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Foreword

Satellite development worldwide has significantly changed within the last decade and
has been accelerated and optimized by modern simulation tools. The classic method
of developing and testing several models of a satellite and its subsystems with the
aim to build a pre-flight and finally a flight model is being replaced more and more by
a considerably faster and more inexpensive method. The new approach no longer
includes functional test models on entire spacecraft level but a system simulation.
Thus overall project runtimes can be shortened. But also significantly more complex
systems can be managed and success oriented tests on integration and software
level can be realized before the launch.

Applying modern simulation infrastructures already during spacecraft  development
phase, enables the consistent functionality checking of all systems both in detail and
concerning their interaction. Furthermore, they enable checks of the system's proper
functionality,  their  reliability  and  safety  /  redundancy.  But  also  analysis  regarding
aging and lifetime issues can be performed by simulation. Project-related simulations
of  operational  scenarios,  for  example  with  remote  sensing  satellites,  and  the
checking of different operational modes are of similar importance. On the whole, risk
is reduced significantly and the satellite can be produced in a considerably more cost
efficient way, with higher quality and in shorter periods of time.

Therefore "Simulating Spacecraft Systems" - the title of the present book - is an
important domain of modern system engineering, which meanwhile has successfully
established a position in many other sectors of industry and research, too.

For this reason it  was a matter of  particular  concern for the Universität  Stuttgart,
Faculty  of  Aerospace  Engineering,  to  offer  this  subject  as  a  lecture  held  in  two
semesters for prospective engineers. The goal was to achieve a close relation to
industrial  satellite  development  and include demonstrations  in  the  MDVE,  (Model
based development and verification environment), laboratory of the Institute. It is a
big asset for the faculty that Dr. Jens Eickhoff from EADS Astrium GmbH - Satellites
is engaged on this topic. He has combined theory, industrial experience and research
in this very modern sector into his lectureship for many years now.

The  present  book  results  from  several  years  of  lectures,  has  been  consistently
complemented and practical examples have been added. This work is the first book
of  its  kind,  guiding  the  reader  from simulator  application  overview,  adding  detail
sequentially  as  it  teaches  the student  simulator  development,  numerics,  software
technology etc.  The book is equally applicable for students as well  as experts of
many engineering disciplines. It is suitable for introduction and reference in modern
system engineering.

Stuttgart, spring 2009 Prof. Dr. Hans-Peter Röser
Institute of Space Systems
Universität Stuttgart



Preface

This book results from the author's  lectures at  the Universität  Stuttgart.  The idea
comes from a visit by the Institute of Space Systems management team to EADS
Astrium GmbH - Satellites in Friedrichshafen, a key European satellite developer. 

Astrium has been developing a complex system simulation infrastructure for several
years. However, it is difficult for industry to find graduates which are not only well
trained in space engineering but also have adequate knowledge in simulator software
development. The idea was to address this shortfall by giving lectures and workshops
by the author at the Institute of Space Systems, (IRS). These lectures meanwhile
have evolved comprising industry infrastructure visits, tutorials etc. From University
side they are based on according teaching assignments whilst Astrium authorized the
project as an agreed sideline task of the Author.

The decision to write a book on system simulation from the lecture notes originates
because  there  is  indeed  lots  of  technical  literature  on  simulation,  but  all  with
deficiencies for the target audience. There are many books on simulation in control
engineering,  however  tackling  almost  exclusively  special  development  tools.  The
literature on process engineering simulation again mostly concentrates on specific
tools  like  flowsheet  applications.  All  books  known  to  the  author  put  only  little
emphasis on how the simulator development is interwoven with engineering pathway
of the to be simulated target system. Therefore application examples in this book
address this deficit and always explain simulation in the context of the engineering
process towards satellites, space probes and rocket stages.

Another  important  deficit  is,  very  few  books  considering,  that  most  interested
students are beginners in the simulation domain. Such students need to be guided to
receive a proper introduction. This results in a requirement on the author to guide the
reader  on  their  way  from  spacecraft  system  engineering  topics  to  the  system
simulation case,  and beyond to the modeling of  the system inside the simulator.
Finally  arriving at  the deeper  topics of  simulator  coding,  whilst  addressing all  the
caveats along the journey.

Students' responses to the lectures, and the demand for study, diploma and doctoral
theses topics since the beginning of  this IRS /  Astrium cooperation,  clearly  show
great interest in this fascinating subject.  I  hope this book contributes to imparting
background knowledge to the student, enabling them to begin professionally in the
simulation domain.

Immenstaad, May 2009         Jens Eickhoff
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Introduction
As mentioned in the foreword, this book was written to serve as a reference material
for the attendees of the author's lectures at the Institute of Space Systems, (IRS),
Universität Stuttgart, Germany. These lectures cover the topic of "System Simulation
in Satellite Development", parts 1 and 2, and the seminars on "Functional analysis
and on-board Software Design", treating topics also based on simulation tools.

The lecture "System Simulation in  Satellite  Development",  covers two semesters.
This accompanying book contains all information for both sections, parts 1 and 2,
with exception of the tutorials. The summer term lectures cover classical engineering
process  for  spacecraft,  and describes  various  characteristics  of  simulation  based
design verification, and the applied test tools. The focus is on the functional system
simulation, with selected simulation and test tools. These topics are reflected in this
book's part 1 with the chapters 1 to 5.

Figure 1: Simulator technology and the system engineering process.

The winter semester specializes in simulator numerics as well as implementation and
software  technologies  for  such  simulation  systems.  Furthermore,  outlined  will  be
software architecture technologies for the development and verification of complex
simulators.  These topics  are  reflected in  this  book's  part  2,  which comprises the
chapters 6 to 10. The book recapitulates formal functional notation methods like UML
and  explains  the  steps  from  the  identified  function  set  via  software  requirement
documents down to the potential, and the limitations, of spacecraft on-board software
verification and validation via ground based simulation.

Finally in part 3, including the chapters 11 to 14, some advanced and research topics
in the field of spacecraft simulation respectively simulator technology are treated.

Simulator
Technology

System Simula

Spacecraft Engineering 
Process

Simulators in the 
Engineering Process

Simulator
Numerics

tion
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Aside from attendees of the lectures themselves, the book addresses lecturers and
students  looking  for  a  consistent  summary  on  the  state  of  the  art  in  modeling,
simulation  and  spacecraft  testing  in  the  context  of  overall  spacecraft  system
engineering.

The  presented  infrastructure  examples  are  based  either  on  the  "Model-based
Development  and  Verification  Environment",  (MDVE),  from  Astrium  GmbH,  or
alternatively on the open source simulation tool  OpenSimKit. The latter is an open
source tool freely available to download from the Internet [23]. The original version
was coded by the author and it has been enhanced by the developers community
and diverse theses from students of various universities. Code examples from this
source  are  used  due  to  the  compactness  and  simplicity  of  OpenSimKit1 code
compared to professional simulator implementations.

http://www.opensimkit.org

1 OpenSimKit is a registered trademark of the author.

Introduction

OpenSimKit



 1 Complex Systems in Spaceflight
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4 Complex Systems in Spaceflight

Complex systems require detailed system engineering for their design, construction,
verification,  and finally  for  testing  their  completion  and  final  validation.  For  many
years system engineering has been supported by computer based system simulation
techniques. In fact, as early as the Apollo program, NASA and its contractors applied
such  methods.  However  with  today's  significantly  more  powerful  computers  and
sophisticated  software  tools,  one  can  derive  much  greater  performance  from
simulation infrastructures.

Such simulation techniques in principle are used in every industry sector from space,
through  the  automotive  industry  to  plant  manufacturing.  In  every  domain  of  use,
special requirements concerning the design and verification tools are applicable. This
book introduces the techniques for system simulation in the context of "Model-based
System Engineering". Provided real world examples mainly originate from the field of
satellite development. However, the introduced underlying steps of system design,
verification and the provided software methods are of universal use.

The following are some examples of complex systems originating from the field of
space  applications,  which  require  system  simulation  for  their  development.  To
maintain  the  analogy  from  ground  into  space  firstly  all  launch  vehicles  will  be
addressed.

Rocket Launchers

Figure 1.1: Cutaway of an Ariane 5
rocket.  © ESA

     

Figure 1.2: Soyuz launcher.  © ESA
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In the field of launch vehicles such as the Ariane 5, one must consider more than a
significant  number  of  detailed  simulations  needed  for  system development.  Very
complex simulations of the entire system as a whole are required for the verification
of  overall  operational  behavior.  Effects  to  be simulated range from rocket  engine
simulation  to  the  modeling  of  solid  rocket  boosters  down  to  the  functionality  of
trajectory control, stage separation, on-board software and orbit propagation.

Launcher Stages and their Subsystems

A subgroup of the launch vehicles is made up by the different launch vehicle stages.
In the case of deep space probes, the uppermost stage also can be a part of the
probe  itself.  The  aspects,  which  have  to  be  modeled  respectively  for  simulation,
range  from  very  complex  calculations  of  the  engine's  fluid  dynamics  to  the
functionalities of the turbo pumps, the propellant chemistry, thermodynamics, to the
trajectory control and hardware / software thus needed.

Launcher  stages  with  cryogenic  propel-
lants,  used  for  direct  insertion  of  space-
craft  into  desired  orbits,  (e.g.  tele-
communications  satellites),  differ  from
upper stages used for insertion into more
complex  orbits  such  as  polar.  The  latter
type  of  stages  typically  using  reignitable
hypergolic propellants.

Similar  stages  also  are  typically  used
for  deceleration  maneuvers  of  space
probes  after  long  coast  phases  or
insertion into required orbit around the
target celestial body / planet.

Apart from classical expendable launch
vehicles,  next  reusable  launch  and
space  transportation  systems  shall  be
addressed.

Figure 1.3: Ariane 5 upper stage L10. 
  © ESA

Figure 1.4: Medium energetic propulsion
system.
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Space Transportation and Supply Systems

Space  shuttle systems,
as  spaceships  and
carrier capsules, in addi-
tion have to comply with
requirements  concerning
safe reentry in to Earth's
atmosphere.  Manned
shuttle  systems  further-
more  have  to  be
equipped  with  complex
life support systems.

Freight  container  systems  like
the modern "Automated Transfer
Vehicle", (ATV), are part  of  this
supply systems group also. ATV
has  its  own  power  supply
system and is  equipped with  a
fully  autonomous  docking
system in order  to couple itself
to  the  "International  Space
Station", (ISS).

Although the current  version of
the ATV is  a  pure cargo trans-
portation  system,  a  future
manned  version  capable  of
transporting  astronauts  to  the
International  Space Station and
back to Earth is envisaged.

This  directly  leads  to  the
next  –  extremely  deman-
ding  –  category  of  space-
craft  in  a  wider  sense
space stations, respectively
the station modules.

Figure 1.5: Phoenix.  © Astrium

Figure 1.6: Automated Transfer Vehicle.  © ESA

Figure 1.7: Columbus launch with Shuttle.  © NASA / ESA
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Manned Space Laboratories and Auxiliary Systems

Figure 1.8: Columbus module in Space Shuttle bay.  © Astrium

Systems like the International Space Station, (ISS), are of such complexity that it is
not  possible  to  simulate  them  as  a  whole.  For  preliminary  calculations  and  the
analysis  of  dynamical  nominal  and  failure  value  ranges  in  operations,  specific
subsystem simulations are necessary, which have to be correlated at a system level.
This  has  to  be  performed  in  conception  and  design  phases  as  well  as  later  for
monitoring the operational conditions.

Figure 1.9: Columbus module of the International Space Station.  © Astrium
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Typical separately modeled and simulated subsystems are laboratories and auxiliary
systems, as well as life support, power supply and attitude and orbit control systems.

Figure 1.10: Fuel cell power subsystem for
spacecraft.

    

Figure 1.11: Space Shuttle fuel cell.
© NASA

The power supply systems of manned spacecraft in most cases are based on fuel
cells, while the ones of space stations are supplied by a combination of solar arrays,
battery systems and if  necessary,  fuel cell /  Sabatier reactor systems. During the
conception  of  such  systems  not
only complex cybernetic, but also
physical / chemical effects have to
be modeled.  As a  result  a  multi-
tude  of  system  simulations  are
carried out whilst engineering such
systems.

The  same  applies  to  experimen-
ting racks aboard space stations,
which  have  applications  concep-
tions  ranging  from  material
science to biological laboratories.

Figure 1.12: Fluid science laboratory.  ©  ESA
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The  European  space  labora-
tory,  Columbus,  is  already
equipped  with  a  multitude  of
experiment  racks  of  various
types.

Finally  among  the  technical
infrastructure of space stations,
besides the basic infrastructure
like "Attitude and Orbit Control
Systems", (AOCS), power sup-
ply  systems  and  "Environ-
mental  Control  and  Life
Support  Systems",  (ECLSS),
also infrastructural elements for

the  external  maintenance  are
found  –  e.g.  robotic  arms  and
other assembly support systems.
Today  these  are  also  highly
complex,  programmable  and
highly  automated  functional
elements  which require detailed
calculations  and  system
simulation  during  their  develop-
ment.

Finally the essential  category of
spacecraft,  which  make  up  the
largest  number,  should  not  be

overlooked: The research, telecommunications and military satellites, and ultimately
space  probes  which  explore  foreign  planets  and  the  remote  parts  of  the  Solar
System.

Satellites and Space Probes

Satellites  are  equipped
with  complex  attitude
and  orbit  control
systems which,  depen-
ding  on  the  mission,
may  have  extreme  re-
quirements  regarding
their  accuracy.  The
payloads  of  satellites
range  from  radar
systems through optical
systems  to  special
applications  such  as Figure 1.15: MetOp.  © Astrium

Figure 1.13: Columbus inside view.  © Astrium

Figure 1.14: European Robot Arm.  © Astrium
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gradiometers.  Space  probes,  in  addition,  may  have  mission  specific  subsystems
such as radio thermal power generators, or landers which are to be placed safely on
a remote celestial body.

This book concentrates on the system simulation for spacecraft and illustrates most
of the facts and coherences using examples from the domain of satellite develop-
ment – the author's field of work. Nevertheless systems of comparable complexity
can be found in numerous engineering domains, in the field of aviation, plant manu-
facturing, powerplant construction, automotive, and medical engineering. In all such
domains, system simulations are applied for development support  and for system
testing.

Figure 1.16: System simulation in airplane development.  © Airbus S.A.S.

Before  describing  the  simulation  technology  in  more  detail,  the  term "simulation"
should be clarified by a definition:

Simulation is an approach for analyzing a dynamic system for gaining an
insight to its dynamic behavior. Simulation implies conducting experiments
on a model of the system. In the context of simulation the term "simulated
system" refers to the real world system, while the term "simulation model"
refers to an abstraction of the real world system.
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Metop  ©  Astrium
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 2.1 Development Process Phases for Spacecraft

The system development of spacecraft is divided into four developmental phases,
plus an operational phase and - if necessary - a disposal phase, as depicted in the
figure below. The system manufacturer, e.g. of an entire satellite or a subunit, usually
participates in the first four phases as well  as in the start up at the beginning of
phase E. Established during this development process are some important milestone
reviews with the customer (which for a spacecraft usually is a space agency or a
commercial contractor, for a subsystem it is the spacecraft prime contractor).

The  typical  milestones,  their  position  within  the  spacecraft  development  process
together with their abbreviations are outlined in the figure below, too.

Figure 2.1: Phases and milestones in space projects.  Source: ECSS-M30A

Phase A, sometimes including a previous conceptual phase 0, is carried out as a
study. During this phase the spacecraft manufacturer analyzes the requirements for a
satellite in order to accomplish a specific mission with particular quantitative results.
One example is the analysis of requirements for orbit parameters and characteristics
in  order  to  achieve  the  designated  resolution  and  revisit  cycles  with  a  certain
payload. At this point with the "Mission Requirements Review", (MRR), definition of
requirements starts for the the overall system level, which is Level 0 of the "Product
Structure  Plan",  (PSP).  This  implies  design  requirements  for  the  satellite  itself
concerning power supply for the payload, data transfer to ground, attitude and orbit
control and requirements for the power and thermal control systems. This analysis is
initially limited to pure budget analyses, (e.g. necessary battery capacity on board,
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memory capacity  etc.).  The only  exceptions are detailed orbit  and ground station
contact simulations. Phase A is finished by the "Preliminary Requirements Review",
(PRR).

The work  contracts of  phase A are usually  assigned to two or  more competitors
simultaneously, so that the customer, e.g. the space agency, receives at least two
different, independent analyses and concepts worked out for the planned mission.
The customer chooses the best of the received phase A concepts and submits an
"Invitation to Tender", (ITT), for the development phases B, C and D. The phase B/C/
D development is awarded in most cases as one contract to the winner of the B/C/D
tender. This contract usually includes the support of the satellite operations from the
manufacturer at the start of phase E.

During phase B the requirements for the components of a satellite are worked out, for
example

● algorithmic requirements for attitude and orbit control,
● qualitative and quantitative requirements on equipment components and their

design,
● qualitative  and  quantitative  requirements  on  the  entire  system  design

regarding structure, thermal and power control functionality,
● functional and performance requirements on payload and its control,
● and,  last  but  not  least,  technical  requirements  concerning  the  on-board

software.

After the adequate specification of requirements for orbits, system, operational and
payload  functionalities  etc.,  the  "System Requirements  Review",  (SRR),  with  the
customer takes place. The design definition on system level now begins:

● Initial attitude / orbit control algorithms are developed.
● The exact system topology is specified as product structure.
● First CAD drawings and electrical block diagrams are created.
● Furthermore, thermal and mechanical calculations are performed for the first

time.

Phase B is finished with the "Preliminary Design Review", (PDR).
After this review milestone the invitations to tender for equipment subcontractors are
submitted subsequently for development and manufacturing of elements on the lower
PSP levels.

Phase  C  is  in  fact  the  real  definition  phase.  The  design  on  system  level  is
consolidated once again. Components and subsystems are defined at the level of
subcontractors (PSP levels 1 to n). Phase C is completed with the "Critical Design
Review", (CDR). For standard components on subsystem level also first equipment
verifications take place on hardware breadboard or engineering models.

The subsequent phase D is the production phase, which is finished by the completion
of an operational  system, e.g. the satellite.  The final  acceptance milestone is the
"Flight  Acceptance Review",  (FAR).  The complete production must  be finished by
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then.  For  the  spacecraft  prime  contractor  however,  mostly  more  critical  is  the
previous milestone, namely the "Qualification Review", (QR). This review marks the
successful completion of all equipment verification tests, integration tests and system
verification tests. The latter also comprise complex verification in a thermal vacuum
chamber and mechanical vibration tests on a shaker. For QR also all parts must be
space qualified, (e.g. electronic components such as application specific integrated
circuits), as well  as all  applied manufacturing processes for electronics, soldering,
bonding etc.

After phase D, the system is taken into operation (e.g. through launch of a satellite).
And within the operational phase E, the system manufacturer still is bound to support
the spacecraft operating agency during the commissioning phase and the on-orbit
characterization  and  calibration  of  payloads  etc.  For  completeness,  the  disposal
phase F shall be mentioned, which takes place after the operational phase E and
comprises shutdown and eventual de-orbiting of the spacecraft.

 2.2 A System, its Control Functions and their Modeling

A system, except for a few of its passive elements, typically can be abstracted to
control functions and controlled physics. This applies for both entire spacecraft as
well as  subcomponents, for example, a radar payload, a rocket stage etc. Examples
for  entirely passive elements are, for example,  the central  structure of satellites -
without deployable antennae - or sunshields for optical instruments and so forth. The
design analysis for such parts shall not be topic of this book.

Instead the focus of this volume is on system functionalities and control functions
which will  be formally analyzed and modeled. The design and verification of such
functional  systems  these  days  is  mostly  performed  through  applying  system
simulation technologies. In this scope both the physics of the system functions, (w.r.t.
electrics, mechanics, thermodynamics, fluid dynamics etc.),  are to be modeled as
well  as the specifications of the system controllers. These might range from pure
mechanical  controls  to  software  based  applications.  For  this  sort  of  integrated
engineering approach for system physics, plus control technology, typically system
simulations are applied on various levels of  detail.  The technical  criteria for  such
simulations are focusing on

● analysis and simulation of the interaction of all system components,
● resulting  in  the  simulation  of  the  complete  system  as  a  whole,

achieved by modeling of:
◊ System components and their functionality,
◊ Component interfaces and interactions through such connections,
◊ The system's external environment throughout operation.

The level of detail and the complexity of system modeling are driven by questions
raised from the domain of system engineering. Simulation models only reflect the real
equipment  functionally,  which  means,  for  example,  concerning  the  equipment's
communication protocols, its operational modes or power consumption. In functional
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simulations the goal  is  not  to  exactly  reflect  the internal  design of  an equipment
component. Rather, the level of detail in modeling, the modeled effects and on the
other  side  the  resulting  simplifications  in  the  simulation  are  adapted  to  the
requirements and the requested precision. These requirements are driven by the type
of system analyses to be performed with the simulator.

System simulation is characterized by application in different development phases of
the project.  It  is an integrated task inside the domain of system engineering. The
resulting  questions  from  system  engineering  -  such  as  system  performance
verification or system internal failure management verification - impose the boundary
conditions  onto  the  applied  simulation  techniques  in  a  project.  Simulation
technologies nowadays are very advanced, so that entire complex applications like
aircraft, satellites etc. can be developed purely based on simulation techniques. The
former development philosophy to implement,  for example a separate mechanical
prototype  for  a  satellite,  (see  figure  2.7),  and  a  separate  thermal  model  before
assembling the real flight model, is outdated. The old approach also no longer can be
financed  according  to  the  shrinking  mission  budgets  of  private  and  institutional
customers.  The  reduced  number  of  models  however  may  not  endanger  mission
success. Risk mitigation therefore is achieved via

● a system design based on standardized components as far as possible,
● the  simulation  of  elaborated  configurations  before  start  of  hardware

manufacture,
● and an extensive use of simulation techniques to support all important steps of

system design verification, and of "Assembly, Integration and Testing", (AIT).

This  technology  approach  is
called,  "model-based  develop-
ment and verification". CryoSat 1
was  the  first  European  Space
Agency satellite project in which
the  satellite  engineering  model
prototype  was  replaced  entirely
by simulation.

Figure 2.2: CryoSat 1  © ESA

Figure 2.3: Cryosat electrical block diagram.  © Astrium
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At  this  point,  discussing  simulation  based  system  verification,  it  is  relevant  to
precisely define terms "Verification" and "Validation":

● Verification means checking that all defined system requirements, which are
laid  down  in  a  formal  requirements  document,  are  fulfilled.  Proof  can  be
achieved by analysis  computation,  simulations,  tests  and  inspections -  the
appropriate method to be chosen according to the requirement type.

● Validation  is  to  check  that  the  system,  all  in  all,  performs  as  originally
expected - e.g. for a satellite payload, that it provides the images with desired
spacial respectively spectral resolution.

The next paragraphs will start explaining the concepts of system physics simulation
and functions simulation. Thereafter the discussion will lead over to verification and
validation topics and will explain the verification and validation tasks in overall system
engineering  that  can  be  based  on  simulation  technology,  and  tasks  which  need
support by further means.

 2.3 Algorithms, Software and Hardware Development
and Verification

The application and embedding of system simulation within system engineering is
discussed  on  the  basis  of  the  figure  below.  Modern  complex  systems,  such  as
spacecraft, automobiles, airplanes, power plants or other machinery installation these
days are realized as a combination of hardware equipment and software for control.
Figure  2.4 explains the elementary interrelations which are applicable both for the
development of overall  systems as well  as for subsystems, such as satellite pay-
loads.
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Figure 2.4: Functional design and verification.
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The figure depicts the development process as a classic V-model, consisting of the
main branches, design and verification. This V-Model however, in the engineering of
an entire system, breaks down to a set of interlinked V-steps as shown in figure 2.4.
It can be read as follows - from right to left:

● To  be  able  to  verify  the  detailed  requirements  on  the  system  (here  a
spacecraft)  by  system  testing,  a  suitable  target  computer  based  control
software has to be available.

● This means, hardware (HW) / software (SW) integration has to be completed
for this step.

● To  verify  the  proper  HW  /  SW  integration,  already  a  pre-verified  control
software  must  be  available.  In  spacecraft  engineering  this  is  on-board
software.

● And finally to be able to pre-verify the on-board software, for the integrated
control algorithms - e.g. for attitude control - reference data must be available.
The latter come from an algorithm verification campaign, which itself has to be
already completed at that point.

The majority of project management literature only tackles, in a simplified way, design
and verification of system and subsystem, (PSP levels in figure 2.1), as a semi-two
layer  problem.  The  interdependencies  from  algorithm  design  down  to  system
verification as shown in figure 2.4 are not addressed. These interrelations however,
are  essential  for  understanding  which  participant  in  a  project  at  which  time  is
dependent on which input results. Or, formulated vice versa, who in the project will be
pushed onto the critical path in development by delayed input.

Figure 2.4 furthermore points to an important fact concerning system modeling and
verification infrastructures. For verification of any functionality test, infrastructure is
needed,  independent  from the level  being of  simplest  algorithm verification up to
extremely complex top level system tests. So in a system development, a design and
test environment must be foreseen

● for the control algorithms, 
● for transformation of the algorithms into on-board software code (before being

integrated with target hardware),
● for hardware / software integration and finally,
● for  the  entire  system -  here  spacecraft  -  including  its  integrated  on-board

computer.

In the ideal case, all these infrastructures should be based on a common toolkit suite
and  the  results  should  be portable  from one development  step  to  the next.  The
requirements,  functionalities  and  implementation  examples  for  such  an  overall
infrastructure are presented in chapter  3. The verification concept  for a spacecraft
including its on-board software, as shown in figure  2.4, already depicts a stepwise
development principle, which also is applied in many other industries:

● In an initial step, the physics of the system is modeled - in software or as a test
stand -  and the developed control  algorithms are integrated to  control  the
system.  The  algorithms  mostly  are  not  yet  implemented  in  the  target
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programming  language,  neither  on  targeted  hardware.  This  type  of  test  is
called "Algorithm in the Loop“.

● Secondly, the algorithms are coded in software in the target language. The
now available control software is loaded onto the - eventually modified - test
stand, again, to control the system. This type of tests is called "Software in the
Loop“.

● The third  step  is  to  load the  control  software  onto  a  representative  target
computer, which now controls the hybrid test stand. The final software on the
target computer now has simulated system physics. This principle is called
"Controller in the Loop“. The first step of tests is the software integration on
the target computer.

● The fourth  and final  step of  system testing now aims to  make the control
software on the target hardware now control the real system, and no longer
the test stand's system simulation. This deployment phase is called "Hardware
in the Loop“, (HITL). In spacecraft development simulators here are required
for computations of stimuli parameters to reflect gravity-free space conditions.

For all these steps, each time the requirements documentation for the "Item under
Test“  -  the algorithm, the on-board software,  etc.  -  must be written. The principal
verification approaches are to be documented, the design of the item under test is to
be documented and finally test plans for the verification are to be generated and
results are to be collected and analyzed in test reports.

This kind of simulation based system development approach requires fundamentally
new workflow processes to be applied, both concerning applied technology as well
as with respect to project organization and distribution of responsibilities.  In brief,
what is to be managed can be summed up as

● the  integration  of  engineering  disciplines  such  as  mechanics  /  kinematics,
electrics, thermal and system operations / data handling,

● the allocation of a simulator infrastructure responsible to the project. This role
also is called "simulator architect", and the task is to manage the in-time and
requirement  compliant  development  and qualification and installation of  the
simulation infrastructure.

● The tasks to be managed furthermore comprise the consistent application of
simulators, system models, configuration databases and test procedures over
all project phases, (B, C / D, E).

● The  system  design,  simulation  and  verification  environment  has  to  be
standardized as  much as possible  to reuse qualified  elements  in  the next
space project.

● And  finally  a  consolidated  work  process  is  needed  for  the  integrated
development and test of
◊ satellite hardware and software,
◊ system simulator,
◊ check-out software and equipment.

It has to be kept in mind that the functionality of the simulation based test stands has
to be defined, implemented and verified following an analogous process as explained
for the spacecraft itself above.
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 2.4 Functional System Validation

At end of a system development, the goal is to have a validated system design. This
means - see definition of the term, "validation", beforehand - that at system delivery,
launch,  series  production  or  plant  commissioning  it  is  assured,  that  the  system
functions as expected. And this is regarding functionality,  reliability  and especially
performance.

For this validation, either multiple test stands are required - not to be mixed up with
the verification infrastructures discussed in the previous section, since for verification
of system requirements a test stand eventually only needs to comprise parts of the
overall  system.  Alternatively,  also  a  test  operation  of  the  real  system  can  be
performed. In the automobile industry, an example for performance validation would
be testing a new car prototype on a roller  rig following a specified load cycle to
validate the fuel consumption. A real system test could, for example, be a road test
on a test track, a drive under polar or desert climate conditions.

However,  here  exactly  are  where  the  specific  problems  arise  for  spacecraft.  An
automobile prototype which on the test track does not accelerate, brake as desired,
shows insufficient steering control response or otherwise performs inadequately can
be reoptimized before series manufacture starts. E.g. drive train geometry can be
perfected.

Spacecraft  -  and especially Earth observation satellites and deep space probes -
themselves are prototypes. A validation of single major components, e.g. of a radar
payload  in  an  EMC chamber,  usually  is  achievable.  Tests  comprising  the  entire
system  under  real  space  conditions  impose  a  huge  effort.  System  tests  which
typically are still carried out before launch, based on "test stands" are thermal tests in
a thermal vacuum chamber,
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Figure 2.5: Analyses and tests of thermal design.  Cutaway © ESA
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Figure 2.6: Analyses and tests concerning electromagnetic compatibility.  © Astrium

tests concerning electromagnetic compatibility,  (EMC), of  the overall  system in an
EMC chamber as well as tests concerning structural mechanics compatibility to the
load  spectrum  of  the  foreseen  launcher.  These  tests  are  performed  with  the
spacecraft on a shaker.

 

Figure 2.7: Analyses and tests concerning structure mechanics.  Photo © ESA

The validation of functional behavior however, turns out to be a very difficult topic,
e.g. for validation of correctness of attitude and orbit control - as an analog to the
cited driving dynamics test of  an automobile.  For a spacecraft,  the essential  zero
gravity conditions cannot be provided on Earth. Therefore it theoretically is necessary
to work with test stands where attitude and position of the spacecraft can be modeled
geometrically.  On  3-dimensional  turn  table  test  stands  with  mounted  spacecraft
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sensors, e.g. Sun and Earth visibilities for each sensor formerly were simulated by
optical and infrared lamps. Similar setups existed for optical injection of star positions
into star trackers. On these turn tables, at the same time, the angular rate sensors of
the spacecraft could be stimulated.

Figure 2.8: Turn table installation with Sun and Earth simulator.  © Astrium

From  the  figure  of  the  turn  table  installation shown  above  -  which  is  limited  to
stimulation of Sun and Earth sensors of a satellite attitude control system - the test
bench  complexity  already  can  be  estimated.  The  complexity  even  increases  if  a
comparable approach is to be followed for additional attitude sensors, rotational rate
sensors and finally also the for satellite's actuators - eventually even the pyrotechnic
ones. Including all this hardware equipment in a closed-loop verification test stand is
far out of financial mission budgets today.

For this reason, at  least for unmanned spacecraft,  a more pragmatic approach is
followed based on simulation  technologies  as  they are  treated  in  this  book.  The
approach comprises

● the limitation of validation tests on component tests,
● to verify the entire system against its specifications as soon as possible,
● the verification of the on-board software, (OBSW), in a consistent approach

from "Algorithm in the Loop", down to runs on target hardware against real
system components and, 

● to limit the system validation on the test stand types for thermal, mechanical
and EMC as depicted in figures 2.5 to 2.7.

This mitigates the risk of an entirely non functional system, to an acceptable level
and the final performance validation is carried out during the on orbit commissioning
part of the operational phase E. In theory, not before these final tests, the system
design validation is closed and the same applies for the design of all applied test
infrastructures which were used for intermediate verification steps.



 3 Simulation Tools for System Analysis and
Verification

TanDEM-X  © Astrium

 
J. Eickhoff, Simulating Spacecraft Systems, Springer Aerospace Technology 1,  
DOI 10.1007/978-3-642-01276-1_3, © Springer-Verlag Berlin Heidelberg 2009 



24 Simulation Tools for System Analysis and Verification

The main development tasks within the different development phases of spacecraft
are  grouped  together  by  phase  in  the  following  table.  From  these  tasks  the
requirements for the spacecraft development and verification infrastructures can be
derived directly.

Table 3.1: Main tasks in spacecraft development phases.

Phase 0/A Phase B Phase C Phase D Phase E
• Mission analysis
• Development of

system concept
and configuration
alternatives

• Analysis of these
concepts and
configurations,
"system-trade-offs"

• Development of
standardized
documentation for
the selected
variant

• System design
refinement and
design verification

• Development and
verification of
system and
equipment
specifications

• Functional
algorithm design
and performance
verification

• Design support
regarding inter-
faces and budgets

• Subcontracting of
component
manufacturing

• Detailed design of
components and
system layout

• EGSE develop-
ment and test

• On-board software
development and
verification

• Development and
validation of test
procedures

• Unit and
subsystem tests

• Software
verification

• System integration
and tests

• Validation
regarding
operational and
functional
performance

• Development and
verification of flight
procedures

• Ground segment
validation

• Operator training
• Launch
• In-orbit

commissioning
• Payload calibration
• performance

evaluation
• Prime contractor

provides trouble
shooting support
for spacecraft

Phases  0/A  aim  toward  the  development  of  a  system  concept.  Basic  system
characteristics are elaborated and defined here. For a satellite, these comprise the
orbit  definition and decisions on system configurations such as body mounted or
deployable  solar  panels,  etc.  These  tasks  basically  are  design  tasks.  Design
refinements are the main task of phase B, which is completed by finishing the design
at  system  level  and  the  requirements  completion  up  to  the  level  of  detailed
components.  During  these  phases  for  all  physical  design  elements  -  such  as
spacecraft  structure  -  as  well  as  for  the  functions  to  be  implemented  technical
requirement specifications are created.

With  current  technology  one  collects  these  requirements  as  text  modules  in
databases. Later in the project test, documents - such as test plans, procedures and
reports  -  can  be  assigned  to  these  requirement  text  modules.  The requirements
specify which level they need to be verified on component level - by unit tests, on
integration level - via integration tests, or on system level - via system tests. Through
these  test  documents  it  can  be  demonstrated  how  the  requirements  are  to  be
verified.

The subsequent development phases C and D focus on construction and verification
of components and on their integration right up to the complete system. Finally phase
E tasks focus on in-orbit verification of the spacecraft with respect to functionality and
performance.

Here it can be identified that in phases 0/A/B design tools and design simulators are
required. Phases C/D in contrast require tools, which support verification tasks. As
depicted  in  the  table  on  the  next  page,  seven  system  design  and  verification
infrastructure types can be determined - where in the ideal case one should evolve
from the previous.
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Table 3.2: Steps of system development and according infrastructure setups.

1) Conceptualization infrastructure:
Design Offices.
Mission concept analyses, budget
analyses etc. based on spreadsheets.
Orbit analyses and simulations based
on commercial tools.          

2) Design infrastructure:
Discipline specific tools. 
For design of AOCS algorithms, for
control engineering, thermal design,
electrical design, structure analysis.         

3) Algorithm verification infrastructure:
“Algorithm in the Loop“, (FVB).
First complete functional modeling of
satellite and space environment.
Test of control algorithms from 2) within
the simulation reference.
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4) Software verification infrastructure:
“Software in the Loop“, (SVF).
Detailed on-board computer, (OBC),
simulation, allowing on-board software,
(OBSW). Binary execution in an OBC
model within a simulated satellite.
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5) Hybrid verification infrastructure:
“Controller in the Loop“, (STB).
OBC available in hardware.
Test of compatibility between OBC
software with hardware and test of
OBSW with simulated satellite.
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6) Hybrid verification infrastructure:
“Hardware in the Loop“, (EFM).
"Hardware in the Loop" extension up to
the complete HW/SW compatibility with
all equipment.
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7) Simulator for operations support:
Detailed simulation of the satellite.
Connected to the ground station for
operations support.
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Simulation technology in each setup plays a significant but changing role. The first
two infrastructure types shown are conception and  design infrastructures, whereas
those belonging to steps 3-7 are based on a common verification infrastructure. All
these infrastructures depicted in table 3.2 are explained in more detail in the following
subsections.

 3.1 Tools for System Design and Dimensioning

 3.1.1 Tools for System Predesign and Conception

Phase A analyses nowadays are performed based on an optimised, semi-concurrent,
working approach. They take place partly in classic distributed work - every domain
specialist on his own, in his own office - and partly in integrated team sessions in so-
called "Design Offices", open-plan offices with

● orbit / trajectory simulation tools,
● special software infrastructure for

◊ budget analyses for all spacecraft system engineering domains, applying
linked spreadsheet tools and

◊ design  viewing  infrastructure  like  beamers  or  even  3D  visualization
devices,

● databases for analysis results management,
● tools for generation of analysis reports,
● video conference infrastructure for meetings between customer, (e.g. space

agency), and system prime contractor.

Figure 3.1: Satellite Design Office (Astrium Friedrichshafen).  © Astrium
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Such infrastructures are available both at prime contractor sites as well as in space
agencies. Their naming varies accordingly. Some examples are listed here:

● Astrium “Satellite Design Office“.
● ESA “Concurrent Design Facility“.
● NASA / JPL “Project Design Center“.

Budget analyses and orbit analyses respectively, orbit simulations are performed in
such Design Office meetings for conceptual mission design. However, there are no
functional spacecraft simulations performed in this phase of spacecraft development,
since neither the system detailed topology nor any system control functionalities are
yet quantitatively defined.

The following figure outlines the the logic of  a  total  process,  which belongs to a
phase  A system study.  The  chosen  example  is  taken  from  the  Astrium  Satellite
Design Office.

Figure 3.3: Study example for the Satellite Design Office.  © Astrium

Figure 3.2: ESA Concurrent Design Facility.  © ESA / ESTEC
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In  this  example,  the  system  concept  design  takes  two  weeks  including  several
Design Office meetings. Non-technical tasks like risk analyses and report writing are
also  proceeded  in  the  frame  of  these  time  slots.  The  participating  engineering
disciplines typically are:

System RF communication

Payload Power supply

Operations and on-board software Mechanical configuration / structure

Orbit analysis Thermal design

Electrical system and on-board data handling Scheduling and ground operations

AOCS Cost and risk analysis

Propulsion subsystem + SDO sessions moderator

Essential for this approach is the coordinated work process concerning development
logic and sequence and including systematic documentation of all evaluated system
design alternatives and mission concepts which came up throughout such a process.
This documentation is essential for archiving the design variant selection decisions,
selected  concepts  and  discarded  alternatives  to  build  up  a  knowledge-base  for
similar  successor  projects.  Furthermore,  the  concerted  sessions  improve process
efficiency for these, mostly scarcely, financed phase 0/A studies.

Figure 3.4: Examples for design office spreadsheets  © Astrium

With respect to system simulation, in such phase 0/A studies in design offices, only
orbit propagation tools are applied. A widely used application is the “Satellite Toolkit“,
(STK), from Analytical Graphics [7]. Further reading and Internet pages concerning
Design Offices are listed in the according subsection of this book's references annex.
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 3.1.2 Functional System Analysis Tools for Phase B

In phase B simulation tools are applied for the first time in the system engineering
process  for  overall  analysis  and  subsystem  design  analysis.  Besides  tools  for
functional simulation, further analysis tools are applied in the disciplines of structure
mechanics,  thermal  engineering and electric  design.  These include finite  element
method tools,  (FEM),  thermal network solvers etc.  The functional  tools applied in
phase  B  typically  are  commercial  toolboxes  which  comprise  special  libraries  for
control  engineering  and  system  dynamics  engineering.  The  most  widespread
infrastructure of this kind is Matlab2 together with the add-on toolboxes Simulink and
Stateflow. An open source competitor is SciLab and a semi open tool is Modelica,
which also is largely used in automotive industry.

Basic tool technology and an overview on the functionality of such tools is shown
here  through  the  example  of  Matlab  /  Simulink  /  Stateflow.  Further  reading  and
Internet pages on these type of simulation toolkits for system design analysis can be
found in the according subsection of the references annex.

    

Figure 3.5: Matlab user interface.

Matlab  is  a  mathematical  interpreter  for  matrix  and  vector  algebra,  (“Matrix-
Laboratory“). Based on this tool diverse types of mathematical computations can be
carried out. Matlab provides

● global variable definitions,
● extensive functions for standard mathematical operators, especially for vector

and matrix algebra,
● substantial graphical visualization features,
● the interactive computation considering user input and commands,
● the possibility of script-based computations using so-called *.m-Scripts,
● the possible extension of its function scope by shared libraries (Mex), coded in

C/C++,
● and finally, it can be complemented by the simulation and automata toolboxes

Simulink and Stateflow.
2 Matlab, Simulink and Stateflow are registered trademarks of The MathWorks Inc.
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Simulink is a simulation kit  allowing graphical  modeling of  dynamic systems. The
functional elements of a signal flow chain can be assembled from element blocks via
a  mouseclick.  As  well  as  mathematical  operator  blocks,  also  digital  and  analog
visualization blocks can be added to the overall system graph.

Figure 3.6: Assembly of Simulink blocks.

The  vast  commercially  available  libraries  with  standard  elements  for  system
modeling, control theory and engineering are extendible by self programmed function
blocks,  so-called  "S-Functions".  These  can  be  implemented  in  FORTRAN  or  C.
S-Functions can be also grouped and stored in shared libraries. Simulink allows for
the time domain state space system modeling as well as for modeling in the domain
of Laplace transformed signals, the frequency or S-domain.

Figure 3.7:  Simulink module libraries.

The  state  integration  of  the  overall  equation  system is  carried  out  by  integrated
solvers. Simulink provides a large variety of them. Some of these solvers even are
suited for systems with algebraic closed loops.

A further feature of Simulink is the possibility of partitioning systems into subsystems
and  within hierarchical nesting. A block diagram for a very simplified satellite model
is depicted in figure 3.9.

Figure 3.8: Selection of numerical solver.
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Last but not least Stateflow is a functional extension to Matlab and Simulink, which
supports the modeling of system components as finite state machines. These state
machines  also  can  be  hierarchically  nested  like  Simulink  models.  Stateflow
represents the modeled equipment as state machines of Harel type which covers
also  transition  times,  nesting  and  allow  to  model  multiple  cross-functional  state
diagrams within one statechart.

Figure 3.10: Typical modeling granularity for phase B models.  © The MathWorks Inc.
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Figure 3.11: AOCS Simulink functional model - toplevel layer.  © Astrium

The figure above shows the top layer of a satellite attitude and orbit control system
for one operational mode. It is assembled from Simulink and Stateflow blocks. The
explained system analysis tasks performed with tools of this type are classic design
tasks within system engineering. In the above example 

● AOCS controller algorithms and their quantitative characterization 
● as well as the required characteristics for the AOCS sensors and actuators 

are worked out. From the former, later in the engineering process the specifications
for  control  algorithms in  the spacecraft  on-board software are derived.  The latter
serve for required equipment design data flowing into the component specifications
for manufacturing by subcontractors.

Comparable design simulations also are carried out in other spacecraft engineering
domains, however mostly on subsystem and equipment level. For example for power
control unit  simulations in the domains of control engineering and electromagnetic
compatibility carried out to elaborate the specifications for power bus control. Similar
tasks are performed in the design area of high frequency equipment, e.g. for high
performance amplifiers for telecommunication satellites or radar payloads of Earth
observation satellites. Each discipline applies its specific design tools such as AOCS
engineering using the presented Matlab / Simulink / Stateflow Suite [8], electronics
design often uses PSpice3 [11], the designers of fluid systems apply Sinda / Fluint
[12], the designers of ECLS systems use EcosimPro4 etc.

3 PSpice is a trademark of Cadence Design Systems.
4 EcosimPro is a trademark of Empresarios Agrupados A.I.E.
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Besides these example tools for the functional system simulation and design, quite a
significant  number  of  further  analyses  and  dimensioning  computations  are
performed.  However not all of them are focused on the functional system behavior,
but rather for best-case / worst-case scenarios. These comprise for example, thermal
analysis, (e.g. with the tools ESARAD / ESATAN / FHTS), structural mechanics, (e.g.
applying ANSYS5, NASTRAN6), and other fields. Also such best-case / worst-case
analyses  can  cover  dynamic  load  cases  such  as  the  finite  element  analysis  of
behavior of a satellite structure under shock and vibration loads from the launcher.

 3.2 System Verification Tools

After these systems, controllers and equipment have been designed, the first steps of
verification in the system development process are taken. These  range from lowest
equipment and algorithm verifications up to the top level of system verification, which
might concern a complete spacecraft. An AOCS algorithm and a satellite OBSW are
chosen again as an example: The first step would actually be the test of the AOCS
algorithms, which have been designed in the previous chapter. 

As the algorithms are part of the OBSW and are designed to control the spacecraft,
they  should  be  tested  with  the  real  spacecraft.  This  would  result  in  a  typical
"Algorithm in the loop" configuration. As there still is no real spacecraft available at
this  point  in  time,  the  algorithm  can  only  be  pre-verified  against  a  spacecraft
simulation.  The required spacecraft  simulator  is  the first  one of  a whole chain of
verification  simulators.  The  next  one  is  related  to  verification  of  the  OBSW after
coding. The OBSW then contains the AOCS algorithms from the previous step. The
OBSW has also to be verified with a real satellite, which usually is not yet available at
this point. Thus, again a simulation is used to verify the OBSW with a "Software in
the Loop" concept. The next step is the OBSW running on an on-board computer
core ("Controller in the loop") with an appropriate satellite model as periphery. The
OBC core is finally replaced by a full functional on-board computer with all interfaces
("Hardware in the loop"), if applicable with real connected satellite components.

The  system simulators  applied  in  all  these  four  scenarios  should  ideally  have  a
common  technical  basis  to  reduce  the  delta  developments  from  one  simulation
scenario  to  the  next  to  a  technical  minimum.  An  example  for  such  a  modular
simulator  infrastructure covering all verification phase setups red framed in table 3.2
is depicted in the following figure. 

It  is  the  so-called  "Model-based  Development  and  Verification  Environment",
(MDVE), of  Astrium GmbH - Satellites.  The successor system following the same
principle, being applied internationally over all european Astrium - Satellites sites and
in addition featuring a better performing simulator core with additional configuration
databases, is called "Functional Verification Infrastructure", (FVI).

5 ANSYS is a trademark of ANSYS Inc.
6 NASTRAN is a trademark of The MacNeal-Schwendler Corporation (MSC).
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Figure 3.12: Model-based Development & Verification Environment.  © Astrium

The analogies to the components of steps 3 to 7 in table 3.2 are obvious. The core of
the  MDVE  infrastructure  is  the  system  simulator,  which  is  called  a  "Real-Time
Simulator" here. A subassembly of the system simulator is the on-board computer
simulator, "OBC simulator", which models the on-board computer of a satellite7. The
complete  system is  controlled by  a  control  console,  the so-called "Core EGSE"8.
There is an interface between Real-Time Simulator and integrated satellite hardware,
(e.g. real on-board computer instead of simulation), for hybrid bench configurations.
This interface is called "Generic Modular Frontend Equipment" at Astrium. It performs
the data transfer between integrated hardware and simulation, is responsible for the
power supply of integrated hardware and for routing of telecommands and telemetry
between integrated hardware in the loop, namely the on-board computer, and the
control console.

Such a simulator infrastructure is similar to a "LEGO" construction kit and can have
different  peculiarities  in  its  configuration  for  algorithm,  software,  controller  and
"Hardware in the Loop" tests.  These characteristics are explained in the following
subsections.  Therefore  first  it  is  necessary  to  explain,  that  all  these  simulator
configurations  typically  are  based  on  a  standardized  kernel  -  which  for  real-time
capable applications in most cases will be implemented in C or C++ programming
language.  The models which represent the system equipment are coupled to the
kernel.  Using  the  satellite  as  example  again,  the  models  represent  on-board
computers,  sensors,  actuators,  payload,  solar  arrays  etc.  Furthermore,  the
equipment is modeled as occurrences in an object oriented manner. If a satellite has
three star  trackers,  three  star  tracker  model  occurrences  will  be  available  in  the
simulation  and  will  be  coupled  to  the  simulator  kernel.  By  applying  this  object
oriented design concept, each of the three star trackers models can have individual
values for  the same design parameter,  e.g.  for  the mounting position.  The same
concept applies for modeling the functional interfaces, such as data interconnections,
7 In  the  MDVE infrastructure  the  on-board  computer  model  is  a  separate  simulation  application  and  not  an

equipment model like all others. In the more modern FVI all equipment models are treated equally.
8 EGSE stands for "Electrical Ground Support Equipment".
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power  connections  etc.  The  real  interconnections  in  the  spacecraft  also  are
represented as interconnection occurrences of the according type in the simulator.
Besides this  the simulator  kernel  comprises simulation control  functions,  contains
mathematical integrators and is equipped with functions to load in configuration files
at  start-up,  provides  interconnection  to  the  control  console  and  functions  result
logging.

 3.2.1 Functional Verification Bench (FVB)

A first  simulator  of  such  a  kind  is  depicted  in  the  following  figure,  showing  the
configuration  used for  algorithm verification.  This  first  configuration  level  with  the
embedded  algorithms  to  be  tested  usually  is  called  the  "Functional  Verification
Bench",  (FVB).  For  most  spacecraft  projects,  this  bench  is  limited  to  algorithm
verification of the attitude and orbit control system, (AOCS), of the satellite.
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Figure 3.13: Functional Verification Bench – FVB.

Once more using the example of a satellite, this infrastructure consists of

● a  simple  functional  on  board  computer  model  into  which  the  controller
functions - originally developed on Simulink or similar tools - are embedded as
C code,

● functional models of satellite equipment,
● a  numerical  model  of  space  environment  for  the  calculation  of  external

influences  onto  the  simulated  spacecraft,  such  as  thermal  loads,  radiative
pressure, magnetic fields, gravitational fields etc., and a dynamics propagator
in order to integrate attitude and position of the satellite over time.

Data interconnections between simulated OBC, (control algorithms) and equipment
models are established by the transmission of parameters - expressed in engineering
units - via the component interfaces in the FVB. These interfaces do not yet match
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with the later system cabling lines, as there are still no specifications for equipment
hardware interfaces at this point. For example, two analog signals can be sent from
an equipment to the OBC in one design alternative via two separate lines later when
spacecraft design is frozen. They could also be transmitted as calibrated packets via
a serial interface or a  MIL-STD-1553B bus in another design. At time of algorithm
verification on FVB, the spacecraft electrical design is not yet frozen to a level where
data interface types are selected.

In the FVB, mathematical models of system equipment for the first time run on the
simulator reference environment. Therefore,  they have to be converted from tools
used in the functional design phase like Simulink to the corresponding object oriented
simulator code where necessary - mostly into C++. In the case of Simulink this can
partly be achieved by using the so-called "Real-Time Workshop", (RTW), developed
by the Simulink producer  The MathWorks Inc.  The RTW allows transformation of
Simulink  models  to  C  code  which  then  can  be  embedded  into  the  overall  FVB
Simulator C++ architecture.

Furthermore, controller algorithms, (being part of the on-board SW later), do not run
in  Simulink  any  longer.  Instead,  in  the  FVB  they  run  converted  to  the  OBSW
implementation language for the first time, which in most cases is either Ada or, in
newer projects, C. This implies that the "Algorithm in the Loop" already is compiled
and  tested  in  its  target  implementation  language,  although not  yet  on  the  target
operating system nor hardware.

A control console provides the functionality for commanding of both the simulated on-
board computer as well  as the simulator itself  (for actions like simulator start and
stop, parameter report and set as well as for failure injection etc.).

 3.2.2 Software Verification Facility (SVF)

In  the  development  process  of  a  satellite,  the  FVB  is  usually  followed  by
implementation  of  a  so-called  "Software  Verification  Facility",  (SVF).  The
programmed on-board software of the satellite is pretested on this testbench for the
first  time  (cf.  figure  3.14).  Considering  an  on-board  computer  with  a  classical
computer architecture, the on-board software consists of

● the operating system of the on-board computer and,
● the spacecraft system control code, including all control algorithms,
● all interface drivers for input/output interfaces between on-board computer and

satellite equipment,
● and  functions  necessary  to  receive  telecommands  from  ground  and  to

generate satellite telemetry for the ground station.

These software elements have to be tested extensively. In contrast to the FVB, such
an SVF is equipped with a detailed model of the on-board computer, (OBC). In the
SVF's  OBC  simulation  model,  all  components,  including  the  microprocessor  or
"central processing unit", (CPU), are exactly reflected w.r.t. their functionality. The on-
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board  software,  (OBSW),  compiled  for  target  CPU  and  periphery  hardware
architecture can thus be loaded directly into the SVF OBC model and can control the
simulated satellite. This is also applicable for the OBC's basic I/O-system, (BIOS),
boot  software  and  the  operating  system  of  the  on-board  computer.  The  SVF
infrastructure thus corresponds to the "Software in the Loop" implementation step in
the development process. 

Furthermore, the SVF is not only used for on-board software tests in the scope of
attitude / orbit control as it is often the case for the FVB in satellite development. The
SVF  should  enable  control  and  monitoring  of  all  functions  of  the  simulated
spacecraft. For satellites this includes AOCS, platform and payloads - all controlled
by OBSW in the loop. For this reason, numerous additional models have to be added
and functional  model  upgrades are to be implemented compared to the previous
FVB.  This  also  concerns  modeling  of  equipment  interconnections.  In  FVB  for
example, a control algorithm and a sensor model are exchanging data in engineering
units. In the SVF, the OBSW in the OBC communicates with the enhanced model of
the same sensor  via  the real  protocol  which later  in  spacecraft  hardware will  be
transmitted over a real wired connections.

Since the loaded OBSW in the SVF thus controls sensors, actuators, platform and
payload  components  of  the  spacecraft  via  binary  data  protocols,  the  "functional
interfaces"  reflecting  interconnections  of  real  hardware  in  the  spacecraft  in  the
simulator, have to be functionally enhanced compared to their representation in the
FVB.  This  implies  the  data  protocols  on  simulated  lines  have  to  be  modeled,
including aggregation of parameters exchanged via equipment to protocol packets
and  the  modeling  of  calibration  of  raw engineering  value  data  to  protocol  binary
formats - e.g. conversion of a simulated temperature from Kelvin to 16 bit binary. 
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Figure 3.14: Software Verification Facility - SVF.

The connections between non-OBC equipment  models also have to be reflected.
Their functions and their lines not connecting to the OBC, e.g. power lines, have to
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be enhanced to the full system functional representation - compare figure 3.13 and
3.14 for the cross-linking between all types of equipment models.

Today,  such "Software in  the loop" simulations enable the running of  a complete
functional  satellite  simulation  including  on-board  computer  model  and  spacecraft
dynamics propagator on a single powerful PC or laptop. However, for this system
simulation the SVF has to be connected to an adequate control console. This results
from the on-board software being commanded in the simulated system like in the real
spacecraft,  for  example  the  real  satellite  from  the  ground.  Thus  if  the  focus  of
simulation  scenarios  is  on  the  OBSW  overall  system  tests,  the  control  console
replaces the ground station.  However,  if  the focus is  on unit  or  integration tests,
especially the software developers' control console has to provide further features
like debuggers. 

