
Jason Edelman,
Scott S. Lowe & Matt Oswalt

Network
Programmability
and Automation
SKILLS FOR THE NEXT-GENERATION NETWORK ENGINEER

Praise for Network Programmability and Automation

Jason, Scott, and Matt have been key contributors in educating network engineers about
both network automation and Linux networking. They have written and talked

extensively about the importance of automation, on how automation impacts network
engineers, and on the mechanics of automating networking devices.

—Kirk Byers
Creator of the Netmiko Python Library

Network automation is no longer just a proof of concept: it represents both the present
and the future! Network Programmability and Automation provides the needed

background for modern engineers, by widening the toolset for more consistent, stable
and reliable networks.

—Mircea Ulinic
Network Systems Engineer, Cloudflare

Network automation is not hype anymore; it is a means to do your job faster, more
consistently and more reliably. However, network automation is not just a single

discipline; it is a collection of protocols, tools, and processes that can be overwhelming to
the uninitiated. This book does a great job covering everything you will need to get your

automation up and running.
—David Barroso

creator of NAPALM

Jason Edelman, Scott S. Lowe, and Matt Oswalt

Network Programmability
and Automation

Skills for the Next-Generation
Network Engineer

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-93125-7

[M]

Network Programmability and Automation
by Jason Edelman, Scott S. Lowe, and Matt Oswalt

Copyright © 2018 Jason Edelman, Scott S. Lowe, Matt Oswalt. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Virginia Wilson and Courtney Allen
Production Editor: Colleen Cole
Copyeditor: Dwight Ramsey
Proofreader: Rachel Monaghan
Indexer: Judy McConville

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest
Technical Reviewers: Patrick Ogenstad, Akhil Behl,
Eric Chou, Sreenivas Makam

February 2018: First Edition

Revision History for the First Edition
2018-02-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491931257 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Network Programmability and Automa‐
tion, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491931257

I dedicate this book to all network engineers starting their network automation journey.
I sincerely hope it provides each of you with the knowledge needed to further enhance
your career. I’d also like to thank Scott, Matt, and the whole O’Reilly team—I know it

was a much longer process than we all planned, but we ultimately got through it! Thanks
to everyone for making it a reality.

Jason Edelman

I’d like to dedicate this book to the Lord, who granted me the wisdom and understanding
I needed to write this book (Exodus 31:3 NIV). I’d also like to dedicate it to my wife,

Crystal, without whose support things like this wouldn’t be possible.

Scott S. Lowe

I dedicate this book to anyone with a hunger and a passion for learning—every word
was written with you in mind. I’d also like to thank my wife Jamie, who keeps me moti‐

vated and upbeat when life gets a little too crazy.

Matt Oswalt

Table of Contents

Preface. xiii

1. Network Industry Trends. 1
The Rise of Software Defined Networking 1

OpenFlow 1
What Is Software Defined Networking? 5

Summary 16

2. Network Automation. 17
Why Network Automation? 18

Simplified Architectures 18
Deterministic Outcomes 19
Business Agility 19

Types of Network Automation 20
Device Provisioning 20
Data Collection 23
Migrations 24
Configuration Management 25
Compliance 25
Reporting 26
Troubleshooting 26

Evolving the Management Plane from SNMP to Device APIs 28
Application Programming Interfaces (APIs) 28
Impact of Open Networking 32

Network Automation in the SDN Era 33
Summary 33

vii

3. Linux. 35
Examining Linux in a Network Automation Context 35
A Brief History of Linux 36
Linux Distributions 37

Red Hat Enterprise Linux, Fedora, and CentOS 37
Debian, Ubuntu, and Other Derivatives 39
Other Linux Distributions 40

Interacting with Linux 40
Navigating the Filesystem 41
Manipulating Files and Directories 46
Running Programs 52
Working with Daemons 55

Networking in Linux 60
Working with Interfaces 60
Routing as an End Host 71
Routing as a Router 75
Bridging (Switching) 77

Summary 83

4. Learning Python in a Network Context. 85
Should Network Engineers Learn to Code? 86
Using the Python Interactive Interpreter 88
Understanding Python Data Types 90

Learning to Use Strings 91
Learning to Use Numbers 100
Learning to Use Booleans 102
Learning to Use Python Lists 105
Learning to Use Python Dictionaries 111
Learning About Python Sets and Tuples 115

Adding Conditional Logic to Your Code 117
Understanding Containment 119
Using Loops in Python 121

Understanding the while Loop 121
Understanding the for Loop 122

Using Python Functions 126
Working with Files 129

Reading from a File 130
Writing to a File 132

Creating Python Programs 134
Creating a Basic Python Script 134
Understanding the Shebang 135
Migrating Code from the Python Interpreter to a Python Script 137

viii | Table of Contents

Working with Python Modules 138
Passing Arguments into a Python Script 140
Using pip and Installing Python Packages 141
Learning Additional Tips, Tricks, and General Information When Using

Python 143
Summary 149

5. Data Formats and Data Models. 151
Introduction to Data Formats 151

Types of Data 153
YAML 154

Reviewing YAML Basics 155
Working with YAML in Python 158
Data Models in YAML 159

XML 160
Reviewing XML Basics 160
Using XML Schema Definition (XSD) for Data Models 161
Transforming XML with XSLT 163
Searching XML Using XQuery 167

JSON 167
Reviewing JSON Basics 167
Working with JSON in Python 170
Using JSON Schema for Data Models 171

Data Models Using YANG 172
YANG Overview 172
Taking a Deeper Dive into YANG 173

Summary 176

6. Network Configuration Templates. 177
The Rise of Modern Template Languages 178

Using Templates for Web Development 179
Expanding On the Use of Templates 180

The Value of Templates in Network Automation 180
Jinja for Network Configuration Templates 181

Why Jinja? 181
Dynamically Inserting Data into a Basic Jinja Template 182
Rendering a Jinja Template File in Python 183
Conditionals and Loops 185
Jinja Filters 191
Template Inheritance in Jinja 195
Variable Creation in Jinja 196

Summary 196

Table of Contents | ix

7. Working with Network APIs. 199
Understanding Network APIs 200

Getting Familiar with HTTP-Based APIs 200
Diving into NETCONF 204

Exploring Network APIs 213
Exploring HTTP-Based APIs 213
Exploring NETCONF 220

Automating Using Network APIs 229
Using the Python requests Library 230
Using the Python ncclient Library 259
Using netmiko 284

Summary 289

8. Source Control with Git. 291
Use Cases for Source Control 291
Benefits of Source Control 292

Change Tracking 292
Accountability 292
Process and Workflow 293

Benefits of Source Control for Networking 293
Enter Git 294

Brief History of Git 294
Git Terminology 295
Overview of Git’s Architecture 296

Working with Git 297
Installing Git 297
Creating a Repository 297
Adding Files to a Repository 298
Committing Changes to a Repository 300
Changing and Committing Tracked Files 303
Unstaging Files 306
Excluding Files from a Repository 309
Viewing More Information About a Repository 313
Distilling Differences Between Versions of Files 317

Branching in Git 321
Creating a Branch 326
Checking Out a Branch 327
Merging and Deleting Branches 329

Collaborating with Git 334
Collaborating Between Multiple Systems Running Git 334
Collaborating Using Git-Based Online Services 351

Summary 355

x | Table of Contents

9. Automation Tools. 357
Reviewing Automation Tools 357
Using Ansible 359

Understanding How Ansible Works 360
Constructing an Inventory File 361
Executing an Ansible Playbook 368
Using Variable Files 373
Writing Ansible Playbooks for Network Automation 375
Using Third-Party Ansible Modules 393
Ansible Summary 396

Automating with Salt 396
Understanding the Salt Architecture 397
Getting Familiar with Salt 400
Managing Network Configurations with Salt 416
Executing Salt Functions Remotely 425
Diving into Salt’s Event-Driven Infrastructure 427
Diving into Salt a Bit Further 433
Salt Summary 436

Event-Driven Network Automation with StackStorm 436
StackStorm Concepts 437
StackStorm Architecture 439
Actions and Workflows 440
Sensors and Triggers 450
Rules 452
StackStorm Summary 455

Summary 455

10. Continuous Integration. 457
Important Prerequisites 459

Simple Is Better 459
People, Process, and Technology 460
Learn to Code 460

Introduction to Continuous Integration 460
Basics of Continuous Integration 461
Continuous Delivery 463
Test-Driven Development 464
Why Continuous Integration for Networking? 466

A Continuous Integration Pipeline for Networking 467
Peer Review 468
Build Automation 474
Test/Dev/Staging Environment 479
Deployment Tools 482

Table of Contents | xi

Testing Tools and Test-Driven Network Automation 484
Summary 486

11. Building a Culture for Network Automation. 487
Organizational Strategy and Flexibility 488

Transforming an Old-World Organization 488
The Importance of Executive Buy-in 489
Build Versus Buy 490

Embracing Failure 492
Skills and Education 493

Learn What You Don’t Know 493
Focus on Fundamentals 494
Certifications? 495
Won’t Automation Take My Job?! 496

Summary 496

A. Advanced Networking in Linux. 499

B. Using NAPALM. 531

Index. 547

xii | Table of Contents

Preface

Welcome to Network Programmability and Automation!

The networking industry is changing dramatically. The drive for organizations and
networking professionals to embrace the ideas and concepts of network programma‐
bility and automation is greater now than perhaps it has ever been, fueled by a revolu‐
tion in new protocols, new technologies, new delivery models, and a need for
businesses to be more agile and more flexible in order to compete. But what is net‐
work programmability and automation? Let’s start this book with a quick look at how
to answer that question.

What This Book Covers
As its title implies, this book is focused on network programmability and automation.
At its core, network programmability and automation is about simplifying the tasks
involved in configuring, managing, and operating network equipment, network top‐
ologies, network services, and network connectivity. There are many, many different
components involved—including operating systems that are now seeing far broader
use in networking than in the past, the use of new methodologies like Continuous
Integration, and the inclusion of tools that formerly might have fallen only in the
realm of the system administrator (tools like source code control and configuration
management systems). We feel like all of these play a part in the core definition of
what network programmability and automation is, so we cover all these topics. Our
goal for this book is to enable readers to establish a foundation of knowledge around
network programmability and automation.

How This Book Is Organized
This book isn’t necessarily intended to be read from start to end; instead, we’ve bro‐
ken the topics up so that you can easily find the topics in which you’re most interes‐
ted. You may find it useful to start out sequentially reading the first three chapters, as

xiii

they provide background information and set the stage for the rest of the book. From
there, you’re welcome to jump to whatever topic or topics are most useful or interest‐
ing to you. We’ve tried to keep the chapters relatively standalone, but—as with any
technology—that’s not always possible. Wherever we can, we provide cross-
references to help you find the information you need.

Here’s a quick look at how we’ve organized the topics:

Chapter 1, Network Industry Trends
Provides an overview of the major events and trends that launched Software
Defined Networking (SDN). As you’ll see in Chapter 1, SDN was the genesis for
an increased focus on network programmability and automation.

Chapter 2, Network Automation
Takes the SDN discussion from Chapter 1 and focuses specifically on network
automation—the history of network automation, types of automation, tools and
technologies involved in automation, and how automation affects operational
models (and how operational models affect automation).

Chapter 3, Linux
Provides an overview of the Linux operating system. By no means a comprehen‐
sive discussion of Linux, this chapter aims to get networking professionals up to
speed on Linux, basic Linux commands, and Linux networking concepts.

Chapter 4, Learning Python in a Network Context
Introduces networking professionals to the Python development language.
Python is frequently used in network programmability and automation contexts,
and this chapter covers many of the basics of programming with Python: data
types, conditionals, loops, working with files, functions, classes, and modules.

Chapter 5, Data Formats and Data Models
Introduces common data formats that are often seen in network automation
projects. JavaScript Object Notation (JSON), eXtensible Markup Language
(XML), and YAML Ain’t Markup Language (YAML) are all discussed. The chap‐
ter then introduces the concepts of data modeling and provides a light introduc‐
tion to YANG, a common data modeling language for networking.

Wondering what a “data format” is?

If you’re new to some of this stuff, don’t let the terminology throw
you off. A data format is nothing more than how data is encoded or
encapsulated when being transferred between two points (for
example, when data is returned in response to an API call). Chap‐
ter 5 breaks it all down for you.

xiv | Preface

http://python.org

Chapter 6, Network Configuration Templates
Looks at the use of templating languages to create network device configurations.
The primary focus of this chapter is on the Jinja templating language, as it inte‐
grates natively with Python. We’ll also discuss Mako and ERB, two other templat‐
ing languages. Mako integrates with Python, while ERB is primarily used with
Ruby.

Chapter 7, Working with Network APIs
Will take a look at the role of application programming interfaces (APIs) in net‐
work programmability and automation. We’ll explore key terms and technologies
pertaining to APIs, and use some popular vendor-specific APIs—both device
APIs and controller APIs—as examples to see how they can be used for network
programmability and automation.

Chapter 8, Source Control with Git
Introduces Git, a very popular and widely used tool for source code control. We’ll
talk about why source code control is important, how it is used in a network pro‐
grammability and automation context, and how to work with popular online
services such as GitHub.

Chapter 9, Automation Tools
Explores the use of open source automation tools such as Ansible, Salt, and
StackStorm, and how these tools can be used specifically for network programm‐
ability and automation.

Chapter 10, Continuous Integration
Examines the concepts of Continuous Integration (CI) and the key tools and
technologies that are involved. We’ll discuss the use of test-driven development
(TDD), explore tools and frameworks like Jenkins and Gerrit, and take a look at a
sample network automation workflow that incorporates all these CI elements.

Chapter 11, Building a Culture for Network Automation
Examines why a good culture is a crucial and foundational element for network
automation, and shows how to nurture such a culture.

Appendix A, Advanced Networking in Linux
Continues the discussion started in Chapter 3, but dives much deeper into net‐
working with macvlan interfaces, networking with virtual machines (VMs),
working with network namespaces, networking with Linux containers (including
Docker containers), and using Open vSwitch (OVS).

Appendix B, Using NAPALM
Provides an introduction to using the NAPALM (Network Automation and Pro‐
grammability Abstraction Layer with Multi-vendor support) Python library. This
section explores the use of NAPALM for both vendor-neutral configuration man‐

Preface | xv

https://git-scm.com
https://github.com
http://www.ansible.com/home
http://saltstack.com
https://stackstorm.com/
https://www.docker.com
http://openvswitch.org

agement and retrieving data from network devices. Finally, we take a look at how
NAPALM integrates with tools such as Ansible, Salt, and StackStorm, all covered
in Chapter 9.

Who Should Read This Book
As we mentioned earlier, the goal of the book is to equip readers with foundational
knowledge and a set of baseline skills in the areas of network programmability and
automation. We believe that members of several different IT disciplines will benefit
from reading this book.

Network Engineers
Given the focus on network programmability and automation, it’s natural that one
audience for this book is the “traditional” network engineer, someone who is reasona‐
bly fluent in network protocols, configuring network devices, and operating and
managing a network. We believe this book will enable today’s network engineers to be
more efficient and more productive through automation and programmability.

Prerequisites
Network engineers interested in learning more about network programmability and
automation don’t need any previous knowledge in software development, program‐
ming, automation, or DevOps-related tools. The only prerequisite is an open mind
and a willingness to learn about new technologies and how they will affect you—the
networking professional—and the greater networking industry as a whole.

Systems Administrators
Systems administrators, who are primarily responsible for managing the systems that
connect to the network, may already have previous experience with some of the tools
that are discussed in this book (notably, Linux, source code control, and configura‐
tion management systems). This book, then, could serve as a mechanism to help
them expand their knowledge and understanding of such tools by presenting them in
a different context (for example, using Ansible to configure a network switch as
opposed to using Ansible to configure a server running a distribution of Linux).

Prerequisites
What this book doesn’t provide is any coverage or explanation of core networking
protocols or concepts. However, as a result of managing network-connected systems,
we anticipate that many systems administrators also have a basic knowledge of core
networking protocols. So most experienced systems administrators should be fine. If
you’re a bit weak on your networking knowledge, we’d recommend supplementing

xvi | Preface

this book with a book that focuses on core networking concepts and ideas. For exam‐
ple, Packet Guide to Core Network Protocols (O’Reilly) may be a good choice.

Software Developers
Software developers may also benefit from reading this book. Many developers will
have prior experience with some of the programming languages and developer tools
discussed in this book (such as Python and/or Git). Like systems administrators,
developers may find it useful to see developer tools and languages used in a
networking-centric context (for example, seeing how Python could be used to
retrieve and store networking-specific data).

Prerequisites
We do assume that readers have a basic understanding of core network protocols and
concepts, and all the examples we provide are networking-centric examples. As with
systems administrators, software developers who are new to networking will probably
find it necessary to supplement the material in this book with a book that focuses on
core networking concepts.

Tools Used in this Book
As with any field of technology, there are many different versions and variations of
the technologies and tools found in the network programmability and automation
space. Therefore, we standardized on a set of tools in this book that we feel best rep‐
resent the tools readers will find in the field. For example, there are many different
distributions of Linux, but we will only be focusing on Debian, Ubuntu (which is
itself a derivative of Debian), and CentOS (a derivative of Red Hat Enterprise Linux
[RHEL]). To help make it easy for readers, we call out the specific version of the vari‐
ous tools in each tool’s specific chapter.

Online Resources
We realize that we can’t possibly cover all the material we’d like to cover regarding
network automation and network programmability. Therefore, throughout the book
we’ll reference additional online resources that you may find helpful and useful in
understanding the concepts, ideas, and skills being presented.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xvii

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xviii | Preface

http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/network-programmability-and-
automation.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book would not have been possible without the help and support of a large com‐
munity of people.

First, we’d like to extend our thanks to the vibrant network automation community.
There are too many folks to name directly, but these are the folks who have created
open source projects like NAPALM and Netmiko, who have helped lead the charge in
educating folks about network automation, and who have tirelessly contributed their
knowledge and experience for the benefit of others. Thank you all for your efforts
and your contributions.

Our contributing authors helped make this book more complete and comprehensive
than we would have been able to without their assistance, and we are deeply grateful
for their help. Mircea Ulinic contributed the SaltStack section in the chapter on con‐
figuration management tools, and Jere Julian contributed some Puppet content that
we unfortunately could not get included in this version of the book. Our thanks go to
both Mircea and Jere.

Preface | xix

http://bit.ly/network-programmability-and-automation
http://bit.ly/network-programmability-and-automation
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Our technical reviewers were critical in ensuring that the content was both techni‐
cally accurate and easily consumable by readers. We’d like to extend our thanks to
Patrick Ogenstad, Akhil Behl, Eric Chou, and Sreenivas Makam. Thanks for helping
make sure this book is the best it could be!

Finally, our thanks would not be complete without including the staff of O’Reilly
Media: Virginia Wilson and Courtney Allen, our editors; Dwight Ramsey, our copy
editor; Rachel Monaghan, our proofreader; Judy McConville, our indexer; Colleen
Cole, our production editor; Randy Comer, the cover designer; and Rebecca Demar‐
est, the illustrator. The importance of their efforts in helping us take this book from
concept to production cannot be understated, and we thank them for their dedication
and commitment.

xx | Preface

CHAPTER 1

Network Industry Trends

Are you new to Software Defined Networking (SDN)? Have you been hung up in the
SDN craze for the past several years? Whichever bucket you fall into, do not worry.
This book will walk you through foundational topics to start your network pro‐
grammability and automation journey starting with the rise of SDN. This chapter
provides insight to trends in the network industry focused around SDN, its relevance,
and its impact in today’s world of networking. We’ll get started by reviewing how
Software Defined Networking made it into the mainstream and ultimately led to
trends around network programmability and automation.

The Rise of Software Defined Networking
If there was one person that could be credited with all the change that is occurring in
the network industry, it would be Martin Casado, who is currently a General Partner
and Venture Capitalist at Andreessen Horowitz. Previously, Casado was a VMware
Fellow, Senior Vice President, and General Manager in the Networking and Security
Business Unit at VMware. He has had a profound impact on the industry, not just
from his direct contributions (including OpenFlow and Nicira), but by opening the
eyes of large network incumbents and showing that network operations, agility, and
manageability must change. Let’s take a look at this in a little more detail.

OpenFlow
For better or for worse, OpenFlow served as the first major protocol of the Software
Defined Networking (SDN) movement. OpenFlow is the protocol that Martin
Casado worked on while he was earning his PhD at Stanford University under the
supervision of Nick McKeown. OpenFlow is only a protocol that allows for the de-
coupling of a network device’s control plane from the data plane (see Figure 1-1). In
simplest terms, the control plane can be thought of as the brains of a network device

1

and the data plane can be thought of as the hardware or application-specific integrated
circuits (ASICs) that actually perform packet forwarding.

Figure 1-1. Decoupling the control plane and data plane with OpenFlow

Running OpenFlow in Hybrid Mode
Figure 1-1 depicts the network elements having no control plane. This represents a
pure OpenFlow-only deployment. Many devices also support running OpenFlow in a
hybrid mode, meaning OpenFlow can be deployed on a given port, virtual local area
network (VLAN), or even within a normal packet-forwarding pipeline such that if
there is not a match in the OpenFlow table, then the existing forwarding tables (MAC,
Routing, etc.) are used, making it more analogous to Policy Based Routing (PBR).

What this means is OpenFlow is a low-level protocol that is used to directly interface
with the hardware tables (e.g., Forwarding Information Base, or FIB) that instruct a
network device how to forward traffic (for example, “traffic to destination
192.168.0.100 should egress port 48”).

OpenFlow is a low-level protocol that manipulates flow tables, thus
directly impacting packet forwarding. OpenFlow was not intended
to interact with management plane attributes like authentication or
SNMP parameters.

2 | Chapter 1: Network Industry Trends

Because the tables OpenFlow uses support more than the destination address as com‐
pared to traditional routing protocols, there is more granularity (matching fields in
the packet) to determine the forwarding path. This is not unlike the granularity
offered by Policy Based Routing. Like OpenFlow would do many years later, PBR
allows network administrators to forward traffic based on “non-traditional”
attributes, like a packet’s source address. However, it took quite some time for net‐
work vendors to offer equivalent performance for traffic that was forwarded via PBR,
and the final result was still very vendor-specific. The advent of OpenFlow meant that
we could now achieve the same granularity with traffic forwarding decisions, but in a
vendor-neutral way. It became possible to enhance the capabilities of the network
infrastructure without waiting for the next version of hardware from the manufac‐
turer.

History of Programmable Networks
OpenFlow was not the first protocol or technology used to decouple control func‐
tions and intelligence from network devices. There is a long history of technology
and research that predates OpenFlow, although OpenFlow is the technology that
started the SDN revolution. A few of the technologies that predated OpenFlow
include Forwarding and Control Element Separation (ForCES), Active Networks,
Routing Control Platform (RCP), and Path Computation Element (PCE). For a more
in-depth look at this history, take a look at the paper “The Road to SDN: An Intellec‐
tual History of Programmable Networks” by Jen Rexford, Nick Feamster, and Ellen
Zegura.

Why OpenFlow?
While it’s important to understand what OpenFlow is, it’s even more important to
understand the reasoning behind the research and development effort of the original
OpenFlow spec that led to the rise of Software Defined Networking.

Martin Casado had a job working for the national government while he was attending
Stanford. During his time working for the government, there was a need to react to
security attacks on the IT systems (after all, this is the US government). Casado
quickly realized that he was able to program and manipulate the computers and
servers as he needed. The actual use cases were never publicized, but it was this type
of control over endpoints that made it possible to react, analyze, and potentially re-
program a host or group of hosts when and if needed.

When it came to the network, it was near impossible to do this in a clean and pro‐
grammatic fashion. After all, each network device was closed (locked from installing
third-party software, as an example) and only had a command-line interface (CLI).
Although the CLI was and is still very well known and even preferred by network

The Rise of Software Defined Networking | 3

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/sdnhistory.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/sdnhistory.pdf

administrators, it was clear to Casado that it did not offer the flexibility required to
truly manage, operate, and secure the network.

In reality, the way networks were managed had never changed in over 20 years except
for the addition of CLI commands for new features. The biggest change was the
migration from Telnet to SSH, which was a joke often used by the SDN company Big
Switch Networks in their slides, as you can see in Figure 1-2.

Figure 1-2. What’s changed? From Telnet to SSH (source: Big Switch Networks)

All joking aside, the management of networks has lagged behind other technologies
quite drastically, and this is what Casado eventually set out to change over the next
several years. This lack in manageability is often better understood when other tech‐
nologies are examined. Other technologies almost always have more modern ways of
managing a large number of devices for both configuration management and data
gathering and analysis—for example, hypervisor managers, wireless controllers, IP
PBXs, PowerShell, DevOps tools, and the list can go on. Some of these are tightly
coupled from vendors as commercial software, but others are more loosely aligned to
allow for multi-platform management, operations, and agility.

If we go back to the scenario while Casado was working for the government, was it
possible to redirect traffic based on application? Did network devices have an API?

4 | Chapter 1: Network Industry Trends

Was there a single point of communication to the network? The answers were largely
no across the board. How could it be possible to program the network to dynamically
control packet forwarding, policy, and configuration as easily as it was to write a pro‐
gram and have it execute on an end host machine?

The initial OpenFlow spec was the result of Martin Casado experiencing these types
of problems firsthand. While the hype around OpenFlow has died down since the
industry is starting to finally focus more on use cases and solutions than low-level
protocols, this initial work was the catalyst for the entire industry to do a rethink on
how networks are built, managed, and operated. Thank you, Martin.

This also means if it weren’t for Martin Casado, this book would probably not have
been written, but we’ll never know now!

What Is Software Defined Networking?
We’ve had an introduction to OpenFlow, but what is Software Defined Networking
(SDN)? Are they the same thing, different things, or neither? To be honest, SDN is
just like Cloud was nearly a decade ago, before we knew about different types of
Cloud, such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS).

Having reference examples and designs streamlines the understanding of what Cloud
was and is, but even before these terms did exist, it could be debated that when you
saw Cloud, you knew it. That’s kind of where we are with Software Defined Network‐
ing. There are public definitions that exist that state white-box networking is SDN or
that having an API on a network device is SDN. Are they really SDN? Not really.

Rather than attempt to provide a definition of SDN, we will cover the technologies
and trends that are very often thought of as SDN, and included in the SDN conversa‐
tion. They include:

• OpenFlow
• Network Functions Virtualization
• Virtual switching
• Network virtualization
• Device APIs

• Network automation
• Bare-metal switching
• Data center network fabrics
• SD-WAN
• Controller networking

We are intentionally not providing a definition of SDN in this
book. While SDN is mentioned in this chapter, our primary focus
is on general trends that are often categorized as SDN to ensure
you’re aware of each of these trends more specifically.

The Rise of Software Defined Networking | 5

Of these trends, the rest of the book will focus on network automation, APIs, and
peripheral technologies that are critical in understanding how all of the pieces come
together in network devices that expose programmatic interfaces with modern auto‐
mation tools and instrumentation.

OpenFlow
Even though we introduced OpenFlow earlier, we want to highlight a few more key
points you should be aware of related to OpenFlow.

One of the major benefits that was supposed to be an outcome of using a protocol
like OpenFlow between a controller and network devices was that there would be true
vendor independence from the controller software, sometimes referred to as a net‐
work operating system (NOS), and the underlying virtual and physical network devi‐
ces. What has actually happened, though, is that vendors who use OpenFlow in their
solution (examples include Big Switch Networks, HP, and NEC) have developed
OpenFlow extensions due to the pace of standards and the need to provide unique
value-added features that the off-the-shelf version of OpenFlow does not offer. It is yet
to be seen if all of the extensions end up making it into future versions of the Open‐
Flow standard.

When OpenFlow is used, you do gain the benefit to getting more granular with how
traffic traverses the network, but with great power comes great responsibility. This is
great if you have a team of developers. For example, Google rolled out an OpenFlow-
based WAN called B4 that increases efficiency of their WAN to nearly 100%. For most
other organizations, the use of OpenFlow or any other given protocol will be less
important than what an overall solution offers to the business being supported.

While this particular section is called OpenFlow, architecturally it’s
about decoupling the control plane from the data plane. OpenFlow
is just the main protocol being used to accomplish this
functionality.

Network Functions Virtualization
Network Functions Virtualization, known as NFV, isn’t a complex concept. It refers to
taking functions that have traditionally been deployed as hardware, and instead
deploying them as software. The most common examples of this are virtual machines
that operate as routers, firewalls, load balancers, IDS/IPS, VPN, application firewalls,
and any other service/function.

With NFV, it becomes possible to break down a monolithic piece of hardware that
may have cost tens or hundreds of thousands of dollars, with hundreds to thousands
of lines of commands, to get it configured into N pieces of software, namely virtual

6 | Chapter 1: Network Industry Trends

appliances. These smaller devices become much more manageable from an individual
device perspective.

The preceding scenario uses virtual appliances as the form factor
for NFV-enabled devices. This is merely an example. Deploying
network functions as software could come in many forms, includ‐
ing embedded in a hypervisor, as a container, or as an application
running atop an x86 server.

It’s not uncommon to deploy hardware that may be needed in three to five years just
in case, because it’s too complicated and even more expensive to have gradual
upgrades. So not only is hardware an intensive capital cost, it’s only used for the what-
if scenarios if growth occurs. Deploying software-based, or NFV, solutions offers a
better way to scale out and minimize the failure domain of a network or particular
application while using a pay-as-you-grow model. For example, rather than purchas‐
ing a single large Cisco ASA, you can gradually deploy Cisco ASAv appliances and
pay as you grow. You can also scale out load balancers easily with newer technologies
from a company like Avi Networks.

If NFV could offer so much benefit, why haven’t there been more solutions and prod‐
ucts that fit into this category deployed in production? There are actually a few differ‐
ent reasons. First, it requires a rethink in how the network is architected. When there
is a single monolithic firewall (as an example), everything goes through that firewall
—meaning all applications and all users, or if not all, a defined set that you are aware
of. In the modern NFV model where there could be many virtual firewalls deployed,
there is a firewall per application or tenant as opposed to a single big-box FW. This
makes the failure domain per firewall, or any other services appliances, fairly small,
and if a change is being made or a new application is being rolled out, no change is
required for the other per-application (per-tenant) based firewalls.

On the other hand, in the more traditional world of having monolithic devices, there
is essentially a single pane of management for security policy—single CLI or GUI.
This could make the failure domain immense, but it does offer administrators
streamlined policy management since it’s only a single device being managed. Based
on the team or staff supporting these devices, they may opt still for a monolithic
approach. That is the reality, but hopefully over time with improved tools that can
help with the consumption and management of software-centric solutions, as an
industry, we’ll see more deployments leveraging this type of technology. In fact, in a
world with modern automated network operations and management, it’ll matter less
which architecture is chosen from an operational efficiency perspective as you’ll be
able to manage either a single device or a larger quantity of devices in a much more
efficient manner.

The Rise of Software Defined Networking | 7

Aside from management, another factor that plays into this is that many vendors are
not actively selling their virtual appliance edition. We’re not saying they don’t have
virtual options, but they are usually not the preferred choice of many traditional
equipment manufacturers. If a vendor has had a hardware business for the past sev‐
eral years, it’s a drastic shift to a software-led model from a sales and compensation
perspective. Because of this, many of these vendors are limiting the performance or
features on their virtual appliance-based technology.

As will be seen in many of these technology areas, a major value of NFV is in agility
too. Eliminating hardware decreases the time to provision new services by removing
the time needed to rack, stack, cable, and integrate into an existing environment. Lev‐
eraging a software approach, it becomes as fast as deploying a new virtual machine
into the environment, and an inherent benefit of this approach is being able to clone
and back up the virtual appliance for further testing, for example in disaster recovery
(DR) environments.

Finally, when NFV is deployed, it eliminates the need to route traffic through a spe‐
cific physical device in order to get the required service.

Virtual switching
The more common virtual switches on the market these days include the VMware
standard switch (VSS), VMware distributed switch (VDS), Cisco Nexus 1000V, Cisco
Application Virtual Switch (AVS), and the open source Open vSwitch (OVS).

These switches every so often get wrapped into the SDN discussion, but in reality
they are software-based switches that reside in the hypervisor kernel providing local
network connectivity between virtual machines (and now containers). They provide
functions such as MAC learning and features like link aggregation, SPAN, and sFlow
just like their physical switch counterparts have been doing for years. While these vir‐
tual switches are often found in more comprehensive SDN and network virtualiza‐
tion solutions, by themselves they are a switch that just happens to be running in
software. While virtual switches are not a solution on their own, they are extremely
important as we move forward as an industry. They’ve created a new access layer, or
new edge, within the data center. No longer is the network edge the physical top-of-
rack (TOR) switch that is hardware-defined with limited flexibility (in terms of fea‐
ture/function development). Since the new edge is software-based through the use of
virtual switches, it offers the ability to more rapidly create new network functions in
software, and thus, it is possible to distribute policy more easily throughout the net‐
work. As an example, security policy can be deployed to the virtual switch port that is
nearest to the actual endpoint, be it a virtual machine or container, to further enhance
the security of the network.

8 | Chapter 1: Network Industry Trends

Network virtualization
Solutions that are categorized as network virtualization have become synonymous
with SDN solutions. For purposes of this section, network virtualization refers to
software-only overlay-based solutions. The popular solutions that fall into this cate‐
gory are VMware’s NSX, Nuage’s Virtual Service Platform (VSP), and Juniper’s Con‐
trail.

A key characteristic of these solutions is that an overlay-based protocol such as Vir‐
tual eXtensible LAN (VxLAN) is used to build connectivity between hypervisor-
based virtual switches. This connectivity and tunneling approach provides Layer 2
adjacency between virtual machines that exist on different physical hosts independent
of the physical network, meaning the physical network could be Layer 2, Layer 3, or a
combination of both. The result is a virtual network that is decoupled from the physi‐
cal network and that is meant to provide choice and agility.

It’s worth pointing out that the term overlay network is often used
in conjunction with the term underlay network. For clarity, the
underlay is the underlying physical network that you physically
cable up. The overlay network is built using a network virtualiza‐
tion solution that dynamically creates tunnels between virtual
switches within a data center. Again, this is in the context of a
software-based network virtualization solution. Also note that
many hardware-only solutions are now being deployed with
VxLAN as the overlay protocol to establish Layer 2 tunnels
between top-of-rack devices within a Layer 3 data center.

While the overlay is an implementation detail of network virtualization solutions,
these solutions are much more than just virtual switches being stitched together by
overlays. These solutions are usually comprehensive, offering security, load balancing,
and integrations back into the physical network all with a single point of management
(i.e., the controller). Oftentimes these solutions offer integrations with the best-of-
breed Layer 4–7 services companies as well, offering choice as to which technology
could be deployed within network virtualzation platforms.

Agility is also achieved thanks to the central controller platform, which is used to
dynamically configure each virtual switch, and services appliances as needed. If you
recall, the network has lagged behind operationally due to the CLI that is pervasive
across all vendors in the physical world. In network virtualization, there is no need to
configure virtual switches manually, as each solution simplifies this process by pro‐
viding a central GUI, CLI, and also an API where changes can be made
programmatically.

The Rise of Software Defined Networking | 9

Device APIs
Over the past several years, vendors have begun to realize that just offering a standard
CLI was not going to cut it anymore and that using a CLI has severely held back oper‐
ations. If you have ever worked with any programming or scripting language, you can
probably understand that. For those that haven’t, we’ll talk more about this in Chap‐
ter 7.

The major pain point is that scripting with legacy or CLI-based network devices does
not return structured data. This meant data would be returned from the device to a
script in a raw text format (i.e., the output of a show version) and then the individual
writing the script would need to parse that text to extract attributes such as uptime or
operating system version. When the output of show commands changed even slightly,
the scripts would break due to incorrect parsing rules. While this approach is all
administrators have had, automation was technically possible, but now vendors are
gradually migrating to API-driven network devices.

Offering an API eliminates the need to parse raw text, as structured data is returned
from a network device, significantly reducing the time it takes to write a script.
Rather than parsing through text to find the uptime or any other attribute, an object
is returned providing exactly what is needed. Not only does it reduce the time to
write a script, lowering the barrier to entry for network engineers (and other non-
programmers), but it also provides a cleaner interface such that professional software
developers can rapidly develop and test code, much like they operate using APIs on
non-network devices. “Test code” could mean testing new topologies, certifying new
network features, validating particular network configurations, and more. These are
all things that are done manually today and are very time consuming and error
prone.

One of the first more popular APIs in the network scene was that by Arista Networks.
Its API is called eAPI, which is HTTP-based API that uses JSON-encoded data. Don’t
worry, HTTP-based APIs and JSON will be covered in chapters to follow, starting
with Chapter 5. Since Arista, we’ve seen Cisco announce APIs such as Nexus NX-API
and NETCONF/RESTCONF on particular platforms and a vendor like Juniper,
which has had an extensible NETCONF interface all along but hasn’t publicly drawn
too much attention to it. It’s worth noting that nearly every vendor out there has
some sort of API these days.

This topic will be covered in much more detail in Chapter 7.

Network automation
As APIs in the network world continue to evolve, more interesting use cases for tak‐
ing advantage of them will also continue to emerge. In the near term, network auto‐
mation is a prime candidate for taking advantage of the programmatic interfaces
being exposed by modern network devices that offer an API.

10 | Chapter 1: Network Industry Trends

To put it in greater context, network automation is not just about automating the con‐
figuration of network devices. It is true that is the most common perception of net‐
work automation, but using APIs and programmatic interfaces can automate and
offer much more than pushing configuration parameters.

Leveraging an API streamlines the access to all of the data bottled up in network
devices. Think about data such as flow level data, routing tables, FIB tables, interface
statistics, MAC tables, VLAN tables, serial numbers—the list can go on and on. Using
modern automation techniques that in turn leverage an API can quickly aid in the
day-to-day operations of managing networks for data gathering and automated diag‐
nostics. On top of that, since an API is being used that returns structured data, as an
administrator, you will have the ability to display and analyze the exact data set you
want and need, even coming from various show commands, ultimately reducing the
time it takes to debug and troubleshoot issues on the network. Rather than connect‐
ing to N routers running BGP trying to validate a configuration or troubleshoot an
issue, you can use automation techniques to simplify this process.

Additionally, leveraging automation techniques leads to a more predictable and uni‐
form network as a whole. You can see this by automating the creation of configura‐
tion files, automating the creation of a VLAN, or automating the process of
troubleshooting. It streamlines the process for all users supporting a given environ‐
ment instead of having each network administrator having their own best practice.

The various types of network automation will be covered in Chapter 2 in much
greater depth.

Bare-metal switching
The topic of bare-metal switching is also often thought of as SDN, but it’s not. Really,
it isn’t! That said, in our effort to give an introduction to the various technology
trends that are perceived as SDN, it needs to be covered. If we rewind to 2014 (and
even earlier), the term used to describe bare-metal switching was white-box or com‐
modity switching. The term has changed, and not without good reason.

Before we cover the change from white-box to bare-metal, it’s important to under‐
stand what this means at a high level since it’s a massive change in how network devi‐
ces are thought of. Network devices for the last 20 years were always bought as a
physical device—these physical devices came as hardware appliances, an operating
system, and features/applications that you can use on the system. These components
all came from the same vendor.

In the white-box and bare-metal network devices, the device looks more like an x86
server (see Figure 1-3). It allows the user to disaggregate each of the required compo‐
nents, making it possible to purchase hardware from one vendor, purchase an operat‐

The Rise of Software Defined Networking | 11

ing system from another, and then load features/apps from other vendors or even the
open source community.

White-box switching was a hot topic for a period of time during the OpenFlow hype,
since the intent was to commoditize hardware and centralize the brains of the net‐
work in an OpenFlow controller, otherwise now known as an SDN controller. And in
2013, Google announced they had built their own switches and were controlling
them with OpenFlow! This was the topic of a lot of industry conversations at the
time, but in reality, not every end user is Google, so not every user will be building
their own hardware and software platforms.

In parallel to these efforts, we saw the emergence of a few companies that were solely
focused on providing solutions around white-box switching. They include Big Switch
Networks, Cumulus Networks, and Pica8. Each of them offers software-only solu‐
tions, so they still need hardware that their software will run on to provide an end-to-
end solution. Initially, these white-box hardware platforms came from Original
Direct Manufacturers (ODM) such as Quanta, Super Micro, and Accton. If you’ve
been in the network industry, more than likely you’ve never even heard of those ven‐
dors.

Figure 1-3. A look at traditional and bare-metal switching stacks

It wasn’t until Cumulus and Big Switch announced partnerships with companies
including HP and Dell that the industry started to shift from calling this trend white-
box to bare-metal, since now name-brand vendors were supporting third-party oper‐
ating systems from the likes of Big Switch and Cumulus Networks on their hardware
platforms.

There still may be confusion on why bare-metal is technically not SDN, since a ven‐
dor like Big Switch plays in both worlds. The answer is simple. If there is a controller
integrated with the solution using a protocol such as OpenFlow (it does not have to

12 | Chapter 1: Network Industry Trends

be OpenFlow), and it is programmatically communicating with the network devices,
that gives it the flavor of Software Defined Networking. This is what Big Switch does
—they load software on the bare-metal/white-box hardware running an OpenFlow
agent that then communicates with the controller as part of their solution.

On the other hand, Cumulus Networks provides a Linux distribution purpose-built
for network switches. This distribution, or operating system, runs traditional proto‐
cols such as LLDP, OSPF, and BGP, with no controller requirement whatsoever, mak‐
ing it more comparable, and compatible, to non-SDN based network architectures.

With this description it should be evident that Cumulus is a network operating sys‐
tem company that runs their software on bare-metal switches while Big Switch is a
bare-metal-based SDN company requiring the use of their SDN controller, but also
leverages third-party, bare-metal switching infrastructure.

In short, bare-metal/white-box switching is about disaggregation and having the abil‐
ity to purchase network hardware from one vendor and load software from another,
should you choose to do so. In this case, administrators are offered the flexibility to
change designs, architectures, and software, without swapping out hardware, just the
underlying operating system.

Data center network fabrics
Have you ever faced the situation where you could not easily interchange the various
network devices in a network even if they were all running standard protocols such as
Spanning Tree or OSPF? If you have, you are not alone. Imagine having a data center
network with a collapsed core and individual switches at the top of each rack. Now
think about the process that needs to happen when it’s time for an upgrade.

There are many ways to upgrade networks like this, but what if it was just the top-of-
rack switches that needed to be upgraded and in the evaluation process for new TOR
switches, it was decided a new vendor or platform would be used? This is 100% nor‐
mal and has been done time and time again. The process is simple—interconnect the
new switches to the existing core (of course, we are assuming there are available ports
in the core) and properly configure 802.1Q trunking if it’s a Layer 2 interconnect or
configure your favorite routing protocol if it’s a Layer 3 interconnect.

Enter data center network fabrics. This is where the thought process around data cen‐
ter networks has to change.

Data center network fabrics aim to change the mindset of network operators from
managing individual boxes one at a time to managing a system in its entirety. If we
use the earlier scenario, it would not be possible to swap out a TOR switch for
another vendor, which is just a single component of a data center network. Rather,
when the network is deployed and managed as a system, it needs to be thought of as a
system. This means the upgrade process would be to migrate from system to system,

The Rise of Software Defined Networking | 13

or fabric to fabric. In the world of fabrics, fabrics can be swapped out when it’s time
for an upgrade, but the individual components within the fabric cannot be—at least
most of the time. It may be possible when a specific vendor is providing a migration
or upgrade path and when bare-metal switching (only replacing hardware) is being
used. A few examples of data center network fabrics are Cisco’s Application Centric
Infrastructure (ACI), Big Switch’s Big Cloud Fabric (BCF), or Plexxi’s fabric and
hyper-converged network.

In addition to treating the network as a system, a few other common attributes of
data center networking fabrics are:

• They offer a single interface to manage or configure the fabric, including policy
management.

• They offer distributed default gateways across the fabric.
• They offer multi-pathing capabilities.
• They use some form of SDN controller to manage the system.

SD-WAN
One of the hottest trends in Software Defined Networking over the past two years has
been Software Defined Wide Area Networking (SD-WAN). Over the past few years, a
growing number of companies have been launched to tackle the problem of Wide
Area Networking. A few of these vendors include Viptela (most recently acquired by
Cisco), CloudGenix, VeloCloud, Cisco IWAN, Glue Networks, and Silverpeak.

The WAN had not seen a radical shift in technology since the migration from Frame
Relay to MPLS. With broadband and internet costs being a fraction of what costs are
for equivalent private line circuits, there has been an increase in leveraging site-to-site
VPN tunnels over the years, laying the groundwork for the next big thing in WAN.

Common designs for remote offices typically include a private (MPLS) circuit and/or
a public internet connection. When both exist, internet is usually used as backup
only, specifically for guest traffic, or for general data riding back over a VPN to cor‐
porate while the MPLS circuit is used for low-latency applications such as voice or
video communications. When traffic starts to get divided between circuits, this
increases the complexity of the routing protocol configuration and also limits the
granularity of how to route to the destination address. The source address, applica‐
tion, and real-time performance of the network is usually not taken into considera‐
tion in decisions about the best path to take.

A common SD-WAN architecture that many of the modern solutions use is similar to
that of network virtualization used in the data center, in that an overlay protocol is
used to interconnect the SD-WAN edge devices. Since overlays are used, the solution

14 | Chapter 1: Network Industry Trends

is agnostic to the underlying physical transport, making SD-WAN functional over the
internet or a private WAN. These solutions often ride over two or more internet cir‐
cuits at branch sites, fully encrypting traffic using IPSec. Additionally, many of these
solutions constantly measure the performance of each circuit in use being able to rap‐
idly fail over between circuits for specific applications even during brownouts. Since
there is application layer visibility, administrators can also easily pick and choose
which application should take a particular route. These types of features are often not
found in WAN architectures that rely solely on destination-based routing using tradi‐
tional routing protocol such as OSPF and BGP.

From an architecture standpoint, the SD-WAN solutions from the vendors men‐
tioned earlier like Cisco, Viptela, and CloudGenix also typically offer some form of
zero touch provisioning (ZTP) and centralized management with a portal that exists
on premises or in the cloud as a SaaS-based application, drastically simplifying man‐
agement and operations of the WAN going forward.

A valuable by-product of using SD-WAN technology is that it offers more choice for
end users since basically any carrier or type of connection can be used on the WAN
and across the internet. In doing so, it simplifies the configuration and complexity of
carrier networks, which in turn will allow carriers to simplify their internal design
and architecture, hopefully reducing their costs. Going one step further from a tech‐
nical perspective, all logical network constructs such as Virtual Routing and Forward‐
ing (VRFs) would be managed via the controller platform user interface (UI) that the
SD-WAN vendor provides, again eliminating the need to wait weeks for carriers to
respond to you when changes are required.

Controller networking
When it comes to several of these trends, there is some overlap, as you may have real‐
ized. That is one of the confusing points when you are trying to understand all of the
new technology and trends that have emerged over the last few years.

For example, popular network virtualization platforms use a controller, as do several
solutions that fall into the data center network fabric, SD-WAN, and bare-metal
switch categories too. Confusing? You may be wondering why controller-based net‐
working has been broken out by itself. In reality, it oftentimes is just characteristic
and a mechanism to deliver modern solutions, but not all of the previous trends
cover all of what controllers can deliver from a technology perspective.

For example, a very popular open source SDN controller is OpenDaylight (ODL), as
shown in Figure 1-4. ODL, as with many other controllers, is a platform, not a prod‐
uct. They are platforms that can offer specialized applications such as network virtu‐
alization, but they can also be used for network monitoring, visibility, tap
aggregation, or any other function in conjunction with applications that sit on top of
the controller platform. This is the core reason why it’s important to understand what

The Rise of Software Defined Networking | 15

controllers can offer above and beyond being used for more traditional applications
such as fabrics, network virtualization, and SD-WAN.

Figure 1-4. OpenDaylight architecture

Summary
There you have it: an introduction to the trends and technologies that are most often
categorized as Software Defined Networking, paving the path into better network
operations through network programmability and automation. Dozens of SDN start‐
ups were created over the past seven years, millions in VC money invested, and bil‐
lions spent on acquisitions of these companies. It’s been unreal, and if we break it
down one step further, it’s all with the common goal of leveraging software principles
and technology to offer greater power, control, agility, and choice to the users of the
technology while increasing the operational efficiencies.

In Chapter 2, we’ll take a look at network automation and dive deeper into the vari‐
ous types of automation, some common protocols and APIs, and how automation
has started to evolve in the last several years.

16 | Chapter 1: Network Industry Trends

CHAPTER 2

Network Automation

In this chapter, we’re focused on providing a baseline of high-level network automa‐
tion concepts so that you are better equipped to get the most out of each individual
chapter going forward.

To accomplish this, the following sections are included in this chapter:

Why Network Automation?
Examines various reasons to adopt automation and increase the efficiencies of
network operations while proving there is much more to automation than deliv‐
ering configurations faster to network devices.

Types of Network Automation
Explores various types of automation from traditional configuration manage‐
ment to automating network diagnostics and troubleshooting, proving once
again, there is more to automation than decreasing the time it takes to make a
change.

Evolving the Management Plane from SNMP to Device APIs
Provides a brief introduction to a few different API types found on network devi‐
ces of the past and present.

Network Automation in the SDN Era
Provides a short synopsis of why network automation tooling is still valuable
when SDN, specifically referring to controller-based architectures, solutions are
deployed.

17

This chapter is not meant to be a deep technical chapter, but rather
an introduction to the ideas and concepts of network automation.
It simply lays the foundation and provides context for the chapters
that follow.

Why Network Automation?
Network automation, like most types of automation, is thought of as a means of
doing things faster. While doing things more quickly is nice, reducing the time for
deployments and configuration changes isn’t always a problem that needs solving for
many IT organizations.

Including speed, we’ll take a look at a few of the reasons that IT organizations of all
shapes and sizes should be looking at gradually adopting network automation. You
should note that the same principles apply to other types of automation as well
(application, systems, storage, telephony, etc.).

Simplified Architectures
Today, most network devices are configured as unique snowflakes (having many one-
off non-standard configurations), and network engineers take pride in solving trans‐
port and application issues with one-off network changes that ultimately make the
network not only harder to maintain and manage, but also harder to automate.

Instead of network automation and management being treated as a secondary project
or an “add-on,” it needs to be included from the outset as new architectures are being
created. This includes ensuring there is the proper budget for personnel and/or tool‐
ing. Unfortunately, tooling is often the first item that gets cut when there is a shortage
of budget.

The end-to-end architecture and associated day 2 operations need to be one and the
same. You need to think about the following questions as architectures are created:

• Which features work across vendors?
• Which extensions work across platforms?
• What type of API or automation tooling works with particular network device

platforms?
• Is there solid API documentation?
• What libraries exist for a given product?

When these questions get answered early on in the design process, the resulting
architecture becomes simpler, repeatable, and easier to maintain and automate, all
with fewer vendor-proprietary extensions enabled throughout the network.

18 | Chapter 2: Network Automation

Even after the simplified architecture gets deployed with the right management and
automation tooling, remember it’s still a necessity to minimize one-off changes to
ensure the network configurations don’t become snowflakes again.

Deterministic Outcomes
In an enterprise organization, change review meetings take place to review upcoming
changes on the network, the impact they have on external systems, and rollback
plans. In a world where a human is touching the CLI to make those upcoming
changes, the impact of typing the wrong command is catastrophic. Imagine a team
with 3, 4, 5, or 50 engineers. Every engineer may have his or her own way of making
that particular upcoming change. Moreover, the ability to use a CLI and even a GUI
does not eliminate or reduce the chance of error during the control window for the
change.

Using proven and tested network automation to make changes helps achieve more
predictable behavior than making changes manually, and gives the executive team a
better chance at achieving deterministic outcomes, moving one step closer to having
the assurance that the task at hand will get done right the first time without human
error. This could be any task from a virtual local area network (VLAN) change to on-
boarding a new customer that requires several changes throughout the network.

Business Agility
We know that network automation offers speed and agility for deploying changes, but
it does the same for retrieving data from network devices as fast as the business
demands, or more practically, as fast as needed to dynamically troubleshoot a net‐
work issue.

Since the advent of server virtualization, server and virtualization administrators have
had the ability to deploy new applications almost instantaneously. And the faster
applications are deployed, the more questions are raised as to why it takes so long to
configure network resources such as VLANs, routes, firewall (FW) policies, load-
balancing polices, or all of the above, if deploying a new three-tier application.

It should be fairly obvious that by adopting network automation, the network engi‐
neering and operations teams can react faster to their IT counterparts for deploying
applications, but more importantly, it helps the business be more agile. From an
adoption perspective, it’s critical to understand the existing, and often manual, work‐
flows before attempting to adopt automation of any kind, no matter how good your
intentions are for making the business more agile.

If you don’t know what you want to automate, it’ll complicate and prolong the pro‐
cess. Our number one recommendation as you start your network automation jour‐
ney is to always understand existing manual workflows, document them, and

Why Network Automation? | 19

understand the impact they have to the business. Then, the process to deploy auto‐
mation technology and tooling becomes much simpler.

From simplified architectures to business agility, this section introduced some of the
high-level points on why you should consider network automation. In the next sec‐
tion, we take a look at different types of network automation.

Types of Network Automation
Automation is commonly equated with speed, and considering that some network
tasks don’t require speed, it’s easy to see why some IT teams don’t see the value in
automation. VLAN configuration is a great example because you may be thinking,
“How fast does a VLAN really need to get created? Just how many VLANs are being
added on a daily basis? Do I really need automation?” And they are all valid ques‐
tions.

In this section, we are going to focus on several other tasks where automation makes
sense, such as device provisioning, data collection, troubleshooting, reporting, and
compliance. But remember, as we stated previously, automation is much more than
speed and agility; it also offers you, your team, and your business more predictable
and more deterministic outcomes.

Device Provisioning
One of the easiest and fastest ways to get started with network automation is to auto‐
mate the creation of the device configuration files that are used for initial device pro‐
visioning and pushing them to network devices.

If we take this process and break it down into two steps, the first step is creating the
configuration file, and the second is pushing the configuration onto the device.

In order to automate the creation of configuration files, we first need to decouple the
inputs (configuration parameters) from the underlying vendor-proprietary syntax
(CLI) of the configuration. This means we’ll end up with separate files with values for
the configuration parameters such as VLANs, domain information, interfaces, rout‐
ing, and everything else being configured, and then, of course, a configuration tem‐
plate. This is something we cover in great detail in Chapter 6.

For now, think of the configuration template as the equivalent of a standard golden
template that’s used for all devices getting deployed. By leveraging a technique called
network configuration templating, you are quickly able to produce consistent network
configuration files specifically for your network. What this also means is you’ll never
have to use Notepad ever again, copying and pasting configs from file to file—isn’t it
about time for that?

20 | Chapter 2: Network Automation

Two tools that streamline using configuration templates with variables (data inputs)
are Ansible and Salt. In less than a few seconds, these tools can generate hundreds of
configuration files predictably and reliably.

Building and generating configuration files from templates is cov‐
ered in much more detail in Chapter 6, while performing the tem‐
plating process with Ansible and Salt is covered in Chapter 9. This
section is merely showing a high-level basic example.

Let’s look at an example of taking a current configuration and decomposing it into a
template and separate variables (inputs) file to articulate the point we’re making.

Here is an example of a configuration file snippet:

hostname leaf1
ip domain-name ntc.com
!
vlan 10
 name web
!
vlan 20
 name app
!
vlan 30
 name db
!

If we decouple the data from the CLI commands, this file is transformed into two
files: a template and a data (variables) file.

First let’s look at the YAML (we cover YAML in depth in Chapter 5) variables file:

hostname leaf1
domain_name: ntc.com
vlans:
 - id: 10
 name: web
 - id: 20
 name: app
 - id: 30
 name: db

Note the YAML file is only our data.

For this example, we’re showing the Python-based Jinja templating
language. Jinja is covered in detail in Chapter 6.

Types of Network Automation | 21

The resulting template that’ll be rendered with the data file looks like this and is given
the filename leaf.j2:

!
hostname {{ inventory_hostname }}
ip domain-name {{ domain_name }}
!
!
{% for vlan in vlans %}
vlan {{ vlan.id }}
 name {{ vlan.name }}
{% endfor %}
!

In this example, the double curly braces denote a Jinja variable. In other words, this is
where the data variables get inserted when a template is rendered with data. Since the
double curly braces denote variables, and we see those values are not in the template,
they need to be stored somewhere. Again, we stored them in a YAML file. Rather
than use flat YAML files, you could also use a script to fetch this type of information
from an external system such as a network management system (NMS) or IP address
management (IPAM) system.

In this example, if the team that controls VLANs wants to add a VLAN to the net‐
work devices, no problem. They just need to change it in the variables file and regen‐
erate a new configuration file using Ansible or the rendering engine of their choice
(Salt, pure Python, etc.).

In Chapter 6, we also cover how you use native Python with Jinja
templates, showing how you can create a Python script that can be
used as a basic rendering engine.

At this point in our example, once the configuration is generated, it needs to be
pushed to the network device. The push and execution process is not covered here, as
there are plenty of ways to do this, including vendor-proprietary zero touch provi‐
sioning solutions as well as a few other methods that we look at Chapters 7 and 9.

Additionally, this was only meant to be a high-level introduction to templates; do not
worry if it’s not 100% clear yet. As we’ve said, working with templates is covered in far
greater detail in Chapter 6.

Aside from building configurations and pushing them to devices, something that is
arguably more important is data collection, which happens to be the next topic we
cover.

22 | Chapter 2: Network Automation

Data Collection
Monitoring tools typically use the Simple Network Management Protocol (SNMP)—
these tools poll certain management information bases (MIBs) and return data to the
monitoring tool. Based on the data being returned, it may be more or less than you
actually need. What if interface stats are being polled? You may get back every
counter that is displayed in a show interface command, but what if you only needed
interface resets and not CRC errors, jumbo frames, output errors, etc. Moreover, what if
you want to see the interface resets correlated to the interfaces that have CDP/LLDP
neighbors on them, and you want to see them now, not on the next polling cycle?
How does network automation help with this?

Given that our focus is giving you more power and control, you can leverage open
source tools and technology to customize exactly what you get, when you get it, how
it’s formatted, and how the data is used after it’s collected, ensuring you get the most
value from the data.

Here is a very basic example of collecting data from an IOS device using the Python
library netmiko, which we cover in more detail in Chapter 7.

from netmiko import ConnectHandler

device = ConnectHandler(device_type='cisco_ios', ip='csr1',username='ntc',
 password='ntc123')
output = device.send_command('show version')

print(output)

The great part is that output contains the show version response and you have the
ability to parse it as you see fit based on your requirements.

In the example given, we are describing pulling the data off the
devices, which may not be ideal for all environments, but still suit‐
able for many. Be aware that newer devices are starting to support a
push model, often referred to as streaming telemetry, where the
device itself streams real-time data such as interface stats to an
application server of your choice.

Of course, any of this may require some up-front custom work but is totally worth it
in the end, because the data being gathered is what you need, not what a given tool or
vendor is providing you. Plus, isn’t that why you’re reading this book?

Network devices have an enormous amount of static and ephemeral data buried
inside, and using open source tools or building your own gets you access to this data.
Examples of this type of data include active entries in the BGP table, OSPF adjacen‐
cies, active neighbors, interface statistics, specific counters and resets, and even coun‐
ters from application-specific integrated circuits (ASICs) themselves on newer

Types of Network Automation | 23

platforms. Additionally, there are more general facts and characteristics of devices
that can be collected too, such as serial number, hostname, uptime, OS version, and
hardware platform, just to name a few. The list is endless.

Always consider these questions as you start an automation project:
“Does it make sense to build, buy, or customize?” and “Does it
make sense to consume or operate?”

Migrations
Migrating from one platform to the next is never an easy task. This may involve plat‐
forms from the same vendor or from different vendors. Vendors may offer a script or
a tool to help with migrations to their platform, but various forms of automation can
be used to build out configuration templates, just like our example earlier, for all
types of network devices and operating systems in such a way that you could generate
a configuration file for all vendors given a defined and common set of inputs (com‐
mon data model).

Of course, if there are vendor-proprietary extensions, they’ll need to be accounted for
too. The beautiful thing is that a migration tool such as this is much simpler to build
on your own than have a vendor do it because the vendor needs to account for all
features the device supports as compared to an individual organization that only
needs a finite number of features. In reality, this is something vendors don’t care
much about; they are concerned with their equipment, not making it easier for you,
the network operator, to manage a multi-vendor environment.

Having this type of flexibility helps with not only migrations, but also disaster recov‐
ery (DR), as it’s very common to have different switch models in the production and
DR data centers, and even different vendors. If a device fails for any reason and its
replacement has to be a different platform, you’d be able to quickly leverage your
common data model (think parameter inputs) and generate a new configuration
immediately. We’re starting to use the term data model loosely, but rest assured, we
spend more time on describing and highlighting what data models are in Chapter 5.

Thus, if you are performing a migration, think about it at a more abstract level and
think through the tasks necessary to go from one platform to the next. Then, see what
can be done to automate those tasks, because only you, not the large networking ven‐
dors, have the motivation to make multi-vendor automation a reality. For example,
think about adding a VLAN as an abstract step—then you can worry about the lower-
level commands per platform. The point is, as you start adopting automation, it’s
extremely important to think about tasks and document them in human-readable
format that is vendor-neutral, before putting hands to keyboard typing in CLI com‐
mands or writing code (per platform).

24 | Chapter 2: Network Automation

Configuration Management
As stated, configuration management is the most common type of automation, so we
aren’t going to spend too much time on it here. You should be aware that when we
mention configuration management we are referring to deploying, pushing, and
managing the configuration state of the device. This includes anything as basic as
VLAN provisioning to more complex workflows that configure top-of-rack switches,
firewalls, load balancers, and advanced security infrastructure, to deploy three-tier
applications.

As you can see already through the different forms of automation that are read-only,
you do not need to start your automation journey by pushing configurations. That
said, if you are spending countless hours pushing the same change across a given
number of routers or switches, you may want to!

The reality is that there are so many ways to start a network automation journey, but
when you start automating configuration management, remember, with great power
comes great responsibility. More importantly, don’t forget to test before rolling out
new automation tools into production environments.

The next few types of network automation we cover stem from automating the pro‐
cess of data collection. We’ve broken a few of them out to provide more context, and
first up is automating compliance checks.

Compliance
As with many forms of automation, making configuration changes with any type of
automation tool is seen as a risk. While making manual changes could arguably be
riskier, as you’ve read and may have experienced firsthand, you have the option to
start with data collection, monitoring, and configuration building, which are all read-
only and low-risk actions. One low-risk use case that uses the data being gathered is
configuration compliance checks and configuration validation. Does the deployed
configuration meet security requirements? Are the required networks configured? Is
protocol XYZ disabled? When you have control over the tools being deployed, it is
more than possible to verify if something is True or False. It’s easy enough to start
small with one compliance check and then gradually add more as needed.

Based on the compliance of what you are checking, it’s up to you to determine what
happens next—maybe it just gets logged, or maybe a complex operation is performed,
making your application capable of auto-remediation. These are forms of event-
driven automation that we also touch upon when we cover StackStorm and Salt in
Chapter 9. Our recommendation is that it’s always best to start simple with network
automation, but being aware of what’s possible adds significant value as well. For
example, if you just log or print messages to see what an interface maximum trans‐
mission unit (MTU) is, you’re already prepared should you want to automatically

Types of Network Automation | 25

reconfigure it to the right value if it is not the desired MTU. You’d just have to have a
few more lines underneath your existing log/print messages. Again, the point is to
start small, but think through what else you may need in the future.

Reporting
Once you start automating the collection of data, you may want to start building out
custom and dynamic reports too. Maybe the data being returned becomes input to
other configuration management tasks (event-driven again or more basic conditional
configuration), or maybe you just want to create reports.

Given that reports can also be easily generated from templates combined with the
actual ephemeral data from the device that’ll be inserted into the template, the pro‐
cess to create and use reporting templates is the same process used to create configu‐
ration templates that we touched upon earlier in the chapter (remember, we’ll explore
templates in much more depth in Chapter 6).

Because of the simple nature of using text-based templates, it is possible to produce
reports in any format you wish, including but not limited to:

• Simple text files
• Markdown files that can be easily viewed on GitHub, or some other Markdown

viewer
• HTML reports that are deployed to a web server for easy viewing

It all depends on your requirements. The great thing is that the network automator
has the power to create the exact type of report they need. In fact, you can use one set
of data to generate different types of reports, maybe some technical and some higher-
level for management.

Next up, we take a look at the value of automated troubleshooting.

Troubleshooting
Who enjoys getting consistently pulled into break/fix problems, especially when you
should be sleeping or focused on other things?

Once you have access to real-time data and don’t need to do any manual parsing on
that data, automated troubleshooting becomes a reality.

Think about how you troubleshoot. Do you have a personal methodology? Is that
methodology consistent across all members on your team? Does everyone check
Layer 2 before troubleshooting Layer 3? What steps do you take to troubleshoot a
given problem?

26 | Chapter 2: Network Automation

Let’s take troubleshooting OSPF as an example:

• Do you know what it takes to form an OSPF adjacency between two devices?
• Can you rattle off the same answers at 2 a.m. or while on vacation at the beach?
• Maybe you remember some like devices need to be on the same subnet, have the

same MTU, and have consistent timers, but forget they need to be the same OSPF
network type.

• Do we really need to remember all of this and the associated commands to run
on the CLI to get back each piece of data?

And these questions are only a few of the things that need to match for OSPF.

In any given environment, these types of compatibility checks need to be performed.
Can you fathom running a script or using a tool for OSPF neighbor validation versus
performing that process manually? Which would you prefer?

Again, OSPF is only the tip of the iceberg. Think about these other questions, still just
being the tip:

• Can you correlate particular log messages to known conditions on the network?
• What about BGP neighbor adjacencies? How is a neighbor formed?
• Are you seeing all of the routes you think you should in the routing table?
• What about VPC and MLAG configuration?
• What about port-channels? Are there any inconsistencies?
• Do neighbors match the port-channel configuration (going down to the

vSwitch)?
• What about cabling? Are all of the cables plugged in properly?

Even with these questions, we are just scratching the surface with what is possible
when it comes to automated diagnostics and troubleshooting.

As you start to consider all of the types of automation possible,
start to imagine a closed-loop system such that data is collected in
an automated fashion, the data is then processed and analyzed in
an automated fashion, and then you use advanced analytics to
troubleshoot in an automated fashion. As these start to happen
together in a uniform fashion, this becomes a closed loop, fully
changing the way operations are managed within an organization.

If you are the rock star network engineer on your team, you may want to think about
partnering up with a developer, or at the very least, start documenting your work‐
flows, so it’s easier to share the knowledge you possess and it becomes easier to codify.

Types of Network Automation | 27

Better yet, start your own personal automation journey so you can sleep in every so
often and empower everyone else to troubleshoot using some of your automated
diagnostic workflows.

As you can see, network automation is much more than deploying configurations
faster. After looking at several different types of automation, we are going to shift top‐
ics now and look at a few different ways automation tools and applications communi‐
cate with network devices, starting with SSH and ending with NETCONF and HTTP-
based RESTful APIs.

Evolving the Management Plane from SNMP to Device
APIs
If you want to improve the way networks are managed and operated day-to-day,
improvements must begin with how you interface with the underlying devices being
managed. This interface is how you and, more importantly, automation tools com‐
municate with devices to perform the various types of network automation, such as
data collection and configuration management.

In this section, we provide an overview of the different methods available to connect
to the management plane of network devices starting with SNMP and then move on
to more modern ways such as NETCONF and RESTful APIs. We then look at the
impact of the open networking movement as it pertains to network operations and
automation.

Application Programming Interfaces (APIs)
As a network engineer, you need to embrace APIs going forward, and not fear them.
Remember that an API is just a mechanism that is used for computer software on one
device to talk to computer software on another device. APIs are used nearly every‐
where on the internet today—they just happen to finally be getting the focus they
deserve from the network vendors. We’ll soon see that APIs will become the primary
means of managing network devices.

While we cover specific network APIs in more detail in Chapter 7, this section pro‐
vides a high-level overview of a few different types of APIs that you’ll find on network
devices today.

SNMP
SNMP has been widely deployed for over 20 years on network devices. It shouldn’t be
new to anyone reading this book, but SNMP is a protocol that is used quite com‐
monly for polling network devices for information such as up/down status and CPU,
memory, and interface utilization.

28 | Chapter 2: Network Automation

In order to use SNMP, there must be an SNMP agent on a managed device and a net‐
work management station (NMS), which is the device that functions as a server that
monitors and/or controls the managed devices.

Each network device being managed exposes a set of data that can be collected and
configured via the SNMP agent. This set of data that is managed through SNMP is
described and modeled through management information bases, or MIBs. Only if
there is a MIB exposing a certain feature can it be monitored or managed. This
includes making configuration changes through SNMP. Often overlooked, SNMP not
only supports GetRequests for monitoring, but also supports SetRequests for
manipulating objects and variables exposed through MIBs. The issue is that not many
vendors offer full support for configuration management via SNMP; when they do,
they often use custom MIBs, slowing down the integration process to network man‐
agement platforms.

As mentioned, SNMP has been around for decades, but it was not built to be a real-
time programmatic interface to network devices. We are already seeing vendors claim
the gradual death of SNMP as it pertains to next-generation management and auto‐
mation tooling. That said, SNMP does exist on nearly every network device, and
Python libraries for SNMP also exist—so, if you need to collect basic information
from a vast amount of device types, it may still make sense to use SNMP.

Just like SNMP has been used for years to perform network monitoring, SSH/Telnet
and the CLI has been used for configuration management. Let’s take a look now at
SSH/Telnet and the CLI.

SSH/Telnet and the CLI
If you have ever managed a network device, you’ve definitely used the CLI to issue
commands to perform some action on a device. You probably entered commands
through the console and over Telnet and SSH sessions. As we stated in Chapter 1, the
reality is that the migration from Telnet to SSH is arguably the biggest shift we’ve had
in network operations over the past decade, and that shift wasn’t about operations; it
was about security ensuring that communications to network devices were encrypted.

The most important thing to realize as it pertains to managing devices via the CLI is
that the CLI was built for humans. It was put on devices to improve usability for
human operators. The CLI was not meant to be used for machine-to-machine com‐
munication (i.e., network scripting and automation).

If you issue a show command on the CLI of a device, you get raw text back. There is
no structure to it. The best options to parse the response are to use the pipe (|) and
keywords such as grep, include, and begin to look for particular lines of configura‐
tion. An example of that would be to check the description of an interface with the
command show interface Eth1 | include description. This means if you

Evolving the Management Plane from SNMP to Device APIs | 29

needed to know how many CRC errors were on an interface after issuing a show
interface in a script, you’d be forced to use some type of regular expression or man‐
ual parsing to figure it out. This is unacceptable.

However, when all we have is the CLI, CLI is what gets used. This is why there are
plenty of network management platforms and custom scripts that have been built
over the past two decades that perform management and automated operations using
the CLI over SSH dealing with expect scripts and manual parsing. It’s not that
SSH/CLI makes it impossible to automate; rather, it makes automation extremely
error prone and tedious.

The network vendors started to realize this, and now most newer device platforms
have some type of API that simplifies machine-to-machine communication (many
are incomplete, so be sure to test your favorite device’s API), yielding a much simpler
approach to automation that is also more in line with general software development
principles.

After a brief look at common protocols such as SSH and SNMP, we’ll look at NET‐
CONF, an API that is becoming quite popular as it pertains to network automation.

NETCONF
NETCONF is a network management layer protocol. At the highest level, it can be
compared to SNMP, as they are both protocols used to make configuration changes
and retrieve data from networking devices.

The differences come in the details, of course. We cover a few high-level points here,
but spend more time on NETCONF in Chapter 7.

