\bar{V}_{t p}-V_{I L}\right)^{2}-r\left(V_{I L}-V_{t n}\right)^{2}}=0$.
P13.1.3 Show that when the transistors of a CMOS inverter are not matched, segment DE of the VTC is given by $v_{O}=v_{I}-V_{t n}-\sqrt{\left(v_{I}-V_{t n}\right)^{2}-\left(V_{D D}-v_{I}-\bar{V}_{t p}\right)^{2} / r}$, where $r=k_{n} / k_{p}$. Hence show that $V_{I H}$ satisfies the equation: $V_{D D}-\bar{V}_{t p}-r V_{t n}+$ $(r-1) V_{I H}-2 r \sqrt{\left(V_{I H}-V_{t n}\right)^{2}-\left(V_{D D}-V_{I H}-\bar{V}_{t p}\right)^{2} / r}=0$.

P13.1.4 Consider a symmetrical CMOS inverter operating from a 3 V supply. The NMOS transistor has $k_{n}^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{n}=4, V_{t n}=0.6 \mathrm{~V}$, and the PMOS transistor has $k_{p}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{p}=9.6$, and $V_{t p}=-0.6 \mathrm{~V}$. Determine: (a) the noise margins; (b) the output resistance when $v_{I}=0$; (c) the output resistance when $v_{I}=V_{D D}$.

P13.1.5 Consider a CMOS inverter operating from a 3 V supply. The NMOS transistor has $k_{n}^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{n}=4, V_{t n}=0.6 \mathrm{~V}$, and the PMOS transistor has $k_{p}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2},(W / L)_{p}=6$, and $V_{t p}=-0.7 \mathrm{~V}$. Calculate: (a) $V_{T H}$, (b) NM_{L}, and (c) NM_{H}. Use the results of Problems P13.1.2 and P13.1.3. Compare them with the results of Problem P13.1.4.
P13.1.6 Consider the symmetrical CMOS inverter of Problem P13.1.4. Using PSpice, plot the VTC for: (a) $\lambda=0.05 \mathrm{~V}^{-1}$, (b) $\lambda=0.1 \mathrm{~V}^{-1}$, and (c) $\lambda=0.2 \mathrm{~V}^{-1}$. Determine the noise margin in each case from the plots using the derivative feature of PSpice Probe.
DP13.1.7 Design a CMOS inverter to operate from a 2.5 V supply, the transistors having $k_{n}^{\prime}=286 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n}=0.45 \mathrm{~V}, k_{p}^{\prime}=117 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t p}=-0.55 \mathrm{~V}, L=0.25 \mu \mathrm{~m}$, and $L=0.25 \mu \mathrm{~m}$, if: (a) $W_{n}=0.5 \mu \mathrm{~m}$, determine W_{p} so that $V_{T H}=1.1 \mathrm{~V}$, (b) $V_{t n}$ varies by $\pm 10 \%$ and $V_{t p}$ varies by $\pm 15 \%$ due to manufacturing tolerances, determine the resulting variation in $V_{T H}$.
P13.1.8 Consider a CMOS inverter having $k_{n}^{\prime}=0.286 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n}=0.5 \mathrm{~V}, k_{p}^{\prime}=0.117 \mathrm{~mA} / \mathrm{V}^{2}$, $V_{t p}=-0.5 \mathrm{~V}, L=0.25 \mu \mathrm{~m}$, and $W_{p}=2.2 \mu \mathrm{~m}$, with $V_{D D}=2.5 \mathrm{~V}$ and $\lambda=0.05 \mathrm{~V}^{-1}$ for both transistors. Use PSpice to plot the VTC for the cases: (a) $k_{n}^{\prime}(W / L)_{n}=3, k_{p}^{\prime}(W / L)_{p}$; (b) $k_{n}^{\prime}(W / L)_{n}=(W / L)_{p}$, as in Example 13.1.1; and (c) $k_{n}^{\prime}(W / L)_{n}=k_{p}^{\prime}(W / L)_{p} / 3$. Compare the thresholds with those calculated from Equation 13.1.1. What is the effect of varying the ratio k_{n} / k_{p} ?
P13.1.9 Consider properly sized NAND2 and NOR2 CMOS gates. Using Equation 13.1.1, determine the threshold in each case when the two inputs of each gate are tied together, assuming $V_{D D}=3 \mathrm{~V}$ and $V_{t n}=\bar{V}_{t p}=0.6 \mathrm{~V}$.
P13.1.10 Consider the NAND2 gate of Figure 12.2.4, Chapter 12. (a) Determine the threshold from a PSpice simulation with input B connected to $V_{D D}$. Use the same transistor parameters of Example 13.1.1, but with proper sizing and $V_{D D}=2.5 \mathrm{~V}$. What are the states of the four transistors? (b) Repeat (a) with input A connected to $V_{D D}$. Note the small difference in threshold.
P13.1.11 Consider the NOR2 gate of Figure 12.2.5, Chapter 12; (a) Determine the threshold from a PSpice simulation with input B grounded. Use the same transistor parameters of Example 13.1.1, but with proper sizing and $V_{D D}=2.5 \mathrm{~V}$. What are the states of the four transistors? (b) Repeat (a) with input A grounded. Note the small difference in threshold.
P13.1.12 Verify Equation 13.1.17.
P13.1.13 Given a symmetrical inverter having $k_{n, p}=1 \mathrm{~mA} / \mathrm{V}^{2}, V_{t}=0.5 \mathrm{~V}, V_{D D}=2.5 \mathrm{~V}, \mathrm{C}_{L}=$ $1 \mathrm{pF}, f=100 \mathrm{MHz}$, and rise and fall times $\tau=1 \mathrm{~ns}$. Compare P_{C} and $P_{S W}$.
P13.1.14 Determine the total area occupied by: (a) a CMOS NAND4, and (b) a CMOS NOR4 gate, assuming: (1) proper sizing so as have the same current-driver capability as an inverter, and (2) that for the inverter, $L=0.5 \mu \mathrm{~m}, W_{n}=2 \mu \mathrm{~m}$, and $W_{p}=4.8 \mu \mathrm{~m}$.
P13.1.15 Consider two implementations of an AND4 CMOS gate: (a) a NAND4 gate followed by an inverter; (b) two NAND2 gates whose outputs are connected to a NOR2 gate. Compare the areas in the two cases, using the result of P13.1.14, and compare the propagation delays.
P13.1.16 Consider two implementations of an OR4 CMOS gate: (a) a NOR4 gate followed by an inverter; (b) two NOR2 gates whose outputs are connected to a NAND2 gate. Compare the areas in the two cases, using the result of P13.1.14, and compare the propagation delays.

P13.1.17 The transistor Q_{n} of a CMOS inverter has $k_{n}=0.28 \mathrm{~mA} / \mathrm{V}^{2}, V_{t n 0}=0.6 \mathrm{~V}$, with $V_{D D}=3 \mathrm{~V}$, and $C_{L}=1 \mathrm{pf}$. If the input changes from 0 to 3 V , determine the time it takes the output to fall from the 90% level, that is 2.7 V , to the 10% level.
P13.1.18 (a) Consider a NAND3 gate in which the transistors are matched and properly sized to have the same current-drive capability as the inverter. Let $t_{P L H}$ and $t_{P H L}$ denote the propagation delays of the gate when its output is dominated by a fixed load capacitance. How do $t_{p L H}$ and $t_{p H L}$ compare with those of a gate that is not sized? (b) Repeat (a) for a NOR3 gate.
P13.1.19 Let the symmetrical inverter of Example 13.1.1 have $L_{n}=L_{p}=0.25 \mu \mathrm{~m}, W_{n}=0.9 \mu \mathrm{~m}$, $W_{p}=2.2 \mu \mathrm{~m}, C_{o x}^{*}=10 \mathrm{fF} / \mu \mathrm{m}^{2}, C_{o l}=0.8 \mathrm{fF} / \mu \mathrm{m}$ of gate width, and an effective drainsubstrate capacitance of $2.0 \mathrm{fF} / \mu \mathrm{m}$ of gate width. Determine for both states of the inverter: (a) the input capacitance, and (b) the output capacitance. Refer to Section ST13.2.
P13.1.20 If one inverter whose parameters are as in Problem P13.1.19 drives another symmetrical inverter having five times the area, determine the propagation delay, assuming $k_{n}=0.286 \mathrm{~mA} / \mathrm{V}^{2}, V_{D D}=2.5 \mathrm{~V}$, and $V_{\text {tnp }}=0.5 \mathrm{~V}$.
DP13.1.21 A manufacturing process gives the following transistor parameters: $L=0.5 \mu \mathrm{~m}$, for both NMOS and PMOS transistors, $k_{n}^{\prime}=240 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{n}^{\prime}=120 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{t n} 0.6 \mathrm{~V}$, and $V_{t p}=-0.8 \mathrm{~V}$. The inverter is to operate with $V_{D D}=3 \mathrm{~V}$. It is required to determine the smallest W_{n} and W_{p} so as to satisfy the following constraints: (1) $t_{P H L}$ and $t_{P L H}$ are less than 0.2 ns for $C_{L}=0.25 \mathrm{pF}$ and (2) $V_{T H}=1.5 \mathrm{~V}$. (Hint: use Equations ST13.3.3, ST13.3.4, Section ST13.3, and Equation 13.1.1.)
P13.1.22 Figure P13.1.22 illustrates a tristate inverter where the control signal C switches the inverter in or out of the tristate. Describe the operation of the circuit and indicate how the transistors should be sized with respect to a standard inverter.
DP13.1.23 It is required to implement the coincidence function $Y=A B+\bar{A} \bar{B}$ in CMOS. (a) Derive the PUN directly and a PDN that is the dual circuit; (b) Derive the PDN directly and a PUN that is the dual circuit;
DP13.1.24 Implement a three-bit odd-parity checker (Figure 12.2.3, Chapter 12) in CMOS.

FIGURE P13.1.22

P13.2 Other MOS Logic Circuits

P13.2.1 Verify Equations 13.2.9 and 13.2.10 using average charging and discharging currents and assuming $V_{t}=0.2 V_{D D}$.
P13.2.2 Plot NM_{H} and NM_{L} of the pseudo-NMOS inverter as a function of r and determine r for equal noise margins, assuming $V_{D D}=2.5 \mathrm{~V}$ and $V_{t p n}=0.5 \mathrm{~V}$. Determine r for which $\mathrm{NM}_{\mathrm{H}}=0$ and r for which NM_{L} is maximum. Note that these values are independent of $V_{D D}$ and $V_{t p}$.
P13.2.3 Given the inverter of Figure P13.2.3 consisting of an NMOS transistor Q_{n} and a resistor R_{L}. Assume that the current $V_{D D} / R_{L}$ is in the triode region of Q_{n}, that $V_{O L}<V_{t n}$, and that long-channel relations apply. Determine $V_{O H}, V_{O L}, V_{I L}, V_{I H}$, and $V_{T H}$.

FIGURE P13.2.3

FIGURE P13.2.4

P13.2.4 Sketch the VTC of the inverter shown in Figure P13.2.4 assuming that the saturation current of $Q_{n d}$ is nearly three times that of $Q_{n l}$.
DP13.2.5 Design a pseudo-NMOS inverter to operate from a 3 V supply with $V_{O L}=0.15 \mathrm{~V}$ using transistors that have $V_{t p n}=0.6 \mathrm{~V}, k_{n}^{\prime}=0.286 \mathrm{~mA} / \mathrm{V}^{2},(W / L)_{n}=0.9 \mu \mathrm{~m} /$ $0.25 \mu \mathrm{~m}, k_{p}^{\prime}=0.117 \mathrm{~mA} / \mathrm{V}^{2}$. Determine $W_{p}, \mathrm{NM}_{\mathrm{L}}, \mathrm{NM}_{\mathrm{H}}$, $t_{P L H}$ and $t_{P H L}$, assuming $C_{L}=50 \mathrm{fF}$.
DP13.2.6 Redesign the pseudo-NMOS inverter of Problem DP13.2.5 to have maximum $\mathrm{NM}_{\mathrm{L}}(r=2.102)$. Determine $W_{p}, \mathrm{NM}_{\mathrm{L}}, \mathrm{NM}_{\mathrm{H}}$, and $t_{\text {PHL }}$.
DP13.2.7 Redesign the pseudo-NMOS inverter of Problem DP13.2.5 to have $t_{P L H}=t_{P H L}(r=1.46)$. Determine W_{p}, $\mathrm{NM}_{\mathrm{L}}, \mathrm{NM}_{\mathrm{H}}$, and t_{P}.
P13.2.8 Following the reasoning of Section ST13.2, determine the input and output capacitances of the pseudo-NMOS inverter in terms of the capacitances of the NMOS and PMOS transistors in both states.
DP13.2.9 Implement the coincidence function of Problem P13.1.23 in pseudo NMOS. Show that the two branches of the PDN can be considered to be wire-ANDed together.
P13.2.10 What is the state of the output if the gate is: (a) grounded in Figure 13.3.1 or Figure 13.3.2? (b) connected to $V_{D D}$ in Figure 13.3.4?

