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CHEMICAL ENGINEERING

An Introduction

“Chemical engineering is the field of applied science that employs physical,
chemical, and biochemical rate processes for the betterment of humanity.” This
opening sentence of Chapter 1 is the underlying paradigm of chemical engineer-
ing. Chemical Engineering: An Introduction is designed to enable the student
to explore the activities in which a modern chemical engineer is involved by
focusing on mass and energy balances in liquid-phase processes. Applications
explored include the design of a feedback level controller, membrane sepa-
ration, hemodialysis, optimal design of a process with chemical reaction and
separation, washout in a bioreactor, kinetic and mass transfer limits in a two-
phase reactor, and the use of a membrane reactor to overcome equilibrium limits
on conversion. Mathematics is employed as a language at the most elementary
level. Professor Morton M. Denn incorporates design meaningfully; the design
and analysis problems are realistic in format and scope. Students using this text
will appreciate why they need the courses that follow in the core curriculum.
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Preface

“Chemical engineering is the field of applied science that employs physical, chemi-
cal, and biochemical rate processes for the betterment of humanity.” This opening
sentence of Chapter 1 has been the underlying paradigm of chemical engineering
for at least a century, through the development of modern chemical and petro-
chemical, biochemical, and materials processing, and into the twenty-first century
as chemical engineers have applied their skills to fundamental problems in pharma-
ceuticals, medical devices and drug-delivery systems, semiconductor manufacturing,
nanoscale technology, renewable energy, environmental control, and so on. The
role of the introductory course in chemical engineering is to develop a framework
that enables the student to move effortlessly from basic science and mathematics
courses into the engineering science and technology courses that form the core of a
professional chemical engineering education, as well as to provide the student with
a comprehensive overview of the scope and practice of the profession. An effective
introductory course should therefore be constructed around the utilization of rate
processes in a context that relates to actual practice.

Chemical engineering as an academic discipline has always suffered from the
fact that the things that chemical engineers do as professionals are not easily demon-
strated in a way that conveys understanding to the general public, or even to engi-
neering students who are just starting to pursue their technical courses. (Every
secondary school student can relate to robots, bridges, computers, or heart-lung
machines, but how do you easily convey the beauty and societal importance of an
optimally designed pharmaceutical process or the exponential cost of improved sep-
aration?) The traditional introductory course in chemical engineering has usually
been called something like “Material and Energy Balances,” and the course has
typically focused on flowsheet analysis, overall mass balance and equilibrium calcu-
lations, and process applications of thermochemistry. Such courses rarely explore the
scope of the truly challenging and interesting problems that occupy today’s chemical
engineers.

I have taken a very different approach in this text. My goal is to enable the student
to explore a broad range of activities in which a modern chemical engineer might
be involved, which I do by focusing on liquid-phase processes. Thus, the student
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addresses such problems as the design of a feedback level controller, membrane
separation and hemodialysis, optimal design of a process with chemical reaction
and separation, washout in a bioreactor, kinetic and mass transfer limits in a two-
phase reactor, and the use of a membrane reactor to overcome equilibrium limits on
conversion. Mathematics is employed as a language, but the mathematics is at the
most elementary level and serves to reinforce what the student has studied during
the first university year; nothing more than a first course in calculus is required,
together with some elementary chemistry. Yet we are able to incorporate design
meaningfully into the very first course of the chemical engineering curriculum; the
design and analysis problems, although simplified, are realistic in format and scope.
Few students of my generation and those that followed had any concept of the scope
of chemical engineering practice prior to their senior year (and perhaps not even
then). Students enrolled in a course using this text will understand what they can
expect to do as chemical engineering graduates, and they will appreciate why they
need the courses that follow in the core curriculum.

There is more material in the text than can reasonably be covered in one
semester. The organization is such that mass and energy balances can be given
equal weight in a one-semester course if the instructor so desires. I prefer to empha-
size the use of mass balances in order to broaden the scope of meaningful design
issues; any negative consequences of deemphasizing thermochemistry in the intro-
ductory course, should the instructor choose to do so, are minimal. Much of what
once formed the core of the traditional material and energy balances course is now
covered in general chemistry, sometimes in a high school setting, and thermodynam-
ics offerings in many chemical engineering departments have become more focused,
with more emphasis on chemical thermodynamics than in the past.

Chemical Engineering: An Introduction incorporates material from an earlier
textbook, Introduction to Chemical Engineering Analysis (1972), which Fraser Rus-
sell and I coauthored. I have added a great deal of new material, however, and
removed a great deal as well. Much of what remains has been rewritten. Thus, this is
not a new edition, but rather a new creation, with an important family resemblance
to an earlier generation.

My PhD advisor was the late Rutherford Aris, whose insightful scholarship was
matched by his strong commitment to education, which is reflected in his outstanding
textbooks and monographs. Aris believed that students learn best when a subject is
presented with rigor, and he wrote with a clarity and elegance that made the rigor
accessible to everyone. I think that “Gus” would have approved of the approach
presented in this textbook, even if his literary standards are unattainable, and I
respectfully dedicate Chemical Engineering: An Introduction to his memory.

I am grateful to my colleagues at the City College of New York (CCNY),
especially Raymond Tu and Alexander Couzis, for their encouragement and their
willingness to use the evolving draft in the classroom, and I appreciate the willingness
of the CCNY second-year students to work with us. I am, of course, grateful to
Fraser Russell for his insights during our long collaboration and for his generosity
in permitting me to use some of the fruits of our joint work. Peter Gordon of
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Cambridge University Press enthusiastically supported this project, and Kim Dylla
graciously permitted us to use her art on the cover. Finally, I am grateful to my
colleagues at the Casali Institute of Applied Chemistry of the Hebrew University
of Jerusalem, especially Gad Marom and Shlomo Magdassi, and to the Lady Davis
Fellowship Trust, for hospitality and support while I was composing the final chapters
of the book. My wife Vivienne’s hand is hidden, but it is present throughout.

New York
February 2011





1 Chemical Engineering

1.1 Introduction

Chemical engineering is the field of applied science that employs physical, chemical,
and biochemical rate processes for the betterment of humanity. This is a sweeping
statement, and it contains two essential concepts: rate processes and betterment of
humanity. The second is straightforward and is at the heart of all engineering. The
engineer designs processes and tangible objects that meet the real or perceived needs
of the populace. Some civil engineers design bridges. Some mechanical engineers
design engines. Some electrical engineers design power systems. The popular per-
ception of the chemical engineer is someone who designs and operates processes for
the production of chemicals and petrochemicals. This is an historically accurate (if
incomplete) image, but it describes only a small fraction of the chemical engineers
of the early twenty-first century.

Chemical engineering is the field of applied science that employs
physical, chemical, and biochemical rate processes for the better-
ment of humanity.

Let us turn first to the concept of rate processes, which is the defining paradigm
of chemical engineering, and consider an example. Everyone is familiar with the
notion that medication taken orally must pass through the digestive system and
across membranes into the bloodstream, after which it must be transported to the
relevant location in the body (a tumor, a bacterial infection, etc.) where it binds to
a receptor or reacts chemically. The residual medication is transported to an organ,
where it is metabolized, and the metabolic products are transported across still
more membranes and excreted from the body, perhaps in the urine. Each of these
processes takes time, and the rate of each step plays an important role in determining
the efficacy of the medication. Chemical engineers are concerned with all natural
and man-made processes in which physicochemical processes that are governed by
the rates at which the physical transport of mass, momentum, and energy and the
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2 Chemical Engineering

chemical and biochemical transformation of molecular species occur. The example of
the fate of medication, and the logical extension to devising procedures that optimize
the delivery of the drug to the active site, is an example of pharmacokinetics, which
has been an area of chemical engineering practice since the 1960s and has led to
many important advances. In the sections that follow we will briefly examine this and
other areas in which the chemical engineer’s interest in rate processes has resulted
in significant societal benefit. We do this to illustrate the applications to which the
material covered in the remainder of this introductory text and the courses that
follow can be applied, although our scope of applications will be far more limited.

1.2 The Historical Chemical Engineer

Chemical engineering began as a distinct profession at the start of the twentieth cen-
tury, although elements of what are now considered to be core chemical engineering
have existed for centuries and more (fermentation, for example, is mentioned in the
Bible and in Homer). The discipline began as something of an amalgam, combining
chemistry having an industrial focus with the mechanical design of equipment. The
early triumphs, which defined the profession in the public eye, had to do with large-
scale production of essential chemicals. The invention of the fluid catalytic cracking
(FCC) process by Warren K. Lewis and Edward R. Gilliland in the late 1930s was
one such advance. A fluidized bed is a column in which a rising gas carries particles
upward at the same average rate at which they fall under the influence of gravity,
producing a particulate suspension in which the particles move about rapidly because
of the turbulence of the gas stream. Crude oil contacts a granular catalyst in the FCC
and is converted to a variety of low-molecular-weight organic chemicals (ethylene,
propylene, etc.) that can be used for feedstocks and fuel. The cracking reactions are
endothermic (i.e., heat must be added). Residual carbon forms on the catalyst during
the cracking reaction, reducing its efficiency; this carbon is removed by combustion
in an interconnected reactor, and the exothermic combustion reaction produces the
thermal energy necessary to carry out the endothermic cracking reactions. The pro-
cess is very energy efficient; its invention was crucial to the production of high-octane
aviation gasoline during World War II, and it is still the centerpiece of the modern
petroleum refinery.

As noted previously, fermentation processes have existed throughout human his-
tory. The first industrial-scale fermentation process (other than alcoholic beverages)
seems to have been the production of acetone and butanol through the anaerobic
fermentation of corn by the organism Clostridium acetobutylicum, a conversion dis-
covered in 1915 by the British chemist Chaim Weizmann, who later became the first
President of the State of Israel. The production of acetone by this route was essential
to the British war effort in World War I because acetone was required as a solvent
for nitrocellulose in the production of smokeless powder, and calcium acetate, from
which acetone was normally produced, had become unavailable. The development
of the large-scale aerobic fermentation process for the production of penicillin in
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deep agitated tanks, which involves the difficult separation of very low concentra-
tions of the antibiotic from the fermentation broth, was carried out under wartime
pressure in the early 1940s and is generally recognized as one of the outstanding
engineering achievements of the century. The production of chemicals by biolog-
ical routes remains a core part of biochemical engineering, which has always been
an essential component of chemical engineering. The discovery of recombinant
DNA routes to chemical synthesis has greatly widened the scope of the applications
available to the biochemically inclined chemical engineer, and biochemistry and
molecular and cell biology have joined physical and organic chemistry, physics, and
mathematics as core scientific foundations for chemical engineers.

War is, unfortunately, a recurring theme in identifying the great chemical engi-
neering advances in the twentieth century. The Japanese conquest of the rubber
plantations of southeast Asia at the start of World War II necessitated the indus-
trial development of synthetic rubber, and a U.S.-government-sponsored industrial-
academic consortium set out in 1942 to produce large amounts of GR-S rubber, a
polymer consisting of 75% butadiene and 25% styrene. The chemists and chemical
engineers in the consortium improved the production of butadiene, increased the
rate of polymerization of the butadiene-styrene molecule, controlled the molecular
weight and molecular-weight distribution of the polymer, and developed additives
that enabled the synthetic rubber to be processed on conventional natural rubber
machinery. By 1945, the United States was producing 920,000 tons of synthetic rubber
annually. The synthetic rubber project was the forerunner of the modern synthetic
polymer industry, with a range of materials that are ubiquitous in every aspect of
modern life, from plastic bags and automobile hoods to high-performance fibers that
are stronger on a unit weight basis than steel. Chemical engineers continue to play
a central role in the manufacture and processing of polymeric materials.

This short list is far from complete, but it serves our purpose. The chemical
engineer of the first half of the twentieth century was generally concerned with
the large-scale production of chemicals, usually through classical chemical synthe-
sis but sometimes through biochemical synthesis. The profession began to expand
considerably in outlook during the second half of the century.

1.3 The Chemical Engineer Today

Chemical engineers play important roles today in every industry and service profes-
sion in which chemistry or biology is a factor, including semiconductors, nanotech-
nology, food, agriculture, environmental control, pharmaceuticals, energy, personal
care products, finance, medicine – and, of course, traditional chemicals and petro-
chemicals. More than half of the Fourteen Grand Challenges for Engineering in the
accompanying block posed by the National Academy of Engineering in 2008 require
the active participation and leadership of chemical engineers. Rather than attempt
to give a broad picture, we will focus on a small number of applications areas and key
individuals. Chemical engineers have traditionally been involved in both the design
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of processes and the design of products (although sometimes the product cannot
be separated from the process). We include chemical engineers involved with both
products and processes, but the entrepreneurial nature of businesses makes it easier
to single out individuals who have contributed to products.

The Fourteen Grand Challenges for Engineering

as posed by the U.S. National Academy of Engineering in 2008, pri-
oritized through an online survey.

1. Make solar energy economical
2. Provide energy from fusion
3. Provide access to clean water
4. Reverse-engineer the brain
5. Advance personalized learning
6. Develop carbon sequestration methods
7. Engineer the tools of scientific discovery
8. Restore and improve urban infrastructure
9. Advance health informatics

10. Prevent nuclear terror
11. Engineer better medicines
12. Enhance virtual reality
13. Manage the nitrogen cycle
14. Secure cyberspace

1.3.1 Computer Chips

Andrew Grove

The production of semiconductors is driven by chem-
ical engineers, who have devised many of the pro-
cesses for the manufacture of computer chips, which
are dependent on chemical and rate processes. No
one has been more influential in this world-changing
technology than Andrew Grove, a chemical engi-
neer who was one of the three founders of the
Intel Corporation and its CEO for many years.
Grove was selected in 1997 as Time Magazine’s
“Man of the Year.” One of the most interesting
aspects of Grove’s career is that his chemical engi-
neering education at both the BS and PhD levels
was a classical one that took place before semi-
conductor technology could form a part of the
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chemical engineering curriculum, as it does today in many schools. Hence, it was the
fundamentals that underlie the education of a chemical engineer (and, of course,
his extraordinary ability) that enabled him to move into a new area of tech-
nology and to become an intellectual leader who helped to change the face of
civilization.

1.3.2 Controlled Drug Release

Polymer gels that release a drug over time have been investigated since the 1960s.
The key issues in timed release are the solubility of the drug in the gel, the unifor-
mity of the rate of release, and, of course, the biocompatibility for any materials
placed in the body. One of the leaders in developing this field was chemical engineer
Alan Michaels, who was the President of ALZA Research in the 1970s, where he
developed a variety of drug delivery devices, including one for transdermal deliv-
ery (popularly known as “the patch”). More recently, in 1996, the U.S. Food and
Drug Administration (FDA) approved a controlled release therapy for glioblas-
toma multiforme, the most common form of primary brain cancer, developed by
chemical engineer Robert Langer and his colleagues. In this therapy, small poly-
mer wafers containing the chemotherapy agent are placed directly at the tumor site
following surgery. The wafers, which are made of a new biocompatible polymer,
gradually dissolve, releasing the agent where it is needed and avoiding the problem
of getting the drug across the blood-brain barrier. This therapy, which is in clinical
use, was the first new major brain cancer treatment approved by the FDA in more
than two decades and has been shown to have a positive effect on survival rates.
The methodologies used by Michaels, Langer, and their colleagues in this area are
the same as those used by chemical engineers working in many other application
fields.

Alan Michaels Robert Langer
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1.3.3 Synthetic Biology

Chemical engineers have always been involved in chemical synthesis, but the new
field of synthetic biology is something quite different. Synthetic biology employs
the new access to the genetic code and synthetic DNA to create novel chemical
building blocks by changing the metabolic pathways in cells, which then function
as micro-chemical reactors. One of the leading figures in this new field is chemical
engineer Jay Keasling, whose accomplishments include constructing a practical and

Jay Keasling

inexpensive synthetic biology route to artemesinin,
which is the medication of choice for combating
malaria that is resistant to quinine and its deriva-
tives. Keasling’s synthetic process is being imple-
mented on a large scale, and it promises to provide
widespread access to a drug that will save millions
of lives annually in the poorest parts of the globe.
Keasling is now the head of the U.S. Department of
Energy’s Joint BioEnergy Institute, a partnership of
three national laboratories and three research uni-
versities, where similar synthetic biology techniques
are being brought to bear on the manufacture of
new fuel sources that will emit little or no green-
house gas.

1.3.4 Environmental Control

Control of the environment, both through the development of “green” processes and
improved methods of dealing with air and water quality, has long been of interest to
chemical engineers. Chemical engineer John Seinfeld and his colleagues developed
the first mathematical models of air pollution in 1972, and they have remained the
leaders in the development of urban and regional models of atmospheric pollution,
especially the processes that form ozone and aerosols. The use of Seinfeld’s modeling
work is incorporated into the U.S. Federal Clean Air Act.

David Boger, a chemical engineer who specializes in the flow of complex liquids
(colloidal suspensions, polymers, etc.), attacked the problem of disposing of bauxite
residue wastes from the aluminum manufacturing process, which are in the form
of a caustic colloidal suspension known as “red mud” that had been traditionally
dumped into lagoons occupying hundreds of acres. Boger and his colleagues showed
that they could turn the suspension into a material that will flow as a paste by
tuning the flow properties (the rheology) of the suspension, permitting recovery
of most of the water for reuse and reducing the volume of waste by a factor of
two. The aluminum industry in Australia alone saves US$7.4M (million) annually
through this process, which is now employed in much of the industry worldwide.
An environmental disaster in Hungary in 2010, in which the retaining walls of a
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lagoon containing a dilute caustic red mud suspension collapsed, devastating the
surrounding countryside, could probably have been averted or mitigated if Boger’s
technology had been employed.

John Seinfeld David Boger

1.3.5 Nanotechnology

Nanotechnology, the exploitation of processes that occur over length scales of the
order of 100 nanometers (10−7 meters) or less, has been the focus of scientific
interest since the early 1990s, largely driven by the discovery of carbon nanotubes
and “buckyballs” and the realization that clusters containing a small number of
molecules can have very different physical and chemical properties from molar
quantities (1023 molecules) of the same material. The nanoscale was not new to
chemical engineers, who had long been interested in the catalytic properties of
materials and in interfacial phenomena between unlike materials, both of which are
determined at the nanoscale.

One area in which nanotechnology holds great promise is the development of
chemical sensors. As a sensor element is reduced in size to molecular dimensions,
it becomes possible to detect even a single analyte molecule. Chemical engineer
Michael Strano, for example, has pioneered the use of carbon nanotubes to create
nanochannels that only permit the passage of ions with a positive charge, enabling
the observation of individual ions dissolved in water at room temperature. Such
nanochannels could detect very low levels of impurities such as arsenic in drinking
water, since individual ions can be identified by the time that it takes to pass through
the nanochannel. Strano has also used carbon nanotubes wrapped in a polymer that
is sensitive to glucose concentrations to develop a prototype glucose sensor, in which
the nanotubes fluoresce in a quantitative way when exposed to near-infrared light.
Such a sensor could by adapted into a tattoo “ink” that could be injected into the skin
of suffers of Type 1 diabetes to enable rapid blood glucose level readings without
the need to prick the skin and draw blood.
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Chemical engineer Matteo Pasquali and his colleagues have found a way to
process carbon nanotubes to produce high-strength fibers that are electrically con-
ductive; such fibers could greatly reduce the weight of airplane panels, for example,
and could be used as lightweight electrical conductors for data transmission (USB
cables) as well as for long-distance power delivery. Pasquali’s process is similar to
that used for the production of high-strength aramid (e.g., KevlarTM and TwaronTM)
fibers, which are used in applications such as protective armor but which are noncon-
ductive. He showed that the carbon nanotubes are soluble in strong acids, where the
stiff rodlike molecules self-assemble into an aligned nematic liquid crystalline fluid
phase. Nematic liquid crystals flow easily and can be spun into continuous fibers
with a high degree of molecular orientation in the axial direction, which imparts
the high strength, modulus, and conductivity, then solidified by removing the acid.
Pasquali and his team have partnered with a major fiber manufacturer to improve
and commercialize the spinning process.

Few commercial applications of nanotechnology have been implemented at the
time of writing this text. One of the most prominent is the invention and com-
mercialization of the Nano-CareTM process by chemical engineer David Soane, in
which cotton fibers are wet with an aqueous suspension of carbon nanowhiskers that
are between 1 and 10 nm in length. Upon heating, the water evaporates and the
nanowhiskers bond permanently to the cotton fibers. The resulting fibers are highly
stain resistant, causing liquids to bead up instead of spreading. The technology is
now in widespread use, as are similar technologies developed by Soane for other
applications.

Michael Strano Matteo Pasquale David Soane

1.3.6 Polymeric Materials

As we noted in Section 1.2, chemical engineers play a significant role in the syn-
thetic polymer industry, both with regard to the development of new materi-
als and their processing to make manufactured objects. Gore-TexTM film, which
was invented by chemical engineer Robert Gore, is a porous film made from
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Robert Gore

poly(tetrafluoroethylene), or PTFE, commonly
known by the trade name TeflonTM. Gore-Tex
“breathes,” in that it passes air and water vapor
through the small pores but does not permit the
passage of liquid water because of the hydropho-
bic PTFE surface at the pore mouths. The film is
widely used in outdoor wear, but it also has found
medical application as synthetic blood vessels. The
process requires very rapid stretching of the PTFE
film, beyond the rates at which such films normally
rupture.

One example that has been nicely documented in the literature is the develop-
ment of a new transparent plastic, polycyclohexylethylene, by chemical engineers
Frank Bates and Glenn Fredrickson and two chemistry colleagues, for use in opti-
cal storage media; the need was for a material that could replace polycarbonate,
which absorbs light in the frequency range in which the next generation of storage
devices is to operate. Fredrickson is a theoretician who works on polymer theory,
whereas Bates is an experimentalist who studies physical properties of block copoly-
mers (polymers made up of two monomers that form segments along the polymer
chain that are incompatible with each other). Bates and Fredrickson made use of
their understanding of the phase separation properties of incompatible blocks of
monomers to utilize the incorporation of penta-blocks (five blocks per chain) to
convert a brittle glassy material into a tough thermoplastic suitable for disk manu-
facture. The description of their collaboration with the chemists in the article cited
in the Bibliographical Notes is extremely informative.

Frank Bates Glenn Fredrickson

1.3.7 Colloid Science

Many technologies are based on the processing and behavior of colloidal suspen-
sions, in which the surface chemistry and particle-to-particle interactions determine
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Alice Gast

the properties. Interparticle forces are important
when particles with characteristic length scales
smaller than about one micrometer come within
close proximity, as in the red mud studied by
David Boger. Concentrated colloidal suspensions
can form glasses or even colloidal crystals. (Opals
are colloidal crystals.) Chemical engineers have
been at the forefront of the development and
exploitation of colloid science in a wide range of
applications. One example is work by chemical
engineer Alice P. Gast, President of Lehigh Uni-
versity. Electrorheology is a phenomenon in which
the viscosity of a suspension of colloidal particles
containing permanent dipoles increases by orders
of magnitude upon application of an electric field.

(Magnetorheology is the comparable phenomenon induced by application of a mag-
netic field.) The possible application to devices such as clutches and suspensions is
obvious. Gast and her coworkers showed theoretically how the interactions between
the colloidal forces and the electric field determine the magnitude of the electrorhe-
ological response.

1.3.8 Tissue Engineering

Tissue engineering is the popular name of the field devoted to restoring or replacing
organ functions, typically by constructing biocompatible scaffolding on which cells
can grow and differentiate. Many chemical engineers are active in this field, which
is at the intersection of chemical and mechanical engineering, polymer chemistry,

Kristi Anseth

cell biology, and medicine. Kristi S. Anseth, for
example, who is a Howard Hughes Medical Insti-
tute Investigator as well as a Professor of Chemical
Engineering, uses photochemistry (light-initiated
chemical reactions) to fabricate polymer scaffolds,
thus enabling processing under physiological con-
ditions in the presence of cells, tissues, and pro-
teins. Among the applications that she has pursued
is the development of an injectable and biodegrad-
able scaffold to support cartilage cells (chondro-
cytes) as they grow to regenerate diseased or dam-
aged cartilaginous tissue.

1.3.9 Water Desalination

Membrane processes for separation are used in a variety of applications, including
hemodialysis (the “artificial kidney”) and oxygen enrichment. One of the earliest and
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Sidney Loeb (r) and Srinivasa Sourirajan (l)

most significant applications was
the development of the reverse
osmosis process for water desali-
nation in 1959 by chemical engi-
neers Sidney Loeb and Srinivasa
Sourirajan. In reverse osmosis,
the dissolved electrolyte migrates
through the membrane away from
a pressurized stream of seawa-
ter or brackish water because
the imposed pressure exceeds the
osmotic pressure. Loeb and Souri-
rajan showed that the key to making the process work was to synthesize an asymmet-
ric membrane, in which a very thin submicron “skin” is supported by a thick porous
layer. (The theoretical foundations for creating asymmetric membranes were devel-
oped later.) Reverse osmosis processes currently provide more than 6.5 M m3/day of
potable water worldwide, and nearly all new desalination process installations use
this technology.

1.3.10 Alternative Energy Sources

Fraser Russell

Chemical engineers have always been deeply
involved in the development of energy sources,
and with the need to move away from tradi-
tional fossil fuel the involvement of the pro-
fession has deepened. Solar energy for electric-
ity production is one area in which the chem-
ical engineering role has been notable. Effi-
cient photovoltaic solar modules for electric
power generation are very expensive because of
materials and fabrication costs, and one obvi-
ous direction has been to incorporate the con-
tinuous production methods used in fabricating films for other applications to
the manufacture of solar cells. T. W. Fraser Russell, who coauthored Intro-
duction to Chemical Engineering Analysis, from which this text evolved, led a
research and development team for the continuous production of solar cells and
designed a reactor that deposited the semiconductor continuously on a moving
substrate. Today there are commercial scale operations underway for the contin-
uous manufacture of copper-indium-gallium selenide modules on flexible plastic
substrates.
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1.3.11 Quantitative Bioscience

Chemical engineers are playing an increasingly important role in modern biology
and biomedicine. For example, Rakesh K. Jain, whose entire education is in chemical
engineering, is Professor of Radiation Oncology and Director of the Edwin L. Steele
Laboratory for Tumor Biology at Harvard Medical School. Jain and his colleagues
have focused on the development of vasculature (the network of blood vessels) and
transvascular transport in tumors, with an aim toward developing therapies. His
work has been widely recognized in the medical community and has changed the
thinking about how to deliver drugs to tumors.

Arup K. Chakraborty is a chemical engineer who uses statistical and quan-
tum mechanics to study molecular conformations. Chakraborty has made major
contributions to understanding how zeolites (“molecular sieves”) function for sepa-
ration and catalysis and how polymers interact with surfaces, but he has now turned
his attention to fundamental problems in biology. He provided the first quantita-
tive and testable explanation of how the immune synapse (the immune system’s
recognition process) functions, shed light on the mechanisms underlying the digital
response of the orchestrators of adaptive immunity (T cells), described how devel-
opment shapes the T cell repertoire to mount pathogen-specific responses, and, most
recently, illuminated how some humans can control the HIV virus. This work has
had a profound impact on the direction of immunological research, most recently in
gaining insight into the functioning of the immune system in the presence of the HIV
virus.

Rakesh Jain Arup Chakraborty

1.3.12 Public Service

Chemical engineers are often involved in public service. Lisa P. Jackson, for example,
was appointed Administrator of the United States Environmental Protection Agency
in 2009, where she directs a staff of 17,000 professionals charged with protecting
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air and water quality, preventing exposure to toxic contamination, and reducing
greenhouse gases, with an annual budget of $10 billion. Samuel W. Bodman, III,
who began his professional career as a chemical engineering faculty member, served
as the United States Secretary of Energy from 2005 through 2008, heading an agency
with an annual budget of over $23 billion and over 100,000 employees.

Lisa P. Jackson Samuel W. Bodman III

Volunteer work to provide expert advice is often done in the United States
through service on panels organized by the National Research Council (NRC),
which is the research arm of the National Academies of Science and Engineer-
ing. Alice Gast, who was introduced before, chaired an NRC panel charged with
determining whether the Federal Bureau of Investigation had employed appropri-
ate scientific techniques when it claimed to have identified the person responsi-
ble for mailing Bacillus anthracis (anthrax) spores that killed five people in 2001.
Chemical engineer Arnold Stancell, who spent most of has career in the petroleum

Arnold Stancell

industry, was a member of the NRC panel
that investigated the causes of the explosion
and fire on the Deepwater Horizon drilling
rig in the Gulf of Mexico in 2010, which
resulted in eleven deaths and the release of
more than 4 million barrels of oil into the Gulf
over a three-month period before the well,
at a water depth of 1,500 meters (5,000 feet)
plus 4,000 meters (13,000 feet) further below
the seafloor, was successfully capped. Stancell
also served on a committee that advised the
U.S. Department of Interior on new regula-
tions to improve the safety of offshore drilling.
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Stanley Sandler

Stanley Sandler and other chemical engineers
served on three successive NRC panels over
a five-year period that evaluated processes for
destroying stores of armed weapons loaded with
mustard agent and two chemical nerve agents,
sarin and VX. The destruction of these weapons
is feasible by incineration, which is safe and
environmentally benign if properly done, but
incineration is sometimes not a politically viable
option in populated areas, and the U.S. Congress
required the army to consider alternate technolo-
gies, which is the task that the NRC was asked to
carry out. Numerous technologies were evaluated
by the panels on which Sandler served.

1.3.13 Other Professions

Chemical engineers have often made use of their educations to practice other pro-
fessions. It is no surprise that many chemical engineers choose to study medicine
after completing an undergraduate chemical engineering degree, or choose to study
law, especially patent law. It is less obvious that many chemical engineers choose to
enter the financial sector, which has been a large employer.

Adam Osborne, with BS and PhD degrees in chemical engineering, developed
the first commercial portable computer, the Osborne 1, which appeared on the
market in 1981. The physicist and Nobel Laureate Eugene Wigner, who is often
called the “father of nuclear engineering” because of his World War II work on
the uranium separation process, was in fact a chemical engineer by education at
all degree levels. The physicist Edward Teller, known as the “father of the hydro-
gen bomb,” studied chemical engineering for his first university degree, as did the
mathematician John von Neumann, whose contributions ranged from game theory
to the (then) new field of digital computation, and the Nobel Laureate chemists
Lars Onsager and Linus Pauling. The former Director of Central Intelligence of
the United States, chemist John Deutch, also has a BS degree in chemical engi-
neering; so too does the Dean of the Harvard Business School, Nitin Nohria. Many
faculty members in university departments of materials science and engineering,
biomedical engineering, environmental engineering, and chemistry studied chemi-
cal engineering at the BS level, and in many cases at the PhD level as well. Some
chemical engineers have left science completely and had successful careers in the
arts or business, including the Academy Award-winning film director Frank Capra
and the actor Dolph Lundgren. (This list is not intended to suggest that a chemical
engineering education is the key to success in all fields. It is simply to suggest that the
tools needed to practice chemical engineering are widely applicable throughout the
quantitative disciplines, and that chemical engineering is an expansive profession.)
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1.3.14 The Author

As the author of this text, I come with a point of view based on my own experiences
as a chemical engineer, and it is useful to comment on these briefly. My formal
education is entirely in chemical engineering. I have worked during the course of
my career on process optimization and control, fluid mechanics, the analysis of coal
gasification reactors for the production of synthetic fuels, the rheology of complex
fluids, polymer melt processing (e.g., extrusion and textile fiber manufacture), as
well as other areas. I have served as the Editor of the AIChE Journal, the flagship
journal of the American Institute of Chemical Engineers, and as the Editor of the
Journal of Rheology. At the time of completing this text I am serving on a National
Research Council panel charged with evaluating the methodology of testing body
armor for use by the U.S. Army, and I have served on other NRC panels, advisory
committees at national laboratories, and so forth. As Director of the Benjamin
Levich Institute at the City College of New York I focus on the mechanics and
applications of “soft materials;” that is, noncrystalline materials and complex fluids
in which the microstructure (colloidal, liquid crystalline, entangled polymer, etc.)
plays a large role in determining the properties. I have a joint appointment as
Professor of Chemical Engineering and Professor of Physics.

1.4 The Essential Tools

The remainder of this text is devoted to developing the tools used by chemical
engineers for the analysis of processes of all types – chemical, physical, or biological.
These are the tools used by the practitioners cited in the preceding section, as well as
by most members of the profession. Our approach is sometimes called mathematical
modeling, because we seek to refine the skills required to transform a problem
involving physical and chemical phenomena into quantitative form. Mathematical
modeling is in some ways an unfortunate name, for the methodology depends on the
physical and biological sciences far more than on mathematics, and the mathematical
tools required are in fact quite modest; throughout the text we assume only that the
reader is familiar with the basic concepts of differential and integral calculus at
the level taught in a first course. We are generally dealing with rates in all that
we do, so the calculus is the essential language that we use for analysis, and it
is necessary to become comfortable with that language. (Recall that Newton and
Leibniz invented the calculus so that they could attack problems with changing
rates.)

The basic approach, which is outlined in the next chapter, is to use the con-
servation principles of physics – conservation of mass, momentum, and energy –
to construct the set of equations that describe the situation of interest. We will
concentrate in this text on mass conservation, and, to a lesser extent, on energy
conservation, and we will find that we can address a number of realistic prob-
lems of considerable inherent interest while developing the necessary methodology.
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We cannot, of course, address the scope of problems mentioned in the preceding
section, but the student who has mastered the skills that we set out to cover will find
that, with further study, all of the areas described previously and more are open.

Bibliographical Notes

Some of the topics described before are addressed in publications that are accessible
to the general scientific reader, and it is very important to develop the habit of going
to the scientific periodical literature and scientific monographs.

Some of my own thoughts about the profession and its development, which are
now more than twenty years old but perhaps still somewhat relevant, are in an essay
that was prepared for a symposium noting the 100th anniversary of the first chemical
engineering program in the United States. The recorded discussion following the
presentation is illuminating. It was here that the definition of chemical engineering
that starts this chapter was introduced:

Denn, M. M., “The Identity of Our Profession,” in C. K. Colton, ed., Perspectives
in Chemical Engineering: Research and Education (Advances in Chemical
Engineering, vol. 16) Academic Press, New York, 1991.

Two encyclopedias that deal with history, chemistry, and manufacturing operations
that are worth browsing, both available in updated electronic editions, are

Kirk-Othmer Encyclopedia of Chemical Technology, 5th Ed., Wiley-
Interscience, New York, 2005.

Ullman’s Encyclopedia of Industrial Chemistry, 5th Ed., Wiley-VCH, New York,
2005.

A single-volume text that addresses the traditional industries at a level that can be
understood with only the background in basic chemistry expected of readers of this
book is the most recent edition of the classic The Chemical Process Industries by
R. N. Shreve,

Austin, G. T., Shreve’s Chemical Process Industries, 5th Ed., Mc-Graw-Hill, New
York, 1984.

The technical program of the Annual (fall) Meeting of the American Institute of
Chemical Engineers contains hundreds of sessions on all aspects of chemical engi-
neering and provides a good overview of the issues of current concern. The pro-
gram can be found on the Institute’s Web site for several months prior to the
meeting.

The process for manufacturing computer chips is described in

Barrett, C. R., “From Sand to Silicon: Manufacturing an Integrated Circuit,”
Scientific American Special Issue: The Solid State Century, January 22, 1998,
pp. 56–61.
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Andrew Grove’s pioneering text on the subject is

Grove, A. S., Physics and Technology of Semiconductor Devices, Wiley, New
York, 1967.

Grove has written several books on business topics. He discusses his life in a memoir:

Grove, A. S., Swimming Across: A Memoir, Warner Books, New York,
2001.

The various physical and chemical steps that the chemical engineer must address in
the chip manufacturing process are nicely illustrated in an animated online presen-
tation that is available at the time of writing:

“How to make a chip,” http://www.appliedmaterials.com/HTMAC/animated.html

Web sites should generally be considered to be unreliable sources of information
unless those posting the material are well known and there is evidence that the
contents have been properly reviewed. Nearly all professional journals use “peer
review,” in which articles are carefully reviewed by experts to ensure that the results
are reliable. Peer review is the reason that scientists and engineers publish their
work in professional journals, rather than simply posting it on Web sites. (Review
articles, such as those referenced in this section, are sometimes published without
peer review, but the authors are carefully selected by the journal editors to ensure
accuracy and absence of bias.)

The development of the Weizmann process for acetone production is described
in the first sections of

Jones, D. T., and D. R. Woods, “Acetone-butanol fermentation revisited,”
Microbiol Rev., 50, 484–524 (1986).

The penicillin story is the subject of a collection of papers in

“The history of penicillin production,” Chemical Engineering Progress Sympo-
sium Series, 66, No. 100 (1970).

For a nice review on controlled drug release, see

Langer, R., “Drug delivery and targeting,” Nature, 392 (Supp): 5–10 (1998).

Synthetic biology and Jay Keasling’s accomplishments are discussed in the pop-
ular press in

Specter, M., “A life of its own: Where will synthetic biology take us?” The New
Yorker, September 28, 2009.
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A good overview article directed to a general scientific audience is

Baker, D., G. Church, J. Collins, D. Endy, J. Jacobson, J. Keasling, P. Modrich,
C. Smolke, and R. Weiss, “Engineering life: Building a FAB for biology,”
Scientific American, 294, 44–51 (June, 2006).

The environmental control topics mentioned in the text are described in

Seinfeld, J. H., “Air Pollution: A Half Century of Progress,” AIChE Journal,
50, 1096–1108 (2004).

Nguyen, Q. D., and D. V. Boger, “Application of rheology to solving tailings
disposal problems,” Int. J. Mineral Processing, 54, 217–233 (1998).

Seinfeld has written a basic text on air quality that is designed for an upperclass
course:

Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd Ed., Wiley-Interscience, New York,
2006.

Water quality issues that a chemical engineer might address are included in

Cech, T. V., Principles of Water Resources: History, Development, Management,
and Policy, 3rd Ed., Wiley, New York, 2009.

For an introduction to carbon nanotubes, see

Ebbesen, T. W., “Carbon nanotubes,” Physics Today, 49, 26–32 (June, 1996).

Strano’s work on nanotechnology is described in

Lee, C. Y., W. Choi, J.-H. Han, and M. S. Strano, “Coherence resonance
in a single-walled carbon nanotube ion channel,” Science, 329, 1320–
24 (2010).

Barone, P. W., H. Yoon, R. Ortiz-Garcia, J. Zhang, J.-H. Ahn, J-H. Kim, and
M. S. Strano, “Modulation of single-walled carbon nanotube photolumines-
cence by hydrogel swelling,” ACS Nano, 3, 3869–77 (2009).

The processing of carbon nanotubes into fibers is described in

Behabtu, N., M. J. Green, and M. Pasquali, “Carbon nanotube-based neat
fibers,” Nanotoday, 3, No. 5–6, 24–34 (2008).
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A more detailed scientific treatment of the fiber process is contained in the following
article, including a report of improved physical properties:

Davis, V. A., A. N. G. Parra-Vasquez, M. J. Green, P. K. Rai, N. Behabtu, V.
Prieto, R. D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W. W.
Adams, R. H. Hauge, J. E. Fischer, Y. Cohen, Y. Talmon, R. E. Smalley,
and M. Pasquali, “True assemblies of single-walled carbon nanotubes for
assembly into macroscopic materials,” Nature Nanotechnology, 4, 830–834
(2009).

For an introduction to the use of nanotechnology in textile processing, see

Qian, L., and J. P. Hinestroza, “Application of nanotechnology for high perfor-
mance textiles,” J. Textile Apparel Tech. Management, 4, 1 (2004).

The patent literature is often a good source of information, although patents can
be difficult to read because authors often work hard to minimize the amount of
information that is revealed about the product or process. Patents can be found
through online searches at the Web site of the U.S. Patent Office. The basic patent
for David Soane’s work on textiles is

Soane, D. W., “Nanoparticle-based permanent treatments for textiles,” United
States Patent 6607794, 2003.

The literature on nanotechnology is growing at an exponential rate, and new spe-
cialized journals have been established. Any general references that we might give
at the time of writing are likely to be out of date by the time of publication, and we
shall not attempt to do so.

The basic patent for Gore-Tex is

Gore, R. W., “Process for producing porous products,” United States Patent
3953566, 1976.

The development of polycyclohexylethylene for storage devices is described in a
very readable short article:

Bates, F. S., G. H. Fredrickson, D. Hucul, and S. F. Hahn, “PCHE-based
pentablock copolymers: Evolution of a new plastic,” AIChE Journal, 47, 762–
765 (2004).

There is a nice introduction to block copolymers in

Bates, F. S., and G. H. Fredrickson, “Block copolymers – designer soft materi-
als,” Physics Today, 52(2), 32–38 (1999).
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There are many good introductions to colloid and surface science, but they
presuppose a background in physical chemistry. Three written by professors of
chemical engineering are

Adamson, A. W., and A. P. Gast, Physical Chemistry of Surfaces, 6th Ed., Wiley-
Interscience, 1997.

Evans, D. F., and H. Wennerström, The Colloidal Domain: Where Physics,
Chemistry, Biology, and Technology Meet, 2nd Ed., Wiley, 1999.

Israelachvili, J. N., Intermolecular and Surface Forces, with Applications to Col-
loidal and Biological Systems, 2nd Ed., Academic Press, 1992.

For an overview of the role of colloid science in electrorheology, see

Gast, A. P., and C. F. Zukoski, “Electrorheological fluids as colloidal suspen-
sions,” Advances in Colloid Science, 30, 153 (1989).

Kristi Anseth’s work on scaffolding is described in

Cushing, M. C., and K. S. Anseth, “Hydrogel Cell Cultures,” Science, 316, 1133–
34 (2007).

A recent Macromolecules Perspective article on scaffolding is

Shoichet, M. S., “Polymer scaffolds for biomaterials applications,” Macro-
molecules, 43, 581–591 (2010).

For an overview of membrane preparation and the significance of the work of
Loeb and Sourirajan, see

Pinnau, I., “Membrane separations: Membrane preparation,” Encyclopedia of
Separation Science, Elsevier, 2000, pp. 1755–1764.

An introduction to sustainable energy written by chemical engineers is

Tester, J. W., E. M. Drake, M. J. Driscoll, M. W. Golay, and W. A. Peters,
Sustainable Energy: Choosing Among Options, MIT Press, 2005.

Russell’s contributions are described in a U.S. patent and references therein:

Wendt, R. G., G. M. Hanket, R. W. Birkmire, T. W. F. Russell, and S. Wiedeman,
“Fabrication of thin-film, flexible photovoltaic module,” United States Patent
6372538, 2002.

For a readable review of Rakesh Jain’s work on drug delivery to tumors, see

Jain, R. K., “Normalization of tumor vasculature: An emerging concept in
antiangionic therapy,” Nature, 307, 58–62 (2005).
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Arup Chakraborty’s work on the immune response is described, within a broader
context, in

Chakraborty, A. K., and A. Košmrlj, “Statistical mechanical aspects in immunol-
ogy, Annual Review of Physical Chemistry, 61, 283–303 (2010).

Chakraborty, A. K., and J. Das, “Pairing computation with experimentation:
a powerful coupling for understanding T cell signaling,” Nature Reviews
Immunology, 10, 59–71 (2010).

His initial work on the HIV virus is in

Košmrlj, A., E. Read, Y. Qi, T. M. Allen, M. Altfeld, S. G. Deeks, F. Pereyra, M.
Carrington, B. D. Walker, and A. K. Chakraborty, “Effects of thymic selection
of the T-cell repertoire on HLA class I-associated control of HIV infection,”
Nature, 465, 350–354 (2010).

All National Research Council panels, including those mentioned here, issue
reports that are peer reviewed prior to release. NRC panel reports are published
by the National Academies Press and are available for free downloading at the
Council’s Web site, http://www.nationalacademies.org.

Some recent overviews that describe work in which I have been involved include
the following:

Bonn, D., and M. M. Denn, “Yield stress fluids slowly yield to analysis,” Science,
324, 1401–1402 (2009).

Denn, M. M., “Simulation of Polymer Melt Processing,” AIChE Journal, 55,
1641–1647 (2009).

There are descriptive chapters describing my earlier work on coal gasification reac-
tors, polymer fiber spinning, and the activated sludge wastewater process in

Denn, M. M., Process Modeling, Longman, London and Wiley, New York, 1986.

PROBLEMS

The material in this chapter does not lend itself to typical quantitative problems, but
there is a great deal that can be usefully done to amplify on what has been addressed
here. Some suggestions follow:

1.1. Select a chemical engineer whose work looks interesting to you, and do a search
on his/her publications to get a broader picture. (Your library will have access
to several scientific search engines. The Thomson Reuters Web of Science is an
excellent place to begin. Its coverage is considerably broader than Google Scholar,
but the latter is open access. You should also use the person’s home page as a starting
point if one exists.)

1.2. Go to your own chemical engineering department’s home page and see what
kind of scholarly work your faculty members are doing.
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1.3. Select a topic of interest to you that involves chemical engineering, do some read-
ing, and write a short review of the outstanding issues. Here are a few suggestions of
very broad and socially important topics; they will need to be narrowed considerably
for your current purposes: water quality, air quality, global climate change, biofuels,
CO2 sequestration, solar cells for power, energy storage, nuclear waste disposal,
targeted drug delivery, nanotechnology, scaffolding for artificial organs.

1.4. Select a chemical that interests you and learn what you can about its production
and uses.

1.5. Select a process that interests you and learn what you can about its creation and
subsequent development. (Fluid catalytic cracking is a good choice if you don’t have
another.)



2 Basic Concepts of Analysis

2.1 Introduction

Chemical engineering design, operation, and discovery generally require the analysis
of complex physicochemical processes. The quantitative treatment of such systems
is frequently called modeling, which is a process by which we employ the principles
of chemistry, biochemistry, and physics to obtain mathematical equations describing
the process. These equations can then be manipulated to predict what will happen
under given circumstances. Thus, if it is a chemical reactor that we are modeling, we
will know, for example, the effect on the final product of changing the temperature
at which the reactor operates. If it is an artificial kidney that we are modeling, we
will know the time required for treatment in terms of the flow rate of the dialysis
fluid. The analysis process is straightforward and systematic. In this chapter we will
examine the approach, see how a model of one simple process unit can be obtained
and applied, and get a preview of the things to look for in more complex situations.

2.2 The Analysis Process

The specific goals of analysis are as follows:

1. Describe the physical situation through equations (obtain the model).
2. Use the model equations to predict behavior.
3. Compare the prediction with the actual behavior of the real system.
4. Evaluate the limitations of the model, and revise if necessary.
5. Use the model for prediction and design.

The logical sequence of the analysis process is shown in Figure 2.1. This is a mani-
festation of what is often called the scientific method.

The physical situations that are of interest to chemical engineers include the
behavior of objects as diverse as equipment, such as chemical or biochemical reac-
tors, heat exchangers, and distillation columns; rivers and estuaries; biological cells;
and organs or entire organisms. We might need a mathematical description of the
properties of a material – perhaps a porous membrane in terms of its composition and

23
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Figure 2.1. Logic of the analysis process.

preparation. Whether we are trying to describe the behavior of a piece of equipment,
a part of the human circulatory system, or any other physicochemical phenomenon,
the development of a mathematical model proceeds in the same manner.

The basic sources of any mathematical description are the conservation prin-
ciples for mass, energy, and momentum. Taken together with other fundamental
principles of physics, such as gravitational attraction, it seems possible in principle to
obtain a mathematical description of any physicochemical phenomenon. That this
is an unreasonable expectation in fact is obvious at once, for, although nineteenth-
century scientists thought that such an outcome was just beyond the horizon, physics
is still a very active science. (Simply recall from the basic physics course the com-
plexity of describing the state of a single gas in terms of the individual behavior of
1023 interacting molecules.) Thus, we may expect that there will be many situations
of engineering interest that are too complex for the laws of physics to be applied in
their most fundamental form. We therefore need a secondary source from which to
draw to develop mathematical models. This nonfundamental source, so essential to
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engineering analysis, produces what we call constitutive relationships. Constitutive
relationships are generally developed from careful and clever experimentation for
specific situations of interest. (The term originated in the field of the mechanics of
materials, where the word constitutive indicates that the relation is not general, but is
specific to a particular material constitution.) Development of a systematic approach
to mathematical description using the conservation laws and constitutive relation-
ships is a major concern of this text, and much of what follows is devoted to meeting
this goal.

Most mathematical descriptions will represent an essential compromise between
the complexity required for description of a physical situation that is true in every
detail and the simplicity required so that the model may be compared with experi-
ment and then used for design and operation. The degree of compromise depends
on the specific problem objectives and often determines the effort that we devote to
obtaining a model.

Given the mathematical description, it is necessary to verify that it is correct
before using it for any engineering purpose. This step is often called model valida-
tion, and it has occupied the attention of scientists and philosophers of science for
decades. Model validation requires solving the equations to predict the behavior of
the mathematical model under conditions where a direct comparison can be made
with the behavior of the real physical situation. The challenge in model validation is
to ensure that the comparison is one that truly tests the model. (We will see a very
elementary example of this challenge later in this chapter.) It is during model vali-
dation that the engineer makes value judgments about the usefulness and reliability
of a model for subsequent design and prediction. If, for a given set of objectives, the
comparison between model and physical reality is adequate, then we may proceed
to use the model; if not, we must consider why the comparison is inadequate, make
appropriate modifications, and compare again.

2.3 Source of the Model Equations

A procedure for constructing a mathematical model for an extremely simple physical
situation is shown in Figure 2.2. We presume for definiteness that we are seeking
to describe the behavior of a piece of process equipment consisting of a tank that
has liquid streams flowing in and out. The first step is the selection of what we
will call fundamental dependent variables. The fundamental dependent variables are
the collection of quantities whose values at any time contain all of the information
necessary to describe the process behavior. There are only three such fundamental
variables in most problems of interest to us: mass, energy, and momentum.

In many instances the fundamental dependent variables cannot be conveniently
measured. We do not have an energy meter, for example; rather, we deduce the
energy of a system by knowing the temperature, pressure, composition, and so forth.
Similarly, it is likely that we will deduce mass from measurements of density, volume,
and so on, whereas momentum will be deduced from measurements of velocity and
force. These characterizing dependent variables are variables that can be conveniently
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Figure 2.2. Model development for simple situations.

measured and, properly grouped, determine the values of the fundamental variables.
Generally, more than one characterizing variable (density, temperature, pressure,
flow rate, composition, etc.) is needed to specify each fundamental variable. The
values of all the characterizing variables at any time and at any point in space define
the state of the system, and characterizing variables are called state variables in the
field of process dynamics and control. (State variable has a more restricted meaning
in thermodynamics.)

There are four independent variables of concern to us in engineering problems:
time (t) and the three coordinates that establish position in space; in rectangular
Cartesian coordinates the spatial variables are usually denoted x, y, and z. In any
given situation we may be concerned with the system behavior with respect to
changes in time and space; the focus in this introductory text will be on time depen-
dence, with the occasional look at variation in one spatial dimension. Our task is
now to establish a systematic procedure for selecting the pertinent dependent and
independent variables and utilizing the conservation laws.

2.4 Conservation Equations

The first quantitative step in model development is the application of the conserva-
tion principles. This step, which we shall discuss in some detail, produces the basic
model equations for the physical situation. The conservation laws are bookkeeping
statements (balance equations) that account for mass, energy, or momentum.
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Figure 2.3. Control volume.

Consider any region of space enclosed for the purpose of “accounting” by a
(fictitious) surface, which we call the control surface; the volume within the control
surface is called the control volume. A control volume is shown schematically in
Figure 2.3. We designate the quantity to be conserved as X, which may be mass,
momentum, or energy. The conservation law may be stated as follows:

The total amount of X contained within the control volume at some time t2 is equal to the
total amount of X contained within the control volume at an earlier time t1, plus the total
amount of X that has appeared in the control volume by all processes in the time interval
from t1 to t2, less the total amount of X that has disappeared from the control volume by
all processes in the time interval from t1 to t2.

As we shall see shortly, we almost always chose t1 and t2 to be close together, because
we wish to utilize differential calculus by taking the limit as t2 → t1. Thus, denoting
t1 by t and t2 by t + �t, we write the conservation equation as

X|t+�t = X|t + amount of X entering during (t, t + �t)

− amount of X leaving during (t, t + �t). (2.1)

The symbol “ |t ” denotes “evaluated at t.” t is a given time for purposes of writing
the equation, but it can be any time.

The amount of X entering the control volume during the interval (t, t + �t)
equals the rate at which X enters (quantity/time) multiplied by the time interval:

amount of X entering during (t, t + �t) = [rate at which X enters] �t

A similar equation applies for the amount leaving. The rates may be different at
different times, but (as is always the case in applying the calculus) we presume that
the rate is constant over the vanishingly small interval �t. The word statement is
then

X|t+�t = X|t + [rate at which X enters − rate at which X leaves] �t, (2.2a)

or

X|t+�t − X|t
�t

= rate at which X enters − rate at which X leaves. (2.2b)
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We now take the limit as �t → 0. The difference quotient on the left-hand side of the
equation becomes the derivative, and we obtain

dX
dt

= rate at which X enters − rate at which X leaves. (2.3)

The derivative has the physical meaning of rate of change, and we thus find that a
completely equivalent statement of the conservation law is as follows:

The rate of change of the total amount of X contained within the control volume at any
time t is equal to the rate at which X enters the control volume at time t by all processes,
less the rate at which X leaves the control volume at time t by all processes.

Our task is now as outlined in Figure 2.2. Suppose that we have a physical problem
of interest. (We will consider several specific processes later in this chapter, and
others of increasing complexity throughout the text.) We must then decide which
conservation equations are relevant, for it is the conservation equations that deter-
mine the fundamental dependent variables. Next, we must identify the variables that
characterize the fundamental variables. Finally, we must select the control volume
in order to apply the conservation principles.

2.5 An Application of Mass Conservation

Many problems of interest involve processes that take place in well-mixed systems
with inflow and outflow. The system might be a tank used as a mixer, or a reactor
for a chemical or petrochemical process, or it might be a small bioreactor for the
production of high-value proteins from microorganisms. Many metabolic processes
in organs can be described by treating the organ as one or more well-mixed control
volumes with inflow and outflow.

Consider the cylindrical tank shown schematically in Figure 2.4. The tank con-
tains a liquid of density ρ. The same liquid flows in and out of the tank. The cross-
sectional area is A, and the height of liquid in the tank at any time t is h(t). The
inflow is at volumetric flow rate qf, measured, for example, in m3/sec, or perhaps
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ft3/min. The outflow is at a rate qe. (The subscripts f and e denote feed and effluent,
respectively.) The flow rates qf, qe, or both, might be changing with time. We assume
that the temperature throughout the system is always the same, so we needn’t worry
about the effect of changing temperature on the density. We wish to understand how
the liquid level in the tank changes, and how we might control the level.

The fundamental dependent variable is clearly mass. We could monitor the
mass directly by putting the tank on a spring balance, although that would usually be
impractical. It is likely that we will choose to characterize the mass by measuring the
volume and density, and the mass flow rates by measuring or selecting volumetric
flow rates and density. Thus, the variables describing mass conservation are ρ and A
(which are constants), h, qf, and qe.

It is not always a simple matter to identify the control volume, but in this case
the control volume is clearly the tank. The control surface, as shown in Figure 2.4,
consists of the tank walls and, if the tank is open to the atmosphere at the top, a
fictitious surface separating the contents of the tank from the surroundings.

The total amount of mass in the control volume (the tank) is equal to the density
multiplied by the volume, ρAh.* The rates of inflow and outflow are, respectively,
ρqf and ρqe. The principle of conservation of mass in rate form is then

d
dt

ρ Ah = ρqf − ρqe. (2.4)

That is, the rate of change of mass in the control volume equals the rate at which
mass enters less the rate at which mass leaves. The density is not changing with time,
so it can be taken outside the derivative, and the area A is, of course, a constant. The
density cancels from both sides of the equation, and we finally obtain

dh
dt

= qf

A
− qe

A
. (2.5)

The rate of change of the height with time (dh/dt) is zero if qf = qe, and the liquid
level remains constant. We say a system is at steady state when all time rates-of-
change (i.e., all time derivatives) are zero. Many systems are designed to operate at
steady state.

If there is an inflow, but no outflow (qe = 0), we call the system semibatch. Many
processes for the production of pharmaceuticals and fine chemicals are semibatch. qf

may be different at different times, perhaps changing continuously. With qe = 0 we
can formally write Equation 2.3 in separated form, in which everything that depends
on h is on the left-hand side and everything that depends on t is on the right-hand
side, as

dh = qf

A
dt.

* This neglects the negligible mass of any air that sits above the liquid in the tank. We could avoid this
minor complication by taking the upper surface of the liquid as part of the control surface. Nothing
in what follows would change.
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Integrating from t = 0 to any later time t we obtain

h(t) = h0 +
t∫

0

qf (τ )
A

dτ ,

where τ is a “dummy variable” of integration, representing all times between t = 0
and the present time. h0 is the height at t = 0; since there is one integration, there
will be one constant of integration, hence it is necessary to know the state of the
system at one time. The integration can be performed for any function qf(t); if qf is
a constant, we obtain

h(t) = h0 + qf

A
t.

2.6 A Design Problem

2.6.1 Problem Formulation

Few engineering problems result in models as elementary as Equation 2.5, but even
this model has one very instructive application. Consider the system shown in Fig-
ure 2.5. Suppose that qf is changing in time, but we wish to maintain the tank level
constant at a value h0 despite these changes in qf. Suppose also that we can measure
the tank level continuously, but that we cannot measure qf reliably in a continuous
manner. We will therefore monitor the liquid level continuously and adjust a valve
on the exit line, so we change qe continuously to compensate for fluctuations in qf.

Suppose the system is designed to operate at steady state (dh/dt = 0) with qf =
qe = q*, where q* is a constant, and the desired level is h*. Now suppose that at time
t = t1 there is a step change in qf, as shown in Figure 2.6a, to a value qf = q* + Q*;
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Figure 2.6. Change in feed flow rate (a) and corresponding change in tank volume (b).

qf remains at this value until time t2, after which the value again drops to qf = q*. If
qe remains unchanged, then Equation 2.5 becomes

dh
dt

= 0, < t1

dh
dt

= Q∗

A
, t1 ≤ t ≤ t2

dh
dt

= 0, t2 < t.

With h = h* for t < t1 we can then integrate this equation to obtain

h = h∗, t < t1

h = h∗ + Q∗

A
[t − t1], t1 ≤ t ≤ t2

h = h∗ + Q∗

A
[t2 − t1], t2 < t.

Note that the integration is straightforward; if dh/dt is a constant, h(t) must be a
straight line with slope Q*/A. As shown in Figure 2.6, although the flow rate returns
to the design value qf = q*, the level does not return to the design value h = h*.
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2.6.2 Feedback Control

We can design a control system to maintain the level within the desired limits by
implementing a concept known as feedback control. Level controls were probably
the earliest form of feedback control systems, and their use has been documented
as early as the third century BCE. Feedback control was largely developed during
World War II, but there was a notable early industrial application in 1788 by James
Watt, who used existing ideas to design a regulator to maintain a constant pressure
in steam engines; Watt’s design was subsequently analyzed in 1868 in a classic paper
by James Clerk Maxwell, the Scottish physicist best known for the development of
electromagnetism. Watt’s design is similar in concept to the regulator in a kitchen
pressure cooker, in which a small weight is placed atop a hole to allow some steam
to escape; if the internal pressure is too high, the weight rises to allow more steam
to escape and the pressure to fall, whereas if the pressure is too low, the weight
lowers to slow the escape of steam and allow pressure to build up. The greater the
deviation from the desired pressure, the more the control action that will be taken.
In a similar way, we monitor the tank level; we decrease the exit flow rate qe if the
level falls below a desired value, whereas if the level rises above the desired value
we increase qe. The more the deviation from the desired level, the more the control
action we require. We will assume that the control action should be proportional to
the deviation. Thus, we get

qe = q∗ + K[h − h∗], (2.6)

where K is a constant to be determined.
Now, suppose that the variations in the inlet flow rate can be represented by a

function of time Q(t); i.e.,

qf = q∗ + Q(t). (2.7)

The mass balance, Equation 2.5, then becomes

dh
dt

= 1
A

⎧⎪⎨
⎪⎩q∗ + Q(t)︸ ︷︷ ︸

qf

− q∗ − K[h − h∗]︸ ︷︷ ︸
qe

⎫⎪⎬
⎪⎭

or, equivalently,

dh
dt

+ K
A

[h − h∗] = Q(t)
A

. (2.8a)

Finally, since we are interested in the difference h − h*, and since h* is a constant,
d[h – h*]/dt = dh/dt − dh*/dt = dh/dt, and we can write

d
dt

[h − h∗] + K
A

[h − h∗] = Q(t)
A

. (2.8b)

We seek a solution to this equation starting at t = 0, where the system is presumed
to be at the desired level h = h*.

Equation (2.8) can be integrated by means of an integrating factor, which is a
standard procedure for equations of this type and is covered in detail in calculus
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texts. We note that the left-hand side of Equation (2.8) will become the derivative of
a single term if we multiply by eKt/A. Hence, we multiply both sides of the equation
by eKt/A to obtain

d
dt

{
eKt/A[h − h∗]

} = eKt/A

A
Q(t).

Integrating both sides from t = 0 to any time t, and using the fact that h − h* = 0 at
t = 0, gives

h(t) − h∗ = e−Kt/A

A

t∫
0

eKτ/AQ(τ )dτ, (2.9)

where τ is the “dummy variable” denoting all times between the two limits of the
integral.