• NETCONF is a connection-oriented protocol and commonly leverages SSH as its
transport.

• Data sent between a NETCONF client (automation tool/script) and NETCONF
server (network device) is encoded in XML. Don’t worry if you aren’t familiar
with XML; we cover it in Chapter 5.

• Remote procedure calls (RPCs) are encoded in the XML document sent to the
device and the device processes these RPCs. The <rpc> element is used to enclose
a NETCONF request sent from the client to the server. In this context, think of
these remote procedure calls as performing a prearranged operation on the
device. RPCs are a way for a client to communicate to the server what structure
and what type of request is being made.

• Supported RPCs map directly to supported NETCONF operations and capabili‐
ties for particular devices. For example, if you are making a change on a device
you use the edit-config operation. If you are retrieving configuration data, you

30 | Chapter 2: Network Automation

use the get or get-config operation. These operations are wrapped inside the
XML document within the <rpc> element sent to the device.

Additionally, NETCONF offers value in that it supports transaction-based changes.
This means that if you are making more than one change in a given NETCONF ses‐
sion, or single XML document, and one of those changes fails, the complete change is
not applied to the device (of course, these types of settings can usually be overridden
too). This is in contrast to sending CLI commands sequentially and ending up with a
partial configuration due to a typo or invalid command.

This was a short introduction to NETCONF, and as mentioned, we dive into NET‐
CONF in more detail later on in Chapter 7.

It’s worth pointing out that just because two different device plat‐
forms support NETCONF (or any common transport method)
does not mean they are compatible from a tooling and developer’s
perspective. Even with the assumption that both devices support
the same NETCONF features and capabilities, how the data is
modeled is, more often than not, vendor specific. Data modeling is
how the device represents state and configuration data. We’ll learn
more about data representation in JSON and XML and YANG, a
common data modeling language, in Chapter 5.

RESTful APIs
REST stands for REpresentational State Transfer and is a style used to design and
develop networked applications. Thus, systems that implement and adhere to a
REST-based architecture are said to be RESTful.

Keeping this in context from a network perspective, the most common devices that
expose APIs and adhere to the architectural style of REST are network controllers.
That said, there are network devices that expose RESTful and general HTTP-based
APIs too.

While the terms REST and RESTful APIs are new from a network standpoint, you’re
already interacting with many RESTful systems on a daily basis as you browse the
internet using a web browser. We said that REST is a style used to develop networked
applications. That style relies on a stateless client-server model in which the client
keeps track of the session and no client state or context is held on the server. And best
yet, the underlying transport protocol used is most commonly HTTP. Doesn’t this
sound like most systems found on the internet?

This means that RESTful APIs operate just like HTTP-based systems. First, you need
a web server accessible via a URL (i.e., SDN controller or network device to communi‐
cate with), and second, you need to send the associated HTTP request to that URL.

Evolving the Management Plane from SNMP to Device APIs | 31

For example, if you need to retrieve a list of devices from an SDN controller, you just
need to send an HTTP GET to the given URL of the device, which could look some‐
thing like this: http://1.1.1.1/v1/devices. The response that comes back would be
some type of structured data like XML or JSON (which we cover in Chapter 5).

There are a few other things that we didn’t touch upon, such as authentication, data
encoding, and how to send an HTTP request if you’re making a configuration change
(HTTP PUT/POST/PATCH). As this section was just a short high-level introduction
to REST and RESTful APIs, we cover more of those details in Chapter 7.

Next up is a short look at the impact open networking is having on the overall man‐
agement of network devices.

Impact of Open Networking
There is a growing trend of all things open—open source, open networking, Open
APIs, OpenFlow, Open Compute, Open vSwitch, OpenDaylight, OpenConfig, and
the list goes on. While the definition of open can be debated, there is one thing that is
certain: the open networking movement is improving what is possible when it comes
to network operations and automation.

With this movement, we are seeing drastic changes in network devices, and this is a
primary reason for writing this book.

First, many devices now support Python on-box. This means that you are able to
drop into the Python Dynamic Interpreter and execute Python scripts locally on each
network device. We cover Python in much more detail in Chapter 4, and you’ll see
what we mean firsthand.

Second, many devices now support a more robust API other than SNMP and SSH.
For example, we just looked at NETCONF and RESTful HTTP-based APIs. One or
both of those APIs are supported on many of the newer device operating systems that
have emerged in the past 18 to 24 months. Remember, we cover device APIs in more
detail in Chapter 7.

Finally, network devices are exposing more of the Linux internals that have been hid‐
den from network operators in the past. You can now drop into a bash shell on net‐
work devices and issue commands such as ifconfig, write bash scripts, and install
monitoring and configuration management tools via package managers such as apt
and yum. You’ll learn about all of these things in Chapter 3.

While open networking doesn’t always mean interoperability, it is evident that network
devices and controllers are opening themselves up to be operated in a much more
programmatic manner better suited for enhanced network automation. There are a
number of APIs on network devices that didn’t exist a few years ago, ranging from
Cisco’s NX-API, Arista’s eAPI, and Cisco’s IOS-XE RESTCONF/NETCONF to any

32 | Chapter 2: Network Automation

new SDN controllers that have APIs. The net result, for you as operators, is that you
can take control of your networks and reduce the number of operational inefficien‐
cies that exist today as you start using these APIs.

Network Automation in the SDN Era
We’ll now take a look at the continued importance of network automation even when
controller solutions are being deployed such as OpenDaylight or even commercial
offerings like Cisco ACI or VMware NSX. The operations that the controllers per‐
form on the network, such as acting as the control plane or managing policy and con‐
figuration, are irrelevant for this section.

The fact is that controllers are becoming common in next-gen architectures. Vendors
such as Cisco, Juniper, VMware, Big Switch, Plexxi, Nuage, Viptela, and many others
all offer controller platforms for their next-gen solutions, not to mention open source
controllers such as OpenDaylight and OpenContrail.

Almost every controller on the market exposes northbound RESTful APIs, making
controllers extremely easy to automate. While controllers themselves inherently sim‐
plify management and visibility through a single pane of glass, you can still end up
making manual and error-prone changes through the GUI of a controller. If there are
several pods or controllers deployed, from the same or different vendors, the prob‐
lems of manual changes, troubleshooting, and data collection do not go away.

As we start to wrap up this chapter, it’s important to note that even in the new era of
SDN architectures and controller-based network solutions, the need for automation,
better operations, and more predictable outcomes does not go away.

Summary
This chapter provided an overview of the value of network automation and various
types of network automation; an introduction to common device APIs including
SNMP, CLI/SSH, and more importantly NETCONF and RESTful; and a brief men‐
tion of YANG, a network modeling language that we’ll cover in more detail in Chap‐
ter 5.

The chapter closed with a brief look at the impact that the open networking move‐
ment is having on network operations and automation. Finally, we touched on the
value of network automation even when SDN controllers are deployed.

In each subsequent chapter, we dive deeper into each technology, providing hands-on
practical examples whenever possible, but at the same time reviewing the importance
of the people, process, and culture required to adopt comprehensive automation
frameworks and pipelines. In fact, we focus significantly on people and culture in
Chapter 11.

Network Automation in the SDN Era | 33

CHAPTER 3

Linux

This chapter aims to help readers become familiar with the basics of Linux, an oper‐
ating system that is becoming increasingly common in networking circles. You might
wonder why we’ve included a chapter about Linux in this book. After all, what in the
world does Linux, a UNIX-like operating system, have to do with network automa‐
tion and programmability?

Examining Linux in a Network Automation Context
In looking at Linux from a network automation perspective, there are several reasons
why we felt this content was important.

First, several modern network operating systems (NOSes) are based on Linux,
although some use a custom command-line interface (CLI) that means they don’t
look or act like Linux. Others, however, do expose the Linux internals and/or use a
Linux shell such as bash.

Second, some new companies and organizations are bringing to market full Linux
distributions that are targeted at network equipment. For example, the OpenCom‐
pute Project (OCP) recently selected Open Network Linux (ONL) as a base upon
which to build Linux-powered NOSes (Big Switch’s Switch Light is an example Linux-
based NOS built on ONL). Cumulus Networks is another example, offering their
Debian-based Cumulus Linux as a NOS for supported hardware platforms. As a net‐
work engineer, you’re increasingly likely to need to know Linux in order to configure
your network.

Third, and finally, many of the tools that we discuss in this book have their origins in
Linux, or require that you run them from a Linux system. For example, Ansible (a
tool we’ll discuss in Chapter 9) requires Python (a topic we’ll discuss in Chapter 4).
For a few different reasons we’ll cover in Chapter 9, when automating network equip‐

35

ment with Ansible you’ll typically run Ansible from a network-attached system run‐
ning Linux, and not on the network equipment directly. Similarly, when you’re using
Python to gather and/or manipulate data from network equipment, you’ll often do so
from a system running Linux.

For these reasons, we felt it was important to include a chapter that seeks to accom‐
plish the following goals:

• Provide a bit of background on the history of Linux
• Briefly explain the concept of Linux distributions
• Introduce you to bash, one of the most popular Linux shells available
• Discuss Linux networking basics
• Dive into some advanced Linux networking functionality

Keep in mind that this chapter is not intended to be a comprehensive treatise on
Linux or the bash shell; rather, it is intended to get you “up and running” with Linux
in the context of network automation and programmability. Having said that, let’s
start our discussion of Linux with a very brief look at its history and origins.

A Brief History of Linux
The story of Linux is a story with a couple of different threads.

One thread started out in the early 1980s, when Richard Stallman launched the GNU
Project as an effort to provide a free UNIX-like operating system. GNU, by the way,
stands for “GNU’s Not UNIX,” a recursive acronym Stallman created to describe the
free UNIX-like OS he was attempting to create. Stallman’s GNU General Public
License (GPL) came out of the GNU Project’s efforts. Although the GNU Project was
able to create free versions of a wide collection of UNIX utilities and applications, the
kernel—known as GNU Hurd—for the GNU Project’s new OS never gained momen‐
tum.

A second thread is found in Linus Torvalds’ efforts to create a MINIX clone in 1991
as the start of Linux. Driven by the lack of a free OS kernel, his initial work rapidly
gained support, and in 1992 was licensed under the GNU GPL with the release of ver‐
sion 0.99. Since that time, the kernel he wrote (named Linux) has been the default OS
kernel for the software collection created by the GNU Project.

Because Linux originally referred only to the OS kernel and needed the GNU Proj‐
ect’s software collection to form a full operating system, some people suggested that
the full OS should be called “GNU/Linux,” and some organizations still use that desig‐
nation today (Debian, for example). By and large, however, most people just refer to
the entire OS as Linux, and so that’s the convention that we will follow in this book.

36 | Chapter 3: Linux

Linux Distributions
As you saw in the previous section, the Linux operating system is made up of the
Linux kernel plus a large collection of open source tools primarily developed as part
of the GNU Project. The bundling together of the kernel plus a collection of open
source software led to the creation of Linux distributions (also known as Linux dis‐
tros). A distribution is the combination of the Linux kernel plus a selection of open
source utilities, applications, and software packages that are bundled together and
distributed together (hence the name distribution). Over the course of Linux’s history,
a number of Linux distributions have risen and fallen in popularity (anyone remem‐
ber Slackware?), but as of this writing there are two major branches of Linux distribu‐
tions: the Red Hat/CentOS branch and the Debian and Debian derivative branch.

Red Hat Enterprise Linux, Fedora, and CentOS
Red Hat was an early Linux distributor who became a significant influencer and com‐
mercial success in the Linux market, so it’s perfectly natural that one major branch of
Linux distributions is based on Red Hat.

Red Hat offers a commercial distribution, known as Red Hat Enterprise Linux
(RHEL), in addition to offering technical support contracts for RHEL. Many organi‐
zations today use RHEL because it is backed by Red Hat, focuses on stability and reli‐
ability, offers comprehensive technical support options, and is widely supported by
other software vendors.

However, the fast-moving pace of Linux development and the Linux open source
community is often at odds with the slower and more methodical pace required to
maintain stability and reliability in the RHEL product. To help address this dichot‐
omy, Red Hat has an upstream distribution known as Fedora. We refer to Fedora as
an “upstream distribution” because much of the development of RHEL and RHEL-
based distributions occurs in Fedora, then flows “down” to these other products. In
coordination with the broader open source community, Fedora sees new kernel ver‐
sions, new kernel features, new package management tools, and other new develop‐
ments first; these new things are tested and vetted in Fedora before being migrated to
the more enterprise-focused RHEL distribution at a later date. For this reason, you
may see Fedora used by developers and other individuals who need the “latest and
greatest,” but you won’t often see Fedora used in production environments.

Although RHEL and its variants are only available from Red Hat through a commer‐
cial arrangement, the open source license (the GNU GPL) under which Linux is
developed and distributed requires that the source of Red Hat’s distribution be made
publicly available. A group of individuals who wanted the stability and reliability of
RHEL but without the corresponding costs imposed by Red Hat took the RHEL sour‐
ces and created CentOS. (CentOS is a named formed out of “Community Enterprise

Linux Distributions | 37

OS.”) CentOS is freely available without cost, but—like many open source software
packages—does not come with any form of technical support. For many organiza‐
tions and many use cases, the support available from the open source community is
sufficient, so it’s not uncommon to see CentOS used in a variety of environments,
including enterprise environments.

One of the things that all of these distributions (RHEL, Fedora, and CentOS) share is
a common package format. When Linux distributions first started emerging, one key
challenge that had to be addressed was the way in which software was packaged with
the Linux kernel. Due to the breadth of free software that was available for Linux, it
wasn’t really effective to ship all of it in a distribution, nor would users necessarily
want all of the various pieces of software installed. If not all of the software was
installed, though, how would the Linux community address dependencies? A depend‐
ency is a piece of software required to run another piece of software on a computer.
For example, some software might be written in Python, which of course would
require Python to be installed. To install Python, however, might require other pieces
of software to be installed, and so on. As an early distributor, Red Hat came up with a
way to combine the files needed to run a piece of software along with additional
information about that software’s dependencies into a single package—a package for‐
mat. That package format is known as an RPM, perhaps so named after the tool origi‐
nally used to work with said packages: RPM Manager (formerly Red Hat Package
Manager), whose executable name was simply rpm. All of the Linux distributions
we’ve discussed so far—RHEL, CentOS, and Fedora—leverage RPM packages as their
default package format, although the specific tool used to work with such packages
has evolved over time.

RPM’s successors

We mentioned that RPM originally referred to the actual package
manager itself, which was used to work with RPM packages. Most
RPM-based distributions have since replaced the rpm utility with
newer package managers that do a better job of understanding
dependencies, resolving conflicts, and installing (or removing)
software from a Linux installation. For example, RHEL/CentOS/
Fedora moved first to a tool called yum (short for “Yellowdog
Updater, Modified”), and are now migrating again to a tool called
dnf (which stands for “Dandified YUM”).

Other distributions also leverage the RPM package format, such as Oracle Linux, Sci‐
entific Linux, and various SUSE Linux derivatives.

38 | Chapter 3: Linux

RPM portability

You might think that, because a number of different Linux distribu‐
tions all leverage the same package format (RPM), RPM packages
are portable across these Linux distributions. In theory, this is pos‐
sible, but in practice it rarely works. This is usually due to slight
variations in package names and package versions across the distri‐
butions, which makes resolving dependencies and conflicts practi‐
cally impossible.

Debian, Ubuntu, and Other Derivatives
Debian GNU/Linux is a distribution produced and maintained by the Debian Project.
The Debian Project was officially founded by Ian Murdock on August 16, 1993, and
the creation of Debian GNU/Linux was funded by the Free Software Foundation’s
GNU Project from November 1994 through November 1995. To this day, Debian
remains the only major distribution of Linux that is not backed by a commercial
entity. All Debian GNU/Linux releases since version 1.1 have used a code name taken
from a character in one of the Toy Story movies. Debian GNU/Linux 1.1, released in
June 1996, was code-named “Buzz.” The most recent stable version of Debian GNU/
Linux, version 9.0, was released in June 2017 and is code-named “Stretch.”

Debian GNU/Linux offers three branches: stable, testing, and unstable. The testing
and unstable branches are rolling releases that will, eventually, become the next stable
branch. This approach results in a typically very high-quality release, and could be
one of the reasons that a number of other distributions are based on (derived from)
Debian GNU/Linux.

One of the more well-known Debian derivatives is Ubuntu Linux, started in April
2004 and funded in large part by Canonical Ltd., a company founded by Mark Shut‐
tleworth. The first Ubuntu, released in October 2004, was released as version 4.10
(the “4” denotes the year, and the “10” denotes the month of release), and was code-
named “Warty Warthog.” All Ubuntu codenames are cmposed of an adjective and an
animal with the same first letter (Warty Warthog, Hoary Hedgehog, Breezy Badger,
etc.). Ubuntu was initially targeted as a usable desktop Linux distribution, but now
offers both desktop-, server-, and mobile-focused versions. Ubuntu uses time-based
releases, releasing a new version every six months and a long-term support (LTS)
release every two years. LTS releases are supported by Canonical and the Ubuntu
community for a total of five years after release. All releases of Ubuntu are based on
packages taken from Debian’s unstable branch, which is why we refer to Ubuntu as a
Debian derivative.

Speaking of packages: like RPM-based distributions, the common thread across the
Debian and Debian derivatives—probably made clear by the term Debian derivatives
used to describe them—is that they share a common package format, known as the

Linux Distributions | 39

Debian package format (and denoted by a .deb extension on the files). The founders
of the Debian Project created the DEB package format and the dpkg tool to solve the
same problems that Red Hat attempted to solve with the RPM package format. Also
like RPM-based distributions, Debian-based distributions evolved past the use of the
dpkg tool directly, first using a tool called dselect and then moving on to the use of
the apt tool (and programs like apt-get and aptitude).

Debian package portability

Just as with RPM packages, the fact that multiple distributions lev‐
erage the Debian package format doesn’t mean that Debian pack‐
ages are necessarily portable between distributions. Slight
variations in package names, package versions, file paths, and other
details will typically make this very difficult, if not impossible.

A key feature of the apt-based tools is the ability to retrieve packages from one or
more remote repositories, which are online storehouses of Debian packages. The apt
tools also feature better dependency determination, conflict resolution, and package
installation (or removal).

Other Linux Distributions
There are other distributions in the market, but these two branches—the Red Hat/
Fedora/CentOS branch and the Debian/Ubuntu branch—cover the majority of Linux
instances found in organizations today. For this reason, we’ll focus only on these two
branches throughout the rest of this chapter. If you’re using a distribution not from
one of these two major branches—perhaps you’re working with SUSE Enterprise
Linux, for example—keep in mind there may be slight differences between the infor‐
mation contained here and your specific distribution. You should refer to your distri‐
bution’s documentation for the details.

Now that we’ve provided an overview of the history of Linux and Linux distributions,
let’s shift our focus to interacting with Linux, focusing primarily on interacting via the
shell.

Interacting with Linux
As a very popular server OS, Linux can be used in a variety of ways across the net‐
work. For example, you could receive IP addresses via a Linux-based DHCP server,
access a Linux-powered web server running the Apache HTTP server or Nginx, or
utilize a Domain Name System (DNS) server running Linux in order to resolve
domain names to IP addresses. There are, of course, many more examples; these are
just a few. In the context of our discussion of Linux, though, we’re going to focus pri‐
marily on interacting with Linux via the shell.

40 | Chapter 3: Linux

The shell is what provides the command-line interface by which most users will inter‐
act with a Linux system. Linux offers a number of shells, but the most common shell
is bash, the Bourne Again Shell (a play on the name of one of the original UNIX
shells, the Bourne Shell). In the vast majority of cases, unless you’ve specifically con‐
figured your system to use a different shell, when you’re interacting with Linux you’re
using bash. In this section, we’re going to provide you with enough basic information
to get started interacting with a Linux system’s console, and we’ll assume that you’re
using bash as your shell. If you are using a different shell, please keep in mind that
some of the commands and behaviors we describe might be slightly different.

A good bash reference

Bash is a topic about which an entire book could be written. In fact,
one already has—and is now in its third edition. If you want to
learn more about bash than we have room to talk about in this
book, we highly recommend O’Reilly’s Learning the bash Shell,
Third Edition.

We’ve broken our discussion of interacting with Linux into four major areas:

• Navigating the filesystem
• Manipulating files and directories
• Running programs
• Working with background services, known as daemons

This is introductory-level content

This section is primarily targeting users who are new to Linux (a
lot of network engineers and IT professionals are mostly familiar
with Microsoft Windows). If you’re familiar with Linux, feel free to
skip ahead.

Let’s start with navigating the filesystem.

Navigating the Filesystem
Linux uses what’s known as a single-root filesystem, meaning that all of the drives and
directories and files in a Linux installation fall into a single namespace, referred to
quite simply as /. (When you see / by itself, say “root” in your head.) This is in stark
contrast to an OS like Microsoft Windows, where each drive typically has its own
root (the drive letter, like C:\ or D:\). Note that it is possible to mount a drive in a
folder under Windows, but the practice isn’t as common.

Interacting with Linux | 41

Everything is treated like a file

Linux follows in UNIX’s footsteps in treating everything like a file.
This includes storage devices (which are treated as block devices),
ports on the computer (like serial ports), or even input/output
devices. Thus, the importance of a single-root filesystem—which
encompasses devices as well as storage—becomes even greater.

Like most other OSes, Linux uses the concept of directories (known as folders in some
other OSes) to group files in the filesystem. Every file resides in a directory, and
therefore every file has a unique path to its location. To denote the path of a file, you
start at the root and list all the directories it takes to get to that file, separating the
directories with a forward slash. For example, the command ping is often found in
the bin directory off the root directory. The path, therefore, to ping would be noted
like this: /bin/ping.

In other words, start at the root directory (/), continue into the bin/ directory, and
find the file named ping. Similarly, on Debian Linux 8.1, the arp utility for viewing
and manipulating Address Resolution Protocol (ARP) entries is found at (in other
words, its path is) /usr/sbin/arp.

This concept of path becomes important when we start considering that bash allows
you to navigate, or move around, within the filesystem. The prompt, or the text that
bash displays when waiting for you to input a command, will tell you where you are
in the filesystem. Here’s the default prompt for a Debian 8.1 system:

vagrant@jessie:~$

Do you see it? Unless you’re familiar with Linux, you may have missed the tilde (~)
following vagrant@jessie: in this example prompt. In the bash shell, the tilde is a
shortcut that refers to the user’s home directory. Each user has a home directory that
is their personal location for storing files, programs, and other content for only that
user. To make it easy to refer to one’s home directory, bash uses the tilde as a shortcut.
So, looking back at the sample prompt, you can see that this particular prompt tells
you a few different things:

1. The first part of the prompt, before the @ symbol, tells you the current user (in
this case, vagrant).

2. The second part of the prompt, directly after the @ symbol, tells you the current
hostname of the system on which you are currently operating (in this case, jes
sie is the hostname).

3. Following the colon is the current directory, noted in this case as ~ meaning that
this user (vagrant) is currently in his or her home directory.

42 | Chapter 3: Linux

4. Finally, even the $ at the end has meaning—in this particular case, it means that
the current user (vagrant) does not have root permissions. The $ will change to a
hash sign (the # character, also known as an octothorpe) if the user has root per‐
missions. This is analogous to the way that the prompt for a network device, such
as a router or switch, may change depending on the user’s privilege level.

About the Environments We’re Using

Throughout this chapter, you’ll see various Linux prompts similar
to ones we just showed you. We’re using a tool called Vagrant to
simplify the creation of multiple different Linux environments—in
this case, Debian GNU/Linux 8.1 (also known as “Jessie”), Ubuntu
Linux 14.04 LTS (named “Trusty Tahr”), and CentOS 7.1.

The default prompt on a CentOS 7.1 system looks like this:

[vagrant@centos ~]$

As you can see, it’s very similar, and it conveys the same information as the other
example prompt we showed, albeit in a slightly different format. Like the earlier
example, this prompt shows us the current user (vagrant), the hostname of the cur‐
rent system (centos), the current directory (~), and the effective permissions of the
logged-in user ($).

The use of the tilde is helpful in keeping the prompt short when you’re in your home
directory, but what if you don’t know the path to your home directory? In other
words, what if you don’t know where on the system your home directory is located?
In situations like this where you need to determine the full path to your current loca‐
tion, bash offers the pwd (print working directory) command, which will produce
output something like this:

vagrant@jessie:~$ pwd
/home/vagrant
vagrant@jessie:~$

The pwd command simply returns the directory where you’re currently located in the
filesystem (the working directory).

Now that you know where you are located in the filesystem, you can begin to move
around the filesystem using the cd (change directory) command along with a path to
a destination. For example, if you were in your home directory and wanted to change
into the bin subdirectory, you’d simply type cd bin and press Enter (or Return).

Note the lack of the leading slash here. This is because /bin and bin might be two very
different locations in the filesystem:

Interacting with Linux | 43

http://www.vagrantup.com

• Using bin (no leading slash) tells bash to change into the bin subdirectory of the
current working directory.

• Using /bin (with a leading slash) tells bash to change into the bin subdirectory of
the root (/) directory.

See how, therefore, bin and /bin might be very different locations? This is why
understanding the concept of a single-root filesystem and the path to a file or direc‐
tory is important. Otherwise, you might end up performing some action on a differ‐
ent file or directory than what you intended! This is particularly important when it
comes to manipulating files and directories, which we’ll discuss in the next section.

Before moving on, though, there are a few more navigational commands we need to
discuss.

To move up one level in the filesystem (for example, to move from /usr/local/bin/
to /usr/local/), you can use the .. shortcut. Every directory contains a special entry,
named .. (two periods), that is a shortcut entry for that directory’s parent directory
(the directory one level above it). So, if your current working directory is /usr/local/
bin, you can simply type cd .. and press Enter (or Return) to move up one directory.

vagrant@jessie:/usr/local/bin$ cd ..
vagrant@jessie:/usr/local$

Note that you can combine the .. shortcut with a directory name to move laterally
between directories. For example, if you’re currently in /usr/local and need to move
to /usr/share, you can type cd ../share and press Enter. This moves you to the direc‐
tory whose path is up one level (..) and is named share.

vagrant@jessie:/usr/local$ cd ../share
vagrant@jessie:/usr/share$

You can also combine multiple levels of the .. shortcut to move up more than one
level. For example, if you are currently in /usr/share and need to move to / (the root
directory), you could type cd ../../ and press Enter. This would put you into the
root directory.

vagrant@jessie:/usr/share$ cd ../..
vagrant@jessie:/$

All these examples are using relative paths—that is, paths that are relative to your cur‐
rent location. You can, of course, also use absolute paths—that is, paths that are anch‐
ored to the root directory. As we mentioned earlier, the distinction is the use of the
forward slash (/) to denote an absolute path starting at the root versus a path relative
to the current location. For example, if you are currently located in the root directory
(/) and need to move to /media/cdrom, you don’t need the leading slash (because
media is a subdirectory of /). You can type cd media/cdrom and press Enter. This will
move you to /media/cdrom, because you used a relative path to your destination.

44 | Chapter 3: Linux

vagrant@jessie:/$ cd media/cdrom
vagrant@jessie:/media/cdrom$

From here, though, if you needed to move to /usr/local/bin, you’d want to use an
absolute path. Why? Because there is no (easy) relative path between these two loca‐
tions that doesn’t involve moving through the root (see the following sidebar for a bit
more detail). Using an absolute path, anchored with the leading slash, is the quickest
and easiest approach.

vagrant@jessie:/media/cdrom$ cd /usr/local/bin
vagrant@jessie:/usr/local/bin$

More Than One Path

If you’re thinking that you could have also used the command
cd ../../usr/local/bin to move from /media/cdrom to /usr/
local/bin, you’ve mastered the relationship between relative paths
and absolute paths on a Linux system.

Finally, there’s one final navigation trick we want to share. Suppose you’re in /usr/
local/bin, but you need to switch over to /media/cdrom. So you enter cd /media/
cdrom, but after switching directories realize you needed to be in /usr/local/bin after
all. Fortunately, there is a quick fix. The notation cd - (using a hyphen after the cd
command) tells bash to switch back to the last directory you were in before you
switched to the current directory. (If you need a shortcut to get back to your home
directory, just enter cd with no parameters.)

vagrant@jessie:/usr/local/bin$ cd /media/cdrom
vagrant@jessie:/media/cdrom$ cd -
/usr/local/bin
vagrant@jessie:/usr/local/bin$ cd -
/media/cdrom
vagrant@jessie:/media/cdrom$ cd -
/usr/local/bin
vagrant@jessie:/usr/local/bin$

Here are all of these filesystem navigation techniques in action.

vagrant@jessie:/usr/local/bin$ cd ..
vagrant@jessie:/usr/local$ cd ../share
vagrant@jessie:/usr/share$ cd ../..
vagrant@jessie:/$ cd media/cdrom
vagrant@jessie:/media/cdrom$ cd /usr/local/bin
vagrant@jessie:/usr/local/bin$ cd -
/media/cdrom
vagrant@jessie:/media/cdrom$ cd -
/usr/local/bin
vagrant@jessie:/usr/local/bin$

Interacting with Linux | 45

Now you should have a pretty good grasp on how to navigate around the Linux file‐
system. Let’s build on that knowledge with some information on manipulating files
and directories.

Manipulating Files and Directories
Armed with a basic understanding of the Linux filesystem, paths within the filesys‐
tem, and how to move around the filesystem, let’s take a quick look at manipulating
files and directories. We’ll cover four basic tasks:

• Creating files and directories
• Deleting files and directories
• Moving, copying, and renaming files and directories
• Changing permissions

Let’s start with creating files and directories.

Creating files and directories

To create files or directories, you’ll work with one of two basic commands: touch,
which is used to create files, and mkdir (make directory), which is used—not surpris‐
ingly—to create directories.

Other ways to create files

There are other ways of creating files, such as echoing command
output to a file or using an application (like a text editor, for exam‐
ple). Rather than trying to cover all the possible ways to do some‐
thing, we want to focus on getting you enough information to get
started.

The touch command just creates a new file with no contents (it’s up to you to use a
text editor or appropriate application to add content to the file after it is created). Let’s
look at a few examples:

[vagrant@centos ~]$ touch config.txt

Here’s an equivalent command (we’ll explain why it’s equivalent in just a moment):

[vagrant@centos ~]$ touch ./config.txt

Why this command is equivalent to the earlier example may not be immediately
obvious. In the previous section, we talked about the .. shortcut for moving to the
parent directory of the current directory. Every directory also has an entry noted by a
single period (.) that refers to the current directory. Therefore, the commands touch

46 | Chapter 3: Linux

config.txt and touch ./config.txt will both create a file named config.txt in the
current working directory.

If both syntaxes are correct, why are there two different ways of doing it? In this case,
both commands produce the same result—but this isn’t the case for all commands.
When you want to be sure that the file you’re referencing is the file in the current
working directory, use ./ to tell bash you want the file in the current directory.

[vagrant@centos ~]$ touch /config.txt

In this case, we’re using an absolute path, so this command creates a file named con‐
fig.txt in the root directory, assuming your user account has permission. (We’ll talk
about permissions in “Changing permissions” on page 49.)

When ./ is useful

One thing we haven’t discussed in detail yet is the idea of bash’s
search paths, which are paths (locations) in the filesystem that bash
will automatically search when you type in a command. In a typical
configuration, paths such as /bin, /usr/bin, /sbin, and similar loca‐
tions are included in the search path. Thus, if you specify a file‐
name from a file in one of those directories without using the full
path, bash will find it for you by searching these paths. This is one
of the times when being specific about a file’s location (by includ‐
ing ./ or the absolute path) might be a good idea, so that you can be
sure which file is the file being found and used by bash.

The mkdir command is very simple: it creates the directory specified by the user. Let’s
look at a couple quick examples.

[vagrant@centos ~]$ mkdir bin

This command creates a directory named bin in the current working directory. It’s
different than this command (relative versus absolute paths!):

[vagrant@centos ~]$ mkdir /bin

Like most other Linux commands, mkdir has a lot of options that modify its behavior,
but one you’ll use frequently is the -p parameter. When used with the -p option,
mkdir will not report an error if the directory already exists, and will create parent
directories along the path as needed.

For example, let’s say you had some files you needed to store, and you wanted to store
them in /opt/sw/network. If you were in the /opt directory and entered mkdir sw/
network when the sw directory didn’t already exist, the mkdir command would report
an error. However, if you simply added the -p option, mkdir would then create the sw
directory if needed, then create network under sw. This is a great way to create an

Interacting with Linux | 47

entire path all at once without failing due to errors if a directory along the way
already exists.

Creating files and directories is one half of the picture; let’s look at the other half
(deleting files and directories).

Deleting files and directories
Similar to the way there are two commands for creating files and directories, there are
two commands for deleting files and directories. Generally, you’ll use the rm com‐
mand to delete (remove) files, and you’ll use the rmdir command to delete directo‐
ries. There is also a way to use rm to delete directories, as we’ll show you in this
section.

To remove a file, you simply use rm filename. For example, to remove a file named
config.txt in the current working directory, you’d use one of the two following com‐
mands (do you understand why?):

vagrant@trusty:~$ rm config.txt
vagrant@trusty:~$ rm ./config.txt

You can, of course, use absolute paths (/home/vagrant/config.txt) as well as rela‐
tive paths (./config.txt).

To remove a directory, you use rmdir directory. Note, however, that the directory
has to be empty; if you attempt to delete a directory that has files in it, you’ll get this
error message:

rmdir: failed to remove 'src': Directory not empty

In this case, you’ll need to first empty the directory, then use rmdir. Alternately, you
can use the -r parameter to the rm command. Normally, if you try to use the rm com‐
mand on a directory and you fail to use the -r parameter, bash will respond like this
(in this example, we tried to remove a directory named bin in the current working
directory):

rm: cannot remove 'bin': Is a directory

When you use rm -r directory, though, bash will remove the entire directory tree.
Note that, by default, rm isn’t going to prompt for confirmation—it’s simply going to
delete the whole directory tree. No Recycle Bin, no Trash Can…it’s gone. (If you want
a prompt, you can add the -i parameter.)

The same goes for the mv and cp commands we’ll discuss in the
next section—without the -i parameter, these commands will sim‐
ply overwrite files in the destination without any prompt. Be sure
to exercise the appropriate level of caution when using these com‐
mands.

48 | Chapter 3: Linux

Creating and deleting files and directories aren’t the only tasks you might need to do,
though, so let’s take a quick look at moving (or copying) files and directories.

Moving, copying, and renaming files and directories
When it comes to moving, copying, and renaming files and directories, the two com‐
mands you’ll need to use are cp (for copying files or directories) and mv (for moving
and renaming files and directories).

Check the man pages!

The basic use of all the Linux commands we’ve shown you so far is
relatively easy to understand, but—as the saying goes—the devil is
in the details. If you need more information on any of the options,
parameters, or the advanced usage of just about any command in
Linux, use the man (manual) command. For example, to view the
manual page for the cp command, type man cp. The manual pages
show a more detailed explanation of how to use the various com‐
mands.

To copy a file, it’s just cp source destination. Similarly, to move a file you would
just use mv source destination. Renaming a file, by the way, is consider moving it
from one name to a new name (typically in the same directory).

Moving a directory is much the same; just use mv source-dir destination-dir.
This is true whether the directory is flat (containing only files) or a tree (containing
both files as well as subdirectories).

Copying directories is only a bit more complicated. Just add the -r option, like cp -r
source-dir destination-dir. This will handle most use cases for copying directo‐
ries, although some less common use cases may require some additional options. We
recommend you read and refer to the man (manual) page for cp for additional details
(see the “Check the man pages!” tip earlier).

The final topic we’d like to tackle in our discussion of manipulating files and directo‐
ries is permissions.

Changing permissions
Taking a cue from its UNIX predecessors (keeping in mind that Linux rose out of
efforts to create a free UNIX-like operating system), Linux is a multiuser OS that
incorporates the use of permissions on files and directories. In order to be considered
a multiuser OS, Linux had to have a way to make sure one user couldn’t view/see/
modify/remove other users’ files, and so file- and directory-level permissions were a
necessity.

Interacting with Linux | 49

Linux permissions are built around a couple of key ideas:

• Permissions are assigned based on the user (the user who owns the file), group
(other users in the file’s group), and others (other users not in the file’s group).

• Permissions are based on the action (read, write, and execute).

Here’s how these two ideas come together. Each of the actions (read, write, and exe‐
cute) is assigned a value; specifically, read is set to 4, write is set to 2, and execute is
set to 1. (Note that these values correspond exactly to binary values.) To allow multi‐
ple actions, add the values for each underlying action. For example, if you wanted to
allow both read and write, the value you’d assign is 6 (read = 4, write = 2, so read
+write = 6).

These values are then assigned to user, group, and others. For example, to allow the
file’s owner to read and write to a file, you’d assign the value 6 to the user’s permis‐
sions. To allow the file’s owner to read, write, and execute a file, you’d assign the value
7 to the user’s permissions. Similarly, if you wanted to allow users in the file’s group to
read the file but not write or execute it, you’d assign the value 2 to the group’s permis‐
sions. User, group, and other permissions are listed as an octal number, like this:

644 (user = read+write, group = read, others = read)
755 (user = read+write+execute, group = read+execute, others = read+execute)
600 (user = read+write, group = none, others = none)
620 (user = read+write, group = write, others = none)

You may also see these permissions listed as a string of characters, like rxwr-xr-x.
This breaks down to the read (r), write (w), and execute (x) permissions for each of
the three entities (user, group, and others). Here are the same examples as earlier, but
written in alternate format:

644 = rw-r--r--
755 = rwxr-xr-w
600 = rw-------
620 = rw--w----

The read and write permissions are self-explanatory, but execute is a bit different. For
a file, it means just what it says: the ability to execute the file as a program (something
we’ll discuss in more detail in the next section, “Running Programs” on page 52). For
a directory, though, it means the ability to look into and list the contents of the direc‐

50 | Chapter 3: Linux

tory. Therefore, if you want members of a directory’s group to see the contents of that
directory, you’ll need to grant the execute permission.

A couple of different Linux tools are used to view and modify permissions. The ls
utility, used for listing the contents of a directory, will show permissions when used
with the -l option, and is most likely the primary tool you’ll use to view permissions.
Figure 3-1 contains the output of ls -l /bin on a Debian 8.1 system, and clearly
shows permissions assigned to the files in the listing.

Figure 3-1. Permissions in a file listing

To change or modify permissions, you’ll need to use the chmod utility. This is where
the explanation of octal values (755, 600, 644, etc.) and the rwxr-wr-w notation (typi‐
cally referred to as symbolic notation) comes in handy, because that’s how chmod
expects the user to enter permissions. As with relative paths versus absolute paths, the
use of octal values versus symbolic notation is really a matter of what you’re trying to
accomplish:

• If you need (or are willing) to set all the permissions at the same time, use octal
values. Even if you omit some of the digits, you’ll still be changing the permis‐
sions because chmod assumes missing digits are leading zeros (and thus you’re
setting permissions to none).

• If you need to set only one part (user, group, or others) of the permissions while
leaving the rest intact, use symbolic notation. This will allow you to modify only
one part of the permissions (for example, only the user permissions, or only the
group permissions).

Interacting with Linux | 51

Here are a few quick examples of using chmod. First, let’s set the bin directory in the
current working directory to mode 755 (owner = read/write/execute, all others =
read/execute):

[vagrant@centos ~]$ chmod 755 bin

Next, let’s use symbolic notation to add read/write permissions to the user that owns
the file config.txt in the current working directory, while leaving all other permissions
intact:

[vagrant@centos ~]$ chmod u+rw config.txt

Here’s an even more complex example—this adds read/write permissions for the file
owner, but removes write permission for the file group:

[vagrant@centos ~]$ chmod u+rw,g-w /opt/share/config.txt

The chmod command also supports the use of the -R option to act recursively, mean‐
ing the permission changes will be propagated to files and subdirectories (obviously
this works only when you’re using chmod against a directory).

Modifying ownership and file group

Given that file ownership and file group play an integral role in file
permissions, it’s natural that Linux also provides tools to modify
file ownership and file group (the ls command is used to view
ownership and group, as shown earlier in Figure 3-1). You’ll use
the chown command to change ownership, and the chgrp com‐
mand to change the file group. Both commands support the same
-R option as chmod to act recursively.

We’re now ready to move on from file and directory manipulation to our next major
topic in interacting with Linux, which is running programs.

Running Programs
Running programs is actually pretty simple, given the material we’ve already covered.
In order to run a program, here’s what’s needed:

• A file that is actually an executable file (you can use the file utility to help deter‐
mine if a file is executable)

• Execute permissions (either as the file owner, as a member of the file’s group, or
with the execute permission given to others)

We discussed the second requirement (execute permissions) in the previous section
on permissions, so we don’t need to cover that again here. If you don’t have execute
permissions on the file, use the chmod, chown, and/or chgrp commands as needed to

52 | Chapter 3: Linux

address it. The first requirement (an executable file) deserves a bit more discussion,
though.

What makes up an “executable file”? It could be a binary file, compiled from a pro‐
gramming language such C or C++. However, it could also be an executable text file,
such as a bash shell script (a series of bash shell commands) or a script written in a
language like Python or Ruby. (We’ll be talking about Python extensively in the next
chapter.) The file utility (which may or may not be installed by default; use your
Linux distribution’s package management tool to install it if it isn’t already installed)
can help here.

Here’s the output of the file command against various types of executable files.

vagrant@jessie:~$ file /bin/bash
/bin/bash: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[
sha1]=a8ff57737fe60fba639d91d603253f4cdc6eb9f7, stripped
vagrant@jessie:~$ file docker
docker: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically
linked, for GNU/Linux 2.6.24, BuildID[
sha1]=3d4e8c5339180d462a7f43e62ede4f231d625f71, not stripped
vagrant@jessie:~$ file shellscript.sh
script.sh: Bourne-Again shell script, ASCII text executable
vagrant@jessie:~$ file testscript.py
script.py: Python script, ASCII text executable
vagrant@jessie:~$ file testscript-2.rb
script.rb: Ruby script, ASCII text executable

Scripts and the shebang

You’ll note that the file command can identify text files as a
Python script, a Ruby script, or a shell (bash) script. This might
sound like magic, but in reality it’s relying upon a Linux construct
known as the shebang. The shebang is the first line in a text-based
script and it starts with the characters !, followed by the path to the
interpreter to the script (the interpreter is what will execute the
commands in the script). For example, on a Debian 8.1 system the
Python interpreter is found at /usr/bin/python, and so the shebang
for a Python script would look like !/usr/bin/python. A Ruby
script would have a similar shebang, but pointing to the Ruby
interpreter. A bash shell script’s shebang would point to bash itself,
of course.

Once you’ve satisfied both requirements—you have an executable file and you have
execute permissions on the executable file—running a program is as simple as enter‐
ing the program name on the command line. That’s it. Each program may, of course,
have certain options and parameters that need to be supplied. The only real “gotcha”
here might be around the use of absolute paths; for example, if multiple programs

Interacting with Linux | 53

named testnet exist on your Linux system and you simply enter testnet at the shell
prompt, which one will it run? This is where an understanding of bash search paths
(which we’ll discuss next) and/or the use of absolute paths can help you ensure that
you’re running the intended program.

Let’s expand on this potential “gotcha” just a bit. Earlier in this chapter, in “Navigating
the Filesystem” on page 41, we covered the idea of relative paths and absolute paths.
We’re going to add to the discussion of paths now by introducing the concept of a
search path. Every Linux system has a search path, which is a list of directories on the
system that it will search when the user enters a filename. You can see the current
search path by entering echo $PATH at your shell prompt, and on a CentOS 7 system
you’d see something like this:

[vagrant@centos ~]$ echo $PATH
/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/vagrant/.local/bin:
/home/vagrant/bin
[vagrant@centos ~]$

What this means is that if you had a script named testscript.py stored in /usr/local/bin,
you could be in any directory on the system and simply enter the script’s name (test‐
script.py) to execute the script. The system would search the directories in the search
path (in order) for the filename you’d entered, and execute the first one it found
(which, in this case, would typically be the one in /usr/local/bin because that’s the first
directory in the search path).

You’ll note, by the way, that the search path does not include the current directory.
Let’s say you’ve created a scripts directory in your home directory, and in that direc‐
tory you have a shell script you’ve written called shellscript.sh. Take a look at the
behavior from the following set of commands:

[vagrant@centos ~]$ pwd
/home/vagrant/scripts
[vagrant@centos ~]$ ls
shellscript.sh
[vagrant@centos ~]$ shellscript.sh
-bash: /home/vagrant/bin/shellscript.sh: No such file or directory
[vagrant@centos ~]$./shellscript.sh
This is a shell script.
[vagrant@centos ~]$

Because the shell script wasn’t in the search path, we had to use an absolute path—in
this case, the absolute path was telling bash (via the ./ notation) to look in the cur‐
rent directory.

Therefore, the “gotcha” with running programs is that any program you run—be it a
compiled binary or an ASCII text script that will be interpreted by bash, Python,
Ruby, or some other interpreter—needs to be in the search path, or you’ll have to
explicitly specify the absolute path (which may include the current directory) to the

54 | Chapter 3: Linux

program. In the case of multiple programs with the same name in different directo‐
ries, it also means that the program bash finds first will be the program that gets exe‐
cuted, and the search order is determined by the search path.

To help with this potential gotcha when you have multiple programs with the same
name, you can use the which command. For example, suppose you have a Python
script named uptime that gathers uptime statistics from your network devices. Most
Linux distributions also ship with a command called uptime (it displays information
about how long the Linux system has been up and running). By typing which
uptime, you can ask the Linux system to tell you the full path to the first uptime exe‐
cutable it found when searching the search path. (This is the one that would be exe‐
cuted if you just typed uptime at the prompt.) Based on this information, you can
either specify a full path to your Python script, or modify the search path (if needed).

You can, of course, change and customize the search path. The
search path is controlled by what is known as an environment vari‐
able whose name is PATH. (By convention, all environment variables
are specified in uppercase letters.) Modifying this environment
variable will modify the search order that bash uses to locate pro‐
grams.

There’s one more topic we’re going to cover before moving on to a discussion of net‐
working in Linux, and that’s working with background programs, also known as dae‐
mons.

Working with Daemons
In the Linux world, we use the term daemon to refer to a process that runs in the
background. (You may also see the term service used to describe these types of back‐
ground processes.) Daemons are most often encountered when you’re using Linux to
provide network-based functionality. Examples—some of which we discussed earlier
when we first introduced the section on interacting with Linux—might include a
DHCP server, an HTTP server, a DNS server, or an FTP server. On a Linux system,
each of these network services is provided by a corresponding daemon (or service).
In this section, we’re going to talk about how to work with daemons: start daemons,
stop daemons, restart a daemon, or check on a daemon’s status.

It used to be that working with daemons on a Linux system varied pretty widely
between distributions. Startup scripts, referred to as init scripts, were used to start,
stop, or restart a daemon. Some distributions offered utilities—often nothing more
than bash shell scripts—such as the service command to help simplify working with
daemons. For example, on Ubuntu 14.04 LTS and CentOS 7.1 systems, the service
command (found in /usr/sbin) allowed you to start, stop, or restart a daemon. Behind

Interacting with Linux | 55

the scenes, these utilities are calling distribution-specific commands (such as initctl
on Ubuntu or systemctl on CentOS) to actually perform their actions.

In recent years, though, the major Linux distributions have converged on the use of
systemd as their init system: RHEL/CentOS 7.x Debian 8.0 and later, and Ubuntu
15.04 and later all use systemd. Therefore, working with daemons (background serv‐
ices) should become easier in the future, although there are (and probably will con‐
tinue to be) slight differences in each distribution’s implementation and use of
systemd.

If you are interested in more details on systemd, we recommend
having a look at the systemd website.

In the meantime, though, let’s look at working with daemons across the three major
Linux distributions we’ve selected for use in this chapter: Debian GNU/Linux 8.1
(“Jessie”), Ubuntu “Trusty Tahr” 14.04 LTS, and CentOS 7.1. We’ll start with Debian
GNU/Linux 8.1.

There’s much more to systemd

There’s a great deal more to systemd than we have room to discuss
here. When we provide examples on how to start, stop, or restart a
background service using systemd, we assume that the systemd
unit file has already been installed and enabled, and that it is recog‐
nized by systemd.

Working with background services in Debian GNU/Linux 8.1
Starting with version 8.0, Debian GNU/Linux uses systemd as its init system, and
therefore the primary means by which you’ll work with background services is via the
systemctl utility (found on the system as /bin/systemctl). Unlike some other distribu‐
tions, Debian does not offer any sort of “wrapper” commands that in turn call sys
temctl on the backend, instead preferring to have users use systemctl directly.

To start a daemon using systemd, you’d call systemctl with the start subcommand
(by the way, we’re using the term subcommand here to refer to the parameter supplied
to systemctl that provides the action it should take—we’ll also use this nomenclature
later in this chapter when working with Linux networking):

vagrant@jessie:~$ systemctl start service-name

To stop a daemon using systemd, replace the start subcommand with stop, like this:

vagrant@jessie:~$ systemctl stop service-name

56 | Chapter 3: Linux

http://freedesktop.org/wiki/Software/systemd/

Similarly, use the restart subcommand to stop and then start a daemon:

vagrant@jessie:~$ systemctl restart service-name

Note that systemctl also supports a reload subcommand, which will cause a dae‐
mon to reload its configuration. This may be less disruptive than restarting a daemon
(via systemctl restart, which will almost always be disruptive), but the exact
behavior of how a daemon will respond to reloading its configuration will vary (in
other words, not all daemons will apply the new configuration automatically or
behave in the same fashion).

You can use the status subcommand to systemctl to check the current status of a
daemon. Figure 3-2 shows the output of running systemctl status on a Debian 8.1
virtual machine.

Figure 3-2. Output of a systemctl status command

What if you don’t know the service name? systemctl list-units will give you a
paged list of all the loaded and active units.

Prior to version 8.0, Debian did not use systemd. Instead, Debian
used an older init system known as System V init (or sysv-rc).

Interacting with Linux | 57

Now let’s shift and take a look at working with daemons on Ubuntu Linux 14.04 LTS.
Although Ubuntu Linux is a Debian derivative, you’ll see that there are significant
differences between Debian 8.x and this LTS release from Ubuntu.

Working with background services in Ubuntu Linux 14.04 LTS
Unlike Debian 8.x and CentOS 7.x, Ubuntu 14.04 LTS (recall that the LTS denotes a
long-term support release that is supported for five years after release) does not use
systemd as its init system. Instead, Ubuntu 14.04 uses a Canonical-developed system
called Upstart. (The next major LTS release, Ubuntu 16.04, uses systemd. We’re cover‐
ing 14.04 here because it’s quite likely you’ll run into this LTS version in many pro‐
duction environments.)

The primary command you’ll use to interact with Upstart for the purpose of stop‐
ping, starting, restarting, or checking the status of background services (also referred
to as “jobs” in the Upstart parlance) is initctl, and it is used in a fashion very similar
to systemctl.

For example, to start a daemon you’d use initctl like this:

vagrant@trusty:~$ initctl start service-name
service name start/running

Likewise, to stop a daemon you’d replace start in the previous command with stop,
like this:

vagrant@trusty:~$ initctl stop service-name
service name stop/waiting

The restart and status subcommands to initctl work in much the same way.
Here’s an example of restarting and checking the status of the VMware Tools daemon
(VMware Tools is a background service often installed in VMware-based virtual
machines):

vagrant@trusty:~$ initctl restart vmware-tools
vmware-tools start/running
vagrant@trusty:~$ initctl status vmware-tools
vmware-tools start/running

And, as with systemctl, there is a way to get the list of service names, so that you
know the name to supply when trying to start, stop, or check the status of a daemon:

vagrant@trusty:~$ initctl list

Ubuntu 14.04 LTS also comes with some shortcuts to working with daemons:

• There are commands named start, stop, restart, and status that are symbolic
links to initctl. Each of these commands works as if you had typed initctl
subcommand, so using stop vmware-tools would be the same as initctl stop
vmware-tools. These symbolic links are found in the /sbin directory.

58 | Chapter 3: Linux

• Ubuntu also has a shell script, named service, that calls initctl on the back‐
end. The format for the service command is service service subcommand,
where service is the name of the daemon (which you can obtain via initctl
list) and subcommand is one of start, stop, restart, or status. Note that this
syntax is opposite of initctl itself, which is initctl subcommand service,
which may cause some confusion if you switch back and forth between using the
service script and initctl.

You may have noticed us mentioning something called a symbolic
link in our discussion of managing daemons on Ubuntu 14.04.
Symbolic links are pointers to a file that allow the file to be refer‐
enced multiple times (using different names in different directo‐
ries) even though the file exists only once on the disk. Symbolic
links are not unique to Ubuntu, but are common to all the Linux
distributions we discuss in this book. Systemd also makes use of
symbolic links when enabling systemd units.

Next, we’ll look at working with background services in CentOS 7.1.

Working with background services in CentOS 7.1
CentOS 7.1 uses systemd as its init system, so it is largely similar to working with dae‐
mons on Debian GNU/Linux 8.x. In fact, the core systemctl commands are com‐
pletely unchanged, although you will note differences in the unit names when
running systemctl list-units on the two Linux distributions. Make note of these
differences when using both CentOS 7.x and Debian 8.x in your environment.

One difference between Debian and CentOS is that CentOS includes a wrapper script
named service that allows you to start, stop, restart, and check the status of dae‐
mons. It’s likely that this wrapper script (we call it a “wrapper script” because it acts as
a “wrapper” around systemctl, which does the real work on the backend) was
included for backward compatibility, as previous releases of CentOS did not use sys‐
temd and also featured this same command. Note that although it shares a name with
the service command from Ubuntu, the two scripts are not the same and are not
portable between the distributions.

The syntax for the service command is service service subcommand. As on
Ubuntu, where the syntax of the service script is opposite of initctl, you’ll note
that the service script on CentOS also uses a syntax that is opposite of systemctl
(which is systemctl subcommand service).

Before we wrap up this section on working with daemons and move into a discussion
of Linux networking, there are a few final commands you might find helpful.

Interacting with Linux | 59

Other daemon-related commands
We’ll close out this section on working with daemons with a quick look at a few other
commands that you might find helpful. For full details on all the various parameters
for these commands, we encourage you to read the man pages (use man command at a
bash prompt).

• To show network connections to a daemon, you can use the ss command. One
particularly helpful use of this command is to show listening network sockets,
which is one way to ensure that the networking configuration for a particular
daemon (background service) is working properly. Use ss -lnt to show listening
TCP sockets, and use ss -lnu to show listening UDP sockets.

• The ps command is useful for presenting information on the currently running
processes.

Before we move on to the next section, let’s take a quick moment and review what
we’ve covered so far:

• We’ve provided some background and history for Linux.
• We’ve supplied information on basic filesystem navigation and paths.
• We’ve shown you how to perform basic file manipulations (create files and direc‐

tories, move/copy files and directories, and remove files and directories).
• We’ve discussed how to work with background services, also known as daemons.

Our next major topic is networking in Linux, which will build on many of the areas
we’ve already touched on so far in this chapter.

Networking in Linux
We stated earlier in this chapter that our coverage of Linux was intended to get you
“up and running” with Linux in the context of network automation and programma‐
bility. You’re very likely going to be using tools like Python, Ansible, or Jinja (covered
in Chapters 4, 9, and 6, respectively) on Linux, and your Linux system is going to
need to communicate across the network to various network devices. Naturally, this
means that our discussion of Linux would not be complete without also discussing
networking in Linux. This is, after all, a networking-centric book!

Working with Interfaces
The basic building block of Linux networking is the interface. Linux supports a num‐
ber of different types of interfaces; the most common of these are physical interfaces,
VLAN interfaces, and bridge interfaces. As with most other things in Linux, you con‐
figure these various types of interfaces by executing command-line utilities from the

60 | Chapter 3: Linux

bash shell and/or using certain plain-text configuration files. Making interface config‐
uration changes persistent across a reboot typically requires modifying a configura‐
tion file. Let’s look first at using the command-line utilities, and then we’ll discuss
persistent changes using interface configuration files.

Interface configuration via the command line
Just as the Linux distributions have converged on systemd as the primary init system,
most of the major Linux distributions have converged on a single set of command-
line utilities for working with network interfaces. These commands are part of the
iproute2 set of utilities, available in the major Linux distributions as either iproute
or iproute2 (CentOS 7.1 uses iproute; Debian 8.1 and Ubuntu 14.04 use iproute2
for the package name). This set of utilities uses a command called ip to replace the
functionality of earlier (and now deprecated) commands such as ifconfig and route
(both Ubuntu 14.04 and CentOS 7.1 include these earlier commands, but Debian 8.1
does not).

More information on iproute2

If you’re interested in more information on iproute2, visit the
iproute2 Wikipedia page.

For interface configuration, two subcommands to the ip command will be used: ip
link, which is used to view or set interface link status, and ip addr, which is used to
view or set IP addressing configuration on interfaces. (We’ll look at some other forms
of the ip command later in this section.)

Let’s look at a few task-oriented examples of using the ip commands to perform
interface configuration.

Listing interfaces. You can use either the ip link or ip addr command to list all the
interfaces on a system, although the output will be slightly different for each com‐
mand.

If you want a listing of the interfaces along with the interface status, use ip link
list, like this:

[vagrant@centos ~]$ ip link list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ens32: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT qlen 1000
 link/ether 00:0c:29:d7:28:17 brd ff:ff:ff:ff:ff:ff
3: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT qlen 1000

Networking in Linux | 61

https://en.wikipedia.org/wiki/Iproute2
https://en.wikipedia.org/wiki/Iproute2

 link/ether 00:0c:29:d7:28:21 brd ff:ff:ff:ff:ff:ff
[vagrant@centos ~]$

The default “action,” so to speak, for most (if not all) of the ip com‐
mands is to list the items with which you’re working. Thus, if you
want to list all the interfaces, you can just use ip link instead of ip
link list, or if you wanted to list all the routes you can just use ip
route instead of ip route list. We will specify the full com‐
mands here for clarity.

As you can tell from the prompt, this output was taken from a CentOS 7.1 system.
The command syntax is the same across the three major distributions we’re discus‐
sing in this chapter, and the output is largely identical (with the exception of interface
names).

You’ll note that this output shows you the current list of interfaces (note that CentOS
assigns different names to the interfaces than Debian and Ubuntu), the current maxi‐
mum transmission unit (MTU), the current administrative state (UP), and the ether‐
net media access control (MAC) address, among other things.

The output of this command also tells you the current state of the interface (note the
information in angle brackets immediately following the interface name):

• UP: Indicates that the interface is enabled.
• LOWER_UP: Indicates that interface link is up.
• NO_CARRIER (not shown): The interface is enabled, but there is no link.

If you’re accustomed to working with network equipment, you’re probably familiar
with an interface being “down” versus being “administratively down.” If an interface is
down because there is no link, you’ll see NO_CARRIER in the brackets immediately
after the interface name; if the interface is administratively down, then you won’t see
UP, LOWER_UP, or NO_CARRIER, and the state will be listed as DOWN. In the next section
we’ll show you how to use the ip link command to disable an interface (set an inter‐
face as administratively down).

You can also list interfaces using the ip addr list command, like this (this output is
taken from Ubuntu 14.04 LTS):

vagrant@trusty:~$ ip addr list
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP

62 | Chapter 3: Linux

 group default qlen 1000
 link/ether 00:0c:29:33:99:f6 brd ff:ff:ff:ff:ff:ff
 inet 192.168.70.205/24 brd 192.168.70.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::20c:29ff:fe33:99f6/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 group default qlen 1000
 link/ether 00:0c:29:33:99:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.100.11/24 brd 192.168.100.255 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::20c:29ff:fe33:9900/64 scope link
 valid_lft forever preferred_lft forever
vagrant@trusty:~$

As you can see, the ip addr list command also lists the interfaces on the system,
along with some link status information and the IPv4/IPv6 addresses assigned to the
interface.

For both the ip link list and ip addr list commands, you can filter the list to
only a specific interface by adding the interface name. The final command then
becomes ip link list interface or ip addr list interface, like this:

vagrant@jessie:~$ ip link list eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT group default qlen 1000
 link/ether 00:0c:29:bf:af:1a brd ff:ff:ff:ff:ff:ff
vagrant@jessie:~$

Listing interfaces is very useful, of course, but perhaps even more useful is actually
modifying the configuration of an interface. In the next section, we’ll show you how
to enable or disable an interface.

Enabling/disabling an interface. In addition to listing interfaces, you also use the ip
link command to manage an interface’s status. To disable an interface, for example,
you set the interface’s status to down using the ip link set command:

[vagrant@centos ~]$ ip link set ens33 down
[vagrant@centos ~]$ ip link list ens33
3: ens33: <BROADCAST,MULTICAST> mtu 1500 qdisc pfifo_fast state DOWN mode DEFAULT
 qlen 1000
 link/ether 00:0c:29:d7:28:21 brd ff:ff:ff:ff:ff:ff
[vagrant@centos ~]$

Note state DOWN and the lack of NO_CARRIER, which tells you the interface is admin‐
istratively down (disabled) and not just down due to a link failure. (We’ve bolded the
state DOWN in the preceding output to make it easier to spot.)

To enable (or re-enable) the ens33 interface, you’d simply use ip link set again, this
time setting the status to “up”:

Networking in Linux | 63

[vagrant@centos ~]$ ip link set ens33 up
[vagrant@centos ~]$ ip link list ens33
3: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT qlen 1000
 link/ether 00:0c:29:d7:28:21 brd ff:ff:ff:ff:ff:ff
[vagrant@centos ~]$

Setting the MTU of an interface. If you need to set the MTU of an interface, you’d once
again turn to the ip link command, using the set subcommand. The full syntax is
ip link set mtu MTU interface.

As a specific example, let’s say you wanted to run jumbo frames on the ens33 interface
on your CentOS 7.x Linux system. Here’s the command:

[vagrant@centos ~]$ ip link set mtu 9000 ens33
[vagrant@centos ~]$

As with all the other ip commands we’ve looked it, this change is immediate but not
persistent—you’ll have to edit the interface’s configuration file to make the change
persistent. We discuss configuring interfaces via configuration files in “Interface con‐
figuration via configuration files” on page 65.

Assigning an IP address to an interface. To assign (or remove) an IP address to an inter‐
face, you’ll use the ip addr command. We’ve already shown you how to use ip addr
list to see a list of the interfaces and their assigned IP address(es); now we’ll expand
the use of ip addr to add and remove IP addresses.

To assign (add) an IP address to an interface, you’ll use the command ip addr add
address dev interface. For example, if you want to assign (add) the address
172.31.254.100/24 to the eth1 interface on a Debian 8.1 system, you’d run this com‐
mand:

vagrant@jessie:~$ ip addr add 172.31.254.100/24 dev eth1
vagrant@jessie:~$

If an interface already has an IP address assigned, the ip addr add command simply
adds the new address, leaving the original address intact. So, in this example, if the
eth1 interface already had an address of 192.168.100.10/24, running the previous
command would result in this configuration:

vagrant@jessie:~$ ip addr list eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 group default qlen 1000
 link/ether 00:0c:29:bf:af:24 brd ff:ff:ff:ff:ff:ff
 inet 192.168.100.10/24 brd 192.168.100.255 scope global eth1
 valid_lft forever preferred_lft forever
 inet 172.31.254.100/24 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::20c:29ff:febf:af24/64 scope link

64 | Chapter 3: Linux

 valid_lft forever preferred_lft forever
vagrant@jessie:~$

To remove an IP address from an interface, you’d use ip addr del address dev
interface. Here we are removing the 172.31.254.100/24 address we assigned earlier
to the eth1 interface:

vagrant@jessie:~$ ip addr del 172.31.254.100/24 dev eth1
vagrant@jessie:~$ ip addr list eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 group default qlen 1000
 link/ether 00:0c:29:bf:af:24 brd ff:ff:ff:ff:ff:ff
 inet 192.168.100.10/24 brd 192.168.100.255 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::20c:29ff:febf:af24/64 scope link
 valid_lft forever preferred_lft forever
vagrant@jessie:~$

As with the ip link command, the syntax for the ip addr add and ip addr del
commands is the same across the three major Linux distributions we’re discussing in
this chapter. The output is also largely identical, although there may be variations in
interface names.

So far, we’ve only shown you how to use the ip commands to modify the configura‐
tion of an interface. If you’re familiar with configuring network devices (and since
you’re reading this book, you probably are), this could be considered analogous to
modifying the running configuration of a network device. However, what we haven’t
done so far is make these configuration changes permanent. In other words, we
haven’t changed the startup configuration. To do that, we’ll need to look at how Linux
uses interface configuration files.

Interface configuration via configuration files

To make changes to an interface persistent across system restarts, using the ip com‐
mands alone isn’t enough. You’ll need to edit the interface configuration files that
Linux uses on startup to perform those same configurations for you automatically.
Unfortunately, while the ip commands are pretty consistent across Linux distribu‐
tions, interface configuration files across different Linux distributions can be quite
different.

For example, on RHEL/CentOS/Fedora and derivatives, interface configuration files
are found in separate files located in /etc/sysconfig/network-scripts. The interface con‐
figuration files are named ifcfg-interface, where the name of the interface (such as
eth0 or ens32) is embedded in the name of the file. An interface configuration file
might look something like this (this example is taken from CentOS 7.1):

NAME="ens33"
DEVICE="ens33"
ONBOOT=yes

Networking in Linux | 65

NETBOOT=yes
IPV6INIT=yes
BOOTPROTO=dhcp
TYPE=Ethernet

Some of the most commonly used directives in RHEL/CentOS/Fedora interface con‐
figuration files are:

NAME
A friendly name for users to see, typically only used in graphical user interfaces
(this name wouldn’t show up in the output of ip commands).

DEVICE
This is the name of the physical device being configured.

IPADDR
The IP address to be assigned to this interface (if you’re not using DHCP or
BootP).

PREFIX
If you’re statically assigning the IP address, this setting specifies the network pre‐
fix to be used with the assigned IP address. (You can use NETMASK instead, but
the use of PREFIX is recommended.)

BOOTPROTO
This directive specifies how the interface will have its IP address assigned. A
value of dhcp, as shown earlier, means the address will be provided via Dynamic
Host Configuration Protocol (DHCP). The other value typically used here would
be none, which means the address is statically defined in the interface configura‐
tion file.

ONBOOT
Setting this directive to yes will activate the interface at boot time; setting it to no
means the interface will not be activated at boot time.

MTU
Specifies the default MTU for this interface.

GATEWAY
This setting specifies the gateway to be used for this interface.

There are many more settings, but these are the ones you’re likely to see most often.
For full details, check the contents of /usr/share/doc/initscripts-<version>/sysconfig.txt
on your CentOS system.

For Debian and Debian derivatives like Ubuntu, on the other hand, interface configu‐
ration is handled by the file /etc/network/interfaces. Here’s an example network inter‐

66 | Chapter 3: Linux

face configuration file from Ubuntu 14.04 LTS (we’re using the cat command here to
simply output the contents of a file to the screen):

vagrant@trusty:~$ cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp

auto eth1
iface eth1 inet static
 address 192.168.100.11
 netmask 255.255.255.0
vagrant@trusty:~$

You’ll note that Debian and Ubuntu use a single file to configure all the network
interfaces; each interface is separated by a configuration stanza starting with auto
interface. In each configuration stanza, the most common configuration options
are (to view all the options for configuring interfaces on a Debian or Ubuntu system,
run man 5 interfaces):

• Setting the address configuration method: You’ll typically use either inet dhcp
or inet static to assign IP addresses to interfaces. In the example shown earlier,
the eth0 interface was set to use DHCP while eth1 was assigned statically.

• The netmask option provides the network mask for the assigned IP address
(when the address is being assigned statically via inet static). However, you
can also use the prefix format (like 192.168.100.10/24) when assigning the IP
address, which makes the use of the netmask directive unnecessary.

• The gateway directive in the configuration stanza assigns a default gateway when
the IP address is being assigned statically (via inet static).

If you prefer using separate files for interface configuration, it’s also possible to break
out interface configuration into per-interface configuration files, similar to how
RHEL/CentOS handle it, by including a line like this in the /etc/network/interfaces
file:

source /etc/network/interfaces.d/*

This line instructs Linux to look in the /etc/network/interfaces.d/ directory for per-
interface configuration files, and process them as if they were directly incorporated
into the main network configuration file. The /etc/network/interfaces file on Debian

Networking in Linux | 67

8.1 includes this line by default (but the directory is empty, and the interface configu‐
ration takes place in the /etc/network/interfaces file). In the case of using per-interface
configuration files, then it’s possible that this might be the only line found in the /etc/
network/interfaces file.

A use case for per-interface configuration files

Per-interface configuration files may give you some additional flex‐
ibility when using a configuration management tool such as Chef,
Puppet, Ansible, or Salt. These are important “tools of the trade”
for managing systems, including Linux systems, and when using
these tools it may be easier to generate per-interface configuration
files instead of managing different sections within a single file. We
will discuss using these tools for network automation in more
detail in Chapter 9.

When you make a change to a network interface file, the configuration changes are
not immediately applied. (If you want an immediate change, use the ip commands we
described earlier in addition to making changes to the configuration files.) To put the
changes into effect, you’ll need to restart the network interface.

On Ubuntu 14.04, you’d use the initctl command, described in “Working with Dae‐
mons” on page 55 to restart the network interface:

vagrant@trusty:~$ initctl restart network-interface INTERFACE=interface

On CentOS 7.1, you’d use the systemctl command:

[vagrant@centos ~]$ systemctl restart network

And on Debian 8.1, you’d use a very similar command:

vagrant@jessie:~$ systemctl restart networking

You’ll note the systemd-based distributions (CentOS and Debian 8.x) lack a way to do
per-interface restarts.

Once the interface is restarted, then the configuration changes are applied and in
effect (and you can verify this through the use of the appropriate ip commands).

Everything we’ve shown you so far has involved physical interfaces, like eth0 or
ens32. However, in much the same way that Linux treats many things as files, Linux
networking also treats many things as interfaces. One such example is how Linux
interacts with VLANs, a topic we explore in more detail in the following section.

Using VLAN interfaces
We mentioned in “Working with Daemons” on page 55 that the interface is the basic
building block of Linux networking. In this section, we discuss VLAN interfaces,

68 | Chapter 3: Linux

which are logical interfaces that allow an instance of Linux to communicate on multi‐
ple virtual local area networks (VLANs) simultaneously without having to have a
dedicated physical interface for each VLAN. Instead, Linux uses the idea of logical
VLAN interfaces that are associated with both a physical interface and a correspond‐
ing 802.1Q VLAN ID.

Chances are that you’re already familiar with the idea of VLANs, so we won’t bother
covering this concept in any great detail. If you need a good reference to VLANs (or
many other networking concepts), one good resource to consider is Packet Guide to
Routing and Switching, by Bruce Hartpence, available from O’Reilly.

Creating, configuring, and deleting VLAN interfaces. To create a VLAN interface, you’ll
use the command ip link add link parent-device vlan-device type vlan id
vlan-id. As you can see, this is simply an extension to the ip link command we’ve
been discussing throughout the last several sections of this chapter.

There are a few different pieces to this command, so let’s break it down a bit:

• The parent-device is the physical adapter with which the logical VLAN inter‐
face is associated. This would be something like eth1 on a Debian or Ubuntu sys‐
tem, or ens33 on a RHEL/CentOS/Fedora system.

• The vlan-device is the name to be given to the logical VLAN interface; the com‐
mon naming convention is to use the name of the parent device, a dot (period),
and then the VLAN ID. For a VLAN interface associated with eth1 and using
VLAN ID 100, the name would be eth1.100.

• Finally, vlan-id is exactly that—the 802.1Q VLAN ID value assigned to this logi‐
cal interface.