P13.2.11 Determine v_{C} in Figure P13.2.11a and b when $v_{I}=V_{D D}$.

FIGURE P13.2.11

P13.2.12 Redraw the CMOS NOR2 gate as in Figure P13.2.12 and interpret its behavior in terms of pass-transistor logic but with $V_{D D}$ applied to the input of the gate, and the external inputs A and B applied to the transistor gates. What happens if the NMOS transistors are omitted?

P13.2.13 By interchanging the PMOS and NMOS transistors in Figure P13.2.12, as well as $V_{D D}$ and ground, interpret the CMOS NAND2 gate in terms of pass-transistor logic.
P13.2.14 Assume that a $C K$ signal is applied to the gate of Q_{p} in the pass-transistor circuit of Figure P13.2.14. Let $V_{\text {tn } 0}=0.5 \mathrm{~V}, \gamma=0.5 \quad \mathrm{~V}^{1 / 2}$, and $\phi_{f}=0.3 \mathrm{~V}$, with $V_{D D}=2.5 \mathrm{~V}$. Determine: (a) the final value of v_{O} with $C K=2.5 \mathrm{~V}$; (b) v_{O} when CK goes low, assuming that $C_{x}=0.08 \mathrm{fF}$ and $C_{O}=0.25 \mathrm{fF}$ in Figure P13.2.14. This

FIGURE P13.2.14 effect is referred to as clock feedthrough. What are C_{x} and C_{O} due to?
P13.2.15 Bearing in mind that during a low-to-high transition (Figure 13.3.1) the pass transistor is in saturation, and that during the high-to-low transition (Figure 13.3.2) the pass transistor is in the triode region, what are the input and output capacitances in terms of transistor capacitances?
P13.2.16 Consider the dynamic logic NAND2 gate of Figure 13.4.3, with $C_{L}=15 \mathrm{fF}$ and $C_{X}=5$ fF and the output voltage to be 3 V at the end of the precharge phase. Assume that when CK goes high, A goes high, B is low, and C_{X} is fully discharged. Determine the change in the output voltage if Q_{A} has $V_{t n 0}=0.6 \mathrm{~V}, \gamma=0.5 \mathrm{~V}^{1 / 2}$, and $\phi_{f}=0.3 \mathrm{~V}$.
P13.2.17 Show that if a standard CMOS inverter is added at the output O of the dynamic logic gate of Figure 13.4.1, a form of dynamic logic results that is cascadable. Use an inverter for the PDN for verifying cascadability.
P13.2.18 Show that the reduction in capacitor voltage due to charge sharing can be overcome in the following ways: (1) by adding another precharge transistor to precharge an internal node, such as that at which C_{x} appears in Figure 13.4.3; what can be an added advantage of this scheme? (2) in the manner of Figure 13.3.3, by using a PMOS transistor having its gate connected to the output of the standard CMOS inverter that is added for cascadability (P13.2.17).
P13.2.19 Verify the operation of the dynamic logic, positive-edge triggered D-FF of Figure P13.2.19.

FIGURE P13.2.19
P13.2.20 It is required to estimate $t_{P L H}$ and $t_{P H L}$ of the NAND2 gate of Figure 13.4.3 using the average current approximation. Assume that $Q_{P R}$ has $k_{p}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\bar{V}_{t p}=0.6 \mathrm{~V}$, with $V_{D D}=3 \mathrm{~V}$, such that $C_{L}=20 \mathrm{fF}$ and is initially discharged, and that the three NMOS transistors are identical, each having $k_{n}=150 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{t n}=0.5 \mathrm{~V}$.

FIGURE P13.2.21

P13.2.21 Consider that $C_{L}=50 \mathrm{fF}$ in Figure P13.2.21 is initially charged to $V_{D D}=3 \mathrm{~V}$ and that $i_{\text {leak }}$ is such that C_{L} discharges exponentially with a time constant of $15 \mu \mathrm{~s}$. Determine the time it takes v_{O} to drop by 0.5 V , assuming that v_{I} equals: (a) 0 ; (b) $V_{D D} / 2$. Repeat the preceding calculations with v_{O} initially zero and determine the time it takes v_{O} to become 0.5 V , assuming v_{I} equals: (c) $V_{D D}$ and (d) $V_{D D} / 2$. If the precharge interval is 20% of the evaluate interval, what is the minimum refresh frequency? What will be the precharge interval? Note that making the final voltage for charging or discharging the load capacitance $v_{D D} / 2$ is a common technique for reducing leakage current in DRAMs, where the voltage of the bit lines is made $V_{D D} / 2$.
P13.2.22 Show that if the basic BiCMOS inverter of Figure 13.5.1 is unloaded, $i_{D n} / i_{D p}=\left(1+\beta_{1}\right) /\left(1+\beta_{2}\right)$.
P13.2.23 Consider the basic BiCMOS inverter of Figure 13.5.1 with $V_{D D}=5 \mathrm{~V}, V_{t n}=\bar{V}_{t p}=1 \mathrm{~V}$, $k_{n, p}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\text {BEon }}=0.6 \mathrm{~V}, V_{\text {BEA }}=0.7 \mathrm{~V}, \beta=100, C_{L}=2 \mathrm{pF}$, and $C_{\text {int }}=10 \mathrm{fF}$, where $C_{\text {int }}$ is between base and ground of each BJT, and consists of the input capacitance of the BJT and the output capacitance of the corresponding MOSFET (Figure P13.2.23). Determine $t_{P L H}$, taking into account the initial charging of $C_{i n t}$ to $V_{\text {BEon }}$, using average charging currents and assuming that C_{L} is initially fully discharged and that $v_{I}=V_{\text {BEon }}$.

FIGURE P13.2.23

P13.2.24 Determine $t_{P H L}$ for the BiCMOS inverter of Figure P13.2.24, assuming that $v_{I}=V_{D D}-$ $V_{B E o n}=4.4 \mathrm{~V}$ with v_{O} initially at 4.4 V .

FIGURE P13.2.24

P13.2.25 Repeat P13.2.23 assuming $R_{1}=1 \mathrm{k} \Omega$ in Figure 13.5.3 and neglecting $C_{\text {int }}$.
P13.2.26 Repeat P13.2.23 assuming $R_{2}=1 \mathrm{k} \Omega$ in Figure 13.5.3 and neglecting $C_{\text {int }}$.
P13.2.27 Verify Equation 13.5.1.

P13.3 TTL/ECL Logic Circuits

P13.3.1 Calculate the average power dissipation in the standard TTL gate of Figure 13.6.1 using the figures of Section 13.6, assuming a fan-out of 10.
P13.3.2 Calculate the maximum fan-out of the standard TTL gate of Figure 13.6.1 using the figures of Section 13.6 and assuming: (a) that β_{F} of Q_{3} is 70 , and (b) to ensure that Q_{3} remains well in saturation, thereby keeping $V_{O L}$ sufficiently low, $I_{C}\left(Q_{3}\right)$ should not exceed $0.5 \beta_{F}$ times its base current, which allows Q_{3} to sink a current equal to $I_{C}\left(Q_{3}\right)$.
P13.3.3 Figure P13.3.3 shows a standard TTL inverter that is modified to a tristate inverter. When the control input v_{C} is high, the inverter functions in a normal manner having input v_{I} and inverted output v_{O}. When v_{C} is low, Q_{3} and Q_{4} are turned off, the output impedance going high. Verify circuit operation, considering that Q_{1} is a dual-emitter BJT.

FIGURE P13.3.3
P13.3.4 Consider the circuit of Figure P 13.3.3 with v_{I} low and Q_{7} conducting. At what v_{I} will Q_{7} be cut off, assuming that the voltage across all forward biased junctions of D_{5}, Q_{6}, and D_{2} is 0.7 V ?
P13.3.5 Consider a Schottky transistor whose emitter is grounded and whose base and collector are connected to 5 V supply through 10 and $1 \mathrm{k} \Omega$ resistors, respectively. Assume that $V_{B E}=0.75 \mathrm{~V}$, the voltage across the Schottky diode is 0.35 V , and β_{F} of the transistor proper is 40 . Determine the currents through the Schottky diode, and in the base and collector of the transistor proper.
P13.3.6 Figure P13.3.6 illustrates a simpler form of Schottky TTL gate, known as STTL. Determine $V_{O L}, V_{O H}, V_{I L}, V_{I H}$, and the average power dissipation, assuming that transistors begin to conduct at $v_{B E}=0.7 \mathrm{~V}$, are fully conducting at $v_{B E}=0.8 \mathrm{~V}$, that the forward voltage drop across a Schottky diode is 0.5 V , and that the high output current is negligibly small. Consider $V_{I L}$ to occur when Q_{3} and Q_{7} begin to conduct and $V_{I H}$ to occur when they are fully conducting.

FIGURE P13.3.6

P13.3.7 Figure P13.3.7 illustrates a basic 10k ECL gate. Determine: (a) $V_{O L}$ and $V_{O H}$ assuming $V_{B E A}$ of the differential pair is $0.75 \mathrm{~V}, \beta_{F}$ of the transistors is 100 , and $V_{B E}\left(Q_{\text {NINV }}\right)=0.75$ V at $I_{E N I N V}=1 \mathrm{~mA} ;(\mathrm{b}) \mathrm{NM}_{\mathrm{L}}$ and NM_{H} assuming that at $V_{I L}$ and $V_{I H}$ the corresponding transistor conducts 1% of the current $I_{E E}$ in $R_{E E}$.

FIGURE P13.3.7
P13.3.8 Determine the average DC power dissipation in the gate of Figure P13.3.7, as the average of the power dissipation when $v_{I}=V_{O L}$ and $v_{I}=V_{O H}$.
P13.3.9 Determine the average power dissipation of the ECL 100k gate of Figure 13.7.2, using the values derived in Section 13.7, assuming each output to be connected by a 50Ω resistor to a -2 V supply.
P13.3.10 Consider the noninverting output of the ECL 100k gate of Figure 13.7.2 to be high at -0.8 V , with a 10 pF capacitance between output and ground, and a 50Ω resistor connected to a -2 V supply. When v_{I} goes low, $Q_{\text {NINV }}$ cuts off and the capacitor voltage drops to $V_{O L}=-1.6 \mathrm{~V}$. $Q_{\text {NINV }}$ begins to conduct when its base-emitter voltage surpasses the cut-in voltage of the BEJ, which is about 0.5 V compared to the 0.7 V
assumed for conduction, when the output is $V_{O L}$. Determine the time it takes the output voltage to drop to -1.6 V assuming that $Q_{\text {NINV }}$ does not conduct till then.
P13.3.11 Determine for the ECL gate of Figure P13.3.7: (a) the input currents for a low or high input, assuming the input is connected to $V_{E E}$ by a $50 \mathrm{k} \Omega$ resistor and the transistor $\boldsymbol{\beta}_{F}$ is 100 ; (b) the maximum fan-out, assuming that a change of 0.1 V is allowed in $V_{O H}$ and $V_{O L}$.
P13.3.12 Perform a PSpice simulation of the ECL gate of Figure P13.3.7 using Q2N3904 transistors and omitting, for simplicity, the emitter followers at the outputs. Interpret the shapes of the inverting and noninverting outputs.
P13.3.13 Figure P13.3.13 shows the circuit used to derive $V_{\text {REF }}$ for the ECL gate of Figure P13.3.7. Verify that $V_{\text {REF }}=-1.32 \mathrm{~V}$, neglecting the base current and assuming 0.75 voltage drops for all forward-biased $p n$ junctions.
P13.3.14 Consider the voltage reference circuit of Figure P13.3.13. Neglecting the base current and assuming that all forward-biased $p n$ junctions have a temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, show that $d V_{\text {REF }} / d T=$ $+1.4 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
P13.3.15 Consider the ECL gate of Figure P13.3.7. Neglecting base currents and assuming that all forward-biased $p n$ junctions have a temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, show that (a) $\frac{d V_{O H}}{d T} \cong 2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; (b) $\frac{d V_{O L}}{d T}=-\frac{R_{C 1}}{R_{E E}}$ $\left(\frac{d V_{O H}}{\mathrm{~d} T}-\frac{d V_{B E A}\left(Q_{1}\right)}{d T}\right)-\frac{d V_{B E A}\left(Q_{\text {NINV }}\right)}{d T} \cong 1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, by considering $v_{I}=V_{\mathrm{OH}}$ and the output taken from $Q_{\text {INV }}$.