Figure 3.15: Interconnections between control console and simulator.

The connection between the simulated spacecraft and the control console is usually
established  via  the  same  protocol,  which  later  is  used  for  commanding  the  real
spacecraft in operation. Usually this is the CCSDS protocol between ground station
and spacecraft. The OBSW in the simulated satellite thus can be controlled like the
one  in  the  real  satellite,  just  without  a  radio  transmission  link.  The  "Telemetry  /
Telecommand-Frontend"  (TM/TC-FE)  model  depicted  in  the  following  figure
implements the conversion from CCSDS protocol to line signals, which correspond to
those received by the OBC from the spacecraft  transponder.  The control  console
sends CCSDS protocol to the TM/TC-FE model which replaces the real spacecraft
transponder and sends the converted data via simulated lines to the OBC model's
transponder interface. Telemetry to ground passes vice versa from OBC model via
TM/TC-FE model to control console. The protocol definition used for spacecraft and
simulator command specifies the
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● binary packet structure,
● packet header / trailer structure,
● addresses of receiver and sender, (e.g. OBC model or simulator kernel),
● binary coding of raw data in the packet, (with checksums etc.).

In analogy to commanding simulator and simulated spacecraft it is useful to mention
that not only the on-board software of the simulated spacecraft can send telemetry
data "to ground" respectively to the control console. Also simulator telemetry packets
normally  can  be  defined  via  configuration  files.  These  packets  are  automatically
evaluated with the control console processing tools. For each packet type of such
simulator telemetry packets, it can individually be defined which simulator parameters
are included in a packet. The transmission frequency in most cases is individually
selectable  for  the different  packet  types,  too.  For  example,  a  simulator  telemetry
packet can be sent from the "Power Control and Distribution Unit", (PCDU), with its
simulated relay positions to the control  console every 10 seconds by definition. A
packet with thermal data might be sent only every minute. The packet length can
differ too - limits are specified by the CCSDS standard.

The control  consoles usually  applied for  detailed OBSW tests by the developers,
mostly   are  based  on  scripting  languages  which  are  easy  to  handle,  like  Java.
Definitions for satellite telecommands and telemetry and the included parameters as
well as their binary calibrations can be imported into the control consoles mostly via
XML files9 from the project's telecommand / telemetry reference database. Simple
test procedures for the OBSW can be implemented based on these satellite TCs and
Java as interpreted scripting language.

The following screenshot  depicts  a  section of  an OBSW test  procedure.  Without
discussing  the  syntax  of  the  commands  and  constructs  here  the  reader  who  is

9 XML is a markup language for files. Further details are explained in chapter 8.5.

Figure 3.16: SVF with Java-based control console running on a laptop. © Astrium 
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familiar with Java will identify the programming language immediately. This system
setup also enables OBSW debug output if the OBSW was compiled with  a  debug
option for the test. If so, in advanced simulation infrastructures a  debugger can be
connected to the OBC simulator model inside the simulator and thus the output can
be displayed and logged into files and OBSW internal variables are accessible for
tracking and manual override.

Figure 3.17: Java test procedure and example debug output.  © Astrium

Modern  satellite  on-board  computers  nowadays  provide  a  so-called  "Service-
Interface",(SIF). The SIF is usually directly implemented on the CPU board facilitated
by a SpaceWire10 data connection. The OBSW is designed to cyclically send specific
memory  and  register  contents  to  this  Service-Interface  independent  of  whether
anybody is  tracking the output  or  not.  This  SIF output  is  also generated in flight
conditions of the spacecraft later. Under ground conditions, this data can be received,
displayed and logged as hex dumps. Experts can get some central information on the

10SpaceWire is a standard for high-speed links and networks for use onboard spacecraft.  It  is defined in the
European Cooperation for Space Standardization ECSS-E-ST-50-12A standard.
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OBSW operating status from these dumps. This Service-Interface access is  even
available  on  the  launch  pad  for  last  minute  tests  before  launch.  The  electrical
connectors are disconnected just before the start. The code instrumentation for data
output to the Service-Interface remains on board. A modern SVF can display Service-
Interface outputs in the control console, too. As these outputs directly address dumps
of  specific  on-board  computer  memory  and  register  sections,  the  direct  output
however is very cryptic. The following screen dump shows such a SIF output.

A close relative to the SVF for OBSW developers as described above is the SVF for
tests of entire system operation scenarios - see figure  3.19. The central difference
here to the OBSW development SVF is to preferably apply the same control console
as used in real  spacecraft operations and control  later on. Using the example of
satellites,  this  is  the control  software which is  also applied in  the  ground station
including  a  complete  definition  set  of  all  satellite  telecommands and  telemetry
packets, the definition of contained parameters and their calibrations. Such control
consoles additionally enable the definition of synoptic displays, (e.g. one in order to
display all thermal parameters of a satellite, one for required power supply data etc.).

In the frame of hybrid system testbeds described in the following sections, such a
control  console,  besides  system simulator  and  the  OBSW,  has  to  control  further
"Electrical  Ground  Support  Equipment",  (EGSE).  This  central  or  core  console  of
EGSE therefore also is commonly called Core-EGSE. The Core EGSE enables the
definition of control scripts by use of scripting languages which are ideally compatible
to the language used in the control station of the spacecraft later during the mission.

This SVF configuration level with a Core-EGSE as control console is used for the
verification of complex operation scenarios of the entire satellite such as

● closed-loop attitude control scenarios,
● closed-loop orbit control tests,

Figure 3.18: Service Interface hex dump resulting from an OBC test run.  © Astrium
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● power control tests modeling supply, charging and discharging cycles etc. over
several orbits,

● thermal control verification tests,
● payload control verification tests.

The following figure shows such an infrastructure in operation:

Figure 3.19: SVF with Core EGSE.  © Astrium

 3.2.3 Hybrid System Testbed (STB)

The hybrid testbench configuration is used for “Controller in the Loop” tests. For this
purpose  it  often  is  extended  stepwise.  The  following  examples  show  such  a
configuration, again using the example of a satellite simulation and a conventional
on-board  computer.  This  type  of  testbench  is  often  called  "System  Testbench",
(STB).The first stage of expansion is used for hardware / software compatibility tests.
This means that in such a test setup, for the first time in the development process,
the on-board software is loaded onto real OBC hardware. Elementary functions like
booting the on-board software on the real hardware, switching between redundant
hardware instances and telecommand and telemetry handling are tested on this type
of  bench.  A  very  important  aspect  here  is  that  the  previously  applied  SVF
incorporates a functional  model of  the on-board computer,  which was built  purely
based  on  OBC  documentation  from  the  supplier.  The  SVF's  OBC  model
characteristics such as timings of ASICS are only theoretical data since at SVF build
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time, only approximations of the later supplied real  hardware characteristics were
available or could be taken from OBC prototypes. During the hardware / software
testing on an STB, it is evaluated for the first time whether the OBSW is interacting
properly with the ASICS and controller chips in the real hardware OBC.

The following two figures  show the principle  testbench setup for  such HW /  SW
compatibility tests as well as an example of a testbench from the Galileo-IOV project.
The photo shows the OBC breadboard box in the middle, the controller monitors and
the rack for the Power-Frontend and TM/TC-Frontend on the very right side and a PC
to upload the OBSW to the OBC on the left side. The laptop serves as a MIL-STD-
1553B bus tracer / responder to test the outputs and inputs of the OBSW to and from
the main connection of equipment implemented in a later stage of the development.
The control console is located on the right side out of camera sight.

Figure 3.20: STB for HW / SW compatibility tests.

Figure 3.21: Galileo-IOV STB, first stage of extension.  © Astrium
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After the compatibility of the OBSW and the hardware was successfully tested the
loop is closed, leading to the “Controller in the loop” configuration. The OBC-Core is
then  connected to the simulator which is simulating the satellite's equipment, just like
in  the  SVF.  Additionally  the  still  missing  analog,  digital,  serial,  pulse  and  bus
interfaces of the OBC are simulated. Now complex controller functions of the OBSW
can be tested while running partially on the real hardware and connected with the
simulated equipment. The following figure shows such a setup.

Figure 3.22: First “Controller in the Loop” setup.

If at this stage in the project a fully equipped OBC with an I/O-module already is
available,  this  setup  can  be  skipped.  A setup  consisting  of  the  real  OBC  and
simulated equipment can be implemented directly as shown in figure 3.23.

Figure 3.23: STB with complete OBC in the loop.
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This configuration has the advantage that all the I/O-interfaces of the OBC including
their handling by the OBSW can be tested directly, in contrast to the setup of figure
3.22 where the interfaces are only simulated. On the other hand significant effort has
be made to provide all  wirings from the on-board computer to the simulator, (test
harness), and to provide, configure and test all  the simulator interface cards. The
interface equipment marked in green in figure 3.23 above, only depicts symbolically
four connections. In a real OBC / simulator interconnection as with a satellite, the
amount  of  cabling rapidly  increases as shown in the figure below.  The photos in
figure 3.24 show the OBC of CryoSat 1, (black box), and the wiring to the simulator
rack which here still is a relatively simple spacecraft configuration.

In  the case of  more complex spacecraft  systems with  lots  of  interfaces,  the test
harness and the interface hardware – the Simulator-Frontend – also can be much
more complex, as demonstrated in figure 3.25 below. Visible, from left to right are:

● The TC/TM-Frontend next to the window, (partially hidden)
● The rack with the two slots of the breadboard OBC-Core and the OBC I/O-

module
● The interface rack with the cables from the OBC. This Simulator-Frontend rack

also incorporates the load emulator for the current driven interfaces and the
processor boards of the system simulator

● To the very right the Power-Frontend, the electrical power supply of the whole
installation can be identified

Figure 3.24: CryoSat 1 STB  © Astrium
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Besides the effort to verify the test harness and interface card drivers for both setups
figure  3.22 and  3.23 , it has to be mentioned that the system simulator's numerics
now has to serve the interfaces in real time. This means that all data protocols of all
interfaces  have  to  be  processed  in  parallel  which  requires  sufficient  processing
power, a corresponding real time operating system, (normally VxWorks or a real time
capable Linux distribution), and a real time capable data bus system, (in most cases
VMEbus).

Because in the STB configuration all satellite components except for the OBC are still
simulated, this "Controller in the Loop" setup is fully closed-loop capable. This means
that any closed-loop operations scenario of the satellite can still be simulated with
this  setup.   Many  system  tests  which  have  already  been  verified  on  the  fully
developed  SVF  typically  are  replicated  on  such  setups  during  the  “Assembly,
Integration and Testing“, (AIT) program of the satellite.

Figure 3.25: System testbed (Aeolus project).  © Astrium
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 3.2.4 Electrical Functional Model (EFM)

The “Controller in the Loop” setup described in the preceding chapter now can be
extended step by step with further "Hardware in the Loop" components leading to a
fully  deployed  testbed,  which  in  most  cases  is  called  the  “Electrical  Functional
Model”, (EFM).

Figure 3.26: Infrastructure configuration EFM.

The EFM evolves from the hybrid testbed STB by integrating more and more satellite
hardware.  Corresponding  to  the  integration  of  the  real  hardware,  the  simulated
equipment  model  occurrences are removed from the simulator.  To command this
additional  spacecraft  hardware  or  to  externally  stimulate  it,  eventually  additional
equipment may be needed. For example stimulation equipment may be required for
Sun or Earth sensors or star trackers. This additional infrastructure as a whole is
called “Special Checkout Equipment”, (SCOE). It is intended to command the SCOEs
from the same control console so that the satellite's hardware, the simulated system
components and the stimulation of the hardware in the loop via the SCOE can be
commanded by means of test scripts from a single source.

Such configurations  of  OBC,  additional  hardware in  the loop,  cabling and stimuli
equipment often are integrated and tested as an arrangement on a table,  thus in
satellite  engineering  they  are  named  “FlatSat”.  The  following  panorama  image
arrangement  shows  such  a  setup  for  the  avionics  subsystem of  the  Galileo-IOV
satellites.  The  system components  of  the  other  subsystems,  (Power,  Propulsion,
Payload), are still simulated in this configuration.
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On  the  very  right  side  of  the  picture  the  Simulator-Frontend  is  visible,  which
incorporates the satellite simulation. Slightly right of the photo center the OBC - black
cube box on the table - is visible with the connected harness on its rear side. The
harness is connected to the breakout brackets where either the signal can be routed
with  a  delta  harness  towards  the  simulator  or  directly  towards  the  real  satellite
equipment. On the table the four reaction wheels can be identified on the left side,
left of the center the Sun sensors and attached to the vertical plate the fiber-optic
gyroscope – capable of measuring the Earth's rotational rate for testing purposes in
this position. Behind the OBC one can see the power supply of the hardware and the
Test-SCOE for the Earth sensor stimulation.

Figure 3.28: CryoSat 1 FlatSat assembly.  © Astrium

Figure 3.27: Galileo-IOV avionics EFM setup.



System Verification Tools 49

An example of an EFM setup for a whole satellite including payload electronics and
so on is given in the figure 3.28 originating from the CryoSat 1 project above. After
successfully passing all tests in the EFM configuration, the satellite components are
integrated into the prepared satellite structure.

Finalizing  integration  work  is  done  afterwards,  integration  tests  are  conducted  at
entire system level  and the thermal isolation is completed.  The functional  system
verification according to figure 2.4 is completed with these steps.

Figure 3.30: CryoSat 2 
Final assembly steps. 
© Astrium

Figure 3.29: Mounting functional equipment from FlatSat into satellite structure.
© Astrium
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The physical  design validation follows.  For  satellites,  this  normally  comprises the
thermal  vacuum tests,  (cf.  figure  2.5),  the  electromagnetic  compatibility  tests,  (cf.
figure 2.6), and the structure and mechanics tests, (cf. figure 2.7). The infrastructure
needed  for  such  tests  normally  is  not  available  at  the  spacecraft  manufacturing
premises  but  is  located  in  special  facilities  owned  by  the  space  agencies  or
specialized technical service providers, (for example ESA / ESTEC, IABG, CNES).
Therefore the satellite has to be shipped to the corresponding facilities in order to
conduct the final design validation tests.

Figure 3.31: CryoSat 2
preparations for transport.
© Astrium
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 3.2.5 Spacecraft Simulator for Operations Support

Detailed complete system simulators resulting from the development chain described
above  can  finally  be  applied  to  support  spacecraft  system operations.  The  SVF
configuration is the most appropriate setup. It can be modified such that the control
console is replaced by the flight operations system installed in the spacecraft ground
station. The SVF simulator's interfaces and the data protocols between the simulator
and the control console already are implemented to be compatible with the control
system of the ground station as was described in 3.2.2. The resulting simulator setup
in the ground station can be used for

● training of the spacecraft operations staff, and for,
● tests  of  OBSW  patches  and  bug  fixes  on  the  simulator  before  they  are

uplinked to the real spacecraft.

Figure 3.32: System simulator for spacecraft operations support.

The acceptance of such simulators originating from spacecraft system development
largely  varies  from space  agency  to  space  agency.  Some are  using  the  system
simulators,  (like  in  case  of  the  TerraSAR-X  MDVE applied  by  DLR /  GSOC for
satellite operation), with the argument that such a simulator has already passed a
comprehensive verification process and has a very good validation quality.

The  "ESA Space  Operations  Center",  (ESOC),  typically  does  not  accept  system
simulators from the development cycle because of their philosophy to use only tools
for operations support which are independently developed. This approach minimizes
the risk of  potential  inherent development  process errors and such errors can be
spotted during operation. For this reason the ESOC has developed its own system
simulation infrastructure called SIMSAT - see e.g. [20].
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Figure 3.33: The system simulation environment SIMSAT by ESOC.  © ESA / ESOC

 3.3 Infrastructure History

The development principle from “Algorithm in the Loop” to “Hardware in the Loop”
has been state of the art for years in nearly all fields of engineering for controller
development  –  from  mechanical  engineering  to  automotive  and  aerospace
engineering.  However  this  applies  only  for  development  of  system  controllers
themselves. The functional design and verification of entire systems as a whole is a
fairly  new  application  for  simulation  infrastructures,  especially  in  the  field  of
spacecraft  development.  This is due to the fact that suitable techniques to model
entire  systems  within  a  simulation  software  had  to  be  developed  first  and  the
numerics  and  performance  of  the  computers  had  to  be  available  for  simulating
complex systems. In the European space industry, Astrium has established itself in
this area with technically up-to-date solutions over the last 10 years. The first satellite
simulator  was  developed  from  1998  to  1999  in  the  ESA case  study  “System
Simulation & Verification Facility”, (SSVF), in a cooperation between VEGA Space
Systems  Engineering,  Darmstadt  and  Daimler-Benz  Aerospace,  Friedrichshafen
(today Astrium GmbH). The simulator was based on a commercial FORTRAN tool
and was used in STB configuration for the NASA “Grace” project from 1999 to 2001.
This was the first time AOCS closed loop test where conducted as real-time tests with
hardware  in  the  loop  and  simulated  spacecraft.  Later  in  2002,  this  tool  was
developed further and was used for “Grace” operations support at NASA/JPL and
GSOC.  Based  on  the  lessons  learned,  confirming  the  technical  approach  but
pinpointing the insufficiency of FORTRAN77 in respect to simulator design, based on
the findings of a dissertation at the TUHH11 and the “Small Satellite Simulator” case

11ObjectSim 2.0 today is Open Source → http:/www.OpenSimKit.de, see [120] and [23]
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study of  the DLR, the MDVE simulator  kernel  was implemented by Astrium. The
software design was performed based on the Unified Modeling Language, (UML),
and  the  code  platform  since  then  is  C++.  These  software  technologies  will  be
described in later chapters in more detail. The infrastructure was first deployed in the
ESA project CryoSat-1 from 2001 to 2003. For CryoSat-1 testbench installation types
covered SVF, STB and EFM FlatSat. This project was the first ESA satellite project
where no spacecraft engineering model on system level was implemented. Based on
this milestone the model-based system development technology found its way into
more and more follow-up projects, a fact which is illustrated in the following figure.
The figure also illustrates the development of the testbench design from project to
project. Up to now 11 satellite projects, (including SSVF / GRACE), of Astrium GmbH
were based on the model based simulation and verification technology. The Astrium
in-house developed toolkit  was called "Model-based Development and Verification
Environment", (MDVE). In the meantime this has been transnationally harmonized
with a complementary technology “SimWare” [17] from Astrium S.A.S. applied in the
CNES Pleijades project. The resulting next generation tool suite called “SimTG” [19]
is for the first time applied in the ESA Mercury Science Mission "Bepi Colombo". In
the  meantime  this  technology  also  is  used  in  other  areas  such  as  in  space
transportation  and  similar  infrastructures  like  "Eurosim"  [18]  and  have  been
developed by other companies.

Figure 3.34: Gradual extension of the simulation technology.

For a first simplified overview it can be summarized that in satellite engineering the
model and simulator based development technology has successfully replaced the
historic  approach  of  building  an  engineering  model  on  spacecraft  level.  This
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● Dynamical modeling of spacecraft for operations simulation on a detailed level

● Simulation  based  development  forcing  the  development  team,  (including
subcontractors), to freeze system component interfaces and the operational
behavior in an early stage and in a consistent way

● An appropriate concept of the simulation infrastructure which enables:
◊ The early functional system simulations – “Algorithm in the Loop” – before

spacecraft HW and SW are available.
◊ To  provide  a  comfortable  platform  for  development  and  testing  of  the

OBSW (Control software + Operating System + BIOS).
◊ Early tests of the OBSW, (prior to the availability of OBC hardware)
◊ To a large extent the verification of the OBSW on an SVF, (without need for

access to the flight hardware while testing).
◊ Tests of the hardware and software interaction can be conducted on the

HW as soon as it is available.
◊ Reuse of the simulator in the ground station for operator training and as a

software maintenance facility is possible if requested by the customer.

Further  reading  describing  verification  testbeds  in  more  detail  is  provided  in  the
according subsection of this book's references annex. The same applies for literature
on use of simulation infrastructure in ground stations.



 4 Testbench Components in Detail

On-board Computer Model in a Testbed  ©  Astrium
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The detailed description of test and simulation facility components is the subject of
the following section. It begins with the more non-central elements to subsequently
lead over to the central simulator kernel, the models and to numeric topics. In this
flow the control consoles of are first treated.

 4.1 Control Consoles

Already in chapter 3.2.2 it was explained that simulator infrastructures are applied for
various tasks,  namely on-board software unit  and integration tests as well  as for
complete system tests. As was further explained, the control console in such setups
has to operate both the spacecraft  on-board computer  and the simulation,  which
means it must provide interfaces to both of them, (cf. figure 3.15). The required OBC
service  interface  and  the  necessity  for  visualization  of  OBSW  log  data  output
synchronous to general OBSW telemetry respectively with simulator telemetry also
have already been mentioned. In "Controller in the Loop" and respectively "Hardware
in the Loop" scenarios the console moreover has not only to manage the OBSW on
the OBC and to control the simulator. It must in addition be able to command other
special checkout equipment, (SCOE), like Power-Frontend, TC/TM-Frontend, sensor
stimulation equipment, eventually measurement data recording systems for actuators
or the like. The communication between control console and connected spacecraft,
simulator or SCOE equipment typically is established all via the same communication
protocol - the one which later also applies for communication between ground and
spacecraft. This is the international standardized packet oriented CCSDS12 protocol.
ESA / DLR projects apply the "Packet Utilization Standard", (PUS), which is a service
based system control technique based on top of the CCSDS packets. In most cases
either special  Core EGSE tools are used as the testbench control console, or the
testbench is commanded by the same tool later applied for spacecraft flight control,
i.e. a mission control system which is suitable also for application as Core EGSE.

A Core EGSE system has to provide all required functions for sequential control of
tests, (execution of test procedures), for result  and data visualization and for test
documentation / logging, (data base). The following figure 4.1 shows the conceptual
internal structure of such a machine. At the top of the schematic, the user interface or
"Man Machine Interface", (MMI), is depicted with its different kinds of display types
(cf. figures 4.2, 4.3 and 4.4). Referring to figure 4.1 commands - including parameter
values - can be sent from the user interface passing several processing steps down
the right yellow path and proceeding via the LAN towards the addressee, (spacecraft,
simulator,  SCOE, etc).  The telemetry of  these units is also received via LAN and
processed up through the left yellow path. Incoming packets are sorted by type. Then
their parameter values are read out and forwarded to the MMI displays. Besides pure
visualization TM is  checked against  specified limits  and the command procedure
executor  in  the control  console  also  can react  to  telemetry parameter  values.  All
known  telecommand  and  telemetry  packets,  their  structure  and  parameters  are
contained in the database, (bottom middle of figure 4.1). Based on the TC and TM
packets defined in this database, the user can write test scripts in a script language
12CCSDS is the Consultative Committee for Space Data Systems (CCSDS).
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which  enable  one  to  send  commands  and  analyze  incoming  telemetry.  Script
processing is performed by the test executor marked in orange in figure 4.1.

Figure 4.1: Internal architecture of a Core EGSE.  © Astrium

Three major systems have established as Core EGSEs in Europe. These are:

● Diverse variants of the Spacecraft Control and Operation System SCOS 2000,
ESA / ESOC, Darmstadt, (cf. figure 4.2).
The basic version, as "Spacecraft Control & Operation System", is free for use
in projects in ESA member states, however for full functionality in spacecraft
checkout and testbenches it requires commercial upgrades such as those in
the projects TerraSAR-X and Galileo-IOV.
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● The second one to  be discussed is  the Central  Checkout  System,  (CCS),
formerly called Columbus Ground System, (CGS) of Astrium GmbH, Bremen,
(cf. Figure 4.3).

● The  third  type  designed  for  satellite  checkout  is  OpenCenter,  by  Astrium
S.A.S., Toulouse, (cf. figure 4.4).

User interface screenshots of all three systems are provided on the following pages.

Figure 4.2: Control Console MMI: SCOS 2000.
Application example: IRS, Universität Stuttgart
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Figure 4.3: 
Control Console MMI:
Example CCS.  
© Astrium
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Figure 4.4: 
Control Console MMI:
Example Open Center.
© Astrium
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Almost  all  Core  EGSE systems  support  the  user  by  graphical  editors  to  create
displays for visualization of requested parameter values. The display types also are
selectable, e.g.

● curve plot displays,
● alphanumeric displays,
● bar charts.

Such  visualization  windows  are  called  "synoptic  displays"  or  "synoptics".  One  of
these displays is usually created per spacecraft subassembly. For examples please
refer to the CCS screenshot provided in figure 4.3.

 4.2 Test Procedure Editors and Interpreters

Directly related to these Core EGSE systems are  test  procedure editors and  test
procedure interpreters which are needed for procedure definition and execution. The
most important test procedure languages in Europe are:

● UCL - command language of CCS,
● ELIZA - command language of OpenCenter,
● TCL13 -  command  language  of  SCOS-2000  /  with  the  TOPE  procedure

interpreter, and
● Pluto  -  command  language  of  SCOS-2000  /  with  the  Apex  procedure

interpreter.

The  required  functional  scope  leads  to  languages  which  fulfill  all  necessities  for
control of tests, reaction to incoming telemetry, reaction to user interactions etc., but
on the other  hand it  makes most  languages similarly  challenging to  handle  as a
conventional  programming  language.  Therefore,  graphical  tools,  e.g.  the
"Manufacturing and Operations Information System", (MOIS) [132]), have appeared
on the market which

● allow to edit test procedures graphically via flowcharts,
● to provide for each procedure step input masks for the user to add diverse

detail information using a text-based view,
● allow direct generation of the test procedure code in the desired test language,

(UCL, TCL, ELIZA, Pluto), and
● provide an integrated procedure execution engine which can be coupled to the

Core EGSEs.

The  TM  and  TC  packet  definitions  have  to  be  defined  in  the  control  console's
database and the test procedure engine then allows to subsequently execute the
steps of a test procedure inside the control console via an appropriate interface. In
the  following  figures  some screenshots  can  be  found  demonstrating  editing  and
execution of a test procedure with the MOIS tool from Rhea Group.
13The "Tool Command Language", (TCL), used by one SCOS-2000 version is widespread and also is used by

many other applications [131].
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Figure 4.5-A: Definition of procedure logic and details with a flowcharter. 
Application example: IRS, Universität Stuttgart.
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Figure 4.5-B: 
Application example: IRS, Universität Stuttgart.
Tracing of procedure execution with a "validator".
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Figure 4.6-A: ecraft.
Application example: IRS, Universität Stuttgart.

Command log of simulator and simulated spac
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Figure 4.6-B: Parameter ecraft.
Application example: IRS, Universität Stuttgart.

values of simulated spac
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 4.3 Special Checkout Equipment

SCOE Example: Power-Frontend

A  typical  "Special  Checkout  Equipment",
(SCOE),  of  a  hybrid  testbench  is  a  power
supply system. To differentiate from standard
laboratory  power  supplies,  the  testbench
supply  usually  is  called  the  "Power-
Frontend".  It  supplies  all  “Hardware  in  the
Loop”  units  of  the testbench,  e.g.  an OBC
with  power.  Depending  on  the  project
complexity such a Power-Frontend is either
controlled manually  or  can be commanded
by Core EGSE, which is the usual case.

The example shown on the right represents
a  complex  Power-Frontend as used in  the
Galileo-IOV  project.  It  is  commanded  via
Core  EGSE  and  has  14  direct  current
regulated outputs with 50V respectively 28V.
Each  circuit  is  individually  monitored
concerning  overvoltage and undervoltage and provides  overcurrent  protection  via
latch-up current limiters. The settings are also controllable by commands from the
Core EGSE. The output currents are precisely filtered and optimally decoupled from
main power network influences by complex circuitries.

SCOE Example: TM/TC-Frontend

Another  standard  SCOE  equipment  is  the  so-called  "TM/TC-Frontend".  It  is
necessary  since telecommands are sent to the spacecraft in a real flight mission
from the  Mission  Control  Center  as  packets  following  the  CCSDS/PUS structure
mentioned previously. For technical constraints in radio transmission and bandwidth,
these  packets  are  segmented  and  framed  with  additional  checksums.  They  are
transmitted  to  the  satellite  in  manageable  parts,  the  so-called  "CLTUs"14.  An
acknowledgment is sent back to the ground. The on-board computer receives these
CLTU data from its transponder and hence not the original CCSDS / PUS packets
sent by the Mission Control Center, (cf. also figure 5.2). The way back from the on-
board computer is similar. Frames are transferred to the transponder, which sends
so-called "CADUs"15 to the ground. The CADUs are reassembled to segments and
packets there and handed to the Mission Control Center.

In a testbench, the Mission Control Center is replaced by the Core EGSE. Both are
compatible to the same protocol, (CCSDS / PUS). Both cases involve a real on-board

14CLTU stands for Command Link Transmission Unit.
15CADU stands for Channel Access Data Unit.

Figure 4.7: Power Frontend.
  © Satellite Services B.V.
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computer. However, what is missing between the Core EGSE and the OBC is the RF-
link and the transponder equipment. The TM/TC-Frontend here replaces these two
missing links in the TC and TM chain and performs the required telecommand and
telemetry  reformatting  between  OBC  and  Core  EGSE.  Furthermore,  it  enables
logging  and  debugging  of  data  exchange  between  on-board  computer  and  Core
EGSE via various editors and debugging functions.

Figure 4.8: TM/TC-Frontend.  © Satellite Services B.V.

SCOE Example:   Stimulation Equipment   for Sensors  

Hybrid test benches enable two main types of “Hardware in the Loop” tests which
include more equipment than the OBC. On one hand, there are the so-called "open
loop"  tests.  For  example,  real  spacecraft  sensors  or  actuators  or  payload  are
connected to the on-board computer via harness. Initial tests only target to evaluate
whether

● the equipment can be controlled correctly and,
● the  on-board  computer  receives  all  acquisition  data  and  status  telemetry

without errors from the equipment.

Furthermore, it is tested whether the equipment occurrences are connected correctly
to the on-board computer ports, for example:

● OBC port A being connected to the solar-array-drive for the +Y solar panel,
and

● OBC port B being connected to the solar-array-drive for the -Y panel.
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For a subset of critical sensors it might be necessary to stimulate them dynamically
and quantitatively, to measure whether the entire system control loop with OBC and
sensor in the loop operates as desired. Depending on the different sensor types,
various stimulation equipment is required for each.

The following figure shows a detail from the testbed shown in figure 3.27 namely the
stimulation system for a satellite Earth sensor. The Earth sensor, (on the left side), is
stimulated  by  infrared  Earth  albedo  radiation  using  a  black-body  bolometer.  The
sensor position can be controlled dynamically during test from the control console via
an electrically commandable two axis gimbal.

Figure 4.9: Earth sensor test rig.  © Astrium

In  a  further  automated  configuration  level,  the  system simulator  can  be  used  to
calculate  attitude and position  of  the  spacecraft.  With  this  information in  the test
setup depicted  above,  the Earth position detected by  e.g.  Earth sensor  1  of  the
spacecraft can be provided by the simulator and the corresponding control of the test
rig can be applied. The OBC then receives the measured signals from the real Earth
sensor as if it  were in Earth orbit. The OBSW returns them to the  attitude control
cycle.

The stimulations and / or measure-
ment infrastructures for such closed-
loop  tests  can  completely
differentiate between the spacecraft
system  types  under  test.  Their
functionalities are individually deter-
mined by the definition of tests which
are to be run on the installation. The
figure  on  the  right  shows,  as
counterpart to the sensor stimulation
mentioned  above,  an  actuator  test
bench for  the  ATV (see figure  1.6)
propulsion system.

Figure 4.10: Propulsion test bench.  © Astrium
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 4.4 Simulator-Frontend Equipment

The  "Simulator-Frontend"  equipment  serves  to  connect  the  on-board  hardware,
(usually the "Controller-in-the-Loop"), with the still simulated rest of the spacecraft. It
is  depicted in  the figures  3.22 and  3.23 as  a layer  marked green.  The depicted
harness  lines  connect  the  simulator  with  the  on-board  computer.  The  Simulator-
Frontend initially consists of a set of interface cards, which serve to transfer signals
from the real spacecraft OBC to the system simulator respectively to return simulated
data to the OBC. Since in such a “Hardware in the Loop” configuration the simulator
has to respond in real time and thus has to run on a real-time operating system, also
the data bus system for interface cards has also to provide real time data transfer
features, (e.g. VMEbus).

Figure 4.11 is a photo of an example
VMEbus  card.  The  card  drivers  run
as  separate  tasks  on  the  simulator
computer's  operating  system.  The
cards  are  also  partially  active
meaning they have their own control
and  processing  intelligence,  usually
coded on FPGA chips.

The  large  number  of  interfaces  and
thus interface cards applied in a total
system  simulation  are  visualized  in
Simulator-Frontend  rack  photos
comprised in figures 3.24, (on the left
side  of  the  bottom  part),  3.25,  (the
central rack with the large number of
incoming cables),  and  3.27,  (on the
right side of the figure).

The following figure 4.12 provides an
impression  on  typical  registers,
converter  chips  etc.  being  part  of  a
simple  interface  card using  the

example of an analog-to-digital converter board. The port connected to the on-board
computer analog output is depicted on the left side. On the right the simulation is
indicated which receives the converted signal now in digital form - which might for
example  be  necessary  for  the  according  equipment  model  in  the  simulator  to
calculate its rotational speed and torque. The VMEbus is displayed between the gray
area "A/D I/F Card" depicting the components on the card and the "CPU board"
representing the computer target hardware of the satellite simulation.

Figure 4.11: Example for a Simulator-
Frontend interface card.  Photo © Astrium
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Figure 4.12: Schematic diagram of an interface card, (A/D), with card driver.
  © Satellite Services B.V.

The test harness belongs directly to the Simulator-Frontends. It is necessary in order
to connect the spacecraft OBC to the Simulator-Frontend. The figures 3.24, 3.25 and
3.27 also give an optical impression of the complexity of these test harnesses. This
enables a grasp of the effort for their definition, production and separate verification.
Another point not be neglected is that the interface cards, the test harness and the
hardware interface on the on-board computer side have to be electrically compatible.
This involves substantial effort regarding engineering, design of electrical input/output
characteristics down to corresponding signal compatibility measurements. Depending
on interface types, the signals may need to be verified with respect to levels, pulse
durations, edge angles and protocol sequences. The following two figures, just for
illustration,  show  typical  circuit  designs  taken  from  design  documents  of  such
Simulator-Frontend cards.

Figure 4.13: Electronic circuit design of an analog frontend-card.  
 © Satellite Services B.V.
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The  first  one  is  a  conventional  electronic  circuit  for  analog  signal  transmission
between signal source (OBC) on the left side, line connection in the middle and card
electronics on the right side. The simulator card driver software has to access the
analog-to-digital converter, (ADC), of these electronics.

The second circuit diagram shows another typical case: An interface which is used by
the  OBC  to  control  a  power  consumer  in  the  real  system,  (e.g.  a  pulsed
magnetotorquer).  However,  the simulator does not  provide an electrical  consumer
load.  Therefore,  a  pre-connected  so-called  "Load  Emulator  Unit",  (LEU),  has  to
generate a voltage output from this current for input to a Simulator-Frontend card. In
the figure the LEU is depicted on the left,  the conventional Pulse type Simulator-
Frontend card is shown in the center.

These conversions are still of quite simple nature but there might be other electrical
effects to emulate, for example the impedances of electrical coils and similar effects.
Already  from these  simple  examples,  it  can  be  deduced,  that  system simulation
cannot be limited to the fields of informatics or numerical mathematics, but especially
in the case of hybrid test benches, the electrical design of the testbench significantly
influences the performance and quality of the simulation. The effort for design and
implementation of the Simulator-Frontend defines the critical path of the “Controller /
Hardware in the Loop” testbeds in a space project. This results from the complexity of
the  definition  and  verification  of  the  Simulator-Frontend.  The configuration  of  the
simulator  software  on  the  rack  defines  the  availability  date  of  the  testbench  for
application in spacecraft assembly, integration and testing, (AIT).

Another  function  of  the  Simulator-Frontend  to  be  discussed  is  to  assure  clock
synchronicity between the real spacecraft controller, (OBC), and the simulator. If the
clocks of simulator and real controller are slowly drifting apart this can induce both
numerical problems in longterm tests as well as transmission errors in data protocols.
The OBC for example in such cases might read outdated data from the simulator, no
data  available  at  the  interface  or  similar  effects  may  occur.  To  prevent  this  the

Figure 4.14: Frontend-card with upstream load emulation.  
© Satellite Services B.V.
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Simulator-Frontend typically is equipped with a pulse generator card which provides
an  external  signal  to  synchronize  the  OBC and  an  internal  strobe  signal  to  the
simulator. This practice allows very precise synchronization of the two components of
the system testbed. The absolute time reference of the testbench may in the case of
special “Hardware in the Loop” configurations be provided via network time protocol,
(NTP), a GPS-Receiver or other.

 4.5 Spacecraft Simulators

The central component of the testbenches of such a development infrastructure is
the spacecraft simulator – in the configurations of table  3.2 marked in yellow. The
spacecraft  simulator  is  modeling  the  operational  and  functional  behavior  of  the
satellite. It integrates all technical disciplines such as

● the data exchange between equipment models,
● modeling of system environmental physics - in the case of a satellite including

the  satellite's  body  dynamics  and  the  mechanical,  electrical  and  magnetic
influences from environment onto the spacecraft,

● and finally modeling the physics inside the system, (in the case of a satellite
for example, the satellite's thermal behavior, the electric behavior and so on).

The spacecraft simulator incorporates the models of all the spacecraft's components.
These components are modeled in such detail  that it  is possible to simulate both
nominal operating modes as well as failure modes. The failure functionalities inside
the equipment models allow a consistent reproduction of failure symptoms of the real
spacecraft  components  for  tests  of  the  on-board  software.  Modeled  system
components of a satellite are for example:

● The equipment of the attitude and orbit control system, (AOCS)
● The payloads, (normally not covering simulation of the payload science data)
● The power and energy supply system
● The telecommunication equipment

In addition a functional representation of the spacecraft on-board harness is included
in the simulation comprising

● power supply harness, and
● signal harness reflecting analog, digital and data bus connections between on-

board equipment.

The figure 3.14 depicts a satellite simulator in “Software in the Loop” configuration. It
is visible how the topology of the real spacecraft is modeled by equipment models,
the simulated harness between them and the harness to the on-board computer.
Figure 3.23 shows the satellite simulator in a “Controller in the Loop” configuration.
The satellite's simulated equipment is connected by means of the simulated harness
to the interface cards and the card drivers of the Simulator-Frontend equipment. The
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real test harness routing the electronic signals to / from the real on-board computer
connects to the in and outputs of the Simulator-Frontend cards.

The simulator itself has to be capable of integrating the system's behavior in the time
domain  by  means  of  a  central  numerical  solver.  In  the  case  of  thermal  or  fluid
dynamic systems, the solver additionally has to be capable of handling boundary
conditions imposed by the numerical system description. The same applies for the
simulation of detailed thermal system behavior and the simulation of power networks.
The  simulator kernel can be, (if necessary with functional extensions), reused over
diverse  spacecraft  projects  since  this  core  set  of  numerics,  model  scheduling
functions and interface to a control console is project independent. The models of the
spacecraft components – for example models of satellite equipment – can also be
reused, under the condition that the equipment as well as the operating conditions
are the same in both systems.

Since  the  simulator  for  hybrid  testbench  configurations  has  to  be  connected  to
"Hardware in the Loop" and thus has to provide real-time input / output behavior, it is
necessary to run the kernel on a real-time operating system with real-time capable
data  buses  and  operating  systems  e.g.  on  PowerPC cores  under  VxWorks  and
VMEbus or on Intel / AMD processors under real-time Linux variant and PCI-X bus.
The simulator kernel thus incorporates:

● A numerical Solver for algebraic and differential equation systems
● The interface for simulator commanding via the control console respectively

for  supplying  the  control  console  with  simulator  telemetry  data,  (not  to  be
confused with spacecraft telemetry). The data exchange with these testbench
components takes place in parallel to the simulator's numerics as separate
threads. This enables the sending of commands to the simulator
◊ to command the simulator operation,
◊ to poll or set state variables of simulated spacecraft components,
◊ to poll or set variables of simulated wires,
while the numeric spacecraft simulation is running.

● A logging interface which allows
◊ the selection of logged simulation parameters,
◊ that are cyclically stored on hard drive with adjustable frequency.

● And finally there normally exists a so called “External Stimulation” interface:
◊ It allows overwriting of the calculated values of a component model with

values from a file – e.g to overwrite the values of a startracker in order to
achieve a predefined failure profile.

◊ Control settings for frequency of the input data reading, start and end of
the overwriting in the course of the simulation etc. are stored and defined
in files, (mostly in clear text notation). The overwritten data themselves are
stored  in  ASCII  files.  The  external  stimulation  is  dependent  on  the
occurences of the simulated hardware. It is possible e.g. to,
► simulate startracker 1 and 2 normally while,
► overwrite the values of startracker 3 with failure values.

Furthermore  some  simulator  kernel  architectures  incorporate  the  intelligence  to
distribute  the numerical  calculation  steps  between multiple  processor  nodes.  The
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kernel software of modern simulators today is designed with the use of formal design
languages  –  normally  applying  the  “Unified  Modeling  Language”,  (UML).  The
modeling of the spacecraft equipment is based on the same technique. Details about
modeling with UML, the generation of sourcecode from UML and related topics are
described in chapter 8.

 4.6 Equipment and System Models

The models of spacecraft equipment inside a simulator, the, “equipment models”, are
emulating  the  functional  and  operational  behavior  of  a  system element,  e.g.  the
behavior of a sensor of the spacecraft or a power supply device. They incorporate the
algorithms to represent the component with the required accuracy and functions to
fulfill  project  specific  requirements  -  e.g.  failure models,  external  stimulations etc.
They only model the behavior of the components functionally, but not the internal
structure of the real equipment hardware. E.g. for a reaction wheel a functional model
computes the wheel's torque, tacho signal, power consumption, wheel rotation rate
and the heat dissipation as functions of the supplied motor current. However it does
not reflect that there exists a rotor, motor coils, a housing, screws, ball bearings etc.

The algorithms of the component models which are representing the functionality are
split into a discrete part, (in most cases modeled as a state machine), which is called
in the control cycle and an analog part which is called in both the control cycle and
the numeric integration steps.

Figure 4.15: Structure of an equipment model.

The component models are equipped with a data interface, (“Ctrl” and “HK” in the
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Loop” OBC. This control interface layer also performs calibration and decalibration of
command and housekeeping data between variable's values in engineering units in
the functional model and control / housekeeping data protocol packets. Secondly the
models provide interfaces to the simulator kernel which are used to

● load the characterization data during initialization, 
● to provide data for simulator telemetry to control console,
● and for simulator log data.

In  case  of  an  external  failure  stimulation  these  interfaces  are  used  to  feed  the
model's  numerics  or  the  protocol  interface  with  failure  values  from files  or  from
control console commands to the simulator. Furthermore the models are equipped
with interfaces to the numerical solvers of the simulator. These interfaces are, for
example,  used  to  feed  the  solver  with  the  derivatives  of  the  component's  state
variables for  every integration step.  More details on the component numerics are
explained in chapter  6. Finally the models have interfaces to each other which are
used to transmit physical variables between them - in the figure above labeled as
“Continuous Model-I/O”. This functionality in many other publications is not described
very precisely and therefore shall be elaborated here in a bit more detail.

In diverse publications on simulators it  always is distinguished between so called
equipment  models  and  system  models.  Nevertheless  by  applying  a  generic
description of the simulator technology like it is outlined in chapter 6 this distinction is
obsolete. The following explanations make use of the analogy of modeling a satellite
again:

If classical equipment models are addressed, the reader immediately thinks of e.g
actuators  like  a  reaction  wheel.  According  to  the  commands  from  the  OBC
transmitted  over  the  control  interface,  the  wheel  model  then  feeds  back  to  the
“Continuous  Model-I/O”  a  rotational  speed,  an  angular  momentum  and  torque
information. Just for now only the torque shall be considered. Another component –
for example a magnetic torquer – is producing another torque. The receiver of both
torques is a model like all  the others,  and in this case represents the spacecraft
structure. This model of the spacecraft structure - a rigid structure shall be assumed
here - simply is not equipped with a control interface to the OBC. The model of the
structure receives the torques from the actuator models and eventually from another
model representing the space environment. From this input it calculates the overall
derivatives which are necessary inputs for the spacecraft  attitude integration. The
solver has to integrate the angular momentum equations of the spacecraft structure.
Based on this example it is visible that the working principle of the actuator, structural
and environmental models are in fact the same.

Systems of the type shown in figures 1.12 or  1.10 include more equipment models
like pipe tubes, filters, heat exchangers etc. which do not have control interfaces, but
a “Continuous Model-I/O” and a solver interface. In the case of such fluid dynamic
systems and also in the case of electrical systems, the simulator numerics module
not only has to integrate an initial value problem of differential equations but also has
to solve in parallel,  the complementary boundary value problems as described in
chapter 6 in more detail. This fact increases the complexity of the solver interface but
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Testbench Components in Detail

The effects to be modeled for such space environment models, structural models or
equipment models of different kinds are addressed in the following chapter.

Modern system simulators as e.g. described in [16] to [21] or [23] and [120] typically
comprise  a  functionality  to  load  essential  characterization  data  of  the  simulated
system in order to configure the simulation run parameters during initialization. In all
systems mentioned above the following settings are loadable:

● The characterization data of the modeled equipment - for example the power
consumption depending on the operational mode of the equipment.

● For this configuration sometimes there is a default version of standard settings
of  the  system  and  separately  different  versions  which  store  only  the
configuration  deltas  to  the  default  values  to  make  the  files  more  clearly
arranged.

● In addition there are the files for the configuration of the numerics in which the
integration step sizes etc. are defined, the selected numerical solver method
and so called scheduling tables – definitions of  the sequence in which the
models will  be called and eventually  the timing offsets between equipment
model calls.

● Furthermore the configuration of the simulator telemetry and logging usually is
loadable  from  files.  In  these  files,  information  about  simulator  telemetry
packets, the frequency of telemetry sending and logging are stored.

● For simulators  in  hybrid  testbenches it  also is  essential  that  the simulated
interfaces  between  equipment  models  and  Simulator-Frontend  cards  are
configured  properly,  that  the  real  hardware  receives  the  signals  from  the
models.  Because the Simulator-Frontend cards normally  are equipped with
multiple  channels  of  the  same interface type,  the configuration  information
must  define which equipment  model  is mapped to which ports of  the card
driver - the latter corresponding to certain connectors and pins for the electric
I/O-side of the card.

● For these hybrid testbenches, calibration curves have to be loadable for every
simulated connection to the card driver as soon as digital / analog converters
are used.

All simulator systems today follow the object oriented design paradigm. This means
that the code of an equipment model class is only coded once and is only loaded
once in the program. For every occurrence of an equipment type in the system, a so
called instance, only a copy of the data area of the class is created. This appears to
the user as if many equipment components of the same type were loaded.

The simulators are different in respect to the methodology of the system's topology
definition. In this case topology means the number of equipment components of a
specific  type  and  how they  are  connected.  For  some simulators,  the  number  of
omponents of a specific type in a system has to be defined already during the design
process in the modeling language UML. The sourcecode is then generated from the
UML diagrams and compiled.  Also  the  definition  of  the  connections  between the
models, (which components are connected with which type of interface), have to be
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Equipment and System Models

Other systems allow to load the entire system topology, including modeled equipment
and equipment interconnections, at simulator initialization time. The student's project
OpenSimKit [23] consequently follows this configuration design principle. In the case
of this simulator, only the model classes of the component types and the connection
types are to be coded. The definition of the system topology can be loaded from
configuration files at startup - for example whether a system has 2 or 3 sensors of a
type.

The configuration files of such kind of simulators today are usually defined via the so-
called "Extensible  Markup Language",  (XML).  This  means will  be treated later  in
more detail in chapter 8.5.
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Spacecraft Functionality to be Modeled

 5.1 Functional Simulation Concept

The term "functional" simulation of spacecraft has already been mentioned. A precise
definition is given below. More detailed aspects of the different spacecraft compo-
nents and the space environment which both have to be modeled in the frame of a
functional simulation are treated afterwards. The modeling criteria cited in the follow-
ing subsections are focused on the satellite domain. However, they can similarly be
applied to other spacecraft like shuttles, launchers and transfer vehicles, too.

Basic Concept of Functional Modeling and Simulation:

Functional  modeling  implies  that  just  those  aspects  of  a  system  are
simulated which are necessary to supply the item under test, (hardware, on-
board  software  etc.),  with  realistic  data  in  order  to  verify  it.  The  models
around the item under test do not need to reflect the real overall  system
topology.

Example - the item under test shall be on-board software of a satellite:
In such a case only those aspects of the satellite are to be simulated, which
are necessary to enable the on-board software test.

Negative formulation:
All aspects of the system which are not necessary for test purposes can be
simplified or even be neglected.

Figure 5.1: Components and interactions to be modeled functionally.
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Example - power subsystem:

● For an on-board software test, the data delivered to the on-board computer by
a power control and distribution unit are relevant, including measured values
of the currents delivered by the solar array, the currents supplied to the power
consumers and the charging currents to the batteries.

● Details on the solar array or battery internals, (like the dependency of the cell
resistance to the temperature), are of no relevance for such a test.

Example - satellite harness:

● The harness database as used in spacecraft  development and required for
electrical tests, models all lines including:
◊ Each wire
◊ Shields
◊ Grounding lines etc.
◊ Connector to pin assignments for each wire

● In the simulator only the following functional information is required:
◊ Information on the "functional interface" type - for example whether two

spacecraft components communicate via a serial, an analog connection or
a data bus etc.

◊ The  assignment  of  "functional  interfaces"  to  "ports"  of  simulated
equipment.

◊ For hybrid testbeds, the assignment of "functional interfaces" to "ports" of
front end card drivers.

Example - satellite topology:

● In a functional satellite simulator, the satellite geometry or geometric assembly
of equipment does not need to be modeled.

● However, models have to reflect:
◊ The mounting coordinates and orientation of AOCS actuators and sensors

using the spacecraft coordinate system.
◊ The representation of the electrical topology w.r.t. equipment redundancy

and cross-couplings in the functional interfaces.
◊ The thermal representation of equipment via multiple thermal nodes, if an

equipment  (e.g.  payload)  consists  of  multiple  thermally  relevant
subcomponents.

Example - TC / TM between OBC Simulator and Core EGSE:

The real flow of TC from the Core EGSE packet level to the on-board computer is
shown in figure 5.2. The telecommand packets are combined in segments, each of
which comprises data for one on-board target address. Afterwards the segments are
split up into frames with constant length, which are sent from GCS to the transmitter
station. Once again, the frames are broken up there to shorter elements, into so-
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called Command Link Transfer Units (CLTUs). These units are transmitted partly in
parallel  to  the spacecraft   transponder  exploiting the bandwidth  of  the frequency
range allocated for the spacecraft. The transponder interface card in the OBC (TTR
board)  reassembles  the  received  data  back  to  higher  layers  -  for  high  priority
commands at least to frame level, for normal commands up to the TC packet level.
The OBSW can access these packets then in the corresponding TTR board registers.
A comparable procedure is applied for the inverse direction of spacecraft telemetry
transmitted to ground.

In an SVF type testbench the control console sends already CCSDS packets to the
simulated OBC. So w.r.t. the OBC input side representing the real OBC's TTR board,
only the following points are visible for the OBSW and need to be modeled:

● Read / write  registers in the TTR board of the OBC
● Interrupts from the TTR board to the OBSW
● Failure modes of the  TTR board

Segmentation  and  framing  usually  do  not  need  to  be  modeled  in  an  SVF  type
simulation.

Figure 5.2: Telecommand transfer from ground control system (GCS) to a satellite.
Source: ECSS-E10-71
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 5.2 Attitude, Orbit and Trajectory Modeling

The  orbit  propagation  calculation  as  well  as  partly  the  attitude  calculation  for  a
spacecraft in a simulator have to consider all all those effects, which exert forces or
torques onto the spacecraft. With respect to orbital mechanics and attitude dynamics
orbit and / or attitude changes have to be integrated over time within the simulator.
This has to be done by integration of the impulse equation and angular momentum
equations over time, considering the sum of all cited external effects and forces and
torques generated by spacecraft actuators (like reaction wheels, thrusters, magnetic
torquers etc.).

Figure 5.3: Orbit perturbations as a function of the altitude.

Regarding  electrical  effects,  initially  the  basic  information  concerning  the  Sun  /
eclipse phases, the radiation intensity at the spacecraft position and similar values
provided  by  the  environment  models  are  to  be  considered  for  simulation  of
equipment and spacecraft system states. This similarly applies to magnetic field and
equipment dipole effects.  Therefore, the "space environment model" of a simulator
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◊ Eventual tidal forces
◊ Forces on the satellite resulting from gravitational effects of other celestial

bodies - especially the Moon
● Aerodynamic perturbations based on atmospheric drag
● Perturbations based on solar radiation pressure by the sunlight and by particle

flows - only in the Sun phase of the spacecraft orbit
● Forces  and  torques  induced  by  magnetic  interaction  between  satellite

components and the Earth's magnetic field

In the following paragraphs the characteristics of different mission types are listed,
including the particular  effects,  which have to be reflected in an according space
environment model.

Low Earth Orbit, LEO:
● Altitude: 250 – 750 km above Earth's WGS Ellipsoid,  vS/C ≈  8 km/s.
● Orbit altitude, inclination, eccentricity and Sun synchronicity of the orbit must

be modeled.
● Furthermore,  perturbations  based  on  atmospheric  drag,  gravitational

anomalies,  solar  radiation  pressure,  Moon and planetary  effects  are  to  be
reflected.

● Corrections by the attitude and orbit control system of the satellite are to be
verified by means of simulation.

Medium Earth Orbit, MEO, (e.g. GPS, GLONASS, Galileo):
● Altitude: 10,000-30,000 km above the Earth's surface,  vS/C ≈  6-3 km/s.
● Orbit altitude, inclination, eccentricity and Sun synchronicity of the orbit must

be modeled.
● Furthermore, perturbations based on gravitational anomalies, solar radiation

pressure, Moon and planetary effects are to be reflected.

Geostationary Orbit: GEO:
● Altitude: 35,800 km above the Earth's surface,  vS/C ≈  2,6 km/s.
● Orbit  altitude,  inclination,  eccentricity,  Sun synchronicity  of  the orbit  and in

particular the relative position to the Earth, (North - South, East - West station
keeping), must be modeled.

● Perturbations  based  on  gravitational  anomalies,  Solar  radiation  pressure,
Moon and planetary effects are to be reflected.

Interplanetary Trajectories:
● The orbit propagation to the destination considering all maneuvers, fly-byes,

delta-v maneuvers etc. must be modeled.
● The perturbations based on different effects - solar pressure, particle density ,

magnetic fields of planets etc.
● Complex n-body dynamics problems must be modeled, if necessary.
● The successful orbit / maneuver controls by the AOCS have to be verified.
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Lagrangian point missions:
● The orbit  propagation to the destination considering all  maneuvers and the

position control at the destination position with the Lagrangian point specific
gravitational sum effects must be modeled.