Let’s look at an example. Suppose you want to create a logical VLAN interface on a
Debian 8.x system. This logical interface is to be associated with the physical interface
named eth2 and should use 802.1Q VLAN ID 150. The command would look like
this:

vagrant@jessie:~$ ip link add link eth2 eth2.150 type vlan id 150
vagrant@jessie:~$

You can now verify that the logical VLAN interface was added using ip link list
(note the eth2.150@eth2 as the name of the interface; you only need to use the por‐
tion before the @ symbol when working with the interface):

vagrant@jessie:~$ ip link list eth2.150
7: eth2.150@eth2: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN
 mode DEFAULT group default
 link/ether 00:0c:29:5f:d2:15 brd ff:ff:ff:ff:ff:ff
vagrant@jessie:~$

Networking in Linux | 69

To verify (aside from the name) that the interface is a VLAN interface, add the -d
parameter to the ip link list command, like this:

vagrant@jessie:~$ ip -d link list eth2.150
7: eth2.150@eth2: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN
 mode DEFAULT group default
 link/ether 00:0c:29:5f:d2:15 brd ff:ff:ff:ff:ff:ff
 vlan protocol 802.1Q id 150 <REORDER_HDR>
vagrant@jessie:~$

For the VLAN interface to be fully functional, though, you must also enable the inter‐
face and assign an IP address:

vagrant@jessie:~$ ip link set eth2.150 up
vagrant@jessie:~$ ip addr add 192.168.150.10/24 dev eth2.150
vagrant@jessie:~$

Naturally, this means you must also have a matching configuration on the physical
switches to which this system is connected; specifically, the switch port must be con‐
figured as a VLAN trunk and configured to pass VLAN 150. The commands for this
will vary depending on the upstream switch model and manufacturer.

Just like physical interfaces, a logical VLAN interface that is enabled and has an IP
address assigned will add a route to the host’s routing table:

vagrant@jessie:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.243
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.10
192.168.150.0/24 dev eth2.150 proto kernel scope link src 192.168.150.10
vagrant@jessie:~$

To delete a VLAN interface, we recommend that you first disable the interface (set its
status to down), then remove the interface:

vagrant@jessie:~$ ip link set eth2.150 down
vagrant@jessie:~$ ip link delete eth2.150
vagrant@jessie:~$

Naturally, as we discussed earlier in this chapter, the ip commands change the cur‐
rent (running) configuration but don’t persist the changes—on a reboot, any VLAN
interfaces you’ve created and configured will disappear. To make the changes persis‐
tent, you’ll need to edit the interface configuration files.

On a Debian/Ubuntu system, it’s a matter of simply adding a stanza to /etc/network/
interfaces or adding a per-interface configuration file to /etc/network/interfaces.d (and
ensuring that file is sourced from /etc/network/interfaces). The configuration stanza
should look something like this:

auto eth2.150
iface eth2.150 inet static
 address 192.168.150.10/24

70 | Chapter 3: Linux

For RHEL/Fedora/CentOS systems, you’d create a per-interface configuration file
in /etc/sysconfig/network-scripts with a name like ifcfg-eth2.150. The contents would
need to look something like this:

VLAN=yes
DEVICE=eth2.150
BOOTPROTO=static
ONBOOT=yes
TYPE=Ethernet
IPADDR=192.168.150.10
NETMASK=255.255.255.0

Use cases for VLAN interfaces. VLAN interfaces will be tremendously useful anytime
you have a Linux host that needs to communicate on multiple VLANs at the same
time and you wish to minimize the number of switch ports and physical interfaces
required. For example, if you have a Linux host that needs to communicate on one
VLAN to some web servers as well as communicate on another VLAN with some
database servers, using a single physical interface with two logical VLAN interfaces
(assuming there is enough bandwidth on a single physical interface) is an ideal
solution.

Appendix A explores a few additional use cases for VLAN interfaces.

In addition to configuring and managing interfaces, another important aspect of
Linux networking is configuring and managing the Linux host’s IP routing tables.
The next section provides more details on what’s involved.

Routing as an End Host
In addition to configuring network interfaces on a Linux host, we also want to show
you how to view and manage routing on a Linux system. Interface and routing con‐
figuration go hand-in-hand, naturally, but there are times when some tasks for IP
routing need to be configured separately from interface configuration. First, though,
let’s look at how interface configurations affect host routing configuration.

Although the ip route command is your primary means of viewing and/or modify‐
ing the routing table for a Linux host, the ip link and ip addr commands may also
affect the host’s routing table.

First, if you wanted to view the current routing table, you could simply run ip route
list:

vagrant@trusty:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.205
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.11
vagrant@trusty:~$

Networking in Linux | 71

The output of this command tells us a few things:

• The default gateway is 192.168.70.2. The eth0 device will be used to communicate
with all unknown networks via the default gateway. (Recall from the previous
section that this would be set via DHCP or via a configuration directive such as
GATEWAY on a RHEL/CentOS/Fedora system or gateway on a Debian/Ubuntu sys‐
tem.)

• The IP address assigned to eth0 is 192.168.70.205, and this is the interface that
will be used to communicate with the 192.168.70.0/24 network.

• The IP address assigned to eth1 is 192.168.100.11/24, and this is the interface that
will be used to communicate with the 192.168.100.0/24 network.

If we disable the eth1 interface using ip link set eth1 down, then the host’s routing
table changes automatically:

vagrant@trusty:~$ ip link set eth1 down
vagrant@trusty:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.205
vagrant@trusty:~$

Now that eth1 is down, the system no longer has a route to the 192.168.100.0/24 net‐
work, and the routing table updates automatically. This is all fully expected, but we
wanted to show you this interaction so you could see how the ip link and ip addr
commands affect the host’s routing table.

For less automatic changes to the routing table, you’ll use the ip route command.
What do we mean by “less automatic changes”? Here are a few use cases:

• Adding a static route to a network over a particular interface
• Removing a static route to a network
• Changing the default gateway

Here are some concrete examples of these use cases.

Let’s assume the same configuration we’ve been showing off so far—the eth0 interface
has an IPv4 address from the 192.168.70.0/24 network, and the eth1 interface has an
IPv4 address from the 192.168.100.0/24 network. In this configuration, the output of
ip route list would look like this:

vagrant@trusty:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.205
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.11
vagrant@trusty:~$

72 | Chapter 3: Linux

If we were going to model this configuration as a network diagram, it would look
something like Figure 3-3.

Figure 3-3. Sample network topology

Now let’s say that a new router is added to the 192.168.100.0/24 network, and a net‐
work with which this host needs to communicate (using the subnet address
192.168.101.0/24) is placed beyond that router. Figure 3-4 shows the new network
topology.

Figure 3-4. Updated network topology

The host’s existing routing table won’t allow it to communicate with this new
network—since it doesn’t have a route to the new network, Linux will direct traffic to
the default gateway, which doesn’t have a connection to the new network. To fix this,
we add a route to the new network over the host’s eth1 interface like this:

vagrant@jessie:~$ ip route add 192.168.101.0/24 via 192.168.100.2 dev eth1
vagrant@jessie:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.204
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.10

Networking in Linux | 73

192.168.101.0/24 via 192.168.100.2 dev eth1
vagrant@jessie:~$

The generic form for this command is ip route add destination-net via gateway-
address dev interface.

This command tells the Linux host (a Debian system, in this example) that it can
communicate with the 192.168.101.0/24 network via the IP address 192.168.100.2
over the eth1 interface. Now the host has a route to the new network via the appro‐
priate router and is able to communicate with systems on that network. If the net‐
work topology were updated again with another router and another new network, as
shown in Figure 3-5, we’d need to add yet another route.

Figure 3-5. Final network topology

To address this final topology, you’d run this command:

vagrant@jessie:~$ ip route add 192.168.102.0/24 via 192.168.100.3 dev eth1
vagrant@jessie:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.204
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.10
192.168.101.0/24 via 192.168.100.2 dev eth1
192.168.102.0/24 via 192.168.100.3 dev eth1
vagrant@jessie:~$

To make these routes persistent (remember that the ip commands don’t typically
make configuration changes persistent), you’d add these commands to the configura‐
tion stanza in /etc/network/interfaces for the eth1 device, like this (or, if you were on a
RHEL/Fedora/CentOS system, you’d edit /etc/sysconfig/network-scripts/ifcfg-eth1):

auto eth1
iface eth1 inet static
 address 192.168.100.11
 netmask 255.255.255.0

74 | Chapter 3: Linux

 up ip route add 192.168.101.0/24 via 192.168.100.2 dev $IFACE
 up ip route add 192.168.102.0/24 via 192.168.100.3 dev $IFACE

The $IFACE listed on the commands in this configuration stanza refers to the specific
interface being configured, and the up directive instructs Debian/Ubuntu systems to
run these commands after the interface comes up. With these lines in place, the
routes will automatically be added to the routing table every time the system is
started.

If, for whatever reason, you need to remove routes from a routing table, then you can
use the ip route command for that as well, this time using the delete subcommand:

[vagrant@centos ~]$ ip route del 192.168.103.0/24 via 192.168.100.3

The generic form of the command to remove (delete) a route is ip route del
destination-net via gateway-address.

Finally, changing the default gateway is also something you might need to do using
the ip route command. (We will note, however, that you can also change the default
gateway—and make it persistent—by editing the interface configuration files. Using
the ip route command will change it immediately, but the change will not be persis‐
tent.) To change the default gateway, you’d use a command somewhat like this (this
assumes a default gateway is already present):

vagrant@trusty:~$ ip route del default via 192.168.70.2 dev eth0
vagrant@trusty:~$ ip route add default via 192.168.70.1 dev eth0

The default keyword is used in these commands to refer to the destination 0.0.0.0/0.

Linux also supports what is known as policy routing, which is the ability to support
multiple routing tables along with rules that instruct Linux to use a specific routing
table. For example, perhaps you’d like to use a different default gateway for each inter‐
face in the system. Using policy routing, you could configure Linux to use one rout‐
ing table (and thus one particular gateway) for eth0, but use a different routing table
(and a different default gateway) for eth1. Policy routing is a bit of an advanced topic
so we won’t cover it here, but if you’re interested in seeing how this works read the
man pages or help screens for the ip rule and ip route commands for more details
(in other words, run man ip rule and man ip route).

The focus so far in this section has been around the topic of IP routing from a host
perspective, but it’s also possible to use Linux as a full-fledged IP router. As with pol‐
icy routing, this is a bit of an advanced topic; however, we are going to cover the basic
elements in the next section.

Routing as a Router
By default, virtually all modern Linux distributions have IP forwarding disabled, since
most Linux users don’t need IP forwarding. However, Linux has the ability to perform

Networking in Linux | 75

IP forwarding so that it can act as a router, connecting multiple IP subnets together
and passing (routing) traffic among multiple subnets. To enable this functionality,
you must first enable IP forwarding.

To verify whether IP forwarding is enabled or disabled, you would run this command
(it works on Debian, Ubuntu, and CentOS, although the command might be found at
different paths on different systems):

vagrant@trusty:~$ /sbin/sysctl net.ipv4.ip_forward
net.ipv4.ip_forward = 0
vagrant@trusty:~$ /sbin/sysctl net.ipv6.conf.all.forwarding
net.ipv6.conf.all.forwarding = 0
vagrant@trusty:~$

In situations where a command is found in a different filesystem
location among different Linux distributions, the which command
mentioned earlier in this chapter can be helpful in that it will tell
you where a particular command is located (assuming it is in the
search path).

In both cases, the output of the command indicates the value is set to 0, which means
it is disabled. You can enable IP forwarding on the fly without a reboot—but non-
persistently, meaning it will disappear after a reboot—using this command:

[vagrant@centos ~]$ systcl -w net.ipv4.ip_forward=1

This is like the ip commands we discussed earlier in that the change takes effect
immediately, but the setting will not survive a reboot of the Linux system. To make
the change permanent, you must edit /etc/sysctl.conf or put a configuration file into
the /etc/sysctl.d directory. Either way, add this value to either /etc/sysctl.conf or to a
configuration file in /etc/sysctl.d:

net.ipv4.ip_forward = 1

Or, to enable IPv6 forwarding, add this value:

net.ipv6.conf.all.forwarding = 1

You can then either reboot the Linux host to make the changes effective, or you can
run sysctl -p <path to file with new setting>.

76 | Chapter 3: Linux

One Configuration File or Separate Configuration Files?
We’ve mentioned a couple of times that in some cases Linux distributions can make
use of separate configuration files in a directory (as with /etc/network/interfaces.d
or /etc/sysctl.d). Which approach is better? This is the subject of some debate with
Linux sysadmins, and there are advantages and disadvatages to each approach. Using
separate configuration files may be more advantageous when you’re using a configu‐
ration management tool (as the tool can help manage those files and their contents),
but either approach will work just fine.

Once IP forwarding is enabled, then the Linux system will act as a router. At this
point, the Linux system is only capable of performing static routing, so you would
need to use the ip route command to provide all the necessary routing instructions/
information so that traffic could be routed appropriately. However, dynamic routing
protocol daemons do exist for Linux that would allow a Linux router to participate in
dynamic routing protocols such as BGP or OSPF. Two popular options for integrat‐
ing Linux into dynamic routing environments are Quagga and BIRD.

Using features like IPTables (or its successor, NFTables), you can also add functional‐
ity like Network Address Translation (NAT) and access control lists (ACLs).

In addition to being able to route traffic at Layer 3, Linux also has the ability to bridge
traffic—that is, to connect multiple Ethernet segments together at Layer 2. The next
section covers the basics of Linux bridging.

Bridging (Switching)
The Linux bridge offers you the ability to connect multiple network segments
together in a protocol-independent way—that is, a bridge operates at Layer 2 of the
OSI model instead of at Layer 3 or higher. Bridging—specifically, multiport transpar‐
ent bridging—is widely used in data centers today in the form of network switches,
but most uses of bridging in Linux are centered on various forms of virtualization
(either via the KVM hypervisor or via other means like Linux containers). For this
reason, we’ll only briefly cover the basics of bridging here, and only in the context of
virtualization.

Practical use case for bridging
Before we get into the details of creating and configuring bridges, let’s look at a practi‐
cal example of how a Linux bridge would be used.

Let’s assume that you have a Linux host with two physical interfaces (we’ll use eth0
and eth1 as the names of the physical interfaces). Immediately after you create a

Networking in Linux | 77

http://www.nongnu.org/quagga/
http://bird.network.cz
http://netfilter.org/projects/nftables/

bridge (a process we’ll describe in the following section), your Linux host looks some‐
thing like Figure 3-6.

Figure 3-6. A Linux bridge with no interfaces

The bridge has been created and it exists, but it can’t really do anything yet. Recall
that a bridge is designed to join network segments—without any segments attached
to the bridge, there’s nothing it can (or will) do. You need to add some interfaces to
the bridge.

Let’s say you add the interface named eth1 to a bridge named br0. Now your configu‐
ration looks something like Figure 3-7.

Figure 3-7. A Linux bridge with a physical interface

If we were now to attach a virtual machine (VM) to this bridge (Appendix A explores
some specifics around using a bridge with a VM; this is typically accomplished via the
use of KVM and Libvirt), then your configuration would look something like
Figure 3-8.

78 | Chapter 3: Linux

http://www.linux-kvm.org/page/Main_Page
http://libvirt.org/

Figure 3-8. A Linux bridge with a physical interface and a VM

In this final configuration, the bridge named br0 connects—or bridges, if you prefer
that term—the network segment to the VM and the network segment to the physical
interface, providing a single Layer 2 broadcast domain from the VM to the NIC (and
then on to the physical network). Providing network connectivity for VMs is a very
common use case for Linux bridges, but not the only use case. You might also use a
Linux bridge to join a wireless network (via a wireless interface on the Linux host) to
an Ethernet network (connected via a traditional NIC).

Now that you have an idea of what a Linux bridge can do, let’s take a look at creating
and configuring Linux bridges.

Creating and configuring linux bridges

To configure Linux bridges, you’ll use the same ip utility you’ve been using to config‐
ure and manage interfaces. Recall from the start of “Working with Interfaces” on page
60 we stated that interfaces are the basic building block of Linux networking. That
statement holds true here, as bridges are treated as a type of interface by Linux.

What about brctl?

You may be familiar with an older command that is used to work
with Linux bridges—specifically, the brctl command. Much in the
same way that the ip command has superseded the older ifconfig
command, the ip and bridge commands (the latter is discussed
later in this section) supersede the older brctl. That being said,
brctl is still available for most modern Linux distributions, and
can still be used to manipulate Linux bridges. In this section, we’ll
focus on the newer commands that are part of the iproute2
packages.

Networking in Linux | 79

To create a bridge, you’d use ip link with the add subcommand, like this:

vagrant@jessie:~$ ip link add name bridge-name type bridge

This would create a bridge that contains no interfaces (a configuration similar to
Figure 3-7, earlier). You can verify this using the ip link list command. For exam‐
ple, if you had used the name br0 for bridge-name when you added the bridge, you’d
use a command that looked something like this:

vagrant@jessie:~$ ip link list br0
5: br0: <BROADCAST,MULTICAST> mtu 1500 qdisc noqueue state DOWN mode DEFAULT
 group default
 link/ether 00:0c:29:5f:d2:15 brd ff:ff:ff:ff:ff:ff
vagrant@jessie:~$

You’ll note that the new bridge interface is marked as DOWN; you’ll need to use ip link
set bridge-name up in order to bring the bridge interface up.

Once you’ve created the bridge, you can again use the ip link command to add a
physical interface to the bridge. The general syntax for the command is ip link set
interface-name set master bridge-name. So, if you wanted to add the eth1 interface
to a bridge named br0, the command would look like this:

vagrant@jessie:~$ ip link set eth1 master br0
vagrant@jessie:~$

Your configuration now looks similar to Figure 3-8.

Once you have an interface added to a bridge, then the bridge command (part of the
same iproute2 package that provides the ip command) becomes useful. As you’ve
seen already in this chapter, different Linux distributions sometimes place the same
command in different places. In this case, both Debian and Ubuntu put the bridge
command in the /sbin directory, while CentOS 7 puts it in the /usr/sbin directory.
Normally this isn’t an issue, but in this case the default search path on Debian 8.1
does not include /sbin (unless you’re running as the root user, which is generally dis‐
couraged). This means you’ll have to use the full path (/sbin/bridge) on Debian, or
amend your search path to include the /sbin directory. We’ll assume that you’ve
amended your search path and omit the full path to the bridge utility in our exam‐
ples.

Using the bridge utility, you can show the interfaces that are part of a bridge with this
command:

vagrant@trusty:~$ bridge link
3: eth1 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state
 forwarding priority 32 cost 4
vagrant@trusty:~$

The bridge link command shows all the interfaces that are part of the bridge; to see
only a specific interface, you’d use bridge link show dev interface-name. The

80 | Chapter 3: Linux

bridge command also enables you to edit specific properties of member interfaces,
like enabling/disabling the processing of Bridge Protocol Data Units (BPDUs) or ena‐
bling/disabling whether traffic may be sent back out of the port on which it was
received (hairpinning). We encourage you to have a look at the manual page for the
bridge command for all the details (run man bridge).

To remove an interface from a bridge, you’ll again use the ip link command, like
this:

[vagrant@centos ~]$ ip link set interface-name nomaster
[vagrant@centos ~]$

Finally, to remove a bridge, the command is ip link del along with the name of the
bridge to be removed. If you wanted to remove a bridge named br0, the command
would look like this:

vagrant@trusty:~$ ip link del br0
vagrant@trusty:~$

Note that there is no need to remove interfaces from a bridge before removing the
bridge itself.

All the commands we’ve shown you so far create nonpersistent configurations. In
order to make these configurations persistent, you’ll need to go back to “Interface
configuration via the command line” on page 61. Why? Because Linux treats a bridge
as a type of interface—in this case, a logical interface as opposed to a physical inter‐
face.

Because Linux treats bridges as interfaces, you’d use the same types of configuration
files we discussed earlier: in RHEL/CentOS/Fedora, you’d use a file in /etc/sysconfig/
network-scripts, while in Debian/Ubuntu you’d use a configuration stanza in the
file /etc/network/interfaces (or a standalone configuration file in the /etc/network/
interfaces.d directory). Let’s look at what a bridge configuration would look like in
both CentOS and in Debian (Ubuntu will look very much like Debian).

In CentOS 7.1, you’d create an interface configuration file in /etc/sysconfig/network-
scripts for the bridge in question. So, for example, if you wanted to create a bridge
named br0, you’d create a file named ifcfg-br0. Here’s a sample interface configuration
file for a bridge:

DEVICE=br0
TYPE=Bridge
ONBOOT=yes
BOOTPROTO=none
IPV6INIT=no
IPV6_AUTOCONF=no
DELAY=5
STP=yes

Networking in Linux | 81

This creates a bridge named br0 that has Spanning Tree Protocol (STP) enabled. To
add interfaces to the bridge, you’d have to modify the interface configuration files for
the interfaces that should be part of the bridge. For example, if you wanted the inter‐
face named ens33 to be part of the br0 bridge, your interface configuration file for
ens33 might look like this:

DEVICE=ens33
ONBOOT=yes
HOTPLUG=no
BOOTPROTO=none
TYPE=Ethernet
BRIDGE=br0

The BRIDGE parameter in this configuration file is what ties the interface named
ens33 into the bridge br0.

Spanning Tree in Linux

You may have noticed that the example configuration file for a
bridge under CentOS 7 has STP enabled. The Linux kernel has an
STP implementation, but that implementation is being phased out
in favor of implementations that live in userspace. For this reason,
you can only use configuration files or the older brctl utility to
manage the older in-kernel implementation.

One thing you’ll note is that neither br0 nor ens33 has an IP address assigned. It’s
best, perhaps, to reason about this in the following way: on a typical network switch,
a standard switch port that is configured for Layer 2 only isn’t addressable via an IP
address. That’s the configuration we’ve replicated here: br0 is the switch, and ens33 is
the Layer 2–only port that is part of the switch.

If you did want an IP address assigned (perhaps for management purposes, or per‐
haps because you also want to leverage Layer 3 functionality in Linux), then you can
assign an IP address to the bridge, but not to the member interfaces in the bridge.
Again, you can make an analogy to traditional network hardware here—it’s like giv‐
ing the switch a management IP address, but the individual Layer 2–only switch ports
still aren’t addressable by IP. To provide an IP address to the bridge interface, just add
the IPADDR, NETMASK, and GATEWAY directives in the bridge’s interface configuration
file.

Debian (and therefore Ubuntu) are similar. In the case of setting up a bridge on
Debian, you would typically add a configuration stanza to the /etc/network/interfaces
file to configure the bridge itself, like this:

82 | Chapter 3: Linux

iface br0 inet manual
 up ip link set $IFACE up
 down ip link set $IFACE down
 bridge-ports eth1

This would create a bridge named br0 with the eth1 interface as a member of the
bridge. Note that no configuration is needed in the configuration stanzas for the
interfaces that are named as members of the bridge.

If you want an IP address assigned to the bridge interface, simply change the inet
manual to inet dhcp (for DHCP) or inet static (for static address assignment).
When using static address assignment, you’d also need to include the appropriate
configuration lines to assign the IP address (specifically, the address, netmask, and
optionally the gateway directives).

Once you have configuration files in place for the Linux bridge, then the bridging
configuration will be restored when the system boots, making it persistent. (You can
verify this using ip link list.)

For more practical examples and details of how Linux bridges are used, refer to
Appendix A.

Summary
In this chapter, we’ve provided a brief history of Linux, and why it’s important to
understand a little bit of Linux as you progress down the path of network automation
and programmability. We’ve also supplied some basic information on interacting with
Linux, working with Linux daemons, and configuring Linux networking. We dis‐
cussed using Linux as a router and explored the functionality of the Linux bridge.

In our introduction to this chapter, we mentioned that one of the reasons we felt it
was important to include some information on Linux was because some of the tools
we’d be discussing have their roots in Linux or are best used on a Linux system. In the
next chapter we’ll be discussing one such tool: the Python programming language.

Summary | 83

CHAPTER 4

Learning Python in a Network Context

As a network engineer, there has never been a better time for you to learn to auto‐
mate and write code. As we articulated in Chapter 1, the network industry is funda‐
mentally changing. It is a fact that networking had not changed much from the late
1990s to about 2010, both architecturally and operationally. In that span of time as a
network engineer, you undoubtedly typed in the same CLI commands hundreds, if
not thousands, of times to configure and troubleshoot network devices. Why the
madness?

It is specifically around the operations of a network that learning to read and write
some code starts to make sense. In fact, scripting or writing a few lines of code to
gather information on the network, or to make change, isn’t new at all. It’s been done
for years. There are engineers who took on this feat—coding in their language of
choice, learning to work with raw text using complex parsing, regular expressions,
and querying SNMP MIBs in a script. If you’ve ever attempted this yourself, you
know firsthand that it’s possible, but working with regular expressions and parsing
text is time-consuming and tedious.

Luckily, things are starting to move in the right direction and the barrier to entry for
network automation is more accessible than ever before. We are seeing advances
from network vendors, but also in the open source tooling that is available to use for
automating the network, both of which we cover in this book. For example, there are
now network device APIs, vendor- and community-supported Python libraries, and
freely available open source tools that give you and every other network engineer
access to a growing ecosystem to jump start your network automation journey. This
ultimately means that you have to write less code than you would have in the past,
and less code means faster development and fewer bugs.

85

Before we dive into the basics of Python, there is one more important question that
we’ll take a look at because it always comes up in conversation among network engi‐
neers: Should network engineers learn to code?

Should Network Engineers Learn to Code?
Unfortunately, you aren’t getting a definitive yes or no from us. Clearly, we have a full
chapter on Python and plenty of other examples throughout the book on how to use
Python to communicate to network devices using network APIs and extend DevOps
platforms like Ansible, Salt, and Puppet, so we definitely think learning the basics of
any programming language is valuable. We also think it’ll become an even more val‐
uable skill as the network and IT industries continue to transform at such a rapid
pace, and we happen to think Python is a pretty great first choice.

It’s worth pointing out that we do not hold any technology religion
to Python. However, we feel when it comes to network automation
it is a great first choice for several reasons. First, Python is a
dynamically typed language that allows you to create and use
Python objects (such as variables and functions) where and when
needed, meaning they don’t need to be defined before you start
using them. This simplifies the getting started process. Second,
Python is also super readable. It’s common to see conditional state‐
ments like if device in device_list:, and in that statement,
you can easily decipher that we are simply checking to see if a
device is in a particular list of devices. Another reason is that net‐
work vendors and open source projects are building a great set of
libraries and tools using Python. This just adds to the benefit of
learning to program with Python.

The real question, though, is should every network engineer know how to read and
write a basic script? The answer to that question would be a definite yes. Now should
every network engineer become a software developer? Absolutely not. Many engineers
will gravitate more toward one discipline than the next, and maybe some network
engineers do transition to become developers, but all types of engineers, not just net‐
work engineers, should not fear trying to read through some Python or Ruby, or even
more advanced languages like C or Go. System administrators have done fairly well
already with using scripting as a tool to allow them to do their jobs more efficiently
by using bash scripts, Python, Ruby, and PowerShell.

On the other hand, this hasn’t been the case for network administrators (which is a
major reason for this book!). As the industry progresses and engineers evolve, it’s
very realistic for you, as a network engineer, to be more DevOps oriented, in that you
end up somewhere in the middle—not as a developer, but also not as a traditional
CLI-only network engineer. You could end up using open source configuration man‐

86 | Chapter 4: Learning Python in a Network Context

agement and automation tools and then add a little code as necessary (and if needed)
to accomplish and automate the workflows and tasks in your specific environment.

Unless your organization warrants it based on size, scale, compli‐
ance, or control, it’s not common or recommended to write custom
software for everything and build a home-grown automation plat‐
form. It’s not an efficient use of time. What is recommended is that
you understand the components involved in programming, soft‐
ware development, and especially fundamentals such as core data
types that are common in all tools and languages, as we cover in
this chapter focused on Python.

So we know the industry is changing, devices have APIs, and it makes sense to start
the journey to learn to write some code. This chapter provides you with the building
blocks to go from 0 to 60 to help you start your Python journey.

Throughout the rest of this chapter, we cover the following topics:

• Using the Python interactive interpreter
• Understanding Python data types
• Adding conditional logic to your code
• Understanding containment
• Using loops in Python
• Functions
• Working with files
• Creating Python programs
• Working with Python modules

Get ready—we are about to jump in and learn some Python!

This chapter’s sole focus is to provide an introduction to Python
foundational concepts for network engineers looking to learn
Python to augment their existing skillsets. It is not intended to pro‐
vide an exhaustive education for full-time developers to write
production-quality Python software.
Additionally, please note the concepts covered in this chapter are
heavily relevant outside the scope of Python. For example, you
must understand concepts like loops and data types—which we’ll
explore here—in order to work with tools like Ansible, Salt, Pup‐
pet, and StackStorm.

Should Network Engineers Learn to Code? | 87

Using the Python Interactive Interpreter
The Python interactive interpreter isn’t always known by those just starting out to
learn to program or even those who have been developing in other languages, but we
think it is a tool that everyone should know and learn before trying to create stand‐
alone executable scripts.

The interpreter is a tool that is instrumental to developers of all experience levels. The
Python interactive interpreter, also commonly known as the Python shell, is used as a
learning platform for beginners, but it’s also used by the most experienced developers
to test and get real-time feedback without having to write a full program or script.

The Python shell, or interpreter, is found on nearly all native Linux distributions as
well as many of the more modern network operating systems from vendors includ‐
ing, but not limited to, Cisco, HP, Juniper, Cumulus, and Arista.

To enter the Python interactive interpreter, you simply open a Linux terminal win‐
dow, or SSH to a modern network device, type in the command python, and hit
Enter.

All examples throughout this chapter that denote a Linux terminal
command start with $. While you’re at the Python shell, all lines
and commands start with >>>. Additionally, all examples shown are
from a system running Ubuntu 14.04 LTS and Python 2.7.6.

After entering the python command and hitting Enter, you are taken directly into the
shell. While in the shell, you start writing Python code immediately! There is no text
editor, no IDE, and no prerequisites to getting started.

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

Although we are jumping into much more detail on Python throughout this chapter,
we’ll take a quick look at a few examples right now to see the power of the Python
interpreter.

The following example creates a variable called hostname and assigns it the value of
ROUTER_1.

>>> hostname = 'ROUTER_1'
>>>

88 | Chapter 4: Learning Python in a Network Context

Notice that you did not need to declare the variable first or define that hostname was
going to be of type string. This is a departure from some programming languages
such as C and Java, and a reason why Python is called a dynamic language.

Let’s print the variable hostname.

>>> print(hostname)
ROUTER_1
>>>
>>> hostname
'ROUTER_1'
>>>

Once you’ve created the variable you can easily print it using the print command,
but while in the shell, you have the ability to also display the value of hostname or any
variable by just typing in the name of the variable and pressing Enter. One difference
to point out between these two methods is that when you use the print statement,
characters such as the end of line (or \n) are interpreted, but are not when you’re not
using the print statement.

For example, using print interprets the \n and a new line is printed, but when you’re
just typing the variable name into the shell and hitting Enter, the \n is not interpreted
and is just displayed to the terminal.

>>> banner = "\n\n WELCOME TO ROUTER_1 \n\n"
>>>
>>> print(banner)

 WELCOME TO ROUTER_1

>>>
>>> banner
'\n\n WELCOME TO ROUTER_1 \n\n'
>>>

Can you see the difference?

When you are validating or testing, the Python shell is a great tool to use. In the pre‐
ceding examples, you may have noticed that single quotes and double quotes were
both used. Now you may be thinking, could they be used together on the same line?
Let’s not speculate about it; let’s use the Python shell to test it out.

>>> hostname = 'ROUTER_1"
 File "<stdin>", line 1
 hostname = 'ROUTER_1"
 ^
SyntaxError: EOL while scanning string literal
>>>

Using the Python Interactive Interpreter | 89

And just like that, we verified that Python supports both single and double quotes,
but learned they cannot be used together.

Most examples throughout this chapter continue to use the Python interpreter—feel
free to follow along and test them out as they’re covered.

We’ll continue to use the Python interpreter as we review the different Python data
types with a specific focus on networking.

Understanding Python Data Types
This section provides an overview of various Python data types including strings,
numbers (integers and floats), booleans, lists, and dictionaries and also touches upon
tuples and sets.

The sections on strings, lists, and dictionaries are broken up into two parts. The first
is an introduction to the data type and the second covers some of its built-in methods.
As you’ll see, methods are natively part of Python, making it extremely easy for devel‐
opers to manipulate and work with each respective data type.

For example, a method called upper that takes a string and converts it to all uppercase
letters can be executed with the statement, "router1".upper(), which returns
ROUTER1. We’ll show many more examples of using methods throughout this chapter.

The sections on integers and booleans provide an overview to show you how to use
mathematical operators and boolean expressions while writing code in Python.

Finally, we close the section on data types by providing a brief introduction to tuples
and sets. They are more advanced data types, but we felt they were still worth cover‐
ing in an introduction to Python.

Table 4-1 describes and highlights each data type we’re going to cover in this chapter.
This should act as a reference throughout the chapter.

Table 4-1. Python data types summary

Data Type Description Short
Name
(Type)

Characters Example

String Series of any
characters
surrounded
by quotes

str "" hostname="nycr01"

Integer Whole
numbers
represented
without
quotes

int n/a eos_qty=5

90 | Chapter 4: Learning Python in a Network Context

Data Type Description Short
Name
(Type)

Characters Example

Float Floating point
number
(decimals)

float n/a cpu_util=52.33

Boolean Either True or
False (no
quotes)

bool n/a is_switchport=True

List Ordered
sequence of
values.
Values can be
of any data
type.

list [] vendors=['cisco', 'juniper', 'arista', 'cisco']

Dictionary Unordered
list of key-
value pairs

dict {} facts={"vendor":"cisco", "platform":"catalyst",

"os":"ios"}

Set Unordered
collection of
unique
elements

set set() set(vendors)=>['cisco', 'juniper', 'arista']

Tuple Ordered and
unchangeable
sequence of
values

tuple () ipaddr=(10.1.1.1, 24)

Let’s get started and take a look at Python strings.

Learning to Use Strings
Strings are a sequence of characters that are enclosed by quotes and are arguably the
most well-known data type that exists in all programming languages.

Earlier in the chapter, we looked at a few basic examples for creating variables that
were of type string. Let’s examine what else you need to know when starting to use
strings.

First, we’ll define two new variables that are both strings: final and ipaddr.

>>> final = 'The IP address of router1 is: '
>>>
>>> ipaddr = '1.1.1.1'
>>>

Understanding Python Data Types | 91

You can use the built-in function called type to verify the data type
of any given object in Python.

>>> type(final)
<type 'str'>
>>>

This is how you can easily verify the type of an object, which is
often helpful in troubleshooting code, especially if it’s code you
didn’t write.

Next, let’s look at how to combine, add, or concatenate strings.

>>> final + ipaddr
'The IP address of router1 is: 1.1.1.1'

This example created two new variables: final and ipaddr. Each is a string. After
they were both created, we concatenated them using the + operator, and finally
printed them out. Fairly easy, right?

The same could be done even if final was not a predefined object:

>>> print('The IP address of router1 is: ' + ipaddr)
The IP address of router1 is: 1.1.1.1
>>>

Using built-in methods of strings

To view the available built-in methods for strings, you use the built-in dir() function
while in the Python shell. You first create any variable that is a string or use the for‐
mal data type name of str and pass it as an argument to dir() to view the available
methods.

dir() can be used on any Python object, not just strings, as we’ll
show throughout this chapter.

>>>
>>> dir(str)
output has been omitted
['__add__', '__class__', '__contains__', '__delattr__', '__doc__',
'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha',
'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'lower',
'lstrip', 'replace', rstrip', 'split', 'splitlines', 'startswith',
'strip', 'upper']
>>>

To reiterate what we said earlier, it’s possible to also pass any string to the dir() func‐
tion to produce the same output as above. For example, if you defined a variable such

92 | Chapter 4: Learning Python in a Network Context

as hostname = 'ROUTER', hostname can be passed to dir()—that is, dir(hostname)
—producing the same output as dir(str) to determine what methods are available
for strings.

Using dir() can be a lifesaver to verify what the available methods
are for a given data type, so don’t forget this one.

Everything with a single or double underscore from the previous output is not
reviewed in this book, as our goal is to provide a practitioner’s introduction to
Python, but it is worth pointing out those methods with underscores are used by the
internals of Python.

Let’s take a look at several of the string methods, including count, endswith, starts
with, format, isdigit, join, lower, upper, and strip.

In order to learn how to use a given method that you see in the
output of a dir(), you can use the built-in function called help().
In order to use the built-in help feature, you pass in the object (or
variable) and the given method. The following examples show two
ways you can use help() and learn how to use the upper method:

>>> help(str.upper)
>>>
>>> help(hostname.upper)
>>>

The output of each is the following:
Help on method_descriptor:

upper(...)
 S.upper() -> string

 Return a copy of the string S converted to uppercase.
(END)

When you’re finished, enter Q to quit viewing the built-in help.

As we review each method, there are two key questions that you should be asking
yourself. What value is returned from the method? And what action is the method
performing on the original object?

Using the upper() and lower() methods. Using the upper() and lower() methods is
helpful when you need to compare strings that do not need to be case-sensitive. For
example, maybe you need to accept a variable that is the name of an interface such as

Understanding Python Data Types | 93

“Ethernet1/1,” but want to also allow the user to enter “ethernet1/1.” The best way to
compare these is to use upper() or lower().

>>> interface = 'Ethernet1/1'
>>>
>>> interface.lower()
'ethernet1/1'
>>>
>>> interface.upper()
'ETHERNET1/1'
>>>

You can see that when you’re using a method, the format is to enter the object name,
or string in this case, and then append .methodname().

After executing interface.lower(), notice that ethernet1/1 was printed to the ter‐
minal. This is telling us that ethernet1/1 was returned when lower() was executed.
The same holds true for upper(). When something is returned, you also have the
ability to assign it as the value to a new or existing variable.

>>> intf_lower = interface.lower()
>>>
>>> print(intf_lower)
ethernet1/1
>>>

In this example, you can see how to use the method, but also assign the data being
returned to a variable.

What about the original variable called interface? Let’s see what, if anything,
changed with interface.

>>> print(interface)
Ethernet1/1
>>>

Since this is the first example, it still may not be clear what we’re looking for to see if
something changed in the original variable interface, but we do know that it still
holds the value of Ethernet1/1 and nothing changed. Don’t worry, we’ll see plenty of
examples of when the original object is modified throughout this chapter.

Using the startswith() and endswith() methods. As you can probably guess, starts
with() is used to verify whether a string starts with a certain sequence of characters,
and endswith() is used to verify whether a string ends with a certain sequence of
characters.

>>> ipaddr = '10.100.20.5'
>>>
>>> ipaddr.startswith('10')
True
>>>

94 | Chapter 4: Learning Python in a Network Context

>>> ipaddr.startswith('100')
False
>>>
>>> ipaddr.endswith('.5')
True
>>>

In the previous examples that used the lower() and upper() methods, they returned
a string, and that string was a modified string with all lowercase or uppercase letters.

In the case of startswith(), it does not return a string, but rather a boolean (bool)
object. As you’ll learn later in this chapter, boolean values are True and False. The
startswith() method returns True if the sequence of characters being passed in
matches the respective starting or ending sequence of the object. Otherwise, it returns
False.

Take note that boolean values are either True or False, no quotes
are used for booleans, and the first letter must be capitalized. Boo‐
leans are covered in more detail later in the chapter.

Using these methods proves to be valuable when you’re looking to verify the start or
end of a string. Maybe it’s to verify the first or fourth octet of an IPv4 address, or
maybe to verify an interface name, just like we had in the previous example using
lower(). Rather than assume a user of a script was going to enter the full name, it’s
advantageous to do a check on the first two characters to allow the user to input
“ethernet1/1,” “eth1/1,” and “et1/1.”

For this check, we’ll show how to combine methods, or use the return value of one
method as the base string object for the second method.

>>> interface = 'Eth1/1'
>>>
>>> interface.lower().startswith('et')
True
>>>

As seen from this code, we verify it is an Ethernet interface by first executing
lower(), which returns eth1/1, and then the boolean check is performed to see
whether “eth1/1” starts with “et”. And, clearly, it does.

Of course, there are other things that could be invalid beyond the “eth” in an interface
string object, but the point is that methods can be easily used together.

Using the strip() method. Many network devices still don’t have application program‐
ming interfaces, or APIs. It is almost guaranteed that at some point if you want to
write a script, you’ll try it out on an older CLI-based device. If you do this, you’ll be

Understanding Python Data Types | 95

sure to encounter globs of raw text coming back from the device—this could be the
result of any show command from the output of show interfaces to a full show
running-config.

When you need to store or simply print something, you may not want any whitespace
wrapping the object you want to use or see. In trying to be consistent with previous
examples, this may be an IP address.

What if the object you’re working with has the value of " 10.1.50.1 " including the
whitespace. The methods startswith() or endswith() do not work because of the
spaces. For these situations, strip() is used to remove the whitespace.

>>> ipaddr = ' 10.1.50.1 '
>>>
>>>
>>> ipaddr.strip()
'10.1.50.1'
>>>

Using strip() returned the object without any spaces on both sides. Examples aren’t
shown for lstrip() or rstrip(), but they are two other built-in methods for strings
that remove whitespace specifically on the left side or right side of a string object.

Using the isdigit() method. There) may be times you’re working with strings, but need
to verify the string object is a number. Technically, integers are a different data type
(covered in the next section), but numbers can still be values in strings.

Using isdigit() makes it extremely straightforward to see whether the character or
string is actually a digit.

>>> ten = '10'
>>>
>>> ten.isdigit()
True
>>>
>>> bogus = '10a'
>>>
>>> bogus.isdigit()
False

Just as with startswith(), isdigit() also returns a boolean. It returns True if the
value is an integer, otherwise it returns False.

Using the count() method. Imagine working with a binary number—maybe it’s to cal‐
culate an IP address or subnet mask. While there are some built-in libraries to do
binary-to-decimal conversion, what if you just want to count how many 1’s or 0’s are
in a given string? You can use count() to do this for you.

96 | Chapter 4: Learning Python in a Network Context

>>> octet = '11111000'
>>>
>>> octet.count('1')
5

The example shows how easy it is to use the count() method. This method, however,
returns an int (integer) unlike any of the previous examples.

When using count(), you are not limited to sending a single character as a parameter
either.

>>> octet.count('111')
1
>>>
>>> test_string = "Don't you wish you started programming a little earlier?"
>>>
>>> test_string.count('you')
2

Using the format() method. We saw earlier how to concatenate strings. Imagine need‐
ing to create a sentence, or better yet, a command to send to a network device that is
built from several strings or variables. How would you format the string, or CLI com‐
mand?

Let’s use ping as an example and assume the command that needs to be created is the
following:

ping 8.8.8.8 vrf management

In the examples in this chapter, the network CLI commands being
used are generic, as no actual device connections are being made.
Thus, they map to no specific vendor as they are the “industry stan‐
dard” examples that work on various vendors including Cisco IOS,
Cisco NXOS, Arista EOS, and many others.

If you were writing a script, it’s more than likely the target IP address you want to
send ICMP echo requests to and the virtual routing and forwarding (VRF) will both
be user input parameters. In this particular example, it means '8.8.8.8' and 'man
agement' are the input arguments (parameters).

One way to build the string is to start with the following:

>>> ipaddr = '8.8.8.8'
>>> vrf = 'management'
>>>
>>> ping = 'ping' + ipaddr + 'vrf' + vrf
>>>
>>> print(ping)
ping8.8.8.8vrfmanagement

Understanding Python Data Types | 97

You see the spacing is incorrect, so there are two options—add spaces to your input
objects or within the ping object. Let’s look at adding them within ping.

>>> ping = 'ping' + ' ' + ipaddr + ' ' + 'vrf ' + vrf
>>>
>>> print(ping)
ping 8.8.8.8 vrf management

As you can see, this works quite well and is not too complicated, but as the strings or
commands get longer, it can get quite messy dealing with all of the quotes and spaces.
Using the format() method can simplify this.

>>> ping = 'ping {} vrf {}'.format(ipaddr, vrf)
>>>
>>> print(ping)
ping 8.8.8.8 vrf management

The format() method takes a number of arguments, which are inserted between the
curly braces ({}) found within the string. Notice how the format() method is being
used on a raw string, unlike the previous examples.

It’s possible to use any of the string methods on both variables or
raw strings. This is true for any other data type and its built-in
methods as well.

The next example shows using the format() method, with a pre-created string object
(variable) in contrast to the previous example, when it was used on a raw string.

>>> ping = 'ping {} vrf {}'
>>>
>>> command = ping.format(ipaddr, vrf)
>>>
>>> print(command)
ping 8.8.8.8 vrf management

This scenario is more likely, in that you would have have a predefined command in a
Python script with users inputting two arguments, and the output is the final com‐
mand string that gets pushed to a network device.

Using the join() and split() methods. These are the last methods for strings covered in
this chapter. We saved them for last since they include working with another data
type called list.

Be aware that lists are formally covered later in the chapter, but we
wanted to include a very brief introduction here in order to show
the join() and split() methods for string objects.

98 | Chapter 4: Learning Python in a Network Context

Lists are exactly what they sound like. They are a list of objects—each object is called
an element, and each element is of the same or different data type. Note that there is
no requirement to have all elements in a list be of the same data type.

If you had an environment with five routers, you may have a list of hostnames.

>>> hostnames = ['r1', 'r2', 'r3', 'r4', 'r5']

You can also build a list of commands to send to a network device to make a configu‐
ration change. The next example is a list of commands to shut down an Ethernet
interface on a switch.

>>> commands = ['config t', 'interface Ethernet1/1', 'shutdown']

It’s quite common to build a list like this, but if you’re using a traditional CLI-based
network device, you might not be able to send a list object directly to the device.
The device may require strings be sent (or individual commands).

join() is one such method that can take a list and create a string, but insert required
characters, if needed, between them.

Remember that \n is the end of line (EOL) character. When sending commands to a
device, you may need to insert a \n between commands to allow the device to render
a new line for the next command.

If we take commands from the previous example, we can see how to leverage join() to
create a single string with a \n inserted between each command.

>>> '\n'.join(commands)
'config t\ninterface Ethernet1/1\nshutdown'
>>>

Another practical example is when using an API such as NX-API that exists on Cisco
Nexus switches. Cisco gives the option to send a string of commands, but they need
to be separated by a semicolon (;).

To do this, you would use the same approach.

>>> ' ; '.join(commands)
'config t ; interface Ethernet1/1 ; shutdown'
>>>

In this example, we added a space before and after the semicolon, but it’s the same
overall approach.

In the examples shown, a semicolon and an EOL character were
used as the seperator, but you should know that you don’t need to
use any characters at all. It’s possible to concatenate the elements in
the list without inserting any characters, like this: ''.join(list).

Understanding Python Data Types | 99

You learned how to use join() to create a string out of a list, but what if you needed
to do the exact opposite and create a list from a string? One option is to use the
split() method.

In the next example, we start with the previously generated string, and convert it back
to a list.

>>> commands = 'config t ; interface Ethernet1/1 ; shutdown'
>>>
>>> cmds_list = commands.split(' ; ')
>>>
>>> print(cmds_list)
['config t', 'interface Ethernet1/1', 'shutdown']
>>>

This shows how simple it is to take a string object and create a list from it. Another
common example for networking is to take an IP address (string) and convert it to a
list using split(), creating a list of four elements—one element per octet.

>>> ipaddr = '10.1.20.30'
>>>
>>> ipaddr.split('.')
['10', '1', '20', '30']
>>>

That covered the basics of working with Python strings. Let’s move on to the next
data type, which is numbers.

Learning to Use Numbers
We don’t spend much time on different types of numbers such as floats (decimal
numbers) or imaginary numbers, but we do briefly look at the data type that is deno‐
ted as int, better known as an integer. Quite frankly, this is because most people
understand numbers and there aren’t built-in methods that make sense to cover at
this point. Rather than cover built-in methods for integers, we take a look at using
mathematical operators while in the Python shell.

You should also be aware that decimal numbers in Python are
referred to as floats. Remember, you can always verify the data type
by using the built-in function type():

>>> cpu = 41.3
>>>
>>> type(cpu)
<type 'float'>
>>>
>>>

100 | Chapter 4: Learning Python in a Network Context

Performing mathematical operations
If you need to add numbers, there is nothing fancy needed: just add them.

>>> 5 + 3
8
>>> a = 1
>>> b = 2
>>> a + b
3

There may be a time when a counter is needed as you are looping through a sequence
of objects. You may want to say counter = 1, perform some type of operation, and
then do counter = counter + 1. While this is perfectly functional and works, it is
more idiomatic in Python to perform the operation as counter += 1. This is shown
in the next example.

>>> counter = 1
>>> counter = counter + 1
>>> counter
2
>>>
>>> counter = 5
>>> counter += 5
>>>
>>> counter
10

Very similar to addition, there is nothing special for subtraction. We’ll dive right into
an example.

>>> 100 - 90
10
>>> count = 50
>>> count - 20
30
>>>

When multiplying, yet again, there is no difference. Here is a quick example.

>>> 100 * 50
5000
>>>
>>> print(2 * 25)
50
>>>

The nice thing about the multiplication operator (*) is that it’s also possible to use it
on strings. You may want to format something and make it nice and pretty.

>>> print('*' * 50)
**
>>>
>>> print('=' * 50)

Understanding Python Data Types | 101

==
>>>

The preceding example is extremely basic, and at the same time extremely powerful.
Not knowing this is possible, you may be tempted to print one line a time and print a
string with the command print(*******************), but in reality after learning
this and a few other tips covered later in the chapter, pretty-printing text data
becomes much simpler.

If you haven’t performed any math by hand in recent years, division may seem like a
nightmare. As expected, though, it is no different than the previous three mathemati‐
cal operations reviewed. Well, sort of.

There is not a difference with how you enter what you want to accomplish. To per‐
form an operation you still use 10 / 2 or 100 / 50, and so on, like so:

>>> 100 / 50
2
>>>
>>> 10/ 2
5
>>>

These examples are probably what you expected to see.

The difference is what is returned when there is a remainder:

>>> 12 / 10
1
>>>

As you know, the number 10 goes into 12 one time. This is what is known as the
quotient, so here the quotient is equal to 1. What is not displayed or returned is the
remainder. To see the remainder in Python, you must use the %, or modulus opera‐
tion.

>>> 12 % 10
2
>>>

This means to fully calculate the result of a division problem, both the / and % opera‐
tors are used.

That was a brief look at how to work with numbers in Python. We’ll now move on to
booleans.

Learning to Use Booleans
Boolean objects, otherwise known as objects that are of type bool in Python, are
fairly straightforward. Let’s first review the basics of general boolean logic by looking
at a truth table (Table 4-2).

102 | Chapter 4: Learning Python in a Network Context

Table 4-2. Boolean truth table

A B A and B A or B Not A

False False False False True

False True False True True

True False False True False

True True True True False

Notice how all values in the table are either True or False. This is because with
boolean logic all values are reduced to either True or False. This actually makes boo‐
leans easy to understand.

Since boolean values can be only True or False, all expressions also evaluate to either
True or False. You can see in the table that BOTH values, for A and B, need to be
True, for “A and B” to evaluate to True. And “A or B” evaluates to True when ANY
value (A or B) is True. You can also see that when you take the NOT of a boolean
value, it calculates the inverse of that value. This is seen clearly as “NOT False” yields
True and “NOT True” yields False.

From a Python perspective, nothing is different. We still only have two boolean val‐
ues, and they are True and False. To assign one of these values to a variable within
Python, you must enter it just as you see it, (with a capitalized first letter, and without
quotes).

>>> exists = True
>>>
>>> exists
True
>>>
>>> exists = true
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined
>>>

As you can see in this example, it is quite simple. Based on the real-time feedback of
the Python interpreter, we can see that using a lowercase t doesn’t work when we’re
trying to assign the value of True to a variable.

Here are a few more examples of using boolean expressions while in the Python
interpreter.

>>> True and True
True
>>>
>>> True or False
True
>>>

Understanding Python Data Types | 103

>>> False or False
False
>>>

In the next example, these same conditions are evaluated, assigning boolean values to
variables.

>>> value1 = True
>>> value2 = False
>>>
>>> value1 and value2
False
>>>
>>> value1 or value2
True
>>>

Notice that boolean expressions are also not limited to two objects.

>>> value3 = True
>>> value4 = True
>>>
>>> value1 and value2 and value3 and value4
False
>>>
>>> value1 and value3 and value4
True
>>>

When extracting information from a network device, it is quite common to use boo‐
leans for a quick check. Is the interface a routed port? Is the management interface
configured? Is the device reachable? While there may be a complex operation to
answer each of those questions, the result is stored as True or False.

The counter to those questions would be, is the interface a switched port or is the
device not reachable? It wouldn’t make sense to have variables or objects for each
question, but we could use the not operator, since we know the not operation returns
the inverse of a boolean value.

Let’s take a look at using not in an example.

>>> not False
>>> True
>>>
>>> is_layer3 = True
>>> not is_layer3
False
>>>

In this example, there is a variable called is_layer3. It is set to True, indicating that
an interface is a Layer 3 port. If we take the not of is_layer3, we would then know if
it is a Layer 2 port.

104 | Chapter 4: Learning Python in a Network Context

We’ll be taking a look at conditionals (if-else statements) later in the chapter, but
based on the logic needed, you may need to know if an interface is in fact Layer 3. If
so, you would have something like if is_layer3:, but if you needed to perform an
action if the interface was Layer 2, then you would use if not is_layer3:.

In addition to using the and and or operands, the equal to == and does not equal to !=
expressions are used to generate a boolean object. With these expressions, you can do
a comparison, or check, to see if two or more objects are (or not) equal to one
another.

>>> True == True
True
>>>
>>> True != False
True
>>>
>>> 'network' == 'network'
True
>>>
>>> 'network' == 'no_network'
False
>>>

After a quick look at working with boolean objects, operands, and expressions, we are
ready to cover how to work with Python lists.

Learning to Use Python Lists
You had a brief introduction to lists when we covered the string built-in methods
called join() and split(). Lists are now covered in a bit more detail.

Lists are the object type called list, and at their most basic level are an ordered
sequence of objects. The examples from earlier in the chapter when we looked at the
join() method with strings are provided again next to provide a quick refresher on
how to create a list. Those examples were lists of strings, but it’s also possible to have
lists of any other data type as well, which we’ll see shortly.

>>> hostnames = ['r1', 'r2', 'r3', 'r4', 'r5']
>>> commands = ['config t', 'interface Ethernet1/1', 'shutdown']
>>>

The next example shows a list of objects where each object is a different data type!

>>> new_list = ['router1', False, 5]
>>>
>>> print(new_list)
['router1', False, 5]
>>>

Understanding Python Data Types | 105

Now you understand that lists are an ordered sequence of objects and are enclosed by
brackets. One of the most common tasks when you’re working with lists is to access
an individual element of the list.

Let’s create a new list of interfaces and show how to print a single element of a list.

>>> interfaces = ['Eth1/1', 'Eth1/2', 'Eth1/3', 'Eth1/4']
>>>

The list is created and now three elements of the list are printed one at a time.

>>> print(interfaces[0])
Eth1/1
>>>
>>> print(interfaces[1])
Eth1/2
>>>
>>> print(interfaces[2])
Eth1/3
>>>

To access the individual elements within a list, you use the element’s index value
enclosed within brackets. It’s important to see that the index begins at 0 and ends at
the “length of the list minus 1.” This means in our example, to access the first element
you use interfaces[0] and to access the last element you use interfaces[3].

In the example, we can easily see that the length of the list is four, but what if you
didn’t know the length of the list?

Luckily Python provides a built-in function called len() to help with this.

>>> len(interfaces)
4
>>>

Another way to access the last element in any list is: list[-1].

>>> interfaces[-1]
'Eth1/4'
>>>

Oftentimes, the terms function and method are used interchangea‐
bly, but up until now we’ve mainly looked at methods, not func‐
tions. The slight difference is that a function is called without
referencing a parent object. As you saw, when you use a built-in
method of an object, it is called using the syntax object.method(),
and when you use functions like len(), you call it directly. That
said, it is very common to call a method a function.

106 | Chapter 4: Learning Python in a Network Context

Using built-in methods of Python lists

To view the available built-in methods for lists, the dir() function is used just like we
showed previously when working with string objects. You can create any variable that
is a list or use the formal data type name of list and pass it as an argument to dir().
We’ll use the interfaces list for this.

>>> dir(interfaces)
['append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse',
'sort']

In order to keep the output clean and simplify the example, we’ve
removed all objects that start and end with underscores.

Let’s take a look at a few of these built-in methods.

Using the append() method. The great thing about these method names, as you’ll con‐
tinue to see, is that they are human readable, and for the most part, intuitive. The
append() method is used to append an element to an existing list.

This is shown in the next example, but let’s start with creating an empty list. You do
so by assigning empty brackets to an object.

>>> vendors = []
>>>

Let’s append, or add vendors to this list.

>>> vendors.append('arista')
>>>
>>> print(vendors)
['arista']
>>>
>>> vendors.append('cisco')
>>>
>>> print(vendors)
['arista', 'cisco']
>>>

You can see that using append() adds the element to the last position in the list. In
contrast to many of the methods reviewed for strings, this method is not returning
anything, but modifying the original variable, or object.

Using the insert() method. Rather than just append an element to a list, you may need
to insert an element at a specific location. This is done with the insert() method.

Understanding Python Data Types | 107

To use insert(), you need to pass it two arguments. The first argument is the posi‐
tion, or index, where the new element gets stored, and the second argument is the
actual object getting inserted into the list.

In the next example, we’ll look at building a list of commands.

>>> commands = ['interface Eth1/1', 'ip address 1.1.1.1/32']

As a reminder, the commands in these examples are generic and do
not map back to a specific vendor or platform.

Let’s now assume we need to add two more commands to the list ['interface
Eth1/1', 'ip address 1.1.1.1/32']. The command that needs to be added as the
first element is config t and the one that needs to be added just before the IP
address is no switchport.

>>> commands = ['interface Eth1/1', 'ip address 1.1.1.1/32']
>>>
>>> commands.insert(0, 'config t')
>>>
>>> print(commands)
['config t', 'interface Eth1/1', 'ip address 1.1.1.1/32']
>>>
>>> commands.insert(2, 'no switchport')
>>>
>>> print(commands)
['config t', 'interface Eth1/1', 'no switchport', 'ip address 1.1.1.1/32']
>>>

Using the count() method. If you are doing an inventory of types of devices throughout
the network, you may build a list that has more than one of the same object within a
list. To expand on the example from earlier, you may have a list that looks like this:

>>> vendors = ['cisco', 'cisco', 'juniper', 'arista', 'cisco', 'hp', 'cumulus',
'arista', 'cisco']
>>>

You can count how many instances of a given object are found by using the count()
method. In our example, this can help determine how many Cisco or Arista devices
there are in the environment.

>>> vendors.count('cisco')
4
>>>
>>> vendors.count('arista')
2
>>>

108 | Chapter 4: Learning Python in a Network Context

Take note that count() returns an int, or integer, and does not modify the existing
object like insert(), append(), and a few others that are reviewed in the upcoming
examples.

Using the pop() and index() methods. Most of the methods thus far have either modified
the original object or returned something. pop() does both.

>>> hostnames = ['r1', 'r2', 'r3', 'r4', 'r5']
>>>

The preceding example has a list of hostnames. Let’s pop (remove) r5 because that
device was just decommissioned from the network.

>>> hostnames.pop()
'r5'
>>>
>>> print(hostnames)
['r1', 'r2', 'r3', 'r4']
>>>

As you can see, the element being popped is returned and the original list is modified
as well.

You should have also noticed that no element or index value was passed in, so you
can see by default, pop() pops the last element in the list.

What if you need to pop "r2"? It turns out that in order to pop an element that is not
the last element, you need to pass in an index value of the element that you wish to
pop. But how do you find the index value of a given element? This is where the
index() method comes into play.

To find the index value of a certain element, you use the index() method.

>>> hostnames.index('r2')
1
>>>

Here you see that the index of the value "r2" is 1.

So, to pop "r2", we would perform the following:

>>> hostnames.pop(1)
'r2'
>>>
>>> print(hostnames)
['r1', 'r3', 'r4']
>>>

It could have also been done in a single step:

hostnames.pop(hostnames.index('r2'))

Understanding Python Data Types | 109

Using the sort() method. The last built-in method that we’ll take a look at for lists is
sort(). As you may have guessed, sort() is used to sort a list.

In the next example, we have a list of IP addresses in non-sequential order, and
sort() is used to update the original object. Notice that nothing is returned.

>>> available_ips
['10.1.1.1', '10.1.1.9', '10.1.1.8', '10.1.1.7', '10.1.1.4']
>>>
>>>
>>> available_ips.sort()
>>>
>>> available_ips
['10.1.1.1', '10.1.1.4', '10.1.1.7', '10.1.1.8', '10.1.1.9']

Be aware that the sort from the previous example sorted IP
addresses as strings.

In nearly all examples we covered with lists, the elements of the list were the same
type of object; that is, they were all commands, IP addresses, vendors, or hostnames.
However, it would not be an issue if you needed to create a list that stored different
types of contextual objects (or even data types).

A prime example of storing different objects arises when storing information about a
particular device. Maybe you want to store the hostname, vendor, and OS. A list to
store these device attributes would look something like this:

>>> device = ['router1', 'juniper', '12.2']
>>>

Since elements of a list are indexed by an integer, you need to keep track of which
index is mapped to which particular attribute. While it may not seem hard for this
example, what if there were 10, 20, or 100 attributes that needed to be accessed? Even
if there were mappings available, it could get extremely difficult since lists are ordered.
Replacing or updating any element in a list would need to be done very carefully.

Wouldn’t it be nice if you could reference the individual elements of a list by name
and not worry so much about the order of elements? So, rather than access the host‐
name using device[0], you could access it like device['hostname'].

As luck would have it, this is exactly where Python dictionaries come into action, and
they are the next data type we cover in this chapter.

110 | Chapter 4: Learning Python in a Network Context

Learning to Use Python Dictionaries
We’ve now reviewed some of the most common data types, including strings, inte‐
gers, booleans, and lists, which exist across all programming languages. In this sec‐
tion, we take a look at the dictionary, which is a Python-specific data type. In other
languages, they are known as associative arrays, maps, or hash maps.

Dictionaries are unordered lists and their values are accessed by names, otherwise
known as keys, instead of by index (integer). Dictionaries are simply a collection of
unordered key-value pairs called items.

We finished the previous section on lists using this example:

>>> device = ['router1', 'juniper', '12.2']
>>>

If we build on this example and convert the list device to a dictionary, it would look
like this:

>>> device = {'hostname': 'router1', 'vendor': 'juniper', 'os': '12.1'}
>>>

The notation for a dictionary is a curly brace ({), then key, colon, and value, for each
key-value pair separated by a comma (,), and then it closes with another curly brace
(}).

Once the dict object is created, you access the desired value by using dict[key].

>>> print(device['hostname'])
router1
>>>
>>> print(device['os'])
12.1
>>>
>>> print(device['vendor'])
juniper
>>>

As already stated, dictionaries are unordered—unlike lists, which are ordered. You
can see this because when device is printed in the following example, its key-value
pairs are in a different order from when it was originally created.

>>> print(device)
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>

It’s worth noting that it’s possible to create the same dictionary from the previous
example a few different ways. These are shown in the next two code blocks.

>>> device = {}
>>> device['hostname'] = 'router1'
>>> device['vendor'] = 'juniper'

Understanding Python Data Types | 111

>>> device['os'] = '12.1'
>>>
>>> print(device)
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>

>>> device = dict(hostname='router1', vendor='juniper', os='12.1')
>>>
>>> print(device)
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>

Using built-in methods of Python dictionaries
Python dictionaries have a few built-in methods worth covering, so as usual, we’ll
dive right into them.

Just as with the other data types, we first look at all available methods minus those
that start and end with underscores.

>>> dir(dict)
['clear', 'copy', 'fromkeys', 'get', 'has_key', 'items', 'iteritems', 'iterkeys',
'itervalues', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values',
'viewitems', 'viewkeys', 'viewvalues']
>>>

Using the get() method. We saw earlier how to access a key-value pair of a dictionary
using the notation of dict[key]. That is a very popular approach, but with one caveat.
If the key does not exist, it raises a KeyError since the key does not exist.

>>> device
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>
>>> print(device['model'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'model'
>>>

Using the get() method provides another approach that is arguably safer, unless you
want to raise an error.

Let’s first look at an example using get() when the key exists.

>>> device.get('hostname')
'router1'
>>>

And now an example for when a key doesn’t exist:

>>> device.get('model')
>>>

112 | Chapter 4: Learning Python in a Network Context

As you can see from the preceding example, absolutely nothing is returned when the
key isn’t in the dictionary, but it gets better than that. get() also allows the user to
define a value to return when the key does not exist! Let’s take a look.

>>> device.get('model', False)
False
>>>
>>> device.get('model', 'DOES NOT EXIST')
'DOES NOT EXIST'
>>>
>>>
>>> device.get('hostname', 'DOES NOT EXIST')
'router1'
>>>

Pretty simple, right? You can see that the value to the right of the key is only returned
if the key does not exist within the dictionary.

Using the keys() and values() methods. Dictionaries are an unordered list of key-value
pairs. Using the built-in methods called keys() and values(), you have the ability to
access the lists of each, individually. When each method is called, you get back a list
of keys or values, respectively, that make up the dictionary.

>>> device.keys()
['os', 'hostname', 'vendor']
>>>
>>> device.values()
['12.1', 'router1', 'juniper']
>>>

Using the pop() method. We first saw a built-in method called pop() earlier in the
chapter when we were reviewing lists. It just so happens dictionaries also have a
pop() method, and it’s used very similarly. Instead of passing the method an index
value as we did with lists, we pass it a key.

>>> device
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>
>>> device.pop('vendor')
'juniper'
>>>
>>> device
{'os': '12.1', 'hostname': 'router1'}
>>>

You can see from the example that pop() modifies the original object and returns the
value that is being popped.

Using the update() method. There may come a time where you are extracting device
information such as hostname, vendor, and OS and have it stored in a Python dictio‐

Understanding Python Data Types | 113

nary. And down the road you need to add or update it with another dictionary that
has other attributes about a device.

The following shows two different dictionaries.

>>> device
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper'}
>>>
>>> oper = dict(cpu='5%', memory='10%')
>>>
>>> oper
{'cpu': '5%', 'memory': '10%'}
>>>

The update() method can now be used to update one of the dictionaries, basically
adding one dictionary to the other. Let’s add oper to device.

>>> device.update(oper)
>>>
>>> print(device)
{'os': '12.1', 'hostname': 'router1', 'vendor': 'juniper', 'cpu': '5%',
'memory': '10%'}
>>>

Notice how nothing was returned with update(). Only the object being updated, or
device in this case, was modified.

Using the items() method. When working with dictionaries, you’ll see items() used a
lot, so it is extremely important to understand—not to discount the other methods, of
course!

We saw how to access individual values using get() and how to get a list of all the
keys and values using the keys() and values() methods, respectively.

What about accessing a particular key-value pair of a given item at the same time, or
iterating over all items? If you need to iterate (or loop) through a dictionary and
simultaneously access keys and values, items() is a great tool for your tool belt.

There is a formal introduction to loops later in this chapter, but
because items() is commonly used with a for loop, we are show‐
ing an example with a for loop here. The important takeaway until
loops are formally covered is that when using the for loop with
items(), you can access a key and value of a given item at the same
time.

The most basic example is looping through a dictionary with a for loop and printing
the key and value for each item. Again, loops are covered later in the chapter, but this
is meant just to give a basic introduction to items().

114 | Chapter 4: Learning Python in a Network Context

>>> for key, value in device.items():
... print(key + ': ' + value)
...
os : 12.1
hostname : router1
vendor : juniper
cpu : 5%
memory : 10%
>>>

It’s worth pointing out that in the for loop, key and value are user defined and could
have been anything, as you can see in the example that follows.

>>> for my_attribute, my_value, in device.items():
... print(my_attribute + ': ' + my_value)
...
os : 12.1
hostname : router1
vendor : juniper
cpu : 5%
memory : 10%
>>>

We’ve now covered the major data types in Python. You should have a good under‐
standing of how to work with strings, numbers, booleans, lists, and dictionaries. We’ll
now provide a short introduction into two more data types, namely sets and tuples,
that are a bit more advanced than the previous data types covered.

Learning About Python Sets and Tuples
The next two data types don’t necessarily need to be covered in an introduction to
Python, but as we said at the beginning of the chapter, we wanted to include a quick
summary of them for completeness. These data types are set and tuple.

If you understand lists, you’ll understand sets. Sets are a list of elements, but there can
only be one of a given element in a set, and additionally elements cannot be indexed
(or accessed by an index value like a list).

You can see that a set looks like a list, but is surrounded by set():

>>> vendors = set(['arista', 'cisco', 'arista', 'cisco', 'juniper', 'cisco'])
>>>

The preceding example shows a set being created with multiple elements that are the
same. We used a similar example when we wanted to use the count() method for lists
when we wanted to count how many of a given vendor exists. But what if you want to
only know how many, and which, vendors exist in an environment? You can use a set.

>>> vendors = set(['arista', 'cisco', 'arista', 'cisco', 'juniper', 'cisco'])
>>>
>>> vendors

Understanding Python Data Types | 115

set(['cisco', 'juniper', 'arista'])
>>>
>>> len(vendors)
3
>>>

Notice how vendors only contains three elements.

The next example shows what happens when you try to access an element within a
set. In order to access elements in a set, you must iterate through them, using a for
loop as an example.

>>> vendors[0]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'set' object does not support indexing
>>>

It is left as an exercise for the reader to explore the built-in methods for sets.

The tuple is an interesting data type and also best understood when compared to a
list. It is like a list, but cannot be modified. We saw that lists are mutable, meaning
that it is possible to update, extend, and modify them. Tuples, on the other hand, are
immutable, and it is not possible to modify them once they’re created. Also, like lists,
it’s possible to access individual elements of tuples.

>>> description = tuple(['ROUTER1', 'PORTLAND'])
>>>
>>>
>>> description
('ROUTER1', 'PORTLAND')
>>>
>>>
>>> print(description[0])
ROUTER1
>>>

And once the variable object description is created, there is no way to modify it.
You cannot modify any of the elements or add new elements. This could help if you
need to create an object and want to ensure no other function or user can modify it.
The next example shows that you cannot modify a tuple and that a tuple has no
methods such as update() or append().

>>> description[1] = 'trying to modify one'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>>
>>> dir(tuple)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__',
'__getslice__', '__gt__', '__hash__', '__init__', '__iter__', '__le__',

116 | Chapter 4: Learning Python in a Network Context

'__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', 'count', 'index']
>>>

To help compare and contrast lists, tuples, and sets, we have put this high-level sum‐
mary together:

• Lists are mutable, they can be modified, individual elements they can be accessed
directly, and can have duplicate values.

• Sets are mutable, they can be modified, individual elements cannot be accessed
directly, and they cannot have duplicate values.

• Tuples are immutable, they cannot be updated or modified once created, individ‐
ual elements can be accessed directly, and they can have duplicate values.

This concludes the section on data types. You should now have a good understanding
of the data types covered, including strings, numbers, booleans, lists, dictionaries,
sets, and tuples.

We’ll now shift gears a bit and jump into using conditionals (if then logic) in Python.

Adding Conditional Logic to Your Code
By now you should have a solid understanding of working with different types
of objects. The beauty of programming comes into play when you start to use those
objects by applying logic within your code, such as executing a task or creating an
object when a particular condition is true (or not true!).

Conditionals are a key part of applying logic within your code, and understanding
conditionals starts with understanding the if statement.

Let’s start with a basic example that checks the value of a string.