Now let us consider again the step changes in flow rate shown in Figure 2.5a,
with Q(t) equal to the nonzero constant value Q* for t1 ≤ t ≤ t2 and zero elsewhere.
We leave it as an exercise in integration to show that

h − h∗ =

⎧⎪⎨
⎪⎩

0, 0 ≤ t < t1
Q∗
K [1 − e−K[t−t1]/A], t1 ≤ t < t2
Q∗
K [e−K[t−t2]/A − e−K[t−t1]/A], t2 ≤ t

.

The response is shown in Figure 2.6b, where it is compared with the behavior of
the system without control (K = 0). The difference is striking, and it is clear that by
proper choice of K the fluctuations in tank level can be kept within desired limits.

2.6.3 Controller Design

Thus far we have been engaged in an exercise that allows us to calculate the level
response for any given change in the inlet flow rate, with and without feedback
control. What we really need is a way of designing the control system; that is, of
specifying the feedback gain K of the controller so that the system always stays
within desired tolerances, regardless of the specific nature of the disturbance. We
can accomplish this with the model equation. We suppose that fluctuations in the
inlet feed will never exceed a fraction f of the total design flow rate, q*; that is,

maximum of |Q(t)| ≤ f q∗.

We wish to choose K such that fluctuations in the liquid level never exceed a fraction
ϕ of the design level h*; that is,

maximum of |h(t) − h∗| ≤ ϕh∗.

From Equation (2.9) we can then write the constraint on |h(t) − h*| as

maximum of

∣∣∣∣∣∣
e−Kt/A

A

t∫
0

eKτ/AQ(τ )dτ

∣∣∣∣∣∣ ≤ ϕh∗.
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The left side of this inequality will take on its largest value when Q(t) is as large as
possible for all time, so we replace Q(t) in the integral with fq* and write (noting
that we can drop the absolute value signs, since all terms are positive)

e−Kt/A

A

∫ t

0
eKτ/A f q∗dτ ≤ ϕh∗.

Since fq* is a constant, the integral is only an exponential, and we carry out the
integration to obtain

f q∗

K

[
1 − e−Kt/A] ≤ ϕh∗.

The left side takes on its largest value for t → ∞, so we have

f q∗

K
≤ ϕh∗,

or, solving for K,

K ≥ f q∗

ϕh∗ .

The smallest value satisfying this inequality will require the least activity on the part
of the control system while still satisfying the design specifications. Thus, the solution
to our design problem is

K = f q∗

ϕh∗ ; (2.10a)

that is, the minimum feedback gain required to meet the design specifications is the
ratio of the maximum expected flow rate perturbation to the maximum acceptable
perturbation in height. The exit flow rate is thus required to depend on the liquid
level by the equation

qe = q∗
[

1 + f
ϕ

(
h − h∗

h∗

)]
. (2.10b)

For example, if feed-rate fluctuations can go as high as 10 percent of the design feed
flow rate, and it is required that the liquid level stay constant to within 0.15 percent,
then f = 0.10, ϕ = 0.0015, and

qe = q∗
[

1 + 66.7
(

h − h∗

h∗

)]
.

That is, for each percentage change in measured liquid level, the exit flow rate is
increased or decreased by 66.7 percent to ensure that the design tolerance is never
exceeded. Note that this is a conservative design, and that generally the fluctuations
in h will be less than 0.15 percent.

Figure 2.7 shows the results of a simulation (i.e., a solution of the model for a
specific case) for A = 10 cm2, h* = 100 cm, and q* = 25 cm3/s, with f = 0.10 and
ϕ = 0.0015 (K = 16.67 cm2/s). The disturbance is plotted as Q(t)/q* in Figure 2.7a,
whereas the response is plotted as [h(t) − h*]/h* in Figure 2.7b with and without
control. It is clear that the controller is effective in maintaining the level within the
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specification of a maximum variation in height of 0.15 percent of the design value,
despite inflow fluctuations that are sometimes large.

2.6.4 Further Comments

The proportional controller designed here is the type that is routinely used in level
control applications. A few questions arise about this particular selection of a design
methodology, and it is worth a brief digression here, although the issues will be
addressed in a broader context subsequently in the curriculum. First, we may ask
why we did not choose the alternative strategy of measuring the changes in qf and
changing qe so as to keep dh/dt = 0 at all times. This strategy is known as feedforward
control, wherein we attempt to measure the disturbance and compensate for it
directly, rather than controlling by measuring the deviation from the desired state.
Feedforward control can be an effective strategy, but it has one obvious disadvantage:
We never deal directly with the quantity that we wish to control (the level), so any
small error in measurement or compensation will result in a change in the level that



36 Basic Concepts of Analysis

qe

Area Area

h

AAo

Liquid
density ρ

Figure 2.8. Tank draining through an orifice in the
bottom.

will never be corrected. In that sense, feedback is a more conservative approach. In
reality, a combination of feedforward and feedback is often employed.

Examination of Equation 2.9 shows another concern that might need to be
addressed in practice. If the inflow simply changes by a constant amount and never
changes back to zero, the height will never return to the value h*, but will rather go to
a steady-state value h = h* + Q*/K. Q*/K is known as steady-state offset. Steady-
state offset is not a problem if the disturbances are continuous and exhibit posi-
tive and negative deviations from the design basis. There are straightforward ways
to address steady-state offset, but that is beyond the scope of this introductory
treatment.

2.7 Are Conservation Equations Sufficient?

2.7.1 The Draining Tank

The example used thus far illustrates the logic in Figure 2.2, but it is deceptive in its
simplicity. It is, in fact, unusual that the conservation equations alone lead so directly
to a model that can be employed for analysis and design. We illustrate this important
point here with a slight variant of the tank problem, as shown in Figure 2.8. There
is no inflow (qf = 0); the tank empties by gravity-driven flow through a small hole,
or orifice, in the base. The area of the orifice is A0. As before, there is no heating or
cooling, and the temperature of the liquid remains constant. Our objectives might
be the answer to some or all of the following questions:

How long will it take the tank to drain?

How does the height of liquid vary with time?

How does the flow rate through the orifice vary with the depth of liquid?

This tank draining is a physical situation with which most people have had direct
experience; if not, it simply requires punching a hole in a large can, filling it with
water, and then observing the behavior as the liquid flows out. Observation shows
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us that the level in the tank decreases with time, the flow rate of liquid through
the orifice varies with the height of the liquid and with the size of the exit orifice,
and the tank empties completely in a finite time. Little more can be said with verbal
statements, and we turn again to the conservation equation. The situation is identical
to that leading to Equation 2.5, so with qf = 0 we obtain

dh
dt

= −qe

A
. (2.11)

In contrast to the preceding example, Equation 2.11 is a single equation involving
two quantities that we do not know: the liquid height, h, and the effluent rate, qe.
(Henceforth, since there is only one flow rate and there is no possibility of confusion,
we will denote the effluent flow rate simply by q.) Since we have two unknowns
and only one equation we must seek a second relation. This relation can, in fact,
be established with some approximations from the principle of conservation of
momentum or from the principle of conservation of energy, either of which can be
used to derive a fundamental relation in fluid mechanics known as the Bernoulli
equation; indeed, you may have already been introduced to the Bernoulli equation
in a physics course. It is often the case, however, that we are unwilling or unable
to apply further conservation equations at a convenient level of complexity, and we
shall presume somewhat artificially that such is the situation here. Our additional
relationship between q and h, the constitutive relationship, must then be obtained by
intuition and/or experiment. We anticipate that a relationship obtained in this way
will be rather less general than one based on fundamental conservation principles,
and we must use great care in applying the results to situations that differ very much
from the conditions of any experiments that we have performed.

Now, we know that the flow occurs through the orifice because the pressure in
the liquid at the base of the tank is greater than the pressure of the atmosphere, thus
forcing the liquid out, and that the greater the pressure difference the greater the
flow. We can express the general relationship as q = q(�p), by which we mean that
q, the flow rate, is a function of �p, the pressure change across the orifice. If the
top of the tank is open, then the pressure there, too, is atmospheric. The pressure
in the liquid at the bottom of the tank exceeds the pressure of the atmosphere by
the weight per unit area of the liquid column, which is proportional to the height of
liquid. The pressure difference, or driving force for flow, is therefore proportional
to h. It is the functional relationship of q to h, denoted as q(h), that we seek as our
second relation to supplement Equation 2.11. The approach that we shall take is
to postulate the form of the dependence of q on h (our constitutive relation), solve
the model Equation 2.11 for h, and then check the prediction of the model with the
experimental data. If the model and data do not agree, we will use the way in which
they disagree as an aid in postulating a new dependence. (This is the Revision step
in Figure 2.1.)

Table 2.1 shows some data of liquid (water) height versus time for three experi-
mental runs in a draining tank. (Height was taken as the independent variable in the
experiment, since it is easier to read the time for a given height than vice versa. The
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Table 2.1. Liquid height versus time for the tank emptying
experiment. Tank diameter = 27.3 cm (10.75 in.), tank height
= 30.5 cm (12 in.), orifice diameter = 1.55 cm (0.61 in.)

Height of liquid Time Height of Liquid Time
(centimeters) (seconds) (centimeters) (seconds)

30.5 0 15.2 36.4
0 35.8
0 36.4

27.9 5.8 12.7 43.8
6.1 42.8
5.9 43.8

25.4 10.9 10.2 51.0
11.5 50.5
11.6 51.6
22.9 16.6 7.6 60.2
17.8 59.2
17.2 60.6
20.3 23.0 5.1 71.0
23.5 69.8
23.0 71.4
17.8 30. 0 85.0
29.2 84.0
29.8 85.2

data were originally recorded in even inches, and the centimeter values are rounded
to one decimal place.) The data are plotted in Figure 2.9. In most cases the three data
points cannot be distinguished on this scale, and only a single point is shown. There
are also two lines in Figure 2.9; the lower line is a straight line drawn through the first
three data points and extrapolated, while we will discuss the upper line a bit later.
The data clearly indicate that the slope (i.e., the rate of change of height), which is
proportional to the flow rate, decreases in magnitude with decreasing height. This is
consistent with our understanding of the physical process: We know the liquid will
flow out more slowly for a small height than a large one, and there can be no flow
if there is no liquid height at all. This last observation seems trivial but in fact has a
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profound implication, for it tells us that whatever the relation between q and h may
be, q must vary as a positive power of h for sufficiently small h.

2.7.2 Assuming Linearity

It is instructive at this point to follow what will turn out to be a nonproductive
path. Early physical scientists, including Leonardo de Vinci and Newton, were often
confronted with the type of problem we face here, that of determining a constitutive
relation (although Leonardo and Newton did not use these twentieth-century words).
Their choice was frequently to assume linearity, which would lead to the form q =
kh, where k is a constant. Equation 2.11 then simply becomes

dh
dt

= − k
A

h. (2.12)

The only function proportional to itself is an exponential, so we know the solution to
this first-order, homogeneous ordinary differential equation, but it is useful to work
through the details of the solution. The equation is separable, and we can follow the
shortcut “separation of variables” method to write Equation 2.12 symbolically as

dh
h

= − k
A

dt

or, integrating time between t = 0 and a later time t, and the height from its value h0

at time t = 0 to its value at t, we have

ln
h(t)
h0

= −kt
A

. (2.13)

Taking the exponential of both sides yields

h(t) = h0e−kt/A. (2.14)

It is always best to compare a model to data on a plot where the data are expected
to be linear, since that minimizes the effort and permits us to employ the method of
least squares (Appendix 2E) if we wish. In this case, based on Equation 2.13, we plot
the natural logarithm of h(t)/h0 versus t, as shown in Figure 2.10. The data are linear
only over the first three or four points, so the assumed functional form is clearly
incorrect, but that is not surprising; Equation 2.14 predicts that an infinite time is
required for the tank to drain, while we know that the tank empties in a finite time.
Equation 2.14 is shown as the upper line on Figure 2.9, where the value of k/A used
is that obtained by fitting the short-time data in Figure 2.10.

2.7.3 Power Dependence

The two lines in Figure 2.9 bound the actual behavior. The exponential response
shows that a linear dependence of qe on h is too strong. The straight line, correspond-
ing to no dependence, or qe = constant, is too weak. It often happens that physical
phenomena are described by power relations (sometimes called power laws), either
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Figure 2.10. Natural logarithm of liquid height versus time. The straight line is Equation 2.10.

for sound theoretical reasons or simply because the power relation fits data well
over one or more decades of the independent variable. In the case at hand, a power
relation would be of the form

qe = khn (2.15)

with 0 < n < 1. Equation 2.11 then becomes

dh
dt

= −khn

A
(2.16)

or, in separated form,

dh
hn

= − k
A

dt.

Integrating the right side from time zero to the present time, and the left side with
respect to h from h0 at time zero to h at the present, we obtain

h1−n

1 − n
− h1−n

0

1 − n
= −kt

A
(2.17a)

or, solving the algebraic equation for h,

h(t) = h0

[
1 − k[1 − n]

Ah1−n
0

t

]1/[1−n]

. (2.17b)

The system empties in a finite time only for n < 1. For n = 0 we simply have qe =
constant and we recover the straight line in Figure 2.9. It is readily shown that
Equation 2.17b reduces to Equation 2.14 in the limit n → 1, so, in fact, the power
relation includes the two simpler limiting cases.

Now this slight generalization has, in fact, greatly increased the complexity of
the analysis, for there are now two parameters, k and n, that must be determined
from the experiment. A rational approach might be to choose a value for n, plot h1 − n

versus t as motivated by Equation 2.17a, and check for linearity, choosing a new value
of n according to how the data deviate from linearity. Ultimately we will arrive at the
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Figure 2.11. Square root of liquid height versus time. The straight lines are Equation 2.14 for
n = 1/2.

“best” value of n to represent the data and find the corresponding value of k. There
is good reason to believe, however, that n = 1/2 is the proper value. In Appendix
2A we show by estimating the derivative of h from the data that n must lie between
0.37 and 0.66, with the most likely value close to 0.5. In Appendix 2D we obtain
the result n = 1/2 using a technique known as dimensional analysis, which follows
from the requirement that all terms in an equation must have the same dimensions.
The topic is also briefly addressed in the next section. With n = 1/2, Equation 2.17b
becomes

h1/2 = h1/2
0 − kt

2A
, (2.18a)

h = h0

[
1 − kt

2Ah1/2
0

]2

. (2.18b)

Figure 2.11 shows a plot of h1/2 versus t, and, although there is some scatter to the
data, the best line* through all points has a slope − k/2A = −0.046 cm1/2 s−1. We
conclude, then, that the flow rate qe in this experiment is well represented by the
relation

qe = 8.3h1/2,

where we have used the value of A from Table 2.1. (We can also fit a line to the first
four data points on Figure 2.11. If we do this we find that the slope of such a line is
− k/2A = − 0.041, which is slightly different from the value obtained using all data
points. This is due to scatter in the data.)

The analysis process has now been illustrated to the point where the particular
physical situation has been adequately modeled. We still need to consider how

* For a discussion of obtaining the best fit to a set of data, see Appendix 2E.
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reliable the mathematical description may be when used to predict behavior in
similar systems for purposes of design. We know nothing, for example, about the
nature of the parameter k beyond this experiment, particularly how its value changes
with tanks and holes of different sizes. We are not sure that n = 1/2 will work for
all cases where we have flow from a vessel caused by the liquid head. The further
information that we need can be obtained empirically if a series of experiments can
be designed to test all parameters that may be of importance. Some further analysis,
undertaken in the next section and particularly in Appendix 2D, can greatly simplify
and direct this experimental design.

2.8 Characteristic Time

In our study of the comparison between the proposed models and actual experi-
mental results for the tank-draining problem we have observed a phenomenon that
is of great significance and bears further investigation. Recall that we mentioned
previously that the challenge in model validation is to ensure that the comparison is
one that truly tests the model. We have seen that the data near t = 0 are adequately
represented by Equation 2.17 with n = 0 (the straight line), n = 1 (the exponential,
Eq. 2.14), and n = 1/2. Clearly the data for short time do not test the model!

The use of some elementary calculus explains why any value of n seems to be
adequate for short times. Consider the power-law expression in Equation 2.17b,
which includes the exponential when n = 1 and the straight line when n = 0. The
function (1 + x)α has a series representation

[1 + x]α = 1 + αx + α[α − 1]
2

x2 + · · · .

Denoting x = −k[l − n]t/Ah1−n
0 and α = 1/(1 − n), we can then write Equation

2.17b as

h(t) = h0

⎧⎨
⎩1 − kt

Ah1−n
0

+ n
2

[
kt

Ah1−n
0

]2

− · · ·
⎫⎬
⎭ .

When t is small, the quadratic, cubic, and higher terms will be much smaller than the
first two (when x = 0.1, x2 = 0.01, x3 = 0.001, etc.), so the power-law model predicts
short-time behavior closely approximated by

h(t) � h0

[
1 − kt

Ah1−n
0

]
. (2.19)

Two conclusions stand out. All models investigated give an identical (linear)
functional dependence between h and t for small time. Hence, a poorly designed
experiment that took insufficient data would show no differences between models and
might be used to justify the assumption that qe is independent of h. The use of that
model for predictive purposes might lead to gross errors in a problem where the level
changes are a significant fraction of the total height. On the other hand, we might
conceive of applications where only the behavior over a short time is required. In



2.9 Scaling and Dimensions 43

such a situation the simplest model suffices and no further sophistication is required.
This demonstrates rather forcefully the role that problem objective plays in model
formulation and comparison, as shown in the logic diagram (Figure 2.1).

One further observation is in order. We have been discussing “short time” and
“long time” as though time, as measured by a clock, were the pertinent variable. This
is not the case, a fact that has important physical implications. Examining Equation
2.17b we see that h(t) is a function only of the quantity kt/Ah1−n

0 . It is this quantity
that must be small if the approximation used in deriving Equation 2.19 is to be valid.
Just what we mean by “small” depends on the particular situation. In the example
we have been discussing, a value of k/Ah1−n

0 equal to 0.015 s− 1 was small enough to
produce agreement between all three values of n at times up to 17 sec. If we could
be satisfied with agreement on the order of 10 percent, the terms could be larger and
still fall into the “small” category. We thus see that it is not time that must be small
but a ratio t/θ , where we will call θ a characteristic time. The characteristic time for
each model considered here is Ah1−n

0 /k for 0 ≤ n ≤ 1. That θ truly has dimensions
of time is easily verified: khn

0 is the initial flow rate, with dimensions of volume per
time, while Aho is the initial volume; a volume divided by a volume per time has
dimensions of time. Hence, t/θ is dimensionless.

Realizing that t/θ is the key grouping of parameters in this problem enables
us to decide on the model complexity required in any given physical situation. If,
for instance, we were designing a control system to maintain a constant level in a
tank when flows to and from the tank change from their desired values over a time
duration tD, then we could use the simplest model, which assumes the flow rate is
independent of height (n = 0), if tD/θ for the tank in question were small enough
that there would be negligible error in using the simple model. On the other hand, if
the deviations between the predictions of the two models should be significant, then
we would have to make a decision either to obtain accurate prediction with a more
complex model or to compromise with less accurate prediction and a simpler model.
The decision is not crucial in this case, of course, since both models are really quite
simple. The best level of compromise is often difficult to reach in more complicated
situations. A careful analysis of how the model equation fits into the overall problem
must always be carried out. If it is a part of a more complex mathematical description,
simplicity is obviously important, whereas if the particular model is to be used alone,
simplicity may not be as desirable as accurate prediction.

2.9 Scaling and Dimensions

The dimensions of the variables that appear in a problem, and the units used for
measurement, are vital considerations in any scientific and engineering analysis. The
requirements of dimensional consistency in equations and the use of dimensional
analysis, in particular, are powerful tools. Chemical engineering curricula differ on
the placement of these topics. Systems of units and dimensional consistency are often
covered in courses in chemistry or physics. Dimensional analysis is often covered as
a topic in one of the transport courses. We have included these topics as a series
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of brief appendices to this chapter so as not to break the flow for those who have
studied them previously or will put dimensional analysis off to a subsequent course.
We call particular attention to the treatment of orifice flow by dimensional analysis
in Appendix 2D, which leads directly and naturally to the n = 1/2 relation.

It is useful at this time to consider some simple implications of the dimensions of
the variables in the draining tank. We start by recalling that the physical relation we
need is really between flow rate qe and pressure change �p; h entered directly only
because we know that the pressure change from the liquid inflow to the orifice is
proportional to liquid height, and height is the quantity that we are measuring. Now,
a pressure is a force exerted per unit area, but we can also think of it as force ×
distance (i.e., work) divided by area × distance (i.e., volume). So pressure change is
the work per unit volume, or, equivalently, the energy required per unit volume, to
push the liquid through the orifice. The average velocity of the liquid going through
the orifice is qe/A0 (flow rate is area times velocity), so the kinetic energy per unit
volume is 1/2ρ(qe/A0)2. (Kinetic energy is mass multiplied by one-half the square of
velocity. Mass is density multiplied by volume.) We know that not all of the work
required to force the liquid through the orifice can be converted to kinetic energy,
because the Second Law of Thermodynamics requires that some of the work be
dissipated and lost. (Otherwise we could recover all of the work as kinetic energy,
use the kinetic energy to do work, and build a perpetual motion machine.) We
nevertheless expect the kinetic energy of the liquid and the work required to cause
the liquid to flow to be of comparable magnitude, so we write

ρ [qe/A0]2 ∼ �p

where the symbol ∼ means “is of the same order as.” Since �p = ρgh, where g is the
gravitational acceleration, we expect

qe/A0 ∼ [gh]1/2, (2.20)

which is the n = 1/2 dependence found in Section 2.7. We now have the additional
information, however, that we expect the constant k to be proportional to A0g1/2,
which permits us to test the relation by using orifices of different diameters.

The simple scaling analysis that we used here, which is of a type frequently used
by engineers and physical scientists, is, in fact, a rough sketch of the derivation of
the Bernoulli equation mentioned earlier. The critical assumption in that derivation
is that viscous losses because of fluid friction are small compared to the work and
kinetic energy contributions.

2.10 Concluding Remarks

Flow in and out of a tank illustrates the basic elements of the analysis process,
including the limitations of the use of the conservation equations, the need for
situation-specific constitutive relations, and the types of issues that will arise in model
validation. The level controller is an elementary example of an engineering design
problem. In Chapter 4 we will consider systems in which there is more than one
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component; this will reinforce and expand on the points made here, as well as provide
an opportunity to consider problems of much greater significance and interest.
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PROBLEMS

2.1. A wedge-shaped tank (Figure 2P.1) is filled and emptied at constant flow rates
qf and qe, respectively. The liquid density is a constant at all times. The liquid height

* There is an obvious error at the bottom of p. 270, where the phrases in the minor premise and
conclusion of the syllogism should be reversed.
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is h0 at t = 0. Find the height at any time. (Hint: Write the model equation in terms
of h2 in order to obtain a form that is easy to integrate.)

B

qf

qe

H
h

Length = L

Figure 2P.1. Wedge-shaped tank filling at constant volumetric flow rate qf and emptying at
constant volumetric flow rate qe.

2.2. The system shown in Figure 2P.2 might be used to load ore onto barges for
shipment. Let W1 be the constant mass flow rate of ore onto the barge, and let M be
the mass of ore at any time. After the pile has reached a mass M0, ore is lost over
the side at a mass flow rate W2. The loss rate is roughly proportional to the amount
of ore in excess of M0 at any time.

a. The barge is initially empty. Calculate the time t0 at which the ore on the
barge reaches M0.

b. How does M depend on t for M > M0? What happens as t → ∞?

Conveyor belt

Barge

Ore

Figure 2P.2.

2.3. Consider Equation 2.6, and now suppose that we wish to use a combination of
feedback and feedforward control in the form qe = q∗ + Kf b(h − h∗) + Kff Q(t).
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a. Show that you obtain perfect control (h = h* at all times) for Kff = 1. Show
that steady-state offset is reduced for Kff < 1. (Why should Kff never be
greater than unity?)

b. Now suppose that some input disturbances are unmeasured, or there is
unknown measurement error, in which case Q(t) = Qm(t) + Qu(t), where
the subscripts m and u refer to measured and unmeasured, respectively. The
controller then has the form qe = q∗ + Kf b(h − h∗) + Kff Qm(t). Obtain
the equation for the response of the controlled system. How should Kfb

be chosen if Kff = 1? If Kff < 1?
c. In your physics course you may have studied the damped harmonic oscilla-

tor. If so, consider the case in which the feedback controller is proportional
plus integral, or PI, control:

qe = q∗ + Kf b(h − h∗) + KI

t∫
0

[h(τ ) − h∗]dτ .

Show that the equation for the flow in the tank becomes identical to the
equation for the damped harmonic oscillator, and that steady-state offset is
eliminated for Q(t) = constant.

2.4. The following data were obtained in a cylindrical vessel of diameter 2.54 cm (1.0
in.) that was allowed to drain through an orifice of diameter 0.109 cm (0.043 in.).

Height
(cm) (in.)∗ Time (s)

38.1 15 0
35.6 14 6.0
33.0 13 12.2
30.5 12 18.7
27.9 11 25.5
25.4 10 32.7
22.9 9 40.3
20.3 8 48.3
17.8 7 56.7
15.2 6 66.1
12.7 5 76.2
10.2 4 87.6

7.6 3 101.0
5.1 2 117.5
2.5 1 140.7

*The data were originally measured in
inches and converted to centimeters.

a. Fit the equation q = kh to the first five data points and estimate the error at
140.7 seconds.

b. Suppose that q = C Ao
√

gh (cf. Section 2.9 and Appendix 2D). Find C.
How does this value compare with the value calculated from the data in
Table 2.1?
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2.5. A chemical operator is draining a tank originally full of crude oil. The tank
measures 0.91 m (3 ft) in diameter. The operator opens a valve with a 3.18 cm (1–1/4
in.) diameter in the tank base. He records the following data as the level falls from
the initial height to 1.83 m (6 ft):

Height
(m) (feet) Time (s)

3.05 10 0
2.74 9 54.0
2.29 7.5 142.9
2.13 7 172.5
1.83 6 240.2

a. The operator assumes that the flow rate is steady and puts a straight line
through these data. When would he expect the tank to empty?

b. You believe that q = kh1/2. Using these data, find k and estimate the time
for the tank to empty. How different is your estimated time from that in
part a?

c. Assume for the result in part b that k = C A0
√

g. What value do you compute
for C?

2.6. A tank is filled at a constant flow rate qf, while it empties through a valve for
which the flow rate is equal to kh1/2. Will this system come to a steady state (dV/dt =
0)? If so, what is the height at steady state?

2.7. A water clock is a vessel that has a shape such that the liquid level h decreases at
a constant rate. In this way, water level markings can be easily calibrated with elapsed
time. Water clocks were used in antiquity. Determine the shape of an axisymmetric
water clock, assuming that water flows out through an orifice at the bottom at a rate
proportional to h1/2.

PROBLEMS ON DIMENSIONAL ANALYSIS (APPENDIX 2D)

2D.1. A rock of mass m falls in a vacuum under the acceleration of gravity (g). Use
dimensional analysis to find an expression for the distance s fallen in time t in terms
of m, g, and t. Compare with the result that you learned in your introductory physics
course.

2D.2. a. A simple model of a gas assumes that the molecules are rigid spheres moving
randomly with a mean speed u. The pressure, p, depends on u; on the number
of moles, n; on the molecular weight, Mw; and on the volume, V. Find an
expression for p.

b. Recall from your physics or chemistry course that the average kinetic energy
in this model of a gas is proportional to the absolute temperature, T. Thus,
replace Mwu2 in your solution to part a with a constant multiplied by T. Show
that this substitution results in the ideal gas relation, pV = nRgT, where in
this case Rg is an unknown constant.
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2D.3. When a low molar mass liquid, like water or glycerine, flows through a long
pipe of length L the volumetric flow rate Q depends on the liquid density, ρ; the
pipe radius, R; the liquid viscosity, η (Pa s); and the pressure gradient, or pressure
change per unit length, �p/L.

a. What are the relevant dimensionless variables, and how does Q depend on
the problem variables?

b. At low flow rates a series of experiments is carried out to measure the
dependence of Q on �p/L while holding ρ, R, and η constant. It is found that
Q is proportional to �p/L. How will Q depend on R? How does Q depend
on the density? Explain the density dependence in physical terms. (This
dependence was first found between 1837 and 1840 by Hagen in Germany
and Poiseuille in France, and the resulting equation is known as the Hagen-
Poiseuille Law.)

Appendix 2A: Estimating an Order

In Section 2.7.3 we were faced with finding the parameter n in the two-parameter
constitutive relation

qe = khn.

Such “power laws” appear frequently in engineering and science. n is known as the
order of the process. With data that are reasonably free of experimental scatter it
is often possible to estimate the order within reasonably narrow bounds, and hence
reduce or eliminate the trial-and-error nature of the computations. This is frequently
done to determine the order of chemical reactions, for example. If we take logarithms
of both sides of Equation 2.15 we obtain

ln
[
−dh

dt

]
= ln

k
A

+ n ln h. (A2.1)

Thus, a plot of ln [–dh/dt] versus ln h will have slope n. However, we do not have
dh/dt available. If the data are reasonably free of error and closely spaced over
regions where h is changing rapidly, we can approximate − dh/dt as –�h/�t, where
�h refers to the change in height over a corresponding change �t in time. Then,
approximately,

ln
[
−�h

�t

]
� ln

k
A

+ n ln h. (A2.2)

The height-time data from Table 2.1 are reproduced in Table 2A.1 using average
times from the three experimental runs and plotted as the logarithm of − �h/�t
versus the logarithm of h in Figure 2A.1. Since the derivative is estimated over a
range of heights the data are plotted as the mean height with a band (|–|) to represent
the range. Although no definitive statement can be made because of the spread in
the data, it is clear that the mean values in the region of least scatter are best fit
with a line of slope n = 0.5. The height changes too rapidly and there is too much
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Table 2A.1. Liquid height versus average time for the tank-emptying
experiment in order to obtain ln ( − �h/�t) versus ln h. (�h = 2.54 reflects
the fact that the original heights were measured in integral values of inches.)
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Figure 2A.1. Natural logarithm of − �h/�t
versus natural logarithm of height. The band
represents the range of heights over which the
slope was calculated.
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scatter in these estimates of derivatives to be of any use when h is greater than 20 cm
(ln h > 3), and any slope will fit the data equally well. This is equivalent to our
previous observation that all models are equivalent at short times.

It is essential to emphasize that, although approximating derivatives is a helpful
and sensitive way to estimate order (power) when the data are good and closely
spaced, any attempt to estimate k by means of the intercept will give extremely poor
accuracy. For the data shown here, errors in k of the order of 20 percent can be
expected because of the spread about the mean at each point. The system equation
must be integrated to obtain the parameter k.

Appendix 2B: Systems of Units

There are five systems of units that are commonly used in English-speaking countries,
two “metric” and three “Imperial.” It is necessary to be familiar with each. The
quantities we generally measure are length (L), time (θ), mass (M), force (F), and
temperature (T). The fundamental unit of time is always seconds, but the units of
one or more of the other quantities vary from system to system. A basic relation
necessary to our discussion is that between force and mass, Newton’s principle of
acceleration (Newton’s Second Principle), which states that the force required to
accelerate a given mass uniformly is equal to the product of mass and acceleration:

f = ma. (2B.1)

The dimensions of acceleration are length per time per time or, symbolically,

a[=]Lθ−2. (2B.2)

The symbol [=] means “has dimensions of” or “has units of,” depending on the
context. Thus, the dimensions of force,

F[=]MLθ−2, (2B.3)

are defined in terms of M, L, and θ .
The system of units most commonly used in scientific work through most of the

twentieth century is the cgs, or centimeter-gram-second, system. Here, length is mea-
sured in centimeters (cm), mass in grams (g), time in seconds (s), and temperature
in degrees centigrade or Celsius (◦C). From Equation 2B.1, then,

force[=] g cm s−2.

The cgs unit of force is called the dyne (d), so we have the definition

d[=] g cm s−2.

Now there is an important, but subtle, point here. We have introduced the units
centimeter, gram, second, and dyne, four quantities of which only three are indepen-
dent. If we wish to measure force in dynes, mass in grams, length in centimeters, and
time in seconds, then Equation 2B.1 does not have consistent units, and we need to
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Table 2B.1. Units of the cgs
(centimeter-gram-second) system

Length [=] centimeter, cm
Mass [=] gram, g
Time [=] second, s
Force [=] dyne, d
Temperature [=] degrees centigrade, ◦C
gc = 1 g cm/d s2

rewrite it to include a conversion factor, commonly called gc:

gc f = ma (2B.4)

gc[ = ]
g cm2

d s2
.

The conversion factor is frequently omitted in the cgs system because its numerical
value is unity. Such is not the case in all systems, however, and it is good practice to
include gc whenever force and mass both appear. Finally, let us recall that the weight
of an object, w, is the force caused by the acceleration due to gravity,

gcw = mg. (2B.5)

The acceleration due to gravity is approximately 980 cm/s2, so the weight of a 1 g
mass is 980 d. There is an unfortunate confusion between mass and weight. The mass
of an object is the same anywhere in the universe; the weight of an object depends on
the gravitational acceleration and varies slightly from place to place, even on earth.
The cgs system is summarized in Table 2B.1.

A closely related system is the S.I., or International System (Système Inter-
national d’Unités), in which the units of length, mass, time, and temperature are,
respectively, meter (m), kilogram (kg), second, and Kelvin (K). (A change of 1 K
is the same as a change of 1◦C, but the Kelvin scale starts at absolute zero; i.e.,
0◦C = 273.15 K.) The unit of force, called a Newton (N), is numerically equal to
one kilogram meter per second per second, so that gc again has a numerical value of
unity. The system is summarized in Table 2B.2. The S.I. has been adopted by most
countries and is now the required system of units for the AIChE Journal, published

Table 2B.2. Units of the S.I. (International System)

Length [=] meter, m 1 m = 100 cm
Mass [=] kilogram, kg 1 kg = 1,000 g
Time [=] second, s
Force [=] Newton, N 1 N = 105 d
Temperature [=] Kelvin, K 1 K = 1◦C
gc = 1 kg m/N s2
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Table 2B.3. Units of the fps (foot-pound-second) system

Length [=] foot, ft 1 ft = 30.48 cm
Mass [=] pound-mass, lbm 1 lbm = 453.59 g
Time [=] second, s
Force [=] poundal, lbl 1 lbl = 13,826 d
Temperature [=] degrees Fahrenheit, ◦F 1◦F = 5/9◦C
gc = 1 lbm ft/lbl s2

by the American Institute of Chemical Engineers, and most other technical publi-
cations. It has not been widely adopted by U.S. engineers, however, so it remains
necessary to be familiar with the various systems and their interconversions.

The basic Imperial system is the fps, or foot-pound-second system. Here the
units of length, mass, time, and temperature are, respectively, the foot (ft), pound-
mass (lbm), second, and degree Fahrenheit (◦F). In the fps system the unit of force
is defined in such a way as to keep gc numerically equal to unity. This force unit, the
poundal (lbl), is defined as

1 lbl = 1 lbm ft s−2.

The system is summarized in Table 2B.3. The fps is a logical system, but it is sel-
dom used because of the unfortunate general confusion between mass and weight.
Although incorrect, it has become common to talk of both mass and force, particu-
larly the force, weight, in pounds, as though the two were the same.

The Imperial engineering system, sometimes simply called the Imperial system,
was developed in an attempt to avoid confusion, and it is the most common system
in use in the United States. In this system, summarized in Table 2B.4, the units
of length, mass, time, and temperature remain the foot, pound-mass, second, and
degree Fahrenheit. A new unit of force is defined, however, the pound-force (lbf),
with

1 lb f = 32.174 lbl

or, from Equation 2B.4,

1 lb f = 32.174 lbm ft/s2

gc = 32.174 lbm ft/lb f s2.

Table 2B.4. Units of the Imperial system

Length [=] foot, ft 1 ft = 30.48 cm
Mass [=] pound-mass, lbm 1 lbm = 453.59 g
Time [=] second, s
Force [=] pound-force, lbf 1 lbf = 4.45 × 105 d
Temperature [=] degrees Fahrenheit, ◦F 1◦F = 5/9 ◦C
gc = 32.174 lbm ft/lbf s2
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The choice of 32.174 is, of course, not arbitrary. The acceleration due to gravity in
Imperial units is 32.174 ft/sec2 at sea level and 45◦ latitude, so that when we express
the weight from Equation 2B.5 as

w = g
gc

m

we find that the weight of one pound-mass is numerically equal to one pound-force.
Agreement with common usage is gained at the expense of a conversion factor that
is not unity and much opportunity for error in making conversions between the
different systems. Furthermore, it is important to note that the Imperial engineering
system is an earthbound system; gc is a fixed number, whereas g varies slightly from
point to point on earth, but to sufficient accuracy the numerical ratio g/gc is always
unity. In a markedly different gravitational field, however, the ratio g/gc will differ
greatly from unity and the sole advantage of the Imperial engineering system, the
numerical equality of mass and weight, is lost.

Finally, we note in passing that there is another Imperial system that is used on
occasion, the gravitational system. The units of length, mass, time, force, and tem-
perature are, respectively, foot, slug, second, pound-force, and degree Fahrenheit.
The slug is defined as

1 slug = 32.174 lbm

gc = 1 slug ft/lbf s2.

There are also two metric systems using a gram-force and kilogram-force. These
systems make no sense at all.

A few words are in order about temperature. The zero points on the centigrade
and Fahrenheit scales are completely arbitrary (0◦C = freezing point of water, 0◦F =
freezing point of water less 32 degrees!) and the conversion factors 1◦F = 5/9◦C
and 1 K = 1◦C refer only to temperature differences. The more natural scales are
the absolute Rankine (◦R) and Kelvin (K) scales, where the zero corresponds to the
point at which molecular motion in an ideal gas ceases. The relations are

T(◦R) = T(◦F) + 459.58,

T(K) = T(◦C) + 273.15.

It is necessary to distinguish carefully between the common and absolute scales.
Fundamental relations in physics and chemistry require absolute temperatures.

Appendix 2C: Common Units

Comprehensive tabulations of physical property data are available in references
such as the International Critical Tables, the Handbook of Chemistry and Physics,
and the Chemical Engineers’ Handbook. Extensive physical property databases are
also part of commercially available flowsheet simulation software, and databases



Appendix 2C: Common Units 55

from the U.S. National Institute of Standards and Technology (NIST) are available
electronically at the time of this writing at http://webbook.nist.gov.

Densities are often tabulated with the units of g/cm3, and conversion to kg/m3

simply requires multiplication by 1,000. Multiplication by 62.4 converts the tabulated
values from g/cm3 to lbm/ft3, still the most commonly used unit in the United States.
Gas densities for many situations (low pressures and high temperatures relative to
the critical values) can be estimated using the ideal gas “law,”

ρgas = Mw

(
p

RgT

)
,

where Mw is the molecular weight and Rg = 82.06 for p in atm, T in K, n in g-mol
(1 atm ∼= 14.7 lbf/ft2 = 105 N/m2 = 104 d/cm2). For example, the average molecular
weight of air is approximately 29, so the density of air at 1 atm and 0◦C (273 K) is

ρair = 29
(

1
82.06 × 273

)
= 1.29 × 10−3 g/cm3.

In the SI system, the density of air at atmospheric pressure at 273 K (0◦C) is 1.29; in
general, the densities of gases are approximately unity in the SI system. The density
of water is about 1,000 in the SI system.

The concentration, or mass per unit volume of a particular species, is not as easily
measured as density, because the method of measurement must be specific to the sub-
stance of interest. The development of sensors is an active area of research in chem-
ical engineering. Concentration can be expressed in mass/volume or moles/volume,
and common units and conversions are

g/liter = kg/m3 = g/cm3 × 1,000

lbm/ft3 = g/cm3 × 62.4

g-mol/cm3 = g/cm3/Mw

lb-mol/ft3 = lbm/ft3/Mw

Very low concentrations are often expressed in mg (10− 3 g) and μg (10− 6 g) per
unit volume, usually m3. Expressing component quantities in either mass or mole
fraction gives a dimensionless ratio and avoids unit conversions:

Mass fraction of A = Mass of A
Total mass

Mole fraction of A = Moles of A
Total moles

.

It has become common in some applications to use ppm (parts per million) when
measuring and controlling very low concentrations, such as impurities in electronic
materials or pollutants in the air or water. Parts per million is a mass fraction for
solids and liquids and a mole fraction for gases. Some useful conversions are:

Mass fraction of A (liquid or solid) × 106 = ppm of A

Mass fraction of A (liquid or solid) × [density of mixture] =
concentration of A, mass/volume
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Percent of A (liquid or solid) × 10−4 = ppm of A
ppm of A (gas at 25◦C and 1 atm) × MW/24.5 = mg/m3

Energy and work have the same dimensions, force × distance. The SI unit of
energy, the joule (1 J = 1 N × 1 m = 1 kg m2/s2), is becoming the standard, but the
calorie and British Thermal Unit (BTU) remain in widespread use in engineering
practice. Power is work per unit time, and the common units are the watt (1 J/s) and
the horsepower. Conversion factors are given below:

Joule × [0.738] = ft lb f

Joule × [0.239] = calorie, cal

ft lb f × [0.001286] = BTU (British Thermal Unit)

calorie × [1,000] = kilocalorie, Kcal (or Calorie, C)

Joule × [0.000948] = BTU

Joule × [3.6 × 106] = kWh (kilowatt hour)

kWh × [3412] = BTU

BTU/sec × [1.414] = HP

The kilocalorie (Calorie with an uppercase “C”) is still commonly used in the
laboratory and by those watching their diets or interested in exercise. Food energy
contents are tabulated in kilocalories, but people are very careless about the prefix
or the capitalization of C, and the term calorie is often used. Food energy content
ranges from 25 Kcal for a half cup of carrots to 165 Kcal for a half cup of ice
cream. A person in a developed country uses between 2,000 and 2,500 Kcal per
day, making the average power output equal to about 100 watts. A well-trained
athlete can produce between 1,000 and 2,000 W for periods on the order of hours.
The total power consumption per person in the United States is about 10,000 W,
or 10 kW. This is equivalent to a yearly energy use for the United States of about
89 exajoules (1018 J) or 85 Quads (1015 BTU). It is also common to express energy
use in terms of the important fuels as follows:

1 42-gallon barrel of crude oil = 5.8 × 106 BTU

1 ft3 of natural gas = 1,013 BTU

1 ton (2,000 lb f) of coal = 25 × 106 BTU

Process engineering calculations are usually done in the United States using
the BTU, although there is a trend developing to using joules. There is usually a
considerable amount of unit conversion required in process energy balances, since
properties such as heat capacity and heat of reaction are frequently found in older
sources in cal/g ◦C and cal/g-mol, respectively.

Although we will not deal with applications of the law of conservation of momen-
tum in this text, it is useful to know some of the characterizing variables and units.
Shear stress is a force (Newton) per unit area, and has units of N/m2 or pascal (Pa).
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Shear rate is a velocity divided by distance, and has units of 1/time. A plot of experi-
mental data of shear stress versus shear rate is often linear, and leads to a definition
of viscosity as the ratio of shear stress to shear rate. Viscosity is thus measured in
Pascal seconds; the cgs unit, the poise (p), is also used (1 Pa·s = 10 p; 1 mPa = 1
cp). The viscosity of water is about 1 cp or 1 mPa·s at room temperature, and the
viscosity of air is about two orders of magnitude less than that of water.

Appendix 2D: Dimensional Consistency and Dimensional Analysis

Equations are dimensional; every term in the rate form of the equation of conser-
vation of mass, for example, has dimensions of mass/time, in units of kg/s, lbm/s,
or some equivalent system. It is essential to check that every term in the equation
does indeed have the same dimensions; this is a seemingly trivial step, but failure to
ensure dimensional consistency is probably the most common source of error in the
formulation of mathematical models. (The second is probably failure to carry out
unit conversions correctly.)

As we saw in the discussion of characteristic times, it is sometimes useful to put
terms in dimensionless form. It is always possible to formulate a dimensional equa-
tion in dimensionless form. There are often conceptual advantages in a dimensionless
formulation, one of which is to reduce the number of independent parameters that
occur in the model equations. Another is the opportunity to invoke dimensional
analysis, a type of analysis formalized by the physicist Percy Bridgman that can lead
to powerful insights into data analysis and the form of constitutive equations.

Dimensional analysis is based on the Buckingham Pi Theorem, which is a
straightforward consequence of theorems in linear algebra:

Let the number of dimensional variables describing a system equal V, and let the number
of dimensions equal D. Then the description of the system can be expressed in terms of G =
V – D independent dimensionless variables made up of combinations of the V dimensional
variables.

(Rigorously, G is the maximum number of dimensionless groups, but the rare excep-
tions are not important to our discussion.) There may also be dimensionless param-
eters in the basic description, and these are in addition to the number cited here.
There are formal ways of generating the dimensionless groups, but most people
find them by inspection. We will illustrate the process here with the example of the
draining tank.

The characterizing variables in the tank-draining problem, with their dimensions,
are ρ [M/L3], g[L/θ2], h [L], q [L3/θ ], and A0 [L2]. There are five variables and three
dimensions, so we expect two independent dimensionless groups in any description
of the process. We see immediately that the density is the only variable with units of
mass, so there is no way in which density can be combined with any other variable
to form a dimensionless quantity. Hence, density cannot possibly be one of the
variables describing the process. (We will return to this point subsequently.) That
leaves g, h, q, and A0, with dimensions of length and time: four variables and two
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dimensions, hence two groups. It is easy to construct these groups by inspection. The
only variables that include time are g and q, so clearly the ratio q2/g must be part
of one of the groups. The remaining length dimensions are balanced by including
A2

0h, giving the dimensionless group q2/A2
0gh. An independent dimensionless group

is clearly A0/h2. Hence, the dimensionless description of the tank draining must be
of the form

q2/A2
0gh = f (A0/h2), (2D.1)

where f is a function whose form we do not know.
This is as far as dimensional analysis can take us, and it is not quite far enough,

since we do not have a relation that can be solved for q in terms of h. We can
apply some physical insight to this particular problem at this point, however, and go
further. We are only interested in cases in which A0 � h2 (the diameter of the hole
is very small relative to the height of liquid for most of the time of interest), hence
it is likely that the limiting case A0/h2 → 0 is the only one of interest. In that case,
we are interested only in the value of the function f when its argument is zero, which
is a constant. Thus, we can conclude that q2/A2

0gh must equal a constant, which we
will denote C; i.e.,

q = C A0

√
gh. (2D.2)

Hence, we recover the square-root dependence, but with the important added infor-
mation about the functional form of the coefficient.

Now, let us return to the issue of the density. We have ignored any dissipative
losses associated with the flow through the orifice. (In thermodynamic terms, we
have assumed that the process is reversible and we have assumed that the losses
required by the second law of thermodynamics are not important.) This is the same
assumption as made in Section 2.9. The losses depend on the viscosity; had we
included the viscosity we would have obtained another dimensionless group, known
as the Reynolds number, qρ/A0

1/2η, where η is the viscosity. Our result is the correct
one for the limit of very high Reynolds number; in this limit, C is a constant equal to
about 0.6. Dimensional analysis can only give a relation between the variables that
are assumed to be important. If an important variable is not included on the list, it
cannot appear in the result.

Appendix 2E: Least-Squares Fitting

It is often necessary to pass the “best” line through a data set; we did so in Section
2.7.3, for example. The most common procedure is to use the method of least squares,
in which the line is chosen so as to minimize the sum of the squares of the differ-
ences between the line and the data points. Least-squares fitting provides an explicit
relation for the coefficients, which is not the case with other procedures (minimizing
the sum of the absolute values of the differences, for example, or minimizing the
maximum deviation). Least-squares fitting also has a firm theoretical foundation as
the optimal procedure for cases in which the experimental errors in the data have
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certain common random properties. These topics are covered in specialized texts
and are beyond the scope of our discussion here, which is to present the method for
use.

Let the set of numbers {yi}, i = 1, 2, . . . , N be the N values of the variable y
measured at the N values {xi}, i = 1, 2, . . . , N of the independent variable, x. We seek
the coefficients a and b in the equation

y = ax + b. (2E.1)

We construct the sum of the squares of the deviations,

E = 1
2

∑N

i=1
(yi − axi − b)2. (2E.2)

E is minimized by setting the derivatives ∂ E/∂a and ∂ E/∂b to zero. The result is a
pair of linear equations for a and b,(∑

i

x2
i

)
a +

(∑
i

xi

)
b =

∑
i

xi yi , (2E.3a)

(∑
i

xi

)
a + Nb =

∑
i

yi . (2E.3b)

The coefficients are simply sums of the experimental quantities. These equations can
be solved to get explicit equations for the two parameters,

a = N
∑

xi yi − ∑
xi

∑
yi

N
∑

x2
i − (

∑
xi )2

, (2E.4a)

b =
∑

x2
i

∑
yi − ∑

xi yi
∑

xi

N
∑

x2
i − (

∑
xi )2

. (2E.4b)

These are the equations used to calculate the slopes and intercepts of the lines in
Figure 2.11, where y is the square root of the height and x is the time. Most graphical
software includes subroutines for least-squares fitting.



3 The Balance Equation

3.1 Introduction

In Chapter 2 we introduced the concept of a balance equation to account for the total
mass in the control volume. Mass is a conserved quantity that is neither created nor
destroyed, so the concept of a balance equation is straightforward. We can and often
do write balance equations for quantities that are not conserved, and it is appropriate
to digress briefly to consider this point. One important example of a quantity that
is not conserved is the mass of a reactive species. Suppose, for example, we wish to
model the distribution and metabolism of the anticancer drug methotrexate in the
human body. Methotrexate is not conserved: It enters the body and then disappears
because of metabolism. Nevertheless, we are able to write a balance equation for this
chemical species. (Note that the number of atoms of each of the elements making
up the drug is a conserved quantity.)

Most people gain experience in the use of balances through personal finance.
Wealth, be it personal, national, or global, is not a conserved quantity. Nevertheless,
we can and do account for wealth, typically through balancing a checkbook or
analyzing monthly statements from the bank. In this chapter we will illustrate the
application of balance equations to the problem of determining the true cost of
future expenditures. This is a problem of inherent interest to most of the population,
but the net present worth accounting principle outlined here is of particular relevance
to engineers involved in project planning and design.

3.2 Net Present Worth

Let us suppose we are about to construct a manufacturing plant. The total cost of the
project includes the cost of construction, plus the anticipated cost of operation and
maintenance (O&M) over the expected lifetime of the plant. One way of comparing
the costs of competing projects is to determine how much capital we would need in
hand today to pay all future costs; this is called net present worth accounting.

Let P(t) be the principal (i.e., total capital) available at any time, and C(t) the
rate at which costs are incurred at any time; id is the interest rate received on our
invested capital, and Id is the rate of inflation, which increases our costs. We will

60
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assume that the unit of time is one day, so the subscript d on the interest and
inflation rates denotes “daily”; to obtain annual rates we multiply these rates by 365
days. By using a daily rate of interest and inflation we are assuming that interest
on our capital is compounded daily and that costs are adjusted daily for inflation;
daily adjustment is unrealistic, but it enables us to think of the financial process as
occurring continuously in time.

Principal increases because of interest from investment, and it decreases because
of outlays for O&M expenses. The rate of change of capital equals the rate of increase
(interest rate multiplied by principal) less the rate of payment of expenses; that is,

dP
dt

= id P − C. (3.1)

Our costs increase at a rate proportional to the inflation rate:

dC
dt

= IdC. (3.2)

We could explore various scenarios in which the interest and inflation rates vary with
time. For simplicity of this analysis we assume that id and Id remain unchanged over
the lifetime of the project. The more general treatment for arbitrary time dependence
of the rates requires only a few additional steps in the calculus.

Let Cd0 be the daily rate of O&M expenditures at the start of the project
(t = 0); then the solution to Equation 3.2 is

C(t) = Cd0eIdt (3.3)

and the balance equation for principal becomes

dP
dt

= id P − Cd0eIdt . (3.4)

The starting principal at t = 0 is P0.
Equation 3.4 has a form that we have already seen in Section 2.6.2, and we again

use the integrating factor to rewrite the equation in the form

d
dt

[
e−idt P

] = −Cd0e−idt eIdt . (3.5)

Integrating both sides from t = 0 to any time t, and using the fact that P = P0 at t =
0, gives

P(t) = P0eidt − Cd0eidt
∫ t

0
e−(id−Id)dτ,

or

P(t) = P0eidt + Cd0

id − Id

[
eIdt − eidt] . (3.6)

Let θd denote the useful life of the plant. We need to have just sufficient capital
on hand at t = 0 to ensure that everything is spent during the plant lifetime, with
the last expenditure at t = θd. Thus, we determine P0 by requiring that P(θd) = 0.
Setting t = θd in Equation 3.6 and solving for P0 thus gives

P0 = Cd0

id − Id

[
1 − e−(id−Id)θd

]
. (3.7)
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Note that only the net interest rate – interest rate less inflation rate – is relevant. This
number is likely to stay relatively constant over long periods despite fluctuations in
the individual rates. It is possible to show that Equation 3.7 is the correct result when
id and Id vary in time, as long as the difference remains constant.

We selected daily compounding in order to treat the financial process as con-
tinuous in time. It is more convenient to work with annual rates and annual costs.
The initial cost on an annual basis is C0 = 365Cd0. The total lifetime in years is θ =
θd/365. Annual interest and inflation rates are, respectively, i = 365id and I = 365Id.
Equation 3.7 can then be written equivalently as

P0 = C0

i − I

[
1 − e−(i−I)θ ]. (3.8)

The quantity multiplying C0 is known as the present worth factor, or PWF, and
it represents the number of years of annual O&M expenses that would be needed at
the start of the project in order to pay O&M expenses over the plant lifetime:

PWF = 1
i − I

[
1 − e−(i−I)θ ]. (3.9)

If the PWF is 10, for example, then we would need ten times the annual O&M cost in
hand at the start of the project in order to obtain enough from investment to be able
to pay O&M costs over the lifetime. To this we would have to add the construction
capital to obtain the net present worth (or net present cost) of the project.

EXAMPLE 3.1 Let us suppose that the net interest rate, i – I, is 8 percent (0.08)
and the plant lifetime is expected to be 20 years. Then

PWF = 1
0.08

[
1 − e−0.08×20] = 1 − 0.202

0.08
= 9.98.

We thus obtain a PWF of just under 10, so we need ten times the annual O&M
cost in hand at the start of the project.

3.3 Borrowing Money

The balance equations for money in calculating the cost of a loan are similar to those
in the preceding section. Suppose we wish to borrow P0 units of currency in order
to purchase a house. The terms of the contract are that we will repay the loan at a
constant rate of md (m is for “mortgage payment”), and we take the payment rate
for the sake of the analysis to be on a daily basis; the interest rate on the outstanding
balance of the loan is id.

The balance equation for the loan is as follows: the rate of change of outstanding
principal (P) equals the rate of increase from interest charges (idP) less the rate of
payment (md):

dP
dt

= id P − md. (3.10)

At t = 0 the outstanding principal is P0.
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Equation 3.10 is separable because md is a constant, and it can be rewritten as

dP
id P − md

= dt,

which is readily integrated. Alternatively, we note that the change of variable p =
P − md/id leads to the equation

dp
dt

= id p

with solution

p = p0eidt

or, equivalently,

P = md

id
+

(
P0 − md

id

)
eidt . (3.11)

If we wish to use annual payments and annual interest rates, we may replace md by
m = 365md and i = 365id to obtain

P = m
i

+
(

P0 − m
i

)
eity , (3.12)

where ty = t/365 is the time in years.
Home buyers frequently wish to determine the relation between the size of the

loan, the mortgage payments, the interest rate, and the duration of the loan. Let θ

be the number of years over which the loan is to be paid off. Then P(θ) = 0 (no
balance of principal after θ years) and we have

0 = m
i

+
(

P0 − m
i

)
eiθ ,

or, after some algebra,

m = i P0

1 − e−iθ
. (3.13)

If iθ is of order three (e.g., i = 0.10 and θ = 30 years), e−3 is only 0.05 and
the denominator is close to unity, so the annual payment is within 5 percent of the
interest computed on the original principal.

It is common to take a loan for a fixed period, but to pay it after a shorter time
with a “balloon payment” equal to the outstanding principal. Suppose we compute
the payments as in Equation 3.13 for a loan over θ years, but, in fact, wish to pay the
balance after θp years, where θp < θ . By substituting Equation 3.13 into Equation
3.12 and setting ty = θp we obtain, after some algebra,

P(θp) = P0
1 − e−i(θ−θp)

1 − e−iθ
. (3.14)

EXAMPLE 3.2 Suppose you took out a loan at 7.5 percent to be repaid over
30 years, but wished to pay the balance at the end of 10 years. The outstanding
balance after ten years, P(10), is then

balance = P(10) = P0
1 − e−0.075 (30−10)

1 − e−0.075 (30)
= 0.867 P0.
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With interest payments, you will therefore have reduced the principal by about
13 percent over the first 10 years, which comprise 331/3 percent of the 30-year
period.

3.4 Concluding Remarks

The financial concepts introduced in this chapter are extremely important in their
own right, and they are typically covered in considerably more detail in the chemical
engineering curriculum in the “capstone” design course and, perhaps, in a course
in engineering economics. Our primary objective here has been to show that the
approach to writing a balance equation is quite general and can be applied to many
situations that appear to be outside the scope of the focus of this chemical engineering
text.

PROBLEMS

3.1. Banks often advertise continuous compounding of interest on savings accounts,
by which they mean that interest is added continuously to the account at a rate equal
to the product of the current account balance and the annual interest rate. (Interest
rates are always advertised in percentages, so the proper rate to use for calculation
is the advertised rate in percent divided by 100.) Compare the return after one year
of continuous compounding at 5 percent to the return with annual, semiannual, and
quarterly compounding.

3.2. Show that Equation 3.9 for the present worth factor remains valid even when id
and Id vary in time, as long as the difference remains constant. (Hint: For this case
the integrating factor is exp(− ∫ t

0 id(τ )dτ ).)

3.3. The following population data are available for Iceland and the Faroe Islands
(lumped together, because Iceland’s independence from Denmark came only in
1944):

Year Mean Population Births Deaths

1921 116,000 3,215 1,708
1922 118,000 3,214 1,491
1923 119,000 3,264 1,542
1924 120,000 3,150 1,730
1925 122,000 3,153 1,457
1926 124,000 3,267 1,320
1927 126,000 3,221 1,449
1928 128,000 3,162 1,318
1929 130,000 3,219 1,490
1930 132,000 3,441 1,522

Neglecting immigration and emigration, write a balance equation on people and
construct a model of the population as a function of time.

a. Assume that the annual numbers of births and deaths are both constant, and
use average values. Compare your result with the annual population data.
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b. Assume that the numbers of births and deaths annually are constant frac-
tions of the total population, and use average values. Compare your result
with the annual population data.

c. Compare the two results and comment.
d. The combined population of Iceland and the Faroe Islands in 2009 was

368,000. What do your models predict?

3.4. The following are population data for the United States during the period 1930–
1960:

Year Population in Millions Births/Thousand Deaths/Thousand

1930 123 21.3 11.3
1940 132 19.4 10.8
1950 151 24.1 9.6
1960 179 23.7 9.5

Immigration and emigration data are not included.
Construct a model of population growth and check against the actual values of

249 million recorded in the 1990 Census and 281 million recorded in 2000. Comment
on your result.



4 Component Mass Balances

4.1 Introduction

The problems studied in Chapter 2 illustrate the use of the overall mass balance. Most
chemical engineering applications, whether in biotechnology, chemical or materials
processing, or environmental control, involve a number of distinct mass species
that might or might not react chemically with one another. In this chapter we will
consider mass balances for multicomponent systems in which there is a single phase
(i.e., we exclude immiscible oil-water systems, solid-liquid suspensions, etc.) and
the component species are nonreactive. With this foundation we can go on to the
far more interesting and relevant reactive and multiphase systems in subsequent
chapters.

4.2 Well-Stirred Systems

We consider again the flow system shown in Figure 2.4, but we now presume that
there are two components; for specificity we will take these to be dissolved table
salt (NaCl) and water, but they could be any two completely miscible, nonreacting
materials. The flow diagram is shown in Figure 4.1, where to each stream we asso-
ciate a density and concentration. The concentration of the salt, in mass units (e.g.,
kg/m3), is denoted c, while subscripts f and e again denote feed and effluent streams,
respectively. Only one mass concentration, together with the density, is required
to define this binary system, since the mass concentration of water is simply ρ − c
(total mass/unit volume less mass of salt/unit volume). Salt concentrations are easily
measured; the most elementary way is to evaporate the water from a known volume
and weigh the residual salt, but a better way is to measure the electrical conductivity,
which can easily be correlated with the ionic concentration.

Referring to Figure 4.1, we see that we have already chosen to characterize the
mass by measuring density and concentration. Selection of the control volume for the
examples in Chapter 2 was straightforward: We were interested in the total mass in
the tank, so we simply used the tank as the control volume. Now we need to consider
the possibility that different parts of the tank may have different concentrations of
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Figure 4.1. Schematic of flow of a two-component
system.

salt, in which case we would be unable to characterize the salt in the entire tank
by a single number. If a concentrated salt solution were to be introduced to a tank
initially filled with water, for example, we would expect to find higher concentrations
of salt near the inlet line than in the bottom of the tank, where the exit nozzle is
located. (Consider what happens when you add milk to your coffee. The two liquids
are completely miscible, but if you are careful with the addition you can get a milk-
rich layer to stay above the coffee. In that case the average concentration of milk in
the cup is not useful in characterizing the taste from different sips. This problem is
resolved – if one desires uniformity – by stirring with a spoon.)

We must choose our control volume appropriately if we wish to deal with spatial
variations in salt concentration, since the control volume must be such that we can
uniquely characterize each fundamental variable. Our logic diagram for constructing
a model, initially introduced as Figure 2.2, must therefore contain a step to ensure that
we are using the correct control volume. Together with the discussion of constitutive
equations in Chapter 2, we arrive at the flow diagram in Figure 4.2, which is adequate
to deal with all problems of interest.