FIGURE P13.3.13 (c) Verify that the average of $d V_{O H} / d T$ and $d V_{O L} / d T$ nearly equals $d V_{\text {REF }} / d T$ found in Figure P13.3.14.
P13.3.16 Show that the maximum number of stages in a series connection of transistors in an ECL gate, as in Figure 13.7.5, is given by $N_{\max } \leq \frac{-V_{E E}-V_{C S}+V_{O L}}{V_{B E}}+1$, where $V_{C S}$ is the voltage across the current source.
P13.3.17 Figure P13.3.17 shows a basic circuit for active pull-down in an ECL gate, where $V_{\text {REG }}=V_{O L}-V_{B E}$. Explain circuit behavior when v_{I} suddenly changes from low to high. Note that a complementary output is no longer available.

FIGURE P13.3.17

Appendix A: Reference Material

Physical constants

Avogadro's constant $\left(N_{A}\right)$
Boltzmann's constant (k)
Boltzmann's constant $(k /|q|)$
Electron rest mass (m_{0})
Magnitude of electron charge ($|q|$)
Permittivity of free space $\left(\varepsilon_{0}\right)$
Planck's constant (h)
Speed of light in vacuum (c)
$6.02214179(30) \times 10^{23} / \mathrm{mol}$
$1.3806504(24) \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$8.617343(15) \times 10^{-5} \mathrm{eV} / \mathrm{K}$
$9.10938215(45) \times 10^{-31} \mathrm{~kg}$
$1.602176487(40) \times 10^{-19} \mathrm{C}$
$8.854187817 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$6.62606896(33) \times 10^{-34} \mathrm{Js}$
$2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Source: www.physics.nist.gov
Note: Numbers in parentheses denote uncertainty in preceding digits.

Frequently used constants

Thermal voltage (V_{T})
$0.025852 \mathrm{~V}(T=300 \mathrm{~K})$
Permittivity of Si
$11.9 \times \varepsilon_{0}=1.05365 \times 10^{-10} \mathrm{~F} / \mathrm{m}$
(room temperature)
Permittivity of SiO_{2}
$3.9 \times \varepsilon_{0}=3.45313 \times 10^{-11} \mathrm{~F} / \mathrm{m}$
(amorphous, room temperature)

Taylor Series Expansion

A Taylor series expansion of a function $f(x)$ that is infinitely differentiable in the neighborhood of $x=a$ is the power series:

$$
\begin{equation*}
f(x)=f(a)+\frac{f^{(1)}(a)}{1!}(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\ldots \tag{A1}
\end{equation*}
$$

where $f^{(n)}(\mathrm{a})$ is the nth derivative of $f(x)$ at $x=a$,
If $(x-a)$ is small and is denoted by Δx, then terms involving powers of $(x-a)$ that are greater than one can be neglected, so that the expansion reduces to:

$$
\begin{equation*}
\Delta f(x)=\frac{d f(x)}{d x} \Delta x \tag{A2}
\end{equation*}
$$

where $f(x)-f(a)=\Delta f(x)$.
If $f(x, y, z)$ is a function of three variables, Equation A2 becomes:

$$
\begin{equation*}
\Delta f(x, y, z)=\frac{\partial f(x, y, z)}{\partial x} \Delta x+\frac{\partial f(x, y, z)}{\partial y} \Delta y+\frac{\partial f(x, y, z)}{\partial z} \Delta z \tag{A3}
\end{equation*}
$$

Appendix B: Basic PSpice Models

PSpice symbols in Tables B. 1 through B. 3 and in the equations are written with a capital first letter. However, PSpice entries, including those in the PSpice model editor, are case insensitive.

The default value indicated in the tables is that used by PSpice if no value is specified by the user, or in the PSpice model, or in the Property Editor Spreadsheet.

$p n$ Junction Diode

TABLE B. 1

Selected PSpice Diode Parameters

Book Symbol	PSpice Symbol	Description	Default Value	Units
I_{S}	Is	Saturation Current	10^{-15}	A
R_{S}	Rs	Series resistance	0	Ω
η	N	Emission coefficient	1	-
τ_{T}	Tt	Mean transit time	0	s
$C_{J 0}$	Cjo	Zero-bias capacitance	0	pF
$V_{n p o}$	Vj	Equilibrium junction potential	1	V
m	M	Grading coefficient	0.5	$\mathrm{~F} / \mathrm{m}$
$\mathrm{BV}, V_{Z K}$	Bv	Breakdown voltage	∞	V
$I_{Z K}$	Ibv	Reverse current at BV	-	A

The diode model is based on the following equations (Figure B.1):

$$
\begin{aligned}
v_{D} & =v_{D}^{\prime}+(\mathrm{Rs}) i_{D} \\
i_{D}^{\prime} & =(\mathrm{Is})\left[\exp \left(\frac{v_{D}^{\prime}}{\mathrm{N} V_{T}}\right)-1\right], \text { Equation 1.1.1, Chapter } 1 \\
C_{D} & =\left(\frac{(\mathrm{Tt})}{\mathrm{N} V_{T}}\right) i_{D}^{\prime}+\frac{(\mathrm{Cjo})}{\left(1-\frac{v_{D}^{\prime}}{(\mathrm{V} \mathrm{j})}\right)^{\mathrm{M}}}, \text { where the first term is the diffusion capacitance }
\end{aligned}
$$

(Equation 3.2.15) and the second term is the depletion capacitance (Equation 3.2.13, Chapter 3)

FIGURE B. 1
PSpice $p n$ junction diode model.

$+v_{D}^{\prime} \quad-$

MOSFET

TABLE B. 2
Selected PSpice MOSFET Parameters (Level 1)

Book Symbol	PSpice Symbol	Description	Default Value	Units
L	L	Channel length	100	μ
W	W	Channel width	100	μ
k^{\prime}	Kp	Process transconductance parameter	2×10^{-5}	$\mathrm{~A} / \mathrm{V}^{2}$
$V_{t 0}$	Vto	Threshold with $V_{S B}=0$	0	V
λ	Lambda	Channel-length modulation parameter	0	$\mathrm{~V}^{-1}$
γ	Gamma	Body-effect parameter	0	$\mathrm{~V}^{1 / 2}$
$2 \phi_{F}$	Phi	Surface inversion potential	0.6	V
$C_{g s}$	Cgso	Gate-source capacitance per unit gate width	0	$\mathrm{~F} / \mathrm{m}$
$C_{g d}$	Cgdo	Gate-drain capacitance per unit gate width	0	$\mathrm{~F} / \mathrm{m}$
$C_{g b}$	Cgbo	Gate-body capacitance per unit gate width	0	$\mathrm{~F} / \mathrm{m}$
$C_{b d o}$	Cbdo	Body-drain capacitance per unit gate width	0	$\mathrm{~F} / \mathrm{m}$
$C_{b s o}$	Cbso	Body-source capacitance per unit gate width	0	$\mathrm{~F} / \mathrm{m}$

Level 1 MOSFET model is based on the following equations:
$i_{D}=\frac{(\mathrm{Kp})}{2}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)\left(v_{G S}-\mathrm{Vto}\right)^{2}\left[1+(\right.$ Lambda $\left.) v_{D S}\right]$, (saturation region, Equation 5.3.1,

Chapter 5)

$i_{D}=(\mathrm{Kp})\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left[\left(v_{G S}-\mathrm{Vto}\right) v_{D S}-\frac{v_{D S}^{2}}{2}\right]\left[1+(\mathrm{Lambda}) v_{D S}\right]$, (triode region, Equation 5.3.2,

Chapter 5)

$V_{t}=(\mathrm{Vto})+(\mathrm{Gamma})\left\lfloor\sqrt{(\mathrm{Phi})+\left|V_{S B}\right|}-\sqrt{(\mathrm{Phi})}\right\rfloor,($ Equation 5.3.17, Chapter 5)

BJT

TABLE B. 3
Selected PSpice BJT Parameters

Book Symbol	PSpice Name	Description	Default Value	Units
I_{S}	$\mathrm{I}_{\text {S }}$	Saturation current	10^{-16}	A
β_{F}	Bf	Forward current gain	100	-
β_{R}	Br	Reverse current gain	1	-
n_{e}	Ne	Emission coefficient of BEJ	1	-
n_{c}	Nc	Emission coefficient of BCJ	2	-
V_{A}	Vaf	Forward early voltage	∞	V
	Var	Reverse early voltage	∞	V
r_{B}	Rb	Base series resistance	0	Ω
r_{C}	Rc	Collector series resistance	0	Ω
r_{E}	Re	Emitter series resistance	0	Ω
τ_{F}	Tf	Forward transit time	0	S
τ_{R}	Tr	Reverse transit time	0	s
$C_{j e 0}$	Cje	Zero-bias base-emitter capacitance	0	F
$V_{\text {je0 }}$	Vje	Equilibrium BEJ potential	0.75	V
m_{e}	Mje	Grading coefficient of BEJ	0.5	-
$C_{j c 0}$	Cjc	Zero-bias base-collector capacitance	0	F
$V_{j c 0}$	Vjc	Equilibrium BCJ potential	0.75	V
m_{c}	Mjc	Grading coefficient of BCJ	0.5	-
$C_{j 50}$	Cjs	Zero-bias collector-substrate capacitance	0	F
$V_{j 50}$	Vjs	Equilibrium collector-substrate junction potential	0.75	V
m_{s}	Mjs	Grading coefficient of collector-substrate junction	0.5	-

The basic augmented model for the BJT is based on the EB transport model (Figure 6.3.2, Chapter 6), with I_{S} in Equation 6.3.8, Chapter 6 modified as in Equation 6.3.25, Chapter 6 and including the emission coefficients. The equations for the collector and emitter currents of an $n p n$ transistor become:

$$
\begin{aligned}
& i_{C}=(\mathrm{Is})\left[\exp \left(\frac{v_{B E}}{(\mathrm{Ne}) V_{T}}\right)-\exp \left(\frac{v_{B C}}{(\mathrm{Nc}) V_{T}}\right)\right]\left(1-\frac{v_{B C}}{(\mathrm{Vaf})}\right)-\frac{(\mathrm{Is})}{(\mathrm{Br})}\left[\exp \left(\frac{v_{B C}}{(\mathrm{Nc}) V_{T}}\right)-1\right] \\
& i_{E}=(\mathrm{Is})\left[\exp \left(\frac{v_{B E}}{(\mathrm{Ne}) V_{T}}\right)-\exp \left(\frac{v_{B C}}{(\mathrm{Nc}) V_{T}}\right)\right]\left(1-\frac{v_{B C}}{(\mathrm{Vaf})}\right)+\frac{(\mathrm{Is})}{(\mathrm{Bf})}\left[\exp \left(\frac{v_{B E}}{(\mathrm{Ne}) V_{T}}\right)-1\right]
\end{aligned}
$$

As in the case of the diode, the capacitances are given by:

$$
\begin{aligned}
& C_{B E}=\frac{(\mathrm{Tf})}{(\mathrm{Ne}) V_{T}} \exp \left(\frac{v_{B E}}{(\mathrm{Ne}) V_{T}}\right)+\frac{(\mathrm{Cje})}{\left(1-\frac{v_{B E}}{(\mathrm{Vje})}\right)^{M}} \\
& C_{B C}=\frac{(\mathrm{Tr})}{(\mathrm{Nc}) V_{T}} \exp \left(\frac{v_{B C}}{(\mathrm{Nc}) V_{T}}\right)+\frac{(\mathrm{Cjc})}{\left(1-\frac{v_{B C}}{(\mathrm{Vjc})}\right)^{M}} \\
& C_{C S}=\frac{(\mathrm{Cjs})}{\left(1-\frac{v_{\mathrm{CS}}}{(\mathrm{Vjs})}\right)^{M}}
\end{aligned}
$$

where
$C_{B E}$ is the base-emitter capacitance
$C_{B C}$ is the base-collector capacitance
$C_{C S}$ is the collector-substrate capacitance
The quantities on the RHS are defined in Table B.3.