● The successful  orbit  /  maneuver controls by the AOCS on the flight  to the
destination have to be verified.

● The same applies for  the correct position control at the destination ("station
keeping").

Drag-free missions:
● The  orbit  propagation  including  drag-free  control  in  the  orbit  or  at  the

Lagrangian point have to be modeled.
● The successful  orbit  /  maneuver controls by the AOCS on the flight  to the

destination have to be verified, and the same applies for
● the correct position control at the destination, (drag-free control).

Formation flying missions:
● The orbit propagation has to consider / reflect all orbit and formation correction

maneuvers.
● The successful performance of orbit / formation maneuvers and their numeric

controls by the AOCS are to be verified.

For all mission types
● the attitude control during operation periods of payloads (fine pointing) has to

be modeled.

A more detailed classification of different orbit types can be found in [37]. Substantial
modeling examples for orbit dynamics can be found in [38].

 5.3 Aspects of Structural Mechanics

Regarding spacecraft structure and its behavior in orbit, the following characteristics
have to be modeled in a functional simulator:

● The mass of the spacecraft
● The moments of inertia
● The point of origin of the spacecraft's coordinate system
● The position and alignment matrices of all sensors and actuators relative to

the satellite coordinate system
● The flexibility  of  the  structure  i.e.  if  applicable  all  flexible  modes  -  e.g.  of

deployed solar panels
● Transient changes if applicable - e.g. during the deployment of solar panels
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● Finally  fuel  sloshing  effects  have  to  be  considered,  if  there  is  a  liquid
propulsion  system  on  board.  This  is  e.g.  relevant  for  large,  geostationary
telecommunications satellites designed for long lifetimes, for launcher stages
and shuttles.

All these spacecraft characteristics and characteristics variations must be modeled
for attitude and orbit integration. The entire motion dynamics of this "structure" under
the influence of all orbital perturbation forces and of the controlled actuator forces
has to be reflected in the spacecraft simulation model.

 5.4 Thermal Aspects

For a functional system simulator like those implemented in SVFs, STBs and similar
testbenches for  on-board software verification and respectively  system tests,  it  is
sufficient to simulate the thermal system aspects in the correct order of magnitude.
This implies the following effects have to be detectable by the on-board software from
simulated thermistor signals during an orbit simulation:

● Temperatures  have  to  be
simulated  in  the  correct
order of magnitude.

● Furthermore,  the periods in
which  certain  temperatures
drop  below  specified  lower
limits inducing heaters to be
activated  by  the  on-board
software  have  to  be  in
conformity  with  orbital
sequences.

● When the spacecraft leaves
the  eclipse  and  enters  the
Sun  phase  again  the
temperatures have to reflect
increase,  and  where
exceeding  switch  levels,
OBSW  must  be  able  to
detect  the  need  for  the
heaters  to  be  turned  off
again.

● Furthermore  the  covered
overall  temperature  simula-
tion  range  must  allow  for
testing thermal failure detection, isolation and recovery (FDIR) scenarios.

Strahlungskopplung

Wärmeleitungskopplung

Radiative Coupling

Conductive Coupling

Figure 5.4: Thermal modeling.
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Therefore, the following functionalities have to be modeled:

● Solar radiation loads onto the spacecraft outer surfaces - computed by the
space environment model)

● Earth albedo radiation loads onto the spacecraft outer surfaces - computed by
the space environment model

● Thermal radiation from spacecraft outer surfaces into space
● Coupling  of  outer  surfaces  to  internal  structure  via heat  conduction  and

thermal radiation.
● Coupling  between  internal  structure  and  system  components  has  to  be

considered, leading off component dissipation especially via heat conduction.

More effective cooling concepts such as heat pipes or stirling coolers etc. might be of
relevance for components with high dissipation rates.

Detailed  thermal  models  for  spacecraft  of  a  complexity  of  a  medium  Earth
observation satellite with all its equipment are implemented as complex node models
with 3000 to 5000 thermal nodes. The typical number of nodes for a comparative
satellite modeled in a functional simulation testbed is reduced to a range of 30 to 50
thermal nodes to provide a qualitatively sufficient precision and in parallel to still allow
the simulation to perform in real time on hybrid testbenches such as STBs and EFMs.
The following rule of thumb can be assumed:

● One  thermal  node  implemented  per  occurrence  of  an  equipment  which
significantly dissipates heat

● One node per installed heater
● One per thermistor
● One per spacecraft outer surface for the modeling of external thermal loads

and radiative heat dissipation

 5.5 Equipment Modeling

The following pages cover typical spacecraft equipment including their characteristics
and  the  effects  which  have  to  be  modeled  in  a  functional  system  simulation.
Generally for all equipment types the following characteristics are to be reflected:

● The data interface to the OBC
● The power connections of an equipment component
● The power consumption (dependent on the equipment's mode of operation)
● The thermal dissipation (dependent on the equipment's mode of operation)
● The functionalities of the component electronics regarding:

◊ Its operational modes, commands and telemetry
◊ Its data protocols

Besides standard systems, like the platforms for Earth observation satellites, there
are a lot of specific spacecraft types like shuttles, landers, rovers etc. That is why this
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section only can provide an overview of typical equipment types. For each type the
functionalities are cited, which have to be reflected in a functional simulation. The
state of the art for the modeling of specific subsystems and equipment can only be
determined by literature research.

Control- and Data Processing Equipment

On-board computer
In spacecraft simulators, the on-board computer (OBC) model is definitely the most
complex one as it has to model the on-board computer with all of its components to a
level of detail which enables to load and to run the real flight software compiled and
linked including operating system and BIOS in a "Software in the Loop" setup (SVF) -
all compiled for target flight hardware. The following elements therefore typically have
to be modeled in the simulation:

Figure 5.5: OBC model in an SVF (example).
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● The central  processing  unit  (CPU)  is  usually  implemented  by  a  processor
simulator (for the SPARC16 based processors, applied in European satellite
industry today, these typically are TSIM by Gaisler Research or SimERC by
Astrium S.A.S.).

● All OBC subcomponents which do not belong to the processor are modeled in
a functional way. This implies that:
◊ Only those functions are implemented which are required to enable the

components  to  correctly  respond  to  commands  from  the  OBSW  with
correct timing.

◊ The component's I/O-registers have to be modeled (e.g. registers of a data
bus controllers).

◊ The ability to reflect and induce component failures by user command must
be provided for testing the on-board software's error handling functions.

● The OBC components besides the processor are typically:
◊ Memory of the OBC system (RAM, ROM, PROM, EEPROM)
◊ Memory cards / banks for payload data
◊ Clock module
◊ Reconfiguration logic
◊ Data bus controller (e.g. MIL-STD-1553B bus, SpaceWire)
◊ I/O-subcomponents
◊ Interface modules of all data interfaces to the spacecraft (so-called remote

units)
◊ OBC TC decoder, OBC TM encoder, OBC transfer frame generator
◊ Modules for OBC power supply.

● The  entire  modeling  (processor  simulation  and  other  components)  has  to
consider
◊ all redundancies,
◊ the I/O-registers and buffers of all components and
◊ the timing for switching / processing processes of all  modeled hardware

elements.

Figure 5.6 and 5.8 depict such modules including redundancies and cross-couplings
in the interconnections of a real OBC. It is evident that, besides the processor model
itself  which  processes  the  on-board  software  microcode,  there  is  a  big  effort  in
modeling of the remaining OBC infrastructure.

16SPARC is a registered trademark of SPARC International.
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Figure 5.6: Schematic block diagram of an OBC processor module.
  © RUAG Aerospace Sweden AB

Figure 5.7: OBC processor module.  © RUAG Aerospace Sweden AB
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As mentioned before the OBC processor itself in todays projects typically is modeled
by using a processor simulator module. This approach results in a pure software
model. In the case of an average satellite model equipped with a state of the art on-
board computer based on a standard processor like the ERC32, SPARC V7 (single
pipeline design) with a typical on-board clock rate of 25Mhz, a 3GHz Pentium PC
used  as  simulator  target  platform  is  able  to  achieve  approximate  real  time
performance of the SVF. This means that the simulation of a typical 90 minutes LEO
orbit of the satellite also takes approximately 90 minutes computation time on the
SVF. Faster simulator target hardware leads to accordingly shorter simulation times
per orbit.

The processor simulation of a more powerful multi-pipeline processor (for example
the LEON, Sparc V8, providing three pipelines) is much more costly with respect to
simulator platform performance. This means that an SVF for a spacecraft equipped

Figure 5.8: Schematic block diagram of an OBC I/O-unit.
  © RUAG Aerospace Sweden AB and RUAG Aerospace Austria GmbH
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with a LEON processor  on board,  will  run accordingly  slower.  To circumvent  this
problem a processor emulation can be used. In this case the architecture of the on-
board  processor  is  mapped  on a  field  programmable  gate-array  chip  (FPGA)  by
means of the hardware design language VHDL. The FPGA typically is located on a
PCI-card inside the SVF computer. Such a constellation can run 5 to 10 times faster
than real-time on a 3GHz Pentium PC for a spacecraft equipped with a 25Mhz on-
board LEON processor. This results in a simulation time of 10-15 minutes for the 90
minutes LEO orbit mentioned above. For the two configurations please also refer to
the figure below.

Figure 5.9: Modeling an OBC with processor simulation and respectively emulation.

It is quite evident from figure 5.9 that the modeled I/O-Boards of the simulated on-
board computer have to be connected to the simulated harness. This is achieved by
the use of a shared memory to which the OBC model writes and from which the
harness line model instances read respectively vice versa.

The processor simulation / emulation implicitly represents also the scheduler of the
OBC simulation.  This  central  OBC model  typically  feeds the spacecraft  simulator
with a synchronizing clock signal. Such a signal also is submitted by the real OBC in
a spacecraft to other on-board equipment which requires time synchronization. The
synchronization signal typically has a frequency of 1 Hz and therefore is called “Pulse
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Per Second” (PPS) signal. A highly precise real-time performance of the simulated
processor and as result of the OBC model and finally of the SVF as a whole is not
necessary on SVF level because no hardware in the loop is attached to the simulator.

The  processor  model  typically  is  equipped  with  an  interface  to  a  standardized
debugger. This allows to monitor the execution of the OBSW code or to interactively
control the execution (stopping, querying variable values etc.) - please also refer to
figure  3.14.  In  the  case  of  a  processor  emulation  by  means  of  an  FPGA this
functionality however is limited.

Since  spacecraft  are  equipped  with  different  AOCS,  platform  and  payload
components in accordance to their specific mission requirements the OBCs also are
equipped with different types of data interfaces and, if necessary, even with different
kinds  of  processors  and  internal  data  bus  systems.  The  OBC  models  have  to
implement all  these characteristics accordingly.  The design and implementation of
such OBC models typically is carried out by using UML as software design language
and C++ as the programming language. Further details on simulator software design
and coding techniques are provided in chapter 8.

Mass Memory Systems
● Storage of spacecraft housekeeping and scientific data generated by the

payload in the case of satellites as the simulated system.

Figure 5.10: Photo of an on-board computer.  © RUAG Aerospace Sweden AB
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Aspects to be modeled for functional
simulation:

● Storage capacity
● Number of separate storage banks
● For operations simulation (compare

chapter 3.2.5):
◊ Data rates provided through

housekeeping processes and
◊ payload science data filling

memory respectively
◊ memory freed during ground

station contact.
● Only fill levels to be modeled, no

real data

AOCS Components:   Sensors  

Star Trackers
● Determination of the sensor's attitude

in space through identification of
fixed stars.

Aspects to be modeled:
● Numerical correct attitude of the

sensor
● Sensor noise effects
● Blinding effects
● Operational modes of the sensor

electronics
● Data interfaces to OBC

Earth Sensors
● Determination of the sensor attitude

relative to Earth
● Optical (CCD pixel map) or thermal

(slit / thermistor assembly)
measurement

Aspects to be modeled:
● Sensor noise, calibration and blinding
● In case of optical and digital sensor:

◊ Operational modes of the
electronics

◊ Data interface to OBC

Figure 5.13: Earth sensors.
©  Astrium

Figure 5.12: Star trackers in 
CryoSat FlatSat.  ©  Astrium

Figure 5.11: 
©  Astrium

Mass memory units.
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Sun Sensors
● Determination of the attitude

relative to the Sun
● Optical (CCD pixel map) or

thermal (slit / thermistor assembly)
measurement

Aspects to be modeled:
● Sensor noise, calibration and

blinding
● In case of optical and digital

sensor:
◊ Operational modes of the

electronics
◊ Data interface to OBC

Magnetometers 
● Measurement of the magnetic flux in mounting orientation.

Aspects to be modeled:
● Sensor noise and calibration
● If necessary permanent distortion by adjacent electrical systems or metal

structures

Gyroscopes and Gyro-Assemblies
● Measurement of spacecraft rotational rates
● Principle of measurement:

◊ Mechanical: 3 axis mounted gyroscope
◊ Optical: Interference of two laser

beams passing an optic fiber coil in
opposite direction - “Fiber-Optic Gyro”
(FOG)

Aspects to be modeled:
● Gyro electronics, data interfaces to OBC

Figure 5.16: Fiber-optic gyro.
  ©  Astrium

Figure 5.14: Sun sensors on a turntable rig.
©  Astrium

Figure 5.15: Mars Global Surveyor magnetometer.  ©  NASA
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● In case of mechanic gyro: Friction effects
● In case of FOG technology: 

Aging effect on opacity of the fiber as begin / end of life characterization
parameters

Accelerometers / Gradiometers
● Measurement of the inertial acceleration

mainly to monitor orbital correction
maneuvers

● Control spacecraft acceleration for so
called “Drag Free” missions

Aspects to be modeled:
● Electronics and its operational modes
● Data interfaces to OBC
● If necessary functionalities caused by the

principle of measurement

GPS/Galileo/GLONASS Receivers
● Measurement of distance between the

spacecraft and a GPS satellite in order to
determine the spacecraft's position - at
least 4 GPS satellites have to be visible
by the spacecraft to determine the
3D-position

● Elevation resolution is limited
Aspects to be modeled:

● Numerically correct position of the
spacecraft

● Statistical variations within the bounds of
the real GPS measurement inaccuracy in
order to test OBSW functionalities

● Operational modes of the receiver
electronics

● Data interfaces to OBC

DORIS Receivers (CNES)
● Measurement of distance between the

spacecraft and a ground station in order to
determine the spacecraft position - at least 4
ground stations have to be visible by the
spacecraft to determine the 3D-position

● Special DORIS ground station models
needed

● Since the measured distance is used for
determination of the orbit position, data are
processed on ground and not in the OBSW.

Figure 5.19: DORIS 
receiver antenna.

©  NASA

Figure 5.18: GNSS receiver.  ©
Astrium
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Aspects to be modeled:
● Operational modes of the receiver electronics
● Data interfaces to OBC
● Dummy measured data packets

AOCS Components:   Actuators  

Reaction Wheels
● Generation of a momentum along the

mounting axis of the wheel through
changing the rotational rate of the
wheel rotor

Aspects to be modeled:
● Dependency of momentum vs.

rotational speed changes
● Dependency of rotational speed

changes vs. commanded rate or
current

● Sticking and friction effects
● Reaction wheel electronics features

and interfaces to OBC
● If necessary special effects during

desaturation of the reaction wheels.

Propulsion Systems for Attitude and Orbit Control
● Cold gas (e.g. nitrogen high pressure

systems)
● Mono propellant systems (hydrazine)
● Reignitable bipropellants, mainly used

for orbit correction maneuvers
Aspects to be modeled:

● All valves and actuators of the
propulsion system that are controlled
by the OBC:
Latch valves, non return valves, flow 
control valves, pyrovalves, tanks and 
pressure controllers

● Control of the thruster valves (linear or
pulsed) 
and resulting thrust

● Latency of thrust relative to valve
opening

● If necessary the electrical system of
thruster 
catalytic bed heaters

Figure 5.20: Reaction wheel setup in a
hybrid testbench.

  ©  Astrium
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Magnetotorquers
● Electrical coils generating a magnetic field

in order to produce a momentum through
interaction with the Earth's magnetic field

Aspects to be modeled:
● Electrical resistance / impedance
● Intensity of the produced magnetic field
● Hysteresis effects

Ion Propulsion Components
● Applied for fuel efficient but long

duration orbit or trajectory maneuvers
● Often used for interplanetary missions

Aspects to be modeled:
● Thruster control versus resulting thrust
● Electrical energy consumption, fuel

consumption

Electric µN Engines:
Field Emission Electrical Propulsion, (FEEP)

● Thruster types needed for extremely
precise attitude control

● Also used for drag free acceleration
control

● And used for position control in formation
flight configurations

Aspects to be modeled:
● Thruster control versus resulting thrust
● Electrical energy consumption, fuel

consumption
● Functionality and operational modes as

well as the electrical characteristics of the
typically very complex high voltage
electrics which are needed for the heating
of the solid propellant and accelerating it.

Schematic diagram.
  ©  IRS, Universität Stuttgart

RIT 10 Thruster.
  ©  Astrium

Figure 5.23: Ion thrusters.

Figure 5.24: Cesium FEEP thruster.
©  ESA

Ion Source NeutralizerAccelerating
Electrode
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Launcher Main and upper Stage Engines  

The diversity of launcher and upper stage propulsion systems only can be covered
very  briefly  here  touching  characteristics  of  propulsion  systems concerning  types
stem from

● solid propellant boosters to
● liquid propellant systems.
● Furthermore exist cryogenic

propellant systems, and
● standard liquid propellant systems.
● The latter again can be broken down

according to diverse fuel types.
● Engines furthermore have to be

determined between those fed by
gas pressured fuel tanks (cf. figure
1.3 and 1.12) and respectively

● those equipped with turbo pump
feed systems (compare adjoining
figure).

● The engine's thrust characteristics
over altitude (atmospheric back-
pressure) has to be modeled as well
as

● the entire propellant feed system
(see e.g. [23]).

Power Subsystem Components  

Solar Panels
Aspects to be modeled:

● Change of the spacecraft moments of
inertia and center of gravity over
deployment process

● Blocking during deployment as failure
mode

● Mechanical properties like vibration
modes

● Aging dependent performance properties
(begin / end of life loadable as simulator
equipment model start characteristics)

● Redundancies and string switching /
cabling

● Failure of cells and strings as failure
mode

Figure 5.26: Solar array wing.
©  Astrium

Figure 5.25: SNECMA Vulcain II.
Source:  Stahlkocher

(GNU Free Documents License)
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Solar Array Drives
Aspects to be modeled:

● Connection to solar panels (Power Lines)
● Connection to power control unit (Power

Lines)
● Command lines from OBC to stepper

motors
● Stepper motor functions (step, free

rotation, hold, active hold etc.)
● Position sensors
● Power consumption of stepper motors
● If necessary internal thermistors
● Failure modes (motor failure, sensor

failure, blocking)

Batteries
Aspects to be modeled:

● Number of battery cells
● Type of battery (Li-Ion, NiMH etc.)
● Charge characteristics
● Current / voltage curves under load
● Self discharge characteristics
● Aging dependent performance

properties (begin / end of life loadable
as simulator start characteristics)

● Internal circuitry and redundancies
● Failure of battery cells and / or

circuitry

Power Control and Distribution Units
For these units the functionalities for both power control as well as power distribution
towards the different consumers are to be modeled. The entire PCDU is commanded
via the OBC. Basic  power source are the solar  arrays.  Secondary source (to be
charge controlled) is the spacecraft battery.

Aspects to be modeled:
● Connection to OBC and command /

control data protocols
● Control functions via high priority

command lines
● Connection to the battery
● Connection to the solar panels
● Internal current limitation functionalities
● Internal redundancies
● Relays for user load switching
● Overvoltage monitoring for every channel

Figure 5.27: Solar array drive.
©  Oerlikon Space AG, Zürich

Figure 5.29: Power Control and
Distribution Unit.

  ©  Astrium

Figure 5.28: Battery stack.
©  Astrium
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● Protection against foldback currents
● Protection against overcurrents
● Redundancies for every channel
● Power consumption of the PCDU itself
● Heat dissipation of the PCDU

Fuel Cell Subsystems
For modeling of fuel cell systems the reader first is referred back to the figures 1.10
and  1.11. The modeling of such subsystems differs depending on the goal of the
simulation.  If  the goal  is  the verification of  the OBC and the controlling on-board
software, then the subsystem can be simplified and can be represented as single unit
equipment with according interfaces to the OBC and performance represented by
approximations in characteristic curves. If the goal is performance evaluation of the
fuel cell system itself, the different elements of the system have to be modeled one
by one as shown in figure 1.10. The component types in the system are ranging from
the fuel cell stack itself over condensers, membrane separators and pumps to heat
exchangers and fans. Fuel cell systems also differ highly in aspects like the type of
the electrolyte (mobile / immobile), the type of membrane and whether the system
being regenerative or not. A detailed overview on the diverse types and the technical
modeling of fuel cells is given in [31] to [33].

Thermonuclear Generators
● Used as energy supply for deep space probes exploring the outer solar

system which makes use of solar arrays impossible due to low solar
brightness.

Aspects to be modeled:
● Power generation depending on the ratio between ambient temperature and

radionuclide temperature due to Seebeck effect
● Current / voltage characterization curve resulting from used materials
● Thermal radiation output depending on the ratio between ambient temperature

Figure 5.30: Radio-thermonuclear generator of the Cassini space probe.  ©  NASA

101



Spacecraft Functionality to be Modeled

and radionuclide temperature
● Electrical connections of the Seebeck elements (including redundancies)
● Type of the radionuclide and thermal characteristic curve depending on

operation time (begin / end of mission)
● Cooling system (active cooling system or heat pipe type)

Mechanics / Mechanisms  

Solar-Array and Deployment Mechanisms
Aspects to be modeled:

● Duration of deployment process
● Blocking during deployment
● Electrical interfaces
● Change of spacecraft moments of inertia and center of gravity

Antenna Structures and Deployment Mechanisms
Aspects to be modeled:

● Duration of deployment process
● Blocking during deployment
● Electrical interfaces
● Change of spacecraft moments of inertia and center of gravity

Thermal Components  

Heaters
Aspects to be modeled:

● Heater characteristic curve (dependency between resistance and
temperature)

● Connection between heater and a node of the thermal model

Thermistors
Aspects to be modeled:

● Thermistor characteristic curve (dependency between resistance and
temperature)

● Connection between thermistor and a node of the thermal model

Thermostats
Aspects to be modeled:

● Electrical resistance of heater and thermistor element in dependency of
temperature

● Switch temperature (eventually hysteresis)
● Connection between thermostat and a node of the thermal model
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Satellite / Spaceprobe Payloads

The payloads of a satellite / probe can be
diverse, ranging from Earth remote sensing
equipment  (cameras,  radar,  etc.)  via
interplanetary particle or magnetic sensor,
spectral  cameras  or  even  systems which
are payload and AOCS sensor at the same
time  (atomic  clocks,  drag  free  sensors
etc.). Therefore also the equipment model
characteristics differ  largely depending on
the  type  and  purpose  of  simulation
testbench, such as:

● Software verification facility
● Hardware test facility (STB / EFM)
● Mission control simulator
● Formation flight test simulator
● Payload data-processor test

simulator.

For a satellite simulator the science data collected by a real payload only have to be
modeled with respect to data packet structure and content to a minimum degree so
that  they  can  be  processed  by  the  satellite's  on-board  software.  The  payload's
functionalities  have to  be  modeled in  higher  level  of  detail  to  cover  the  different
operational scenarios and to verify:

● Limitations due to thermal effects in the satellite
● Limitations induced by the power supply
● Limitations induced by the amount of available mass storage
● Limitations due to failure modes.

In particular the following aspects have to be modeled for payload units:

● The  electronics  and  their  operational  modes  (normally  modeled  as  state
machines)

● The command / control interface to OBC
● Payload science data protocols (science data typically are modeled by dummy

packets  only  with  simple  counter  variables  to  test  the  interface  from  the
payload to the OBC and the mass storage devices)

● The  thermal  behavior  and  heat  dissipation  dependent  on  the  payload's
operational mode

● The power consumption, also dependent on the payload's operational mode.

Figure 5.31: HRSC Mars camera.
©  Astrium
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Components for Life Support Systems

Due to the complexity and the diversity of life support systems and their variants, and
due to the fact that they often are coupled to the spacecraft's power supply or water
management systems, life support systems will not be described in detail here. The
interested reader can find more details on such equipment in [35] to [36].

Further reading and Internet pages concerning spacecraft equipment modeling are
listed in the according subsection of this book's references annex.
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Numerical Foundations of System Simulation

 6.1 Introduction to Numerics

Simulation technology has been applied for years now in computer-based system
design in various application fields, from ship building to space technology. It also
covers  the  full  scope  of  problems to  be  analyzed,  ranging  from the  design  of  a
system component for specific stationary load cases up to overall system simulations
for analyses of dynamic system operation.

Diverse  commercial  or  user  developed  simulation  program suites  are  applied  to
these tasks in industry. For students who want to familiarize themselves with these
techniques it is often not easy to understand the modeling technologies and numeric
approaches behind such tools. Despite the fact that for specific simulation application
fields, detailed technical literature is available, it is difficult to find an overview on the
problem specific appropriate tools and numeric methods. The generation of such a
technical and methodical overview is the goal of this chapter, without confusing the
reader  by  diving  too  deep  into  specific  subtopics,  (such  as  numerical  solvers).
Further reading is cited wherever the central theme prevents tackling details.

For further elaboration, first the following notation convention shall be defined. Where
possible explicit technical variables with standardized variable names are cited, like p
for pressure and  T for temperature or  H for enthalpy, the variables of a simulated
component are defined as follows:

Figure 6.1: Elementary component block.

u Input parameter of a component of the simulated system,
w output parameter of a component,
y state variable of a component.

In  contrast  to  other  diverse  literature  and  to  keep  consistent  over  all  technical
disciplines covered in this book, (like AOCS, thermal, power, OBSW), the variable “z“
is reserved as a geometric parameter. Taking the example of a pipe, a state variable
like temperature or  molar  fraction of  a fluid  component  can be variable over  the
length “z“ of the pipe.

The variable  “x“  is  only  applied  for  description  of  generic  causalities,  such as in
example code for a numeric integrator which integrates y=f(x). For the integrator it is
of no interest whether the independent variable “x“ represents location “z“ or time “t“.

All  following sections cover the numeric foundations of system simulation in  state
space notation which sums up all input parameters of the component in one vector,
all inner state variables in another vector and finally all output parameters too. Thus
for more complex components the variables u, v, y, in above figure in reality become
vectors. Frequency domain modeling of systems, which is often applied in control
engineering for analysis of dynamic responses and control design is only cited at a

yu w
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few points. The transformation from state space domain to frequency domain can be
achieved for linearized equation sets by a Laplace transform. At relevant points in the
following chapters it will be explained to the reader which goals can be achieved by
such computations. The reader however does not need to be familiar with Laplace
transformation mathematics oneself.

 6.2 Modeling of System Components as Transfer
Functions

Functional system modeling has evolved from control engineering and control theory.
Today it  is supported by very powerful  simulation tools like Simulink or  Modelica.
Especially the tool suite Matlab / Simulink / Stateflow allows for characteristics and
performance analysis of very complex systems. Due to a plethora of tool features
only a minority of users will wonder about the technologies behind them as well as
their strengths and weaknesses.

Function-based approaches adopt their system modeling from transfer functions in
mathematics such as:

y=sin u (6.1)

In  toolkits  like  Simulink  the  user  can  compose  entire  system models  from such
functional elements via a graphical user interface. One can of course select not only
from simple mathematical transfer functions like the above mentioned sine wave, but
from large libraries providing a full spectrum of transfer blocks up to integrators with
the possibility to code ones own function blocks.

sin(u)u1 0.8

Gain

w1 u2 w2

Figure 6.2: Assembly of transfer function blocks.

In addition blocks are available which provide functions for more than one variable,
providing their input and output data in vector formats. Considering the simple case
of a gas catalytic converter in a mixed gas fluid flow, then the input parameter set can
be described by pressure, mass flow and temperature of the fluid.

u= pin

T in

ṁin
 (6.2)

The output state after the catalytic reaction of the gas mixture can also be described
by pressure, mass flow and temperature of the fluid, where a stationary case shall be
assumed:
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w= pout

T out

ṁout
 , with,

pout= f 1 pin , ṁin
T out= f 2T in , ṁin 
ṁout= f 3ṁin=ṁin

(6.3)

The change of molar fractions of the gas mixture is considered to be of no interest in
this simple example, however it can be reflected by additional entries in the input and
output parameter vectors of the component. And here the example already depicts
that  the  diverse  output  parameters  usually  are  dependent  on  multiple  input
parameters  which  is  not  directly  obvious  when  using  the  vector  notation  which
frequently is applied to keep notations compact:

w= f u (6.4)

 6.3 Components with Time Response

The next  step  in  functional  component  modeling is  to  consider  time response of
component  physics.  Most  system  components  in  reality  do  not  react  purely
instantaneously at their output resulting exclusively on input changes via a transfer
function.  Rather  they  show  integral  effects  which  lead  to  time  delays  of  output
parameter value changes in response to input changes. These effects result from the
real  component  having internal  capacitive parameters,  the internal  state variables

y cited in chapter 6.1. Thus generally it can be identified that both

● the internal state variables as well as,
● the output parameters,

are dependent on the state variables and the input parameters. More precisely value
changes of the internal state variables are directly dependent on the values of input
parameters and integratively on their actual state:

ẏ= f  y ,u
w=g  y ,u (6.5)

Thereby no statement is yet made about the functions  f() and  g().  It  can only be
identified that modeling systems with time response behavior are to be represented
mathematically  via differential  equations,  (DEQs).  The system's dynamic behavior
can then be computed by integration of these equations over time. The mathematical
system description is completed by additional algebraic equations. And moreover the
time  dependency  of  the  input  variables  will  be  considered,  which  leads  to  the
representation:

ẏ t = f  y t  ,u t 
w t =g  y t  , u t  (6.6)
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Furthermore a component variable, besides being dependent from time and other
state variables can also in addition be position dependent, e.g. changing over the
running length of a pipe of a propulsion system. This leads to the even more generic
equation set

ẏ  z , t = f  y  z , t , z , u t
w t =g  y l , t  , u t  (6.7)

where in this example  l represents the overall  length of the pipe. In the previous
equations always component input, internal state and output have been considered.
As soon as the component is integrated into a system, mathematical modeling in
addition has to reflect that diverse output parameters directly or indirectly, entirely or
partly may be fed back to component input. The treatment of such coupling matrices
shall be postponed until chapter 6.9.

For an analysis of resulting equation types, the internal state of a component shall be
considered  as  non  location  dependent.  The  resulting  equation  types,  equation
systems and their numeric solutions are presented step by step.

To be simulated, systems either are either

● time-continuous: 

ẏ= f  y t  , u t  (6.8)

● or time-discrete:

yn1− y n= f  yn , un  (6.9)

Since time-discrete systems,  (like  state machines),  in  most  cases do not  impose
significant  problems  in  their  numerical  representation  in  simulators,  the  following
elaborations shall concentrate on time-continuous systems.

The  following  differential  equation  types  are  common  to  appear  during  system
numeric description:

● Continuous non-linear - the following equation cannot be transformed directly
into the form of equation (6.6 ):

ẏ y− y2= f u , t  (6.10)

● Continuous  linear -  the  derivatives  of x only  are  multiplied  by  algebraic
factors and only are linked with each other by + / - operators:

a2 ÿa1 ẏa0 y= f u , t  (6.11)

● For  these  equations  it  can  in  addition  be  determined  between  continuous
linear time-variant equations
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a1t  ẏa0t  y= f u ,t  (6.12)

● and continuous linear time-invariant ones:

a1 ẏa0 y= f u , t  ; a0 , a1=const. (6.13)

Resulting  equation  systems  only  consisting  of  this  equation  type  are  called
"continuous, linear, time invariant systems“, (CLTI systems).

In practice it mostly turns out that the balance equations which are worked out to
represent a component's physical behavior are not yet differential equations in the
forms depicted above. Instead the balance equations in physics mostly are  partial
differential equations,(PDEs). In these the state variables, that are to be integrated
over time, are not only time dependent but also dependent on other parameters such
as location. How such balance equations look like and how they can be transformed
to  ordinary differential equations (ODEs), is treated in the following sections using
various examples.

 6.4 Balance Equations

Before an equation set similar to those cited in those four a.m. types (6.10) to (6.13)
is available, first the physics of the system or component to be simulated shall be
formally described and afterwards in addition some mathematical conversions will be
applied.  As the next  chapters  will  show,  the description of  physical  processes in
system components via  balance equations in most cases leads to a set of partial
differential equations together with additional algebraic equations.

Fluid systems in spacecraft can be found e.g. in:

● Propulsion and engine control systems
● Tank pressurization systems
● Complex power systems such as fuel cell systems
● Environmental conditioning and life support systems
● Active cooling / heating systems
● Laboratory rack systems

The balance equations set up for each individual system component are balancing
amounts for which the changes can exclusively be described by the following three
essential processes:
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● Storage
● Transport, flow
● Transformation, conversion

The control  volume in most  cases is a fixed volume element,  as far  as possible
identical to the spacecraft component to be modeled for simulation. For the balanced
amount enclosed in the control volume the following equation applies,

d
d t∫V

M d  V=−∮
A
d A∫

V
S d V (6.14)

where:
M is the volume specific amount to be balanced, 
V is the control volume,
A is the surface of the control volume,
φ represents the amount passing the system borders, and
S is the volume specific conversion rate inside the control volume.

Applying Gauss' law the surface integral can be transformed to a volume integral:

d
d t∫V

M  d  V=−∮
V
∇ d   V ∫

V
S  d V (6.15)

Or in differential form:

∂M
∂ t

=−∇S (6.16)

In this notation now all necessary balance equations can be represented for system
component simulation.

In  the  following  sections,  the  balance  equations  for  thermal  and  fluid  dynamic
systems are used as examples since they are specially well suited to demonstrate
certain numeric characteristics. Equation systems for attitude dynamics on orbit etc.
are treated later. The balance equations for thermal dynamic systems usually are:

● The equation of continuity in form of a mass balance
● Compound balances for compounds in material mixes
● The momentum equation
● The Energy equation
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Equation of Continuity

Considering the equation of continuity, the balanced amount  M corresponds to the
mass per volume, i.e. the density ρ of the fluid. The source / sink term q in this case is
equal  to  zero  since  mass  neither  can  be  generated  nor  eliminated.  Chemical
conversions inside the component from one chemical matter to another are not a
topic  of  the  equation  of  continuity  but  of  compound  balance  equations.  So  the
equation of continuity can be written as:

∂
∂ t

=−∇ v  (6.17)

For simple system components which can be represented with a unidimensional flow
through, this simplifies to:

∂
∂ t

=v ein−v aus (6.18)

Compound Balance

Compound transport inside the considered control volume results from flow, chemical
conversion and convection, the latter resulting from concentration gradients. In such
compound balance equations, for one compound in a mixture, the balanced amount
is the volume fraction c of the considered compound. For a mix of i substances, for
each of them such a compound balance can be established,

∂ci

∂ t
=−∇ ci v −∇ −D∇ ci

ṁi

iV ges
(6.19)

, where the last term covers the chemical conversion of the substance, (source / sink
term). In unidimensional representation this results in:

∂ci

∂ t
=−

∂ci v 
∂ z

− ∂
∂ z −Di , j

∂ ci

∂ z  ṁi

i V ges
(6.20)

Respectively applying constant diffusion coefficients it simplifies to:

∂ci

∂ t
=−

∂ci v 
∂ z

Di , j
∂2ci

∂ z2 
ṁi

i V ges
(6.21)

Principle of Linear Momentum

For  the  linear  momentum  equation,  the  balanced  amount  is  the  specific  linear
momentum flow. The equation reads as follows:
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∂v 
∂ t

=−∇v vT −∇  f (6.22)

Here, f represents the resulting force flow onto the fluid inside the control volume,
e.g. resulting from gravitation, mechanical linear or centripetal forces.

● For Newtonian fluids, the viscosity stress tensor is linearly dependent on the
velocity gradient.

● For isotropic fluids with the viscosity stress tensor following Stoke's hypothesis
◊ and in component representation,
◊ and under the assumption that the only resulting force impacting the fluid,
the following equation results,

∂
∂ t vi =−∑

j

∂
∂ z j

vi v j−
∂ p
∂ z i

−∑
j

∂
∂ z j

i j gi (6.23)

with i=x,y,z and j=x,y,z

Energy Balance

For the  energy balance equation, usually the intrinsic energy of the component is
used as the balanced amount, in volume specific representation. The flux parameters
represent the net energy flow into the control volume consisting of:

● The net inflow of intrinsic energy
● Technical work on the control volume surface
● Heat flow into control volume due to heat conduction
● Friction work of the flux in control volume and technical work done
● Net increase of potential energy

The energy equation thus reads as follows:

∂
∂ t u1

2
vT v g h=

−∇ u v −∇  g h v −∇ 1
2
vT vvT −∇  pv ∇ ∇ T −∇  v 

Q
.

internal /V cumulW
.

t , internal /V cumul
(6.24)

In  some  cases  the  energy  balance  also  is  established  using  the  overall  energy
density, (not only intrinsic energy), or the overall enthalpy density.
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Examples for Algebraic Coupling Equations

Algebraic  coupling  equations  define  fixed  interdependencies  between the  diverse
parameters of those balance equations. For thermal / fluid dynamic systems these
typically are the thermodynamic state equations as shown in the examples below.
For other systems these also can be force or momentum equilibrium equations or
other principles.

= p ,u  (6.25)

T=T  p ,u  (6.26)

p

=R T (6.27)

∂u=cv ∂T (6.28)

The equation system for  attitude dynamics of a satellite - rigid body system - shall
serve as example for the equation types appearing in this domain. The variation of
the position vector r applies as:

ṙ x=v x

ṙ y=v y

ṙ z=v z

(6.29)

The variations of velocities can be described by

v̇ x= f 1F x 
v̇ y= f 2F y
v̇ z= f 3F z

(6.30)

with F being  the  sum of  all  forces  interacting  with  the  spacecraft  body.  For  the
gradients  of  rotation  rates,  the  following  non-linear  differential  equation  system
applies: 

⋅̇=N−Ḣ−×⋅H  (6.31)

with:

 Moments of inertia
 Rotational rate
N Sum of all torques
H Internal angular momentum - e.g. through reaction wheels
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And  finally  for  attitude  variations,  described  through  quaternions17 instead  of
trigonometric  equations,  the  following  system  of  first  order  ordinary  differential
equations can be set up:

q̇1= f 1 q1 ,̇ x , ̇y , ̇z
q̇2= f 2q2 , ̇x , ̇ y , ̇z
q̇3= f 3q3 ,̇ x , ̇y ,̇z
q̇4= f 4q4 , ̇x , ̇ y , ̇z

(6.32)

Equation (6.31) already represents a non-linear differential equation system of first
order.  In  practice  this  becomes more  complicated  through  the  elaboration  of  the
matrix N .

Nonlinearities in these equations of dynamics especially result from forces / torques
imposed on the spacecraft through gravitation, solar pressure, magnetic fields etc.
The sufficiently precise modeling of all these effects make the equations complex in
real application.

Detailed literature concerning attitude and orbit control of spacecraft are listed in the
according subsection of this book's references annex.

 6.4.3 Equation Set for Spacecraft Electrics

The physics of spacecraft power electrics, namely of:

● Solar cells / solar panels
● Batteries / battery stacks
● Power controllers, and
● Power distribution units

for the purpose of system simulation can be formulated as a system of first order
linear  differential  equations  -  partly  with  non  constant  coefficients  resulting  from
characteristic curves of solar cells, battery cells etc.

Further reading on mathematical modeling of satellite power electrics is listed in the
according subsection of this book's references annex.

17Concerning definition and deduction of quaternions please refer to the relevant literature on attitude and orbit
control of spacecraft, such as [40], chapter 12.1.
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 6.5 Classification of Partial Differential Equations

The balance equations and other physical equations from chapter 6.4 in some cases
are ordinary differential equations, (ODEs), in other cases they are partial differential
equations, (PDEs). For the numeric integration of system behavior over time these
PDEs have to be converted into ODEs beforehand. The first step towards this is a
closer analysis of the type of occurring PDEs.

In  analogy  to  the  example  balance  equations  cited  in  chapter  6.4 and  their
characteristics, a second order partial differential equation of the following type shall
be considered:

a ∂2 y
∂ t 2 2 b ∂2 y

∂ t∂ z
c ∂

2 y
∂ z2d ∂ y

∂ t
e ∂ y

∂ z
 f y−g=O (6.33)

The  nature  of  the  solution  of  such  PDEs  is  dominated  by  the  main  term which
comprises  the  first  three  equation  elements.  Three  basic  types  of  PDEs can  be
determined:

hyperbolic > 0
parabolic , with the discriminant b2−a c = 0
elliptic < 0

None of the previously treated balance equations comprise higher derivatives w.r.t.
time:

=> a=0

Also mixed derivatives w.r.t. time t and location z do not appear:

=> b=0

In  the  balance  equation  for  compounds  for  mixed  materials  and  in  the  energy
balance equation higher order derivatives w.r.t. location z appear:

=> c≠0

Thus the equation sets treated in chapter  6.4 can be identified as being parabolic
type DEQs.

{
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 6.6 Transformation of PDEs into Systems of ODEs

For solving a system of PDEs with derivatives concerning time and location, first a
discretization of the balanced control volume w.r.t.  location has to be undertaken.
This can be achieved by discretization into nodes. E.g. a simple pipe or a reactor can
be discretized into  slices,  a  3-dimensional  spacecraft  geometric  structure  can be
discretized  into  thermal  grid-nodes.  The  subsequent  sections  describe  the
dependencies  of  state  variables  of  different  nodes  from  each  other.  For
demonstration, again a balance equation of the most complex type treated so far is
applied as an example - the balance of a fluid compound, i : 

∂ci

∂ t
=−

∂ci v
∂ z

Di , j
∂2 ci

∂ z2 S R (6.34)

Whereby SR represents the production rate of the compound i, which is the reaction
rate.  The  equation  represents  a  nonlinear  PDE  type  -  of  so-called  diffusion  /
convection type.  Reducing the focus for a moment to one single flow component
(without component index i ) the equation reads:

∂c
∂ t

=−
∂ c v 
∂ z

D ∂2 c
∂ z2S R (6.35)

For local discretization it shall be assumed that the component can be discretized
into  L equidistant  elements  of  the  length  Δx ,  indexed  as  [1...L].  Then  the  local
derivative at position l in the pipe can be discretized as

∂c
∂ z∣l≈

cl1−cl−1

2 z

which leads to:

∂2 c
∂ z 2∣

l
=
∂ ∂c

∂ z 
∂ z ∣

l
≈ 1
 z [ cl1−cl

 z
−

cl−cl−1

 z ]= cl1−2clcl−1

 z 2
(6.36)

The  partial  differential  equation,  
∂c
∂ t

=−
∂ c v 
∂ z

D ∂2 c
∂ z2S R ,  thus  can  be

transformed into a system of L ordinary differential equations of the form,

d cl

d t
= cl−1cl cl1S R (6.37)
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whereas the following subterms are defined as:

= D
 z 2

v
2 z

=−2 D
 z2 = D

 z 2−
v

2 z

Since the compound concentrations are dependent on each other,  the differential
equation system must be solved simultaneously.

Each  differential  equation  only
describes  the  time  behavior  of  one
compound concentration at one location
over time. A solution of the DEQ system
represents  the  computation  of  time
behavior  of  one  compound  concen-
tration  along  one  line,  x=const ,  over
time, so in one pipe or reactor segment.
Thus this approach commonly is called
the "Method of Lines".

d cl

d t
= cl−1 cl cl1S R

For system states to be described by multiple parameters,  the following equation
represents the same approach assuming that the system state can be completely
described by pressure P, temperature T and compound concentration c:

d cl

d t
= f c l cl−1 , cl , c l1 ,T l−1 ,T l ,T l1 , pl−1 , pl , pl1 , x , t 

d T l

d t
= f T l c l−1 , cl , cl1 ,T l−1 ,T l ,T l1 , pl−1 , pl , pl1 , x , t 

d Pl

d t
= f p l cl−1 , cl , cl1 ,T l−1 ,T l ,T l1 , pl−1 , pl , pl1 , x , t 

(6.38)

For  a generic  parameter  set,  not  only  compound concentrations,  the equation  in
vector format reads as follows:

B d y
d t

= f  y , x , t  (6.39)

With: B=[1 ⋱
1

⋱
1
] y=[

y1

⋮
yl

⋮
y L
] f =[

f 1

⋮
f l

⋮
f L
]

Figure 6.3: Method of lines.
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In both cases this leads to a linear system of ordinary differential equations with non-
constant coefficients as depicted before in equation  6.12.  The physical  behavior of
such systems thus can be described by a system of, eventually partial, differential
equations.  By application of local  discretization methods this PDE system can be
mathematically transformed to a system of coupled ordinary differential equations,
extended by the already discussed algebraic coupling equations. Such an equation
system is  called a  differential  algebra system or  DA-system for  short.  Differential
equations of higher order can be converted to DEQ systems of 1st order.

 6.7 Numerical Integration Methods

System simulation requires solving the integration of a differential equation system as
treated in the previous sections over time, starting from a consistent set of  initial
conditions. Mathematically in a first simplified formulation this reduces the task to the
solution of an

● initial value problem of 
● a differential-algebra system 
● of first order.

For stability of the solution and for numerically precise reasons it is essential to

● apply numerical solving techniques suited for the equation types, and to,
● assure the consistency of the initial state of the integration for all variables.

The type of ordinary DEQs appearing in the DA-system was elaborated previously:

B d y
d t

= f  y , x , t  (6.40)

Algebraic equations appear as material state equations, (e.g. gas equation), or when
modeling system components as discrete state machines. Numerically the algebraic
coupling equations are  treated as DEQs without  derivative  terms and are solved
together in the overall DEQ system. Before treating specifics of this approach, the
most  common  mathematical  integration  methods  for  solving  such  initial  value
problems shall be treated.

Euler Method

The most simple approach is the explicit Euler method. This method integrates over
the entire interval  x in one step and with one value for the derivative.
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Figure 6.4: Explicit Euler method.

   

y '= f x , y  y  x0= y0

h= x
yn1= ynhf xn , yn  (6.41)

The explicit Euler method numerically only converges for system behavior parameter
values  with  negative  gradient.  An  example  where  this  simple  method  can  be
adequate is the state integration of the gas thermal dynamics in the high pressure
bottles  of  the  system  depicted  in  [23].  Here  mass  contained,  pressure  and
temperature  all  have  a  negative  gradient  over  the  entire  system operation  time.
Semi-implicit  Euler  methods which are also stable for  DEQ systems with positive
derivatives will be treated later in chapter 6.12.

Runge-Kutta Method

The most widespread integration methods are variants of the Runge-Kutta type. They
exist in multiple variants with different order. The most commonly used are:

2nd order – Midpoint method
4th order – classic Runge-Kutta method
6th order – Runge-Kutta-Fehlberg method

(6.42)

These methods do not  integrate in one step over  the entire  interval,  but  instead,
intermediate "test computations" are made as can be seen in the above formulae for
the Runge-Kutta 4th order. At each of the test points the local derivative is computed
which is used for the next test step. At the end the final result is computed via an
embedding  formula.  For  details  on  the  (very  good)  stability  and  the  achievable

h= x
k1=hf x n , yn

k2=hf xn
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Figure 6.5:  4th order Runge-Kutta method.
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precision,  the  reader  is  pointed  to  the  corresponding  mathematics  literature.  All
Runge-Kutta methods cited here are of the explicit type.

Richardson Extrapolation

A completely different technique is followed by the Richardson extrapolation method.
They first compute the integration over the interval with few intermediate steps - two
in the figure below. Thereafter they increase the number of intermediate steps by
even numbers and successively achieve a more and more precise result. Finally via
the  evolution  of  the  value  of  the  intermediately  computed  test  results,  the  final
function value which would result from infinitely small step size can be estimated. A
popular subtype of these algorithms is the so-called Gragg-Bulirsch-Stoer method.

Figure 6.6: Richardson extrapolation.

The following Java code example computes the initial value problem for

y' = 2 sin x + (tan x) y    with    y(0) = 1 (6.43)

in the interval [0,1]  from 2nd to 12th order.

public class Main {
    /* a = interval - initial value: */
    static int a = 0;
    /* b = interval - terminal value: */
    static int b = 1;
    /* exact solution */
    static double lsg = 2 / Math.cos(b) - Math.cos(b);

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args) {
        start();
    }
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    /* function to integrate */
    public static double f(double x, double y) {
        double z = 2 * Math.sin(x) + y * Math.tan(x);
        return z;
    }

public static void start() {
    /* Set the order here: */
    // The order needs to be divedable by two (2,4,6...)
    double ordnung = 12;
    double maxk = Math.ceil(ordnung / 2);

    double nk = 0;
    double hk = 0;

    /* Declaration of a field y[] for the function values 
       at the supporting points */
    double[] y = new double[(int) Math.pow(2, maxk) + 1];

    /* initial value y(a)= */
    y[0] = 1;

    /* Declaration of a 2-dimensional field T[][] for the interim values
*/
    double[][] T = new double[(int) maxk + 1][(int) maxk + 1];

    /* Part 1: T[k][1] */
    for (int k = 1; k <= maxk; k++) {
        /* nk = Number of bands */
        nk = Math.pow(2, k);
        /* hk = band size */
        hk = (b - a) / nk;
        /* Anlaufrechnung nach Euler-Cauchy */
        y[1] = y[0] + hk * f(a, y[0]);
        /* Calculation of function values 
           at the sampling points according to
           the tangent trapezoidal formula */

        for (int i = 2; i <= nk; i++) {
            y[i] = y[i - 2] + 2 * hk * f(a + (i - 1) * hk, y[i - 1]);
        }

        /* Calculation of T[k][1] from the function values 
           at the sampling points */
        T[k][1] = (y[(int) (nk - 1)] + y[(int) nk] 
                  + hk * f(a + nk * hk, y[(int) nk])) / 2;
    }

    /* Part 2: Extrapolation of the interim values */
    for (int o = 2; o <= maxk; o++) {
        for (int k = o; k <= maxk; k++) {
            T[k][o] = T[k][o - 1] +  (T[k][o - 1] - T[k - 1][o - 1])
                    / (Math.pow(2, 2 * o - 2) - 1);
        }
    }
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    /* Part 3: Print-out of the solution into a table. */
    System.out.println("Order | k| nk| Tk[x][x] | Exact solution | 
                        Rel. err.");

    for (int i = 1; i <= maxk; i++) {
        String myOrdnung  = Double.toString(i * 2);
        String myK        = Double.toString(i);
        String myNk       = Double.toString(Math.pow(2, i));
        String mySolution = Double.toString(lsg);
        String myRelError = Double.toString(Math.abs((T[i][i] - lsg) /
                                                      lsg));
        System.out.println(myOrdnung + " | " + myK + " | " + myNk
                           + " | " + T[i][i] + " | " + mySolution + " | "
                           + myRelError);
    }
  }
}

Output:
--------------------------------------------------------------------------------
Order| k  |  nk | Tk[x][x]           | Exact solution    | Rel. err.
  2.0| 1.0|  2.0| 3.1486986551235145 | 3.161329129493711 | 0.0039953050925195435
  4.0| 2.0|  4.0| 3.172940317313528  | 3.161329129493711 | 0.003672881672297243
  6.0| 3.0|  8.0| 3.1616979644949303 | 3.161329129493711 | 1.1667086409262056E-4
  8.0| 4.0| 16.0| 3.161338582359264  | 3.161329129493711 | 2.9901554585989617E-6
 10.0| 5.0| 32.0| 3.161329227808318  | 3.161329129493711 | 3.109913667664177E-8
 12.0| 6.0| 64.0| 3.161329129896201  | 3.161329129493711 | 1.273167154728482E-10

Further Methods

Beyond  these  multi-step  methods  exist  approaches  which  integrate  into  their
extrapolation  formula  one  or  more  historic  sample  point  values,  e.g.  the  Adams-
Bashforth  methods (cf.  [47])  not  further  described  in  this  volume  but  worth
considering.

Constant Step Sizes vs. adaptive Step Size Control

For most of the discussed methods, in addition variants exist which provide adaptive
stepsize control. Varying integration-step size is an efficient technique for numerical
effort optimization in conventional simulations. However for real-time systems this is
not a suitable technique since interval sizes  x are prescribed by data exchange
intervals to hardware in the loop.

Consistent Initial Conditions

In system simulation the consistency of the initial conditions of all state variables at
integration initiation is essential for the  numeric stability of the applied method. In
process  engineering  of  complex  plants  therefore  simulators  exist  which  prior  to
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dynamic behavior simulation compute a static system state solution - in other words
solving  the  DEQ set  for  static  system state.  For  a  satellite  the  system state  at
launcher separation can be taken as a consistent initial data set for simulation start.
For this point usually all state parameters such as attitude, velocity vector, subsystem
states etc. are known.

 6.8 Integration Methods Applied on System Level

For treating system modeling and simulation basics on system level two exemplary
applications will be discussed in parallel in the subsequent sections,

● a propulsion system for rocket stages, and
● a satellite attitude and orbit control system (AOCS).

Please also refer to the two following figures. Hereby simulation of the system's time
behavior,  can  be  formulated  as  initial  value  problem  to  be  integrated  over  time
starting from a known system state at t=0.

Propulsion System for Rocket Upper Stages

Figure 6.7:
Propulsion system
for rocket stages.
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Satellite Attitude Control System

Below again the satellite model as already presented in chapter 5:

OBC
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Solar Array
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Environment

Payload

Structure

Dependencies to be 
modelled as system of 
partial differential 
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algebraic equations

Line Based Data IFs
Line Based IFs (Pwr)
Physical/thermal IFs

Physical/mechanical IFs
Physical IFs (div.)

Figure 6.8: Satellite model - components and interconnections.

In a modular simulator, it is not the goal to reformulate the DEQ set for the entire
system and to program a fixed solution for each system type or variant of the AOCS
or the propulsion system. The ideal solution would be to assemble the system level
model from a library of equipment models which can be taken from a library and can
be "clicked" together in a graphical editor according to the real system's functional
layout. The simulator then should be able to load the configuration and to run the
simulation - which however is extremely complex w.r.t. software implementation.

For the implementation of such initial value problem solvers, two basic approaches
can  be  followed.  The  first  one  requires  compromises  with  respect  to  achievable
solution  precision,  the  second  one  is  in  principle  exact.  Both  approaches  are
discussed further, using the a.m. spacecraft systems as application examples.