There are established ways to deal with spatial variation, but that is a compli-
cation that we do not have to address for this elementary problem. It is quite easy
to mix waterlike liquids,* and we assume that the mixing is sufficiently effective to
ensure complete uniformity of concentration throughout the tank. Thus, a sample
drawn from one location in the tank will be identical to a sample drawn from any

* Mixing is often done by installing one or more impellers in a tank with appropriate baffles (usually
four narrow strips of the same materials as the tank, mounted vertically at ninety-degree separations).
Many chemical process vessels are equipped with mixers that provide power on the order of 200 to
2,000 W/m3 (about one to ten horsepower per 1,000 gallons). Mixing can also be effected by liquid
jetting into the tank at an appropriate rate and location, or by a gas sparged into the tank through
a properly designed set of orifices. Very large wastewater treatment reactors, often with volumes in
excess of 106 L (1,000 m3, or a bit over 250,000 U.S. gallons), are mixed using air spargers.
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Figure 4.2. Logic diagram for model development.

other location at the same time; hence, we can denote the concentration at any time
throughout the tank by a single value, denoted c(t). Similarly, the density throughout
the tank at any time is denoted by a single value, ρ(t). We may therefore take the
tank as the control volume. This well-stirred, or perfectly mixed, assumption must
be verified experimentally. Experience shows that it works well in tanks where the
height-to-diameter ratio is of order unity, while it fails if the ratio becomes of order
ten. It works well for waterlike liquids, but it is difficult to achieve for very viscous
liquids like molten polymers.

There is one further consequence of the well-stirred assumption: Since the com-
position and density are each the same throughout the tank at any time, it must be
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true that the composition and density at the exit are the same as everywhere else in
the tank. Thus, there is no reason to distinguish between the values in the tank and
those in the stream leaving the tank at any time, and we may drop the subscript e
from the density and concentration in the effluent stream.

The principal of conservation of mass is unchanged by the fact that we now have
two component species, and we still write that the rate of change of total mass in the
control volume (the tank) equals the rate at which mass enters less the rate at which
mass leaves. As before, the total mass is ρAh; the rate at which mass enters is ρfqf

(mass/unit volume × volume/time), whereas the rate at which mass leaves is ρqe.
Note that, because of the perfect-mixing assumption, we do not distinguish between
ρ and ρe. We can thus write

dρ Ah
dt

= ρ f qf − ρqe. (4.1)

We are no longer assuming that ρ and ρf must be the same, and ρ may be varying
with time, so we cannot introduce the simplification that led to Equation 2.3.

Conservation of mass also applies to each of the component species, since there
is no chemical reaction: Clearly the rate of change of all the salt in the tank equals the
rate at which salt enters less the rate at which salt leaves. Thus, the balance equation
for salt is

dcAh
dt

= cf qf − cqe. (4.2)

We could also write a balance equation for the water, but it would not be indepen-
dent.

We may assume that the flow rates qf and qe and the density and concentration
of the incoming stream are known, and of course the area is a constant. Equations 4.1
and 4.2 thus involve three characterizing variables: h, ρ, and c. We immediately see
one important difference between single-component and multicomponent systems:
The liquid level in the tank in a single-component system does not change with time
if qf = qe (Section 2.5). Because we have two components, even if qf = qe there is no
reason to suppose that ρ = ρf. (We might, for example, have a tank initially full of
pure water, with ρ = 1,000 kg/m3, and an inlet stream of 26 percent aqueous NaCl
with ρf = 1,194 kg/m3.) In that case the derivative on the left-hand side of Equa-
tion 4.1 will not equal zero.

Any problem in analysis requires a precise question; without a question we do
not know how to construct the appropriate model. Let us identify our objective to
be to determine how the tank level h(t) varies as the inflow composition changes.
Equations 4.1 and 4.2 are available to us, but these two equations involve three
unknown variables, ρ(t), c(t), and h(t). Referring to Figure 4.2, we must answer
“No” to the query “Enough equations?” and “Yes” to the query “Conservation
equations fully exploited?” (Conservation of energy and momentum are clearly
irrelevant here, and there appears to be no more information to be obtained from
mass conservation.) Thus, we are in need of a constitutive relation. There are no
surprises here: We know that the density of a salt-water solution, or of any other
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Figure 4.3. Density of aqueous NaCl solutions. The line was drawn using the least-squares
method described in Appendix 2E.

multicomponent system, is a unique function of composition at a given temperature
and pressure. Thus, we may write

ρ = ρ(c), (4.3)

where the specific functionality ρ(c) will depend on the system being investigated
(i.e., on its constitution). Together with values of h and c at some time, say t = 0, we
now have enough equations to address the question.

4.3 Changing Density

Now let us obtain a solution to the following question: How does the tank level
change as a result of the changing feed conditions? Equation 4.3 is too general, but
we have data available on salt-water systems to obtain a specific functional form.
Figure 4.3 shows data plotted from a table in the Chemical Engineer’s Handbook.
There is some slight curvature to the data, but good straight lines can be drawn
through the data over large regions and there is little error in drawing a single
straight line through all the data shown here. We then write

ρ(c) = ρ0 + bc, (4.4)

where ρ0 is an empirical constant that need not be the density of pure water, espe-
cially if we are interested in fitting a straight line to data that are far removed from
c = 0. (In fact, ρ0 differs from the density of pure water by only 0.1 percent in
the least-squares fit to these data.) We can now substitute Equation 4.4 into Equa-
tion 4.1 to obtain (noting that ρ f = ρ0 + bcf )

d
dt

[ρ0 + bc]Ah = [ρ0 + bcf ]qf − [ρ0 + bc]qe, (4.5a)
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or, making use of the fact that ρ0A is a constant and doing a bit of rearranging,

ρ0 A
dh
dt

= ρ0[qf − q] + b
{

[cf qf − cqe] − dcAh
dt

}
︸ ︷︷ ︸

= 0 from Equation (4.2)

. (4.5b)

The terms multiplied by b in Equation 4.5 sum to zero because of Equation 4.2.
Dividing both sides of the equation by ρ0A thus leads to

dh
dt

= qf

A
− qe

A
. (4.6)

This equation is identical to Equation 2.5, and we reach the interesting but unex-
pected conclusion that the tank height is determined only by the volumetric flow rates,
and the tank height is constant if qf = qe. This result is only valid, of course, if the
density is linear in concentration over the concentration range of interest. While we
have derived this result only for a binary nonreacting system, it is, in fact, straight-
forward to extend the result to any single-phase nonreacting system for which the
density is a linear function of all components. In a thermodynamics course, such a
system would be called an ideal solution. When mixing the components of an ideal
solution together, the total volume equals the sum of the volumes of the individual
components.

It is quite common in reading the technical literature to find the assumption that
all densities in a liquid phase system are equal, with the explicit or implicit assumption
that the densities of all liquids are close to 1,000 kg/m3. The consequence of such an
assumption is that Equation 4.6 or its equivalent follows immediately. In fact, the
densities of common liquids typically range from about 850 to 1,200 kg/m3, and it
is certainly incorrect to assume that numbers that differ by 40 percent are always
“equal.” The reason this “equal density” assumption works, leading to Equation 4.6,
is for the reason shown here. This gross simplification is rigorous only for a linear
density function. In general, we may write

ρ(c) = ρ0 + bc + ϕ(c), (4.7)

where ϕ(c) contains the nonlinear part of the relation; that is, the deviation from
linearity. The resulting equation for h is then

dh
dt

= ψ(c, cf )
qf

A
− qe

A
, (4.8a)

where

ψ(c, cf ) = ρ0 + ϕ(cf ) − cf ϕ
′(c)

ρ0 + ϕ(c) − cϕ′(c)
. (4.8b)

ϕ′(c) is the derivative dϕ/dc. In most cases, ψ(c, cf) will not differ from unity in a
liquid system by enough to have any noticeable effect on the results relative to use
of Equation 4.6.
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4.4 Perfect Mixing Assumption

The assumption that the system is sufficiently well stirred to permit us to take the
mixing to be perfect and instantaneous is not intuitively obvious and certainly needs
validation. The simplest validation experiment that we can visualize is one in which
a tank is initially filled with a salt-water solution at a concentration c0. At time t = 0
we begin an inflow of pure water (cf = 0) at a volumetric flow rate q and commence
to pump the salt solution from the tank at the same rate (qf = qe = q). Under these
conditions, it follows from Equation 4.6 that dh/dt = 0 and the volume V = Ah
occupied by the solution is a constant for the entire time of the experiment. Equa-
tion 4.2 then simplifies to

dc
dt

= − q
V

c ≡ −1
θ

c, (4.9)

where we have made use of the fact that V = Ah is a constant and can be removed
from the derivative. V/q has dimensions of time, and we denote the ratio by θ ; θ

is known as the residence time, and can be shown from probabilistic considerations
to be the average time that a particle of mass spends in the tank if all particles
have an equal probability of leaving at each instant of time (i.e., perfect mixing,
where all particles have an equal probability of being at the exit at any time). Except
for nomenclature (h → c, A/k → θ) this is the same as Equation 2.12, so the
solution is

ln
c(t)
c0

= −t/θ. (4.10)

Figure 4.4 shows data of salt concentration (measured by electrical conductivity)
as a function of time for an experiment designed to test this analysis, but with a mixer
intentionally selected to be inefficient. The data at 1,000 RPM follow the theoretical
line reasonably well, showing that with sufficient agitation the predictions based on
perfect mixing agree with experiment. The data at 100 RPM show poor agreement;
the poor agreement cannot be interpreted without more information about the
precise placement of the conductivity probe, but it illustrates what can happen with
inadequate agitation.

Many mixing experiments have been carried out in a variety of geometries with
different fluids and impellers, and design procedures are available for selecting the
impeller geometry and motor size for most situations with low-viscosity (waterlike)
liquids. Mixing remains an active research area, with the focus on mixing multiphase
systems (gas/liquid, solid/liquid) and high-viscosity liquids. The mixing of granular
materials (fine catalysts or powders, for example, or even beach sand), which are
liquidlike in behavior when flowing, is of particular importance in the pharmaceutical
industry, where the precise distribution of components is essential to ensure proper
dosages in every pill or capsule.
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4.5 Air Quality and Rule-of-Thumb Design

4.5.1 Introduction

Exposure to toxic substances is a major concern in both the workplace and the home.
Some substances, such as carbon monoxide (CO), are routinely monitored in lab-
oratories to ensure that dangerous levels are not reached. Indeed, many chemical
engineers are involved in the design of sensors, and the development of new method-
ologies utilizing microprocessing technology with component-specific surface sites
is an active area of chemical engineering research.

Exposure to most toxic substances occurs in environments where the substances
are nonreactive; the problems occur only when they are taken into the body. CO
does not react in air at normal room temperature and pressure, for example; it is only
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when it enters the bloodstream and complexes with hemoglobin to form carboxy-
hemoglobin, reducing the oxygen-carrying capacity of the blood, that its reactivity
becomes relevant. Because of this nonreactivity, we can analyze the transport and
buildup of CO and many other toxic substances using the methodology developed in
this chapter, illustrating a simple but very important application of component mass
balances. Air is compressible, but we can assume that the small changes in density
resulting from the very small pressure variations required to pump air using fans or
blowers can be neglected in our analysis.

4.5.2 Laboratory Ventilation

Laboratory ventilation is an important factor in a chemistry or chemical engineering
environment. The U.S. Occupational Safety and Health Administration (OSHA)
Standard 1910.1450, Appendix A, recommends four to twelve room air changes per
hour in a laboratory if fume hoods are used as the primary means of controlling toxic
materials. This means that if the volume of the laboratory is V m3, the flow rate of
fresh air to the laboratory must be at least 4V m3/hr. A laboratory with floor space
10 m × 10 m and a ceiling height of 4 m, or a volume of 400 m3, would then require
a ventilation rate of at least 1600 m3/hr, or 0.44 m3/s.

Suppose a volatile toxic substance is put away improperly and escapes into
the room at a constant rate of S kg/s. If we assume that dispersion in the room is
sufficiently rapid that we can assume perfect mixing (a questionable assumption, but
useful for purposes of discussion) and that the inflow air contains none of the toxic
substance, the component mass balance is then

V
dc
dt

= S − qc, (4.11)

where c is the concentration of the toxic material. This equation is easily solved,
most simply by changing the independent variable to u = c − S/q, in which case
Equation 4.11 becomes du/dt = −u/θ , where θ = V/q. The solution is then u(t) =
u0 exp(−t/θ), where u0 = −S/q if there is none of the toxic substance in the room
air at time t = 0. The solution can then be written

c(t) = S
q

[
1 − e−t/θ ]. (4.12)

According to the OSHA guideline for minimum flow, θ = V/q = V/4V =
0.25 hr. e−t/θ is essentially zero when t/θ is greater than about 4; at that time the
system will have reached a steady state (dc/dt = 0), with c = S/q. Under the min-
imum OSHA guideline the steady state will be attained in about one hour. If the
volatile compound evaporates at a rate S = 4 g/hr and q = 1,600 m3/hr, then the
steady-state concentration in the air will be 2.5 × 10− 6 kg/m3. The density of air
is about 1.2 kg/m3, so the volatile toxic material will reach a level of about 2 ppm
(2 × 10−6 kg/kg of air). Prolonged exposure to some toxic materials at this level could
be hazardous. It is important to note that many hazardous materials are denser than
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air and may have concentrations at floor level that are greater than what would be
estimated using the perfect mixing assumption.

4.5.3 Airflow Design

Anyone who has traveled in a commercial airplane has experienced a “stuffy” feeling
from the reduced oxygen level and the accumulation of CO2 resulting from too little
fresh airflow. The energy cost of bringing fresh air into a commercial jetliner at a
10,000-meter elevation is substantial, and the airflow is a balance between cost and
passenger comfort. Similar considerations apply to room ventilation in a building.
Laboratories and modern offices typically have forced-air systems that ensure a
specified level of air replacement, as noted in the preceding section. Most homes,
on the other hand, are designed to minimize air replacement, and the only fresh
air that enters is the result of “leaks” in a system that the homeowner wishes to be
airtight.

Let us consider a room of volume V m3 occupied by N people. The flow of fresh
air to the room is q m3/min. Each individual is adding a nonreactive species A to
the room air at a rate wA mg/hr. If A is CO2, for example, the metabolic rate for the
average person with daily light activity is 200 cm3/min at standard temperature and
pressure (STP), which is equivalent to 21,600 mg/hr of CO2. We wish to determine
the airflow necessary to keep the concentration cA below the level determined to
be safe.

Our control volume is the room, excluding the space occupied by the people.
We need to keep the people outside the control volume for two reasons. First, they
are not part of the volume occupied by the room air, so including them could intro-
duce an error into the calculation of concentrations. This is a minor factor, however.
The more important reason is that the substances of interest are nonreactive in the
room but not in the people. By excluding the people from the control volume, wA is
simply a mass flow rate into the control volume, and we need not be concerned with
the chemistry of metabolism.

The unoccupied volume of the room will be presumed to be unchanged, and the
temperature and pressure remain constant, so the mass flow rates in and out must
be equal. We can assume that the net difference in volumetric flow of gases into and
out of the people is negligible,* so the volumetric airflow in and out must be the
same. We will also assume that V refers to the unoccupied volume of the room, but
this will not differ significantly from the total room volume.

We assume that air circulation in the room is sufficient to make the perfect
mixing assumption. The mass balance for species A then simply states that the rate
of change of the mass of A in the room equals the rate at which A enters (NwA from

* This is a subtle point. For CO2 production, every mole of O2 entering the body is balanced by a
mole of CO2 leaving, and at STP the two gases have the same volume. If we are considering CO
production by smokers, however, each mole of O2 leaving is replaced by two moles of CO entering,
hence twice the volumetric flow rate. We presume that these numbers are so small that they can be
ignored relative to q.
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the N people and qcAf from the inflow air stream) less the rate at which A leaves
(qcA):

dVcA

dt
= V

dcA

dt
= qcAf + NwA − qcA. (4.13)

We first consider the steady-state design problem, where we take dcA/dt = 0. We
can the solve for the flow rate, q:

q = NwA

cA − cAf
. (4.14)

This may be, on first glance, a surprising result, for it tells us that the airflow rate
is independent of the size of the room but is proportional to the number of people.
Thus, the design variable is q/N m3/hr/person, and we need to know the typical
occupancy level of the room.

For CO2 we typically have an individual respiration rate wA = 21,600 mg/hr. Let
us suppose that we are willing to accept an increase in CO2 level of 400 mg/m3 over the
level in the incoming air. (400 mg/m3 corresponds to about 200 ppm. The total level
of gases other than nitrogen, oxygen, and argon in air is typically around 700 ppm.)
We then have q/N = 21,600/400 = 54 m3/hr/person. The 1989 American Society of
Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standard for
industrial offices is 20 ft3/min/person, or 34 m3/hr/person, which is somewhat less
than our calculation and corresponds to a net increase of 635 mg/m3.

The production of CO from cigarette smoke is a serious environmental problem
that has led to legislation banning cigarette smoking in many public places. The
typical cigarette produces 25 to 50 mg of CO and 160 to 480 mg of CO2. Let us
consider CO, which we will denote as species B, and we will use the higher number
of CO production to ensure conservative estimates. We will assume that the typical
smoker smokes three cigarettes per hour, so wB = 3 × 50 = 150 mg/hr. We can
assume there is no CO in the fresh air (cBf = 0), so the design equation for airflow is
q/N = 150/cB. The ASHRAE standard of q/N = 34 m3/hr for office ventilation will
result in a CO concentration of cB = 150/34 = 4.4 mg/m3. This is about a factor
of ten below the U.S. Environmental Protection Agency (EPA) warning level of
40 mg/m3, where prolonged exposure can lead to “changes in myocardial metabolism
and possible impairment; statistically significant diminution of visual perception,
manual dexterity, or ability to learn,” so it is probably a safe level. The CO2 level
would also increase because of the smoke, and of course we have not considered
other components of the smoke, such as tars, or the discomfort to other occupants.

In a specially designed smoking lounge we might expect a much higher smoking
rate, in part because any one individual will only spend short periods in the room.
Let us suppose that the typical smoking rate in a lounge is six cigarettes per hour, in
which case wB = 6 × 50 = 300 mg/hr. If we suppose that we wish to keep the CO
level to a maximum of 4 mg/m3 (10 percent of the EPA limit) we have q/N = 300/4 =
75 m3/hr/person. The ASHRAE standard for smoking lounges is 50 ft3/min/person,
or 85 m3/hr/person, so the standard assumes either a slightly lower CO level in the
room (3.5 mg/m3) or a slightly higher smoking rate.
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4.5.4 Rules of Thumb in Design

The design problem we have been dealing with here is a very elementary one, but
it does illustrate a general point. Designs are often carried out using rules of thumb,
which are general principles that summarize extensive experience. These rules of
thumb often have a rational basis and can be derived by relatively straightforward
analysis of the situation at hand. The ASHRAE standards for office and smoking
lounge airflow rates are rules of thumb, and they are routinely applied by engineers
and architects, but it is clear they correspond to nothing more than some basic data,
information about acceptable levels of specific toxic substances and, in the case of
CO, an assumption about the habits of the typical smoker. The practicing chemical
engineer is usually faced with far more complex design decisions and more opaque
rules of thumb, but the same principle – that collected experience is often amenable
to analysis – still applies.

4.5.5 Transient Indoor Air Quality

We have focused thus far on the airflow design problem, which is based on steady-
state levels. The transient calculation is also of interest, especially with regard to
home air quality. We will assume in Equation 4.13 that cAf, q, and NwA are constants;
in that case we have seen this form of equation many times, and we can immediately
write the solution with cA = cA0 at t = 0 as

cA = cA0e−t/θ +
[

cAf + NwA

q

] [
1 − e−t/θ ] , (4.15)

where θ = V/q.
Suppose the typical office setting provides 18 m3/person (3 m × 2 m floor space

and a height of 3 m). The ASHRAE standard of 34 m3/hr/person then gives θ =
18N/34N = 0.53 hr = 32 min. Thus, the mean residence time is such that the air
is replaced about two times every hour. If we use the same space allocation in a
smoking lounge, with q = 85N, we find θ = 0.2 hr = 12 minutes, and the air is replaced
five times per hour, comparable to the lower end of the standard for a laboratory.

Now let us consider three smokers in a closed room in a home. A typical room
size might be 3 m × 5 m × 3 m, or 45 m3. If we take the extreme case of no air flow
(q = 0) it follows from Equation 4.13 (replacing A with B to denote CO) that

q = 0 : cB = cB0 + NwB

V
t. (4.16)

(The same result follows from Equation 4.13 by taking the limit q → 0, recalling that
θ = V/q and applying L’Hôpital’s rule to the indeterminate term on the right.) If we
suppose that they are each smoking three cigarettes per hour and cB0 = 0, we have
cB = [(3 × 150)/45]t = 10t, where t is in hours and cB is in mg/m3. Thus, after one
hour the CO level would reach 10 mg/m3, and if they were to continue for a total of
four hours the CO would reach a level at which prolonged exposure is dangerous.
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We now suppose that the house is extremely well insulated in order to restrict
airflow, but that some ventilation does occur. q might be as low as 5 m3/hr, so
θ =V/q = 45/5 = 9 hours. In Equation 4.15, with cB0 = cBf = 0 and NwB/q =
90 mg/m3, we find cB = 9.4 mg/m3 after one hour and 31 mg/m3 after 4 hours;
the short-time result (t/θ � 1) at t = 1 hour is close to the result for q = 0, with
poorer agreement at longer time. This is because Equation 4.16 follows directly from
Equation 4.15 if we expand the exponential in a series for small values of t/θ and
truncate after the linear term.

4.6 Concluding Remarks

This short chapter contains a number of very important concepts. Perfect mixing is
frequently assumed when analyzing flowing systems; as we see here, the validity of
the assumption depends on the physical properties of the fluids and the design of the
agitation system, but it can often be achieved. Linearity of the density–concentration
constitutive equation (an ideal solution) is often assumed implicitly, sometimes with
the unnecessary statement that all densities are assumed to be equal. The notion
of a rule of thumb is extremely important. Many practicing engineers use rules
of thumb for estimation and design. What we see here in our simple ventilation
example is that rules of thumb can often be derived from first principles analyses;
the ASHRAE standards quoted here are comparable to the results of our analysis,
with small differences in the assumptions about individual behavior. The material
that follows in subsequent chapters will utilize the ideas developed here and in the
preceding chapters in a series of engineering applications.
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PROBLEMS

4.1. A well-stirred process vessel contains 1.7 m3 (450 gallons) of a solution of water
and 34 kg of sodium chloride at the time that a pure water feedstream is introduced.
Find the salt concentration at the end of sixty minutes if the water flow to the tank
is maintained at 0.0265 m3/min and brine is removed at the same rate.

4.2. The Mediterranean Sea exchanges water with the Atlantic Ocean. Fresh water
inflow to the Mediterranean is approximately 30,000 m3/s and evaporation occurs at
a rate of approximately 80,000 m3/s. The salt content of the Mediterranean is 37 g
salt/1,000 g solution and it is 36 g/1,000 g in the Atlantic. Estimate the flow from sea
to ocean and from ocean to sea.

4.3. According to OSHA, a level of chlorine in the air of 3 ppm will cause impairment.
Suppose there is a constant source of chlorine of 4 g/hr in a room that is ventilated
at a rate of 250 m3/s. What is the steady-state concentration of chlorine in the room?
Is it above or below the level that will cause impairment?

4.4. The OSHA recommendation for laboratory ventilation is four to twelve room
air changes per hour. Approximately how long does it take to reach a steady-state
concentration in a laboratory with a constant contaminant source if the air is replaced
eight times per hour? How long does it take to get 90 percent of the way to steady
state?

4.5. Four people enter an empty smoking lounge that has a volume of 50 m3 and is
ventilated at a rate of 120 m3/hr. Each person smokes about two cigarettes an hour,
and each cigarette produces about 40 mg of CO. Assume that there was no CO in
the lounge when they entered.

a. What is the concentration of CO in the lounge at the end of 30 minutes?
1 hour?

b. How long will it take for the CO concentration to reach a steady state? What
will the steady-state concentration be?

4.6. A soft drink process requires mixing sugar and water continuously in a 250
m3 tank. We have one measurement of the density of sugar: At a concentration
of 207.5 kg/m3 the density is 1,083 kg/m3. The process operators measure the
concentration of sugar by weighing a fixed volume of solution, and they have
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a correlation chart that is a straight line passing through zero at a density of
1,000 kg/m3.

a. The plant is being shut down for maintenance, so the tank is flushed with
pure water at a rate q = 1 m3/s. The initial concentration of sugar is
100 kg/m3. What are the density and concentration in the tank after 5 min-
utes, assuming that the operators’ chart is correct?

b. How long should the operators expect to have to wait for the sugar concen-
tration to be below 1 ppm?

4.7. A well-dispersed mixture of solids and liquid is to be concentrated by being
pumped through a tank with a porous plate at the bottom through which pure liquid
may pass, as shown schematically in Figure 4P.1. Because the dispersion is very good
you may consider the mixture to be homogeneous liquid with a solids concentra-
tion c.

Mixture

Porous plate
thickness δ

area A

Pure liquid
Volumetric flow rate q3

Solids conc. c1
 Volumetric flow rate q1

Mixture

Solids conc. c2
Volumetric flow rate q2

Figure 4P.1.

a. Show that the mixture density is a linear function of c. The total volume V
is the sum of the solids volume VS and the liquid volume VL.

b. It is observed experimentally that the logarithm of height varies linearly
with time when pure water flows through the porous plate. Assume that
the volumetric flow rate q3 depends on the liquid density and viscosity, ρL

and ηL, respectively; the plate area, A; and the pressure change per unit
thickness across the plate, �p/δ. Obtain a constitutive equation for q3.

c. Obtain a steady-state design equation relating the tank dimensions to the
liquid throughput and the desired degree of concentration.



5 Membrane Separation

5.1 Introduction

Most processes, both physicochemical and biological, involve one or more separa-
tion process. Human physiology, for example, requires the transfer of oxygen from
air in the lungs to the blood stream, and the simultaneous transfer of CO2 from
the blood stream to the lungs for removal. The function of the kidney is to process
a continuous flow of liquid in order to separate waste products for removal from
the body. The production of ethanol by the fermentation of sugars produced from
natural products, whether for energy applications or for whiskey, requires that the
ethanol be separated from an aqueous stream in which ethanol comprises less than
20 percent. The manufacture of polyethylene terephthalate for textile fibers requires
the removal of ethylene glycol that is produced during the condensation polymer-
ization process. A DNA analysis requires the separation of DNA fragments with
different lengths and base pairs by gel electrophoresis. The production of oxygen for
industrial or medical applications requires that the oxygen be separated from an air
stream.

There are a variety of separation methodologies, and the analysis of separation
processes has historically held a prominent place in the chemical engineering curricu-
lum. Some, such as distillation and extraction, are familiar. (Brewing coffee or tea
is an extraction process that is carried out on a very small scale.) Most physiological
separations are membrane processes, in which a thin membrane keeps fluid (liquid
or gas) streams apart while permitting certain species to move across the membrane.
Membrane separations are playing an increasingly important role in technological
applications, including water purification and gas separation, and this chapter is
intended to serve as a brief introduction while amplifying our understanding of the
application of mass balances.

Most synthetic membranes are polymeric, although ceramic, zeolite, and metal
membranes are used in some applications. The mechanism for the preferential trans-
port of a particular species across a membrane depends on a variety of factors,
including the size of the pores (if any), the detailed morphology of the membrane,
and the energy of interaction between the species and the membrane material.

81
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All other things being equal, the rate of transport is proportional to the available
surface area, as would be expected. The rate also depends on a driving force that
reflects the difference in the thermodynamic states of the species in the two fluids
on the opposite sides of the membrane. The notion of thermodynamic state requires
concepts that are typically studied later in the curriculum, but we can address one
important case. Suppose we have dilute aqueous streams on both sides of the mem-
brane, and we wish to transport a dissolved species across the membrane. In the
absence of any reaction (chemical complexation, for example) the transport will
proceed until the concentration of the species is the same on both sides of the mem-
brane. To a good approximation, the rate at which the system tries to equilibrate the
concentrations is proportional to the difference between the concentrations on the
two sides of the membrane. The proportionality constant per unit area of membrane
surface is known as the permeability,* which we denote �; � will have dimensions
of length/time in our formulation. (The dimensions of permeability are determined
by the driving force, which is sometimes partial pressure; hence, permeability can
sometimes have unusual dimensions. For gas separation membranes the usual units
are mol/m · s · Pa.)

5.2 Single-Stage Dialysis

Membrane separation of one or more dissolved species from a dilute aqueous stream
is known as dialysis. The “artificial kidney,” which substitutes periodically (typically
three times per week) for the kidney function in patients with end-stage renal dis-
ease, is a dialysis process in which 250–400 cm3/min of blood is passed through the
membrane system for the removal of urea and other toxins. Dialysis is also used
in emergency situations to remove drugs or poisons from the system. Most dialysis
processes consist of long flat or tubular membranes in channels with large aspect
ratios, but it is convenient for our purposes to start with an idealized situation in
which two well-mixed volumes are separated by a membrane, and a dissolved species
is transported across the membrane because of a concentration difference, as shown
schematically in Figure 5.1. Water may also migrate across the membrane because
of the different states on the two sides, but we will ignore this phenomenon because
the amount of water transfer will generally be small in the absence of a significant
pressure difference between the two sides of the membrane.

The stream from which we wish to remove the dissolved species is known as
the raffinate (from the French raffinere, to refine); we denote the volumetric flow
rate of the raffinate by R and the concentration of the dissolved species by cR. The
stream to which the species is transferred is known as the permeate (a noun form

* This description is a bit simplistic, but it suffices for our introductory discussion here. In reality,
the resistance consists of the membrane permeability per se, and resistance to mass transfer within
each fluid phase in the neighborhood of the surface; the latter resistance depends on the flow rates
and certain physical properties of the particular species. The actual membrane permeability may
contribute less than half of the total resistance in liquid systems. Nonetheless, the functional form
will remain the same; it is only the calculation of � that is affected.
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P     cP

R        c
RfcR VR

Figure 5.1. Schematic of a single-stage dialy-
sis process, with two well-stirred sections sep-
arated by a semipermeable membrane.

not found in standard dictionaries of English usage, from the Latin verb permeare,
to go through); we denote the volumetric flow rate of the permeate by P and the
concentration by cP. We assume that the amount of material transferred across the
membrane is too small to affect the volumetric flow rates, so the outflow values of
P and R, respectively, are the same as the inflow values. (This assumption is not
necessary, but it is realistic and it simplifies the algebra greatly, making it easier to
understand the key features of the process.) The volumes are denoted VR and VP,
respectively, and the area of the membrane is denoted A. The rate at which the
dissolved species leaves the raffinate and enters the permeate is then �A(cR − cP).

Each volume, VR and VP, is a distinct control volume, and we write the balance
equations separately for each control volume. The overall mass balances are replaced
by the assumptions that the raffinate and permeate flow rates into and out of the
stages are the same. The balance equations for the dissolved species in the two
volumes are then as follows:

VR
dcR

dt
= R(cRf − cR) − �A(cR − cP), (5.1a)

VP
dcP

dt
= P(cP f − cP) + �A(cR − cP). (5.1b)

The first term on the right side of each equation represents the difference between
the inflow and outflow rates of the dissolved species, whereas the second term
represents the rate of transfer across the membrane. The transfer term is negative
in the raffinate equation and positive in the permeate equation, since solute transfer
is from the raffinate (outflow) to the permeate (inflow). We are interested in the
design equations, for which it suffices to consider only the steady state, so we set
dcR/dt = dcP/dt = 0 and get

R(cRf − cR) − �A(cR − cP) = 0, (5.2a)

P(cP f − cP) + �A(cR − cP) = 0. (5.2b)

Equations 5.2a and 5.2b can be added together to obtain a simple relation between
the concentrations, which can be rearranged to the form

cP = cP f + R
P

(cRf − cR). (5.3)
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We can then solve Equation 5.2a to obtain the net separation in the raffinate
stream,

cRf − cR =
[

1

1 + R
P + R

�A

]
(cRf − cP f ) ≡ M(cRf − cP f ). (5.4)

Equation 5.4 is the basic design equation for the single-stage dialyzer. Notice
that some useful estimates follow immediately. First, consider the case A → ∞; that
is, there is no limit on the available membrane surface area for transport. Equation
5.4 can then be solved to obtain the minimum value of P/R that can ever be used
(i.e., the lower bound, which is never attainable in practice) in order to effect a given
separation: (

P
R

)
min

= cRf − cR

cR − cP f
. (5.5)

From Equation 5.3, we see that this limit corresponds to cP = cR; that is, to equal
concentrations on both sides of the membrane, which is clearly the best that we can
do. If the flow rate R of the raffinate stream is specified, as will often be the case, then
Equation 5.5 leads to an explicit expression for the lower bound on the minimum
permeate rate:

Pmin = R
cRf − cR

cR − cP f
. (5.6)

Similarly, the minimum surface area will correspond to the case in which the per-
meate flow is so rapid that the transferred material is removed instantaneously
(P/R → ∞), causing the driving force to be maximized; we therefore obtain

Amin = R
�

[
cRf − cR

cR − cP f

]
= Pmin

�
. (5.7)

We can usually assume that cPf = 0, so these limits can be expressed solely in terms
of the separation factor, sR = cRf/cR: Pmin = R(sR − 1) and Amin = R(sR − 1)/�.

5.3 An Optimal Design Problem

Engineering design frequently requires the solution of an optimization problem, in
which a profit is maximized or a cost is minimized. The single-stage dialysis system
is not an efficient engineering separation system, as we shall see in subsequent
sections, but it does provide a good framework for looking at how an optimal design
might be carried out. The same approach would be employed for the more efficient
configurations that we will develop in later sections.

The total cost of the system includes the capital cost for construction and the net
present value of the operating cost. Capital cost is related to size, and for illustrative
purposes here we will take the capital cost to be proportional to the total area.
Operating costs are related to throughput. If R and the required separation are
specified, as will often be the case, then the variable operating costs are determined
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by the value of P, and we will again assume that the costs are proportional to P. We
therefore have a cost function of the form

C = A+ P, (5.8)

where  reflects the relative weight of capital and operating costs. Note that  has
dimensions of time/length. There will be other terms that represent fixed costs, but
because they are fixed they do not enter into the optimization calculation. The linear
relationship is very unrealistic, but it suffices for illustrative purposes and permits
us to carry through the steps for a solution without unnecessary computational
complexity. The design problem is now to find A and P such that we minimize C.

The simplest way to solve this minimization problem is first to obtain A in terms
of P. We assume cpf = 0, in which case we can rewrite Equation 5.7 in terms of the
separation factor sR = cRf/cR as

A= R
�

sR − 1

1 − R
P (sR − 1)

. (5.9)

(Note that A > 0 ⇒ P > Pmin = R(sR – 1), as required.) We then write C as a unique
function of a single variable, the unknown permeate flow rate P:

C = R
�

sR − 1

1 − R
P (sR − 1)

+ P. (5.10)

C becomes infinite as P goes to either of the two limiting values, Pmin or infinity, so
C must have a finite minimum for some intermediate value of P. The minimum is
obtained by setting the derivative dC/dP to zero*, as follows:

dC
dP

= R2

�P2
(sR − 1)2 1[

1 − R
P (sR − 1)

]2 +  = 0, (5.11)

which, when solved for the optimal P, gives

P =
R(sR − 1)

(
1 + √

�
)

√
�

= Pmin
1 + √

�√
�

. (5.12a)

The corresponding area is then

A=
R(sR − 1)

(
1 + √

�
)

�
= Amin

(
1 +

√
�

)
. (5.12b)

As
√

� → 0, A→ Amin and P → ∞, as expected, while P → Pmin and A → ∞ as√
� → ∞. We would follow the same procedure for more realistic cost functions,

but the calculus would be more complex and we might not be able to obtain analyti-
cal solutions. The absence of an analytical solution is not a problem in practice, since
the minimum can be found using numerical methods, but the availability of an ana-
lytical solution makes it easier to understand issues such as sensitivity to parameters.

* Normally we must also check the sign of the second derivative to distinguish between a minimum, a
maximum, or a saddle, but that step is not necessary here because we know that C has a minimum.
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Figure 5.2. “Cross-flow” multistage dialysis.

The fact that the optimal solution for A/Amin is a function of
√

� is to be expected
from dimensional considerations.

5.4 Multistage Dialysis

The fact that the minimum membrane area (hence the capital cost) for single-stage
dialysis depends only on the separation factor suggests a conceptual design for
carrying out a separation more efficiently. The area for the single-stage dialyzer will
increase by a factor of ten if we increase the desired separation factor by a factor
of ten (e.g., we go from 90% separation, with sR = = 10, to 99% separation, with
sR = 100). We could achieve the same result, however, by using two stages, each
with the same separation factor, using the raffinate leaving the first stage as the feed
to the second. With a separation factor of ten in each stage, for example, we would
achieve 90 percent removal in the first stage and a further 90 percent removal in the
second, giving us 99 percent removal overall, but with only twice the area of a single
stage; the saving is somewhat offset by the doubling of the permeate flow, since each
stage, in this concept, will require a separate permeate stream.

Let us consider a more general case, as shown in Figure 5.2, in which we employ
N stages. If we focus on a typical stage, denoted by n, the raffinate feed to the stage
is cR,n −1, whereas the raffinate effluent is cR,n. For simplicity we will assume that the
permeate feed to each stage is pure, so cPf = 0. We can then immediately write down
the separation in stage n by changing the nomenclature in Equation 5.4, rearranging
slightly to obtain

cR,n = (1 − M)cR,n−1. (5.13)

Equation 5.13 is a finite difference equation. Finite difference equations arise fre-
quently in staged separations applications. The solution to this equation is easily
seen by inspection: cR0 = cRf, so cR1 = (1−M)cRf, cR2 = (1−M)cR1 = (1−M)2cRf,

and so on. The general result is clearly

cR,n

cRf
= (1 − M)n =

(
1 + �A

P

1 + �A
P + �A

R

)n

. (5.14)

This is not an easy equation to interpret. We can get some useful insight into the
behavior by considering the case in which we have a large number of stages (N � 1),
each of which is small, with a total membrane area AT = NA. The permeate flow
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Figure 5.3. Schematic of a continuous cross-
flow dialyzer, with uniform permeate flow
transverse to the channel carrying the
raffinate.

across each small stage will then also be small, and we define the total permeate flow
as PT = NP. We can then write the separation factor for the entire system as

sR = cRf

cR,N
=

⎡
⎣1 + �AT

R
(

1 + �AT
PT

)
N

⎤
⎦N

. (5.15)

Now, lim
N→∞

(1 + x
N )N = ex. Thus, for large N we can get a very good approximation

to the separation factor by taking the limit N → ∞ to obtain

sR = exp

⎡
⎣ �AT

R
(

1 + �AT
PT

)
⎤
⎦ . (5.16)

This equation can be rearranged to solve for the total area, giving

AT = R/�
1

ln sR
− R

PT

, (5.17)

and the minimum area is

AT,min = R
�

ln sR = 2.3R
�

log sR. (5.18)

Thus, each factor of ten in the separation factor requires an equal area; that is,
a separation factor of 100 (99% removal) requires twice the area required for a
separation factor of ten (90% removal), whereas a separation factor of 1,000 (99.9%
removal) requires three times the area required for a separation factor of ten.

We should briefly consider how we might construct a dialyzer that is described
by this equation. The notion that we have a large number of very small well-mixed
regions suggests a flow channel that is long and thin, so there can be a great deal
of local mixing but little longitudinal mixing over a significant length scale. (Such a
device is said to exhibit plug flow.) The permeate would need to flow uniformly over
the membrane in a transverse direction, as shown schematically in Figure 5.3. Such
a device could easily be constructed; some hollow fiber devices, in which one stream
flows through tubes with a membrane shell and the other stream flows across the
tubes, approximate this configuration, and the design does not differ substantively
from the way in which some physiological transport takes place in the body.
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5.5 Optimal Permeate Distribution

The cross-flow separation analyzed in the preceding section suggests another nice,
but simple, example of an optimization problem. We assumed that the flow rate of
permeate to each stage was the same. This assumption is not intuitively obvious:
Might we not do better by using more of the permeate in the first few stages, thus
reducing the raffinate concentration more quickly, and then use less in the latter
stages where there is less material to remove?

Let us suppose that the permeate flow rate to the n-th stage is Pn, and that the
total flow rate is

∑N
n=1 Pn = PT , but that we no longer assume that Pn = PT/N for

all n. We will continue to assume that all stages have the same membrane area. It is
straightforward to show from Equation 5.13 that

cR,n

cRf
=

n∏
k=1

(
1 + �A

Pk

1 + �A
Pk

+ �A
R

)
, (5.19)

where the symbol
∏n

k=1 denotes multiply all terms together, with k varying from 1 to
n. With a bit of manipulation we can then write the separation factor as

sR = cRf

cR,N
=

N∏
k=1

⎡
⎣1 + �A

R
(

1 + �A
Pk

)
⎤
⎦−1

. (5.20)

The optimization problem is now to choose the distribution of permeate flows {Pk}
in such a way that we maximize the separation factor, keeping in mind that the sum
of all flows must equal PT.

We show in Appendix 5.B how to solve a class of optimization problems that
includes the one stated here. Before looking at the Appendix, however, we might
try to reason out the solution. It is clear from Equation 5.20 that the order of
multiplication is irrelevant; that is, every stage contributes in the same way, and, for
a given distribution, we could renumber the stages without affecting the outcome.
(That is, if we established a particular sequence from 1 to N, we could implement the
same sequence from N to 1 without changing the separation factor.) This observation
is counterintuitive, but it is clearly supported by the analysis. Hence, it should be
true that the best distribution is one that is independent of the sequencing of the
stages; that is, we expect that the optimal distribution will be equal flow rates to all
stages. This is indeed the result that we obtain from the mathematical analysis in
Appendix 5.B.

5.6 Smart Engineering: Countercurrent Dialysis

A bit of thought points up a fundamental weakness in the way that we have been
thinking about separation. The permeate will generally have a very small concen-
tration of the dissolved material. We are therefore handling a large volume of dilute
solution by putting fresh permeate into each stage in the cross-flow configuration.
A sensible approach would be to use the permeate leaving one stage as the feed to
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Figure 5.4. Schematic of countercurrent dialysis.

another. The driving force cR − cP would not be as large in the second stage as in the
first, but we would eliminate a considerable amount of fluid handling. The question
then is how to connect the stages. The countercurrent configuration shown in Fig-
ure 5.4 is attractive, because it uses the most dilute permeate in the same stage as
the most dilute raffinate (stage N), and the most concentrated permeate in the same
stage as the most concentrated raffinate (stage 1), which should be the most efficient
way to maintain a good driving force throughout the cascade.

We continue to assume that the amount of material transferred between the
raffinate and permeate streams is sufficiently small that we can neglect any change
in volumetric flow rates and treat R and P as constants from stage to stage, and we
assume that the membrane area in each stage is the same. We then start by applying
the steady-state balance equations to a typical stage n:

VR,n
dcR,n

dt
= 0 = R(cR,n−1 − cR,n) − �A(cR,n − cP,n) , (5.21a)

VP,n
dcP,n

dt
= 0 = P (cP,n+1 − cP,n) + �A(cR,n − cP,n) . (5.21b)

We also know that cR0 = cRf, and we will take cPf, which we rename cP,N + 1 for
consistency, to be zero (pure permeate feed).

Equations 5.21a and 5.21b are a system of 2N linear algebraic equations in the
variables {cR,n} and {cP,n}, n = 1, 2, . . . , N, with cR0 and cP,N + 1 as known constants.
They can be solved in a variety of ways, including standard matrix methods. The
traditional chemical engineering way to solve equations of this type, which arise fre-
quently in separations applications, is to manipulate the equations to eliminate cP,n,
which, after some algebra, results in the following second-order finite-difference
equation:(

�A
R

+ 1
)

cR,n+1 −
[

2 +
(

R
P

+ 1
)

�A
R

]
cR,n +

(
�A
P

+ 1
)

cR,n−1 = 0. (5.22)

Linear finite-difference equations are solved by methods analogous to those for
solving linear differential equations, as shown briefly in Appendix 5.A for those
who have completed a course in differential equations. The solution, which can be
verified by direct substitution into Equation 5.22, is

cR,n

cRf
=

R
P αN − αn

R
P αN − 1

, (5.23a)
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where

α ≡ 1 + �A
P

1 + �A
R

. (5.23b)

By setting n = N we obtain the separation factor sR = cRN/cRf:

sR =
R
P −

(
1+ �A

P

1+ �A
R

)−N

R
P − 1

. (5.24)

We can analyze behavior using this result, but it is a bit easier to think again in terms
of the continuous system by setting A = AT/N and letting N approach infinity. (In
contrast to the cross-flow configuration, P remains unchanged.) Again, using the
relation (1 + x

N )N → ex as N → ∞, we obtain

sR =
R
P − e−( �

P − �
R )AT

R
P − 1

. (5.25)

We then obtain the two useful limits that define countercurrent operation:(
P
R

)
min

= sR − 1
sR

, (5.26a)

AT,min = R
�

ln (sR + 1) . (5.26b)

Hence, we see that the minimum area requirement for the countercurrent configura-
tion is not significantly different from that for the cross-flow. The smallest permeate
rate possible with a large membrane area is very close to the raffinate rate. Actual
operation will, of course, reflect some compromise between these limits. It is possible
to repeat the optimization calculation done in Section 5.3 for the single-stage system,
but in this case the analog of Equation 5.11 is a transcendental equation that does
not have an analytical solution and would require numerical solution for specific
values of the parameters.

5.7 Continuous Countercurrent Flow

The staged systems that we have considered up to this point are realistic for many
separation processes, and the large N limit provides a convenient way to analyze
continuous systems. Dialysis is generally carried out continuously, and it is instructive
to address the continuous system directly. The process is shown schematically in
Figure 5.5. The raffinate and permeate streams flow parallel to one another in two
plane channels of length L that are separated by a membrane that has a width w.
(The analysis is unchanged if the membrane is a tube, except that w becomes the
perimeter of the tube.) The system is countercurrent if the flows are as shown, and
that is the case that we consider here. Co-current operation is also possible.

Here we need to consider the choice of the control volume carefully, since, as
noted in Section 4.2 and Figure 4.2, each characterizing variable must have a unique
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Figure 5.5. Schematic of continuous countercurrent dialysis.

value in the control volume. The concentration in each stream changes along the
channel, so it is clear that the entire unit cannot be taken as the control volume.
We choose instead a segment of each channel of length �z, as shown in the figure;
within this small region we can assume, as is typically done when using differential
calculus, that the characterizing variables are constant, and we will subsequently
let �z go to zero. We assume, as before, that the amount of solute transferred
between the streams is sufficiently small to allow us to take the flow rates R and
P as constant in space. For this configuration we will start with the steady state in
order to avoid the complication of having to deal with changes with respect to two
independent variables, t and z. The steady-state mass balances in the two control
volumes (raffinate side and permeate side) are then respectively

0 = R(cR|z − cR|z+�z) − �w�z(cR − cP) , (5.27a)

0 = P (cP|z+�z − cR|z) + �w�z(cR − cP) . (5.27b)

We now divide each equation by �z and make use of the fact that the difference
quotient ϕ|z+�z− ϕ|z

�z goes to the derivative dϕ/dz as �z → 0. We therefore obtain the
differential equations

R
dcR

dz
+ �w (cR − cP) = 0, (5.28a)

P
dcP

dz
+ �w (cR − cP) = 0. (5.28b)

Each equation requires one condition at a specific value of z in order to evaluate the
constant of integration; these are cR(0) = cRf and cP(L) = cPf = 0.

By subtracting Equation 5.28b from Equation 5.28a we obtain RdcR/dz −
P dcP/dz = 0, which integrates to RcR(z) − Pcp(z) = constant = RcRL. (Note that
cRL is still unknown.) We can then substitute into Equation 5.28a to obtain a single
equation for the raffinate concentration, as follows:

dcR

dz
= cR

(
�w

P
− �w

R

)
− �w

P
cRL. (5.29)

We have seen this type of equation before; it is of the form of Equation 4.11, for
example. Hence, we can write the solution with cR(0) = cRf as

cR(z) = cRf e( �w
P − �w

R )z + cRL

1 − P
R

[
1 − e( �w

P − �w
R )L

]
. (5.30)
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We now evaluate the unknown cRL by setting z = L in Equation 5.30. It is readily
established that the resulting equation for sR = cRf/cRL is identical to Equation 5.25,
with AT = wL. This result is, of course, expected.

5.8 Hemodialysis

In hemodialysis, the circulatory system of the patient is connected directly to the
dialyzer through shunts in the arm. The shunts are typically installed permanently,
since the patient must be able to connect easily to the system three or more times
a week. Truskey and coworkers have compiled data on hemodialysis from a variety
of sources, and they have computed the various contributions to � for urea passing
through a 180-μm-diameter cellulosic hollow fiber membrane with a wall thickness
of 20 μm from membrane properties, the physical properties of urea, and typical
flow conditions. The values that they compute are consistent with those reported
for commercial dialyzers. We obtain � = 0.33 cm/min from their values for the
various contributions to the resistance, where 40 percent of the resistance comes from
the membrane permeability. The typical operating parameters that they report are
R = 250 cm3/min, P = 500 cm3/min, and AT = 1,200 cm2. (Truskey and colleagues
report typical values of �AT for urea to be in the range 300–500 cm3/min, from
which we obtain the 1,200 cm2 value for the typical area.) Substituting these values
into Equation 5.25 gives a separation factor sR = cRL/cRf of about 3.5 for urea. The
minimum surface area computed from Equation 5.26b for this separation factor is
1,130 cm2, so the actual area in this example is only about 6 percent greater than the
minimum.

5.9 Concluding Remarks

Membrane separation is an illustrative and very important example of the use of
the conservation equations for nonreacting systems and the connection between
analysis and design. In a broader context, however, the various dialysis configurations
illustrate a very important point regarding the marginal cost of improved separation
that is common to all separation processes. Each additional factor of ten in separation
requires a membrane area equal to that required for the previous factor of ten. Hence,
there is an exponential increase in size, with a corresponding exponential increase
in capital cost, for increased purity.

The large marginal capital cost of improved separations, which is especially
important in large industrial processes, brings up the obvious issue of the trade-off
between cost and purity. Simply stated, when is the extra decimal place needed? Is
there a clear economic or societal gain in going from 99 percent purity to 99.9 percent
that justifies doubling the size and capital cost? Would the money be better invested
in purifying another stream to 90 percent (or even to 50%)? Indeed, in the context
of environmental control, this simple calculation (in reality, the equivalent calcula-
tions for the specific separations processes of interest) provides some of the intel-
lectual underpinning for the controversial concept of “trading” of pollution rights,
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wherein organizations, or different effluent sources within a single organization,
can effectively pool the contents of their effluents to achieve an overall goal, rather
than requiring that each individual source meet the goal. Emissions trading for SO2

control to reduce “acid rain” is incorporated, for example, in the 1990 U.S. Clean
Air Act.
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PROBLEMS

5.1. A dialysis system is set up to reduce the concentration of a solute from 100 g/L
to 1 g/L. The membrane permeability is 0.001 m/s, and the raffinate flow rate is 0.25
L/min. The permeate stream enters with none of the solute present.

a. What is the minimum permeate flow rate?
b. What is the minimum membrane area required?
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5.2. Derive Equation 5.3 directly by doing a steady-state mass balance with a control
volume that includes both VR and VP.

5.3. Consider a dialysis system in which the membrane has a permeability of 1/3

cm/min and the total available membrane area is 2,700 cm2. The raffinate feed rate
is 300 mL/min and the total permeate flow available is 900 mL/min. Compare the
separation factors for the following cases: (a) a single stage; (b) a nine-stage cross-
flow configuration; (c) a nine-stage countercurrent configuration.

5.4. Consider a continuous countercurrent dialysis system that uses a flat membrane
with a width of 25 cm and a permeability of 1/3 cm/min. The raffinate and permeate
feeds are 300 mL/min and 900 mL/min, respectively. The required separation factor
is 7.24. What is the required length? Discuss the result in the context of your solution
to part c of problem 5.3.

5.5. Starting with Equation 5.30, carry out the steps that lead to the separation factor
given by Equation 5.25.

5.6. Repeat the optimization analysis in Section 5.3 for a continuous countercurrent
dialysis process, but do not attempt to solve the equation that you derive for the
optimal permeate flow rate.

Appendix 5A: Linear Finite-Difference Equations

A homogeneous linear finite-difference equation has the form

anxn + an−1xn−1 + · · · + a1x1 + a0 = 0, (5A.1)

where the coefficients {ai} are constants. It can be shown by direct substitution that
the solution is of the form

xk = C1mk
1 + C2mk

2 + · · · Cnmk
n, (5A.2)

where the {mi} are the n roots of the nth order polynomial equation

anmn + an−1mn−1 + · · · + a1m + a0 = 0. (5A.3)

This result is analogous to the solution of linear homogeneous ordinary differential
equations, where the solution is a sum of exponentials. The n coefficients {Ci} must
be evaluated from n independent conditions. Nonhomogeneous linear difference
equations also have particular solutions, which are found in a manner analogous to
the particular solutions to nonhomogeneous linear ordinary differential equations.

Appendix 5B: An Optimization Calculation

Consider a function �(x1, x2, . . . , xN) = ∏N
n=1 f (xn). The cross-flow staged mem-

brane separation example in Equation 5.20 is a special case of this general form.
We wish to choose the N variables {xn} that maximize � subject to the constraint∑N

n=1 xn = X. The problem is made a bit simpler by noting that the variables that



Appendix 5B: An Optimization Calculation 95

maximize � will also maximize ln �; hence, we may reformulate the problem as
follows:

Maximize ln �(x1, x2, . . . , xN) =
N∑

n=1

ln f (xn) subject to
N∑

n=1

xn = X. (5B.1)

There are now two approaches that we can take. For those familiar with the use
of Lagrange multipliers for constrained maximization or minimization, the process
is straightforward. We differentiate the function

∑N
n=1 ln f (xn) + λ(

∑N
n=1 xn − X)

with respect to each element of the set {xn} and set the result to zero. This gives N
equations that, together with the constraint

∑N
n=1 xn = X, provide N + 1 equations

to find the N + 1 variables x1, x2, . . . , xN, λ. Thus, we have

∂

∂xk

[
N∑

n=1

ln f (xn) + λ

(
N∑

n=1

xn − X

)]
= f ′(xk)

f (xk)
+ λ = 0, k = 1, 2 . . . , N. (5B.2)

Here, f ′(xk) = df (xk)/dxk. The ratio f ′(xk)/ f (xk) is a known function of the vari-
able xk. It therefore follows immediately that all of the N variables {xn} indepen-
dently satisfy exactly the same algebraic equation; hence, it must be true that x1 =
x2 = · · · = xN = X

N .
The process is a bit more involved for those who are not familiar with the use

of Lagrange multipliers, which are often introduced in the mathematics curriculum
only in courses in advanced calculus. In that case, we need to convert the constrained
problem to an unconstrained one, which is straightforward for this example but not
so in general. We are free to choose only N − 1 of the N variables {xn} independently;
the N-th is determined by the constraint. Hence, we write xN = X − ∑N−1

n=1 xn. The
problem to be solved is now

Maximize ln �(x1, x2, . . . , xN−1) =
N−1∑
n=1

ln f (xn) + ln f

(
X −

N−1∑
n=1

xn

)
. (5B.3)

This is an unconstrained maximization problem, so we find the solution by
differentiating the function ln � with respect to each of its N − 1 arguments in turn
and setting the result to zero. We thus obtain

∂

∂xk

[
N−1∑
n=1

ln f (xn) + ln f

(
X −

N−1∑
n=1

xn

)]
= f ′(xk)

f (xk)
+ (−1)

f ′(X − ∑N−1
n=1 xn

)
f
(
X − ∑N−1

n=1 xn
) = 0,

k = 1, 2, . . . , N − 1. (5B.4)

We can rewrite this equation as

f ′(xk)
f (xk)

= f ′(X − ∑N−1
n=1 xn

)
f
(
X − ∑N−1

n=1 xn
) = f ′(xN)

f (xN)
, k = 1, 2, . . . N − 1 . (5B.5)

Hence, it follows that each xk = xN for all k = 1, 2, . . . , N − 1; that is, x1 = x2 =
· · · = xN = X

N .



6 Chemically Reacting Systems

6.1 Introduction

Most chemical engineering applications involve chemical reactions; this is true
whether we are dealing with the manufacture of computer chips, the creation of
scaffolding for cell growth in artificial organs, the design of a novel battery, or the
conversion of biomass to synthetic fuel. Chemical reactions can take place in gas, liq-
uid, or solid phases; in the bulk or at interfaces; and with or without catalysts. Many
reactions of social, physiological, or industrial significance take place in multiphase
environments, where reactive species and reaction products must cross phase bound-
aries. Some “cracking” reactions for the production of intermediate molecular weight
hydrocarbons from heavy components of crude oil, for example, are carried out in
“trickle-bed” reactors; here, liquid and gas phases flow together over a bed of cat-
alyst particles. Design and operating considerations for trickle-bed reactors include
ensuring the necessary contact between the phases so that chemical species can get
to where they need to be for specific reactions to occur. Similarly, many biochemical
reactions, including wastewater treatment, require that suspended microorganisms
be able to access organic nutrients that are dissolved in the liquid phase, as well as
oxygen that is supplied as a gas (perhaps in air) and must dissolve into the liquid.

The design and operating issues for complex reactors of the types mentioned
here are addressed in advanced courses, but we can focus on some basic principles
essential to our overall understanding that can be elucidated by considering single-
phase reactors and simple geometries; many important reactions are, in fact, carried
out in a single phase in relatively simple geometries. There are two basic designs,
stirred tank and tubular. The terms are descriptive: The stirred-tank reactor is
typically cylindrical, with a height-to-diameter ratio of no more than two or three,
so that effective mixing can take place. There are often baffles to enhance mixing. A
schematic of a typical continuous-flow stirred-tank reactor (CFSTR, or sometimes
CSTR or C*) is shown in Figure 6.1; the reactants enter through one or more streams
at the top and the products leave through a stream at the bottom in this design. There
is a jacket around the outside of the reactor through which a liquid or steam flows
for temperature control, a topic that we discuss in Chapter l3.

96
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Reactants

Coolant

Products

Figure 6.1. Schematic of a typical continuous-flow
stirred-tank reactor.

A tubular reactor, as the name suggests, is constructed from a long tube, so
longitudinal mixing is negligible, although the system is often assumed to be well
mixed in the radial direction. It is quite common for the reactor tube to be coiled, or
to be folded back on itself many times, in order to fit within a confined space, and the
tube is typically surrounded by a jacket for heating or cooling. We will not consider
tubular reactors in this introductory treatment, but the analysis is straightforward
and follows along the lines of the treatment of the continuous dialyzer in Section 5.7.

The mass balance equations for a chemically reacting system are the same as
for the other systems that we have analyzed thus far, with one important distinction:
The masses of individual species in the control volume can now change because
of creation or destruction by chemical reaction. In general, chemical reaction is a
volumetric process (except for surface reactions, of course); hence, all other things
being equal, the total rate of creation or destruction of a species by chemical reaction
in units of mass/time will be proportional to the available volume. We therefore
express rates on a volumetric basis, in units of mass/(time × volume); in fact, since
chemical reactions take place between moles of the reactant species, the best way to
keep track of the mass of any species is to employ molar units. We will use the generic
symbol r to denote a rate at which a reaction takes place, with units of moles/(time ×
volume); the rates of formation or disappearance of individual species by chemical
reaction will be indicated by appropriate subscripts.

6.2 Continuous-Flow Stirred-Tank Reactor

Consider the reactor shown schematically in Figure 6.2. We have a well-stirred tank
in which a chemical reaction occurs; the reaction is as follows:

αA + βB + · · · → μM + νN + · · · . (6.1)
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Figure 6.2. Schematic of a continuous-
flow stirred-tank reactor.

Here, A, B, . . . represent the reactants, and M, N, . . . represent the reaction prod-
ucts. α, β, . . . are the stoichiometric coefficients of the reactants, and μ, ν, . . . are the
stoichiometric coefficients of the products; that is, α moles of A combine with β

moles of B, and so on, to form μ moles of M, ν moles of N, and so on. There is never
a loss of generality in taking α = 1, since we can always divide Equation 6.1 by α; in
that case the stoichiometric coefficients may not be integers, but they will be ratios
of integers except in unusual cases. The reactants might enter in separate streams, as
shown, or two or more components of the feed might enter together, in which case
ρAf qAf + ρBf qBf + · · · = ρ f q f .