References and Bibliography

Allen, P.E. and Holberg, D.R., CMOS Analog Circuit Design, 2nd ed., Oxford University Press, New York, 2002.
Arora, N.D., Hauser, G.R., and Roulston, D.J., Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Transactions on Electron Devices, ED-29(2), 292, 1982.
Attia, J.O., PSPICE and MATLAB for Electronics, CRC Press, Boca Raton, FL, 2002.
Ayers, J.E., Digital Integrated Circuits, CRC Press, Boca Raton, FL, 2004.
Baker, R.J., CMOS, 2nd ed., IEEE Press, Wiley-Interscience, Piscataway, NJ, 2005.
Brown, S. and Vranesic, Z., Fundamentals of Digital Logic with Verilog Design, McGraw-Hill, Boston, MA, 2003.
Bult, K. and Wallinga, H., A class of analog CMOS circuits based on the square-law characteristics of a MOS transistor in saturation, IEEE Journal of Solid-State Circuits, 22, 357, 1987.
Campbell, S.A., The Science and Engineering of Microelectronic Fabrication, Oxford University Press, New York, 2001.
Cathley, J.J., 2000 Solved Problems in Electronics, McGraw-Hill, New York, 1990.
Cochrun, B.L. and Grabel, A., A method for the determination of the transfer function of electronic circuits, IEEE Transactions on Circuit Theory, CT-20(1), 16, 1973.
Cui, Z.C., Micro-Nanofabrication, Springer, Berlin, Germany, 2005.
De Man, H.J.J., The influence of heavy doping on the emitter efficiency of a bipolar transistor, IEEE Transactions on Electron Devices, ED-18(10), 833, 1971.
Dimitriev, S., Principles of Semiconductor Devices, Oxford University Press, New York, 2006.
Erickson, R.W. and Maksimović, D., Fundamentals of Power Electronics, 2nd ed., Kluwer Academic Publishers, Norwell, MA, 2001.
Feinberg, B.N., Applied Clinical Engineering, Prentice Hall, Englewood Cliffs, NJ, 1986.
Franco, S., Design with Operational Amplifiers and Analog Integrated Circuits, 3rd ed., McGraw-Hill, Boston, MA, 2002.
Gilbert, B., Current-mode circuits from a translinear viewpoint: A tutorial. In Analog IC Design: The Current-Mode Approach, C. Toumazou, F.J. Lidgey, and D.G. Haigh, eds., Peter Peregrinus, London, U.K., 1990.
Gray, P.G., Hurst, P., Lewis, S.H., and Meyer, R.G., Analysis and Design of Analog Integrated Circuits, 4th ed., John Wiley \& Sons, New York, 2001.
Green, M.A., Intrinsic concentration, effective densities of states, and effective masses in Si , Journal of Applied Physics, 67, 2944, 1990.
Haznedar, H., Digital Microelectronics, The Benjamin/Cummings Publishing Company, Redwood City, CA, 1991.
Herniter, M.E., Schematic Capture with Cadence PSpice, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2003.

Hodges, D.A., Jackson, H.G., and Saleh, R., Analysis and Design of Digital Integrated Circuits, 3rd ed., McGraw-Hill Book Company, Boston, MA, 2004.
Hume-Rothery, W. and Coles, B.R., Atomic Theory for Students of Metallurgy, The Institute of Metals, London, U.K., 1968.
Jaeger, R.C. and Blalock, T.N., Microelectronic Circuit Design, 3rd ed., McGraw-Hill, Boston, MA, 2008.
Johns, D. and Martin, K., Analog Integrated Circuit Design, John Wiley \& Sons, New York, 1997.
Kang, S.M. and Leblebici, Y., CMOS Digital Integrated Circuits, 3rd ed., McGraw-Hill, Boston, MA, 2003.

Kano, K., Semiconductor Devices, Prentice Hall, Upper Saddle River, NJ, 1998.
Kassakian, J.G., Schlecht, M.F., and Verghese, G.C., Principles of Power Electronics, Addison-Wesley, Reading, MA, 1991.

Klaassen, D.B.M., A unified model for device simulation-II. Temperature dependence of carrier mobility and lifetime, Solid-State Electronics, 35(7), 961, 1992.
Kwok, C.Y., Low-voltage peaking complementary current generator, IEEE Journal of Solid-State Electronics, SC-20, 816, 1985.
Levinson, H.L., Principles of Lithography, 2nd ed., Spie Press, Bellingham, WA, 2005.
Millman, J. and Grabel, A., Microelectronics, 2nd ed., McGraw-Hill, New York, 1987.
Misiakos, and Tsamakis, D., Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K, Journal of Applied Physics, 74, 3293, 1993.
Mohan, N., Undeland, T.M., and Robbins, W.P., Power Electronics, 3rd ed., John Wiley \& Sons, New York, 2003.
Muller, R.S., Kamins, T.I., and Chan, M., Device Electronics for Integrated Circuits, 3rd ed., John Wiley \& Sons, New York, 2002.
Neame, D.A., Microelectronics: Circuit Analysis and Design, 3rd ed., McGraw-Hill, New York, 2007.
Park, C.S. and Schaumann, R., A high-frequency linear transconductance element, IEEE Transactions on Circuits and Systems, 33, 1132, 1986.
Paynter, R.T., Introductory Electronic Devices and Circuits, 6th ed., Prentice Hall, Upper Saddle River, NJ, 2002.
Pulfrey, D.L. and Tarr, N.G., Introduction to Microelectronic Devices, Prentice Hall, Englewood Cliffs, NJ, 1989.
Rashid, M.H., Power Electronics, 3rd ed., Prentice Hall, Englewood Cliffs, NJ, 2003.
Research \& Education Association, The Electronics Problem Solver, Research \& Education Association, Piscataway, NJ, 2000.
Rosenstark, S., Feedback Amplifier Principles, Macmillan Publishing Company, New York, 1986.
Roulston, D.J., An Introduction to the Physics of Semiconductor Devices, Oxford University press, New York, 1999.
Sabah, N.H., Electric Circuits and Signals, CRC Press, Boca Raton, FL, 2008.
Säckinger, E. and Guggenbühl, W., A high-swing, high- impedance MOS cascode, IEEE Journal of Solid-State Electronics, 25, 289, 1990.
Schroder, D.K., Carrier lifetimes in silicon, IEEE Transactions on Electron Devices, 44(1), 160, 1997.
Sedra, A.S. and Smith, K.C., Microelectronic Circuits, 5th ed., Oxford University Press, New York, 2004.

Sodagar, A.M., Analysis of Bipolar and CMOS Amplifiers, CRC Press, Boca Raton, FL, 2007.
Steininger, J.M., Understanding wideband MOS transistors, IEEE Transactions on Circuits and Devices, 6(3), 26, 1990.
Suzuki, K. and Smith, B.W., eds., Microlithography, 2nd ed., CRC Press, Boca Raton, FL, 2007.
Sze, S.M., Semiconductor Devices, Physics, and Technology, 2nd ed., John Wiley \& Sons, New York, 2002.
Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, 3rd ed., John Wiley \& Sons, New York, 2007.
Tsividis, Y., Operation and Modeling of the MOS Transistor, 3rd ed., Oxford University Press, New York, 2004.
Webster, J.G., ed., Medical Instrumentation: Application and Design, 3rd ed., John Wiley \& Sons, New York, 1997.
Weste, N.H.E. and Harris, D., CMOS VLSI Design, 3rd ed., Addison-Wesley, Boston, MA, 2005.

Index

A

Accelerated testing process, see Burn-in process Acceptor impurity, 78-79
Access time, 611-612
Active mode, 244
Amplifiers
configurations, 395-398
common-base amplifier, 363
common-collector amplifier, 353-356
common-drain amplifier, 350-353
common-emitter amplifier, 348-350
common-emitter amplifier with emitter resistor, 358-359
common-gate amplifier, 361-363
common-source amplifier, 350, 356-358
comparison, 365,367
equivalent transconductance, 347
n-channel MOSFET transistor, 348
small-signal equivalent circuit, 349, 351-352, 361
small-signal parameters, 346-347
small signal relations, 364-366
definition, 180
feedback amplifier, 301, 302, 304, 305
hypothetical amplifying device, 181-182
ideal amplifiers, 298-300
inequality, 181
operational amplifier, 310-325
unity gain amplifier, 313-314
Analog signals, 588-589
Area defects, 173-174
Aspect ratio, 187
Auger recombination, 96, 97
Avalanche breakdown, 121-122, 201
Avalanche noise, 286

B

Ball grid array (BGA) package, 161
Bandpass filter, 446-447
Base collector junction (BCJ), 242-243
Base emitter junction (BEJ), 242-244
Base metallization, see Metallization

Base transport factor, 245
logic gates
CMOS Gate, 595-596
gate performance, 596-602
types of, 592-595
metallic interconnect
capacitance, 632
distributed models, 633-636
resistance, 632-633
Basic diode circuits, see Diode circuits
Basic op-amp circuits
difference amplifier
basic circuit, 511, 512
common-mode input, 513, 514
signal-flow diagram, 513
instrumentation amplifier (IA)
basic circuit, 514
bridge amplifier, 516
input stage, 515
integrator, 509-511
inverting and noninverting op-amp, 507-509
Bias currents, operational amplifiers, 502-503
Biased pn junction
breakdown
avalanche breakdown, 121-122
doping level, 123
region, 121
temperature effects, 123-124
zener breakdown, 122-123
capacitance, 119-120
charge-current relation, 118
charge distributions and currents
bulk region, 115
diffusion length, 114
under forward bias, 114
injected minority carriers, 113-114
law of junction, 114
transition region, 115
current-voltage relation, 117-118
rectifier, 112-113
temperature effects, 120-121
varactors, 120
Bias point
calculation, 7-8, 44-46
definition, 6
using PSpice, 8-10

BiCMOS, 171-172
cascode, 389-390
logic
basic operation, 678-680
gates, 680-682
propagation delay, 680
technology, 393
Bipolar junction transistors (BJT)
active mode, 244
basic structure, 169-170
BiCMOS, 171-172
cascode, 386-389
capacitances, 268-271
breakdown voltages, determination, 266-268
h-parameters vs. hybrid- π parameters, 265
hybrid equivalent circuit
base-width modulation, 260
CE parameters, 263
transistors parameters, determination, 264-265
npn transistor, 268-269
parasitic resistances, 271, 280
temperature effects, 265-266
transit time, 269
unity-gain bandwidth
CE current gain, frequency variation, 272
equivalent circuit, simplified version, 271
frequency, calculation, 273
high-frequency response, 274-275
cutoff mode, 244
vs. FETs, 287-288
inverse active mode, 245
modified structure, 170-171
npn power transistor, 563
op-amps
four-stage op-amp, 501
input offset voltage, 505-507
input resistance and bias current, 502-503
superbeta transistors, 502, 503
operation
common-base dc current gains, 245-246
common-emitter configuration, 247-250
current gains variations, 252-254
input and output characteristics, 242-244
modes, 244-245
small-signal current gains, 250-254
small-signal equivalent circuits, 254-256
structure, IC npn transistor, 242, 246-247
T-model, 255-256
parasitic, 568
PSpice parameters, 707-708
quasi and hard saturation, 564-565
reverse base current, 566
saturation mode, 244-245
secondary effects
input and output characteristics, 258-259, 261
base-width modulation, 256-260
Early effect, 256
speed-up capacitor circuit, 566
BJT, see Bipolar junction transistors (BJT)
Bloch function, 66
Bloch's theorem, 66
Bode magnitude plots, 438-441
Body effect, 202-204
Boltzmann relations, 94
Bonding pads, 159
Bond wire, 160
Boolean algebra, 590-592
Boule, see Ingot, definition
Bragg reflection, 67
Breakdown diodes, see Zener diodes
Breakdown region, 121
Bridge amplifier, 516
Bridge rectifier, 12-13
Bridging sites, 175
Brillouin zone, 67
Buffer gates, 594
Bulk region, 115
Bulk resistance, 4
Burn-in process, 161
Burst noise, 286