Simplified Integration on System Level – Example 1

Considering the model of the tank pressurization system (please refer to figure 6.7)
the mass flows of oxidizer and fuel towards the engine are regulated according to
required ΔV-of the launcher over time. Flow control either is performed via valves, or -
if  the stage is accordingly equipped -  by controlled turbo-pumps. The cited mass
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flows  of  oxidizer  and  fuel  extracted  from  the  tank  compartments  represent  the
external boundary conditions:

ṁOx= f 1t   und ṁFuel= f 2t 

From the Helium high pressure bottles, Helium expands accordingly and flows into
the fuel and oxidizer tank compartments, hereby modeling all thermal dynamic effects
like temperature drops,  real  gas behavior,  condensation of  oxidizer  and pressure
drops in pipes and pressure regulators. The derivatives of state variables modeling
the tank inner state for integration over time compute as follows:

ẏa=ṁOxCondens = f a  y , t 
. . .
. . .
. . .

ẏ l=ṁFuelCondens = f l  y , t 
ẏm=ṁHeOxIn = f m y ,T HeOxIn , t 
ẏn=ṁHeFuelIn = f n y ,T HeFuelIn ,t 

(6.44)

Only the derivatives of tank internal state variables thus are computed and handed
over to a numeric solver which is integrated into the tank model. The solver - e.g. of
Runge-Kutta type - computes its test steps under the assumption of constant Helium
inflow condition over all its test steps of Δt. Therefore it computes the solution for t +
Δt, i.e. the new tank internal state.

The states further upstream in the system then compute the Helium pressure gas
mass flows as average values over the entire time step Δt and thus from the resulting
state changes in the Helium high pressure bottles as:

ṁHe=ṁHeOxInAverage  ṁHeFuelInAverage

. .
Ṫ He= f p y Bottle , ṁHe , t 

. .

(6.45)

The model  of  the  Helium bottle  e.g.  computes  the  temperature  and  pressure  of
outflowing gas under consideration of real gas effects and pressure drops. Therefore
via pipes, filter, regulators (left out here), the new inlet state conditions for the tank
compartments result for time equal to t + Δt, i.e. for integration of the next time step.

Implemented DEQ solution method on system level:

This approach corresponds to
● a Runge-Kutta method on tank level, but,
● an Euler method on system level.

Advantages:
● The  DEQ  subsystems  are  decoupled  and  their  integration  can  be  coded

directly inside the component model.
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● For each type of component an individually best suited numerical method can
be selected.

● No overall  equation  system is  generated  which  might  eventually  show up
stiffness effects etc. (Topics which will be treated later in chapter 6.12).

Disadvantages:
● Since the temperature, pressure and mass content constantly decrease inside

the high pressure bottles, the Euler method implemented is still  converging.
Thus for this specific system layout no disadvantages appear. But this is an
exceptional case.

For a system simulator which shall provide the feature to "click" together the system
layout  or  to  define  it  simply  in  an  input  file,  such  a  program  concept  is  pretty
straightforward since each component implicitly comprises "its" numerics. An overall
system wide consistency (especially concerning hydraulic boundary conditions) must
be achieved by additional means. An open source system simulator following this
concept can be downloaded from [23].

Simplified Integration on System Level – Example 2

A similar approach as in example 1 is applied in the following simple attitude control
application:
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Figure 6.9: Satellite attitude control loop.

In this system the attitude change is actuated by means of a magnetotorquer which
produces  a  magnetic  field  interacting  with  the  Earth's  magnetosphere  and  thus
producing  a  torque  onto  the  spacecraft.  For  computation  the  resulting  torque  is
assumed to be constant over the time interval Δt.  This already is a simplification,
since the torque as result from interaction of torquer field and Earth magnetosphere
can be computed exactly for time t. But already after the first Runge-Kutta test step
the state of the spacecraft - i.e. its attitude - has changed minimally and thus the
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torquer  axis  direction  has  changed w.r.t.  Earth  magnetic  field  which  implicates  a
change in resulting momentum onto the spacecraft.

With this simplifying assumption of a constant torque over the entire interval Δt in this
case  the  attitude  integration  up  to  t+Δt is  performed.  Internally  the  dynamics
integrator  can  compute  with  e.g.  a  Runge-Kutta  method  of  4th order  under
consideration of additional environmental disturbance forces etc.

After  attitude  integration  the  sensor  measures  the  new  attitude  parameters  and
forwards the measurements to the OBC.

Implemented DEQ solution method on system level:

● The  approach  represents  a  Runge-Kutta  method  on  the  level  of  attitude
integration (including all disturbances like solar pressure etc.), but,

● it represents an Euler method on system level.

Advantages:
● The DEQ subsystems are decoupled which results in a simple computation

sequence on system level.
● For a system simulator which shall provide the feature to "click" together the

system layout or to define it simply in an input file, such a program concept is
pretty straightforward since each model computes its equation system locally.

Disadvantages:
● Reduced  numeric  accuracy:  This  modeling  approach  is  not  suited  for

testbenches  with  high  accuracy  requirements  nor  for  longterm  runs  since
errors add up over time.

● The mathematic stability is only assured up to a certain - relatively small - step
size, which however is not known in advance.

● The maximum allowable time step size must be extracted from the data of the
controller  designers  which  defined  the  AOCS  controller  algorithms  in  the
OBSW.

Systems following this approach have been the older MDVE satellite simulators from
Astrium GmbH for the space progammes CryoSat 1, Aeolus and TerraSAR (cf. [14]).

Exact Integration on System Level – Example 3

The following examples shall  treat exact  integration on system level.  For the first
example again the tank pressurization system from figure 6.7 is considered, however
this time with slightly modified modeling. All derivatives of the entire pressurization
system including all  components now are integrated together by a common DEQ
solver. The equation system looks as follows:
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ẏa=ṁOxCondens = f a y , t 
. . .
. . .
. . .

ẏl=ṁFuelCondens = f l  y , t 
ẏm=ṁHeOxIn = f m y ,T HeOxIn , t 
ẏn=ṁHeFuelIn = f n  y ,T HeFuelIn , t 
. . .

ẏo=ṁHe = f o y , t  =ṁHeOxIn  ṁHeFuelIn

ẏ p=Ṫ HeBottle = f p  yBottle , ṁHe ,t 
. . .

(6.46)

All derivatives are registered as common data structure with the solver. The solver
computes the test steps (4 in case of classic Runge-Kutta) and computes the final
state  results  for  the  overall  system at  t  +  Δt.  In  contrast  to  equation  6.45 here
specially has to be pointed out that:

● The overall mass flow of Helium is no longer computed as average out of the
4 Runge-Kutta steps of the tank solution only, but in each test step here it is
recomputed on system level.

● Furthermore now the state equations for the Helium bottles also are solved via
the same Runge-Kutta method on system level.

Implemented DEQ solution method on system level:

● The approach corresponds to a Runge-Kutta method on system level.

Advantages:
● The approach is mathematically exact which results in
● maximum accuracy and stability.

Disadvantages:
● The stiffness of the DEQ system is not considered in advance (cf.  Chapter

6.12) which however for this simple system does not yet impose problems.
● For a system simulator which shall provide the feature to "click" together the

system layout or to define it simply in an input file, such a program concept is
very ambitious since
◊ each equipment model has to register its derivatives with the solver, and
◊ because depending on the user defined system layout (one high pressure

bottle  or  two)  the  solver  has  to  integrate  a  different  number  or  even
different types of DEQs.
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Exact Integration on System Level – Example 4

The last considered system represents an exact integrated variant of example 2 -
please also refer to the figures 6.10 and 6.11. The first figure shows

● in similarity to figure 6.8, and
● reduced to mechanical effects in the AOCS (green dotted lines),

how the equipment models and environment model first exchange variables (often
called  “Algebraic  Quantities”)  according  to  the  actual  spacecraft  state.  E.g.  the
thruster models, reaction wheel models and space environment model "report" forces
and torques towards the spacecraft structure model.
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Solver
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q̇1= f 1q1 , ̇
q̇2= f 2q2 , ̇
q̇3= f 3q3 , ̇
q̇4= f 4q4 , ̇

F Env.

N Env.

Figure 6.10: Exchange of algebraic quantities between models and reporting
derivatives to the solver.

From there the models compute the state variable derivatives - in the figure below
the reaction wheel and the structure model - and register them with the solver. The
integrator now performs one test step integration. Figure 6.11 then depicts returning
the new state variables - namely rotational momentum, position and rotational rate -
to the various equipment, depending on which model requires which state variables.
Thereafter the same cycle starts again for the next Runge-Kutta test step and so
forth.
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The implementation of such an approach implies an adequate model architecture for
the equipment models as shown in figure  4.15. Especially refer here to the model
interfaces  for  handing  over  the  derivatives  to  the  solver,  for  read-back  of  the
integrated state variables and for exchanged algebraic parameters (see “Continuous
Model IF” in figure 4.15). 
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Figure 6.11: Feedback of integrated state variables towards the equipment models.

The computation flow for such a system according to figures 6.10 and 6.11 is:

● Reading of actuator control values from OBC
● Call of the Model-Interface-Layer for reading and decalibration of data

from protocol
● Computation of discrete model parts (state machine)
● Integration cycle of the central solver:
◊ Computation  of  the  continuous  parts  of  the  equipment  model  and

handover of derivatives to solver
◊ Integration step
◊ Computation of integrated final values from test steps and hand back

of state variables to the models
● Call of Model-Interface-Layer for calibration of output via protocol
● Writing output to line models towards OBC

Figure 6.12: Computation flow sequence.
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Implemented DEQ solution method on system level:

● The approach corresponds to a Runge-Kutta method on system level.

Advantages:
● The approach is mathematically exact which results in
● maximum accuracy and stability.

Disadvantages:
● Equipment  and  system  models  need  interfaces  for  exchange  of  algebraic

quantities and derivatives.
● For a system simulator which shall provide the feature to "click" together the

system layout or to define it simply in an input file, such a program concept is
very ambitious since:
◊ each equipment model has to register its derivatives with the solver, and
◊ because depending on the user defined system layout the solver has to

integrate a different number or even different types of DEQs.

The registration of derivatives with a solver shall  be analyzed in a bit  more detail
here.  Considering first  figure  6.10,  here all  actuators  and the space environment
model  report  mechanical  influence parameters towards the structure model which
has to sum them up and eventually has to convert them into a central spacecraft
coordinate system. In an electrical  system similarly  all  electrical  equipment  would
report  its  power  consumptions.  However  therefore  a  "receiver"  model  like  the
structure for mechanics or a PCDU for electrics must exist, which - depending on
system topology - has to handle a varying number of input forces, torques or power
consumption / production rates. The force / torque or power "suppliers" must know
the "receiver" to whom they have to report right from program start and must register
themselves as input "suppliers" there. A reaction wheel e.g. only registers a torque,
the space environment model has to register both forces and torques - depending on
attitude and position of the spacecraft.

These features for registration of parameters with a "receiver" can be supported by
so-called  service oriented architectures (SOA) of the simulator kernel. More details
on this very advanced approach are discussed in chapter 8.

A similar mechanism has to be applied in the second step. Here first all equipment
and  system models  (e.g.  space environment  model)  register  the  derivatives  they
compute with the solver (see figure 6.10) and they register, which state variables they
later need back for their local computations (see figure 6.11). These two variable sets
however can differ. E.g. the startracker model in figure  6.11 does not compute any
position vectors, rotation rates etc., however it requires attitude angles and position
vector of the spacecraft for computation of its quaternion output for the OBC.

Here again such a service oriented architecture on simulator kernel level is required.
The numerical solver must provide the according functionality and the models must
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perform the registration steps at simulator initialization time. A technical solution for
this problem are entirely dynamic simulator kernel architectures such as OpenSimKit
introduced in V4.0 which still is in research phase. Such systems are highly dynamic
and allow in one case to e.g. load a spacecraft configuration with 3 reaction wheels
and in the next run a configuration with 4 wheels. For changing the design only a
different simulation input file is required. All the internal mode registering with a solver
is "black box" technology and the user is not burdened with these features.

An alternative approach can be a "hard coding" of the model / solver interlinking in
the software architecture UML model at spacecraft simulator design time. From the
UML design, the fixed code for one spacecraft topology and a fixed networking of
models and solver is then generated. Eventual design changes in the real spacecraft
need a design adaptation of the simulator on UML level and a regeneration of code.
Infrastructures in satellite engineering applying this  concept  are the newer MDVE
simulators from Astrium applied in GOCE, LISA-Pathfinder and Galileo-IOV as well
as the latest Astrium “Simulator 3rd Generation” infrastructure implementations for the
ESA projects Bepi-Colombo, Sentinel 2 and EarthCARE (cf. [16], [17] and [19]).

 6.9 Boundary Value Problems in System Modeling

The  integration  of  differential  equation  systems  was  described  in  the  previous
chapters 6.7 and 6.8. It must be performed over the entire equation system in parallel
as far as the equations are coupled via state variables or derivatives. This however
only covers the integration of a pure  initial value problem of a DEQ set. The cited
example of an actuated AOCS and the integration of spacecraft attitude change over
time is an application where such type of initial value problem solving is sufficient.

This  technique  is  no  longer  adequate  for  a  system  with  additional  boundary
conditions. The mathematical task then is to perform a state integration over time for
a combined initial value /  boundary value problem. The following simple life support
system depicts such a type of system.

This depicted system - from an early design phase of the Columbus laboratory - 
basically focuses on correct temperature control of the cabin and the "standoff" with
the experimental racks. Temperature control is achieved through a variation of the
airflow  via  the  controlled  fan,  a  controllable  flow  distribution  between  cabin  and
standoff as well as by control of the airflow passing a heat exchanger for cooling. Air
cleaning,  humidity  control  and  CO2 absorption  as  well  as  oxygen  supply  are
performed via the “Inter Module Venting” interface to the ISS core modules.
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Figure 6.13: Early phase design of the Columbus life support system - similar in [129].

In such system designs, bifurcations - called "split" here - and junctions occur, and
the self adjusting distribution of airflows isn't calculable anymore via a pure forward
integration from a known state. The situation shall  be explained in more detail  at
hand of a more simplified model of the life support system - please refer to the figure
below where all valves, controllers and flanges are removed.

Figure 6.14: Abstraction of the life support system.
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During operation of such a system e.g. the cabin temperature can change over time
due to dissipated heat from the astronauts. This results in a change of air density and
in the volume flow which drives the pressure drop. However at the point of junction,
the boundary condition of pressure equality of the flows from cabin and standoff has
to be assured. Therefore the changing mass flows between cabin and standoff have
to be recalculated after each integrated time step.

A similar effect occurs if due to experimental parameters in the standoff racks, the
airflow resistance increases and as a result the pressure drops in standoff. Also in
this case a real variation of the mass flows between cabin and standoff results.

In reality such variations of the mass flows occur gradually over time. In simulation
however the time increase is discretized, so that the integrative states in cabin and
standoff (e.g. temperature) vary between two time steps. After each integration step
the boundary condition of pressure equality would be infinitely violated, assuming
same mass flow distribution as  in  the previous  step.  A so-called residue for  this
pressure equality occurs which has to be eliminated by calculation of adapted mass
flow distribution at the split.

A further  similar  effect  occurs  if  the  overall  flow  resistance  of  the  entire  system
increases.  Under  the  assumption  of  a  constant  pumping  power,  the  pressure
increase and / or mass flow at the fan will change in such a case. Also this residue
between pressure increase at the fan and pressure drop over the system has to be
eliminated before a new time step integration can be performed - since otherwise the
mass flow rates do not represent real world conditions.

Both effects, the variation of mass flow distribution between standoff and cabin as
well  as  change  in  overall  mass  flow  also  can  occur  together  (which  in  practice
happens in most cases). The challenge is to design the simulator software in such a
way, that it

● in the first place can identify the points of residues, and
● that on the other hand it can identify which parameters are to be readjusted,

how to eliminate the residues between two time step integrations and thus to
compute a physically valid state.

Since the equipment output variables are depending on their input data (directly or
indirectly),  the  simulator  has  to  identify  relevant  components  and  their  adequate
variables to be tuned for residue elimination. Here it is to be considered that e.g. for
simple  electric  system  components  (e.g.  resistors  or  impedances)  the  output
parameter values linearly depend on the input values. Similar dependencies apply for
thermal systems. For fluid systems, the dependency of output from input parameters
mostly  can  be  identified  directly,  however  the  dependencies  are  nonlinear.  The
elimination of residues can only be achieved by application of numerical root finding
methods. For the overall elimination of all residues in the system, an equation system
of the following form has to be solved:

R= with  0 (6.47)
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For numerical root finding an entire pool of mathematical methods is available which
are treated later. In the system of figure 6.14 the following residue conditions are to
be fulfilled:

● At the junction, the pressures of port 4 and 6 must be equal, and
● for the fan pressure increase must be equal to the pressure drop over the

entire system back to fan.

The degrees of freedom are the mass flow distribution at the split and the resulting
mass flow over  the  fan.  Thus  for  residue elimination an  equation  system of  two
equations for two residues is to be solved where two degrees of freedom can be
varied. The equation system thus is well defined for this case (overdetermined and
undetermined  residue  equation  systems  are  tackled  later  to  keep  this  example
straightforward).  Intuitively  understandable  residue variables and variables for  the
degrees of freedom are used in this example, such as pressures and mass flows. In
more complex systems like fuel cells or chemical plants, very less intuitive variables
can be sources of residues. E.g. in a chemical distillation splitter, the sum of molar
outflows of liquid and gas phase has to be equal to 1.0. Any deviations therefrom
become a residue.

To eliminate residues the simulator can be implemented in a way that the user has to
manually identify the subsystem parts to be iterated for elimination of each residuum,
so-called "meshes". This principle is applied for example by the simulator programs
SIMTAS  Object  [130],  and  OpenSimKit [23].  In both cases the meshes are to be
defined in according input file sections of the software.

For the system in the above example, one mesh would be defined which leads from
split  via  cabin  and  standoff  to  the  junction  and  which  would  iterate  the  junction
residue value pressure difference until resulting in a value below a selected limit. A
second mesh thereafter  would vary the overall  mass flow in the system until  the
residue in the fan (pressure increase  minus  pressure drop) is sufficiently low. In
case the mass flow over the entire system would change significantly during this
outer mesh iteration, the assumed mass flow at split for previous inner mesh iteration
would cause invalidation. In such a case the inner mesh has to be reiterated and so
forth until all residues are below permitted limits.

The  technique  of  letting  the  user  define  the  meshes  in  particular  is  not  a  nice
approach  since  one  has  to  determine  how  to  place  the  meshes.  This  task  is
acceptable  for  a  simulation  expert  but  definitely  makes  the  use  of  the  software
unnecessarily  complex  for  a  beginner.  Therefore  the  goal  must  be  to  find  an
algorithm which automatically can achieve this residue elimination after each time
step  integration  and  which  can  identify  at  handover  of  the  system  topology  the
according residue variables and the degrees of freedom.

For  the  above  system  such  an  algorithm  simplified  could  look  as  follows,  (cf.
figure 6.14):

● Origin  of  the  algorithm  is  a  residue,  assumed  e.g.  for  the  junction  in
figure 6.14.
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● As key parameters in model programming the two parameters determining the
residue are taken - here the two input pressures at the in-ports of the junction.
The occurrence of the junction model registers these variables in a table, i.e.
p4 and p6.

● Since the residue-relevant parameters p4 and p6 are input parameters of the
junction occurrence, the algorithm continues to find the according degree of
freedom upstream from the junction.

● First it searches whether any component directly upstream from the junction
input ports offers a pressure variable as degree of freedom at its outlet.

● Cabin or standoff however cannot offer this, however their output pressures
depend (non linearly) on their state variables and input variables.

● Therefore from the side of the junction, the upstream components cabin and
standoff (upstream of  p4 and of  p6) are queried for a qualitative dependency
table,  which  output  value  towards  junction  depends  on  which  input  value
(independent of linearity). Cabin and standoff provide such a table in the form:

pout= f1 pin , ṁin 
ṁout= f2  ṁin , T in 
T out= f3 ṁin ,T in

(6.48)

● The occurrence Cabin 1 thus can complement the information of the variables
table cited above and can identify that p4 depends on p2 and ṁ2 .

● The occurrence Standoff1 can complement the information of the variables
table cited above and can identify that p6 depends on p3 and ṁ3 .

● To manipulate p4 for junction residue elimination thus a component has to be
found which offers a degree of freedom for either p2 and / or ṁ2 and / or a
component upstream the standoff has to be found which offers a degree of
freedom for either  p3 and / or ṁ3 .

● The component connected to the input ports 2 and 3 of cabin and standoff is
the split. The split  contains again a similar dependency table of output and
input parameters:

ṁout , A= free
ṁout , B= free

pout , A=pin

pout , B=pin

T out , A=T in

T out , B=T in

(6.49)

Of  course  in  the  physical  implementation  of  the  split  model  it  is  considered  that
˙mout , A ˙mout , B=ṁin has to apply, i.e. that not both mass flows are freely selectable

due to conservation of mass. However the algorithm here can automatically identify
the split as component which allows variation of mass flow distribution in case the
residue of the junction is the above limit.

In a similar approach the algorithm proceeds for the outer residue 1, the pressure
increase at the fan and the drop over the system. The latter is computed by p1-p5 so
directly concerning port variables of port 1 and port 5 of the fan. The fan itself is
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considered to be isothermal and has registered in its component dependency table:

T out , B=T in

pout= f  pin 
˙mout= free

(6.50)

Here the algorithm can identify that for elimination of the fan's residue, the mass flow
passing the fan itself has to be varied.

Following this approach, only the equipment model programmer for a new model has
to implement the according functionalities for registering the parameter dependencies
according to equation 6.48 in the system table. Since the model programmers usually
have detailed knowledge about the physical interdependencies, this will not impose a
problem  for  them.  The  simulator  software  thereafter  can  find  itself  the  residue
variables, it can identify other components providing degrees of freedom for residue
elimination and it can automatically iterate these meshes found. The simulator user
only needs to assemble his system from precoded equipment models and no longer
has to care about boundary value problems, meshes and so forth. This technique is
very challenging concerning implementation but has clear advantages.

 6.10 Root Finding Methods for Boundary Value Problems

As the example from figure 6.14 demonstrated, the residue values at the split and fan
can be regarded as functions of the degree of freedom variables (mass flow and
mass flow distribution) at the fan and split respectively. For both residues the value
has to be minimized - ideally to zero. Thus a mathematical root finding has to be
performed. Before treating the mathematics in more detail it shall be reminded that

● such a numerical root finding process has already to be performed once after
simulation  initialization  to  achieve  a  physically  valid  state  over  the  entire
system, and

● that all  root finding algorithms only converge within a certain interval around
the root value.

Thus in any case at initialization time of the simulator for all system state variables
(here pressures, mass flows, temperatures) values of technically realistic magnitude
have  to  be  provided  as  initial  values.  The  first  residue  iteration  after  simulation
initialization serves for the following purpose:

The system engineer who designed the system and who wants to simulate dynamic
load cases for design verification, dynamic behavior analysis etc., usually knows the
design  parameters  of  the  system  equipment  (fan  power,  heat  dissipation  of
experiments in standoff etc.). In addition he knows the magnitude of the operational
system parameters for a certain load case - for the discussed system these are
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● magnitude of the cycling overall mass flow at a specified fan electric power,
and

● magnitude of distribution of mass flows between cabin and standoff.

With  this  it  is  usually  assured  that  the  initial  values  specified  for  simulation
initialization are sufficiently close to real values of the system in operation, so that the
root  finding  process  for  fine  tuning  of  the  initially  assumed  parameter  values
converges. At simulator start the exact values are not yet known, thus first a root
finding computation varying the degree of freedom parameters accordingly has to be
performed. In the system discussed above this eliminates the residues at junction
and  fan.  The  state  achieved  thereafter  is  the  computation  of  a  quasi-stationarity
system state for the life support system. Thereafter a time step integration can be
performed to integrate  the initial  value problem for  internal  state variables of  the
equipment models (gas concentrations in cabin, wall temperatures, gas temperature
etc.). After each such integration step of the initial value problem, again a residue
elimination step is performed. Result logging and reporting by the simulator always
are  performed  after  the  residue  elimination  step,  because  only  at  that  point  a
physically valid system state is computed.

The method of root finding itself shall be described applying the example of the rather
intuitive Newton method. The following figure depicts - for a one dimensional case -
the  stepwise  approach  to  find  the  root  from  a  starting  point  x1 over  multiple
intermediate steps via intersections of the curve's tangents with the x-axis.

Figure 6.15: Stepwise approximation of a function's root.

Generally  the  following  formula  can  be  derived  and  which  is  to  be  applied  long
enough until the root is approached with sufficient precision:

x

f(x)

f(x1)

x1x2x3 xend
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xn1= xn −
f  xn

df xn / d x (6.51)

This was for the single dimensional case and pretty intuitive. If multiple residues are
to be solved and which are dependent on multiple degree of freedom variables as in
the example of figure 6.14, the approach can be extended for multiple dimensions.
Accordingly equation 6.51 then modifies to

xn1= x−J x −1 f u  (6.52)

whereby J is the so-called Jacobi matrix, the tensor with the partial derivatives of
the function f :

J=∂ f
∂ x =[∂ f 1 /∂ x1 ∂ f 1 /∂ x2 ⋯ ∂ f 1 /∂ xn

∂ f 2 /∂ x1 ∂ f 2 /∂ x2 ⋯ ∂ f 2 /∂ xn

⋮ ⋮ ⋱ ⋮
∂ f n /∂ x1 ∂ f n /∂ x2 ⋯ ∂ f n /∂ xn

] (6.53)

Since solving equation 6.52 via the computation of the inverse of the Jacobi matrix is
numerically costly, instead the following linear equation system is solved:

J xn xn = − f xn (6.54)

The degree of freedom variables xn1 then result from:

xn1= xn x (6.55)

Basically here for both the single as the multidimensional case the problem exists
that the functional dependency between residue and degree of freedom variables
cannot be formulated by algebraic equations.

If between degree of freedom component (e.g. split  in a.m. example) and residue
component (e.g. junction in a.m. example) only equipment is located with algebraic
transfer functions, then the derivatives of the residue dependent on the degree of
freedom variables are directly computable for the Jacobi matrix. If however between
split and junction, components are located which comprise a behavior that e.g. has to
be  approximated  via  a  performance  chart,  then  the  derivatives  of  the  residue
functions from them have to be numerically interpolated. Usually this is done from
difference  to  the  system  residue  iteration  of  the  time  step  before.  An  example
(following the Newton method)  for  a  two dimensional  case can be found on the
Internet in [50].

Here the residue elimination was explained applying the relatively intuitive and easy
to understand Newton method. Convergence performance and stability of the root
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finding as dependent from deviation of initial value at start of the process shall not be
treated  further  here.  These  are  topics  of  the  according  mathematically  specialist
literature. For such root finding problems today very high performance methods are
available, e.g. the “Conjugate Gradient Methods” or "CG-Methods" (cf. [52]).

In the fields of chemical plant or power plant construction mainly the performance at
the stationary optimum operation point is of interest, whereby for such systems the
complexity is by far higher than for typical space systems like fuel cell systems, life
support  systems or  propulsion systems. In plant  construction and engineering for
these tasks specific tools for modeling the stationary operational case of the plant
exist, so-called "Flow-Sheeting" tools. As already explained, the root finding after a
time step integration in a system corresponds to finding a quasi-stationary system
solution. The mentioned Flow-Sheeting tools comprise functions for  also handling
over and under determined residue equation systems not treated here yet. For this
topic of handling residue elimination generically in complex systems, the reader is
pointed to the specific literature on system flow sheeting techniques, e.g. to [51].

 6.11 Numerical Functionalities for Control Engineering

 6.11.1 Mathematical Building Blocks and their
Transformation to RPN

Especially for tools applied in control engineering like Simulink or Modelica, it has
proven good practice to support assembly of the control cycle via graphical function
blocks  and  to  parameterize  these  blocks  thereafter.  This  approach  is  sufficiently
known, see e.g. figure 3.9.

However how can it  be achieved in software to allow startup of  a simulation run
immediately  after  having  clicked  together  the  system  layout?  For  answering  the
concept,  first  a  purely  algebraic  function  chain  shall  be  considered.  One  of  the
functional  elements -  here without  internal  state for  simplification -  could look as
follows:

w=sin(a x u1) - u2

Figure 6.16: Block element with defined function.

The block result  w to be computed from the inlet parameters  u shall be computed
according to the mathematical formula:
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w=sin a × u1−u2 (6.56)

Assuming availability of a module editor allowing to type in directly the mathematic
formula of equation 6.56 into the above block, or to load the formula from input file,
this  would be a handy approach for  building a simulation.  In  a Simulink diagram
alternatively  also  the  implementation  could  be  based  on  low  level  blocks  as
visualized in the layout below.

Figure 6.17: Assembly of elementary function blocks.

If  it  is  desired however  to  directly  specify  the formula  instead of  assembling the
function chain from such ultra low level blocks for + , - ,  x , / , sin , exp and so on,
then this would result in having the formula text of equation 6.56 in the function block
which is not compiled and thus is not executable for the computer. Either the formula
has to be written in a real programming language and has to be compiled - which
shall  be  avoided  -  or  a  parser  is  needed  which  "reads"  the  function  text  and
generates an  executable function stack in "Reverse Polish Notation“18 (RPN) - also
known as  postfix  notation.  This  parsing  requires  two  loops.  In  the  first  pass  the
formula  is  transformed into  an  RPN stack  still  only  containing  text  blocks  of  the
formula. This algorithm works as follows:

1. Find first argument (here of sine function): Result: a x u1
2. Subloop: Eliminate brackets:

 2.1.Search argument or operand: Result: a →put on stack
 2.2.Search argument or operand: Result: “x”

Operand requires two arguments →memorize operand
 2.3.Search argument or operand: Result: u1 →onto stack
 2.4.Operand can be applied →"x" onto  stack  

Intermediate result on stack:

a
u1
x

End of subloop reached.

3. Search argument or operand: Result: sin
Operand requires one argument

4. Operand can be applied →“sin”  onto  stack  

18Concerning RPN e.g. refer to  http://en.wikipedia.org/wiki/Postfix_notation

x
Const a=5

sin -

u1

u2

w
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Intermediate result on stack:

a
u1
x

sin

5. Search argument or operand: Result: “-”
Operand requires two arguments
(one argument is provided by the stack) →memorize operand

6. Search argument or operand: Result: →onto stack
7. Operand can be applied →”-”  onto  stack  

Intermediate result on stack:

a
u1
x

sin
u2
-

8. End of formula text parsing

After completion of this first parsing loop, a text stack is available as a recipe in RPN
as to compute sequentially. Now in a second loop this has to be transformed to a
function  stack  with  pointers  to  the  component's  input  variables,  pointers  to
computation  functions  for  x  ,  -  ,  sin  and with  conversion  functions  for  design
parameter values (a).  After this second loop the following interlinking of the RPN
stack and elementary computations is accomplished.

a
u1
x

sin
u2
-

function ASCII2Double(a)
getPtr(u1)
function myMult(thisStack,2)
function mySin(thisStack,1)
getPtr(u2)
function mySubtract(thisStack,2)

Figure 6.18: RPN text stack and function stack.

This  function stack of  the numerical  block model  is  now directly  executable.  The
result can be computed.

Also important is that the stack only has to be generated once via the parser, when
reading the formula of the block model at simulation initialization time. During cyclic
simulation computation for each step only new values for the input variables u1 and
u2 will be handed over - the pointers to their memory and the pointers to functions of
the  computation  stack  remain  unchanged.  Thus  by  new evaluation  of  the  same
function stack, the result of w for the next step can be computed again directly.

By  this  means  for  such  block  models  a  functional  evaluation  is  possible  without
sourcecode  compilation.  The  stack  representation  works  without  brackets  and
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parentheses. Also no operator precedence rules are necessary to be implemented.
Besides this the stack representation in RPN opens further algebraic functionalities
which are essential and will be treated in chapter  6.11.3. In addition this technique
also is suitable for handling hierarchical modeling like depicted e.g. in figure 3.11.

 6.11.2 Linearization of System State Equations

The  previous  explanations  on  system  modeling  and  computation  of  the  time
response all were based on system description in state space which is applied in
control  engineering  when  analyzing  system  behavior  over  time.  All  system
parameters  which  may  change  over  time  during  system  operation,  can  be
aggregated to a state vector. The state vector moves along a curve - a trajectory -
over time within this state space. For e.g. integration of an orbit position of a rocket or
satellite over time, this is the appropriate numeric formulation.

However  in  automation  and  control  engineering,  often  not  the  exact  initial  state
change over time is of interest, but e.g. the oscillation frequency of a system as a
function  of  the  excitation  function,  the  system  damping,  precision  of  control,
eigenfrequencies  etc.  For  a  system composed  of  a  mass  and  a  spring  e.g.  for
computation of  the oscillation frequency it  is  of  no matter  whether at  the start  of
movement,  the  mass  was  deflected  up or  down,  and  in  which  direction  it  starts
moving. The analysis of a system w.r.t. its oscillation frequencies is not performed in
state space but in the frequency domain, i.e. the Laplace transformed domain of the
system function. The definition of the Laplace transformation is as follows:

F  s=L { f t }=∫
0

∞

est f t dt

s=i ; 0 ; t≥0
(6.57)

Without diving into the details of Laplace transformation, here shall be explained only
that after this transformation the resulting function F(s) allows for a very comfortable
analysis of the system behavior in the frequency domain as well as the analysis of
system  response  to  impulse  or  frequency  excitations.  Precondition  for  the
transformation from f(t) into F(s) however is linearity of f(t).

In the descriptions concerning initial value problem integration for system simulation
and during the descriptions on residue iterations for boundary problem solving, so far
no  constraints  occurred  concerning  system  equations  linearity.  For  those
computations in control engineering which require a Laplace transformation to the
frequency domain, now this additional linearity constraint for the differential equation
arises.

Linear  systems are to  be described by linear  differential  equations of  n-th  order,
please refer  to equation  6.11.  In case a nonlinear equipment  equation has to be
converted to linear form, it is linearized around the operating point. Again applying
the example of a mass-spring system this is e.g. the zero position. For a complex
nonlinear equipment with complex time behavior, eventually this linearization has to
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be  repeated  for  each  time-step.  The  functions  f and  g in  equation  6.5 are
approximated by a Taylor series around the operating point (terminated after the first
term). Thus results

ẏ=A y  B u
w=C y  D u

(6.58)

with the Jacobi matrices

A=∂ f  y , u
∂ y

=[∂ f 1 /∂ y1 ∂ f 1 /∂ y2 ⋯ ∂ f 1 /∂ yn

∂ f 2 /∂ y1 ∂ f 2 /∂ y2 ⋯ ∂ f 2 /∂ yn

⋮ ⋮ ⋱ ⋮
∂ f n /∂ y1 ∂ f n /∂ y2 ⋯ ∂ f n /∂ yn

] (6.59)

and

B=∂ f  y , u 
∂u

=[∂ f 1 /∂ u1 ∂ f 1 /∂ u2 ⋯ ∂ f 1 /∂um

∂ f 2 /∂u1 ∂ f 2 /∂u2 ⋯ ∂ f 2 /∂um

⋮ ⋮ ⋱ ⋮
∂ f n /∂u1 ∂ f n /∂u2 ⋯ ∂ f n /∂um

] (6.60)

The numerics of an equipment model thus are transformed to a “subsystem” with
following flow diagram in state space19:

D

1/s

A

CB
+

+u(t)
y'(t) y(t)

w(t)

Figure 6.19: Equipment numerics as state space flow diagram.

So the linearization of system non linear functions or characteristic curves can be
interpreted as their approximation by tangents at the operating point. The latter can
be a stationary operating point, a position of rest or a quasi stationary operating point
reached via initial value problem integration.

Similar as in the step for residue elimination in chapter 6.10 also here problems arise
concerning  the  effort  for  computation  of  the  Jacobi  matrices.  However  for  block
191/s is the representation of an integral term in the Laplace transformed frequency domain.
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models  which  allow  transforming  their  function  into  RPN stack  notation,  here  an
elegant algorithmic solution exists as explained in the following chapter.

 6.11.3 Linearization by Algorithmic Differentiation

For computation of the Jacobi matrices A and B to linearize the functions f and g
the function code for the partial derivatives to x and u is generated by means of
an algorithm. This algorithm works similarly to the generation of an executable RPN
function stack as shown in chapter  6.11.1.  For  its work it  needs a table with the
analytic derivatives of all elementary mathematical functions and the rules for how to
differentiate  a  function.  The  mathematical  function  in  the  block  model   -  e.g.  of
equation  6.56 - is treated by this algorithm as long as only elementary differential
quotients exist in the form dE/dx whereby E is an elementary operand, i.e. a variable
or a constant. For  E=x the derivative is equal to one. In case  E is a constant the
derivative  is  0.  For  this  algorithm  again  the  RPN  stack  is  the  adequate  output
representation.

For example for the function of equation 6.56 the partial derivative to u1 - which is

∂v
∂u1

=a × cos a × u1−0 (6.61)

can be computed by applying this technique. So from the RPN stack representation
of  the  original  function,  the  algorithm can generate  the  RPN stack of  the  partial
derivative  and  from  there  the  stack  with  pointers  to  variables  and  computation
functions can be generated for numerical computation.

a
u1
x

sin
u2
-

a
u1
x

cos

0
-

a
x

function ASCII2Double(a)
getPtr(u1)

function myMult(thisStack,2)
function ASCII2Double(a)

function mySubtract(thisStack,2)

function myMult(thisStack,2)
function myCos (thisStack,1)

function ConstDouble(0.0)

Figure 6.20: From RPN function stack to derivative function stack.

With this method system model equations can be entered directly into the simulator
in  state space representation,  and they can be algorithmically  differentiated.  This
avoids  necessity  for  programming  such  block  models  in  the  classic  sourcecode
approach. For large systems however, the memory requirements for the stacks of all
partial  derivatives  of  all  functions  to  all  variables  for  all  component  models  are
significantly high. In addition the effort for preparing the differentiation rules for all
elementary mathematic functions is a big challenge for development.
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Furthermore  this  method  needs  the  model's  mathematics  to  be  algorithmically
formulated as in equation 6.1 and it does not allow for embedding components which
work with characteristic  diagram interpolations. Therefore this  technique mainly is
adopted for simulations in control and automation engineering for design of complex
system controllers and their algorithms.

 6.12 Semi-Implicit Methods for Stiff DEQ Systems

The considered explicit  initial value problem solving methods so far are suited for
most types of not too complex systems without problems. However one effect of the
occurring  differential  equation  systems  thus  far  was  neglected  -  the  so-called
"stiffness"  of  the  DEQ system.  The  stiffness  especially  has  to  be  considered  for
systems which  for  their  simulation  generate  a  large  number  of  different  types  of
equations and which include a significant amount of feedback in system topology.
Even  though  there  exists  no  single  formal  definition  of  stiffness  this  chapter  is
intended to impart a basic idea for readers from the engineering domain and shall
explain how stiffness limits initial value problem solving by means of explicit methods.

Differential equation systems are stiff, if their overall solution is largely driven by one
element only, while other solution elements have only negligible influence.

Example: Chemical Reactor Chain:

Figure 6.21: Example system - chemical reactor column.

This example shall provide an intuitive explanation. The following facts shall apply:

● The  reaction  A+B  shall  be  slow,  i.e.  at  the  outflow  of  reactor  R1  is  still
significant remainders of A and B can be found.

● The reaction C to D shall be almost instantaneous.

With this  the amount of  the product  D is mainly driven by reaction 1.  If  now the
differential equation system for the entire column is set up, with high probability this
will result in a stiff DEQ system.

Reactor 1 Reactor 2

Feed Components
A + B

Product C  +
remainders of
A + B

Product D  +
remainders of
A + B + C
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Example: Purely Numerical Demonstration

The following DEQ system shall be given for purely numerical demonstration:

du
d t

=998u1998v

dv
d t

=−999u−1999v
(6.62)

With the initial conditions:

u 0=1
v 0=0 (6.63)

The exact solution (which can be determined analytically) reads:

u=2e−t−e−1000 t

v=−e−te−1000 t (6.64)

Both equations in the system above in
principle, converge fast towards zero.
However for values close to  t=0 both
equations  are  largely  dominated  by
their  second  term.  The  function
gradients are extreme in the range of
t=0.005 to  t=0.015 and  in  addition
thereafter the sign of the second order
derivative of both functions changes.

To  integrate  this  system  numerically,
for  reasons  of  stability  (not  for
precision!),  a  time  step  size  of
 t1/1000 has  to  be  chosen.

Otherwise the solution will diverge - as
indicated  in  the  second  part  of  the
figure,  which  is  a  zoom-in  of  v(t) for
values of t close to zero.

Figure 6.22: Stability problem in numeric
initial value problem solving.
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Implicit Algorithms

To  bypass  this  problem  so-called  implicit  algorithms can  be  applied.  These  are
algorithms which compute the function derivatives, not only at known and historic
function sample points, but also for points in the area up to  t+dt. As example the
implicit Euler method is discussed here.  Since it is a method of Euler type, for the
variables y at time t+dt the equations apply:

B d y
d t

= f  y , x ,t 

yk1= yk  d t f  yk1 , x , t 
(6.65)

For the solution of the differential equation system next the time coordinate has to be
discretized (time index k, step size Δt). Thus applies:

yk1= yk   t f  yk1 (6.66)

This equation however cannot be used before the term f  yk1 is formulated as
expression depending exclusively on parameters at sample point k. Therefore around
the  old  solution  (=>  “semi”  implicit  Euler  method)  an  according  Taylor  series  is
developed which is terminated after the 2nd term:

f  y k1  ≈ f  y k 
∂ f
∂ y ∣k d y = f  y k 

∂ f
∂ y ∣k  yk1− yk  (6.67)

Introducing this into the above equation leads to the linear equation system:

yk1 = y k t [B− t ∂ f
∂ y ∣k]

−1

⋅ f  y k  mit B=[1 ⋱
1

⋱
1
] (6.68)

Thus all terms at time sample point k+1 are only dependent on parameter values at
sample point k. If the step size h is made sufficiently small, it is adequate to evaluate
once per integration step the term

[B− t ∂ f
∂ y ∣

k]
−1

which requires an inversion of this matrix. The structure of the matrix however mainly
is dominated again by a Jacobi matrix ∂ f /∂ y .
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The inversion of the matrix, which is required for each time step integration of the
equation system, induces significant numerical effort. To minimize this the equation
system is somewhat rearranged, so that the result is:

 B
 t

− ∂ f
∂ y ∣k

A

y k1= B
 t

− ∂ f
∂ y∣k yk f  yk 


b
(6.69)

For computation of  a new system state thus a linear  equation system has to be
solved, which has the following structure:

A y=b (6.70)

It is important here that in this equation system only partial derivatives ∂ f /∂ y at
the sample point k occur, which can directly be determined. The effort for the solution
of equation 6.69 depends on the structure of the matrix A . Since the matrix B
essentially  is  a  diagonal  matrix  populated by ones,  the structure of A mainly  is
driven by the Jacobi matrix:

∂ f
∂ y

=

∂ f 1/∂ c1 ∂ f 1/∂ c2

∂ f 2 /∂ c1 ∂ f 2/∂ c2 ∂ f 2/∂ c3

∂ f 3/∂ c2 ∂ f 3/∂ c3 ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱

(6.71)

If the simulated system is equipped with feedback loops, the Jacobi matrix includes
additional coupling terms. In the case of a fluid system with simple output to input
feedback, the Jacobi matrix contains one additional coupling term at position (1,L).
Element 1 of the component thus is dependent on results from the last element, but
not vice versa (assuming no diffusion against flow direction).

1  2 ……….…..…L
Figure 6.23: Fluid system with feedback.
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∂ f
∂ y

=

∂ f 1/∂ c1 ∂ f 1 /∂c2 ∂ f 1 /∂c L

∂ f 2 /∂ c1 ∂ f 2/∂ c´ 2 ∂ f 2 /∂c3

∂ f 3 /∂c2 ∂ f 3 /∂c3 ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

⋱ ⋱

(6.72)

Integration over Time - Multi Parameter System

For the example with multiple parameters, the functions f always are dependent on
all parameters, e.g. from compound concentrations, temperatures and pressures of
all three elements to be considered, which are L-1,  L end L+1. As result the Jacobi
matrix becomes more complex. More precisely formulated, for the example of a one
dimensionally  discretized  component  without  feedbacks,  it  becomes  block-tri-
diagonal: 

(6.73)

Implicit Algorithms - Summary

In contrast to the explicit Euler method, the semi implicit method is sufficiently stable
and also converges for positive derivatives. The selection of appropriately small step
sizes  to  achieve  desired  numeric  accuracy  has  to  be  considered  separately.
Absolutely essential for the integration of stiff DEQ systems and for the stability of the
solution is a normalizing of the parameters to achieve that all integrated parameters
lie in the same value range.

Here  only  the  semi  implicit  Euler  method  was  considered  for  application  for  stiff
systems. In analogy also implicit, respectively semi implicit methods of Runge-Kutta

∂ f
∂ y

=

[∂ f c1/∂c1 ∂ f c 1/∂T 1 ∂ f c1/∂ p1
∂ f T 1/∂c1 ∂ f T 1/∂T 1 ∂ f T 1/∂ p1
∂ f p 1/∂c1 ∂ f p 1/∂T 1 ∂ f p1/∂ p1

] [∂ f c1/∂c2 ∂ f c1/∂T 2 ∂ f c1/∂ p2
∂ f T 1/∂c2 ∂ f T 1/∂T 2 ∂ f T 1/∂ p2
∂ f p 1/∂c2 ∂ f p 1/∂T 2 ∂ f p 1/∂ p2

] [ ] [ ]

[ ∂ f c 2/∂c1 ∂ f c 2/∂T1 ∂ f c 2/∂ p1
∂ f T 2/∂c1 ∂ f T 2/∂T1 ∂ f T 2/∂ p1
∂ f p 2/∂c1 ∂ f p 2/∂T1 ∂ f p 2/∂ p1

] [∂ f c 2/∂c2 ∂ f c2/∂T 2 ∂ f c 2/∂ p2
∂ f T 2/∂c2 ∂ f T 2/∂T 2 ∂ f T 2/∂ p2
∂ f p 2/∂c2 ∂ f p 2/∂T 2 ∂ f p 2/∂ p2

] [⋯] [ ]

⋱

[ ] [ ] [⋯] [ ∂ f cL /∂cL ∂ f cL/∂T L ∂ f cL /∂ p L
∂ f TL /∂cL ∂ f TL /∂T L ∂ f TL/∂ pL
∂ f pL/∂cL ∂ f pL/∂T L ∂ f pL/∂ p L]

153



Numerical Foundations of System Simulation

type or Richardson extrapolation methods exist (the so-called Rosenbrok methods
and also implicit Gragg-Bulirsch-Stoer methods). For these the reader is directed to
the according specialist  literature,  e.g.  [53],  [54],  [55],  [56].  Furthermore -  also in
analogy to the explicit ones - implicit predictor-corrector methods exist. Also here the
author points to the according literature such as e.g. [56], [57], [58].

Further reading and Internet pages concerning numeric methods are listed in the
according subsection of this book's references annex.
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Aspects of Real-time Simulation

 7.1 Time Definitions

During  simulation  runs,  telemetry  data  packets  are  generated  by  the  on-board
software and also simulator  telemetry  data  packets  from the simulator  side,  both
being  routed  to  the  control  console.  Spacecraft  telecommands  and  respectively
simulator commands are sent from control console to spacecraft on-board software
and  respectively  to  the  simulator  core.  All  these  packets  are  stamped  with  time
signatures to be able to track the ongoing activities chronologically. However different
types  of  time  information  have  to  be  distinguished  to  avoid  misinterpretations.
Therefore the most important time definitions are covered again below.

Simulator Session Time: Actual wall clock time, called “Zulu-Time” or “Local Time”,
mostly given in “Universal Time Code”, (UTC), in notations like year:day:hr:min:s:ms.
This time is usually applied for time-stamping of TC/TM packets between spacecraft
respectively simulator and the control console.

Simulation  Runtime (SRT): Time in  ms  or  s,  which  counts  up  as  soon  as  the
simulator is computing - i.e. is not in "suspend" mode. This sort of time counter is
needed  for  the  numerical  solvers  inside  the  simulator  for  integrating  the  time
dependent state variables. This time often is called "SRT" or “tSim”.

Simulated Mission Time (SMT): This is the time of the simulated mission situation
in  space  which  in  most  cases  lies  in  the  future  since  at  time  of  simulation  the
spacecraft is still in build phase and is not yet launched. SMT is mostly represented
as "Modified Julian Date" time. It is relevant for the correct representation of celestial
body positions relative to the spacecraft in the simulation. Furthermore it is relevant
for navigation equipment models of on-board GPS receivers and the like. SMT is
usually computed in UTC or "Global Positioning System", (GPS), Time.

On-board Time (OBT): OBT typically in the first place is a counter in the on-board
software  which  starts  counting  up  when  the  hardware  or  simulated  on-board
computer is booting. Usually the OBT can be set via telecommand to an absolute
value, the SMT, since also the on-board software needs absolute time information.
Also here in most cases UTC or GPS Time is used.

The time systems are not treated here in detail, however the reader should be aware
that the baseline for the time systems are different astrometric or historic references.
Thus dependent on the mission it must be decided in which time reference frame
data has to be processed.

Local Time  ≠  GPS Time  ≠  TAI (Atomic Time)  ≠  UTC  ≠  UT1 ≠  ET / TDT

In chapter 5 of [38] detailed definitions of the cited time references are explained.
UTC and GPS Time only differ by leap seconds introduced into UTC.

For the time clock strobes, eventually multiple sources exist on board the spacecraft.
Firstly the on-board computer in any case is equipped with internal quartz clocks for
each of its redundant sides. Furthermore high precision time reference generators
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might be on board in the form of e.g. GPS or Galileo receivers, and in case of GPS
and Galileo system satellites themselves even extremely accurate atomic clocks are
available on board the real spacecraft as time reference. In the area of functional
system simulation it  usually is not necessary to reflect such timing precisions and
differences between the time scales. However a spacecraft simulator must provide
the means for testing in flight resynchronization of the on-board software e.g. from
OBC inner quartz clock to GPS receiver signal and vice versa.

A further problem is to guarantee for a system simulation, that the numeric system
state integration over time propagates synchronized to the time progress "seen" by
the on-board software in the OBC in the loop or in a simulated OBC. This topic of
time synchronization is the topic of the next chapter.

 7.2 Time Synchronization

A central problem in system simulation occurs especially for hybrid testbenches. It
concerns the time synchronization between the on-board software in the real OBC
and the spacecraft  simulator,  a topic which directly affects the transfer of  signals
between real OBC and simulated spacecraft equipment. However before treating the
topic of time synchronization, the scheduling of signal data input / output of the on-
board computer itself shall be sketched out, which of course is controlled by the on-
board software.

A so-called "Polling Sequence Table", (PST), in the on-board software controls when
which spacecraft equipment (and which of its interfaces) is commanded, respectively
when result  data are polled by the OBC. This sequence table in some spacecraft
(e.g. for Satellites) can still be adapted in orbit. Such a PST can comprise a fixed
simple sequence (such as in case of the Galileo-IOV satellites) where all OBC I/O's
are handled with the same cycle frequency. Or, such a PST can comprise multiple
OBSW cycles, because not all equipment or all interfaces of them are handled with
the same frequency. The length of the PST is the time interval, corresponding to the
lowest equipment control frequency. Below some examples are given, again at hand
of satellite projects:

CryoSat 1:
● Overall PST length: 4s.
● PST comprises 4 AOCS control cycles.
● The AOCS control cycle frequency is 1Hz, which means that within 1 second

all sensor data are polled by the OBSW and all control signals are submitted
to the actuators.

● The control of all other units, such as payloads, power subsystem and thermal
subsystem only occurs once within the PST, i.e. only every 4 seconds. The
access to these units from OBC is distributed over the PST to average OBC
CPU load and data bus loads.
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GOCE:
● AOCS control cycle frequency 10Hz which induces much higher constraints

for the simulator hardware in hybrid testbenches. PST length 1s.

Galileo-IOV:
● PST cycle frequency for all equipment (avionics, platform, payload) 5 Hz, i.e.

PST length: 0.2 s.

Compliant  to  these  equipment  acquisition  and  control  cycles  of  the  OBSW,  the
system simulator must accept actuator data and provide result data / sensor data via
the simulated OBC / equipment interfaces. Now also on board a real spacecraft for
simplification of data handshake synchronization, the OBC distributes a cyclic clock
strobe signal (in most cases 1 pulse per second and therefore called PPS signal) via
dedicated pulse lines.

● For most units, especially those which are only distributing data when being
explicitly polled by the OBSW, this is only a sync strobe to keep their internal
electronic clocks aligned with the OBC. 

● However there also exists equipment which actively send data to the OBC
without prior acquisition and asynchronously to the PPS signal, e.g. certain
types of startrackers.

● And thirdly  there  exists  equipment  which  is  polled  by  the  OBSW in  event
driven mode, not aligned with the PPS signal, e.g. certain GPS receivers.

Figures  5.6 and  5.7 depict  an  example  OBC core  module.  Here  visible  are  the
processor  modules  "PM  A"  and  "PM  B"  and  outbound  from  them  to  the  left
respectively, right border of the figure, the pulse lines for 1 Hz and 5 Hz strobes are
drawn. Figure 7.1 sketches out the time signal generation in a simulated OBC of an
SVF testbench.

Figure 7.1: Time reference and pulse generation in simulated on-board computer.
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The  time synchronization in an STB with OBC as “Hardware in the Loop” can be
achieved by two means: Firstly the PPS output connector of the real OBC can be
coupled  to  an  appropriate  Simulator-Frontend  card  for  routing  the  signal  to  the
simulator  and  e.g.  triggering  according  cycle  scheduling  events  of  the  simulator
kernel. The simulator kernel then has to react to these events or interrupts and has to
synchronize its time propagation accordingly.

Another  method  uses  the  already  cited  possibility  that  modern  OBCs also  allow
themselves to synchronize to external clocks, e.g. to the accurate GPS receivers or,
in case of navigation satellites, themselves even to the extremely accurate atomic
clocks  aboard.  In  such  a  case  a  Simulator-Frontend  card  with  internal  signal
generator can be applied which is cabled to distribute its strobe both to the OBC
hardware as well as routing it to the system simulator. This case is depicted in the
figure below.

Figure 7.2: Time synchronization in an STB.

 7.3 Modeling Time in a Simulator

For  the  correct  interaction  of  on-board  software  data  handling  and  simulated
spacecraft equipment, it must be assured that if ever the OBSW acquires data from
the  simulated  equipment,  results  of  sufficiently  actual  state  are  available.  The
approach  still  can  be  simplified  in  purely  simulation  based  setups  like  SVF
configurations. Here the strategy could be to alternatively schedule the OBC model
and the rest of all spacecraft models and to enable a data handover in between. This
however no longer is adequate for hybrid testbenches since the simulation cannot be
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represent the real in-orbit situation where the OBSW directly interacts with spacecraft
equipment.

To principally guarantee data availability for the OBC (hardware or simulated) when
acquiring data from simulated spacecraft equipment, the following approach is taken:
At the OBC side of the simulated OBC's interconnection lines corresponding data
buffers have to be established. These are implemented into the I/O-ports of the OBC
model  where the simulated lines are connected to.  For  a hybrid  testbench these
memory buffers are implemented inside the Simulator-Frontend card electronics and
are fed from simulator side by the models via the mapped simulated lines. The data
flow via hardware cabling from card to OBC as soon as the OBSW acquires the data
from the card. The writing of OBC command data via I/O-port buffers of an OBC
model or via Simulator-Frontend card buffers towards simulated equipment is just
handled  by  analogy.  Please  also  refer  to  figure 3.23 and  the  explanations  on
Simulator-Frontend cards in chapter 4.