For definiteness, we will consider the irreversible reaction A + βB → μM. The
generalization to a single reaction with more reactants or products and to a reversible
reaction will be obvious. The reactor is the control volume and the overall mass
balance is unchanged:

d
dt

ρV = ρAf qAf + ρBf qBf − ρq. (6.2)

We need to include the reaction rate in the mass balance equation for each species.
We will denote the rate at which species i is created by chemical reaction, in units
of moles/(time × volume), by ri + , and the rate at which species i is destroyed by
chemical reaction as ri − . The reaction rates ri + and ri− are always positive numbers.
(Note that in our example here, A and B are only destroyed and M is only created.)
The species balance equations are then

d
dt

cAV = cAf qAf − cAq − rA−V, (6.3a)

d
dt

cBV = cBf qBf − cBq − rB−V, (6.3b)

d
dt

cMV = −cMq + rM+V. (6.3c)

The last term on the right side of each equation is the rate of disappearance or forma-
tion of the relevant species by reaction. Concentrations are in units of moles/volume,
and we have assumed for simplicity that the product M is not contained in any
feedstream.
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Now, every time that one mole of A is reacted, β moles of B are also reacted
and μ moles of M are formed. Hence, the rates are not independent. It follows
immediately that rA− = rB−/β = rM+/μ, and only a single rate is required; we will
choose this to be rA−, which we will simply denote r. r is frequently called the intrinsic
rate of reaction. Equations 6.3a,b, and c then become

d
dt

cAV = cAf qAf − cAq − rV, (6.4a)

d
dt

cBV = cBf qAf − cBq − βr V, (6.4b)

d
dt

cMV = −cMq + μr V. (6.4c)

We saw in Chapter 4 that the overall mass balance, Equation 6.2, was independent
of the densities of the individual streams provided that the mixture was linear in
concentration, which is equivalent to there being no volume change on mixing.
We might expect this condition to become more restrictive when there is chemical
reaction, and in fact there is now a second condition: The coefficients in the linear
expression for the density must be proportional to the molecular weights of the
corresponding species. This restriction, which is derived in Appendix 6A, will often
be satisfied, and we can then write the overall mass balance as

dV
dt

= qAf + qBf − q. (6.5)

The reaction rate, r, clearly depends on the composition. (r must equal zero if
there is no A or no B in the reactor.) Furthermore, the composition dependence will
certainly be different for different reacting systems. Hence, we require a constitutive
equation for the intrinsic rate r(cA, cB, . . . ) in order to complete the description.

6.3 Reaction Kinetics

The traditional picture of a chemical reaction is that reactant molecules collide and
form the product. A more sophisticated version is that only a certain fraction of
collisions actually result in reaction. In either case, the rate of a reaction will be
proportional to the probability that a collision of reactants occurs in a unit time. The
probability that two molecules collide will depend on the concentration of each, and
will be equal to zero if the concentration of either species is zero; the simplest case
assumes that the probability is proportional to the concentration of each reactant.
For a case in which one molecule of A must react with β molecules of B, the rate
will then be of the form

r = kcAcβ

B. (6.6)

This form of a rate expression is commonly known as mass action kinetics. The rate
constant k will usually be a function of the temperature, and perhaps also of the
pressure in a gas-phase system. It is often the case that the functional form is more
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complex, perhaps because there are intermediate reactions occurring that do not
show up in the overall kinetic scheme. Product inhibition occurs in some catalytic and
biological reactions, and the concentration of product may appear in the rate expres-
sion. Power functions are in common use, in large measure because they are adequate
to describe complex functions over limited ranges of the variables, and the expo-
nents may in some cases be different from the stoichiometric coefficients. The study
of reaction mechanisms and the corresponding rate expressions is an important part
of the subject of chemical kinetics, which is usually incorporated in the chemical
engineering curriculum in a core course with a name such as “Reaction Kinetics and
Reactor Design.” For our purposes in this introductory text, we will consider the
reaction rates to be empirical functionalities that we can obtain by experiment, and
we will not delve into the underlying molecular processes.

6.4 Batch Reactor

A batch reactor is a well-stirred tank that has no inflow or outflow. Batch reactors
are used in many manufacturing processes, especially in the pharmaceutical and fine
chemicals industries, but our interest in them here is that they are ideal configu-
rations for the determination of reaction rate constitutive relations. For the latter
application the reactors are usually laboratory-scale setups, often nothing more than
a beaker with a stirrer. As we shall see, the challenge in using a batch reactor for
rate determination is the ability to obtain good conversion data as a function of
time.

We will continue to consider the irreversible reaction A + βB → μM for defi-
niteness, although the generality of the approach will be obvious. Without flow, the
volume V is a constant (dV/dt = 0), and Equations 6.4a,b, and c become

dcA

dt
= −r,

dcB

dt
= −βr,

dcM

dt
= +μr. (6.7a,b,c)

It follows immediately that dcB/dt = βdcA/dt and dcM/dt = −μdcA/dt . Two rela-
tions then follow by integration:

cB(t) − cB0 = β[cA(t) − cA0], (6.8a)

cM(t) − cM0 = −μ [cA(t) − cA0]. (6.8b)

cA0, cB0, and cM0 are the molar concentrations in the reactor at time t = 0, with cM0

typically equal to zero. Thus, we need solve for only one concentration. We will
assume for illustration that that concentration is A, and the equation that we need
to solve is Equation 6.7a.

6.5 A + B → μM

We now consider the irreversible chemical reaction in which one mole of A reacts
with one mole of B to form μ moles of M (i.e., the case considered above, but with
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Table 6.1. Concentration of H2SO4 versus time for the
reaction of sulfuric acid with diethyl sulfate in aqueous
solution at 22.9◦C. Data of Hellin and Jungers, Bull. Soc.
Chim. France, No. 2, pp. 386–400 (1957).

Concentration of H2SO4,
Time, t (min) cA(t) (g-mol/L)

0 5.50
41 4.91
48 4.81
55 4.69
75 4.38
96 4.12

127 3.84
162 3.59
180 3.44
194 3.34

β = 1). We will assume mass action kinetics, so r = kcAcB. With Equation 6.8a we
can then write

dcA

dt
= −kcAcB = −kcA(cA + cB0 − cA0) = −kcA(cA + ψ), (6.9)

where ψ ≡ cB0 − cA0. We assume that the temperature in the batch reactor does not
change with time, so k is a constant. The integration of Equation 6.9 is straightfor-
ward. We rewrite the equation in separated form as

cA(t)∫
c=cA0

dc
c(c + ψ)

= −kt, (6.10)

where c is the dummy variable of integration. There are two cases that need to be
considered separately, ψ = 0 (cA0 = cB0) and ψ �= 0 (cA0 �= cB0). The integration of
Equation 6.10 is straightforward in either case, with the following results:

ψ = 0 :
1

cA(t)
= 1

cA0
+ kt, (6.11a)

ψ �= 0 : ln
[

cA(t) + ψ

cA(t)

]
− ln

[
cA0 + ψ

cA0

]
= ln

[
cB(t)
cA(t)

]
− ln

[
cB0

cA0

]
= ψkt. (6.11b)

Thus, if the initial concentrations of the two reactants are equal, a plot of 1/cA versus
t will yield a straight line with slope k. Similarly, for unequal initial concentrations,
Equation 6.11b indicates that a plot of a slightly more complicated function will
give a straight line with slope ψk. (It is easily shown that Equation 6.11b reduces to
Equation 6.11a in the limit ψ → 0 by making use of the relation ln (1 + x) ≈ x for
x � 1. See Problem 6.6.)

EXAMPLE 6.1 The data in Table 6.1 were obtained for the reaction of sulfuric
acid with diethyl sulfate, H2SO4 + (C2H5)2SO4 → 2C2H5SO4H, in aqueous
solution at 22.9◦C. The initial concentrations of both reactants were the same,
5.5 g-mol/L. What is the rate expression?
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Figure 6.3. Computation of the second-order rate constant for the reaction between sulfuric
acid and diethyl sulfate in aqueous solution.

In our symbolic nomenclature, H2SO4 is denoted by A, (C2H5)2SO4 is
denoted by B, and 2C2H5SO4H is denoted by M. cA0 = cB0 = 5.5 g-mol/L.
μ = 2 and ψ = 0. We assume mass action kinetics, so the rate with equal initial
concentrations will be of the form r = kcA

2.* As required by Eq. 6.11a, the data
are plotted in Figure 6.3 as 1/cA versus t. There is some experimental scatter, but
the data are clearly represented by the straight line shown in the figure. The rate
constant is then determined from the slope to be k = 6.05 × 10−4 L/(g-mol min).

EXAMPLE 6.2 The data in Table 6.2 were taken in a batch reactor for the reaction
between sodium ethoxide and ethyl dimethyl sulfonium iodide in solution in
ethanol:

.

Verify that the data are consistent with mass action kinetics and find the rate
constant.

We denote sodium ethoxide by A and ethyl dimethyl sulfonium iodide by
B. According to Equation 6.11b, a plot of ln[cB(t)/cA(t)] versus t should give

* Problem 6.1 asks you to analyze this data set using the methodology of Appendix 2A to show that
n = 2 is a reasonable exponent for these data if the rate expression is assumed to be of the form r =
kcA

n.
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Table 6.2. Concentrations of sodium ethoxide and ethyl dimethyl sulfonium iodide in
ethanol solution as functions of time. Data of E. D. Hughes, C. K. Ingold, and G. A. Maw,
J. Chem. Soc., 2072–2077 (Dec., 1948).

Time Concentration of NaOC2H5, Concentration of C2H5S(CH3)2I, cB − cA

(min) cA (g-mol/L) cB (g-mol/L) (g-mol/L)

0 0.0961 0.0472 − 0.0489
12 0.0857 0.0387 − 0.0470
20 0.0805 0.033 − 0.0471
30 0.0749 0.0278 − 0.0471
42 0.0698 0.0228 − 0.0470
51 0.0671 0.0200 − 0.0471
63 0.0638 0.0168 − 0.0470
∞ 0.0470 0 − 0.0470

a straight line for mass action kinetics. Note from Table 6.2 that ψ = −0.0470
g-mol/L, and that there seems to be some discrepancy in the measurement of the
initial concentration of cA. The data are plotted in Figure 6.4, and it is evident
that they do follow a straight line, with the exception of the intercept point. The
mass action rate expression is thus verified, and we obtain the rate constant k
from the relation k = slope/ψ = ( − 0.0103)/( − 0.0470) = 0.21 L/(g-mol min).
It is interesting to note how different this rate constant is from the one in the
previous example. Rate constants for different reactions can vary by many orders
of magnitude.

Slope = −1.03 × 10−2 min−1
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Figure 6.4. Computation of the second-order rate constant for the reaction between sodium
ethoxide and ethyl dimthyl sulfonium iodide in ethanol.
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Table 6.3. Data for the decomposition of NDEA
with ultraviolet radiation, read from a graph in B.
Xu, Z. Chen, F. Qi, J. Ma, and F. Wu, J. Hazardous
Materials, 179, 976–982 (2010).

Time (min) cNDEA/cNDEA0

0 1.0
2 0.31
5 0.053

10 too small to read from graph

6.6 First-Order and Pseudo-First-Order Reactions

Reaction rates sometimes appear to be proportional to the concentration of a single
species, and these are called first-order reactions. Spontaneous decomposition, as
occurs in nuclear fission, would be expected to be truly first order, but other reactions
may exhibit first-order behavior for a variety of reasons. Chemical reactions of the
form A + B → μM in solution may sometimes be carried out with cB much larger
than cA, for example, perhaps because a large excess of B is required to suppress
an unwanted side reaction. The role of B is effectively masked in the mathematical
description of the reaction in such a case, and the resulting equations are somewhat
simpler. Consider Equation 6.9: If cB0 � cA0, then cB0 � cA(t)– cA0 for all t. Hence,
to a good approximation, we may write Equation 6.9 as

dcA

dt
∼= −(kcB0)cA = −k′cA, (6.12)

where k′ = kcB0 has units of inverse time, say min−1, and the kinetics appear to be
first order. k′ is often called a pseudo-first-order rate constant, and the reaction a
pseudo-first-order reaction. Solution of Equation 6.12 leads to

ln
cA(t)
cA0

= −k′t, (6.13)

so a plot of the logarithm of cA versus t will be linear, with a slope equal to −k′. (This
result can also be obtained directly from Equation 6.11b by setting cB(t) = cB0.)

Another way in which a reaction in solution might appear to be first order is
if a second species is required for a reaction to occur, but the second species, or
homogeneous catalyst, is not used up in the reaction. That is, the chemical equation
will have the form A + B → μM + B, and hence will appear to be of the form
A → μM. The concentration of B is then unchanged, and Equation 6.12 is an exact
representation.

EXAMPLE 6.3 N-nitrosodiethylamine (NDEA) is a carcinogenic compound that
is found in drinking water, together with other nitrosamines. One way in which
NDEA can be broken down is by exposure to ultraviolet radiation. The data
in Table 6.3 were read from a published graph reporting on an experiment in
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Figure 6.5. Logarithm of relative NDEA concentration as a function of time.

which 0.10 mmol/L of NDEA at pH 6.0 was exposed to 1 mW/cm2 of ultraviolet
radiation. Are the data consistent with first-order kinetics?

The data are plotted as ln(cNDEA/cNDEA0) versus time in Figure 6.5. The avail-
able data points lie on a straight line passing through the origin with a slope of
−0.59 min−1. Hence, according to Equation 6.13, the limited available data are
consistent with first-order or pseudo-first-order kinetics.

EXAMPLE 6.4 The cleavage of diacetone alcohol in the presence of hydroxide ion
(e.g., aqueous NaOH) at 25◦C appears to be a simple first-order decomposition:

CH3

OH

O

→CH3 CH2C C CH3

O

2CH3 C CH3.

The reaction is actually catalyzed by the hydroxide, and the true reaction is

CH3

OH

O

→+CH3 CH2C C CH3 OH– + OH–.

O

2CH3 C CH3

Data for the apparent first-order reaction-rate constant are shown in the first
two columns of Table 6.4 for various concentrations of NaOH in the reaction
mixture. Show that the reaction exhibits mass action kinetics with a true rate
r = kcAcB.

The third column in the table shows the pseudo-first-order rate constant k′

divided by the concentration of NaOH. The result is a constant value to within
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Table 6.4. Pseudo-first-order and actual second-order rate constants as
functions of NaOH concentration for the homogeneously catalyzed cleavage
of diacetone alcohol at 25◦C. Data of C. C. French, J. Am. Chem. Soc., 51,
3215–3225 (1929).

NaOH (cB) (g-mol/L) k′ (min−1) k = k′/cB (L/g-mol min)

5 × 10−3 2.32 × 10−3 0.465
10 × 10−3 4.67 × 10−3 0.467
20 × 10−3 9.40 × 10−3 0.470
40 × 10−3 19.2 × 10−3 0.479

100 × 10−3 47.9 × 10−3 0.479

3 percent, indicating that the true reaction rate is r = kcAcB, where k = 0.47
L/(g-mol min).

6.7 Reversible Reactions

All chemical reactions are reversible in principle, and most are reversible in practice
as well. Hence, we must now return to the reaction in Equation 6.1 and consider
the more general case of reversibility. As before, we take α = 1 without loss of
generality, and all other stoichiometric coefficients other than β and μ to be zero.
We thus have two reactions to consider:

A + βB → μD

μD → A + βB

We will therefore have to account for both the forward and reverse reactions in the
species conservation equations. In the batch reactor, with the usual assumptions that
lead to constant volume, the species equations then become

dcA

dt
= rA+ − rA−, (6.14a)

dcB

dt
= rB+ − rB−, (6.14b)

dcM

dt
= rM+ − rM−. (6.14c)

All of the stoichiometric arguments used previously still apply. Clearly, β moles of
B still vanish for every mole of A that is reacted, and, similarly, β moles of B are
formed for every mole of A that is former by the reverse reaction. μ moles of M
are formed for every mole of A that is reacted, and one mole of A and β moles of
B are formed for every μ moles of M that are lost in the reverse reaction. Hence,
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rB− = βrA−, rM+ = μrA−, rB+ = βrA+, and rM− = μrA+. We can then again define a
single reaction rate, denoted r, as follows:

r ≡ rA− − rA+ = rB− − rB+
β

= rM+ − rM−
μ

. (6.15)

We thus recover Equations 6.6a, b, and c, which clearly depend only on the fact that
there is a single reaction, and not on the assumption if irreversibility. This is also true
of Equations 6.7a and b, which relate the concentrations of the various reactants and
products in the batch reactor at any time. Note that r is the difference between two
positive quantities and may be positive or negative.

We can gain considerable insight by considering the specific example of β = 1
and μ = 2, together with mass action kinetics. We thus write rA− (the forward rate) as
k1cAcB and rA+ (the reverse rate) as k2c2

M, with r = k1cAcB − k2c2
M. The batch reactor

equations are thus

dcA

dt
= 1

β

dcB

dt
= − 1

μ

dcM

dt
= −k1cAcB + k2c2

M. (6.16)

Note that all rates of change of concentrations with time are zero if k1cAcB = k2c2
M;

that is, the system is at equilibrium, which simply means that forward rates exactly
equal reverse rates. We denote the equilibrium concentrations of the species with a
subscript e; we therefore obtain

c2
Me

cAecBe
= k1

k2
= Keq. (6.17)

Keq is, of course, the equilibrium constant, which is familiar from the general chem-
istry course.

We can make one observation that is of experimental significance even before
we complete the mathematical steps to determine the time evolution of the concen-
trations in a batch reactor. Suppose that we begin the experiment with no M present.
In that case, cM will be very small, and the second term on the right of Equation 6.16,
which is quadratic in cM, will be negligible for a finite period of time. The equation
will then be approximately the same as Equation 6.9, and the system will appear to
be irreversible. This is another example of the significance of the time scale when
evaluating system response.

For specificity we consider the case in which α = β = 1 and μ = 2, with cA0 =
cB0 and cM0 = 0. It then follows from Equation 6.8 that cA(t) = cB(t) and cM(t) =
2[cA0 − cA(t)]. Equation 6.16 can then be written as

dcA

dt
= −k1c2

A + k2[2(cA0 − cA)]2, (6.18)

and the equilibrium relation is

Keq = k1

k2
= 4

(
cA0

cAe
− 1

)2

. (6.19)
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Table 6.5. Concentration of H2SO4 versus time
for the reaction of sulfuric acid with diethyl
sulfate in aqueous solution at 22.9◦C, full data
set. Data of Hellin and Jungers, Bull. Soc. Chim.
France, No. 2, pp. 386–400 (1957).

concentration of H2SO4,

Time, t (min) cA(t) (g-mol/L)

0 5.50
41 4.91
48 4.81
55 4.69
75 4.38
96 4.12

127 3.84
146 3.62
162 3.59
180 3.44
194 3.34
212 3.27
267 3.07
318 2.92
379 2.84
410 2.79
∞ 2.60

Equations 6.18 and 6.19 can be combined to give

dcA

dt
= k1

[
4

Keq
(cA0 − cA)2 − c2

A

]
, (6.20)

or, formally separating the concentration- and time-dependent terms,

KeqdcA

4(cA0 − cA)2 − Keqc2
A

= k1dt.

The left-hand side is a form that is readily found in tables of integrals. Upon inte-
gration of the left-hand side from cA0 to the current value cA(t), and the right-hand
side from t = 0 to the present time, we obtain

ln

[
cA(2 − √

Keq) − 2cA0

cA(−2 − √
Keq) + 2cA0

]
= 4cA0k1√

Keq
t. (6.21)

EXAMPLE 6.4 The reaction between sulfuric acid and diethyl sulfate studied in
Example 6.1 is, in fact, reversible, although the assumption of irreversibility gave
a good fit to the data up to a time of 194 minutes. The full data set is shown in
Table 6.5. cA0 = cB0. Find the rate expression, assuming that both the forward
and reverse reactions may be described by mass action kinetics.

From the data given in Table 6.5, Keq = 4
( 5.50

2.60 − 1
)2 ≈ 5. The data in

Table 6.5 are plotted according to Equation 6.21 in Figure 6.6, with cA0 = 5.50
and Keq = 5. The data do follow a straight line and are consistent with the
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Figure 6.6. Computation of the forward rate constant for the reaction between sulfuric acid
and diethyl sulfate in aqueous solution.

assumption of mass action kinetics. Calculation of k1 from the slope yields k1 =
6.7 × 10−4 L/(g-mol min). This value differs by only 10 percent from the value
obtained in Example 6.1 by assuming irreversibility over the first 194 minutes.

6.8 Concluding Remarks

The important concept here is the rate of reaction, which addresses the fact that
the mass of a component species is not conserved in the balance equations. The
particular rate constitutive equations used in this chapter are quite elementary; mass
action kinetics may be followed in systems of interest, but the kinetics may also be
far more complex because of chemical steps that are not obvious from the overall
stoichiometry. The basic principles developed here are sufficient to enable us to
address meaningful design problems in the next chapter despite the elementary
forms of the rate equations. More complex reactions will typically be considered in
a subsequent course in the chemical engineering core.
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York, 1981.
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More complex reaction schemes and reactor geometries than those covered in this
chapter are an essential part of the chemical engineering core course that covers the
subjects of kinetics and reactor design.

PROBLEMS

6.1. Suppose that the data in Table 6.1 for the reaction of sulfuric acid with diethyl
sulfate in aqueous solution are described by a rate of the form r = kcA

n. Estimate n
using the methodology of Appendix 2A. Investigate the consequences of an error of
1 percent in determining cA.

6.2. Data for the decomposition of dibromosuccinic acid (2,3-dibromo-butanedioic
acid), C2H2Br2(COOH)2, in a batch reactor are shown in Table 6.P1 as mass of acid
remaining as a function of time. Find the rate expression.

Table 6.P1.

Time (min) Mass of acid (g)

0 5.11
10 3.77
20 2.74
30 2.02
40 1.48
50 1.08

6.3. Reconsider the data in Table 6.1 for the reaction between sulfuric acid and
diethyl sulfate, and suppose that you believe that the forward reaction rate is actually
of the form r = k′cA. Test this assumption. What conclusion do you draw?

6.4. The hydrolysis of acetic anhydride in excess water to form acetic acid,
(CH3CO)2O + H2O → 2CH3COOH, was studied by Elridge and Piret, who found
that the rate at 15◦C is first order in anhydride, with k = 0.0567 min−1. A batch
reactor initially holds 100 kg of anhydride. How long will it take for 90 kg to be
converted to acid? 99 kg?

6.5. The reaction ClO3
− + 3H2SO4 → Cl− + 3SO4

= + 6H+ in 0.2N H2SO4 was
studied in 1932 by Nixon and Krauskopf, who reported the data in Table 6.P2. Find
a rate expression that is consistent with the data. (Hint: Does r = kcAcB work?)

Table 6.P2.

t (min) ClO3
− (mol/L) H2SO4 (mol/L)

0 0.0160 0.0131
2 0.0146 0.0090
3.5 0.0141 0.0074
5 0.0136 0.0060
7.5 0.0131 0.0044
10 0.0127 0.0034
12.5 0.0125 0.0026
15 0.0123 0.0020
17.5 0.0121 0.0015
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6.6. Show that Equation 6.11a for the reaction A + B → μM with equal initial
concentrations of A and B (ψ = 0) follows from Equation 6.11b for unequal initial
concentrations in the limit ψ → 0.

6.7. The data in Table 6.P3 are for reactant A in the irreversible reaction A +
βB → products. The initial concentrations are believed to be in stoichiometric
balance. Estimate the reaction order and find the rate constant.

Table 6.P3.

time (min) cA (mol/L)

0 10
3 7.31
8 4.71

10 3.54
12 3.17
14 2.40
19 1.25
22 0.98
25 0.89
35 0.21

6.8. The reaction acetic acid (A) + butanol (B) → ester + water was studied by
Leyes and Othmer, who found the data in Table 6.P4 at 100◦C in the presence
of 0.03 percent sulfuric acid. The initial concentrations were 0.2327 mol acetic
acid/100 g of solution and 1.583 mol butanol/100 g of solution. Leyes and Othmer
claimed that the reaction is second order in acetic acid and zero order in butanol up
to 75 percent conversion; i.e., r = kcA

2
. Do the data support this contention? Can you

distinguish this relation from r = kcAcB with the data given here? (You may assume
that the density of the solution is constant over the course of the reaction with a
value of approximately 750 kg/m3. Why is this assumption permissible?)

Table 6.P4.

time (hr) moles of acid converted/100 g solution

0 0
1 0.1552
2 0.1876
3 0.2012
4 0.2067
5 0.2089
6 0.2099
7 0.2109

6.9. Consider the full data set in Table 6.5 for the reversible reaction between
sulfuric acid and diethyl sulfate and test the applicability of each of the following
rate expressions:

a. rA − = k1cAcB, rA + = k2cM

b. rA − = k1cA, rA + = k2cM

c. rA − = k1cA, rA + = k2cM
2.

Comment on the results.
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6.10. The saponification of the ester propargyl acetate, (A, H2C    C    C    O    C    CH).

H O

with base (B, OH–) was studied by Myers, Collett, and Lazzell using a conductivity
technique to follow the course of the reaction. Conductivity, C(t), is related to the
conversion of the base through the relation

Fraction base converted = cB(t)
cB0

= C(t) − C(∞)
C(0) − C(∞)

.

They report the data in Table 6.P5 for a solution that is initially 0.00873 N ester and
0.00673 N base. Find a rate expression that is consistent with these data.

Table 6.P5.

t (min) C

0 1.087
0.200 1.042
0.417 1.000
0.737 0.952
1.047 0.909
1.397 0.870
1.787 0.833
2.187 0.800
2.637 0.769
3.147 0.741
3.667 0.714
∞ 0.490

6.11. The reaction A → products is believed to follow a rate expression rA− = k1cA
1+k2cA

.
How will the concentration in a batch reactor change with time? Discuss the limits
k2cA0 � 1 and k2cA0 � 1.

6.12. The formation of sugars from biomass is of considerable interest in a variety
of applications, including energy alternatives to fossil fuel. Harris and Kline studied
the formation of glucose from cellulose obtained from Douglas Fir in 1949, carrying
out the reaction at a number of temperatures in the presence of HCl.

a. The rate was found to be first order in cellulose (A) concentration (r =
k1cA), but dependent on HCl concentration as shown in Table 6.P6. Find
the dependence of the rate on HCl. (Hint: try k1 = k1

′cHCl
n.)

b. Glucose also decomposes in the presence of HCl. Harris and Kline reported
the decomposition reaction to be first order in glucose (rglucose − = k2cglucose),
with a first-order rate constant at 190◦C that depended on HCl as shown in
Table 6.P7. Can you find a rate expression in a simple form? (Hint: Consider
the form in Problem 6.11.)
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Table 6.P6.

HC1 concentration k1 (min−1)
(mol/L) 160◦C 190◦C

0.055 0.00203 0.0627
0.11 0.00486 0.149
0.22 0.01075 0.357
0.44 0.0261
0.88 0.0672

Table 6.P7.

HC1 concentration
(mol/L) k2 (min−1)

0.055 0.0488
0.11 0.107
0.22 0.218
0.44 0.406
0.88 0.715

Appendix 6A: Constant Density Assumption

As in Chapter 4, we carry out the analysis of the reactor overall mass balance for
the case in which the density is a linear function of the concentration. We will do
the calculation for the special case represented by Equations 6.2 and 6.4, but the
result is completely general. We assume that the species of interest are dissolved in
a nonreactive solvent, and that we can write the density of the mixture as

ρ = ρ0 + φAcA + φBcB + φMcM. (6A.1)

Equation 6.1 then becomes

ρ0
dV
dt

+ φA
dcAV

dt
+ φB

dcBV
dt

+ φM
dcMV

dt
= ρ0(qAf + qBf − q) + φA(cAf qAf − cAq)

+ φB(cBf qBf − cBq) + φM(−cAq). (6A.2)

Multiplying Equations 6.3a, b, and c by φA, φB, and φC, respectively, and combining
with Equation 6A.2 gives

dV
dt

= qAf + qBf − q + Vr
ρ0

(φA + βφB − μφM). (6A.3)

The last term on the right of Equation 6A.3 represents the contribution to volume
change from the chemical reaction. The rate of change of density with composition is
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usually nearly proportional to the molecular weight of the dissolved species. Hence,
we can write

φA = φMwA, φB = φMwB, φM = φMwM, (6A.4)

where Mwi denotes the molecular weight of species i. Equation 6.A3 becomes

dV
dt

= qAf + qBf − q + Vrφ

ρ0
(MwA + βMwB − μMwM). (6A.5)

But from the reaction stoichiometery, MwA + βMwB = μMwM. Thus,

dV
dt

= qAf + qBf − q, (6A.6)

which is the result that would be obtained for a system with a density that is inde-
pendent of concentration. Note that this result, which will usually be a reasonable
approximation for liquid systems, depends on two assumptions:

1. Density is linear in concentration (Equation 6A.1).
2. Rate of change of density with concentration of each species is proportional to

the molecular weight of that species (Equation 6A.4).
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7.1 Design

Engineering is ultimately about making things for the benefit of society. We typically
use the term design for the set of instructions by which a craftsperson can turn an idea
into an object, and that meaning of the word carries over to the engineering activity of
making tangible objects. Design has an additional meaning for a chemical engineer,
however; it is the conceptualization of a process for manufacturing something – a
chemical, perhaps. In this use of the word we address the problem of designing
what pieces of equipment are needed, how they should be connected, how large they
should be, and so on, but we do not address the question of how the equipment should
be manufactured – materials of construction, locations of welds, precise geometry,
and so forth. It is the second sense of the word that we employ in this chapter. Thus,
we will exploit the understanding of reaction kinetics developed in Chapter 6 to
determine reactor sizes and material flow rates, but we will view the reactor simply
as a vessel of a given size, with no attention to the detail that would be required for
actual fabrication.

Process design is a subject that is traditionally taught as a capstone course during
the last year of a chemical engineering program, because a complete approach to
process design obviously requires a broad base of understanding of chemical engi-
neering fundamentals. There is no reason to put the elements of design off, however,
and we will address some typical, albeit simplified, problems in this chapter. Our goal
is to explore one of the basic issues in design, namely that the conservation and consti-
tutive equations must be tied in to other considerations – economic, environmental,
and so on – in order to arrive at an engineering solution to the problem of making
things. We will do this through reacting systems that are converted in continuous-
flow stirred-tank reactors (CFSTRs). We start slowly, with some elementary reactor
calculations that are an essential underpinning to the more interesting engineering
issues that we can then attack.
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7.2 The CFSTR

For illustrative purposes we will consider the single irreversible reaction A + B →
μM in the liquid phase in CFSTRs, where the reactants A and B are brought into
the reactor in separate streams. We have already derived the governing equations
for this reaction system (with slightly more general stoichiometry) in Chapter 6, with
the following results:

dV
dt

= qAf + qBf − q, (7.1)

d
dt

cAV = cAf qAf − cAq − rV, (7.2a)

d
dt

cBV = cBf qAf − cBq − r V, (7.2b)

d
dt

cMV = −cMq + μr V. (7.2c)

For definiteness, when required, we will assume that the kinetics are mass action,
with r = kcAcB.

For design purposes we assume that the system operates in the steady state, so
all time derivatives are equal to zero. The operating equations are therefore

q = qAf + qBf , (7.3)

0 = cAf qAf − cA (qAf + qBf ) − rV, (7.4a)

0 = cBf qAf − cB (qAf + qBf ) − r V, (7.4b)

0 = −cM (qAf + qBf ) + μr V, (7.4c)

where we have made use of Equation 7.3 in writing Equations 7.4a,b, and c. Note
that, taking the parameters of the reaction rate as known, we have three equations
for the eight variables cAf , cBf , qAf , qBf , V, cA, cB, and cM. Thus, five quantities must
be specified, with the other three determined from Equations 7.4a,b, and c.

We can simplify these equations for many relevant calculations. We define two
quantities:

θ = V/q = V/(qAf + qBf ), (7.5a)

λ = qAf /q = qAf /(qAf + qBf ). (7.5b)

θ is the residence time, the mean time that a fluid element spends in a perfectly mixed
tank, which we have seen before. λ is simply the ratio of the volumetric flow rate
of the feedstream of A to the total volumetric flow. We can now write Equations
7.4a,b, and c as

0 = λcAf − cA − rθ, (7.6a)

0 = (1 − λ)cBf − cB − rθ, (7.6b)

0 = −cM + μrθ. (7.6c)
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Equations 7.6a and 7.6b can be combined to give

cA = cB + λcAf − (1 − λ)cBf , (7.7a)

whereas Equations 7.6b and 7.6c can be combined to give

cM = −μcB + (1 − λ)μcBf . (7.7b)

We have now reduced the number of variables by one, and we have three inde-
pendent equations, so four quantities must be specified from among the seven:
cAf , cBf , λ, θ, cA, cB, and cM.

Note that the reaction rate does not appear in Equations 7.7a and b, so these
equations simply reflect the reaction stoichiometry which, together with the feed
distributions, completely establishes the relations between the three compositions;
that is, for given feed conditions, only one composition is independent. Note also that,
because the reaction is irreversible, Equation 7.6c (or Equation 7.7b) is uncoupled
from the rest of the equations if cM is one of the variables that is sought as part of
the solution. Finally, it is clear from Equation 7.7b that the four variables λ, cBf , cB,

and cM cannot all be specified independently, so the choice of the four variables that
we can fix is not arbitrary.

Now, suppose we wish to design a reactor for this reaction. It seems obvious that
we would want to have stoichiometric conditions (cA = cB) in the reactor, since the
reaction is irreversible. (Why is irreversibility relevant here? What might be different
if the reaction were reversible?) It then follows from Equation 7.7a that λcAf =
(1 − λ)cBf . For definiteness we will take the feed flow rates to be equal (λ = 1/2),
in which case cAf must equal cBf, and we take the feed conditions to be specified.
We can specify only one more quantity, and the choice depends on our objective.
If we must meet a given production schedule of product, then qcM is fixed. If the
reactor already exists, as will often be the case, then V is fixed. We immediately see
an element of ambiguity here: q and V appear in the equations only in the ratio
θ = V/q = V/(qAf + qBf ), but we will need to consider them separately if we wish
to address actual production issues.

EXAMPLE 7.1 Suppose that we have a reaction with mass action kinetics, where
the rate constant k = 6.05 × 10− 4 L/(g-mol min), as found for the reaction
between sulfuric acid and diethyl sulfate in Example 6.1. Assume that the feed
concentrations are specified, with cAf = cBf = 11 g-mol/L = 110 kg-mol/m3. How
does the conversion depend on the residence time θ?

We replace r with the mass action expression kc2
A (cA = cB because of bal-

anced stoichiometry) in Equation 7.6a and solve the quadratic equation for cA,
after which we obtain cM from Equation 7.7b. The resulting conversions are
shown in Table 7.1 for a range of values of θ , where the residence time is given
in minutes. Clearly, the larger the residence time, the higher the conversion
of the feed and the higher the concentration of product. (The reactants spend
more time on average in contact in the reactor, so they have a greater opportu-
nity to react.) The relation between conversion and residence time is nonlinear.
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Table 7.1. Product concentrations for various
residence times.

θ (min) cA (kg-mol/m3) cM (kg-mol/m3)

127 41.5 27
84.7 44.5 21
63.5 47 16
50.9 48 14
42.8 49 12
31.8 50 10
25.4 50.5 9

For the reaction under consideration here, a substantial amount of unreacted
feed – from 38 to 46 percent – would have to be recovered from the product
stream over the entire range of residence times considered, so the cost of con-
structing and operating the separation system would be an important economic
factor.

EXAMPLE 7.2 Now, for definiteness, we assume that we have a reactor of fixed
volume, which we take to be 762 L = 0.762 m3. Find the productivity qcM (the
rate at which M is produced as effluent from the reactor) as a function of flow
rate.

Since the reactor volume is specified, we compute the required flow rate
from q = V/θ and add these two additional terms to Table 7.1. The results are
shown in Table 7.2.

We find in Example 7.2 that the productivity is highest with the highest through-
put and the lowest conversion of the reactants, hence with the highest separation
costs! On the other hand, if we were to fix the throughput and calculate the required
reactor size, then the highest productivity would occur for the largest reactor; for
the data used to construct Table 7.1 and q = 6 × 10− 3 m3/min, for example, the
maximum productivity would be qcM = 0.162 kg-mol/min for θ = 127 and V =
762 L. The point of this exercise is that the design depends on the question that
is asked, and the result can be very different, depending on what is fixed in the
system.

Table 7.2. Results for conditions in Table 7.1, but with V = 762 L = 0.762 m3.

q(m3/min) θ (min) cA (kg-mol/m3) cM (kg-mol/m3) qcM (kg-mol/min)

6 × 10-3 127 41.5 27 0.162
9 × 10-3 84.7 44.5 21 0.189

12 × 10-3 63.5 47 16 0.192
15 × 10-3 50.9 48 14 0.210
18 × 10-3 42.8 49 12 0.216
24 × 10-3 31.8 50 10 0.240
30 × 10-3 25.4 50.5 9 0.270
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SEPARATORREACTOR
EFFLUENT

REACTOR

REACTANT

UNCONVERTED REACTANT

PRODUCT STREAM

Figure 7.1. Schematic of a
reactor-separator system. The
unconverted reactant stream
is assumed to be sufficiently
pure to be used as part of the
feed to the reactor.

7.3 An Optimal Design Problem

We are now in a position to consider a realistic, if simplified, problem in optimal
design for a reacting system. The process is shown in Figure 7.1. A reaction is carried
out in a stirred-tank reactor. The effluent stream is then taken to a separator. We
need not be specific here about the type of separation that is to be used, which might
be distillation, crystallization, membrane processing, and so on, but we will assume
that the separation is very efficient and leads to relatively pure streams of A and
M. We therefore assume that the unreacted A can be recovered and reused in the
reactor feed. For simplicity, in order to obtain equations that can be manipulated
analytically and thus provide transparent solutions that reveal the important features
of the approach, we will consider the idealized reaction system A → M, with first-
order irreversible kinetics, r = kcA. We suppose that the required production rate of
M is specified, perhaps based on market projections; hence, qcM is a fixed quantity,
which we denote p (for production rate).

The trade-offs in the design problem are fairly clear. The larger the reactor,
the higher the conversion will be for a given throughput rate. Hence, all other
things being equal, the largest possible reactor will result in the smallest possible
throughput rate, hence the smallest amount of material to be handled by the down-
stream separation system. The cost of operation depends on throughput, so low
throughput means low operating cost. But the larger the reactor, the greater the
capital cost. The trade-off in the design is therefore between the cost of construc-
tion and the cost of operation. We will make this trade-off quantitative in what
follows.

The CFSTR equations for the first-order reaction A → M follow directly from
Equations 7.1 and 7.2 by setting qBf = 0. At steady state we therefore obtain

0 = qcAf − qcA − kcAV, (7.8a)

0 = −qcM + kcAV. (7.8b)
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It is useful to rearrange these equations, making use of the fact that the production
rate p ≡ qcM is a fixed quantity. From Equation 7.8b we obtain

V = p
kcA

>
p

kcAf
≡ Vmin. (7.9a)

The inequality follows from the fact that cA must always be smaller than the feed
concentration cAf. Hence, for a given feed concentration and a fixed production rate,
there is a lower bound to the reactor size that is necessary in order to carry out the
conversion. Similarly, by adding Equations 7.8a and 7.8b we eliminate the reaction
rate term and obtain a stoichiometric equation that can be rearranged to the form

q = p
cAf − cA

>
p

cAf
≡ qmin. (7.9b)

Hence, there is a minimum throughput rate in order to achieve the required produc-
tion rate. Clearly, operating with a flow rate close to qmin would require a reactor
with a very large volume in order to achieve nearly complete conversion of the reac-
tant A, whereas operating with a volume close to Vmin would require a very large
flow rate in order to produce the required product despite the small conversion.

Let us now formulate the optimal design problem. The overall return, which we
will denote �, is given by the income from the sale of the product less the cost of raw
materials, the capital cost of constructing the equipment, and the cost of operation.
We can calculate each of these quantities on an annual basis over the projected
lifetime of the process, or we can calculate the net present value of each as described
in Section 3.2. The approach to the calculation is the same in either case.

The return from the sale of product is fixed, because the production rate is fixed
and we assume that everything will be sold at a known price. Hence, this term will
simply enter the return function as a constant. The capital cost of the reactor will
depend on the volume. For simplicity, we will assume that the cost is proportional to
the volume; this is not a good assumption, because costs generally do not increase
linearly with volume, but it will suffice for illustrative purposes. Using a better cost
function would only change the algebra. Hence, we write

Capital cost of reactor = CVV = CV p
kcA

.

The size of the separation unit, hence the cost, will depend on the throughput; we
will take the cost as proportional to throughput rate and write

Capital cost of separator = CDq = CD p
cAf − cA

.

The operating costs for both units will have some fixed amount that is independent
of operating conditions, and this can be included in the fixed term in the return
function; the variable costs will depend on the amount of material processed, and
we will take this term to be proportional to q. We therefore write

Variable costs of operation = COq = CO p
cAf − cA

.
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Finally, the cost of raw material will be proportional to the amount of A that is used.
We assume here that the separation is very efficient and that unreacted A can be
reused. The net cost is therefore proportional only to the reactant that is used to
produce product; that is, the cost is proportional to q(cAf − cA) = qcM = p, so with
this assumption the cost of reactant is fixed and can be combined with the fixed term
in the return function. We thus obtain

� = fixed terms − CD p
cAf − cA

− CO p
cAf − cA

− CV p
kcA

= fixed terms − MTC

cAf − cA
− MVC

cA
. (7.10)

The terms included in MTC are associated with throughput costs, while MVC contains
the reactor volume costs.

The optimization problem thus reduces to the selection of the conversion in the
reactor. Once cA is fixed, the reactor volume V and the throughput q are determined.
The optimal value of cA is clearly somewhere between the two extremes of cAf and
zero; in the former case the throughput costs become infinite, whereas in the latter
case the reactor cost becomes infinite. Hence, the function � must have a maximum
for a value of cA somewhere between zero and cAf. We can find the maximum in �
by setting the derivative with respect to cA to zero. (How do we know that this will
give us a maximum, and not a minimum?) We thus write

d�
dcA

= − MTC

(cAf − cA)2
+ MVC

c2
A

= 0. (7.11)

It is convenient to define the fraction of unreacted A as x = cA/cAf . Equation 7.11
can then be written

(1 − x)2

MTC
= x2

MVC
, (7.12)

with the solution

x = 1

1 +
(

MTC

MVC

)1/2 . (7.13)

(Both square roots must have the same sign to ensure 0 ≤ x ≤ 1.)
The unreacted fraction of A for the optimal design is shown as a function of

the relative cost terms in Table 7.3, together with the fractional conversion (1 – x),
the volume relative to the minimum volume, the throughput rate relative to the
minimum throughput rate, and the residence time (θ = V/q) multiplied by the first-
order reaction rate constant. The last three design variables (only two of which are
independent) are computed as follows:

V
Vmin

= 1
x
,

q
qmin

= 1
1 − x

, kθ = 1 − x
x

=
(

MTC

MVC

)1/2

. (7.14)

(The values of MTC/MVC are not evenly spaced in the table because it is more
instructive to have evenly spaced conversions.)
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Table 7.3. Optimal reactor design parameters as functions of the relative cost
parameters MTC/MVC.

Fractional conversion
MTC

MVC x = cA/cAf 1 − x

V
Vmin

q
qmin

kθ

0 1.0 0 1.0 ∞ 0
0.012 0.90 0.10 1.11 10.00 0.11
0.063 0.80 0.20 1.25 5.00 0.25
0.184 0.70 0.30 1.43 3.33 0.43
0.250 0.67 0.33 1.50 3.00 0.50
0.290 0.65 0.35 1.54 2.86 0.54
0.444 0.60 0.40 1.67 2.50 0.67
0.669 0.55 0.45 1.82 2.22 0.82
1.0 0.50 0.50 2.00 2.00 1.0
1.49 0.45 0.55 2.22 1.82 1.22
2.25 0.40 0.60 2.50 1.67 1.50
3.45 0.35 0.65 2.86 1.54 1.86
4.00 0.33 0.67 3.00 1.50 2.00
5.44 0.30 0.70 3.33 1.43 2.33

16.0 0.20 0.80 5.00 1.25 4.00
81.0 0.10 0.90 10.00 1.11 9.00
∞ 0 1.0 ∞ 1.0 ∞

The results in Table 7.3 are very revealing. When the parameters for costs
associated with throughput and reactor volume are equal, the optimum is to operate
with 50 percent conversion, with a volume equal to twice the minimum volume and
a throughput rate equal to twice the minimum throughput, resulting in a reactor
residence time equal to the reciprocal of the first-order rate constant. The volume
and throughput differ by no more than 50 percent from the respective minimum
values as long as the relative costs are within a factor of four of one another. These
are not especially tight bounds, but they set reasonable limits on the likely design
range even before we have precise values for the cost factors. Note that we have
established the optimal value for the return:

� = fixed terms − p
cAf

(
CD + CO

1 − x
+ CV

kx

)
, (7.15)

where x is given in terms of the cost parameters by Equation 7.13. The return will
only be positive, of course, and the process financially feasible, if the term on the
right is less than the net of the fixed terms.

This example of an optimal design problem is quite simplified, as we have
attempted to make clear throughout: The reaction is much simpler than any that is
likely to be of interest for a real design; the cost equations, which are taken to be
linear functions of the relevant variables, are grossly oversimplified; the separation is
assumed to be perfect; and we have not taken into account the fact that temperature
affects the rate constant and would be included as an additional design variable
in a realistic situation, thus introducing additional cost trade-offs (faster rate and
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Table 7.4. Typical reactions following the scheme of Equation 7.16.

Reactants Products

A B R S T

Water Ethylene
oxide*

Ethylene glycol Diethylene glycol Triethylene glycol

Ammonia Ethylene
oxide*

Monoethanolamine Diethanolamine Triethanolamine

Methyl, ethyl, or butyl
alcohol

Ethylene
oxide*

Monoglycol ether Diglycol ether Triglycol ether

Benzene Chlorine Monochloro-
benzene

Dichlorobenzene Trichlorobenzene

Methane Chlorine Methyl chloride Dichloromethane Trichloromethane

* Also carried out using propylene oxide.

smaller reactor vs. increased energy cost, for example). Nonetheless, the example
includes the essential features of a typical process design, and it correctly shows
many of the issues that will be faced in more realistic situations. First, we see that the
conversion in the reactor is the primary factor affecting the overall design, including
“downstream” processing, which is very typical. We see the critical role played by
the relative costs for volume and throughput. We see that we can get rough estimates
by making rather idealized assumptions, such as perfect separation and flow rates
and volumes that are roughly twice the minimum possible values. (If the process is
not feasible with assumptions like these – i.e., if the return � is negative – then the
process is unlikely to be feasible with less idealized assumptions.)

7.4 Product Selectivity

Most reacting systems of interest involve multiple reactions, and product selectivity –
that is, the distribution of the various products – is a primary factor in the design. In
this section we will consider a very realistic case. The following sequence of reactions,
all of which proceed nearly irreversibly with mass-action kinetics, accounts for the
production of more than 3 × 109 kg/year (3 million metric tons) in the United States
alone, and more than 9 × 109 kg/year in the world:

A + B → R, R + B → S, S + B → T. (7.16)

Some typical reactants and products within this class are listed in Table 7.4.
We will focus here on the reaction between water and ethylene oxide (EtO,

also known by the official IUPAC name oxirane) to form mono-, di-, and triethylene
glycol, as shown in Figure 7.2. The glycols are colorless, odorless liquids at room tem-
perature. Sixty percent of the ethylene oxide used in the United States is consumed
as a reactant in this reaction scheme. The monoglycol, usually called ethylene glycol
(and sometimes MEG), is the primary product, but the di- and triglycols also have
industrial uses. About two-thirds of the ethylene glycol manufactured worldwide is
used as a chemical intermediate in the manufacture of polyester resins for fibers,
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Figure 7.2. Reaction scheme for the
reaction of ethylene oxide and water
to form ethylene glycols.

films, and bottles, while about one-fourth is used as antifreeze in engine coolants.
The distribution of products by weight is given by various sources as being in the
neighborhood of 88/10/2 mono/di/tri and 90/9/1; as we shall see, the product distri-
bution is determined by the reactor design. In one year for which specific figures are
available, the recorded market demand in the United States was 90/8/2.

We assume that the reactants A (water) and B (ethylene oxide) are mixed prior
to the reactor and enter in a single feedstream, and we assume that no product is
present in the feedstream. With the usual assumptions regarding the density we then
obtain the steady-state equations for a CFSTR:

A (water): 0 = q(cAf − cA) − rA−V, (7.17a)

B (EtO): 0 = q(cBf − cB) − rB−V, (7.17b)

R (MEG): 0 = −qcR + rR+V − rR−V, (7.17c)

S (di-glycol): 0 = −qcS + rS+V − rS−V, (7.17d)

T (tri-glycol): 0 = −qcT + rT+V. (7.17e)

With mass action kinetics, which have been validated for this reaction system, the
rates are as follows:

rA− = rR+ = k1cAcB, rR− = rS+ = k2cRcB, rS− = rT+ = k3cScB,

rB− = rA− + rR− + rS−.

The reactor equations are then

A: 0 = q(cAf − cA) − k1cAcBV, (7.18a)

B: 0 = q(cBf − cB) − cB(k1cA + k2cR + k3cS)V, (7.18b)

R: 0 = −qcR + cB(k1cA − k2cR)V, (7.18c)

S: 0 = −qcS + cB(k2cR − k3cS)V, (7.18d)

T: 0 = −qcT + k3cScBV. (7.18e)

It is convenient to express the product concentrations in terms of xA = cA/cAf , which
is the fraction of unreacted A; that is, one minus the fractional conversion of water.
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For example, we can solve Equation 7.18c for cB and substitute directly into Equation
7.18a to obtain, after some algebraic manipulation,

cR

cAf
= xA(1 − xA)

xA + k2

k1
(1 − xA)

. (7.19a)

Similarly, solving for cB in Equations 7.18d and 7.18e, respectively, and substituting
into Equation 7.17a,

cS

cAf
=

k2

k1
xA(1 − xA)2

[
xA + k2

k1
(1 − xA)

] [
xA + k3

k1
(1 − xA)

] , (7.19b)

cT

cAf
=

k2k3

k2
1

(1 − xA)3

[
xA + k2

k1
(1 − xA)

] [
xA + k3

k1
(1 − xA)

] . (7.19c)

By similar manipulations we obtain the expression for the conversion of B:

cBf − cB

cAf
=

xA(1 − xA)
[

xA + k3

k1
(1 − xA)

]
+ 2

k2

k1
xA(1 − xA)2 + 3

k2k3

k2
1

(1 − xA)3

[
xA + k2

k1
(1 − xA)

] [
xA + k3

k1
(1 − xA)

] .

(7.19d)

Note that these relations depend only on the conversion of A and the relative rate
constants but are independent of the reactor volume and throughput. They are not
stoichiometric relations, because the rates are explicitly included, but they lead to
the following powerful conclusion: Any reactor conditions in a CFSTR that produce
a given conversion of water will have the same product distribution.

The rate constant k1 for this system has a value of 6.37 × 10−7 L/(g-mol min)
at 25◦C, and, to within experimental uncertainty, the ratios of the rate constants
are k2/k1 = k3/k1 = 2.0. (We need only the latter result to evaluate the product
distribution in terms of xA.) The distributions of the products by mass fraction are
given in Table 7.5 in terms of xA, where the mass fraction of species i is calculated as
follows:

Mass fraction of i =
ci

cAf
Mwi

cR

cAf
MwR + cS

cAf
MwS + cT

cAf
MwT

.

The product molecular weights are MwR = 62, MwS = 106, and MwT = 150. We can-
not match the 90/8/2 product distribution exactly, but we can come close, for example,
by operating with xA between 0.965 and 0.970. Note that this corresponds to conver-
sion of only 3.0–3.5 percent of the water. It is clear that we will be operating with a
very large excess of water, which must then be separated from the product.
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Table 7.5. Product distribution for glycols and conversion of water and EtO in a continuous-flow
stirred-tank reactor for various conversions of ethylene oxide. (Mass fractions may not sum to unity
because of rounding.)

Water in effluent Product mass fractions EtO in effluent

xA = cA

cAf

Conversion of water
1 − xA Monoglycol Diglycol Triglycol

cBf − cB

cAf

0.990 0.010 0.966 0.033 0.001 0.010
0.985 0.015 0.950 0.048 0.002 0.016
0.980 0.020 0.934 0.063 0.004 0.021
0.975 0.025 0.918 0.077 0.006 0.026
0.970 0.030 0.902 0.090 0.008 0.032
0.965 0.035 0.887 0.102 0.011 0.038
0.960 0.040 0.872 0.115 0.014 0.043
0.955 0.045 0.857 0.126 0.017 0.049
0.950 0.050 0.842 0.137 0.020 0.055
0.945 0.055 0.828 0.148 0.024 0.061
0.900 0.100 0.710 0.221 0.069 0.122
0.850 0.150 0.599 0.267 0.133 0.199
0.800 0.200 0.507 0.289 0.204 0.289
0.750 0.250 0.429 0.294 0.277 0.390

We are now part way through the design process, and we have a considerable
amount of information in hand. We presume from this point forward that the desired
product distribution has been specified (as before, probably based on a market
analysis). The first thing we note is that the amount of water that must be removed
per mole of mixed product produced, cA/(cAf − cA) = xA/(1 − xA), is a constant for
a given product distribution. The total production of glycols is given (with a bit of
algebra to convert from total molar throughput to mass throughput with a fixed
product distribution) by q(cBf − cB). We see from Equation 7.19d that the product
distribution, which is fixed by xA, determines only the ratio (cBf − cB)/cAf , and we
are free to choose the actual conversion of B (EtO), cB/cBf . Consideration of the
results in Table 7.5 give us some immediate insight into the extent to which we should
try to convert B and the impact on the resulting process design. From Equation 7.18a
we can write

cB

cBf
= 1 − xA

xA

1
k1cBf θ

. (7.20)

Now, 1 – xA is a very small number, which we will denote ε. k1cBf has the form of an
effective first-order rate constant. If we take k1cBf θ to be of order unity, then cB/cBf

will be of order ε. We can thus reach some tentative conclusions about the design:
We probably want to choose the residence time to be of order 1/k1cBf . This will
lead to a reactor that is designed for nearly complete conversion of EtO (cB/cBf ∼
ε), in which case it will not be necessary to have a separate unit to remove unreacted
ethylene oxide. (We would most likely set θ to about 3/k1cBf or slightly more in
order to achieve a conversion of ethylene oxide of 99 percent or better.)
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With cBf � cB, it also follows from Table 7.5 that the molar feed ratio of water
to ethylene oxide will be about 30 (cBf /cAf ∼ 0.035), which is a very large excess
relative to the stoichiometric ratio, and a very large amount of water will have to
be separated. In this case, the unreacted EtO will be taken off in trace amounts
with the unreacted water; the specific numerical coefficient in the selection of the
residence time will be based on the maximum concentration of unreacted B that is
permitted in the unreacted water stream. The flowrate q will be determined from
the required production rate. (The feed can be assumed to be a mixture of pure
ethylene oxide and water, so the feed concentration is known.) The reactor volume
is then determined from the residence time.

The rigorous solution of the design problem requires that we carry out an analysis
similar to the optimal design in the preceding section, including the costs of all
separations (products, water, and possibly ethylene oxide), and this can of course be
done, but the only relevant question once the product distribution and production
rate are set, other than whether the process can show a positive return, is whether
we should operate with less than nearly complete conversion of B (ethylene oxide).
Complete analyses have been done industrially, and the conclusion is always that
the cost of operating with partial conversion and separation of B far outweighs the
cost of a larger reactor to achieve nearly complete conversion.

7.5 Concluding Remarks

This is an exceedingly important chapter, in some ways perhaps the single most
important chapter in the text in terms of engineering practice. Using the principles
developed in the preceding chapters we have arrived at the logical culmination of
the analysis process: a practical engineering design. The reactor is clearly the key
to the process, since what happens in the reactor affects every other downstream
element of the process. The primary point to take away from this chapter is that the
equations involving the design variables, such as reactor volume and flow rate, must
be combined with the process economics and other constraints in order to obtain
a meaningful solution. Furthermore, considerable insight can be obtained with a
relatively straightforward analysis based on a few reasonable assumptions.

The design examples in this chapter are quite realistic in form, and the glycol
example is, in fact, taken from an actual industrial design study. A “real” design
problem will, of course, be more complex. We have assumed here that the reac-
tor will be a single CFSTR; other reactor configurations are possible and must be
considered. Reactor temperature and associated energy costs are important vari-
ables. We have completely ignored the details of separation. There will often be a
larger set of chemical reactions and products, with different selectivity issues. The
rate expressions will frequently be more complex than the elementary mass action
kinetics applicable to the glycol reactions. The linear cost functions are a gross sim-
plification. Yet nothing changes in principle; frequently, only the algebra becomes
more difficult, although in many cases considerable computational effort is required.
This introduction, if well understood, can provide an intellectual framework for all
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future studies of the components of a process and the implementation of a process
design.

Bibliographical Notes

The continuation and expansion of the subject matter introduced in this chapter
may receive some coverage in the core chemical engineering course in kinetics and
reaction engineering, and it is touched upon in some textbooks for that course, but
in a traditional curriculum the topic is more likely to be covered in a capstone course
in process design.

PROBLEMS

7.1. Consider the system studied in Example 7.1. Suppose that the feedstream is
specified to be q = 6 × 10−3 m3/min. Find the production rate qcM as a function of
the reactor volume.

7.2. An irreversible first-order decomposition reaction A → M is carried out in a
CFSTR, with k = 0.005 min−1. The feed composition cAf is 0.2 g-mol/L, and the
desired production rate of product is 50 g-mol/min.

a. What is the minimum possible flow rate?
b. Consider flow rates up to four times the minimum, and calculate the reactor

volumes and the effluent concentrations.

7.3. Kinetic data for the reaction between sulfuric acid and diethyl sulfate are given
in Examples 6.1 and 6.4. Suppose that V = 25.4 L, qAf = qBf, cAf = 11.0 g-mol/L,
cBf = 5.5 g-mol/L, and the required effluent concentration of sulfuric acid is cA = 4.0
g-mol/L. Find the flow rates (a) assuming that that the reaction may be taken to be
irreversible and (b) taking the reverse reaction into account.

7.4. Consider the optimal design problem in Section 7.3, but now suppose that the
capital cost of the reactor increases with volume as Vα , α < 1. Derive the algebraic
equation for the optimal conversion, but do not attempt to solve the equation. What
is fundamentally different about the solution for α < 1?

7.5. The chemical reaction sequence A → M → S takes place in a CFSTR. You may
assume that the reactions are irreversible and first order, with rate constants k1 for
the reaction A → M and k2 for the reaction M → S. M is the desired product. Find
the residence time θ = V/q that maximizes the concentration of M in the reactor
effluent, and find the maximum concentration.

7.6. The irreversible reaction A → products is believed to be nth order in the
concentration of A. Devise a strategy for obtaining the order and rate constant by
carrying out steady-state experiments in a CFSTR.

7.7. The decomposition of the carcinogen N-nitrosodiethylamine (NDEA) in water
was shown in Example 6.3 to be first order when exposed to ultraviolet radiation at
an intensity of 1 mW/cm2, with a rate constant 0.59 min−1.
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a. What is the time required in a batch reactor to decrease the concentration
in a wastewater sample by a factor of 100?

b. What is the residence time required in a CFSTR to achieve the same reduc-
tion?

7.8. Generalize your result to Problem 7.7 as follows: A first-order reaction is to be
carried out in a batch reactor and in a CFSTR to achieve a relative reduction RR in
concentration. (In Problem 7.7, RR = 100.) Compare the required time tB in a batch
reactor to the required residence time θ in a CFSTR to achieve the same RR.

7.9. Follow the approach in Section 5.7 to derive the equation for the dependence
of concentration on spatial position in a tubular reactor of length L operating at
steady state, in which the radius is R and the volumetric flow rate is q. Assume that
there is a single reaction. As in the membrane example, you may assume that there
is no mixing in the axial direction, but that the concentration is uniform over any
cross-section orthogonal to the direction of flow. How does this equation relate to
the equation for the batch reactor?

7.10. The mean residence time in a tubular reactor is the length L divided by the
average velocity v = q/π R2. Using the results from Problems 7.8 and 7.9, what
can you say about the relative values of the mean residence times in tubular and
continuous flow stirred-tank reactors to achieve the same conversion for a first-order
reaction? Can you generalize this result to an nth order reaction?



8 Bioreactors and Nonlinear Systems

8.1 Introduction

Biotechnology is a major component of modern chemical engineering, and biotech-
nology appears to many observers to be a new thrust; yet, as noted in Chapter 1,
biochemical engineering has been an essential part of chemical engineering since
the development of the modern profession in the early part of the twentieth century.
One important aspect of biotechnology, in fact its most traditional component, is
the use of microorganisms to effect chemical change. We cited the microbiological
production of acetone and penicillin as two classic examples in Chapter 1.

In terms of annual throughput, the activated sludge process for wastewater treat-
ment is by far the most widely used biochemical process in the world, and it provides
a useful framework for discussing some interesting features of bioreactor design and
performance. The entire process flowsheet is shown schematically in Figure 8.1. The
wastewater feed contains organic materials, commonly measured in toto as biological
oxygen demand (BOD), that are used as nutrients by microorganisms; the organ-
isms produce water and CO2 as metabolic products. The primary settler is there to
remove large objects. The heart of the process is the aeration basin; this is a reactor
in which a suspension of microorganisms in porous flocs is brought into contact with
the BOD. The microorganisms are aerobic, meaning that they require oxygen for
metabolism, so air or enriched air is added to keep the oxygen concentration in the
water above a critical level of about 2 g/m3 (2 ppm). The air jets also serve to mix
the reactor contents. The aeration basin and the air feed together account for about
25 percent of the capital cost of the process. The reactor effluent, which contains the
suspended microorganisms, goes to a settler, where the microorganisms are sepa-
rated from the effluent by gravity; the clarified, treated wastewater, with BOD and
suspended solids levels below those established by regulatory agencies, is released
to the receiving body of water. The microorganisms are then returned to the reactor
in a recycle stream.