C

Capacitances, 119-120, 205-207, 268-271
Capacitor-input filter
approximate analysis, 16-18
definition, 14
idealized conditions, 15
simulation, 19-20
voltage and current waveforms, 14-15
Capacitors, 163
charging and discharging, 40-41, 600, 653, 678
dc blocking, 337, 339, 348
emitter-resistor bypass, 414, 445
emitter-source bypass, 457
ferroelectric, 631
MOS, 128
source-resistor bypass, 412
speed-up, 279, 281-282, 566
storage type, 617, 619
subcircuits, 411
switched-capacitor circuits, 516-519

Carrier concentrations
carrier generation and recombination, 87-88
density of states, 85-87
energy bands in a pin structure, 92-94
Fermi level
extrinsic semiconductor, 91-92
position, 89
intrinsic semiconductor, 88
n-type semiconductor, $89-90$
p-type semiconductor, $90-91$
Carrier generation, 87-88
Carrier mobility
dopant concentration variation, 94-95
temperature variation, 95
Carrier recombination, 87-88
Auger recombination, 96
equilibrium, 95
imperfections, 96
minority carrier lifetime, 97
traps, 96
Cascaded amplifiers, 459-463
analysis, 408-409
coupling methods, 406
dc level shifting, 409-411
direct-coupled BJT amplifier stages, 408
direct-coupled complementary BJT amplifier stages, 409
emitter follower, dc level shifting, 410
folded cascode, 409-410
stages, 406-407
telescopic cascode, 409
Thevenin's voltage, 407
Cascode amplifier, 384-389
Cascode current sources and mirrors, 402-403
amplifier configurations, 392
BiCMOS technology, 393
cascode configuration, 391
discrete amplifiers, 392
wide-swing current mirror, 391
CC-CB cascade tuned amplifier, 450
Center-tapped transformer (CTT), 11-14
Channel stop, 164, 165, 170-172
Chanstop, see Channel stop
Charge-current relation, 118
Charged-coupled device (CCD), 128
Charge distributions and currents
bulk region, 115
diffusion length, 114
under forward bias, 114
law of junction, 114
transition region, 115
Chemical mechanical polishing (CMP), 150-151, 153

Chemical potential
definition, 80
energy, 79
expression, 79-81
Chemical vapor deposition (CVD), 158
Chip, definition, 150
Clamping circuit, 38-39
Class A operation, 577
ac and dc load line, 540
emitter follower, 543-545
maximum symmetrical swing, 541
Thevenin's equivalent circuit (TEC), 539
transformer coupling ac and dc load line, 543
class A amplifier, 543
power-conversion efficiency, 542-543
Class AB operation, 577
amplifier, 547-549
diode biasing, 545-546
quiescent state, 546
Clean room environment, 159-160
Clipping circuits, 33, 49-50
Clock skew, 611
Closed-loop stability
asymptotic bode magnitude, 437, 439
Barkhausen criterion, 445
bode magnitude plots, 438-441
feedback oscillators, 445, 463-466
frequency compensation
amplifier stability, 442-444
dominant-pole compensation, 441-442
high-gain amplifier, 444
shifted-pole frequency, 441-442
gain margin, 439
high-Q oscillator, 446-448
open-loop transfer function, 438
phase margin, 439
positive and negative feedback amplifiers, 436-438
Wien-Bridge oscillator, 445-446
CMOS fabrication
silicon-on-insulator (SOI) technology, 168-169
transistor formation, 164-168
transistor isolation, 163-164
Collector metallization, see Metallization
Column decoder, 613, 622-623
Common-collector amplifier
ac conditions, 353-354
emitter follower, 355
series-shunt feedback, 356
Common collector-common emitter cascode, 381-384

Common collector/drain amplifier, 373-375
Common-drain amplifier
implementation, 351
source follower, 351-353
Common-emitter amplifier with emitter resistor, 358-359
Common emitter/source amplifier, 370-373
Common-source amplifier with source resistor, 358-359
series-series negative feedback, 357
unbypassed source resistor, 356
Common-base amplifier, 363
Common-base dc current gains
base transport factor, 245
dc CB current gain, 245-246
emitter injection efficiency, 245
Common-collector amplifier, 353-356
Common-drain amplifier, 350-353
Common-emitter amplifier, 348-350, 413-416
Common-emitter configuration
dc CE current gain, 247
terminal voltages and currents, npn transistor, 247-248
transistors parameters, α_{F} and β_{F}, 247-250
Common-gate amplifier, 361-363
Common-mode rejection ratio (CMRR), 473-474
Common-source amplifier, 350, 411-413
Compensated semiconductor, 94
Complementary metal-oxide-semiconductor (CMOS), digital
gates, 595-596
CMOS buffer, 662-663
gate designs, 659-661
NAND and NOR gates, 657-659
sizing and scaling effects, CMOS, 661-662
inverter
static behavior, 650-651
transfer characteristic, 649-650
voltage transfer characteristic (VTC), 648, 649
logic circuits, 694-696
low-power CMOS, 663
noise margins, 651-652
power dissipation
calculation of, 656
gate oxide leakage current, 657
propagation delay
charging and discharging, 653
general factors, 653, 654

Complementary MOSFET
amplifier, transfer characteristics
circuit diagram, 219
diode-connected D-PMOS transistor, 221-222
output characteristics, 219
small-signal equivalent circuit, 220
Composite transistor connections, 400-402
BiCMOS cascode, 389-390
BJT cascode, 386-389
cascode amplifier, 384-389
cascode amplifier, frequency response, 389
CC-CE cascade
comparison, 381-383
frequency response, 383-384
common collector-common emitter cascade, 381-384
MOSFET cascode, 384-386
$n p n$ and pnp transistor, 379
open-circuit voltage gain, 387
Conduction band, 65
Conduction electrons, 66
Conductivity, intrinsic silicon, 84
Contacts, dissimilar materials
metal-metal contacts, 135-136
metal-semiconductor contacts, 136-138
principles, 134-135
Schottky diode, 139
Coupling methods, 406
Covalent bond, 75
Cross talk, 632
Crystal defects, 173-174
Crystal growth, 150
Crystal imperfections, 96
Crystal lattice, 74
Crystal momentum, 68
Crystal orientations, 150-151
Crystal oscillators
pierce oscillator, 457
piezoelectric effect and reactance, 456
Crystal structure, 74-75
Current mirror
BJT current mirror
basic and widlar, comparison, 343
biasing IC transistors, 341
current-steering circuit, 344
small-signal conditions, 343
Widlar current mirror, 342
MOSFET current mirror
E-NMOS and E-PMOS transistors, 345
E-NMOS current mirror, 344

Current-mirror load, differential pair
basic MOSFET, 482
common-mode input, 480, 481
systematic/random input offset voltage, 481
Current-steering circuit, 344
Current-voltage relation, 117-118
Cutoff mode, 244
Czochralski growth technique, 150

D

Damascene process, 164
Darlington pair, 379-381
dc blocking capacitor, 337
dc restorer, 36-37; see also Clamping circuit
De Broglie's hypothesis, 56
Degenerate semiconductors, 86
De Morgan's law, 591-592
Density, electron states, 71-73, 85-87
Depletion approximation, 107-110
Depletion capacitance, 118
Depletion-type, n-channel MOSFET (D-NMOS)
output characteristics, 214
symbols, 215
transfer characteristics, 214
voltage polarities, 215-216
Deposition processes
chemical vapor deposition (CVD), 158
clean room environment, 159-160
diffusion, 157-158
ion implantation, 157
metallization, 158-159
Device transconductance parameter, 187
D flip-flop
clock skew, 611
implementation of, 609
positive-edge-triggered, 610, 611
timing diagram, 609, 610
Dice, definition, 150
Dicing, 160
Dickson charge pump, 629-631
Dielectric relaxation time, 97
Differential pair
basic operation
BJT differential pair, 468-470
common-mode voltage, 468
differential half circuit, 470
current-mirror load
basic MOSFET, 482
common-mode input, 480, 481
systematic/random input offset voltage, 481
input bias currents, 476
input offset voltage, 476-478
MOSFET differential pair
current mirror load, 485-486
drain currents, 484
transfer characteristics, 483
small-signal common-mode response
common-mode rejection ratio (CMRR), 473-474
high-frequency response, 474-475
split circuits, 472, 473
small-signal differential operation, 471-472
transfer characteristics, 470-471
Diffusion, 157-158; see also Electron diffusion; Hole diffusion; Outdiffusion; Updiffusion
Diffusion capacitance, 119-120
Diffusion constant, 80
Diffusion current, 112
Diffusion length, 114
Digital-analog conversion (DAC)
Digital circuit elements
flip-flops (FF), 640-643
basic latch, 602-604
D flip-flop, 608-611
JK flip-flop, 606-608
SR latch, 604-606
T flip-flop, 608
ADC implementation, 522
current steering circuit, 520,521
inverting op-amp adder, 519, 520
MOSFET implementation, 521
Digital logic circuit families
BiCMOS logic
basic operation, 678-680
gates, 680-682
propagation delay, 680
complementary metal-oxide-semiconductor
(CMOS)
gates, 657-663
inverter, 648-651
logic circuits, 694-696
low-power CMOS, 663
noise margins, 651-652
power dissipation, 655-657
propagation delay, 653-655
dynamic logic
basic configuration, 674-675
domino logic, 676-677
limitations of, 675-676
pipelined single-phase clock architecture, 677
emitter-coupled logic (ECL)
basic circuit, 686-687
ECL 100k, 687-690
gates, 691-692
logic circuits, 700-702
MOS logic circuits, 696-700
pass-transistor logic
positive feedback, 670
time variation, 668-670
transmission gate operation, 671-673
pseudo NMOS
dynamic operation, 667-668
inverter, 664
static operation, 665-667
transistor-transistor logic (TTL)
advanced low-power schottky TTL, 685-686
logic circuits, 700-702
TTL inverter, 682-685
Digital signals and processing
Boolean algebra
conjunction, 590-591
De Morgan's law, 591-592
disjunction, 590-591
digital signals
advantages of, 589-590
analog-to-digital conversion (ADC), 588-589
Digital system memories
attributes of, 611-612
column decoder, 613
ferroelectric RAM, 631
flash memory, 612
random access memory (RAM)
classification, 612
organization, 613
read only memory (ROM)
Dickson charge pump, 629-631
erasable programmable ROM (EPROM), 626-627
flash ROM, 627-631
floating gate transistor (FGT), 626, 627
mask ROM, 623-625
programmable ROM (PROM), 625-626
read/write memory
column decoder, 622-623
dynamic memory cell, 616-617
row decoder, 620-622
sense amplifier and precharge circuit, 617-620
static memory cell, 614-616
semiconductor memories, 643-644
row decoder, 613

Diode-capacitor circuits
capacitor charging and discharging, 40-41
clamping circuit, 38-39
dc restorer, 36-37
voltage multiplication, 41-42
Diode circuits
bias point
calculation, 7-8, 44-46
definition, 6
using PSpice, 8-10
characteristics, 44-46
clamping circuits, 51-52
clipping circuits, 49-50
diode-capacitor circuits
capacitor charging and discharging, 40-41
clamping circuit, 38-39
dc restorer, 36-37
voltage multiplication, 41-42
ideal diode definition, 2
Si $p n$ junction diode, 2-3
incremental diode resistance, 4
offset voltage, 5
Piecewise linear approximation, 5-6
practical diodes, 3-4
rectifier circuits
capacitor-input filter, 14-20
definition, 10
full-wave rectifier, 11-14
half-wave rectifier, 10-11
regulated power supply, 20-23
simulation, 19-20
smoothing of output, 14
X-ray tube, 23
rectifiers and regulated power supplies, 46-49
small-signal model, 6-7
voltage limiters
using back-to-back zener diodes, 34
circuit diagram, 32
definition, 32
overload protection of meter, 35
piecewise-linear approximation, 33
protection of transistor switch, 35-36
simulation, 34
surge protection, 36
zener voltage regulator
analysis, 25-28
circuit diagram, 25
design example, 29-30
load regulation and line regulation, 28
simulation example, 30-31
voltage-current characteristics, 24-25