By this means, time integration of simulated physical states inside the simulator can
be performed by fixed time step numerical solvers whilst data acquisition from and
commands to simulated equipment by the OBC are handled according to the settings
in the OBSW's PST.

A further effect concerning data exchange between OBC and simulated spacecraft
has to be tackled.  First  of  all  it  has to be avoided, that both OBC and simulator
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access the exchange memory of a data line at the same time. Since both sides are
not aware of the counterpart's activities this only can be achieved by implementing all
these cited data buffers as toggle buffers, where the card electronics gives access to
either buffer from simulator side respectively outer OBC side, switching over after
each access. Furthermore to assure stability of the overall control, the simulator has
to compute with finer  time step size than the one prescribed by the OBSW PST
frequency. More precisely the simulator has to compute at least with two times the
frequency of the PST to comply to the Nyquist-Shannon criterion of control stability.
Anyway,  already  due to  limits  concerning  integration  step  sizes  of  the  numerical
solvers,  the  simulator  frequencies  will  be  higher.  Please  also  here  refer  to  the
explanations on numerics given in chapter 6. Therefore explicitly the difference shall
be emphasized between

● the data exchange of OBC and the simulated spacecraft equipment, and
● the pre-computation and provision  of  result  data  in  the toggle  buffers  with

higher  frequency  for  control  stability  reasons  and  reasons  of  numerical
accuracy.

The integration step frequency of the simulator numerics thus has to be an integer
multiple of the OBSW PST. This fine strobe for numerics control the simulator kernel
usually generates internally as configurable multiple of the PPS signal it receives. In
the  following  figure  the  PPS  pulses  are  marked  in  orange  color.  The  simulator
computes with 10 Hz and the fine strobes are visualized in gray.

Figure 7.4: PPS strobe (in orange) and fine strobe (in gray).

What  exactly  is  computed  in  each  fine  strobe  cycle  interval,  depends  on  the
integration method on system level as they have been discussed in chapter 6.

Simplified Integration on System Level
In the following figure and paragraphs an example is cited which represents an Euler
method on system level.  Before analyzing this  scheduling table it  first  has to be
explained that the slots marked with "OBC" only are slots where the simulator reads
data from the OBC outgoing lines' exchange memory and makes them available for
access by the spacecraft equipment models, as well as it writes back result data to
the OBC input lines' exchange memory areas. Whether the OBC really feeds / reads
the data at these points in time is of no interest in the first place since the data are
intermediately  buffered.  As  explained,  usually  the  simulator  internal  frequency  is
significantly higher than the OBC's PST frequency.

t
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Furthermore  in  this  figure  it  is  visible  that  within  one  time  interval,  model
computations  can  be  sorted  according  to  a  predefined  sequence.  Here
magnetotorquer 1 (MGT1) computes after magnetotorquer 0 (MGT0). Within a time
interval all models "see" the same time value.

What however is also visible here, is that the input data for the magnetotorquer are
read at a point in time, the torquer computes its results in the next interval and in a
further  one  these  are  then  considered  by  the  environment  /  dynamics  model
(EnvDyn). The computed changed spacecraft attitude then is made available to the
sensor model (magnetometer here, MGM) and it takes again a further step until the
sensor measurement data are available in the output lines' exchange memory to the
OBC.

Although  this  process  is  permanently  running  in  parallel  so  that  in  each  interval
results are made available for the OBC, they however are based on input which is
several  simulator  cycles  "outdated".  In  case  the  OBC has  updated  the  actuator
values  in  between  the  results  are  no  longer  entirely  precise.  This  approach
corresponds  to  an  Euler  method  on  system  level  as  explained  in  chapter  6.8
example 2.

Figure 7.5: Scheduling table of a system simulation.
  © IRS, Universität Stuttgart
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Exact Integration on System Level

For a highly precise integration on system level,  the simulator has to provide the
functionalities to

● read actuator data from OBC in each fine strobe interval,
● to then perform the entire computation cycle as depicted in the figures  6.10

and 6.11 and as it was summed up in figure 6.12., and finally
● at the end of the interval it has to provide output results to the OBC.

Specific system models which consume significant CPU resources but towards which
the precision requirements are relatively moderate, optionally also can be computed
only in each n-th simulator cycle. The same applies for simulator data logging to file
and provision of simulator telemetry to the control console.

Example of staggered scheduling:

● Thermal model (computing in intervals 1,3,5...)
● Logging to disk (computing in intervals  2,4,6...)

When the simulator receives the start command for computation from console, it may
initiate real computation not before receiving the main strobe from the external clock
reference (PPS). When simulation stop is initiated the simulator still has to continue
work until the end of the main cycle. This guarantees a restart of the computation
synchronized to the OBSW PST after simulator suspend is canceled.

When simulations are applied on multicore computer platforms, multiple schedulers
in the simulator kernel can be active in parallel. All however have to be synchronized
to the same main strobe. This topic is further treated in the next chapter.

 7.4 Real-time Parallel Processing

Especially in hybrid testbenches, the real-time response behavior of the simulator is
a key issue. It has to assure in any case, in time availability of I/O-data for access by
the OBC. In no circumstance (also not when in parallel data logging to disk or user
commands build up) it may happen that the OBC misses computed data.

Therefore during design phase of such a hybrid testbench, the required numeric CPU
performance and Simulator-Frontend I/O-performance have to be analyzed. For a
spacecraft of the complexity of an average Earth observation satellite, the real-time
simulation today can be implemented on a single simulator CPU core.

In case of spacecraft with extreme requirements (e.g. satellites or space probes with
very advanced pointing requirements or transfer vehicles with docking functionalities)
very short AOCS control cycle times result. Thus the need for application of multiple
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simulator cores might arise to suit all  real-time constraints - in case the simulator
kernel architecture supports such techniques.

Concerning  parallelizing of numerical computations it first has to be explained that
such  functional  simulation  cannot  be  parallelized  with  the  same  techniques  as
applied  e.g.  for  finite  element  problems  in  structural  mechanics  or  as  thermal
analyses based on lumped parameter node models. The latter types of simulations
can be well distributed on massively parallel supercomputers since for each element
the same equation set has to be solved and residues are to be eliminated after each
computation step. However in functional system simulation, each model class reflects
physical  behavior  of  different  equipment  and  thus  different  equation  types  and
equation sets.

Parallelization  therefore  has  to  be  achieved  by  distributing  the  computations  to
multiple  threads  which  then  are  allocated  to  different  simulator  CPU cores.  Very
simplified it could assume that one thread is generated per model instance and each
CPU core computes one or more model threads. The treads are allocated to the
CPUs according to their complexity so that all results are available in time for OBC
data access also under worst case conditions.

Simplified Integration on System Level

For an Euler method based integration on system level (see chapter 6.8 example 2)
one could assume for simplification that according to figure 7.5 data acquisition from
OBC by the simulator and write back into the exchange memory is handled by one
simulator thread. Computation of the demanding power control and distribution unit
(PCDU) model is handled by a second thread. Magnetometers are handled by a third
one, space environment and dynamics model by a fourth and magnetotorquers by a
fifth one. Please therefore also refer to the following figure.

Figure 7.6: Computation of entire equipment models distributed to CPU cores.
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Exact Integration on System Level

The situation again becomes significantly more complex as soon as exact central
DEQ solving techniques are to be applied on system level.

The  computation  of  the  derivatives ẏ of  its  state  variables  can  be  performed
individually by each model occurrence - see also equation 6.5 and figure 6.10. Thus
these steps can be distributed to multiple threads and CPU cores.

The computation of the test step state variable results in e.g. a Runge-Kutta method
k1 to k4 (see equation 6.42) as well as the computation of the final state vector yn1

for the entire DEQ system however can only be performed by one central algorithm
on one CPU node.

Combined initial  value /  boundary value problems even complicate the simulation
parallelization further. The residue elimination for diverse boundary conditions in the
system, as explained in chapter 6.10, is extremely complex w.r.t. parallelization. No
fully generic means for this problem exists. For further particulars on these problems,
for  approaches  and  selected  solutions  the  reader  is  referred  to  the  according
specialists literature in process engineering, e.g. to [51].
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Object Oriented Architecture of Simulators and System Models

 8.1 Objectives of Simulator Software Design

The  following  subsections  describe  the  most  common  software  engineering
techniques used in spacecraft system simulators. As apparent from the explanation
of the complexity of simulation-based test benches and their real-time requirements
as well  as from the section on underlying mathematics,  the software engineering
implementation of such systems becomes very challenging. In fact it is so complex,
that the code for such a simulator cannot be implemented simply by simply being
typed into an editor. A technology is needed for the implementation of a spacecraft
simulator which supports the modeling of:

● Simulator kernel (reusable)
● Simulated spacecraft equipment models (partly new for each project)
● Simulated line connection types

e.g. different data buses between
OBC and other spacecraft equipment (partly new for each project)

From  the  requirements  towards  the  simulator  and  the  modeling  of  the  real
spacecraft's  topology  it  can  be  derived  that  the  simulation  preferably  has  to  be
implemented applying object oriented software technologies.

Figure 8.1: Models and their line interconnections.

Object-oriented programming languages enable to implement a software class for
each  type  of  functional  element  -  e.g.  the  equipment  type  of  a  star  tracker.  All
numerical  variables are determined therein -  still  without  values respectively,  only
with  initialization  values  -  and  in  addition  all  computation  functions  (so-called
methods)  are  defined,  including  input  and  output  functions  to  other  classes
respectively to the simulator kernel or the solver. At software initialization the number
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of required instances of  each such such a class is determined – in the example
above the number of simulated star trackers. By this technique the topology of the
real system can be similarly reproduced in the source code. The maintenance of the
code is also largely simplified.

The same concept can be applied for the classification and instantiation (creation of
model  instances  in  computer  memory  and  setting  of  according  parameter  value
defaults) of line types in the system model: For example there might be a class for a
MIL-STD-1553B data bus and a class for analog lines. At start of the simulator an
instance of the line class is created for each real analog connection in the system
and respectively for each data bus connection. The equipment component models
are connected - in this way reflecting the real system's topology.

Furthermore,  software  classes  can  be  organized  into  a  hierarchy  using  object
oriented modeling. Subclasses can inherit  parameter and function properties from
superclasses. This implies certain functions have only to be coded once for definition
of  a superclass.  An example for such a generic  function required for  all  types of
model subclasses e.g. can be the computation control of the equipment models in a
time-step  loop  or  iteration-step  sequence.  All  the  different  equipment  subclasses
automatically inherit these functions through the object-oriented approach.

Furthermore, if cross-couplings are part of the real system design, they have to be
considered when models and lines are instantiated - again to properly reflect the real
system's  topology.  The  following  figure  depicts  a  double  cross-coupling  for  line
connections. Each of the I/O-board instances of the on-board computer can access
both the nominal and the redundant star tracker electronics via its data bus.

For coding methodology and concerning the to be selected programming language
itself, the following requirements can be derived:

● The software code has to be as modular as possible.
● The simulator kernel has to be reusable from project to project.
● Equipment and line models have to be reusable over multiple projects - as far

Star-Tracker
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Electronic - 
Red

OBC

I/O Board - 
Nom

I/O Board - 
Red

Figure 8.2: Cross-coupling of line connections.
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as the same equipment features are to be simulated.
● The system topology  has  to  be modeled as  close  as  possible  to  the real

system's structure.
● The  instantiation  (generation  of  the  instances)  of  equipment  and  line

connection models has to be performed at initialization time.
● Thereafter equipment models have to be connected to each other and to the

solver, especially for exact integration methods on system level.
● Specific components, which run as "Hardware in the Loop" later, may need

specific interfaces to be programmed.
● Furthermore, the generation of program code is necessary for

◊ memory allocation and parameter initialization functions of all components
(to be performed during simulator initialization phase),

◊ for memory deallocation (to be performed during simulator shutdown),
◊ for calculation phase numerics and for 
◊ administrative functions such as data logging to file,  simulator telemetry

submission to control console and external model stimulation.
● Multitasking /  multithreading functions might be necessary for frontend-card

drivers, multiprocessing support, etc.
● In  addition a frequently  requested function for  pure simulation testbenches

(SVF type) is to provide the possibility for saving entire simulation operational
states - so-called statesets - in a file and to later be able to reload them later
as defined simulated spacecraft state.

The  following  requirements  concerning  the  implementation  and  programming
technology result from these explanations:

● For  object-oriented  software  design  preferably  a  standardized  design
language has to be used - not to be mixed with a programming language. For
the design language topic please also refer to the following subsection.

● The  use  of  a  hardware  and  operating  system  platform  independent
programming language is recommended for the source code.

● The system initialization has to be performed via loading of configuration files
defined in neutral file formats.

● Standardized,  neutral  file  formats  are  furthermore  recommended  for
initialization files   and statesets,  which are loaded by the simulator  during
startup.

 8.2 The Model Driven Architecture

Concerning the topic of object-oriented modeling of a spacecraft system firstly a short
introduction to  the so called “Model  Driven Architecture”  (MDA) concept  shall  be
provided. Thereafter subsequently the simulator specific implementation techniques
are described in more detail.

The  “Model  Driven  Architecture”  defines  a  dedicated  approach  for  model  driven
software  development.  It  is  based  on  a  precise  distinction  between  software
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functionality  and  its  implementation  technology.  In  the  90's  the  approach  was
pursued  to  generate  software  from  dedicated  “Computer  Aided  Software
Engineering”  (CASE)  tools  in  an  almost  fully  automated  manner.  Tools  for  the
“System Analysis and Design Technique” (SADT)20 and first object-oriented software
design tools for Booch's and Jacobson's design methods followed this approach. Due
to the partly resulting strong bindings to dedicated software design tools and the tool
vendors these approaches only showed limited success.

MDA therefore follows a slightly different approach although it  is not entirely new.
Also in the MDA approach the source code is generated from a software design
notation  in  which  for  example  the  classes  for  the  equipment  models  and  their
dependencies and interactions are described. However only a practicable part of the
source code is generated automatically. The generated source code then has to be
completed by all non auto-generated functions and has to be compiled for the target
operating system / hardware platform. It is important to bear in mind that:

● In  code  generation  following  the  MDA approach,  function  code  has  to  be
implemented manually in all  those cases where it  is easier to program the
algorithm directly than to implement it  in the formal design notation and to
auto-generate  code  from  there.  Examples  for  such  cases  are  algorithms
implementing  physical  equipment  behavior  in  an  equipment  model  or
algorithms in a numerical solver.

● Furthermore the distinction between the software design layer, the code layer
and the runtime platform in MDA is kept strict and clean.

Thus MDA separates the modeling and code implementation into a multi layer model,
ranging from the more abstract level to the more specific. To be more precise the
following layers exist:

● A “Computation  Independent  Model”  (CIM)  for  the  textual  description  of
software  functionality,  e.g.  for  requirements  specification  documents
describing the functionality of a spacecraft equipment model.

● A “Platform Independent Model” (PIM) layer on which the software architecture
is defined by means of a standardized functional and topological notation and
by  means  of  a  software  design  tool.  By  this  means  not  only  the  platform
independence  but  also  the  independence  from  a  specific  implementation
language shall be provided.

● A “Platform Specific Model” (PSM) provides a code model for a specific target
platform  –  for  example  C++.  The  conversation  from the  PIM  to  the  PSM
typically  is  done  by  means  of  dedicated  code  generators.  If  the  code
generated from design is not functionally complete, the developer has to fill in
manually the corresponding parts (e.g. numerics) as described above.

● On lowest  level  finally  the executable  is  placed in  form of  compiled code,
which is linked with operating system dependent libraries.

In the process of conversion from one layer down to the next,  the more abstract
representation of the upper layer is converted to a more detailed and less abstract

20SADT also is called IDEF0. It is one design language of the ICAM family developed for the US Air Force at the
beginning of the 1980s.
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representation  with  more  details.  This  process  repeats  and  finally  leads  to  an
executable binary code. For each transformation process to a next lower layer,  a
code or model generator has to be implemented by experienced experts. For the
step from PSM to executable code these tools are well  known as "compiler" and
"linker".

The  MDA is  an  implementation  strategy  developed  by  the  “Object  Management
Group”  (OMG),  a  consortium  of  companies  engaged  in  development  of  object-
oriented tools and languages.  The OMG develops open specifications to improve
interoperability  and  portability  of  software  systems.  The  OMG also  develops  the
standard  for  the  “Unified  Modeling  Language”  (UML)  which  today  is  the  most
common software description language and also is the standard for the MDA PIM
layer. UML will be described in more detail in chapter 8.4.

The following example (please also refer to figure  8.3) illustrates such a stepwise
refinement from simulator software design to runtime code. The example - for code of
spacecraft  equipment  models  -  is  similar  to  the  simulator  development  concept
applied at Astrium GmbH - Satellites:

● On the  CIM  layer,  the  simulator  and  equipment  model  user  and  software
requirements are defined in textual form in a requirements management tool.

● The simulator software design on PIM layer is based on UML.

● From UML it is possible to auto-generate ANSI C++ code directly for the PSM
layer:
◊ The C++ code can be manually  instrumented by  the  missing  numerics

functions.
◊ Or auto-generated code originating from Simulink models can be included.

The conversion from Simulink  to  C/C++ in  this  case is  done using the
MathWorks Real-Time Workshop.

◊ Alternatively  auto-generated  code  originating  from  Stateflow  state-
machines can be included. The conversion from Stateflow also is done with
the MathWorks Real-Time Workshop.

● On the lowest code and runtime layer the integrated development environment
used is relatively independent of the operating system. The runtime platform
again is quite variable:
◊ For  example  PC  /  Linux  or  PC / Windows  are  depicted  as  operating

platforms in figure 8.3 for the non real-time capable testbenches and 
◊ RT-Linux or VxWorks for the STB / EFM test beds.

● The configuration of the simulation with initialization and characterization data
is done by means of files based on the standardized XML format (The topic of
XML is covered in chapter 8.5).

The same approach of course can be applied to the design and coding of simulator
kernel modules.
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Runtime Platform for 
Development SVF:
Windows XP

Runtime Platform for SVF:
Linux 

Runtime Platform STB/EFM:
VME/VxWorks

CIM:
Model Specification

PIM:
UML Design

PSM:
Generated C++ Code 
and manual Instrumentation

Code:
Compiled / linked 
Executable

Figure 8.3: MDA concept example for simulator development.

Further reading concerning the “Model  Driven Architecture” (MDA) is  listed in the
according subsection of this book's references annex.

 8.3 Implementation Technologies - Programming
Languages

As already mentioned, object oriented programming languages like C++, C# or Java
are the best choice for system simulators. However it has to be considered that the
simulation has to be platform independent according to the MDA paradigm which
means first and foremost independent from the operating system - which practically
declassifies C# as an implementation language. Furthermore, it has to be considered
for hybrid testbenches that the language has to be compiled for a real-time operating
system  which  requires  availability  for  hardware  and  real-time  operating  system
optimized  compilers.  As  a  result,  in  most  cases  C++  is  selected  as  a  technical
platform. Diverse large spacecraft simulation systems are implemented in C++, for
example MDVE, SimTG and others, cf. [16], [17], [19].

In latest  developments  Java is increasingly used as an implementation language.
This language is completely independent from the operating system. Such a Java
based simulation application, for academic tutorial applications, is  OpenSimKit [23].
Since in Java a virtual machine is placed between the compiled program code and
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the computer  operating system,  Java applications  implemented on one operating
system  can  be  run  directly  on  another  without  recompilation.  Furthermore,  the
language Java itself has a higher abstraction layer than C++. The programmer only
has to  "think  in  objects".  He or  she no longer  has to  use pointers  to  objects  or
functions - the use of which which often leads to bugs or memory leaks - nor has to
handle references of parameters respectively of objects.

However, the virtual machine between compiled software and operating system is a
significant  disadvantage for  real-time applications like hybrid testbenches.  Such a
virtual  machine  can  generate  required  object  instances  at  runtime  (which  occur
eventually by only copying data packets between class instances or by generating
simulator TM packages for the Core EGSE). Objects no longer needed - and which
thus no longer are referenced - a so-called "garbage collector" deletes from memory
from time to time. This garbage collection process starts according to the amount of
memory to be cleaned,  requires  extra computing power  and thus this  process is
running aside the simulation computation. So it can completely disturb the real-time
performance of such applications even on a real-time operating system.

For this reason various commercial manufacturers and also open source teams lately
developed real-time capable Java implementations which already meet sophisticated
performance  requirements  and  which  are  even  partly  certified  for  military
applications. Please refer to [69] and [70] for commercial systems and to [71] for an
open  source  implementation.  The  basic  principle  of  all  these  Java  real-time
applications is to equip the Java virtual machine with a garbage collector which has a
predictable  influence  on  the  required  CPU  load  and  where  the  initiation  of  the
garbage collection process and its hibernation are exactly controllable. By this means
the garbage collector can never affect processes with higher priority. The average
computing performance of such Java real-time systems on average is approximately
10 to 20% lower than standard Java but the implementations comply to hard real-
time requirements. The disturbances caused by garbage collection are below 100
microseconds for commercial systems using standard x86 or PowerPC processors.
This implies these systems are definitely suitable today for embedded applications.

Further reading on functionalities and syntax of both C++ and Java as well as its real-
time variants are listed in the according subsection of this book's references annex.

 8.4 Implementation Technologies - The Unified Modeling
Language (UML)

The  “Unified  Modeling  Language”  has  already  been  cited  as  a  powerful  and
appropriate tool  for  graphical  design of  software.  UML is  a graphical  notation for
structure and functional

● specification,
● visualization,
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● definition and
● documentation

of object oriented software systems. UML visualizes the system design by means of
graphical diagrams, however it does not apply any rules for the process of the design
development, the level of modeling detail  nor for software verification and testing.
Nevertheless the graphical notation only is one aspect of the modeling “language”.
UML basically defines a set of terms and relations which are used to specify the
models.  The UML diagrams only give a graphical  view on cut-outs of  the model.
Parts not "drawn" in diagrams are not fixed in the software design. The UML standard
further defines a data format which can be used to transfer the models and diagrams
between the UML tools of different vendors and it formalizes design optionally down
to a level where automated code generation from the graphical definitions is possible.

In respect to the graphical notation the current UML V2 standard defines six different
kinds of structural diagrams, the: 

● Class diagram
● Composite structure diagram
● Component diagram
● Deployment diagram
● Object diagram
● Package diagram

And in addition to these UML 2.0 comprises seven behavior diagrams, namely the:

● Activity diagram
● Use case diagram
● State machine diagram
● The interaction diagrams which are the:

◊ Sequence diagram
◊ Communication diagram
◊ Interaction overview diagram
◊ Timing diagram

UML CASE tools provide the functionality to auto-generate source code from this
UML PIM notation for different kinds of target languages (C++, Java, C#,...) on PSM
level. Code generation is not possible from all types of diagrams because some are
too  abstract  and imprecise.  In  the  following paragraphs  the  most  important  UML
diagram types are explained. These real world examples originate from the “Stuttgart
Small Satellite Program”.

Class diagrams: Class diagrams illustrate the software classes, their aggregations
and inheritance architecture.
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Figure 8.4: UML class diagram.

Composite structure diagrams: A Composite structure diagram is a type of static
structure diagram in UML, that describes the internal structure of a class and the
collaborations that this structure makes possible.

Figure 8.5: UML composite structure diagram.

:Battery

:PCDU :OBC :StarTrackers

:Solar Panels

:RWLs

:Payload

:electricalpower

:electricalpower

:cmd-ctrl

:cmd-ctrl

:cmd-ctrl

:cmd-ctrl

:electricalpower

solarenergy

:electricalpower

SmallSat

176



Implementation Technologies - The Unified Modeling Language (UML)

Component diagrams: Component diagrams illustrate the dependencies between
the major software system components on the level of modules like card drivers data
bases and user interfaces.

Scripting Software MOIS

Mission Control System
SCOS-2000

SCOS-RTS Proxy

Real-time Simulator

Reaction_wheel

Mission Control 
System provides 

Interface for 
Scripting Engine

Proxy provides 
Interface for MCS & 

Simulator

Proxy (Type) 
depends on 
Simulator

Figure 8.6: UML component diagram.

Deployment  diagrams: Deployment  diagrams  illustrate  the  deployment  of  the
infrastructure modules of the system to different computers.

Scripting software MOIS

Mission Control System
SCOS-2000

SCOS-RTS Proxy
Real-time Simulator

Reaction_wheel

Script Development Server

MCS Computer

Simulator Node

Figure 8.7: UML deployment diagram.
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Object diagrams: Object diagrams illustrate the statical instance, role and template
architecture21 of the system.

Figure 8.8: Template and associations in UML object diagrams.

Package diagrams: Package diagrams illustrate the dependencies between system
components using a structuring based on software application criteria – for example
structuring  of  the  software  system  due  to  applied  operating  system  or  target
hardware.
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Figure 8.9: UML package diagram.

21Templates describe class structures and functions that allow to operate with generic types (float, double etc)
without being recoded for each data type.
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Activity diagrams: Activity diagrams are the first  type of  behavior  diagrams and
illustrate the process flow in the software as well the system behavior and its control
structures.

Start MCS
SCOS 2000 Start Simulator

act      Run Simulation

Inputfile

Results

Load Test Input

Compute 
Timstep ResultsProcess Results

t<= t
end

t > t
end

User Control Console Simulator

Figure 8.10: UML activity diagram.

Use case diagrams: Use case diagrams illustrate the interaction between actors
and the software in application cases of the system.
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System

Simulation

Test
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Use MCS
SCOS-2000

1 Simulator Infrastructure

OBSW Developer

2

System Engineer

3

Test Developer

“extend“

“extend“

Figure 8.11: UML use case diagram.
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State machine diagrams: State machine diagrams illustrate the states of system
components (e.g. simulated spacecraft or its equipment) and the transitions between
those  states  for  the  modeling  of  state  machines  (time  discrete  reactions  of  the
component on external or internal stimuli).

Figure 8.12: UML state machine diagram.

The example of figure 8.12 shows the a state machine modeling a fictitious satellite's
operational modes as they are defined for on-board software design.

Sequence diagrams: Sequence diagrams are the first type of interaction diagrams
and  illustrate  the  interaction  of  system components  in  a  chronological  chain  -  if
needed including interaction conditions.
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Figure 8.13: UML sequence diagram.
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Communication  diagrams: Communication  diagrams  illustrate  the  elementary
connections between functionalities  in  the system and are typically  used in  early
conceptual phases of a software development.
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0: Start()
Simulator

4: Send TM()

1: Compute()
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0: Init()

1: Compute()Kernel

3: Send TC()

Figure 8.14: UML communication diagram.

Timing diagrams: Timing diagrams illustrate the behavior of the system in the time
domain and especially depict the dynamical aspects of the system behavior. They
allow a more precise, quantitative specification of the timing behavior than the other
UML diagrams. Thus they are well suited for the detailed design of real-time systems.

Figure 8.15: UML timing diagram.

After this quick tour on UML diagram types the specific options that are offered by
UML V2 with respect to the modeling of state machines shall be outlined in a bit more
detail here. This is of specific relevance since most equipment models in a spacecraft
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simulator comprise a time discrete part – especially those representing intelligent on-
board equipment with a multitude of operational modes. This functional non-analog
part is preferably represented by a state machine – please refer to the breakdown of
an equipment model in figure 4.15:

● UML reflects state machines as an object-oriented variant of the Harel type.
● These are used to model the event driven behavior of corresponding units.
● Since UML 2.0 state machine diagrams are no longer limited to representing a

single software class only.
● The state machine diagrams cover the whole life cycle of the class(es). This

includes  the  construction  and  destruction  of  the  corresponding  software
objects.

● The state  machine  diagrams allow  a  hierarchical  modeling  of  states.  This
enables the modeling of systems with a complex behavior.

● Numerical algorithms can be included into the states as well as into entry and
exit functions.

● State transitions can be defined to be event driven or time dependent.

State machine diagrams allow one to define:
● Checking whether  or  not  a command execution is  permitted in the current

operational mode
● Checking whether or not a transition to a specific mode is permitted in the

current operational mode
● Blocking of incoming commands as long as a transition is ongoing in the state

machine
● Mode specific parameters of the model (characterization parameters)
● Transition durations for all possible mode transitions.
● Transition modes

In the following paragraphs now the topic of code generation from UML notation shall
be treated in more detail since this is one of the major strengths of UML.

 8.4.1 Code Generation from UML

The possibility to generate code from UML (if necessary for different programming
languages) depends on the abilities of  the applied UML tool.  As long as no pure
drawing tools are used, code usually can be generated at least from the following
diagram types:

● All diagrams describing the static system structure (class diagrams etc.)
● State machine diagrams
● Sequence diagrams (possible since UML standard V2.0)

In order to be able to support different UML details in the particular diagrams, the
code generator eventually needs to be adapted. An important feature of UML namely
is its adaptability to user requirements. UML itself allows notation adaptations for user
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purposes, the so-called "profiling". The most intuitive and more widely means of UML
profiling is the application of so-called "stereotypes" for class templates – please refer
to figure  8.16. At  hand of  the stereotype name the code generator  identifies that
besides the variables and functions defined in the class diagram it has to generate
certain additional functions or parameter definitions for the class. This is performed
automatically during code generation by the use of template definitions in the code
generator configuration and according entries in the code generator script. Function
extensions by stereotypes e.g. avoid necessity for complex inheritance hierarchies.

Figure 8.16: UML class definition by stereotype.  Example: OMG

Another means of UML profiling is the use of so-called "constraints". Their definitions
are  specified  in  the  "Object  Constraint  Language"  (OCL)  which  originally  was
developed by IBM.

Figure 8.17: UML diagram with constraint.

Complete  notation  changes  for  special  purposes  are  principally  also  allowed.
However, the parsing of the diagrams and the code generator's conversion definition
then  have  to  be  specified  by  the  user,  as  these  changes  affect  the  so-called
"metamodel" which is the "interpretation convention" behind the graphical notation.

How is this flexibility and adaptability achieved? For the answer first figure 8.18 shall
be considered which depicts  the 4 levels of  UML modeling.  The lowest  level  M0
represents the generated output which might be C++ code for a simulator or table
structures  for  a  data  base  etc.  The  information  which  already  was  cited  in  the
presented UML diagram types can principally be found in the M1 level which stands
for the UML based modeling of software structure and behavior. In figure 8.18 a class
and an instance in accordance to the propulsion system of figure 1.12 are depicted in
the M1 level (cf. [23]).
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The UML tool and in particular its code generator need to "know" what a method, a
class, an instance and an attribute are. The definition of this "meta information" is laid
down  in  the  metamodel  level  M2.  Potential  stereotype  definitions  and  their
functionalities are also defined here. Via this metamodel the UML diagram semantics
and also the additions / changes defined by the user are defined. Finally as topmost
layer there exists the M3 level, the "meta object facility" (MOF). This is the internal
UML tool database layer, where the software components designed with UML and
the  metamodel  definition  (including  potential  user  adaptations)  are  stored  in  a
standardized way prescribed by the OMG's UML standard. During data exchange
between  two  UML tools,  the  exchange  takes  place  between  these  meta  object
facilities.
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Code

M2

UML Meta 
Model

M3

UML
Meta Object
Facility

M1

Spacecraft 
UML Model

int
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.
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}
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Class

<<instanceOf>> <<instanceOf>> <<instanceOf>>
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Operation

<<instanceOf>>

+computeDeltaT( )

<<instanceOf>>

Figure 8.18: UML tool modeling levels according to OMG standard.

From these structured definitions a code generator now can consecutively parse the
M1 layer elements and interpret their subparts (methods, instances, parameters etc.)
by means of the meta model information - e.g. the characteristics of a propulsion
system from figure  1.12 respectively [23]. The program code (e.g. in C++ or Java)
can be created during this parsing and interpretation process successively by means
of a modular script.
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Figure 8.19: Code generation from UML diagrams - simplified illustration.

Figure 8.19 illustrates the code generation process applying another simple example.
The  code  generator  applying  its  control  script,  parses  the  model  of  a  simplified
spacecraft  transponder. Parsing and code generation are performed by identifying
the  syntax  elements  of  the  UML  diagram  and  by  interpreting  their  semantics,
identifying  classes,  variables,  compositions  etc.  and  finally  by  generating  the
according  target  language  sections  -  here  in  C++.  During  this  process  also  all
eventually noted OCL constraints will be included into the target code. The example
shows an extract from a control script in TDL script language as used by the UML
tool "OpenAmeos" (cf. [78]).

Further reading on the UML language, the notation and tools is listed in the according
subsection of this book's references annex.

The following figure 8.20 provides an overview on how complex a UML diagram can
get if it covers a whole simulator kernel – only depicting the complete class hierarchy
and not  yet  covering  any functionalities.  Therefore  in  normal  software design  no
single class diagram for the entire kernel would be generated. Instead one top level
diagram and a multitude of subdiagrams would be designed. Just for the purpose of
complexity  visualization  figure  8.20 provides  the  overview  of  a  real  spacecraft
simulator kernel, namely a deprecated kernel implementation of the Astrium MDVE
spacecraft  simulator.  However  with  design of  such a diagram the complete  UML
modeling  of  a  simulator  kernel  is  not  finished.  In  addition  to  this  class  diagram
functional  diagrams  like  activity  and  sequence  diagrams  etc.  –  and  if  needed
deployment diagrams - have to be added to complete the kernel design description.
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Figure 8.20: UML class diagram of a spacecraft simulator kernel.  © Astrium

The kernel library in this example all in all comprises:

● The components for central functionalities like:
◊ The numeric initial value problem DEQ solver
◊ The space environment model including atmospheric, magnetospheric and

celestial body effect computation
◊ The spacecraft structure dynamics model (in this case a rigid body model).
◊ A configurable thermal network model
◊ Superclasses of equipment model class types and interconnection class

types

● The functions for:
◊ Initialization of the system (including the import of configuration files)
◊ Scheduling of the simulation models
◊ Interpretation of simulator commands
◊ Generation of simulator result data streams
◊ Handling events  from the frontend-card drivers  on hybrid  bench setups

● The interfaces for:
◊ TCP-based commanding of the simulator
◊ Data transfer to a graphical user interface (MMI)
◊ Reading the simulator configuration files (XML)
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◊ Data in and output to and from the frontend-card drivers
◊ Data interchange with the OBC model respectively with "Hardware in the

Loop" OBC in hybrid testbench variants

 8.4.3 Designing Spacecraft Equipment Models with UML

The modeling of spacecraft equipment with UML shall be explained in the following
paragraphs  beginning  with  some  aspects  of  an  on-board  computer  model  to
demonstrate a more complex model structure.

The  internal  structure  and  the  electric  components  like  processor  board  with
I/ O-controllers etc. have already been depicted in figures 5.6 and 5.8. The first one
depicts processor modules, transponder interface cards and the connection to the
internal  MIL-STD-1553B bus (all  redundant),  the  latter  shows the connected I/O-
boards (using an example of RUAG Aerospace Sweden AB and RUAG Aerospace
Austria  GmbH).  First  of  all  the transponder  interface board  (Buffered TTR called
“BUTTR” in figure 5.6) is considered. The following class diagram is a detailed model
of this board with subclasses for receiver, memory and interfaces-ASIC22 (CROME23)
as well as I/O-controllers, which functionally model the different interfaces.

Figure 8.21: Class diagram of an OBC transponder interface board model.  © Astrium

Interface registers, write and read functions as well as the timing performance and
interrupt handling functions have to be defined and implemented as class attributes
and member functions (methods) for each of those controller modules. A definition
table tool provided to the user by the OpenAmeos UML tool with filled out entries for
22ASIC = Application Specific Integrated Circuit (specific electronic component developed for a single application).
23CROME and COCOS are brand names of a complex ASIC controller  chips designed by RUAG Aerospace

Sweden AB.

TTR

TTR_Memory CROME

PDEC

RM

CPDM
CROME_M1553RT

CROME_OBT

CSEL

CROME_PIM

CROME_PIO

CROME_INT

FARM

MAP

MEM_Area

TME_VC

TME_FG

CROME_CAR

CROME_PWT

CROME_PWR

TCReceiver

CROME_SPW

TcSourcePacketDecoder

8

187



Object Oriented Architecture of Simulators and System Models

the member variables and functions of one single ASIC chip class is shown in the
figure  below.  This  demonstrates  the  complexity  already  arising  for  modeling  one
single on-board computer interface board. Specific simulator libraries are used for
modeling the microprocessor itself of the OBC. They have already been mentioned in
section 5.5 - please also refer to [27].

Figure 8.22: Example for class parameter and function definitions.  © Astrium

Besides  modeling  of  equipment  classes  themselves,  a  functionality  has  to  be
available in a spacecraft simulator which works on instance level and which informs
each model instance, which of its interface ports is connected to which harness line
interconnection  instance.  Mapping  of  these  harness  line  class  instances  to
equipment model instances usually is performed via so-called "mapping tables" for
which own class types (mapper classes) have to be defined in the simulator kernel.
This  mapping mechanism connecting harness line  instances  to  equipment  model
instances must be initiated at simulator initialization time.

Figure 8.23: Modeling line interconnection mapper structures.  © Astrium

Besides  UML  diagrams  for  equipment  definition  and  line  interconnection
instantiations,  other  diagrams  are  useful  and  necessary  for  visualization  and
definition of the functions in equipment models as well as in the simulator kernel. One
example for such behavior diagrams often used in spacecraft equipment modeling is
the state machine diagram which has already been introduced in figure 8.12. Another
popular  tool  for  modeling functionalities  in  UML are the sequence diagrams.  The
example of this diagram type cited below includes:
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● The processes in order to set line interconnection data (SET)
● The data report from one line interconnection (REPORT)
● The process to establish a line interconnection (CONNECT)
● The process for disconnecting a line interconnection(DISCONNECT)

Below the diagram a simplified C++ code section is depicted. Such code could be
generated from such a sequence diagram using the code generator of an UML tool.

Figure 8.24: Setting and reporting of analog line interconnection parameters.

Fictitious C++ code file generated from the sequence diagram above:

#include ...

EventCnt::EventCnt (){
...
};

EventCnt::~EventCnt (){
...
};

int EventCnt::perform () {
  AnalogLineBasePtr =
  ConnectorHandler->GetHkAnalogLineHandler(“LineName“);
  
  if (_action==“SET“) then {
. ..
  return 0;
  }
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  else if(_action==“REPORT“) then {
    LineValue = AnalogLineBasePtr->GetData();
    return 0;
  }

  else if(_action==“CONNECT“) then {
    AnalogLineBasePtr->Set_connected(true);
    return 0;
  }

  else if(_action==“DISCONNECT“) then {
    AnalogLineBasePtr->Set_connected(false);
    return 0;
  }

  else return(“ERROR_unknown_cmd“);
};

 8.5 Implementation Technologies - The Extensible
Markup Language (XML)

Finally  the  “Extensible  Markup  Language”  (XML)  must  be  mentioned.  Via  XML
notation convention data can be stored in files or loaded from files supported by a
formally  verifiable  textual  notation.  XML  has  become  the  de-facto  standard  for
modern file formats in nearly all software engineering domains - not only for system
simulation. In the field of system simulation files, XML format is typically used for
storage / loading of configuration and initialization data of the simulator. The use of
XML for such purposes shall be demonstrated in some examples.

The language syntax of XML is standardized by a W3C-Standard. The storage of
data  is  implemented by  using  ASCII  text  files  which  are  structured  in  a  specific
manner.  These files are legible plain text  files and can easily  be ported between
different kinds of operating systems and devices, since only being purely based on
the ASCII character set.  XML is very flexible,  because its data structures can be
created and converted according to  application  needs (for  example from XML to
HTML or vice versa). Only according syntax conversion rules have to be followed to
achieve that.

To enable a software (for example a simulator) to read and write XML files,  a so
called “parser” has to be used. This is usually achieved by linking in a specific XML-
parser library to the software - here into the simulator. The parser then enables the
simulator to read an XML-file, to check it concerning consistency and completeness,
to identify the content of the file and to carry out specific actions depending on the
data read. This action can for example be to assign a value from the XML file to a
variable of an equipment model or to generate an instance of an equipment model
class.
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The  parser  also  enables  the  software  to  export  data  from the  program  to  XML
compatible  files  -  e.g.  simulator  log files.  An example for  a  popular  open source
implementation  of  such  an  XML parser  library  is  "Xerces"  for  Java  software  or
“Xerces-C++” for C++ , which also both are available for many different operating
systems.

In fact to import information from an XML file with a parser, in reality two different files
are needed. One is the actual XML file (with the file extension ".xml") which contains
the data to be read and the other file contains information about the structure of the
“.xml” file. This second file is called the “Document Type Definition”, (DTD), and this
definition file itself is marked with the extension ".dtd" - please also refer to figure
8.25. Such a DTD file describes the relational class model of different associated
elements. This is done by hierarchical arranged so-called “tags” that describe of a
data  model.  The newer  XML standard  issues  in  addition  define  so  called  “XML-
Schemas”  (with  the file  extension  .xsd)  which  are  comparable  to  DTDs however
provide diverse additional features. The examples here still stick to the older DTDs to
keep them straightforward.

osk.dtd

<!ELEMENT OpenSimKitConfigFile (System,
CompDefs, BranchDefs, MeshDefs, NetList,
LogOutput?)>

<!ELEMENT System SysDesc,
SimulationCtrl)>
<!ELEMENT SysDesc (Model,Case,Note)>
<!ELEMENT Model (#PCDATA)>
<!ELEMENT Case (#PCDATA)>
<!ELEMENT Note (#PCDATA)>

<!ELEMENT SimulationCtrl  (RelAccuracy,
AbsAccuracy)>
<!ELEMENT RelAccuracy    (#PCDATA)>
<!ELEMENT AbsAccuracy   (#PCDATA)>

<!-- Definition of Component Types         -->
.....

Simulation Input File

<?xml version="1.0" standalone="no"?>
<!DOCTYPE OpenSimKitConfigFile SYSTEM
"osk.dtd">
.....
<OpenSimKitConfigFile>

<System>
  <SysDesc>
    <Model> Rocket propulsion system </Model>
    <Case>   nominal operation </Case>
    <Note>    04.12.04 </Note>
  </SysDesc>
  
<SimulationCtrl>
    <RelAccuracy>  0.05  </RelAccuracy>
    <AbsAccuracy>  0.0  </AbsAccuracy>
  </SimulationCtrl>
</System>

<!-- Defining the Components in the System       --
>
.....

</OpenSimKitConfigFile>

Figure 8.25: Characterization data for a simulation run.  Example: OpenSimKit [23].

When importing the XML file the parser firstly checks:

● the XML language version in which the file is defined (cf. Figure 8.25):
?xml version=“1.0“ 
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● whether it is a standalone file: 
standalone = "no" 

or whether the syntax should be checked against a DTD respectively a
schema.

● In case it has to be checked, the parser evaluates of which type the .xml file is
(here "OpenSimKitConfigFile") and against which DTD / schema it has to
be checked throughout parsing (here "osk.dtd"):

<!DOCTYPE OpenSimKitConfigFile SYSTEM "osk.dtd">

Provided with the information from the DTD / XSD file, the parser then can read the
XML file step by step or in more precise tag by tag and can verify whether the input is
"well formed" w.r.t. DTD / schema and whether the input is complete. The reading
order is determined by the information provided by the DTD / schema file. In the
given example of figure 8.25 the parser finds the following information:

● Firstly from the DTD-entry:
!ELEMENT OpenSimKitConfigFile (System, CompDefs, 
BranchDefs, MeshDefs, NetList, LogOutput?)> 

it can identify that the opened DTD file actually is the correct file matching the
above mentioned OpenSimKitConfigFile

● Furthermore it can identify that the .xml file mandatorily contains the
subsections:

System, CompDefs, BranchDefs, MeshDefs, NetList 
And optionally it can contain a section:

LogOutput.

● From the next entry
<!ELEMENT System SysDesc, SimulationCtrl)>

it can identify that the subsection “System” again contains the sections: 
SysDesc, SimulationCtrl

● SysDesc finally contains:
Model,Case and Note

● The entries: 
<!ELEMENT Model (#PCDATA)>
<!ELEMENT Case (#PCDATA)>
<!ELEMENT Note (#PCDATA)>

are identifying Model,Case and Note to be “Parsed Character Data”, which
means that here the corresponding values are located as text in the .xml file.

In  this  manner  the reading /  parsing process progresses.  As soon as the parser
identifies an inconsistency between a specification in the DTD / schema and the XML
file,  for  example  a  missing  tag  or  a  wrong  hierarchy,  the  parser  will  generate  a
corresponding error message.
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From the parsed input the parser constructs an internal structured data tree in C++ or
Java from the tags it identifies. Additionally the parser generates dedicated access
functions in the corresponding programming language to navigate through the data
and to access the elements of the tree structure. Thus a simulator kernel can find its
required input  data in the data structure generated by the linked parser  and can
access the values and hand them over e.g. to the simulator models for spacecraft
equipment. In  the  following  paragraphs  the  use  of  XML for  loading  files  and  for
configuring a system simulator and respectively equipment models will be outlined
using some examples. 

osk.dtd

.....
<!-- Definition of Component Types         -->

<!ELEMENT CompDefs(HPBottleT1 | PipeT1 |
JunctionT1 | FilterT1 | PRegT1 | SplitT1 |
TankT1)*>

<!ELEMENT HPBottleT1 (CID, Description,
Mass, Volume, SpHeatCap)>
.....
<!ELEMENT CID (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Mass (Value, Unit)>
<!ELEMENT Volume (Value, Unit)>
<!ELEMENT SpHeatCap (Value, Unit)>
.....
<!ELEMENT Value (#PCDATA)>
<!ELEMENT Unit (#PCDATA)>
.....

Simulation Input File

.....
<!-- Defining the Components in the System -->
.....
<CompDefs>
  <HPBottleT1>
      <CID>  c0  </CID>
      <Description>
          Left High Pressure Bottle.
      </Description>
      <Mass>
          <Value> 28.0 </Value>
          <Unit> kg </Unit>
      </Mass>
      <Volume>
          <Value> .135 </Value>
          <Unit> m^3 </Unit>
      </Volume>
      <SpHeatCap>
          <Value> 800.0 </Value>
          <Unit> J/(kg*K) </Unit>
      </SpHeatCap>
  </HPBottleT1>
.....
</OpenSimKitConfigFile>

Figure 8.26: Loading information on system topology.  Example: OpenSimKit [23].

The preceding figure  8.26 shows a simple example for the dynamical  creation of
equipment  model  instances  and  the  initialization  of  these  instances  with
characterization data. The .DTD of this example specifies that the system may be
composed  of  the  component  types  HPBottleT1,  PipeT1,  JunctionT1,  FilterT1,
PRegT1, SplitT1 and TankT1 only - compare the system in figure 6.7.

The DTD doesn't provide any required number of instances of each equipment type,
to be part of the simulated system. This information is located inside the XML-file. In
figure 8.26 the information needed for the initialization of component c0, which is of
HPBottleT1 type can be easily identified. However there may be more than one of
these components in the system. The entries for a system with a 2 bottle topology as
in figure 1.12 would start like:
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Simulation Input File
.....
<!-- Defining the Components in the System -->
.....
 <CompDefs>
   <HPBottleT1>
       <CID>  c0  </CID>
       <Description>
           Left High Pressure Bottle.
       </Description>
       <Mass>
         .
         .
   </HPBottleT1>
   <HPBottleT1>
       <CID>  c1  </CID>
       <Description>
           Right High Pressure Bottle.
       </Description>
       <Mass>
         .
         .
   </HPBottleT1>
         .
         .
</CompDefs>
         .
         .
</OpenSimKitConfigFile>

Figure 8.27: System topology with multiple instances of the same model type.

In the following example the dynamical configuration of a satellite “Power Control and
Distribution Unit” (PCDU) model via XML is described. This not only covers the XML
file  structure  and  the  import,  but  also  the  dynamical  generation  of  C++  object
instances corresponding to the content of the XML file. A satellite PCDU is composed
of  a  digital  control  unit,  a  power  bus  regulation  unit  and  a  power  distribution
component with multiple banks of "fuses" of various types. One group of these safety
devices are so-called "Foldback Current Limiters" (FCLs). The mapping between the
FCLs, the cables and the consumers connected to the PCDU is not entirely fixed at
implementation time of the system simulators at begin of phase C of a project. In fact
they are typically changed multiple times up to spacecraft final system testing. Thus
the  corresponding  mappings  of  power  consumers  connected  to  the  PCDU FCLs
should not be frozen in PCDU model code but should be loadable in the spacecraft
simulation  to  make  it  flexible  for  easy  reconfiguration.  The  mapping  information
preferably  should  be  loaded  from  an  XML-file.  A PCDU  model  code  with  such
loadable information on FCLs and line mappings in C++ language is provided as
example below which demonstrate:

● The creation of a "SAX2" type XML parser instance
● The commands to import the XML grammar (DTD)
● The instructions to read the XML-file of the power unit
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/**
Parsing of the DTD import of the PwrSupply XML data and generation of the
PwrSwitch elements.
*/

SAX2XMLReader* PwrSupplyConfig_XML_IF=XMLReaderFactory::createXMLReader();

// Load grammar and cache it
PwrSupplyConfig_XML_IF->loadGrammar(dtdFile,
                                    Grammar::DTDGrammarType,
                                    true);

// enable grammar reuse
PwrSupplyConfig_XML_IF->
                       setFeature(XMLUni::fgXercesUseCachedGrammarInParse,
                                  true);

// Parse xml files
PwrSupplyConfig_XML_IF->parse(PrwUnitXmlFile);
....

In  the  next  step,  the  XML file  sections  of  the  power  control  unit,  containing  the
information about to be generated FCL safety device model instances, their names,
harness line connections and so forth will be analyzed. Please also refer to figure
8.28.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE PwrSupplyConfigFile SYSTEM "PwrSupplyConfig.dtd">
<PwrSupplyConfigFile>
      ......
 <PwrSupplyConfigData>
   <PwrSupply>
     <PwrSwitchModule>
        <moduleName>LCL_1A</moduleName>
            <PwrSwitch>
              <PwrSwitchName>FCL1_1A</PwrSwitchName>
              <PwrSwitchType>FCL</PwrSwitchType>
              <PwrSwitchDescr>OBC (CTU1)</PwrSwitchDescr>
              <Map2SimHarness>
                     <SimHarnessLine>
                         <simIfId>1615</simIfId>
                         <simIfDescr>OBC (CTU1) Power Supply</simIfDescr>
                         <simIfName>pwr_ctu1_pcdu_00_FCL_1A_01</simIfName>
                         <simIfHarnessType>power</simIfHarnessType>
                     </SimHarnessLine>
               </Map2SimHarness>
                    .....
               <PwrSwitchInfoCurrent>
                   <PwrSwitchInfo>
                     <signalCode>FCL1_1A_CUR_HK</signalCode>
                     <descr>FCL1_1A Current HK TM</descr>
                     <size>12</size>
                     <wordSeqNo>6</wordSeqNo>
                     <offsetBit>0</offsetBit>
                   </PwrSwitchInfo>
               </PwrSwitchInfoCurrent>
                    .....
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               <PwrSwitchInfoState>
                  <PwrSwitchInfo>
                     <signalCode>FCL1_1A_STAT</signalCode>
                     <descr>FCL1_1A Status</descr>
                     <size>1</size>
                     <wordSeqNo>63</wordSeqNo>
                     <offsetBit>0</offsetBit>
                  </PwrSwitchInfo>
               </PwrSwitchInfoState>
             </PwrSwitch>
                 .....
     </PwrSwitchModule>
    </PwrSupply>
  </PwrSupplyConfigData>
</PwrSupplyConfigFile>

Figure 8.28: XML file structure and created
classes for a PCDU.

Finally excerpts of a fictitious C++ code follow which 

● create the  PwrSwitch FCL safety module instances,  defined in the above
cited XML file section and

● which  registers  these  FCL  switches  at  the  handler  for  the  following
characterization -  i.e. importing of the threshold levels, the OBC commands
and the connection to the harness lines.
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....
PwrSupplyConfig_XML_IF->InitPowerSupply(PCDUSwitchHandler& psh_ //  
                                        ,ConnectorHandler& ch_ //  
                                        ) {

  for (i=0; i<nPwrSwitchModules; i++) {
    pwrSwitchModule=pwrSupply->GetChildElement("PwrSwitchModule", i);
    pwrSwitchModuleName = 
            pwrSwitchModule->
                           GetChildElement("moduleName")->Get_textNode();

    nPwrSwitchs=pwrSwitchModule->CountChildElements("PwrSwitch");
    for (j=0; j<nPwrSwitchs; j++) {
      pwrSwitch=pwrSwitchModule->GetChildElement("PwrSwitch", j);

      // PwrSwitch
      //------------------------------------------------------------
      // PwrSwitchName
      aChild=pwrSwitch->GetChildElement(childName="PwrSwitchName");
      if (!aChild) throw (string ("non existing child element '"
                          +childName+"' for switch "+pwrSwitchName));

      pwrSwitchName=aChild->Get_textNode();

      //  PwrSwitchType
      aChild=pwrSwitch->GetChildElement(childName="PwrSwitchType");
      if (!aChild) throw (string ("non existing child element '"
                          +childName+"' for switch "+pwrSwitchName));

      pwrSwitchType=aChild->Get_textNode();

      // PCDUSwitchHandler registration / instantiation
      pwrSw = PCDUSwitch::VirtualConstructor(pwrSwitchType,
                                             pwrSwitchName);

      // power switch instance is mapped onto module
      psh_.RegisterPowerSwitch2Module(pwrSw,pwrSwitchModuleName);

In  addition  XML  files  can  be  applied  for  simulation  state  "serialization".  This
functionality allows stopping of a system simulation at a desired point in time, to store
its  state to  file  and to use the file(s)  later  for  resuming computations or  to  base
different test case variants on a common initial starting condition. In modern object
oriented  programming languages like  C++ and especially  in  Java,  extensive  and
easy  to  use  libraries  for  serialization  in  diverse  file  formats  are  available.  The
serialization requires saving the status of the simulator kernel, the status of every
equipment model and of each harness line model in the state-set files. For simulator
infrastructures which provide such state set saving typically XML is used for these
files.

Further reading and Internet pages on XML are listed in the according subsection of
this book's references annex.
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 8.6 Implementation Technologies - Modeling
Frameworks

For the implementation of such complex software tools like system simulators today
not only modern design languages like UML and efficient and powerful programming
languages like C++ or  Java are used,  but  also so-called “modeling frameworks”.
Such modeling frameworks are  generic  software environments  for  simplifying the
development of application programs - in this case for spacecraft simulators. These
modeling frameworks comprise:

● A graphical user interface
● Intelligent code editors
● Powerful build tools (like Apache Ant)
● Compiler, Linker, Debugger

Figure 8.29: Eclipse as Integrated Development Environment (IDE).

Diverse further modules can be loaded as so-called "plugins" - e.g. for simulators the
cited XML-parser or serializer modules. Logfile output interfaces, external command
interfaces,  the  connection  between  debugger  and  simulator  and  the  usage  of
modeling framework graphics as basis for simulator user interface design also can be
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managed via plugin mechanisms. This approach describes using the frameworks as
so-called integrated development environment.