What makes the system interesting from a reactor design perspective is that this
is an example of an autocatalytic system. An autocatalytic system is one in which the

130
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Figure 8.1. Schematic of an activated sludge process.

concentration of one of the reactants is greater at the end of the reaction than at the
beginning; that is, the reaction stoichiometry is of the form

A + βB → γ B + other products, γ > β. (8.1)

In the case of the bioreactor, the amount of biomass grows as the organisms metab-
olize, so some of the suspended microorganisms (referred to as sludge) must be
removed before recycling; otherwise, the microorganism content in the aerator
would continue to grow until the system clogged. The remainder of the flowsheet is
concerned with treatment of the waste sludge, which is thickened by water removal;
broken down, usually by anaerobic (no oxygen) bacteria in one or more reactors
known as digesters; and dewatered and discarded. (Sludge disposal is itself an envi-
ronmental problem. Some sludge is dumped in the ocean, and some is used for
landfill. Sludge has a high organic content and can be used as fertilizer; there is a
commercial market, but heavy metals, which can be concentrated by microorgan-
isms, are a potential hazard.)

8.2 Reactor Analysis

Let us now focus on the reactor-separator system for an autocatalytic reaction. In the
case of a bioreactor reactor, such as the activated sludge aerator, we may assume that
the slurry containing the suspended microorganisms is a homogeneous medium, and
we needn’t worry about the fact that two separate phases exist in close proximity.
Homogenization of this type is a common approach to multiphase systems when the
length scale of interest is much larger than the length scale of the microstructure.
We can therefore treat both the BOD and the active microorganisms as component
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species in a continuum.* We further assume that the dissolved oxygen level in the
reactor is above the critical value of 2 g/m3, at which level the metabolic rate is
insensitive to the O2 concentration, and that the airflow is sufficient to permit use
of the well-mixed assumption. Hence, the reactor can be treated as a single-phase
continuous-flow stirred-tank reactor (CFSTR).

In the context of the reaction stoichiometry given in Equation 8.1, we take A to
be the BOD and B to be the microorganism. We will presume that all concentrations
and rate expressions are in terms of mass units, rather than the molar units commonly
employed for reacting systems. The rate of a metabolic reaction is usually of the
form

r = μcA

K + cA
cB. (8.2)

This form is known as Michaelis-Menten kinetics, and is typical of enzymatic reac-
tions. (In the catalysis literature the same functional form is known as Hougen-
Watson kinetics.) There is a second reaction that the microorganisms undergo,
known as endogeneous respiration, which does not depend on the nutrient level,
so the rates for BOD and microorganisms differ by more than just the ratio of stoi-
chiometric coefficients, but the effect is small and including endogeneous respiration
only adds to the algebraic complexity without changing any essential result. For the
activated sludge system, μ is typically about 5 day− 1 and K is about 100 g/m3 of
BOD5. (BOD5 is a particular measure of the organic level.) The typical feedstream
will contain about 200 g/m3 of BOD5. If we assume that the conversion is at least
95 percent, we may assume that the concentration in the reactor is of order 10 g/m3,
so cA � K. In that case we can neglect the cA term in the denominator and write the
rate in the form

r = kcAcB, (8.3)

where k = μ/K. (This approximation is not necessary for any of the analysis that fol-
lows, but it is reasonable and does simplify the algebra. Everything can be repeated,
with equivalent results, for the full Michaelis-Menten kinetics.)

The system of interest is shown schematically in Figure 8.2. The reactor is taken
as the control volume. The steady-state equations for the reactor, with the usual
assumptions about the density, and with the stoichiometry given by Equation 8.1
and the reaction rate given by Equation 8.3, are

A: 0 = q(cAf − cA) − VkcAcB, (8.4a)

B: 0 = q(cBf − cB) + (γ − β)VkcAcB. (8.5)

There is no B in the external feed to the reactor, but a fraction f of the mass of
species B in the reactor effluent is recycled to the feedstream; hence,

qcBf = f qcB. (8.6)

* Transport of the oxygen through the floc does affect the apparent rate of reaction. Similar issues are
discussed in Section 10.5. For our purposes here, however, we can assume that this effect is already
incorporated in the reaction rate.



8.2 Reactor Analysis 133

Separator

Effluent with
unreacted A

Disposed concentrated BRecyled concentrated B

Reactor

Fresh A
Figure 8.2. Schematic of the
reactor-separator system.

Equation 8.5 therefore becomes

B: 0 = qcB( f − 1) + (γ − β)VkcAcB = cB[q( f − 1) + (γ − β)VkcA]. (8.4b)

Note that cB = 0, cA = cAf is always a solution to Equations 8.4a and b. Since we are
interested in solutions for which cB �= 0, we must define the range of such solutions.
If we do find solutions with cB > 0 (and we will), we must deal with the fact that the
process equations admit two physically permissible solutions (cB > 0, cB = 0), and
we will have to determine which state can actually be attained.*

With cB �= 0, Equation 8.4b can be solved for cA:

cB �= 0 : cA = q(1 − f )
(γ − β)Vk

. (8.7a)

Note that f must be strictly less than unity; for f = 1, cA = 0, in which case cB → ∞
in order to satisfy Equation 8.4b. This is consistent with our physical understanding:
If all of the B that is produced is returned to the reactor, then the amount of B will
continue to grow without bound as long as there is sufficient A in the reactor for the
reaction to occur.

We now solve Equation 8.4a to obtain

cB = (γ − β)cAf

1 − f
− q

Vk
. (8.7b)

This is a difference between two positive numbers. Since we require cB > 0, Equation
8.7b places a limit on the reactor variables, as follows:

cB > 0 ⇒ q
V

<
(γ − β)kcAf

1 − f
. (8.8)

q/V is known in the environmental and biochemical engineering literature as the
dilution rate; it is the reciprocal of the residence time, θ . If the dilution rate exceeds
the bound set by Equation 8.8, then the only physically meaningful solution that
can exist to Equations 8.4a and b is cB = 0, cA = cAf. Such as situation is known as
washout. The restriction given by Equation 8.8 demonstrates the need for good flow

* The notion that nonlinear equations can have more than one solution is not surprising. Consider the
equation x2 = 1, which has solutions x = 1 and x = − 1. It has probably been your past experience that
one solution can be eliminated on physical grounds; an absolute temperature cannot be negative,
for example. That is not the case here.
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Figure 8.3. Bistable states of a 10 percent dispersion of 8CB in polydimethylsiloxane. From
Y. W. Inn and M. M. Denn, J. Rheology, 49, 887–895 (2005).

control in autocatalytic systems such as the activated sludge process, since excursions
in flow rate or volume leading to long-term violations of Equation 8.8 could take the
system irreversibly to the washout state.

8.3 Nonlinearity

Nonlinear systems often exhibit multiple solutions, and it is quite common for more
than one solution to fall within a physically acceptable range. Indeed, more than one
steady state may be attainable in practice, depending on the starting conditions. This
situation is sometimes called bistability, indicating that each state is stable within
its immediate environs, but the system might jump to the other state if perturbed
sufficiently. Bistability is a common theme in materials processing, where great care
must often be taken to ensure that the proper microstructure is achieved. It is also
common in chemical and biochemical reaction engineering, microfluidics, and many
other applications area. The example in the preceding section illustrates a rather
elementary example, although one of extreme practical importance.

Figure 8.3 shows an interesting example of bistability in materials processing, in
which a liquid crystal is dispersed in a polymer matrix. Liquid crystals are melts or
solutions made up of rigid molecules with large aspect ratios. In some temperature
or concentration ranges the molecules align, despite the fact that they are in a
liquidlike state, which permits polarized light to pass only with certain orientations.
The orientations respond to local external electromagnetic fields, so images can
be formed. This, in brief, is the basis of liquid crystal displays. The figure shows a
10 percent by weight dispersion of 4′-octyl-4-biphenylcarbonitrile (commonly known
as 8CB) in polydimethylsiloxane. The large images are optical micrographs of thin
samples, whereas the inserts are images of the bulk dispersions. Note the different
scales on the micrographs. The sample on the left is a fairly rigid gel, with no
obvious length scale for the dispersed phase at this level of magnification, whereas
the sample on the right is a mobile liquid with a dispersed-droplet morphology. The
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only difference between the two is the temperature at which the sample was initially
prepared, and both states exist in the temperature range 33–41◦C. The gel can be
converted to the dispersed droplet morphology by raising the temperature above
41◦C and then reducing the temperature, while the dispersed droplet morphology
can be converted to the gel by lowering the temperature below 33◦C and applying a
lot of shear. Shear at a higher temperature will not cause the transition.

Multiplicities resulting from nonlinearities in reacting systems usually require
consideration of the effect of temperature on reaction rates and incorporation of
the energy balance, which requires concepts that we have not yet addressed. There
is one rather nice example that illustrates multiplicity in a reacting system in which
the states all have a finite conversion that can be addressed using only tools that we
have developed to this point, and we consider that example in the following section.

8.4 CO Oxidation

Figure 8.4 shows data for the rate of oxidation of carbon monoxide as a function
of available CO in the presence of a palladium catalyst. The data are expressed in
terms of fluxes because of the nature of the reactor that was employed. They clearly
show very unexpected behavior, namely that the rate of oxidation initially increases
with increased availability of CO, but then the rate goes through a maximum and
decreases. This type of rate expression is not common, but it is observed in other
systems as well. The mechanism is well understood, but it is not important to us here
and we will not pursue it.

Now, suppose that we could carry this reaction out in a CFSTR. To do so in
practice would require that we have the catalyst uniformly suspended in the reacting
stream such that we could consider the gas-solid suspension as a continuum, as we
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did in the preceding example with the liquid-sludge suspension. We will make that
assumption. (A fluidized bed would approximate this situation, although a fluidized
bed would probably not be the preferred reactor configuration for this conversion.)
We will also assume that CO is present in very small quantities in the feedstream,
so that we can ignore the density change that would result from the different total
number of moles in the feed and effluent at constant temperature and pressure.

The equation for the concentration of CO in a CFSTR is

θ
dc
dt

= c f − c − θr, (8.9)

where we assume that oxygen is available in excess and the only concentration that is
relevant for the reaction is the concentration of CO, denoted simply as c. At steady
state we can write

c f − c = θr. (8.10)

The right side of Equation 8.10, the dimensionless reaction rate, is given as a function
of c by a curve with the general form of the data in Figure 8.4, and is plotted schemat-
ically in Figure 8.5. The left side of Equation 8.10 is a straight line with slope −1,
and it is also plotted in Figure 8.5. The two curves can intersect three times, meaning
that there are three possible concentrations with 0 < c < cf for which Equation 8.4
is satisfied for a given residence time and feed concentration, corresponding to low,
intermediate, and high conversions. The concentrations are all physically realistic.

It is possible to show, by detailed analysis of the nonlinear differential Equation
8.9 (see Appendix 8A for a partial treatment), that the intermediate solution cannot
be maintained in practice; that is, it is a solution to the steady-state model equation,
but it is unstable in that any infinitesimal disturbance (which cannot be avoided
in practice) will cause the system to move to one of the other steady states. The
high- and low-conversion steady states are both stable, however, and the system
can operate at either in the absence of large disturbances that may cause it to
move to the other state. This type of behavior is characteristic of highly energetic
systems that can ignite; it is also a characteristic of some model biological systems
that can switch between states. The major message to carry away is that multiplicity



Bibliographical Notes 137

is to be expected, and the possibility should always be examined in any physical
process.

8.5 Concluding Remarks

Physicochemical systems, which are inherently nonlinear, frequently exhibit multiple
solutions corresponding to multiple states. The examples illustrated analytically here,
namely finite conversion and washout in a bioreactor and low and high conversions
in CO oxidation, are good case studies because they represent important processes
for which the behavior can be elucidated with relatively straightforward descriptions.
Reactor multiplicities usually involve thermal effects, and one example is addressed
in Chapter 15; the subject is typically covered in the chemical engineering curriculum
in a course with a title along the lines of Kinetics and Reactor Design. Multiplicities
involving phase changes – the liquid crystal gel/dispersed droplet bistability, for
example, or a supersaturated single phase when precipitation and the formation of
a second phase would be expected – normally require a detailed thermodynamics
analysis using concepts addressed in a course with a title such as Thermodynamics or
Phase Equilibrium. The main point to carry away from this chapter, beyond the fact
that bioreactors are simply autocatalytic systems that require special care because
the catalyst is a living entity, is that one must always be aware of the possibility
of instabilities and multiplicities in nonlinear systems, because the consequences of
going to a state other than the desired one can be serious and sometimes catastrophic.
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Appendix 8A: Dynamical Response for CO Oxidation

We can obtain some insight into the dynamical response of the CO oxidation reactor,
and see that the intermediate steady state cannot be maintained in practice, by
some elementary mathematics. The reaction rate to the right of the maximum in
Figure 8.4 behaves roughly as c− 1. If we then set

r = kc−1, (8A.1)

recognizing that this form is not even qualitatively correct at low concentrations, the
dynamical response, Equation 8.9, is given by

θ
dc
dt

= c f − c − kθ

c
. (8A.2)

This equation has two steady states, which correspond to the middle and upper
steady states in Figure 8.4. The steady states, denoted cs, are then given by

cs =
c f ±

√
c2

f − 4kθ

2
. (8A.3)

The middle and upper steady states will no longer exist if θ > c2
f /4k (cs becomes

complex).
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It is convenient (and very useful) in analyzing dynamics to use the steady state
as a frame of reference; that is, we define a new dependent variable

ξ = c − cs . (8A.4)

We will consider each of the steady states in turn, so cs denotes either of the two
solutions in Equation 8A.3, as appropriate. Note that dξ/dt = dc/dt , since dcs/dt =
0. Equation 8A.2 then becomes

θ
dξ

dt
= c f − cs − ξ − kθ

cs + ξ
=

(
c f − cs − kθ

cs

)
− ξ

− kθ

(
1

cs + ξ
− 1

cs

)
= −ξ

(
1 − kθ

c2
s + csξ

)
. (8A.5)

The first grouping in parentheses after the second equality in Equation 8A.5 sums
to zero because of the steady state equation (it is simply the right-hand side of
Equation 8A.2 when dc/dt = 0.)

Equation 8A.5 is separable (i.e., we can write the equation in the form∫
dξ/ f (ξ) = − ∫

dt/θ), and the integration can be done analytically, but the result
is a transcendental function that is not easy to interpret, so we will instead make
the approximation |ξ | � cs (i.e., the concentration is always very close to the steady
state concentration). In that case Equation 8A.5 can be written approximately as

θ
dξ

dt
= −ξ

(
1 − kθ

c2
s

)
, (8A.6)

which is a separable equation with the solution

ξ = ξ0 exp
[
−

(
1 − kθ

c2
s

)
t
θ

]
. (8A.7)

Thus, for kθ/c2
s < 1, which corresponds to the high concentration/low conversion

steady state (the positive sign in Equation 8A.3), ξ(t) always goes to zero after long
times, which means that c always returns to cs after a disturbance (as long as the
magnitude of the disturbance ξ 0 is small enough to permit the approximation that
was made). This steady state can therefore be maintained in practice, and it is stable to
sufficiently small disturbances. By contrast, for kθ/c2

s > 1, which is the middle steady
state in Figure 8.4 (the negative sign in Equation 8A.3), Equation 8A.7 is a growing
exponential and ξ(t) grows without bound for arbitrarily small ξ 0. Thus, the system
will always move away from this steady state, even with starting concentrations that
are arbitrarily close, and it is absolutely unstable; that is, it can never be maintained
in practice. (The fact that ξ(t) always moves away from ξ 0 and from zero is the
important point here, not that it grows without bound; clearly, at some point in this
growth process, the assumption that |ξ | � cs will fail, and Equation 8A.6 will no
longer describe the physical process.)
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9.1 Introduction

Most chemical reactions are limited by equilibrium, and in many cases the equi-
librium constant is such that the conversion to the desired product is too small
to be economical. Doing “better than equilibrium” is one of the primary chal-
lenges in chemical engineering design. The general idea is obvious: The reaction
should be carried out in the absence of product, so that the reverse reaction can-
not proceed. Implementation is not so obvious, which is why this is a primary
challenge.

The most interesting approach to overcoming equilibrium, which has been suc-
cessful in many cases, is to design a system in which reaction and product separation
take place simultaneously. In that way, the product is removed from the reactor
and cannot participate in the reverse reaction. The inspiration for this idea may
come from the biological cell, in which the reaction sites are enclosed within the
cell membrane, which is permeable to reaction products that are intended for use
outside the cell. The two most common manifestations outside nature are the mem-
brane reactor, which mimics the cellular process, and reactive distillation, in which
the reaction takes place in a distillation column. A proper treatment of distillation
requires inclusion of the energy balance and the notion of vapor-liquid equilibrium,
which is typically addressed in a subsequent course in thermodynamics, so we will
not examine reactive distillation here. The membrane reactor is accessible to us now,
however, and nicely illustrates the concept.

9.2 Equilibrium-Limited Continuous-Flow Stirred-Tank Reactor

To establish a frame of reference, let us consider the reversible reaction A � M in a
steady-state CFSTR. We will assume that the rates of both the forward and reverse
reactions are first order. (As in many other examples throughout this text, nothing
important changes qualitatively if we consider reactions with more realistic kinetics,
but the important ideas become lost in the algebra.) We will assume that there is no
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product in the feed to the reactor. The equations for the two component species are
then

A: 0 = cAf − cA − k1θcA + k2θcM, (9.1a)

M: 0 = −cM + k1θcA − k2θcM. (9.1b)

By adding the two equations we obtain cM = cAf − cA, and we then obtain the
effluent concentration of A from Equation 9.1a as

cA

cAf
= 1 + k2θ

1 + (k1 + k2)θ
. (9.2)

The conversion is less (i.e., cA is larger) when k2 > 0 (reversible) than when k2 = 0
(irreversible). [The result is readily established by showing that ∂(cA/cAf )/∂k2 > 0,
which is a straightforward calculation that is worth doing.] The limiting case of
θ → ∞, in which the reactions have time to proceed to equilibrium, gives

θ → ∞ :
cA

cAf
= 1

1 + Keq
, (9.3)

where Keq = k1/k2 is the equilibrium constant for the reaction (the ratio cM/cA at
equilibrium).

9.3 Single-Stage Membrane Reactor

Now consider the scheme shown in Figure 9.1. We have a single-stage membrane
separation system, identical to the one in Figure 5.1, but now we permit the reversible
reaction A � M to occur on the raffinate side of the membrane. Only the product,
M, can cross the semipermeable membrane. We retain the symbols R and P for the
flow rates of the raffinate and permeate stream, respectively. A is present only in the
raffinate stream, so we can retain the symbol cA for the concentration of A, but we
need to include subscripts R and P to distinguish the concentrations cRM and cPM of
M in the raffinate and permeate streams, respectively. We assume that there is no
M present in the permeate feed.

As in Section 5.2, we now require two distinct control volumes, separated by the
membrane. We must consider two rates when writing the component mass balance
equation for M on the raffinate side of the membrane: the net rate of reaction

P

R

P

R

CA, CRM

CPM

CAf
AVR

VP

M

M
Figure 9.1. Schematic of a membrane reactor.
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(forward and reverse) and the rate of transfer of M across the membrane. The
steady-state equations for A in the raffinate stream and M in the raffinate and
permeate streams, respectively, are

Raffinate, A: 0 = R(cAf − cA) − k1VRcA + k2VRcRM, (9.4a)

Raffinate, M: 0 = −RcRM + k1VRcA − k2VRcRM − �A(cRM − cPM), (9.4b)

Permeate, M: 0 = −PcPM + �A(cRM − cPM). (9.4c)

As in Chapter 5, � denotes the membrane permeability and A denotes the available
membrane area. (We have a conflict in nomenclature here, where we are using A
with two slightly different typefaces to denote both the reactive species and the
membrane area, respectively. There should be no confusion, since the symbol that
appears in the equations refers only to the area.)

The algebra to solve this system of three linear equations is tedious, but straight-
forward. We first find cPM in terms of cRM from Equation 9.4c,

cPM = �A
P + �A

cRM. (9.5)

We then use this result in Equation 9.4b to obtain cRM in terms of cA:

cRM = k1VR

R + k2VR + P
�A

1 + �A

cA. (9.6)

Finally, we obtain cA from Equation 9.4a:

cA

cAf
= 1 + k2θ

(1 + k1θ)
(

1 + P
R

�A
1 + �A

)
+ k2θ

. (9.7)

Here, θ = VR/R.
Equation 9.7 reduces to Equation 9.2 if there is no membrane transport (P, �, or

A goes to zero). It reduces to the result for a single-stage membrane unit in Section
5.2 if there is no reaction (k1 and k2 both go to zero), although a bit of algebra is
required to obtain the equivalent of Equation 5.4 for cRM. It is obvious by inspection
that the conversion of A given by Equation 9.7 is greater than that given by Equation
9.2 for equal values of the residence time in the reactor. The potentially dramatic
effect of removing the reaction product can best be seen by considering the case
in which the residence time is large (k1θ � 1, k2θ � 1), in which case Equation 9.7
simplifies to

θ → ∞ :
cA

cAf
= 1

1 +
(

1 + P
R

�A
1 + �A

)
Keq

. (9.8)

Clearly, the larger the membrane transport term, the greater the improvement will
be on equilibrium.
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9.4 Concluding Remarks

There is no need that a membrane reactor be a single-stage device, nor is it apparent
that it should consist of only one stage. We have seen in Chapter 5 how cross-flow and
countercurrent flow configurations for membrane separation systems can enhance
the separation efficiency. The same configurations can be used for membrane reac-
tors, and in fact the typical configuration for a membrane reactor is as a counterflow
device, usually with a ceramic membrane. Membrane reactors are also commonly
used for biochemical conversions in which cells are placed on one side of a tubular
membrane and product flows across the membrane. We shall not pursue the calcu-
lations for multistage reactors here; the calculations are straightforward but involve
a great deal of algebra.

The main point to take away from this short chapter is that clever exploitation of
rate processes can greatly enhance process performance, and that asking the correct
question (in this case, “What would increase the conversion?”) is the most important
step in getting a useful answer.
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PROBLEMS

9.1. In Equation 9.2, show that ∂(cA/cAf )/∂k2 > 0.

9.2. In analogy to the treatment in Section 5.7, derive the equations describing
a countercurrent membrane reactor in which the reversible first-order reaction
A � M is carried out.



10 Two-Phase Systems and Interfacial
Mass Transfer

10.1 Introduction

Many physicochemical systems consist of two or more phases in intimate contact.
We have already considered one such system in Chapter 8, where we noted that the
bioreactor contains flocs of microorganisms suspended in an aqueous phase, together
with air bubbles that provide oxygen. In that case, we made the approximation
that we could treat the system as though it were one continuous phase, a process
known as homogenization. We did the same for the CO oxidation reactor with
finely dispersed catalyst. Homogenization works when all microstructural length
scales are so small that the phenomena occurring in the various phases can be
averaged together over a continuum length scale that is still very small relative to
the macroscopic size of the system, in which case any time scales associated with
transport within the microstructure are negligible relative to overall system scales.
In many multiphase cases, however, the length scales are such that we must directly
address the multiphase nature of the system and the concomitant transport of mass
and energy between the phases.

The focus of this chapter will be on the foundations of interfacial mass transfer
of a component species between the phases and the approach to an equilibrium dis-
tribution. The following chapter will address some of the processing issues that arise.
As a preface to the analysis, however, it is useful to begin with a brief classification
of various types of two-phase systems that may be encountered in practice.

10.2 Classification of Two-Phase Systems

Substances typically occur in any of three states – solid, liquid, or gas – in applications
of interest to chemical engineers. (Plasmas and liquid crystals are often considered
to be states distinct from the classical trio, but we shall not pursue these here.) For
engineering purposes, we define a phase as a macroscopic portion of a system that is
composed entirely of material in one state and that has an identifiable interface with
the other phase or phases of the system. Thus, we encounter two-phase systems that
are solid-liquid, solid-gas, and liquid-gas. Immiscible liquids also form distinct phases,
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and liquid-liquid systems are common in processing applications. Solid-solid systems
are not often encountered in the applications with which we will be concerned, and
gas-gas systems cannot exist, since mixtures of gases do not form distinct phases.

A two-phase system may occur because of a processing operation in which the
raw materials exist in distinct phases, it may result from the deliberate contacting
of one phase with another, or it may be the consequence of a second phase being
produced during a process. For classification purposes, it is convenient to distinguish
between processes where a significant phase change occurs and those where it does
not. We shall deal only with the latter situation in this text. In this chapter and
the next we consider processes where two phases are contacted for the purpose of
interfacial mass transfer.

Most mass transfer processes are similar in concept, implementation, and quan-
titative description. As technology has developed, a variety of names have been
assigned to these processes, commonly referred to as unit operations. These opera-
tions are briefly described here.

Solid-liquid systems. Solid-liquid mass transfer systems are of two types. In adsorp-
tion, dissolved or suspended material is transferred from the liquid phase to the
surface of the solid. Activated charcoal, silica gel, and magnesium oxide are typical
adsorbents for applications such as the removal of sulfur compounds from gasoline,
of water from hydrocarbons, and of various impurities from water. Ion exchange is
like adsorption except that an ion transferred to the solid surface is replaced in the
fluid by an ion of the same charge that is removed from the solid. Ion exchange
is used, for example, in water treatment and for purification of pharmaceuticals.
Polymeric resins such as crosslinked polystyrene and inorganic zeolites (hydrated
alumino-silicates) are typical ion exchange solids.

Solvent extraction is the transfer of a soluble material from a solid phase to a liquid
solvent. The term washing is often used when the solvent is water and the solid to be
removed is adhering to the surface of an insoluble solid. More complex separations
are called leaching. Typical applications are the recovery of copper from low-grade
copper oxide ores by extraction with sulfuric acid and the leaching of sugar from
beet pulp with water.

Solid-gas systems. The transfer of material from a gas to a solid surface is also called
adsorption. A typical example is the use of silica gel for the removal of SO2 and water
from gas mixtures. Adsorption on a solid surface is also an essential step in the use
of solid catalysts for chemical reactions of gaseous species. Drying, or desorption, is
the transfer of a volatile substance bound in the solid phase to a gas stream.

Liquid-gas systems. Transfer of a component from a gas phase to a liquid is known
as absorption, or sometimes as scrubbing. (Absorption and adsorption sound very
much alike, and one is often used incorrectly in place of the other.) Removal of SO2

from air by absorption into aqueous sodium carbonate and removal of H2S from
natural gas with monoethanolamine solution are typical applications with significant
environmental importance. Absorption is also a key step when a gaseous reactant
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is brought into contact with a liquid phase reactant, as in the bioreactor discussed
in Chapter 8. In that case, the oxygen necessary for the bio-oxidation reactions
that break down the organic matter is supplied by bubbling air through the liquid
phase. Desorption, or stripping, are terms used when a component of the liquid is
transferred to the gas, as in the removal of CS2 from an oil phase using steam.

Liquid-liquid systems. Solvent extraction is the transfer of a solute from one liquid
phase to another when the two solvents are themselves immiscible (or, at least,
nearly so). Because the two phases are both liquids, the separation following intimate
contact of the two phases for purposes of solute transfer must be followed by a step
in which the two liquids are separated; this is usually done through settling enabled
by density differences. Typical uses of extraction are in the recovery of penicillin
from the fermentation broth using cyclohexane or chloroform as a solvent and the
dewaxing of lubricating oils using ketones or liquid propane.

The unit operations described here all involve intimate contact between two
phases to enable the transfer of material from one phase to the other. All can
be carried out isothermally. The different types of materials involved in the various
unit operations necessitate that the process equipment for effecting the mass transfer
must differ in each case, but the basic principles are essentially the same and it will be
possible to consider the basics of the mathematical description of the mass transfer
simultaneously for all.

Operations involving a phase change require further consideration because the
principle of conservation of energy is generally required, and we leave these for
subsequent study. The most common separation process requiring phase change
is distillation, in which a liquid mixture is boiled to produce a vapor of different
composition. Repeated systematic application leads to purification. In crystallization,
a solution is cooled to produce a solid phase of different composition. Despite the
different physical bases, aspects of these phase-change operations are described
with mathematical models quite similar to those needed for the mass transfer unit
operations described above, and the processing concepts developed in the next
chapter will apply to them as well.

10.3 Batch Two-Phase Systems

10.3.1 Basic Model Equations

A batch process is one in which there is no flow into or out of the system. As
we saw in Chapter 6, batch processes can be useful for determining reaction rate
information. They are also useful for determining rates of mass transfer. As with the
batch reactor, we charge the two phases to the stirred vessel at time t = 0. We assume
that the two phases are in intimate contact, with one phase uniformly distributed
throughout the other; uniformity is easy to achieve in practice for many systems. We
further assume that each phase is individually well mixed, so that a sample of either
phase drawn at any time will be the same as any other sample of that phase drawn
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Figure 10.1. Schematic of a two-
phase system. Each phase must be
taken as a separate control volume.

from any position in the tank at the same time. We have already seen the importance
of the assumption of perfect mixing for single-phase systems, and the experimental
achievement of near-perfect mixing for each phase is of comparable importance
in our analysis here. We assume that the mass transfer occurs isothermally; this is
frequently a valid assumption, and the isothermal analysis is always part of the more
complete treatment when thermal effects do have to be taken into account.

As before, we will use volume V, density ρ, and concentration c as characterizing
variables for mass. It is conventional when considering interfacial mass transport to
measure concentration in mass units (e.g., kg/m3 or lbm/ft3), in contrast to the use
of molar units when we were considering reacting systems. This practice causes
no inherent difficulty, but it does require some care when analyzing systems in
which there is both interfacial mass transfer and chemical reaction, since the reac-
tion rates will be expressed most naturally in molar units. Selection of the control
volume requires some care. It is clear that the entire vessel is not a useful control
volume for the two-phase system in most cases. We are interested in transfer between
the two phases, hence we must work with two control volumes, one for each phase.
We will arbitrarily designate one phase as the continuous phase (Phase I) and one as
the dispersed phase (Phase II). The continuous phase consists of the Swiss cheese-
like volume shown in Figure 10.1; the volume of the continuous phase is denoted VI,
the density ρI, and the concentration of any species i is denoted cI

i . The volume of the
dispersed phase, VI I , is made up of all the elements of the other phase and, although
we treat it as a single volume for modeling purposes, it may consist physically of a
number of distinct volumes. The density of the dispersed phase will be denoted by
ρ I I , and the concentration of any species i is denoted cI I

i .
We will develop the mathematical description for a general two-phase system,

recognizing that with appropriate identification of the continuous and dispersed
phases, the basic model equations will apply for batch solid-liquid, solid-gas, liquid-
liquid, or liquid-gas systems as long as the assumption of density and concentration
uniformity within each phase can be maintained. (Meeting this requirement may be
difficult in systems with a solid phase, or systems with a very viscous liquid, where
transport within the phase may be very slow.)
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To simplify the algebraic manipulations and emphasize the physical processes,
we will develop the model equations for the case in which a single component species
A is transferred between the phases. A has a concentration cI

A in the continuous
phase and cI I

A in the dispersed phase and does not react with any component in
either phase. It is not difficult conceptually to extend the treatment to any number
of species and to include reaction in one or both phases; in fact, we will introduce
chemical reactions later in this chapter.

The equations of conservation of mass will require an expression for the rate
at which each component species is transferred between the phases. We will use
the boldface symbol r to distinguish this rate from the rate of chemical reaction.
Thus, the rate at which A enters Phase I through mass transfer across the inter-
face is denoted rI

A+, whereas the rate at which A is depleted in Phase I by mass
transfer across the interface is denoted rI

A−. Similarly, the rate of accumulation of A
in Phase II through interfacial mass transfer is rI I

A+, and the rate at which A is lost
from Phase II through interfacial mass transfer is rI I

A−. The dimensions of the rate
of mass transfer are mass per area per time. The rate is written on a per-area basis
because, all other things being held equal, an increase in the area between the phases
will lead to a proportionate increase in the mass transferred. (We have already uti-
lized this concept in Chapter 5 in writing the rate of solute transfer through the
membrane on an area basis.)

Let a denote the total interfacial area between the phases. The equations for
conservation of mass in each of the control volumes are then, respectively,

dρ I VI

dt
= a[rI

A+ − rI
A−], (10.1I)

dρ I I VI I

dt
= a[rI I

A+ − rI I
A−]. (10.1II)

It is evident for the batch system that the mass that leaves Phase I must go to Phase
II, and vice versa. Thus, rI

A+ = rI I
A− and rI

A− = rI I
A+. For convenience, we define the

net rate rA as

rA = rI I
A+ − rI I

A−. (10.2)

Then

dρ I VI

dt
= −arA, (10.3I)

dρ I I VI I

dt
= arA. (10.3II)

Application of conservation of mass to the species that is transferred, component A,
leads in an identical manner to the component equations:

dcI
AVI

dt
= −arA, (10.4I)

dcI I
A VI I

dt
= arA. (10.4II)
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10.3.2 Rate Expression

As with a reacting system, it is necessary to establish the constitutive equation relating
the rate rA to the other system variables, particularly the concentrations cI

A and cI I
A .

It is sometimes possible to examine mass transfer at a microscopic level to obtain
expressions for the rate, and this is traditionally done in later courses covering mass
transfer, but we shall not follow that path here. Instead, as with reacting systems,
we will construct the simplest form possible that is compatible with experimental
observation.

It is commonly observed that, if we wait long enough, equilibrium is reached in a
batch system and there is a fixed functional relationship between the concentrations
of the solute in the two phases. That is, at equilibrium,

cI
Ae = f (cI I

Ae), (10.5)

where the subscript e denotes equilibrium. There is a large amount of such data in
the technical literature. Figure 10.2 shows a typical set of experimental equilibrium
data, in this case for the concentration of acetone in water and 1,1,2-trichloroethane.
The data were obtained by adding a known amount of acetone to the two solvents,
after which the system was thoroughly mixed and permitted to come to equilibrium.
The two liquid phases were then separated and the concentration of acetone present
in each phase was measured. The concentration of acetone in the organic phase is a
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unique function of the concentration in the aqueous phase; the functional relation is
linear at low concentrations, but becomes nonlinear at higher concentrations.

The time derivatives in Equations 10.3 and 10.4 must equal zero at equilibrium,
indicating that arA must go to zero. Since a cannot go to zero, it follows that rA =
0 at equilibrium. The functional form of the rate must be such that its vanishing at
equilibrium is compatible with Equation 10.5. We also have another important piece
of information about the rate. Suppose that cI

A is greater than its equilibrium value
for a given cI I

A ; in that case, there must be a net transfer of species A from Phase
I (the continuous phase) to Phase II (the dispersed phase), so rI I

A+ > rI I
A− and, from

Equation 10.2, rA > 0. Thus,

cI
A − f (cI I

A ) > 0 ⇒ rA > 0. (10.6a)

Similarly,

cI
A − f (cI I

A ) < 0 ⇒ rA < 0. (10.6b)

The simplest form compatible with Equations 10.6a-b is

rA = Km[cI
A − f (cI I

A )], (10.7)

where the overall mass transfer coefficient Km has dimensions of length/time. (Note
that Equation 10.7 is, in fact, a definition of the mass transfer coefficient, since the
rate and concentrations can, in principle, be measured independently.)

The equilibrium relation, Equation 10.5, is often written

cI
Ae = McI I

Ae, (10.8)

where the distribution coefficient M will not be a constant in general, except at low
concentrations (cf. Figure 10.2).* In that case, the rate expression will be written

rA = Km[cI
A − McI I

A ]. (10.9)

This form is completely general as long as Km and M are both allowed to be functions
of concentration. For simplicity of illustration only we will take the coefficients to
be constants in our treatment. It is sometimes helpful to note that Equation 10.9
has the form of a driving force: the distance from equilibrium, cI

A − McI I
A , divided

by a resistance, K−1
m , much like Ohm’s law in electricity. It is shown in texts on mass

transfer that Km can be expressed in terms of resistances in series, in analogy to the
corresponding relation in electricity,

1
Km

= 1
kI

+ M
kI I

,

where kI and kI I are associated with transport in the interfacial regions of the
individual phases.

* Equation 10.8 is known as Nerst’s Law when M is a constant. This is one of many “laws” in physical
chemistry and physics that carry Nerst’s name. It is not a law of nature, of course.
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10.3.3 A Rate Experiment

Batch mass transfer experiments to measure Km are usually difficult to carry out for
two reasons: First, equilibrium is typically achieved very rapidly, so reasonable tran-
sient data are difficult to obtain. Second, the product aKm is the quantity that appears
in the equations, so independent knowledge of the interfacial area a is necessary in
order to extract Km from experimental data, but the area is usually unknown and
may, in fact, be changing during the course of the experiment. We have designed an
experiment that occurs over several minutes in which the interfacial area is known,
thus permitting direct measurement of the interfacial mass transfer coefficient. We
dissolve tablets of table salt (NaCl) in distilled water, and we follow the dissolved
salt concentration using a conductivity probe, as we did in the experiment leading to
Figure 4.4.

The mathematical description of the salt-water system is a bit simpler than the
general formulation because the salt phase is a pure material, so cI I

A = ρ I I (remem-
ber, we are using mass units) and Equations 10.3II and 10.4II are identical. Fur-
thermore, the equilibrium concentration of dissolved salt is simply the saturation
concentration, which we denote cI

As ; cI
As is a function only of temperature. Hence,

we replace McI I
A in the rate expression with cI

As and write

rA = Km[cI
A − cI

As]. (10.10)

Equations 10.3 and 10.4 thus become

dρ I VI

dt
= −arA = −Kma[cI

A − cI
As], (10.11I)

dρ I I VI I

dt
= arA = Kma[cI

A − cI
As], (10.11II)

dcI
AVI

dt
= −arA = −Kma[cI

A − cI
As]. (10.12)

The basic data for the experiment are shown in Table 10.1, and they lead to
some further simplifications. The total mass of the salt is one-third of one percent of
the mass of the water. Thus, there will never be a significant change in the density
or volume of the aqueous phase, so we can disregard the overall mass balance for
Phase I (Equation 10.11I) and take VI as a constant throughout the experiment.
Furthermore, cI

A is more than two orders of magnitude less than cI
As at all times, so

cI
As − cI

A ∼ cI
As . Also, ρ I I is a constant. Thus, taking the constant terms outside the

derivatives, the experiment can be described by two equations,

ρ I I dVI I

dt
= −KmacI

As, (10.13a)

VI dcI
A

dt
= KmacI

As . (10.13b)
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Table 10.1. Experimental conditions and concentration
of dissolved salt as a function of time.

Number of tablets N = 30
Density of salt ρ I I = 2.16 g/cm3

Total mass of tablets 19.2 g
Initial volume of tablets VI I

0 = 19.2/2.16 = 8.85 cm3

Volume of water VI = 6,000 cm3

Surface-to-volume factor α = 5.32
Saturation concentration cI

As = 0.360 g/cm3

Time (seconds) 1000 cI
A (g/cm3)

0 0
15 0.30
30 0.35
45 0.64
60 0.89
75 1.08
90 1.10

105 1.24
120 1.40
135 1.49
150 1.68
165 1.76
195 2.06
200 2.14
240 2.31
270 2.43

Equations 10.13a and 10.13b can be added to give

ρ I I dVI I

dt
+ VI dcI

A

dt
= 0,

which, on integration, yields

ρ I I VI I
0 − ρ I I VI I = VIcI

A, (10.14)

where VI I
0 is the initial volume of solid. ρ I I VI I

0 is, of course, the initial mass of
salt.

The interfacial area a is related to the volume VI I through the solid geometry
of the tablets. We assume that the tablets retain their shape as they dissolve, which
turns out to be a good assumption until the very end of the experiment, when the
tablets begin to crumble. The N tablets are assumed to be identical, so the volume
per tablet is VI I/N. The interfacial area per tablet is then α[VI I/N]2/3, where α is
a constant that depends on tablet geometry. For a sphere, α = [36π ]1/3 = 4.84; for
a cube, α = 6; and for a square cylinder (height = diameter), α = 5.50. The tablets
used in this experiment were nearly square cylinders, with α = 5.32. The total surface
area is then N times the area per tablet,

a = Nα[VI I/N]2/3 = αN1/3[VI I ]2/3. (10.15)
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Equation 10.13a then becomes

ρ I I dVI I

dt
= −KmαN1/3cI

As[VI I ]2/3, (10.16a)

which is a separable equation that can be rearranged for quadrature as

dVI I

[VI I ]2/3
= [−KmαN1/3cI

As/ρ
I I ]dt. (10.16b)

Upon integration we obtain

VI I(t) =
{

[VI I
0 ]1/3 − KmαN1/3cI

Ast
3ρ I I

} 3

. (10.17)

Finally, we substitute Equation 10.17 into Equation 10.14 and rearrange to obtain a
form that is convenient for comparison with data:(

1 − VIcI
A

ρ I I VI I
0

)1/3

= 1 − KmαN1/3cI
As

3[VI I
0 ]1/3ρ I I

t. (10.18)

Note that VIcI
A/ρ I I VI I

0 is simply the fraction of the total salt that is in solution, and
1 – VIcI

A/ρ I I VI I
0 is the fraction that is undissolved.

The data are plotted according to Equation 10.18 in Figure 10.3. The data do
follow a straight line passing through unity, as required. Using the experimental
value 1.46 × 10−3 s−1 of the slope and the data given in Table 10.1, we then compute
Km = 3.3 × 10−3 cm/s. We shall not show any further data, but it is found that Km in
two-phase tank-type systems is almost always within an order of magnitude of the
value found here. Since the range of the interfacial mass transfer coefficient is so
limited (compare the range for reaction rates in Chapter 6), the significant problem
is determination of the interfacial area for each situation. The interfacial area varies
greatly depending on the degree of agitation, and there have been many studies to
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develop relationships between power to the mixer, geometry, physical properties,
and interfacial area.

10.3.4 Approach to Equilibrium

We remarked previously that batch experiments for mass transfer data are often
too rapid to obtain useful data. This statement can be quantified now that we have
a reasonable estimate of the magnitude of Km. We will assume that we have two
liquid phases that are initially of equal volume, and that the total amount of dissolved
substance A that is transferred between the phases is so small that changes in volume
are negligible. The overall mass balance equations, Equations 10.3I and II, therefore
provide no useful information. Equations 10.4I and II for the species balance in the
two phases then become

V
dcI

A

dt
= −arA = −Kma[cI

A − McI I
A ], (10.19I)

V
dcI I

A

dt
= +arA = +Kma[cI

A − McI I
A ]. (10.19II)

We have not included superscripts I or II for the volumes since they are equal and
constant. M will be taken as constant.

Addition of the Equations 10.19I and II gives V
dcI

A

dt
+ V

dcI I
A

dt
= 0, or

cI
A − cI

A0 + cI I
A − cI I

A0 = 0. (10.20)

cI
A0 and cI I

A0 are the values of cI
A and cI I

A , respectively, at t = 0. Substitution for cI I
A in

Equation 10.19I then gives

dcI
A

dt
= − Kma(1 + M)

V
cI

A +
(
cI

A0 + cI I
A0

)
MKma

V
. (10.21)

This is an equation of a form that we have solved many times before, and the solution
can be written

cI
A(t) = cI

Ae

{
1 −

[
1 − cI

A0

cI
Ae

]
e−[Kma(1+M)t/V]

}
, (10.22)

where the equilibrium concentration cI
Ae is computed from the equilibrium relation

and Equation 10.20 as

cI
Ae =

(
cI

A0 + cI I
A0

)
M

1 + M
. (10.23)

According to Equation 10.22, the system will be at equilibrium when the exponential
term is negligible. This will occur for an exponent of about –3 (e− 3 ∼ 0.05), so the
total time te for the experiment will be determined approximately by

Kma(1 + M)te
V

≈ 3. (10.24)
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We will take M ∼ 2, based on the data in Figure 10.1, and we have seen that
3 × 10− 3 cm/s is a reasonable value for Km. Thus, te ∼ 103V/3a, where lengths
are in centimeters and time is in seconds. Now, if the agitation is such that that
one phase is effectively dispersed into N droplets then, according to Equation 10.15,
a = αN1/3V2/3, where the shape factor α is approximately 5. Thus, te ≈ 102 (V/N)1/3.

V/N is the volume of a typical droplet. Droplets with a diameter of about 1mm
are easily obtained in most low-viscosity systems, so V/N ∼ (1/6)π(10− 1)3 ∼ 5 ×
10− 4, and te ∼ 10 s. Thus, the system will be more than halfway to equilibrium
after three seconds and completely there by ten seconds. This is to be compared to
timescales of order minutes or even hours for aqueous reacting systems, as shown in
Chapter 6.

The order-of-magnitude analysis carried out in this section is important in its
own right, because it provides useful insight into the mechanics of interfacial mass
transfer that we will exploit subsequently. It is also important, however, because it
represents the type of “back-of-the-envelope” calculation that engineers are rou-
tinely expected to carry out. Good engineering requires the ability to obtain quick
estimates of the relative importance of the various physical phenomena that are
occurring in any process, and rough calculations like this one exemplify the way in
which that procedure is carried out.

10.3.5 Further Comments

It is important to note the essential difference in usefulness between the batch
experiment for a mass transfer system and the batch reactor experiments described
in Chapter 6. We have already observed that the batch mass transfer experiment
may be more difficult to carry out than the reaction experiment. This is true not
only because of the rapid approach to equilibrium, but also because the presence
of two phases in intimate contact can often increase the sampling and measurement
problems considerably. There is a second extremely important difference that might
not be obvious from the discussion thus far. The data from the single-phase batch
reactor experiments are sufficient to enable us to compute the design specifications
for a continuous processing unit. Such is not the case with the two-phase system. Both
the rate and the interfacial area are required, and it is rare that data on interfacial
area obtained in a small-scale batch system provide meaningful information about
interfacial areas in large, continuous-flow devices.

10.4 Continuous-Flow Two-Phase Systems

Continuous-flow two-phase systems are ones in which both phases are continuously
fed to and removed from the system. They are widely employed for the various
unit operations described in Section 10.2 and may be carried out in tank-type or
tubular geometries. They are also used in the laboratory to collect experimental
data. (Semicontinuous systems, in which one phase is stationary and only one phase
flows through the system, are also used, but we will not address them here.) Our
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Figure 10.4. Schematic of a continuous-flow two-phase process.

goal here is to gain an appreciation of the issues in two-phase design and operation
by examining an elementary well-stirred continuous-flow tank-type mass transfer
system in detail.

A schematic of the continuous-flow system is shown in Figure 10.4. Two pieces
of equipment are shown, a tank-type contactor and a device that effects a separation
between the phases. We assume that the contents of the contactor are well mixed,
so that the two phases are in intimate contact and there is no spatial variation of
the concentration of a species in either phase. We also assume that all mass transfer
takes place in the contactor and that the sole function of the separator is to separate
the two phases that are mixed in the contactor. We do not consider the separator
operation in detail; it will often be no more than a holding tank large enough to allow
separation by gravity. (In some gas-liquid systems the separation takes place in the
contactor, and a distinct separation device is not needed.) The concentrations in the
exit stream from the separator are assumed to be the same as those that we would
find if we were to sample the phases in the contactor. This is a reasonable assumption
since, without agitation in the separator, there is little interfacial area available for
mass transfer. The contactor and separator together are frequently referred to as a
stage.

Our control volumes will be the same as those designated for the batch two-
phase systems, and we can develop the model equations by applying conservation
of mass exactly as we did in Section 10.3. The overall mass balance equations are

dρ I VI

dt
= qI

f ρ
I
f − qIρ I − arA, (10.25I)

dρ I I VI I

dt
= qI I

f ρ I I
f − qI Iρ I I + arA. (10.25II)
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Note that we do not consider any mass transfer in the separator, so the streams
issuing from the separator have the same compositions as those in the contactor.
This is conceptually the same as if we had assumed that separated streams issue
directly from the contactor.

The component equations will be written for the case in which a single species is
being transferred. This is a common situation and allows us to develop the important
concepts without the algebra becoming too complex. Concentrations everywhere in
the tank and at the separator exit are denoted by cI

A and cI I
A :

dcI
AVI

dt
= qI

f cI
Af − qIcI

A − arA, (10.26I)

dcI I
A VI I

dt
= qI I

f cI I
Af − qI IcI I

A + arA. (10.26II)

Transient behavior is important for startup, shutdown, and control of the system,
but the basic design is carried out for the steady state, when time derivatives are
zero. We thus write, using the rate expression Equation 10.9,

0 = qI
f ρ

I
f − qIρ I − Kma[cI

A − McI I
A ], (10.27I)

0 = qI I
f ρ I I

f − qI Iρ I I + Kma[cI
A − McI I

A ], (10.27II)

0 = qI
f cI

Af − qIcI
A − Kma[cI

A − McI I
A ], (10.28I)

0 = qI I
f cI I

Af − qI IcI I
A + Kma[cI

A − McI I
A ]. (10.28II)

A complete solution to this set of equations will require the constitutive equations
between densities and phase compositions.

The general problem with composition-dependent densities is sometimes impor-
tant, but we can accomplish our goals by dealing with the more limited case in which
the total amount of A that is transferred between phases is insufficient to have an
effect on the phase volumes. In that case, qI

f = qI , qI I
f = qI I , and only the com-

ponent equations 10.28I and 10.28II are needed to describe the system fully. This
approximation leads to negligible error for most applications. Combining Equations
10.28I and 10.28II leads to an alternate equation relating the two concentrations:

cI
A = cI

Af + qI I

qI

[
cI I

Af − cI I
A

]
. (10.29)

Note that Equation 10.29 does not include any terms involving the mass transfer
rate; it is simply an overall mass balance that equates the total mass flow rate of
A into the system, including both phases, to the total mass flow rate of A out.
Any two of the three equations 10.28I, 10.28II, and 10.29 are independent and
can be used to analyze the process. There are eight quantities in these equations:
qI , qI I , cI

Af , cI I
Af , cI

A, cI I
A , M, and Kma; six independent quantities must be speci-

fied, and the two independent equations can then be used to find the other two.
(Km and a always appear as a product, so these two experimental quantities cannot
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be determined independently as outputs from any experiment that is analyzed by
this set of equations.)

10.4.1 Equilibrium Stage

A typical problem is to determine the effluent concentrations. Equations 10.28II and
10.29 can be combined to obtain the following result for cI I

A :

cI I
A = cI

Af

λ + M + (qI I/Kma)
+ cI I

Af

1 + M
λ+(qI I/Kma)

. (10.30)

Here, λ = qI I/qI . Note that the volume, or, equivalently, the holdup in the tank,
does not appear for either phase. The important transport quantity is the ratio of
the flow rate of the dispersed phase to the rate of interfacial mass transfer.

The ratio qI I/Kma can be written

qI I

Kma
= VI I/Kma

VI I/qI I
= VI I/Kma

θ I I
, (10.31)

where θ I I is the residence time of the dispersed phase. The calculations in Section
10.3.4 show that VI I/Kma is of the order of one minute if the agitation is sufficient
to produce droplets with diameters of the order of 1 mm, and M is of order unity. If
the system is designed for a holdup of, say, five to ten minutes, so that qI I/Kma � 1,
then the qI I/Kma terms in Equation 10.31 can be neglected (they can be neglected
in the second term only if λ = qI I/qI is of order unity) and the effluent concentration
can be written

cI I
A = cI

Af + λcI I
Af

λ + M
. (10.32)

The rate of mass transfer does not appear, and the calculations can be carried out
without knowledge of Kma! Clearly this is an extraordinary simplification.

Equation 10.32 is formally equivalent to taking the limit Kma → ∞ in Equation
10.30. The result is known as an equilibrium stage and can be obtained, with consid-
erably less physical insight, in a more direct manner. We simply take Equation 10.29,
which is always valid, and assume that we have equilibrium, in which case we write
cI

A = McI I
A , from which Equation 10.32 follows directly. This is the reason for the

name equilibrium stage. The concept of the equilibrium stage is used extensively in
design calculations for the unit operations touched on in Section 10.2. We illustrate
the concept with a few examples here, and we will return to this important topic in
Chapter 11.

EXAMPLE 10.1 An aqueous solution containing 200 g/L of acetone is to be purified
by continuous extraction with pure trichloroethane. How much acetone can be
removed if the flow of both aqueous and organic streams is 10 L/min?

We assume for these calculations that water and trichloroethane are insolu-
ble. This is a reasonable assumption for our purposes here; the National Institute
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of Standards and Technology (NIST) database* summarizes five studies and con-
cludes that 0.0012 grams of trichloroethane or less will dissolve in 1 gram of water
in the range 0 – 50◦C. (At a level of over 1,000 ppm the water would probably
have to be purified before it could be discharged. More likely, it would be recy-
cled for process use, where the very small amount of trichloroethane would be
unlikely to be relevant.) We assume that the contactor is an equilibrium stage,
the flow rates are constant, and the solvent feed contains pure trichloroethane
(cI

Af = 0). Because the flow rates are equal, λ = 1. From Figure 10.1 we have
M = 2. Hence, from Equation 10.33,

cI I
A = λcI I

Af

λ + M
= 1 × 200

1 + 2
= 66.7 g/L, cI

A = McI I
A = 2 × 66.7 = 133.3 g/L.

That is, the acetone content in the aqueous phase is reduced from 200 to 66.7
g/L in this equilibrium stage.

EXAMPLE 10.2 Suppose now that the flow of organic in Example 10.1 is increased
from 10 to 20 L/min and the flow rate of the aqueous phase is maintained at
10 L/min.

We now have λ = qI I/qI = 0.5, and

cI I
A = λcI I

Af

λ + M
= 0.5 × 200

0.5 + 2
= 40 g/L, cI

A = McI I
A = 2 × 40 = 80 g/L.

By doubling the amount of solvent the acetone content in the aqueous stream
is reduced only from 66.7 to 40 g/L.

EXAMPLE 10.3 As an alternative to the increased organic flow in Example 10.2,
suppose that the aqueous effluent in Example 10.1 is taken to a second stage and
again contacted with a pure trichloroethane stream with a flow rate of 10 L/min.

For the second stage, cI I
Af = 66.7 g/L and λ = 1. Thus,

cI I
A = λcI I

Af

λ + M
= 1 × 66.7

1 + 2
= 22.2 g/L, cI

A = McI I
A = 2 × 22.2 = 44.4 g/L.

Thus, by using the same amount of solvent as in Example 10.2, but by dividing
the total between two consecutive contacting stages, the residual acetone in the
water stream is reduced by nearly a factor of two. We saw a similar result in the
treatment of cross-flow dialysis in Section 5.3.

10.4.2 Deviation from Equilibrium

Energy in the form of agitation must be put into two-phase systems to generate
adequate interfacial area for efficient mass transfer. Hence, it is evident that there
will be situations where equilibrium cannot be attained in a stage. This has led to

* See the Bibliographical Notes at the end of the chapter.
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Figure 10.5. Residual efficiency in a stirred tank as a function of energy input/unit volume.
Data of A. W. Flynn and R. E. Treybal, AIChE J., 1, 324–328 (1955). Reproduced with the
permission of the American Institute of Chemical Engineers.

attempts to correlate Kma with quantities like the power input per unit volume in
order to compute effluent composition. One quantity that is frequently used in unit
operations is the stage efficiency, defined as

Ef = cI I
A − cI I

Af

cI I
Ae − cI I

Af

. (10.33)

The stage efficiency defined in this manner is nothing more than the fractional
approach to equilibrium. Noting that cI I

Ae = cI
A/M and substituting Equation 10.33

into Equation 10.29, we obtain an equation for the effluent in terms of this additional
parameter:

cI I
A = Ef

cI
Af + λcI I

Af

λEf + M
+ M(1 − Ef )cI I

Af

λEf + M
. (10.34)

When Ef → 1, Equation 10.34 reduces to Equation 10.32 for the equilibrium stage.
As might be expected, the efficiency is simply related to the mass transfer coeffi-
cient. Through comparison of Equations 10.31 and 10.35 the relationship can be
established as

Ef = M
M + qI I/Kma

. (10.35)

The stage efficiency can be correlated with design variables. Figure 10.5, for example,
shows some data of Flynn and Treybal for interfacial transfer of benzoic acid in
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toluene-water and kerosene-water systems. The residual efficiency ER plotted in the
figure is defined by

ER = Ef − Ef 0

1 − Ef 0
. (10.36)

Ef0 is the measured efficiency at zero agitator speed (which is itself high). Clearly,
as ER → 1, Ef → 1. ε is the energy per unit volume,

ε = P
qI + qI I

, (10.37)

where P is the power supplied to the agitator. The correlation appears to work
for each system for the type of mixer used (six-bladed turbine impellors), and it
is evident that beyond an energy input of approximately 100 ft lbf/ft3 (or about
5 kJ/m3) an equilibrium stage can be assumed.

Many other correlations for the efficiency and the quantity Kma are available
in the published literature. A further discussion of this important practical topic,
which is typically covered in a subsequent course in separations or unit operations,
is beyond the scope of our introductory treatment, however.

10.5 Two-Phase Reactors

Many important chemical reactions take place in two-phase reactors, in which a
reactant is transferred from the phase in which it is fed to the reactor to a second
phase in which it reacts. This is often done to allow the reactants to come into
contact with one another uniformly throughout the reactor when high localized
concentrations near the entry might lead to undesirable side reactions and, perhaps,
fouling or plugging. In other cases, one of the reactants is naturally present in another
phase, as in the bio-oxidation of liquid waste discussed in Chapter 8, where oxygen
must be transferred from an air stream to solution in the liquid.

We will consider here only the simplest case of a two-phase reactor. Phase I
contains a species, A, that when transferred to Phase II undergoes the irreversible
first-order or pseudo-first-order reaction A → products. We will assume that the
total amount of A transferred between the phases is sufficiently small that flow rate
changes because of the mass transfer and reaction are negligible, so the overall mass
balances can be neglected. The flow rates are steady, so feed and effluent flow rates
are equal and the phase volumes are constant. The component mass balances are
then

VI dcI
A

dt
= qIcI

Af − qIcI
A − arA, (10.38I)

VI I dcI I
A

dt
= −qI IcI I

A + arA − VI IrA−. (10.38II)
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rA is as given previously in Equation 10.9, and for the pseudo-first-order reaction
rA− = kcI I

A .* At steady state the time derivatives are zero, and, after substituting the
rate expressions, the resulting equations are easily solved for cI I

A :

cI I
A = cI

Af

M + [1 + kθ I I ] [λ + qI I/Kma]
. (10.39)

Here, λ = qI I/qI and θ I I = VI I/qI I .
Some interesting limiting cases follow. If agitation is sufficient to ensure that

qI I/Kma � λ, or equivalently, qI/Kma � 1, then the mass transfer term can be
neglected and we obtain

qI/Kma � 1 : cI I
A → cI

Af

M + λ [1 + kθ I I ]
. (10.40)

The physical meaning of this limit is that reactant is transferred from Phase I to
Phase II much more rapidly than it is carried out in Phase I by flow. This case is
often referred to as reaction limited, since the mass transfer is sufficiently rapid that
the reaction rate is the only term of importance. This is analogous to the equilibrium
stage and reduces to it as kθ I I → 0.

The second limit of interest, which can occur in a highly viscous system where
efficient agitation is difficult, is one in which a is sufficiently small that Kma/qI I

is small compared to λ, or, equivalently, qI/Kma � 1. In that case we would also
have qI I/Kma � M and both the λ and M terms will drop out of Equation 10.40,
leading to

qI/Kma � 1 : cI I
A → Kma

qI I

cI
Af

1 + kθ I I
. (10.41)

The physical meaning of this limit, which is often referred to as mass transfer limited,
is that reactant is carried out in Phase I by flow more rapidly than it is transferred
to Phase II. A characteristic of such a system, which is often encountered in the
production of polymers, is that the conversion depends strongly on the design and
intensity of the mixing device even when complete mixing in the sense of spatial
uniformity has been achieved.

The concepts of reaction limited and mass transfer limited multiphase reacting
systems are of considerable importance in applications beyond the simple tank-type
device considered here. The recognition of such limits guides design considerations.
There is little point, for example, in expending the energy cost to move to a transport
regime that is considerably more efficient than the transition region between mass
transfer and reaction limitation ( qI/Kma ∼ 1 in the context of the discussion here).
Catalysts are typically constructed to operate just beyond the mass transfer limit.
This concept also has a strong evolutionary basis in biological systems, where most

* The reaction rate must now be interpreted in mass/time rather than in moles/time. It is straightfor-
ward to show that the first-order rate constant k will be the same with either system of units because
of the linearity and homogeneity of the rate expression. This would not be the case in general, and
species molecular weights would have to be known to transform from molar to mass rates.
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reacting systems involve interfacial mass transfer; it is found that most biological
systems operate just a bit more efficiently than the mass transfer limit.

10.6 Concluding Remarks

In reviewing this chapter it is helpful to return once more to the logic diagram,
Figure 4.2. Note the critical role played by the selection of the control volume and
the parallel between the development of the rate of mass transfer here and the rate
of reaction in Chapter 6.

The estimate of the speed at which phase equilibrium is attained is of particular
importance and should be examined carefully. Calculations of this type often lead
to substantial simplifications in engineering problems; in the case of mass transfer,
the consequence is the equilibrium stage. Nearly all designs for staged separation
systems are based on the equilibrium stage, sometimes taking the efficiency into
account. The design of liquid-liquid separation systems often requires taking the
mutual solubility of the solvents into account, and this is addressed in the specialized
courses in the curriculum and the relevant textbooks.
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PROBLEMS

10.1. Derive Equation 10.29 by carrying out a mass balance for species A on a
control volume that encompasses both Phase I and Phase II. Then assume that A is
in equilibrium between the two phases and derive Equation 10.32 for the equilibrium
stage.

10.2. One step in the preparation of nicotine sulfate from tobacco is the extraction
of nicotine from aqueous solution by kerosene. Table 10.P1 shows equilibrium data
for the distribution of nicotine between water and kerosene. Compute the kerosene-
water ratio required to remove 90 percent of the nicotine from the aqueous stream
in a single equilibrium stage.

Table 10.P1. Equilibrium distribution of nicotine between aqueous and
organic phases. Data of J. B. Claffey, C. O. Badgett, J. J. Skalamera, and
G. W. M. Phillips, Industrial & Engineering Chem., 92, 166–171 (1950).