>>> hostname = 'NYC'
>>>
>>> if hostname == 'NYC':
... print('The hostname is NYC')
...
The hostname is NYC
>>>

Even if you did not understand Python before starting this chapter, odds are you
knew what was being done in the previous example. This is part of the value of work‐
ing in Python—it tries to be as human readable as possible.

There are two things to take note of with regard to syntax when you’re working with
an if statement. First, all if statements end with a colon (:). Second, the code that
gets executed if your condition is true is part of an indented block of code—this

Adding Conditional Logic to Your Code | 117

indentation should be four spaces, but technically does not matter. All that technically
matters is that you are consistent.

Generally speaking, it is good practice to use a four-space indent
when writing Python code. This is widely accepted by the Python
community as the norm for writing idiomatic Python code. This
makes code sharing and collaboration much easier.

The next example shows a full indented code block.

>>> if hostname == 'NYC':
... print('This hostname is NYC')
... print(len(hostname))
... print('The End.')
...
This hostname is NYC
3
The End.
>>>

Now that you understand how to construct a basic if statement, let’s add to it.

What if you needed to do a check to see if the hostname was “NJ” in addition to
“NYC”? To accomplish this, we introduce the else if statement, or elif.

>>> hostname = 'NJ'
>>>
>>> if hostname == 'NYC':
... print('This hostname is NYC')
... elif hostname == 'NJ':
... print('This hostname is NJ')
...
This hostname is NJ
>>>

It is very similar to the if statement in that it still needs to end with a colon and the
associated code block to be executed must be indented. You should also be able to see
that the elif statement must be aligned to the if statement.

What if NYC and NJ are the only valid hostnames, but now you need to execute a block
of code if some other hostname is being used? This is where we use the else state‐
ment.

>>> hostname = 'DEN_CO'
>>>
>>> if hostname == 'NYC':
... print('This hostname is NYC')
... elif hostname == 'NJ':
... print('This hostname is NJ')
... else:

118 | Chapter 4: Learning Python in a Network Context

... print('UNKNOWN HOSTNAME')

...
UNKNOWN HOSTNAME
>>>

Using else isn’t any different than if and elif. It needs a colon (:) and an indented
code block underneath it to execute.

When Python executes conditional statements, the conditional block is exited as soon
as there is a match. For example, if hostname was equal to 'NYC', there would be a
match on the first line of the conditional block, the print statement print('This
hostname is NYC') would be executed, and then the block would be exited (no other
elif or else would be executed).

The following is an example of an error that is produced when there is an error with
indentation. The example has extra spaces in front of elif that should not be there.

>>> if hostname == 'NYC':
... print('This hostname is NYC')
... elif hostname == 'NJ':
 File "<stdin>", line 3
 elif hostname == 'NJ':
 ^
IndentationError: unindent does not match any outer indentation level
>>>

And the following is an example of an error produced with a missing colon.

>>> if hostname == 'NYC'
 File "<stdin>", line 1
 if hostname == 'NYC'
 ^
SyntaxError: invalid syntax
>>>

The point is, even if you have a typo in your code when you’re just getting started,
don’t worry; you’ll see pretty intuitive error messages.

You will continue to see conditionals in upcoming examples, including the next one,
which introduces the concept of containment.

Understanding Containment
When we say containment, we are referring to the ability to check whether some
object contains a specific element or object. Specifically, we’ll look at the usage of in
building on what we just learned with conditionals.

Although this section only covers in, it should not be underestimated how powerful
this feature of Python is.

Understanding Containment | 119

If we use the variable called vendors that has been used in previous examples, how
would you check to see if a particular vendor exists? One option is to loop through
the entire list and compare the vendor you are looking for with each object. That’s
definitely possible, but why not just use in?

Using containment is not only readable, but also simplifies the process for checking
to see if an object has what you are looking for.

>>> vendors = ['arista', 'juniper', 'big_switch', 'cisco']
>>>
>>> 'arista' in vendors
True
>>>

You can see that the syntax is quite straightforward and a bool is returned. It’s worth
mentioning that this syntax is another one of those expressions that is considered
writing idiomatic Python code.

This can now be taken a step a further and added into a conditional statement.

>>> if 'arista' in vendors:
... print('Arista is deployed.')
...
'Arista is deployed.'
>>>

The next example checks to see if part of a string is in another string compared to
checking to see if an element is in a list. The examples show a basic boolean expres‐
sion and then show using the expression in a conditional statement.

>>> version = "CSR1000V Software (X86_64_LINUX_IOSD-UNIVERSALK9-M),
Version 16.3.1, RELEASE"
>>>
>>> "16.3.1" in version
True
>>>
>>> if "16.3.1" in version:
... print("Version is 16.3.1!!")
...
Version is 16.3.1!!
>>>
>>>

As we previously stated, containment when combined with conditionals is a simple
yet powerful way to check to see if an object or value exists within another object. In
fact, when you’re just starting out, it is quite common to build really long and com‐
plex conditional statements, but what you really need is a more efficient way to evalu‐
ate the elements of a given object.

120 | Chapter 4: Learning Python in a Network Context

One such way is to use loops while working with objects such as lists and dictionaries.
Using loops simplifies the process of working with these types of objects. This will
become much clearer soon, as our next section formally introduces loops.

Using Loops in Python
We’ve finally made it to loops. As objects continue to grow, especially those that are
much larger than our examples thus far, loops are absolutely required. Start to think
about lists of devices, IP addresses, VLANs, and interfaces. We’ll need efficient ways
to search data or perform the same operation on each element in a set of data (as
examples). This is where loops begin to show their value.

We cover two main types of loops—the for loop and while loop.

From the perspective of a network engineer who is looking at automating network
devices and general infrastructure, you can get away with almost always using a for
loop. Of course, it depends on exactly what you are doing, but generally speaking, for
loops in Python are pretty awesome, so we’ll save them for last.

Understanding the while Loop
The general premise behind a while loop is that some set of code is executed while
some condition is true. In the example that follows, the variable counter is set to 1
and then for as long as, or while, it is less than 5, the variable is printed, and then
increased by 1.

The syntax required is similar to what we used when creating if-elif-else state‐
ments. The while statement is completed with a colon (:) and the code to be exe‐
cuted is also indented four spaces.

>>> counter = 1
>>>
>>> while counter < 5:
... print(counter)
... counter += 1
...
1
2
3
4
>>>

From an introduction perspective, this is all we are going to cover on the while loop,
as we’ll be using the for loop in the majority of examples going forward.

Using Loops in Python | 121

Understanding the for Loop
for loops in Python are awesome because when you use them you are usually loop‐
ing, or iterating, over a set of objects, like those found in a list, string, or dictionary.
for loops in other programming languages require an index and increment value to
always be specified, which is not the case in Python.

Let’s start by reviewing what is sometimes called a for-in or for-each loop, which is the
more common type of for loop in Python.

As in the previous sections, we start by reviewing a few basic examples.

The first is to print each object within a list. You can see in the following example that
the syntax is simple, and again, much like what we learned when using conditionals
and the while loop. The first statement or beginning of the for loop needs to end
with a colon (:) and the code to be executed must be indented.

>>> vendors
['arista', 'juniper', 'big_switch', 'cisco']
>>>
>>> for vendor in vendors:
... print('VENDOR: ' + vendor)
...
VENDOR: arista
VENDOR: juniper
VENDOR: big_switch
VENDOR: cisco
>>>

As mentioned earlier, this type of for loop is often called a for-in or for-each loop
because you are iterating over each element in a given object.

In the example, the name of the object vendor is totally arbitrary and up to the user
to define, and for each iteration, vendor is equal to that specific element. For example,
in this example vendor equals arista during the first iteration, juniper in the second
iteration, and so on.

To show that vendor can be named anything, let’s rename it to be network_vendor.

>>> for network_vendor in vendors:
... print('VENDOR: ' + network_vendor)
...
VENDOR: arista
VENDOR: juniper
VENDOR: big_switch
VENDOR: cisco
>>>

Let’s now combine a few of the things learned so far with containment, conditionals,
and loops.

122 | Chapter 4: Learning Python in a Network Context

The next example defines a new list of vendors. One of them is a great company, but
just not cut out to be a network vendor! Then it defines approved_vendors, which is
basically the proper, or approved, vendors for a given customer. This example loops
through the vendors to ensure they are all approved, and if not, prints a statement
saying so to the terminal.

>>> vendors = ['arista', 'juniper', 'big_switch', 'cisco', 'oreilly']
>>>
>>> approved_vendors = ['arista', 'juniper', 'big_switch', 'cisco']
>>>
>>> for vendor in vendors:
... if vendor not in approved_vendors:
... print('NETWORK VENDOR NOT APPROVED: ' + vendor)
...
NETWORK VENDOR NOT APPROVED: oreilly
>>>

You can see that not can be used in conjunction with in, making it very powerful and
easy to read what is happening.

We’ll now look at a more challenging example where we loop through a dictionary,
while extracting data from another dictionary, and even get to use some built-in
methods you learned earlier in this chapter.

To prepare for the next example, let’s build a dictionary that stores CLI commands to
configure certain features on a network device:

>>> COMMANDS = {
... 'description': 'description {}',
... 'speed': 'speed {}',
... 'duplex': 'duplex {}',
... }
>>>
>>> print(COMMANDS)
{'duplex': 'duplex {}', 'speed': 'speed {}', 'description': 'description {}'}
>>>

We see that we have a dictionary that has three items (key-value pairs). Each item’s
key is a network feature to configure, and each item’s value is the start of a command
string that’ll configure that respective feature. These features include speed, duplex,
and description. The values of the dictionary each have curly braces ({}) because we’ll
be using the format() method of strings to insert variables.

Now that the COMMANDS dictionary is created, let’s create a second dictionary called
CONFIG_PARAMS that will be used to dictate which commands will be executed and
which value will be used for each command string defined in COMMANDS.

>>> CONFIG_PARAMS = {
... 'description': 'auto description by Python',
... 'speed': '10000',

Using Loops in Python | 123

... 'duplex': 'auto'

... }
>>>

We will now use a for loop to iterate through CONFIG_PARAMS() using the items
built-in method for dictionaries. As we iterate through, we’ll use the key from CON
FIG_PARAMS and use that to get the proper value, or command string, from COMMANDS.
This is possible because they were prebuilt using the same key structure. The com‐
mand string is returned with curly braces, but as soon as it’s returned, we use the
format() method to insert the proper value, which happens to be the value in
CONFIG_PARAMS.

Let’s a take a look.

>>> commands_list = []
>>>
>>> for feature, value in CONFIG_PARAMS.items():
... command = COMMANDS.get(feature).format(value)
... commands_list.append(command)
...
>>> commands_list.insert(0, 'interface Eth1/1')
>>>
>>> print(commands_list)
['interface Eth1/1', 'duplex auto', 'speed 10000',
 'description auto description by Python']
>>>

Now we’ll walk through this in even more detail. Please take your time and even test
this out yourself while on the Python interactive interpreter.

In the first line commands_list is creating an empty list []. This is required in order
to append() to this list later on.

We then use the items() built-in method as we loop through CONFIG_PARAMS. This
was covered very briefly earlier in the chapter, but items() is giving you, the network
developer, access to both the key and value of a given key-value pair at the same time.
This example iterates over three key-value pairs, namely description/auto description
by Python, speed/10000, and duplex/auto.

During each iteration—that is, for each key-value pair that is being referred to as the
variables feature and value—a command is being pulled from the COMMANDS dictio‐
nary. If you recall, the get() method is used to get the value of a key-value pair when
you specify the key. In the example, this key is the feature object. The value being
returned is description {} for description, speed {} for speed, and duplex {} for
duplex. As you can see, all of these objects being returned are strings, so then we are
able to use the format() method to insert the value from CONFIG_PARAMS because we
also saw earlier that multiple methods can be used together on the same line!

124 | Chapter 4: Learning Python in a Network Context

Once the value is inserted, the command is appended to commands_list. Once the
commands are built, we insert() Eth1/1. This could have also been done first.

If you understand this example, you are at a really good point already with getting a
grasp on Python!

You’ve now seen some of the most common types of for loops that allow you to iter‐
ate over lists and dictionaries. We’ll now take a look at another way to construct and
use a for loop.

Using the enumerate() function
Occasionally, you may need to keep track of an index value as you loop through an
object. We show this fairly briefly, since most examples that are reviewed are like the
previous examples already covered.

enumerate() is used to enumerate the list and give an index value, and is often handy
to determine the exact position of a given element.

The next example shows how to use enumerate() within a for loop. You’ll notice that
the beginning part of the for loop looks like the dictionary examples, only unlike
items(), which returns a key and value, enumerate() returns an index, starting at 0,
and the object from the list that you are enumerating.

The example prints both the index and value to help you understand what it is doing:

>>> vendors = ['arista', 'juniper', 'big_switch', 'cisco']
>>>
>>> for index, each in enumerate(vendors):
... print(index + ' ' + each)
...
0 arista
1 juniper
2 big_switch
3 cisco
>>>

Maybe you don’t need to print all of indices and values out. Maybe you only need the
index for a given vendor. This is shown in the next example.

>>> for index, each in enumerate(vendors):
... if each == 'arista':
... print('arista index is: ' + index)
...
arista index is: 0
>>>

We’ve covered quite a bit of Python so far, from data types to conditionals to loops.
However, we still haven’t covered how to efficiently reuse code through the use of
functions. This is what we cover next.

Using Loops in Python | 125

Using Python Functions
Because you are reading this book, you probably at some point have heard of func‐
tions, but if not, don’t worry—we have you covered! Functions are all about eliminat‐
ing redundant and duplicate code and easily allowing for the reuse of code. Frankly
and generally speaking, functions are the opposite of what network engineers do on a
daily basis.

On a daily basis network engineers are configuring VLANs over and over again. And
they are likely proud of how fast they can enter the same CLI commands into a net‐
work device or switch over and over. Writing a script with functions eliminates writ‐
ing the same code over and over.

Let’s assume you need to create a few VLANs across a set of switches. Based on a
device from Cisco or Arista, the commands required may look something this:

vlan 10
 name USERS
vlan 20
 name VOICE
vlan 30
 name WLAN

Imagine you need to configure 10, 20, or 50 devices with the same VLANs! It is very
likely you would type in those six commands for as many devices as you have in your
environment.

This is actually a perfect opportunity to create a function and write a small script.
Since we haven’t covered scripts yet, we’ll still be working on the Python shell.

For our first example, we’ll start with a basic print() function and then come right
back to the VLAN example.

>>> def print_vendor(net_vendor):
... print(net_vendor)
...
>>>
>>> vendors = ['arista', 'juniper', 'big_switch', 'cisco']
>>>
>>> for vendor in vendors:
... print_vendor(vendor)
...
arista
juniper
big_switch
cisco
>>>

In the preceding example, print_vendor() is a function that is created and defined
using def. If you want to pass variables (parameters) into your function, you enclose

126 | Chapter 4: Learning Python in a Network Context

them within parentheses next to the function name. This example is receiving one
parameter and is referenced as vendor while in the function called print_vendor().
Like conditionals and loops, function declarations also end with a colon (:). Within
the function, there is an indented code block that has a single statement—it simply
prints the parameter being received.

Once the function is created, it is ready to be immediately used, even while in the
Python interpreter.

For this first example, we ensured vendors was created and then looped through it.
During each iteration of the loop, we passed the object, which is a string of the ven‐
dor’s name, to print_vendor().

Notice how the variables have different names based on where they are being used,
meaning that we are passing vendor, but it’s received and referenced as net_vendor
from within the function. There is no requirement to have the variables use the same
name while within the function, although it’ll work just fine if you choose to do it
that way.

Since we now have an understanding of how to create a basic function, let’s return to
the VLAN example.

We will create two functions to help automate VLAN provisioning.

The first function, called get_commands(), obtains the required commands to send to
a network device. It accepts two parameters, one that is the VLAN ID using the
parameter vlan and one that is the VLAN NAME using the parameter name.

The second function, called push_commands(), pushes the actual commands that
were gathered from get_commands to a given list of devices. This function also accepts
two parameters: device, which is the device to send the commands to, and commands,
which is the list of commands to send. In reality, the push isn’t happening in this
function, but rather it is printing commands to the terminal to simulate the com‐
mand execution.

>>> def get_commands(vlan, name):
... commands = []
... commands.append('vlan ' + vlan)
... commands.append('name ' + name)
...
... return commands
...
>>>
>>> def push_commands(device, commands):
... print('Connecting to device: ' + device)
... for cmd in commands:
... print('Sending command: ' + cmd)
>>>

Using Python Functions | 127

In order to use these functions, we need two things: a list of devices to configure and
the list of VLANs to send.

The list of devices to be configured is as follows:

>>> devices = ['switch1', 'switch2', 'switch3']
>>>

In order to create a single object to represent the VLANs, we have created a list of
dictionaries. Each dictionary has two key-value pairs, one pair for the VLAN ID and
one for the VLAN name.

>>> vlans = [{'id': '10', 'name': 'USERS'}, {'id': '20', 'name': 'VOICE'},
{'id': '30', 'name': 'WLAN'}]
>>>

If you recall, there is more than one way to create a dictionary. Any of those options
could have been used here.

The next section of code shows one way to use these functions. The following code
loops through the vlans list. Remember that each element in vlans is a dictionary.
For each element, or dictionary, the id and name are obtained by way of the get()
method. There are two print statements, and then the first function, get_com
mands(), is called—id and name are parameters that get sent to the function, and then
a list of commands is returned and assigned to commands.

Once we have the commands for a given VLAN, they are executed on each device by
looping through devices. In this process push_commands() is called for each device
for each VLAN.

You can see the associated code and output generated here:

>>> for vlan in vlans:
... id = vlan.get('id')
... name = vlan.get('name')
... print('\n')
... print('CONFIGURING VLAN:' + id)
... commands = get_commands(id, name)
... for device in devices:
... push_commands(device, commands)
... print('\n')
...
>>>

CONFIGURING VLAN: 10
Connecting to device: switch1
Sending command: vlan 10
Sending command: name USERS

Connecting to device: switch2
Sending command: vlan 10
Sending command: name USERS

128 | Chapter 4: Learning Python in a Network Context

Connecting to device: switch3
Sending command: vlan 10
Sending command: name USERS

CONFIGURING VLAN: 20
Connecting to device: switch1
Sending command: vlan 20
Sending command: name VOICE

Connecting to device: switch2
Sending command: vlan 20
Sending command: name VOICE

Connecting to device: switch3
Sending command: vlan 20
Sending command: name VOICE

CONFIGURING VLAN: 30
Connecting to device: switch1
Sending command: vlan 30
Sending command: name WLAN

Connecting to device: switch2
Sending command: vlan 30
Sending command: name WLAN

Connecting to device: switch3
Sending command: vlan 30
Sending command: name WLAN
>>>

Remember, not all functions require parameters, and not all func‐
tions return a value.

You should now have a basic understanding of creating and using functions, under‐
standing how they are called and defined with and without parameters, and how it’s
possible to call functions from within loops.

Next, we cover how to read and write data from files in Python.

Working with Files
This section is focused on showing you how to read and write data from files. Our
focus is on the basics and to show enough that you’ll be able to easily pick up a com‐
plete Python book from O’Reilly to continue learning about working with files.

Working with Files | 129

Reading from a File
For our example, we have a configuration snippet located in the same directory from
where we entered the Python interpreter.

The filename is called vlans.cfg and it looks like this:

vlan 10
 name USERS
vlan 20
 name VOICE
vlan 30
 name WLAN
vlan 40
 name APP
vlan 50
 name WEB
vlan 60
 name DB

With just two lines in Python, we can open and read the file.

>>> vlans_file = open('vlans.cfg', 'r')
>>>
>>> vlans_file.read()
'vlan 10\n name USERS\nvlan 20\n name VOICE\nvlan 30\n
name WLAN\nvlan 40\n name APP\nvlan 50\n name WEB\nvlan 60\n
 name DB'
>>>
>>> vlans_file.close()
>>>

This example read in the full file as a complete str object by using the read()
method for file objects.

The next example reads the file and stores each line as an element in a list by using
the readlines() method for file objects.

>>> vlans_file = open('vlans.cfg', 'r')
>>>
>>> vlans_file.readlines()
['vlan 10\n', ' name USERS\n', 'vlan 20\n', ' name VOICE\n', 'vlan 30\n',
' name WLAN\n', 'vlan 40\n', ' name APP\n', 'vlan 50\n', ' name WEB\n',
'vlan 60\n', ' name DB']
>>>
>>> vlans_file.close()
>>>

Let’s reopen the file, save the contents as a string, but then manipulate it, to store the
VLANs as a dictionary similar to how we used the vlans object in the example from
the section on functions.

130 | Chapter 4: Learning Python in a Network Context

>>> vlans_file = open('vlans.cfg', 'r')
>>>
>>> vlans_text = vlans_file.read()
>>>
>>> vlans_list = vlans_text.splitlines()
>>>
>>> vlans_list
['vlan 10', ' name USERS', 'vlan 20', ' name VOICE', 'vlan 30',
' name WLAN', 'vlan 40', ' name APP', 'vlan 50', ' name WEB',
'vlan 60', ' name DB']
>>>
>>> vlans = []
>>> for item in vlans_list:
... if 'vlan' in item:
... temp = {}
... id = item.strip().strip('vlan').strip()
... temp['id'] = id
... elif 'name' in item:
... name = item.strip().strip('name').strip()
... temp['name'] = name
... vlans.append(temp)
...
>>>
>>> vlans
[{'id': '10', 'name': 'USERS'}, {'id': '20', 'name': 'VOICE'},
{'id': '30', 'name': 'WLAN'}, {'id': '40', 'name': 'APP'},
{'id': '50', 'name': 'WEB'}, {'id': '60', 'name': 'DB'}]
>>>
>>> vlans_file.close()
>>>

In this example, the file is read and the contents of the file are stored as a string in
vlans_text. A built-in method for strings called splitlines() is used to create a list
where each element in the list is each line within the file. This new list is called
vlans_list and has a length equal to the number of commands that were in the file.

Once the list is created, it is iterated over within a for loop. The variable item is used
to represent each element in the list as it’s being iterated over. In the first iteration,
item is 'vlan 10'; in the second iteration, item is ' name users'; and so on. Within
the for loop, a list of dictionaries is ultimately created where each element in the list
is a dictionary with two key-value pairs: id and name. We accomplish this by using a
temporary dictionary called temp, adding both key-value pairs to it, and then append‐
ing it to the final list only after appending the VLAN name. Per the following note,
temp is reinitialized only when it finds the next VLAN.

Notice how strip() is being used. You can use strip() to strip not only whitespace,
but also particular substrings within a string object. Additionally, we chained multiple
methods together in a single Python statement.

Working with Files | 131

For example, with the value ' name WEB', when strip() is first used, it returns 'name
WEB'. Then, we used strip('name'), which returns ' WEB', and then finally strip()
to remove any whitespace that still remains to produce the final name of 'WEB'.

The previous example is not the only way to perform an operation
for reading in VLANs. That example assumed a VLAN ID and
name for every VLAN, which is usually not the case, but is done
this way for conveying certain concepts. It initialized temp only
when “VLAN” was found, and only appended temp after the
“name” was added (this would not work if a name did not exist for
every VLAN and is a good use case for using Python error han‐
dling using try/except statements—which is out of scope in this
book).

Writing to a File
The next example shows how to write data to a file.

The vlans object that was created in the previous example is used here too.

>>> vlans
[{'id': '10', 'name': 'USERS'}, {'id': '20', 'name': 'VOICE'},
{'id': '30', 'name': 'WLAN'}, {'id': '40', 'name': 'APP'},
{'id': '50', 'name': 'WEB'}, {'id': '60', 'name': 'DB'}]

A few more VLANs are created before we try to write the VLANs to a new file.

>>> add_vlan = {'id': '70', 'name': 'MISC'}
>>> vlans.append(add_vlan)
>>>
>>> add_vlan = {'id': '80', 'name': 'HQ'}
>>> vlans.append(add_vlan)
>>>
>>> print(vlans)
[{'id': '10', 'name': 'USERS'}, {'id': '20', 'name': 'VOICE'},
{'id': '30', 'name': 'WLAN'}, {'id': '40', 'name': 'APP'},
{'id': '50', 'name': 'WEB'}, {'id': '60', 'name': 'DB'},
{'id': '70', 'name': 'MISC'}, {'id': '80', 'name': 'HQ'}]
>>>

There are now eight VLANS in the vlans list. Let’s write them to a new file, but keep
the formatting the way it should be with proper spacing.

The first step is to open the new file. If the file doesn’t exist, which it doesn’t in our
case, it’ll be created. You can see this in the first line of code that follows.

Once it is open, we’ll use the get() method again to extract the required VLAN val‐
ues from each dictionary and then use the file method called write() to write the
data to the file. Finally, the file is closed.

132 | Chapter 4: Learning Python in a Network Context

>>> write_file = open('vlans_new.cfg', 'w')
>>>
>>> for vlan in vlans:
... id = vlan.get('id')
... name = vlan.get('name')
... write_file.write('vlan ' + id + '\n')
... write_file.write(' name ' + name + '\n')
...
>>>
>>> write_file.close()
>>>

The previous code created the vlans_new.cfg file and generated the following contents
in the file:

$ cat vlans_new.cfg
vlan 10
 name USERS
vlan 20
 name VOICE
vlan 30
 name WLAN
vlan 40
 name APP
vlan 50
 name WEB
vlan 60
 name DB
vlan 70
 name MISC
vlan 80
 name HQ

As you start to use file objects more, you may see some interesting things happen. For
example, you may forget to close a file, and wonder why there is no data in the file
that you know should have data!

By default, what you are writing with the write() method is held
in a buffer and only written to the file when the file is closed. This
setting is configurable.

It’s also possible to use the with statement, a context manager, to help manage this
process.

Here is a brief example using with. One of the nice things about with is that it auto‐
matically closes the file.

>>> with open('vlans_new.cfg', 'w') as write_file:
... write_file.write('vlan 10\n')

Working with Files | 133

... write_file.write(' name TEST_VLAN\n')

...
>>>

When you open a file using open() as with open('vlans.cfg',
'r'), you can see that two parameters are sent. The first is the
name of the file including the relative or absolute path of the file.
The second is the mode, which is an optional argument, but if not
included, is the equivalent of read-only, which is the r mode. Other
modes include w, which opens a file only for writing (if you’re using
the name of a file that already exists, the contents are erased), a
opens a file for appending, and r+ opens a file for reading and writ‐
ing.

Everything in this chapter thus far has been using the dynamic Python interpreter.
This showed how powerful the interpreter is for writing and testing new methods,
functions, or particular sections of your code. No matter how great the interpreter is,
however, we still need to be able to write programs and scripts that can run as a
standalone entity. This is exactly what we cover next.

Creating Python Programs
Let’s take a look at how to build on what we’ve been doing on the Python shell and
learn how to create and run a standalone Python script, or program. This section
shows how to easily take what you’ve learned so far and create a script within just a
few minutes.

If you’re following along, feel free to use any text editor you are
comfortable with, including, but not limited to vi, vim, Sublime
Text, Notepad++, or even a full-blown Integrated Development
Environment (IDE), such as PyCharm.

Let’s look at a few examples.

Creating a Basic Python Script
The first step is to create a new Python file that ends with the .py extension. From the
Linux terminal, create a new file by typing touch net_script.py and open it in your
text editor. As expected, the file is completely empty.

The first script we’ll write simply prints text to the terminal. Add the following five
lines of text to net_script.py in order to create a basic Python script.

134 | Chapter 4: Learning Python in a Network Context

#!/usr/bin/env python

if __name__ == "__main__":
 print('^' * 30)
 print('HELLO NETWORK AUTOMATION!!!!!')
 print('^' * 30)

Now that the script is created, let’s execute it.

To execute a Python script from the Linux terminal, you use the python command.
All you need to do is append the script name to the command as shown here.

$ python net_script.py
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
HELLO NETWORK AUTOMATION!!!!!
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

And that’s it! If you were following along, you just created a Python script. You might
have noticed that everything under the if __name__ == "__main__": statement is
the same as if you were on the Python interpreter.

Now we’ll take a look at the two unique statements that are optional, but recom‐
mended, when you are writing Python scripts. The first one is called the shebang. You
may also recall that we first introduced the shebang in Chapter 3.

Understanding the Shebang
The shebang is the first line in the script: #!/usr/bin/env python. This is a special
and unique line for Python programs.

It is the only line of code that uses the # as the first character other than comments.
We will cover comments later in the chapter, but note for now that # is widely used
for commenting in Python. The shebang happens to be the exception and also needs
to be the first line in a Python program, when used.

Python linters used to perform checks on the code can also act
upon the text that comes after comments starting with #.

The shebang instructs the system which Python interpreter to use to execute the pro‐
gram. Of course, this also assumes file permissions are correct for your program file
(i.e., that the file is executable). If the shebang is not included, you must use the
python keyword to execute the script, which we have in all of our examples anyway.

Creating Python Programs | 135

For example, if we had the following script:

if __name__ == "__main__":
 print('Hello Network Automation!')

we could execute using the statement $ python hello.py, assuming the file was
saved as hello.py. But we could not be execute it using the statement $./hello.py. In
order for the statement $./hello.py to be executed, we need to add the shebang to
the program file because that’s how the system knows how to execute the script.

The shebang as we have it, /usr/bin/env python, defaults to using Python 2.7 on the
system we’re using to write this book. But it is also possible if you have multiple ver‐
sions of Python installed to modify the shebang to specifically use another version,
such as /usr/bin/env python3 to use Python 3.

It’s also worth mentioning that the shebang /usr/bin/env python
allows you to modify the system’s environment so that you don’t
have to modify each individual script, just in case you did want to
test on a different version of Python. You can use the command
which python to see which version will be used on your system.
For example, our system defaults to Python 2.7.6:

$ which python
/usr/bin/python
$
$ /usr/bin/python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Next, we’ll take a deeper look at the if __name__ == "__main__": statement. Based
on the quotes, or lack thereof, you can see that __name__ is a variable and "__main__"
is a string. When a Python file is executed as a standalone script, the variable name
__name__ is automatically set to "__main__". Thus, whenever you do python
<script>.py, everything underneath the if __name__ == "__main__" statement is
executed.

At this point, you are probably thinking, when wouldn’t __name__ be equal to
"__main__"? That is discussed in “Working with Python Modules” on page 138, but
the short answer is: when you are importing particular objects from Python files, but
not necessarily using those files as a standalone program.

Now that you understand the shebang and the if __name__ == "__main__": state‐
ment, we can continue to look at standalone Python scripts.

136 | Chapter 4: Learning Python in a Network Context

Migrating Code from the Python Interpreter to a Python Script
This next example is the same example from the section on functions. The reason for
this is to show you firsthand how easy it is to migrate from using the Python inter‐
preter to writing a standalone Python script.

The next script is called push.py.

#!/usr/bin/env python

def get_commands(vlan, name):
 commands = []
 commands.append('vlan ' + vlan)
 commands.append('name ' + name)
 return commands

def push_commands(device, commands):
 print('Connecting to device: ' + device)
 for cmd in commands:
 print('Sending command: ' + cmd)

if __name__ == "__main__":

 devices = ['switch1', 'switch2', 'switch3']

 vlans = [{'id': '10', 'name': 'USERS'}, {'id': '20', 'name': 'VOICE'},
 {'id': '30', 'name': 'WLAN'}]

 for vlan in vlans:
 vid = vlan.get('id')
 name = vlan.get('name')
 print('\n')
 print('CONFIGURING VLAN:' + vid)
 commands = get_commands(vid, name)
 for device in devices:
 push_commands(device, commands)
 print('\n')

The script is executed with the command python push.py.

The output you see is exactly the same output you saw when it was executed on the
Python interpreter.

If you were creating several scripts that performed various configuration changes on
the network, we can intelligently assume that the function called push_commands()
would be needed in almost all scripts. One option is to copy and paste the function in
all of the scripts. Clearly, that would not be optimal because if you needed to fix a bug
in that function, you would need to make that change in all of the scripts.

Creating Python Programs | 137

Just like functions allow us to reuse code within a single script, there is a way to reuse
and share code between scripts/programs. We do so by creating a Python module,
which is what we’ll cover next as we continue to build on the previous example.

Working with Python Modules
We are going to continue to leverage the push.py file we just created in the previous
section to better articulate how to work with a Python module. You can think of a
module as a type of Python file that holds information, (e.g., Python objects), that can
be used by other Python programs, but is not a standalone script or program itself.

For this example, we are going to enter back into the Python interpreter while in the
same directory where the push.py file exists.

Let’s assume you need to generate a new list of commands to send to a new list of
devices. You remember that you have this function called push_commands() in
another file that already has the logic to push a list of commands to a given device.
Rather than re-create the same function in your new program (or in the interpreter),
you reuse the push_commands() function from within push.py. Let’s see how this is
done.

While at the Python shell, we will type in import push and hit Enter. This imports all
of the objects within the push.py file.

>>> import push
>>>

Take a look at the imported objects by using dir(push).

>>> dir(push)
['__builtins__', '__doc__', '__file__', '__name__', '__package__', 'get_commands',
'push_commands']
>>>

Just as we saw with the standard Python data types, push also has methods that start
and end with underscores, but you should also notice the two objects called get_com
mands and push_commands, which are the functions from the push.py file!

If you recall, push_commands() requires two parameters. The first is a device and the
second is a list of commands. Let’s now use push_commands() from the interpreter.

>>> device = 'router1'
>>> commands = ['interface Eth1/1', 'shutdown']
>>>
>>> push.push_commands(device, commands)
Connecting to device: router1
Sending command: interface Eth1/1
Sending command: shutdown
>>>

138 | Chapter 4: Learning Python in a Network Context

You can see that the first thing we did was create two new variables (device and com
mands) that are used as the parameters sent to push_commands().

push_commands() is then called as an object of push with the parameters device and
commands.

If you are importing multiple modules and there is a chance of overlap between func‐
tion names, the method shown using import push is definitely a good option. It also
makes it really easy to know where (in which module) the function exists. On the
other hand, there are other options for importing objects.

One other option is to use from import. For our example, it would look like this:
from push import push_commands. Notice in the following code, you can directly
use push_commands() without referencing push.

>>> from push import push_commands
>>>
>>> device = 'router1'
>>> commands = ['interface Eth1/1', 'shutdown']
>>>
>>> push_commands(device, commands)
Connecting to device: router1
Sending command: interface Eth1/1
Sending command: shutdown
>>>

It’s recommended to make import statements as specific as possible
and only import what’s used in your code. You should not use wild‐
card imports, such as from push import *. Statements like this
load all objects from the module, potentially overloading and caus‐
ing namespace conflicts with objects you’ve defined. And it also
complicates troubleshooting, as it makes it difficult to decipher
where an object was defined or came from.

Another option is to rename the object as you are importing it, using from import
as. If you happen to not like the name of the object or think it is too long, you can
rename it on import. It looks like this for our example:

>>> from push import push_commands as pc
>>>

Notice how easy it is to rename the object and make it something shorter and or
more intuitive.

Let’s use it in an example.

>>> from push import push_commands as pc
>>>
>>> device = 'router1'

Working with Python Modules | 139

>>> commands = ['interface Eth1/1', 'shutdown']
>>>
>>> pc(device, commands)
Connecting to device: router1
Sending command: interface Eth1/1
Sending command: shutdown
>>>

In our examples, we entered the Python Dynamic Interpreter from
the same directory where the module push.py was saved. In order
to use this module, or any new module, from anywhere on your
system, you need to put your module into a directory defined in
your PYTHONPATH. This is a Linux environment variable that defines
all directories your system will look in for Python modules and
programs.

By now you should understand not only how to create a script, but also how to create
a Python module with functions (and other objects) and how to use those reusable
objects in other scripts and programs.

Passing Arguments into a Python Script
In the last two sections, we looked at writing Python scripts and using Python mod‐
ules. Now we’ll look at a module that’s part of the Python standard library (i.e., comes
with Python by default) that allows us to easily pass in arguments from the command
line into a Python script. The module is called sys, and specifically we’re going to use
an attribute (or variable) within the module called argv.

Let’s take a look at a basic script called send_command.py that only has a single print
statement.

#!/usr/bin/env python

import sys

if __name__ == "__main__":
 print(sys.argv)

Now we’ll execute the script, passing in a few arguments simulating data we’d need to
log in to a device and issue a show command.

ntc@ntc:~$ python send-command.py username password 10.1.10.10 "show version"
['send-command.py', 'username', 'password', '10.1.10.10', 'show version']
ntc@ntc:~$

You should see that sys.argv is a list. In fact, it’s simply a list of strings of what we
passed in from the Linux command line. This is a standard Python list that has ele‐
ments matching the arguments passed in. You can also infer what really happened:

140 | Chapter 4: Learning Python in a Network Context

Python did a split (str.split(" ")) on send-command.py username password

10.1.10.10 "show version" which created the list of five elements!

Finally, note that when you’re using sys.argv the first element is always the script
name.

If you’d like, you can assign the value of sys.argv to an arbitrary variable to simplify
working with the parameters passed in. In either case, you can extract values using
the appropriate index values as shown:

#!/usr/bin/env python

import sys

if __name__ == "__main__":
 args = sys.argv
 print("Username: " + args[0])
 print("Password: " + args[1])
 print("Device IP: " + args[2])
 print("Command: " + args[3])

And if we execute this script:

ntc@ntc:~$ python send-command.py username password 10.1.10.10 "show version"
Username: send-command.py
Password: username
Device IP: password
Command: 10.1.10.10
ntc@ntc:~$

You can continue to build on this to perform more meaningful network tasks as you
continue reading this book. For example, after reading Chapter 7, you’ll be able to
pass parameters like this into a script that actually connects to a device using an API
issuing a show command (or equivalent).

When using sys.argv, you still need to account for error handling
(at a minimum, check the length of the list). Additionally, the user
of the script must know the precise order of the elements that need
to be passed in. For more advanced argument handling, you should
look at the Python module called argparse that offers a very user-
intuitive way of passing in arguments with “flags” and a built-in
help menu. This is out of the scope of the book.

Using pip and Installing Python Packages
As you get started with Python, it’s likely you’re going to need to install other software
written in Python. For example, you may want to test automating network devices
with netmiko, a popular SSH client for Python, that we cover in Chapter 7. It’s most

Using pip and Installing Python Packages | 141

common to distribute Python software, including netmiko, using the Python Package
Index (PyPI), pronounced “pie-pie.” You can also browse and search the PyPI reposi‐
tory directly at https://pypi.python.org/pypi.

For any Python software hosted on PyPI such as netmiko, you can use the program
called pip to install it on your machine directly from PyPI. pip is an installer that by
default goes to PyPI, downloads the software, and installs it on your machine.

Using pip to install netmiko can be done with a single line on your Linux machine:

ntc@ntc:~$ sudo pip install netmiko
output omitted

This will install netmiko in a system path (it’ll vary based on the OS being used).

By default this will install the latest and greatest (stable release) of a given Python
package. However, you may want to ensure you install a specific version—this is help‐
ful to ensure you don’t automatically install the next release without testing. This is
referred to as pinning. You can pin your install to a specific release. In the next exam‐
ple, we show how you can pin the install of netmiko to version 1.4.2.

ntc@ntc:~$ sudo pip install netmiko==1.4.2
output omitted

You can use pip to upgrade versions of software too. For example, you may have
installed version 1.4.2 of netmiko and when you’re ready, you can upgrade to the lat‐
est release by using the --upgrade or -U flag on the command line.

ntc@ntc:~$ sudo pip install netmiko --upgrade
output omitted

It’s also common to need to install Python packages from source. That simply means
getting the latest release—for example, from GitHub, a version control system that we
cover in Chapter 8. Maybe the software package on GitHub has a bug fix you need
that is not yet published to PyPI. In this case, it’s quite common to perform a git
clone—something that we also show you how to do in Chapter 8.

When you perform a clone of a Python project from GitHub, there is a good chance
you’ll see two files in the root of the project: requirements.txt and setup.py. These can
be used to install the Python package from source. The requirements file lists the
requirements that are needed for the application to run. For example, here is the cur‐
rent requirements.txt for netmiko:

paramiko>=1.13.0
scp>=0.10.0
pyyaml

You can see that netmiko has three dependencies, commonly referred to as deps. You
can also install these deps directly from PyPI using a single statement, again using the
pip installer.

142 | Chapter 4: Learning Python in a Network Context

https://pypi.python.org/pypi

ntc@ntc:~$ sudo pip install -r requirements.text
output omitted

To completely install netmiko (from source) including the requirements, you can also
use execute the setup.py file that you’d see in the same directory after performing the
Git clone.

ntc@ntc:~$ sudo python setup.py install
output omitted

By default, installing the software with setup.py will also install directly into a system
path. Should you want to contribute back to a given project on GitHub, and actively
develop on the project, you can also install the application directly from where the
files exist (directory where you cloned the project).

ntc@ntc:~$ sudo python setup.py develop
output omitted

This makes it such that the files in your local directory are the ones running netmiko,
for our example. Otherwise, if you use the install option when running setup.py,
you’ll need to modify the files in your system path to effect the local netmiko install
(for troubleshooting as another example).

Learning Additional Tips, Tricks, and General Information
When Using Python
We are going to close this chapter with what we call Python tips, tricks, and general
information. It’s useful information to know when working with Python—some of it
is introductory and some of it is more advanced, but we want to really prepare you to
continue your dive into Python following this chapter, so we’re including as much as
possible.

These tips, tricks, and general information are provided here in no particular order of
importance:

• You may need to access certain parts of a string or elements in a list. Maybe you
need just the first character or element. You can use the index of 0 for strings (not
covered earlier), but also for lists. If there is a variable called router that is
assigned the value of 'DEVICE', router[0] returns 'D'. The same holds true for
lists, which was covered already. But what about accessing the last element in the
string or list? Remember, we learned that we can use the -1 index for this.
router[-1] returns 'E' and the same would be true for a list as well.

• Building on the previous example, this notation is expanded to get the first few
characters or last few (again, same for a list):

>>> hostname = 'DEVICE_12345'
>>>

Learning Additional Tips, Tricks, and General Information When Using Python | 143

>>> hostname[4:]
'CE_12345'
>>>
>>> hostname[:-2]
'DEVICE_123'
>>>

This can become pretty powerful when you need to parse through different types
of objects.

• You can convert (or cast) an integer to a string by using str(10). You can also do
the opposite, converting a string to an integer by using int('10').

• We used dir() quite a bit when learning about built-in methods and also men‐
tioned the type() and help() functions. A helpful workflow for using all three
together is as follows:
— Check your data type using type()
— Check the available methods for your object using dir()
— After knowing which method you want to use, learn how to use it using

help()

Here is an example of that workflow:
>>> hostname = 'router1'
>>>
>>> type(hostname)
<type 'str'>
>>>
>>> dir(hostname)
>>> # output omitted; it would show all methods including "upper"
>>>
>>> help(hostname.upper) # output omitted
>>>

• When you need to check a variable type within Python, error handling (try/
except) can be used, but if you do need to explicitly know what type of an object
something is, isinstance() is a great function to know about. It returns True if
the variable being passed in is of the object type also being passed in.

>>> hostname = ''
>>> devices = []

>>> if isinstance(devices, list):
... print('devices is a list')
...
devices is a list
>>>
>>> if isinstance(hostname, str):
... print('hostname is a string')

144 | Chapter 4: Learning Python in a Network Context

...
hostname is a string
>>>

• We spent time learning how to use the Python interpreter and create Python
scripts. Python offers the -i flag to be used when executing a script, but instead
of exiting the script, it enters the interpreter, giving you access to all of the objects
built in the script—this is great for testing.
Here’s a sample file called test.py:

if __name__ == "__main__":
 devices = ['r1', 'r2', 'r3']

 hostname = 'router5'

Let’s see what happens when we run the script with the -i flag set.
$ python -i test.py
>>>
>>> print(devices)
['r1', 'r2', 'r3']
>>>
>>> print(hostname)
router5
>>>

Notice how it executed, but then it dropped you right into the Python shell and
you have access to those objects. Pretty cool, right?

• Objects are True if they are not null and False if they are null. Here are a few
examples:

>>> devices = []
>>> if not devices:
... print('devices is empty')
...
devices is empty
>>>
>>> hostname = 'something'
>>>
>>> if hostname:
... print('hostname is not null')
...
hostname is not null
>>>

• In the section on strings, we looked at concatenating strings using the plus sign
(+), but also learned how to use the format() method, which was a lot cleaner.
There is another option to do the same thing using %. One example for inserting
strings (s) is provided here:

Learning Additional Tips, Tricks, and General Information When Using Python | 145

>>> hostname = 'r5'
>>>
>>> interface = 'Eth1/1'
>>>
>>> test = 'Device %s has one interface: %s ' % (hostname, interface)
>>>
>>> print(test)
Device r5 has one interface: Eth1/1
>>>

• We haven’t spent any time on comments, but did mention the # (known as a hash
tag, number sign, or pound sign) is used for inline comments.

def get_commands(vlan, name):
 commands = []

 # building list of commands to configure a vlan
 commands.append('vlan ' + vlan)
 commands.append('name ' + name) # appending name
 return commands

• A docstring is usually added to functions, methods, and classes that help describe
what the object is doing. It should use triple quotes (""") and is usually limited to
one line.

def get_commands(vlan, name):
 """Get commands to configure a VLAN.
 """

 commands = []
 commands.append('vlan ' + vlan)
 commands.append('name ' + name)
 return commands

You learned how to import a module, namely push.py. Let’s import it again now
to see what happens when we use help on get_commands() since we now have a
docstring configured.

>>> import push
>>>
>>> help(push.get_commands)

Help on function get_commands in module push:

get_commands(vlan, name)
 Get commands to configure a VLAN.
(END)
>>>

You see all docstrings when you use help. Additionally, you see information
about the parameters and what data is returned if properly documented.

146 | Chapter 4: Learning Python in a Network Context

We’ve now added Args and Returns values to the docstring.
def get_commands(vlan, name):
 """Get commands to configure a VLAN.

 Args:
 vlan (int): vlan id
 name (str): name of the vlan

 Returns:
 List of commands is returned.
 """

 commands = []
 commands.append('vlan ' + vlan)
 commands.append('name ' + name)
 return commands

These are now displayed when the help() function is used to provide users of
this function much more context on how to use it.

>>> import push
>>>
>>> help(push.get_commands)

Help on function get_commands in module push:

get_commands(vlan, name)
 Get commands to configure a VLAN.

 Args:
 vlan (int): vlan id
 name (str): name of the vlan

 Returns:
 List of commands is returned.
(END)

• Writing your own classes wasn’t covered in this chapter because classes are an
advanced topic, but a very basic introduction of using them is shown here
because they are used in subsequent chapters.
We’ll walk through an example of not only using a class, but also importing the
class that is part of a Python package (another new concept). Please note, this is a
mock-up and general example. This is not using a real Python package.

>>> from vendors.cisco.device import Device
>>>
>>> switch = Device(ip='10.1.1.1', username='cisco', password='cisco')
>>>
>>> switch.show('show version')
output omitted

Learning Additional Tips, Tricks, and General Information When Using Python | 147

What is actually happening in this example is that we are importing the Device
class from the module device.py that is part of the Python package called vendors
(which is just a directory). That may have been a mouthful, but the bottom line
is, the import should look very similar to what you saw in “Working with Python
Modules” on page 138, and a Python package is just a collection of modules that
are stored in different directories.
As you look at the example code and compare it to importing the push_com
mands() function from “Working with Python Modules” on page 138, you’ll
notice a difference. The function is used immediately, but the class needs to be
initialized.
The class is being initialized with this statement:

>>> switch = Device(ip='10.1.1.1', username='cisco', password='cisco')
>>>

The arguments passed in are used to construct an instance of Device. At this
point, if you had multiple devices, you may have something like this:

>>> switch1 = Device(ip='10.1.1.1', username='cisco', password='cisco')
>>> switch2 = Device(ip='10.1.1.2', username='cisco', password='cisco')
>>> switch3 = Device(ip='10.1.1.3', username='cisco', password='cisco')
>>>

In this case, each variable is a separate instance of Device.

Parameters are not always used when a class is initialized.
Every class is different, but if parameters are being used, they
are passed to what is called the constructor of the class; in
Python, this is the method called __init__. A class without a
constructor would be initialized like so: demo = FakeClass().
Then you would use its methods like so: demo.method().

Once the class object is initialized and created, you can start to use its methods.
This is just like using the built-in methods for the data types we learned about
earlier in the chapter. The syntax is class_object.method.
In this example, the method being used is called show(). And in real time it
returns data from a network device.

As a reminder, using method objects of a class is just like using
the methods of the different data types such as strings, lists,
and dictionaries. While creating classes is an advanced topic,
you should understand how to use them.

148 | Chapter 4: Learning Python in a Network Context

If we executed show for switch2 and switch3, we would get the proper return
data back as expected, since each object is a different instance of Device.
Here is a brief example that shows the creation of two Device objects and then
uses those objects to get the output of show hostname on each device. With the
library being used, it is returning XML data by default, but this can easily be
changed, if desired, to JSON.

>>> switch1 = Device(ip='nycsw01', username='cisco', password='cisco')
>>> switch2 = Device(ip='nycsw02', username='cisco', password='cisco')
>>>
>>> switches = [switch1, switch2]
>>> for switch in switches:
... response = switch.show('show hostname')[1]
... print(response)
...
output omitted
>>>

Summary
This chapter provided a grass-roots introduction to Python for network engineers.
We covered foundational concepts such as working with data types, conditionals,
loops, functions, and files, and even how to create a Python module that allows you to
reuse the same code in different Python programs/scripts. Finally, we closed out the
chapter by providing a few tips and tricks along with other general information that
you should use as a reference as you continue on with your Python and network
automation journey.

In Chapter 5 we introduce you to different data formats such as YAML, JSON, and
XML, and in that process, we also build on what was covered in this chapter. For
example, you’ll take what you learned and start to use Python modules to simplify the
process of working with these data types, and also see the direct correlation between
YAML, JSON, and Python dictionaries.

Summary | 149

CHAPTER 5

Data Formats and Data Models

If you’ve done any amount of exploration into the world of APIs, you’ve likely heard
about terms like JSON, XML, or YAML. Perhaps you’ve heard the terms XSD or
YANG. You may have heard the term markup language when discussing one of these.
But what are these things, and what do they have to do with networking or network
automation?

In the same way that routers and switches require standardized protocols in order to
communicate, applications need to be able to agree on some kind of syntax in order
to exchange data between them. For this, applications can use standard data formats
like JSON and XML (among others). Not only do applications need to agree on how
the data is formatted, but also on how the data is structured. Data models define how
the data stored in a particular data format is structured.

In this chapter, we’ll discuss some of the formats most commonly used with network
APIs and automation tools, and how you as a network developer can leverage these
tools to accomplish tasks. We’ll also briefly discuss data models and their role in net‐
work automation.

Introduction to Data Formats
A computer programmer typically uses a wide variety of tools to store and work with
data in the programs they build. They may use simple variables (single value), arrays
(multiple values), hashes (key-value pairs), or even custom objects built in the syntax
of the language they’re using.

This is all perfectly standard within the confines of the software being written. How‐
ever, sometimes a more abstract, portable format is required. For instance, a non-
programmer may need to move data in and out of these programs. Another program
may have to communicate with this program in a similar way, and the programs may

151

not even be written in the same language, as is often the case with something like tra‐
ditional client-server communications. For example, many third-party user interfaces
(UIs) are used to interface with public cloud providers. This is made possible (in a
simplified fashion) thanks to standard data formats. The moral of the story is that we
need a standard format to allow a diverse set of software to communicate with each
other, and for humans to interface with it.

It turns out there are a few options. With respect to data formats, what we’re talking
about is text-based representation of data that would otherwise be represented as
internal software constructs in memory. All of the data formats that we’ll discuss in
this chapter have broad support over a multitude of languages and operating systems.
In fact, many languages, including Python, which we covered in Chapter 4, have
built-in tools that make it easy to import and export data to these formats, either on
the filesystem or on the network.

So as a network engineer, how does all this talk about software impact you? For one
thing, this level of standardization is already in place from a raw network protocol
perspective. Protocols like BGP, OSPF, and TCP/IP were conceived out of a necessity
for network devices to have a single language to speak across a globally distributed
system—the internet! The data formats in this chapter were conceived for a very sim‐
ilar reason—to enable computer systems to openly understand and communicate
with each other.

Every device you have installed, configured, or upgraded was given life by a software
developer that considered these very topics. Some network vendors saw fit to provide
mechanisms that allow operators to interact with a network device using these widely
supported data formats; others did not. The goal of this chapter is to help you under‐
stand the value of standardized and simplified formats like these, so that you can use
them to your advantage on your network automation journey.

For example, some configuration models are friendly to automated methods, by rep‐
resenting the configuration model in these data formats like XML or JSON. It is very
easy to see the XML representation of a certain data set in Junos, for example:

root@vsrx01> show interfaces | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/12.1X47/junos">
 <interface-information xmlns="http://xml.juniper.net/junos/12.1X47/
 junos-interface" junos:style="normal">
 <physical-interface>
 <name>ge-0/0/0</name>
 <admin-status junos:format="Enabled">up</admin-status>
 <oper-status>up</oper-status>
 <local-index>134</local-index>
 <snmp-index>507</snmp-index>
 <link-level-type>Ethernet</link-level-type>
 <mtu>1514</mtu>
 <source-filtering>disabled</source-filtering>
 <link-mode>Full-duplex</link-mode>

152 | Chapter 5: Data Formats and Data Models

 <speed>1000mbps</speed>

 ... output truncated ...

Now, of course this is not very easy on the eyes, but that’s not the point. From a pro‐
grammatic perspective, this is ideal, since each piece of data is given its own easily
parseable field. A piece of software doesn’t have to guess where to find the name of
the interface; it’s located at the well-known and documented tag “name”. This is key to
understanding the different needs that a software system may have when interacting
with infrastructure components, as opposed to a human being on the CLI.

When thinking about data formats at a high level, it’s important to first understand
exactly what we intend to do with the various data formats at our disposal. Each was
created for a different use case, and understanding these use cases will help you
decide which is appropriate for you to use.

Types of Data
Now that we’ve discussed the use case for data formats, it’s important to briefly talk
about what kind of data might be represented by these formats. After all, the purpose
of these formats is to communicate things like words, numbers, and even complex
objects between software instances. If you’ve taken any sort of programming course,
you’ve likely heard of most of these.

Note that since this chapter isn’t about any specific programming
languages, these are just generic examples. These data types may be
represented by different names, depending on their implementa‐
tion.
Chapter 4 goes over Python specifically, so be sure to go back and
refer to that chapter for Python-specific definitions and usage.

String
Arguably, the most fundamental data type is the string. This is a very common
way of representing a sequence of numbers, letters, or symbols. If you wanted to
represent an English sentence in one of the data formats we’ll discuss in this
chapter, or in a programming language, you’d probably use a string to do so. In
Python, you may see str or unicode to represent these.

Integer
There are actually a number (get it?) of data types that have to do with numerical
values, but for most people the integer is the first that comes to mind when dis‐
cussing numerical data types. The integer is exactly what you learned in math
class: a whole number, positive or negative. There are other data types like float

Introduction to Data Formats | 153

or decimal that you might use to describe non-whole values. Python represents
integers using the int type.

Boolean
One of the simplest data types is boolean, a simple value that is either true or
false. This is a very popular type used when a programmer wishes to know the
result of an operation, or whether two values are equal to each other, for example.
This is known as the bool type in Python.

Advanced data structures
Data types can be organized into complex structures as well. All of the formats
we’ll discuss in this language support a basic concept known as an array, or a list
in some cases. This is a list of values or objects that can be represented and refer‐
enced by some kind of index. There are also key-value pairs, known by many
names, such as dictionaries, hashes, hash maps, hash tables, or maps. This is sim‐
ilar to the array, but the values are organized according to key-value pairs, where
both the key and the value can be one of several types of data, like string, integer,
and so on. An array can take many forms in Python: sets, tuples, and lists are all
used to represent a sequence of items, but are different from each other in what
sort of flexibility they offer. Key-value pairs are represented by the dict type.

This is not a comprehensive list, but covers the vast majority of use cases in this chap‐
ter. Again, the implementation-specific details for these data types really depend on
the context in which they appear. The good news is that all of the data formats we’ll
discuss in this chapter have wide and very flexible support for all of these and more.

Throughout the rest of this chapter, we’ll refer to data types in monospaced fonts, like
string or boolean, so that it’s clear we’re referring to a specific data type.

Now that we’ve established what data formats are all about, and what types of data
may be represented by each of them, let’s dive in to some specific examples and see
these concepts written out.

YAML
If you’re reading this book because you’ve seen some compelling examples of network
automation online or in a presentation and you want to learn more, you may have
heard of YAML. This is because YAML is a particularly human-friendly data format,
and for this reason, it is being discussed before any other in this chapter.

YAML stands for “YAML Ain’t Markup Language,” which seems to
tell us that the creators of YAML didn’t want it to become just some
new markup standard, but a unique attempt to represent data in a
human-readable way. Also, the acronym is recursive!

154 | Chapter 5: Data Formats and Data Models

Reviewing YAML Basics
If you compare YAML to the other data formats that we’ll discuss like XML or JSON,
it seems to do much the same thing: it represents constructs like lists, key-value pairs,
strings, and integers. However, as you’ll soon see, YAML does this is an exceptionally
human-readable way. YAML is very easy to read and write if you understand the basic
data types discussed in the last section.

This is a big reason that an increasing number of tools (see Ansible) are using YAML
as a method of defining an automation workflow, or providing a data set to work with
(like a list of VLANs). It’s very easy to use YAML to get from zero to a functional
automation workflow, or to define the data you wish to push to a device.

At the time of this writing, the latest YAML specification is YAML 1.2, published at
http://www.yaml.org/. Also provided on that site is a list of software projects that
implement YAML, typically for the purpose of being read in to language-specific data
structures and doing something with them. If you have a favorite language, it might
be helpful to follow along with the YAML examples in this chapter, and try to imple‐
ment them using one of these libraries.

Let’s take a look at some examples. Let’s say we want to use YAML to represent a list
of network vendors. If you paid attention in the last section, you’ll probably be think‐
ing that we want to use a string to represent each vendor name—and you’d be cor‐
rect! This example is very simple:

- Cisco
- Juniper
- Brocade
- VMware

You’ll notice three hyphens (---) at the top of every example in this
section; this is a YAML convention that indicates the beginning of
our YAML document.
The YAML specification also states that an ellipsis (…) is used to
indicate the end of a document, and that you can actually have
multiple instances of triple hyphens to indicate multiple documents
within one file or data stream. These methods are typically only
used in communication channels (e.g., for termination of mes‐
sages), which is not a very popular use case, so we won’t be using
either of these approaches in this chapter.

This YAML document contains four items. We know that each item is a string. One
of the nice features of YAML is that we usually don’t need quote or double-quote
marks to indicate a string; this is something that is usually automatically discovered
by the YAML parser (e.g., PyYAML). Each of these items has a hyphen in front of it.

YAML | 155

http://www.yaml.org/

Since all four of these strings are shown at the same level (no indentation), we can say
that these strings compose a list with a length of 4.

YAML very closely mimics the flexibility of Python’s data structures, so we can take
advantage of this flexibility without having to write any Python. A good example of
this flexibility is shown when we mix data types in this list (not every language sup‐
ports this):

- Core Switch
- 7700
- False
- ['switchport', 'mode', 'access']

In this example, we have another list, again with a length of 4. However, each item is a
totally unique type. The first item, Core Switch, is a string type. The second, 7700,
is interpreted as an integer. The third is interpreted as a boolean. This “interpreta‐
tion” is performed by a YAML interpreter, such as PyYAML. PyYAML, specifically,
does a pretty good job of inferring what kind of data the user is trying to communi‐
cate.

YAML boolean types are actually very flexible, and accept a wide
variety of values that really end up meaning the same thing when
interpreted by a YAML parser.
For instance, you could write False, as in the above example, or
you could write no, off, or even simply n. They all end up meaning
the same thing: a false boolean value. This is a big reason that
YAML is often used as a human interface for many software
projects.

The fourth item in this example is actually itself a list, containing three string items.
We’ve seen our first example of nested data structures in YAML! We’ve also seen an
example of the various ways that some data can be represented. Our “outer” list is
shown on separate lines, with each item prepended by a hyphen. The inner list is
shown on one line, using brackets and commas. These are two ways of writing the
same thing: a list.

Note that sometimes it’s possible to help the parser figure out the
type of data we wish to communicate. For instance, if we wanted
the second item to be recognized as a string instead of an inte
ger, we could enclose it in quotes ("7700"). Another reason to
enclose something in quotes would be if a string contained a char‐
acter that was part of the YAML syntax itself, such as a colon (:).
Refer to the documentation for the specific YAML parser you’re
using for more information on this.

156 | Chapter 5: Data Formats and Data Models

Early on in this chapter we also briefly talked about key-value pairs (or dictionaries,
as they’re called in Python). YAML supports this structure quite simply. Let’s see how
we might represent a dictionary with four key-value pairs:

Juniper: Also a plant
Cisco: 6500
Brocade: True
VMware:
 - esxi
 - vcenter
 - nsx

Here, our keys are shown as strings to the left of the colon, and the corresponding
values for those keys are shown to the right. If we wanted to look up one of these val‐
ues in a Python program for instance, we would reference the corresponding key for
the value we are looking for.

Similar to lists, dictionaries are very flexible with respect to the data types stored as
values. In the above example, we are storing a myriad of data types as the values for
each key-value pair.

It’s also worth mentioning that YAML dictionaries—like lists—can be written in mul‐
tiple ways. From a data representation standpoint, the previous example is identical
to this:

{Juniper: Also a plant, Cisco: 6500, Brocade: True,
VMware: ['esxi', 'vcenter', 'nsx']}

Most parsers will interpret these two YAML documents precisely the same, but the
first is obviously far more readable. That brings us to the crux of this argument: if you
are looking for a more human-readable document, use the more verbose options. If
not, you probably don’t even want to be using YAML in the first place, and you may
want something like JSON or XML. For instance, in an API, readability is nearly
irrelevant—the emphasis is on speed and wide software support.

Finally, you can use a hash sign (#) to indicate a comment. This can be on its own
line, or after existing data.

- Cisco # ocsiC
- Juniper # repinuJ
- Brocade # edacorB
- VMware # erawMV

Anything after the hash sign is ignored by the YAML parser.

As you can see, YAML can be used to provide a friendly way for human beings to
interact with software systems. However, YAML is fairly new as far as data formats go.

YAML | 157

With respect to communication directly between software elements (i.e., no human
interaction), other formats like XML and JSON are much more popular and have
much more mature tooling that is conducive to that purpose.

Working with YAML in Python
Let’s narrow in on a single example to see how exactly a YAML interpreter will read in
the data we’ve written in a YAML document. Let’s reuse some previously seen YAML
to illustrate the various ways we can represent certain data types:

Juniper: Also a plant
Cisco: 6500
Brocade: True
VMware:
 - esxi
 - vcenter
 - nsx

Let’s say this YAML document is saved to our local filesystem as example.yml. Our
objective is to use Python to read this YAML file, parse it, and represent the contained
data as some kind of variable.

Fortunately, the combination of native Python syntax and the aforementioned third-
party YAML parser, PyYAML, makes this very easy:

import yaml
with open("example.yml") as f:
 result = yaml.load(f)
 print(result)
 type(result)

{'Brocade': True, 'Cisco': 6500, 'Juniper': 'Also a plant',
'VMware': ['esxi', 'vcenter', 'nsx']}
<type 'dict'>

The Python snippet used in the previous example uses the yaml
module that is installed with the pyyaml Python package. This is
easily installed using pip as discussed in Chapter 4.

This example shows how easy it is to load a YAML file into a Python dictionary. First,
a context manager is used to open the file for reading (a very common method for
reading any kind of text file in Python), and the load() function in the yaml module
allows us to load this directly into a dictionary called result. The following lines
show that this has been done successfully.

158 | Chapter 5: Data Formats and Data Models

Data Models in YAML
In the introduction to this chapter, we mentioned that data models define the struc‐
ture for how data is stored in a data format, such as YAML, XML, or JSON. Let’s take
a look at one of the YAML examples from the previous section and discuss it in the
context of data models for YAML.

Let’s say we had this data stored in YAML:

Juniper: vSRX
Cisco: Nexus
Brocade: VDX
VMware: NSX

Intuitively, we—as people—can look at this data in YAML and understand that it is a
list of vendors and a network product from that vendor. We’ve mentally created a data
model that says each entry in this YAML document should contain a pair of string
values; the first string (the key) is the vendor name, and the second string (the
value) is the product name. Together, these strings form a dictionary of key-value
pairs.

However, what if we were working with this (implied) data model and supplied this
data instead?

Juniper: vSRX
Cisco: 6500
Brocade: True
VMware:
 - esxi
 - vcenter
 - nsx

This is valid YAML, but it’s invalid data. Even if Brocade had a product named “True,”
most YAML interpreters would (by default) read this data as a boolean value instead
of a string. When our software went to do something with this data, it would expect
a string and get a boolean instead—and that would very likely cause the software to
produce incorrect results or even crash.

Data models are a way to define the structure and content of data stored in a data
format such as YAML. Using a data model, we could explicitly state that the data in
the YAML document must be a key-value list, and that each value must be a string.

Unfortunately, YAML does not provide any built-in mechanism for describing or
enforcing data models. There are third-party tools (one such example is Kwalify).
This is one reason why YAML is very suitable for human-to-machine interaction, but
not necessarily as well suited for machine-to-machine interaction.

YAML | 159

http://www.kuwata-lab.com/kwalify/

YAML is considered a superset of JSON, a format we’ll discuss later
in this chapter. In theory, this means that tools for validating a
JSON schema—the data model for a JSON document—could also
validate a YAML document.

The next data format, XML, offers some features and functionality that make it more
suitable for machine-to-machine interaction. Let’s take a closer look.

XML
As mentioned in the previous section, while YAML is a suitable choice for human-to-
machine interaction, other formats like XML and JSON tend to be favored as the data
representation choice when software elements need to communicate with each other.
In this section, we’re going to talk about XML, and why it is suitable for this use case.

XML enjoys wide support in a variety of tools and languages, such
as the LXML library in Python. In fact, the XML definition itself is
accompanied by a variety of related definitions for things like
schema enforcement, transformations, and advanced queries. As a
result, this section will attempt only to whet your appetite with
respect to XML. You are encouraged to try some of the tools and
formats listed on your own.

Reviewing XML Basics
XML shares some similarities to what we’ve seen with YAML. For instance, it is inher‐
ently hierarchical. We can very easily embed data within a parent construct:

<device>
 <vendor>Cisco</vendor>
 <model>Nexus 7700</model>
 <osver>NXOS 6.1</osver>
</device>

In this example, the <device> element is said to be the root. While spacing and
indentation don’t matter for the validity of XML, we can easily see this, as it is the first
and outermost XML tag in the document. It is also the parent of the elements nested
within it: <vendor>, <model>, and <osver>. These are referred to as the children of the
<device> element, and they are considered siblings of each other. This is very condu‐
cive to storing metadata about network devices, as you can see in this particular
example. In an XML document, there may be multiple instances of the <device> tag
(or multiple <device> elements), perhaps nested within a broader <devices> tag.

You’ll also notice that each child element also contains data within. Where the root
element contained XML children, these tags contain text data. Thinking back to the

160 | Chapter 5: Data Formats and Data Models

http://lxml.de/

section on data types, it is likely these would be represented by string values in a
Python program, for instance.

XML elements can also have attributes:

<device type="datacenter-switch" />

When a piece of information may have some associated metadata, it may not be
appropriate to use a child element, but rather an attribute.

The XML specification has also implemented a namespace system, which helps to
prevent element naming conflicts. Developers can use any name they want when cre‐
ating XML documents. When a piece of software leverages XML, it’s possible that the
software would be given two XML elements with the same name, but those elements
would have different content and purpose.

For instance, an XML document could implement the following:

<device>Palm Pilot</device>

This example uses the <device> element name, but clearly is being used for some
purpose other than representing a network device, and therefore has a totally differ‐
ent meaning than our switch definition a few examples back.

Namespaces can help with this, by defining and leveraging prefixes in the XML docu‐
ment itself, using the xmlns designation:

<root>
 <e:device xmlns:c="http://example.org/enduserdevices">Palm Pilot</e:device>
 <n:device xmlns:m="http://example.org/networkdevices">
 <n:vendor>Cisco</n:vendor>
 <n:model>Nexus 7700</n:model>
 <n:osver>NXOS 6.1</n:osver>
 </n:device>
</root>

There is much more involved with writing and reading a valid XML document. We
recommend you check out the W3Schools documentation on XML.

Using XML Schema Definition (XSD) for Data Models
While YAML has some built-in constructs to help describe the data type within (the
use of hyphens and indentation), XML doesn’t have those same mechanisms. Many
XML parsers don’t make the same assumptions that PyYAML and other YAML pars‐
ers do, for example.

Recall from the beginning of this chapter that we described data formats as allowing
applications—or devices, like network devices—to exchange information in standar‐
dized ways. XML is one of these standardized ways to exchange information. How‐
ever, data formats like XML don’t enforce what kind of data is contained in the

XML | 161

http://www.w3schools.com/xml/

various fields and values. To help ensure the right kind of data is in the right XML
elements, we have XML Schema Definition (XSD).

XML Schema Definition allows us to describe the building blocks of an XML docu‐
ment. Using this language, we’re able to place constraints on where data should (or
should not) be in our XML document. There were previous attempts to provide this
functionality (e.g., DTD), but they were limited in their capabilities. Also, XSD is
actually written in XML, which simplifies things greatly.

One very popular use case for XSD—or really any sort of schema or modeling lan‐
guage—is to generate source code data structures that match the schema. We can
then use that source code to automatically generate XML that is compliant with that
schema, as opposed to writing out the XML by hand.

For a concrete example of how this is done in Python, let’s look once more at our
XML example.

<device>
 <vendor>Cisco</vendor>
 <model>Nexus 7700</model>
 <osver>NXOS 6.1</osver>
</device>

Our goal is to print this XML to the console. We can do this by first creating an XSD
document, then generating Python code from that document using a third-party tool.
Then, that code can be used to print the XML we need.

Let’s write an XSD schema file that describes the data we intend to write out:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/
XMLSchema">
 <xs:element name="device">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="vendor" type="xs:string"/>
 <xs:element name="model" type="xs:string"/>
 <xs:element name="osver" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

In this schema document, we can see that we are describing that each <device> ele‐
ment can have three children, and that the data in each of these child elements must
be a string. Not shown here but supported in the XSD specification is the ability to
specify that child elements are required; in other words, you could specify that a
<device> element must have a <vendor> child element present.

162 | Chapter 5: Data Formats and Data Models

http://www.w3schools.com/schema/

We can use a Python tool called pyxb to create a Python file that contains class object
representations of this schema:

~$ pyxbgen -u schema.xsd -m schema

This will create schema.py in this directory. So, if we open a Python prompt at this
point, we can import this schema file and work with it. In the below example, we’re
creating an instance of the generated object, setting some properties on it, and then
rendering that into XML using the toxml() function:

import schema
dev = schema.device()
dev.vendor = "Cisco"
dev.model = "Nexus"
dev.osver = "6.1"
dev.toxml("utf-8")
'<?xml version="1.0" encoding="utf-8"?><device><vendor>Cisco</vendor><model>Nexus
</model><osver>6.1</osver></device>'

This is just one way of doing this; there are other third-party libraries that allow for
code generation from XSD files. Also take a look at generateDS, located here: https://
pypi.python.org/pypi/generateDS/.

Some RESTful APIs (see Chapter 7) use XML to encode data
between software endpoints. Using XSD allows the developer to
generate compliant XML much more accurately, and with fewer
steps. So, if you come across a RESTful API on your network
device, ask your vendor to provide schema documentation—it will
save you some time.