The  most  common  modeling  frameworks  are  "NetBeans  IDE"  from  Sun
Microsystems  and  "Eclipse"  which  originally  was  developed  by  IBM  and  now  is
further maintained by the "Eclipse Foundation" (see also figure 8.29). Both modeling
frameworks are public domain and can be used for developing software based on
diverse target languages - e.g. Java and C++. Only Eclipse shall be treated here,
since it is the most widespread modeling framework.

Eclipse also provides a UML design infrastructure plugin for the modeling framework
which makes this platform a somewhat ideal platform for simulator development.

Figure 8.30: UML views in Eclipse (Eclipse UML).  © ESA / ScopeSET

Furthermore such modeling frameworks support  the design approach to base the
simulator development using the framework itself as "Rich Client Platform" (RCP) -
i.e. as software skeleton. This implies e.g. Eclipse first is used to design the code for
simulator modules by means of UML. C++ or Java code can then be generated as
described in previous paragraphs too. However in the RCP approach the Eclipse
Framework itself with all its functions, XML-parser etc. is used as framework for the
simulator  -  as  "main"  program of  the  simulator  kernel  so  to  say.  This  approach
relieves the simulator developer from coding all the functions for XML-file reading, for
logging and their integration with the software kernel. The developer can make use of
Eclipse baseline features without recoding them and of a huge amount of plugins
freely available as open-source code.
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Further reading and Internet pages on Eclipse as a development platform and as
Rich  Client  platform  -  Eclipse  Modeling  Framework,  (EMF)  -  are  listed  in  the
according subsection of this book's references annex.

 8.7 From a Model Specification to the Simulation Run

In this chapter finally the development equipment model for a spacecraft simulation
will be outlined by means of an example, starting from the beginning with the model
specification  over  the  design  of  the  software  model  to  the  integration  into  the
simulator and to a simulation run.

 8.7.1 From Equipment Documentation to the Model
Specification

It shall be recapitulated that the equipment models are connected to each other and
to  the  on-board  computer  model  via  simulated  harness  lines  and  to  the  system
models via mathematical  connections.  The system equations are solved centrally.
The functionalities of the, to be implemented, model code functions are driven by the
to  be  modeled  real  spacecraft  equipment  and  by  the  test  scenarios  which  are
intended to be run on the simulation-based testbenches. The latter for example are:

● Performance analysis scenarios
● On-board software test scenarios
● Performance verification scenarios
● Test procedure debugging scenarios
● Hardware / software compatibility tests
● "Hardware in the Loop" test scenarios

From these case scenarios the model requirements can be derived, considering:

● The functionalities / physics of the real hardware which is to be represented.
● The represented functionalities of the data protocols which are used between

the  equipment  and  the  on-board  computer  -  for  example  specific  packet
information can be empty or replaced with dummy data or counters.

● The required  implementation  precision  of  the models  considering  all  to  be
modeled aspects from the real equipment's physics up to the to be modeled
data transmission via protocols.

The representation of the real equipment's physics in the model actually can differ
from the real equipment to a large extent. For illustration, the following example shall
be given - the computation of a star tracker output - the quaternions - for the star
tracker's data protocol:

The physical simulated satellite attitude and position in the simulator is calculated by
the integration of the equation of motion for the structure model. In the simulation - in
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contrast  to  reality  -  the  star  tracker  model  can  receive  the  attitude  and  position
directly from the structure dynamics module where the results already are available.
It  only  has  to  calculate  the  pointing  direction  in  the  orbit  reference  frame  by
combining  the  satellite's  attitude  and  the  star  tracker's  relative  alignment  to  the
satellite's simulated structure. This calculated viewing direction now can be made
available directly via data protocol to the OBC by computing the according protocol
data  packets.  Together  with  additionally  simulated  effects  like  noise,  temperature
dependent effects and so forth, these data packets are composed.

Thus  the  attitude  determination  is  not  simulated  at  all  via  the  steps  from a  star
constellation view input to the camera optics head and along through the electronics,
modeling the decoding of simulated star maps down to the communication interface
which  would  be  the  physical  path  in  a  real  star  tracker  hardware.  Instead  the
equipment model only functionally representing the real hardware and just "picks" the
spacecraft  attitude which is  directly  available in the dynamics module,  adds error
effects and protocol encoding.

The scope of technical functions which is to be represented in detail in a model as
well  as  the  model's  interfaces  implicitly  are  defined  through  the  documentation
provided by the supplier of the real spacecraft equipment. The essential documents
here  are  the  equipment  "Interface Control  Document",  (ICD),  and  the  equipment
"Design Document", (DD).

Figure 8.31: Input documentation for design and coding of an equipment model.
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From the equipment ICD, the future design model interfaces towards the OBC and
towards other equipment models can be derived (ports for connection to simulated
harness  lines).  From  the  equipment  design  document  the  functionalities  can  be
derived  which  are  to  be  reflected  as  software  algorithms  in  the  model  itself  -
eventually  allowing  functional  simplification  depending  on  the  simulator  user
requirements.

 8.7.2 Application Example - Fiber-optic Gyroscope

The following example shows step by step the way from the product specification
down to the integrated model in a simulator. As example equipment serves a "fiber-
optic gyroscope" (FOG). Such FOG sensors are used on board modern spacecraft to
determine the rotational rates around the different spacecraft axes - respectively also
rotation  angles.  The  following  figure  shows  a  fiber-optic  gyroscope  unit  and  the
tetrahedron mounting assembly which is required to achieve a 3 from 4 redundancy
against a single gyroscope failure in orbit:

         

Figure 8.32: Fiber-optic gyroscope © Northrop Grumman LITEF GmbH, Freiburg
and tetrahedron gyro assembly. © IRS Universität Stuttgart

A  component  model  has  to  be
implemented  reflecting  the
tetrahedron assembly including the 4
gyroscope  instances  and  modeling
the harness line connection ports on
the tetrahedron frame. The presented
example  originates  from  the
university  small  satellite  project
"Flying Laptop", (FLP), at Universität
Stuttgart, Germany.

Figure 8.33: Required model
architecture.  © IRS Universität Stuttgart
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The  following  fiber-optic  gyroscope  "Interface  Control  Document",  (ICD),  is  an
example for a product specification which serves as input for a model developer. The
figure shows an extract from the table of contents:

Figure 8.34: Fiber-optic gyro ICD.  © Northrop Grumman LITEF GmbH, Freiburg

From  this  flight  hardware  documentation,  which  is  provided  by  the  equipment
supplier,  now a definition of a model description has to be created. An according
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model specification has to define precisely which functions and effects of the real
equipment hardware have to be modeled by which algorithmic implementation in the
satellite simulator. And those effects simplified or neglected have to be cited explicitly
in the model specification document as "simplifications".  This clearly identifies the
application cases for which the model will be suited and the model limitations (e.g.
with respect to later use in other projects). For writing the model specification the
developer has to analyze:

● Operation modes of the spacecraft component
● Numerical algorithms for modeling equipment physics
● Requirements to external stimulation (failure injection etc.)
● Equipment electrical interfaces
● The equipment's physical connections – their types and numbers
● Equipment data interfaces
● The equipment input / output data
● The data protocols and formatting to be used for the component input / output

data

The created Equipment Model Specification (cf. again figure 8.31) then comprises:

● All algorithms which have to be converted into UML design and later into code
● The  important  design  and  control  parameters  to  be  used  by  the  model

algorithms
● The component interfaces to data I/O-lines, control and power supply lines
● The  numeric  component  interfaces  to  solvers  and  system  models  like

environment and dynamics

The following example shows some basic  table of  contents elements of  such an
Equipment Model Specification – citing again the same example as above, the fiber-
optic gyroscope:

1. Introduction

1.1 Scope of Document

1.2 Basic Concept

2. References

3. Fiber-optic Gyro

3.1 Scope of Document

3.2 Dynamics

3.3 Power

3.4 Thermal

3.5 Communication
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3.6 Logical Operation

3.7 Failure Control

3.8 Schedule

3.9 Model Interface Layer

4. Variable List

4.1 Nomenclature Information

4.2 Special Variables

....

The steps to be performed after definition of such a model specification are (cf. also
to the figure below):

● The model design (in UML),
● the generation of the framework source code (here in C++),
● the instrumentation of the framework code with manually coded algorithms,
● compilation and make process,
● testing of the equipment model (unit tests),
● the integration into the simulation environment and testing (integration tests)
● and finally to perform system tests with the entire simulation.
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Figure 8.35: Steps of model development.  © IRS Universität Stuttgart
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 8.7.4 Translation of the Model Specification into UML

As initial step the equipment model designer has to specify the according software
classes  their  member  variables  and  functions  to  represent  the  equipment.  For
simulators which load the number of equipment instances at initialization time, no
fixed number of instances has to be specified. For simulators which fix at design time
in  UML the  number  of  equipment  instances  in  the  spacecraft  system,  also  this
information has to be laid down in the UML design. In this case an instance diagram
of a component defines:

● The structures of equipment classes and subclasses
● Internal member variables
● Externally visible access names of member variables
● Connection  ports  to  connect  a  model  instance  and  the  corresponding

simulated harness line instance

Figure 8.36: Class / instance diagram of the tetrahedron gyro mounting assembly.
  © IRS Universität Stuttgart
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After the design of the equipment model's basic structure in UML and eventually the
corresponding instance specifications some additional model functionalities have to
be specified which are:

● The read / write functions from / to simulated harness lines
● The functions for characterization parameter loading via the simulator kernel
● The functions  for  accessibility  of  dedicated  component  internal  parameters

from Core EGSE via the simulator kernel
● Functions for generation of simulator telemetry packets comprising selected

variables
● Functions to register a model with the simulator kernel scheduler
● The access to simulator kernel variables such as time t 
● Access functions to numeric solvers

Those system level  functionalities  however  normally  are  not  redesigned for  each
model  but  are  achieved  by  specifying  according  class  template  types  for  the
equipment model class and respectively its subclasses. The code generator driven
by this template information then inserts corresponding code snippets implementing
these  functions  into  the  code  frame  being  generated  from  the  UML  diagrams
information.

The connection of the equipment model with the simulated harness lines for data
exchange with their counterparts in the spacecraft system simulation can simply be
achieved via definition of fixed connections in the UML diagrams. This leads to a
fixed  spacecraft  model  design  which  has  to  be  edited  on  UML level  and  to  be
recompiled  /  relinked  each  time a  signal  mapping  changes  during  the  project.  It
already was mentioned that  this is a non-preferable solution since e.g. thermistor
channel allocation to OBC input ports or power channel allocations to PCDU output
ports are still rather floating at the beginning of a phase C spacecraft design where
the first complete simulators are to be implemented.

The alternative  is  to achieve a model  to harness line connection mechanism via
dedicated model functions enabling data read / write to model ports as already cited.
Those model functions connect to a dedicated mapper class during the initialization
of the simulator. The mapper class again connects the equipment components. This
approach is much more flexible than the one cited previously (please also refer to
figure  8.23). The functions for accessing mapper classes again are either inherited
from corresponding superclasses or by template expansion during code generation.

Figure  8.37 depicts a connection between a FOG and an OBC model by using a
simulated harness. It also shows the according class hierarchy for the simulation of
the serial lines with the corresponding predefined functions and their connection to
both  FOG  and  OBC  model.  It  has  to  be  kept  in  mind  that  this  is  a  simplified
description (mapper functions not shown here) and furthermore that the modeling of
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harness line classes and their data packets is normally not the task of the equipment
model developer. Typically standardized libraries of such harness line classes are
available for  the model  developer  at  his  disposition when designing a spacecraft
equipment model like the FOG example here.
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Figure 8.37: Modeled FOG equipment, OBC and transfered data structures.

 8.7.5 Code Generation and Code Instrumentation

The  designed  UML diagrams  now  describe  classes,  instances  and  if  necessary
connections  between  components  as  well  as  function  diagrams  of  finite  state
machines etc. - please also refer to figure 8.19. The software code for the equipment
model class then can be generated from these UML diagrams applying according
code  generation  scripts  which  are  usually  company  proprietary  and  allow  for
interpretation  of  the  simulator  environments  specific  features,  e.g.  for  correct
template interpretations. The generated software code comprises the following code
functions:
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● Class definitions for the main class of the equipment type and for possible
associated subclasses

● Class variables
● Variable names for external variable access
● Empty class member functions (methods) - to be instrumented manually with

code modeling the equipment's physical behavior
● Connection ports
● Class handlers in order to model connection types
● Class interfaces to system modules and simulator kernel and scheduler
● Eventually component instance definitions (for each instance one class in the

modeled spacecraft)
● Instance names

Thus after the code generation from UML the model code consists of the following
files (C++ language presumed):

● .hpp file of the component class
● .cpp file of the component class
● .hpp files of all component subclasses
● .cpp files of all component subclasses

The figure below shows extracts of both a .hpp declaration file and a .cpp code file:
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Figure 8.39: Instrumentation of generated model functions with algorithm code.
  © IRS Universität Stuttgart
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At this stage the code does not yet comprise the algorithms which model the physical
component behavior and performance - only the empty member function frames. As
already stated these UML generated frames have to be manually instrumented by the
model developer by filling in the sourcecode sections which model the equipment's
physical behavior - see also figure  8.39, especially the subwindow on the bottom
right with the function code for FOG_SW::ComputeFunctionalModel():

The code generator does not only enable the generation of basic C++ source code
for a component from UML design but also to generate compatible sourcecode for a
test class in order to stimulate the model in unit tests and test setup makefiles. The
following Eclipse screenshot depicts a test class for the class of the fiber-optic gyro
(FOG) with callable test functions for each of the model's algorithms listed on the
right side:

Figure 8.40: Test class and test environment in Eclipse.
  © IRS Universität Stuttgart
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 8.7.6 Integrating the Model into the Simulator

The next steps concern the integration of the compiled and unit tested FOG model
class  into  the  overall  spacecraft  simulator.  Virtually  all  simulator  infrastructures
provide a sort of registry file in which all equipment model classes, being part of the
simulator executable, are registered.

For simulators,  which fix the number of equipment instances already at modeling
time and thus with the executable code, in such a registry each model instance has
to be cited. The registry code is parsed at simulator startup to generate the class
instances in memory24.  For simulators, such as  OpenSimKit,  which instantiate the
models at runtime, only the equipment classes are registered in the registry file.

In  the  example  case  this  file  is  called  CreateSubSystem.cpp and  an  extract  is
shown in figure 8.41 below.

Thereafter  the  equipment  model  code  can  be  linked  together  with  the  simulator
infrastructure. The equipment models all are grouped by type (AOCS models, power
subsystem models etc.) in so-called packages. A separate makefile is generated for
each package in order to compile the equipment models and to create according
libraries.  The  fiber-optic  gyro  in  the  example  here  is  made  part  of  the  "Attitude
Control System" (ACS) library. Figure 8.42 in excerpt shows the makefile for this ACS
library:

24In similar registries also all types of simulated harness lines are defined.
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 8.7.7 Configuration Files for a Simulation Run

With  the  steps  of  the  previous  chapter  the  simulator  code  has  been  completely
created. However, before being able to start a simulation, the spacecraft simulator
has to be configured with a significant amount of detailed parameter values from files
- usually provided in XML format.

The information in these files is necessary in order to initialize all characterization
parameters (e.g. power consumption) of all simulated model instances correctly. It is
essential to characterize both simulator, OBSW and control console with compatible
data  records  from  system  engineering  infrastructure  data  bases  for  the  entire
spacecraft. The issue of simulator integration in such an entire infrastructure is further
treated  in  section  10.  The  simulator  configuration  with  respect  to  models  in  this
example is implemented via 4 files which are explained in more detail below:

● The ModelDefaultFile.xml

● The ModelCharacFile.xml

● The SimHarnessFile.xml

● The SchedulingTableFile.xml

The ModelDefaultFile.xml

It is the initialization file for

● a  default  value  setting  for  all  parameters  of  all  model  instances  in  the
simulated system.

● The XML structure has to be in line with the corresponding DTD.

The  file  is  imported  at  simulator  startup.  The  simulator  reports  according  error
messages when detecting inconsistent entries.
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The ModelCharacFile.xml
It is the initialization file for the current simulation run.

● It contains only those model instance parameter values which for the actual
simulation  run  differ  from  the  defaults  (e.g.  for  testing  degraded  battery
performance).

● The XML structure is compliant to the corresponding DTD.
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The file is imported after the ModelDefaultFile.xml at simulator initialization time. The
simulator reports error messages when it detects incorrect content.

The SimHarnessFile.xml

This  is  the  file  for  definition  of the harness  line  connections  between equipment
models -  respectively between equipment models and I/O-card drivers in case of
hybrid testbenches.

● It contains the definitions of all harness line connections between all models.
● The XML structure is compliant to the corresponding DTD.
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● The SimHarnessFile.xml  file  is  independent  from the  simulation  run  but  is
specific for a testbench setup. When the setup is changed by e.g. replacing a
simulated model by hardware equipment, the routing of the according harness
lines between simulated models and those connected via frontend-cards has
to be adapted in the file accordingly.
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The file is imported at simulator startup. The simulator reports error messages when
detecting incorrect line connections. It In such case it will refuse startup.

The SchedulingTableFile.xml
This  is  the  file  for  configuration  settings  of  the  simulator  scheduling  details  for
equipment models and system. It contains in XML structure the

● cycle times, and
● relative time intervals of all model computations,

as explained in section  7.3. The file is imported at simulator startup. The simulator
will refuse startup in case inconsistent content is detected.
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 8.7.8 Simulation Run

The completely configured simulator can now be started. The following figure shows
a live  demonstration  of  the  simulator  start  and  simple  interactions  with  the  FOG
model. The simulator command window can be identified in the upper left corner. All
received commands are logged there together with the command input the models
receive  and  together  with  their  submitted  output  (partly  as  hexadecimal  data
packets).

Figure 8.47: Log windows from different threads of the running simulator.
  © IRS Universität Stuttgart

More straightforward for  a  beginner  to  read is  the log window in the upper  right
corner.  It  is  the  simulator-message-handler-task  window.  Its  output  provides
information  about  the  clear  text  commands  which  have  been  received  by  the
simulator from the control console. The result values (e.g. FOG rotational rate vector)
responded by the simulator are also displayed. However, cyclic simulator telemetry is
not  included  here.  The  other  windows  contain  log  output  reporting  protocol
connection statistics between simulator and control console.
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Simulator Development Compliant to Software Standards

 9.1 Software Engineering Standards – Overview

By means  of  the  simulation  based  testbenches,  amongst  other  components,  the
spacecraft  on-board software is verified - first as pre-verification on the SVF, then
with the hardware / software compatibility tests on an STB and finally in an EFM
configuration. Since the on-board software is one of the most critical elements of a
spacecraft,  immediately  on  the  spacecraft  customer  side,  questions  concerning
software  quality  and  verification  state  of  the  simulators  and  testbenches  arise.
Therefore the compliance to an according set of software standards of the spacecraft
customer always will be an essential requirement for testbench development.

Such software standards prescribe diverse development guidelines for software in a
space project - here to be interpreted accordingly for the simulators, respectively all
software elements of testbenches. Prescribed usually are the development approach,
the development phases, the review milestones, documentation to be delivered for
each milestone such as development  plan,  requirements,  architecture and design
documentation, test plans, reports, and all their content structure. Several software
standard families exist:

ECSS Standards

Figure 9.1: Family of ECSS standards.  © ECSS
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For European space projects there exists an entire suite of standards for spacecraft
development  in  general,  the  so-called  ECSS  standards. These  standards  are
elaborated and published by the  European Cooperation for Space Standardization,
(ECSS).  This  commission  includes  members  from  the  European  Space  Agency,
(ESA), diverse national agencies and from industrial partners. Relevant for software
development and thus for simulators and testbenches are especially the standards:

● ECSS-E-ST-40 Software engineering, and
● ECSS-Q-ST-80 Software product assurance.

Please also refer to figure 9.1. The ECSS standards are a family of cross-referencing
documents which is very exhaustive and precise but also rather unhandy to read
since the reader has to follow cross-references from one document to the other. The
standards currently are under revision. The completely revised document set shall be
available during 2009.

Aeronautical Software Standards (Aerospace) - DO178B

DO178B defines the guidelines for aeronautics software. It was developed by the
Radio  Technical  Commission  for  Aeronautics,  Inc.  (RTCA)  and  was  accepted  as
certification  standard  for  aeronautics  software  by  the  US  Federal  Aeronautics
Association FAA (see Advisory Circular AC20-115B). Albeit de facto it meanwhile is a
world wide applied standard for aeronautic software and its development.

● DO178B  primarily  treats  the  software  development  itself.  Within  the
development process diverse accompanying quality and test documents are to
be worked out.  So DO178B to  a  certain  extent  is  the  counterpart  to  both
ECSS-E-ST-40 + ECSS-Q-ST-80.

● DO178B for space business always is applicable for systems which in parallel
are interfering with aeronautics, such as
◊ “quasi-airplanes”,  like  Space  Shuttles,  or  commercial  spaceships  like

“Spaceship One”, and
◊ aeronautics support systems like GPS or Galileo (especially their payload

software and their ground segment software).

Standards for general Software – ANSI/IEEE

In the space business generic software standards only are applicable for support
tools where a tool problem or failure would not induce a disturbance of the spacecraft
itself.  Such  equipment  e.g.  can  be  certain  ground  support  equipment,  handling
equipment etc. The IEEE standards for software development are:

● ANSI/IEEE-729 Glossary of Software Engineering Technology
● ANSI/IEEE-1058 Software Project Management Plan
● ANSI/IEEE-830 Software Requirements Specification
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● ANSI/IEEE-828 Software Configuration Management Plan
● ANSI/IEEE-1012 Software Verification and Validation Plan
● ANSI/IEEE-1016 Software Design Description
● ANSI/IEEE-730 Software Quality Assurance Plan
● ANSI/IEEE-1028 Software Reviews and Audits
● ANSI/IEEE-829 Software Test Documentation

Software Standards for dedicated Space Projects

For certain large-scale space projects also eventually dedicated software standards
can be defined. In most cases they are derivates or combinations of various specific
standards or combinations of diverse national standards. Examples are

● the Columbus Software Development Standard, (CSDS), and
● the Galileo Software Standard (GSWS).

The Galileo Software Standard (GSWS) for the European satellite based navigation
system e.g. comprises all the following domains of

● software engineering,
● software quality assurance, and
● software configuration management

in “a single book” which makes them much simpler to read and to understand than
the  ECSS  counterpart  although  from  the  point  of  requirements  they  impose  on
ground software, testbenches and simulators they are rather comparable. GSWS is a
closed and complete pure software standard, however it to a large extent neglects
the topics of hardware / software integration. For simulators however this is essential
w.r.t.  configuring  a  simulation  and  the  Simulator-Frontend  with  respect  to
performance, I/O-line mappings and characterization settings for each I/O-line of a
simulator in the hybrid testbench. Here the standard is accordingly to be “interpreted”
by the testbench development team, especially for how and what is to be tested.

Figure 9.2: Galileo Software Standard as a closed single book standard.  © ESNIS

The  Galileo  Software  Standard  comprises  a  common  requirements  set  for  all
software  development,  integration  and  test  phases  in  the  frame  of  the  Galileo
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navigation  system program.  Furthermore  operations  and  maintenance  topics  are
treated as well as the full scope of software product assurance topics. GSWS is a
common standard for the:

● Space Segment, (SS), which encompasses all elements on board the Galileo
navigation satellites.

● Ground  Control  Segment,  (GCS),  comprising  all  components  inside  the
ground stations for control and housekeeping of the 30 satellites.

● Ground  Mission  Segment,  (GMS),  comprising  all  components  inside  the
operator stations by which the Galileo payloads of the satellites are operated.
This includes  signal generation, security codes handling, cyclic code updates,
leap time corrections of the atomic clocks aboard etc.

● Test  User  Segment,  (TUS),  comprising  all  elements  for  test  of  Galileo
receivers and car navigation systems under realistic conditions before full in-
orbit availability of the spacecraft.

Further reading and Internet pages concerning software development standards is
provided in the according subsection of this book's references annex.

 9.2 Software Classification According to Criticality

The requirements towards software development, testing and documentation as well
as formal acceptance, which are prescribed by a software standard, usually depend
on the software criticality for the space mission. Usually on-board software for safety
critical systems is ranked with the highest criticality level, such as control software for
ECLS Systems, manned spaceship control software or navigation software used for
Airplane guiding such as Galileo navigation payload software. Software for ground
equipment, such as a Power-Frontend has lower criticality ranking and for example
less extensive testing is required.

Also for the simulators used for system design and verification the criticality level has
to be agreed with the spacecraft customer. Since on-board software tests are not
exclusively tested on pure simulation testbenches (SVF) but also on hybrid benches
(STB)  and  finally  both  on-board  software  tests  and  hardware  testing  are  also
performed on FlatSat EFM configurations with all hardware in the loop, usually the
simulators in the testbenches can be negotiated to be ranked to the lowest criticality
level. Later when performing tests on pure "Hardware in the Loop" setups, potential
bugs in formerly used simulators would show up. The table below lists the ranking
levels cited from the Galileo Software Standards - called “Development Assurance
Levels”, (DAL), in the GSWS.
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Table 9.1: “Development Assurance Levels” in GSWS.

SW-DAL Definition
Level A Software whose anomalous behavior would cause or contribute to a

failure resulting in a catastrophic event.
(Loss of mission)

Level B Software whose anomalous behavior would cause or contribute to a
failure resulting in a critical event.
(Endangering mission)

Level C Software whose anomalous behavior would cause or contribute to a
failure resulting in a major event.

Level D Software whose anomalous behavior would cause or contribute to a
failure resulting in a minor event.

Level E Software whose anomalous behavior would cause or contribute to a
failure resulting in a negligible event.

A similar classification is available in the DO178B called "Certification levels" and in
the ECSS-E40, called “Class A” to “Class E” (where in the newer ECSS-E-ST-40 the
Class E has been removed).

 9.3 Software Standard Application Example

The  most  important  characteristics  of  a  simulator  software  and  testbench
development in accordance with a software standard shall now be explained taking
the relatively compact Galileo software standard as example. For the developer of
such simulation based testbenches always the problem exists,  that such software
standards typically are written by the agencies having in mind on-board software and
accordingly  relevant  topics.  Hardware  /  software  integration  problems,  cabling,
grounding and electrics topics which might affect also simulator software, card drivers
for Simulator-Frontends etc. are mostly not in focus and have to be managed by the
testbench developer himself. Wherever the entire system of simulator + testbench
hardware  etc.  is  affected,  in  this  chapter  the  terminology  applies  the  keyword
“system” (e.g. System acceptance review), wherever purely the simulator software is
concerned,  the  keyword  “software”  is  used  (e.g.  software  unit  test  plan).  The
development phases for simulator development and according intermediate reviews
are depicted in the figure below. They are similar in GSWS and ECSS-E-ST-40:

SRR = System Requirements Review IRR = Integration Readiness Review
PDR = Preliminary Design Review SW-QR = System Qualification Review
DDR = Detailed Design Review SW-AR = System Acceptance Review
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Figure 9.3: Software development process and review milestones.  © ESA

For  the  stepwise  approach,  the  required  review  milestones,  the  required
documentation as well as document structures and content, the product assurance
etc. each software standard has its own “Engineering Requirements”. Some software
standards replace the IRR by a "Test Readiness Review", (TRR).

Software Engineering Requirements of a Software Standard:
The engineering process requirements are specified in the software standard. Each
requirement has a unique identifier number. For each requirement it is marked for
which criticality level  (in GSWS the DALs) it  is  mandatory, for which reviews it  is
mandatory and which documents it  affects.  At start  of  project  the developer must
provide a compliance matrix stating in how far one is fully, partly or non compliant to
these engineering requirements (cf.  figure  9.5). All  deviations must be justified. At
project end one must provide a compatibility matrix stating how one was compliant
and  which  documents,  review minutes,  product  assurance reports  etc.  prove the
compliance. An example for such an engineering requirement is given below.

## [GSWS-RV-0430] - [ A:m B:m C:m D:m E:m ]
Reviews shall be planned and described in the Review Plan (RVP, see A.41 ) that is
delivered before every review. § [ all ] - ( RVP )

Technical Requirements towards Simulator or Testbench:
For the simulator software, and also for hardware in hybrid testbenches, technical
requirements are to be specified. The system architecture and detailed design and

Figure 9.4: Software and process requirements driving development process.
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code have to be developed so that the later "product" simulator / testbench fulfills
these technical requirements which has to be verified during the integration and test
phase (please also refer to figure 9.8 which will be explained in more detail later). An
example for a technical requirement is given below, including the reference to higher
level spacecraft requirements where it was derived from.

# REQ 999: Parameter Override by Command
The simulator  operator  shall  be able to override any numerically  computed state
variables during simulation by one-shot overrides or by continuous override. This
applies  for  state  variables  in  models,  input  parameters  from  OBC  model  to
equipment models and output data from equipment models to OBC model.
GAL Originated from SATSIMREQ-42, AVREQ331, DEVSVF-1900
#END#

Engineering  process  requirements  and  technical  requirements  together  form  the
development baseline for the to be developed software elements of simulator and
testbenches. From the engineering requirements and the technical requirements the
set of all the documents results, which are to be written either once for the overall
testbench suite in the spacecraft project (e.g. development plan) or specifically per
testbench (e.g. integration test reports).

Technical simulator / testbench system documentation:

The purpose and basic content of the required technical documents becomes evident
already from their titles:

● Testbench User Requirements Document
● Core EGSE User Requirements Document
● Power and TC / TM-Frontend Equipment User Requirements Documents
● Special Checkout Equipment User Requirements Documents
● EGSE Interface Control Document (ICD)
● Simulator Software Unit Test Plan
● Unit Tests Reports for all Simulator Elements (e.g. equipment models)
● Testbench System Integration Test Plan
● Testbench System Integration Test Report
● Verification Testing Spec – Technical Specification (Test plan for verification of

all software requirements)
● Verification Testing Spec – Requirements Baseline (Test plan for verification of

all testbench user requirements)
● Integration and Test Plan for STB / EFM
● Integration and Test Report for STB / EFM

System Configuration Files for all releases of all testbenches
● System Operations Manuals for all testbenches
● Documentation and Certificate of Conformance (CoC) concerning compliance

to the general CE standards
● Acceptance Data Package

230



Software Standard Application Example

Development process documents:

At least  for  newcomers the content  of  some of  the required engineering process
documents does not become so easily apparent. Therefore here the most important
software engineering process documents are cited with their main content elements
bulleted:

● The Software Development Plan of the Testbench Infrastructures defines:
◊ The development responsibilities, roles and identified key persons
◊ Applied technical infrastructures (from used simulator kernels down to

software configuration handling tools and document handling tools)
◊ The development schedule (often aligned to the spacecraft OBSW

development) and the simulator / testbench reviews and their scope
◊ The risk management w.r.t. available resources and w.r.t. application of

new development approaches or invented technologies
◊ The technical safety aspects (mostly not relevant for simulator based

testbenches, rather for installations like engine test stands etc.)
◊ The interfaces to associated project partners (if relevant), e.g. in case of

trans-company development approaches
◊ The management of subcontractors
◊ The management of software problem logging and correction tracing
◊ The cycles of progress reports to the spacecraft customer (in most cases

the same as for the spacecraft development process itself)
◊ The applied software engineering approach and engineering environment

(e.g. MDA / UML)
◊ Compliance to the software standard for design, coding, testing as well as

eventual deviations with justifications (must be formally agreed by
customer in SRR)

◊ Definition of software documentation
◊ Information on number and variant of installations
◊ Maintenance strategy (relevant only for operations support simulators)

● The Procured SW Justification File
◊ defines all software components which are reused from predecessor

projects and will not be requalified (e.g. simulator kernel software,
Simulator-Frontend card driver software).

◊ It defines the technical status of such reused elements,
◊ reports their technical qualification performed within the predecessor

projects,
◊ justifies the selection of these reused software components,
◊ includes a qualification plan for reused but adapted software components,
◊ includes a procurement plan for procured software elements, and
◊ eventually comprises a maintenance plan for reused hardware / software

components from predecessor projects.

● The Software Verification and Validation Plan
◊ defines the simulator development project's organization structure,
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◊ the foreseen software verification approach with the
► verification of administrative procedures,
► the responsibilities of personnel and resources in the project (including

tool resources),
► the schedule of verification activities,
► a description of the software verification activities themselves
► and the general verification / reverificatioon approach.

◊ Besides this it describes the simulator / testbench validation approach
► concerning simulator / testbench operational suitability including test

approach, test concept from lower to upper level and regression testing
approach for software upgrades.

► It describes the approach for qualification of the simulator equipment
models, and

► the sequence of validation activities.

● The Software Product Assurance Plan comprises all facts concerning an
independent quality assurance. This includes:
◊ Firstly a description of the software development approach (V-model,

waterfall approach, spiral model or other),
◊ together with the corresponding product assurance, (PA), tasks for each

development phase (requirements definition phase design phase,
implementation phase, test phase, acceptance).

◊ Furthermore for each review milestone according PA tasks are defined,
such as documents to be reviewed.

◊ Applicable practices for "measurement" of software quality in the form of
metrics to be applied are defined (e.g. average number of open SW
problem reports, average cycle time between identified SW problem and
problem fix),

◊ and also metrics for quality ranking of software documentation.
◊ Additionally described are the countermeasures in case of violation of

requirements or prescribed development processes,
◊ the formalities for handling of additional requirements arising later in the

project, and
◊ formalities for requirements to be waived during development.
◊ The document furthermore confirms the criticality ranking of the software

(GSWS DAL, ECSS Class etc.)
◊ and describes methods for monitoring of software element procurement.
◊ Finally the PA plan comprises statements w.r.t. warranty (in most cases not

applicable for simulators and testbenches) and for PA tasks during
maintenance.

● Software Review Plan:
◊ For each of the review milestones being defined in the software

development plan, a review plan has to be prepared and has to be
distributed to the review members 4-6 weeks prior to the milestone itself.

◊ In the first place it provides an overview on the as designed / built status of
the simulators / testbenches.

◊ Further it defines which documents are to be reviewed for each milestone
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and are subject to acceptance (e.g. design document, test plans / reports).
◊ The review plan defines the agenda of the meeting, the chairman, the

reviewers, other participants (e.g. PA), the location and furthermore, 
◊ duedates for comments (e.g. on to be reviewed documents) or for review

item discrepancies (RIDs) and the duedate for RID answers back to the
customer.

◊ Furthermore the review success criteria, as well as,
◊ the status of open / closed action items from the previous milestone are

included.

● Compliance-Matrices against Requirements of the Software Standards:
◊ By these matrices it is demonstrated that the requirements towards the

software engineering process imposed by the software standard are
properly fulfilled.

◊ For a content example please refer to figure 9.5.

● A Software Configuration File:
◊ It is generated for each released simulator software revision, also for

intermediate versions and release candidates.
◊ It contains the version information for each software element (kernel,

equipment models etc.) of the actual release, together with:
► a changelog listing all deltas to the previous version,
► a list of functional limitations of the current release, and
► a list of all open SW problem reports, non-conformances and those

closed by the delivered release.
◊ Furthermore usually an installation guide is included for the users which

have to upgrade their SVFs or STB / EFM in the project.

● Software / System Verification Report:
◊ The SVR (please also refer to figure 9.8 ) finally sums up in large overview

tables which software and user requirements are fulfilled by
► equipment in hardware (e.g. procured stimuli or frontend-equipment)

and how this equipment complies to the requirements, or, 
► which required simulator software functions are verified on unit level by

which tests,
► or are verified on integration level by which tests, 
► which software requirements are verified on system level by which

tests, and
► which user requirements are verified on system level by which tests.
So by the SVR it is demonstrated that all the user requirements towards
the simulator / testbenches are properly fulfilled.

● Software Maintenance Plan:
◊ It covers all aspects of further software maintenance after final delivery. For

simulators / testbenches this only is of relevance if they are used further
after spacecraft launch - e.g. for simulators in spacecraft ground segments.
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Figure 9.5: 
Compliance matrix
against software
engineering process
requirements.
  
© Astrium

The engineering process requirements of the applied software standard furthermore
define, for which of the review milestones which of these many cited documents are
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to be provided as intermediate revision or as final baseline. Such a documentation
overview is shown in table 9.2.

Table 9.2: Allocation of  to be generated software documents to review milestones.
(Adapted from GSWS)

For design office type tool infrastructures (SDO, CDF etc.) and for the commercial
tools,  which  are  used  during  spacecraft  design  phase  like  Matlab  /  Simulink  /
Stateflow  (cf.  table  3.2 -  Steps  1  and  2)  normally  no  simulator  tool  software
development  is  performed  which  has  to  follow  customer  software  development
standards. Therefore here also no requirements documents have to be generated
and no software tool verification is to be performed.

When starting a simulator /  testbench verification infrastructure development for a
spacecraft  project  the  first  step  is  to  identify  user  requirements  concerning  the
simulator / testbenches and to formalize them in a user requirements document -
sometimes  also  called  "Software  System  Specification"  or  "User  Requirements
Document". The user requirements in most cases are structured according to:

● General requirements
● Requirements  imposed  to  specific  testbench  types  (e.g.  to  SVF  or  hybrid

benches)
● Requirements imposed to the simulator equipment models

The next step is to identify the simulator / testbench elements which will be reused
from previous projects respectively from company software pools. These are card
drivers,  simulator  kernel,  standard  models  for  the  diverse  simulated  equipment
interconnections (data bus models, power line model) and also standard models e.g.
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for  space  environment.  These  are  to  be  cited  accordingly  in  the  a.m.  Procured
Software Justification File.

The user requirements then have to be further broken down into three classes:

● Requirements to externally procured software / hardware elements
● Requirements to pure hardware equipment for the hybrid benches
● Software requirements for the pure software parts of the testbench(es)

The  first  requirements  type
concerns  e.g.  equipment  like
Power-Frontend(s),  TM/TC-
Frontend,  Core  EGSE  Equip-
ment, SCOEs and stimuli equip-
ment.  For  all  these  procured
items  dedicated  requirement
documents  are  to  be  written  to
assure  they  all  fit  properly
together  later  when  integrated
into  the  overall  testbench.  For
such  externally  procured  equip-
ment, the supplier is responsible
to prove full compliance to all the
imposed  requirements  and  he
has  to  provide  a  verification
matrix  how  the  requirement
compliances  have  been  inspec-
ted, tested or verified otherwise.

For all the pure hardware equip-
ment  which  is  procured  directly
by  the  spacecraft  manufacturer
(such  as  the  test  harness  of  a
hybrid  bench,  test  rigs  etc.)  the
technical requirements are to be
laid  down  in  a  dedicated  test
equipment  specification,  which
also  is  a  requirements  docu-
ment).

A large  scope  of  the  testbench
functions  is  however  implemen-
ted in software, the key element
thereof  being  the  spacecraft
simulator  infrastructure  and  the
equipment models. Therefore from the user requirements, corresponding software
requirements  are  derived.  Specifically  for  these  again  the  allocation  of  general
requirements  to  the  simulator  infrastructure  and  specific  requirements  to  the
equipment models of the spacecraft shall be considered. Please refer to figure 9.7.

Figure 9.6: Allocation of user requirements 
to hardware / software requirements.
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From  the  user  requirements
towards  the  software  infra-
structure,  generic  software
requirements arise,  tackling
topics such as data interfaces,
log  file  formats,  performance
requirements and compatibility
to  certain  control  console
interfaces. These are collected
in  the  simulator  software
requirements  document.
Further  user  requirements
exist  concerning  the
spacecraft  equipment  models
(e.g.  concerning  physical
effects to be considered) and
from these for each equipment
model  type  so-called  "model
specifications"  are  derived.
These  model  specifications
can be considered as annexes
to  the  simulator  software
requirements  document  and
together  they  represent  the
overall  testbench  software
requirements document. 

To  handle  all  the  model  specifications  as  separate  documents  has  proven  good
practice because:

● Each  document  then  easily  can  be  reviewed  by  the  corresponding  real
equipment's expert in the project - the so-called cognizant - and by the system
engineering team.

● Secondly  when  managed  as  separate  documents  they  can  be  updated
individually as soon as real hardware of one equipment type changes.

● Thirdly they can individually be reused in the next project if the next spacecraft
is equipped with the same hardware equipment.

The documentation typically used for definition of a model specification are the real
equipment's interface control document (ICD) and the design document (DD) and
eventually some technical notes (TNs) and the user manual (UMAN). Eventually in
spacecraft development phase B dedicated control algorithms (for thermal, AOCS or
power control for the equipment) are developed by means of design tools (cf. step 2
in table 3.2). In such cases the pre-verified algorithms will directly be taken over into
the model specifications as so-called algorithm requirements. In case where tools like
Simulink are applied, directly C-code can be generated from the designed / verified
algorithms and this code can be taken over 1:1 into an according sourcecode file
which is cited in the model specification.

Figure 9.7: User, software and 
algorithm requirements.
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The simulator and equipment model software then is designed and coded and then is
tested - first on unit level25. Thereafter follow the integration tests, e.g. of equipment
models  embedded  into  the  simulator  infrastructure,  their  configuration  and
interconnection testing. Software requirements which could neither be verified in unit
nor in integration tests require specific system tests for their verification - e.g. test of
proper interaction between simulator and control console / Core EGSE.

For pure software based testbenches like SVFs and operations simulators, then it is
analyzed in how far all user requirements are fulfilled (see figure  9.8). In case any
such user requirements exist which are not yet proven on unit, integration or already
performed  system  test  level,  dedicated  further  system  level  tests  are  to  be
performed. For hybrid testbenches it is analyzed, in how far the user requirements
are covered via the software components and the pure hardware elements (verified
test  harness)  and the procured elements  like  Power-Frontend etc.  For  these the
verification matrices of the suppliers are consulted.

For  all  tests,  from  unit  to  system  level,  always  test  plans  and  procedures  are
prepared which have to be accepted by the customer during according test readiness
review milestones and then the tests are performed and test reports are generated
with the results which again are subject to acceptance in a qualification / acceptance
review. The overall aggregation of

● which user requirement is broken down into which software requirement,
● and test equipment requirement,
● and procured equipment requirement,

and is verified via which

● unit tests, 
● integration tests,
● system tests
● respectively supplier tests,

together with the according verification methods and applied procedures is included
in large tables in the system verification report. For this aggregation process again
please refer to figure 9.8.

25For simulator development in most cases a "unit" can be considered as equal to en entire equipment model.
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Figure 9.8: Testbench requirements and their verification.

The  product  assurance  departments  of  contractor  and  spacecraft  customer
accompany  the  development  and  verify  the  proper  generation  of  documentation,
implementation and version control  of  the software elements and performance of
tests - specially all tests with flight hardware in the loop. Product assurance (PA) is an
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overall process shadowing all  steps of development. For PA there exist dedicated
metrics to measure the quality of a software development. Not all of these metrics
are applicable for low criticality level software like most of the simulators. The PA
metrics divide into product metrics and software process metrics.

● A  product  metric e.g.  is  the nesting depth of  loop constructs  or  IF /  Then
constructs in software code (which is a typical metric applicable for on-board
software, in most cases not for simulators).

● A process metric e.g. tracks the average open number of “Software Problem
Reports” (SPRs) or the average turnaround time from problem being reported
by a simulation user, cause identification and fix.

Metrics mostly are grouped according to engineering goals, see figure below:

Table 9.3: Metrics for software quality assurance.  © ESNIS

Goal Properties Related Properties Associated metrics

Functionality Completeness ● Requirements Allocation
● Tests and Valid. Coverage Completeness.

Correctness ● SPRs/NCRs Trend Analysis
● Testing/Validation Progress

Reliability Reliability Evidence ● Structural Coverage
Maintainability Analyzability ● Cyclomatic Number

Modularity ● Nesting Levels
● Modularity Size Profile
● Number of Exits
● Number of Entries

Adaptability ● Average SPR/NCR Turn Around Time
Documentation
Quality 

Requirements Quality ● Requirements Stability

Documentation
Development and
Maintenance

● Code Comment Frequency

Operation-related
Documentation
quality

● RIDs Status

Suitability for Safety Safety Evidence ● Safety Activities Adequacy
System Engineering
Effectiveness

System Engineering
Process evidence

● Code Size Stability
● Milestone Tracking
● Action Status
● Procured Software Modification Rate

 9.4 Critical Path in Spacecraft Development

The Critical Path

In a classic spacecraft project where still  an engineering model, (EM), is built and
which is not following a simulation based approach, usually the OBSW represents
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the  main  element  on  the  critical  path in  the  schedule.  The  OBSW development
cannot  be  started  before  spacecraft  design  (including  equipment  design)  is
consolidated. OBSW testing cannot be started before OBC prototype availability and
the software has already to be available for engineering model integration testing.

When  applying  the  model  based  development  approach  which  replaces  the
spacecraft  engineering model by simulations, the simulator becomes the schedule
critical element. This is because the SVF has to be available right in time for first
OBSW tests, and this is even earlier than in the former EM based approach, since in
such a project approach the SVF is intended to allow OBSW testing already even
before OBC prototype availability. The second schedule critical element is the in-time
availability of the first hybrid testbench (STB) with installed simulator and verified test
harness to connect the OBC prototype as soon as being available. The time slots
between available stable spacecraft equipment definitions for development of SVF
and STB and their required availability are extremely short.

Figure 9.9: Testbench configurations in the spacecraft development flow.

Mitigation Strategies

To  mitigate the risk, and to solve the problems resulting from potential late design
consolidation  of  dedicated  spacecraft  components  and  resulting  late  freeze  of
dependent testbench components, a stepwise development approach has proven to
be  an  adequate  means.  The  approach  parallelizes  SVF  development,  OBSW
development,  STB  development  and  Spacecraft  Assembly,  Integration  and  Tests
(AIT).  The  stepwise  testbench  development  usually  is  aligned  with  the  OBSW
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versions developed and verified in the spacecraft project. This OBSW e.g. for satellite
projects is developed in 3 to 4 stages with enhancing functionality as could be e.g.:

● Core OBSW with operating system, data  handling functionality  and TC/TM
functions

● OBSW with added AOCS functionality
● OBSW with further added functionality for satellite platform control
● OBSW with further added functionality for satellite payload control

The  following  figure  explains  such  an  approach.  The  timely  staggered  and
overlapping availability of the testbenches allows testing a new OBSW on the newest
SVF,  in  parallel  to  test  the  previous  OBSW  on  STB  and  furthermore  assembly,
integration and test (AIT) activities on the EFM. Furthermore operations procedures
for the spacecraft  for control in orbit  can be tested both with the OBSW versions
installed on SVF and STB.

Figure 9.10: Development approach with multiple stages for each bench.  © Astrium

By this approach the testbenches can be built up step by step. Always one version is
under development while the previous is already in use. The schedule is optimized at
its best and the testbenches get back away from the project's critical path. However
the  project's  software  standards  imply  preparation  of  a  large  amount  of
documentation and furthermore each development step has to be closed by a review
milestone. So the staggered approach with its various versions for each testbench
would be blocked already by the multitude of necessary reviews or if omitting them,

SVF V0

Time

SVF V1 SVF V2 SVF V3

STB V1

OpsSim V1

STB V2

OpsSim V2

STB V3

OpsSim V3

EFM

Sam
e 

Sim
ulator 

M
odel Set

Sam
e 

Sim
ulator 

M
odel Set

Sam
e 

Sim
ulator 

M
odel Set

OBC model
only

+ AOCS 
Equipment 
Models

+ Platform
Equipment 
Models

+ Payload
Models

SVF

STB

EFM

OpsSim Phase E

242



Critical Path in Spacecraft Development

the development would no longer be compliant to the development standards and
would  be  refused  by  the  spacecraft  customer.  But  there  exists  a  rather
straightforward way out of this dilemma. In most cases at the kickoff meeting for the
testbench development with the spacecraft customer it can be agreed that  review
milestones are  allowed to be combined.  An example is  depicted in  the following
figure which shows the initial  system requirements review (SRR) and preliminary
design  review  (PDR)  meetings  being  held  conventionally  with  the  required
documents being delivered. Detailed design review (DDR) and test readiness review
(TRR) of SVF V1 already here combined. Of course for such a combined milestone
also  the  documentation  set  has  to  comprise  the  content  for  both.  But  since  the
subsequent  milestones  for  a  large  number  of  documents  only  require  enhanced
revisions, the document upgrades then only are to be done once. The next example
step then is the acceptance review (AR) for SVF V1 to be combined with the TRR of
V2 and so forth up to the final version. Thus the number of reviews is significantly
reduced and so is the paperwork update effort and document signature looping effort.

Figure 9.11: Documentation approach for combined review milestones.  © Astrium

 9.5 Testbench Configuration Control vs. OBSW and
TM / TC

The previous chapters already clarified that in-time availability of the testbenches and
their  correct  functionality  is  of  essential  importance.  Correct  functionality  however
does not only mean to implement the simulators and testbenches with good software
quality and free of bugs. The additional challenge is to always keep the as built status
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of the spacecraft and the simulators and their configuration data sets in line. And
moreover everything must also be aligned with the on-board software releases and
the TC / TM data sets for command of the simulated spacecraft.

Figure 9.12: Baseline tracking matrix.  Adapted from Astrium example
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Therefore  a  permanent  monitoring  of  the  spacecraft  equipment  design  updates,
which occur in a real project, is necessary. Furthermore a version tracking of all key
spacecraft  and  equipment  design  documents  and  their  issues  versus  Simulink
algorithm design releases,  TC/TM-database releases,  OBSW releases and SVF /
testbench  releases  is  of  essential  importance.  This  can  easily  be  achieved  in  a
simple spreadsheet matrix as it is depicted above (see figure 9.12). The matrix must
be actualized on a daily basis in the project. Every OBSW developer and simulator
developer can trace which versions of documents the other side used. If an OBSW
and a TC/TM-database and a simulator revision all share the same documents and
same document issue state, they are compliant and the OBSW can be run on the
according simulator release and be commanded from control console by TCs / TMs
loaded from the compliant database.

The characterization data of real spacecraft equipment at start of project are only
available as data from equipment supplier documentation (specification data or as
designed data). Later when the real equipment hardware is delivered, their 'as built'
characterization  data  are  available  for  the  spacecraft  manufacturer  from  real
equipment test campaigns at supplier side. Thus the simulators and testbenches in a
project must be flexibly configurable w.r.t. these characterization data and the data
themselves must be configuration controlled in databases. More details on such a
central data infrastructure covering the entire project is treated in chapter 10.2.

 9.6 Testbench Development Responsibilities

For the technical engineering of central spacecraft components of functionalities in a
project  organization  there  are  key  responsible  system  engineers  assigned,
sometimes  also  called  "architects".  They  report  to  the  project  manager  and  are
guided by the senior system engineer. There exist e.g. architects for the on-board
software,  for  spacecraft  electrics,  for  the  payload,  for  the  spacecraft  operations
concept  etc.  The development  of  the  simulators  and  testbenches  as  design  and
verification infrastructure are a similar  essential  task in a spacecraft  project  when
using this model based design approach. Thus in such projects on the same level as
the other architects a so-called  Functional Verification Infrastructure Architect (FVI-
Architect)  has  to  be  assigned.  His  responsibilities  include  the  shadowing  and
management of

● the  internal  development  of  the  simulators  and  the  spacecraft  equipment
models,

● the externally procured infrastructure components such as Power-Frontends,
control consoles such as Core EGSEs,

● definition  and  procurement  of  further  hardware  test  equipment  like  test
harness,

● version control of spacecraft characterization data for the simulators,
● configuration control of simulator and testbench hardware and software,
● overall integration and setup of the simulators and testbenches, and
● as  item of  key  importance,  the  coordination  of  all  testbench  development
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activities from design office (SDO) down to EFM / FlatSat to be aligned with
the: 
◊ verification plan and schedule of the OBSW, and with, 
◊ integration activities of spacecraft hardware in AIT.
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Figure 9.13: FVI architect in spacecraft project organigram.  © Astrium

 9.7 Lessons Learned from Projects

The development of a system simulator and its application e.g. for OBSW verification
forces the spacecraft project team already in early phases to consistently define

● the system functions and their distribution towards spacecraft equipment,
● the  operational  behavior  of  the  spacecraft  equipment,  its  models  and  the

parameterization,
● the data buses, electric, thermal and mechanic interfaces between spacecraft

components,
● telecommands and telemetry on spacecraft level as well as for command and

control of each equipment, and
● the basic system verification concepts,  test approaches for both spacecraft

and the testbench infrastructures.

The application of this model based development approach significantly changes the
engineering  processes  compared  to  older  classic  engineering  model  based
spacecraft  projects.  This  requires  higher  precision  in  handling  and  versioning  of
engineering  data  and  information,  and  it  requires  a  higher  team integration  and
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optimized  information  exchanges  over  all  engineering  disciplines.  The  system
simulation  allows  the  dynamic  modeling  of  the  spacecraft  and  its  operational
behavior  for  spacecraft  software  and  design  concept  verification.  The  testbench
development approach is driven by the model and test philosophy chosen for the
spacecraft, e.g. what is to be verified by simulations and what is to be verified in
hardware tests.  This  spacecraft  verification concept  drives the required testbench
types, their number and their features. An adequate concept of the simulator and
testbench infrastructure  allows the  extensive pre-verification of OBSW on an SVF
which avoids blocking of the limited OBC hardware models. It allows furthermore the
pre-verification of AIT test procedures and flight procedures on SVFs also without
blocking real flight hardware.

The  validation  of  proper  system  modeling  in  the  simulators  and  testbenches
themselves is achieved by system and interface tests in the spacecraft integration
campaign in EFM configurations. Finally the simulator infrastructure can be used in
the ground control centers for operator training and as an flight software maintenance
facility.

All  in  all  the approach allows an early  system modeling.  However  the simulation
based approach also generates new development infrastructure components on the
project's  critical  path  if  not  managed  properly.  Especially  the  SVFs  have  to  be
available early enough for first OBSW tests. The SVFs must be accurate enough
w.r.t. the equipment modeling and coverage of all relevant effects and features. And
the STB infrastructures must be available in time for tests of OBSW and OBC and
simulated spacecraft in the loop.
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Simulation Tools in a System Engineering Infrastructure

System simulators, especially those integrated in SVFs and hybrid testbenches, in
the real engineering process of a spacecraft in fact are no standalone tools. They are
integrated into an entire  system engineering infrastructure from which they receive
their characterization data. Verified system characteristic parameters are stored back
into the engineering environment. Such abstract simulation result characteristics e.g.
can cover:

● Pointing precision or station keeping precision of a spacecraft
● Time for detumbling after launcher separation
● Payload dynamic characteristics
● Mode and attitude dependent power budgets

In this simplest case only characterization parameter values are exchanged between
system engineering environment and simulator. For simulator tools which allow to
dynamically  load  the  spacecraft  topology  definition  at  simulator  initialization,  like
OpenSimKit  [23], the following types of exchanged information between engineering
infrastructure and simulation come on top:

● Number and type of model instances in the system to be simulated
● Number and type of model interconnection line instances in the system
● Network list for model / line interconnections

This however requires to be able to provide this type of system topology input to the
simulator  from  the  system  engineering  environment,  and  not  only  pure
characterization parameter values. This on the one hand imposes the requirement for
a suitable tool to store and handle all this type of information in a real spacecraft
project, e.g. a system engineering database. On the other hand it firstly requires the
ability to correctly model this functional topology of the real spacecraft completely,
formally and correctly in a standardized notation.