Nicotine in aqueous phase (I) (g/L) Nicotine in organic phase (II) (g/L)

0.62 0.39
1.49 0.96
2.92 2.07
5.70 4.18

11.8 8.22
17.9 12.2
24.9 15.3
31.5 18.9

10.3. The data in Table 10.P2 are from a batch experiment measuring the distri-
bution of octanoic acid between an aqueous phase consisting of a solution of corn



Problems 165

syrup in water and an organic xylene phase. The aqueous phase was continuous, and
the concentration in the aqueous phase was measured with a calibrated conductivity
probe. Initially, 2 L of the aqueous phase was placed in a tank with 0.2 L of xylene
and agitated until the drop size of the dispersed organic phase had equilibrated.
0.25 L of an aqueous phase containing octanoic acid was then added and the con-
centration in the continuous phase was recorded as a function of time. Determine
Kma and compare to the value of 75 cm3/s reported by the authors of the original
article.

Table 10.P2. Concentration of octanoic acid in
aqueous phase. Data of J. H. Rushton, S.
Nagata, and T. B. Rooney, AIChE J., 10,
298–302 (1964).

t (s) cA
I × 104 (g-mol octanoic acid/L)

0 2.75
10 2.13
20 1.72
30 1.45
40 1.23
60 1.03
80 0.94

120 0.83
∞ 0.78

10.4. A useful model of interfacial mass transfer makes three assumptions: (i)
there is a difference between the concentrations of A at the interface, denoted
cI∗

A and cI I∗
A in Phases I and II, respectively, and the bulk concentrations cI

A

and cI I
A ; (ii) the rates of transfer in each phase are proportional to the differ-

ences between the bulk and interfacial concentrations: rI
A+ − rI

A− = kI
(
cI∗

A − cI
A

)
and rI I

A+ − rI I
A− = kI I

(
cI I∗

A − cI I
A

)
; and (iii) the interfacial concentrations are in equi-

librium: cI∗
A = McI I∗

A . Show that Equation 10.9 follows directly from this formulation,
with 1

Km
= 1

kI + M
kI I .

10.5. Trace amounts of phenol are to be extracted from an aqueous stream (Phase I)
using pure xylene as a solvent. From data in the Chemical Engineers’ Handbook we
have M = 1.4.

a. What xylene/water flow ratio is required to remove 90 percent of the phenol
in a single equilibrium stage?

b. Suppose two equilibrium stages are to be used, using the aqueous effluent
from Stage 1 as a feed to Stage 2. What xylene/water flow ratio is required
for each stage?

10.6. Data for the distribution of picric acid in a benzene-water system at 15◦C are
shown in Table 10.P3. (Note that the concentrations are in molar units, and that
Nerst’s “law” clearly does not apply to these data.) You wish to employ an equilib-
rium stage to extract picric acid from a water stream with a picric acid concentration
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of 0.02 g-mol/L using a pure benzene stream.* Assume qI = qI I = 50 L/min. What
fraction of the picric acid is removed? (Hint: The most efficient approach to solving
this problem is to develop a graphical scheme.)

Table 10.P3. Distribution of picric acid between water and benzene. Data from
F. Daniels, Outlines of Physical Chemistry, John Wiley, New York, 1948.

Picric acid in benzene, cI
A (g-mol/L) Picric acid in water, cI I

A (g-mol/L)

0.000932 0.00208
0.00225 0.00327
0.0101 0.00701
0.0199 0.0101
0.0500 0.0160
0.100 0.0240
0.180 0.0336

Table 10.P4. Efficiency as a function of
mixer RPM.

RPM qI (cm3/s) qI I (cm3/s) Ef

0 3.7 13.0 0.71
0 3.7 8.5 0.98
0 2.4 7.6 0.82
0 2.5 6.5 0.51
0 2.4 8.4 0.89
0 2.4 8.4 0.95
0 2.4 8.4 0.87
0 2.4 8.4 0.92
0 3.9 18.2 0.93

182 3.9 18.2 0.97
235 3.9 18.2 0.97
305 3.9 18.2 0.98
370 3.9 18.2 0.98
500 3.9 18.2 0.99
505 3.9 18.2 0.98
580 3.9 18.2 0.97
630 3.9 18.2 0.99

10.7. In an experiment carried out by one of our undergraduate students, a water
stream and a chloroform stream** were fed continuously to a 1,000 cm3 cylindrical
tank with a cross-sectional area of 81 cm2. The exit was located at one-fourth of the
total height. Ammonia in amounts up to 1.7 g/L was dissolved in the chloroform

* This is a very good instructional problem, but in the half century since these data were obtained it
was established that benzene is a human carcinogen. Hence, it would certainly not be used for this
separation.

** This experiment was carried out more than forty years ago, before chloroform was classified as a
toxic air contaminant and a probable human carcinogen. It should no longer be used for purposes
like this one.
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feedstream and extracted by the water stream. The chloroform stream is denoted as
Phase I and the water stream as Phase II. The equilibrium distribution coefficient
for ammonia is M = cAe

I/cAe
I I = 0.044 at room temperature over the range studied.

It can be assumed that the densities of the streams are independent of the ammonia
concentration, with ρI = 1,470 kg/m3, ρ I I = 1,000 kg/m3. The fractional approach to
equilibrium, Ef, was measured in the water effluent as a function of the mixer RPM,
as shown in Table 10.P4.

a. At 0 RPM the phase interface in the tank is nearly a horizontal plane.
Estimate the overall mass coefficient, Km. Compare with the value obtained
in the batch salt experiment in Section 10.3.3. What assumptions have you
made?

b. Correlate Kma with RPM for this system, and in that way obtain a correlation
for the efficiency of the mixer. Can you use your estimate of Km from part
(a) to obtain a meaningful correlation for the surface area?

c. Suppose that you wish to add another species to the aqueous phase that
reacts with ammonia and is insoluble in chloroform. Can any of the terms
in Equation 10.39 be neglected? Does this situation correspond to either of
the limiting cases?



11 Equilibrium Staged Processes

11.1 Introduction

The implementation of a great many processes depends ultimately on the ability to
separate various species from one another. In this chapter we will build on the basic
principles of interphase mass transfer developed in Chapter 10 to explore some of the
ideas involved in the design of a separation process. The essential component of the
analysis is the equilibrium stage defined in Section 10.4.1.* The design problem can be
roughly broken down into the actual mechanical implementation of an equilibrium
stage and the computation of the number of equilibrium stages needed to effect a
desired degree of separation. We shall deal only with the latter; the former remains
very much an art and beyond the scope of this introductory text. For simplicity we will
restrict this chapter to separation by liquid-liquid extraction. The overall approach
and the solution techniques have much greater generality and are applicable to
nearly all separation processes, phase-change and nonphase-change alike.

Liquid-liquid extraction is a process in which a solute is transferred between
two solvents. We will assume that the two solvents are absolutely immiscible
in one another; this is a convenient approximation, although only sometimes
realistic. It is traditional to do separation process calculations using mass frac-
tions instead of concentrations. We shall follow this practice, and Section 11.2 is
devoted to reformulating the description of an equilibrium stage in terms of mass
fractions.

11.2 Equilibrium Stage

A mass transfer stage for extraction is shown in Figure 11.1. The two phases with
dissolved solute A are fed to a well-stirred contactor, where the agitation is designed
to create a large interfacial area and transfer of A across the interface occurs. In
the separator the phases separate because of density differences. An equilibrium
stage has a sufficiently large residence time in the contactor to ensure that solute A

* This is not a serious restriction. Everything in this chapter can be repeated with minor adjustments
for nonequilibrium stages with known stage efficiencies.

168
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Phase I
I I I II II II

cAf ρf qfcAf ρf qf

I I IcA   ρ   q

II II IIcA   ρ   q

Phase II

Phase I

Phase II

Contactor

Separator

Phase I

Phase I

Phase II

S F xAF

E yA

R xA

yAS

Phase II

(a)

(b)

Figure 11.1. Continuous extrac-
tion stage: (a) nomenclature of
Chapter 10; (b) traditional extrac-
tion nomenclature.

reaches its equilibrium distribution between the phases. Figure 11.1(a) is identical
to Figure 10.4 and shows the nomenclature used in Chapter 10. Figure 11.1(b) shows
the nomenclature traditionally used in extraction, as follows:

S: solvent (Phase I) mass flow rate S = ρ I
f qI

f ,
F: feed (Phase II) mass flow rate F = ρ II

f qII
f ,

E: extract (Phase I) mass flow rate E = ρ I
f qI ,

R: raffinate (Phase II) mass flow rate R = ρ II
f qII .

The term raffinate was introduced in Chapter 5 in the context of membrane separa-
tion; yA and xA denote the mass fractions of solute A in Phases I and II, respectively.
Since cA denotes the mass of A per volume and ρ denotes the total mass per volume,
the relations between concentrations and mass fractions must be as follows:

yA = cI
A/ρ I , yAS = cI

Af /ρ
I
f , xA = cII

A/ρ II , xAF = cII
Af /ρ

II
f .

The equilibrium expression for solute concentrations in the two phases was written in
Equation 10.8 as cI

A = McII
A . (We will not use the subscript е to denote equilibrium
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Acetone – 1,1,2-trichloroethane (Phase I)

Acetone – water (Phase II)

Mass fraction acetone

D
en
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, k
g/

m
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Figure 11.2. Density of acetone-
1,1,2-trichloroethane and acetone-
water solutions. Data of R. E.
Treybal, L. E. Weber, and J. F.
Daley, Ind. Eng. Chem., 38, 817–
821 (1946).

since all concentrations in this chapter are equilibrium values.) In terms of mass
fractions the equilibrium expression becomes

yA = KxA, K = Mρ II

ρ I
. (11.1)

In general, K need not be a constant. Density data for solutions of acetone in water
and in 1,1,2-trichloroethane are shown in Figure 11.2, and using these data the
equilibrium data for this three-component system shown in Figure 10.2 are replot-
ted in Figure 11.3 as yA versus xA. (Actually, the data were originally reported
in mass fractions and recalculated for Figure 10.2.) Notice that there is less cur-
vature in the equilibrium plot in Figure 11.3 than in Figure 10.2, and a constant
value K = 1.5 provides an excellent fit to the data over a fairly wide range of mass
fractions.

We saw in Section 10.4.1 that the assumption that the phases are in equilibrium
removes the need to consider each phase as a separate control volume, and we can
take the entire stage as the control volume. There are three species: the solute A,
the feed solvent, and the extracting solvent. We will assume steady state, in which
case the overall mass balance equation is

0 = F + S − E − R. (11.2)

This is simply the sum of Equations 10.27I and II rewritten in the nomenclature of
this chapter. Application of conservation of mass to species A gives

0 = FxAF + SyAS − EyA − RxA. (11.3)
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Figure 11.3. Equilibrium mass fraction
of acetone in 1,1,2-trichloroethane
(yA) versus mass fraction of acetone in
water (xA). Data of R. E. Treybal, L. E.
Weber, and J. F. Daley, Ind. Eng.
Chem., 38, 817–821 (1946).

The assumption of immiscible solvents means that there are only two components
for each phase, hence the mass fraction of solvent is simply one minus the mass
fraction of A. Thus, for the feed solvent, conservation of mass requires

0 = F (1 − xAF ) − R(1 − xA) , (11.4)

and for the extracting solvent

0 = S (1 − yAS) − E (1 − yA) . (11.5)

Only three of the four mass balance equations are independent, since Equation
11.2 is equal to the sum of Equations 11.3 to 11.5. Together with the equilibrium
expression, Equation 11.1, these equations define the separation in an equilibrium
stage.

11.2.1 Small Solute Transfer

The simplest situation to deal with is one in which the amount of solute transferred
between phases is small. This approximation has wide applicability in practical situ-
ations since the error in using it is usually quite small, as we shall see in a subsequent
section.

If the amount transferred is small, then 1 − xAF and 1 − xA are nearly equal, so
Equation 11.4 reduces to F ≈ R. Similarly, Equation 11.5 becomes S ≈ E. These
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are simply statements that, despite the transfer of solute, the mass flow rates of
Phases I and II are essentially unchanged. This approximation was made previously
in deriving Equations 10.19I and II. Equation 11.3 then simplifies to

0 = F (xAF − xA) + S (yAS − yA) . (11.6)

Equation 11.6 is identical to Equation 10.29 in the changed nomenclature. By com-
bining Equation 11.6 with the equilibrium expression, Equation 11.1, we can solve
for xA:

xA = xAF + yAS

 + K
,  = F

S
. (11.7)

Equation 11.7 is identical to Equation 10.32 in the nomenclature of this chapter.

EXAMPLE 11.1 An aqueous solution containing 200 kg/m3 of acetone is to be
purified by continuous extraction with pure trichloroethane. How much acetone
can be removed if the flow rates of both aqueous and organic streams are 0.01
m3/min (10 L/min)?

This example is identical to Example 10.1, except that here we have written
everything in SI units. Since we have pure solvent, yAS = 0. From Figure 11.3
we take K = 1.5. Calculation of xAf requires trial and error, since the data in
Figure 11.2 show ρII versus xA, whereas we are given only cII

Af = ρ II
f xAF . We

will use the method of direct substitution to solve the nonlinear equation. As a
first approximation we take ρ II

f ≈ 1,000 kg/m3, in which case xAF = cII
Af /ρ

II
f ≈

200/1,000 ≈ 0.2. For xAF = 0.2, ρ II
f ≈ 970 kg/m3, giving xAF = cII

Af /ρ
II
f ≈ 200/

970 = 0.206. Further calculation is unnecessary since ρ II
f is essentially unchanged

from the previous iteration. ρ I
f = 1,430 for pure trichlorobenzene, so we can

compute  as

 = F
S

= ρ II
f qII

f

ρ I
f qI

f

= 970 × 10−2

1, 430 × 10−2
= 0.68.

Then

xA = xAF

 + K
= 0.68 × 0.206

0.68 + 1.50
= 0.064.

From Figure 11.2, ρII = 990. Thus

cII
A = ρ II xA = 990 × 0.064 = 63kg/m3 = 63g/L.

In Example 10.1 we computed cII
A = 66.7 g/L. This is reasonably good agreement,

and the difference reflects inaccuracies in reading data from graphs, as well
as roundoff in retaining only two significant figures in the calculation. Two
significant figures is all that is reasonable here, since ρII cannot be determined
from the graph with any greater accuracy.
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11.2.2 Finite Solute Transfer

We need to use the full set of independent mass balance equations when the amount
of solute transferred between phases is not small. Equations 11.4 and 11.5, together
with the equilibrium Equation 11.1, can be written

R = F
(

1 − xAF

1 − xA

)
, E = S

(
1 − yAS

1 − KxA

)
.

Substitution into Equation 11.2 then gives

0 = F + S − S
(

1 − yAS

1 − KxA

)
− F

(
1 − xAF

1 − xA

)
.

With some slight rearrangements, using  = F/S, we obtain, finally,

(KxA − yAS) (1 − xA)
(xAF − xA) (1 − KxA)

=  (11.8)

or, in standard quadratic form,

x2
A −

[
 − KxAF + K + yAS

K ( + 1)

]
xA + xAF + yAS

K ( + 1)
= 0. (11.9)

Before solving Equation 11.9 for particular cases it is useful to examine the approx-
imation involved in the small solute transfer assumption. We expand (1 − xA)/
(1 − KxA) in a Taylor series about xA = 0 to give

1 − xA

1 − KxA
= 1 + (K − 1) xA + · · · . (11.10)

In the expansion in Equation 11.10 we have neglected the xA
2 terms compared to

xA. For xA of order 0.1, for instance, and K of order 2, the error is less than 1 percent.
(Compare the discussion in Section 2.8.) Equation 11.8 can then be rearranged for
xA as

xA = xAF + yAS [1 + (K − 1) xA + · · ·]
 + K [1 + (K − 1) xA + · · ·] . (11.11)

For K of order 2 and xA of order 0.1, Equation 11.11 is equivalent to Equation 11.7
allowing for an uncertainty in yAS and K of at most 10 percent. yAS will generally be
small or zero, whereas the experimental error in determining K may be comparable
to the error introduced by the factor 1 + (K − 1) xA + · · · . Thus, the small solute
transfer equation can be expected to give reliable results even in many cases in which
solute transfer does not really appear to be small.

EXAMPLE 11.2 Using the data in Example 11.1, compute xA without the small
solute transfer approximation.

We were given yAS = 0, K = 1.5, and computed xAF = 0.206,  = 0.68 from
the available data. Equation 11.9 then becomes

x2
A − 0.95xA + 0.056 = 0.
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Phase I
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Figure 11.4. (a) One-stage extraction with solvent flow rate 2S. (b) Two-stage extraction with
solvent flow rate S to each stage. The total solvent used is the same in the two cases.

The positive root between zero and unity is xA = 0.063. This is essentially the
same as the mass fraction computed using the small solute transfer approxima-
tion, although 13 percent of the mass of the aqueous phase was transferred to
the organic phase.

11.3 Two-Stage Extraction

The separation obtained in an equilibrium stage depends only on the separation
factor K, the input mass fractions, and the relative mass flow rates. We showed in
Examples 10.2 and 10.3 for a particular case that for a given system, fixed inputs, and
a specified solvent flow rate, a better separation could be obtained by splitting the
solvent between two successive stages than by using it all in one stage. This idea is
familiar from the discussion of membrane separation in Chapter 5. We shall establish
that result in general here for equilibrium stages and then extend it to see how the
idea can be exploited with a substantial saving in solvent inventory. For algebraic
simplicity it is assumed in everything that follows that solute transfer is small, phase
mass flow rates are constant, and the extracting solvent is pure (yAS = 0).

The two situations that we wish to compare are shown in Figures 11.4(a) and (b).
The first configuration is the case that we considered in the preceding section, but we
show the solvent stream as having a mass flow rate 2S to simplify later comparisons.
In the second configuration we use the raffinate stream leaving the first stage as the
feed to a second stage. Solvent mass flow is S in each stage so that the same total
amount of solvent is used as in the single stage with which we are comparing. The
subscript 1 is used for streams leaving the first stage and 2 for streams leaving the
second. The configurations are shown schematically in Figures 11.5(a) and (b).

For the one-stage process the separation is determined by Equation 11.7. If we
continue to define  = F/S then, because we are using 2S for the solvent flow, for
yAS = 0 we obtain

xA =
1
2xAF

1
2 + K

,
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F, xAF

2S, yA S, yA1 S, yA22S, yAS  = 0 S, yAS  = 0 S, yAS  = 0

F, xA
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1 2
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Figure 11.5. (a) Schematic diagram of one-stage extraction with solvent flow rate 2S.
(b) Schematic diagram of two-stage extraction with solvent flow rate S to each stage.

or, defining the one-stage separation ratio s1,

s1 = xA

xAF
= 

 + 2K
. (11.12)

For the two-stage process, Figure 11.5(b), each stage is described by Equation 11.7.
Thus,

xA1 = xAF

 + K
.

The feed to the second stage has mass fraction xA1, so Equation 11.7 gives

xA2 = xA1

 + K
.

Combining these two equations we obtain the two-stage separation ratio, s2:

s2 = xA2

xAF
= 2

[ + K]2 . (11.13)

It is straightforward to show that s2 is always less than s1, and hence that the two-stage
process is more efficient, by taking the ratio:

s2

s1
= 2/[ + K]2

/[ + 2K]
= 2 + 2K

2 + 2K + K2
< 1. (11.14)

If we use N consecutive stages, as shown in Figure 11.6, the separation ratio
follows in a similar way as

sN = N

( + K)N . (11.15)

Compared to a single stage with solvent flow rate NS, the ratio of separation ratios
is

sN

s1
= N + NKN−1

( + K)N = N + NKN−1

N + NKN−1 + N(N−1)
2! K2N−2 + · · ·

< 1. (11.16)

Multistage operation is an appealing alternative to using all of the solvent in one
stage, since a better separation can be obtained with the same amount of solvent.
There is still something wasteful about the crosscurrent process, however. In the
first stage the mass fraction of solute is decreased to a fraction /(+ K) of that
in the feed. In the next stage the further fractional reduction is the same. Thus, if
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F, xAF
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21 3 Nn

Figure 11.6. Schematic diagram of N-stage crosscurrent extraction with solvent flow rate S to
each stage. Stage n denotes a typical stage.

50 percent of the solute is removed in the first stage, only 25 percent more is removed
in the second, 12.5 percent in the third, and so on, although the same amount of
solvent is required in each stage. The solvent leaving the latter stages will be quite
dilute, and it may be necessary to handle large volumes of solvent containing only
small amounts of solute to achieve a desired separation.

A nice compromise that combines the advantages of multistage operation with
the use of a small amount of solvent readily suggests itself, as already discussed in
Section 5.5 for membrane separation. Consider Figure 11.5(b). The extract stream
leaving Stage 2 contains only a small amount of solute yA2, because the greatest
amount of solute was extracted in Stage 1. Thus, there would be little penalty if the
solvent stream feeding Stage 1 were to contain mass fraction yA2 of solute instead
of zero. This countercurrent operation is shown schematically in Figure 11.7. The
raffinate stream from Stage 1 is the feedstream to Stage 2 and the extract stream
from Stage 2 is the solvent stream for Stage 1. Equation 11.7, with appropriate
nomenclature, applies to each stage. In the first stage the solvent stream contains
mass fraction yA2, so we have

xA1 = xAF + yA2

 + K
.

In the second stage the feed has mass fraction xA1, and the solvent mass fraction yAS

is zero, so

xA2 = xA1

 + K
.

These can be combined, together with the equilibrium relation yA2 = Kx2, to give

sc2 = xA2

xAF
= 2

[ + K]2 − K
. (11.17)

sc2 denotes “separation ratio for two-stage countercurrent operation.” Comparison
of Equations 11.12 and 11.17 shows that as long as K >  the separation in a two-
stage countercurrent process is better than in a single stage that uses twice as much

1

F, xAF F, xA2xA1

yA2
S, yA1 S, yAS = 0

2 Figure 11.7. Schematic of two-stage
countercurrent extraction.
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N

xA, N  – 1

yA, n + 1

xA, n – 1

Figure 11.8. Schematic of N-stage countercurrent extraction.

solvent. Comparison with Equation 11.13 gives the relation between the separation
ratios in countercurrent and cross-flow two-stage extraction:

sc2

s2
= 1 + K

2 + K + K2
. (11.18)

EXAMPLE 11.3 Using the data in Example 11.1, compute the separation for
two-stage cross-flow and countercurrent operation.

We are given  = 0.68 and K = 1.5. Using Equations 11.13 and 11.17,

cross-flow : s2 = xA

xAF
= 2

( + K)2 = 0.097

countercurrent : sc2 = xA2

xAF
= 2

( + K)2 − K
= 0.123

In agreement with Equation 11.18, sc2/s2 = 1.27. The countercurrent operation
uses 10 L/min of trichloroethane, whereas the cross-flow uses 20 L/min.

EXAMPLE 11.4 Using the data in Example 11.1, how much solvent will be needed
to obtain a separation ratio of 0.097 in a two-stage countercurrent process?

According to Equation 11.17, we must solve for  from the equation

0.097 = 2

( + K)2 − K
.

For K = 1.5 the positive root is  = 0.58. Since  = F/S and S = ρ I
f qI

f , and we
are given F = 9.7 kg/min and ρ I

f = 1,430 kg/m3, it then follows that qI
f = 0.0118

m3/min = 11.8 L/min. That is, 12 L/min in two-stage countercurrent operation
gives a separation equal to that achieved using 20 L/min in two-stage cross-flow
operation. Forty-two L/min of solvent would be required in a single stage.

11.4 Multistage Countercurrent Extraction

Design equations for a multistage countercurrent extraction process follow directly
from the considerations in the preceding section. The process is shown schematically
in Figure 11.8 with N stages. It is assumed that solute transfer is small, so the mass
flow rates F and S are constant throughout all the stages. Consider Stage n, where n
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is any stage between 2 and N − 1. Conservation of mass applied to solute A leads to
the equation

0 = FxA,n−1 + SyA,n+1 − FxAn − SyAn. (11.19)

The equilibrium relation is still taken to be yA = KxA, so

yAn = KxAn, yA,n+1 = KxA,n+1. (11.20)

Combination of Equations 11.19 and 11.20 leads, with some rearrangement, to the
analog of Equation 11.7:

xAn = xA,n−1 + KxA,n+1

 + K
. (11.21)

It is convenient to introduce the ratio μ = /K, in which case we can write Equation
11.21 in the form

2 ≤ n ≤ N − 1: xA,n+1 − (1 + μ)xAn + μxA,n−1 = 0. (11.22)

For n = 1 and n = N we have to take the input streams into account, and conservation
of mass leads to

Stage 1: xA2 − (1 + μ) xA1 + μxAF = 0, (11.23a)

Stage N :
yAS

K
− (1 + μ) xAN + μxA,N−1 = 0. (11.23b)

Equation 11.22, which relates the mass fraction xA in successive stages n − 1, n, and
n + 1, is called a linear finite difference equation. It can be manipulated together
with Equations 11.23a,b in a manner identical to that used for linear differential
equations, as shown in Appendix 5A, to obtain a solution for xAn explicitly in terms
of N, μ, K, xAF, and yAS:

xAn =
(
xAF − yAS

/
K
)
μn + yAS

/
K − xAFμN+1

1 − μN+1
. (11.24)

We shall not derive Equation 11.24, but we simply demonstrate that it is indeed a
solution to Equation 11.22. By replacing n with n − 1 and n + 1, respectively, we
can rewrite Equation 11.24 as

xA,n−1 = (xAF − yAS/K) μn−1 + yAS/K − xAFμN+1

1 − μN+1
, (11.25a)

xA,n+1 = (xAF − yAS/K) μn+1 + yAS/K − xAFμN+1

1 − μN+1
. (11.25b)

When Equations 11.24 and 11.25 are substituted into Equation 11.22 the terms do
sum to zero, as required.
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For algebraic simplicity we will consider from this point onward only the case
of pure solvent, yAS = 0. By setting n = N in Equation 11.24 we then obtain an
expression for the separation ratio in an N-stage countercurrent process:

scN = xAN

xAF
= μN − μN+1

1 − μN+1
. (11.26)

This equation can be rearranged to solve for N in terms of μ and scN to enable us to
compute the number of equilibrium stages needed to achieve a given separation:

N =
log

(
scN

1 − μ + μscN

)
log μ

. (11.27)

Equation 11.27 is a version of what is often called the Kremser Equation.

EXAMPLE 11.5 Compute the separation in one-, two-, and three-stage counter-
current processes for  = 0.68 and K = 1.5 using Equation 11.26.

μ = 

K
= 0.45.

N = 1: sc1 = 0.45 − 0.452

1 − 0.452
= 0.31.

N = 2: sc2 = 0.452 − 0.453

1 − 0.453
= 0.12.

N = 3: sc3 = 0.453 − 0.454

1 − 0.454
= 0.05.

The result for N = 2 agrees, of course, with the calculation in Example 11.3.

EXAMPLE 11.6 Compute the number of equilibrium stages needed to remove 90
and 99 percent of the dissolved solute in the feedstream for μ = 0.45.

The calculation is carried out using Equation 11.27. For 90 percent removal
we have scN = 0.10 and

N =
log

(
0.10

1 − 0.45 + 0.045

)
log(0.45)

= 2.2.

We cannot build 2.2 stages, of course, so we need three equilibrium stages to
achieve 90 percent removal. From the calculation in Example 11.5 we see that
we will, in fact, remove 95 percent of the solute with three stages. We might
wish to decrease μ by a small amount by increasing solvent flow rate in order to
carry out the desired separation in two stages. We saw in Example 11.4 that a
20 percent increase in S would achieve the removal of 90 percent of the solute
in two stages.

For 99 percent removal we have scN = 0.01 and

N =
log

(
0.01

1 − 0.45 + 0.005

)
log(0.45)

= 4.95 ∼= 5.
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F, xA, n – 1
F, xAN

S, yAS
S, yAn

n Nn + 1

Control surface

Figure 11.9. Control surface used for mass balances in developing the McCabe-Thiele method
of graphical solution.

Twice as many stages are required to pass from 90 percent removal to 99 percent.
This reflects the logarithmic dependence of the number of stages on the desired
separation, which follows from Equation 11.27 and is discussed in Section 5.8 in
the context of the marginal cost of separation.

11.5 Graphical Solution

The method leading to Equation 11.27 for computing the number of stages required
to carry out a specified separation depends on the fact that all of the equations
involved are linear in xA and yA. Nonlinearities can occur because the equilibrium
relation is not linear or because changes in mass flow rates resulting from interphase
transfer must be accounted for. Although the full set of nonlinear equations would
normally be solved using a digital computer for precise results, a number of simple
graphical procedures have been developed for rapid estimation, such as might be
needed in preliminary design considerations. We shall discuss here the McCabe-
Thiele method, a graphical method that is suitable when the assumption of constant
mass flow rates is valid but the equilibrium is not linear. The McCabe-Thiele method
is very useful for visualizing the computational process and for getting an intuitive
sense of the details of the separation that is difficult to obtain from a table of numbers
at the end of a computerized numerical calculation.

The development of the graphical method of solving the extractor equations
centers around the choice of a control volume. Instead of doing the mass balance on
the single stage n, the control volume is chosen to comprise stages n to N, as shown
in Figure 11.9. Conservation of mass applied to component A in this control volume
then becomes

0 = FxA,n−1 + SyAS − FxAN − SyAn, (11.28a)

or

yAn = xA,n−1 − xAN + yAS. (11.28b)

In addition, we have the equilibrium relation,

yA = f (xA). (11.29)
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Figure 11.10. Calculation of the number of stages required for separation using the McCabe-
Thiele method.

The construction is then carried out as shown on Figure 11.10. The equilibrium line,
Equation 11.29, is drawn, as is the operating line,

yA = xA − xAN + yAS. (11.30)

If we set n = 1, then xA,n − 1 is xAF. According to Equation 11.28, yA1 is the value of
the operating line when xA = xAF (point 1). yA1 is in equilibrium with xA1, so the
equilibrium line, Equation 11.29, must give xA1 for y = yA1 (point 2). Given xA1 we
find yA2 from the operating line (point 3), then xA2 from the equilibrium line (point 4),
and so on. We ultimately reach xAN in this manner. The number of steps on the
diagram corresponds to the number of stages required. Four stages would be needed
in Figure 11.10, since xAN lies between the third and fourth step.

EXAMPLE 11.7 For the equilibrium data shown in Figure 11.3, how many equi-
librium stages are required to reduce the acetone mass fraction in the aqueous
phase from 0.30 to 0.03 using  = 0.68 and pure solvent (yAS = 0)?

The construction is shown in Figure 11.11. Between two and three (hence
three) stages are needed. The equilibrium line is nearly linear in this range, so
Equation 11.27 should provide a close approximation to the solution. In Example
11.6 a separation ratio of 0.10 was found to require 2.2 (hence three) stages for
this system using the constant value K = 1.5.
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yAS = 0

yA

xAN = 0.03
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xAF

0.1
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Eq. 11.30
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Eq. 11.29

0.2

0.3

0.4

Figure 11.11. Calculation of
the number of stages required
to reduce xA from 0.3 to
0.03 using  = 0.68 and the
equilibrium data in Figure 11.3.

EXAMPLE 11.8 What is the minimum flow rate of pure solvent that can be
used to reduce the acetone mass fraction of an aqueous phase from 0.30
to 0.03?

The solvent flow rate is contained in the ratio  = F/S, which is the slope
of the operating line in the McCabe-Thiele method. The smaller S is, the larger
is the slope. Figure 11.12 shows a sequence of operating lines with increasing
slope. As  increases, the number of stages increases. The number of stages
goes to infinity as the operating line intersects the equilibrium line at xAF, and
for  greater than this value the construction cannot be carried out. Thus, the
minimum solvent flow corresponds to the slope  such that the two lines intersect
at xAF. For the given data and three-component system this is

 = F
Smin

= 1.52, Smin = 0.66F.

The desired separation thus requires that S be greater than 0.66F. Beyond that
point an economic balance between capital investment for the larger number of
stages and the cost of handling larger volumes of solvent in the smaller number
of stages must be carried out to arrive at the final design.

If the equilibrium line is nearly straight, as in the acetone-water-trichloroethane
system, the calculation in Example 11.7 can be carried out algebraically with ease.
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Figure 11.12. Calculation of the minimum solvent flow rate necessary to reduce xA from 0.30
to 0.03.

From Equations 11.29 and 11.30 we see that the two lines intersect when yA =
KxAF = (xAF − xAN) + yAS, from which it follows that the maximum value of ,
corresponding to the minimum value of S, is given by

max = K
1 − scN

− yAS

xAF − xAN
. (11.31)

When yAS = 0 the same result is obtained from Equation 11.27 by setting 1 – μ +
μscN to zero so that N goes to infinity, reflecting the fact that an infinite number of
stages would be required to achieve the required separation at the minimum solvent
flow rate.

EXAMPLE 11.9 Repeat the calculation of the minimum solvent flow rate in Exam-
ple 11.8 with the assumption that the equilibrium line is linear with K = 1.5.

From Equation 11.31, with scN = 0.1 and yAS = 0, we obtain max = 1.67,
hence Smin = 0.60F. It is obvious from Figure 11.12 that taking the equilibrium
slope as constant with an equilibrium curve that is concave will always lead to
too low an estimate of the minimum solvent flow rate.



184 Equilibrium Staged Processes

11.6 Concluding Remarks

The use of the equilibrium stage is not a serious restriction, since everything done
in this chapter can be reformulated in nearly the same form for nonequilibrium
situations by using the stage efficiency Ef introduced in Section 10.4.2. The essence
of the analytical design question is expressed in Example 11.8: A certain minimum
solvent flow rate is required for a given separation. Beyond the minimum there is a
trade-off between costs associated with handling larger volumes and costs associated
with adding additional stages. Given the capital and operating costs, the computation
of an optimum follows in an identical manner to that for reactors in Chapter 7. The
same comments apply to other separation processes, such as gas absorption, ion
exchange, and distillation. Indeed, with appropriate changes of nomenclature to
account for different physical processes, the equations and techniques developed
in this chapter carry over to these and other separation processes almost without
change. In particular, the logarithmic dependence of the number of stages on the
desired degree of separation, as expressed in the Kremser Equation, is a common
feature of all separations processes.

Selection of the solvent is a crucial issue in extraction, especially for high-value-
added products like pharmaceuticals, which may be produced in small amounts.
One interesting line of research undertaken by some chemical engineers in recent
years has been to employ quantum mechanics to determine the interaction energy
between complex molecules and potential solvents in order to evaluate solubility,
utilizing computer codes that obtain approximate solutions to the time-independent
Schrödinger equation. This approach will become more predictive when interac-
tion energies obtained in this way are combined with statistical mechanical calcula-
tions that properly account for entropic contributions to the free energy of solva-
tion. (These issues require a grounding in statistical thermodynamics and quantum
mechanics, of course, both of which are areas of science utilized by many chemical
engineers.)

The engineering art in separation begins with the choice of a process. We cannot
deal with that crucial aspect of design here, for it is highly coupled with specific expe-
rience and with a thorough understanding of separations technologies. For difficult
separations, in which a large number of stages is required, calculation uncertainty
can be compensated for at minimal extra cost by adding extra stages, and this pro-
vides a useful safety factor if throughput must subsequently be increased because,
say, of inaccurate market forecasts. The design of the configuration of a stage that
will provide equilibrium, or at least high efficiency, is the significant engineering
problem. This may involve the arrangement of baffling to induce adequate phase
contact, the construction of efficient and inexpensive mechanical agitation for devel-
oping interfacial area, the design of phase separators that minimize the entrainment
of one phase in the other, and so on. These considerations are beyond our analytical
treatment here, and they still depend, to a large extent, on the designer’s skill and
appreciation of the particular system at hand.
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PROBLEMS

The equilibrium data in Table 11.P1 for the distribution of acetic acid in water and
isopropyl ether phases are used for Problems 11.1 through 11.4. xA denotes the mass
fraction of acid in the aqueous phase and yA the mass fraction of acid in the organic
phase.

Table 11.P1. Equilibrium distribution of acetic acid between water (x) and isopropyl ether
(y). Data of D. F.Othmer, R. E. White, and E. Trueger, Industrial & Engineering Chem., 33,
1240–1248 (1941).

xA 0.007 0.014 0.029 0.064 0.133 0.255 0.367
yA 0.002 0.004 0.008 0.019 0.048 0.114 0.216

11.1. It is necessary to process 100 kg/min of a water stream containing 15 percent
acetic acid by weight. How much acid can be extracted in a single equilibrium stage
with pure isopropyl ether using (a) 100 kg/min of solvent? (b) 50 kg/min? Assume
negligible solute transfer between phases.

11.2. Repeat Problem 11.1 without the assumption of negligible solute transfer.

11.3. a. What is the minimum solvent flow rate that can be used in countercurrent
operation to remove 75 percent of the acetic acid in the process stream
described in Problem 11.1?

b. How many countercurrent stages are required to remove 75 percent of the
acid using a pure isopropyl ether solvent at a flow rate that is 150 percent of
the minimum?

11.4. a. A separation is to be carried out in an N-stage cross-flow configuration
using the same feed/solvent ratio  in each stage. The total feed/solvent
ratio is therefore /N. Compute the minimum solvent required for a given
separation factor sN. (That is, find the limit as N → ∞.)

b. Repeat the calculations in Problem 11.3a for this case and compare the
minimum solvent requirements.
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11.5. Trace amounts of phenol are to be extracted from an aqueous stream using
pure xylene, for which M = 1.4 (cf. Problem 10.5). What is the minimum amount
of xylene required to remove 90 percent of the phenol from the aqueous stream? Is
this a feasible process?

11.6. The data in Table 11.P2 were obtained for the recovery of methyl ethyl ketone
from water by solvent extraction. 500 kg/hr of an aqueous 18 percent by weight
ketone solution is to be processed, with 85 kg/hr of ketone removed.

a. Find the minimum flow rate of each solvent required to effect the separation.
State any assumptions carefully.

b. Find the number of equilibrium stages required for each solvent if (i) 1.2
times and (ii) 1.5 times the minimum solvent is to be used.

Table 11.P2. Equilibrium data for methyl ethyl ketone in water and two organic solvents.
Data of M. Newman, C. B. Hayworth, and R. E. Treybal, Industrial & Engineering Chem.,
41, 2039–2043 (1949).

Water-rich phase (wt %) Solvent-rich phase (wt %)

Ketone Solvent ρ (kg/m3) Ketone Solvent ρ(kg/m3)

1,1,2-Trichloroethane as solvent
18.15 0.11 970 75.00 19.92 890
12.78 0.16 980 58.62 38.65 970

9.23 0.23 990 44.38 54.14 1,006
6.00 0.30 990 31.20 67.80 1,114
2.83 0.37 990 16.90 82.58 1,126
1.02 0.41 1,000 5.58 94.42 1,136

Chlorobenzene as solvent
18.10 0.05 970 75.52 20.60 860
13.10 0.08 980 58.58 39.28 900

9.90 0.12 980 43.68 55.15 950
7.65 0.16 990 29.65 69.95 990
5.52 0.21 990 17.40 82.15 1,030
3.64 0.28 990 8.58 91.18 1,060
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12.1 Introduction

Up to this point we have addressed physical situations for which mass is the only
fundamental dependent variable, and by doing so we have been able to explore
a wide range of chemical engineering applications. We have made some implicit
assumptions about momentum and energy transport in doing so, however. When we
assumed that vessels were perfectly mixed, with a consequent uniform concentration,
we did not ask about the nature of mechanical agitation necessary to effect perfect
mixing; to have done so would have required incorporation of momentum as a
fundamental variable. Similarly, when we assumed that chemical reactors could be
operated at a specified temperature and pressure, we did not consider the means by
which temperature and pressure control could be effected, nor did we consider the
possible impact of temperature transients or of the compressibility of a gas phase;
to have done so would have required incorporation of energy as a fundamental
variable.

Momentum transport is usually addressed in the chemical engineering curricu-
lum in a course called Fluid Mechanics, or in the first part of a Transport Phenomena
sequence. Energy is the subject of courses in Thermodynamics and Heat Transfer,
where the latter may be incorporated in a subsequent part of a Transport Phenom-
ena sequence, but an introduction to energy balances is often included in the first
course for which this text is intended. We will therefore touch on energetics in order
to illustrate the issues involved in incorporation of energy as a fundamental variable.
We defer momentum transport in its totality to subsequent courses.

We all have an intuitive grasp of mass and how it is measured, hence it is usually
obvious how the characterizing variables for mass should be selected. Selection of
the characterizing variables for energy is not so readily done, because energy is not as
familiar a concept as mass, and one’s intuitive notion of energy may fail to incorporate
all of the possible contributions to the total energy of a system. (Unfortunately, there
is no device that serves as an energy meter.) Some forms of energy are familiar from
basic courses in physics or mechanics, the most common being potential energy (PE)

187
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and kinetic energy (KE). The potential energy of a body of mass m is defined as the
work necessary to raise the mass of the body to a given height L* above a datum:

PE = mgL
gc

. (12.1a)

g is the acceleration of gravity, which varies by about 0.4% on the earth, depending on
latitude, but is usually taken to equal 9.81 m/s2 in the SI system. gc is the conversion
factor required for dimensional consistency when both mass and force units are
employed, as discussed in Appendix 2B.4, with an SI value of 1 kg m/Ns2 and a value
of 32.174 lbm ft/lbf s2 in the Imperial Engineering system that is still in common use
in the United States. gc is often ignored when a metric (cgs or SI) system is employed
because the magnitude is unity. Potential energy per unit mass, which we denote pe,
is then

pe = gL/gc. (12.1b)

We have already introduced kinetic energy briefly in Section 2.9 in the context of
the draining tank. Kinetic energy is defined as the work required to accelerate a
constant mass m from rest to a velocity v, with a value

KE = 1
2

mv2

gc
; (12.2a)

the kinetic energy per unit mass, ke, is

ke = v2

2gc
. (12.2b)

The units of kinetic and potential energy per unit mass are J/kg and ft lbf/lbm in the
SI and Imperial Engineering systems, respectively.

12.2 Internal Energy

Potential and kinetic energy are familiar concepts that are defined in terms of an
amount of work that must be done on a material to achieve a given height or a
given velocity, respectively. Our experience with the physical world tells us that
under certain conditions we can do work on a system and detect changes in the
physical state under conditions where both the kinetic and potential energies remain
constant. A common example is to compress a gas in a cylinder by pushing a piston
(consider a bicycle pump with the nozzle end sealed); work has been done on the
gas by moving the piston through some distance, and we detect a change in the
pressure and perhaps also in the temperature, but there has been no change in either
the potential or kinetic energy. It is clear, then, that there must be another form of
energy change that is related in some way to the temperature and pressure of the
system; we call such an energy the internal energy and denote it by the symbol U.

* We have previously used h to denote a height, and this is the best choice mnemonically. The symbol h
is commonly used for another physical quantity in thermodynamics, however, as noted subsequently,
and we need to change notation.



12.2 Internal Energy 189

The physical motivation for defining the internal energy was provided by a series
of experiments carried out by James Prescott Joule between 1840 and 1850 in which
water was maintained in a well-insulated tank (i.e., there was no heat loss to the
surroundings) and work was done on the system. Joule was a brewer by profession,
as well as an amateur scientist, and he was exploring the possibility of replacing the
brewery’s steam engines with the newly invented electric motor. In his most famous
experiment a paddle was immersed in the water and made to turn by a series of
pulleys attached to a falling weight. The work done by the falling weight was easily
calculated. Joule found that the temperature of the water increased as a result of the
work done, with one pound of water increasing by one degree Fahrenheit for each
773 ft lbf of work done on the system (i.e., 698 J/kg ◦C). The other experiments were
as follows:

I. An electric current was generated by mechanical work and a coil carrying the
current was immersed in water (838 ft lbf/lbm

◦F).
II. Mechanical work was performed to compress a gas in a cylinder that was

immersed in water (795 ft lbf/lbm
◦F).

III. Mechanical work was done on two pieces of iron rubbed together beneath the
water surface (775 ft lbf/lbm

◦F).

Within the accuracy that could be achieved at the time, the four distinct methods
gave essentially the same value. (The currently accepted value is 778.) A process in
which there is no heat loss to the surroundings is called an adiabatic process. Joule’s
experiments thus lead to the following statement, which has been verified many
times since:

The change of a body inside an adiabatic enclosure from a given initial state to a given
final state involves the same amount of work, whatever the means by which the process is
carried out.

If subscripts A and B refer to the initial and final states, respectively, then this
statement is expressed symbolically as

W = −[UB − UA]. (12.3)

W is the work, which is defined as positive if performed by the system.*

We know from experience that we can raise the temperature of a body without
doing any work by bringing it in contact with another body at a higher temperature.
We must therefore postulate a mode of energy transfer that is different from work,
which we call heat and denote with the symbol Q; Q is taken by convention to be
positive if heat is added to the system. If we perform a thought experiment and
consider a batch process whereby a body both absorbs heat and performs work, then
the change in internal energy can be expressed as follows:

UB − UA = Q − W. (12.4)

* This is the convention that is used in most textbooks on thermodynamics. The opposite convention
is sometimes used, however, wherein work is positive if performed on the system. The particular
convention that is used is unimportant as long as consistency is maintained.
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Equation 12.4 is a statement of what is commonly known as the First Law of Ther-
modynamics, which states that the change in the internal energy of a batch system is
equal to the heat added to the system less the work done by the system. U is a state
function, its value depending only on the initial and final states, while Q and W are
modes of transfer of energy between one system and another.

Equation 12.3 provides us with an experimental means of measuring changes
in internal energy, provided only that we have the means to measure the work
done. Equation 12.4 provides a means of measuring the amount of heat transferred
if we have been able to use the adiabatic experiment to measure UB − UA. Thus,
we make the important observation that the definitions of both internal energy and
heat are constructive, in that they are defined only in terms of measurable quantities.
We note also that only relative values of internal energy can be determined. Thus,
a description of a physical process can never depend on the absolute magnitude of
the internal energy, but only on changes.

Finally, it is important to note that the internal energy U must also depend
on volume and composition, and internal energy per unit mass, u, must depend on
density (reciprocal of volume/unit mass) and the concentrations of the component
species. We draw on our experience to use a very important fact without formal
proof, namely that the temperature, density, and composition uniquely determine
the pressure in a single phase. Thus, it is sufficient to know the temperature, density or
volume, and composition to establish the internal energy. This observation plays an
important role in applications of the principle of conservation of energy, and we shall
return to it repeatedly. The formal proof is usually included in a thermodynamics
course.

12.3 A General Energy Balance

The principle of conservation of energy states that energy is neither created nor
destroyed.* The First Law of Thermodynamics is a statement of energy conservation
in a batch system. The application of the principle of conservation of energy to
flowing systems simply requires that there be no source or sink terms (i.e., energy
creation or destruction) in the balance equation.

Our pedagogy for developing energy balances will be somewhat different from
that used for mass balances, although the logical principles remain unchanged. We
will develop an energy balance for a well-stirred flow system (one in which we allow
mass to cross the control surface) and then simplify the general balance as we apply
it to various problems. The system and control surface shown in Figure 12.1 are
general enough to be of use in many problems in chemical engineering without
becoming confusingly complex. The figure is schematic only; it represents some
general system in which work can be done by or on the system (represented by the
paddle) and in which heat can be added or removed (represented schematically by

* This is, of course, a nonrelativistic concept, and applies only under conditions where Newtonian
mechanics are applicable. We will never be concerned with the relativistic equivalence between
mass and energy, and E = mc2 is not a part of the normal chemical engineering lexicon.
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Figure 12.1. Schematic of a system for a general
energy balance. Heat is added at a rate

.

Q and work is
done at a rate

.

W.

the coil). Material flows into the system at a mass flow rate ρf qf and out at a rate
ρeqe. The dot over the symbols W and Q denotes the rate. (The dot was Newton’s
symbol for a time rate of change, or a time derivative.) Note that we are changing our
previous convention by using a subscript e to denote the stream leaving the tank (the
effluent). Quantities in the tank remain unsubscripted. The reason will be apparent
subsequently.

The energy balance is stated in words as follows:

The energy contained in the control volume at time t + �t must be equal to the energy
contained in the control volume at time t, plus the total amount of energy that has appeared
in the control volume in the interval �t by all processes, less the total amount of energy that
has disappeared from the control volume in the interval �t by all processes.

We take the total energy to be the sum of internal energy, kinetic energy, and
potential energy. Other forms of energy, such as surface energy and electromagnetic
energy, are not considered, although they may be of importance in problems not
considered in this text. Energy enters and leaves by convective flow; the energy is
also increased by Q = Q̇�t , which is the total energy added as heat (schematically,
through the coil), and the energy is decreased by W = .

W �t , which is the total
energy removed as work (schematically, with the paddle). We then restate the energy
balance in rate form as follows:

The rate of change of the total energy in the control volume equals the rate at which energy
flows into the control volume, less the rate at which energy flows out of the control volume,
plus the rate at which energy is added as heat flow across the control surface, less the rate
at which energy is lost as work done by the system.

In equation form we then have

d[U + KE + PE]
dt

= d[ρV(u + ke + pe)]
dt

= ρf qf (uf + kef + pef ) − ρeqe (ue + kee + pee) + Q̇ − Ẇ. (12.5)

It is usually convenient to separate the work term into two parts: Work must be
done on the system to push material in the feedstream into the control volume, and
work must be done by the system to push material out of the control volume in



192 Energy Balances

the effluent. All other work except this flow work (e.g., useful work for turning a
turbine) is called shaft work. The rate of doing shaft work is designated Ẇs . The flow
work for the stream entering can be calculated as follows:

work = F�l, where F is force and �l denotes the small distance an element of mass is
pushed over the system boundary during a time interval �t. F = pf Af , where pf is the
pressure at the entrance and Af is the cross-sectional area. Thus, work = pf Af �l = pf �V,
where �V is the volume of the material pushed into the system during �t. Then work/unit
mass = pf�V/�mass = pf /ρf , since mass/volume is simply density. The rate of doing work
is (work/mass) × (mass/time), or (pf /ρf ) (ρf qf ). Finally, the term will enter the equation
with a negative sign since work is being done on the system. Similarly, the rate of doing
work by the system to push mass out is (pe/ρe) (ρeqe).

Equation 12.5 then becomes

d[U + KE + PE]
dt

= d[ρV(u + ke + pe)]
dt

= ρf qf

(
uf + pf

ρf
+ kef + pef

)

− ρeqe

(
ue + pe

ρe
+ kee + pee

)
+

.

Q−
.

Ws . (12.6)

Equation 12.6 can be used to obtain the flow rate relation for the draining tank
considered in Section 2.7. Our focus on the use of energy balances is to understand
thermal effects, however, and we do not wish to interrupt the logical flow in the body
of the text. The draining tank is addressed in detail as an example in Appendix 12.A.

The combination U + pV often appears in engineering applications and is given
a special name, enthalpy, with the symbol H. Enthalpy per unit mass, h, then equals
u + p/ρ, and Equation 12.6 can be written in an alternative form that is commonly
employed:

d[U + KE + PE]
dt

= d[ρV(u + ke + pe)]
dt

= ρf qf (hf + kef + pef )

− ρeqe (he + kee + pee) +
.

Q−
.

Ws . (12.7)

12.4 Heat Capacity

The internal energy and enthalpy must be related to characterizing variables that
can be measured. Suppose we have a batch system in which there is no flow, so
KE = PE = 0. Equation 12.6 then becomes

dU
dt

=
.

Q− .

W = dQ
dt

− dW
dt

, (12.8)

which integrates directly to

�U = �Q − �W, (12.9)
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where the symbol �, which denotes a difference, is intended here to indicate a small
change. Equation 12.9 is, of course, equivalent to Equation 12.4, the First Law of
Thermodynamics for a closed system.

We first consider a system in which the volume is kept constant while the heat is
added. In that case no work can be done by the system and �W = 0. We also assume
that there is no chemical reaction, so the composition remains constant as the heat is
added. We measure the small temperature change �T that results from the addition
of the small amount of heat �Q at constant volume and define the heat capacity at
constant volume, CV, as

�Q = CV�T = �U at constant volume, (12.10)

or

CV ≡ lim
�T→0

�U
�T

= ∂U
∂T

)
V,ni

. (12.11)

The partial derivative in Equation 12.11 is simply a symbol for the rate of change
of internal energy with respect to temperature at constant volume and at constant
composition (i.e., at a fixed number of moles of each component species). CV can be
determined experimentally by use of Equation 12.10, since both the heat input and
the temperature change can be measured.

The heat capacity per se is not a useful quantity, because its value depends on
the amount of material. The heat capacity per unit mass, cV, which is a material
property, is defined as

cV = ∂u
∂T

)
ρ,ci

, (12.12a)

where the quantities held constant are density (reciprocal of volume/mass) and
composition. It is sometimes convenient to work in terms of molar units. In that case
we define an internal energy per unit mole as

˜
u and define the heat capacity per unit

mole as

c
∼V

= ∂
˜
u

∂T

)
ρ,ci

. (12.12b)

Heat capacities per unit mass or per unit mole are often called specific heats.
We now consider a system that is maintained at constant pressure as heat is

added. This can be done as shown schematically in Figure 12.2, where the cylinder
is closed with a movable piston, so the volume can change if necessary to permit the
pressure to remain constant. In that case Ws will not be zero, since the system will
do work on the surroundings because the piston will move as the material expands
with the addition of heat. We then define the heat capacity at constant pressure, Cp,
as

Q = Cp�T = �U + �W at constant pressure. (12.13)
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Movable piston to 
maintain constant

pressure

Figure 12.2 Schematic of a tank heated at
constant pressure.

But the work �W equals the force acting on the piston multiplied by the distance
over which the piston moves, which can be written it terms of the small volume
change �V as �W = p�V, or, since the pressure is constant, �W = � pV. Hence,
we can rewrite Equation 12.13 as

Q = Cp�T = �U + �pV = �(U + pV) = �H at constant pressure, (12.14)

or

Cp ≡ lim
�T→0

�H
�T

= ∂ H
∂T

)
p,ni

. (12.15)

The heat capacities at constant pressure per unit mass, cp, and per unit mole, c
∼p

, are

then defined as follows:

cp = ∂h
∂T

∣∣∣∣
p,ci

, c
∼p

= ∂
˜
h

∂T

)
p,ci

, (12.16a,b)

where
˜
h is the enthalpy per unit mole.

A gas expands significantly with increasing temperature at constant pressure,
so the heat capacities of gases at constant volume and at constant pressure will be
different. Indeed, it is shown in physical chemistry texts that the molar heat capacities
of a monotonic ideal gas (i.e., a gas for which pV = nRT, where n is the number
of moles and R = 8.3145 J/mol K is the gas constant) at constant volume and at
constant pressure are, respectively, 1.5R and 2.5R. (For diatomic ideal gases c

∼V
=

2.5R.) In contrast, liquids far from the critical point and solids expand very little,
so the constant volume and constant pressure experiments are essentially the same.
Hence, the heat capacities per unit mass at constant pressure and at constant volume
are approximately equal for liquids and solids and it is usual not to distinguish
between them.

Units of energy are briefly discussed in Appendix 2C. The calorie is defined as
the heat required to raise the temperature of 1 gram of water by 1◦C (without precise
attention to temperature, but usually at 15◦C), and the BTU is defined as the heat
required to raise 1 lbm of water 1◦F (usually at 59◦F). The specific heat of water is
insensitive to temperature, so it is 1.0 over a wide range in both the cgs and Impe-
rial Engineering systems. Most old data in the literature are tabulated in cal/g ◦C
or BTU/lb ◦F, which are numerically equivalent. The SI unit is J/kg K, which
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Figure 12.3. Temperature dependence of heat capacities at constant pressure of selected
materials.

corresponds to 4,184 cal/g ◦C. Data are also commonly reported as J/g K; in these
units the specific heat of water is 4.184. The temperature dependence of cp of some
typical materials is shown in Figure 12.3. Typical values for selected liquids and solids
are shown in Table 12.1. The values for metals become closer when computed on
a molar basis; the molecular weight of silver is nearly twice that of iron (the major
component of steel), for example, while that of mercury is a bit less than twice that
of silver. In fact, c

∼V
for most metals is close to 25 J/mol K. (According to the Law

of Dulong and Petit, c
∼V

= 3R = 24.9 J/mol K for a metal.) Typical values of both cp

and cV for selected gases at 1 atm pressure are shown in Table 12.2. The values for
gases also become closer when computed on a molar basis, with the diatomic gases
in the table (H2, O2, N2) all being close to the ideal gas value of c

∼V
= 2.5R = 20.8

J/mol K.
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Table 12.1. Heat capacities at constant pressure of selected solids and liquids.

Material State T (◦C)

cp

(J/kg K × 10− 3)
(J/g K)

c
∼V
(J/g-mol K)

Silver solid 20 0.23 24.8
Steel solid 20 0.46 25.7
Sodium chloride solid 0 0.84 49.1
Urea solid 20 1.34 80.5
Water (ice) solid − 10 2.22 40.0

Mercury liquid 20 0.14 28.1
Sulfuric acid liquid 20 1.42 139.3
Toluene liquid 50 1.76 162.2
Ethylene glycol liquid 15 2.39 148.3
Water liquid 18 4.18 75.3

12.5 Temperature Equation for Liquid Systems of Constant Composition

We are now in a position to write the energy balance for a liquid system of constant
composition in terms of the temperature, which is the characterizing variable of
interest. (Pressure is also an important characterizing variable, but it plays little role
for most liquid systems.) The development is straightforward but somewhat tedious.
Our starting point is Equation 12.7. In most applications of interest to chemical
engineers the kinetic and potential energy contributions are negligible relative to
thermal effects, and we choose to ignore the ke and pe terms in the equation. (These
terms are simply additive, so they can be added back if necessary.) Equation 2.7 then
simplifies to

dU
dt

= dρVu
dt

= ρf qf hf − ρeqehe +
.

Q−
.

Ws . (12.17)

The enthalpy depends on both temperature and pressure, but for a liquid system at
moderate pressures we may ignore the pressure dependence. (See Appendix 12B.)

Table 12.2. Heat capacities at constant pressure and constant volume of
selected gases at 1 atm pressure.

cp cV c
∼V

Gas T (◦C) (J/kg K × 10− 3) (J/g-mol K)

Sulfur dioxide 15 0.63 0.50 32
Oxygen 15 0.92 0.67 21.4
Nitrogen 15 1.05 0.75 21
Ethylene 15 1.51 1.21 33.6
Water (steam) 100 2.01 1.51 27.2
Hydrogen 15 14.2 10.1 20.2
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From Equation 12.16 we may therefore write, for a system at constant composition,

dh = cpdT, (12.18a)

or, for a change from temperature T1 to T2,

h2 − h1 =
T2∫

T1

cpdT = (for constant cp) cp(T2 − T1). (12.18b)

For simplicity in everything that follows we will assume that the heat capacity is
independent of temperature, but this assumption is clearly unnecessary and is made
just for convenience.

The temperature of the effluent is the same as the tank temperature, so we may
drop the subscript from he. We need to evaluate all enthalpies at the same tempera-
ture, and the temperature of the tank is the most convenient choice, so we now use
Equation 12.18b to express the enthalpy of the feedstream in terms of the tank and
effluent enthalpy as

hf = h + cp(Tf − T). (12.19)

Equation 12.17 then becomes

dρV
(

h − p
ρ

)
dt

= ρf qf cpf (Tf − T) + h (ρf qf − ρeqe) +
.

Q− .

W . (12.20)

In writing this equation we have put a subscript f on the heat capacity to emphasize
that this is the heat capacity of the feedstream. This distinction is irrelevant now,
but it will become necessary when we subsequently permit composition changes
between feed and effluent. We have also replaced the internal energy u by h − p/ρ.

We now focus on the time derivative and write

dρVh
dt

= ρV
dh
dt

+ h
dρV
dt

= ρV
dh
dt

+ h (ρf qf − ρeqe) . (12.21)

The second term on the right side of Equation 12.21 also appears on the right side of
Equation 12.20. From Equation 12.18a we may write dh/dt = cp dT/dt, so Equation
12.20 finally becomes

ρVcp
dT
dt

− dpV
dt

= ρf qf cpf (Tf − T) +
.

Q− .

W . 12.22

Finally, we show in Appendix 12B that the term dpV/dt can be neglected for liquid
systems relative to the temperature derivative term, so we obtain the final form of
the energy equation for a liquid system of constant composition as

ρVcp
dT
dt

= ρf qf cpf (T f − T) +
.

Q− .

W . (12.23)
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12.6 Concluding Remarks

The material in this chapter forms the basis for the treatment of all systems in
which the energetics are important, which includes most systems that are of interest
to chemical engineers, whatever their areas of application. Equation 12.23 is the
prototypical form of the energy equation for liquid systems, and it is all that we need
to analyze the heat transfer situations discussed in the next chapter. We will find that
the equation is augmented when we have to address problems involving multiple
species, whether reacting or simply mixing or being separated, because the internal
energy and enthalpy will then depend on the composition, which may be changing
during the course of the process. The pressure dependence of the enthalpy and the
density dependence of the internal energy must be taken into account when dealing
with gaseous systems, or with liquids that are near the critical point, both of which
are beyond the scope that we wish to address in this introductory treatment. The
approach developed here generalizes in a straightforward way, and it is the key to
getting correct energy balances.

Bibliographical Notes

Joule’s experiments were a landmark in developing modern concepts of energy.
There is a late-nineteenth-century memoir by the great engineering scientist Osborne
Reynolds (whom you will meet in fluid mechanics) that has been reprinted as

Reynolds, O., Biography of James Prescott Joule, Wexford College Press, Palm
Springs, CA, 2007.

For a more contemporary treatment, see

Steffens, H. J., James Prescott Joule and the Concept of Energy, Dawson Pub-
lishing, Inglewood, CA, 1979.