Diode clamp, see dc restorer
Diode-connected BJT transistor, 282, 368
Diode-connected MOSFET, 217-218, 368
Direct-bandgap semiconductors, 129
Direct-coupled complementary BJT amplifier stages, 408
Direct recombination, 87
Discharge resistors, 680; see also Resistors
Discrete transistors, 336-341
CE amplifiers, 336
dc blocking capacitor, 337
E-NMOS biasing, 340-341
load-line construction, output characteristics, 336
using shunt feedback, 340
source resistance effect, thershold variations, 340-341
Thevenin's equivalent circuit, 337
using voltage divider, 338-339
Dislocation, 174
Distribution function, see Fermi-Dirac distribution
Donor impurity, 77-78
Dopant concentration variation, 94-95
Doping, 77
Drain currents, 484
Drift current, 112
Drive-in (diffusion), 157
Dry etching, 156
Dry oxidation, 151-152
Dual-in-line packages (DIPs), 160
Dust control, 159
Dust count, 159
Dynamic logic
basic configuration, 674-675
domino logic, 676-677
limitations of, 675-676
pipelined single-phase clock architecture, 677
Dynamic memory cell, 616-617

Fermi level, 84-85
generalized Ohm's law, 82-83
nonuniformly doped semiconductor, 84
state of equilibrium, 83-84
Electrolytic capacitor, 22; see also Capacitors
Electron
definition, 60
periodic potential, 66-67
Electron diffusion, 106
Electron-hole pair generation and recombination, 76
Electronic grade silicon, 150
Electron state, definition, 64
Emitter-coupled logic (ECL)
basic circuit, 686-687
ECL 100k, 687-690
gates, 691-692
logic circuits, 700-702
Emitter injection efficiency, 245
Emitter metallization, see Metallization
Emitter resistor, 358; see also Resistors
Energy band
diagrams, 65, 77-78
pin structure, 92-94
structure, 64-66
E-NMOS
characteristics, 199-200
and E-PMOS transistors, 345-346
transistor, 184-185
Epitaxial layer transfer (ELTRAN) process, 168
Epitaxy, 158, 169
Equilibrium diffusion and drift currents, 110-112
Erasable programmable ROM (EPROM), 626-627
Etching, 156
Extrinsic defects, 173
Extrinsic semiconductors, 77-79

F

Feedback amplifiers, 459-463
series-series, 425-428
series-shunt
dc bias conditions, 422
h-parameter equivalent circuit, 417
loading effect of feedback circuit and feedback factor, 421
modified amplifier circuit, 423
negative feedback configuration, 418
nonideal, non inverting op-amp circuit, 419-420
signal-flow diagram, 419
transistor amplifier, 422-424
two-port circuit representation, 417
shunt-series
negative feedback configuration, 428-429
open-circuit voltage transfer function, determination, 432
signal-flow diagram, 429-430
transistor amplifier, 430-431
two-port circuit representation, 428
shunt-shunt
negative feedback configuration, 433-434
signal-flow diagram, 435
transistor amplifier, 434-436
y-parameter equivalent circuit, 433
Feedback oscillator, 445, 463-466
Feedback resistor, 514, 522; see also Resistors
common-emitter/source amplifier, 375-376
Fermi-Dirac distribution, 73-74
Fermi level, 84-85
extrinsic semiconductor, 91-92
position, 89
Ferroelectric RAM (FRAM), 631
Fick's law, 80
Field-effect transistors (FET)
amplifiers
definition, 180
hypothetical amplifying device, 181-182
inequality, 181
JFET
channel profile, 227
current regulator diode, 229-231
current-voltage relation, 227-229
operation, 226
output characteristics, 227
output resistance, 231-232
parasitic, 568
structure, 225-226
threshold, 226
transfer characteristics, 227
MESFET
GaAs technology, 232-233
high-mobility devices, 234
operation, 233-234
structure, 233
MOSFET
body effect, 202-204
breakdown, 201
capacitances, 205-207
channel-length modulation, 196-198
complementary (CMOS), 218-225
current-voltage relations, 187-190
depletion-type, 214-218
E-NMOS characteristics, 199-200
improved performance, 212-213
operation, 184-187
overdrive voltage, 201
p-channel MOS transistor, 190-191
short-channel effects, 209-212
small-signal operation, 191-196
structure, 183-184
temperature effects, 201
thin-film transistors, 213-214
transconductance, 199
types, 183
unity-gain bandwidth, 207-209
Field oxide (FOX), 164
Filters, see Capacitor-input filter; Inductor-input filter
Finite energy barrier and tunneling, 62-64
Flash memory, 612, 627, 628
Flash ROM
flash memory, 627, 628
FLOTOX cell programming, 629
FLOTOX transistor, 627-629
Flicker noise, 286
Flip-chip process, 160
Flip-flops (FF)
basic latch
monostable multivibrator, 603
schmitt trigger, 603, 604
D flip-flop
clock skew, 611
implementation of, 609
positive-edge-triggered, 610, 611
timing diagram, 609, 610
JK flip-flop
edge-triggered, 608
master-slave configuration, 607-608
symbols, 606
timing diagram, 606, 607
SR latch
latching property, 605
symbols, 604
T flip-flop, 608
Floating gate transistor (FGT), 626, 627
FLOTOX transistor, 627-629
1/f noise, see Flicker noise
Folded cascode CMOS op-amps
amplifier stage, 409
common-mode input range, 492-493
frequency response, 495
operational transconductance amplifier (OTA), 495-497
output voltage swing, 494
slew rate, 495-497
voltage gain, 494-495
Forward biased junction, 112
Fourier series expansion (FSE), 536
Free atoms, 64
Frenkel defect, 173
Full-wave rectifier
bridge, 12-13
center-tapped transformer (CTT), 11-12
CTT vs. bridge, 13-14
definition, 11

G

Gain-bandwidth product (GB) product asymptotic magnitude bode plot, 322-323
negative feedback trades, 323-324
Gate turn-off (GTO) switch, 574
Generalized Ohm's law, 82-83
Generation-recombination centers, 96
Group velocity, 59
Gummel-Poon model, 284

H

Half-wave rectifier, 10-11
Harmonic distortion, 536, 577
Heisenberg's uncertainty principle, 57
Hermetically sealed packages, 161
Heterojunction, 139-143
Heterojunction bipolar transistor (HBT), 284
High-frequency response, 399-400
BJT amplifiers, frequency response, 377-378
common-base/gate amplifier, 376-377
common collector/drain amplifier, 373-375
common emitter/source amplifier, 370-373
feedback resistor, common-emitter/source amplifier, 375-376
frequency response determination, 371
Miller approximation, 369, 372, 375
Miller's theorem, 368-370
modified equivalent circuit, 374
poles and zeros, transfer function, 369-370
rigorous analysis, 372
simplified equivalent circuit, 370-371
unbypassed emitter resistor, 375
High-level injection, 117
High-purity silicon, 150
High-Q oscillator, 446-448
Hole conduction, 69-71
Hole diffusion, 106
Holes, definition, 71
Hypothetical amplifying device, 181-182

I

IC npn transistor, 246
Ideal diode
definition, 2
$i-v$ characteristics, 2
Si $p n$ junction diode, 2-3
symbol, 2
Ideal operational amplifier, 325, 327-334
definition, 310
extraneous signals, 321-322
frequency response, 324-325
gain-bandwidth product asymptotic magnitude bode plot, 322-323
negative feedback trades, 323-324
inverting configuration
differentiator, 318-319
input and output fraction, 315
integrator op-amp, 317-318
op amp shunt-shunt feedback
configuration, 314
signal-flow diagram, 315
virtual ground, 314
voltage source, 316
noninverting configuration, 311-312
op-amp configurations, 319-321
symbol, 310-311
unity-gain amplifier, 313-314
IGBTs, see Insulated gate bipolar transistors (IGBTs)
Imperfections, see Crystal imperfections
Implantation of oxygen (SIMOX) process, 168
Impurity activation, 157
Incremental diode resistance, 4
Indirect-bandgap semiconductors, 129
Indirect recombination, 96
Inductor-input filter, 14, 22
Infinite potential well, 60-62
Ingot, definition, 150
Instrumentation amplifier (IA)
basic circuit, 514
bridge amplifier, 516
input stage, 515
Insulated gate bipolar transistors (IGBTs), 578
characteristics, 570-571
conductivity modulation, 569-570
diagrammatic structure, 570
Integrator, 509-511
Interstitial defect, 173
Intrinsic defects, 173
Intrinsic semiconductors, 75-77, 88
Inverse active mode, 245

Inversion layer, 184
Inverter, CMOS, 225
static behavior, 650-651
transfer characteristic, 649-650
voltage transfer characteristic (VTC), 648, 649
Inverting and noninverting op-amps, 507-509
Inverting configuration, ideal operational amplifier
differentiator, 318-319
input and output fraction, 315
integrator op-amp, 317-318
op amp shunt-shunt feedback configuration, 314
signal-flow diagram, 315
virtual ground, 314
voltage source, 316
Ion implantation, 157, 176
Ionized impurity scattering, 94
Ion milling, 156

J

JK flip-flop
edge-triggered, 608
master-slave configuration, 607-608
symbols, 606
timing diagram, 606, 607
Johnson noise, see Thermal noise
Junction field-effect transistor (JFET)
channel profile, 227
current regulator diode, 229-231
current-voltage relation, 227-229
operation, 226
output characteristics, 227
output resistance, 231-232
structure, 225-226
threshold, 226
transfer characteristics, 227
Junction potential, 106-107

K

Knee current, 24

L

Large-signal modes
augmented models, 284
diode connection, 282
Ebers-Moll (EM) model
ideal transistor, 276
$n p n$ and $p n p$ transistors, 278
transport version, 276-277

Gummel-Poon model, 284
offset voltage, 281
regenerative pair, 282-283
saturation mode
BJT inverter, 278-279
electron concentration profile, 280-281
transistor, 280-281
Schottky transistor, 282
speed-up capacitor, 281
Latch
monostable multivibrator, 603
Schmitt trigger, 603, 604
Lattice scattering, 94
Law of the junction, 114
Law of mass action, 87
LC oscillators
colpitts oscillator, 451, 453
Hartley oscillator, 451, 453-455
radio-frequency choke (RFC), 451
self-limiting oscillator, 453
Light-emitting diodes
application, 129-131
classification, 129
energy-band diagrams, 129
Lightly doped drain (LDD), 166
Line defects, 173-174
Line regulation, 28
Lithography
chemical mechanical polishing (CMP), 153
mask pattern, 154-155
optical stepper, 155
photolithography, 153
photoresists, 153-154
registration error, 155
resolution, 155-156
wafer surface, 154
Load line, 6-7
Load regulation, 28
Local oxidation (LOCOS), 164
Logic gates
CMOS gate, 595-596
gate performance
high-level noise margin, 598
ideal gate properties, 596
low-level noise margin, 597
propagation delay, 599-600
ring oscillator, 600-602
threshold voltage, 597
transfer characteristics, 598, 599
types of, 592-593
buffer gates, 594
XOR logic applications, 594-595