Furthermore it would be highly efficient to directly receive all spacecraft equipment
based information in the same formal notation already from the equipment suppliers
to  be able  to  merge it  with  pure  top level  system information in  the engineering
environment or database. This implies:

● Modeling  the  number  and  type  of  electrical  and  data  interfaces  of  a
component.

● Storage of characterization data like power consumption etc.  which can be
operational mode dependent, and

● which implies necessity for digital definition of equipment's operational modes,
commands, as well as all events inducing any mode transitions.

This leads to the necessity for complete modeling of the entire system assembly tree,
the system topology (which component connected to which other by which line), the
modeling  of  component's  modes  and  all  characterization  data  in  a  standardized
notation.  The  modeling  of  the  overall  spacecraft  is  done  at  spacecraft  prime
manufacturer  level.  The modeling on equipment  side should be done on supplier
level.  An  adequate  standardized  notation  for  this  problem  is  available  with  the
"System Modeling Language" (SysML).
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 10.1 The System Modeling Language (SysML)

Inspired by the concepts,  semantics and notation of  UML, since 2001,  a markup
language  called  "System Modeling  Language",  (SysML),  for  modeling  real  world
systems has  been  developed  by  an  industrial  consortium -  the  so-called  SysML
Partners. Many other industrial key players have joined the initiative in the mean time
and have contributed to a consolidated language standard. The notation is rather
similar to the "Unified Modeling Language", (UML), used for software engineering.
SysML also provides a graphical notation which even shares some diagram types
with  UML.  Since  entire  real  systems,  their  topology  and  functionality  can  be
described via SysML formally, this opens the gate to a formal spacecraft model inside
the mentioned engineering infrastructure. From this, both

● the characterization information about the spacecraft can be extracted e.g. for
initialization of simulators, and

● even a first UML description of spacecraft and its equipment can be derived
for modeling and implementation of equipment models for the simulator.

Figure 10.1: SysML to UML relation.

SysML 1.1 comprises the following diagram types:

● Requirements diagrams
● The structure and topology definition diagram types:

◊ Block definition diagrams
◊ Internal block diagrams
◊ Parametric diagrams
◊ Package diagrams

● The behavior and performance definition diagram types:
◊ Activity diagrams
◊ Sequence diagrams
◊ State machine diagrams
◊ Use case diagrams

UML 2 SysML

UML 2 
reuse
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Due to the phletora  of  notational  details  and variants  of  elements which may be
included in the diverse diagram types, the reader interested in applying SysML is
pointed to the according literature [94] and [96]. On the following pages the diverse
diagram types of SysML - according to SysML standard issue 1.1 - are explained in a
simplified  overview  without  theoretic  background  on  language  architecture,
metamodel, language formalism etc.

Requirement diagrams: This type of diagrams allows the formal representation of
requirements  towards  a  system  (spacecraft  or  subunit)  and  the  definition  of
dependencies between them - e.g. the dependency between certain spacecraft user
requirements and derived equipment or on-board software requirements.

<<generalRequirement>>
Satellite characteristics

-mass<"120kg"
-size="60cm,70cm,80cm"

<<generalRequirements>>
Satellite attitude control

-accuracy="2.5arcsec"

<<functionalRequirement>>
Provide rotation

<<performanceRequirement>>
Rotation

SmallSat Specification

FLP_Sat

-mass: float
-volume:float
-size:array(1,3)

+mod_rot_rate()

Reaction wheel

MaxRotrate:float

SmallSat Design

<<functionalRequirement>>
Provide electrical energy

<<performanceRequirement>>
Rotational rate

Derived Requirements

<<trace>>
<<trace>> <<rationale>>  

L = r x (mv)

<<satisfy>>

<<satisfy>>

rd:

Figure 10.2: SysML requirement diagram.

Block  definition  diagrams:  These  diagrams  are  derived  from  the  UML  class
diagrams and their  notation elements correspond to their  counterpart  elements in
UML, such as:

● Generalizations
● Associations
● Aggregations
● Compositions
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Similar  as  in  UML,  SysML allows  variables,  values  and methods and even OCL
constraints to be allocated to represented system elements (please also refer to the
UML diagrams 8.4 and 8.5).

Diagram Description

Version: 0.7
Description: Partial assembly tree
Reference:

<<system>>
SmallSat

<<ElementDefinition>>
ACS

<<ElementDefinition>>
Pwr-Subsystem

<<ElementUsage>>
Payload 

<<ElementUsage>>
Solar Panels<<ElementUsage>>

PCDU
<<ElementUsage>>

Battery

<<deploymentMechnism>> 
deploy-panels

bdd: SmallSat System Hierarchy

<<ElementUsage>>
THR

<<ElementUsage>>
MTQ

<<ElementUsage>>
STR

Figure 10.3: SysML block definition diagram.

Internal  block  definition  diagrams: The  internal  block  definition  diagrams  are
derived from the UML composite structure diagrams. They show static breakdowns of
the system. However in one type they optionally enhanced by  user roles to define
user /  system information exchanges. In another variant  they show the interfaces
between  equipment  for  exchange  of  influences,  information  or  other
interdependencies. For each type an example is provided hereafter.

ibd

<<system>>
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<<phys>> mass
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ControlComponents()
ACS_Mode_Control()
ControlPowerBudget()

Operator

<<external>>
Space Environment

<<phys>> solar luminosity
<<phys>> magnetic field

Telecommand

Telemetry

Figure 10.4: SysML internal block diagram with the role of operator.
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Parametric diagrams: These diagrams explain the dependencies between system
components,  their  parameters  and  eventual  computation  or  transformation
functionalities. For these parameters not only the names (length, power consumption,
speed etc.) are specifiable, but also the parameter units (meters, watts, and so on).
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Figure 10.6: SysML parametric diagram.
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Figure 10.5: Simplified internal block diagram of a satellite topology.
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Package  diagrams: This  diagram type  shows  the  dependencies  between  major
system components  such  as  e.g.  the  structuring  due  to  application  criteria.  The
diagram notation and symbolic meanings are equal to the according UML diagram
variants.

Activity diagrams: These diagrams show the process flow in a system as well as
system behavior  and control  structures.  These diagrams in  SysML are enhanced
compared  to  their  UML counterparts.  For  the  diverse  details  please  refer  to  the
SysML standard [96].
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Figure 10.8: SysML activity diagram (including "Swim Lanes").
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Figure 10.7: SysML package diagram.
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Sequence diagrams: These diagrams depict  the dynamic  interactions of  system
components  in  real  operation  sequences.  The  notation  is  identical  to  the
corresponding diagram type in UML. As in the UML variants, here also sequences
can include time information, condition terms and sequences can be specified on
system element class level or on occurrence level (called instance level in UML).

seqd: Satellite Simulation Run

:ScriptingTool :ControlConsole :SpacecraftSimulator

Start Test
Script Inititate

Telecommands Send Telecommands

Send Telemetry

Provide Status

Reaction to telemetry

Send Telecommands

Send Telemetry

Provide Status

Figure 10.9: SysML sequence diagram.

State machine diagrams: These diagrams show the real spacecraft's system and
equipment states and possible transitions. Furthermore the notation in SysML allows
to  specify  the  transition  triggers  (e.g.  commands,  events,  failures),  the  transition
times and submitted output (e.g. telemetry) to other units. The notation again is the
same as for state machine diagrams in UML.
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Detumble
Mode

Safe
Mode

Pointing
Modes

Power   
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FDIR            

                FDIR

ACS   
on   
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condition

TCPower
down

stm: ACS Operation

Figure 10.10: SysML state machine diagram.
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Use case diagrams also exist in SysML. Their notation is comparable to the ones in
UML w.r.t. notation. The types of diagrams which can be used to generate software
code from or UML diagrams from26 typically are:

● Block diagrams
● Sequence diagrams
● State machine diagrams

Code generation from SysML is performed by similar code generators and methods
as applied for UML tools, please refer to chapter 8.4. The term "code" however here
covers a wider scope since it is not limited to programming sourcecode but also can
comprise data models (e.g. UML as already mentioned), data base structures, data
export / import scripts and XML or other format data files themselves.

Further reading and Internet pages concerning  system engineering standards and
languages are listed in the according subsection of this book's references annex. In
particular here the reader is pointed to the SysML definition standard itself [96].

 10.2 System Engineering Infrastructures

These  modeled  spacecraft  system  data,  equipment  descriptions  and
characterizations,  harness  interconnection  specifications  and  telecommand  /
telemetry definitions in latest space projects are managed via sophisticated system
engineering infrastructures. This includes version control of all information - not only
of  spacecraft  and equipment  paper  documentation.  Vice  versa  the  information  is
managed  digitally  and  the  paper  documents  are  generated  as  reports  from  the
engineering infrastructure databases. The latter contain the entire digital modeling of
the spacecraft design.

The idea of such a digital data modeling has been well known and common practice
for  years  for  handling  mechanical  CAD model  data.  For  the  digital  modeling  of
telecommand  /  telemetry  data  compliant  to  CCSDS  and  ESA Packet  Utilization
Standard (PUS) also since years digital standard models have been available. What
has however recently just been achieved is build up a digital representation of the
spacecraft  which both covers topology, characterization and functional  modeling -
see the achievements in the ESA "Virtual Spacecraft Design" studies since 2006 (e.g.
cf  [100]).  In  industry  since the ESA projects  "Bepi  Colombo"  (Mercury encounter
mission),  "Earthcare"  and  "Sentinel  2"  e.g.  Astrium  GmbH -  Satellites  applies  a
system engineering infrastructure somewhat similar to the architecture depicted in
figure 10.11. Also this infrastructure allows digital modeling of all spacecraft aspects
(electric, mechanic, operational). It permits to export from there characterization data
sets and configuration information for mass and power budget tools, for the harness
design tool, for electrical test equipment in AIT, simulator testbenches and for Core
EGSE ([109]).
26Assuming availability of an appropriate code generator.
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System Engineering Infrastructure

Since for specific engineering and modeling tasks, already dedicated tools and data
containers exist (such as CAD tools for mechanical design), a  system engineering
infrastructure is  not  a  monolithic  single  database  application.  Instead  it  is  an
integration of specialist system models, enhanced by containers for information not
held  in  classic  tools  -  with  the key paradigm to  avoid  any doubling of  reference
information. The implementation of such a system engineering infrastructure typically
comprises  multiple  tools  in  a  layered  structure.  On  the  top  level  of  such  an
infrastructure  typically  a  so-called  "System  Engineering  Database",  (SEDB),  is
placed - see also figure 10.11.
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Figure 10.11: System engineering infrastructure and internal data containers.

Inside such an SEDB first of all the abstract spacecraft representation is stored. More
precisely the spacecraft design is modeled in a SysML based representation and the
model elements are parameterized. In detail the following information is included:

● Product  trees  of  spacecraft  and  virtual  spacecraft  installations  (i.e.  test-
benches). In multi satellite missions this includes trees for all instances of the
spacecraft series - since they might slightly differ.

● Operational modes of spacecraft and all equipment.
● Physical characteristics of spacecraft, which might be mode dependent, e.g.

moments of inertia are dependent on whether solar arrays are deployed or
not.
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● Physical characteristics of each equipment - also equipment mode dependent.
● System configurations (undeployed / deployed, begin / end of life etc.)
● Functional definitions of line interconnection between equipment on board.
● Equipment telecommand and telemetry data and protocol packet definitions.
● Operational  PUS  service  handler  configurations  for  on-board  software

configuration.

Besides this spacecraft model, the telecommand and telemetry definition data of the
spacecraft  for  ground  /  space  communication  (respectively  between  simulated
spacecraft and control console) should be included in the SEDB.

On the intermediate level  there exist  databases /  tools which appear to be more
common and which serve to further detail  the top level information in the system
engineering database. These are:

● The mechanical tool for "Computer Aided Design" (CAD)
● The electrical CAD tool for harness design
● The simulator database for handling all models and configuration data of the

simulators in the testbenches
● The database for handling SCOE telecommand / telemetry definitions
● The management tool for handling test procedures

In the lowest layer of the engineering infrastructure the "data consumers", the client
tools are placed such as:

● The OBSW development environment
● The functional phase B algorithm design simulators (Simulink, PSpice etc.)
● The verification testbenches from SVF to EFM
● Diverse measurement and automated test equipment applied in AIT

This listing for the lowest level does not claim to be exhaustive since via diverse data
exporters also diverse applied simple budget engineering tools (mass, power,  link
budgets) on spreadsheet technology etc. can be supplied with data from the system
engineering infrastructure.

Vertical Refinement and Horizontal Consistence

The  logic  behind  such  a  digital  modeling  is  to  always  keep  the  most  detailed
information in the lowest layer tools / databases. As soon as some type of information
is required by multiple "clients", it must be positioned in the next higher layer. For
example  the  information  on  the  component  breakdown  of  the  spacecraft  (the
assembly tree) is of relevance both for the simulator (the equipment model instances
have to represent the assembly tree item occurrences) and for the electrical harness
design. Thus it is placed inside the SEDB above electrical CAD tool and simulator
database. Similarly the information which equipment is connected to which other by
which type of power or command / control interface, also is of relevance for multiple
clients  namely  for  the  harness  database,  OBSW development  and  the  simulator
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database.  Electrical  harness  design  is  a  descriptive  example  for  the  complex
interaction of the databases and data containers:

● On the top level in the SEDB the assembly tree of the spacecraft is defined.
And for each component / equipment the electrical interfaces are defined, i.e.
their number and their types (e.g. for a payload 1x  MIL-STD-1553B bus, 2x
analog / thermistor, 1x RS422 serial, 1x power 50V).

● In addition on the top level  of  the system engineering infrastructure in  the
SEDB the equipment interconnections are defined, i.e. which line (ID) from
which component port of the example payload is routed to which port of the
OBC in the spacecraft  respectively to which port  of  the power control  and
distribution unit (PCDU).

● This information is propagated from the SEDB to both the electrical CAD tool,
to the OBSW CASE tool and to the simulator database.

● From the simulator database the simulator configuration files for equipment
models and the functional interface models are generated. Since the simulator
implements the line interconnections only functionally,  this level  of  detail  is
sufficient for simulator configuration. Details on electrical connectors and pin
allocations are not necessary here.

● The same top level information about equipment interconnections is imported
into the electrical CAD tool for harness design. Here the harness modeling
however must be detailed further.  For each cited  MIL-STD-1553B bus line,
analog  thermistor  or  power  line  it  must  be  specified  in  detail  on  which
connector of the example payload, respectively the OBC and the PCDU they
are  placed  and  on  which  pins  signal,  complement,  ground,  shield  and
redundant lines are placed.

● The information later is required to correctly manufacture flight harness and
test  harness for  the testbenches from these design data.  Furthermore this
information is required later in AIT for configuration of automated electrical test
tools  to  identify  on  which  connector  /  which  pins  a  certain  signal  can  be
acquired during electrical test.

Furthermore it is of importance that the workflow over the spacecraft development
process and the phases B – E27 is a constant refinement of the design information for
all domains. This topic will be taken up again later in chapter [12]. The infrastructure
has to support this accordingly and has to assure consistency of the engineering data
to each other on every layer depicted in figure 10.11. For example the telecommands
sent from the Core EGSE to the spacecraft in either of the testbench states must be
compliant to the on-board software version, the on-board data bus protocols between
OBC and spacecraft  equipment and the electrical design of the harness between
OBC and platform / payload equipment.

27In phase A of a spacecraft project usually such system engineering infrastructures are not yet applied.
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Data Model of a System Engineering Database

The  essential  data  flow  for  the  domain  of  system  simulation  in  such  a  system
engineering infrastructure already is marked in yellow color in figure 10.11. It extends
from the  spacecraft  model  in  the  system engineering  database via  the  simulator
database down to the configured simulator in the spacecraft testbench. As stated the
important difference to a pure database is, that the system engineering infrastructure
elements as e.g. SEDB or simulator database not only have to contain simple data
like variables and values. Instead they have to model the data interdependencies,
both  w.r.t.  topological  aspects  as  well  as  concerning  functional  aspects.  This  no
longer can be achieved by simple table-based database concepts.

Figure 10.12: Extract from a system engineering infrastructure data model.
State machine based equipment model.  © Astrium - according to ECSS-E-ST-10-23 draft.
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Instead SysML based modeling architectures are necessary, as e.g. developed under
the  ESA projects  "Virtual  Spacecraft  Design"  [100].  The  following  figures  show
extracts of such model implementations to make these abstract statements easier to
grasp.  The two figures below show example extracts  from a system engineering
infrastructure  data  model  following  the  ECSS-E-ST-10-23  draft  standard.  Only
spacecraft  modeling  aspects  are  included  here.  Topics  like  data  versioning,  user
access rights etc. are descoped to not overcomplicate the examples. Figure  10.12
shows  the  SysML metamodel  for  an  equipment  definition  and  a  mode transition
definition with all trigger types and mode dependent equipment parameters. The data
model  corresponds to a metamodel  on UML level  -  please refer  to the M2 layer
depicted in figure 8.18. The next figure shows the modeling of equipment definitions
and  their  instantiation  (usages)  on  the  right  side  as  well  as  the  interlinked
representations for interface definitions and instances on the left side.

Figure 10.13: Extract from a system engineering infrastructure data model.     
Assembly tree element definition / usage and       

                            interface definition / usage.     © Astrium - according to ECSS-E-ST-10-23 draft.

With such a data model, hierarchical assembly trees and equipment interconnections
can be defined, please refer to the hierarchical description as shown in the block
definition diagram example of figure 10.3 as well as the interface definitions between
equipment instances as specified in an example in figure  10.5. This detailed level
information about the spacecraft on instance level then corresponds to the M1 layer
shown in figure 8.18.
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 10.3 Standards for Data Exchange Between Engineering
Tools

To exchange spacecraft architectural and functional information between the tool of
an  engineering  infrastructure  or  to  exchange  such  engineering  data  with
subcontractors  applying  their  own  tools,  the  use  of  according  file  or  modeling
standards is mandatory. In case simulator data are exchanged between tools, or in
case even entire simulator equipment models are exchanged between subcontractor
supplying the real equipment and the spacecraft prime integrating the testbenches,
this  situation  gets  even  more  constrained  through  suitability  of  applied  model
exchange standards.

At least for pure data exchange between tools this set of problems is not new and a
topic for all project oriented developments from ship building industry via chemical
plant building towards aerospace engineering. The first classical challenges of this
kind arose concerning data interchange between computer aided design (CAD) tools
of different manufacturers as well as between CAD tools and digitally programmed
machine tools in the 1980's. A similar problem occurs during data exchange between
CAD tools and structure mechanics solvers such as finite element (FEM) tools.

For a network of system engineering tools as shown in figure  10.11 the electronic
data exchange is of essential importance. Concerning this topic a short overview on
existing and actual data exchange standards shall be given in brief.

Data Exchange via XMI

The simplest approach can be followed if 2 tools inside the engineering environment
follow  the  same  basic  design  approach.  An  example  for  this  case  e.g.  are  the
spacecraft  SysML model  within  the  system engineering  database  and  the  model
representation  in  the  simulator  database.  Both  have  to  represent  the  entire
spacecraft, the SEDB for all disciplines, the simulator database for the limited scope
of  functional  simulation,  however  enhanced  with  numeric  information  like  solver
interfaces etc.  Both can base their  data model on SysML /  UML. From the  Meta
Object Facility (MOF, cf. figure 8.18) of the SEDB's spacecraft model the functional
and  topological  representation  of  equipment  models,  interconnection  models  and
parameterization  data  can  directly  be  exported  and  can  be  reimported  into  the
simulator database's MOF. Prerequisite are the export / import filters for an according
data exchange file format. The latter in SysML and UML is the "XML Interchange
Format" (XMI), a specific XML variant - see [99]. From the SysML representation of
the spacecraft topology and functions in the simulator database then two types of
output can be generated:

● The  XML configuration  data  files  for  the  simulator.  They  directly  can  be
extracted from the SysML model by an appropriate XML export filter.

● The top level UML classes for the simulator UML design tool can be generated
from  the  SysML  representation  in  the  simulator  database.  Therefore  the
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information about  equipment  classes,  harness line classes,  state machines
and the entire instantiation can be exported to the simulator UML design tool.

Since both SysML as UML are based on a standardized MOF representation and
XMI notation, such an export to the simulator design tool is a practicable approach. In
the cited cases no information has to be manually reentered into any new tool which
reduces information loss, errors and data inconsistencies. Furthermore it simplifies
data and model configuration control to a large extent.

Data Exchange via STEP

More  complex  is  the  situation  in  the  generic  case  of  data  /  model  interchange
between engineering tools since not all  tools support the still  rather new SysML /
UML  /  XMI  technologies  already.  However  since  as  stated  the  data  exchange
problem is not new, already for a lot of data interchange scenarios older standards
exist. Since 1980 the International Organization for Standardization (ISO) is working
on a set  of  data  exchange standards,  the  "STandards for  Exchange of  Product
Model Data“ - STEP (ISO 10303). Here first it has to be clarified that STEP is not a
standardization for system modeling like SysML and UML, but represents a family of
"format  notations"  plus  application  guidelines  etc.  for  data  exchange between
engineering tools. Of course a certain level of "modeling" also is required for sake of
data interchange, but no dynamic functional implementation as known with e.g. the
simulators.

The  STEP standard family  is  a  quite  complex assembly  of  application principles,
domain dependent descriptions, application guidelines etc. It shall be simplified here
a bit for tutorial reasons. First of all there exist so-called "parts" which cover all types
of system modeling definitions, e.g. (non exhaustive list) :

● CAD network models,
● CAD surface models,
● FEM models,
● kinematics models,
● thermal network models,
● electric network models,
● electronic board layout models,
● numeric control data models for plant control,
● numeric control models for digitally programmed machine tools,
● visualization models,
● and finally the important part for system engineering.

The  other  component  of  the  STEP  standards  are  the  so-called  "Application
Protocols". STEP Application Protocols determine what  STEP-conformant tools can
do.  The  protocol  relevant  for  the  domain  of  system  engineering  is  AP233.  The
diagram below shows in a simplified manner all topics formalized by AP233. These
days still not all standard chapters for all topics are available, in particular not yet for
the lower layers in figure 10.14. In AP233 are / will be specified:
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Standards for Data Exchange Between Engineering Tools

● Data definitions
● Physical description of components
● Definitions concerning system and component properties
● Description of system architecture and breakdown into components
● Requirements
● Assignment of requirements to components
● Allocations of properties to components
● Function trees and flows - functional breakdowns
● State machine descriptions
● Causal chains - especially for system failure description
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Figure 10.14: Elements of STEP/ISO 10303 AP233 for exchange of system
engineering data.

With  these  notations  the  most  important  information  on  system  requirements,
topologies and simplified behavioral information can be modeled inside a tool. For
the  file  based  data  exchange  itself  STEP  provides  an  own  notation  language
standard: EXPRESS (ISO 10303 Part 11). For the file based data exchange between
two STEP compliant tools EXPRESS corresponds to the file format notation as XMI
does between two SysML tools. To explain how a static system breakdown structure
(see figure  10.14) can be noted in EXPRESS, a cut out of the system from figure
1.12 shall serve as example:

Figure 10.15: Cut out of the rocket propulsion system.
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The corresponding EXPRESS notation then looks as follows:

SCHEMA rocket_propulsion_system;

ENTITY component;
ABSTRACT SUPERTYPE;
comp_mass: REAL;
comp_heat_capacity: REAL;

END_ENTITY;

ENTITY HPBottle;
SUBTYPE OF (component);
He_pressure: REAL;
He_mass: REAL;
He_temp: REAL;
He_massflow: REAL;

END_ENTITY;

ENTITY Pipe;
SUBTYPE OF (component);
pressure_in: REAL;
temp_in: REAL;
pressure_out: REAL;
temp_out: REAL;
massflow: REAL;
inConnectedTo: OPTIONAL component;
outConnectedTo: OPTIONAL component;

END_ENTITY;

ENTITY Junction;
SUBTYPE OF (component);
......

END_ENTITY;

.........

ENTITY System;
propulsion_system: SET[0,?] of component;
system_mass: REAL;

END_ENTITY;

END_SCHEMA;

The exchanged files themselves can either include this EXPRESS information

● in specially formatted ASCII text file formats - EXPRESS Clear Text Encoding,
ISO 10303 Part 21,

● or  as  XML representations  compliant  to  the  schemas  and  data  definitions
according to ÉXPRESS-X, ISO 10303 Part 28.
The  relatively  easy  conversion  of  such  type  of  EXPRESS  file  information
already  is  obvious  when comparing  the  above  notation  to  the  XML file  of
figure 8.26.

● Also  for  export  of  EXPRESS models  via  an  online  access  to  a  database
(implemented in C++ or Java language) there exists a "Standard Data Access
Interface" (SDAI) STEP standard, ISO 10303 Part 22.
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Data Exchange STEP/XMI

UML / SysML engineering data in XMI format can be converted from / to the STEP
Part 28 XML format. This however is limited to file based exchange. Direct "tool-to-
tool" exchange between STEP and UML / SysML tools are not yet possible since
STEP does not  specify  a standardized tool  internal  information representation as
does the  Meta Object  Facility for  UML and SysML tools.  Work on an EXPRESS
metamodel for UML / SysML mappings to / from EXPRESS however are ongoing at
the Object Management Group (OMG).

The STEP Graphical Notation EXPRESS-G

Finally  STEP  also  comprises  a  graphical  representation  format  for  system
engineering  data  -  EXPRESS-G.  The  example  system  cut  out  from  above
figure 10.15 in EXPRESS-G would look somewhat like:
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Figure 10.16: Example system representation in Express-G.

The example shows that structure specifications noted in EXPRESS-G quickly tend
to become bulky since each characteristic of the system (here e.g. the variables) has
to be noted as a separate graphical EXPRESS-G entity. Therefore the spreading of
this notation is only very limited.
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Service Oriented Simulator Kernel Architectures

In  chapter  6.8 on  simulator  numerics  the  complexity  of  a  simulator  kernel  was
elaborated. A simulator kernel which is able to import the spacecraft system model
topology to be simulated at simulator initialization time and which is able to register
the  components  at  the  simulator  kernel  and  at  the  solver  is  a  quite  advanced
infrastructure and by far these days is not yet state of the art.

These dynamic loading functionalities shall  be discussed in detail  using first code
samples of  the issue 4.0  of  the academic  simulator  toolkit  OpenSimKit,  which  is
currently28 still  under  conception.  Before  diving  into  technical  details  a  short
introduction  into  the  technology  of  "Service  Oriented  (Software)  Architectures“,
(SOA), shall be given.

Service Oriented Architectures

Service oriented architectures are a technical approach from information technology
to interconnect  software systems company-wide.  Service oriented architectures in
most cases are applied to interconnect business software components. Services with
higher  levels  of  abstraction  such  as  stock  overview,  stocktaking  functions,  stock
value identification, necessary insurance cover,  profitability  calculation etc. can be
created  by  interconnecting  services  of  abstraction  levels.  This  principle  is  called
“orchestration”  in  SOA.  According  lower  level  functions  e.g.  can  be  automatic
barcode scanning of parcels at company goods receipt department. Thus computing
components are encapsulated into services and coordinated in such a way that their
single functions can be integrated into higher services. Or higher abstracted modules
can use intermediate results provided by lower services.

In  order  to  interconnect  components  in  an  appropriate  way,  SOA requires  an
adequate  design  of  the  participating  components  -  respectively  an  appropriate
selection of such components, should commercial ones be chosen. Service oriented
systems  usually  are  distributed  over  diverse  computing  nodes.  Each  service  is
registered in a corresponding “directory” and -  if  applicable -  not every service is
permanently connected to the overall system. SOA is only a “paradigm” for system
architecture.  There  exists  no  standard  for  online  component  interconnections
comparable to a definition language such as UML for software design.

Service Oriented Simulator Kernel Design

The service oriented approach becomes interesting for system simulation if the basic
concept and idea are transposed to the internal software architecture of a system
simulator. This implies that the simulator as a whole is treated as a SOA in which
each  module  performs  specific  functions  so  that  the  overall  functionality  of  a
dynamical  system simulation is  aggregated.  For  this  the overall  simulator  system
architecture shall be analyzed, as it is depicted in figure 11.1 below. There the basic
concept for simulator numerics from figures 6.10 and 6.11 can be recognized.

28Spring 2009.
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Figure 11.1: Service -oriented simulator architecture - OpenSimKit V4.

The program architecture mainly consists of a class hierarchy with

● XMLSectionReaders for the modular import of the simulator configuration
XML input file,

● the simulator kernel, which is responsible for 
◊ creation of model instances as well as port instances,
◊ scheduling of all component computations during the simulation run and for

saving of results into log files,
◊ simulation command /  control  and telemetry  interface handling with  the

control console,
● the model classes, which are loaded and configured according to the entries

found in the simulator configuration XML input file, as well as,
● the model and port instances created from the classes by the kernel,
● and finally the numerical  solver which comprises all  necessary functions to

integrate the initial value problem.

Between the kernel and the simulator models a gateway class named manipulator
is located. The purpose of this class is to control the read / write / set / get access
rights  of  the  model  variables  during  initialization  and  simulation  computation.  All
models  are  “registered”  at  the  manipulator. Regarding  numerics  a  similar
registration  service  between the  models  and the  solver  is  provided  by  the  class
solverBridge.

273



Service Oriented Simulator Kernel Architectures

 11.1 SOA Implementation of Simulator Initialization

The first service to be analyzed is the one providing the XML simulator configuration
files  reader  functionality  for  the  simulator.  The  XML  subsystem  is  located  in
OpenSimKit in a separate Java package and contains multiple readers which are
responsible for reading dedicated sections of the input files.  The XML subsystem
provides the services “instantiation of models”29 and “initialization of models”. This is
why the models are instantiated here. This instantiation is realized by the  abstract
factory pattern [101]:

The abstract factory pattern provides an interface which allows to generate a family
of objects, whose concrete classes need not to be known before instance generation.
This implies for the simulator that the classes of the models need not yet to be known
at compile time. The model classes are dynamically loaded at runtime by using the
abstract  factory  and  instantiated  in  interaction  with  the  input  file.  The  only
requirement for this kind of object creation is that the model has to implement the
service interface org.opensimkit.Model.

Instantiation of a Model

The name of the component class is given in the XML file:
<model class=”org.opensimkit.models.rocketpropulsion.PipeT1” name="model3">

The element “model“ represents a model inside the simulator. The attribute “class“
specifies the name of the class which shall be used for this model, i.e. it identifies the
class  of  which  this  model  shall  be  an  instance.  In  this  example  it  is  the  class
“PipeT1“  which  is  located  in  the  package
org.opensimkit.models.rocketpropulsion.  The  attribute  “name“  specifies
the name of the model inside the simulator. In this case it is “model3“. By using this
name the user can access the model via the control console commands.

Below  is  an  extract  from  the  class  ModelXMLSectionReader of  the  package
org.opensimkit.xml to illustrate the above mentioned code sequence:

    try {

        /** Retrieve the Class reference for the name of the class.

         *  The name of the class is located in the variable "type". */

        Class<?> cls = Class.forName(modelType);

        /** Retrieve the constructor with one argument of String. This

         *  must be done, because Model has no default constructor.*/

          Constructor con = cls.getConstructor(new Class[]{String.class});

29Instantiation = generation of the software instances.
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        /** Execute this constructor to instantiate a new object from the

         *  originally given name. */

        model = (BaseModel) con.newInstance(name);

        comHandler.addItem(model);

        manipulator.update();

     } catch (Exception ex) {

         System.out.println("Invalid type " + modelType

                 + " specified for model " + name);

     }

First it is attempted to load the class:
Class<?> cls = Class.forName(modelType);

Next tried is to retrieve a reference to a constructor of this class with one argument of
type String:
Constructor con = cls.getConstructor(new Class[]{String.class});

Then this  constructor  is  invoked.  Its  return  value  is  a  reference to  the  created /
instantiated model.  The argument  of  the constructor  is  the name the model shall
have:
model = (BaseModel) con.newInstance(name);

This name is read from the XML file:
<model class=”org.opensimkit.models.rocketpropulsion.PipeT1” name="model3">

The reference to the new created model is passed to the component handler:
comHandler.addItem(model);

These  are  the  steps  to  instantiate  a  new model.  If  errors  occur  according  error
messages are submitted. Finally the model variables are initialized. This approach is
an implementation of the “abstract factory” design pattern.

Initialisation of Model Variables

Example of a model declaration in the XML input file:
<model class=”org.opensimkit.models.rocketpropulsion.PipeT1” name="model3">

    <variable name="description"/>

    <variable name="length" unit="m">1.5</variable>

    <variable name="specificMass" unit="kg/m">.6</variable>

    <variable name="innerDiameter" unit="m">.0085</variable>

    <variable name="specificHeatCapacity" unit="J/(kg*K)">500.0</variable>
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    <variable name="surfaceRoughness" unit="m">1.E-6</variable>

    <variable name="temperatures" unit="K" fieldSize="10"

              allFieldEntriesIdentical="true">300.0</variable>

</model>

The element “model“ can contain an arbitrary number of sub elements (i.e. 0 to n) of
the type “variable“. Via these it is possible to initialize model variables. Besides
scalar values it is also possible to initialize one-dimensional arrays. All primitive Java
types as well as strings can be initialized using the input file.

Below an example  is  given,  showing  the initialization  of  a  scalar  value  from the
initialization  of  a  model  of  the  class
“org.opensimkit.models.rocketpropulsion.PipeT1“:
<variable name="length" unit="m">1.5</variable>

A scalar variable of the name “length“ (the name is case-sensitive because Java
reflection is being used) is going to be initialized here. The value of the variable is set
to  1.5.  The declaration  of  the  variable  located  in  the  file  “PipeT1.java“  of  the
package “org.opensimkit.models.rocketpropulsion“ looks like:
@Manipulatable private double length; 

The variable “length“ is of type “double“ and has the “private“ access modifier
as  well  as  the  annotation  “@Manipulatable“.  This  declares  the  variable  to  be
cleared for both read as well as write access by the user trough set / get functions
from the control console. The write access of the manipulator is facilitated by the
method  setFromString() and  getFromString() respectively.  The
setFromString() method signature looks as follows:
public void setFromString(final T instance, final String fieldName,

            final String value)

Here “instance“ is a reference of a model instance and “fieldName“ is a string
containing the variable  name. The parameter  “value“ contains  the new variable
value as a string. If the variable to be altered is not of data type String then it is
attempted to convert the String into the corresponding primitive type. If this is not
possible then an exception is thrown. In case the operation was successful, then the
variable now has the new value.

Example:
manipulator.setFromString(model3, "length", "10");

The variable with the name “length“ of the model “model3“ is assigned the value
10.0. Here the string “10“ is converted into the double value 10.0.

It is possible to initialize non-scalar model variables like vectors or one-dimensional
arrays with the ModelXMLSectionReader in a similar way. The models themselves
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do not provide any get() or set() methods to retrieve / set variable values. They
are  completely  passive  during  initialization.  The  complete  initialization  service  is
provided by the ModelXMLSectionReader.

This design provides the advantage of being simple to use for the equipment model
developer.  He  is  only  responsible  of  declaring  settable  and  readable  variables,
vectors and arrays. Thus the access methods for these variables need neither to be
coded by him nor has the model class to be derived from a base class which offers
such a functionality.  The simulator  design by this  means facilitates for  the model
developer to design his models as coherently as possible. He only is responsible for
the proper functional modeling of all relevant physics of the real equipment hardware
in the simulator equipment model and he needs a minimum knowledge on kernel
implementation details only. An additional advantage is, that in case the OpenSimKit
kernel design is modified with respect to input read functions and command / control
functions  (set() /  get()),  the model  classes themselves are  not  affected.  This
makes the design robust to successive simulator kernel improvements and upgrades.

Similar  XMLSectionReaders are provided for the processing of input file sections
for

● the equipment ports,
● the connections between model instances by using functional interfaces,
● the simulation numerics setting parameters (solver accuracy, time step size

etc.),
● the specification of variables to be cyclically logged to file,
● and interface packets to be submitted to the control console.

These  XMLSectionReaders provide  in  total  provide  all  services  needed  for  a
complete initialization of the simulation. By using the abstract factory pattern it is not
required to statically link any model class library to the simulator.

 11.2 SOA Implementation of the Kernel Numerics

The  SOA concept  on  microscopic  level  is  even  more  interesting  for  numerical
computations than for the simulator initialization. The equipment models and system
models (like space environment model) here serve as as “computation services” for
the  kernel.  All  other  functions  are  coded  inside  the  kernel  in  a  strictly  model
independent manner.

Models Registering at the Solver

For solution of the initial value problem as depicted in figures 6.10 and 6.11, ideally
every model needs to inform the solver, which derivatives it can provide. Additionally
the  solver  needs  to  be  informed  about  which  state  variables  each  model  needs
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handed back to perform its internal calculations. This corresponds to the registration
of a calculation service in a SOA, please also refer to figure 11.1. The registration of
a model at the solver is handled via an according method of the solver. Here again
an interface class is involved, which is called  solverBridge and every model is
connected to the solver via this  solverBridge.  During this registration the state
variables which each model can provide are queried by the solver, the same applies
for the derivatives each model can provide and the state variables which every model
needs back from the solver for performing its internal  computations. Every model
features  special  markers  (annotations  like  @ProvidedVariable ,
@RequiredStateVariable and  @Derivative)  which  are  read  by  the
solverBridge and are provided to the solver on request:

    public void addModel(Model model) {

        addProvideVariables(solverBridge.getProvidedVariables(model));

        addDerivatives(solverBridge.getDerivatives(model));

        addRequiredStateVariables(solverBridge.getStateVariables(model));

    }

Specially marked state variables as well as derivatives are declared to the solver.
The  solverBridge subsystem  detects  the  state  and  derivatives by  their
annotations. These variables thus then can be queried by the solver.

public DemoModel() implements Model {

    @ProvidedStateVariable private double stateVariable1;

    @RequiredStateVariable private double stateVariable2;

    

    @Derivative private double derivative1;

    @Derivative private double derivative2;

}

After all components are registered the solver can verify whether for all registered
state  variables a  "service  provider"  is  available,  i.e.  an  equipment  model,  which
computes  the  state  variable  derivative  for  each  time-step  respectively  for  each
integration test step.

Computation of Derivatives as Service

During time step integration the models act as service providers for the solver. They
compute the state variables and derivatives for  each new time or  test  step.  The
technical  approach  used  therefore  is  as  follows:  Besides  access  to  class  global
variables the Java reflection  API30 provides access to methods, too. This is applied
30In software engineering "reflection" means that a program knows its own structure and is able to modify itself if

needed.  The  "reflection  API"  is  an  interface  of  the  Java  programming  language  which  provides  such
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also by the  solverBridge for enabling the kernel to invoke methods of a model.
The “callable” annotation can only be used with methods. A method marked by this
means can be invoked by the solverBridge by using callMethod().

@Callable public void computeDiscreteStatechanges() {

   …

}

@Callable public void computeProvidedVars() {

   …

}

@Callable public void computeDerivatives() {

   …

}

Here it needs to be emphasized again that the access restrictions are only imposed
by  the  solverBridge.  The  Java  reflection  API  does  not  provide  any  such
restrictions and does not need any annotation to read / modify variables or invoke
methods.

The signature of the method callMethod() looks as follows:
public Object callMethod(final T instance, final String methodName,

            final Object... parameters)

The parameter  “instance“ is already known from the methods  getAsString()
and SetFromString() of the manipulator. The parameter “methodName” denotes
the name of the method which shall be invoked (similar to the “fieldName“ in the
examples above). The parameter  “parameters“ is a so-called variable arguments
parameter and represents any number (0 to n) of parameters. The return value of
“callMethod“ is that of the invoked method.

Example:
solverBridge.callMethod(model3, "computeDerivatives"); 

Here the method called “computeDerivatives“ of the model “model3“ is invoked.
As  the  method  “computeDerivatives“  does  not  take  any  parameter,  it  is  not
required to pass parameters to the callMethod(). This is automatically supported
by using the variable arguments parameter in  callMethod(). The return value of
the invoked method is  not  processed as in  this  case the return value is  “void“
anyway, see above definition of  computeDerivatives().
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 11.3 Orchestration of the Computation and Function
Distribution

The coordination of the proper calculation sequence execution in accordance with
figure 6.12 is performed by the simulator kernel by calling all the relevant equipment
models accordingly via the solverBridge. In SOA terminology this coordination of
service  provider  and  service  user  interaction  is  called  "orchestration"  of  the
computations.

Thereby this architecture with registered services and the assembly supported by the
abstract factory allows the distribution of the computations of different models over
multiple threads inside the simulator,  if  necessary over  multiple  CPUs inside one
computer  or  even  over  multiple  CPUs  inside  multiple  computers.  The  time-step
computations inside the models can be distributed over multiple computation nodes
similar  to  Grid-computing,  however  with  equation  sets  which  can  be  completely
different from model class to model class.

Thus with a SOA based simulator kernel architecture, which is still subject to current
research, it is possible 

● to solve the problem of the dynamical system initialization (including topology
information) which was cited in chapter 6.8, 

● as well as to relieve the model developer from programming any initialization
functions,

● and finally, to provide a highly efficient numerical architecture which offers the
numerical  performance required by STB and EFM test benches – and this
being based on Java as a very user friendly programming language.

For hybrid test benches however, real-time capable Java implementations would be
needed  to  apply  this  technique  like  e.g.  Java  Real-Time  System,  PERC  or  the
simulation  needs  to  be  equipped  with  real-time  capable  third  party  libraries  like
Javalution (cf. [69] to [71]).
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Consistent Modeling Technology for all Development Phases

The phases A to E of a spacecraft system development have already been treated in
an overview in chapter 3 please also refer to table 3.2. However, especially the early
phases of development shall now be covered in a bit more detail.

Figure 12.1: Analysis of early spacecraft design phases.

Commercial  spacecraft  like  launchers  or  telecommunication  satellites  usually  are
series productions and a phase 0/A is not  performed for each individual satellite.
They usually are based on a common platform - for satellites the so-called "satellite
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bus"  -  and  only  vary  by  number  of  satellite  payload  modules,  e.g.  commercial
transponders,  their  types  and  used  frequency  ranges.  Phases  0  and  A only  are
passed through when designing an entirely new satellite series platform. In case of
Earth observation and science spacecraft usually these are all prototypes or a small
series of 3 to 4 instances. So for each such individually tailored mission a new 0/A
phase  is  undertaken.  Typically  the  initiatives  for  Earth  observation  and  science
missions go back to Earth observation proposals which are submitted by scientists to
the agency later  contracting the spacecraft  and which are to  be accepted by an
agency's board. A first phase 0 mission design step in these phases is in fact carried
out  between agency and science institutes to  define mission objectives,  baseline
requirements and potential variations.

For a more detailed phase A, an analysis of the mission with payload conception,
orbit analysis, operational concept definition and derived spacecraft basic platform
design is then carried out by spacecraft manufacturers. As it was already mentioned
in chapter 3 such phase A studies usually are subcontracted by the agency to at least
2 spacecraft primes. In the following figure the changing development focus and the
changeover from a highly iterative to a more and more linear engineering process
over the phases is sketched out.

Phase 0/A Phase B Phase C/D

..........
Decreasing 
iterations.

Focus:
●Operational 
concept of 
spacecraft

●Functional 
performance of 
spacecraft

Workflow almost linear.

Focus:
●Simulation-based spacecraft
 implementation, verification and
 tests

Highly iterative.

Focus:
●Mission concepts
●Spacecraft 
concepts

Figure 12.2: Design focus and iteration cycles in spacecraft development phases.

In chapter 3 the modeling and simulation infrastructures where described which are
used from conception via design to verification phase and AIT. The ideal situation
would  be  to  have  available  one  consistent  functional  modeling  approach  and
infrastructure  for  the  spacecraft  which  could  be  applied  from Design  Office  level
modeling via  functional  simulators  (Simulink /  SciLab),  for  AOCS or  other  control
design, down to SVFs and hybrid testbenches. However conceptualization of such an
approach requires a closer look at the requirements towards the simulation setups,
towards what is currently supported by available setups - and finally what has to be
modified for such a consistent cross-phase infrastructure.
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 12.1 Requirements to a Cross-Phase Design
Infrastructure

Considering this background towards a single, cross-phase simulation infrastructure
a technical approach shall be evaluated concerning its applicability and extendability
for such an infrastructure. As an initial step for each phase, the engineering steps
and the required modeling level of detail shall be summed up. The analysis again
applies the example of a satellite design.

Budget Engineering (Phase A):

The scope of system modeling at the end of this phase A must provide:

● Defined mission concept including orbits, respectively trajectories
● Specified spacecraft basic structure layout
● Defined on-board equipment
● Identified operational budgets (mass budget,  power budget, ground / space

data link budgets, required on-board mass memory budget etc.)

Figure 12.3: Budget Engineering - Phase A.

It can be commented here that this budget engineering work already can be handled
appropriately by spreadsheet tools as they are used in Design Offices. At this stage
dynamic simulation of spacecraft internal processes is not yet required. Only orbit /
trajectory analysis is performed - based on commercial tools like Satellite Toolkit.
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Operations Engineering and Control Design (Phase B):

The scope of system modeling at the end of phase B must provide:

● Defined mission concept including orbits respectively trajectories
● Specified spacecraft basic structure layout
● Defined on-board equipment
● Identified operational budgets
● Spacecraft operational modes
● Operational modes of all on-board equipment
● Functional  algorithms  modeling  each  equipment's  behavior  (modeling  on

engineering unit level only)
● Functional interfaces between spacecraft equipment (not yet identifying real

interface types nor protocols)

Figure 12.4: Functional modeling for operations engineering and control design.

Here it can be summed up, that the full scope is not fully covered by the functional
analysis tools such as Simulink - which in most cases also only are applied to AOCS
control design. And even for AOCS control algorithm design in many cases separate
setups are implemented - e.g. one for safe mode, one for fine pointing mode. Since
the FVB benches contain these derived algorithms - just implemented on the later
reference target simulator kernel platform, they in fact show up similar deficiencies.

None  of  these  setups  covers  the  already  to  be  analyzed  operational  aspects  of
spacecraft and mission, i.e. operational modes both on spacecraft level as well as on
equipment  level.  A  need  for  reflecting  this  functionality  -  represented  as  user
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controllable  state machines - can clearly be identified here. Furthermore a proper
takeover and further evolution of the spacecraft design data set from Design Office
level to this first simulation setup is identified as an additional requirement.

Detailed Simulation for Verification and Test (Phases C/D):

The scope of system modeling for simulation in phase C/D must provide:

● Defined mission concept including orbits respectively trajectories
● Specified spacecraft basic structure layout
● Defined on-board equipment
● Identified operational budgets
● Spacecraft operational modes
● Operational modes of all on-board equipment
● Functional  and  detailed  modeling  of  each  equipment's  behavior  (down  to

digital binary functionalities in equipment)
● Functional  interfaces  between  spacecraft  equipment  components  including

modeled low level command / control details, data exchange protocols etc.

Figure 12.5: Detailed simulation for verification and testbenches.

Analyzing this  requirements set  it  can be concluded,  that  today's  SVF simulators
properly fulfill all these requirements, so that no new conceptual invention is required
anymore at  this  point.  However also here the need for  a  proper  evolution of  the
spacecraft design data set and controlled takeover from the previous setup can be
identified.
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Requirements summary:
When analyzing these three requirement sets and in parallel reviewing the type of
toolkits and their configurations currently in use in European spaceflight (cf. table 3.2)
then it can be summed up that there exist two fundamental technology breaks in the
tool chain today:

One  is  between  the  budget  and  concept  oriented  toolkits  for  spacecraft  Design
Offices and the early functional simulators - e.g for AOCS based on Simulink.

The second break is to bring together again the purely mathematical / functional tools
like Simulink -  which do not properly reflect spacecraft  topology -  and operations
design approaches to a first complete system simulation. This first complete system
simulation is similar to the FVB testbench, but in addition has to include equipment
characterizations, equipment / spacecraft operational modes and their commanding -
based on state machines.

Thus the ideal sequence would look somehow like:

● Performing budget and basic mission concept engineering based on Design
Office tools.

● Then starting control algorithms analysis with dedicated tools like Simulink.

● Setup of an "FVB--" in the form of a simulator which
◊ reflects the spacecraft topology w.r.t components,
◊ reflects  equipment  interconnection  types  only  on  FVB  functional

engineering unit level,
◊ reflects spacecraft and equipment budget parameters,
◊ reflects equipment and spacecraft modes and functional transitions as well

as their commanding based on implemented state machines.
It will not yet comprise quantitative implementations of control algorithms but
will allow first dynamic runs and will be suitable for operations analysis.

● Setup of an "FVB++" including:
◊ The a.m. "FVB--" features
◊ The control algorithms which already today are transferred from the control

engineering tools (Simulink etc.) to an FVB,
◊ In addition also control algorithms for other domains than AOCS - such as

power control etc.

● Finally  extending  the  FVB  to  an  SVF  by  adding  interface  types  between
equipment models (data buses etc.) and by adding information on equipment
interface cross-couplings.

● Then  the  further  process  with  STB  and  EFM  can  continue  as  described
already in chapter 3.

After identifying these requirements and and sketching out a development sequence
for such a cross-phase simulation infrastructure also some concepts for its technical
implementation shall be presented - always keeping in mind that this definitely still is
a research topic also supported by diverse national and European agency studies.
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 12.2 Cross-Phase Simulation Infrastructure and
Engineering Steps

The goal of the applied modeling technique for simulation must be to achieve an
executable,  functional  model of  the entire spacecraft  including operations aspects
already earlier in the design chain. This spacecraft model should be suitable for both
design and verification simulations as well as for verification of spacecraft operations
procedures. The approach investigated for cross-phase suitability is a slight variation
of the simulator implementation technique which was discussed already in chapter 8.
The modeling of the spacecraft  system and equipment in the described simulator
design approach of chapter  8 is based on the software design language UML. The
mapping of real equipment features to equipment model UML representation, i.e. to
software class structures,  state machine representations etc.  is  performed by the
abstraction  and  modeling  expertise  of  the  equipment  model  programmer.  The
generated  and  further  instrumented  code  is  based  in  most  cases  on  the  C++
language, since it is platform independent and suitable for real-time implementations.
For the cross-phase approach the following enhancements /  changes have to be
applied to the current approach:

● One is to base the generated code on an object-oriented language which is
both able  to  be interpreted (of  course in  such cases not  offering real-time
performance) for prototype code verification and which is compilable for full
efficiency and real-time applications. This functionality is provided by Java and
the C++ variant "System C", a language originating from digital chip design
which can be executed on a runtime kernel.  Thus a simulation which was
"clicked  together"  and  instrumented  with  some  algorithmic  details  and
characterization data could directly be run.  System C in fact a C++ dialect
provides  a  C++ class  library  (similar  to  the standard  template  library)  and
sophisticated  functionalities  for  modeling  of  networks  and  communication
processes (buffers, filters, channels etc.) which is essential for representing
spacecraft  internal  equipment  interconnections  compliant  to  real  topology.

● The second variation to be introduced - compared to simulators for classic
FVBs to EFMs - is, to close up the design of the spacecraft model as far as
possible to the design of the real system. The spacecraft system design is
represented already in SysML in the  system engineering database, (SEDB),
as it was presented in figure 10.11. The simulation model of the spacecraft can
be tightly aligned with this system engineering database representation and
software code can be generated from such a derived model representation.

It shall however be noted explicitly here that the spacecraft / equipment
models in the system engineering database and in the simulator only can be
similar to a certain extent, but never will be identical. The simulator models
e.g.  always  will  comprise  certain  numerics  specific  characteristics  and  the
spacecraft representation in the system engineering database e.g. may have
AIT specific add-ons or other.
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● A third aspect to be changed in the development chain presented in chapter 3
is,  that  already  the  budget  design  results  and  the  elementary  system
configuration - i.e. the product tree - has to be taken over from the Design
Office based phase A study into the system engineering database as starting
point for a digital spacecraft design evolution leading to the proposed FVB--,
FVB++,  SVF,  STP,  EFM  installations.

Starting from these basic insights a stepwise approach for setup of such a  cross-
phase simulation infrastructure shall be sketched out in the following paragraphs.

Step 1: Phase A mission and spacecraft concept engineering in Design Offices:
This task is based on orbit  /  trajectory simulations and result  modeling, based on
spreadsheet tools, can be mostly kept untouched compared to the current standard
processes. The only add-on has to be an import of the finalized design reference into
the system engineering database to be converted to the SEDB data model. To be
stored in there are:

● Identified orbit / trajectory characteristics
● Identified necessary spacecraft  components and baseline topology (product

tree)
● Evaluated  design  characteristics  for  entire  spacecraft  and  key  equipment

respectively (e.g. battery capacity estimations)

Step 2: The first step towards an executable spacecraft baseline is the definition of
the spacecraft system topology with respect to "product tree" or decomposition into
subsystems  and  equipment.  This  can  be  performed  directly  in  the  system
engineering model of the SEDB. The availability of the product tree information opens
up the representation of a first element-definition based spacecraft representation:
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Figure 12.6: 
Element definitions.
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So far only the types of equipment on-board have been
defined in the element-definitions. Now the definition of the
element-occurrences will follow - e.g. the instances of type
"Battery" on board the conceptualized spacecraft.

Depending  on  the  development  phase,  both  trees  -
element  definitions  and  element  occurrences  -  can  be
rather high level at start of phase B design and can evolve
later to be covering all details for a phase C / D simulation
like in an SVF. The technical approach does not change
with increasing modeling granularity.

Provided with this additional information from the element-
occurrence  tree  and  manual  definition  of  equipment
interfaces, a first full  spacecraft topology can be modeled
and stored in the SEDB and a spacecraft simulator model
in  SysML  can  be  derived  accordingly.  Such  a
representation is outlined in figure 12.9.
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Figure 12.9: System topology based on element occurrences.
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Step 3: Thereafter follows the definition of spacecraft system operational modes and
the  modes  for  each  equipment.  Usually  the  selected  notation  is  to  reflect  this
information in state machine diagrams since this directly allows to note in addition the
mode transfer triggers as well as values of mode dependent system or equipment
parameters. Also this information flows into the simulator spacecraft design.

Figure 12.10: Definition of modes and transitions on system and equipment level.

Step 4: A further step then is to align these modes on system and equipment level as
it is done by the operations design engineers already in early project phases. Here
clearly is allocated which equipment is operating in which equipment mode while the
spacecraft  is  in a certain spacecraft  mode.  E.g.  all  payloads will  be turned off  in
spacecraft safe mode. Aligning the spacecraft modes (and implicitly corresponding
equipment  modes)  to  the  operations  sequence  of  the  spacecraft  like  launcher
separation,  deployment,  de-tumble,  safe  mode,  nominal  mode,  operational  mode
(and, in addition, the potential failure handling modes in between), this leads to a
sequence often also called “master timeline”.