The elementary principles of thermodynamics introduced here are usually
treated in introductory courses in physics and chemistry, and they are elaborated on
in courses in physical chemistry and in specialized courses in thermodynamics. Any
text with the word thermodynamics in its title will cover these topics.

Physical property data are available from many sources, including handbooks
such as the Handbook of Chemistry and Physics (CRC) and Perry’s Chemical Engi-
neer’s Handbook (McGraw-Hill), which are updated with new editions periodically.
The U.S. National Institute of Standards and Technology (NIST) provides an exten-
sive compilation of physical properties, which is available electronically without
cost. The URL for fluid properties was http://webbook.nist.gov/chemistry/fluid/ at
the time of writing but, as with all Web-based information, it is important to check
that this is the current site. Many academic institutions have access to the American
Institute of Chemical Engineers’ Design Institute for Physical Properties (DIPPR)
electronic database of thermophysical properties. The classic International Critical
Tables of Numerical Data, Physics, Chemistry and Technology, which was compiled
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between 1926 and 1930, can be found in most technical libraries and is also available
in a facsimile electronic edition (Knovel, 2003).

PROBLEMS

12.1. Do a search to find an original research paper in which the heat capacity of
some liquid was measured. Carefully read the paper and describe the experimental
procedure in your own words. Show clearly by means of a sample calculation how
the heat capacity was calculated from the experimental data.

12.2. What is the change in enthalpy of 1 kg of water when the temperature is
changed from 25◦C to 10◦C?

12.3. The heat capacity of liquid toluene at atmospheric pressure is well represented
in the range 280 K to 360 K by the empirical equation cp = –1.17 + 9.61 × 10− 3T,
where T is in K and cp is in J/g ◦C. What is the enthalpy change per gram in heating
the liquid from 10◦C to 60◦C?

12.4. Repeat the calculation in Problem 10.3 with the assumption that the heat capac-
ity of liquid toluene is constant, using the values at (a) 10◦C; (b) 35◦C; and (c) 60◦C.
How large is the error in each case? Give a quantitative explanation to the answer
to part (b).

12.5. 10 kg of water is heated to raise the temperature by 7◦C. How high would
the liquid have to be lifted to change the total energy by the same amount? To
what velocity must we accelerate the liquid to obtain the same change in total
energy?

Appendix 12A: Draining Tank

We return here to the draining tank example of Section 2.7. The process is shown
schematically in Figure 12A.1. The tank is assumed to be open to the atmosphere,
so the air pressure above the liquid is atmospheric, and the effluent flows into an
environment that is also at atmosphere pressure. The analysis depends on the choice
of the control volume. As shown here, the control surface is drawn around the tank
to the height of the liquid, and then across the tank at the liquid surface. With this
choice of control volume there is no flow into the control volume, but the volume
is changing with time. The alternative would be to draw a fixed control volume, in
which case we would have to address the flow of air into the control volume as liquid
flows out.

The temperature is fixed, so the liquid density is unchanged and can be denoted
everywhere by ρ. There is no flow into this control volume, so qf = 0. No heat is
added and no work is done, hence Q̇ = Ẇ = 0. The datum is taken at the tank exit,
so pee = 0. The effluent jet is at atmospheric pressure (note that the pressure in the
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Figure 12A.1. Control volume for
application of the energy balance to
the draining tank.

jet is not the same as the pressure in the tank at the exit), so pe = 0. Equation 12.6
thus simplifies to

d[ρV(u + ke + pe)]
dt

= (u + pe + ke)
d(ρV)

dt
+ ρV

d(u + ke + pe)
dt

= −ρq (ue + kee) .

(12A.1)

The equation of conservation of mass is d(ρV)/dt = −ρq. Also, du/dt = 0 since
the temperature and density are constant, and u = ue since the temperature and
density of the liquid in the tank and the effluent are the same. Hence, the internal
energy terms on the two sides of the equation drop out. Every term is multiplied by
the density, which may be factored out. V = AL. We thus obtain

L
d(pe + ke)

dt
= q

A
(pe + ke − kee) . (12A.2)

The liquid in the tank is moving at a velocity q/A (volumetric flow rate/area), so
ke = 1

2gc

( q
A

)2. We recall from the study of mechanics in the introductory physics
course that the potential energy of a finite mass is expressed in terms of the
height of the center of mass, which in the case of the liquid in the tank is L/2, so
pe = gL/2gc. Finally, the velocity of the effluent is the volumetric flow rate/area of
the exit jet. If the jet were to have the same area as the orifice this velocity would be
q/Ao. In fact, it is known experimentally (and requires an application of the principle
of conservation of momentum to derive theoretically) that the jet diameter below
a sharp hole is only about 80 percent of the orifice diameter. Thus, the jet area
is about 65 percent of the orifice area, and we write kee = 1

2gc

( q
Co Ao

)2, where Co is
known as the orifice coefficient and typically has a value between 0.6 and 0.65. A bit
of manipulation of Equation 12.A2, which we leave as an exercise, then leads to the
equation

2gL
(

1 + 1
g

d2L
dt2

)
=

(
q

Co Ao

)2
[

1 − C2
o

(
Ao

A

)2
]

. (12A.3)
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Equation 12.3 contains the second derivative of L. Integrating this equation to
obtain L as a function of t would thus require two constants of integration. We know
the initial height, but we do not know the initial velocity (although it probably does
not differ significantly from zero). On the other hand, it is inconceivable that the
acceleration of the liquid in the tank, which is what d2L/dt2 represents, is within
orders of magnitude of the gravitational acceleration. Hence, we may safely assume
that

∣∣ 1
g

d2 L
dt2

∣∣ � 1 and neglect the acceleration term relative to unity. Similarly, Ao �
A, so we may neglect the term C2

o

( Ao
A

)2
relative to unity. We thus obtain the final

result

q = Co Ao

√
2gL. (12A.4)

The square root dependence was found experimentally in Section 2.6.3, and a rather
simplified version of this energy balance was used to obtain the correct scaling
in Section 2.9. The functional form given here was obtained in Appendix 2D by
dimensional analysis.

Appendix 12B: Pressure Dependence of Enthalpy

We justify here having neglected the pressure terms in the derivation of Equation
12.23 for liquids. It is shown in thermodynamics courses that the enthalpy change
for small changes in temperature and pressure with a constant composition is

�H = ρVcp�T +
[

V − T
∂V
∂T

)
p,ni

]
�p. (12B.1)

For most liquids far from the critical point, V − T∂V/
∂T ∼ 10−3VT. Thus,

V − T∂V/
∂T is less than V in magnitude, although perhaps of the same order. We

therefore need to show that V�p is negligible compared to ρVcp�T. Consider the
ratio V�p/ρVcp�T = �p/ρcp�T. Typically, ρ ∼ 1,000 kg/m3 and cp ∼ 2,000 J/kg K
(compare Table 12.1). If we take �p to be of order 1 atm, or 105 N/m2, then if �T is
as small as 1 K we have �p/ρcp�T ∼ 105/(103 × 2 × 103 × 1) ∼ 5 × 10− 2. Thus,
unless the pressure changes are very large, the pressure term is negligible in a liquid.
The term multiplying �p is identically zero for an ideal gas, but the term can be very
important in gases at pressures and temperatures where there are deviations from
ideal gas behavior.

The treatment of the pressure term in passing from Equation 12.22 to 12.23 is
identical. If the volume is unchanged then the second term is identically zero at
constant pressure. Otherwise we integrate ρVcp

dT
dt − dpV

dt over a short time interval
to obtain ρVcp�T − �pV. The largest possible volume change is equal to V, in which
case we seek to show that ρVcp�T is large compared to V�p, which is precisely the
comparison that we have already made.
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13.1 Introduction

Most processes, regardless of scale, require heat exchange in order to control the
temperature. This is true whether we are concerned with the operation of a microchip
in a laptop computer, a 3,000-liter bioreactor, or the effect of the Gulf Stream on
the weather of the North Atlantic. The basic concepts of elementary thermodynam-
ics sketched out in the preceding chapter can be exploited to study heat exchange
and temperature control for a wide range of applications of the types that we have
considered previously in this text. We examine some simple but informative applica-
tions in this chapter. Combined mass, momentum, and heat transfer, together with
chemical reaction, provide the foundation of the chemical engineering curriculum,
so this treatment is just a beginning.

13.2 Rate of Heat Transfer

Consider the transfer of heat in the system shown in Figure 13.1. Two liquids at dif-
ferent temperatures are in adjacent well-stirred chambers. The tanks are completely
insulated except for the surface separating the two liquids. There is no liquid flow in
or out of either tank, and we assume that the shaft work to operate the agitators is
unimportant (Ẇ ≈ 0). We take each tank individually as a control volume. In that
case, Equation 12.23 for each tank simplifies, respectively, to

ρ1V1cp1
dT1

dt
= Q̇1, (13.1a)

ρ2V2cp2
dT2

dt
= Q̇2. (13.1b)

Because of the insulation, heat is transferred only between the two tanks. Hence,
the heat entering one must equal the heat leaving the other, in which case

Q̇1 = −Q̇2. (13.2)

202
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Figure 13.1. Heat transfer between liq-
uids in adjacent well-stirred chambers.

Equations 13.1a and b can then be combined to give

ρ1V1cp1
dT1

dt
= −ρ2V2cp2

dT2

dt
. (13.3)

The densities and heat capacities may be dependent on temperature. The analysis
that follows can be repeated for that situation as long as the temperature dependence
is known, but the manipulations are more complex and there is no fundamental gain
in understanding. We therefore assume that the physical properties of both liquids
are constant over the temperature range considered. In that case, Equation 13.3 is
simply an equality between time derivatives, so the integral of the left side must
equal the integral of the right. We take the temperatures of the tanks at time t = 0
to be T10 and T20, respectively, and by integrating the derivatives from time t = 0 to
any later time we obtain

ρ1V1cp1[T1(t) − T10] = −ρ2V2cp2[T2(t) − T20]. (13.4)

We know that after a sufficiently long time the temperatures in the two tanks will
become equal, and we call this temperature T∞. We can calculate T∞ by setting both
T1 and T2 equal to T∞ in Equation 13.4 and solving to obtain

T∞ = ρ1V1cp1T10 + ρ2V2cp2T20

ρ1V1cp1 + ρ2V2cp2
. (13.5)

Note the parallels in this development with phase concentrations in a two-phase
mass contactor and with the equilibrium in a single-phase batch reactor.

We will often be interested in the transient behavior, not just the long-time
steady-state temperature. To obtain the transient we need to solve Equation 13.1a
for T1(t). (If we know one temperature, the other is given by Equation 13.4.) In
that case, we need to know precisely what the rate of heat transfer Q̇1 is; that is, we
require a constitutive equation relating the rate of heat transfer to the temperatures
in the system. Now we find from experience that

i) All other things being fixed, Q̇ is proportional to the area, a, through which heat
is transferred.

ii) The cause of heat transfer is the temperature difference, and all other things
being fixed, Q̇ is roughly proportional to the temperature difference between
the two bulk liquids.
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Thus, the constitutive equation, written specifically for control volume 1, is of the
form

Q̇1 = hTa (T2 − T1) . (13.6)

hT is known as a heat transfer coefficient*, with units of W/m2 K (or BTU/hr ft2 ◦F
in the Imperial Engineering system). It is important to recognize that Equation
13.6 is a definition of the heat transfer coefficient, since the other quantities in the
equation – area, temperatures, and heat flow – are known or can be measured (at
least in principle). The heat transfer coefficient depends on the properties of the
two liquids, the degree of agitation or other flow characteristics, and the materials
of construction of the vessel wall. Note the close analogy to the development of
membrane separation in Section 5.1 and to mass transfer in two-phase contactors in
Section 10.3. As with the corresponding mass transfer phenomena, the overall heat
transfer coefficient has distinct contributions from the fluid phases on each side of the
barrier and from the wall itself, but for our purposes here it suffices to treat it as an
experimentally measurable quantity that will be available through correlations and
handbook tables. The detailed treatment of heat transfer coefficients, including the
derivation of correlations for various geometries and flow conditions, is addressed
in subsequent courses on heat transfer or transport processes. A linear relation
like Equation 13.6 was first proposed by Isaac Newton, and is sometimes known as
Newton’s law of cooling; this is a misnomer, because Equation 13.6 is a definition,
not a fundamental law of nature.

Equations 13.1a and 13.6 combine to give

ρ1V1cp1
dT1

dt
= hTa(T2 − T1). (13.7)

Note that the temperature in tank 1 rises (dT1/dt > 0) if T2 > T1 (heat flows from 2 →
1) and decreases (dT1/dt < 0) if T2 < T1 (heat flows from 1 → 2). With Equations 13.4
and 13.5, Equation 13.7 becomes, after some algebraic manipulation, an equation
for T1:

dT1

dt
= −hTa

[
1

ρ1V1cp1
+ 1

ρ2V2cp2

]
(T1 − T∞) . (13.8)

T∞ is defined by Equation 13.5. We have seen equations of this form many times; it
can be formally separated to give

dT1

T1 − T∞
= −hTa

[
1

ρ1V1cp1
+ 1

ρ2V2cp2

]
dt

and integrated to give the expected exponential approach to equilibrium:

T1(t) − T∞
T10 − T∞

= exp
(

−hTa
[

1
ρ1V1cp1

+ 1
ρ2V2cp2

]
t
)

. (13.9)

* The symbol h without the subscript T is more commonly used, but that usage would lead to confusion
with the symbol for the enthalpy per unit mass. The symbol U is often used for the overall heat
transfer coefficient, but U is the symbol for the internal energy and is not available.
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It is informative to rewrite Equations 13.5 and 13.9 as

T∞ =
T20

[
1 + ρ1V1cp1T10

ρ2V2cp2T20

]
[

1 + ρ1V1cp1

ρ2V2cp2

] → T20 for V1/V2 � 1, (13.10)

T1(t) − T∞
T10 − T∞

= exp
(

− hTa
ρ1V1cp1

[
1 + ρ1V1cp1

ρ2V2cp2

]
t
)

→ exp
(

− hTa
ρ1V1cp1

t
)

for V1/V2 � 1. (13.11)

That is, if one chamber is much larger than the other, its temperature is essentially
unaffected by the heat transfer, and the transient is determined entirely by the
properties of the smaller chamber. This result is not surprising in any way, but it is
useful to see how it follows logically from the formulation.

There is a further estimate that is very useful. As we have seen before, a negative
exponential is effectively zero when the argument reaches –3. Thus, if we define t∞
as the time at which the system has effectively reached the steady-state temperature
T∞, it follows from Equation 13.11 that

t∞ = 3ρ1V1cp1

hTa

[
1 + ρ1V1cp1

ρ2V2cp2

]−1

→ 3ρ1V1cp1

hTa
for V1/V2 � 1. (13.12)

Note that the time scales inversely with the surface-to-volume ratio a/V; that is, the
larger the surface-to-volume ratio, the more rapid is the response.

EXAMPLE 13.1 To get a sense of magnitudes, suppose that we have a well-mixed
cubic chamber with sides of 0.3 m (30 cm, or about 1 ft) that is immersed
in a very large heating bath such that V1/V2 � 1, and there is heat transfer
through all six faces of the cube. How long does it take for the temperatures to
equilibrate?

We assume that the physical properties are approximately those of water,
so ρ ∼ 1,000 kg/m3 and cp ∼ 4,000 J/kg K. The volume is 0.027 m3 and the
area is 0.54 m2. Heat transfer coefficients vary greatly, depending on the liquids,
the type of agitation, and the materials of construction. We take a value here of
hT = 350 W/m2 K, which is reasonable based on what is reported in the literature,
but which could vary substantially in either direction, depending on the system.
We thus obtain an estimate of t∞ from Equation 13.12 of about 1,800 seconds, or
30 minutes, for the temperature to equilibrate with the surrounding large bath.
Reducing the length scale by a factor of six, to 5 cm, will reduce the time by the
same factor, to about 300 seconds, or 5 minutes.

13.3 Heat Transfer to a Jacket

Heat transfer in a continuous-flow tank system is often achieved by passing the
cooling or heating fluid through a jacket that has been placed around the vessel, as
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Well-mixed jacket

ρj  qj  cpj  Tj
Tj 

T

ρjf  qjf  cpjf  Tjf

Figure 13.2. Cooling or heating a flow system by means of a well-mixed jacket.

shown in Figure 13.2. This is one common method for effecting temperature control
in a flow reactor, for example. In this section we develop the design equations for
sizing a jacket in order to achieve a specified rate of heat removal or addition. The
fluid in the jacket is assumed to be well mixed and hence at a uniform temperature.
We use the subscript j for the jacket fluid, and we leave the variables for the stirred
tank unsubscripted.

We assume that there is no significant contribution from shaft work, so the
energy balance for the tank is given by (cf. Equation 12.23)

ρVcp
dT
dt

= ρf qf cpf (Tf − T) + hTa (Tj − T ) , (13.13a)

where we have used Equation 13.6, written here as Q̇ = hTa (Tj − T), for the heat
flow. The corresponding equation for the jacket is

ρ j Vj cpj
dTj

dt
= ρ jf qjf cpjf (Tjf − Tj ) − hTa (Tj − T ) , (13.13b)

where Q̇j = −Q̇. For simplicity, we will assume that the heat capacities and densities
in the feedstreams are the same as those in the vessels, and that the flow rates in
and out are the same, so we can drop the subscript f for all quantities except the
temperatures.

At steady state, which is the operating condition for which we design, dT/dt =
dTj/dt = 0. We can then immediately solve Equation 13.13b for the required jacket
temperature by setting the right-hand side to zero to obtain

Tj = Tjf + KT
1 + K

, (13.14)

where K = hTa/ρ j qj cpj . The required rate of heat transfer is then

Q̇ = hTa (Tj − T) = hTa
1 + K

(Tjf − T) . (13.15)

It is useful at this point to refer back to the discussion of membrane separation
in Chapter 5, where we noted that some useful limits on the feasible membrane area
and the relative flow rates could be obtained rather simply from the design equation.
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The same situation applies here, which is not surprising, given the obvious analogy
between the formulations. For a given heat load Q̇, the smallest surface area for
heat transfer will occur when |T − Tj| is as large as possible, which means that
Tj should be as close as possible to the feed temperature Tjf. This will occur when
K → 0, corresponding to qj → ∞. Hence,

amin = Q̇

hT
∣∣Tjf − T

∣∣ . (13.16)

Similarly, the minimum coolant or heating fluid flow in the jacket will correspond
to a → ∞, in which case K → ∞. With some algebraic manipulation of Equation
13.13b at steady state, combined with Equation 13.14, we then obtain in this limit

qj,min = Q̇

ρ j cpj
∣∣Tjf − T

∣∣ . (13.17)

Equations 13.16 and 13.17 can be combined with the steady-state versions of Equa-
tions 13.13a and b to give

qj,min

qj
+ amin

a
= 1. (13.18)

If, for example, we use twice the minimum area for heat transfer, we require a flow
rate that is twice the minimum. If we use five times the minimum area, we require
a flow rate that is only 25 percent greater than the minimum. The ultimate balance
between heat transfer area and flow rate is an economic one, trading off capital
outlay against operating costs for both the tank and the jacket. Of course, a is always
confined within certain limits, since the volume of the tank, which dictates the surface
area in contact with the jacket, will be determined by the requirements of the process
taking place inside the tank.

EXAMPLE 13.2 Consider a heat transfer problem arising from an example of
mixing water and an acid stream that is described in the next chapter. We wish
to use an aqueous stream available at Tjf = 20◦C to remove heat from a tank at
a rate of 6,250 W in order to maintain a tank temperature of 90◦C. What are the
specifications of the heat transfer system?

We can calculate the minimum heat transfer area required for the jacket
from Equation 13.16: amin =

.

Q/hT
∣∣Tjf − T

∣∣. If the heat transfer coefficient is
300 W/m2K, which is a reasonable value for aqueous liquids in a steel tank, then
we obtain a minimum area of 0.30 m2. The minimum flow rate is computed from
Equation 13.17: qj,min =

.

Q/ρ j cpj
∣∣Tjf − T

∣∣. Taking the density of the jacket fluid
to be 1,000 kg/m3 and the heat capacity to be 4.18 J/gK, we obtain a minimum
flow rate of 2.1 × 10− 5 m3/s, or 1.26 kg of water per minute. If we use a heat
transfer area of 1 m2 then, according to Equation 13.18, the required coolant
flow rate will be 3 × 10− 5 m3/s. This rate corresponds to 1.8 kg/min.
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13.4 Heat Transfer to a Coil

Another design that is commonly used for heat transfer in a tank-type system is to
flow coolant or heating fluid through a coiled pipe submerged in the tank, as shown
in Figure 13.3. In this case, although the temperature in the well-mixed tank remains
the same, the temperature of the fluid in the coil varies with position along the coil.
Thus, the situation is analogous to the membrane system in Section 5.6, in which we
must take the spatial variation of the characterizing variable into account by using a
very small control volume.

The control volume is shown in Figure 13.4. The control volume is a length
of pipe �x long and D in diameter. Thus, x and x + �x correspond to the inlet
and outlet of the control volume, respectively. The feed temperature is then Tc(x),
and the exit temperature is Tc(x + �x), where the subscript c is a mnemonic for
“coil.” The analysis uses the fact that the heat capacity and density change negligibly
over the small distance �x, which is certainly true as �x goes to zero. We denote the
rate of heat transfer to the coil over the small surface area πD�x as �Q̇c. The fluid
is assumed to be well mixed in this small volume, so we can write Equation 12.23 at
steady state, with an obvious change of nomenclature, as

0 = ρcqccpc [Tc(x) − Tc(x + �x)] + �Q̇c

= ρcqccpc [Tc(x) − Tc(x + �x)] + hTπD�x (T − Tc) . (13.19)

The coil temperature in the heat transfer term can be thought of as some average
of the value in the control volume, or as the effluent value Tc(x + �x); it doesn’t
matter, since all temperatures will be the same when the length of the control volume
is shrunk to zero.

We can now divide by �x and rewrite Equation 13.19 as

Tc(x + �x) − Tc(x)
�x

= hTπ D
ρcqccpc

(T − Tc) . (13.20)

T

ρc  qc  cpc  Tcf

Figure 13.3. Cooling or heating by
means of a coil.
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Figure 13.4. Control volume for a cooling or heating coil.

The left-hand side of the equation is a difference quotient that becomes the derivative
dTc/dx in the limit �x → 0, so we finally obtain an equation for the rate of change
of the coil temperature with position:

dTc

dx
= hTπD

ρcqccpc
(T − Tc) . (13.21)

An integration with respect to x will be required to find the temperature at each
point, so we will need one constant of integration, namely that Tc = Tcf at x = 0. We
will assume that the density and heat capacity are insensitive to temperature and can
be taken to be constants. Equation 13.21 is separable and can be integrated in the
usual fashion to give

Tc − T
Tcf − T

= exp (−hTπDx/ρcqccpc) . (13.22)

Now, the rate at which heat is transferred between the tank and the coil over the
small distance �x is

�Q̇c = hTπD(T − Tc) �x = hTπD(T − Tcf ) exp (−hTπDx/ρcqccpc) �x. (13.23)

The total rate of heat transfer to the coil is the summation (integration) over all
small distances:

Q̇c =
L∫

0

hTπD(T − Tcf ) exp (−hTπDx/ρcqccpc) dx

= ρcqccpc(T − Tcf ) [1 − exp(−hTπDL/ρcqccpc)]

= ρcqccpc(T − Tcf ) [1 − exp(−hTa/ρcqccpc)] , (13.24)

where a = πDL.
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We might choose to define an overall heat transfer coefficient, say hTO, in terms
of the temperature difference T – Tcf.; there is nothing stopping us from doing
this, since the heat transfer coefficient is a defined quantity, and this temperature
difference may be fixed by the design (the required operating temperature in the tank
and the availability of cooling water at a fixed temperature, for example). We would
then write Q̇c = hTOa (T − Tcf ), where hTO ≡ ρcqccpc

a [1 − exp(−hTa/ρcqccpc)]. It is
quite common to use different driving forces in the definitions of heat transfer
coefficients, and it is important when reading the literature to keep in mind the
particular temperature difference that is used in the definition for any application.

It is worth pausing for a moment to reflect on the limiting behavior of the overall
heat transfer coefficient hTO. The dimensionless grouping hTa/ρcqccpc reflects the
ratio of heat transfer between the tank and the coil to energy flow through the coil.
If this group is very small we make use of the fact that 1 – exp(–y) ∼ y for small y
and find that hTO becomes equal to hT; that is, the rate of heat transfer is exactly the
same as it would be in a quiescent system. If the group is large, on the other hand,
the exponential term goes to zero and the rate of heat transfer is determined only by
the flow rate in the coil; that is, the heat transfer across the barrier can be considered
to be instantaneous, and the limiting factor is the rate at which the thermal energy
can be carried away.

We can calculate the minimum area and minimum flow rate for the coil in the
same way that we did in the preceding section for the jacketed tank. For the minimum
area, corresponding to a flow rate approaching infinity, we again need to make use
of the fact that 1 – exp( − y) ∼ y for small y. In that case, we recover Equation 13.16,
but with Tcf in place of Tjf. Similarly, the exponential term vanishes as a becomes
infinite, and we recover Equation 13.17 for the minimum flow rate with the same
change in nomenclature. The relation between the minimum area and the minimum
flow rate is now

a
amin

= − qc

qc,min
ln

(
1 − qc,min

qc

)
. (13.25)

If we use a flow rate that is twice the minimum, for example, then we require a coil
surface area that is 1.39 times the minimum [ln (0.5) = − 0.693]. This contrasts with
the case of a jacket, where twice the minimum area is required for a flow rate that is
twice the minimum. It can be established that a coil always requires a smaller area
for the same heat load at a given flow rate and given jacket or coil inlet temperature.
This result is intuitive when we consider that the driving force for heat transfer
(the temperature difference) varies over the length of the coil, while it is constant
everywhere for the well-mixed jacket.

EXAMPLE 13.3 Suppose we now use a coil to remove the heat in the system
described in Example 13.2. What are the specifications of the heat transfer
system?

If we use a coil to remove the heat from the tank and we assume that the heat
transfer coefficient is the same, then the minimum area and coolant flow rate
are unchanged at 0.30 m2 and 1.26 kg water/min, respectively. Now, however, if
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we use a heat transfer surface area of 1m2 then, according to Equation 13.25, the
required coolant flow rate will be 1.31 kg/min, which is just slightly more than
the minimum and only 74 percent of the amount required for a jacket.

13.5 Double-Pipe Heat Exchanger

Much heat exchange takes place in shell-and-tube exchangers, the simplest of which
is the double-pipe heat exchanger, shown schematically in Figure 13.5. Here, the
hot fluid typically flows in the central pipe, whereas the cold fluid flows in an outer
annulus, either co-currently or countercurrently. The development of the govern-
ing equations is the same for both co-current and countercurrent operation, but we
choose the latter for specificity. The analysis is very straightforward but a bit tedious.
Heat exchangers of this type are ubiquitous in a wide range of manufacturing opera-
tions in nearly all industries in which chemical engineers are employed, however, so
it is important to get some early understanding of the way in which they work and,
particularly, how the heat transfer calculations are done.

The control volumes, shown in Figure 13.6, are analogous to those used in Figure
5.5 for countercurrent membrane separation, and the approach directly parallels the
treatment in Section 5.6. We use the subscripts t for the tube (the inner pipe) and
s for the shell (the outer annulus in the double-pipe configuration), and we take
separate control volumes of length �x in the tube and shell, respectively. As in the
preceding section, the rate of heat transfer across the interface with area πD�x from
the tube to the shell is hTπD�x(Tt − Ts), where D is the diameter of the tube. The
tube fluid enters the control volume at x and exits at x + �x, whereas the shell fluid
enters at x + �x and exits at x. The energy balances at steady state for the tube and
shell, respectively, are therefore

0 = ρt qt cpt [Tt (x) − Tt (x + �x)] + �Q̇t

= ρt qt cpt [Tt (x) − Tct (x + �x)] + hTπD�x (Ts − Tt ) , (13.26a)

0 = ρsqscps [Ts(x + �x) − Ts(x)] + �Q̇s

= ρsqscps [Ts(x + �x) − Ts(x)] − hTπD�x(Ts − Tt ). (13.26b)

For each of these equations we now follow the procedure employed in Section 5.6
for the countercurrent membrane separation, for which the formulation is identical
in mathematical structure except for nomenclature, and in the preceding section for

cold fluid out

cold fluid in

hot fluid in hot fluid out

x = L x = o 

Figure 13.5. Schematic of a double-
pipe heat exchanger.
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x x + Δx

ρs  qs  cps 
Ts (x + Δx)

Tt (x + Δx)Tt  (x)

Ts (x)

ρt  qt  cpt Figure 13.6 Control volumes for a double-
pipe heat exchanger.

the coil equation; namely, we divide by �x and take the limit as �x goes to zero to
obtain a pair of coupled equations:

Tube : ρt qt cpt
dTt

dx
= hTπD(Ts − Tt ) , (13.27a)

Shell : ρsqscps
dTs

dx
= hTπD(Ts − Tt ) . (13.27b)

The tube fluid enters with a temperature Tto at x = 0 and the shell fluid enters with a
temperature TsL at x = L. Again, following the procedure in Section 5.6, we assume
constant physical properties for convenience, equate the left-hand sides of these two
equations, and integrate the derivatives to obtain

Tt = Tto + Ts − Tso, (13.28)

β
dTs

dx
= Ts − Tt = (1 − ) Ts + Tso − Tto. (13.29)

The two parameters, which are introduced for notational convenience, are  =
ρsqscps/ρt qt cpt (dimensionless) and β = ρsqscps/hTπD (dimensions of length). Note
that Tso is an unknown as we have formulated the problem (known feed temper-
atures, unknown outlet temperatures), and we have not yet used the fact that we
know the feed temperature of the shell fluid, TsL.

Equation 13.29 is of a form that we have solved many times, and we can readily
establish that the solution in terms of the unknown quantity Tso is

Ts(x) = 1
1 − 

[
(Tso − Tto) e(1−)x/β + Tto − Tso

]
. (13.30)

We can now establish the relation between the unknown Tso and the known tem-
perature TsL by setting x = L in Equation 13.30 and doing some algebra to obtain

Tso = (1 − )TsL + [
e(1−)L/β − 1

]
Tto

e(1−)L/β − 
. (13.31)

Equations 13.28, 13.30, and 13.31 contain all the information required to solve for
the temperature profiles in the two parts of the heat exchanger. Typical temperature
profiles are shown schematically in Figure 13.7. It is easy to show that the same
equations hold for co-current flow, but now the known quantities may be presumed
to be the two feed temperatures, Tto and Tso.
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Figure 13.7. Typical temperature profiles
in a countercurrent double-pipe heat
exchanger.

For design purposes we are likely to need the amount of heat transferred between
the two streams. As in Equation 13.24 for the coil in a tank, we write

Q̇s

hTπ DL
= −Q̇t

hTπ DL
= 1

L

L∫
0

[Tt (x) − Ts(x)]dx = Tso + (Tto − Tso) β

(1 − ) L

(
e(1−)L/β − 1

)

= 

e(1−)L/β − 

[
(Tto − TsL)

(
β

L

(
e(1−)L/β −1

)
−1

)
+e(1−)L/β Tto − TsL

]
.

(13.32)

Equation 13.32 provides the information that we want, but it is rather lacking in
aesthetics and does not lend itself easily to the extraction of information. (It is an
implicit equation for , for example, which is the quantity needed to determine
the flow rate ratio for a given heat load and a fixed area.) Equation 13.32 can be
manipulated with considerable effort* into a form that is in common use:

Q̇s

hTπ DL
= (Tt L − TsL) − (Tto − Tso)

ln [(Tt L − TsL) / (Tto − Tso)]
≡ �TL − �To

ln (�TL/�To)
≡ �Tlm. (13.33)

�Tlm is known as the log-mean temperature difference.**

Equation 13.33 is a convenient form when the inflow and outflow temperatures
of both streams are known and we wish to choose the area for a specified heat load,
since the four temperatures and the heat load uniquely define the required heat
transfer area for a given heat transfer coefficient. The most common design problem
is one in which we are given the flow rate of a process stream, the inlet temperature,
and the desired outlet temperature; for illustrative purposes we will take this stream

* The derivation of Equation 13.33 is much simpler if one seeks the equation directly. By subtracting
Equation 13.37b from Equation 13.37a we obtain an equation for the difference (Tt – Ts), which can
be integrated to give Tt (x) − Ts(x) = (Tto − Tso) exp(−(1 − )x/β). An overall energy balance for
which the control volume is the entire shell and tube between x = 0 and x = L gives Tto + Tsl =
Tt L + Tso. These two relations together immediately give Equation 13.33.

** It is important to note that the log-mean temperature difference is specific to the shell-and-tube heat
exchanger and is defined in order to be able to write the overall heat transfer rate in the form of the
total area multiplied by a heat transfer coefficient multiplied by a temperature difference. Students
sometimes gain the mistaken impression in heat transfer courses that driving forces for heat transfer
must always be of the log-mean form, which is, of course, untrue.
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to be the tube flow. We are also typically given the inlet temperature of the cooling
or heating medium, but we may or may not be given the flow rate.

The heat load is determined from an overall balance that takes the tube as the
control volume, giving

Q̇s = ρt qt cpt (Tto − Tt L). (13.34a)

When the heat load is known, the relation between the shell flow rate and the exit
temperature Tso is determined from a balance that takes the shell as the control
volume:

Q̇s = ρsqscps (Tso − TsL). (13.34b)

Equations 13.33 and 13.34a,b provide all of the information required to complete
the design, provided that either the shell flow rate or the shell outlet temperature
is specified. If neither is given then the problem is underdetermined and the design
must include further criteria. Liquid pressure drop, which determines pumping costs,
is often a factor that must be incorporated.

In practice, multiple parallel tubes (a “tube bundle”) may be used in a single
shell. It is straightforward to show that Equations 13.32 and 13.33 remain valid as
long as D is replaced by ND, where N is the number of tubes in the bundle.

EXAMPLE 13.4 We must reduce the temperature of a small process steam flowing
at 2 kg/min from 90◦C to 30◦C. The stream has the physical properties of
water. Cooling water is available at 20◦C and may be discharged at a maximum
temperature of 50◦C. What are the specifications of a double-pipe heat exchanger
if hT = 400 W/m2K?

The heat load is obtained from Equation 13.34a, with cpt = 4,180 J/kg and
ρ tqt = 2 kg/m = 1/30 kg/s, to be 8,360 W. If we assume that the cooling water is
discharged at the maximum allowable temperature, 50◦C, then it follows from
Equation 13.34b that ρsqs = 1/15 kg/s = 4 kg/min. �TL = 30 − 20 = 10◦C and
�To = 90 – 50 = 40◦C, hence �Tlm = (10 − 40)/ln (10/40) = 21.65◦C. From
Equation 13.33, 8,360 W = (400 W/m2K)πDL(21.65 K), and πDL = 0.965 m2.
If D = 2.5 cm, say, then L = 12.3 m. This is unrealistically long, but if ten parallel
tubes of the same diameter were used then the length of the exchanger would
be only 1.23 m.

13.6 Concluding Remarks

Temperature control is a critical element of almost everything that chemical engi-
neers do. The modes of heat exchange introduced in this chapter give a sense of
how things are done, and the design issues are fairly clear. Real heat exchangers,
especially of the shell-and-tube type, tend to be more complex in design; there may
be multiple tubes within a single shell, for example, or multiple passes of the tube
within the shell, with the flow sometimes co-current and sometimes countercurrent.
One or both fluids might be a gas or a boiling or condensing liquid. Texts on heat
transfer and handbooks illustrate the range of possibilities and give design equations.
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The general approach is the same for all designs, and the intellectually challenging
issue is to understand the detailed contributions to the heat transfer coefficient from
materials of construction, flow regimes, and fluid properties. This last aspect is usu-
ally a focus of the heat transfer portion of chemical engineering courses on transport
processes.

Bibliographical Notes

Heat exchange is often covered in the chemical engineering curriculum as part of a
sequence in transport processes (fluid mechanics and heat and mass transfer), or in
a course on mass and energy balances, and there are many textbooks in common use
with one or the other phrase in the title. Part of this chapter is based on material that
first appeared in sections 11.8–11.10 of Russell and Denn, Introduction to Chemical
Engineering Analysis. A recent text with some common material from Russell and
Denn is

Russell, T. W. F., A. S. Robinson, and N. J. Wagner, Mass and Heat Transfer:
Analysis of Mass Contactors and Heat Exchangers, Cambridge University
Press, New York, 2008.

Mechanical engineering departments typically offer courses in heat transfer that
may be included in the chemical engineering curriculum. There are many mechan-
ical engineering textbooks on heat transfer, all of which include the material in
this chapter. Chemical and mechanical engineering handbooks are good sources of
illustrations of more complex heat exchange configurations and design equations.

PROBLEMS

13.1. Liquids are contained in concentric cylinders of height L, where the radius of
the inner cylinder is R and the radius of the outer cylinder is R. If the temperatures
T1 (inner) and T2 (outer) are initially different, how long will it take to reach equi-
librium? You may assume that the relevant physical properties of the two liquids
are the same.

13.2. A cylindrical preheat tank with a length-to-diameter ratio of 1 and a capacity
of 100 m3 is used in a semibatch operation. The tank is completely jacketed, and the
temperature of the heating material in the jacket is maintained at 100◦C by steam
that condenses. The material to be heated has the properties of water, and you may
assume that hT = 800 W/m2 K. The initial temperature of the liquid in the tank is
20◦C. How does the tank temperature vary with time? How long will it take for the
tank temperature to reach 80◦C?

13.3. You are required to design a jacketed system to heat a continuous flow of
1 m3/min of a liquid with the physical properties of water from 20◦C to 80◦C. You may
assume that the heating medium is condensing steam, so that the jacket temperature
is always at 100◦C. You decide to use a cylindrical tank with a length-to-diameter
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ratio of 1, and you may assume that that hT = 800 W/m2 K. How large must the
tank be?

13.4. Show that Equations 13.32 and 13.33 apply to an exchanger in which there are
N parallel tubes of identical diameter if D is simply replaced by ND.

13.5. Derive Equations 13.34a and b.

13.6. Consider the process in Example 13.4. Can you reduce the required area
substantially by changing the coolant flow rate?

13.7. A crude oil stream available at 209◦C is to be used to cool a heavy gas oil stream
from 319◦C to 269◦C in a shell-and-tube heat exchanger. The crude oil is on the shell
side and the gas oil on the tube side. The flow rates of the streams are 105,700 kg/hr
for the gas oil and 367,600 kg/hr for the crude oil. The physical properties vary
somewhat with temperature, but you may take the heat capacities of the gas oil and
crude oil to be 3.14 and 2.67 J/kg K, respectively. The heat transfer coefficient is
450 W/m2 K. What heat transfer area will be required? If the tube diameter is to be
15 cm, what size must the exchanger be? (The process variables and all parameters
are taken from R. Mukherjee, Chem. Eng. Progress, February 1998.)



14 Energy Balances for Multicomponent
Systems

14.1 Introduction

Most systems of interest to chemical engineers are multicomponent, and a bit of
reflection tells us that the internal energy of a multicomponent system must depend
on the composition as well as on the temperature and pressure. We know, for exam-
ple, that the temperature increases without adding any heat when sulfuric acid and
water at the same temperature are mixed together. Writing energy balances for mul-
ticomponent systems is straightforward, but it is delicate and requires a bit of care.
The engineering literature, including textbooks and basic handbooks, abounds with
incorrect energy balances, often because of unwarranted shortcuts. I have published
a brief catalog of incorrect energy balances elsewhere.* Perhaps the most unsettling
example on that list is a computer program offered for sale by a leading corporation
to model a chemical reactor for converting coal to CO and H2. The most impor-
tant consideration in operating such a reactor is getting the location and magnitude
of the highest temperature (the hot spot) right, because too high a temperature or
an incorrect location will affect the structural integrity of the reactor. The model
predicted steady-state and transient profiles of solid- and gas-phase temperatures,
coal conversion, and the concentrations of many gaseous species, but it contained
an error that guaranteed that the hot spot would be computed incorrectly!

The purpose of this chapter is to provide an introduction to energy balances for
multicomponent systems. This is a subject that is addressed in detail in courses on
thermodynamics, and also to some extent in courses on reaction engineering, and
the scope is too broad to do more than touch on the subject here. As we have done
previously, we will restrict ourselves to liquid systems far from the critical point; this
enables us to ignore the pressure dependence of the enthalpy (cf. Appendix 12.3),
which would not be permissible for a gas or for a liquid near the critical point, where

* See the Bibliographical Notes. Some years ago I gave a plenary talk entitled “How to write an
incorrect energy balance, or Why should you be different from everyone else?” at an international
conference on heat and mass transfer. The next speaker harrumphed a bit and then started his
talk with “In view of the previous talk, the equations we used are not exactly correct, but . . . .”
Determining when commercial software is computing what it is supposed to compute may be the
most difficult challenge faced by many engineering practitioners.
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compressibility is important. This assumption, which is admittedly restrictive from
the perspective of many applications, permits us to focus on the consequences of the
composition dependence of the thermodynamic quantities and gives results that are
easily generalized with the study of gas and multiphase systems at a later date.

14.2 Partial Molar Enthalpy

This section is tedious, but there is no choice other than to work through it slowly
and carefully, because the concept that is introduced – the partial molar enthalpy –
is essential to the analysis of the energetics of all multicomponent systems, from an
industrial reactor to a cell in the human body.

Consider the enthalpy in a control volume. The enthalpy depends on the tem-
perature and pressure, but also on the number of moles n1, n2, . . . , nS of each of the
S component species; that is,

H = H(T, p, n1, n2, . . . , nS). (14.1)

Now, suppose that the temperature, pressure, and composition are changing with
time. We then use the chain rule of differential calculus to write the rate of change
of the enthalpy in terms of the rates of change of each of its arguments:

dH
dt

= ∂ H
∂T

)
p,ni

dT
dt

+ ∂ H
∂p

)
T,ni

dp
dt

+ ∂ H
∂n1

)
T,p,ni ; i �=1

dn1

dt

+ ∂ H
∂n2

)
T,p,ni ; i �=2

dn2

dt
+ · · · + ∂ H

∂nS

)
T,p,ni ; i �=S

dnS

dt
. (14.2)

Equation 14.2 is simply a mathematical statement of the obvious: The rate of change
of the entire quantity is equal to the sum of the rates of change with respect to
each argument, multiplied by the rate of change of that argument when all other
arguments are held fixed.

The rate of change of the enthalpy with respect to each component species is
called the partial molar enthalpy, denoted by the symbol h̃i :

h̃i ≡ ∂ H
∂ni

)
T,p,nj ; j �=i

. (14.3)

Imagine a beaker filled with a known composition at a given temperature and pres-
sure. Now add an infinitesimal amount of species i while holding the temperature,
pressure, and numbers of moles of all other component species constant. The partial
molar enthalpy h̃i is the ratio of the infinitesimal change in the total enthalpy to
the infinitesimal change in the number of moles of species i. We then write Equa-
tion 14.2 as

dH
dt

= ∂ H
∂T

)
p,ni

dT
dt

+ ∂ H
∂p

)
T,ni

dp
dt

+ h̃1
dn1

dt
+ h̃2

dn2

dt
+ · · · + h̃S

dnS

dt
. (14.4)

The partial molar enthalpy is a specific quantity; that is, it is evaluated on a per
mole basis. Hence, whereas the total enthalpy depends on the absolute number



14.3 Heat of Solution 219
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Figure 14.1. Schematic of a
calorimeter experiment to
measure the heat of solution.

of moles of each component species, the partial molar enthalpy depends on the
molar concentration of each component species (and, of course, on temperature and
pressure).

Now, let us do a thought experiment. Suppose that we start with an empty
tank, and add liquid at a constant molar composition at a fixed temperature and
pressure. The first two terms on the right-hand side of Equation 14.4 are therefore
zero (dT/dt = 0, dp/dt = 0), and, because the composition is constant, the partial
molar enthalpies h̃1, h̃2, . . . , h̃S are constants. We can therefore write Equation 14.4
as

Fixed T, p, and {ci } :
dH
dt

= d
dt

(h̃1n1 + h̃2n2 + · · · + h̃SnS), (14.5)

or, integrating from the time at which we start filling the tank to the present,

H = h̃1n1 + h̃2n2 + · · · + h̃SnS =
S∑

i=1

h̃i ni . (14.6)

The constant of integration is zero, since there is no enthalpy when the tank is empty.
(Equation 14.6 is not an intuitively obvious result!) We can obtain the enthalpy per
unit mass by dividing by ρV and using the fact that ci = ni/V:

h = 1
ρ

(h̃1c1 + h̃2c2 + · · · + h̃ScS) = 1
ρ

S∑
i=1

h̃i ci . (14.7)

14.3 Heat of Solution

The heat of solution, also called the heat of mixing (the enthalpy change on mixing
is a better name), is a quantity that is often needed for calculations. The heat of
solution is best defined through an experiment, which is illustrated in Figure 14.1.
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We mix two pure steams together, and we carefully measure the heat that must be
added or removed to keep the temperature constant. Such a device is known as a
calorimeter. The control volume is the chamber in which the mixing takes place.

It is convenient to work in molar units. The mass balances for the two component
species are then

MwA
dnA

dt
= ρA qAf , MwB

dnB

dt
= ρB qBf . (14.8a,b)

Mwi denotes the molecular weight of species i. In writing the energy balance we need
to generalize the development in Chapter 12 in an obvious way to include two inlet
streams. There is no outlet stream, and we assume that there is negligible shaft work
and that kinetic and potential energy terms can be neglected relative to the thermal
terms. The generalization of Equation 12.7 to include two feedstreams with these
assumptions is then

dU
dt

= ρA qAf hA + ρB qBf hB + Q̇. (14.9)

To reiterate, hA and hB are the enthalpies per unit mass of the pure species A and
B, respectively, and the temperatures in the two feedstreams and in the tank are the
same. The heat transfer term is required to maintain the tank temperature at the
desired constant value.

We now make use of the fact that dU/dt is approximately equal to dH/dt for
a liquid system far from the critical point. We also note that Equations 14.8a and
b can be substituted for the ρq terms on the right side of Equation 14.9, and that

˜
hi = Mwi hi for i = A, B. Equation 14.9 then becomes, after a small amount of
algebra,

dH
dt

= d
dt

(h̃AnA + h̃BnB) = d
dt

(
˜
hA nA +

˜
hB nB + Q). (14.10)

Q is the total amount of heat transferred, and dQ/dt = Q̇. The integrals of the two
sides from t = 0 until any future time must be equal, and the constant of integration
must be zero, since initially there is nothing in the tank. We therefore write

Q = nA(h̃A −
˜
hA) + nB(h̃B −

˜
hB). (14.11)

We will define A as the solute and B as the solvent. The heat added per unit mole of
solute is known as the integral heat of solution, which we denote �

˜
Hs

*:

�
˜
Hs ≡ Q

nA
= (h̃A −

˜
hA) + nB

nA
(h̃B −

˜
hB). (14.12)

The heat of solution is thus measured directly in the calorimeter experiment. Typical
data for a number of aqueous solutions at 25◦C (298 K) are shown in Figure 14.2.
If �

˜
Hs > 0 then, in accordance with the convention on the sign of Q, heat must

be added to the system in order to keep the temperature constant; this is called
endothermic mixing. If �

˜
Hs < 0, heat must be removed from the system to maintain

the temperature; this is called exothermic mixing. A system for which the heat of

* For consistency with common usage, we have deviated here from our practice of using uppercase
letters for total (extensive) quantities and lowercase letters for specific (intensive) quantities.
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mixing is zero for all concentrations is called ideal; in this case the partial molar
enthalpy of each species must be equal to the enthalpy per unit mole of the pure
compound at the same temperature and pressure.

Consider the heat of solution data for the sulfuric acid–water system, for exam-
ple, which we will use subsequently for some calculations. In our nomenclature, A is
sulfuric acid (H2SO4) and B is water. The heat of solution of this system is strongly
concentration dependent until a ratio of about 20 moles of water to 1 mole of sul-
furic acid is reached. Beyond this concentration, �

˜
Hs becomes nearly constant at

–73 kJ/mol acid, or –17.5 kcal/mol acid. This constant value is often called the heat of
solution at infinite dilution. (A constant value clearly must be approached, because
the partial molar enthalpy of water in the solution must approach the enthalpy per
mole of pure water as the system become more and more dilute, and the second term
on the right of Equation 14.12 will then go to zero.) The heat of solution at infinite
dilution at 25◦C is tabulated in standard collections of physical constants, and some
representative data are shown in Table 14.1. In the absence of data at the needed
concentrations, heat of solution data at infinite dilution can often be used to yield
limiting values for preliminary design purposes.

EXAMPLE 14.1 To get a sense of magnitudes and the effect of concentration,
suppose that we plan to mix 700 g of water with 100 g of sulfuric acid at 25◦C,
and we wish to maintain the temperature of the mixture at 25◦C. How much
heat must be removed?

The molecular weights of sulfuric acid (A) and water (B) are 98 and 18,
respectively, so nA = 100/98 = 1.02, nB = 700/18 = 38.9, and nB/nA = 38.1. From
Figure 14.2, �

˜
Hs = –73.4 kJ/mole, and Q = nA �

˜
Hs = 1.02 × (−73.4) = − 74.9 kJ.
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Table 14.1. Heats of solution at infinite dilution in water
at 25◦C for selected compounds.

Compound
�

˜
Hs at infinite dilution

(kJ/g-mol)

Acetic acid + 9.6
Ammonium nitrate + 27.2
Cuprous sulfate − 48.5
Magnesium iodide − 209.8
o-nitrophenol + 26.3
p-nitrophenol + 18.8
Potassium hydroxide − 53.9
Potassium iodide + 21.7
Sodium chloride + 5.0
Sodium citrate − 22.2
Sucrose + 5.4

That is, 74,900 Joules (17,900 calories) must be removed to maintain the tem-
perature at 25◦C.

EXAMPLE 14.2 Now suppose that we plan to make 200 g of a 50-weight percent
sulfuric acid–water solution, and then to mix that solution with 600 g of water
to give us the same final concentration, and that we wish to keep the solution at
25◦C. How much heat must be removed?

In the 50 percent solution nA = 100/98 = 1.02, nB = 100/18 = 5.55, and
nA/nB = 5.44. At this molar ratio the integral heat of solution (to the accuracy at
which it can be read from Figure 14.2) is –58 kJ/mol, and Q = –58 × 1.02 = –59
kJ. Since the total heat that had to be removed to make the 700:100 g mixture
was 74.9 kJ, the additional heat that must be removed on adding the additional
600 g of water to the 50:50 mixture is 15.9 kJ. Thus, it is clear that most of the
heat removal is associated with the first addition of the water to the pure acid,
and that there is a smaller marginal effect from further dilution. (On reflection,
this conclusion is obvious from the shapes of the curves in Figure 14.2, but the
concrete example is helpful in understanding the point.)

14.4 Heat Capacities of Mixtures

We need a few more relations before we can address problems of significance. The
first task is to obtain an equation for the heat capacity of a mixture; for a binary
mixture the heat capacity can be readily obtained in terms of the heat capacities of
the pure materials and the enthalpy of mixing, as follows:

From Equation 12.14, Cp = ∂ H
∂T )p,ni . By rearranging Equation 14.6 we can

write

H = nA�
˜
HS + nA

˜
hA + nB

˜
hB. (14.13)
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Thus,

Cp = ρVcp = nA
∂�

˜
HS

∂T
+ nA

˜
cpA + nB

˜
cpB, (14.14a)

or

cp = 1
ρ

[
cA

∂�
˜
HS

∂T
+ cA

˜
cpA + cB

˜
cpB

]

= 1
ρ

[
cA

∂�
˜
HS

∂T
+ cAMwAcpA + cBMwBcpB

]
. (14.14b)

For an ideal mixture, in which �
˜
Hs is zero, or in a nondeal mixture in which �

˜
Hs

is a weak function of temperature, the heat capacity of the mixture is simply the
weighted sum of the pure component heat capacities.

Heat of solution data as a function of temperature for a range of compositions
are rarely available, so these equations are not especially useful. Equation 14.14b
with ∂�

˜
HS/∂T set to zero (i.e., a weighted sum of pure component heat capacities)

often provides an adequate estimate of the heat capacity of a mixture, although
experimental data should be used whenever possible. When the heat of solution can
be neglected, the heat capacity of a mixture of S species is

Ideal solution: cp =
S∑

i=1

ci
˜
cpi =

S∑
i=1

ci Mwi cpi , (14.15)

where i = 1, 2, . . . S refers to each of the component species in turn.
The results of this section can be used to calculate the temperature dependence

of the heat of solution if the heat capacities are known, and this is the more useful
result. Equation 14.14b can be written

cA
∂�

˜
HS

∂T
= ρcp − cAMwAcpA − cBMwBcpB. (14.16)

When the concentrations are constant, this equation can be integrated with respect to
temperature from the temperature To at which data are reported to any temperature
T to yield

cA�
˜
HS(T) = cA�

˜
Ho

S +
T∫

To

[ρcp(T′) − cAMwAcpA(T′)

− cBMwBcpB(T′)]dT′, (14.17)

where T′ is the dummy variable of integration and �
˜
Ho

S denotes �
˜
HS(To). For

constant heat capacities this simplifies to

cA�
˜
HS(T) = cA�

˜
Ho

S + (ρcp − cAMwAcpA − cBMwBcpB) (T − To) . (14.18)
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14.5 Semibatch Mixing

Before addressing the general problem of continuous mixing it is helpful to return
to the semibatch calorimeter shown schematically in Figure 14.1. The integral of
Equation 14.10 can be written

H(T, t) = nA(t)
˜
hA(TA) + nB(t)

˜
hB(TB) + Q, (14.19)

where T(t) is the time-dependent temperature of the liquid in the tank and TA and
TB are the constant temperatures of the pure inlet A and B streams, respectively.
With Equation 14.13 we can then write

H(T, t) = nAh̃A(T, t) + nBh̃B(T, t) = nA
˜
hA(T) + nA

˜
cpA (TA − T)

+ nB
˜
hB(T) + nB

˜
cpB (TB − T) + Q, (14.20)

where nA and nB are known functions of time, obtained directly from the rate at
which each pure component is added. We have used the pure component heat
capacities (assumed to be constants) to evaluate the pure component enthalpies
at the tank temperature, T; this step is necessary because the various terms in the
enthalpy of mixing must be evaluated at the same temperature. With the definition
of the enthalpy of mixing, Equation 14.12, this equation can be rewritten as

T(t) = nA
˜
cpATA + nB

˜
cpBTB + nA[−�

˜
HS(nB/nA, T)] + Q

nA
˜
cpA + nB

˜
cpB

. (14.21)

It is important to note that this equation is valid at all times, subject only to the
assumption of constant pure component heat capacities and constant feed tempera-
tures. The equation can be written in an equivalent form in terms of the enthalpy of
mixing evaluated at the reference temperature by use of Equation 14.18 as

T(t) = To + nA[−�
˜
Ho

S (nB/nA)] + nA
˜
cpA(TA − To) + nB

˜
cpB(TB − To) + Q

ρVcp
.

(14.22a)

ρV is the total mass in the tank at time t, and cp is the composition-dependent heat
capacity of the mixture. It is often convenient to write the equation entirely in terms
of heat capacities per unit mass, as follows:

T(t) = To + xA[−�
˜
Ho

S (nB/nA)]
MwAcp

+ xA
cpA

cp
(TA − To)

+ (1 − xA)
cpB

cp
(TB − To) + Q

ρVcp
. (14.22b)

xA is the mass fraction of A at any time.

EXAMPLE 14.3 Suppose that we mix 50 kg each of sulfuric acid at –4◦C (A) and
water at 0◦C (B) in an insulated vessel (Q = 0). What is the resulting temperature
of the mixture?

After mixing we have xA = 0.5, MwA = 98, and nB/nA = 98/18 = 5.4. The
enthalpy of mixing from Figure 4.1 at To = 25o is about –58,500 kJ/g-mol acid.



14.5 Semibatch Mixing 225

4.5

4

3.5

3

2.5

2

1.5

1
0 0.1 0.2 0.3 0.4 0.5

Mass Fraction H2SO4

c p
, J

/g
K

0.6 0.7 0.8 0.9 1

Figure 14.3. Heat capacity per unit mass of sulfuric acid-water mixtures at 20◦C.

Heat capacity data for the sulfuric acid-water system at 20◦C are shown in Figure
14.3, with values for the relevant streams as follows: water = 4.2 J/g K, 50 percent
by weight acid = 2.5 J/gK, and 100 percent acid = 1.4 J/gK. We will assume for
simplicity that the heat capacities are constant. Substitution of these numbers
into Equation 14.22b, with MwA = 98 and Q = 0, then gives a tank temperature
of T = 115◦C. This is below the boiling point of 50 percent sulfuric acid, which is
about 123◦C. Had we fed both streams at, say, 25◦C, the computed temperature
in the tank would have been 144◦C, which is above the boiling point and outside
the range of validity of the liquid analysis.

The large temperature rise on mixing is an important processing consid-
eration. It is usually a poor idea to use constant values for the heat capacities
over such large temperature ranges, but for the system at hand the error is not
particularly serious.

EXAMPLE 14.4 We did not consider the manner in which the mixing was carried
out in the preceding example, since we were interested only in the temperature
when all of the material was in the tank. Now suppose we consider two different
adiabatic mixing programs:

I. The 50 kg of acid at –4◦C is initially in the tank, and the water at 0◦C is
added at a constant rate of 5 kg/min for 10 minutes. Then xA = 50/(50 +
5t), 0 ≤ t ≤ 10.

II. The 50 kg of water at 0◦C is initially in the tank, and the acid at –4◦C is
added at a constant rate of 5 kg/min for 10 minutes. Then xA = 5t/(50 +
5t), 0 ≤ t ≤ 10.

We seek the temperature as a function of time for each program.
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The molar ratio nB/nA is computed at any time from the equation nB/nA =
MwA(1 − xA)/MwBxA. �

˜
Ho

S and cp are obtained from Figures 14.2 and 14.3 at
enough values of t between 0 and 10 to establish the two temperature ver-
sus time curves in Figure 14.4. Note that in Case II, acid added to water,
the final temperature is approached gradually from below. In Case I, water
added to acid, the temperature rises rapidly and reaches a maximum after 3
minutes that exceeds the final temperature by 47◦C, declining thereafter. The
mixture does not boil in this case, since the boiling point of a mixture of mass
fraction xA = 50/(50 + 5t) is always greater than the computed temperature
TI(t) in this example. This calculation dramatically illustrates the reason for
the chemistry laboratory safety rule of add acid to water. There are important
aspects of the temperature transient that are best seen with a formulation that
is developed in the next section, and we will return to this important example
subsequently.

14.6 Continuous Mixing

We can now consider the general class of mixing problems shown in Figure 14.5.
Streams 1 and 2, each mixtures of A and B at temperatures T1 and T2, respectively,
are mixed in a well-stirred tank. We seek the equations describing the design and
operation of such a system. The equations of conservation of mass are simply

Overall mass:
dρV
dt

= ρ1 q1 + ρ2 q2 − ρq, (14.23)

Species A (moles):
dnA

dt
= dcAV

dt
= q1cA1 + q2cA2 − qcA, (14.24a)

Species B (moles):
dnB

dt
= dcBV

dt
= q1cB1 + q2cB2 − qcB. (14.24b)
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The energy balance, Equation 12.7, adjusted to account for two inlet streams and
neglecting potential and kinetic energy terms and the difference between rates of
change of U and H for a liquid system, is

dH(T)
dt

= ρ1 q1 h1(T1) + ρ2 q2 h2(T2) − ρqh(T) + Q̇ − ẆS, (14.25)

where we have been careful to note the temperature at which each enthalpy is
evaluated. (Each enthalpy is also a function of the relevant composition, of course,
but that is implied by the subscript or lack thereof.) We need to evaluate all enthalpies
at the same temperature. There are two obvious choices: the temperature of the
tank, and the reference temperature at which enthalpies of mixing are tabulated.
We choose the former, in which case we can write

h1(T1) = h1(T) + ρ1cp1 (T1 − T) ,

h2(T2) = h2(T) + ρ2cp2 (T2 − T) . (14.26a,b)

Here we have taken the heat capacities to be constants for convenience. In the case
of temperature-dependent heat capacities we simply replace the second terms with
integrals, as in Equation 12.18b.

Following Equation 14.4, we write Equation 14.25 as

dH
dt

= ρVcp
dT
dt

+ h̃A
dnA

dt
+ h̃B

dnB

dt

= ρVcp
dT
dt

+ h̃A (q1cA1 + q2cA2 − qcA) + h̃B (q1cB1 + q2cB2 − qcB)

= ρ1 q1 h1(T) + ρ1 q1cp1(T1 − T) + ρ2 q2 h2(T)

+ ρ2 q2cp2(T2 − T) − ρqh(T) + Q̇ − ẆS. (14.27)



228 Energy Balances for Multicomponent Systems

We now write (cf. Equation 14.7)

ρ1 h1 = cA1h̃A1 + cB1h̃B1, ρ2 h2 = cA2h̃A2 + cB2h̃B2,

ρh = cAh̃A + cBh̃B. (14.28a,b,c)

After a bit of algebra, in which the terms involving q cancel between the two sides
of the equation, Equation 14.27 becomes

ρVcp
dT
dt

= ρ1 q1cp1(T1 − T) + ρ2 q2cp2(T2 − T) + Q̇ − ẆS

+ cA1 q1

[
h̃A1 − h̃A + cB1

cA1
(h̃B1 − h̃B)

]

+ cA2 q2

[
h̃A2 − h̃A + cB2

cA2
(h̃B2 − h̃B)

]
. (14.29)

The terms involving partial molar enthalpies appear to be related to the enthalpies
of mixing, but some manipulation is required to obtain the correct forms. (Note that
the enthalpies of mixing involve pure component enthalpies, which are absent in this
equation.) Consider the term cA1 q1[h̃A1 − h̃A + cB1

cA1
(h̃B1 − h̃B)]. We can rewrite this

as

cA1 q1

[
h̃A1 −

˜
hA + cB1

cA1
(h̃B1 −

˜
hB)

]
− cA1 q1

[
h̃A −

˜
hA + cB1

cA1
(h̃B −

˜
hB)

]

= cA1 q1�
˜
HS1 − cA1 q1

[
h̃A −

˜
hA + cB1

cA1
(h̃B − h̃B)

]
.