There is much more information about XSD located on the W3Schools site at https://
www.w3.org/standards/xml/schema.

Transforming XML with XSLT
Given that the majority of physical network devices still primarily use a text-based,
human-oriented mechanism for configuration, you might have to familiarize yourself
with some kind of template format. There are a myriad of them out there, and tem‐
plates in general are very useful for performing safe and effective network automa‐
tion.

The next chapter in this book, Chapter 6, goes into detail on templating languages,
especially Jinja. However, since we’re talking about XML, we may as well briefly dis‐
cuss Extensible Stylesheet Language Transformations (XSLT).

XSLT is a language for applying transformations to XML data, primarily to convert
them into XHTML or other XML documents. As with many other languages related

XML | 163

https://pypi.python.org/pypi/generateDS/
https://pypi.python.org/pypi/generateDS/
https://www.w3.org/standards/xml/schema
https://www.w3.org/standards/xml/schema

to XML, XSLT is defined on the W3Schools site, and more information is located
here at http://www.w3schools.com/xsl/.

Let’s look at a practical example of how to populate an XSLT template with meaning‐
ful data so that a resulting document can be achieved. As with our previous examples,
we’ll leverage some Python to make this happen.

The first thing we need is some raw data to populate our template. This XML docu‐
ment will suffice:

<?xml version="1.0" encoding="UTF-8"?>
<authors>
 <author>
 <firstName>Jason</firstName>
 <lastName>Edelman</lastName>
 </author>
 <author>
 <firstName>Scott</firstName>
 <lastName>Lowe</lastName>
 </author>
 <author>
 <firstName>Matt</firstName>
 <lastName>Oswalt</lastName>
 </author>
</authors>

This amounts to a list of authors, each with <firstName> and <lastName> elements.
The goal is to use this data to generate an HTML table that displays these authors, via
an XSLT document.

An XSLT template to perform this task might look like this:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output indent="yes"/>
<xsl:template match="/">
 <html>
 <body>
 <h2>Authors</h2>
 <table border="1">
 <tr bgcolor="#9acd32">
 <th style="text-align:left">First Name</th>
 <th style="text-align:left">Last Name</th>
 </tr>
 <xsl:for-each select="authors/author">
 <tr>
 <td><xsl:value-of select="firstName"/></td>
 <td><xsl:value-of select="lastName"/></td>
 </tr>
 </xsl:for-each>
 </table>

164 | Chapter 5: Data Formats and Data Models

http://www.w3schools.com/xsl/

 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

A few notes on the above XSLT document:

• First, you’ll notice that there is a basic for-each construct embedded in what
otherwise looks like valid HTML. This is a very standard practice in template
language—the static text remains static, and little bits of logic are placed where
needed. You’ll see more of this in Chapter 6.

• Second, it’s also worth pointing out that this for-each statement uses a “coordi‐
nate” argument (listed as "authors/author") to state exactly which part of our
XML document contains the data we wish to use. This is called XPath, and it is a
syntax used within XML documents and tools to specify a location within an
XML tree.

• Finally, we use the value-of statement to dynamically insert (like a variable in a
Python program) a value as text from our XML data.

Assuming our XSLT template is saved as template.xsl, and our data file as
xmldata.xml, we can return to our trusty Python interpreter to combine these two
pieces and come up with the resulting HTML output.

from lxml import etree
xslRoot = etree.fromstring(open("template.xsl").read())
transform = etree.XSLT(xslRoot)
xmlRoot = etree.fromstring(open("xmldata.xml").read())
transRoot = transform(xmlRoot)
print(etree.tostring(transRoot))

<html><body><h2>Authors</h2><table border="1"><tr bgcolor="#9acd32">
<th style="text-align:left">First Name</th><th style="text-align:left">Last Name
</th></tr>
<tr><td>Jason</td><td>Edelman</td></tr>
<tr><td>Scott</td><td>Lowe</td></tr>
<tr><td>Matt</td><td>Oswalt</td></tr></table></body></html>

This produces a valid HTML table for us, seen in Figure 5-1.

Figure 5-1. HTML table produced by XSLT

XML | 165

XSLT also provides some additional logic statements:

• <if>—only output the given element(s) if a certain condition is met
• <sort>—sorting elements before writing them as output
• <choose>—a more advanced version of the if statement (allows “else if ” or “else”

style of logic)

It’s possible for us to take this example even further, and use this concept to create a
network configuration template, using configuration data defined in XML, as shown
in Examples 5-1 and 5-2:

Example 5-1. XML interface data

<?xml version="1.0" encoding="UTF-8"?>
<interfaces>
 <interface>
 <name>GigabitEthernet0/0</name>
 <ipv4addr>192.168.0.1 255.255.255.0</ipv4addr>
 </interface>
 <interface>
 <name>GigabitEthernet0/1</name>
 <ipv4addr>172.16.31.1 255.255.255.0</ipv4addr>
 </interface>
 <interface>
 <name>GigabitEthernet0/2</name>
 <ipv4addr>10.3.2.1 255.255.254.0</ipv4addr>
 </interface>
</interfaces>

Example 5-2. XSLT template for router config

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.example.org/routerconfig">

<xsl:template match="/">
 <xsl:for-each select="interfaces/interface">
 interface <xsl:value-of select="name"/>

 ip address <xsl:value-of select="ipv4addr"/>

 </xsl:for-each>
</xsl:template>
</xsl:stylesheet>

With the XML and XSLT documents shown in Examples 5-1 and 5-2, we can get a
rudimentary router configuration in the same way we generated an HTML page:

interface GigabitEthernet0/0
ip address 192.168.0.1 255.255.255.0
interface GigabitEthernet0/1

166 | Chapter 5: Data Formats and Data Models

ip address 172.16.31.1 255.255.255.0
interface GigabitEthernet0/2
ip address 10.3.2.1 255.255.254.0

As you can see, it’s possible to produce a network configuration by using XSLT. How‐
ever, it is admittedly a bit cumbersome. It’s likely that you will find Jinja a much more
useful templating language for creating network configurations, as it has a lot of fea‐
tures that are conducive to network automation. Jinja is covered in Chapter 6.

Searching XML Using XQuery
In the previous section, we alluded to using XPath in our XSLT documents to very
particularly locate specific nodes in our XML document. However, if we needed to
perform a more advanced lookup, we would need a bit more than a simple coordinate
system.

XQuery leverages tools like XPath to find and extract data from an XML document.
For instance, if you are accessing the REST API of a router or switch using Python,
you may have to write a bit of extra code to get to the exact portion of the XML out‐
put that you wish to use. Alternatively, you can use XQuery immediately upon receiv‐
ing this data to present only the data relevant to your Python program.

XQuery is a powerful tool, almost like a programming language unto itself. For more
info on XQuery, check out the W3School specification.

JSON
So far in this chapter, we’ve discussed YAML, a tool well suited for human interaction
and easy import into common programming language data structures. We’ve also dis‐
cussed XML, which isn’t the most attractive format to look at, but has a rich ecosys‐
tem of tools and wide software support. In this section, we’ll discuss JSON, which
combines a few of these strengths into one data format.

Reviewing JSON Basics
JSON was invented at a time when web developers were in need of a lightweight com‐
munication mechanism between web servers and applets embedded within web
pages. XML was around at this time, of course, but it proved a bit too bloated to meet
the needs of the ever-demanding internet.

You may have also noticed that YAML and XML differ in a big way with respect to
how these two data formats map to the data model of most programming languages
like Python. With libraries like PyYAML, importing a YAML document into source
code is nearly effortless. However, with XML there are usually a few more steps
needed, depending on what you want to do.

JSON | 167

https://www.w3.org/standards/xml/query.html

For these and other reasons, JavaScript Object Notation (JSON) burst onto the scene
in the early 2000s. It aimed to be a lightweight version of XML, more suited to the
data models found within popular programming languages. It’s also considered by
many to be more human-readable, although that is a secondary concern for data
formats.

Note that JSON is widely considered to be a subset of YAML. In
fact, many popular YAML parsers can also parse JSON data as if it
were YAML. However, some of the details of this relationship are a
bit more complicated. See the YAML specification section for more
information.

In the previous section, we showed an example of how three authors may be repre‐
sented in an XML document:

<authors>
 <author>
 <firstName>Jason</firstName>
 <lastName>Edelman</lastName>
 </author>
 <author>
 <firstName>Scott</firstName>
 <lastName>Lowe</lastName>
 </author>
 <author>
 <firstName>Matt</firstName>
 <lastName>Oswalt</lastName>
 </author>
</authors>

To illustrate the difference between JSON and XML, specifically with respect to
JSON’s more lightweight nature, here is an equivalent data model provided in JSON:

{
 "authors":[
 {
 "firstName": "Jason",
 "lastName": "Edelman"
 },
 {
 "firstName": "Scott",
 "lastName": "Lowe"
 },
 {
 "firstName": "Matt",
 "lastName": "Oswalt"
 }
]
}

168 | Chapter 5: Data Formats and Data Models

http://yaml.org/spec/1.2/spec.html#id2759572

This is significantly simpler than its XML counterpart. No wonder JSON was more
attractive than XML in the early 2000s, when “Web 2.0” was just getting started!

Let’s look specifically at some of the features. You’ll notice that the whole thing is
wrapped in curly braces {}. This is very common, and it indicates that JSON objects
are contained inside. You can think of “objects” as key-value pairs, or dictionaries as
we discussed in the section on YAML. JSON objects always use string values when
describing the keys in these constructs.

In this case, our key is "authors", and the value for that key is a JSON list. This is also
equivalent to the list format we discussed in YAML—an ordered list of zero or more
values. This is indicated by the square brackets [].

Contained within this list are three objects (separated by commas and a newline),
each with two key-value pairs. The first pair describes the author’s first name (key of
"firstName") and the second, the author’s last name (key of "lastName").

We discussed the basics of data types at the beginning of this chapter, but let’s take an
abbreviated look at the supported data types in JSON. You’ll find they match our
experience from YAML quite nicely:

Number
A signed decimal number.

String
A collection of characters, such as a word or a sentence.

Boolean
True or False.

Array
An ordered list of values; items do not have to be the same type (enclosed in
square brackets, []).

Object
An unordered collection of key-value pairs; keys must be strings (enclosed in
curly braces, {}).

Null
Empty value. Uses the word null.

Let’s work with JSON in Python and see what we can do with it. This will be quite
similar to what we reviewed when using Python dictionaries in Chapter 4.

JSON | 169

Working with JSON in Python
JSON enjoys wide support across a myriad of languages. In fact, you will often be able
to simply import a JSON data structure into constructs of a given language, simply
with a one-line command. Let’s take a look at some examples.

Our JSON data is stored in a simple text file:

{
 "hostname": "CORESW01",
 "vendor": "Cisco",
 "isAlive": true,
 "uptime": 123456,
 "users": {
 "admin": 15,
 "storage": 10,
 },
 "vlans": [
 {
 "vlan_name": "VLAN30",
 "vlan_id": 30
 },
 {
 "vlan_name": "VLAN20",
 "vlan_id": 20
 }
]
}

Our goal is to import the data found within this file into the constructs used by our
language of choice.

First, let’s use Python. Python has tools for working with JSON built right in to its
standard library, aptly called the json package. In this example, we define a JSON
data structure (borrowed from the Wikipedia entry on JSON) within the Python pro‐
gram itself, but this could easily also be retrieved from a file or a REST API. As you
can see, importing this JSON is fairly straightforward (see the inline comments):

Python contains very useful tools for working with JSON, and they're
part of the standard library, meaning they're built into Python itself.
import json

We can load our JSON file into a variable called "data"
with open("json-example.json") as f:
 data = f.read()

json_dict is a dictionary, and json.loads takes care of
placing our JSON data into it.
json_dict = json.loads(data)

Printing information about the resulting Python data structure
print("The JSON document is loaded as type {0}\n".format(type(json_dict)))

170 | Chapter 5: Data Formats and Data Models

print("Now printing each item in this document and the type it contains")
for k, v in json_dict.items():
 print(
 "-- The key {0} contains a {1} value.".format(str(k), str(type(v)))
)

Those last few lines are there so we can see exactly how Python views this data once
imported. The output that results from running this Python program is as follows:

~ $ python json-example.py

The JSON document is loaded as type <type 'dict'>

Now printing each item in this document and the type it contains
-- The key uptime contains a <type 'int'> value.
-- The key isAlive contains a <type 'bool'> value.
-- The key users contains a <type 'dict'> value.
-- The key hostname contains a <type 'unicode'> value.
-- The key vendor contains a <type 'unicode'> value.
-- The key vlans contains a <type 'list'> value.

You might be seeing the unicode data type for the first time. It’s
probably best to just think of this as roughly equivalent to the str
(string) type, discussed in Chapter 4.
In Python, the str type is actually just a sequence of bytes, whereas
unicode specifies an actual encoding.

Using JSON Schema for Data Models
In the YAML section, we explained the idea behind data models, and mentioned that
YAML doesn’t have any built-in mechanisms for data models. In the XML section, we
talked about XSD, which allows us to enforce a schema (or data model) within
XML—that is, we can be very particular with the type of data contained within an
XML document. What about JSON?

JSON also has a mechanism for schema enforcement, aptly named JSON Schema.
This specification is defined at http://json-schema.org/documentation.html, but has
also been submitted as an internet draft.

A Python implementation of JSON Schema exists, and implementations in other lan‐
guages can also be found.

Before we wrap up this chapter, we want to discuss a way of describing data models
that is independent of a particular data format. XSD works only for XML, and JSON
Schema works only for JSON. Is there a way to describe a data model that can be used
with either XML or JSON? There is indeed, and the next section discusses this solu‐
tion: YANG.

JSON | 171

http://json-schema.org/documentation.html
https://pypi.python.org/pypi/jsonschema

Data Models Using YANG
Throughout this chapter, we’ve been discussing data models in the context of specific
data formats—for example, how to enforce a data model in XML or JSON. In this
section, we’d like to take a step back and look at data models more generically, then
conclude with a discussion of using YANG to describe networking-specific data
models.

To help solidify the concepts of data models, let’s quickly review some key facts about
data models:

• Data models describe a constrained set of data in the form of a schema language
(like XSD, for example).

• Data models use well-defined types and parameters to have a structured and
standard representation of data.

• Data models do not transport data, and data models don’t care about the under‐
lying transport protocols in use (for example, you could use JSON over HTTP, or
you could use XML over HTTP).

Now that you understand what data models are, we’re going to shift focus to YANG
specifically.

YANG Overview
YANG is a data modeling language defined in RFC 6020. It is analogous to what we
mentioned with respect to XSD for generic XML data, but YANG is specifically
focused on network constructs. YANG is used to model configuration and opera‐
tional state data and also used to model general RPC data. General RPC data and
tasks allow us to model generic tasks, such as upgrading a device.

YANG provides the ability to define syntax and semantics to more easily define data
using built-in and customizable types. You can enforce semantics such that VLAN
IDs must be between 1 and 4094. You can enforce the operational state of an interface
in that it must be “up” or “down.” The model defines these types of constructs and
ultimately becomes the source of truth on what’s permitted on a network device.

There are various types of YANG models. Some of these YANG models were created
by end users; others were created by vendors or open working groups.

• There are industry standard models from groups like the IETF and the Open‐
Config Working Group. These models are vendor and platform neutral. Each
model produced by an open standards group is meant to provide a base set of
options for a given feature.

172 | Chapter 5: Data Formats and Data Models

• Of course, there also are vendor-specific models. As you know, almost every ven‐
dor has their own solution for multichassis link aggregation (VSS, VPC, MC-
LAG, Virtual Chassis). This means each vendor would need to have their own
model if they adopt a model-driven architecture.

• Per vendor, you may even see differences in a given feature. Thus, there are also
platform-specific models. Maybe OSPF operates differently on platform X versus
platform Y from the same vendor. This would require a different model.

Taking a Deeper Dive into YANG
There is only so much that can be conveyed with words. If seeing a picture is worth a
thousand words, then seeing how YANG maps to XML, JSON, and CLI must also be
worth a thousand words. We’re going to dive deep into YANG statements to make the
point on how YANG translates into data that two systems use to communicate.

Note that we are not showing how to create a custom YANG
model, as that is out of scope for this book. But we are highlighting
a few YANG statements to help you better understand YANG.

The YANG language includes the YANG leaf statement, which allows you to define
an object that is a single instance, has a single value, and has no children.

leaf hostname {
 type string;
 mandatory true;
 config true;
 description "Hostname for the network device";
}

You can extrapolate from the YANG leaf statement what this code is doing. It’s
defining a construct that will hold the value of the hostname on a network device. It is
called hostname, it must be a string, it is required, but it is also configurable.

You can also define operational data with YANG leaf statements, setting config to
be false.

A YANG leaf is represented in XML and JSON as a single element or key-value pair.

<hostname>NYC-R1</hostname>

{
 "hostname": "NYC-R1"
}

Data Models Using YANG | 173

Another YANG statement is the leaf-list statement. This is just like the leaf state‐
ment, but there can be multiple instances. Since it’s a list object, there is a parameter
called ordered-by that can be set to user or system based on whether ordering is
important—that is, ACLs versus SNMP community strings versus name servers.

leaf-list name-server {
 type string;
 ordered-by user;
 description “List of DNS servers to query";
}

A YANG leaf-list statement is represented in XML and JSON as a single element,
such as the following (first in XML, then in JSON):

<name-server>8.8.8.8</name-server>
<name-server>4.4.4.4</name-server>

{
 "name-server": [
 "8.8.8.8",
 "4.4.4.4"
]
}

The next YANG statement we’ll look at is the YANG list. It allows you to create a list
of leafs or leaf-lists. Here is an example of a YANG list definition.

list vlan {
 key "id";
 leaf id {
 type int;
 range 1..4094;
 }
 leaf name {
 type string;
 }
}

More importantly for our context is to understand how this is modeled in XML and
JSON. Here are examples of how XML and JSON, respectively, would represent this
YANG model.

<vlan>
 <id>100</id>
 <name>web_vlan></name>
</vlan>
<vlan>
 <id>200</id>
 <name>app_vlan></name>
</vlan>

{
 "vlan": [

174 | Chapter 5: Data Formats and Data Models

 {
 "id": "100",
 "name": "web_vlan"
 },
 {
 "id": "200",
 "name": "app_vlan"
 }
]
}

It should be starting to make more sense how data is modeled in YANG and how it’s
sent over the wire as encoded XML or JSON.

One final YANG statement is the YANG container. Containers map directly to hier‐
archy in XML and JSON. In our previous example, we had a list of VLANs, but no
outer construct or tag element in XML that contained all VLANs. We are going to
add a container called vlans to depict this.

container vlans {
 list vlan {
 key "id";
 leaf id {
 type int;
 range 1..4094;
 }
 leaf name {
 type string;
 }
 }
}

The only difference from our last example was adding in the first container state‐
ment. Here are the final XML and JSON representations of that complete object:

<vlans>
 <vlan>
 <id>100</id>
 <name>web_vlan></name>
 </vlan>
 <vlan>
 <id>200</id>
 <name>app_vlan></name>
 </vlan>
</vlans>

{
 "vlans": {
 "vlan": [
 {
 "id": "100",
 "name": "web_vlan"
 },

Data Models Using YANG | 175

 {
 "id": "200",
 "name": "app_vlan"
 }
]
 }
}

The point of this section was not just to provide a brief introduction to a few different
YANG statements, but to really show that YANG is simply a modeling language. It’s a
way to enforce constraints on data inputs, and these inputs when being used in an
API are represented as XML and JSON. It could be any other data format as well. The
device itself then performs checks to see if data adheres to the underlying model
being used.

A modeling language like YANG allows you to define semantics and constraints for a
given data set. How does a network device ensure VLANs are between 1 and 4094?
How does a network device ensure the administrative state is either shutdown or no
shutdown? You answer these types of questions by having proper definitions of data.
These definitions are defined in a schema document or a specific modeling language.
One option for this is to use XML Schema Definitions, which we reviewed earlier in
this chapter. However, XSDs are generic. While they are a good way to define a
schema for XML documents, XSDs are not network smart, and as a result the indus‐
try is seeing a shift with how schemas and models are written. YANG is a modeling
language specifically built for networking; it understands networking constructs. As
an example, it has built-in types to validate whether an input is a valid IPv4 address,
BGP AS, or MAC address. YANG is also neutral to the encoding type. A model can
be written in YANG and then be represented as either JSON or XML. This is what
RESTCONF offers. RESTCONF is a REST API that uses XML- or JSON-encoded
data that happens to represent data defined by YANG models. We’ll discuss REST‐
CONF in more detail in Chapter 7.

Summary
In this chapter, we’ve discussed a few key concepts. Data formats such as YAML,
XML, and JSON are used to format (or encode) data for exchange between applica‐
tions, systems, or devices. These data formats specify how data is formatted (or enco‐
ded), but don’t necessarily define the structure of the data. Data models define the
structure of data formatted (or encoded) in a data format. Sometimes these data mod‐
els are format-specific; for example, XSD is specific to XML, and JSON Schema is
specific to JSON. Finally, YANG provides a format-independent way to describe a
data model that can be represented in XML or JSON.

In the next chapter, we’re going to talk in more depth about templates, and how they
can be used for network automation.

176 | Chapter 5: Data Formats and Data Models

CHAPTER 6

Network Configuration Templates

Much of a network engineer’s job involves the CLI, and much of this work involves
syntax-specific keywords and phrases that are often repeated several times, depend‐
ing on the change. This not only becomes inefficient over time, but is also very error-
prone. It may be obvious how to configure a BGP neighbor relationship on Cisco
IOS, for instance, but what’s not obvious at times are the smaller, “gotcha” configura‐
tions, like remembering to append the right BGP community configuration. Often in
networking, there are many different ways to do the same thing—and this may be
totally dependent on your organization.

One of the key benefits of network automation is consistency—being able to predict‐
ably and repeatably make changes to production network infrastructure and achieve
a desired result. One of the best ways to accomplish this is by creating templates for
all automated interaction with the network.

Creating templates for your network configurations means that you can standardize
those configurations per the standard for your organization, while also allowing net‐
work administrators and the consumers (Help Desk, NOC, IT Engineers) of the net‐
work to dynamically fill in some values when needed. You get the benefits of speed,
requiring much less information to make a change, but also consistency, because the
template contains all of the necessary configuration commands that your policies
dictate.

We’ll start this chapter with an introduction to template tools in general, and then
look at some specific implementations, and how we can leverage these tools to create
network configuration templates.

177

The Rise of Modern Template Languages
The reality is that template technologies have been around for a very, very long time.
Just a basic search for “template languages” shows a multitude of these, most often
several options just for every related programming language.

You may also notice that the vast majority of these languages have deep applications
in the web development industry. This is because much of the web is based on tem‐
plates! Instead of writing HTML files for every single user profile page a social media
site may have, the developers will write one, and insert dynamic values into that tem‐
plate, depending on the data being presented by the backend.

In short, template languages have a wide variety of relevant use cases. There are the
obvious roots in web development, and of course we’ll be talking about using them
for network configuration in this chapter, but they have applications in just about any
text-based medium, including documentation and reports.

So it’s important to remember that there are three pieces to using templates. First, the
templates have to be written. You also have to remember that you need some form of
data, that’ll ultimately get rendered into the template, to produce something mean‐
ingful like a network configuration. This leads us to the third piece—something has
to drive data into the template. This could be an automation tool like Ansible, which
we cover in Chapter 9, or you could be doing it yourself with a language like Python,
which we show later on in this chapter. Templates are not very useful on their own.

Most template languages aren’t full-on “programming languages”
in the purest sense—most often, a template language will be closely
tied to another language that will drive data into the templates that
you’ve built. As a result, there will be several similarities between
each template language and its “parent” language. A good example
is one that we’ll discuss in this chapter heavily: Jinja is a template
language that came out of a very Python-centric community, so
there are some very distinct similarities there.
So if you’re wondering which template language to use, it’s proba‐
bly best to decide which “real” language you’re aligned with (either
through writing your own code, or by using an existing tool like
Ansible), and go from there.

As mentioned previously in this chapter, template languages aren’t necessarily a new
concept, but we are seeing new ideas and even entire languages make it into the eco‐
system all the time. If you look at the history of template languages, a very large num‐
ber of them were created to serve as a crucial part of the web: dynamic content. This
is easily taken for granted these days, but back when the web was just getting started,

178 | Chapter 6: Network Configuration Templates

and most websites were built from fairly static content, dynamically loading pieces of
data into a page was a big step forward for the web.

Using Templates for Web Development
Django is a Python-based web framework, and is a popular modern example of this
concept. Django has a template language that allows the web developer to create web
content in much the same way, but also offers a way to make portions of the page
dynamic. Using Django’s template language, the developer can designate portions of
an otherwise static page to load dynamic data when the user requests a page.

Here’s a very simple example—note that this looks very much like an HTML docu‐
ment, but with certain portions replaced with variables (indicated with the {{ }} nota‐
tion):

<h1>{{ title }}</h1>

{% for article in article_list %}
<h2>

 {{ article.headline|upper }}

</h2>
{% endfor %}

This template can be rendered by Django when a user loads the page. At this time, the
Django framework will populate the title and article_list variables, and the user
will receive a page that’s been fully populated with real data. The developer doesn’t
have to write a static HTML page for every possible thing the user wants to retrieve—
this is managed by logic on the backend of this web application.

The Django templating language is very similar (but not identical)
to the templating language Jinja, which we’ll be discussing in depth
in this chapter. Don’t worry about the syntax; we’ll get into that. For
now, just focus on the concepts and the value that templates pro‐
vide: consistency.

There are a multitude of other template languages that we won’t have time to get into
in this chapter, but you should be aware that they exist. Python alone has several
options, such as the aforementioned Django and Jinja languages, but also Mako and
Genshi. Other languages like Go and Ruby have built-in template systems. Again, the
thing to remember is that the important work of populating a template with data is
the role of one of these languages, like Python or Go, so this is the number-one factor
in deciding which template language to use. More often than not, it’s best to go with a
template system built for that language.

The Rise of Modern Template Languages | 179

https://www.djangoproject.com/
http://jinja.pocoo.org/docs/dev/
http://www.makotemplates.org/
https://genshi.edgewall.org/
https://golang.org/pkg/text/template/
http://ruby-doc.org/stdlib-2.3.0/libdoc/erb/rdoc/ERB.html

Expanding On the Use of Templates
Finally, it’s important to note that the concepts of templating, especially those dis‐
cussed in this chapter, are not really specific to any single use case, and can be applied
to just about any text-based medium. We’ll go into detail on using templates for net‐
work configurations in this chapter, but as we just explored, templates can also be
used for building dynamic web pages. In fact, we can use templates for something
even more generic, like a basic report. Perhaps you’re just pulling data from a net‐
work device and simply wish to be able to produce a nice report on this data and
email it to some coworkers. Example 6-1 shows an example Jinja template for pro‐
ducing a report containing a list of VLANs.

Example 6-1. Basic report with Jinja

| VLAN ID | NAME | STATUS |
| ------- |------| -------|
{% for vlan in vlans %}
| {{ vlan.get('vlan_id') }} | {{ vlan.get('name') }} | {{ vlan.get('status') }} |
{% endfor %}

Because we’re really just working with text, we can build a template for it. Keep this in
mind as you get into the details of template technologies like Jinja—templates have
applications well beyond the narrow set of use cases we’ll explore in this chapter.

The Value of Templates in Network Automation
At this point you might be wondering why we’re talking about web development and
how that could possibly help us on our network automation journey. It’s very impor‐
tant to understand the value behind templates in general, whether they’re used for the
web or not. Templates get us consistency—instead of hand-crafting text files full of
HTML tags or entering CLI commands, with templates we can declare which parts of
our files need to remain static, and which parts should be dynamic.

Every network engineer that’s worked on a network long enough has had to prepare a
configuration file for a new piece of network gear, like a switch or router. Maybe this
has to be done for many switches—perhaps for a new data center build. In order to
make the best use of time, it’s useful to build these configurations ahead of time, so
that when the switch is physically racked and cabled, the network engineer needs only
to paste the configuration into a terminal.

Let’s say you’re in charge of a rollout like this—it’s your job to come up with configu‐
rations for all switches going into the new data center being built for your organiza‐
tion. Obviously each switch will need its own unique configuration file, but there’s
also a large portion of the configuration that will be similar between devices. For
instance, you might have the same SNMP community strings, the same admin pass‐

180 | Chapter 6: Network Configuration Templates

word, and the same VLAN configuration (at least for similar device types like TOR
switches). Then again, there are also probably some parts of the configuration that
are unique to a single device; things like management IPs and hostnames are a simple
example, but what if it’s a Layer 3 switch? You’ll need a unique subnet configuration
for that device, and probably some fairly unique routing protocol configurations,
depending on where that device exists in the topology. Deciding what parameters go
to which switches can be fairly time-consuming, and very likely to result in errors.
Templates allow us to standardize on a common base configuration, and help ensure
that the right values get filled in for each device. Separating the template from the
data that populates it is one of the best ways to simplify this process.

The primary value of templates for network engineers is achieving configuration con‐
sistency. Appropriately implemented, templates can actually reduce the likelihood
that a human error can cause issues while making changes to production network
configurations. There seems to be a lot of fear that making complex changes in an
automated way in production is a bad idea, but if you follow good discipline and
properly test your templates, you really can improve network operations. Templates
don’t automatically remove human error, but when used properly, they can greatly
reduce it, resulting in fewer outages.

Using templates to aid the rollout of new network devices is a simple example of the
value of templates, since it has the added benefit of saving a lot of time for the net‐
work engineer. However, don’t think that this is the only place where templates can be
used. In many network automation projects, templates are not even used by humans,
but by automation software like Ansible to push configuration changes to network
devices—live, in production.

We’ll show concrete examples of using Jinja templates through the remainder of this
chapter.

Jinja for Network Configuration Templates
The rest of this chapter will focus on one template language in particular—Jinja. We’ll
start with some basics, and ramp up to more advanced topics, all while showing how
these concepts can be used to generate consistent network device configurations.

Why Jinja?
We’ve mentioned Jinja in the introduction to this chapter, but we also mentioned sev‐
eral other template languages. Why are we only looking at Jinja for network template
automation? In addition to keeping this chapter from growing out of control, we
chose Jinja because it is closely aligned with many of the other technologies men‐
tioned in this book, including Python (Chapter 4). In fact, Jinja is a template language
built for Python. Jinja is also aligned and used heavily by Ansible and Salt, two auto‐

Jinja for Network Configuration Templates | 181

mation tools written in Python, both of which we cover in Chapter 9. So, if you’re
familiar with Python by now, Jinja will look and feel very similar.

Could you build network templates with other template languages? Sure. However, if
you’re new to template languages, and especially if you’re following this book’s advice
and picking up some Python skills, you will find Jinja a very powerful tool on your
network automation journey.

Dynamically Inserting Data into a Basic Jinja Template
Let’s start with a basic example and write a template to configure a single switch inter‐
face. Here’s an actual switchport (using industry-standard CLI syntax) configuration
that we want to convert to a template (so we can configure the hundreds of other
switchports in our environment):

interface GigabitEthernet0/1
 description Server Port
 switchport access vlan 10
 switchport mode access

This kind of snippet is fairly easy to write a template for—we need only decide which
parts of this configuration need to stay the same, and which need to be dynamic. In
this next example, we’ve removed the specific interface name (“GigabitEthernet0/1”)
and converted it into a variable that we’ll populate when we render the template into
an actual configuration:

interface {{ interface_name }}
 description Server Port
 switchport access vlan 10
 switchport mode access

This means we can pass in the variable interface_name when rendering this tem‐
plate, and that spot will get filled in with the value associated with interface_name.

However, the previous example assumes that each network interface has an identical
configuration. What if we wanted a different VLAN, or a different interface descrip‐
tion on some of the interfaces? In that case, we should also convert some of the other
parts of the configuration into their own variables:

interface {{ interface_name }}
 description {{ interface_description }}
 switchport access vlan {{ interface_vlan }}
 switchport mode access

These are simple examples, but they’re not very namespace-friendly.

It’s common to leverage concepts like classes and dictionaries in a language like
Python when rendering a template. This allows us to store multiple instances of data
like this, that we can loop over and write multiple times in our resulting configura‐
tion. We’ll look at loops in a future section, but for now, here’s that same template re-

182 | Chapter 6: Network Configuration Templates

written, and saved as template.j2, to take advantage of something like a Python class
or dictionary:

interface {{ interface.name }}
 description {{ interface.description }}
 switchport access vlan {{ interface.vlan }}
 switchport mode access

This was a minor change, but an important one. The object interface is passed to
the template as a whole. If interface was a Python class, then name, description,
and vlan are all properties of that class. The same is true if interface was a dictio‐
nary—the only difference is that they are all keys of this dictionary, and not proper‐
ties, so the rendering engine would automatically place the corresponding values for
those keys when rendering this template.

Rendering a Jinja Template File in Python
In the previous example, we looked at a basic Jinja template for a switchport configu‐
ration, but we didn’t explore how that template is actually rendered, and what drove
data into our template, to result in the final product. We’ll explore that now by using
Python and the Jinja2 library.

While the templating language itself is known as “Jinja,” the Python
library for working with Jinja is called “Jinja2.”

Let’s use the same template snippet from the previous example, and use Python to
populate those fields with real data. We’ll use the Python interpreter for this example
so you can walk through on your own machine.

The Jinja2 rendering engine in Python is not part of the standard
library, so it is not installed by default. However, Jinja2 can be
installed with pip, through the command pip install jinja2,
the same as any other Python package found on PyPI, as we cov‐
ered in Chapter 4.

Once the Jinja2 library is installed, we should first import the required objects that
we’ll need in order to render our templates.

>>> from jinja2 import Environment, FileSystemLoader

Next, we need to set up the environment, so the renderer knows where to find the
template.

Jinja for Network Configuration Templates | 183

>>> ENV = Environment(loader=FileSystemLoader('.'))
>>> template = ENV.get_template("template.j2")

The first line sets up the Environment object, specifying a single dot (.) to indicate
that the templates exist in the same directory in which we started the Python inter‐
preter. The second line derives a template object from that environment by statically
specifying the template name, template.j2. Again, the contents of this template file are
identical to what we previously saved as template.j2.

Now that this is done, we need our data. For this example, we’ll use a Python dictio‐
nary. Note that the keys for this dictionary correspond to the field names referenced
in our template.

>>> interface_dict = {
... "name": "GigabitEthernet0/1",
... "description": "Server Port",
... "vlan": 10,
... "uplink": False
... }

It’s important to remember that very rarely will you need to man‐
ually create data structures in Python to populate a template with
data. This is being done for illustrative purposes in this book, but
you should always write your software to pull from other sources,
rather than embed data into your software.

We now have everything we need to render our template. We’ll call the render()
function of our template object to pass data into the template engine, and use the
print() function to output our rendered output to the screen.

>>> print(template.render(interface=interface_dict))
interface GigabitEthernet0/1
 description Server Port
 switchport access vlan 10
 switchport mode access

Note we passed an argument to the render() function of our template object. Pay
close attention to the name—the keyword argument interface corresponds to the
references to interface within our Jinja template. This is how we get our interface
dictionary into the template engine—when the template engine sees references to
interface or its keys, it will use the dictionary passed here to satisfy that reference.

As you can see, the rendered output is as we expected. However, we don’t have to use
a Python dictionary. It’s not uncommon to drive data from other Python libraries into
a Jinja template, and this may take the form of a Python class.

The next example shows a Python program that’s similar to what we just went
through, but instead of using a dictionary, we use a Python class.

184 | Chapter 6: Network Configuration Templates

from jinja2 import Environment, FileSystemLoader

ENV = Environment(loader=FileSystemLoader('.'))

template = ENV.get_template("template.j2")

class NetworkInterface(object):

 def __init__(self, name, description, vlan, uplink=False):
 self.name = name
 self.description = description
 self.vlan = vlan
 self.uplink = uplink

interface_obj = NetworkInterface("GigabitEthernet0/1", "Server Port", 10)

print(template.render(interface=interface_obj))

The output from this program is identical to the previous output. Therefore, there
really isn’t one “right” way to populate a Jinja template with data—it depends on
where that data comes from. Fortunately, the Python Jinja2 library allows for some
flexibility here.

In this book, we don’t deal with Python classes that much. This is
because there are many other resources out there for learning how
to implement these in your Python code, and often, the APIs that a
network engineer will work with will map nicely to simple struc‐
tures like lists or dictionaries. This book is meant to bridge the gap
between software basics and the tools that exist in the next
industry.
However, there are a lot of benefits to object-oriented program‐
ming and the use of things like classes. Used correctly, object-
oriented code can be more readable, maintainable, and even more
testable. Keep this in mind as you write your code and decide
whether a full-fledged object definition is the way to go, or a simple
dictionary will suffice.

Conditionals and Loops
It’s time to really make our templates work for us. The previous examples are useful
for understanding how to insert dynamic data into a text file, but that’s just part of the
battle of scaling network templates up to properly automate network configuration.

Jinja for Network Configuration Templates | 185

Jinja allows us to embed Python-esque logic into our template files
in order to do things like make decisions or condense duplicate
data into one chunk that is unpacked at render time via a for loop.
While these tools are very powerful, they can also be a slippery
slope.
It’s important to not get too carried away with putting all kinds of
advanced logic into your templates—Jinja has some really useful
features, but it was never meant to be a full-blown programming
language, so it’s best to keep a healthy balance.
Read the Jinja FAQ—specifically the section titled “Isn’t it a terrible
idea to put Logic into Templates?” for some tips.

Using conditional logic to create a switchport configuration
Let’s continue on our example of configuring a single switchport—but in this case, we
want to make a decision about what to render by using a conditional in the template
file itself.

Often, some switchport interfaces will be VLAN trunks, and others will be in “mode
access.” A good example is an access layer switch, where two or more interfaces are
the “uplink” ports and need to be configured to permit all VLANs. Our previous
examples showed an “uplink” boolean property, set to True if the interface was an
uplink, and False if it was just an access port. We can check against this value in our
template using a conditional:

interface {{ interface.name }}
 description {{ interface.description }}
{% if interface.uplink %}
 switchport mode trunk
{% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
{% endif %}

In short, if the uplink property of interface is True, then we want to make this
interface a VLAN trunk. Otherwise, let’s make sure that it’s set up with the appropri‐
ate access mode.

In the previous example, we also see a new syntax—the {% ... %} braces are a special
Jinja tag that indicates some kind of logic. This template is built to configure Gigabit
Ethernet0/1 as a VLAN trunk, and any other interface will be placed in access mode,
in vlan 10.

186 | Chapter 6: Network Configuration Templates

http://jinja.pocoo.org/docs/dev/faq/

Using a loop to create many switchport configurations
We’ve only configured a single interface until this point, so let’s see if we can use Jinja
loops to create configurations for many switchports. For this, we use a for loop that’s
extremely similar to the syntax we would normally have in Python.

{% for n in range(10) %}
interface GigabitEthernet0/{{ n+1 }}
 description {{ interface.description }}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
{% endfor %}

Note that we’re again using the {% ... %} syntax to contain all logic statements. In
this template, we’re calling the range() function to give us a list of integers to iterate
over, and for each iteration, we print the result of “n+1” because range() starts at 0,
and normally, switchports start at 1.

Using a loop and conditionals to create switchport configurations
This gets us an identical configuration for 10 switchports—but what if we wanted a
different configuration for some of them? Take the example we saw when we
explored Jinja conditionals—perhaps the first port is a VLAN trunk. We can combine
what we’ve learned about conditionals and loops to accomplish this:

{% for n in range(10) %}

interface GigabitEthernet0/{{ n+1 }}
 description {{ interface.description }}
{% if n+1 == 1 %}
 switchport mode trunk
{% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
{% endif %}

{% endfor %}

This results in GigabitEthernet0/1 being configured as a VLAN trunk, but GigabitE‐
thernet0/2–10 are in access mode. Here is an example using simulated data for the
interface descriptions:

interface GigabitEthernet0/1
 description TRUNK INTERFACE
 switchport mode trunk
interface GigabitEthernet0/2
 description ACCESS INTERFACE
 switchport mode access
interface GigabitEthernet0/3
 description ACCESS INTERFACE

Jinja for Network Configuration Templates | 187

 switchport mode access
...

Looping over variables in a for loop to generate configurations
We were able to access keys in a dictionary in our Jinja template in the previous
examples, but what if we wanted to actually iterate over things like dictionaries and
lists by using a for loop?

Let’s imagine that we’re passing the following list to our template as interface_list.
Here’s the relevant Python for this:

intlist = [
 "GigabitEthernet0/1",
 "GigabitEthernet0/2",
 "GigabitEthernet0/3"
]
print(template.render(interface_list=intlist))

We would then reference interface_list in our loop so that we could access its
members and generate a switchport configuration for each one. Note that the nested
conditional has also been modified, since our counter variable n no longer exists:

{% for iface in interface_list %}

interface {{ iface }}
{% if iface == "GigabitEthernet0/1" %}
 switchport mode trunk
{% else %}
 switchport access vlan 10
 switchport mode access
{% endif %}

{% endfor %}

We now simply refer to iface to retrieve the current item of that list for every itera‐
tion of the loop.

We can also do the same thing with dictionaries. Again, here’s a relevant Python snip‐
pet for constructing and passing in a dictionary to this Jinja template. We’ll keep it
simple this time, and just pass a set of interface names as keys, with the correspond‐
ing port descriptions as values:

intdict = {
 "GigabitEthernet0/1": "Server port number one",
 "GigabitEthernet0/2": "Server port number two",
 "GigabitEthernet0/3": "Server port number three"
}
print(template.render(interface_dict=intdict))

188 | Chapter 6: Network Configuration Templates

We can modify our loop to iterate over this dictionary in much the same way we’d do
in native Python:

{% for name, desc in interface_dict.items() %}
interface {{ name }}
 description {{ desc }}
{% endfor %}

The for name, desc... means that at each iteration of the loop, name will be a key in
our dictionary, and desc will be the corresponding value for that key. Don’t forget to
add the .items() notation as shown here, in order to properly unpack these values.

This allows us to simply refer to name and desc in the body of the template, and the
result is shown here:

interface GigabitEthernet0/3
 description Server port number three

interface GigabitEthernet0/2
 description Server port number two

interface GigabitEthernet0/1
 description Server port number one

You may have noticed the interfaces were out of order in the previ‐
ous example output. This is due to the fact that dictionaries are un-
ordered and we were iterating through the dictionary items using a
for loop. You may have remembered this from when we first cov‐
ered dictionaries in Chapter 4.

You may have noticed a few limitations in the previous examples. In a few examples,
we iterated using the range() function, meaning we didn’t have all of the valuable
metadata about our interfaces like we do when we use classes or dictionaries. Even
though we used a dictionary in a subsequent example, its structure was little more
than storing an interface name with a description.

Generating interface configurations from a list of dictionaries
In this last example, we’re going to combine usage of lists and dictionaries to really
put this template to work for us. Each interface will have its own dictionary, where
the keys will be attributes of each network interface, like name, description, or
uplink. Each dictionary will be stored inside a list, which is what our template will
iterate over to produce configuration.

Jinja for Network Configuration Templates | 189

First, here’s the data structure in Python that was just described:

interfaces = [
 {
 "name": "GigabitEthernet0/1",
 "desc": "uplink port",
 "uplink": True
 },
 {
 "name": "GigabitEthernet0/2",
 "desc": "Server port number one",
 "vlan": 10
 },
 {
 "name": "GigabitEthernet0/3",
 "desc": "Server port number two",
 "vlan": 10
 }
]
print(template.render(interface_list=interfaces))

This will allow us to write a very powerful template that iterates over this list, and for
each list item, simply refers to keys found within that particular dictionary. The next
example makes use of all of the techniques we’ve learned about loops and
conditionals.

{% for interface in interface_list %}
interface {{ interface.name }}
 description {{ interface.desc }}
 {% if interface.uplink %}
 switchport mode trunk
 {% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
 {% endif %}
{% endfor %}

When accessing data in a dictionary when using Jinja, you can use
the traditional Python syntax of dict['key'] or the shorthand
form as we’ve been showing with dict.key. These two are identical
and if you’re trying to access a key that doesn’t exist, a key error will
be raised. However, you can also use the get() method in Jinja if
it’s an optional key or if you want to return some other value if the
key doesn’t exist—for example, dict.get(key, 'UNKNOWN').

As mentioned previously, it’s bad form to embed data into our Python applications
(see the interfaces list of dictionaries from the previous example). Instead of this,
let’s place that data into its own YAML file, and rewrite our application to import this
data before using it to render the template. This is a very good practice, because it

190 | Chapter 6: Network Configuration Templates

allows someone with no Python experience to edit the network configuration by sim‐
ply changing this simple YAML file.

Here’s an example of a YAML file that is written to be identical to our interfaces list
in the previous example:

- name: GigabitEthernet0/1
 desc: uplink port
 uplink: true
- name: GigabitEthernet0/2
 desc: Server port number one
 vlan: 10
- name: GigabitEthernet0/3
 desc: Server port number two
 vlan: 10

As we explored in Chapter 5, importing a YAML file in Python is very easy. As a
refresher, here’s our full Python application, but instead of the static, embedded list of
dictionaries, we’re simply importing a YAML file to get that data:

from jinja2 import Environment, FileSystemLoader
import yaml

ENV = Environment(loader=FileSystemLoader('.'))

template = ENV.get_template("template.j2")

with open("data.yml") as f:
 interfaces = yaml.load(f)
 print(template.render(interface_list=interfaces))

We can reuse the same template we previously created and achieve the same result—
but this time, the data that we’re using to populate our template comes from an exter‐
nal YAML file, which is easier for everyone to maintain. The Python file now only
contains the logic of pulling in data, and rendering a template. This makes for a more
maintainable template rendering system.

This covers the basics of loops and conditionals. In this section, we’ve really only
explored a portion of what’s possible. Explore these concepts on your own, and apply
them to your own use cases.

Jinja Filters
Occasionally we need to apply some kind of manipulation to a variable within our
template. A simple example might be to convert a snippet of text to be all uppercase
characters.

Filters allow us to accomplish this goal. In the same way that we can pipe output from
a command into another command in a terminal shell on a Linux distribution, we

Jinja for Network Configuration Templates | 191

can take the result of a Jinja statement and pipe it into a filter. The resulting text will
make it into the rendered output of our template.

Using the “upper” Jinja filter
Let’s take our last template and use a built-in filter to capitalize the descriptions for
each interface configuration:

{% for interface in interface_list %}
interface {{ interface.name }}
 description {{ interface.desc|upper }}
 {% if interface.uplink %}
 switchport mode trunk
 {% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
 {% endif %}
{% endfor %}

After the interface.desc variable name, but still within the curly braces, we can use
the pipe (|) to filter the value of desc into the upper filter. This is a filter built in to
the Jinja2 library for Python that capitalizes the text piped to it.

Chaining Jinja filters
We can also chain filters, in much the same way that we might chain pipes of com‐
mands in Linux, or methods in Python. Let’s use the reverse filter to take our capital‐
ized text and print it backward:

{% for interface in interface_list %}
interface {{ interface.name }}
 description {{ interface.desc|upper|reverse }}
 {% if interface.uplink %}
 switchport mode trunk
 {% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
 {% endif %}
{% endfor %}

This results in the following output:

interface GigabitEthernet0/1
 description TROP KNILPU
 switchport mode trunk

interface GigabitEthernet0/2
 description ENO REBMUN TROP REVRES
 switchport access vlan 10
 switchport mode access

interface GigabitEthernet0/3

192 | Chapter 6: Network Configuration Templates

 description OWT REBMUN TROP REVRES
 switchport access vlan 10
 switchport mode access

To recap, our original description for GigabitEthernet0/1 was first “uplink port,” and
then it was “UPLINK PORT” because of the upper filter, and then the reverse filter
changed it to “TROP KNILPU,” before the final result was printed into the template
instance.

Creating custom Jinja filters
This is all great, and there are tons of other great built-in filters, all documented
within the Jinja specification. But what if we wanted to create our own filter? Perhaps
there’s something specific to network automation that we would like to perform in
our own custom filter that doesn’t come with the Jinja2 library?

Fortunately, the library allows for this. The next example shows a full Python script
where we’re defining a new function, get_interface_speed(). This function is
simple—it looks for certain keywords like “gigabit” or “fast” in a provided string argu‐
ment, and returns the current Mbps value. It also loads all of our template data from a
YAML file as was shown in previous examples.

Import Jinja2 library and PyYAML
from jinja2 import Environment, FileSystemLoader
import yaml

Declare template environment
ENV = Environment(loader=FileSystemLoader('.'))

def get_interface_speed(interface_name):
 """ get_interface_speed returns the default Mbps value for a given
 network interface by looking for certain keywords in the name
 """

 if 'gigabit' in interface_name.lower():
 return 1000
 if 'fast' in interface_name.lower():
 return 100

Filters are added to the ENV object after declaration. Note that we're
actually passing in our "get_interface_speed" function and not running
it--the template engine will execute this function when we call
template.render()
ENV.filters['get_interface_speed'] = get_interface_speed
template = ENV.get_template("templatestuff/template.j2")

We load our YAML file and pass it in to the template when rendering it.
with open("templatestuff/data.yml") as f:

Jinja for Network Configuration Templates | 193

 interfaces = yaml.load(f)
 print(template.render(interface_list=interfaces))

With a slight modification to our template, as shown in the next example, we can lev‐
erage this filter by passing interface.name into the get_interface_speed filter. The
resulting output will be whatever integer our function decided to return. Since all
interface names are GigabitEthernet, the speed is set to 1000.

{% for interface in interface_list %}
interface {{ interface.name }}
 description {{ interface.desc|upper|reverse }}
 {% if interface.uplink %}
 switchport mode trunk
 {% else %}
 switchport access vlan {{ interface.vlan }}
 switchport mode access
 {% endif %}
 speed {{ interface.name|get_interface_speed }}
{% endfor %}

Using existing Python code as a Jinja filter
We don’t always have to write our own functions in order to create a custom Jinja fil‐
ter. Sometimes there’s an existing Python function out there that would work really
well as a Jinja filter. Using an existing Python function is fairly easy to do; just make
sure you’ve imported it appropriately and pass it in as if you created it.

As an example, we can use a function from the bracket_expansion library to quickly
produce a set of interface names without having to craft our own list or dictionary
that contains these names. Read the following inline comments for more details on
how this works:

Import Jinja2 library
from jinja2 import Environment, FileSystemLoader

bracket_expansion is also a third party library.
Install through pip before running this.
from bracket_expansion import bracket_expansion

Declare template environment
ENV = Environment(loader=FileSystemLoader('.'))

Filters are added to the ENV object after declaration. "bracket_expansion"
is a function that we're passing in--the template engine will actually
execute this function when rendering the template.
ENV.filters['bracket_expansion'] = bracket_expansion
template = ENV.get_template("template.j2")

The bracket_expansion function we've passed in as a filter requires a
text pattern to work against. We'll pass this in as "iface_pattern"
print(template.render(iface_pattern='GigabitEthernet0/0/[0-3]'))

194 | Chapter 6: Network Configuration Templates

This is a tremendously powerful tool—and you could absolutely write your own
Python functions to take this to the next level. Experiment with other text manipula‐
tion functions and libraries, or perhaps write your own.

Template Inheritance in Jinja
As you create bigger, more capable templates for your network configuration, you
may want to be able to break templates up into smaller, more specialized pieces. It’s
quite common to have a template for VLAN configuration, one for interfaces, and
maybe another for a routing protocol. This kind of organizational tool, while
optional, can allow for much more flexibility. The question is, how do you link these
templates together in a meaningful way to form a full configuration?

Jinja allows you to perform inheritance in a template file, which is a handy solution to
this problem. For instance, you may have a vlans.j2 file that contains only the VLAN
configuration, and you can inherit this file to produce a VLAN configuration in
another template file. You might be writing a template for interface configuration,
and you wish to also produce a VLAN configuration from another template. The next
example shows how this is done using the include statement:

{% include 'vlans.j2' %}

{% for name, desc in interface_dict.items() %}
interface {{ name }}
 description {{ desc }}
{% endfor %}

This would render vlans.j2, and insert the resulting text into the rendered output for
the template that included it. Using the include statement, template writers can com‐
pose switch configurations made up of modular parts. This is great for keeping things
organized.

Another inheritance tool in Jinja is the block statement. This is a powerful, but more
complicated, method of performing inheritance, as it mimics object inheritance in
more formal languages like Python. Using blocks, you can specify portions of your
template that may be overridden by a child template, if present. If a child template is
not present, it will still contain some default text.

This shows an example where blocks may be used in a parent template:

{% for interface in interface_list %}
interface {{ interface.name }}
 description {{ interface.desc }}
{% endfor %}
!
{% block http %}
 no ip http server

Jinja for Network Configuration Templates | 195

 no ip http secure-server
{% endblock %}

We’ll call this template no-http.j2, indicating that we’d like to normally turn off the
embedded HTTP server in our switch. However, we can use blocks to give us some
greater flexibility here. We can create a child template called yes-http.j2 that is
designed to override this block, and output the configuration that enables the HTTP
server if that’s what we want.

{% extends "no-http.j2" %}
{% block http %}
 ip http server
 ip http secure-server
{% endblock %}

This allows us to enable the HTTP server simply by rendering the child template. The
first line in the previous example extends the parent template no-http.j2 so all of the
interface configurations will still be present in the rendered output. However, because
we’ve rendered the child template, the http block of the child overrides that of the
parent. Using blocks in this way is very useful for portions of the configuration that
may need to change but aren’t properly served by traditional variable substitution.

The Jinja documentation on template inheritance goes into much more detail, and
would be a great resource to keep bookmarked.

Variable Creation in Jinja
Jinja allows us to actually create variables within a template itself. We do so using the
set statement. A common use case for this is variable shortening. Sometimes you
have to go through several nested dictionaries or Python objects to get what you
want, and you may want to reuse this value several times in your template. Rather
than repeat a long string of properties or keys, use the set statement to represent a
particular value using a much smaller name:

{% set int_desc = switch01.config.interfaces['GigabitEthernet0/1']['description'] %}
{{ int_desc }}

Summary
After this deep dive into Jinja, it’s important to take a step back and think about
where templates can/should be used in a network automation context. By reading the
previous examples, it’s easy to get the impression that you have to write Python to
make use of templates.

While it’s true that this is a very powerful way to use templates to drive network con‐
figuration, it’s certainly not the only option. As we’ll discuss in Chapter 9, tools like
Ansible and Salt allow us to define configuration data in a simple YAML format and

196 | Chapter 6: Network Configuration Templates

http://jinja.pocoo.org/docs/dev/templates/#template-inheritance

insert this data into a template without ever writing any code. Certainly, if the tem‐
plate is simple enough and you’re really only looking for a way to create templates
from an existing configuration, this is a very simple way of generating templates.

Here are a few parting thoughts on using templates for network automation:

• Keep the templates simple. Leveraging loops and conditionals to enhance your
templates is fine, but don’t go overboard here. Jinja isn’t as robust as a fully fea‐
tured, general-purpose programming like Python, so keep the more advanced
stuff out of the template.

• Leverage template inheritance to reuse portions of configurations that don’t need
to be duplicated

• Remember, syntax and data should be handled separately. For instance, keep
VLAN IDs in their own data file (maybe YAML), and the CLI syntax to imple‐
ment those VLANs in a dedicated template.

• Use version control (i.e., Git) to store all of your templates.

If you follow these, you’ll be able to put templates to work for you in your network
automation journey.

Summary | 197

CHAPTER 7

Working with Network APIs

From Python and data formats to configuration templating with Jinja, we’ve explored
key foundational technologies and skills that will make you a better network engineer.
In this chapter, we’re going to put these skills to practical use and start to consume
and communicate to different types of network device APIs.

In order to best help you understand how to start automating networks, this chapter
is organized into three sections:

Understanding Network APIs
We examine the architecture and foundation of different APIs, including RESTful
HTTP-based APIs, non-RESTful HTTP-based APIs, and NETCONF.

Exploring Network APIs
We introduce tools commonly used for testing and learning how to use each API
type.

Automating Using Network APIs
Finally, we look at Python libraries that allow you to start automating your net‐
works. We’ll look at the Python requests library for consuming HTTP-based
APIs, ncclient for interacting with NETCONF devices, and netmiko for automat‐
ing devices using SSH.

As you read this chapter, please keep in mind one thing—this chapter is not a com‐
prehensive guide on any particular API, and it should not serve as API documenta‐
tion. We will provide examples using different vendor implementations of a given
API, as it’s very common to be working in a multi-vendor environment. It’s also
important to see the common patterns and unique contrasts between different imple‐
mentations of the same API type.

199

Understanding Network APIs
Our focus is on two of the most common types of APIs you’ll find on network devi‐
ces, HTTP-based APIs and NETCONF-based APIs. We’re going to start by looking at
foundational concepts for each type of API; once we review them, we explore the
consumption of these APIs with hands-on examples using specific vendor implemen‐
tations.

Let’s get started by diving into HTTP-based RESTful APIs.

Getting Familiar with HTTP-Based APIs
There are two types of HTTP-based APIs to understand in the context of network
APIs. They are RESTful HTTP-based APIs and non-RESTful HTTP-based APIs. In
order to better understand them and what the term RESTful means, we are going to
start by examining RESTful APIs. Once you understand RESTful architecture and
principles, we’ll move on and compare them with non-RESTful HTTP-based APIs.

Understanding RESTful APIs
RESful APIs are becoming more popular and more commonly used in the network‐
ing industry, although they’ve been around since the early 2000s. Most of the APIs
that exist today within network infrastructure are HTTP-based RESTful APIs. This
means that when you hear about a RESTful API on a network device or SDN control‐
ler, it is an API that will be communicating between a client and a server.

The client would be an application such as a Python script or web UI application and
the server would be the network device or controller. Moreover, since HTTP is being
used as transport, you’d be performing some operation using URLs just as you do
already as you browse the World Wide Web. Thus, if you understand that when
you’re browsing to a website, HTTP GETs are performed, and when you’re filling out
a web form and clicking submit, an HTTP POST is performed, you already under‐
stand the basics of working with RESTful APIs.

Let’s look at examples of retrieving data from a website and retrieving data from a
network device via a RESTful API. In both instances, an HTTP GET request is sent to
the web server (see Figure 7-1).

200 | Chapter 7: Working with Network APIs

Figure 7-1. Understanding REST by looking at HTTP GET responses

In Figure 7-1, one of the primary differences is the data that is sent to and from the
web server. When browsing the internet, you receive HTML data that your browser
will interpret so that it is able to display the website properly. On other hand, when
issuing an HTTP GET request to a web server that is exposing a RESTful API
(remember, it’s exposing it via a URL), you receive data back that is mostly encoded
using JSON or XML. This is where we’ll use what we reviewed in Chapter 5. Since
you receive data back in JSON/XML, the client application must understand how to
interpret JSON and/or XML. Let’s continue with the overview so we have a more
complete picture before we start to explore the use of RESTful HTTP APIs.

Now that we’ve covered a high-level overview of RESTful APIs, let’s take it one step
deeper and look at the origins of RESTful APIs. It’s worth noting that the birth and
structure of modern web-based RESTful APIs came from a PhD dissertation by Roy
Fielding in 2000. In this dissertation titled Architectural Styles and the Design of
Network-based Software Architectures, he defined the intricate detail of working with
networked systems on the internet that use the architecture defined as REST.

There are six architectural constraints that an interface must conform to in order to
be considered RESTful. For the purposes of this chapter, we’ll look at three of them.

Client-Server
This is a requirement to improve the usability of systems while simplifying the
server requirements. Having a client-server architecture allows for portability
and changeability of client applications without the server components being
changed. This means you could have different API clients (web UI, CLI) that
consume the same server resources (backend API).

Stateless
The communication between the client and server must be stateless. Clients that
use stateless forms of communication must send all data required for the server
to understand and perform the requested operation in a single request. This is in

Understanding Network APIs | 201

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

contrast to interfaces such as SSH where there is a persistent connection between
a client and a server.

Uniform interface
Individual resources in scope within an API call are identified in HTTP request
messages. For example, in RESTful HTTP-based systems, the URL used refer‐
ences a particular resource. In the context of networking, the resource maps to a
network device construct such as a hostname, interface, routing protocol config‐
uration, or any other resource that exists on the device. The uniform interface
also states that the client should have enough information about a resource to
create, modify, or delete a resource.

These are just three of the six core constraints of the REST architecture, but we can
already see the similarity between RESTful systems and how we consume the internet
through web browsing on a daily basis. Keep in mind that HTTP is the primary
means of implementing RESTful APIs, although the transport type could in theory be
something else. In order to really understand RESTful APIs, then you must also
understand the basics of HTTP.

Understanding HTTP request types. It’s important to understand that while every REST‐
ful API we look at is an HTTP-based API, we will eventually look at HTTP-based
APIs that do not adhere to the principles of REST, and therefore are not RESTful.
However, in either case, the APIs require an understanding of HTTP. Because these
APIs are using HTTP as transport, we’re going to be working with the same HTTP
request types and response codes that are used on the internet already.

For example, common HTTP request types include GET, POST, PATCH, PUT, and
DELETE. As you can imagine, GET requests are used to request data from the server,
DELETE requests are used to delete a resource on the server, and the three P’s (POST,
PATCH, PUT) are used to make a change on the server.

In the context of networking, we can think of these request types as the following:

• GET: obtaining configuration or operational data
• PUT, POST, PATCH: making a configuration change
• DELETE: removing a particular configuration

Table 7-1 depicts these request types. We’ll use each of these in real examples later in
the chapter.

202 | Chapter 7: Working with Network APIs

Table 7-1. HTTP request types

Request Type Description
GET Retrieve a specified resource
PUT Create or replace a resource
PATCH Create or update a resource object
POST Create a resource object
DELETE Delete a specified resource

Understanding HTTP response codes. Just as the request types are the same if you’re
using a web browser on the internet or using a RESTful API, the same is true for
response codes.

Ever see a “401 Unauthorized” message when you were trying to log in to a website
and used invalid credentials? Well, you would receive the same response code if you
were trying to log in to a system using a RESTful API and you sent the wrong creden‐
tials. The same is true for successful messages or if the server has an error of its own.
Table 7-2 depicts a list of the common types of response codes you see when working
with HTTP-based APIs. Please note that this list is not exclusive—others exist too.

Table 7-2. HTTP response codes

Response Code Description
2XX Successful
4XX Client error
5XX Server error

Remember, the response code types for HTTP-based APIs are no different than stan‐
dard HTTP response codes. We are merely providing a table for the series of response
codes and will leave it as an exercise for the reader to learn about individual respon‐
ses.

Now that we have an understanding of the principles of REST and HTTP, it’s impor‐
tant to also take note of non-RESTFul HTTP-based APIs.

Understanding non-RESTful HTTP-based APIs
While RESTful APIs are preferred, you may come across non-RESTful HTTP-based
APIs too. In the network industry, this is most commonly seen on APIs that sit above
CLIs, meaning the API call actually sends a command to the device versus sending
native structured data. The preferred approach is to have any modern network plat‐
form’s CLI or web UI use the underlying API, but for “legacy” or pre-existing systems
that were built using commands, it is in fact common to see the use of non-RESTful

Understanding Network APIs | 203

APIs, as it was easier to add an API this way rather than rearchitect the underlying
system.

There are two major differences between RESTful HTTP-based APIs and non-
RESTful HTTP-based APIs. We previously introduced the concept of HTTP request
types that map to a particular verb such as GET, POST, PATCH, PUT, and DELETE.
RESTful APIs use particular verbs to dictate the type of change being requested of the
target server. For example, in the context of networking, a configuration change
would never occur if you’re doing an HTTP GET, since you’re simply retrieving data.
However, systems that are HTTP-based but do not follow RESTful principles could
use the same HTTP verb for every API call. This means if you’re retrieving data or
making a configuration change, all API calls could be using a POST request. If you
see this in a given API type, it is still an HTTP-based API, but not a RESTful HTTP-
based API.

Another common difference to be aware of brings the focus to the URL being used in
individual API calls. If you are using an HTTP-based API that always uses the same
URL and does not allow you to access a specific resource by a URL change, the API is
a RESTful HTTP-based API.

Having HTTP-based APIs on network infrastructure is a great step in the right direc‐
tion for the industry, but ideally, all HTTP APIs would follow the principles of REST.

While you do use the same tools to consume RESTful and non-RESTful HTTP-based
APIs, it is important to be conscious of these differences for network APIs, as non-
RESTful HTTP-based APIs are usually not as flexible as their RESTful counterparts.

Now that we’ve introduced HTTP-based APIs, let’s shift our focus and introduce the
NETCONF API.

Diving into NETCONF
NETCONF is a network management protocol, defined in RFC 6241, designed from
the ground up for configuration management and retrieving configuration and
operational state data from network devices. In this respect, NETCONF has a clear
delineation between configuration and operational state; API requests are used to
perform different operations such as retrieving configuration state, retrieving opera‐
tional state, and making configuration changes.

204 | Chapter 7: Working with Network APIs

We stated in the previous section that RESTful APIs aren’t new;
they are merely new for network devices and SDN controllers. As
we transition to looking at the NETCONF API, it’s worth noting
that NETCONF is also not new. NETCONF has been around for
over a decade. In fact, it’s an industry-standard protocol with its
original RFC having been written in 2005. It’s even been on various
network devices for years, although often as a limited API rarely
being used.

One of the core attributes of NETCONF is its ability to utilize different configuration
datastores. Most network engineers are familiar with running configurations and
startup configurations. These are thought of as two configuration files, but they are
two configuration datastores in the context of NETCONF. NETCONF implementa‐
tions often tend to use a third datastore called a candidate configuration. The candi‐
date configuration datastore holds configuration objects (CLI commands if you’re
using CLI for configuration) that are not yet applied to the device. As an example, if
you enter a configuration on a device that supports candidate configurations, they do
not take action immediately. Instead, they are held in the candidate configuration and
only applied to the device when a commit operation is performed. When the commit
is executed, the candidate configuration is written to the running configuration.

Candidate configuration datastores have been around for years as originally defined
in the NETCONF RFC over a decade ago. One of the issues the industry has faced is
having usable implementations of NETCONF that offered this functionality. How‐
ever, not all implementations have been unused—there have, in fact, been successful
implementations. Juniper’s Junos has had a robust NETCONF implementation for
years, along with the capability of a candidate configuration; more recently, Cisco
IOS-XR added increased support for NETCONF along with support of a candidate
configuration. Operating systems like HPE’s Comware 7 and Cisco IOS-XE support
NETCONF, but do not yet support a candidate configuration datastore.

Always check your hardware and software platforms even if they
are from the same vendor. It is likely that the capabilities supported
between them are different. The support of a candidate configura‐
tion is just one example of this.

We stated that with a candidate configuration you enter various configurations and
they aren’t yet applied until a commit operation is performed. This leads us to
another core attribute of NETCONF-enabled devices—configuration changes as a
transaction. In our same example, it means that all configuration objects (commands)
are committed as a transaction. All commands succeed, or they are not applied. This
is in contrast to the more common scenario of entering a series of commands and
having a command somewhere in the middle fail, yielding a partial configuration.

Understanding Network APIs | 205

The support of a candidate configuration is just one attribute of NETCONF. Let’s now
take a deeper dive into the underlying NETCONF protocol stack.

Learning the NETCONF protocol stack
We’ve covered several attributes of NETCONF, but it’s time to dive a little deeper into
the protocol stack NETCONF uses to communicate between a client and server. In
our examples, the client is going to be a Python application or SSH client and the
server is a target network device we’re going to be automating.

There are four core layers of the NETCONF protocol stack (Table 7-3). We are going
to review each and show concrete examples of what they mean for the XML object
being sent between the client and server.

Table 7-3. NETCONF protocol stack

Layer Example
Transport SSHv2, SOAP, TLS
Messages <rpc>, <rpc-reply>
Operations <get-config>, <get>, <copy-config>, <lock>, <unlock>, <edit-config>, <delete-

config>, <kill-session>, <close-session>
Content Configuration/filers: XML representation of data models (YANG, XSD)

NETCONF only supports XML for data encoding. On the other
hand, remember that RESTful APIs have the ability to support
JSON and/or XML.

Transport. NETCONF is commonly implemented using SSH as transport; it is its
own SSH subsystem. While all of our examples use NETCONF over SSH, it is techni‐
cally possible to implement NETCONF over SOAP, TLS, or any other protocol that
meets the requirements of NETCONF. With the migration of SOAP to RESTful APIs,
there has been limited further development on NETCONF over SOAP, and while
NETCONF over TLS is possible, no platforms covered in the book currently
support it.

A few of these requirements are:

• It must be a connection-oriented session, and thus there must be a consistent
connection between a client and a server.

• NETCONF sessions must provide a means for authentication, data integrity, con‐
fidentiality, and replay protection.

206 | Chapter 7: Working with Network APIs

• Although NETCONF can be implemented with other transport protocols, each
implementation must support SSH at a minimum.

Messages. NETCONF messages are based on a remote procedure call (RPC)–based
communication model and each message is encoded in XML. Using an RPC-based
model allows the XML messages to be used independent of the transport type. NET‐
CONF supports two message types, namely <rpc> and <rpc-reply>. Viewing the
actual XML-encoded object helps elucidate NETCONF, so let’s take a look at a NET‐
CONF RPC request.

In simplest terms, the message types are always going to be <rpc> and <rpc-reply>
and they will always be the outermost XML tag in the encoded object.

 <rpc message-id="101">
 <!-- rest of request as XML... -->
 </rpc>

Every NETCONF <rpc> includes a required attribute called message-id. You can see
this in the previous example. It’s an arbitrary string the client sends to the server. The
server reuses this ID in the response header so the client knows which message the
server is responding to.

The other message type is the <rpc-reply>. The NETCONF server responds with the
message-id and any other attributes received from the client, (e.g., XML namespa‐
ces).

 <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <!-- XML content/response... -->
 </data>
 </rpc-reply>

This <rpc-reply> example above assumes that the XML namespace was in the <rpc>
sent by the client. Note that the actual data response coming from NETCONF server
is embedded within the <data> tag.

Next, we’ll show how the NETCONF request dictates which particular NETCONF
operation (RPC) it’s requesting of the server.

Operations. The outermost XML element is always the type of message being sent
(i.e., <rpc> or <rpc-reply>). When you are sending a NETCONF request from the
client to the server, the next element, or the child of the message type, is the requested
NETCONF (RPC) operation. You saw a list of NETCONF operations in Table 7-3,
and now we’ll take a look at each of them.

The two primary operations we review in this chapter are <get> and <edit-config>.

The <get> operation retrieves running configuration and device state information.

Understanding Network APIs | 207

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <!-- XML content/response... -->
 </get>
</rpc>

Since <get> is the child element within the <rpc> message, this means the client is
requesting a NETCONF <get> operation.

Within the <get> hierarchy, there are optional filter types that allow you to selectively
retrieve a portion of the running configuration, namely subtree and xpath filters. Our
focus is on subtree filters, which allow you to provide an XML document, which is a
subtree of the complete XML tree hierarchy that you wish to retrieve in a given
request.

In the next example, we reference a specific XML data object using the <native> ele‐
ment and http://cisco.com/ns/yang/ned/ios URL. This XML data object is the XML
representation of a specific data model that exists on the target device. This data
model represents a full running configuration as XML, but we’re requesting just the
<interface> configuration hierarchy.

As shown throughout this chapter, the actual JSON and XML
objects sent between clients and servers are largely vendor- and
OS-dependent.

The next two examples shown for the <get> operation are XML requests from a
Cisco IOS-XE device running 16.3+ code.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 </interface>
 </native>
 </filter>
 </get>
</rpc>

We could add more elements to the filter’s XML tree to narrow down the response
that comes back from the NETCONF server. We will now add two elements to the
filter—so instead of receiving the configuration objects for all interfaces, we’ll receive
the configuration of only GigabitEthernet1.