Table 12.1: Definition of spacecraft / equipment mode interactions.
Boot Mode Safe Mode Nominal Mode Recover Mode

OBC booting on on reconfigure
PCDU on on on emergency-on
STR off on on on
RWL off on on off
Payload off off operating off
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After this definition of spacecraft and equipment topology, equipment and spacecraft
characterization data and mode definitions, all necessary modeling steps for reaching
a first executable model have been performed.

Step 5: Thus now from this spacecraft model design, System-C or C++ code can be
generated for execution. For System C the state achieved after code generation and
instrumentation  is  somewhat  similar  to  a  code  in  Java  language.  It  has  to  be
compiled for the runtime environment, which however is independent from the target
operating system.
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Figure 12.11: Phase B spacecraft system model executable in System C.

The  achieved  model  thus  is  directly  executable,  can  be  commanded  and  first
verification steps for  system design,  mode switching algorithms or similar  can be
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carried  out  on  this  implementation  which  corresponds  to  the  cited  functional
verification bench "FVB--". Generally testable are:

● The consistency of operational / mode concept
● The control algorithms w.r.t. mode transfers and affected variables

Step 6: The next step then is to enhance the models of this infrastructure with the
results from the control algorithms design in e.g. Simulink - which now is no longer in
the main spacecraft model development sequence but provides algorithmic input and
performance relevant characterization data as sideline input.

As in Simulink here also the equipment classes and the numerics of designed state
machines  must  be  instrumented  by  additional  computational  functions.  In  case
numerical analyses for control algorithms have been performed in Simulink, SciLab
or a similar tool, C code can be generated from this and can be directly applied for
model  code  instrumentation.  Thus  this  development  step  provides  the  control
algorithms and based on such an "FVB++" first  dynamic  spacecraft  performance
analyses and predictions can be carried out - with some limitations.

Step 7: The final  steps  now are further  refinements  of  the  equipment  modeling,
algorithmic  implementations  (e.g.  thermal  modeling)  and  especially  the
implementation  of  real  communication  protocols for  the  modeled  equipment
connections.  Interconnection  modeling  now  is  based  on  models  of  real  data
protocols. In this step the functional connections between the identified components
are to be refined including all cross-couplings:

Figure 12.12: Example for equipment interconnections in system.

This  in  most  cases  implies  the  implementation  of  additional  equipment  model
subelements - e.g. MIL-STD-1553B bus remote terminal functionality - and the entire
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calibration and failure injection functionality as explained for the model interface layer
of  simulator  components  in  figure  4.15.  Having  reached this  modeling state  now
additionally

● detailed simulations with error injections on protocol levels are possible (e.g.
for OBSW testing),

● communication budget analyses are possible, and
● usually at this stage the modeling of equipment algorithms has reached the

final refinement state and is fully suited for all types of spacecraft performance
relevant simulations.

The  simulation  has  achieved  a  degree  of  completeness  corresponding  to  a  full
fledged SVF  and  is  representative  for  typical  phase  C  /  D  /  E  simulators  and
testbenches as  was required  in  figure  12.5.  The presented approach to  base all
development steps from a first budget analysis architecture down to a full detailed
spacecraft simulation on one cross-phase infrastructure approach can be evaluated
as follows:

+ The  result  from  Design  Office  based  mission  and  spacecraft  concept
analyses are properly taken over into the engineering flow by means of using
an SEDB.

+ Equipment  /  system  modeling  in  SysML,  model  code  generation  and
instrumentation leads to a functionally executable model. The approach thus
provides executable models in very early phases of spacecraft design.

+ The  method  represents  correctly  functional  aspects  as  well  as  system
topology.

+ The method allows hierarchical refinement of modeling, i.e. first a high level
design which is further detailed later.  So the executable spacecraft  model
"grows" with stepwise refinements.

+ The steps of analysis and design still are in line with the engineering process
of the spacecraft development itself.

+ Mathematical algorithms (e.g. from controller design) can be integrated into
equipment models by code instrumentation.

- The mathematical algorithms and numerical implementation (applied solvers
etc.) are in the responsibility of the modeling engineers.

- For complete meta model interpretation by the code generator to parse the
SysML  representation  of  the  spacecraft  and  to  generate  executable
System C / C++ code, a large effort is to be invested once to set up the code
generation infrastructure. This investment however then can be reused over
all projects applying this cross-phase simulation infrastructure.

The described technology is still subject to ongoing research (see e.g.[100]) and is
not  only  limited to  space industry.  Further  reading and Internet  pages on model-
based  systems  engineering,  SysML  and  System C  are  listed  in  the  according
subsection  of  this  book's  references  annex.  For  the  data  model  to  reflect  the
spacecraft  design  in  an  SEDB,  the  reader  is  referred  to  the  ECSS E-TM-10-23
standard [107] and to an ECSS presentation on the model-based system engineering
topic in [106].
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Knowledge-Based Simulation Applications

Since  the  beginning  of  the  70's,  a  special  field  of  computer  science,  "Artificial
Intelligence",  (AI),  has  made  significant  progress  even  though  the  early  hype
meanwhile has calmed down. From the early fundamental research during the 80's
the first  commercial  products  evolved,  the "Expert  Systems" or  knowledge-based
systems. By means of such software tools knowledge is formalizable, storable and
processable  in  the  form  of  objects,  cases  and  rules.  The  deduction  of  facts  is
achieved through instantiation of cases and rules with real object data and evaluation
of these rules by a deducing algorithm called "Inference Engine". Before diving into
the topic first some terminology definitions shall be given:

Expert system: These are software systems from the artificial intelligence domain,
mostly based on object oriented programming techniques. Expert systems comprise
an inference engine for processing abstract knowledge. This mechanism uses rules
or / and cases to deduce conclusions from existing facts. The rules and respectively
cases are stored in a so-called "Knowledge-Base".

Expert  system shell: An  expert  system shell  is  a  development  environment  for
knowledge-based systems. It comprises the essential inference engine and provides
for the expert system developer all tools and editors and user interface features to
define and visualize rules and cases for knowledge definition. An expert system shell
can be compared to a Rich Client Platform for conventional software systems (cf.
chapter 8.6).

Inference  process: The  process  of  deducing  conclusions  from  initial  facts  by
application of rules / cases.

Inference engine: Also called "Inference Mechanism". Core processing engine of an
expert system which is capable of deducing conclusions from facts by instantiation of
rules / cases and their evaluation.

Inference  chain: The  sequence  of  subsequently  applied  rules  in  an  inference
process including their according intermediate fact sets and results.

Inference strategy: Strategy for identification of the next rule to be applied in the
deduction process.

Knowledge-base: "Database" of  an expert  system where knowledge is  stored in
form of rules, cases, objects and facts. The overall  knowledge of an expert system
can be spread over multiple knowledge-bases.
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 13.1 Modeling of Information for Rule-Based Processing

In rule based expert systems the knowledge is reflected in abstract rules. These rules
consist  of  a  conditions  part  and  a  conclusions  part.  In  the  conditions  part  all
preconditions are listed which are required to fulfill the results in the conclusions part.
The generic form of such rules is:

P Q (13.1)
Which is to be read as:

If preconditions P apply, then the conclusion Q is valid.

Thereby P and Q themselves can be complex logic expressions such as e.g.:

P1∧P2∧¬P3Q1∧Q2 (13.2)

Which is to be read as:

When the preconditions P1 and P2 apply – but not P3, 
then the consequences Q1 and Q2 both are valid.

For this rule based processing of system response and output data which may come
from system simulations or real system online process data, it is essential that the
user  is  able  to  enter  the  rules  himself  into  the  expert  system.  In  contrast  to
assignment  operators  in  conventional  programming  languages,  rules  are  bi-
directionally processable.

In modern expert system shells graphical editors for entering rule preconditions and
conclusions are provided, which in most cases follow the outline as given below:

If Then

  Fact Q2
  Fact Q1Condition

P1

Rule Id.

Figure 13.1: Rule format in editor mask.
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Rule Processing: Forward Chaining

The typical questions processed via the so-called  forward chaining method are of
type:

● The facts are identified.
● What are the resulting conclusions?

Figure 13.2: Rule network and processing example for forward chaining.

Rule Processing: Backward Chaining

The typical question type processed via the backward chaining method are:

● The facts are identified.
● How did this situation emerge?
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Figure 13.3: Rule network and processing example for backward chaining.

Some additional terminology definitions shall be given gere before further processing:

Inference strategy: An inference strategy is an approach for selection of the next
rule(s) in a complex network to be applied ("fired") in an expert system's deduction
process. By means of the inference strategy and based on the known facts at  a
certain point during rule processing, it is selected whether

● first to apply all  possible rules on the actual level of  known facts ("breadth
first"),

● or whether first to process only rules for checking the last rule's precondition in
further depth ("depth first"), or,

● whether higher level heuristic approaches shall be applied for selection of the
next rule ("gradient method", "hill climbing method" and others).

Truth maintenance system: The "Truth Maintenance System", (TMS), of an expert
system is a component permanently checking the consistency of rule instantiations
and of deduced facts during the inference process. As soon as contradictory facts or
rule conclusions are identified it stops inference processing and alerts the user to fix
the situation.
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Facts: Are the basic elements processed by rules. For technical applications the fact
representation most conveniently is handled in the form of so-called "Object Attribute
Value triples" (OAV-triples). An example is given here:

(component-C4 temperature 245.8)

 13.2 Accumulation of Knowledge on a System's Behavior
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Figure 13.4: Knowledge acquisition on system behavior
for user training and system operations.

The objective of  knowledge-based simulators is  to support  acquisition of  abstract
higher  level  knowledge  on  the  dynamic  behavior  of  the  analyzed  system.  The
aggregation of knowledge starts with information on the system components, their
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dimensioning, interconnection, their criticality concerning system failure modes, aging
effects etc. It is enhanced with knowledge on nominal operations, error symptoms
and their propagation in the overall system. Finally this knowledge can be used for:

● System operator training
● System control, and
● Failure  diagnosis -  in  spacecraft  engineering  called  "Failure  Detection,

Isolation and Recovery" (FDIR)

 13.3 Coupling of Knowledge-Processor and simulated /
real System

How can knowledge about a system behavior now be made available for the real
system's operation? For solving this task a suitable knowledge-processor has to be
coupled  to  a  compatible  simulator.  Diverse  system  load  cases  under  various
operational constraints are simulated and as complement to the symptoms arising,
cases  and  rules  are  developed  for  the  knowledge-processor.  They  then  allow to
identify certain operational cases and failure cases from the according symptomatics.
The  modeled  knowledge on  system  behavior  in  its  diverse  modes  evolves  with
increasing insight of the design engineers in the system's operational behavior and
operational and performance constraints.
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system state at 
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Knowledge processor with interconnected simulation

Figure 13.5: Integration of expert system and system simulation.

The functional flow during simulation result analysis is given in the figure below. The
sequence  of  steps  over  time  in  the  knowledge-processor  is  depicted  in  the  left
column,  the  functional  steps  in  the  simulator  are  visualized  on  the  right.  The
information exchange is performed in multiple steps.
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Figure 13.6: Information flow of a system simulation with 
knowledge-based symptom analysis.

The knowledge-processor is initially inactive and waits for input from the (simulated)
system. As soon as parameter limit violations or combined parameter inconsistencies
are  deduced  for  the  current  operational  case  the  data  is  transferred  to  the
knowledge-processor. The latter immediately starts with data evaluation to identify
the situation in more detail. The simulation goes pending. Eventually the knowledge-
processor  will  need  further  information  details  to  improve  quality  of  its  situation
analysis  and for  preparation  of  a  corrective  action.  In  such cases  it  queries  this
additional parameter data from the system simulator.

After  completion  of  facts  identification  the  cause  identification  starts  in  the
knowledge-processor  by  processing  cases  and  rules.  Also  during  this  level  of
knowledge processing additional  facts might  need to be queried from the system
simulation by the knowledge-processor.

As soon as the knowledge-bases are completed and the system / plant / spacecraft
is  built,  the  knowledge-processor  can  be  coupled  to  the  real  system  via  a
measurement data acquisition interface which is compatible to the former simulator
interface  and  which  allows  access  to  all  the  system's  relevant  operational
parameters. By this means now the operational case of the system / plant can be
monitored, applying the knowledge accumulated during the design phase. A similar
expert system based diagnostic - although not online - for the NASA TDRS satellites
is described in [119].
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Wissensmodul mit angebundener Meßdatenerfassung
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Figure 13.7: Integration of knowledge-processor and system data acquisition.

A further improvement of this method can be achieved if besides the system's data
logging  interface  the  system  simulator  is  coupled  to  the  knowledge-processor
additionally. Such a synchronously running diagnostic simulation first was presented
1996  in  a  study  of  the  TU  Hamburg-Harburg  (cf.  [120]).  Here  the  knowledge-
processor not only can use system log and measurement data for situation analysis
but also can use the connected simulator to further

● identify how the situation would evolve without  intervention to the system's
operation,

● and the knowledge-processor  can deduce quantitatively adequate corrective
actions  and  can  analyze  their  feasibility  by  simulation  before  commanding
them to the real system.
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Figure 13.8: Knowledge-processor, data acquisition of system and simulator.

31Object-Sim meanwhile has evolved further to the open source simulator “OpenSimKit”, see [23]
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As a demonstration example for such an infrastructure again the well known rocket
propulsion system shall be applied.
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Figure 13.9: Rocket upper stage propulsion system.

The interconnection of numerics and system behavioral knowledge in practice is not
established directly via the acquired measurement data from the controlled system to
the  rule  processing.  Instead  it  usually  is  processed  via  three  levels  as  depicted
below:

Figure 13.10: Concatenation layers of data and knowledge.

Numerical algorithm
Detailed specification of monitoring variables, 
limits and system messages. Example:
Clause: (abs  (c4:pinright-c4:pinleft)) < 0.2
Message: c4 inlet-pressure-ratio asymmetric

Identification of system's operational states
Implementation of the transition from detailed
data to abstract state descriptions.
(case-based technique)

State analysis and evaluation
Analysis based on abstract knowledge 
manipulation techniques.
Preferred: rules
(Forward and backward chaining)
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The  lowest  layer  comprises  the  purely  numeric  processing  of  values  from  real
system's data acquisition interface respectively from simulator. For these data which
are  cyclicly  forwarded  to  the  knowledge-processor  condition  clauses have  to  be
loadable  at  startup,  which  permanently  check  the  parameter  limit  compliance.
However it is not sufficient to provide parameter checking against static upper / lower
boundary  values  for  each  system  load  case.  The  full  spectrum  of  processing
functionality must be available:

● Absolute upper / lower boundary values for all system equipment parameters

● Relations of multiple parameters towards each other (e.g. pressure relations,
pressure differences)

● Relative relations between parameters:
e.g.: c16:pout < c13:pout

The outlet pressure of component c16 must be below that of c13 
(cf. Figure 13.9).

● Relations of complex parameter interdependencies including mathematical
functions and relational operators, e.g.:

(c71:p / 1.5) < (c27:p - c35:pout * 1.2)

● Conditional clauses including time dependencies, e.g.:
c83:p < (c82:p - 1.387 * t)

In  case such a limit  check clause identifies  all  parameter  being within  limits,  the
knowledge-based  functions  are  not  activated.  The  simulation's  data  acquisition
modules continue processing in parallel.

<

LS

c1:p

RS

-

c2:p x

t1.378

left and right side
of the inequality

condition

pointer to internal
pressure variable of c1

pointer to internal
pressure variable of c2

pointer to time 
variable t of kernel object

Figure 13.11: Modeling of condition clauses by structure trees. (cf. [120])
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This  clause  based  numerical  preprocessing  should  be  performed  without  time
consuming  data  handshake  between  the  knowledge-processor  and  the  data
acquisition module simulation. It has to be real-time performance compliant and thus
must be implemented based on very efficient techniques. In most cases it  will  be
directly implemented on the data production side, i.e. in the data acquisition module
of the connected real  system respectively in the simulator in case of a simulated
system.

The condition terms for the cited application example of the rocket propulsion system
are listed below:

// Section: Parameter ranges definition
//----------------------------------------------------------------
// Please note: Condition expresses normal case - violation leads
to 
// msg broadcast.
//
#Error-Condition: ec0
Clause: (c0:ptotal-c1:ptotal) < 0.2
Message: c0 pressure-drop-abnormally-low
//
#Error-Condition: ec1
Clause: (c1:ptotal-c0:ptotal) < 0.2
Message: c1 pressure-drop-abnormally-low
//
#Error-Condition: ec2
Clause: abs (c0:ptotal-c1:ptotal)) < 0.2
//pin0 - pressure inlet port 0
//pin1 - pressure inlet port 1
Message: c4 inlet-pressure-ratio asymmetric

Example Measurements and Deduced Facts

Sticking  to  the  cited  example  system the  allocated  measurement  values  for  the
pressure in the Helium bottles shall show the following trend:
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Figure 13.12: Pressure value trends in example system.
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Induced through these increasing pressure difference the following "Error Conditions"
are triggered:

Table 13.1: Activated error conditions and deduced facts.

EC-Violation Error-Cond EC0 c0 PRESSURE-DROP ABNORMALLY-LOW

EC-Violation Error-Cond EC2 c4 INLET-PRESSURE-RATIO ASYMMETRIC

Case-based Deduction of Initial Facts for Rule Processing

Now  according  to  figure  13.10 the  next  layer  of  system  state  analysis  shall  be
considered, the case-based reasoning level. Here the facts resulting from identified
error conditions in the form of the cited OAV-triples are further processed and the
initialization  information  set  for  the  subsequent  rule  based  status  analysis  and
recovery identification is generated. As an example the following cases are defined
for a case parser in the LISP programming language:

(if (?compx PRESSURE-DROP-ABNORMALLY-LOW)
    (case-assert! (?compx PRESSURE-DROP-IDENTIFIED CRITICAL)))

(if (?compx PRESSURE-DROP-ABNORMALLY-LOW)
    (case-assert! 
       ((lisp-function 
          get-connection '(?pipe connects (?compx C4)))
        BLOCKING ASSUMED)))

(if (and (C0 PRESSURE-DROP-ABNORMALLY-LOW)
         (C4 INLET-PRESSURE-RATIO ASYMMETRIC))
    (case-assert! (C1 PRESS-GAS-AMOUNT-MIGHT-BE INSUFFICIENT))

(if (and (C1 PRESSURE-DROP-ABNORMALLY-LOW)
         (C4 INLET-PRESSURE-RATIO ASYMMETRIC))
    (case-assert! (C0 PRESS-GAS-AMOUNT-MIGHT-BE INSUFFICIENT))

The syntax reads as follows:

Case 1:
If: there exists a component with the symptom PRESSURE-DROP-

ABNORMALLY-LOW, 
then: assert to the rule based inference engine (uppermost level in figure 1.8) the

following fact: 
For the identified component applies PRESSURE-DROP-IDENTIFIED
CRITICAL
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Case 2:
If: there exists a component with the symptom PRESSURE-DROP-

ABNORMALLY-LOW, 
then: via the function "get-connection“, search which pipe connects the affected

component with the junction C4, and
assert to the rule based inference engine, the assumption that for the
identified pipe component applies BLOCKING ASSUMED.

The syntax of the following cases 3 and 4 can be interpreted in analogy. If the OAV-
triples of symptoms identified by the error condition clauses from table 13.1 now are
applied to these cases, the case-parser will itself deduce the following results and will
assert them to the rule-based inference engine.

(C0 PRESSURE-DROP-IDENTIFIED CRITICAL)
(C2 BLOCKING ASSUMED)
(C1 PRESS-GAS-AMOUNT-MIGHT-BE INSUFFICIENT)

Rule-based Simulator Control and Result Analysis

At a certain point the knowledge-processor shall have received the pressure profiles
from the system as depicted in figure 13.12 and via error condition clause evaluation
and the case based processing has asserted the above mentioned fact to its rule
based inference engine layer. The facts are identified at this stage and the situation
analysis has been performed. Now it is the task of the inference engine to analyze
situation criticality, first by means of propagating the further system behavior through
simulation and by analysis of simulation results. Precisely for a simple case it shall be
detected  whether  under  unchanged  continuation  of  system operation  the  Helium
pressure in one of the bottle drops below 40 bar at foreseen end of rocket stage
operation, or not. Therefore first the actual system state is loaded into the simulator,
which then simulates the system with the blocked pipe up to stage operations end
time of 300 s. Then based on the simulation results rule based evaluation of the
situation starts. Of course in real world situations the system continues operations
and  the  simulation  has  to  be  fast  enough  to  identify  situation  criticality  and  to
eventually counteract in time.

.....
(rule (simulation-results-match-symptoms ok)
      (and (simulation-results-loading successful)
           (c4 inlet-pressure-ratio asymmetric)
           (lisp-function progn
              '(check-symptoms-match 'inlet-pressure-ratio-asymmetric))))

(rule (simulation-results analyzed)
      (and (simulation-results-match-symptoms ok)
           (?bottle press-gas-amount-might-be insufficient)
           (lisp-function 
             multiple-assert
              detect-critical-results 
               'bottle-pressure-below-minimum
                 '(< (table-column ?bottle 'ptotal) 40.0))))
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(rule (information user ((pipe blocking severe)
                         (helium budget in other bottle is not sufficient)
                         (system operation time will be reduced)
                         (shutdown system)))
      (and (simulation-results analyzed)
           (bottle-pressure-below-minimum ?condition ?values)))

(rule (information user ((pipe blocking not critical)
                         (helium budget in other bottle is sufficient)
                         (system operation time will be nominal)))
      (and (simulation-results analyzed)
           (bottle-pressure-above-minimum ?condition ?values))))

The  LISP  rule  syntax  reads  as  follows  (please  note  that  in  LISP  always  the
consequence /  result  term is  placed first  in  the clause and the conditional  terms
thereafter):

Rule 1:

If: The system simulation results could successfully be loaded 
simulation-results-loading successful

from the simulator
and

for component C4 (junction) applies
inlet-pressure-ratio asymmetric

which was asserted from error condition clause level
and

via the LISP function "check-symptoms-match“ it could be checked that the
simulation results comply to the measured data from the system,

then: the fact shall be asserted that the simulation reproduced properly the system
failure case:

simulation-results-match-symptoms ok

Rule 2:

If: The following applies ("and" conditioning again):
The simulation reproduced properly the system failure case

simulation-results-match-symptoms ok
and there exists a Helium bottle which is suspected to

press-gas-amount-might-be insufficient
and when in the simulation result tables for such a bottle at a pressure value
below 40 bar can be detected:

(bottle-pressure-below-minimum < 40)

then: the fact shall be asserted that the simulation results are analyzed (no further
involvement of the simulation for the rest of the rule chaining process)

simulation-results analyzed
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Rule 3:

If: The following applies ("and" conditioning again):
simulation-results analyzed

and there exists a Helium bottle with its
bottle-pressure-below-minimum < 40

then: inform the user
"pipe blocking severe"
"helium budget in other bottle is not sufficient"
"system operation time will be reduced"

and shutdown the system in this case32

shutdown system

Rule 4:

If: The following applies ("and" conditioning again):
simulation-results analyzed

and there exist only Helium bottles with
bottle-pressure-above-minimum < 40

then: inform the user
"pipe blocking not critical"
"helium budget in other bottle is sufficient"
"system operation time will be nominal"

with no further actions for system control.

In the example case the Helium bottle pressure also for the emptier one stays above
40 bars at simulated stage operation time so that at the end of the inference chain
rule 4 is fired and no stage shutdown is commanded.

The  example  deliberately  showed  a  very  elementary  implementation  of  such
knowledge processing in a low level AI language, namely LISP. More modern expert
system shells of course allow rule definition in a much more elegant to read layout,
however the caveats remain the same. Essential is the very careful stepping from
simpler identification rules (such as rule 1 and 2 in above example) to higher decision
rules (see rules 3 and 4)  building on top of each other, without doubling, conflicts
and overdefinitions. As a summary the following criteria and requirements for rules
can be summed up:

● The conditions or antecedences of a rule are similar to IF-statements in higher
programming  languages,  however  mind  that  rules  are  propagateable  by
forward chaining (example above) and backward chaining (not demonstrated
in above example, but being the basline method for [119]). 

32Shutdown is used here as simplified end of demonstration. Of course for a real rocket stage this would not be a
permissible solution.
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● As a consequence rules must allow the formulation of complex conditions, and
thus  have  to  provide  a  full  spectrum  of  logical  operators as  do  the  case
definitions.

● The  preprocessing  of  data  and  messages  from  the  data  acquisition  tool
respectively  the  simulator  by  a  case  based  inference,  allows  to  deduce
selected symptoms from low level  data already.  These higher level  system
states and symptoms then can be used for abstract rule based analysis.

● The rules and cases need to be formulated as generically as possible, see
e.g. cases 1 and 2 in the above example which work independent of whether
the  right  or  left  pipe  between  bottle  and  junction  is  affected  by  blockage.

● In practice the situation often arises, that during inference process additional
low  level  system  data  values  are  required  which  so  far  have  not  been
processed  by  the  error  condition  clauses  nor  by  the  case  based  pre-
processing.

● This leads to the requirement for rules or the inference engine to provide all
necessary  functionality  to  query  such  additional  data  from  the  monitored
system and to process them inside the rules.

● And this leads further to the requirement for rules and the inference engine to
provide  mathematical  comparison operations  and all  sorts  of  mathematical
functions to be usable in the condition terms and conclusion terms of a rule.
Rules here have to provide the same full scope of mathematical functionality
as the cases.

● As further requirement, variables must be definable withing rules. By use of
variables rules of much higher flexibility can be implemented and computed
data can be handed over more easily between rules. This allows computation
on rule level to be more independent from the variable set of acquired real-
system or simulated-system data.

In the presented example additional functions for rule prioritization, for rule exclusion
and for rule contradiction avoidance are not considered. For these topics and for the
techniques of cyclic reprocessing of rules with updated data and facts the reader is
referred to the corresponding specialist literature in the artificial intelligence domain.

To  avoid  inference  rule  chains  to  becoming  too  complex,  unmaintainable  and
untestable,  it  has proven good practice to generate groups of  rules for dedicated
tasks and to arrange the overall system architecture such that the inference engine
always only processes one group of rules. Input facts, deduced result facts and data
are shared in a common knowledge-pool over all rules. The following figure depicts
such  a  structuring  of  the  overall  knowledge-base and  groups  of  rules  being
processed stepwise.
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Figure 13.13: Groups of rules for dedicated processing steps.

Expert System, Measurement Data Processing and Simulation

In the field of knowledge-based applications the space domain is by far not the most
innovative.  Process  engineering  and  plant  control  in  chemical  industry,  electricity
generation  and  heavy  industries  are  partly  much  further  advanced  here.  A first
system  which  applied  the  above  mentioned  approach  of  plant  data  acquisition,
knowledge-based data evaluation and parallel running "best-process" simulation is
the Thyssen-Krupp coke oven plant in Duisburg-Schwelgern, Germany, which went
into operation in 2001.

Figure 13.14: 
Coke oven plant in Duisburg-Schwelgern.  

 © Thyssen-Krupp
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It provides a sophisticated process control with synchronously running best-process
simulation (with coke "battery control" and "gas control") to avoid undercooked coke
with gaseous remainders which would lead to cavities when used in steel production.
The simplifying factor here is, that a coke burning cycle in an oven is an hours long
slow  process,  so  that  no  sophisticated  requirements  are  imposed  here  towards
expert  system  and  parallel  running  simulation  with  respect  to  their  numerical
performance.

The realization of  operational  state input  data for the expert  system is performed
cyclically. The best process control selects settings for an assumed optimum control
state for the process. Then it activates the simulation to compute the progress of the
coke burning process over time using the assumed process control settings. As soon
as new acquired measurement data are available from the real process, these are
reanalyzed by the expert system, process configuration parameters are readjusted
and again reverified by parallel simulation and simulation result analysis. Please also
refer to [123] to [124].

Expert system
Data
logging
module

Simulation
module

Communication layer

    Exchange of commands and messages

Figure 13.15: Expert system with coupled data acquisition module and simulation.

Thus the expert  system cyclically  verifies  whether  the results  fit  with  the desired
target values. Figure 13.16 depicts the flows. In summary it can be concluded that:

● Such  a  knowledge-based  plant  /  system  diagnosis and  failure  correction
system is  a  significant  support  for  operation  of  complex  systems such  as
chemical plants, oil rigs, but also potentially for spacecraft.

● On the other hand it becomes obvious, that such knowledge-based systems
are  not  in  the  position  to  control  a  plant  /  system  preemptively  avoiding
operational errors or failures.

● Therefore the knowledge-based diagnosing and simulation on the one side
and  the  cybernetic  control  on  the  other  side  are  two  fundamentally
complementing techniques.
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● The system regulation works actively controlling until detection of deviations or
failure  symptoms.  The  knowledge-based  diagnosis  and  recovery  induces
corrective actions with quantitatively correct interaction in error cases.

It  is  an  opportunity  for  the  space  domain  to  extend  operations  simulators  for
spacecraft as they are used in ground control stations and were discussed in chapter
 3.2.5  by these knowledge-based techniques.

Evaluate 
whether 
predicted  
status ok

Analyze for 
behavior 
prediction by 
simulation

Evaluate 
whether 
predicted  
status ok

Cyclic asynchonous
data reporting

Cyclic asynchonous
data reporting

Cyclic asynchonous
data reporting

:Knowledge
Processor Kernel

:System Data
Logging Module

Start

:Simulator
Kernel

Start system

Invoke predictive
simulation

Invoke predictive
simulation

Stop
Stop system

Stop system

Simulation 
steps
Simulation 
steps

Return predicted
behavior information

Simulation 
steps
Simulation 
steps

Return predicted
behavior information

Analyze for 
behavior 
prediction by 
simulation

Figure 13.16: Functional flow for cyclic analysis of best-process simulation results.

 13.4 Application of Expert Systems for User Training

It already was mentioned that such kinds of formalized knowledge about the system's
behavior,  failure  cases,  symptoms and  limits  can  be reused  for  system  operator
training. For modern training software so-called "courseware" systems are used to
generate training material. They present the lecture content to the candidate - later
being the system operator - in the form of lessons and scripts, sorted according to
topics and supported by multimedia techniques.

The abstract formulation of knowledge on system behavior as it is implemented in
expert  system rules  (assuming  a  more  handy  notation  than  the  presented  LISP
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examples of course) is optimally suited for reuse in such courseware systems. Figure
13.17 shows  which  information  about  the  system  and  its  behavior  flows  into  a
courseware and how consecutive lessons for the later system operator are derived.
These lessons can comprise simulations of system nominal and failure cases.
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Figure 13.17: Knowledge on system behavior taken over into courseware.

 13.5 Implementation Technology: Rules as Fact Filters

Finally  the  implementation  technique  of  such  rules  in  expert  systems  shall  be
elaborated  in  a  bit  more  detail.  The  implementation  technique  for  rules  as
demonstrated in the example above is based on data structures called "streams".
Streams simplified are a sort of list structures which represent a continuous data flow.
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In an expert system such data streams comprise facts to be evaluated and variable
bindings. Rules of an expert system can be implemented as filters for such streams.
A rule then filters away all facts respectively parameter bindings from a stream, which
are identified not to be applicable. On the other hand rules can identify bindings and
can impose new facts,  added to the data stream thereafter.  Rule chains as they
appear in forward or backward chaining can be implemented by arranging such data
stream filters in sequential  order.  Figure  13.18  shows a simple example for  rule
implementation based on filters for streams.

Figure 13.18: Rule implementation as data stream filter.

Specific for the processing of complex rule networks by inference engines is the fact,
that larger fact bases have to be checked against each of the conditional terms of
each rule. The resulting facts from one rule processing step plus the old, already
known facts once again have to be checked against each of the conditional terms of
the next rule and so forth. The fact sets are growing and as a result the memory
resource allocation requirements are growing. In the example of figure 13.18 first all
facts are input for the conditional terms of the rule. Not before having passed the first
filter  which  identifies  components  indicating  an  error  (here  C-10  and  C-17)  any
variable bindings are made which limit the scope of facts to be processed further. An
additional  effort  increase  is  induced  by  rules  applying  variables  in  their  clauses,
eventually  even  multiple  variables  in  one  rule.  For  these  variables  then  a
combinatorial number of variable bindings can arise, at least for processing by some
of the conditional term filters.

The most complex fact sets however arise during backward chaining of rules while
checking validity of hypotheses. Therefore first one hypothesis is assumed, i.e. one
combination of facts with dedicated variable bindings, and by processing these via
rules - usually much more than only one - the hypothesis can be proven or disproved.

((C-10  SYMPTOM GAS-EXIT-TEMPERATURE-TOO-LOW)
 (C-10  IS-CONNECTED-UPSTREAM-TO  C-11)
 (C-10  IS-CONNECTED-UPSTREAM-TO  C-14)
 (C-17  SYMPTOM CONVERGENCE-PROBLEM)
 (C-9   IS-CONNECTED-UPSTREAM-TO  C-10))

COMPONENT=C-10
ERROR=GAS-EXIT-TEMPERATURE-TOO-LOW

COMPONENT=C-17
ERROR=CONVERGENCE-PROBLEM

COMPONENT=C-10
ERROR=GAS-EXIT-TEMPERATURE-TOO-LOW
SUCCESSOR-COMPONENT=C-11

COMPONENT=C-10
ERROR=GAS-EXIT-TEMPERATURE-TOO-LOW
SUCCESSOR-COMPONENT=C-14

IGNORE GAS-EXIT-TEMPERATURE-TOO-LOW  C-11

IGNORE GAS-EXIT-TEMPERATURE-TOO-LOW  C-14

(IF:      ((?COMPONENT SYMPTOM ?ERROR)
             (?COMPONENT IS-CONNECTED-UPSTREAM-TO ?SUCCESSOR-COMPONENT))
(THEN (IGNORE ?ERROR ?SUCCESSOR-COMPONENT))

((C-10  SYMPTOM GAS-EXIT-TEMPERATURE-TOO-LOW)
 (C-10  IS-CONNECTED-UPSTREAM-TO  C-11)
 (C-10  IS-CONNECTED-UPSTREAM-TO  C-14)
 (C-17  SYMPTO CONVERGENCE-PROBLEM)
 (C-9   IS-CONNECTED-UPSTREAM-TO  C-10)
 (IGNORE GAS-EXIT-TEMPERATURE-TOO-LOW  C-11)
 (IGNORE GAS-EXIT-TEMPERATURE-TOO-LOW  C-14))
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In the latter  case the loop starts again until  a successful  hypothesis,  i.e.  variable
binding has been found. This process is extremely resource consuming when being
based on the a.m. clear text fact notation and filter implementation.

Thus the approach for processing rules by an inference engine with variable bindings
in clear list  notation as depicted in figure  13.18 is not a practicable approach for
memory resource consumption reasons. Also the permanent changes in allocated
memory can be difficult to handle. For higher performance expert systems a different
implementation technique of the fact streams therefore is applied, based on the so-
called "delayed evaluation" of  streams. The technical  principle behind it  works as
follows:

Instead of making available all elements of a fact stream in a list as stack in memory,
which anyway is processed sequentially,  the delayed evaluation technique always
only stores one data tuple. The first part of the stream is available in clear notation,
i.e. in directly evaluatable form. The second element contains a pointer to a data
structure. This structure comprises a function pointer and variable bindings for the
function arguments. By this function and variable bindings, the next element of the
fact stream can be computed. Such a pointer to an executable function with fixed
variable bindings in LISP is called a "closure". For an example of a fact chain with
delayed evaluation please refer to figure 13.19. The example presented there depicts
the  fact  set  of  the  2nd condition  term  filter  from  figure  13.18,  once  as  clear  list
implementation (2 facts) and below as tuples with one clear text element and closure
for computing the next element in the fact list. This technique does not save numeric
processing  effort,  but  limits  memory  resources  and  avoids  problems  with
combinatorial numbers of variable bindings in backward chaining steps.

Implementation with a mechanism for delayed evaluation:

Function evaluation 
computes.....

((COMPONENT=C-10,  Error=GAS-EXIT-TEMPERATURE-TOO-LOW,  SUCCESSOR-COMPONENT=C-11)
 (COMPONENT=C-10,  Error=GAS-EXIT-TEMPERATURE-TOO-LOW,  SUCCESSOR-COMPONENT=C-14))

((COMPONENT=C-10,
ERROR=GAS-EXIT-TEMPERATURE-TOO-LOW
SUCCESSOR-COMPONENT=C-11)

. #<Closure: #2a7d96>)

((COMPONENT=C-10,
Error=GAS-EXIT-TEMPERATURE-TOO-LOW
SUCCESSOR-COMPONENT=C-14)

. #<Closure: #2a7472>)

(EMPTY-STREAM)

Function evaluation 
computes.....

Rule filter variable bindings - simple implementation as a list:

Figure 13.19: Implementation of fact streams with delayed evaluation.
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This technique also is applied in the implementation cited from [120]. It is used for the
implementation of fact sets which are to be processed, such as the initial fact set
depicted in figure 13.18. Furthermore it is applied for parameter bindings for variables
in rules which have to be kept fixed during successive processing of all  condition
terms of one rule (see figure 13.19) and finally for handling of entire bindings for rule
setting during backward chaining. By this means an efficient and fast mechanism for
rule  processing  is  implemented  which  imposes  only  moderate  requirements
concerning needed memory resources.

Further  reading  and  Internet  pages  concerning  knowledge-based  systems  are
provided in the according subsection of this book's references annex. Readers with
specific interest in informatics of knowledge-based systems are referred to [118].
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Testing  on-board  software,  (OBSW),  is  one  of  the  main  use  cases  for  system
simulators throughout spacecraft development. Simulation based testing has been
proven as successful approach both for tests of simple OBSW data management
functions as a well as for higher control and monitoring layers.

A modern  on-board  software  –  using  the  example  of  satellites  again  –  typically
consists of the following major building blocks:

 14.1 Testing Conventional on-board Software Functions

On-board software  needs to  be  verified  regarding  its  elementary  functions  which
include:

● The on-board computer “Basic I/O-System”, (BIOS), which provides access to
the memory, processor and controller chips. It usually is qualified by the OBC
hardware provider.

● The  real-time  operating  system,  which  forms  the  basis  of  the  OBSW
application and which needs to be completely verified by the OBSW supplier.

● A further layer is formed by the “Input Output Services”, (I/O-Services), which
also  are  to  be  verified  at  OBSW supplier  level.  These  I/O-services  in  the
OBSW interface the I/O-controller hardware chips - handling data from / to the
harness lines connecting the OBC to external equipment. Depending on the
interface  type,  this  can  cover  the  full  spectrum  from  simplest  analog  line
acquisitions to complex on-board equipment data packets transferred via high
level data bus protocols.

● Finally,  on  the  highest  level,  the  functions  of  spacecraft  control  are
implemented  and  need  to  be  verified.  These  functions  cover  the  system
monitoring,  the  attitude  and  orbit  control,  satellite  platform  control  (power,
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Figure 14.1: Building blocks of a modern satellite on-board software.
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thermal etc.) and last but not least the payload control. This layer comprises
also the ground communication functions during radio contact.  This OBSW
layer includes all the management of the spacecraft operational modes as well
as the submodes of all subsystems and equipment.

These conventional on-board software functions include already very limited features
falling  into  the  domain  of  of  system  autonomy.  E.g.  a  typical  Earth  observation
satellite, which has no permanent ground station contact throughout segments of its
polar orbit, executes part of its nominal system control functions as so called “time
tagged commands”. These time-tagged commands are grouped in sequences and
are typically used to control payload operations eventually combined with platform
maneuvers. As an example the following on-board function sequence for an Earth
observation satellite could be controlled via time tagged commands:

● Shortly before arriving at the acquired target to be observed, the command is
executed to switch PCDU power on for the payload.

● Then the payload is switched on.
● The payload is calibrated.
● Eventually the satellite AOCS is commanded to a specific pointing precision

mode or roll-over mode.
● The observation itself is performed by the instrument.
● An according payload shut-down follows.

All  the time tags for  these steps have been precomputed on ground in this case
before  procedure  uplink.  This  functionality  of  time-tagged  command  handling
provides the feature to execute fixed sequences. Any non conformity during work-
down of the sequence will lead to either the payload or even the entire spacecraft to
switch back to a safe mode.

In addition some OBSW designs allow the upload of so-called “On-Board Control
Procedures”,  (OBCPs),  into  the on-board computer  from the ground.  OBCPs are
scripts in a kind of a macro language, which is interpreted and executed (a time-
coding  is  also  possible)  on-board.  With  these  OBCPs  also  a  limited  reaction  to
certain events (target identification etc.) is possible automatically. This functionality
also can be applied for automatic docking and rendezvous maneuvers and is not
limited to satellites.

These two kinds of simplest system autonomy in any case are subject of OBSW tests
carried  out  on  simulation  based  test  benches.  The  verification  of  the  correct
processing  of  the  OBCPs  for  each  nominal  and  failure  case  already  is  a  very
demanding task for the verification engineer.

 14.2 Testing Failure Management Functions

The next type of to-be-verified autonomous functions are "Failure Detection, Isolation
and Recovery", (FDIR), functionalities. FDIR functions are implemented in all OBSW
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layers from the lowest level of monitoring I/O-line data traffic to the highest level of
attitude  error  determination  or  payload  failure  detection.  FDIR  functions  need  to
intervene autonomously, reacting to the various error cases. As such they cover all
spacecraft operational modes. They are mostly organized as follows:

● The  lowest  level  covers  hardware  errors  -  to  identify  e.g.  an  incorrect
answering data bus controller or sensor). The errors on this level can be easily
handled,  e.g.  by  executing a  data  acquisition retry  or  a  short  reset  of  the
controller device (not to be mixed with the equipment the controller is built in).
The spacecraft in such simple cases keeps its main operating mode.

● The next  hierarchy level  comprises already errors on which the spacecraft
overall operating mode cannot be retained – e.g. on a satellite the payload can
no longer be operated.  The system changes into a more secure operating
mode – may be even down to safe-mode.

● The  third  level  comprises  such  severe  errors  that  the  on-board  computer
needs to be restarted – eventually parts of it  might need to be switched to
redundant side (redundant processor board, I/O-board or other).

● The  fourth  level  comprises  hard  wired  hardware  alarms  which  are  issued
directly to the TTR-board of the OBC or to the transponder - e.g. in case of
short circuits of the power supply). These alarms can be detected on ground in
case of such a contingency and as the case may be (partly) correctable, even
if no OBSW is running anymore.

The  testing  of  these  highly  security  relevant  and  autonomous  functions  is  an
essential  part  of  the  OBSW  developers  testing  task  and  simulation  based
testbenches  greatly  ease  the  work  since  failures  much  simpler  can  be  injected,
debugging of the OBSW is possible and the real spacecraft OBC hardware is kept
available for AIT test purposes and is not blocked.

 14.3 Testing Higher Levels of System Autonomy

For  satellite  spacecraft  it  can  be stated  that  practically  each  example  of  today's
standard  satellites  already  features  certain  on-board  autonomy  functionality.  The
same  applies  e.g.  for  transfer  vehicles  like  ATV with  their  autonomous  docking
functions etc. For satellites autonomy is largely focused to perform operations during
orbit periods without ground contact. Furthermore it has to manage the mentioned
failure cases without ground station contact even if the payload needs to be switched
off. At least a transition in a stable safe mode has to be guaranteed. But there exist
even  higher  levels  of  autonomy which  can be achieved -  and should  be  tested.
However  before  discussing these,  some terminology definitions shall  be made to
define functionalities and features - also because the term “autonomy” sometimes is
used in imprecise contexts.
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Table 14.1: Key terminology definitions concerning autonomy.
Autonomy Autonomy is a system feature based on various functionalities and

technologies.
Autonomy can be implemented on the basis of automatic functions
and / or autonomous functions.

Automatic functions They run directly and straightforward and are initiated according to a
master schedule or by a control program, (OBCP executor). They are
checked against a schedule (operations timeline).

Autonomous
functions

They implement the decision making procedure and a reaction to
anomalies, (events), which occur during the execution of an automatic
function.

Event Events are triggered either through anomalies (violation of limits, error
flag activations) or through the occurrence of a predefined status
modification (e.g. position reached, attitude reached).

Autonomous
spacecraft system

Such systems involve both spacecraft (e.g. satellite) plus ground
segment and are distinguished by a wide independence from
permanent human interventions. The distribution of intelligent
functions for autonomy between space segment and ground segment
is not prescribed.

Autonomous
spacecraft

A spacecraft which is characterized by being largely independent from
ground support and ground contact. Its intelligent functions achieving
the autonomy are implemented aboard and serve to achieve essential
parts of the mission objectives without ground intervention.

In addition to these definitions diverse levels of autonomy are to be distinguished. A
break down into tree categories is given in the following table:

Table 14.2: Levels of autonomy.
Level Characteristics

0 ● Automatic monitoring of physical parameters like attitude, position,
battery state of charge, temperatures

● Autonomous navigation technologies (GPS)
● Autonomous failure handling based on:

◊ Redundancy switches
◊ Spacecraft mode switching (survival-mode / safe-mode)

1 ● Precise error identification by low level intelligent functions
● On-board fault diagnosis by voting mechanisms and logic based

functions
● Based thereupon an operational autonomy for gradually adapted

degraded mode or failure mode handling
2 ● Flexible, knowledge-based fault diagnosis (manages also problems

which have not been predicted)
● Knowledge-based on-board planning of actions, reactive planning in

failure / degradation cases
● Autonomous optimization of spacecraft operations plans /

procedures
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Autonomy is a key system level technology for spacecraft and it can have two basic
different characteristics:

“Enabling Technology” - enables a certain mission:

● Enables survival of the spacecraft without radio
contact

● Enables spacecraft maneuvers without radio
contact

● Enables mission product generation without
radio contact

e.g. for:

● Interplanetary
missions

● Military missions

“Process Improvement Technology” - simplifies or
cheapens the mission:

This can be achieved by autonomy allowing:

● Single-shift spacecraft operations in the control
center

● Mission product generation without radio contact
● Data recording and processing focused on user

requests

e.g. for:

● Earth observation
spacecraft

● Telecom satellites
● Navigation missions
● Deep space probes

 14.4 Implementations of Autonomy and their Focus

High level of autonomy:
“Enabling Technology”

Typical focus: On-board autonomy, e.g. for space probes, landers, rovers, transfer
vehicles.

Basic characteristics of this type of spacecraft systems are:
● The level of autonomy typically being adjustable between

◊ simple execution of macro command sequences, and
◊ on-board available mission planner.

● The technical implementation inside the on-board software is focused towards:
◊ Modular on-board software concepts
◊ OBSW based on real operating systems
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◊ Multi CPU board architectures, eventually separate payload OBCs
◊ Higher control software layers being independent from the target hardware

These autonomous system architectures have to remain maintainable and have to be
verified and validated. For this purpose spacecraft testbenches capable of simulating
detailed scenarios are necessary. They need to provide error injection mechanisms
on different  levels  of  the simulated spacecraft.  If  necessary they must provide to
model  complex  error  symptoms  through  parallel  manipulation  of  multiple  failure
symptom  relevant  parameters  to  test  the  on-board  software's  error  identification
mechanisms.

Moderate level of autonomy:
“Process Improvement Technology”

Typical focus: Autonomy of the entire ground / space system, e.g. for satellites.

Basic characteristics of this type of spacecraft systems are:

● System control for the mission product of a satellite being supported by so-
called “user requests”:
◊ This  means -  e.g.  taking  the  example  of  an  Earth  observation  satellite

again - a mission product customer no longer specifies when the on-board
instrument shall be switched on with which settings,

◊ but instead he specifies the geometrical  observation target,  the spectral
characteristics or other mission product setting he desires and the delivery
date of the mission product.

● Supported by a mixture of sources of archive data in the ground segment from
previous  observations  and  by  identification  of  still  missing  information  an
intelligent mission planning system can generate the command sequence for
on-board execution for the satellite
◊ to observe the mission product parts not available in archive,
◊ to downlink the data, and
◊ to merge on ground the latest observation data with archive data
for to finally deliver the requested mission product to the customer.

● Such an infrastructure opens the door towards a semi-automatic single shift
operation of spacecraft platform and payload control.

Only the precise testing of the overall scenario can prove the “process improvement”.
Required  here  are  again  system  environments  to  simulate  detailed  scenarios.
However besides pure spacecraft simulation here the functionalities of the ground
segment elements - including the user request based mission planning - are to be
included in such verification scenarios.
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 14.4.1 Improvement Technology – on-board SW / HW

Example 1: Level of Automation in on-board-SW

In  October  2001  ESA launched  the  first
satellite of the PROBA series - “Project for
On-board Autonomy”. With these satellites
new technologies heading for higher levels
of  on-board  autonomy  or  higher
automation  levels  in  satellite  operations
were tested.

PROBA 1  served  for  in-flight  testing  of
following technologies:

● First in orbit  use of Europe's 32bit
radiation  hard  space  application
microprocessor  -  the  ERC32  chip
set

● First  use  of  a  digital  signal
processor (DSP)  as  instrument
control computer ICU

● First  in  orbit  application  of  a  new
designed “autonomous” star sensor

● Use of  on-board GPS for  the  first
time

● And following innovations in the on-board software:
◊ ESA for the first time flying an OBSW coded in C instead of Ada.
◊ ESA for  the  first  time  flying  an  OBSW based  on  an  operating  system

(VxWorks) instead of a pure manual coded implementation.
◊ The GNU C compiler for the ERC32 target finally was validated though

flying an OBSW running on the ERC32.

The achieved new on-board functionalities were:

● For the first time having an ESA satellite with position determination in orbit by
means of GPS

● Attitude determination through an active star sensor automatically identifying
star constellations

● Autonomous prediction of navigation events (target flyover, station flyover)
● Thereupon based a minimum of on-board “mission planning”

Figure 14.2: PROBA 1  © ESA
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Example 2: Complexity of Operational Modes in on-board-SW 

A comparable level of on-board autonomy
was implemented in the ESA Moon probe
SMART-1.  Here  the  focus  was  less
targeting for active on-board equipment -
like  active  star  sensor  -  or  the software
implementation  strategies,  but  rather  on
consistency  of  operating  modes and
mode  transitions during  Moon  approach
and maneuvers.

SMART-1  for  the  first  time  in  ESA
missions used a ion engine which implied
strong  cross-influences  between  the
power supply system and thermal influences induced by the ion engine. Furthermore
the use of the ion propulsion largely influenced the AOCS design.

Therefore  the  attitude  adjustment  to  the  Sun  /  to  the  Earth  /  to  the  Moon  was
optimized according to thermal and power supply criteria.  Ground station visibility
and data handling were subordinate and needed to be covered by corresponding
autonomous functions. System simulation played an essential role for the verification
of  the  avionics  system  as  well  as  for  the  verification  of  the  on-board  software
requirements.

Figure 14.4: Operating modes of the ESA lunar probe SMART-1 (extract).  © ESA
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Figure 14.3: SMART-1  © ESA
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 14.4.2 Improvement Technology – Optimizing the Mission

Example 3: Development Infrastructure: "Autonomy Testbed"

This  example  depicts  a  combined ground  /  space architecture  of  the  ESA study
“Autonomy Testing” where the design of a potential on-board mission planning for
payload operation was analyzed. The idea behind this is that a user “only” needs to
transmit his observation request (“user request”) to the satellite. The user defines

● by which payload,
● in which operating mode,
● with which settings,
● he wants to have which target area observed.

The satellite constantly collects user requests from the various sequentially visible
ground stations and is equipped with an intelligent mission planning system. This
system generates a detailed timeline comprising all commands for attitude control
(orientation), payload, power system etc.

Figure 14.5: On-board autonomy test infrastructure: "Autonomy Testbed" (cf. [125]).
  © Astrium
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The prototype from the ESA “Autonomy Testing” study consisted of:

● A Core EGSE acting as a fictitious ground station
● A satellite simulator
● An on-board computer board as VMEbus board
● An on-board software with a macrocommand interface running on this board
● A mission planning algorithm which created an activity timeline from the cited

user requests including all macrocommands to the on-board software.

The on-board software executed the spacecraft macrocommands in the generated
mission timeline and thus controlled the simulated satellite. In this autonomy testbed
complex scenarios were tested which comprised

● nominal operating cases in which user requests were uplinked, processed and
the results were downlinked at the next ground station contact,

● furthermore scenarios which lead to planning conflicts on-board and where the
user requests could only be partially satisfied within the operating period,

● and  finally  scenarios  during  which  equipment  manually  injected  failures
occurred and where at initially a suitable error recovery needed to be identified
and to be performed, followed by a replanning of the activities since after error
recovery the satellite already had missed some of the observation targets.

Figure 14.6: Autonomy testbed setup.  © Astrium

Such scenarios imposed extremely high requirements towards

● the mission planning algorithms, and
● the  on-board  software  (which  needs  to  intercept  any  potentially  erroneous

commands, which might be created by the mission planning tool),
● and to the spacecraft simulation infrastructure which has to reflect sufficiently

realistically the overall scenario including payload operations.
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Figure 14.7: Autonomous recovery scenario on board.  © Astrium

 14.4.3 Enabling Technology – Autonomous OBSW for
Deep Space Probes

Example 4: OBSW Concept of the NASA New Horizons Probe

Figure 14.8: New Horizons Probe.  © NASA
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In spring 2006 NASA launched the deep space probe “New Horizons” to explore the
trans Neptunian objects Pluto and Charon. It represents probably the highest level of
on-board autonomy ever flown to date.

The on-board software of  New Horizons is  based on a case and  rule interpreter
similar to the algorithm described in chapter  13  (however not coded in LISP). In
place  of  on-board  control  procedures  as  used  in  conventional  satellites  here
intelligent structures are implemented to control the nominal approach maneuvers as
well as the error recovery. Cases are implemented on the lower processing level to
identify abstract symptoms from parameter measurements and above these cases a
rule network is implemented for situation analysis and system control.

The following figure provides a sketch of a small extract from the overall rule network
– here for the handling of an error during Pluto approach. The failure either can be
handled or results in the space probe going to safe mode - depending on the detailed
conditions. The rule network approximately matches the technique depicted in figure
13.2, however only the forward chaining method is used for processing here.

Figure 14.9: Extract of a rule-based mode-transition network of an OBSW 
(from [126])  © NASA

For explanation of the figure:
● The Rxxx-identifiers represent rules.
● The Myyy-identifiers represent macros which are executed by the activated

rules.
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● All spacecraft commands initiated by rules are encapsulated in such macros.
● The transition times for the rules / macro execution are depicted as well (some

cover several days due to spacecraft coast or approach phases).
● For the rules / macros the on-board processor executing them is shown (in this

extract from the rule network P3 and P5 are cited)
● and in the rule identification information is contained (for details see [126]):

◊ The rule priority
◊ The rule persistence,
◊ The methodology how the rule result  is to be handled by the inference

system, when the rule result is obviously outdated
◊ The state during the loading of the rule into memory (active / inactive).

Testing such rule networks for correctness and completeness is by far more difficult
than the testing of conventional on-board software. Accordingly more complex will be
the  spacecraft  simulators  which  need  to  provide  injections  of  all  sorts  of  error
combinations and which need to be able to model such long lasting remote planet
approach maneuvers. The simulations furthermore are required to test the on-board
software with respect  to its proper prioritization of  error  recoveries in multi-failure
scenarios.

Further reading and Internet pages on on-board autonomy are listed in the according
subsection of this book's references annex.
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