M

Majority carriers, 77
Mask read only memory (ROM)
diode ROM, 623-624
NOR ROM, 624-625
Mask preparation, 152-153
Master-slave, configuration, 607-608
Mean lifetime, 76
Mean transit time, 118
Metallic interconnect
capacitance, 632
distributed models
characteristic impedance, 633
RC distributed, delay, 635-636
$R C$ model, 634
resistance
skin depth, 633
skin effect, 632, 633
Metallization, 158-159, 170-172, 176
Metallurgical grade silicon, 150
Metal-metal contacts, 135-136
Metal-semiconductor contacts
energy-band diagram, 136-138
energy barrier, 137-138
work function, 136-137
Metal-semiconductor field-effect transistor (MESFET)
GaAs technology, 232-233
high-mobility devices, 234
operation, 233-234
structure, 233
Miller effect, 450
Miller's theorem, 368-369
Minimum feature size, 153, 209
Minority carriers, 77
lifetime, 97
suppression, 88
Mobility, definition, 80
Modular voltage multiplier, see Voltage multiplier
MOSFET
cascode, 384-386
complementary (CMOS)
amplifier, 219-222
inverter, 225
transmission gate, 222-225
current mirror, 344-346
current-voltage relations
aspect ratio, 187
large-signal equivalent circuit, 189
process and device transconductance parameters, 187
symbols, 189-190
transfer characteristics, 188
depletion-type, n-channel MOSFET (D-NMOS)
diode connection, 217-218
output characteristics, 214
symbols, 215
transfer characteristics, 214
voltage polarities, 215-216
differential pair
current mirror load, 485-486
drain currents, 484
transfer characteristics, 483
operation
channel-length modulation, 187
drain current variation, 185
drain-source voltage, 185
E-NMOS transistor, 184-185
hydraulic analogy, 186-187
inversion layer, 184
pinch-off region, 186
saturation and triode regions, 186
p-channel enhancement-type MOSFET (E-PMOS), 190-191
PSpice parameters, 384-386
secondary effects
body effect, 202-204
breakdown, 201
capacitances, 205-207
channel-length modulation, 196-198
E-NMOS characteristics, 199-200
improved performance, 212-213
overdrive voltage, 201
short-channel effects, 209-212
temperature effects, 201
thin-film transistors, 213-214
transconductance, 199
unity-gain bandwidth, 207-209
small-signal operation
basic circuit, 191
equivalent circuit, 195
load line construction, 192
quiescent operating point, 192, 194
small-signal analysis, 193
transconductance, 194
transfer characteristics, 192
structure, 183-184
types, 183, 216-217
MOS logic circuits, 696-700
Multichip modules (MCMs), 161
Multijunction cells, 128

N
NAND and NOR gates
CMOS NAND gate, 657
CMOS NOR gate, 657, 658
n-channel MOSFET transistor, 348
Negative feedback, ideal amplifiers see also Feedback Amplifiers
factor and amplifier, 301
series-series feedback
feedback amplifier, 307
Kirchhoff's current law (KCL), 306
test voltage source, 306
series-shunt feedback
factor and feedback amplifier, 301
high-gain amplifier, 302-303
test current source, 303
Thevenin's impedance, 302
shunt-series feedback, 307-308
shunt-shunt feedback
input and output impedances, 310
test current source, 309
signal-flow diagrams
loop gain, 303-306
negative feedback system, 304-305
Negative photoresist, 154
Nernst-Einstein relation, 80-81
Noise margins, 651-652
high-level, 598
low-level, 597
Nondegenerate semiconductors, 85, 87, 90, 91
Nonlinear resistor, 599; see also Resistors
Nonrepetitive peak surge current, 22
Nonuniformly doped semiconductor, 84
n-type semiconductor, 89-90
Nyquist noise, see Thermal noise

0

OCSCTC method, 383, 385
OCTC method, 382
Off-chip resistor, 499; see also Resistors
Operational amplifiers
basic op-amp circuits
difference amplifier, 511-514
instrumentation amplifier, 514-516
integrator, 509-511
inverting and noninverting op-amp, 507-509
BJT op-amps
four-stage op-amp, 501
input offset voltage, 503-507
input resistance and bias current, 502-503
superbeta transistors, 502, 503
CMOS op-amps
common-mode response, 488
current and voltage biasing, 498-501
frequency response, 488-491
input-offset voltage, 486-487
slew rate, 491-492
voltage gain and output swing, 487-488
CMOS op-amps folded cascode
common-mode input range, 492-493
frequency response, 495
output voltage swing, 494
slew rate, 495-497
voltage gain, 494-495
IC op-amps, 527-528
op-amp circuits, 528-530
switched-capacitor circuits
control voltage waveforms, 517-518
inverting integrator, 518-519
noninverting integrator, 519
switched-capacitor integrator, 517
Operational transconductance amplifier (OTA), 495-497
Optical lithography, see Photolithography
Optical stepper, see Stepper
Optoisolators or optocoupler, 380-381
Outdiffusion, 171, 172
Overdrive voltage, 201
Oxidation, 151-152

P

Packaging, semiconductor, 160-161
Particles and radiant energy, 57
Pass-transistor logic
positive feedback, 670
time variation, 668-670
transmission gate operation, 671-673
Patterning
definition, 152
processes
etching, 156
lithography, 153-156
masks preparation, 152-153
Pauli's exclusion principle, 64
Peaking current source, 403
Phase-shift oscillator, 465
Photocell, 126-127
Photoconductive cell, 124
Photoconductive current, 124-125
Photo Darlington pairs, 380
Photodiode, 125-126

Photolithography, 153
Photon, definition, 56
Piecewise linear approximation, 5-6
Pinch-off region, 186
Pin-grid array (PGA) packages, 160
$p n$ junction
biased type
breakdown, 121-124
capacitance, 119-120
charge-current relation, 118
charge distributions and currents, 113-117
current-voltage relation, 117-118
depletion region width, 113
rectifier, 112-113
temperature effects, 120-121
varactors, 120
charge flow, under forward bias, 115
equilibrium
depletion approximation, 107-110
equilibrium diffusion and drift currents, 110-112
junction potential, 106-107
under forward bias, 114
under reverse bias, 116
$p n$ junction diode, 4, 145-147
doping, 122
fabrication, 162-163
forward current, 117
ideal silicon type, 2-3
light effect, 125
practical type, 3-4
PSpice parameters, 705-706
reverse current, 144
zener diode, 24
Point defects, 173-174
Pole splitting, 490
Polycide, 166
Popcorn noise, see Burst noise
Positive photoresist, 153-154
Potential energy relations and current, 112-113
Power amplifiers
class A operation
ac and dc load line, 540
emitter follower, 543-545
maximum symmetrical swing, 541
Thevenin's equivalent circuit (TEC), 539
transformer coupling, 542-543
class AB operation, 546-549
class B operation, 545-546
class C operation, 549-550
general considerations
nonlinear distortion, 536-537
power-conversion efficiency, 537
power Darlington pair performance, 537-539
safe operating limits, 532-533
semiconductor devices effects of temperature, 533
thermal resistance, 533-535
thermal stability, 535-536
transistor derating, 535
insulated gate bipolar transistor (IGBT), 531
power diodes
breakdown voltage, 562-563
conductivity modulation, 561
diagrammatic structure, 560-561
diode reverse recovery time, 562
drift region, 561
power operational amplifiers, 550-551
Power Darlington pair, 537-539
Power latches
incandescent lamp dimmer, 576-577
static switches, 575
thyristor
breakover voltage, 572
forward blocking state, 572-573
gate turn-off (GTO) switch, 574
$i-v$ characteristic, 572-573
light-activated silicon-controlled rectifier (LASCR), 574
рир-ири regenerative pair, 573
silicon controlled rectifier (SCR), 572
silicon unilateral switch (SUS), 574
Power switching, 583-584
class D amplifier, 552-553
dc-to-ac Converters, 556-557
half-bridge inverter, 557-559
switched regulated supplies
basic switching voltage regulator, 553
controlled oscillator, 553-554
output ripple, 554-556
uninterruptible power supplies (UPS), 559-560
Power transistors
bipolar junction transistors (BJT)
npn power transistor, 563
parasitic transistor elements, 565
quasi and hard saturation, 564-565
reverse base current, 566
speed-up capacitor circuit, 566
insulated gate bipolar transistors (IGBTs)
characteristics, 570-571
conductivity modulation, 569-570
diagrammatic structure, 570
MOSFETs
bipolar junction transistors (BJT), 569
components, 568
diode structure, 568
parasitic JFET, 567-568
vertical, double-diffused type (VDMOS), 567
Practical diodes, 3-4
Predeposition, 157
Process transconductance parameter, 187
Programmable ROM (PROM), 625-626
Pseudo NMOS
dynamic operation, 667-668
inverter, 664
static operation, 665-667
PSpice parameters
BJT, 707-708
MOSFET, 706
pn junction diode, 705-706
symbols, 705
p-type semiconductor, 90-91
Pulse-width modulation (PWM), 37, 552

Q

Quad-in-line packages (QIPs), 160
Quadrature oscillator, 465
Quantum theory, 56
Quasi-Fermi level, 85

R

Radiant energy, 56-57
Radicals, 156
Random access memory (RAM)
classification, 612
organization, 613
$R C$-coupled amplifiers
brute force circuit analysis, 411
common-emitter amplifier, 413-416
common-source amplifier, 411-413
D-NMOS amplifier, low frequency response, 413
emitter-resistor bypass capacitor, 414
frequency response, 415-416
midband gain, 413
OCSCTC method, 411, 414
source-resistor bypass capacitor, frequency response, 412
Reactive ion etching (RIE), 156
Read only memory (ROM)
Dickson charge pump, 629-631
erasable programmable ROM (EPROM), 626-627
flash ROM
flash memory, 627, 628
FLOTOX cell programming, 629
FLOTOX transistor, 627-629
floating gate transistor (FGT), 626, 627
mask ROM
diode ROM, 623-624
NOR ROM, 624-625
programmable ROM (PROM), 625-626
Read/write memory
column decoder, 622-623
dynamic memory cell, 616-617
row decoder, 620-622
sense amplifier and precharge circuit
dynamic random access memory (DRAM), 619
precharge and equalization circuit, 617, 618
static random access memory (SRAM), 617, 618
static memory cell
read operation, 614-615
write operation, 615-616
Rectifier circuits
capacitor-input filter, 14-20
definition, 10
full-wave rectifier, 11-14
half-wave rectifier, 10-11
regulated power supply, 20-23
simulation, 19-20
smoothing of output, 14
X-ray tube, 23
Registration error, 153, 155, 166
Regulated power supply, 20-23, 46-49
Resistor fabrication, 161-162
Reticle, 155
Retrograde profile, 157
Reverse biased junction, 112
Reverse recovery time, 120
Ring oscillator, 600-602
Row decoder, 613, 620-622

S

Safe operating area (SOA), 532, 577
Salicide, 166
Saturation mode, 244-245
Saturation region, 186
Schmitt trigger, 603, 604
Schottky diode, 139
Schrödinger's equation, 58
Self-alignment, 166
Self-biasing circuit, 498

Self-interstitial defects, 173
Semiconductor fabrication
bipolar junction transistors (BJT)
basic structure, 169-170
BiCMOS, 171-172
modified structure, 170-171
CMOS fabrication
silicon-on-insulator (SOI) technology, 168-169
transistor formation, 164-168
transistor isolation, 163-164
crystal defects, 173-174
deposition processes
chemical vapor deposition (CVD), 158
clean room environment, 159-160
diffusion, 157-158
ion implantation, 157
metallization, 158-159
device fabrication
capacitors, 163
$p n$ junction diode, 162-163
resistors, 161-162
packaging, 160-161
patterning processes
etching, 156
lithography, 153-156
masks preparation, 152-153
silicon wafer preparation
crystal growth, 150
high-purity silicon, 150
oxidation, 151-152
wafer production, 151
Semiconductor photoelectric devices, 127-128
charged-coupled device (CCD), 128
photocell, 126-127
photoconductive cell, 124
photoconductive current, 124-125
photodiode, 125-126
Semiconductors
carrier concentrations
carrier generation and recombination, 87-88
density of states, 85-87
energy bands, pin structure, 92-94
Fermi level, extrinsic semiconductor, 91-92
Fermi level position, 89
intrinsic semiconductor, 88
n-type semiconductor, 89-90
p-type semiconductor, 90-91
carrier mobility
dopant concentration variation, 94-95
temperature variation, 95
carrier recombination
Auger recombination, 96
equilibrium, 95
imperfections, 96
minority carrier lifetime, 97
traps, 96
crystal structure, 74-75
electric conduction
density of electron states, 71-73
effective mass, 68
electrons in a periodic potential, 66-67
Fermi-Dirac distribution, 73-74
hole conduction, 69-71
electrochemical potential
chemical potential, 79-81
expression, 81
Fermi level, 84-85
generalized Ohm's law, 82-83
nonuniformly doped semiconductor, 84
state of equilibrium, 83-84
extrinsic type, 77-79
intrinsic type, 75-77
Sense amplifier and precharge circuit
dynamic random access memory (DRAM), 619
precharge and equalization circuit, 617, 618
static random access memory (SRAM), 617, 618
Series-series feedback amplifier, 424-428
Series-shunt feedback
factor and feedback amplifier, 301
high-gain amplifier, 302-303
test current source, 303
Thevenin's impedance, 302
Series-shunt feedback amplifier
dc bias conditions, 422
h-parameter equivalent circuit, 417
loading effect of feed back circuit and factor, determination, 421
modified amplifier circuit, 423
negative feedback configuration, 418
nonideal, non inverting op-amp circuit, 419, 420
signal-flow diagram, 419
transistor amplifier, 422-424
two-port circuit representation, 417
Short-base diode, 118
Shot noise, 286
Shunt-series feedback, 307-308
Shunt-series feedback amplifier, 428-432
Shunt-shunt feedback
amplifier, 433-436
input and output impedances, 310
test current source, 309