208 | Chapter 7: Working with Network APIs

http://cisco.com/ns/yang/ned/ios

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 <GigabitEthernet>
 <name>1</name>
 </GigabitEthernet>
 </interface>
 </native>
 </filter>
 </get>
</rpc>

The next most common NETCONF operation is the <edit-config> operation. This
operation is used to make a configuration change. Specifically, this operation loads a
configuration into the specified configuration datastore: running, startup, or candi‐
date.

When the <edit-config> operation is used, you set the target configuration data‐
store with the <target> tag. If not specified, it’ll default to the running configuration.
Also within the <edit-config> hierarchy, the configuration elements that are to be
loaded onto the target datastore are often enclosed within the <config> element. The
XML elements within <config> map back to a specific data model.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <configuration>
 <routing-options>
 <static>
 <route>
 <name>0.0.0.0/0</name>
 <next-hop>10.1.0.1</next-hop>
 </route>
 </static>
 </routing-options>
 </configuration>
 </config>
 </edit-config>
</rpc>

The <config> element is not mandatory when you’re using the <edit-config> oper‐
ation. What can be used within <config> is based on the NETCONF capabilities that
are supported on a given device. If the :url capability is supported, you can use the
<url> tag to specify a location of a file containing configuration data.

Understanding Network APIs | 209

We cover more on NETCONF capabilities later in this section.

Additionally, vendors can implement platform-specific options. An example is what
Juniper’s Junos offers for <edit-config>. The previous example uses <config> and
requires XML configuration objects for adding a static route to a Juniper Junos
device. Juniper’s Junos also supports <config-text> within <edit-config>, which
allows you to include configuration elements using text format (curly brace or set
syntax).

The <edit-config> operation also supports an attribute called operation that pro‐
vides more flexibility as to how a device applies the configuration object. When the
operation attribute is used, it can be set to one of five values: merge, replace, cre
ate, delete, or remove. The default value is merge. If you wanted to delete the route
from the previous example, you could use delete or remove; the difference in these is
that an error occurs if you use delete when the object doesn’t exist. You could
optionally use create, but an error is raised if the object already exists. Often, merge
is used for making configuration changes for this reason.

Finally, you could use the replace operation if you wanted to replace a given XML
hierarchy in the configuration data object. In the static route example, you would use
replace if you wanted to end up with just the default static route on the device; it
would automatically remove all other configured static routes.

If this still seems a little confusing, do not worry. Once we start
exploring and automating devices using NETCONF in the next
two sections, you’ll see even more examples that use various XML
objects across different device types using operations such as the
NETCONF merge and replace operations.

We’ve shown what XML documents look like when using the <get> and <edit-
config> operations. The following list describes the other base NETCONF opera‐
tions:

210 | Chapter 7: Working with Network APIs

<get-config>

Retrieve all or part of a specified configuration (e.g., running, candidate, or
startup).

<copy-config>

Create or replace a configuration datastore with the contents of another configu‐
ration datastore. Using this operation requires the use of a full configuration.

<delete-config>

Delete a configuration datastore (note that the running configuration datastore
can’t be deleted).

<lock>

Lock the configuration datastore system of a device that is being updated to be
certain that no other systems (NETCONF clients) can make a change at the same
time.

<unlock>

Unlock a previously issued lock on a configuration datastore.

<close-session>

Request a graceful termination of a NETCONF session.

<kill-session>

Forcefully and immediately terminate a NETCONF session.

The aforementioned list is not an exhaustive list of NETCONF operations, but rather
the core operations that each device must support in a NETCONF implementation.
NETCONF servers can also support extended operations such as <commit> and <val
idate>. In order to support extended operations like these, the device must support
required dependencies called NETCONF capabilities.

The <commit> operation commits the candidate configuration as the device’s new
running configuration. In order to support the <commit> operation, the device must
support the :candidate capability.

The <validate> operation validates the contents of the specified configuration (run‐
ning, candidate, startup). Validation consists of checking a configuration for both
syntax and semantics before applying the configuration to the device.

Understanding Network APIs | 211

We’ve mentioned NETCONF capabilities twice already. We’ll now
provide a little more context into what they are. As you know now,
NETCONF supports a base set of NETCONF RPC operations.
However, these are implemented by the device supporting a base
set of NETCONF capabilities. NETCONF capabilities are
exchanged between client and a server during connection setup
and the capabilities supported are denoted by a URL/URI. For
example, every device that supports NETCONF should support the
base operation and that URL is denoted as urn:ietf:par

ams:xml:ns:netconf:base:1.0. Additional capabilities use the
form urn:ietf:params:netconf:capability:{name}:1.x where
name is the name of the capability and specific capabilities are usu‐
ally referenced as :name as we showed by referencing the :candi
date capability. When we start exploring the use of NETCONF
from a hands-on perspective, you’ll get to see all capabilities a given
device supports.

Content. The last layer of the NETCONF protocol stack to understand is the content.
The content refers to the actual XML document that gets embedded within the RPC
operation tag elements. We already showed examples of what the content could be for
particular NETCONF operations.

In our first example, we looked at content that selectively requested configuration ele‐
ments for the interfaces on a Cisco IOS-XE device:

<native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 </interface>
</native>

The most important point to understand about content is that it is the XML represen‐
tation of a particular schema or data model that the device supports. We described
and introduced schemas and data models in Chapter 5.

The IOS-XE device used in our examples supports models written in the YANG mod‐
eling language, and one of those models is a model that represents the full running
configuration. While the model is written in YANG, it must be represented as XML
between a NETCONF client and NETCONF server since NETCONF only supports
XML encoding.

The next example highlights the content to add a static route to a Juniper device run‐
ning Junos. Again, the critical part is to understand how to construct the proper XML
document that the device OS requires; understanding the language, such as YANG or
XML Schema Definitions (XSD), that the model or schema was written in is much
less important. For example, do we know if this Juniper XML document maps to a

212 | Chapter 7: Working with Network APIs

schema written as an XSD or a model written in YANG? We’ll leave that as an exer‐
cise for the reader.

<configuration>
 <routing-options>
 <static>
 <route>
 <name>0.0.0.0/0</name>
 <next-hop>10.1.0.1</next-hop>
 </route>
 </static>
 </routing-options>
</configuration>

Now that we’ve covered the types of APIs we’ll discuss in this chapter, let’s shift our
focus to exploring these APIs.

Exploring Network APIs
As we start our journey of consuming and interacting with network APIs, the focus in
this section is just like the focus we’ve had thus far throughout the book—on vendor-
neutral tools and libraries. More specifically, we are going to look at tools such as
cURL and Postman for working with HTTP-based APIs, and NETCONF over SSH
for working with NETCONF APIs on network devices.

It’s important to note that this section is strictly about exploring network APIs in that
we showcase how to get started using and testing network APIs without writing any
code. Our focus in this section is to start to put into use what we’ve learned thus far
about particular API types. This section is not about the tools and techniques you
would use for automating production networks. Those types of tools and libraries are
covered in “Automating Using Network APIs” on page 229.

Exploring HTTP-Based APIs
We’ll get started by exploring the use of HTTP-based APIs. Note the same tools can
be used for both RESTful and non-RESTful HTTP-based APIs. The first tool we’ll
look at is called cURL.

cURL
cURL is a command-line tool for working with URLs. What this means is that from
the Linux command line, we can send HTTP requests using the cURL program.
While cURL uses URLs, it can communicate to servers using protocols besides HTTP
including FTP, SFTP, TFTP, TELNET, and many more. You can use the command man
curl from the Linux command line to get an in-depth look at all of the various
options cURL supports.

Exploring Network APIs | 213

We are going to look at using cURL with the Cisco ASA RESTful API. As we’re just
getting started with RESTful APIs, we’ll begin with a simple HTTP GET request that
retrieves all interfaces of a Cisco ASA security appliance.

The Cisco ASA and ASAv platforms that support the RESTful API
have built-in API documentation and a console for testing the API
directly on the ASA. You can browse to https://<asa-ip>/doc/, log
in, and then see and test every API that the ASA supports.

In order to make an API call to retrieve a list of interfaces and their configuration,
we’ll use the cURL statement shown in the following example:

$ curl -u ntc:ntc123 -k https://asav/api/interfaces/physical

The statement uses two flags and specifies the desired URL needed to retrieve the
interfaces on the ASA. The first flag shown is -u, which denotes that the user
name:_password_ is going to follow. The second flag is -k, which explicitly allows
cURL to perform insecure SSL connections, and in our case it’s needed to permit the
use of a self-signed certificate on the ASA. Finally, we specify the URL of the resource
we want to query.

$ curl -u ntc:ntc123 -k https://asav/api/interfaces/physical
response omitted

If you issue the previous cURL statement, you’ll see large output word-wrapped on
the terminal, making it hard to read. Alternatively, you can pipe the response to
python -m json.tool to pretty print the response object, making it much more
human readable.

$ curl -u ntc:ntc123 -k https://asav/api/interfaces/physical | python -m json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 4114 100 4114 0 0 15819 0 --:--:-- --:--:-- --:--:-- 15884

{
 "kind":"collection#MgmtInterface",
 "selfLink":"https://asav/api/interfaces/physical",
 "rangeInfo":{
 "offset":0,
 "limit":4,
 "total":4
 },
 "items":[
 {
 "kind":"object#MgmtInterface",
 "selfLink":"https://asav/api/interfaces/physical/Management0_API_SLASH_0",
 "hardwareID":"Management0/0",
 "interfaceDesc":"",
 "channelGroupID":"",
 "channelGroupMode":"active",
 "duplex":"auto",
 # keys removed for brevity
 "managementOnly":true,

214 | Chapter 7: Working with Network APIs

 "mtu":1500,
 "name":"management",
 "securityLevel":0,
 "shutdown":false,
 "speed":"auto",
 "ipAddress":{
 "kind":"StaticIP",
 "ip":{
 "kind":"IPv4Address",
 "value":"10.0.0.101"
 },
 "netMask":{
 "kind":"IPv4NetMask",
 "value":"255.255.255.0"
 }
 },,
 "objectId":"Management0_API_SLASH_0"
 },
 {
 "kind":"object#GigabitInterface",
 "selfLink":"https://asav/api/interfaces/physical/GigabitEthernet0_API_SLASH_0",
 "hardwareID":"GigabitEthernet0/0",
 "interfaceDesc":"",
 # keys removed for brevity
 },
 # other interface dictionaries removed for brevity
]
}
$

Take note of the object type received and printed to the terminal. You should have
realized that it is a JSON object (or dictionary, in Python) since it begins and ends
with curly braces. You could also see when viewing the response that the items key is
a list of dictionaries where each dictionary represents an interface.

The Cisco ASA API only supports JSON encoding, but many RESTful APIs support
both JSON and XML encoding. When systems or network devices support different
encoding types, you need to specify the desired encoding type in the HTTP request
message. This type of declaration happens in the HTTP headers that are part of the
HTTP request.

Two common HTTP headers that we are going to use as we dive deeper into HTTP
APIs are Accept and Content-Type. The Accept header is used to specify certain
media types that are acceptable for the response, while the Content-Type is used to
indicate the type of data being sent to the server in the case of resource changes. We
review examples of using these HTTP headers in the next two sections.

We’ve looked at one basic example issuing a GET request to the ASA RESTful API
using cURL. We’re going to shift to a more user-friendly tool called Postman for
exploring and testing HTTP-based APIs.

Exploring HTTP-based APIs with Postman
Postman is a Google Chrome application that provides a user-intuitive web GUI
frontend to interact with HTTP-based APIs. As you’ll see, Postman and tools alike

Exploring Network APIs | 215

make it much easier to learn and test HTTP APIs, as they put the focus on using the
API without worrying about writing code.

Once Postman is installed and you launch it as a Chrome application, you’ll see a
screen similar to Figure 7-2.

Figure 7-2. Introduction to Postman

Let’s analyze what you see, using the numbers outlined in the figure.

1. The left pane has two tabs to be aware of, History and Collections. The History
tab shows all previously executed API calls with Postman. Additionally, the his‐
tory is easily accessible if you log in to Postman on another machine, as it’s lever‐
aging Chrome under the covers and is the same as accessing web browsing
history. The Collections tab allows you to save a series of API requests as a collec‐
tion and, once created, can be executed individually or as a collection that is anal‐
ogous to a script.

2. In this drop-down, you are able to choose the appropriate HTTP Request
method (e.g., GET, PUT, PATCH, POST, DELETE). The default when you log in
to Postman is GET.

3. This is the URL required to perform a specific API request.
4. For this figure, we’re focused on three tabs here: Authorization, Headers, and

Body. In the Authorization tab, you select the proper form of authentication
required by the server. We are going to be using Basic Auth for our examples with
the Cisco ASA RESTful API. The Headers tab is where you define the request
headers that are used in a given API request. For example, if you want to define
the encoding type of the request, it is configured in this tab. Finally, the Body tab

216 | Chapter 7: Working with Network APIs

is where you define the JSON or XML body that needs to be sent in the API
request if you are making a change to a resource—for example, using a POST to
create a loopback interface.

5. Once you’ve defined your HTTP method (2), typed in your URL (3), and config‐
ured the required parameters (4), you can click the Send button to issue the API
call to the device.

6. When the API request is made, the result is displayed in this open text box.

For our first example with Postman, we show how to retrieve the list of interfaces on
the Cisco ASA device using its RESTful API—this is the same example we showed
already using cURL.

Figure 7-3 shows that the HTTP method has been set to GET, the URL has been
entered, and credentials have been entered.

Figure 7-3. Performing a GET request with Postman

Notice that the Headers tab shows as Headers (1) in Figure 7-4. This is because we
pressed the Update Request button. This automatically created a header called
Authorization and set it to be equal to the base64-encoded string of the username and
password.

Figure 7-4. The Authorization request header

Exploring Network APIs | 217

A base64-encoded string does not mean it has been encrypted. You
can easily encode and decode base64-encoded strings with Python
using the base64 Python module.

>>> import base64
>>>
>>> encoded = base64.b64encode('ntc:ntc123')
>>> encoded
'bnRjOm50YzEyMw=='
>>>
>>> text = base64.b64decode(encoded)
>>> text
'ntc:ntc123'
>>>

Once the request is constructed, you send it to the device by clicking the blue Send
button. Upon the server executing the request, the bottom portion of the screen dis‐
plays the response and HTTP status code (Figure 7-5).

Figure 7-5. Viewing an HTTP GET response

Although it has no impact because the Cisco ASA device only supports JSON, the
Accept HTTP request header can be explicitly defined in the Headers tab
(Figure 7-6).

Figure 7-6. Setting the request header

218 | Chapter 7: Working with Network APIs

Retrieving configuration data by issuing a GET request is quite straightforward, as
you simply need to provide credentials and a URL. When making a configuration
change, you need an HTTP Body to the underlying API request.

Since we just made a request that retrieved all physical interfaces, let’s make a config‐
uration change to one of the physical interfaces. Let’s configure the interface descrip‐
tion on GigabitEthernet0/0. To make this change we need to make three changes to
our current API call in Postman.

1. Update the URL.
2. Update the HTTP request method.
3. Add the appropriate JSON body.

A fourth optional change would be to set the Content-Type header, but since the ASA
only supports JSON, it’s not required.

The new and resulting API can be defined like this:

1. HTTP Request Type: PATCH
2. URL: https://asav/api/interfaces/physical/GigabitEthernet0_API_SLASH_0
3. Body:

{
 "kind": "object#GigabitInterface",
 "interfaceDesc": "Configured by Postman"
}

After making these changes in Postman, we have the following in Figure 7-7.

Figure 7-7. Performing PATCH request with Postman

Once you click Send and make the request, voilà—the Cisco ASA device has a newly
configured interface description.

Exploring Network APIs | 219

Learning how to construct a proper API request requires getting
familiar with API documentation. The API documentation (the
API definition and spec) defines what a given URL must be, the
HTTP request type, headers, and what the body needs to be for a
successful API call.
For example, how did we know to use GigabitEther‐
net0_API_SLASH_0 in the URL for making an interface change on
the ASA, make it a PATCH request, and include the kind and
interfaceDesc keys in the JSON body? The answer: API documen‐
tation. Luckily, the documentation for the ASA, as we said previ‐
ously, is on the device at https://<asa-ip-address>/doc/. You can also
glean information from performing GET requests, because often‐
times you need to use the same values in the body of a POST/
PATCH/PUT, as we saw with the value of object#GigabitInter
face for the kind key.

We’ve introduced two tools thus far that make it possible for us to interact with
HTTP-based APIs without writing any code. We showed how to make the same API
call using both cURL and Postman, as well as how to make a configuration with Post‐
man. Next, we’re going to shift our focus and explore using NETCONF.

Exploring NETCONF
As you learn new APIs, it’s advantageous to learn about associated tooling that allows
you to learn the API without writing any code. You saw this with Postman when
learning how to use HTTP-based APIs. For NETCONF, we are going to cover how to
use an SSH client that creates an interactive NETCONF session. You’ll learn how to
construct a proper NETCONF request while also seeing how the device responds to a
given request without writing any code.

Using an interactive NETCONF over SSH session is not an ideal
choice for learning NETCONF. It is not user-intuitive or user-
friendly, but there are not any other tools that exist for learning and
exploring the use of NETCONF. You should not in any way look to
use an interactive SSH session as a valid operational model for
automating network devices using NETCONF.

In our first example, we connect to a Cisco IOS-XE router via SSH on port 830, the
default port number for NETCONF. In order to connect to the device, we’ll use a
standard Linux ssh command, but change the port to 830.

$ ssh -p 830 ntc@ios-csr1kv

As soon as we connect and authenticate, the NETCONF server (Cisco IOS-XE
router) responds with a hello message that includes all of its supported NETCONF

220 | Chapter 7: Working with Network APIs

capabilities including supported NETCONF operations, capabilities, models/sche‐
mas, and a session ID.

The following is a subset of the response and capabilities from the Cisco IOS-XE
device. We cleaned up the response because it responds with a few hundred lines due
to the large quantity of models supported:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>
<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>
<capability>http://tail-f.com/ns/netconf/actions/1.0</capability>
<capability>http://tail-f.com/ns/netconf/extensions</capability>
<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=
report-all</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults?revision=
2011-06-01&module=ietf-netconf-with-defaults</capability>
<capability>http://cisco.com/ns/example/enable?module=enable</capability>
<capability>http://cisco.com/ns/yang/ned/ios?module=ned&revision=2016-07-01
</capability>
<capability>http://cisco.com/ns/yang/ned/ios/asr1k?module=ned-asr1k&revision=
2016-04-07</capability>
<capability>http://cisco.com/yang/cisco-ia?module=cisco-ia&revision=
2016-05-20</capability>
<!-- OUTPUT OMITTED -->
<capability>urn:ietf:params:xml:ns:yang:smiv2:VPN-TC-STD-MIB?module=
VPN-TC-STD-MIB&revision=2005-11-15</capability>
</capabilities>
<session-id>324</session-id></hello>]]>]]>

Once we receive the server’s capabilities, the NETCONF connection setup process
has started. The next step is to send our (client) capabilities. A capabilities exchange is
required to be able to send any NETCONF requests to the server.

We are going to limit the client’s capabilities for this example to a few base operations
and work with a single model on the IOS XE device.

The hello object we’re going to send to the device to complete the capabilities
exchange is the following:

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>

Exploring Network APIs | 221

 <capability>urn:ietf:params:netconf:base:1.1</capability>
 <capability>http://cisco.com/ns/yang/ned/ios?module=ned&revision=
2016-07-01</capability>
 <capability>http://cisco.com/ns/yang/ned/ios/asr1k?module=
ned-asr1k&revision=2016-04-07</capability>
 </capabilities>
</hello>
]]>]]>

When the client sends its hello, it does not send the session ID
attribute that’s found in the server hello message.

Take note of the last six characters in the preceding XML docu‐
ments above:]]>]]>. These characters are used to denote that the
request is complete and it can be processed. They are required
when you are using an interactive NETCONF session.

As you start working with the SSH client, you’ll realize it’s not like a familiar interac‐
tive CLI, although it is an interactive session. There is no help menu or question mark
help available. There is no man page. It’s quite common to think something is broken
or the terminal is frozen. It’s not. If you do not get any errors after you copy and paste
XML documents into the session terminal, things are likely going well. In order to
break out of the interactive session, you’ll need to use the Control+C buttons on your
keyboard—there is no way to safely exit the interactive NETCONF session.

Once the client responds with its capabilities, you’re ready to start sending NET‐
CONF requests. You can use a text editor to preconstruct your XML documents.

If you’re following along, after you’ve sent the client hello object and pasted it into
the SSH session, you’d see the following output (the end of the server hello, and the
complete client hello ending with]]>]]>):

<--- output truncated --->
<capability>urn:ietf:params:xml:ns:yang:smiv2:UDP-MIB?module=UDP-MIB&revision=
2005-05-20</capability>
<capability>urn:ietf:params:xml:ns:yang:smiv2:VPN-TC-STD-MIB?module=
VPN-TC-STD-MIB&revision=2005-11-15</capability>
</capabilities>
<session-id>1415</session-id></hello>]]>]]><?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:writable-running:1.0
 </capability>
 <capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>

222 | Chapter 7: Working with Network APIs

 <capability>urn:ietf:params:netconf:capability:validate:1.0
 </capability>
 <capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0
 </capability>
 <capability>http://cisco.com/ns/yang/ned/ios?module=ned&revision=
 2016-06-20</capability>
 </capabilities>
</hello>]]>]]>

At this point, we’ve now successfully connected to the device and exchanged capabili‐
ties, and we can now issue an actual NETCONF request. Our first example will query
the device for its configuration on GigabitEthernet1.

This following XML document is constructed in a text editor and then copied and
pasted into the interactive session:

<?xml version="1.0"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 <GigabitEthernet>
 <name>1</name>
 </GigabitEthernet>
 </interface>
 </native>
 </filter>
 </get>
</rpc>
]]>]]>

As soon as you hit Enter, the request is sent to the device. You’ll see the XML RPC
reply from the device in near real time.

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data><native xmlns="http://cisco.com/ns/yang/ned/ios"><interface>
<GigabitEthernet><name>1</name><negotiation><auto>true</auto></negotiation>
<vrf><forwarding>MANAGEMENT</forwarding></vrf><ip><address><primary>
<address>10.0.0.51</address><mask>255.255.255.0</mask></primary></address></ip>
</GigabitEthernet></interface></native></data></rpc-reply>]]>]]>

You can optionally take the <rpc-reply> and use any XML formatter to make it more
readable. Using an XML formatter on this data yields the following:

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 <GigabitEthernet>

Exploring Network APIs | 223

 <name>1</name>
 <negotiation>
 <auto>true</auto>
 </negotiation>
 <vrf>
 <forwarding>MANAGEMENT</forwarding>
 </vrf>
 <ip>
 <address>
 <primary>
 <address>10.0.0.51</address>
 <mask>255.255.255.0</mask>
 </primary>
 </address>
 </ip>
 </GigabitEthernet>
 </interface>
 </native>
 </data>
</rpc-reply>

We’ve successfully made our first NETCONF request to a network device and
received a response. The point here isn’t to do anything with it, just like we didn’t do
anything with data returned with Postman. The value is that we’ve tested and valida‐
ted an XML request retrieve configuration for GigabitEthernet1 and now know what
the response looks like to ease us into automating devices with Python.

Let’s take a look at another example using an interactive NETCONF over SSH ses‐
sion. This time, we’ll use a Juniper vMX running Junos and obtain its configuration
for interface fxp0.

We need to use the same process just covered. We need to connect to the NETCONF
subsystem over SSH, receive the server capabilities in a hello message, and then
respond with a hello that has our client capabilities.

$ ssh -p 830 ntc@junos-vmx -s netconf
Password:
<!-- No zombies were killed during the creation of this user interface -->
<!-- user ntc, class j-super-user -->
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:confirmed-commit:1.0
 </capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:url:1.0?scheme=
 http,ftp,file</capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0
 </capability>

224 | Chapter 7: Working with Network APIs

 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-
 commit:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:validate:1.0
 </capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=
 http,ftp,file</capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>4128</session-id>
</hello>
]]>]]>

Based on the vendor implementation, you may need to supply -s
netconf as you SSH to the device. -s denotes the SSH subsystem
being used.

We then respond with our client hello message. We’re just using base capabilities
since we aren’t doing anything outside of what is supported in the NETCONF base
operations and capabilities.

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 </capabilities>
</hello>
]]>]]>

Once the capabilities exchange is complete, we then send the appropriate XML object
requesting the configuration for fxp0.

<?xml version="1.0"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <configuration>
 <interfaces>
 <interface>
 <name>fxp0</name>
 </interface>
 </interfaces>
 </configuration>
 </filter>
 </get>
</rpc>
]]>]]>

The response returned is as follows:

Exploring Network APIs | 225

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1F4/junos" message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<configuration xmlns="http://xml.juniper.net/xnm/1.1/xnm"
junos:changed-seconds="1482848933" junos:changed-localtime="2016-12-27 14:28:53 UTC">
 <interfaces>
 <interface>
 <name>fxp0</name>
 <unit>
 <name>0</name>
 <family>
 <inet>
 <address>
 <name>10.0.0.31/24</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
</configuration>
<database-status-information>
<database-status>
<user>ntc</user>
<terminal>p0</terminal>
<pid>4091</pid>
<start-time junos:seconds="1482857982">2016-12-27 16:59:42 UTC</start-time>
<idle-time junos:seconds="52">00:00:52</idle-time>
<edit-path>[edit]</edit-path>
</database-status>
<database-status>
<user>ntc</user>
<terminal></terminal>
<pid>4168</pid>
<start-time junos:seconds="1482858044">2016-12-27 17:00:44 UTC</start-time>
<edit-path></edit-path>
</database-status>
</database-status-information>
</data>
</rpc-reply>
]]>]]>

We’ve now seen two examples using NETCONF <get> operations to the device. Let’s
take a look at one more example introducing how to use the <edit-config> opera‐
tion, which is used to make a configuration change.

While our focus is now making a configuration change, in order to see the proper
way to construct an XML request for a configuration change, we are going to first
issue a get request since that will show us the structure of the complete object that
needs to get sent back to the device.

226 | Chapter 7: Working with Network APIs

For this example, we are using an industry-standard data model for
interfaces called ietf-interfaces, and supported by Cisco IOS-XE.

After we establish a NETCONF connection to the device, we can issue the following
get request to obtain interface-related configurations:

<?xml version="1.0"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 </interfaces>
 </filter>
 </get>
</rpc>
]]>]]>

The cleaned-up and formatted response from the Cisco IOS-XE router is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>GigabitEthernet1</name>
 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <address>
 <ip>10.0.0.51</ip>
 <netmask>255.255.255.0</netmask>
 </address>
 </ipv4>
 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>
 </interface>
 <interface>
 <name>GigabitEthernet4</name>
 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>
 <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip"/>
 </interface>
 </interfaces>
 </data>
</rpc-reply>
]]>]]>

Exploring Network APIs | 227

We’ve shortened the response by removing GigabitEthernet2 and
GigabitEthernet3 to make it more readable.

Notice how GigabitEthernet1 has an IP address configured. You can perform a get
request, check the configuration objects returned, and use this as the foundation to
modify the configurations on other interfaces to simplify the process.

Let’s make a configuration change and configure the IP address of 10.4.4.1/24 on Gig‐
abitEthernet4.

In order to construct the object, we’ll extract the required data from our get request.
Two items to update as we do this are the following:

1. Our object returned in the <data> tag will get enclosed in a <config> tag when
we want to make a configuration change using the NETCONF <edit-config>
operation.

2. The constructed object needs to specify a target datastore (i.e., running, startup,
or candidate) based on what the target node supports.

After we make these changes, the result is the following:

<?xml version="1.0"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>GigabitEthernet4</name>
 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
ianaift:ethernetCsmacd</type>
 <enabled>true</enabled>
 <ipv4 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
 <address>
 <ip>10.4.4.1</ip>
 <netmask>255.255.255.0</netmask>
 </address>
 </ipv4>
 </interface>
 </interfaces>
 </config>
 </edit-config>
</rpc>
]]>]]>

228 | Chapter 7: Working with Network APIs

Once this XML document is built in a text editor, it can easily be copied and pasted
into an active NETCONF session.

Pasting this into an interactive NETCONF session, we’ll see successful response as
shown in the following output:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <ok/>
</rpc-reply>
]]>]]>

We’ve stated this a few times already, but we are going to restate it
because it’s extremely important. As you get started using NET‐
CONF APIs (or RESTful APIs), you need to be aware of how to
construct the proper request object. This is often challenging as
you get started, but the hope is there are easy ways to help figure
out how to build these objects. This could come from API docu‐
mentation, tooling built to interface with the underlying schema
definitions files such as XSDs or YANG modules, or even CLI com‐
mands on the device. For example, Cisco Nexus and Juniper Junos
have CLI commands that show you exactly what the XML docu‐
ment needs to be for a given request. We’ll take a look at this soon.

Now that we’ve reviewed and explored HTTP-based APIs and the NETCONF, you
must understand how to automate network devices using these APIs. We’ll now take
a look at using Python to automate devices using HTTP-based APIs, NETCONF, and
SSH.

Automating Using Network APIs
As we’ve stated, there is a difference with the tools used to explore and learn to use an
API and the tools used to consume an API that fits into more of a production opera‐
tional model. Thus far, we’ve looked at cURL and Postman for exploring HTTP-based
APIs and an interactive NETCONF over SSH session for exploring the use of NET‐
CONF. In this part of the chapter, we’ll be looking at how to use Python to automate
network devices. Our focus is on three different Python libraries.

requests
An intuitive and popular HTTP library for Python. This is the library we use for
automating devices and controllers with both RESTful HTTP-based APIs and
non-RESTful HTTP-based APIs.

ncclient
This is a NETCONF client for Python. This is the library we use for automating
devices using NETCONF.

Automating Using Network APIs | 229

netmiko
This is a network-first SSH client for Python. This is the library we use for auto‐
mating devices via native SSH targeting devices without programmatic APIs.

Let’s get started by looking at the requests library and communicating with HTTP-
based APIs.

Using the Python requests Library
You’ve seen how to make HTTP-based API calls from the command line with cURL
and from within a GUI with Postman. These are great mechanisms to explore using a
given API, but realistically in order to write a script or a program that’s helpful for
automating network devices, you need to be able to make API calls from within a
script or program. In this section, we introduce the Python requests library—it sim‐
plifies working with web-based APIs. While we provide an overview of different APIs
in this section, such as the Arista eAPI, Cisco ASA RESTful API, Cisco NX-API, and
Cisco IOS-XE RESTCONF API, it is meant to be read from start to finish, as the core
focus is getting started with using the requests library.

To install requests, you can use pip:
[sudo] pip install requests

Let’s dive in and take a look at our first example using requests. This is a complete
Python script used to retrieve the interface configuration of a Cisco ASA. It is the
same GET request we’ve already executed with cURL and Postman.

#!/usr/bin/env python

import json
import requests
from requests.auth import HTTPBasicAuth

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')
 headers = {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 }

 url = "https://asav/api/interfaces/physical"
 response = requests.get(url, auth=auth, headers=headers, verify=False)

230 | Chapter 7: Working with Network APIs

Let’s take a look at the script, now fully commented, to understand exactly what each
line is doing.

#!/usr/bin/env python

The json module is imported so that we can encode and decode JSON
objects over the wire. While we work with JSON objects in Python as
dictionaries, they are sent over the wire as JSON strings in API calls.
This means we need a way to convert dictionaries to strings so they are
understood by the network device (web server). The converse is true too.
When you receive a response from a device using JSON encoding, a JSON
string is received that needs to be converted to a dictionary in
order to consume it in Python. We use the json module for these actions.
import json

The Python requests library is used to issue and work HTTP-based systems.
We are also using a helper function from requests
called `HTTPBasicAuth` to simplify authentication
import requests
from requests.auth import HTTPBasicAuth

This executes if our script is being run directly.
if __name__ == "__main__":

 # An authentication object is created using the helper function
 # called HTTPBasicAuth. This works when the device supports
 # basic authentication. Note that the variable name auth
 # is arbitrary. All variables are. We just happen to
 # align our variable names to the parameter name used
 # by the requests library.
 # If you don’t use the HTTPBasicAuth helper function
 # you can set the credentials in the get function
 # using a tuple such as auth=(ntc, ntc123).
 auth = HTTPBasicAuth('ntc', 'ntc123')

 # This statement creates a Python dictionary for the HTTP request
 # headers that are going to use in the API calls. The two
 # headers we are setting are Content-Type and Accept. These
 # are the same headers we reviewed and also set with Postman.
 headers = {
 'Accept': 'application/json',
 'Content-Type': 'application/json'
 }

 # The URL is saved as a variable called url to modularize our
 # code and simplify the next statement.
 url = "https://asav/api/interfaces/physical"

 # This last statement is when the API call is executed using requests.
 # In the requests library, there is a function per HTTP verb and in
 # this example we are issuing a GET request, so we are therefore
 # using the `get` function. We pass four objects into the `get` function.

Automating Using Network APIs | 231

 # The first object passed in must be the URL and the others should be
 # keyword arguments (key=value pairs). We're using the three keyword
 # arguments called auth, headers, and verify. We simply set the keywords
 # auth and headers equal to the variables we previously created and
 # then set verify equal to False since the Cisco ASA device is using
 # a self-signed certificate and we aren't verifying it.
 response = requests.get(url, auth=auth, headers=headers, verify=False)

If you run this script against a device that is using a self-signed cer‐
tificate or unverified HTTPS connection, you will receive a warn‐
ing message. When using the requests library, you can suppress
this using the following Python statement:

requests.packages.urllib3.disable_warnings()

Let’s continue to build on this; we are now going to update an interface description
using requests, which is the same request we also showed with Postman.

In order to make a configuration change using the requests library, we need to make
the same three changes we showed in Postman: update the URL, update the HTTP
request type, and send data in the body of the request.

payload = {
 "kind": "object#GigabitInterface",
 "interfaceDesc": "Configured by Python"
}

url = "https://asav/api/interfaces/physical/GigabitEthernet0_API_SLASH_0"
response = requests.patch(url, data=json.dumps(payload), auth=auth,
 headers=headers, verify=False)

Pay attention to the HTTP verb being used. This particular request
is using the patch() function as a resource is being updated. If we
were creating a resource, the post() function would be used, and if
we were replacing a resource, put() would be used. We’ll look at
these functions in more examples later in the chapter.

Updating the URL and the request type are simple changes. You can see in this exam‐
ple, the url variable is updated in the last statement, and the patch() function is now
called.

Now we’re going to focus on how to send data in the body of the HTTP request. This
is where we need to differentiate between a Python dictionary and JSON string.
While we work with dictionaries in Python to construct the required body, this is sent
over the wire as a JSON string. To convert the dictionary to a well-formed JSON
string, we use the dumps() function from the json module. This function takes a dic‐

232 | Chapter 7: Working with Network APIs

tionary and converts it to a JSON string. We finally take the string object and pass it
over the wire by assigning it to the data key being passed to the patch() function.

After providing an introduction to using the Python requests library, we are going to
continue to build on it while looking at three more HTTP-based APIs. Keep in mind,
even though we cover different APIs in this chapter, it is meant to be read from start
to finish and not as API documentation for any given API.

Getting familiar with Cisco NX-API
We are now going to look at the Cisco Nexus NX-API while diving a bit deeper into
the requests library. As we show a few examples with NX-API, keep in mind a few
things:

• The NX-API is a non-RESTful HTTP-based API. In other words, it’s an HTTP-
based API that doesn’t follow all of the principles of REST. An HTTP POST is
used no matter what operation is being performed—even if show commands are
used, a POST is still used.

• Remember POST requests require data to be sent in the data payload of the
request. This is where solid API tools and documentation come into play. Nexus
switches have a built-in tool called the NX-API Developer Sandbox that we are
going to leverage in order to learn the required structure of the payload object.

• The URL format for NX-API API calls is always http(s)://<ip-address-nexus>/ins

Using the NX-API Developer Sandbox. Before we dive into using NX-API in Python, let’s
take a quick look at the NX-API Developer Sandbox, as this is how you figure out
how to structure a proper HTTP request with NX-API.

Once NX-API is enabled, you can browse to the Nexus switch in a web browser. Once
you log in, you’ll see the Cisco NX-API Developer Sandbox as shown in Figure 7-8.

This NX-API Sandbox is an on-box tool that enables you to test APIs and understand
what the request and response objects look like without writing any code. This is sim‐
ilar in nature to what Postman offers, but the sandbox exists directly on each Nexus
switch.

An on-box tool is a tool that resides directly on the network device.
Specifically, the NX-API Developer Sandbox is a web utility that
resides on each and every Nexus switch.

Automating Using Network APIs | 233

Figure 7-8. Cisco NX-API Developer Sandbox

As soon as a command is typed in the upper-left text box in the sandbox, a JSON-
based request object is automatically generated in the bottom left (Figure 7-9).

Figure 7-9. JSON request in the NX-API Developer Sandbox

When the blue POST button is clicked, the API call is made to the switch and the
HTTP response is shown in the bottom right. The response is the same object we’ll
get when API calls are made from Python too.

Let’s extract the request object and save it as a variable so that we can use it in a
Python script.

234 | Chapter 7: Working with Network APIs

payload = {
 "ins_api": {
 "version": "1.0",
 "type": "cli_show",
 "chunk": "0",
 "sid": "1",
 "input": 'show version',
 "output_format": "json"
 }
}

Remember, payload is a dictionary and we need to convert it to a string before we
send it across the wire. We’ll do this again with the dumps() function in the json
Python module. Additionally, remember that every API request with NX-API is a
POST—this determines the function we need to use in the requests library.

Consuming NX-API in a Python script. Let’s look at a complete Python script, making an
API call to execute the show version command.

import json
import requests
from requests.auth import HTTPBasicAuth

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')
 headers = {
 'Content-Type': 'application/json',
 'Accept': 'application/json'
 }
 url = 'http://nxos-spine1/ins'

 payload = {
 "ins_api": {
 "version": "1.0",
 "type": "cli_show",
 "chunk": "0",
 "sid": "1",
 "input": 'show version',
 "output_format": "json"
 }
 }

 response = requests.post(url, data=json.dumps(payload),
 headers=headers, auth=auth)

 print(response)

There isn’t much inside this script that we haven’t covered already, but let’s recap.

Automating Using Network APIs | 235

We are using the json module, as this is how we are serializing and de-serializing
JSON objects (strings) to/from dictionaries. The requests library is imported since it’s
this library that will make the HTTP requests to the Nexus devices. The last object
we’re importing is called HTTPBasicAuth and we’re using it to simplify authentication.

The first part of the script parameterizes the credentials, headers, and URL required
to use NX-API. This isn’t any different from what we did when using the ASA REST‐
ful API.

auth = HTTPBasicAuth('ntc', 'ntc123')
headers = {
 'Content-Type': 'application/json',
 'Accept': 'application/json'
}
url = 'http://nxos-spine1/ins'

Here we can see what the credentials are—these are the same credentials you would
use to log in to the Nexus switch via SSH (assuming correct permissions).

Now take note of the URL. This is a fixed URL for all NX-API communications. It is
the IP/FQDN of the switch plus /ins, which happens to be the first three letters of
Insieme, the company Cisco acquired in 2012 for data center networking and SDN
solutions.

Last, we’ll take a look at the remaining part of the script:

payload = {
 "ins_api": {
 "version": "1.0",
 "type": "cli_show",
 "chunk": "0",
 "sid": "1",
 "input": 'show version',
 "output_format": "json"
 }
}

response = requests.post(url, data=json.dumps(payload),
 headers=headers, auth=auth)
print(response)

You should see that the variable we called payload was taken directly from NX-API
Developer Sandbox, and in Python, this is a Python dictionary with a single key-value
pair. The key is called ins_api and the value is a nested dictionary with six key-value
pairs.

This all comes together on the next line, where we can finally execute the API call to
the Nexus switch. You can see that the syntax of the Python statement is
requests.post() and will be the same for whatever verb you need in your request.
For example, if you were doing a GET request, it would be requests.get().

236 | Chapter 7: Working with Network APIs

We’re subsequently passing in four Python objects to the post() function within the
requests library. The first is a positional argument, which is the URL; the next three
we are passing in as keyword arguments using keywords required by the post()
function including data, headers, and auth.

As we’ve already said, do not forget to use data=json.dumps(<dict>) because we
need to serialize the dictionary as a string over the wire to the Nexus switch.

In the last line of the script, we simply print the response.

Let’s save this script as \nxapi-cli.py and run it from the command line.

ntc@ntc:~$ python nxapi-cli.py
<Response [200]>
ntc@ntc:~$

You can see we get an HTTP response of 200 back and everything worked as
expected, but there is only one question that remains, Where is the data we want to see
from the show version command?

Using NX-API from the Python interactive interpreter. We are going rerun this script using
the -i flag on the command line, which automatically drops us into the Python inter‐
active interpreter, but will allow us to access all objects from our script. We originally
introduced the -i flag in Chapter 4. It is a great way to test and troubleshoot.

ntc@ntc:~$ python -i nxapi-cli.py
<Response [200]>
>>>

At this point, we’re in the Python interactive interpreter and can see the objects from
our script using the dir() function, which we also covered in Chapter 4.

>>> dir()
['HTTPBasicAuth', '__builtins__', '__doc__', '__name__', '__package__',
'auth', 'json', 'payload', 'requests', 'response', 'url']
>>>

Let’s take it one step further and use dir() on response because dir() displays all
attributes and methods of a given object.

>>> dir(response)
['__attrs__', '__bool__', '__class__', '__delattr__', '__dict__',
'__doc__', '__format__', '__getattribute__', '__getstate__', '__hash__',
'__init__', '__iter__', '__module__', '__new__', '__nonzero__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__setstate__', '__sizeof__',
'__str__',
'__subclasshook__', '__weakref__', '_content', '_content_consumed',
'apparent_encoding', 'close', 'connection', 'content', 'cookies',
'elapsed', 'encoding', 'headers', 'history', 'is_permanent_redirect',
'is_redirect', 'iter_content', 'iter_lines', 'json', 'links',
'ok', 'raise_for_status', 'raw', 'reason', 'request', 'status_code', 'text',

Automating Using Network APIs | 237

'url']
>>>

We are going to focus on two of the attributes—status_code and text.

The status_code attribute gives us access to the HTTP response code as an integer.

>>> print(response.status_code)
200
>>> type(response.status_code)
<type 'int'>
>>>

The text attribute stores the actual response we care about from the Nexus switch.
This is the same data that you saw in the response window (bottom right) in the NX-
API Developer Sandbox.

>>> print(response.text)
{
 "ins_api": {
 "type": "cli_show",
 "version": "1.2",
 "sid": "eoc",
 "outputs": {
 "output": {
 "input": "show version",
 "msg": "Success",
 "code": "200",
 "body": {
 "header_str": "Cisco Nexus Operating System (NX-OS) Software...",
 "loader_ver_str": "N/A",
 "kickstart_ver_str": "7.3(1)D1(1) [build 7.3(1)D1(0.10)]",
 "sys_ver_str": "7.3(1)D1(1) [build 7.3(1)D1(0.10)]",
 "kick_file_name": "bootflash:///titanium-d1-kickstart.7.3.1.D1.0...",
 "kick_cmpl_time": " 1/11/2016 16:00:00",
 "kick_tmstmp": "02/22/2016 23:39:33",
 "isan_file_name": "bootflash:///titanium-d1.7.3.1.D1.0.10.bin",
 "isan_cmpl_time": " 1/11/2016 16:00:00",
 "isan_tmstmp": "02/23/2016 01:43:36",
 "chassis_id": "NX-OSv Chassis",
 "module_id": "NX-OSv Supervisor Module",
 "cpu_name": "Intel(R) Xeon(R) CPU @ 2.50G",
 "memory": 4002312,
 "mem_type": "kB",
 "proc_board_id": "TM604E634FB",
 "host_name": "nxos-spine1",
 "bootflash_size": 1582402,
 "kern_uptm_days": 0,
 "kern_uptm_hrs": 3,
 "kern_uptm_mins": 16,
 "kern_uptm_secs": 45,
 "manufacturer": "Cisco Systems, Inc."
 }

238 | Chapter 7: Working with Network APIs

 }
 }
 }
}
>>>

Let’s save it as a variable and extract the value of the host_name key from it.

>>> result = response.text
>>>
>>> print(result['ins_api']['outputs']['output']['body']['host_name'])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: string indices must be integers
>>>

What happened and what caused the error?

Understanding the JSON response of an HTTP-based API. We stated a few times already
that JSON strings are sent across the wire. We can prove this by checking the data
type of result.

Earlier, we used json.dumps() to take a dictionary and encode it as a JSON string.
However, now we need to do the opposite. We have to take a JSON string and convert
it to a dictionary. To do this, we’ll use json.loads(). This converts a JSON-formatted
string to a dictionary.

>>> result_dict = json.loads(result)
>>>
>>> type(result_dict)
<type 'dict'>
>>>
>>> print(result_dict['ins_api']['outputs']['output']['body']['host_name'])
nxos-spine1
>>>

The main lesson here is to not forget to properly serialize and de-serialize dictionaries
as strings and vice versa and to check your data types. As you see, this is quite easy to
verify using the built-in type() function.

Exploring more NX-API examples with Python scripts. At this point, we exit from the
Python interactive interpreter and make a few changes to the script that allow for a
little more flexibility in how it’s used. We’ll update the script so we can pass an arbi‐
trary command and NX-API message format into the script.

import json
import sys
import requests
from requests.auth import HTTPBasicAuth

Automating Using Network APIs | 239

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')

 url = 'http://nxos-spine1/ins'

 command = sys.argv[1]

 if len(sys.argv) > 2:
 command_type = sys.argv[2]
 else:
 command_type = 'cli_show'

 payload = {
 "ins_api": {
 "version": "1.0",
 "type": command_type,
 "chunk": "0",
 "sid": "1",
 "input": command,
 "output_format": "json"
 }
 }

 response = requests.post(url, data=json.dumps(payload), auth=auth)

 print('STATUS CODE: ' + response.status_code)

 print('RESPONSE:')
 results = json.loads(response.text)
 print(json.dumps(results, indent=4))

There are a few changes to the script that you should note:

• The type and input keys in the dictionary are now parameterized. These keys
are specific to NX-API. They are now variables that can be passed in from the
terminal when you are executing the script.

• Remember we covered sys.argv in Chapter 4. Our use here will require us to
pass in at least one argument, which is the command or argv[1]. The first argu‐
ment, argv[0], is always the script name.

• The user can also now pass in and optionally change the type (argv[2]) based
on the command(s) being executed or the response type desired. You can test this
and visually see it in the NX-API Developer Sandbox, but valid type can be set to
cli_show (to return JSON), cli_show_ascii (to return raw text), and cli_conf
(to make pass configuration mode commands).

• The last change is that we are now printing the status_code and text attributes
of the response.

240 | Chapter 7: Working with Network APIs

Passing a show command into the script. Let’s execute the modified script, passing show
version as an argument.

ntc@ntc:~$ python nxapi-cli.py "show version"
STATUS CODE: 200
RESPONSE:
{
 "ins_api": {
 "outputs": {
 "output": {
 "msg": "Success",
 "input": "show version",
 "code": "200",
 "body": {
 "kern_uptm_secs": 34,
 "kick_file_name": "bootflash:///titanium-d1-kickstart.7.3.1.D1.0.10.bin",
 "loader_ver_str": "N/A",
 "module_id": "NX-OSv Supervisor Module",
 "kick_tmstmp": "02/22/2016 23:39:33",
 "isan_file_name": "bootflash:///titanium-d1.7.3.1.D1.0.10.bin",
 "sys_ver_str": "7.3(1)D1(1) [build 7.3(1)D1(0.10)]",
 "bootflash_size": 1582402,
 "kickstart_ver_str": "7.3(1)D1(1) [build 7.3(1)D1(0.10)]",
 "kick_cmpl_time": " 1/11/2016 16:00:00",
 "chassis_id": "NX-OSv Chassis",
 "proc_board_id": "TM604E634FB",
 "memory": 4002312,
 "kern_uptm_mins": 10,
 "cpu_name": "Intel(R) Xeon(R) CPU @ 2.50G",
 "kern_uptm_hrs": 4,
 "isan_tmstmp": "02/23/2016 01:43:36",
 "manufacturer": "Cisco Systems, Inc.",
 "header_str": "Cisco Nexus Operating System (NX-OS) Software\nTAC support: ...",
 "isan_cmpl_time": " 1/11/2016 16:00:00",
 "host_name": "nxos-spine1",
 "mem_type": "kB",
 "kern_uptm_days": 0
 }
 }
 },
 "version": "1.2",
 "type": "cli_show",
 "sid": "eoc"
 }
}
ntc@ntc:~$

Since we can change the format of the response to plain text, let’s now pass in the
optional parameter and set it to cli_show_ascii. This is another parameter you can
learn how to use while in the NX-API Developer Sandbox.

ntc@ntc:~$ python nxapi-cli.py "show version" "cli_show_ascii"
STATUS CODE: 200
RESPONSE:
{
 "ins_api": {
 "outputs": {
 "output": {
 "msg": "Success",
 "input": "show version",
 "code": "200",

Automating Using Network APIs | 241

 "body": "Cisco Nexus Operating System (NX-OS) Software\nTAC support: ..."
 }
 },
 "version": "1.2",
 "type": "cli_show_ascii",
 "sid": "eoc"
 }
}
ntc@ntc:~$

When you set the type to cli_show_ascii, you receive the response as a string as
opposed to structured data, just as if you were on the CLI and it’s returned as a value
in the body key.

Passing in configuration commands to the script. If you did any further testing using the
NX-API Developer Sandbox, you may have noticed when you send configuration
parameters, they are passed as a string with a semicolon in between each command
embedded in the input key when using the json message format.

We’ll show one example using our same script.

ntc@ntc:~$ python nxapi-cli.py "vlan 10 ; vlan 20 ; exit ;" "cli_conf"

STATUS CODE: 200
RESPONSE:
{
 "ins_api": {
 "outputs": {
 "output": [
 {
 "msg": "Success",
 "body": {},
 "code": "200"
 },
 {
 "msg": "Success",
 "body": {},
 "code": "200"
 },
 {
 "msg": "Success",
 "body": {},
 "code": "200"
 }
]
 },
 "version": "1.2",
 "type": "cli_conf",
 "sid": "eoc"
 }
}
ntc@ntc:~$

242 | Chapter 7: Working with Network APIs

When you make configuration changes via NX-API, you receive a response element
per command sent. Note that the response from the previous example contains a dic‐
tionary per successful executed command in the output key.

You’ve now seen how to use the requests library to make API calls against Cisco ASA
and Nexus devices. You should realize that the same patterns were used in each. We
are going to emphasize this even more as we use another API.

Getting familiar with Arista eAPI
We’re now going to look at Arista’s eAPI, which is very similar to Cisco’s NX-OS NX-
API. As we show a few examples with eAPI, keep in mind a few things:

• eAPI is a non-RESTful HTTP-based API. In other words, it’s an HTTP-based API
that doesn’t follow all of the principles of REST. An HTTP POST is used no mat‐
ter what operation is being performed—even if show commands are used, a
POST is still used.

• Remember POST requests require data to be sent in the data payload of the
request. This is where solid API tools and documentation come into play. Arista
switches have a built-in tool called the Command Explorer that we are going to
leverage in order to learn the required structure of the payload object.

• The URL format for eAPI API calls is always http(s)://<ip-address-eos>/
command-api.

Using the eAPI Command Explorer. Before we dive into using eAPI in Python, let’s take a
quick look at the Command Explorer. This is how you figure out how to structure a
proper HTTP request with eAPI. Once eAPI is enabled, you can browse to the Arista
switch in a web browser and view the Command Explorer (Figure 7-10).

Figure 7-10. Arista eAPI Command Explorer

Automating Using Network APIs | 243

Similar to what we saw with the Cisco NX-API Developer Sandbox, the Arista eAPI
Command Explorer is an on-box tool that enables you to test APIs and understand
what the request and response objects look like without writing any code.

As soon as a command is typed in the Commands list in the center pane, you click
the green “Submit POST request” button to make the API call, and then you can view
the request and response objects in the bottom-left and -right panes, respectively.

Let’s look at an example issuing the show version command on the Arista switch
(Figure 7-11).

Figure 7-11. JSON request in the eAPI Command Explorer

The response object shown in the Command Explorer utility is the same object we’ll
get when API calls are made from Python.

You’ll notice that the JSON object being sent to the device with Arista is different
than with Cisco Nexus. It’s quite typical for this to be the case with different APIs, but
take special note of the data type of the commands being sent.

Consuming eAPI in a Python script. Let’s take a look at a script that uses the Python
requests library to communicate using eAPI. The script executes the show vlan
brief command and prints the response to the terminal along with the HTTP status
code.

import json
import sys
import requests
from requests.auth import HTTPBasicAuth

244 | Chapter 7: Working with Network APIs

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')

 url = 'http://eos-spine1/command-api'

 payload = {
 "jsonrpc": "2.0",
 "method": "runCmds",
 "params": {
 "format": "json",
 "timestamps": False,
 "cmds": [
 "show vlan brief"
],
 "version": 1
 },
 "id": "EapiExplorer-1"
 }

 response = requests.post(url, data=json.dumps(payload), auth=auth)
 print('STATUS CODE: ' + response.status_code)

 print('RESPONSE:')
 results = json.loads(response.text)
 print(json.dumps(results, indent=4))

The script is saved as eapi-requests.py and, when executed, gives the following output:

ntc@ntc:~$ python eapi-requests.py
STATUS CODE: 200
RESPONSE:
{
 "jsonrpc": "2.0",
 "result": [
 {
 "sourceDetail": "",
 "vlans": {
 "1": {
 "status": "active",
 "interfaces": {},
 "dynamic": false,
 "name": "default"
 },
 "30": {
 "status": "active",
 "interfaces": {},
 "dynamic": false,
 "name": "VLAN0030"
 },
 "20": {
 "status": "active",

Automating Using Network APIs | 245

 "interfaces": {},
 "dynamic": false,
 "name": "VLAN0020"
 }
 }
 }
],
 "id": "EapiExplorer-1"
}
ntc@ntc:~$

As you can see, the response is a nested JSON object. The important key is result,
which itself is a list of dictionaries. It’s a list element for each command executed.
Since we only sent the one command, we only have a single list element in the
response.

Optimizing the eAPI script. Let’s improve this script a bit to build on what we covered
in Chapter 4, so that it just prints the VLAN ID and name for each VLAN configured
on the system. The resulting output we are aiming for is this:

VLAN ID NAME
1 default
20 VLAN0020
30 VLAN0030

These changes are more about using Python than the API itself, but it’s still good
practice to go through this exercise. We’ll save the result, extract the VLANs dictio‐
nary, and then loop through the dictionary, printing each VLAN as desired.

response = requests.post(url, data=json.dumps(payload), auth=auth)
rsp = json.loads(response.text)
vlans = rsp['result'][0]['vlans']
print('{:12}{:<10}'.format('VLAN ID', 'NAME'))
for vlan_id, config in vlans.items():
 print('{:<12}{:<10}'.format(vlan_id, config['name']))

After running this new script, you’ll see the following output:

ntc@ntc:~$ python eapi-requests.py
VLAN ID NAME
1 default
30 VLAN0030
20 VLAN0020
ntc@ntc:~$

Using eAPI to autoconfigure interface descriptions based on LLDP data. Let’s continue to use
eAPI to build something a little more useful. How about a Python script that auto‐
configures interface descriptions for Ethernet interfaces based on LLDP neighbors for
two Arista spine switches?

246 | Chapter 7: Working with Network APIs

In order to do this, we should modularize the script to support multiple devices as
well as have a simple way to send multiple API calls without requiring multiple pay‐
load objects in the script.

Our goal is to autoconfigure interface descriptions such that they will look like the
following:

interface Ethernet1
 description Connects to interface Ethernet1 on neighbor eos-spine2.ntc.com
 no switchport
!
interface Ethernet2
 description Connects to interface Ethernet2 on neighbor eos-spine2.ntc.com
 no switchport
!

It’s an exercise for the reader to review the following script, but you can tell, it’s just
simply one function that makes the eAPI request to the Arista EOS switch. Every‐
thing else is Python programming that we covered in Chapter 4. The practice of writ‐
ing modular code to easily reuse code within a script becomes more natural over
time.

import json
import sys
import requests
from requests.auth import HTTPBasicAuth

def issue_request(device, commands):
 """Make API request to EOS device returning JSON response
 """

 auth = HTTPBasicAuth('ntc', 'ntc123')
 url = 'http://{}/command-api'.format(device)
 payload = {
 "jsonrpc": "2.0",
 "method": "runCmds",
 "params": {
 "format": "json",
 "timestamps": False,
 "cmds": commands,
 "version": 1
 },
 "id": "EapiExplorer-1"
 }

 response = requests.post(url, data=json.dumps(payload), auth=auth)

 return json.loads(response.text)

def get_lldp_neighbors(device):
 """Get list of neighbors

Automating Using Network APIs | 247

 Sample response for a single neighbor:
 {
 "ttl": 120,
 "neighborDevice": "eos-spine2.ntc.com",
 "neighborPort": "Ethernet2",
 "port": "Ethernet2"
 }
 """
 commands = ['show lldp neighbors']
 response = issue_request(device, commands)
 neighbors = response['result'][0]['lldpNeighbors']

 # neighbors is returned as a list of dictionaries
 return neighbors

def configure_interfaces(device, neighbors):
 """Configure interfaces in a single API call per device
 """

 command_list = ['enable', 'configure']
 for neighbor in neighbors:
 local_interface = neighbor['port']
 if local_interface.startswith('Eth'):
 # Excluding Management as it has multiple neighbors
 description = 'Connects to interface {} on neighbor {}'.format(
 neighbor['neighborPort'],
 neighbor['neighborDevice'])
 description = 'description ' + description

 interface = 'interface {}'.format(local_interface)
 cmds = [interface, description]
 command_list.extend(cmds)
 response = issue_request(device, command_list)

if __name__ == "__main__":
 # device names are FQDNs
 devices = ['eos-spine1', 'eos-spine2']
 for device in devices:
 neighbors = get_lldp_neighbors(device)
 configure_interfaces(device, neighbors)
 print('Auto-Configured Interfaces for {}'.format(device))

By now, you’re probably feeling comfortable using the requests library after looking at
using three different APIs. We’ve used a native RESTful API on the Cisco ASA, and
the Nexus NX-API and Arista eAPI, which are both non-RESTful HTTP-based APIs.
Remember, every request using NX-API or eAPI is an HTTP POST and the URL is
the same for every request, whereas a true RESTful API using HTTP as transport has
a different URL based on the resource in question (e.g., interface resource, routing
resource, and routes).

248 | Chapter 7: Working with Network APIs

Earlier in the chapter, we said we would make note of custom libra‐
ries when appropriate. It’s worth pointing out that it is critical to
understand how to use the requests library, but Arista does have an
open source library called pyeapi. Like most libraries, it’s an
abstraction layer to simplify performing common tasks. When
using pyeapi, you don’t need to worry about them being HTTP
POSTs or how to structure the payload of an object. That is all
taken care of by the library.
The following script using pyeapi is equivalent to the one we wrote
earlier using requests, although the one with pyeapi is just commu‐
nicating to a single device. As you can see, the difference is with the
underlying communication to the device. Once you have the
response object, the code is identical. Note: this example script
makes use of a pyeapi configuration file. Creating a proper eAPI
configuration file is out of the scope of this book.

from pyeapi import connect_to

if __name__ =="__main__":

 device = connect_to('eos-spine1')
 rsp = device.enable('show vlan brief')
 vlans = rsp[0]['result']['vlans']

 print('{:12}{:<10}'.format('VLAN ID', 'NAME'))
 for vlan_id, config in vlans.items():
 print('{:<12}{:<10}'.format(vlan_id, config['name']))

For more information on pyeapi, you can reference the code and its
docs page.

Getting familiar with RESTCONF on IOS-XE
In order to show one more HTTP-based API that adheres to the principles of REST
before we transition to automating devices with NETCONF APIs, we’ll take a look at
a newer device API for Cisco IOS-XE. It is called RESTCONF. The RESTCONF API
on IOS-XE is a robust RESTful API that uses HTTP for transport and supports JSON
and XML encoding. This means as the network developer, you have the choice to
work with whichever data format you prefer.

RESTCONF is an IETF draft and is a particular implementation of
a RESTful API. It is an HTTP-based protocol that provides a pro‐
grammatic interface for accessing data that is modeled in YANG.

Automating Using Network APIs | 249

https://tools.ietf.org/html/draft-ietf-netconf-restconf-09

The RESTCONF API can be enabled via the restconf global con‐
figuration command on IOS-XE 16.3.1 or later. Note you also need
to configure the ip http/s server global configuration com‐
mand. IMPORTANT: The restconf command is not supported by
TAC until 16.6 or later. Based on your version, it may be a hidden
command and may not be supported by TAC. You’ll know it’s sup‐
ported when you see the command! Also note that specific API
calls using NETCONF/RESTCONF are changing after 16.3 and
instructions on how to convert 16.3 API calls (as shown in this sec‐
tion) to 16.5+ can be found on GitHub.

The RESTCONF API supports the GET, PUT, PATCH, POST, and DELETE request
types, making it extremely powerful to perform particular network operations, which
we’ll cover shortly.

Before we show how to use the RESTful API on IOS-XE, we need
to point out one difference about using RESTCONF versus a tradi‐
tional RESTful API. It pertains to the headers used in the HTTP
request. In the previous examples for Cisco NX-API, Cisco ASA
RESTful API, and Arista eAPI, the Content-Type and Accept head‐
ers were set to application/json. This is typical for HTTP-based
APIs, but because RESTCONF is unique in that the API is gener‐
ated from YANG models, the Content-Type and Accept headers
are different. When you work with a RESTCONF API, there are
different headers that can be used. For RESTCONF, we are primar‐
ily going to use application/vnd.yang.data+json. Note: it is pos‐
sible to substitute out json for xml.

Executing an API call using RESTCONF. The first API call we are going to execute
retrieves a full running configuration modeled as JSON.

Method: GET
URL: 'http://ios-csr1kv/restconf/api/config/native'
Accept-Type: application/vnd.yang.data+json

Executing this API call in your tool of choice shows an output like what’s in the next
example, but you would see a full configuration (we are just showing a snippet):

{
 "ned:native": {
 # truncated for brevity
 "interface": {
 "GigabitEthernet": [
 {
 "name": "1"
 },
 {

250 | Chapter 7: Working with Network APIs

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe/1651

 "name": "2"
 },
 {
 "name": "3"
 },
 {
 "name": "4"
 }
]
 },
 # truncated for brevity
}

We can also add a query parameter to the URL to get back every child element that is
part of the JSON hierarchy. Notice the preceding example only had a single key called
name for each interface. Adding ?deep adds the full configuration per interface. You
can see this in the next example.

Method: GET
URL: 'http://ios-csr1kv/restconf/api/config/native?deep'
Accept-Type: application/vnd.yang.data+json

{
 "ned:native": {
 # truncated for brevity
 "interface": {
 "GigabitEthernet": [
 {
 "negotiation": {
 "auto": true
 },
 "ip": {
 "access-group": {},
 "arp": {
 "inspection": {}
 },,
 "verify": {
 "unicast": {}
 },
 "authentication": {},
 "address": {
 "primary": {
 "mask": "255.255.255.0",
 "address": "10.0.0.51"
 }
 },
 "dhcp": {
 "snooping": {},
 "relay": {
 "information": {}
 }
 },

Automating Using Network APIs | 251

 "rsvp": {},
 "ospf": {
 "dead-interval": {},
 "fast-reroute": {}
 },
 "igmp": {}
 },
 "standby": {},
 "bandwidth": {},
 "cdp": {},
 "wrr-queue": {},
 "bfd": {},
 "snmp": {
 "trap": {
 "link-status-capas": {
 "link-status": {}
 }
 }
 },
 "power": {},
 "logging": {},
 "storm-control": {
 "broadcast": {}
 }
 "encapsulation": {},
 "name": "1",
 # truncated for brevity
 },
 # the above output is just for GigabitEthernet1
 # it repeats for each interface when using ?deep
}

While much of the output has been omitted in this example, the point is that when
you add ?deep, you get back all child elements for the RESTCONF API on IOS-XE.

As you may have guessed, the Python script that was used to print the preceding out‐
puts has the same structure as the other examples using the Python requests library.

Here is the sample script we used to output both JSON objects from the last two
examples.

#!/usr/bin/env python

import json
import requests
from requests.auth import HTTPBasicAuth

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')
 headers = {
 'Accept': 'application/vnd.yang.data+json',

252 | Chapter 7: Working with Network APIs

 'Content-Type': 'application/vnd.yang.data+json'
 }

 url = 'http://ios-csr1kv/restconf/api/config/native?deep'
 response = requests.get(url, headers=headers, auth=auth)

 response = json.loads(response.text)
 print(json.dumps(response, indent=4))

Navigating a RESTCONF API response. Now that we understand how to get the equivalent
of a show run through an API call, we can get more granular with subsequent API
calls by understanding the tree structure of the JSON object returned. You can see
from the previous examples that we focused on showing the interface configuration.

Let’s now issue an API request to retrieve the IP address configurations that exist on
the GigabitEthernet1 interface. A simplified JSON structure is shown in the next
example to depict specifically the JSON keys/values that represent the interface data
we want.

{
 "ned:native": {
 "interface": {
 "GigabitEthernet": [
 "name": "1",
 "ip": {
 "address": {
 "primary": {
 "mask": "255.255.255.0",
 "address": "10.0.0.51"
 }
 }
 # truncated for brevity

It’s the same output data that can be used to test and construct subsequent and more
granular HTTP GET requests. To configure the address for GigabitEthernet1, you
can see that it is the following path based on the previously gathered JSON output:

interface (dict) -> GigabitEthernet (list) -> ip (dict) -> address (dict)

Although the value of GigabitEthernet is a list, we use the value of the name key in
the API call URL to extract a particular element. Let’s take a look.

In order to perform this request, we still need to use an HTTP GET. The main change
is in the URL since we are going to be accessing a different resource within the net‐
work device.

The following is the URL required to make this particular API request: http://ios-
csr1kv/restconf/api/config/native/interface/GigabitEthernet/1/ip/address.

Automating Using Network APIs | 253

After we run the updated script, we see exactly what we wanted—just the IP address
information for GigabitEthernet1. If there were secondary IP addresses, you would
see them too.

cisco@cisco:~/netconf/xe$ python iosxe_restconf_GigE1.py
{
 "ned:address": {
 "primary": {
 "mask": "255.255.255.0",
 "address": "10.0.0.51"
 }
 }
}

Using HTTP verbs PUT and PATCH with RESTCONF on IOS-XE. So far in this chapter, we’ve
made GET and POST requests using the Python requests library across NX-OS, EOS,
and now IOS-XE. Since HTTP verbs such as PUT and PATCH can prove to be
extremely valuable with how network devices are managed in the future, let’s take a
look at them while still working with the IOS-XE RESTCONF API.

First, we are going to use a PATCH request to add OSPF network statements to an
existing OSPF configuration.

This is the current and complete OSPF configuration on our IOS-XE router.

ios-csr1kv#show run | begin router ospf
router ospf 10
 router-id 100.100.100.100
 network 10.0.1.10 0.0.0.0 area 0
 network 10.0.2.100 0.0.0.0 area 0
!

What we want to do is add the following two network statements:

 network 10.0.10.1 0.0.0.0 area 0
 network 10.0.20.1 0.0.0.0 area 0

If we go back to our complete running configuration, we see that the following URL
can be used to access the OSPF configuration: http://ios-csr1kv/restconf/api/config/
native/router.

There is an ospf key inside the object returned. Based on viewing the output of a pre-
configured router, we’d then be able to see that the OSPF object requires a list of dic‐
tionaries. There is a single list element per OSPF process ID.

The following example shows a summary of the JSON representation of the OSPF
configuration that was taken from the full running configuration output:

"router": {
 "ospf": [
 {
 "id": 10,

254 | Chapter 7: Working with Network APIs

 "router-id": "100.100.100.100",
 "network": [
 {
 "ip": "10.0.1.10",
 "mask": "0.0.0.0",
 "area": 0
 },
 {
 "ip": "10.0.2.100",
 "mask": "0.0.0.0",
 "area": 0
 }
]
 # truncated for brevity
 }
]
},

Remember, we’re simply trying to add, or Patch, two more network statements into
the OSPF configuration. There are various ways to structure the URL and body based
on what level in the hierarchy we want to use. In order to show uniformity between
the next two examples and to minimize the change in headers, we are going to use the
following URL to add these network statements: http://ios-csr1kv/restconf/api/config/
native/router.

The object we are going to send needs to be modeled just like the data we saw in the
GET response.

When using PATCH, you only need to include the key-value pairs
you want to update/add.

In order to add these routes, we’ll send the following JSON object to the device using
this URL: http://ios-csr1kv/restconf/api/config/native/router:

{
 "ned:router": {
 "ospf": [
 {
 "id": 10,
 "network": [
 {
 "ip": "10.0.10.1",
 "mask": "0.0.0.0",
 "area": "0"
 },
 {
 "ip": "10.0.20.1",

Automating Using Network APIs | 255

 "mask": "0.0.0.0",
 "area": "0"
 }
]
 }
]
 }
}

In order to simplify the Python script and make it something more analogous to what
would be used in a production environment, we are going to abstract away the OSPF
configuration (inputs) and store them into a YAML file. The same JSON object just
shown can easily be modeled in a YAML file. Take a look at the following example:

ospf:
 - id: 10
 network:
 - ip: 10.0.10.1
 mask: 0.0.0.0
 area: 0
 - ip: 10.0.20.1
 mask: 0.0.0.0
 area: 0

We saved this file as ospf-config.yml and used it as our inputs directly in the Python
script. Note: this YAML object is equal to the object inside the ned:router key.

Using Python to consume the IOS-XE RESTCONF API. Let’s look at our new Python script
that will add these two network statements to the existing OSPF configuration.

#!/usr/bin/env python

import json
import requests
from requests.auth import HTTPBasicAuth
import yaml

if __name__ == "__main__":

 auth = HTTPBasicAuth('ntc', 'ntc123')
 headers = {
 'Accept': 'application/vnd.yang.data+json',
 'Content-Type': 'application/vnd.yang.data+json'
 }

 url = 'http://ios-csr1kv/restconf/api/config/native/router'

 ospf_config = yaml.load(open('ospf-config.yml').read())

 ospf_object_to_send = {

256 | Chapter 7: Working with Network APIs

 "ned:router": ospf_config
 }

 response = requests.patch(url, data=json.dumps(ospf_object_to_send),
 headers=headers, auth=auth)

 print(response.status_code)

Upon executing this script and checking the router, you see the following new OSPF
configuration:

router ospf 10
 router-id 100.100.100.100
 network 10.0.1.10 0.0.0.0 area 0
 network 10.0.2.100 0.0.0.0 area 0
 network 10.0.10.1 0.0.0.0 area 0
 network 10.0.20.1 0.0.0.0 area 0
!

If needed, please reference Chapter 4 for working with files in
Python, and Chapter 5 for working with YAML objects.

Understanding declarative configuration management. When we think about managing
network configurations with the CLI, it’s quite trivial to add configurations. However,
it is quite complex to remove or negate commands. For example, what if you had a
single instance of OSPF running with 50 network statements, but due to a change in
design, you only need 2 network statements? You would actually have to know which
48 statements need to be negated with a no command. This process is arduous and
mundane as we extrapolate the effort for all types of configurations on a network
device. For our example, wouldn’t it be easier to take the opposite approach—focus
on the configuration that should exist on the network device? This is a growing trend,
becoming more possible due to newer APIs and ways of thinking. This is called
declarative configuration.