Performing a similar operation on the remaining term, together with a few further
manipulations, we can write Equation 14.29 in the equivalent form

ρVcp
dT
dt

= ρ1 q1cp1(T1 − T) + ρ2 q2cp2(T2 − T) + cA1 q1�
˜
HS1

+ cA2 q2�
˜
HS2 − (cA1 q1 + cA2 q2) �

˜
HS + Q̇ − WS

+
[

cB

cA
(cA1 q1 + cA2 q2) − (cB1 q1 + cB2 q2)

]
(h̃B −

˜
hB). (14.30)

These terms are all familiar – the three �
˜
HS terms represent the enthalpies of

mixing of the two feedstreams and the vessel composition, for example – except for
the final one, containing h̃B −

˜
hB. This term is in fact identically zero for a steady-

state composition (dnA/dt = dnB/dt = 0) or for “infinite dilution,” where h̃B ≈
˜
hB,

as well as other special situations. In the general case we can derive the following
relationship by differentiating Equation 14.12 with respect to nB/nA:

h̃B −
˜
hB = ∂�

˜
HS

∂ (nB/nA)
. (14.31)

As is evident from Figure 14.2, for small nB/nA this can be a very large quantity!
The general form of the energy equation for a binary, nonreacting liquid system



14.6 Continuous Mixing 229

is then

ρVcp
dT
dt

= ρ1 q1cp1(T1 − T) + ρ2 q2cp2(T2 − T) + cA1 q1�
˜
HS1 + cA2 q2�

˜
HS2

− (cA1 q1 + cA2 q2) �
˜
HS +

[
cB

cA
(cA1 q1 + cA2 q2) − (cB1 q1 + cB2 q2)

]

× ∂�
˜
HS

∂ (nB/nA)
+ Q̇ − ẆS. (14.32)

This is our working equation. For some applications, especially design calculations at
steady state, it is more convenient to evaluate enthalpies at the reference temperature
To at which enthalpies of mixing are tabulated. The full transient equation* has many
terms that vanish at steady state. We leave the conversion to that form as an exercise;
at steady state the result is

Tss = To + β
cp1

cp
(T1 − To) + (1 − β)

cp2

cp
(T2 − To)

+ xA

MwAcp
[−�

˜
Ho

S + ν�
˜
Ho

S1 + (1 − ν)�
˜
Ho

S2] + Q̇ − Ẇs

ρqcp
(14.33)

where β = ρ1 q1/ρq, ν = q1cA1/qcA, and xA is the steady-state mass fraction of A
in the tank. For computation it is useful to recall that nB/nA = cB/cA = MwA(1 −
xA)/MwBxA. Note that for feedstreams that are pure there is a formal equivalence
between Equation 14.32 and Equation 14.22b for semibatch mixing, except in the
heat addition and shaft work terms.

EXAMPLE 14.5 Suppose we wish to mix equal mass flow rates of pure streams of
water at 0◦C (stream 1) and sulfuric acid at –4◦C in an insulated vessel. What is
the temperature in the tank?

We assume that we are at steady state, in which case the tank temperature
is constant and there are equal masses of the two components in the tank, and
that the work of mixing can be neglected. We then have β = 0.5, xA = 0.5, and
nB/nA = 98/18 = 5.4. The relevant physical properties are given in Example 14.3,
and we will assume again for simplicity that the heat capacities are constant. The
enthalpies of mixing in the feedstreams are zero, so Equation 14.32 becomes
identical to Equation 14.22b and we obtain a steady-state tank temperature
Tss = 115◦C.

EXAMPLE 14.6 Now suppose that we wish to design a jacketed heat exchange
system to maintain the temperature in the tank at 90◦C, using an aqueous stream
at Tjf = 20◦C as the coolant. We will assume that the throughput to the mixing
tank is 3 kg/min in both the acid and water streams. What is the required heat
removal rate, and what are the design specifications of the heat transfer system?

The mass flow rate ρq = 6 kg/min = 0.1 kg/s. It readily follows from inspec-
tion of Equation 14.32 that the rate of heat removal is simply ρqcp multiplied
by the difference between the adiabatic temperature computed in Example 14.5

* ρVcp
dT
dt = ρ1q1cp1(T1 − To) + ρ2q2cp2(T2 − To) −

(
ρqcp + MwAcpA

dnA
dt + MwBcpB

dnB
dt

)
(T −

To) + cA1q1�
˜
Ho

S1 + cA2q2�
˜
Ho

S2 − (cA1 + cA2q2)�
˜
Ho

S +
(

cB
cA

dnA
dt − dnB

dt

)
∂�HS

∂(nB/nA) − Q̇ − ẆS.
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(115◦C) and the desired temperature of 90◦C. We therefore obtain a required
heat removal rate of 6,250 W. The design specifications for this heat removal
rate were carried out in Example 13.2, where we used a heat transfer coefficient
of 300 W/m2 K for aqueous liquids in a steel tank. The minimum heat transfer
area was determined to be 0.30 m2 and the minimum coolant flow rate to be 1.26
kg of water per minute; the coolant flow rate for a heat transfer area of 1 m2

would be 1.8 kg/min. The minimum area and flow rate would be the same if we
were to use a cooling coil instead of a jacket, but the required cooling water flow
rate for a heat transfer area of 1 m2 was found in Example 13.3 to be 1.31 kg/min,
just slightly above the minimum. In either case, the cooling water requirement
is roughly half of the process water stream in the mixer. An important part of
the design problem would be to minimize overall water usage and to optimize
the temperatures of the various water streams in the process.

14.7 Acid-to-Water/Water-to-Acid

There are interesting features of the acid-to-water versus water-to-acid issue exam-
ined in Example 14.4 that are revealed by considering the transient temperature
Equation 14.32. When the inlet streams contain only A in stream 1 (which we
denote as stream A here) and only B in stream 2 (denoted as stream B), and
there is no outflow, the equation for adiabatic mixing with negligible mixing work
simplifies to

ρVcp
dT
dt

= ρA qAcpA(TA − T) + ρB qBcpB(TB − T) − ρA qA

MwA
�

˜
HS

+
(

nB

nA

ρA qA

MwA
− ρB qB

MwB

)
∂�

˜
HS

∂ (nB/nA)
. (14.34)

The total mass ρV, the mixture heat capacity cp, the molar ratio nB/nA, and the
enthalpy of mixing �

˜
HS all change with time as the vessel is filled, so this is a

complex equation. It is possible to show that Equation 14.21 is an exact solution to
this equation;* this is a remarkable result, but some of the physical behavior is best
understood by looking directly at Equation 14.34. We consider again the two cases:
Water (B) is added to acid (A) in the tank (Case I), and acid is added to water in the
tank (Case II). For Case II, acid added to water, nearly all of the process occurs in
the infinite dilution regime, where the enthalpy of mixing is essentially constant and
the final term in Equation 14.34 vanishes. We thus have

Case I: ρVcp
dT
dt

= ρB qBcpB(TB − T) − ρB qB

MwB

∂�
˜
HS

∂ (nB/nA)
, (14.35a)

Case II: ρVcp
dT
dt

= ρA qAcpA(TA − T) − ρA qA

MwA
�

˜
HS. (14.35b)

* Simply differentiate nA
˜
cpA (TA − T) + nB

˜
cpB (TB − T) = nA�

˜
HS(nB/nA, T) + Q term by term

with respect to t. The key step is noting that

d�
˜
HS

dt
= ∂�

˜
HS

∂T
dT
dt

+ ∂�
˜
HS

∂(nB/nA)
d(nB/nA)

dt
= ∂�

˜
HS

∂T
dT
dt

+ 1
nA

∂�
˜
HS

∂(nB/nA)

(
dnB

dt
− nB

nA

dnA

dt

)
.

The first term contributes to the heat capacity of the mixture (cf. Equation 4.14.)
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Now, for Case II, the second term on the right-hand side of Equation 14.35b
is always greater than the first term by at least a factor of three, so dT/dt is
always positive and the approach to the final temperature is monotonic from
below. Analysis of Case I requires a simple means of evaluating the second
term, which we do by noting that the curve for H2SO4 in Figure 14.2 can be
roughly approximated by the equation �

˜
HS ∼ −73, 000 [1 − exp (−0.3nB/nA)], so

∂�
˜
HS/∂(nB/nA) ∼ −21, 900 exp(−0.3nB/nA). The second term is larger than the

first by a factor of two when the two streams have mixed completely and nB/nA =
5.4, so the derivative is negative and the approach to the final state is from above.
Hence, there must be a temperature overshoot at an intermediate composition, as
shown in Figure 14.4.

It is also instructive to consider the initial rates of change of the temperatures in
the two cases. The initial masses in the tank (ρV) and the mass flow rates (ρq) are
the same. The temperature difference terms on the right-hand sides of Equations
14.35a and b are initially negligible, since the feed temperatures differ from the
temperatures of the initial material in the tank by only 4◦C. The heat capacity at t = 0
for Case I is cpA, since the starting material in the tank is pure A; similarly, the heat
capacity at t = 0 for Case II is cpB. ∂�

˜
HS/∂(nB/nA) ∼ −21, 900 at t = 0. Hence,

dTI/dt
dTII/dt

∣∣∣∣
t=0

≈ cpBMwA[∂�
˜
HS/∂(nB/nA)]nB/nA=0

cpAMwB[�
˜
HS]nB/nA=∞

= 4.9.

This substantially faster temperature rise when water is added to acid is evident in
Figure 14.4. One point of interest is that the most important contribution to this
phenomenon is the different heat capacities of the two liquids, which differ by a
factor of three.

14.8 Concluding Remarks

The partial molar enthalpy is the most important concept introduced in this chapter,
because it forms the basis for the analysis of thermal effects in all multicomponent
systems, including reacting systems, which are addressed in the next chapter. It is
quite common to find shortcut derivations that attempt to avoid the use of partial
molar enthalpies. These shortcuts are invariably incorrect; they may lead to the
correct working equations for special cases, especially those for which the correct
equations are known, but such approaches always fail in complex situations. The
chemical engineering literature is replete with incorrect energy balances obtained
using shortcuts that give misleading and incorrect results. The approach developed
here, illustrated with thermal effects in mixing, is often tedious, but it is straightfor-
ward and will always give the correct working equations.

It is important to emphasize once more that the treatment in this chapter is
restricted to liquid-phase systems far from the critical point. Gaseous and multiphase
systems are approached in the same manner, but the treatment is more complicated
because of the need to address compressibility and its consequences.
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Bibliographical Notes

The material in this chapter is covered in considerably more detail in chemical engi-
neering thermodynamics courses, which typically comprise one or two core courses
in the chemical engineering curriculum. All of the English-language textbooks in use
at the time of writing contain the words chemical, engineering, and thermodynamics
in the titles, usually in the order shown here.

The catalog of incorrect energy balances mentioned in the introduction is in

Denn, M. M, Process Modeling, Longman, London and Wiley, New York, 1986,
ch. 5.

PROBLEMS

14.1 a. 10 L each of ethanol at –1.1◦C (30◦F), ethylene glycol at –6.67◦C (20◦F), and
water at 26.7◦C (80◦F) are poured into a tank and mixed. What is the final
temperature? Relevant physical property data are

cp(kJ/kg ◦C) ρ(kg/m3)

ethanol 2.17 790
ethylene glycol 2.30 1,130
water 4.18 1,000

b. The final temperature must be 21.1◦C (70◦F). Only the inlet temperature of
the water can be adjusted. What should the water temperature be?

14.2 An insulated tank contains 10 kg of water at 20◦C. A stream of 100 percent
sulfuric acid at 20◦C is added by accident at a rate of 1 kg/min. How long will it take
for the temperature to rise to 100◦C?

14.3 A continuous mixing operation is carried out by adding 0.3 kg/hr of calcium
chloride crystals to a pure water stream flowing at 1 kg/hour.

a. If both streams are at 25◦C when they enter the mixer, what is the temper-
ature of the exit stream?

b. How much heat would have to be removed if the operation were to be
carried out isothermally at 25◦C?

The heat capacity of CaCl crystals is approximated by cp = 0.636 + 1.41 × 10–4T
J/g K, where T is in K.

14.4 a. 5 kg/hr of sodium hydroxide and 10 kg/hr of water are to be mixed in an
insulated tank. Both feedstreams are to be put into the mixer at the same
temperature. What is a safe inlet temperature at which to mix the feeds?

b. We would like to carry out the mixing process in part (a) with the feedstreams
at 20◦C, and we do not wish the effluent temperature to exceed 80◦C. Cooling
water is available at 10◦C, and we would like to use some or all of the cooling
water to provide the 10 kg/hr water feedstream to the mixer. Is this process
feasible using a jacketed vessel? Assume that the heat transfer coefficient
hT is of order 400 W/m2 K.



15 Energy Balances for Reacting Systems

15.1 Introduction

The chemical reactor is the heart of most industrial processes, although the reac-
tor may represent only about 10 percent of the total capital cost; this is because
the output from the reactor defines everything else that must be done downstream,
particularly the separation processes. Similarly, if we wish to think about cellular
rather than industrial processes, it is the chemical reactions that enable the cell or
the organ to carry out its essential functions. We saw in Chapters 7 through 9 how
a chemical reactor is integrated into simple processes, and we explored economic
issues such as the trade-off between capital and operating costs. That discussion
was limited, however, because we assumed in every case that the rate constants
were fixed numbers. In doing so, we ignored one of the “handles” that the chem-
ical engineer – or, in the case of an organism, evolution – has available to pro-
mote efficiency. Chemical reaction rates are highly temperature dependent, and
precise temperature control can be critical in both the design and functioning of a
reactor.

Chemical reaction engineering is a broad subject, and it typically occupies at
least one full course in an undergraduate chemical engineering curriculum. We
introduce some basic ideas here for completeness, but we are only touching on one
of the foundations of the chemical engineering profession. We restrict ourselves
throughout this chapter to liquid systems, as before, in order to simplify some of
the analysis while retaining the essential features, and we address only well-mixed
reactor configurations.

15.2 Temperature Dependence of Reaction Rates

The temperature dependence of the reaction rate is most easily determined by
performing a series of isothermal experiments, as discussed in Chapter 6, over the
temperature range of interest. It is found in nearly all cases that a plot of the logarithm
of the rate constant versus the reciprocal of the absolute temperature is linear, with

233
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Figure 15.1. Rate constant in
L/mol s as a function of recip-
rocal absolute temperature in
K for the decomposition of
sodium dithionate. Data of
Rinker et al., Ind. Eng. Chem.
Fundamentals, 4, 282 (1964).

a negative slope; that is, the reaction rate constant for a reaction of any order will
usually follow the Arrhenius form,

k = koe−E/RT, (15.1)

where R is the ideal gas constant, 8.314 J/K mol, and E is known as the activation
energy. A typical data set, for the decomposition of sodium dithionate, which is a
second-order reaction with a rate constant of the form r = kcS2 O=

4
cH+ , is shown in

Figure 15.1. The slope of ln k versus 1/T is approximately –6,000 K, so the value of
E is approximately 50,000 J/mol. Values of E in the range 40,000 to 120,000 J/mol
are typical. The Arrhenius form can be deduced from first principles, but theoretical
predictions of the parameters k and E are generally unsatisfactory, and experimental
measurement is usually required. It is important to keep in mind that the forward
and reverse rates in a reversible reaction will each have a temperature dependence
of Arrhenius form, but with different activation energies.

15.3 Heat of Reaction

Bonds are broken and reformed in any chemical reaction, entailing internal energy
changes that are observed macroscopically in an insulated vessel by temperature
increases or decreases. We know from the treatment in the preceding chapter that
the partial molar enthalpies of the component species will enter the description of the
reaction vessel, and we can anticipate that a combination of the component partial
molar enthalpies will emerge in the final formulation, as it did with the heat of mixing
in Chapter 14. This combination is the enthalpy change on reaction, commonly called
the heat of reaction and denoted �

˜
HR, which is defined as follows:
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Let the reactants be denoted as A1, A2, A3, . . . and the products as D1, D2, D3, . . . for the
reaction α1A1 + α2A2 + α3A3 + · · · � δ1D1 + δ2D2 + δ3D3 + · · ·. The {αi} and {δi} are
the stoichiometric coefficients; for example, in the reaction H2SO4 + (C2H5)2SO4 �
2C2H5SO4H, which we studied in Example 6.7.1, we have H2SO4 = A1, (C2H5)2SO4 =
A2, and C2H5SO4H = D1, with α1 = α2 = 1 and δ1 = 2. The heat of reaction is defined in
terms of the partial molar enthalpies of the component species in a manner analogous to
the definition of the heat of mixing:

�
˜
HR ≡ δ1h̃D1 + δ2h̃D2 + δ3h̃D3 + · · · − α1h̃A1 − α2h̃A2 − α3h̃A3 − · · · . (15.2)

Thus, the heat of reaction for the sulfuric acid-diethyl sulfate reaction is

�
˜
HR ≡ 2h̃C2H5SO4H − h̃H2SO4 − h̃(C2H5)2SO4 .

Heats of reaction can be calculated from tabulated heats of formation. This is a
topic that is often included in introductory courses in chemistry and may be familiar
to some readers; it is included here as an appendix to this chapter so as not to disturb
the development. Data are usually tabulated at a standard temperature, and they
are often insensitive to temperature; derivation of the equation for the temperature
dependence is left as an exercise.

15.4 The Batch Reactor – I

Heats of reaction are often measured in a batch reactor known as a calorimeter,
which may be operated either isothermally or adiabatically, and the analysis of the
batch reactor is, in any event, a good introduction to the role that the heat of reaction
plays in process behavior. For definiteness we will consider the special case of the
single reaction A + B � μD, which is the case considered in Section 6.7 (where
mass action kinetics were assumed for the forward and reverse rates). Following the
development in Chapter 6, we write the species mass balances in terms of the net
reaction rate as

dnA

dt
= d

dt
cAV = −r V, (15.3a)

dnB

dt
= d

dt
cBV = −r V, (15.3b)

dnD

dt
= d

dt
cDV = +μr V. (15.3c)

We are, of course, assuming that complete mixing has already occurred in the reac-
tion vessel on a time scale that is fast relative to the rate at which the reaction
progresses. The equations can be readily integrated (cf. Section 6.3) to give

nA − nAo = nB − nBo = − 1
μ

(nD − nDo) , (15.4)

where nAo, nBo, and nDo denote the respective number of moles of each component
in the reactor at the start of the reaction.
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The energy equation for this batch system is obtained by deleting the flow terms
in Equation 12.5. Neglecting shaft work, the resulting equation is

dU
dt

= Q̇ ≈ dH
dt

, (15.5)

where we have replaced the derivative of internal energy with the derivative of
enthalpy with little error for this liquid system. This equality between two time
derivatives can be integrated immediately to obtain,

H(T, nA, nB, nD) − H(To, nAo, nBo, nDo) = Q. (15.6)

To refers to the temperature in the reactor at the start of the reaction and Q is
the total amount of heat added during the course of the reaction. The enthalpy is
a function of the composition as well as the temperature, and we have noted the
composition dependence explicitly in order to keep track of the proper values.

We need to calculate all enthalpies at the same temperature, as in the preceding
chapter, and it is most convenient to use the reactor temperature as the reference.
We will assume for convenience that the heat capacity of the starting mixture is
independent of temperature; if this is not the case, temperature differences will
simply be replaced by integrals. We can then write

H (To, nAo, nBo,nDo) = H (T, nAo, nBo,nDo) + ρoVocpo(To − T), (15.7)

where ρo, Vo, and cpo refer to the density, volume, and heat capacity of the original
mixture, respectively. (The product ρV is the total mass, which is a constant, so
henceforth in this development we will drop the subscript o from the density and
volume.) Equation 15.6 then becomes

H(T, nA, nB, nD) − H(T, nAo, nBo, nDo) = Q + ρVcpo(To − T). (15.8)

We now express each enthalpy in terms of the partial molar enthalpies:

H(T, nA, nB, nD) = nAh̃A + nBh̃B + nDh̃D, (15.9a)

H(T, nAo, nBo, nDo) = nAoh̃Ao + nBoh̃Bo + nDoh̃Do. (15.9b)

Here, h̃io refers to the partial molar enthalpy of species i in the initial mixture
composition at temperature T. Finally, we use Equation 15.4 to solve for nB and nD

in terms of nA which, with some rearrangement, results in

(nAo − nA)(μh̃D − h̃A − h̃B) = Q + ρVcpo(To − T) + {nAo(h̃Ao − h̃A)

+ nBo(h̃Bo − h̃B) + nDo(h̃Do − h̃D)}. (15.10)

The linear combination of partial molar enthalpies on the left is the heat of reaction.
The three terms collected in the braces on the right are mixing terms that arise
because of the changing composition. These mixing terms will usually be negligible
compared to �

˜
HR and we will neglect them*; if they are not negligible then there

* Consider, for example, the most common situation, in which nAo = nBo and nDo = 0. Then nA = nB

throughout the course of the reaction. If the product D forms a nearly ideal solution in A and B,
then h̃A and h̃B are essentially unaffected by nD and depend only on the molar ratio nA/nB, which
is constant. In that case, h̃A = h̃Ao, h̃B = h̃Bo, and all three terms vanish.
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is usually no convenient way to separate them from the measurement of �
˜
HR and

they will introduce an error into the determination of the heat of reaction, but that
problem is beyond the scope of our discussion here. Hence, the final equation for
the heat of reaction in terms of the calorimeter experiment is

�
˜
HR(T) = 1

nAo − nA
[Q + ρVcpo(To − T)] . (15.11)

The calorimeter is typically operated adiabatically (Q = 0). The reaction is run to
completion and the final concentration (denoted nA∞) and temperature (denoted
Tad) are measured. The heat of reaction is then

Adiabatic operation: �
˜
HR = ρVcpo(To − Tad)

nAo − nA∞
. (15.12a)

The calorimeter may also be operated with temperature control until completion
of the reaction by adding or removing heat to ensure that the final and initial tem-
peratures are the same. (Ideally we would do this isothermally, and we will refer to
this mode as isothermal operation, but the result depends only on equal starting and
ending temperatures.) In that case we obtain

Isothermal operation: �
˜
HR = Q

nAo − nA∞
. (15.12b)

An exothermic reaction is one in which there is an adiabatic temperature rise, or,
equivalently, heat must be removed to maintain T = To. It follows from Equation
15.12a or b that �

˜
HR < 0 for an exothermic reaction. (Recall that nAo > nA∞.)

For an endothermic reaction the final adiabatic temperature is less than the initial
temperature, or heat must be added to maintain the temperature. The notion that
the heat of reaction is negative for an exothermic reaction is not an intuitive use of
the English language, and we repeat this result for emphasis:

Exothermic: �
˜
HR < 0.

Endothermic: �
˜
HR > 0.

�
˜
HR is a function of temperature. Data are generally tabulated at a standard

temperature denoted as To, which is frequently 25◦C (298 K). If we were to repeat
the steps leading to Equation 15.11, but with all enthalpies evaluated at the reference
temperature To, we would obtain

�
˜
HR(To) = 1

nAo − nA
[Q + ρVcpo(To − To) + ρVcp(To − T)] . (15.13)

cp is the heat capacity of the final mixture. An equation for �
˜
HR at any temperature

can be obtained from the calorimeter experiment by comparing Equations 15.11 and
15.13:

�
˜
HR(T) = �

˜
HR(To) + ρV(cp − cpo)(To − T)

nAo − nA
. (15.14)

In many liquid systems there will be little difference between cp and cpo, so �
˜
HR

may often be taken as independent of temperature without serious error.
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15.5 The Batch Reactor – II

It is convenient to derive the equation that describes the rate of change of the
temperature in the batch reactor when there is a single reaction. Our starting point
is again Equation 15.5, with U replaced by H for the liquid system. Since H depends
on T, nA, nB, and nD, we apply the chain rule to the derivative of enthalpy to obtain
(cf. Equation 14.2)

dH
dt

= ρVcp
dT
dt

+ h̃A
dnA

dt
+ h̃B

dnB

dt
+ h̃D

dnD

dt
= Q̇. (15.15)

We use Equations 15.3a,b and c to replace the molar rates of change by the reaction
rate, and we replace the linear combination of partial molar enthalpies by the heat
of reaction using Equation 15.2:

ρVcp
dT
dt

= [
μh̃D − h̃A − h̃D

]
r V + Q̇ = (−�

˜
HR) r V + Q̇. (15.16)

Equation 15.16 must be solved simultaneously with the mass balance Equation
15.2 and the constitutive equation for the rate (e.g., mass-action kinetics and the
Arrhenius temperature dependence).

It is instructive to make two assumptions:

(i) The heat capacity cp is independent of composition and temperature.
(ii) The heat of reaction is independent of composition and temperature.

Together with Equation 15.3a, and noting that the total mass ρV is a constant, we
can then write

ρVcp
dT
dt

− (�
˜
HR)

dnA

dt
− dQ

dt
= d

dt
[ρVcpT − (�

˜
HR) nA + Q] = 0, (15.17)

which upon integration yields Equation 15.11. Hence, these two assumptions are
sufficient to ensure that the partial molar enthalpy terms neglected in passing from
Equation 15.10 to 15.11 are negligible. The assumption of a liquid heat capacity that
is insensitive to composition is usually a reasonable one and is, in any event, subject
to experimental verification. The concentration dependence of �

˜
HR is difficult to

obtain and rarely available, so it is common practice to assume a constant �
˜
HR in

the absence of better information.
The adiabatic batch reactor with a single reaction is an interesting special case.

The temperature can be eliminated from the rate equation by writing Equation 15.11
with Q = 0 as

T = To + cAo − cA

ρcp
(−�

˜
HR) . (15.18)

The temperature-dependent term in the rate equation then becomes

exp
(−E

RT

)
= exp

⎛
⎜⎜⎝−E

R

⎡
⎢⎢⎣ 1

To + cAo − cA

ρcp
(−�

˜
HR)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ . (15.19)
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If the reaction is reversible, then the temperature-dependent terms in both the
forward and reverse rates take the form of Equation 15.19, each with its own acti-
vation energy. The reaction rate, whatever the details of its form, is now a function
of the single variable cA; any dependence on the other component species can be
related to cA through Equation 15.4, while the temperature dependence is given
in terms of cA by Equation 15.19. If we assume that the volume is a constant then
Equation 15.3a is simply of the form dcA/dt = – r(cA), which can be expressed as a
quadrature:

t = −
cA(t)∫

cAo

1
r(cA)

dcA =
cAo∫

cA(t)

1
r(cA)

dcA. (15.20)

Closed-form integration is impossible because of the Arrhenius dependence of
the temperature portion of the rate (although it can sometimes be approximated
by functions that can be integrated in closed form), but the integration can be
done numerically for any functional form of r using a method like the trapezoidal
rule.

15.6 Continuous-Flow Stirred-Tank Reactor

The continuous-flow stirred-tank reactor (CFSTR) was treated in considerable detail
in Chapters 6 and 7, where the basic mass balance equations were developed and
design calculations were carried out for steady-state operation. The total design
problem requires that the energy equation be taken into account, and we shall
derive that equation here and consider some of its consequences.

The flow configuration is shown in Figure 15.2, where a jacket is included to
maintain the reactor temperature at the desired value. In order to keep the algebra
to a minimum we show the feedstreams as mixing just prior to entering the reactor,
so there is a single inflow to the reactor. The flow in and out is maintained at the
same volumetric flow rate q, and the standard assumptions are made regarding the
density (Appendix 6A), so that the volume remains constant under these conditions.
We again assume that there is a single reaction of the form A + B � μD, for which

A
D

q

qj

q

qj

BFigure 15.2. Schematic of the
reaction A + B � μD in a
jacketed CFSTR.
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the equations of conservation of mass are

dnA

dt
= V

dcA

dt
= q (cAf − cA) − r V, (15.21a)

dnB

dt
= V

dcB

dt
= q (cBf − cB) − r V, (15.21b)

dnD

dt
= V

dcD

dt
= q (cDf − cD) + μr V. (15.21c)

The equation of conservation of energy applied to the reactor is

dU
dt

≈ dH
dt

= ρf qhf (Tf ) − ρqh(T) + Q̇ − .

W . (15.22)

Here we have again taken the rate of change of the internal energy to be equal to the
rate of change of the enthalpy, which is a valid approximation for this liquid system.
In what follows we will set the shaft work to zero; shaft work is an additive term that
can always be put back in if appropriate, but it is typically unimportant for liquid
systems for which perfect mixing can be achieved. The enthalpy of the feedstream
is evaluated at the reactor temperature through Equation 12.18b:

hf (Tf ) = hf (T) + cpf (Tf − T). (15.23)

In addition, we have the following identities (Equation 14.7):

ρf hf (T) = cAf h̃Af (T) + cBf h̃Bf (T) + cDf h̃Df (T), (15.24a)

ρh(T) = cAh̃A(T) + cBh̃B(T) + cDh̃D(T). (15.24b)

With Equation 14.2, which is an application of the chain rule, we write

dH
dt

= ρVcp
dT
dt

+ h̃A
dnA

dt
+ h̃B

dnB

dt
+ h̃D

dnD

dt
. (15.25)

Combining Equations 15.21 through 15.25 and eliminating terms that appear on both
sides of the equation (compare the steps leading to Equation 14.28) then gives

ρVcp
dT
dt

= ρf qcpf (Tf − T) − (
μh̃D − h̃A − h̃B

)
r V

+ q
[
cAf (h̃Af − h̃A) + cBf (h̃Bf − h̃B) + cDf (h̃Df − h̃D)

] + Q̇. (15.26)

The term μh̃D − h̃A − h̃B is simply the heat of reaction, �
˜
HR, whereas the other

terms involving enthalpy differences reflect the enthalpy change upon mixing the
feedstream with the reactor contents. As discussed in Sections 15.3 and 15.4, these
terms will usually be small compared to �

˜
HR and will vanish identically in an ideal

solution, and we shall neglect them here. Thus, the energy equation with a single
reaction becomes

ρVcp
dT
dt

= ρqcpf (Tf − T) + (−�
˜
HR) r V + Q̇. (15.27)

If the reactor is cooled or heated by a jacket, as shown in Figure 15.2, then the
equation for the jacket temperature can be written (cf. Section 13.3)

ρ j Vj cpj
dTj

dt
= ρ j qj cpj (Tj f − Tj ) − Q̇, (15.28)
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where the subscript j refers to the jacket and we have made use of the fact that
Q̇j = −Q̇. The rate of heat transfer is expressed in terms of the heat transfer area
and heat transfer coefficient as

Q̇ = −hTa(T − Tj ). (15.29)

The equations for the reactor and jacket are then, finally,

ρVcp
dT
dt

= ρqcpf (Tf − T) + (−�
˜
HR) r V − hTa(T − Tj ), (15.30)

ρ j Vj cpj
dTj

dt
= ρ j qj cpj (Tjf − Tj ) + hTa(T − Tj ). (15.31)

The design equations for a CFSTR with a single reaction are obtained by setting the
time derivatives in Equations 15.21, 15.30, and 15.31 to zero and incorporating the
reaction rate constitutive equation. Note that the design problem decomposes into
two parts: At any given temperature the equations are those treated in Chapter 7,
and the full discussion there is relevant. We must, however, specify the reactor
temperature before any design is complete, and this adds an additional set of consid-
erations to those discussed in Chapter 7, including not only the economics but also,
as we shall see, the core issue of reactor operability.

15.7 Steady-State CFSTR

The algebraic equations for the steady-state CFSTR have an interesting mathemat-
ical structure that has a significant impact on the design and actual operation of
the reactor. This structure manifests itself nicely with a minimum of mathematical
complexity by considering the irreversible first-order reaction A → D, for which the
rate is

r = kcA = koe−E/RTcA. (15.32)

We define the following parameters:

θ = V
q

, J = −�
˜
HR

ρcpf
, K = hTa

ρ j qj cpj
, uT = ρ j qj cpj

ρqcpf

hTa
hTa + ρ j qj cpj

. (15.33a,b,c,d)

θ is the reactor residence time, while the other parameters reflect relative thermal
effects. At steady state (d/dt = 0), Equations 15.21a, 15.30, and 15.31 then become

0 = cAf − cA − koθe−E/RTcA, (15.34a)

0 = Tf − T + Jkoθe−E/RTcA − uT(1 + K)(T − Tj ), (15.34b)

0 = Tjf − Tj + K(T − Tj ). (15.34c)

We can solve Equation 15.34c for Tj and substitute the result into Equation
15.34b so that we are left with two coupled equations for the two variables cA and
T. It is then convenient to multiply Equation 15.34a by J and add the result to
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cA

T

cAf  +
1 Tf uTTcfJ

+

cAf

cAf
1 + koθ

J
1 + uT−=Slope

I

II

Figure 15.3. cA as a function of T. Line I is Equation 15.35a, whereas Line II is Equation
15.35b. The intersection defines possible steady-state solutions.

Equation 15.34b, which will remove the reaction rate term from the sum. We then
solve the two equations for cA explicitly in terms of T, as follows:

I: cA = cAf

1 + koθe−E/RT
, (15.35a)

II: cA = cAf + 1
J

(Tf + uTTj f ) − 1 + uT

J
T. (15.35b)

We could take one more step and eliminate cA between these two equations to
obtain a single nonlinear algebraic equation for T, but the structure and interesting
physical behavior is best revealed in this form.

We now plot cA as a function of T according to each of the two equations,
15.35a and 15.35b. Equation 15.35a has the form shown as Line I in Figure 15.3.
As T → 0, cA → 0 with a zero slope, while as T → ∞, T approaches cAf /(1 + koθ)
asymptotically. Equation 15.35b, on the other hand, is a straight line with slope
−(1 + uT)/J , as shown as Line II in Figure 15.3. The intersection of Lines I and
II defines the pair (cA, T) that provides the simultaneous solution to the reactor
equations. There can be as many as three different solutions to these equations,
depending on the values of the parameters. The jacket is not required for this
behavior, which is also possible with an adiabatic reactor (uT = 0).

The possibility of multiple solutions to the nonlinear steady-state equations is
not surprising. Indeed, we have already seen such behavior in Chapter 8; the biore-
actor with organism recycle could operate in either of two states, for example, one
of which is “washout,” and the approach of plotting two curves and looking for
multiple intersections was used in the analysis of the CO oxidation reaction. Here,
the behavior is somewhat more interesting than that found for the nonlinear sys-
tems in Chapter 8. It is possible to show, by considering the dynamical response,
that the intermediate steady state is not a feasible solution, but the other two are;
that is, within a parameter range such that the curves have multiple intersections,
the reactor might operate either at a high-temperature, high-conversion state or at
a low-temperature, low-conversion state. Figure 15.4 shows experimental data for
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Figure 15.4. Experimental stea-
dy states for the reaction
2Na2S2O3 + 4H2O2 →
Na2S3O6 + Na2S2O4 + 4H2O
in an adiabatic CFSTR as a
function of residence time. The
theoretical curve was computed
from batch data. Data of S.
A. Vejtasa and R. A. Schmitz,
AIChE Journal, 16, 410 (1970),
reproduced with permission
of the American Institute of
Chemical Engineers.

just such a case. Here, the reaction 2Na2S2O3 + 4H2O2 → Na2S3O6 + Na2S2O4 +
4H2O was carried out first in a batch reactor in order to obtain the kinetic data, and
then in an adiabatic CFSTR. The steady-state temperature in the CFSTR is plotted
as a function of the residence time θ in the figure. The solid line is the computed curve
using the batch rate data. For residence times in the range of approximately 7 to 18
seconds there are three possible steady-state temperatures; two were found exper-
imentally, one at high temperature and one at low. Note that, if we are operating
the reactor at a sequence of steady states with gradually increasing residence times,
there will be a sudden jump from the lower branch to the upper at the point where
the curve turns back; there is hysteresis in the system, and the downward jump
from the upper branch to the lower with decreasing residence time will occur at a
different point. (Students who have studied combustion reactions in physical chem-
istry will recognize the analogy to the ignition-extinction phenomenon.)

The phenomenon of multiplicity is a real one that arises in many exothermic sys-
tems, and it has a substantial impact on reactor design and operation. The dynamical
response of the system is critical, for it determines the steady state that will actu-
ally be attained for given initial and operating conditions. There is a danger that
upsets will drive the system from the design state to another, unwanted steady
state, perhaps accompanied by large temperature excursions that can damage the
system or cause other safety problems, so integration of the design of the con-
trol system is a critical component of the overall design. The dynamics of a reac-
tor with a single chemical reaction can be analyzed in a relatively straightforward
way without any knowledge of differential equations, as shown in Appendix 15.B.
The dynamics of systems with multiple reactions requires the treatment of fami-
lies of nonlinear differential equations and is beyond the scope of our introductory
treatment.
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15.8 Design of CFSTR Systems

We found in Chapter 7 that the optimal design of a continuous-flow stirred-tank
reactor required considering the effect of the reactor on the economics of the entire
process. In that discussion we implicitly assumed that the reactor temperature was
known, and nothing was said about the best operating temperature. Although a
complete discussion of that problem is well outside the scope of this introductory
text, we can present some elements of the logic needed to determine the optimal
operating temperature for a stirred-tank reactor system.

Equations 15.34a, b, and c are the basic design equations for the single irre-
versible reaction A → products. Batch data provide us with values of ko, E, and
�

˜
HR, and we will assume that the inlet conditions cAf, Tf, and Tjf are specified by

process requirements (raw material availability, stream source, etc.) and are not
subject to our control. We can therefore control the operating temperature only
through the conversion and the design of the heat exchange system. The simplest
design will have no heat exchange, and this case should always be considered first.
The strategy is therefore clear: We design for adiabatic operation and then consider
the economic consequences of either heating or cooling the reactor. A cooling sys-
tem can usually be justified when the adiabatic design leads to temperatures that
are unattainable with reasonable materials of construction, when adiabatic design
leads to excessively high working pressures, or when adiabatic design causes a loss of
production and the possible need for additional separation processes because of the
production of unwanted byproducts at high temperatures. A heating system to raise
the reactor temperature and increase the reaction rate can only be justified if its cap-
ital and operating costs are less than the additional capital and operating costs of the
larger reactor that would be required for an adiabatic design. The same comments
would apply to a preheater for the feedstreams if feed temperatures are allowed
to vary.

For more complex reaction systems, such as those considered in Section 7.4, the
effect of temperature on the product distribution, as well as on the reactor size, must
be considered. Some insight into the general problem can be obtained by examining
the specific case of the product distributions for R, S, and T defined by Equations
7.19a, b, c, and d. In these equations the temperature dependence is contained in the
ratios of the rate constants, which will be of the form

k2

k1
= k20

k10
exp

(
E1 − E2

RT

)
,

k3

k1
= k30

k10
exp

(
E1 − E3

RT

)
.

The product distribution at any value of xA will be affected by the operating tem-
perature if E1, E2, and E3 are unequal. In that case an exchanger that either heats
or cools the reactor may be justified in order to obtain a more favorable mix of R, S,
and T. If E1 = E2 = E3, as is the case for the ethylene glycol reaction, the operating
temperature has no effect on the product distribution and the optimal temperature
may be found as discussed for the single reaction.
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15.9 Concluding Remarks

The development of the heat of reaction for reacting systems is analogous to the
development of the heat of mixing in Chapter 14, which also involves a linear combi-
nation of partial molar enthalpies. The reader who understands these developments
will have no difficulty going on to treat more complex physical situations in multi-
component systems, including phase change and multiphase processing. The heats of
mixing and reaction have the appearance of generation terms in a balance equation,
and it is not uncommon to see “derivations” that include “heat generated by mixing”
or “heat generated by reaction” as additive terms in the energy balance. But there
is no generation of energy in a nonrelativistic system, and attempting nonphysical
shortcuts that bypass the treatment in terms of partial molar enthalpies is a surefire
way to get the equations wrong.

The design and operation of chemical reactors is one of the foundations of
chemical engineering, regardless of whether the application is to one of the tra-
ditional processing industries or to nontraditional applications such as semicon-
ductor processing or cell cultivation for artificial organs. An introductory chap-
ter like this one can only touch on the subject; indeed, in order to go as far as
we have with chemical reaction engineering in this text, it has been necessary to
limit ourselves to liquid-phase systems, very elementary reaction schemes, and
the most restrictive class of reaction vessel configurations. Much more will be
addressed in courses on reaction engineering and process design, as well as elective
courses focusing on specific applications where chemical reaction is an important
component.

It is important to close this chapter with a reminder. By restricting ourselves
to liquid-phase systems far from the critical point we have been able to make the
simplification that pressure is not an important variable and that the pressure depen-
dence of the enthalpy can be ignored. This, in turn, has enabled us to equate the
rates of change of internal energy and enthalpy, which has simplified things immea-
surably. This substitution cannot be made in gas-phase systems, or in liquid-phase
systems in the neighborhood of the critical point; it is internal energy, not enthalpy,
whose change is monitored in the conservation equation, and the liquid system is a
simplified special case.

Bibliographical Notes

The physical property data sources given at the end of Chapter 12 are relevant here.
There are many textbooks for first courses in reaction engineering with titles that
include the words kinetics and reaction engineering, and the material in this chapter
is covered in most. As noted in Chapter 14, there is a discussion of common errors
in writing energy balances for reacting systems in Chapter 5 of

Denn, M. M., Process Modeling, Longman, London and Wiley, New York, 1986.
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PROBLEMS

15.1. (Appendix 15A) Find the heat of reaction �
˜
HR for each of the following

reactions using both heat of formation and heat of combustion data, as available.

+ →(i)  C6H6 C6H5NO2HNO3 + H2O

+ →(ii)  C2H5OH CH3COOH + H2OCH3C

O

OC2H5

→ + HCl

O

OH

+ H2O(iii)  CH3      C

O

Cl
CH3      C

→ + 2H2O

O

NH2

+ NH4OH(aq)

C6H5CH3  +  CH3OH  →  C6H4(CH3)2  +  H2O

C6H4(CH3)2  +  CH3OH  →  C6H3(CH3)3  +  H2O

(vi)  C6H6  +  CH3OH  →  C6H5CH3  +  H2O

(vii)  CH3CN  +  C2H5OH  +  H2O  →

(viii)  H

(ix)  CH2 C O  +  CH3C

(v)  C      C

O

OH
CH3      C

+  NH4OH  (aq)

O

OC2H5

CH3C

→
O

OH

+ H2O
(iv)  CH3      C

O

O

CH3      C

O

O

CH3      C
C2H5OH

O

CH3      C

O

O

OH

2CH3      C

C

O

H

C C H

OH

H

H

OH

H

CH  +  H2O  →

H

→
O

CH3C

OH

O

CH3C

OC2H5

+

15.2. a. Derive an equation for the heat of reaction at any temperature if you are
given the heat of reaction �

˜
HR(T o) at a standard temperature To. You may

assume an ideal solution.
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b. Find the temperature dependence of the heat of reaction for reaction (viii)
in Problem 15.1. (You will need to search for some data to do this.)

15.3. The following specific reaction rate constant data were reported by Smith
[J. Phys. & Coll. Chem., 59, 367 (1947)] for the reaction urea + formaldehyde →
monomethylolurea:

T, ◦C 30 40 50 60
k, L/mol s 5.5 × 10− 5 11.8 × 10− 5 24.5 × 10− 5 50.1 × 10− 5

Check the validity of the Arrhenius relation and determine the activation energy.

15.4. For the formation of glucose from cellulose discussed in Problem 6.12, the rate
constant k1 shows the following temperature dependence at an HCl concentration
of 0.055 mol/L:

T, ◦C 160 170 180 190
k1, min− 1 0.00203 0.00568 0.0190 0.0627

Check the validity of the Arrhenius relation and determine the activation energy.

15.5. A common rule of thumb states that the reaction rate doubles for each 10◦C
rise in temperature. Under what conditions is this rule of thumb valid?

15.6. The irreversible exothermic reaction A + B → nD is to be carried out isother-
mally in a batch reactor. The rate is described by mass action kinetics.

a. What is the rate at which heat must be removed from the reactor in order
to maintain a constant temperature?

b. If the reactor is cooled with a jacket, how must the flow rate in the jacket
be controlled in order to maintain isothermal operation? Assume that the
cooling liquid is available at a fixed temperature Tjf.

15.7. The irreversible first-order reaction A → R is to be carried out in an adiabatic
continuous flow stirred-tank reactor. The molecular weight of A is 18, and you may
take all physical properties to be those of water and constant. The reaction rate
k = ko exp(−E/RT), with ko = 109 min−1 and E/R = 9,250 K. �

˜
HR –88.3 kJ/mol.

The feed enters at 2.83 m3/hr and 37.8◦C and contains 0.444 kg/m3 of A; 80 percent
of the A is to be converted. Find the operating temperature and the volume of the
reactor.

15.8. The catalytic gas phase oxidation of naphthalene to form phthalic anhydride
is thought to take place as follows:

Naphthoquinone

Phthalic
anhydride

Naphthalene
+

oxygen

Maleic anhydride,
CO, CO2
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The reaction has been studied by DeMaria, Longfield, and Butler [Ind. Eng. Chem.,
53, 259 (1961)] in a fluidized bed reactor with two catalysts, designated A and B. A
surprisingly good way to model a fluidized bed reactor is to assume that it behaves
like a CFSTR, using the same equations as for a liquid-phase system. When oxygen
is in excess, which is always the case in commercial operation, the reaction is well
described by the simple consecutive scheme naphthalene (A) → phthalic anhydride
(M) → undesired combustion products (S), where both reactions are pseudo-first-
order and irreversible.

Let k1 = k10 exp(−E1/RT) be the first-order rate constant for A → M and k2 =
k20 exp(−E2/RT) be the first-order rate constant for M → S. The following data are
available:

Catalyst A Catalyst B

E1/R 21,200 K 10,300 K
E2/R 10,100 K 23,100 K
k1 2.6 × 10− 4 s− 1 at 224◦C 13 s− 1 at 497◦C
k2 = k1 at 224◦C = k1 at 497◦C

a. Compute the selectivity s = cR/(cAf − cA) and the yield y = cR/cAf in a reactor
with a residence θ = V/q of one second (1s) and plot the results for a range of
temperatures between 224 and 500◦C.

b. Select the reactor operating temperature at the point where you estimate that
there is a maximum in the yield curve. Pick two residence times that are different
from 1s and see if you can improve the yield. Which catalyst is more efficient?

c. How does the selectivity affect the reactor design? Are there differences between
catalysts A and B?

d. How would you select the optimal residence time for the phthalic anhydride
reaction? (cf. Problem 7.5.)

Appendix 15A: Calculation of Heats of Reaction from
Tabular Data

It is often possible to compute heats of reaction from tabular data. One such pro-
cedure is outlined here, together with the assumptions involved. Table 15A.1 shows
the heats of formation of selected compounds at 25◦C; the heat of formation of com-
pound i, denoted �

˜
HFi , is the heat of reaction when a compound is formed from its

elements in their natural states by the (possibly nonexistent) reaction Elements →
Compound i. The relation that we will derive is

�
˜
HR = δ1�

˜
HF D1 + δ2�

˜
HF D2 + · · · − α1�

˜
HF A1 − α1�

˜
HF A2 − · · · , (15A.1)

where δ1, δ2, . . . , α1, α2, . . . are the stoichiometric coefficients in the reaction

α1A1 + α2A2 + α3A3 + · · · � δ1D1 + δ2D2 + δ3D3 + · · · . (15A.2)

The chemical equation for the formation of one mole of species i from the
elements is

ε1
i E1 + ε2

i E2 + ε3
i E3 + · · · → i. (15A.3)
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Table 15A.1. Heats of formation of selected
compounds at 25◦C.

�
˜
HF , kJ/mol

n-pentane, C5H12 − 173.5
n-hexane, C6H14 − 198.7
n-octane, C8H18 − 250.1
2,3-dimethyl butane, C6H14 − 207.4
benzene, C6H6 + 49.1
toluene, C7H8 + 12.4
ethanol, C2H6O − 277.6
ethylene glycol, C2H6O2 − 460.0
ethylene oxide (liquid), (CH2)2O − 77.6*
HNO3 − 174.1
H2O − 285.8
H2SO4 − 811.3
KNO3 − 494.0
KOH − 428.8

* Ethylene oxide, often tabulated under the official IUPAC
name oxirane, is a gas at 25◦C, so this is an artificial value that
includes the enthalpy change associated with the phase change.

Here, i refers to A1, A2, A3, . . . , D1, D2, D3. E1, E2, E3, . . . are the elements in their
natural states, and εk

i is the stoichiometric coefficient of element k in the reaction to
form compound i. The heat of formation is then

�
˜
HFi =

˜
hi − ε1

i � ˜
HE1 − ε2

i � ˜
HE2 − ε3

i � ˜
HE3 − · · · . (15A.4)

We assume that there are no mixing effects, and pure component enthalpies are used.
We will first assume ideal behavior in the reaction mixture for Equation 15A.2, so
h̃i =

˜
hi . Then combining Equation 15.2 for �

˜
HR and Equation 15A.4 for �

˜
HF we

obtain

�
˜
HR = δ1h̃D1 + δ2h̃D2 + δ3h̃D3 + · · · − α1h̃A1 − α2h̃A2 − α3h̃A3 − · · ·

= δ1
˜
hD1 + δ2

˜
hD2 + δ3

˜
hD3 + · · · − α1

˜
hA1 − α2

˜
hA1 − α3

˜
hA1 − · · ·

= δ1
[
�

˜
HF D1 + ε1

D1 ˜
hE1 + ε2

D1 ˜
hE2 + · · ·]

+ δ2
[
�

˜
HF D2 + ε1

D2 ˜
hE1 + ε2

D2 ˜
hE2 + · · ·] + · · ·

−α1
[
�

˜
HF A1 + ε1

A1 ˜
hE1 + ε2

A1 ˜
hE2 + · · ·]

−α2
[
�

˜
HF A2 + ε1

A2 ˜
hE1 + ε2

A2 ˜
hE2 + · · ·] − · · · . (15A.5)

Consider the terms multiplying
˜
hE1 :

˜
hE1

[
δ1ε

1
D1

+ δ2ε
1
D2

+· · ·−α1ε
1
A1

−α2ε
1
A2

− · · ·].
The sum δ1ε

1
D1

+ δ2ε
1
D2

+ · · · represents the total number of atoms of element 1
on the right-hand side of Equation 15A.2, whereas the sum α1ε

1
A1

+ α2ε
1
A2

+ · · ·
represents the total number of atoms of element 1 on the left. These sums must be
equal for the chemical equation to balance, so the coefficient of

˜
hE1 is simply equal to

zero. Similarly, the coefficients of
˜
hE2,

˜
hE3, . . . also equal zero, and Equation 15A.5

reduces to Equation 15A.1, where the heat of reaction is expressed in terms of the
heats of formation. The enthalpy of an element in its natural state will always drop
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out of any formulation, so we could simplify the algebra by adopting the convention
that the enthalpy of an element in its natural state at the reference temperature is zero.
This convention is universally applied, and the reason that it works is evident from
the development here.

EXAMPLE 15A.1 Compute �
˜
HR for the reaction between ethylene oxide (A1)

and water (A2) to form ethylene glycol (D1):

H2C—CH2 + H2O →H2C—CH2.
\ / / /

O HO OH

The heats of formation from Table 15A.1 are as follows: ethylene gly-
col, −460.0; ethylene oxide, −77.6; water, −285.8. Thus, �

˜
HR = ( −460.0) −

(−77.6) − (−285.8) = −96.6 kJ/mol. The reaction is exothermic, since �
˜
HR < 0.

EXAMPLE 15A.2 Aqueous solutions of 6.25 mole percent HNO3 (1 mole of HNO3

to 15 moles H2O) and 6.25 mole percent KOH react to form a solution of KNO3.
Estimate the heat of reaction.

The reaction in solution is HNO3 + KOH → KNO3 + H2O. Hence,
there will be 31 moles of H2O for each mole of KNO3 in the product stream.
Heats of formation of pure liquid HNO3 and H2O and crystalline KOH and
KNO3 are given in Table 15A.1 as follows: HNO3 liquid, − 174.1; KOH crystal,
− 428.8; KNO3 crystal, − 494.0; H2O liquid, − 285.8. The reaction takes place in
solution, so the relevant heat of formation is that of the compound in solution,
for which we need to use the heats of solution, which are given in Figure 14.2.
The potassium hydroxide solution is at infinite dilution, and the nitric acid and
final salt solution are nearly so. The heats of solution from the figure (which are
accurate to no more than two significant figures) are HNO3, − 31; KOH, − 53;
KNO3, + 31. There should be no further solution effects when the dilute acid
and base are mixed, so the heat of formation in the reaction solution may be
approximated by the sum of the heat of formation of the pure material and the
heat of solution: HNO3 solution, − 174 − 31= − 205; KOH solution, − 429 −
53 = − 482; KNO3 solution, − 494 + 31 = − 463; H2O liquid, − 286. Then
�

˜
HR = ( − 463) + ( − 286) − ( − 205) − ( − 482) = − 62 kJ/mole. The reaction

is exothermic.

Heats of formation can be obtained for hydrocarbons from the tabulated heat
of combustion, which is the heat of reaction for the exothermic reaction

CnHm + 1
2

(
2n + m

2

)
O2 → nCO2 + m

2
H2O.

CO2 is taken to be a gas and water to be a liquid, in which case the heat of combustion
corresponds to what is sometimes called the higher heating value of the fuel. Since all
combustion reactions are exothermic, heats of combustion are tabulated without the
negative sign, which is a most unfortunate convention. The computation is generally
not necessary for hydrocarbons of fewer than ten carbons, where �

˜
HF is generally

tabulated separately.
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EXAMPLE 15A.3 Compute the heat of formation of liquid n-octane, C8H18, from
the tabulated heat of combustion, which is 5,470.7 kJ/mol.

n = 8 and m/2 = 9, so the heat of combustion is

�
˜
HR = 8�

˜
HF,CO2 + 9�

˜
HF,H2O − 12.5�

˜
HF,O2 − �

˜
HF,C8H18 .

The heat of formation of the element oxygen is zero. The heats of formation
of gaseous CO2 and liquid H2O are − 393.5 and − 285.8, respectively. We then
have, taking care to include the negative sign with the heat of the combustion
reaction,

−5470.7 = 8(−393.5) + 9(−285.8) − 12.5(0) − �
˜
HF,C8H18 ,

or �
˜
HF,C8H18 = − 249.5 kJ/mol. To within rounding error, this is the same as the

value for the heat of formation given in Table 15A.1.

Appendix 15B: Transient Behavior of an Adiabatic CFSTR

The graphical approach employed in Section 15.6 to examine the steady-state behav-
ior of a CFSTR with a single reaction can be extended in a straightforward manner
to understand the transient behavior for the special case of an adiabatic reactor; this
restriction is necessary because the graphical approach permits analysis of only two
differential equations. The mass balance and energy equations are

θ
dcA

dt
= cAf − cA − koθe−E/RTcA, (15B.1a)

θ
dT
dt

= Tf − T + Jkoθe−E/RTcA. (15B.1b)

These equations can be solved for cA as follows:

Equation 15B.1a: cA = cAf

1 + koθe−E/RT
−

θ
dcA

dt
1 + koθe−E/RT

, (15B.2a)

Equation 15B.1b: cA = (T − Tf )
Jkoθe−E/RT

+
θ

dT
dt

Jkoθe−E/RT
. (15B.2b)

When dcA/dt = 0, Equation 15B.2a leads to Line I for cA versus T in Figure 15.3,
redrawn in Figure 15B.1. This line divides the cA – T plane into two regions: Above
the line, where cA > cAf /

(
1 + koθe−E/RT

)
, it follows from Equation 15B.2a that

dcA/dt < 0 and cA is decreasing with time. Similarly, below the line, dcA/dt > 0 and
cA is increasing with time.

We can do the same with Equation 15B.2b. When dT/dt = 0 we obtain Line III
for cA versus T, shown in Figure 15B.2. By differentiating cA with respect to T in
the steady-state equation and setting the derivative to zero, it is established that the

maximum and minimum in Line III occur at Tmax,min = E±E1/2(E−4RTf )1/2

2R , from which
it follows that a maximum and minimum will occur at long as E > 4RTf, which will
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cA

Tf T

cAf 
1 + k0θe−E/RTf

cAf 
1 θ+ k0

dcA

dt
0>

dcA

dt
0<

dcA

dt
0=

I

Figure 15B.1. Regions of pos-
itive and negative values of
dcA/dt in the cA – T plane.
Line I, the locus of dcA/dt =
0, is computed from Equation
15B.2a.

cA

dT

T

T

Tmax Tmin

dt
0>

dT
dt

0<

dT
dt

0=

III

Figure 15B.2. Regions of pos-
itive and negative values of
dT/dt in the cA – T plane.
Line III, the locus of dT/dt =
0, is computed from Equation
15B.2b.

generally be the case. When cA lies above Line III it follows from Equation 15B.2b
that dT/dt > 0 and T increases with time. For cA below the line, dT/dt < 0 and T
decreases with time.

Figure 15B.3 shows Lines I and III superimposed. The curves are shown inter-
secting three times, but note that by adjusting the J, koθ , and Tf they could be shifted
relative to one another so that only one intersection is possible. Since these lines
represent dcA/dt = 0 and dT/dt = 0, their intersections correspond to steady-state

T

cA

dcA

dt
0>

dcA

dt
0>

dcA

dt
0>

dT
dt

0<

dcA

dt
0<

dcA

dt
0<

dcA

dt
0<

dT
dt

0>

dT
dt

0<
dT
dt

0>

dT
dt

0<

dT
dt

0>

Figure 15B.3. Superposition of
Figs. 15B.1 and 15B.2, showing
regions of positive and negative
dcA/dt and dT/dt in the cA – T
plane.
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solutions of the coupled equations. The two lines divide the cA – T plane into six
regions, and the algebraic signs of dcA/dt and dT/dt are shown in each. The inequal-
ities are replaced by arrows in Figure 15B.4; an arrow pointing to the left and up,
for example, means dT/dt < 0 and dcA/dt > 0, or “decreasing T, increasing cA.”
By following the arrows we can determine how cA and T will change as time pro-
gresses. Note that all arrows move away from the middle steady state, indicating
its unavailability. By following the arrows we find that when we are to the right of
Line IV, known as the separatrix, we will always go to the high-temperature steady
state, whereas to the left we will always go to the low-temperature steady state.
Thus, we know what conditions must prevail when starting the reactor in order to
reach the desired steady-state operating condition. This is a particularly simple way
of determining the evolution of the temperature-composition behavior, but it gives
no information about the time required for the process to occur. Time dependence
can only be obtained by solving the differential Equations 15B.1a,b.

This method of solution can be formalized by noting that the slopes of the arrows
represent the rate of change of cA with respect to T at any point in the cA – T plane,
which is sometimes known as a phase plane; we write

dcA

dT
= dcA/dt

dT/dt
= cAf − cA − koθe−E/RTcA

Tf − T + Jkoe−E/Rt cA
. (15B.3)

Thus, for any pair (cA,T) we can compute the slope. This is known as the method
of isoclines. The method of isoclines is a powerful way to get information about the
dynamics of nonlinear systems, but it is restricted to systems that can be described
by a pair of differential equations.

T

I

IV

III

cA

Figure 15B.4. Directions of
change of cA and T computed
from the algebraic signs of
dcA/dt and dT/dt.





Postface

As noted in the first chapter, chemical engineering is a broad profession that is
critical to addressing many of the issues facing modern society. The intent of this
text has been to provide a fundamental understanding of the elements of chemical
engineering and to provide a flavor of the challenges that a chemical engineer might
face; the quantitative skills developed here are generalizable to problems of far
greater complexity than those addressed in this introductory text. There is much
more to come to complete a basic chemical engineering education; the core will
normally include courses that cover thermodynamics, fluid mechanics, mass transfer,
heat transfer, separations, and reactor analysis in depth, as well as a capstone course
in design. Other courses in the curriculum will depend on the institution, but will
include some selection of advanced courses in chemistry, materials, biology, and
mathematics.

Most educational institutions offer undergraduate students an opportunity to
do research, and this experience is invaluable for obtaining real insight into the
scope of the profession – it is a truism that the research that chemical engineers do
is rarely reflected in the courses in the undergraduate curriculum because of time
limitations in a four-year professional program, and it is in the research laboratory
that an undergraduate student is most likely to see the exciting topics in materials
development, synthetic biology, nanotechnology, and so forth that were mentioned
in Chapter 1, as well as to experience the intellectual excitement that comes with
addressing real open-ended problems. Whatever your ultimate professional goal –
professional practice with a bachelor’s or master’s degree, a PhD and a career in
research or education, or further study in a related or even unrelated discipline – the
tools developed here will serve you well throughout your career.
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Kremser equation, 179

Langer, Robert, 5
lbf unit. See pound-force unit
leaching, in solid-liquid systems, 145
least-squares fitting. See method of least squares
Lewis, Warren K., 2
linear finite difference equations, 89–90
liquid-gas systems, 145–146

absorption in, 145–146
desorption in, 146
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steady-state systems, 29

mass transfer limited, in two-phase systems,
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synthetic biology, 6. See also biochemical

engineering
Artemesin, 6

synthetic membranes, 81–82
synthetic polymers. See polymers, synthetic
synthetic rubber production, 3

tank emptying experiments, liquid height versus
time, 38–50, 52

Teflon, 9
Teller, Edward, 15
temperature
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thermodynamics, multi-component systems, 217.
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