SiGe technology, 172-173
Silicides, 166
Silicon controlled rectifier (SCR), 572
Silicon epitaxy, see Epitaxy
Silicon-on-insulator (SOI) technology, 168-169, 212
Silicon unilateral switch (SUS), 574
Silicon wafer preparation
crystal growth, 150
high-purity silicon, 150
oxidation, 151-152
wafer production, 151
Single-stage transistor amplifiers
amplifier configurations, 395-398
CD amplifier implementation, 351
circuit to ac circuit conversion, 348
common-base amplifier, 363
common-collector amplifier, 353-356
common-drain amplifier, 350-353
common-emitter amplifier, 348-350
common-emitter amplifier with emitter resistor, 358-359
common-gate amplifier, 361-363
common-source amplifier, 350
common source amplifier with source resistor, 356-358
comparison, 365,367
conventional circuit analysis, 360
current and voltage source, transformation, 343, 348
current buffer, 364
diode-connected BJT transistor, 368
diode-connected enhancement MOSFET, 368
effective resistance, 367
emitter follower, 355
equivalent transconductance, 347
input resistance, determination, 358-359
n-channel MOSFET transistor, 348
output resistance, determination, $353,357,359,362,364$
series-series negative feedback, 357
series-shunt feedback, 356
small-signal analysis, 348,353
small-signal equivalent circuit, 349, 351-352, 361
small-signal parameters, 346-347
small signal relations, 364-366
source follower, 351, 353
Thevenin's or Norton's equivalent circuits, 346-347
unbypassed emitter resistor, 358
unbypassed source resistor, 356
voltage buffer, 364
cascode current sources and mirrors, 402-403
amplifier configurations, 392
BiCMOS technology, 393
cascode configuration, 391
discrete amplifiers, 392
wide-swing current mirror, 391
composite transistor connections, 400-402
BiCMOS cascode, 389-390
BJT cascode, 386-389
cascode amplifier, 384-389
cascode amplifier, frequency response, 389
CC-CE cascade
comparison, 381-383
frequency response, 383-384
common collector-common emitter cascade, 381-384
MOSFET cascode, 384-386
npn and pnp transistor, 379
OCSCTC method, 383, 385
OCTC method, 382
open-circuit voltage gain, 387
optoisolators or optocoupler, 380-381
photo Darlington pair, 380
high-frequency response, 399-400
BJT amplifiers, frequency response, 377-378
common-base/gate amplifier, 376-377
common collector/drain amplifier, 373-375
common emitter/source amplifier, 370-373
feedback resistor, common-emitter/ source amplifier, 375-376
frequency response, determination, 371
Miller approximation, 369, 372, 375
Miller's theorem, 368-370
modified equivalent circuit, 374
poles and zeros, transfer function, 369-370
rigorous analysis, 372
simplified equivalent circuit, 370-371
unbypassed emitter resistor, 375
transistor biasing, 394-395
basic and Widlar current mirror, comparison, 342-343
basic biasing circuit, 337
basic E-NMOS current mirror, 344-345
BJT current mirror, 341-342
CE amplifiers, 336
current expression, 344
current mirror, 341-346
current source and voltage source, transformation, 343
current-steering circuit, 344
dc blocking capacitor, 337
discrete transistors, 336-341
E-NMOS and E-PMOS transistors, 345-346
E-NMOS biasing, 341
load-line construction, output characteristics, 336
MOSFET current mirror, 344-346
negative voltage supply, 339
shunt feedback, 340
small signal equivalent circuit, 343
source resistance effects, threshold variations, 340-341
Thevenin's equivalent circuit, 337
using voltage divider, 338-339
$\mathrm{Si}-\mathrm{SiO}_{2}$ interface, 174-175
Sizing and scaling effects, CMOS, 661-663
Skin effect, 632, 633
Slew rate, 491-492, 495-497
Small-signal current gains
CE current gain, 251
common-base current gain, 250
high-level injection, 251
summary of, 253-254
variations, 252-254
Small-signal equivalent circuit, 254-255; see also Single-stage transistor amplifiers
Small-signal model, 6-7
Solder bumps, 160
Source-drain extensions, 165
Source resistor, 28, 341, 356, 412; see also Resistors
Sputter etching, see Ion milling
Sputtering, 159
SR latch
latching property, 605
symbols, 604
Stacking fault, 174
State of equilibrium, 83-84
Static memory cell
read operation, 614-615
write operation, 615-616
Step coverage, CVD, 158
Stepper, 155
Substitutional defect, 173
Surface-mount-technology (SMT) package, 160
Surface states, 96
Surge protectors, 36
Switched-capacitor circuits
control voltage waveforms, 517-518
inverting integrator, 518-519
noninverting integrator, 519
switched-capacitor integrator, 517

T

Taylor series expansion, 703
Telescopic cascode, 409
Temperature effects,
biased pn junction, 120-121
BJT, 265
MOSFET, 201
Temperature-sensitive resistors, 446; see also Resistors
Temperature variation, carrier mobility, 95
Tetrahedral crystal lattice, see Crystal lattice
Thermal CVD, see Epitaxy
Thermal noise, 286
Thermal resistance
thermal equivalent circuit, 534
thermal resistance, 533-534
transistor derating curve, 535
Thermionic emission, 23
Thermistors, 445
Thevenin resistance, see Source resistor
Thevenin's impedance, 302
Thin-film transistors, 213-214
Through-hole technology (THT) package, 160
Thyristor
breakover voltage, 572
forward blocking state, 572-573
gate turn-off (GTO) switch, 574
$i-v$ characteristic, 572-573
light-activated silicon-controlled rectifier (LASCR), 574
рпр-при regenerative pair, 573
silicon controlled rectifier (SCR), 572
silicon unilateral switch (SUS), 574
Total harmonic distortion (THD), 536-537
Transconductance, 194, 199; see also Device transconductance parameter; Process transconductance parameter
Transient voltage suppression (TVS), see Surge protectors
Transistor amplifiers, see Single-stage transistor amplifiers
Transistor biasing, 394-395
basic vs. Widlar current mirrors, 342-343
basic biasing circuit, 337
basic E-NMOS current mirror, 344-345
BJT current mirror, 341-342
CE amplifiers, 336
current expression, 344
current mirror, 341-346
current source and voltage, transformation, 343
current-steering circuit, 344
dc blocking capacitor, 337
discrete transistors, 336-341
E-NMOS and E-PMOS transistors, 345-346
E-NMOS biasing, 341
load-line construction, output characteristics, 336
MOSFET current mirror, 344-346
negative voltage supply, 339
shunt feedback, 340
small signal conditions, 343
small signal equivalent circuit, 343
source resistance effects, threshold variations, 340-341
Thevenin's equivalent circuit, 337
using voltage divider, 338-339
Transistor formation, 164-168
Transistor isolation, 163-164
Transistor-transistor logic (TTL)
advanced low-power schottky TTL, 685-686
inverter, 682-685
logic circuits, 700-702
Transition region, 115
Transmission gate
circuit, 222
conduction of transistors, 223
simulation example, 224-225
symbol, 222-223
Traps, 96
Triode region, 186
Tuned amplifiers
CC-CB cascade, 450
intermediate frequency, 448
Miller effect, 450
Tuned and magnetically coupled circuits, 466
Tunnel diode, 131-134
Tunneling, 62-64
Twin-well construction, 163
Two-port circuits, amplifiers, and feedback
equivalent circuits, 298
h-parameters, 297-298
ideal amplifiers
equivalent circuits, 298
methods, 299-300
types, 299
parameters interpretation, 296-297
reverse and forward transmission, 298

U

Uninterruptible power supplies (UPS), 559-560
Unit cell, 74
Unity-gain bandwidth, 207, 271
Updiffusion, 170

V

Vacant lattice site, 173
Valence band, 65
Vapor-phase epitaxy, see Epitaxy
Varactors, 120
$V_{B E}$ multiplier, 410
Voltage doubler, see Voltage multiplication
Voltage limiters
using back-to-back zener diodes, 34
circuit diagram, 32
definition, 32
negative voltage levels, $32-33$
overload protection of meter, 35
piecewise-linear approximation, 33
positive voltage levels, 32-33
protection of transistor switch, 35-36
simulation, 34
surge protection, 36
Voltage multiplication, 41-42
Voltage multiplier, 42
Voltage proportional to absolute temperature (PTAT), 275
Volume defects, 173-174

W

Wafer production, 151
Wave mechanics
behavior as particles or radiant energy, 57
electron in infinite potential well, 60-62
energy band structure, 64-66
finite energy barrier and tunneling, 62-64
free atoms, 64
Heisenberg's uncertainty principle, 57
quantum theory, 56
radiant energy, 56
Schrödinger's equation, 58
wave packets, 59
Wave packets, 59
Wave vector, 59
Wet etching, 156
Wet oxidation, 151-152
Wide-swing current mirror, 391
Wien-Bridge oscillator, 445-446

X

X-ray tube, 23

Z

Zener breakdown, 122-123
Zener diodes, 123
Zener voltage regulator
analysis, 25-28
circuit diagram, 25
design example, 29-30
load regulation and line regulation, 28
simulation, 30-31
voltage-current characteristics, 24-25
Zero-nulling resistor, 491; see also
Resistors

ELEGTIONICS BASIC, ANALOG, AND DIGITAL

with PSpice ${ }^{\circ}$

Electronics: Basic, Analog, and Digital with PSpice does more than just make unsubstantiated assertions about electronics. Compared to most current books on the subject, it pays significantly more attention to essential basic electronics and the underlying theory of semiconductors.

In discussing electrical conduction in semiconductors, the author addresses the important but often ignored fundamental and unifying concept of electrochemical potential of current carriers, which is also an instructive link between semiconductor and ionic systems at a time when electrical engineering students are increasingly being exposed to biological systems.

The text presents the background and tools necessary for at least a qualitative understanding of new and projected advances in microelectronics. The author provides helpful PSpice simulations and associated procedures (based on schematic capture, and using OrCAD ${ }^{\circledR}$ 16.0 Demo software), which are available for download. These simulations are explained in considerable detail and integrated throughout the book. The book also includes practical, real-world examples, problems, and other supplementary material, which helps to demystify concepts and relations that many books usually state as facts without offering at least some plausible explanation.

The authors seamlessly integrate discussion of:

- BJT and MOSFET circuits to highlight the common underlying principles, particularly in regard to negative feedback
- Characteristics, advantages, and limitations of GaAs
- State-of-the-art technologies, such as silicon-on-oxide and GeSi
- Power electronics, including power switching and npnp devices

With its focus on fundamental physical concepts and thorough exploration of the behavior of semiconductors, this book enables readers to better understand how electronic devices function and how they are used. The book's introduction briefly reviews the history of electronics and its impact in today's world.

[^0]: * Sabah 2008, pp. 520-530.

[^1]: * Sabah 2008, Section ST18.1, p. 755.

[^2]: * Sabah 2008, pp. 714-723 and Example SE18.2, p. 756.

[^3]: * Sabah 2008, p. 731.

[^4]: * Sabah 2008, Section ST18.2, p. 755.

[^5]: * Sabah 2008, Section ST18.3, p. 755.

[^6]: * Sabah 2008, p. 732.

[^7]: * Sabah 2008, p. 734.

[^8]: * Sabah 2008, p. 735.
 ${ }^{\dagger}$ Sabah 2008, Section ST18.6, p. 756.

[^9]: * Sabah 2008, p. 705 and Example SE18.8, p. 756.

[^10]: $v_{B E(o n)}$, the voltage drop across the forward-biased $\mathrm{J}_{1} p n$ junction, is in the range $0.7-1 \mathrm{~V}$.