Let’s see how we can make the slightest change in our OSPF configuration and script
to declaratively configure OSPF to yield the following commands.

router ospf 10
 router-id 10.10.10.10
 network 10.0.10.1 0.0.0.0 area 0
 network 10.0.20.1 0.0.0.0 area 0
!

By declaratively configuring OSPF, we are are ensuring no other OSPF config exists
other than what exists in the single API call.

Automating Using Network APIs | 257

The changes in the output reflect a new router ID, the removal of the two original
network statements, and the addition of the new network statements.

First, we’ll update the YAML file and add a key called router-id with its associated
value of 10.10.10.10. Remember, whatever we have in the YAML file will be the only
OSPF configuration that exists after the API call.

ospf:
 - id: 10
 router-id: 10.10.10.10
 network:
 - ip: 10.0.10.1
 mask: 0.0.0.0
 area: 0
 - ip: 10.0.20.1
 mask: 0.0.0.0
 area: 0

Once the YAML file is updated and saved, the last change required is to update the
API call to use an HTTP PUT instead of a PATCH.

response = requests.put(url, data=json.dumps(ospf_object_to_send),
 headers=headers, auth=auth)

After these changes, we run the script, and voilà! This following output is our new
OSPF configuration on the router:

router ospf 10
 router-id 10.10.10.10
 network 10.0.10.1 0.0.0.0 area 0
 network 10.0.20.1 0.0.0.0 area 0
!

With RESTful APIs that offer this type of power and control, you need to ensure you
have a good process for making changes. As you can see, if you are only trying to
make a slight change and addition and happen to send a PUT request, there can be
catastrophic consequences.

From an overall adoption perspective of this particular API, you may want to start
using PATCH requests and gradually migrate to the point where you can indeed use
PUTs to declaratively manage specific sections of configuration.

258 | Chapter 7: Working with Network APIs

The example we showed using the PUT declaratively configures
everything under the router key, not just OSPF configuration. If
you execute this API in your environment, it would technically
eliminate all other routing protocol configurations too. That’s not a
good thing. However, we chose to show that API to highlight its
power and potential danger if it’s not used and understood
properly.
Another, slightly safer option is to declaratively manage just the
OSPF process ID 10 configuration. To do this you can use the fol‐
lowing URL and object:

METHOD: PUT
URL: http://ios-csr1kv/restconf/api/config/native/router/ospf/10
BODY:
{
 "ned:ospf": [
 {
 "id": 10,
 "network": [
 {
 "ip": "10.0.10.1",
 "mask": "0.0.0.0",
 "area": "0"
 },
 {
 "ip": "10.0.20.1",
 "mask": "0.0.0.0",
 "area": "0"
 }
]
 }
]
}

Now that we’ve shown how to start automating devices that have HTTP-based APIs,
let’s look at the same approach using the Python ncclient for automating devices
using the NETCONF API.

Using the Python ncclient Library
The Python ncclient is the de facto NETCONF client for Python. It is client software
that is built to communicate programmatically with NETCONF servers. Remember,
in our case, a NETCONF server is going to be a network device. We are going to walk
through several examples using the ncclient on Cisco IOS-XE, Cisco IOS-XR, and
Juniper Junos devices.

To install the ncclient, you can use pip:
pip install ncclient

Automating Using Network APIs | 259

Once the ncclient is installed, you can start to issue NETCONF API calls to network
devices. Let’s walk through this while in the Python interactive interpreter.

When we enter the Python interpreter, the first step we need to perform is the import
of the manager module within the ncclient Python package.

>>> from ncclient import manager
>>>

The main function we are going to use within the manager module is responsible for
establishing the persistent connection to the device. Keep in mind that since NET‐
CONF runs over SSH it is a stateful and persistent connection (compared to what we
discussed previously about RESTful APIs being stateless). This function is called con
nect() and accepts a number of parameters such as hostname/IP address, port num‐
ber, and credentials. You’ll see in the following example that there are other
parameters that will remain unchanged for our examples that map back to underlying
SSH configuration and properties.

>>> device = manager.connect(host='ios-csr1kv', port=830, username='ntc',
... password='ntc123', hostkey_verify=False,
... device_params={}, allow_agent=False,
... look_for_keys=False)
...
>>>

As soon as the connect function is called, a NETCONF session is established to the
network device and an object is returned of type ncclient.manager.Manager. You
can see this by printing the variable that saved this object.

>>> print(device)
<ncclient.manager.Manager object at 0x7f0420059d90>
>>>

For our example, device is an instance of an ncclient Manager object. Let’s explore
this object from the Python interactive interpreter.

Understanding the Manager object

First, we’ll look at the output of the dir() function on device and then use help()
again on a specific object.

>>> dir(device)
['_Manager__set_async_mode', '_Manager__set_raise_mode', '_Manager__set_timeout',
'...methods removed for brevity... '_device_handler', '_raise_mode', '_session',
'_timeout', 'async_mode', 'channel_id', 'channel_name', 'client_capabilities',
'close_session', 'commit', 'connected', 'copy_config', 'delete_config',
'discard_changes', 'dispatch', 'edit_config', 'execute', 'get', 'get_config',
'get_schema', 'kill_session', 'lock', 'locked', 'poweroff_machine',
'raise_mode', 'reboot_machine', 'scp', 'server_capabilities', 'session',
'session_id', 'timeout', 'unlock', 'validate']
>>>

260 | Chapter 7: Working with Network APIs

A few methods shown in the dir() output map back to connection setup and tear-
down, but also notice methods that map directly back to specific NETCONF opera‐
tions.

As you saw when we were constructing XML documents and sending them over an
interactive NETCONF session, an XML tag within the <rpc> specified the operation.
We looked at two operations: <get> and <edit-config>. In the output of the previ‐
ous example above, you’ll notice two methods called get and edit_config. If you
look closer, you see methods that map back to other standard NETCONF operations
we reviewed earlier as well: copy-config, get-schema, lock, unlock, validate, and
so on.

Exploring the get method. You now know that methods of our device object map back
to NETCONF operations. Let’s see how we can use them by using the built-in help()
function.

>>>
>>> help(device.get)

Help on method wrapper in module ncclient.manager:

wrapper(self, *args, **kwds) method of ncclient.manager.Manager instance
 Retrieve running configuration and device state information.

 filter specifies the portion of the configuration to
 retrieve (by default entire configuration is retrieved)

 :seealso: :ref:`filter_params`
(END)

The text displayed when we use the help() function is automatically pulled from the
docstring directly in the code. The help is only as good as what the ncclient author
writes in there. If you’re not happy with it, it’s open source, so feel free to issue a pull
request on GitHub.

In the help for the get() method, we see that they are using a variable amount of
parameters and keyword arguments denoted by the * and **. The optional keyword
that we can use is called filter. Certain devices support returning the entire configu‐
rations; our examples focus on using the filter parameter to selectively retrieve por‐
tions of the configuration as XML-encoded data.

Retrieving Cisco IOS-XE device configurations with ncclient
Earlier in the chapter when we were exploring the use of NETCONF, we used the fol‐
lowing XML document as a way to query the Cisco IOS-XE router for its configura‐
tion on GigabitEthernet1:

Automating Using Network APIs | 261

<?xml version="1.0"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 <GigabitEthernet>
 <name>1</name>
 </GigabitEthernet>
 </interface>
 </native>
 </filter>
 </get>
</rpc>
]]>]]>

As stated earlier in this chapter, the IOS-XE version used for this
book was 16.3.1. The device models have changed since 16.3 into
16.5 and 16.6. Instructions for how to convert 16.3 API calls (as
shown in this section) to 16.5+ can be found on GitHub.

This was a NETCONF RPC using the <get> operation to send the provided filter to
the device. If we want to do this in Python, we need to build the same filter object.
We’ll do this as an XML string.

>>> get_filter = """
... <native xmlns="http://cisco.com/ns/yang/ned/ios">
... <interface>
... <GigabitEthernet>
... <name>1</name>
... </GigabitEthernet>
... </interface>
... </native>
... """
>>>

Remember that triple quotes in Python denote a multiline com‐
ment and can be used to create a multiline string that can be used
as a value of a variable.

Once the filter is created, we pass that as a parameter into the get() method.

>>> nc_get_reply = device.get(('subtree', get_filter))
>>>

262 | Chapter 7: Working with Network APIs

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe/1651

All filters used in this book are subtree filters. NETCONF and the
ncclient also support xpath filters. They rely on specific NETCONF
capabilities that the network device must support.
The object we need to pass to the get() method must be a single
object. It is a tuple that has two elements—the type of filter and the
filter/expression.
Finally, while our examples use XML strings as the filters, it is also
possible to use native XML objects (etree objects). We are using
string objects, as they are much more human-readable and easier
to use when getting started. You may want to use native etree
objects if you need to dynamically build a filter object. We examine
etree element objects in the next few examples too.

We issued a NETCONF request to the device and stored it in nc_get_reply.

Viewing an ncclient NETCONF reply

Let’s print the response object, nc_get_reply.

>>> print(nc_get_reply)
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:e103ecdf-9713-46c0-8769-0e574d9b4489"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"><data>
<native xmlns="http://cisco.com/ns/yang/ned/ios"><interface>
<GigabitEthernet><name>1</name><negotiation><auto>true</auto>
</negotiation><vrf><forwarding>MANAGEMENT</forwarding></vrf>
<ip><address><primary><address>10.0.0.51</address><mask>255.255.255.0</mask>
</primary></address></ip></GigabitEthernet></interface></native>
</data></rpc-reply>
>>>

Let’s also examine the data type of the return object.

>>> type(nc_get_reply)
<class 'ncclient.operations.retrieve.GetReply'>
>>>

You can view the XML response in the print output, but since this is an ncclient
GetReply object and is not a native Python object like a string, dictionary, or list, we’ll
need to learn about this object’s built-in attributes.

It just so happens that a GetReply object has a few built-in attributes that simplify
working with NETCONF get replies. Let’s examine a few of them.

The attributes data and data_ele return the same object, and this is the response
represented as a native XML object. To verify these object types, you can use the
type() function.

Automating Using Network APIs | 263

>>> type(nc_get_reply.data)
<type 'lxml.etree._Element'>
>>>
>>> type(nc_get_reply.data_ele)
<type 'lxml.etree._Element'>
>>>

When we refer to native XML objects, we are referring to lxml.etree._Element
objects.

>>> print(nc_get_reply.data_ele)
<Element {urn:ietf:params:xml:ns:netconf:base:1.0}data at 0x7f041acbab48>
>>>
>>> print(nc_get_reply.data)
<Element {urn:ietf:params:xml:ns:netconf:base:1.0}data at 0x7f041acbab48>
>>>

Notice how it is exactly the same object. This is the same object type we mentioned
earlier that could be used as a filter instead of an XML string. For the remainder of
this section we use data, although you can use data_ele if you prefer as they are the
same object.

In order to convert a native XML object to a string, you can use the lxml Python
library and more specifically, the function called tostring(). Remember, we initially
introduced the lxml library in Chapter 5.

>>> from lxml import etree
>>>
>>> as_string = etree.tostring(nc_get_reply.data)
>>>
>>> print(as_string)
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<native xmlns="http://cisco.com/ns/yang/ned/ios"><interface>
<GigabitEthernet><name>1</name><negotiation><auto>true</auto>
</negotiation><vrf><forwarding>MANAGEMENT</forwarding></vrf>
<ip><address><primary><address>10.0.0.51</address>
<mask>255.255.255.0</mask></primary></address></ip>
</GigabitEthernet></interface></native></data>
>>>

Notice how the output is not formatted so it can be easily read. You can use an
optional parameter called pretty_print and set it to True to make the response more
readable.

>>> as_string = etree.tostring(nc_get_reply.data, pretty_print=True)
>>>
>>> print(as_string)
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>

264 | Chapter 7: Working with Network APIs

 <GigabitEthernet>
 <name>1</name>
 <negotiation>
 <auto>true</auto>
 </negotiation>
 <vrf>
 <forwarding>MANAGEMENT</forwarding>
 </vrf>
 <ip>
 <address>
 <primary>
 <address>10.0.0.51</address>
 <mask>255.255.255.0</mask>
 </primary>
 </address>
 </ip>
 </GigabitEthernet>
 </interface>
 </native>
</data>

>>>

Exploring more attributes of the ncclient reply

We’ve reviewed the data and data_ele attributes; now let’s look at another attribute
called xml. The xml attribute returns the response as an XML string. You can verify
this using the type() function.

>>> type(nc_get_reply.xml)
<type 'str'>
>>>

Finally, you can print and view the value as the XML string.

>>> print(nc_get_reply.xml)
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:e103ecdf-9713-46c0-8769-0e574d9b4489"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"><data>
<native xmlns="http://cisco.com/ns/yang/ned/ios"><interface>
<GigabitEthernet><name>1</name><negotiation><auto>true</auto>
</negotiation><vrf><forwarding>MANAGEMENT</forwarding></vrf><ip>
<address><primary><address>10.0.0.51</address><mask>255.255.255.0</mask>
</primary></address></ip></GigabitEthernet></interface>
</native></data></rpc-reply>
>>>

When you view the output as an XML string using the xml attribute, notice the outer‐
most XML tag is <rpc-reply> and all response data is nested under the XML tag of
<data>.

Automating Using Network APIs | 265

Just like you can take an XML object and covert it to a string with etree.tostring(),
you can take a string and convert it to an XML object with etree.fromstring().

>>> as_object = etree.fromstring(nc_get_reply.xml)
>>>
>>> print(as_object)
<Element {urn:ietf:params:xml:ns:netconf:base:1.0}rpc-reply at 0x7fc33365f9e0>
>>>

Not worrying about the XML namespace yet, we can see the name of the XML object
is rpc-reply. The name when you print an XML object is always what the outermost
XML tag is, and in our case that’s rpc-reply.

At this point, we’ve used the NETCONF <get> operation through the use of the
get() method of the ncclient device object, but we still haven’t shown how to parse
and extract information from the XML RPC reply message.

We saw in the response that there is an IP address and mask configured on Gigabit
Etheret1. Both of these elements are child elements of an XML object called
<address>. Here is the object we are interested in:

<address>
 <primary>
 <address>10.0.0.51</address>
 <mask>255.255.255.0</mask>
 </primary>
</address>

This means there will always be more than one <address> object when there are pri‐
mary and secondary addresses configured.

Let’s extract the primary IP address and mask and save them in individual variables.
We are going to do this in two steps. First, we’ll extract the <primary> object, and
once we have that, we’ll extract the precise <address> and <mask> elements.

>>> primary = nc_get_reply.data.find(
 './/{http://cisco.com/ns/yang/ned/ios}primary')
>>>

In this example, we are introducing the find() method for etree._Element objects.
The find() method is a simple way to search a full XML object for a given XML tag
when using the expression denoted by .//. Since we want to extract the <primary>
object and its children, we could have tried the following example first, but if we had,
it wouldn’t have worked:

>>> primary = nc_get_reply.data.find('.//primary')
>>>

This statement tries to extract the XML element with a tag of <primary>. The only
caveat is that when XML namespaces are used, the actual tag name is equal to the

266 | Chapter 7: Working with Network APIs

namespace concatenated with the tag, or in other words, {namespace}tag. Alterna‐
tively, if an XML namespace alias is used it is alias:_tag_. In our case, there is no
alias, so the <primary> object is {http://cisco.com/ns/yang/ned/ios}primary.

There are actually two namespaces in our example. Pay close atten‐
tion to which one is used.

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">

You can gradually print one child object at a time to see which
namespace is used. In our example, the default namespace is
urn:ietf:params:xml:ns:netconf:base:1.0, but when we print a
single object, we only see the one. The next namespace in the hier‐
archy is overriding the default namespace for all children of the
<native> element.

In order to better understand this, let’s print <primary> as a string.

>>> print(etree.tostring(primary, pretty_print=True))
<primary xmlns="http://cisco.com/ns/yang/ned/ios"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <address>10.0.0.51</address>
 <mask>255.255.255.0</mask>
</primary>

>>>

Notice how this is the XML string starting at the <primary> tag. Let’s now extract the
values we want—the IP address and subnet. We’ll use the same approach again using
the find() method on the object we created called primary. This time we’ll go one
step further, showing that the text attribute of the XML object returned is the actual
value of interest to us, which in our case is going to be an IP address and subnet
mask.

>>> ipaddr = primary.find('.//{http://cisco.com/ns/yang/ned/ios}address')
>>> ipaddr.text
'10.0.0.51'
>>>
>>> mask = primary.find('.//{http://cisco.com/ns/yang/ned/ios}mask')
>>> mask.text
'255.255.255.0'
>>>

Automating Using Network APIs | 267

You may be thinking, “Extracting values based on the namespaces
is tedious,” and you are absolutely right. However, remember a few
things:

• You already know the namespace from building the request
object. You simply have to concatenate two strings.

• It is possible to build a function to strip namespaces from an
XML object before doing XML parsing, further simplifying the
process.

We’ve seen how to extract a single value such as those shown like a primary IP
address and subnet mask, but what about extracting all objects if there were multi‐
ples? One example of this is an interface having multiple secondary IP addresses.

Adding to the query filter to minimize the response data
At this point, we’ve added a few secondary addresses manually to GigabitEthernet4
and will now perform the same steps in order to see what the response object looks
like from a NETCONF <get> operation for just GigabitEthernet4.

>>> get_filter = """
... <native xmlns="http://cisco.com/ns/yang/ned/ios">
... <interface>
... <GigabitEthernet>
... <name>4</name>
... </GigabitEthernet>
... </interface>
... </native>
... """
>>>
>>> nc_get_reply = device.get(('subtree', get_filter))
>>>
>>> print(etree.tostring(nc_get_reply.data, pretty_print=True))
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <interface>
 <GigabitEthernet>
 <name>4</name>
 <negotiation>
 <auto>true</auto>
 </negotiation>
 <ip>
 <address>
 <primary>
 <address>10.4.4.1</address>
 <mask>255.255.255.0</mask>
 </primary>
 <secondary>

268 | Chapter 7: Working with Network APIs

 <address>20.2.2.1</address>
 <mask>255.255.255.0</mask>
 <secondary/>
 </secondary>
 <secondary>
 <address>22.2.2.1</address>
 <mask>255.255.255.0</mask>
 <secondary/>
 </secondary>
 <secondary>
 <address>24.2.2.1</address>
 <mask>255.255.255.0</mask>
 <secondary/>
 </secondary>
 </address>
 </ip>
 </GigabitEthernet>
 </interface>
 </native>
</data>

>>>

For this exercise, our goal is to print all secondary IP addresses and masks.

One option is to use a for loop to do this using a method called iter() of etree
objects.

In the example that follows, we also clean up how we are using namespaces by build‐
ing a variable called xmlns that we can then use to template a string using the for
mat() method.

>>> xmlns = '{http://cisco.com/ns/yang/ned/ios}'
>>> address_container = nc_get_reply.data.find('.//{}address'.format(xmlns))
>>> for secondary in address_container.iter('{}secondary'.format(xmlns)):
... if secondary:
... print(secondary.find('.//{}address'.format(xmlns)).text)
... print(secondary.find('.//{}mask'.format(xmlns)).text)
... print('-' * 10)
...
20.2.2.1
255.255.255.0

22.2.2.1
255.255.255.0

24.2.2.1
255.255.255.0

>>>

Automating Using Network APIs | 269

That is just one way to extract the secondary addresses (or any multiples). Let’s take a
look at a simpler approach. Since we already have address_container that contains
all of our primary and secondary addresses, we’ll use that to print each of them by
first extracting all address elements using the findall() method of etree._Element
objects.

>>> all_addresses = address_container.findall('.//{}address'.format(xmlns))
>>>
>>> for item in all_addresses:
... print(item.text)
...
10.4.4.1
20.2.2.1
22.2.2.1
24.2.2.1
>>>

The findall() method proves to be valuable when you need to extract multiple ele‐
ments of the same type.

By now, you should be getting the hang of issuing NETCONF <get> requests. Let’s
look at one more, but this time, we are going to use a Juniper Junos vMX router.

Retrieving Juniper vMX Junos device configurations with ncclient
On our Juniper vMX, we currently have two SNMP read-only community strings
configured. For verification, this is the output after we issue the show snmp command
while in configuration mode:

ntc@vmx1# show snmp
community public {
 authorization read-only;
}
community networktocode {
 authorization read-only;
}

[edit]
ntc@vmx1#

Our desire is to extract the name of each community string and the authorization
level for each.

Juniper has functionality in its CLI such that you can see the expected XML response
as well when you pipe the command to display xml.

ntc@vmx1# show snmp | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1F4/junos">
 <configuration junos:changed-seconds="1482848933"
junos:changed-localtime="2016-12-27 14:28:53 UTC">
 <snmp>

270 | Chapter 7: Working with Network APIs

 <community>
 <name>public</name>
 <authorization>read-only</authorization>
 </community>
 <community>
 <name>networktocode</name>
 <authorization>read-only</authorization>
 </community>
 </snmp>
 </configuration>
 <cli>
 <banner>[edit]</banner>
 </cli>
</rpc-reply>

[edit]
ntc@vmx1#

Now that we know what’s going to be returned from our NETCONF request, we can
more easily write the associated Python code. Whenever you are issuing a NETCONF
get request to a Junos device, <configuration> needs to be the outermost XML tag
when you’re collecting configuration state information. Within that element, you can
build the appropriate filter, which can be gleaned from the XML text found while on
the CLI. Our filter string to request SNMP configuration looks like this:

get_filter = """
<configuration>
 <snmp>
 </snmp>
</configuration>
"""

We’re also going to instantiate a new device object and use the variable name vmx to
connect to our Juniper vMX router.

>>> vmx = manager.connect(host='junos-vmx', port=830, username='ntc',
... password='ntc123', hostkey_verify=False,
... device_params={}, allow_agent=False,
... look_for_keys=False)
...
>>>

The next step is to make the request, just like we’ve done already. After the request is
made, we’ll verify the output, printing the XML string to the terminal using the xml
attribute of the response.

>>> nc_get_reply = vmx.get(('subtree', get_filter))
>>>
>>> print(nc_get_reply.xml)
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:junos="http://xml.juniper.net/junos/15.1F4/junos"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

Automating Using Network APIs | 271

message-id="urn:uuid:29121999-68b8-4dc5-9374-63bab673677b">
<data>
<configuration xmlns="http://xml.juniper.net/xnm/1.1/xnm"
junos:changed-seconds="1482848933"
junos:changed-localtime="2016-12-27 14:28:53 UTC">
 <snmp>
 <community>
 <name>public</name>
 <authorization>read-only</authorization>
 </community>
 <community>
 <name>networktocode</name>
 <authorization>read-only</authorization>
 </community>
 </snmp>
</configuration>
<database-status-information>
<database-status>
<user>ntc</user>
<terminal>p0</terminal>
<pid>37551</pid>
<start-time junos:seconds="1483116118">2016-12-30 16:41:58 UTC</start-time>
<idle-time junos:seconds="684">00:11:24</idle-time>
<edit-path>[edit]</edit-path>
</database-status>
<database-status>
<user>ntc</user>
<terminal></terminal>
<pid>37643</pid>
<start-time junos:seconds="1483117954">2016-12-30 17:12:34 UTC</start-time>
<edit-path></edit-path>
</database-status>
</database-status-information>
</data>
</rpc-reply>
>>>

Juniper also responds with metadata about the request that you
don’t see on the CLI, such as the user who issued the request and
the start time of the request.

As we stated, our goal is to parse the response, saving the community string and
authorization type for each community. Rather than just print these to the terminal,
let’s save them as a list of Python dictionaries.

In order to do this, we’ll follow the same steps we used earlier. The only difference is
we’re saving the data and not printing it. Remember, we need to either strip XML

272 | Chapter 7: Working with Network APIs

namespaces using custom code or note the namespace being used when we print the
response object as an XML string.

>>> snmp_list = []
>>>
>>> xmlns = '{http://xml.juniper.net/xnm/1.1/xnm}'
>>>
>>> communities = nc_get_reply.data.findall('.//{}community'.format(xmlns))
>>>
>>> for community in communities:
... temp = {}
... temp['name'] = community.find('.//{}name'.format(xmlns)).text
... temp['auth'] = community.find('.//{}authorization'.format(xmlns)).text
... snmp_list.append(temp)
...
>>>
>>> print(snmp_list)
[{'name': 'public', 'auth': 'read-only'}, {'name': 'networktocode',
 'auth': 'read-only'}]
>>>

We’ve seen how to issue NETCONF requests to obtain configuration data, but now
we are going to transition a bit and show how to make configuration changes via the
NETCONF API using the <edit-config> operation.

Making Cisco IOS-XE configuration changes with ncclient

The <edit-config> NETCONF operation maps directly to the edit_config()
method of our device object in the ncclient. If you recall, we already showed an exam‐
ple of using an <edit-config> operation when we were exploring the use of NET‐
CONF. There are two elements we need to be aware of and define when making a
configuration change. The first element is called <target>, and this defines which
configuration datastore is going to get modified in the request. Valid datastores are
running, startup, and candidate. The second parameter is called <config> and needs
to be an XML string or object that defines the requested configuration changes.

In our first example, we’re going to configure a new SNMP community string using
the network element driver (ned) YANG model that we used earlier, denoted by the
namespace http://cisco.com/ns/yang/ned/ios. When using this particular model,
we can use a single filter to return the XML object that will depict the hierarchy
required for subsequent API calls. We already showed this when using the RESTful
API on IOS-XE. The URL for the RESTful API was http://ios-csr1kv/restconf/api/
config/native. The same get request filter for NETCONF is the following:

get_filter = """
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 </native>
"""

Automating Using Network APIs | 273

If the device supports both NETCONF and RESTCONF, you can
use tools such as Postman to interact with the RESTful HTTP API
and use XML encoding to better understand the objects required
for NETCONF.

When this filter is sent to the device, the device responds back nearly a full configura‐
tion. We aren’t showing the output generated because it’s a lengthy output, but if you
try it, you’ll see that <snmp-server> is a child element of <data>.

What this means is we can add <snmp-server> to the filter in order to selectively
retrieve just the SNMP configuration.

get_filter = """
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server>
 </snmp-server
 </native>
"""

Even though our goal is to make a configuration change, we are performing a get
request to see how the data needs to be structured when we send it back to the device
in the <edit-config> request.

>>> nc_get_reply = device.get(('subtree', get_filter))
>>>
>>> print(etree.tostring(nc_get_reply.data, pretty_print=True))
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server>
 <community>
 <name>networktocode</name>
 <RO/>
 </community>
 <community>
 <name>private</name>
 <RW/>
 </community>
 <community>
 <name>public</name>
 <RO/>
 </community>
 </snmp-server>
 </native>
</data>

>>>

274 | Chapter 7: Working with Network APIs

Now that we can see how to model SNMP data as XML, we can construct a new XML
configuration object. Let’s add a new community string called secure that has read-
write privileges. It is modeled as such:

 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server>
 <community>
 <name>secure</name>
 <RW/>
 </community>
 </snmp-server>
 </native>

One final tag we need to encapsulate this document in is <config>. This is often
required when you’re using the <edit-config> operation, as covered in our discus‐
sion of the NETCONF protocol stack earlier in the chapter.

Finally, we create a new variable that represents our configuration object.

config_filter = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server>
 <community>
 <name>secure</name>
 <RW/>
 </community>
 </snmp-server>
 </native>
 </config>
"""

IOS-XE doesn’t currently support a candidate configuration, so we are going to make
this change on the running-configuration datastore. We do so by using the edit_con
fig() method and passing in two parameters,target and config.

>>> response = device.edit_config(target='running', config=config_filter)
>>>

If you check the configuration via the CLI or make a get request, you’ll see there are
now four community strings on the device, including the secure community string.

Performing a NETCONF delete operation with ncclient. We’ve seen how to make a configu‐
ration change on the device using the <edit-config> operation. The default opera‐
tion as we stated earlier and depicted in Table 7-3 is a merge operation. We can
change the type of operation using the XML attribute called operation.

We just added the SNMP community string called secure using the merge (default)
operation. We are now going to show how to remove it using the delete operation.

Automating Using Network APIs | 275

In order to do this, only the XML configuration string (or object) needs to get upda‐
ted. Take note of the new line in the new XML string: operation="delete".

config_filter = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server>
 <community operation="delete">
 <name>secure</name>
 <RW/>
 </community>
 </snmp-server>
 </native>
 </config>
"""

Making this request using the same edit_config() method results in the removal of
the secure community string.

You now know how to add a configuration using operation=merge and how to
remove a configuration using operation=delete, but how would you ensure that
only the secure community exists?

Performing a NETCONF replace operation with ncclient. There are a few ways to go about
replacing a given hierarchy of XML configuration. One option is to make an API call
to configure all desired SNMP community strings, then retrieve all currently config‐
ured SNMP communities in another API call, loop over the response, and issue a
delete per community if it’s not desired. While it’s not a terrible approach, NETCONF
offers a better way—as you already know, of course.

With NETCONF, you can use the replace operation instead of merge or delete. This
is the same as doing a PUT with RESTCONF.

We are going to update the XML configuration string, adding in operation=replace
and see what the result is.

config_filter = """
 <config>
 <native xmlns="http://cisco.com/ns/yang/ned/ios">
 <snmp-server operation="replace">
 <community>
 <name>secure</name>
 <RW/>
 </community>
 </snmp-server>
 </native>
 </config>
"""

276 | Chapter 7: Working with Network APIs

The same <edit-config> request is made to ensure the only <snmp-server> configu‐
ration is the single community string called secure. Pay special attention that the
operation="replace" line is in a different location in the XML hierarchy than it was
in the last example. Placing it as an attribute of <snmp-server> replaces the full con‐
figuration of SNMP. If you issued the API called with operation="delete" on the
same line, it would delete all related SNMP configuration. As we said with REST‐
CONF PUTs, the same is true with NETCONF replace operations; be aware of their
power.

When you start experimenting with the delete and replace oper‐
ations, you need to be extremely careful. The merge operation is the
default for a very good reason—you would only ever add or update
a configuration. More importantly, if you put the opera

tion="delete" line at the wrong place in the XML hierarchy, it
could have a catastrophic effect on the network. Please always
make sure you test in a lab or sandbox environment first. Do not
test this in production!

Making Juniper vMX Junos configuration changes with ncclient
We’ve seen a few examples of working with the ncclient and the Cisco IOS-XE NET‐
CONF API. Let’s change things up and look at more examples using Juniper Junos.

Our Juniper vMX has four static routes configured.

Both of the following outputs were taken directly from the CLI using the show and
show | display xml commands.

routing-options {
 static {
 route 0.0.0.0/0 next-hop 10.0.0.2;
 route 10.1.100.0/24 next-hop 10.254.1.1;
 route 10.2.200.0/24 next-hop 10.254.1.1;
 route 10.33.100.0/24 next-hop 192.168.1.1;
 }
}

In the XML output, there is a parent XML tag called <configuration>, not shown for
conciseness in the output.

<routing-options>
 <static>
 <route>
 <name>0.0.0.0/0</name>
 <next-hop>10.0.0.2</next-hop>
 </route>
 <route>
 <name>10.1.100.0/24</name>
 <next-hop>10.254.1.1</next-hop>

Automating Using Network APIs | 277

 </route>
 <route>
 <name>10.2.200.0/24</name>
 <next-hop>10.254.1.1</next-hop>
 </route>
 <route>
 <name>10.33.100.0/24</name>
 <next-hop>192.168.1.1</next-hop>
 </route>
 </static>
</routing-options>

Let’s add a new static route using the ncclient. From what we already learned, we can
break it down into a few steps.

1. Instantiate a new device object using manager.connect().
2. Choose the desired option, merge, delete, or replace. We only want to add a

new static route, so using the default merge operation will work.
3. Generate the required XML string. Remember this always goes inside the <con

fig> tag and since this example is for Junos, the pipe to XML (| xml) on the CLI
is helpful to generate the desired XML string (or object).

4. Save the string as a new variable in Python.
5. Choose the target configuration datastore. Note that Juniper supports a candidate

configuration. We can leverage that to see how it’s different from modifying run‐
ning configurations.

6. Issue the API call using the edit_config() method of the instantiated device
object.

7. If the candidate configuration was used as the target datastore, commit the
configuration.

The new static route we want to add has the prefix 172.16.20.0/24 with a next-hop
value of 10.0.0.2.

>>> vmx = manager.connect(host='junos-vmx', port=830, username='ntc',
... password='ntc123', hostkey_verify=False,
... device_params={}, allow_agent=False,
... look_for_keys=False)
...
>>>
>>> configuration = """
... <config>
... <configuration>
... <routing-options>
... <static>
... <route>
... <name>172.16.20.0/24</name>

278 | Chapter 7: Working with Network APIs

... <next-hop>10.0.0.2</next-hop>

... </route>

... </static>

... </routing-options>

... </configuration>

... </config>

... """
>>>
>>> response = vmx.edit_config(target='candidate', config=configuration)
>>>
>>> vmx.commit()
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:junos="http://xml.juniper.net/junos/15.1F4/junos"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:37c92cf6-f1d6-4af5-b813-1d3be0eccd99">
Setting up Virtual platform specific options
<ok/>
</rpc-reply>
>>>

The major difference in this example is we are highlighting the use of the candidate
configuration datastore and subsequently committing the configuration to the run‐
ning configuration.

If you want to clean up any unused static routes and just end up with a single default
static route, simply use operation=replace at the correct location in the XML string.

>>> configuration = """
... <config>
... <configuration>
... <routing-options operation="replace">
... <static>
... <route>
... <name>0.0.0.0/0</name>
... <next-hop>10.0.0.2</next-hop>
... </route>
... </static>
... </routing-options>
... </configuration>
... </config>
... """
>>>
>>> response = vmx.edit_config(target='candidate', config=configuration)
>>>
>>> vmx.commit()
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:junos="http://xml.juniper.net/junos/15.1F4/junos"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:dbc0c58b-4b3b-488f-89f2-67608b28cc77">
Setting up Virtual platform specific options
<ok/>

Automating Using Network APIs | 279

</rpc-reply>
>>>

Juniper also supports using the <config-text> XML tag in addi‐
tion to <config> should you want to pass the text configuration in
CLI curly brace notation.

Making Cisco IOS-XR configuration changes with ncclient
As we start to wrap up working with NETCONF, you probably noticed that you need
to be aware of how to construct proper XML objects in order to succeed in getting
data from a device or making a configuration change. This has been mentioned a few
times already. This is similar to knowing different CLI commands between different
operating systems and vendors. There are, however, committees and working groups
developing vendor-neutral data models. One of these is the OpenConfig Working
Group (WG) that is developing vendor-neutral data models. At the lowest level, this
means that we can send the same XML object to devices from different vendors using
the <edit-config> operation to make a configuration change.

At the time of this writing, several vendors are adding support for vendor-neutral
models from the OpenConfig WG, but it’s still early on overall. For example, both
Juniper Junos and Cisco IOS-XR support the OpenConfig BGP data model. We are
going to show this using Cisco IOS-XR.

Our Cisco IOS-XR router has the following basic BGP configuration:

!
router bgp 65512
 bgp router-id 1.1.1.1
!

Using NETCONF and the OpenConfig BGP model represented as XML, we can
extract the existing BGP configuration.

>>>
>>> get_filter = """
... <bgp xmlns="http://openconfig.net/yang/bgp">
... <global>
... <config>
... </config>
... </global>
... </bgp>
... """
>>>
>>> xr = manager.connect(host='ios-xrv', port=22, username='ntc',
... password='ntc123', hostkey_verify=False,
... device_params={}, allow_agent=False,
... look_for_keys=False)

280 | Chapter 7: Working with Network APIs

>>>
>>> nc_get_reply = xr.get(('subtree', get_filter))
>>>
>>> print(etree.tostring(nc_get_reply.data, pretty_print=True))
<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <bgp xmlns="http://openconfig.net/yang/bgp">
 <global>
 <config>
 <as>65512</as>
 <router-id>1.1.1.1</router-id>
 </config>
 </global>
 </bgp>
 </data>

>>>

Now that we understand the object that’s returned to us, let’s use it as the foundation
to build a <config> object that changes the router ID.

>>> config = """
... <config>
... <bgp xmlns="http://openconfig.net/yang/bgp">
... <global>
... <config>
... <router-id>10.10.10.10</router-id>
... </config>
... </global>
... </bgp>
... </config>
... """
>>>
>>> response = xr.edit_config(target='candidate', config=config)
>>>
>>> xr.commit()
<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:9e0f496b-0685-42ca-870b-6d0307b92641"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc-reply>

As more vendors and operating systems support vendor-neutral data models, you’ll
be able to issue the same exact API call against those devices, simplifying working dif‐
ferent device types. Until that point comes, you’ll need to understand the XML
objects required per network operation system.

Automating Using Network APIs | 281

Understanding vendor-specific NETCONF operations
In this section, we have focused on the two most commonly used methods in the
ncclient, namely <edit-config> and <get>. However, as you may have noticed ear‐
lier in this chapter when we did a dir() on the device object, there are many more
methods to be aware of as you pursue your network automation journey with NET‐
CONF and the ncclient. Here are a few of those.

close_session

Remember that NETCONF is using a persistent SSH connection. This method is
used to disconnect from the device.

commit

Used to commit a candidate configuration to the active running configuration.

connected

Used to check and see if there is an active session to the device. This is an
attribute, so its usage is device.connected and it returns a boolean value (True
or False).

copy_config

Creates or replaces an entire configuration datastore with the contents of another
complete configuration datastore.

delete_config

Deletes a configuration datastore.

lock and unlock

For a production environment, you may want to lock the configuration datastore
before changes are made so that no other person or system can make changes
during your NETCONF session. When it’s complete, you can unlock the configu‐
ration.

server_capabilities

An object that you can loop over to view all supported capabilities on the server.

Everything we focused on with the Python-based ncclient was vendor-neutral and
would work across vendors, assuming you understand how to build the proper XML
objects. However, you should understand that not every vendor implements NET‐
CONF the same way even though it is an industry-standard protocol. For example,
particular vendors have created their own platform-specific NETCONF operations or
created their own methods for ncclient to simplify performing common operations.
This is in contrast to NETCONF standard operations such as <edit-config>, <get>,
<lock>, <unlock>, and <commit>.

Here are a few examples to emphasize this point.

282 | Chapter 7: Working with Network APIs

• HPE Comware 7 switches support standard NETCONF operations, but have a
few custom operations to save configuration, roll back to another configuration,
and issue raw CLI commands. These custom operations map back to built-in
methods found in the ncclient. For example, to issue display commands you
would use cli_display(); or to serialize configuration over a NETCONF ses‐
sion, you’d use the cli_config() method.

• Juniper has created custom methods within the ncclient such as load_configura
tion(), get_configuration(), compare_configuration(), and command(), just
to name a few. Several of Juniper’s are wrappers to simplify performing common
tasks with standard NETCONF operations, and others use Juniper-specific NET‐
CONF RPC operations.

• Cisco Nexus also supports the ability to send CLI commands using the method
exec_command(), which maps to the Nexus-specific NETCONF operation called
exec-command.

In order to use these vendor-specific options when using the ncclient, you need to
specify the correct platform in the device_params parameter when instantiating a
device object.

Every example we showed used device_params={} because we used industry-
standard operations within the ncclient. If you choose the vendor-specific methods
and operations, you would set the device_params parameter to its required value.

Here are a few examples using device_params to use vendor-specfic operations and
methods.

vmx = manager.connect(host='junos-vmx', port=830, username='ntc',
 password='ntc123', hostkey_verify=False,
 device_params={'name': 'junos'},
 allow_agent=False, look_for_keys=False)

nxos = manager.connect(host='nxos1', port=22, username='ntc',
 password='ntc123', hostkey_verify=False,
 device_params='name': 'nexus'},
 allow_agent=False, look_for_keys=False)

hpe = manager.connect(host='hpe5930', port=830, username='ntc',
 password='ntc123', hostkey_verify=False,
 device_params={'name': 'hpcomware'},
 allow_agent=False, look_for_keys=False)

We’ve now provided an introduction to both using the Python requests and ncclient
libraries to communicate with modern programmatic network APIs. We are going to
shift gears now and talk about using SSH in Python, as SSH is still the most widely
deployed interface on network devices.

Automating Using Network APIs | 283

Using netmiko
Using CLI commands SSH is the de facto way network engineers and operators man‐
age their infrastructure. Commands are passed over a persistent SSH connection to a
network device, the device interprets them, and it responds with text that is viewable
by a human on a terminal window. SSH does not use structured encoded data such as
XML or JSON over the wire. While SSH is not a modern or a programmatic API, it is
important to have an understanding of how to use Python to automate network oper‐
ations with SSH for three reasons:

• Not all devices support a programmatic API.
• You may want to automate the turning on of the API.
• Even if you’re automating a device with an API:

— It’s good to have a backup plan
— Not all operations of a device may be supported with the API.

This is not ideal, as it shows immaturity in the underlying API.

In this section, we show how to get started with a popular open source SSH client for
Python called netmiko.

Netmiko’s purpose is to simplify SSH device management specifically for network
devices. It is built on top of another library called paramiko.

We’re focused on netmiko, as it provides a lower barrier to entry and already under‐
stands how to communicate with a large number of network device types. netmiko
has varied support for over two dozen device types, including those from Arista, Bro‐
cade, Cisco, Dell, HPE, Juniper, Palo Alto Networks, and many more. The great part
about netmiko is that its overall usage is the same across vendors. This is similar to
what we saw with ncclient. With the ncclient, the only difference per platform was the
XML object sent to the device; with netmiko, the only difference is the commands
sent to the device.

Let’s get started with netmiko.

To install netmiko, you can use pip:
pip install netmiko

The first thing you need to do is import the proper netmiko device object. This object
handles the SSH connection setup, teardown, and the sending of commands to the
device. We saw the same approach with ncclient.

284 | Chapter 7: Working with Network APIs

>>> from netmiko import ConnectHandler
>>>

We’re now ready to establish an SSH connection to the network device and create a
netmiko device object. The ConnectHandler object handles the SSH connection to
the network device.

>>> device = ConnectHandler(host='veos', username='ntc', password='ntc123',
 device_type='arista_eos')
>>>

At this point, there is an active SSH connection from Python using netmiko with our
Arista switch. Because each platform supports different commands and handles SSH
differently, we are required to provide the device_type parameter when instantiating
an instance of the ConnectHandler object.

Let’s check the available methods for our new device object called device using the
dir() function.

>>> dir(device)
[...methods removed for brevity...,'check_config_mode', 'check_enable_mode',
'cleanup', 'clear_buffer', 'commit', 'config_mode', 'device_type',
'disable_paging', 'disconnect', 'enable', 'establish_connection',
'exit_config_mode', 'exit_enable_mode', 'find_prompt', 'global_delay_factor',
'host', 'key_file', 'key_policy', 'normalize_cmd', 'normalize_linefeeds',
'password', 'port', 'protocol', 'read_channel', 'read_until_pattern',
'read_until_prompt', 'read_until_prompt_or_pattern', 'remote_conn',
'remote_conn_pre', 'secret', 'select_delay_factor', 'send_command',
'send_command_expect', 'send_command_timing', 'send_config_from_file',
'send_config_set', 'session_preparation', 'set_base_prompt', 'set_terminal_width',
'special_login_handler', 'ssh_config_file', 'strip_ansi_escape_codes',
'strip_backspaces', 'strip_command', 'strip_prompt', 'system_host_keys',
'telnet_login', 'timeout', 'use_keys', 'username', 'verbose', 'write_channel']
>>>

As a network engineer, you should feel pretty comfortable with many of the attributes
shown from the dir() function, as they are very network-centric. We’ll walk through
a few of them now.

Verify the device prompt

Use the find_prompt() method to check the prompt string of the device.

>>> device.find_prompt()
u'eos-spine1#'
>>>
>>> output = device.find_prompt()
>>>
>>> print(output)
eos-spine1#
>>>

Automating Using Network APIs | 285

Enter configuration mode
Because netmiko understands different vendors and what configuration mode means,
it has a method to go into configuration mode that works across vendors; of course,
the command netmiko uses under the covers may be different per OS.

>>> output1 = device.config_mode()
>>>
>>> output2 = device.find_prompt()
>>>
>>> print(output2)
eos-spine1(config)#
>>>

Send commands
The most common operation you’re going to perform with netmiko is sending com‐
mands to a device. Let’s look at a few methods to do this.

To simply send a single command to a device, you can use one of three methods:

send_command_expect()

This method is used for long-running commands that may take a while for the
device to process (show run on a larger chassis, show tech, etc.). By default, this
method waits for the same prompt string to return before completing. Option‐
ally, you can pass what the new prompt string is going to be should it change
based on the commands being sent.

send_command_timing()

This method is used for short-running commands; this method is timing-based
and does not check the prompt string.

send_command()

This is an older method in netmiko, which now acts as a wrapper for simply call‐
ing send_command_expect(). Thus, send_command() and send_com

mand_expect() perform the same operation.

Let’s look at a few examples.

Here we’re gathering a show run and printing out the first 165 characters for verifica‐
tion:

>>> output = device.send_command('show run')
>>>
>>> print(output[:165])
! Command: show running-config
! device: eos-spine1 (vEOS, EOS-4.15.2F)
!
! boot system flash:vEOS-lab.swi
!

286 | Chapter 7: Working with Network APIs

transceiver qsfp default-mode 4x10G
!
hostname eos-spine
>>>

Send a command that changes the prompt string (remember we’re still in configura‐
tion mode when we entered output1 = device.config_mode()) as follows:

>>> output = device.send_command_expect('end')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/dist-packages/netmiko/base_connection.py",
line 681, in send_command_expect
 return self.send_command(*args, **kwargs)
 File "/usr/local/lib/python2.7/dist-packages/netmiko/base_connection.py",
line 673, in send_command
 search_pattern))
IOError: Search pattern never detected in
send_command_expect: eos\-spine1\(config\)\#
>>>

The stack trace shown is expected, as send_command_expect() expects to see the
same prompt string by default. Since we are in config mode with the current prompt
string of eos-spine1(config)#, when we type the command end, the new prompt
string is going to be eos-spine1#.

In order to execute a command that changes the prompt string, you have two
options. First, you can use the expect_string parameter that defines the new and
expected prompt string.

>>> output = device.send_command_expect('end', expect_string='eos-spine1#')
>>>

Second, you can use the send_command_timing() method, which is timing-based,
and doesn’t expect a particular prompt string to be found again.

>>> output = device.send_command_timing('end')
>>>

We’ve seen three methods thus far on how to send commands with netmiko. Let’s
look at two more useful ones, as you may want to send several commands at once
versus one at a time.

netmiko also supports a method called send_config_set() that takes a parameter
that must be an iterable. We’ll show this using a Python list, but you can also use a
Python set.

>>> commands = ['interface Ethernet5', 'description configured by netmiko',
 'shutdown']
>>>
>>> output = device.send_config_set(config_commands=commands)
>>>

Automating Using Network APIs | 287

>>> print(output)
config term
eos-spine1(config)#interface Ethernet5
description configured by netmiko
eos-spine1(config-if-Et5)#description configured by netmiko
eos-spine1(config-if-Et5)#shutdown
eos-spine1(config-if-Et5)#end
eos-spine1#
>>>

This method checks to see if you’re already in configuration mode. If you aren’t, it
goes into config mode, executes the commands, and by default, exits configuration
mode. You can verify this by viewing the returned output as shown in the previous
example.

Finally, there is a method that can execute commands from a file. This allows you to
do something like create a Jinja template, render it with variable data, write the data
to file, and then execute those commands from the file with the netmiko method
send_config_from_file(). Building on what we covered in Chapters 4 and 6, let’s
see how to perform this workflow.

>>> from netmiko import ConnectHandler
>>> from jinja2 import Environment, FileSystemLoader
>>>
>>> device = ConnectHandler(host='veos', username='ntc', password='ntc123',
 device_type='arista_eos')
>>>
>>> interface_dict = {
... "name": "Ethernet6",
... "description": "Server Port",
... "vlan": 10,
... "uplink": False
... }
>>>
>>> ENV = Environment(loader=FileSystemLoader('.'))
>>> template = ENV.get_template("config.j2")
>>> commands = template.render(interface=interface_dict)
>>>
>>> with open('veos.conf', 'w') as config_file:
... config_file.writelines(commands)
...
>>> output = device.send_config_from_file('veos.conf')
>>>
>>> verification = device.send_command('show run interface Eth6')
>>>
>>> print(verification)
interface Ethernet6
 description Server Port
 switchport access vlan 10
>>>

288 | Chapter 7: Working with Network APIs

Everything shown in the previous example was covered in prior
chapters. Note that config.j2 must be created for this to work, and
for this example, that Jinja template was stored in the same direc‐
tory from where we entered in the Python interpreter. The contents
of the template were from the same example shown in Chapter 6,
and are as follows:

interface {{ interface.name }}
 description {{ interface.description }}
 switchport access vlan {{ interface.vlan }}
 switchport mode access

Once you’re done working with netmiko, you can gracefully disconnect from the
device using the disconnect() method.

>>> device.disconnect()
>>>

Netmiko is also used as the primary SSH driver for different devi‐
ces within NAPALM, a robust and multi-vendor network Python
library for configuring devices and retrieving data, which is cov‐
ered in Appendix B.

This concludes automating SSH-based network devices using netmiko. You’ve now
seen how to automate various types of network devices across a range of API types
with the goal of helping you on your automation journey no matter the device or API
type you need to work with.

Summary
This chapter focused on two core types of APIs, HTTP-based APIs and NETCONF,
specifically in the context of networking. We introduced APIs, we explored APIs
through the use of command-line and GUI-based tools, and we automated network
devices using those same APIs in Python. We examined both RESTful and non-
RESTful HTTP-based APIs. As you start to use different types of HTTP-based APIs
on network devices, keep in mind the following points:

• Not all HTTP APIs are RESTful, but the tools you use for RESTful and non-
RESTful APIs are the same.

• Every RESTful API we reviewed used HTTP as transport.
• HTTP APIs can use XML or JSON for data encoding, but the device may only

implement one or the other. The API’s author determines what gets supported.
• RESTCONF is an implementation of a RESTful API that uses HTTP to access

and manipulate data defined by YANG models.

Summary | 289

• Tools such as cURL and Postman are helpful as you get started with APIs, but to
write code to interact with HTTP APIs, you need a library that speaks HTTP,
such as the Python requests library.

• Pay close attention to the HTTP verbs used when making configuration
changes—using the wrong verb can have unintended consequences.

• You need to use API documentation or device tooling (Arista Command
Explorer, NX-API Developer Sandbox, ASA API Documentation & Console) to
better understand how to construct a proper API request: URL, headers, HTTP
method, and body.

While we did not cover a specific implementation of an SDN Con‐
troller’s API, learning to use a new API is always the same process.
You need to use the API documentation, understand how that plat‐
form structured and built its API, and then you need to explore it,
using either Postman or Python. Our goal was to use example plat‐
forms to communicate how to use APIs more generally, but by
now, you should be able to continue your journey exploring APIs
on other network (physical or virtual) devices, controllers, or even
cloud platforms that also use HTTP APIs.

We also spent time exploring NETCONF and using NETCONF with the Python
ncclient. As your NETCONF takeaways, please also keep in mind the following
points:

• NETCONF is a connection-oriented and session-based protocol that commonly
uses SSH as transport.

• NETCONF requires a capabilities exchange between the client and server before
the client can perform a given request.

• NETCONF supports only XML encoding.
• NETCONF is used independently of how the data being transported is modeled.
• The XML documents and resulting objects are XML representations of data that

adhere to a device’s schema or data model. NETCONF can use XML-encoded
data that adheres to data modeled by XML Schema Definitions (XSDs), YANG,
or any other language/definition.

Finally, we provided an introduction to automating devices using SSH with netmiko.

As you continue your journey automating network devices with different types of
APIs, remember that there is no magic here—you need to perform due diligence to
understand how to use any given API.

290 | Chapter 7: Working with Network APIs

CHAPTER 8

Source Control with Git

So far in this book, we’ve shown you lots of ways to add automation to your toolbox,
whether via scripting languages like Python (see Chapter 4) or via templating lan‐
guages like Jinja (see Chapter 6). The increased use of Python-based scripts or Jinja
templates means that managing these artifacts (and by artifacts we mean the files that
make up these scripts, templates, and other automation tools you’re employing) is
very important. In particular, managing the changes to these artifacts has significant
value (we’ll explain why shortly).

In this chapter, we’re going to show you how to use a source control tool—that is, a
tool that is designed to manage the artifacts you’re creating and using in your net‐
work automation processes. The use of a source control tool lets you avoid messy and
error-prone approaches like appending date- and timestamps to the end of filenames,
and keeps you from running into accidentally deleted or overwritten files.

To start things out, let’s take a closer look at the idea of source control. We’re going to
keep the discussion fairly generic for now; we’ll delve into a specific source control
tool known as Git later in the chapter. The generic qualities discussed in the next sec‐
tion are not specific to any particular source control tool, however.

Use Cases for Source Control
Simply put, source control is a way of tracking files and the changes made to those files
over time (source control is also known as version control or revision control). We
know that’s a really generic description, so let’s look at some specific use cases:

• If you’re a developer writing code as part of a larger software development
project, you could track the code you’re writing using source control tools. This
use case is probably the most well-known use case, and the one most people
immediately think about when we mention the idea of source control.

291

• Let’s say you’re part of a team of administrators managing network devices. You
could take the device configuration files and track them using source control
tools.

• Suppose you’re responsible for maintaining documentation for portions of your
organization’s Information Technology (IT) infrastructure. You could track the
documentation using source control tools.

In each of these cases, source control is tracking files (network configurations, docu‐
mentation, software source code). By tracking these files, we mean that the source
control tool is keeping a record of the files, the changes made to the files over time,
and who made each set of changes to the files. If a change to one of the files being
tracked breaks something, you can revert or roll back to a previous version of the file,
undoing the changes and getting back to a known good state. In some cases (depend‐
ing on the tool being used), source control tools might enable you to more easily col‐
laborate with coworkers in a distributed fashion.

Benefits of Source Control
The previous section indirectly outlined some of the benefits of using a source con‐
trol tool, but let’s pull out a few specific benefits that come from the use of source
control.

Change Tracking
First, you’re able to track the changes to the files stored in the source control tool over
time. You can see the state of the files at any given point in time, and therefore you’re
able to relatively easily see exactly what changed. This is an often overlooked benefit.
When you’re working with lengthy network configuration files, wouldn’t it be helpful
to be able to see exactly what changed from one version to the next? Further, most
source control tools also have the ability to add metadata about the change, such as
why a change was made or a reference back to an issue or trouble ticket. This addi‐
tional metadata can also prove quite useful in troubleshooting.

Accountability
Not only do the source control tools track changes over time, but they also track who
made the changes. Every change is logged with who made that particular change. In a
team environment where multiple team members might be working together to man‐
age network configurations or server configuration files, this is extraordinarily useful.
Never again will you have to ask, “Who made this change?” The source control tool
will already have that information.

292 | Chapter 8: Source Control with Git

Process and Workflow
Using source control tools also helps you and your organization enforce a healthy
process and workflow. We’ll get into this more in Chapter 10, but for now think about
the requirement that all changes be logged in source control first before being pushed
into production. This gives you a linear history of changes along with a log of the
individual responsible for each set of changes, and enables you to enforce things like
review (having someone else review your changes before they get put into produc‐
tion) or testing (having automated tests performed against the files in the source con‐
trol system).

Benefits of Source Control for Networking
Although source control is most typically associated with software development,
there are clear benefits for networking professionals. Here are just a few examples:

• Python scripts (such as the ones readers will be able to write after reading this
book!) that interact with network devices can be placed in source control, so that
versions of the script can be more easily managed.

• Network device configurations can be placed in source control, enabling you to
see the state of a network device configuration at any point in time. A really well-
known tool called RANCID uses this approach for storing network device con‐
figuration backups.

• It’s easy to highlight the changes between versions of network device configura‐
tions, allowing you and your team to easily verify that only the desired changes
are in place (e.g., that you didn’t accidentally prune a VLAN from the wrong
802.1Q trunk).

• Configuration templates can be placed in source control, ensuring that you and
your team can track changes to these templates before they are used to generate
network device configurations or reports.

• You can use source control with network documentation.
• All changes to any of these types of files are captured along with the person

responsible for the changes—no more “playing the blame game.”

Now that you have an idea of the benefits that source control can bring to you, your
organization, and your workflow, let’s take a look at a specific source control tool that
is widely used: Git.

Benefits of Source Control for Networking | 293

https://git-scm.com/

Enter Git
Git is the latest in a long series of source control tools, and has emerged as the de
facto source control tool for most open source projects. (It doesn’t hurt that Git man‐
ages the source code for the Linux kernel.) For that reason, we’ll focus our discussion
of source control tools on Git, but keep in mind that other source control tools do
exist. They are, unfortunately, out of the scope of this book.

Let’s start with a brief history of how and why Git appeared.

Brief History of Git
As we mentioned earlier, Git is the source control tool used to manage the source
code for the Linux kernel. Git was launched by Linus Torvalds, the creator of the
Linux kernel, in early April 2005 in response to a disagreement between the Linux
kernel developer community and the proprietary system they were using at the time
(a system called BitKeeper).

Torvalds had a few key design goals when he set out to create Git:

Speed
Torvalds needed Git to be able to rapidly apply patches to the Linux source code.

Simplicity
The design for Git needed to be as simple as possible.

Strong support for nonlinear development
The Linux kernel developers needed a system that could handle lots of parallel
branches. Thus, this new system (Git) needed to support rapid branching and
merging, and branches needed to be as lightweight as possible.

Support for fully distributed operation
Every developer needed a full copy of the entire source code and its history.

Scalability
Git needed to be scalable enough to handle large projects, like the Linux kernel.

Development of Git was fast. Within a few days of its launch, Git was self-hosted
(meaning that the source code for Git was being managed by Git). The first merge of
multiple branches occurred just a couple weeks later. At the end of April—just a few
weeks after its launch—Git was benchmarked at applying patches to the Linux kernel
tree at 6.7 patches per second. In June 2005, Git managed the 2.6.12 release of the
Linux kernel, and the 1.0 release of Git occurred in late December 2005.

As of this writing, the most recent release of Git was version 2.13.1, and versions of
Git were available for all major desktop operating systems (Linux, Windows, and
macOS). Notable open source projects using Git include the Linux kernel (as we’ve

294 | Chapter 8: Source Control with Git

already mentioned), Perl, the Gnome desktop environment, Android, the KDE
Project, and the X.Org implementation of the X Window System. Additionally, some
very popular online source control services are based on Git, including services like
GitHub, BitBucket, and GitLab. Some of these services also offer on-premises imple‐
mentations. You’ll get the opportunity to look more closely at GitLab in Chapter 10,
when we discuss Continuous Integration.

Git Terminology
Before we progress any further, let’s be sure that we’ve properly defined some termi‐
nology. Some of these terms we may have used before, but we’ll include them here for
the sake of completeness.

Repository
In Git, a repository is the name given to the database that contains all of a proj‐
ect’s information (files and metadata) and history. (We’re using the term project
here just to refer to an arbitrary grouping of files for a particular purpose or
effort.) A repository is a complete copy of all of the files and information associ‐
ated with a project throughout the lifetime of the project. It’s important to note
that once data is added to a repository it is immutable; that is, it can’t be changed
once added. This isn’t to say that you can’t make changes to files stored in a
repository, just that the repository stores and tracks these files in such a way that
changes to a file create a new entry in the repository (specifically, Git uses SHA
hashes to create content-addressable objects in the repository).

Working directory
This is the directory where you, as the user of Git, will modify the files contained
in the repository. The working directory is not the same as the repository. Note
that the term working directory is also used for other purposes on Linux/UNIX/
macOS systems (to refer to the current directory, as output by the pwd com‐
mand). Git’s working directory is not the same as the current directory, and very
specifically refers to the directory where the .git repository is stored.

Index
The index describes the repository’s directory structure and contents at a point in
time. The index is a dynamic binary file maintained by Git and modified as you
stage changes and commit them to the repository.

Commit
A commit is an entry in the Git repository recording metadata for each change
introduced to the repository. This metadata includes the author, the date of the
commit, and a commit message (a description of the change introduced to the
repository). Additionally, a commit captures the state of the entire repository at
the time the commit was performed. Keep in mind when we say “a change to the

Enter Git | 295

https://github.com
https://bitbucket.org
http://about.gitlab.com

repository” this might mean multiple changes to multiple files; Git allows you to
lump changes to multiple files together as a single commit. (We’ll discuss this in a
bit more detail later in this chapter.)

Overview of Git’s Architecture
With the terminology from the previous section in mind, we can now provide an
overview of Git’s architecture. We’ll limit our discussion of Git’s architecture to keep
it relatively high-level, but detailed enough to help with your understanding of how
Git operates.

For a more in-depth discussion of Git’s architecture, we recom‐
mend Version Control with Git, Second Edition (O’Reilly).

As we described earlier, a Git repository is a database that contains all of the informa‐
tion about a project: the files contained in the project, the changes made to the
project over time, and the metadata about those changes (who made the change,
when the change was made, etc.). By default, this information is stored in a directory
named .git in the root of your working directory (this behavior can be changed). For
example, here’s a file listing of a newly initialized Git repository’s working directory,
showing the .git directory where the actual repository data is found:

relentless:npab-examples slowe (master)$ ls -la
total 0
drwxr-xr-x 3 slowe staff 102 May 11 15:37 .
drwxr-xr-x 16 slowe staff 544 May 11 15:37 ..
drwxr-xr-x 10 slowe staff 340 May 11 15:37 .git
relentless:npab-examples slowe (master)$

As you can tell from this prompt, this directory listing is from the directory npab-
examples. In this example, the working directory is the npab-examples directory, and
the Git repository is in npab-examples/.git. This is why we said earlier that the working
directory and the repository aren’t the same. It’s common for new users to refer to the
working directory as the repository, but keep in mind that the actual repository is in
the .git subdirectory.

Within the .git directory you’ll find all the various components that make up a Git
repository:

• The index—which we defined earlier as representing the repository’s directory
structure and contents at a given point in time—is found at .git/index.

• The files contained within a Git repository are treated as content-addressable
objects and stored in subdirectories in .git/objects.

296 | Chapter 8: Source Control with Git

http://shop.oreilly.com/product/0636920022862.do

• Any repository-specific configuration details are found in .git/config.
• Metadata about the repository, the changes stored in the repository, and the

objects in the repository can be found in .git/logs.

All of the information stored in the .git directory is maintained by Git—you should
never need to directly interact with the contents of this directory. Over the course of
this chapter, we’ll share with you the various commands that are needed to interact
with the repository to add files, commit changes, revert changes, and more. In fact,
that leads us directly into our next section, which will show you how to work with
Git.

Working with Git
Now that you have an idea of what Git’s architecture looks like, let’s shift our focus to
something a bit more practical: actually working with Git.

Throughout our discussion of working with Git, we’re going to use a (hopefully) very
practical example. Let’s assume that you are a network engineer reponsible for rolling
out some network automation tools in your environment. During this process, you’re
going to end up creating Python scripts, Jinja templates, and other files. You’d like to
use Git to manage these files so that you can take advantage of all the benefits of
source control.

The following sections walk you through each of the major steps in getting started
using Git to manage the files created as part of your network automation effort.

Installing Git
The steps for installing Git are extremely well documented, so we won’t go through
them here. Git is often preinstalled in various distributions of Linux; if not, Git is
almost always available to install via the Linux distribution’s package manager (such
as dnf for RHEL/CentOS/Fedora, or apt for Debian/Ubuntu). Installers are available
for macOS and Windows that make it easy to install Git. Detailed instructions and
options for installing Git are also available on the Git website.

Creating a Repository
Once Git is installed, the first step is to create a repository. First, you’ll create a direc‐
tory where the repository will be stored. Assuming you’re using an Ubuntu Linux sys‐
tem, it might look something like this (the commands would be very similar, if not
identical, on other Linux distributions or on macOS):

vagrant@trusty:~$ mkdir ~/net-auto
vagrant@trusty:~$

Working with Git | 297

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Then you can change into this directory and create the empty repository using the
git init command:

vagrant@trusty:~$ cd net-auto
vagrant@trusty:~/net-auto$ git init
Initialized empty Git repository in /home/vagrant/net-auto/.git
vagrant@trusty:~/net-auto$

The git init command is responsible for initializing, or creating, a new Git reposi‐
tory. This involves creating the .git directory and all of the subdirectories and con‐
tents found within them.

The various git commands we describe throughout this chapter
should be very nearly identical across all systems on which Git
runs. We’ll use various Linux distributions (and this will be reflec‐
ted in the shell prompts in the examples we show), but using Git on
macOS should be the same as on Linux. Using Git on Windows
should be similar, but there may be syntactical differences here and
there due to the differences in the underlying operating systems.

If you were now to run ls -la in the net-auto directory, you’d see the .git directory
that stores the empty Git repository created by the git init command. The reposi‐
tory is now ready for you to start adding content. You’d add content to a repository by
adding files.

Adding Files to a Repository
Adding files to repository is a multistage process:

1. Add the files to the repository’s working directory.
2. Stage the files to the repository’s index.
3. Commit the staged files to the repository.

Let’s go back to our example. You’ve created your new Git repository to store files cre‐
ated as part of your network automation project, and some of the first files you’d like
to add to the repository are the current configuration files from your network devi‐
ces. You already have three configuration files: sw1.txt, sw2.txt, and sw3.txt, that con‐
tain the current configurations for three switches.

First, copy the files into the working directory (in our example, /home/vagrant/net-
auto). More generically, remember the working directory is the parent directory of
the .git directory (which holds the actual Git repository). On a Linux or macOS sys‐
tem, copying files into the working directory would involve the cp command; on a
Windows-based machine, you’d use the copy command.

298 | Chapter 8: Source Control with Git

The files are now in the working directory but are not in the repository itself. This
means that Git is not tracking the files or their content, and therefore you can’t track
changes, know who made the changes, or roll back to an earlier version.

You can verify this by running the git status command, which in this example
would produce some output that looks like this:

vagrant@trusty:~/net-auto$ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 sw1.txt
 sw2.txt
 sw3.txt

nothing added to commit but untracked files present (use "git add" to track)

The output of the git status command tells you that untracked files are present in
the working directory and nothing has been added to the repository. As the output
indicates, you’ll need to use the git add command to add these untracked files to the
repository, like this:

vagrant@trusty:~/net-auto$ git add sw1.txt
vagrant@trusty:~/net-auto$ git add sw2.txt
vagrant@trusty:~/net-auto$ git add sw3.txt
vagrant@trusty:~/net-auto$

You could also use shell globbing to add multiple files at the same time. For example,
you could use git add sw*.txt to add all three switch configurations with a single
command.

After you’ve used git add to add the files to the staging area, you can run
git status again to see the current status:

vagrant@trusty:~/net-auto$ git status
On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: sw1.txt
 new file: sw2.txt
 new file: sw3.txt

vagrant@trusty:~/net-auto$

Working with Git | 299

At this point, the files have been staged into Git’s index. This means that Git’s index
and the working directory are in sync. Technically speaking, the files have been added
as objects to Git’s object store as well, but there is no “point in time” reference to these
objects. In order to create that point-in-time reference, you must first commit the
staged changes.

Committing Changes to a Repository
Before you’re ready to commit changes to a repository, there are a couple of things
you’ll need to be sure you’ve done. Recall that one of the benefits of using Git as a
source control tool is not only that you’re able to track the changes made to the files
stored in the repository, but that you’re also able to know who made each set of
changes. In order to have that information, you’ll first need to provide that informa‐
tion to Git. (You could also do this right after installing Git; it’s not necessary to create
a repository first.)

Providing user information to Git
Git has a series of configuration options; some of these configuration options are
repository-specific, some are user-specific, and some are system-wide. Recall from
earlier that Git stores repository-specific configuration information in .git/config. In
this particular case—where we need to provide the user’s name and email address so
that Git can track who made each set of changes—it’s the user-specific configuration
we need to modify, not the repository-specific configuration.

So where are these values stored? These settings are found in the .gitconfig file in your
home directory. This file is an INI-style file, and you can edit it either using your
favorite text editor or using the git config command. In this case, we’ll show you
how to use the git config command to set this information.

To set your name and email address, use the following commands:

vagrant@jessie:~/net-auto$ git config --global user.name "John Smith"
vagrant@jessie:~/net-auto$ git config --global user.email
"john.smith@networktocode.com"
vagrant@jessie:~/net-auto$

We used the --global option here to set it as a user-specific value; if you wanted to
set a different user name and/or email address as a repository-specific value, just omit
the --global flag (but be sure you are in the working directory of an active reposi‐
tory first; Git will report an error otherwise). With the --global flag, git config
modifies the .gitconfig file in your home directory; without it, git config modifies
the .git/config file of the current repository.

300 | Chapter 8: Source Control with Git

Committing changes
When Git has been configured with your identity, you’re ready to commit the changes
you’ve made to the files into the repository. Remember that before you can commit
changes into the repository you must first stage the files using the git add command;
this is true both for newly created files as well as modified files that were already in
the repository (we’ll review that scenario shortly). Since you’ve already staged the
changes (via the git add command earlier) and verified it (via the git status com‐
mand, which shows the files are staged), then you’re ready to commit.

Committing changes to a repository is as simple as using the git commit command:

vagrant@jessie:~/net-auto$ git commit -m "First commit to new repository"
[master (root-commit) 9547063] First commit to new repository
 3 files changed, 24 insertions(+)
 create mode 100644 sw1.txt
 create mode 100644 sw2.txt
 create mode 100644 sw3.txt
vagrant@jessie:~/net-auto$

If you omit the -m parameter to git commit, then Git will launch
the default text editor so you can provide a commit message. The
text editor that Git launches is configurable (via git config or
editing .gitconfig in your home directory). You could, for example,
configure Git to use Sublime Text, Atom, or some other graphical
text editor.

So what’s happening when you commit the changes to the repository? When you
added the files via git add, objects representing the files (and the files’ content) were
added to Git’s object database. Specifically, Git created blobs (binary large objects) to
represent the files’ content and tree objects to represent the files and their directory
structure. When you commit the changes via git commit, you’re adding another type
of object to the Git database (a commit object) that references the tree objects, which
in turn reference the blobs. With a commit object, you now have a “point in time”
reference to the entire state of the repository.

At this point, your repository has a single commit, and you can see that commit using
the git log command:

vagrant@jessie:~/net-auto$ git log
commit 95470631aba32d6823c80fdd3c6f923824dde470
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 17:37:22 2016 +0000

 First commit to new repository
vagrant@jessie:~/net-auto$

Working with Git | 301

https://www.sublimetext.com/
https://atom.io/

The git log command shows the various commits—or checkpoints, if you will—you
created over the lifetime of the repository. Every time you commit changes, you cre‐
ate a commit object, and that commit object references the state of the repository at
the time it was created. This means you can only view the state of the repository and
its contents at the time of a commit. Commits, therefore, become the “checkpoints”
by which you can move backward (or forward) through the history of the repository.

Recommendations for committing changes
Understanding how commits work leads to a few recommendations around commit‐
ting your changes to a repository:

Commit frequently
You can only view the state of the repository at the time when changes are com‐
mitted. If you make changes, save the files, make more changes, then save and
commit, you won’t be able to view the state of the repository at the first set of
changes (because you didn’t commit).

Commit at logical points
Don’t commit every time you save changes to a file in the repository. We know
this sounds like a contradiction to the previous bullet, but it really only makes
sense to commit changes when the changes are complete. For example, commit‐
ting changes when you’re only halfway through updating a switch’s configuration
doesn’t make sense; you wouldn’t want to roll back to a half-completed switch
configuration. Instead, commit when you’ve finished the switch configuration.

Use helpful commit messages
As you can see from the previous git log output, commit messages help you
understand the changes that were contained in that commit. Try to make your
commit messages helpful and straightforward—it’s likely that in six months, the
commit message will be the only clue to help you decipher what you were doing
at that point in time.

Before we move on to the next section, there’s one more topic we need to discuss.
We’ve explained that objects in a Git repository are immutable, and that changes to
an object (like a file) result in the creation of a new object (addressed by the SHA
hash of the object’s content). This is true for all objects in the Git repository, includ‐
ing blobs (file content), tree objects, and commit objects.

What if, though, you made a commit and realized the commit contained errors?
Maybe you have some typos in your network configuration, or the commit message is
wrong. In this case, Git allows you to modify (or amend) the last commit.

302 | Chapter 8: Source Control with Git

Amending commits
In a situation where the last commit is incorrect for some reason, it is possible to
amend the commit through the use of the --amend flag to git commit. Note that you
could just make another commit instead of amending the previous commit; both
approaches are valid and each approach has its advantages and disadvantages, which
we’ll discuss shortly. First, though, let’s show you how to amend a commit.

To amend a commit, you’d follow the same set of steps as with a “normal” commit:

1. Make whatever changes you need to make.
2. Stage the changes.
3. Run git commit --amend to commit the changes, marking it as an amendment.

Under the hood, Git is actually creating new objects—which is in line with Git’s phi‐
losophy and approach of content-addressable immutable objects—but in the history
of the repository, you’ll see only the amended commit, not the original commit. This
results in a “cleaner” history, although some purists may argue that simply making
another commit (instead of using --amend) would be the best approach.

Which approach is best? That is mostly decided by you, the user, but there are a cou‐
ple considerations. If you’re collaborating with others via Git and a shared repository,
using --amend to amend commits already sent to the shared repository is generally a
bad idea. The one exception to this would be in an environment using Gerrit, where
amended commits are used extensively. We’ll talk more about Gerrit in Chapter 10,
and we’ll cover collaborating with Git later in this chapter in the section “Collaborat‐
ing with Git” on page 334.

Changing and Committing Tracked Files
You’ve created a repository, added some new files, and committed changes to the
repository. Now, though, you need to make some changes to the files that are already
in the repository. How does that work?

Fortunately, the process for committing modified versions of files into a repository
looks pretty much identical to what we’ve shown you already:

1. Modify the file(s) in the working directory.
2. Stage the change(s) to the index using git add. This puts the index in sync with

the working directory.
3. Commit the changes using git commit. This puts the repository in sync with the

index, and creates a point-in-time reference to the state of the repository.

Working with Git | 303

Let’s review this in a bit more detail. Suppose you needed to modify one of the files,
sw1.txt, because the switch’s configuration has changed (or perhaps because you’re
enforcing that configurations can only be deployed after they’ve been checked into
source control). After a tracked file (a file about which Git already knows and is
tracking) is modified, git status will show that changes are present:

vagrant@trusty:~/net-auto$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: sw1.txt

no changes added to commit (use "git add" and/or "git commit -a")
vagrant@trusty:~/net-auto$

Note the difference between this status message and the status message we showed
you earlier. In this case, Git knows about the sw1.txt file (it’s already been added to
the repository), so the status message is different. Note how the status message
changes if you were to add another switch configuration file, sw4.txt, to the working
directory:

vagrant@trusty:~/net-auto$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: sw1.txt

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 sw4.txt

no changes added to commit (use "git add" and/or "git commit -a")
vagrant@trusty:~/net-auto$

Again, Git provides a clear distinction between tracking changes to an already known
file and detecting untracked (not previously added) files to the working directory.
Either way, though, the process for getting these changes (modified file and new file)
into the repository is exactly the same, as you can see in the output of the git status
command: just use the git add command, then the git commit command.

vagrant@trusty:~/net-auto$ git add sw1.txt
vagrant@trusty:~/net-auto$ git add sw4.txt
vagrant@trusty:~/net-auto$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

304 | Chapter 8: Source Control with Git

 modified: sw1.txt
 new file: sw4.txt

vagrant@trusty:~/net-auto$ git commit -m "Update sw1, add sw4"
[master 679c41c] Update sw1, add sw4
 2 files changed, 9 insertions(+)
 create mode 100644 sw4.txt
vagrant@trusty:~/net-auto$

In the output of the git status commands, you may have noticed a reference to git
commit -a. The -a option simply tells Git to add all changes from all known files. If
you’re only committing changes to known files and you are OK with committing all
the changes together in a single commit, then using git commit -a allows you to
avoid using the git add command first.

If, however, you want to break up changes to multiple files into separate commits,
then you’ll need to use git add followed by git commit instead. Why might you
want to do this?

• You might want to limit the scope of changes in a single commit so that it’s less
impactful to revert to an earlier version.

• You may want to limit the scope of changes in a single commit so that others can
review your changes more easily. (This is something we’ll discuss in more detail
in Chapter 10.)

• When collaborating with others, it’s often considered a “best practice” to limit
commits to a single logical change, which means you may include some changes
in a commit but not others. We’ll discuss some general guidelines for collaborat‐
ing with Git later in this chapter in the section “Collaborating with Git” on page
334.

You’ll also notice that we’ve been using git commit -m in our examples here. The -m
option allows the user to include a commit message on the command line. If you
don’t include the -m, then Git will open your default editor so that you can supply a
commit message. Commit messages are required, and as we mentioned earlier we
recommend that you make your commit messages as informative as possible. (You’ll
be thankful for informative commit messages when reviewing the output of git log
in the future.) You can also combine both the -a and -m options, as in git commit -
am "Committing all changes to tracked files".

Working with Git | 305

For more information on the various options to any of the git
commands, just type git help <command>, like git help commit
or git help add. This will open the man page for that part of Git’s
documentation. If you like to use the man command instead, you
can do that too; just put a dash into the git command. Thus, to see
the man page for git commit, you’d enter man git-commit.

Now that you’ve committed another set of changes to the repository, let’s look at the
output of git log:

vagrant@trusty:~/net-auto$ git log
commit 679c41c13ceb5b658b988fb0dbe45a3f34f61bb3
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 20:41:19 2016 +0000

 Update sw1, add sw4

commit 95470631aba32d6823c80fdd3c6f923824dde470
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 17:37:22 2016 +0000

 First commit to new repository
vagrant@trusty:~/net-auto$

Your repository now has two commits. Before we explore how to view a repository at
a particular point in time (at a particular commit), let’s first review a few other com‐
mands and make some additional commits to the repository.

Unstaging Files
If you’ve been following along, your repository now has four switch configuration
files (sw1.txt through sw4.txt) and two commits. Let’s say you need to add a fifth
switch configuration file (named sw5.txt, of course). You know already the process to
follow:

1. Copy the file sw5.txt into the working directory.
2. Use git add to stage the file from the working directory into the index.

At this point, running git status will report that sw5.txt has been staged and is
ready to commit to the repository:

vagrant@jessie:~/net-auto$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: sw5.txt

306 | Chapter 8: Source Control with Git

vagrant@jessie:~$

However, you realize after staging the file that you aren’t ready to commit the file in
its current state. Maybe the file isn’t complete, or perhaps the file doesn’t accurately
reflect the actual configuration of “sw5” on the network. In such a situation, the best
approach would be to unstage the file.

The command to unstage the file—that is, to remove it from the index so the working
directory and the index are no longer synchronized—has already been given to you
by Git. If you refer back to the output of git status shared just a couple paragraphs
ago, you’ll see Git telling you how to unstage the file. The command looks like this:

git reset HEAD file

In order to explain what’s happening with this command, we first need to explain
what HEAD is. HEAD is a pointer referencing the last commit you made (or the last
commit you checked out into the working directory, but we haven’t gotten to that
point yet). Recall that when you stage a file (using git add), you are taking content
from the working directory into the index. When you commit (using git commit),
you are creating a point-in-time reference—a commit—to the content. Every time
you commit, Git updates HEAD to point to the latest commit.

HEAD also plays a strong role when you start working with multi‐
ple Git branches. We haven’t discussed branches yet (they’re cov‐
ered later in this chapter in the section “Branching in Git” on page
321), but when we do get to branches we’ll expand our discussion
of HEAD at that time.

Here’s a quick way to help illustrate this. If you’ve been following along with the
examples we’ve been using in this chapter, then you can use these commands as well
(just keep in mind that the SHA checksums shown here will differ from your own
SHA checksums).

First, use cat to show the contents of .git/HEAD:

vagrant@jessie:~/net-auto$ cat .git/HEAD
ref: refs/heads/master
vagrant@jessie:~/net-auto$

You’ll see that HEAD is a pointer to the file refs/heads/master. If you cat that file,
you’ll see this:

vagrant@jessie:~/net-auto$ cat .git/refs/heads/master
679c41c13ceb5b658b988fb0dbe45a3f34f61bb3
vagrant@jessie:~/net-auto$

Working with Git | 307

The contents of .git/refs/heads/master is a SHA checksum. Now run git log, and
compare the SHA checksum of the latest commit against that value:

vagrant@jessie:~/net-auto$ git log
commit 679c41c13ceb5b658b988fb0dbe45a3f34f61bb3
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 20:41:19 2016 +0000

 Update sw1, add sw4

commit 95470631aba32d6823c80fdd3c6f923824dde470
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 17:37:22 2016 +0000

 First commit to new repository
vagrant@jessie:~/net-auto$

You’ll note that the SHA checksum of the last commit matches the value of HEAD
(which points to refs/heads/master), illustrating how HEAD is a pointer to the latest
commit. Later in this chapter, we’ll show how HEAD also incorporates branches and
how it changes when you check out content to your working directory.

For now, though, let’s get back to git reset. The git reset command is a powerful
command, but fortunately it has some sane defaults. When used in this way—that is,
without any flags and when given a filename or path—the only thing git reset will
do is make the index look like the content referenced by HEAD (which we now know
references a particular commit, by default the latest commit).

Recall that git add makes the index look like the working directory, which is how
you stage a file. The git reset HEAD file command is the exact opposite, making
the index look like the content referenced by HEAD. It undoes changes to the index
made by git add, thus unstaging files.

Let’s see it in action. You’ve already staged sw5.txt in preparation for committing it to
the repository, so git status shows the file listed in the “Changes to be committed:”
section. Now run git reset:

vagrant@trusty:~/net-auto$ git reset HEAD sw5.txt
vagrant@trusty:~/net-auto$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 sw5.txt

nothing added to commit but untracked files present (use "git add" to track)
vagrant@trusty:~/net-auto$

You can see that sw5.txt is no longer listed as a change to be committed, and is
instead shown as an untracked file (it’s no longer in the index). Now you can continue

308 | Chapter 8: Source Control with Git

working on the content of sw5.txt, committing a version of it to the repository when
you’re ready.

We’ve shown you how to create a repository, add files (both new and existing files),
commit changes, and unstage files. What if you had files that need to be co-located
with other files in the repository, but shouldn’t be tracked by Git? This is where file
exclusions come into play.

Excluding Files from a Repository
There may be occasions where there are files you need to store in the working direc‐
tory—the “scratch space” for a Git repository—that you don’t want included in the
repository. Fortunately, Git provides a way to exclude certain files or filename pat‐
terns from inclusion in the repository.

Going back to our example, you’ve created a repository in which to store network
automation artifacts. Let’s suppose that you have a Python script that connects to
your network switches in order to gather information from the switches. An example
of one such Python script—in this case, one written to connect to an Arista switch
and gather information—might look like this:

#!/usr/bin/env python

from pyeapi.client import Node as EOS
from pyeapi import connect
import yaml

def main():

 creds = yaml.load(open('credentials.yml'))

 un = creds['username']
 pwd = creds['password']

 conn = connect(host='eos-npab', username=un, password=pwd)
 device = EOS(conn)

 output = device.enable('show version')
 result = output[0]['result']

 print('Arista Switch Summary:')
 print('---------------------')
 print('OS Version:' + result['version'])
 print('Model:' + result['modelName'])
 print('System MAC:' + result['systemMacAddress'])

if __name__ == "__main__":
 main()

Working with Git | 309

Part of how this script operates is via the use of authentication credentials stored in a
separate file (in this case, a YAML file named credentials.yml). Now, you need these
credentials to be stored with the Python script, but you wouldn’t necessarily want the
credentials to be tracked and managed by the repository.

To Include or Exclude Secrets?

Including secrets—information like passwords, SSH keys, or the
like—into a Git repository will depend greatly on how the reposi‐
tory is being used. For a strictly private repository where per-user
secrets are not needed, including secrets in the repository is proba‐
bly fine. For repositories where per-user secrets should be used or
for repositories that may at some point be shared publicly, you’ll
likely want to exclude secrets from the repository using the mecha‐
nisms outlined in this section.

Fortunately, Git provides a couple ways to exclude files from being tracked as part of
a repository. Earlier in this chapter in the section “Committing Changes to a Reposi‐
tory” on page 300, we discussed how Git configuration can be handled on a
repository-specific, user-specific, or system-wide basis. Excluding files from Git repo‐
sitories is similar, in that there are ways to exclude files on a per-repository basis or
on a per-user basis.

Excluding files per-repository
Let’s start with the per-repository method. The most common way of excluding (or
ignoring) files is to use a .gitignore file stored in the repository itself. Like any other
content in the repository, the .gitignore file must be staged into the index and com‐
mitted to the repository any time changes are made. The advantage of this approach
is that the .gitignore file is then distributed as part of the repository, which is very use‐
ful when you are part of a team whose members are all using Git as a distributed ver‐
sion control system (DVCS).

The contents of the .gitignore file are simply a list of filenames or filename patterns,
one on each line. To create your own list of files for Git to ignore, you’d simply create
the file named .gitignore in the working directory, edit it to add the filenames or file‐
name patterns you want ignored, and then add/commit it to the repository.

Looking at our Python script from earlier, you can see that it looks for its credentials
in the file named credentials.yml. Let’s create .gitignore (if you don’t already have one)
to ignore this file:

1. Create an empty file using touch .gitignore.

310 | Chapter 8: Source Control with Git

2. Edit .gitignore, using the text editor of your choice, to add credentials.yml on a
single line in the file.

At this point, if you run git status you’ll see that Git has noticed the addition of
the .gitignore file, but the credentials.yml file is not listed:

vagrant@trusty:~/net-auto$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .gitignore

nothing added to commit but untracked files present (use "git add" to track)
vagrant@trusty:~/net-auto$

You can now stage and commit the .gitignore file into the repository using git com
mit -am "Adding .gitignore file".

Now, if you create the credentials.yml file for the Python script, Git will politely ignore
the file. For example, here you can see the file exists in the working directory, but git
status reports no changes or untracked files:

[vagrant@centos net-auto]$ ls -la
total 40
drwxrwxr-x 3 vagrant vagrant 4096 May 31 16:32 .
drwxr-xr-x 5 vagrant vagrant 4096 May 12 17:18 ..
drwxrwxr-x 8 vagrant vagrant 4096 May 31 16:34 .git
-rw-rw-r-- 1 vagrant vagrant 8 May 31 16:27 .gitignore
-rw-rw-r-- 1 vagrant vagrant 15 May 31 16:32 credentials.yml
-rwxrwxr-x 1 vagrant vagrant 0 May 31 16:32 script.py
-rw-rw-r-- 1 vagrant vagrant 98 May 12 20:22 sw1.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw2.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw3.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 20:33 sw4.txt
-rw-rw-r-- 1 vagrant vagrant 135 May 31 14:56 sw5.txt
[vagrant@centos net-auto]$ git status
On branch master
nothing to commit, working directory clean
[vagrant@centos net-auto]$

Now, if you’re really paying attention you might note that the fact Git reported noth‐
ing to commit isn’t necessarily a guarantee the file has been ignored. Let’s use a few
more git commands to verify it. First, we’ll use git log to show the history of
commits:

vagrant@jessie:~/net-auto$ git log --oneline
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4

Working with Git | 311

9547063 First commit to new repository
vagrant@jessie:~/net-auto$

Now, let’s interrogate Git to see the contents of the repository at these various points
in time. To do this, we’ll use the git ls-tree command along with the SHA hash of
the commit we’d like to inspect. You’ve probably noticed by now that Git often uses
just the first seven characters of a SHA hash, like in the preceding output of the git
log --oneline command (Git will automatically use more characters to keep the
hashes unique as needed). In almost every case (there may be an exception out there
somewhere!), that’s true for commands you enter that require a SHA hash. For exam‐
ple, to see what was in the repository at the time of the next-to-last commit (whose
SHA hash starts with 5cd13a8), you could just do this:

vagrant@trusty:~/net-auto$ git ls-tree 5cd13a8
100755 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 script.py
100644 blob 2567e072ca607963292d73e3acd49a5388305c53 sw1.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw2.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw3.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw4.txt
100644 blob 88b23c7f60dc91f7d5bfeb094df9ed28996daeeb sw5.txt
vagrant@trusty:~/net-auto$

You can see that credentials.yml does not exist in the repository as of this commit.
What about the latest commit?

vagrant@jessie:~/net-auto$ git ls-tree ed45c95
100644 blob 2c1817fdecc27ccb3f7bce3f6bbad1896c9737fc .gitignore
100755 blob e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 script.py
100644 blob 2567e072ca607963292d73e3acd49a5388305c53 sw1.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw2.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw3.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw4.txt
100644 blob 88b23c7f60dc91f7d5bfeb094df9ed28996daeeb sw5.txt
vagrant@jessie:~/net-auto$

(We’ll leave it as an exercise for the reader to review the rest of the commits to verify
that the credentials.yml file is not present in any commit.)

Excluding files globally
In addition to excluding files on a per-repository basis using a .gitignore file in the
repository’s working directory, you can also create a global file for excluding files for
all repositories on your computer. Just create a .gitignore_global file in your home
directory and add exclusions to that file. You may also want to run this command to
ensure that Git is configured to use this new .gitignore_global file in your home
directory:

git config --global core.excludesfile /path/to/.gitignore_global

312 | Chapter 8: Source Control with Git

If you placed .gitignore_global in your home directory, then the path to the file would
typically be noted as ~/.gitignore_global.

The use of the git log and git ls-tree commands naturally leads us into a discus‐
sion of how to view more information about a repository, its history, and its contents.

Viewing More Information About a Repository
When it comes to viewing more information about a repository, we’ve already shown
you one command that you’ll use quite a bit: the git log command. The git log
command has already been used on a number of occasions, which should give you
some indicator of just how useful it is.

Viewing basic log information

The most basic form of git log shows the history of commits up to HEAD, so just
running git log will show you all the commits over the history of the repository.
Here’s the output of git log for the example repository we’ve been using in this
chapter:

[vagrant@centos net-auto]$ git log
commit ed45c956da4b7e38b61b96ae050c4da77337f7ad
Author: John Smith <john.smith@networktocode.com>
Date: Tue May 31 16:34:26 2016 +0000

 Adding .gitignore file

commit 5cd13a84de0e01f358636dee98da2df7d95e17ea
Author: John Smith <john.smith@networktocode.com>
Date: Tue May 31 16:33:41 2016 +0000

 Add Python script to talk to network switches

commit 2a656c3288d5a324fba1c2cbfccbc0e29db73969
Author: John Smith <john.smith@networktocode.com>
Date: Tue May 31 14:56:56 2016 +0000

 Add configuration for sw5

commit 679c41c13ceb5b658b988fb0dbe45a3f34f61bb3
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 20:41:19 2016 +0000

 Update sw1, add sw4

commit 95470631aba32d6823c80fdd3c6f923824dde470
Author: John Smith <john.smith@networktocode.com>
Date: Thu May 12 17:37:22 2016 +0000

Working with Git | 313

 First commit to new repository
[vagrant@centos net-auto]$

Viewing brief log information

The git log command has a number of different options; there are too many for us
to cover all of them here. One of the more useful options that we’ve already shown
you, the --oneline option, would produce the following output for the same exam‐
ple repository:

[vagrant@centos net-auto]$ git log --oneline
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
[vagrant@centos net-auto]$

As you can see from the example output, the --oneline option abbreviates the SHA
hash and lists only the commit message. For repositories with a lengthy history, it
may be most helpful to start with git log --oneline, then drill into the details of a
specific commit.

Disabling Git’s default behavior to pipe output through a pager can
make finding things via the use of grep possible. To disable Git’s
pager functionality, use the --no-pager option, as in git --no-
pager log --oneline.

To drill into the details of a specific commit, there are a few different options. First,
you can use the git log command and supply a range of commits to show. The syn‐
tax is git log start SHA..end SHA. So, if we wanted to show more details on the
last couple of commits in our example repository, we’d run a command that looks like
this (if you’re wondering where the SHA values came from, refer to the output of git
log --oneline from earlier in this section, and recall that you only need to supply
the first seven characters of the SHA hash):

vagrant@trusty:~/net-auto$ git log 5cd13a8..ed45c95
commit ed45c956da4b7e38b61b96ae050c4da77337f7ad
Author: John Smith <john.smith@networktocode.com>
Date: Tue May 31 16:34:26 2016 +0000

 Adding .gitignore file
vagrant@trusty:~/net-auto$

Git also has some symbolic names that you can use in commands like git log (and
others). We’ve already reviewed HEAD. If you wanted to use the commit just before
HEAD, you’d reference that symbolically as HEAD~1. If you wanted to refer to the

314 | Chapter 8: Source Control with Git

commit two places back from HEAD, you’d use HEAD~2; for three commits back, it’s
HEAD~3. (You can probably spot the pattern.) In this case, with this particular reposi‐
tory, this command produces the same results as the previous command we showed
you:

vagrant@trusty:~/net-auto$ git log HEAD~1..HEAD
commit ed45c956da4b7e38b61b96ae050c4da77337f7ad
Author: John Smith <john.smith@networktocode.com>
Date: Tue May 31 16:34:26 2016 +0000

 Adding .gitignore file
vagrant@trusty:~/net-auto$

When we expand our discussion of HEAD later in this chapter, you’ll understand
why we said “in this particular case, with this particular repository” that the two git
log commands would produce the same output.

Drilling into information on specific commits

Another way to drill into the details of a particular commit would be to use the git
cat-file command. Git, like so many other UNIX/Linux tools, treats everything as a
file. Thus, commits can be treated as a file, and their “contents” shown on the screen.
This is what the git cat-file command does. So, taking the abbreviated SHA from
a particular commit, you can look at more details about that commit with a com‐
mand like this:

vagrant@jessie:~/net-auto$ git cat-file -p 2a656c3
tree 9f955969460fe47cb3b22d44e497c7a76c7a8db2
parent 679c41c13ceb5b658b988fb0dbe45a3f34f61bb3
author John Smith <john.smith@networktocode.com> 1464706616 +0000
committer John Smith <john.smith@networktocode.com> 1464706616 +0000

Add configuration for sw5
vagrant@jessie:~$

(The -p option to git cat-file, by the way, just does some formatting of the output
based on the type of file. The man page for git cat-file will provide more details
on this and other switches.)

You’ll note this output contains a couple pieces of information that the default git
log output doesn’t show: the parent commit SHA and the tree object SHA. You can
use the parent commit SHA to see this commit’s “parent” commit. Every commit has
a parent commit that lets you follow the chain of commits all the way back to the ini‐
tial one, which is the only commit in a repository without a parent. The tree object
SHA captures the files that are in the repository at the time of a given commit; we
used this earlier with the git ls-tree command, like this:

vagrant@jessie:~/net-auto$ git ls-tree 9f9559
100644 blob 2567e072ca607963292d73e3acd49a5388305c53 sw1.txt

Working with Git | 315

100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw2.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw3.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw4.txt
100644 blob 88b23c7f60dc91f7d5bfeb094df9ed28996daeeb sw5.txt
vagrant@jessie:~/net-auto$

Using the SHA checksums listed here, you could then use the git cat-file com‐
mand to view the contents of one of these files at that particular time (as of that par‐
ticular commit).

Let’s see how that works. In the following set of commands, we’ll first use git log --
oneline to show the history of commits to a repository. Then we’ll use git cat-file
and git ls-tree with the appropriate seven-character SHA hashes to display the
contents of a particular file at two different points in time (as of two different
commits).

vagrant@trusty:~/net-auto$ git log --oneline
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
vagrant@trusty:~/net-auto$ git cat-file -p 9547063
tree fdad0ff90745deb944a430e2151d085aebc68d00
author John Smith <john.smith@networktocode.com> 1463074642 +0000
committer John Smith <john.smith@networktocode.com> 1463074642 +0000

First commit to new repository
vagrant@trusty:~/net-auto$ git ls-tree fdad0f
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw1.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw2.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw3.txt
vagrant@trusty:~/net-auto$ git cat-file -p 02df3d
interface ethernet0

interface ethernet1

interface ethernet2

interface ethernet3

vagrant@trusty:~/net-auto$

This shows us the contents of sw1.txt as of the initial commit. Now, let’s repeat the
same process for the second commit:

vagrant@trusty:~/net-auto$ git log --oneline
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository

316 | Chapter 8: Source Control with Git

vagrant@trusty:~/net-auto$ git cat-file -p 679c41c
tree a093d5f26677d345cb274ceb826e70bdb31ffd6f
parent 95470631aba32d6823c80fdd3c6f923824dde470
author John Smith <john.smith@networktocode.com> 1463085679 +0000
committer John Smith <john.smith@networktocode.com> 1463085679 +0000

Update sw1, add sw4
vagrant@trusty:~/net-auto$ git ls-tree a093d5
100644 blob 2567e072ca607963292d73e3acd49a5388305c53 sw1.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw2.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw3.txt
100644 blob 02df3d404d59d72c98439f44df673c6038352a27 sw4.txt
vagrant@trusty:~/net-auto$ git cat-file -p 2567e0
interface ethernet0
 duplex auto

interface ethernet1

interface ethernet2

interface ethernet3

vagrant@trusty:~/net-auto$

Ah, note that the contents of the sw1.txt file have changed! However, this is a bit labo‐
rious—wouldn’t it be nice if there were an easier way to show the differences between
two versions of a file within a repository? This is where the git diff command
comes in handy.

Distilling Differences Between Versions of Files
We mentioned at the start of this chapter that one of the benefits of using version
control for network automation artifacts (switch configurations, Python scripts, Jinja
templates, etc.) is being able to see the differences between versions of files over time.
In the previous section, we showed you a very manual method of doing so; now we’re
going to show you the easy way: the git diff command.

Note that Git also supports integration with third-party diff tools,
including graphical diff tools. In such cases, you would use git
difftool instead of git diff.

Examining differences between commits

The git diff command shows the differences between versions of a file (the differ‐
ences between a file at two different points in time). You just need to supply the two
commits and the file to be compared. Here’s an example. First, we list the history
using git log, then we use git diff to compare two versions of a file.

Working with Git | 317

[vagrant@centos net-auto]$ git log --oneline
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
[vagrant@centos net-auto]$ git diff 9547063..679c41c sw1.txt
diff --git a/sw1.txt b/sw1.txt
index 02df3d4..2567e07 100644
--- a/sw1.txt
+++ b/sw1.txt
@@ -1,4 +1,5 @@
 interface ethernet0
+ duplex auto

 interface ethernet1

[vagrant@centos net-auto]$

The format in which git diff shows the differences between the files can be a bit
confusing at first. The key in deciphering the output lies in the lines just after the
index... line. There, git diff tells us that dashes will be used to represent file a
(--- a/sw1.txt), and pluses will be used to represent file b (+++ b/sw1.txt). Follow‐
ing that is the representation of the differences in the files—lines that exist in file a are
preceded by a dash, while lines that exist in file b are preceded by a plus. Lines that
are the same in both files are preceded by a space.

Thus, in this example, we can see that the later commit, represented by the hash
679c41c, the line duplex auto was added. Obviously, this is a very simple example,
but hopefully you can begin to see just how useful this is.

Omitting the Filename in Commands

If you omit the filename with the git diff command (for exam‐
ple, if you entered git diff start SHA..end SHA), then Git will
show a diff for all the files changed in that commit, rather than just
a specific file referenced on the command line. Adding the file‐
name to the git diff command allows you to focus on the
changes a specific file.

Viewing other types of differences
Let’s make some changes to the configuration file for sw1.txt so that the diff is a bit
more complex, and along the way we’ll also show how you can use git diff in other
ways.

First, we’ll make some changes to sw1.txt using the text editor of your choice. It
doesn’t really matter what the changes are; we’ll run git status to provide that

318 | Chapter 8: Source Control with Git

changes exist in the working directory. However, before you stage the changes, let’s see
if we can use git diff again.

vagrant@trusty:~/net-auto$ git status
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: sw1.txt

no changes added to commit (use "git add" and/or "git commit -a")
vagrant@trusty:~/net-auto$ git diff
diff --git a/sw1.txt b/sw1.txt
index 2567e07..7005dc6 100644
--- a/sw1.txt
+++ b/sw1.txt
@@ -1,9 +1,11 @@
 interface ethernet0
- duplex auto
+ switchport mode access vlan 101

 interface ethernet1
+ switchport mode trunk

 interface ethernet2
+ switchport mode access vlan 102

 interface ethernet3
-
+ switchport mode trunk
vagrant@trusty:~/net-auto$

Running git diff like this—without any parameters or options—shows you the dif‐
ferences between your working tree and the index. That is, it shows you the changes
that have not yet been staged for the next commit.

Now, let’s stage the changes in preparation for the next commit, then see if there’s
another way to use git diff:

vagrant@jessie:~/net-auto$ git add sw1.txt
vagrant@jessie:~/net-auto$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: sw1.txt

vagrant@jessie:~/net-auto$ git diff
vagrant@jessie:~/net-auto$ git diff --cached
diff --git a/sw1.txt b/sw1.txt
index 2567e07..f3b5ad5 100644

Working with Git | 319

--- a/sw1.txt
+++ b/sw1.txt
@@ -1,9 +1,11 @@
 interface ethernet0
- duplex auto
+ switchport mode access vlan 101

 interface ethernet1
+ switchport mode trunk

 interface ethernet2
+ switchport mode access vlan 102

 interface ethernet3
-
+ switchport mode trunk
vagrant@jessie:~/net-auto$

You can see that the first git diff command returned no results, which makes sense
—there are no changes that aren’t staged for the next commit. However, when we add
the --cached parameter, it tells git diff to show the differences between the index
and HEAD. In other words, this form of git diff shows the differences between the
index and the last commit.

Once we finally commit this last set of changes, we can circle back around to our
original use of git diff, which allows us to see the changes between two arbitrary
commits.

[vagrant@centos net-auto]$ git commit -m "Defined VLANs on sw1"
[master 3588c31] Defined VLANs on sw1
 1 file changed, 4 insertions(+), 2 deletions(-)
[vagrant@centos net-auto]$ git status
On branch master
nothing to commit, working directory clean
[vagrant@centos net-auto]$ git log --oneline
3588c31 Defined VLANs on sw1
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
[vagrant@centos net-auto]$ git diff 679c41c..3588c31 sw1.txt
diff --git a/sw1.txt b/sw1.txt
index 2567e07..f3b5ad5 100644
--- a/sw1.txt
+++ b/sw1.txt
@@ -1,9 +1,11 @@
 interface ethernet0
- duplex auto
+ switchport mode access vlan 101

320 | Chapter 8: Source Control with Git

 interface ethernet1
+ switchport mode trunk

 interface ethernet2
+ switchport mode access vlan 102

 interface ethernet3
-
+ switchport mode trunk
[vagrant@centos net-auto]$

Before we move on to our next topic—we’ll discuss branches in Git next—let’s take a
moment to review what you’ve done so far:

• Staged changes (using git add) and committed them to the repository (using
git commit)

• Modified the configuration of Git (using git config)
• Unstaged changes that weren’t yet ready to be committed (using git reset)
• Excluded files from inclusion in the repository (using .gitignore)
• Reviewed the history of the repository (using git log)
• Compared different versions of files within the repository to see the changes in

each version (using git diff)

In the next section, we’ll expand our discussion of Git to cover what is, arguably, one
of Git’s most powerful features: branching.

Branching in Git
If you refer back to “Brief History of Git” on page 294, you’ll see that one of the pri‐
mary design goals for Git was strong support for nonlinear development. That’s a
fancy way of saying that Git needed to support multiple developers working on the
same thing at the same time. So how is this accomplished? Git does it through the use
of branches.

A branch in Git is a pointer to a commit. Now, that might not sound too powerful, so
let’s use some figures to help better explain the concept of a branch, and why non-
linear development in Git can be powerful.

First, recall from the section “Overview of Git’s Architecture” on page 296 that Git
uses a series of objects: blobs (representing the content of files in the repository), trees
(representing the file and directory structure of the repository), and commits (repre‐
senting a point-in-time snapshot of the repository, its structure, and its content). You
can visualize this as shown in Figure 8-1.

Branching in Git | 321

Figure 8-1. Objects in a Git repository

Each of these objects is identified by the SHA-1 hash of its contents. You’ve seen how
commits are referenced via their SHA-1 hash, and you’ve seen how to use the git
ls-tree or git cat-file commands to see the contents of tree and blob objects,
respectively, by referencing their SHA-1 hash.

As you make changes and commit them to the repository, you create more commit
objects (more snapshots), each of which points back at the previous commit (referred
to as its “parent” commit; you saw this in the section “Viewing More Information
About a Repository” on page 313). After a few commits, you can visualize it like
Figure 8-2 (we’ve omitted the blobs to simplify the diagram).

Figure 8-2. A chain of commits in a Git repository

Each commit points to a tree object, and each tree object points to blobs that repre‐
sent the contents of the repository at the time of the commit. Using the reference to
the tree object and the associated blobs, you can re-create the state of the repository at
any given commit—hence why we refer to commits as point-in-time snapshots of the
repository.

This is all well and good—and helps to explain Git’s architecture a bit more fully—but
what does it have to do with branching in Git? To answer that question (and we will
answer it, we promise!), we need to revisit the concept of HEAD. In the section

322 | Chapter 8: Source Control with Git

“Unstaging Files” on page 306, we defined HEAD as a pointer that points to the latest
commit, or to the commit we’ve checked out into the working directory. You visualize
HEAD as something like Figure 8-3.

Figure 8-3. HEAD pointing to the latest commit

You can verify this using a procedure we outlined earlier in this chapter (this assumes
you haven’t checked out a different branch or different commit, something we’ll dis‐
cuss shortly):

1. From the repository’s working directory, run cat .git/refs/heads/master.
Note the value displayed.

2. Compare the value of the previous command to the value of the last commit
from the output of git log --oneline. You should see the same value in both
places, indicating that HEAD points to the latest commit.

By default, every Git repository starts out with a single branch, named master. As a
branch is just a reference to a commit, this is illustrated graphically in Figure 8-4.

Figure 8-4. HEAD pointing to the latest commit in the master branch

You can see that the branch reference points to a commit, and that HEAD points to
the branch reference.

However, you’re not limited to only a single branch in a Git repository. In fact,
because branches are so lightweight (a reference to a commit), you’re strongly
encouraged to use multiple branches. So, when you create a new branch—let’s call

Branching in Git | 323

this new branch testing, though the name doesn’t really matter—the organization of
the Git objects now looks something like Figure 8-5.

Figure 8-5. New branch created in a Git repository

So, you’ve created the new branch—we’ll show you the commands to do that shortly
—and the new branch now references a particular commit. However, HEAD hasn’t
moved. HEAD gets moved when you check out content into the repository, so in
order to move HEAD to the new branch, you first have to check out the new branch.
Similarly, if you wanted to work with the repository at an earlier point in time (at an
earlier commit) you’d need to check out that particular commit. Once you check out a
branch, HEAD now points to the new branch, as in Figure 8-6.

Figure 8-6. HEAD pointing to a checked-out branch

At this point, you can now start making changes and committing them to the reposi‐
tory. This is where branches start to really show their power: they isolate new changes
from the master branch. Let’s assume you’ve made some changes to the testing branch

324 | Chapter 8: Source Control with Git

and have committed those changes to the repository. The graphical view of the
objects and relationships inside the repository now looks like Figure 8-7.

Figure 8-7. Adding a commit to a branch

You’ll note that the testing branch—and HEAD—move forward to represent the lat‐
est commit, but the master branch remains untouched. At any point, you can check
out the master branch and be right back where you were before you created the new
branch and made the changes. This diagram shows an example of how multiple
branches can evolve over time and allow for the development of hotfixes, new fea‐
tures, and new releases without affecting the master branch.

Figure 8-8 is a complicated example of branches, but it gives an idea of how branches
might be used in a typical software development environment.

Figure 8-8. Multiple branches in a development cycle

Branching in Git | 325

Hopefully, the wheels in your head are turning and you’re starting to think about the
possibilities that branches create:

• You can create a new branch when you want to try something new or different,
without affecting what’s in the master branch. If it doesn’t work out, no big deal—
the content in the master branch remains untouched.

• Branches form the basis by which you can collaborate with other authors on the
same repository. If you’re working in branch A and your coworker is working in
branch B, then you’re assured that you won’t affect each other’s changes. (Now,
you might have some issues when it comes time to bring the changes from the
two branches together when you merge, but that’s a different story—one we’ll
tackle later in this chapter in the section “Merging and Deleting Branches” on
page 329.)

Let’s turn our attention now to the practical side of working with Git branches, where
we can see the theory we’ve been describing in practice.

Creating a Branch
To create a Git branch—which, again, is just a reference to a commit—you’ll use the
git branch command. So, to create the testing branch we discussed in the previous
section, you’d simply run git branch testing. The command doesn’t produce any
output, but there is a way you can verify that it actually did something.

First, look in the .git/refs/heads directory, and you’ll see a new entry there named after
your newly created branch. If you run cat on that new file, you’ll see that it points to
the commit referenced by HEAD when you created the branch. Let’s see that in
action:

vagrant@trusty:~/net-auto$ git branch testing
vagrant@trusty:~/net-auto$ ls -la .git/refs/heads
total 16
drwxrwxr-x 2 vagrant vagrant 4096 Jun 4 19:16 .
drwxrwxr-x 4 vagrant vagrant 4096 May 12 14:52 ..
-rw-rw-r-- 1 vagrant vagrant 41 Jun 4 19:16 master
-rw-rw-r-- 1 vagrant vagrant 41 Jun 4 19:13 testing
vagrant@trusty:~/net-auto$ cat .git/refs/heads/testing
3588c31cbf958fe1a28d5e1f19ace669de99bb8c
vagrant@trusty:~/net-auto$ git log --oneline
3588c31 Defined VLANs on sw1
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
vagrant@trusty:~/net-auto$

326 | Chapter 8: Source Control with Git

The presence of the testing file in .git/refs/heads, along with the content of the file ref‐
erencing the latest commit as of the time of creation, shows that the branch has been
created. You can also verify this by simply running git branch, which will output the
list of branches. The active branch—the branch that is checked out for use in the
working directory—will have an asterisk before it (and, if colors are enabled in your
terminal, may be listed in a different color). This shows you that your testing branch
has been created, but not checked out—the master branch is still active.

To switch the active branch, you must first check out the branch.

Checking Out a Branch
To check out a branch means to make it the active branch, and the branch that will be
available in the working directory for you to edit/modify. To check out a branch, use
the git checkout command, supplying the name of the branch you’d like to check
out:

vagrant@jessie:~/net-auto$ git branch
* master
 testing
vagrant@jessie:~/net-auto$ git checkout testing
Switched to branch 'testing'
vagrant@jessie:~/net-auto$

You can create a branch and check it out at the same time using git
checkout -b <branch name>.

Let’s make a simple change to the repository—say, let’s add a file—then switch back to
the “master” branch to see how Git handles this. First, we’ll stage sw6.txt to the repos‐
itory and commit it to the testing branch:

[vagrant@centos net-auto]$ git add sw6.txt
[vagrant@centos net-auto]$ git commit -m "Add sw6 configuration"
[testing b45a2b1] Add sw6 configuration
 1 file changed, 12 insertions(+)
 create mode 100644 sw6.txt
[vagrant@centos net-auto]$

Note that the response from Git when you commit the change includes the branch
name and the SHA hash of the commit ([testing b45a2b1]). A quick git log
--oneline will verify that the latest commit has the same hash as reported by the git
commit command. Likewise, a quick cat .git/HEAD will show that you’re on the test‐
ing branch (because it points to .git/refs/heads/testing), and cat .git/refs/heads/

Branching in Git | 327

testing will also show the latest commit SHA hash. This shows that HEAD points to
the latest commit in the checked-out branch.

Viewing Git Branch Information in the Prompt
When you’re working with multiple branches in a Git repository, it can sometimes be
challenging to know which branch is currently active (checked out). To help address
this, most distributions of Git since version 1.8 have included support to allow bash—
the shell most Linux distributions use by default—to display the currently active Git
branch in the bash prompt. On Ubuntu 14.04 and Debian 8.x, this file is named git-
sh-prompt and is found in the /usr/lib/git-core directory. On CentOS 7 (and presuma‐
bly on RHEL 7), the file is named git-prompt.sh and is found in the /usr/share/git-core/
contrib/completion directory. On macOS, the file is installed as part of the XCode
command-line tools, is named git-prompt.sh, and is found in the /Library/Developer/
CommandLineTools/usr/share/git-core directory. The instructions for using this func‐
tionality are found at the top of the appropriate file for your OS.

Now, let’s switch back to the master branch and see what the working directory looks
like:

vagrant@trusty:~/net-auto$ git checkout master
Switched to branch 'master'
vagrant@trusty:~/net-auto$ ls -la
total 40
drwxrwxr-x 3 vagrant vagrant 4096 Jun 7 16:49 .
drwxr-xr-x 5 vagrant vagrant 4096 May 12 17:18 ..
drwxrwxr-x 8 vagrant vagrant 4096 Jun 7 16:49 .git
-rw-rw-r-- 1 vagrant vagrant 8 May 31 16:27 .gitignore
-rw-rw-r-- 1 vagrant vagrant 15 May 31 16:32 pw.txt
-rwxrwxr-x 1 vagrant vagrant 0 Jun 7 16:34 script.py
-rw-rw-r-- 1 vagrant vagrant 200 Jun 3 20:47 sw1.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw2.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw3.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 20:33 sw4.txt
-rw-rw-r-- 1 vagrant vagrant 135 May 31 14:56 sw5.txt
vagrant@trusty:~/net-auto$

Wait—the sw6.txt file is gone! What happened? Not to worry, you haven’t lost any‐
thing. Recall that checking out a branch makes it the active branch, and therefore the
branch that will be present in the working directory for you to modify. The sw6.txt
file isn’t in the master branch, it’s in the testing branch, so when you switched to mas‐
ter using git checkout master, that file was removed from the working directory.
Recall also that the working directory isn’t the same as the repository—even though
the file has been removed from the working directory, it’s still in the repository, as you
can easily verify:

328 | Chapter 8: Source Control with Git

vagrant@jessie:~/net-auto$ git checkout testing
Switched to branch 'testing'
vagrant@jessie:~/net-auto$ ls -la
total 44
drwxrwxr-x 3 vagrant vagrant 4096 Jun 7 16:53 .
drwxr-xr-x 5 vagrant vagrant 4096 May 12 17:18 ..
drwxrwxr-x 8 vagrant vagrant 4096 Jun 7 16:53 .git
-rw-rw-r-- 1 vagrant vagrant 8 May 31 16:27 .gitignore
-rw-rw-r-- 1 vagrant vagrant 15 May 31 16:32 pw.txt
-rwxrwxr-x 1 vagrant vagrant 0 Jun 7 16:34 script.py
-rw-rw-r-- 1 vagrant vagrant 200 Jun 3 20:47 sw1.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw2.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 17:17 sw3.txt
-rw-rw-r-- 1 vagrant vagrant 84 May 12 20:33 sw4.txt
-rw-rw-r-- 1 vagrant vagrant 135 May 31 14:56 sw5.txt
-rw-rw-r-- 1 vagrant vagrant 221 Jun 7 16:53 sw6.txt
vagrant@jessie:~/net-auto$

This illustrates how branches help isolate changes from the master branch, a key ben‐
efit of using branches. Using a branch, you can make some changes, test those
changes, and then discard them if necessary—all while knowing that your master
branch remains safe and untouched.

However, what if the changes you made in a branch were changes you wanted to
keep? Perhaps you tried out a new Jinja template, it worked perfectly in your testing,
and now you’d like to make that a permanent part of your repository? This is where
merging branches comes into play.

Merging and Deleting Branches
Before we get into merging branches, let’s revisit the contents of a commit object in
Git. In our example repository, we’ll examine the contents of the latest commit object
for the testing branch:

vagrant@jessie:~/net-auto$ git checkout testing
Switched to branch 'testing'
vagrant@jessie:~/net-auto$ git cat-file -p b45a2b1
tree f6b5dfbfdbf6bc29f04300c9a82c6936397d9b27
parent 3588c31cbf958fe1a28d5e1f19ace669de99bb8c
author John Smith <john.smith@networktocode.com> 1465317796 +0000
committer John Smith <john.smith@networktocode.com> 1465317796 +0000

Add sw6 configuration
vagrant@jessie:~/net-auto$

What does this tell us?

1. This particular commit references the tree object with the hash f6b5df.
2. The author and committer of this commit is John Smith.

Branching in Git | 329

3. The commit message indicates that this commit captures the addition of the con‐
figuration for sw6.

4. Finally, note that this commit has a parent commit with a hash of 3588c31.

We’ve mentioned before that every commit (except the very first commit) has a
pointer to a parent commit. This is illustrated in Figures 8-2 through 8-7, where the
commit objects point “backward in time” to the previous commit.

When we merge branches, Git is going to create a new commit object—called a merge
commit object—that will actually have two parents. Each of these parents represents
the two branches that were brought together as part of the merge process. In so
doing, Git maintains the link back to previous commits so that you can always “roll
back” to previous versions.

At a high level, the merge process looks like this:

1. Switch to the branch into which the other branch should be merged. If you’re
merging back into master, check out (switch to) master.

2. Run the git merge command, specifying the name of the branch to be merged
into master.

3. Supply a message (a commit message for the merge commit) describing the
changes being merged.

Reviewing fast-forward merges
Let’s see this in action. Let’s take the testing branch, which has a new switch configu‐
ration (sw6.txt) that isn’t present in the master branch, and merge it back into master.

First, let’s ensure you are on the master branch:

[vagrant@centos net-auto]$ git branch
 master
* testing
[vagrant@centos net-auto]$ git checkout master
Switched to branch 'master'
[vagrant@centos net-auto]$

Next, let’s actually merge the testing branch into the master branch:

[vagrant@centos net-auto]$ git merge testing
Updating 3588c31..b45a2b1
Fast-forward
 sw6.txt | 12 ++++++++++++
 1 file changed, 12 insertions(+)
 create mode 100644 sw6.txt
[vagrant@centos net-auto]$

330 | Chapter 8: Source Control with Git

Note the “Fast-forward” in the response from Git; this indicates that it was possible to
merge the branches by simply replaying the same set of changes to the master branch
as was performed on the branch being merged. In situations like this—a simple
merge—you won’t see an additional merge commit:

vagrant@trusty:~/net-auto$ git log --oneline
b45a2b1 Add sw6 configuration
3588c31 Defined VLANs on sw1
ed45c95 Adding .gitignore file
5cd13a8 Add Python script to talk to network switches
2a656c3 Add configuration for sw5
679c41c Update sw1, add sw4
9547063 First commit to new repository
vagrant@trusty:~/net-auto$ ls -la sw6.txt
-rw-rw-r-- 1 vagrant vagrant 221 Jun 7 20:53 sw6.txt
vagrant@trusty:~/net-auto$

Deleting a branch
Once a branch (and its changes) have been merged, you can delete the branch using
git branch -d branch-name. Note that you generally don’t want to delete a branch
before it’s been merged; otherwise, you’ll lose the changes stored in that branch (Git
will prompt you if you try to delete a branch that hasn’t been merged). Once a branch
has been merged, though, its changes are safely stored in another branch (typically
the master branch, but not always), and it’s therefore now safe to delete.

Reviewing merges with a merge commit
Now, let’s look at a more complex example. First, let’s create a new branch to store
some changes we’ll make relative to the configuration for sw4. To do that, we’ll simply
run git checkout -b sw4. This creates the new branch and checks it out so it’s the
active branch. Once you’ve made some changes to sw4.txt, use git add and git com
mit to stage and commit the changes.

Next, let’s switch back to master (using git checkout master) and make some
changes to a different switch configuration. Stage and commit the changes to the
master branch. Now what happens when we try to merge the sw4 branch into master?

Before we answer that question, let’s explore the commit objects a bit. Here are the
contents of the last commit object in the sw4 branch:

vagrant@jessie:~/net-auto$ git checkout sw4
Switched to branch 'sw4'
vagrant@jessie:~/net-auto$ git log --oneline HEAD~2..HEAD
40e88b8 Add port descriptions for sw4
b45a2b1 Add sw6 configuration
vagrant@jessie:~/net-auto$ git cat-file -p 40e8b8
tree 845b53f6715d73c36d90b3fe3224bfb494853ba5
parent b45a2b162334376f2100974687742de1a23c2594

Branching in Git | 331

author John Smith <john.smith@networktocode.com> 1465333657 +0000
committer John Smith <john.smith@networktocode.com> 1465333657 +0000

Add port descriptions for sw4
vagrant@jessie:~/net-auto$

The git log --oneline HEAD~2..HEAD command just shows the last two commits
leading up to HEAD (which points to the last commit on the active branch). As you
can see, this commit object points to a parent commit of b45a2b1.

Here’s the last commit on the master branch:

vagrant@jessie:~/net-auto$ git checkout master
Switched to branch 'master'
vagrant@jessie:~/net-auto$ git log --oneline HEAD~2..HEAD
183b8fe Fix sw3 configuration for hypervisor
b45a2b1 Add sw6 configuration
vagrant@jessie:~/net-auto$ git cat-file -p 183b8fe
tree 42a59b4058f927ef5af049e581480cd5530bd3b1
parent b45a2b162334376f2100974687742de1a23c2594
author John Smith <john.smith@networktocode.com> 1465333836 +0000
committer John Smith <john.smith@networktocode.com> 1465333836 +0000

Fix sw3 configuration for hypervisor
vagrant@jessie:~/net-auto$

This commit, the latest in the master branch, also points to the same parent commit
—showing that the two branches diverge.

Now let’s run the merge:

vagrant@jessie:~/net-auto$ git branch
* master
 sw4
vagrant@jessie:~/net-auto$ git merge sw4
(default Git editor opens to allow user to provide commit message)
Merge made by the 'recursive' strategy.
 sw4.txt | 4 ++++
 1 file changed, 4 insertions(+)
vagrant@jessie:~/net-auto$ git log --oneline HEAD~3..HEAD
81f5963 Merge branch 'sw4'
183b8fe Fix sw3 configuration for hypervisor
40e88b8 Add port descriptions for sw4
b45a2b1 Add sw6 configuration
vagrant@jessie:~/net-auto$

In this instance, changes on both branches needed to be reconciled when merging the
branches. It wasn’t possible to just “replay” the changes from the sw4 branch to mas‐
ter, because master had some changes of its own. Thus, Git creates a merge commit.
Let’s look at that file real quick:

[vagrant@centos net-auto]$ git cat-file -p 81f5963
tree e71cfa26549241b609fa39e69dc51fdafd1d7cb4

332 | Chapter 8: Source Control with Git

parent 183b8fe2d02bbd6b2b7a19ecc39dc9e792fe2e75
parent 40e88b88271b535cceb311bb904d6afac20c15c3
author John Smith <john.smith@networktocode.com> 1465334492 +0000
committer John Smith <john.smith@networktocode.com> 1465334492 +0000

Merge branch 'sw4'
[vagrant@centos net-auto]$

Note the presence of two parent commits, which—if you look—represent the com‐
mits we made to each branch before merging the sw4 branch into master. This is how
Git knows that the branches have converged, and how Git maintains the relationship
between commits over time.

Now that the commits in the sw4 branch have been merged into the master branch,
you can just delete the branch using git branch -d sw4:

[vagrant@centos net-auto]$ git branch -d sw4
Deleted branch sw4 (was 40e88b8).
[vagrant@centos net-auto]$ git branch
* master
[vagrant@centos net-auto]$

Deleting an Unmerged Branch

Note that it’s possible to delete an unmerged branch using git
branch -D branch. However, in such situations, you will lose the
changes in that branch, so tread carefully.

So, to recap:

• To create a branch, use git branch new branch name.
• To check out a branch, use git checkout branch.
• To create a new branch and check it out in one step, use git checkout -b new
branch name.

• To merge a branch into master, run git merge branch while the master branch is
checked out.

• To delete a branch after its changes have been merged, use git branch -d
branch name.

Let’s now turn our attention to using Git’s distributed nature to collaborate with oth‐
ers via Git.

Branching in Git | 333

Collaborating with Git
As we discussed in the section “Brief History of Git” on page 294, one of the key
design goals for Git was that it was a fully distributed system. Thus, every developer
needed to be able to work from a full copy of the source code stored in the repository
as well as the repository’s full history. When you combine this fully distributed nature
with Git’s other key design goals—speed, simplicity, scalability, and strong support for
non-linear development via lightweight branches—you can see why Git has become a
leading option for users needing a collaborative version control system.

On its own, Git can act as a “server” and provides mechanisms for communications
between systems running Git. Git supports a variety of transport protocols, including
Secure Shell (SSH), HTTPS, and Git’s own protocol (using TCP port 9418). If you’re
simply using Git on a couple of different systems and need to keep repositories in
sync, you can do this with no additional software.

Further, Git’s distributed nature has enabled a number of online services based on Git
to appear. Many Git users take advantage of online Git-based services such as GitHub
or BitBucket. There’s also a wide variety of open source projects to facilitate collabo‐
ration via Git, such as GitLab, Gitblit, or Djacket (which, somewhat ironically, is hos‐
ted on GitHub). As you can see, there’s no shortage of ways by which you can
collaborate with others using Git and Git-based tools.

In this section, we’ll explore how to collaborate using Git. That collaboration might
be as simple as keeping repositories in sync on multiple systems, but we’ll also cover
using public Git-based services (focusing on GitHub). Along the way, you’ll learn
about cloning repositories; Git remotes; pushing, fetching, and pulling changes from
other repositories; and using branches when collaborating.

Let’s start with exploring a simple scenario involving multiple systems running Git,
where you need to share/sync one or more repositories between these systems.

Collaborating Between Multiple Systems Running Git
So far in this chapter, you’ve been building your collection of network configurations,
scripts, and templates in a Git repository on a single system. What happens when you
need or want to be able to access this repository from a separate system? Maybe you
have a desktop system at work and a laptop that you use for travel and at home. How
do you use your network automation repository from both systems? Fortunately,
because of Git’s fully distributed design, this is pretty straightforward.

Can it be as simple as copying files? Let’s see what happens when we simply copy a
repository and its working directory to a new location on the same system. First, we’ll
run git log --oneline HEAD~2..HEAD in the existing repository:

334 | Chapter 8: Source Control with Git

https://github.com/
https://bitbucket.org/
https://about.gitlab.com/
http://gitblit.com/index.html
http://djacket.github.io/

vagrant@trusty:~/net-auto$ git log --oneline HEAD~2..HEAD
81f5963 Merge branch 'sw4'
183b8fe Fix sw3 configuration for hypervisor
40e88b8 Add port descriptions for sw4
vagrant@trusty:~/net-auto$

Now, let’s copy the repository and working directory to a new location on the same
system, run the same git log command, and see what we get:

vagrant@trusty:~$ cp -ar net-auto netauto2
vagrant@trusty:~$ cd netauto2
vagrant@trusty:~/netauto2$ git log --oneline HEAD~2..HEAD
81f5963 Merge branch 'sw4'
183b8fe Fix sw3 configuration for hypervisor
40e88b8 Add port descriptions for sw4
vagrant@trusty:~/netauto2$

Looks like the contents are identical! If you were to continue to explore the contents
of the repository at ~/netauto2 using git ls-tree, git cat-file, or other com‐
mands, you’d find that the two repositories are, in fact, identical. Why is this? Recall
that Git uses SHA1 hashes to identify all content: blobs, tree objects, and commit
objects. A key property of the SHA1 hashes is that identical content produces identical
hashes. Recall also that we stated that the contents of the Git repository are immutable
(once created, they can’t be modified). The combination of these attributes and Git’s
architecture means that it’s possible to copy a repository using simple tools like cp
and end up with an intact version of the repository. It’s this ability to copy reposito‐
ries—with all data and metadata intact—that is a key factor in Git’s fully distributed
nature.

Note there’s no link between the copies, so changes made in one copy won’t be auto‐
matically reflected in the other copy, or vice versa. (You can verify this, if you’d like,
by making a commit in either copy, then using git log in both repositories.) In
order to create a link between the copies, we have to explore something known as a
remote.

Linking repositories with remotes
A Git remote is really nothing more than a reference to another repository. Git uses
lightweight references pretty extensively—you’ve seen this already in the use of
branches and HEAD—and in this case remotes are very similar. A remote is a light‐
weight reference to another repository, specified by a location.

Let’s add a remote to the netauto2 repository that refers back to the original reposi‐
tory in net-auto. To do this, we’ll use the git remote command:

vagrant@jessie:~/netauto2$ git remote
vagrant@jessie:~/netauto2$ git remote add first ~/net-auto
vagrant@jessie:~/netauto2$ git remote

Collaborating with Git | 335

first
vagrant@jessie:~/netauto2$

When you use git remote with no parameters, it simply lists any existing remotes. In
this case, there are none (yet). So you next run the git remote add command, which
takes two parameters:

• The name to use for the remote repository. This name is purely symbolic—it can
be whatever makes sense to you. In this case, we used first as the name for the
remote.

• The location of the remote repository. In this case, the remote repository is on
the same system (for now), so the location is simply a filesystem path.

Finally, running git remote again shows that the new remote has been added.

With the remote in place, you now have an asymmetric link between the two
remotes. That is, netauto2 has a reference to net-auto, but the reverse is not true. Via
this asymmetric link, we can exchange information between Git repositories. Let’s see
how this works.

First, let’s list the branches available in our netauto2 repository. We’ll add the -a
parameter here, which we’ll explain in more detail shortly:

vagrant@trusty:~/netauto2$ git branch -a
* master
vagrant@trusty:~/netauto2$

Now, let’s fetch—and we’re using the term fetch here intentionally, for reasons that
will be evident later in this section—information from the remote repository, which
you configured earlier. We’ll update the information using the git remote update
command, then run git branch -a again:

vagrant@trusty:~/netauto2$ git remote update first
Fetching first
From /home/vagrant/net-auto
 * [new branch] master -> first/master
vagrant@trusty:~/netauto2$ git branch -a
* master
 remotes/first/master
vagrant@trusty:~/netauto2$

Note there’s now a new branch listed here. This is a special kind of branch known as a
remote tracking branch. You won’t make changes or commits to this branch, as it is
only a reference to the branch that exists in the remote repository. You’ll notice the
first in the name of the branch; this refers back to the symbolic name you gave the
Git remote when you added it. We had to use the -a parameter to git branch in
order to show remote tracking branches, which aren’t listed by default.

336 | Chapter 8: Source Control with Git

Instead of the two-step git remote add followed by git remote
update, you can fetch information from a remote repository when
you add the remote using the syntax git remote add -f name
location.

So what does this new remote tracking branch allow us to do? It allows us to transfer
information between repositories in order to keep two repositories up-to-date. We’ll
show you how this works in the next section.

Fetching and merging information from remote repositories
Once a remote has been configured for a repository, information has been retrieved
from the configured remote, and remote tracking branches have been created, it’s
possible to start to transfer information between remotes using various git com‐
mands. You could use these commands to keep branches of repositories or entire
repositories in sync.

To see this in action, we’ll want to change one of the two repositories on your system
(the net-auto repository) and see how to get that information into the netauto2 repos‐
itory.

First, in the net-auto repository, let’s make a change to the sw2.txt configuration file
and commit that change to the repository. (We won’t go through all the steps here, as
we’ve covered that previously. Need a hint? Edit the file, use git add, then git com
mit.)

Verify that you can see the new commit in the net-auto directory using git log --
oneline HEAD~1..HEAD, then switch to the netauto2 repository and run the same git
log command. The commit(s) listed will be different.

To get the updated information from net-auto over to netauto2, you have a few
options:

• You can run git remote update name, which updates only the specified remote.
• You can run git remote update (without a remote’s name), which updates all

remotes for this repository.
• You can run git fetch name, which will update (or fetch) information from the

specified remote repository. In this respect, git fetch is a lot like git remote
update, although the syntax is slightly different (again we refer you to the man
pages or the help screens for specific details). Note that git fetch is considered
the “conventional” way of retrieving information from a remote, as opposed to
using git remote update as we did earlier.

Collaborating with Git | 337

So, let’s run git fetch first, which will pull information from the repository
named first. You’ll see output that looks something like this (the SHA hashes will dif‐
fer, of course):

remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From /home/vagrant/net-auto
 81f5963..7c2a3e6 master -> first/master

OK, so we’ve retrieved information from first/master (the master branch of the
remote named first). Why, then, does git log in netauto2 not show this? This is
because you’ve only fetched (updated) the information from the remote repository;
you haven’t actually made it part of the current repository.

We caution you against using the word “pull” when referring to
simply retrieving information from a remote repository. In Git, the
idea of “pulling” from a remote repository has a very specific
meaning and its own command (both of which we’ll discuss
shortly). Try to train yourself to use “fetching” or “retrieving” when
referring to the act of getting information from a remote
repository.

So if you’ve only fetched the changes across but not made them a part of the current
repository, how do you do that? That is, how do you make them part of the current
repository? The changes in the remote repository are stored in a branch, which
means they are kept separate from the default master branch of the current reposi‐
tory. How do we get changes from one branch to another branch? That’s right—you
merge the changes:

vagrant@jessie:~/netauto2$ git checkout master
Already on 'master'
vagrant@jessie:~/netauto2$ git merge first/master
Updating 81f5963..7c2a3e6
Fast-forward
 sw2.txt | 7 +++++++
 1 file changed, 7 insertions(+)
vagrant@jessie:~/netauto2$

As you can see from Git’s output, it has taken the changes applied to first/master (the
master branch of the remote repository named first) and merged them—via a fast-
forward—into the master branch of the current repository. Because this is a fast-
forward, there will not be a merge commit, and now both repositories are in sync.

338 | Chapter 8: Source Control with Git

If you noted that the use of git fetch and git merge on the mas‐
ter branch of two repositories doesn’t necessarily keep the reposito‐
ries in sync, then you are really paying attention! In fact, only the
master branches of the two repositories are in sync. To keep the
entire repositories in sync, you’d need to perform this operation on
all branches.

Pulling information from remote repositories

Why the two-step process of first git fetch and then git merge? The primary rea‐
son is you might want to be able to review the changes from the remote repository
before you merge them, in the event that you aren’t ready for those changes to be
applied to the current repository.

As with so many things in Git, though, there is a shortcut. If you’d like to fetch
changes and merge them in a single operation, you can use git pull name, where
name is the name of the remote from which you’d like to get and merge changes into
the current branch. The git pull command is simply combining the git fetch and
git merge operations.

So you’ve seen how to get changes from net-auto to netauto2, but what about the
reverse? We mentioned that adding a remote to netauto2 is an asymmetric relation‐
ship in that netauto2 now knows about net-auto, but the reverse is not true. In a situa‐
tion such as we’ve described here—where you, as a single user, want to keep
repositories in sync on separate systems—the best approach would be to add a
remote from net-auto to netauto2, and then use git fetch and git merge to move
changes in either direction. Graphically, this would look something like Figure 8-9.

Figure 8-9. Using git fetch and git merge between repositories

Git almost always offers multiple ways to do something, which can
be both useful (in that it is very flexible) and frustrating (in that
there’s no “one way” to do something). Two-way transfer of infor‐
mation between Git repositories as we’ve described in this section
is one of these areas where there’s more than one way to get the job
done. For new users of Git, this is probably the easiest way to han‐
dle it.

Collaborating with Git | 339

We started this section asking the question, “How do I use my network automation
repository from multiple systems?” We’ve shown you how to make a copy of a reposi‐
tory, how to use Git remotes to link repositories, and how to use various Git com‐
mands to transfer data between repositories. In the next two sections, we’re going to
show you a simpler, easier way of copying and linking repositories, and we’ll extend
our working model across multiple systems, respectively.

Cloning repositories
In the previous sections, we showed you that you could simply copy a repository
from one location to another and then use git remote to create a remote that would
allow you to transfer information between repositories.

This process isn’t difficult, but what if there were an even easier way? There is, and it’s
called cloning a repository via the git clone command. Let’s see how this works.

The general syntax of this command is git clone repository directory.

In this command, repository is the location of the repository you’re cloning, and
directory is the (optional) directory where you’d like to place the cloned repository.
If you omit directory, then Git will place the cloned repository into a directory with
the same name as the repository. Adding the directory parameter to the git clone
command gives you some flexibility in where you’d like to place the cloned
repository.

To illustrate how git clone works, let’s kill the netauto2 repository. It shouldn’t have
any changes in it, but if it does then you should know how to get those changes back
into the original net-auto repository. (Need a hint? Add a remote, fetch changes, and
merge the changes.)

vagrant@trusty:~$ rm -rf netauto2
vagrant@trusty:~$ git clone ~/net-auto na-clone
Cloning into 'na-clone'...
done.
vagrant@trusty:~$ cd na-clone
vagrant@trusty:~/na-clone$ git log --oneline HEAD~2..HEAD
7c2a3e6 Update sw2 configuration
81f5963 Merge branch 'sw4'
40e88b8 Add port descriptions for sw4
vagrant@trusty:~/na-clone$

As you can see, git clone makes a copy of the repository, just like we did manually
in the previous section. There’s more, though—now run git remote in this new
cloned repository:

vagrant@trusty:~/na-clone$ git remote -v
origin
vagrant@trusty:~/na-clone$

340 | Chapter 8: Source Control with Git

Here’s the advantage of using git clone over the manual steps we showed you earlier
—it automatically creates a remote pointing back to the original repository from
which this repository was cloned. Further, it automatically creates remote tracking
branches for you (you can verify this using git branch -a or git branch -r).
Because it handles these extra steps for you, git clone should be your preferred
mechanism for cloning a repository.

Before we move on, let’s talk a bit about the “origin” branch that was automatically
created by git clone. While the name of a remote is strictly symbolic, origin does
have some special significance for Git. You can think of it as a default remote name.
In cases where you have multiple remotes (yes, this is definitely possible!) and you
run a git fetch without specifying a remote, Git will default to origin. Aside from
this behavior, though, there are no special attributes given to the remote named
origin.

As an example of using multiple remotes, this book itself was written using Git and
multiple Git remotes. One Git remote was GitHub; the other was O’Reilly’s reposi‐
tory. Here’s the output of git remote -v from one author’s repository:

oreilly git@git.atlas.oreilly.com:oreillymedia/network-automation.git (fetch)
oreilly git@git.atlas.oreilly.com:oreillymedia/network-automation.git (push)
origin https://github.com/jedelman8/network-automation-book.git (fetch)
origin https://github.com/jedelman8/network-automation-book.git (fetch)

Now we’re finally ready to tackle the last step, which is taking everything we’ve
learned so far and applying it to extend our Git working model with repositories
across multiple systems.

Extending our working model across multiple systems
When we discussed the idea of creating a Git remote (see the section “Linking reposi‐
tories with remotes” on page 335), we said that a remote had two attributes: the name
(symbolic in nature) and the location. So far you’ve only seen remotes on the same
system, but Git natively supports remotes on different systems across a variety of pro‐
tocols.

For example, a remote on the same system uses a location like this:

/path/to/git/repository
file:///path/to/git/repository

However, a remote could also use various network protocols to reach a repository on
a separate system:

git://host.domain.com/path/to/git/repository
ssh://[user@]host.domain.com/path/to/git/repository
http://host.domain.com/path/to/git/repository
https://host.domain.com/path/to/git/repository

Collaborating with Git | 341

The git:// syntax references Git’s native protocol, which is unauthenticated and
therefore used for anonymous access (generally read-only access). The ssh:// syntax
refers to Secure Shell; this is actually Git’s protocol tunneled over SSH for authentica‐
ted access. Finally, you have HTTP and HTTPS variants as well.

This means that you could take the working model we’ve described throughout this
section and easily extend it to multiple systems using whatever network protocol best
suits your needs. In this section, we’re going to focus on the use of SSH, and later in
this chapter we’ll show you some examples of using HTTPS with public Git hosting
services.

Going back to our example, let’s say you need to be able to work on your network
automation repository from both your desktop system and a laptop that you take
with you. Let’s assume that both systems support SSH (i.e., they are running Linux,
macOS, or some other UNIX variant). The first step would be to configure password‐
less authentication for SSH, generally using SSH keys. This will allow the various git
commands to work without prompting for a password. Configuring SSH falls outside
the scope of this book, but it’s very well documented online.

The next step is then to create the necessary Git remotes. The repository already
exists on your desktop (for the purposes of this example, we’ll use our Ubuntu
“Trusty Tahr” system to represent your desktop), but it doesn’t exist on your laptop
(which we’ll represent with our Debian “Jessie” system). So, the first thing to do
would be to clone the repository over to the laptop:

vagrant@jessie:~$ git clone ssh://trusty.domain.com/~/net-auto net-auto
Cloning into 'net-auto'...
remote: Counting objects: 32, done.
remote: Compressing objects: 100% (30/30), done.
remote: Total 32 (delta 12), reused 0 (delta 0)
Receiving objects: 100% (32/32), 2.99 KiB | 0 bytes/s, done.
Resolving deltas: 100% (12/12), done.
Checking connectivity... done.
vagrant@jessie:~$

This copies the repository from your desktop (trusty.domain.com) to your laptop
(placing it in the directory specified; in this case, net-auto), creates a Git remote
named origin pointing back to the original, and creates remote tracking branches.
You can verify all this by using git remote to see the remote, and git branch -r to
see remote tracking branches.

If you’d prefer to have a remote name that more clearly identifies where the remote is
found, you can rename the remote from the default name, origin. Let’s rename the
remote to reflect that it’s coming from our Ubuntu-based desktop:

vagrant@jessie:~/net-auto$ git remote
origin
vagrant@jessie:~/net-auto$ git remote rename origin trusty

342 | Chapter 8: Source Control with Git

vagrant@jessie:~/net-auto$ git remote
trusty
vagrant@jessie:~/net-auto$

Now, back on the Ubuntu system, we need to create a remote to the repository on the
Debian laptop. The repository already exists here, so we can’t use git clone; instead,
we’ll need to add the remote manually, and then fetch information from the remote
to create the remote tracking branches:

vagrant@trusty:~/net-auto$ git remote add jessie ssh://jessie.domain.com/~/net-auto
vagrant@trusty:~/net-auto$ git remote
jessie
vagrant@trusty:~$ git fetch jessie
From ssh://jessie.domain.com/~/net-auto
 * [new branch] master -> jessie/master
vagrant@trusty:~/net-auto$ git branch -r
 jessie/master
vagrant@trusty:~/net-auto$

Great—now you have the repository on both systems, a remote on each system point‐
ing back to the other, and remote tracking branches created on each side. From here,
the workflow is exactly like we described in earlier sections:

1. Make changes on either system (not both at the same time!) and commit those
changes to the repository. Ideally, you should work exclusively in branches other
than the master branch.

2. When you get back to the other system, run a git fetch and git merge to fetch
and merge changes from remote branches into local branches. (If you don’t care
to review the changes before merging, you can use git pull.) Be sure to do this
before you get started working!

3. Repeat as needed to keep branches on both systems up-to-date with each other.

This approach works fairly well for a single developer on two systems, but what about
more than one developer? While it’s possible to build a “full mesh” of Git remotes and
remote tracking branches, this can quickly become very unwieldy. Using a shared
repository in cases like this greatly simplifies how things work, as you’ll see in the
next section.

Using a shared repository

If you’ve been poking around Git remotes with the git remote command, you may
have discovered the -v switch, which enables more verbose output. For example, run‐
ning git remote -v from one of the two systems configured in the previous section
shows this:

trusty ssh://trusty.domain.com/~/net-auto (fetch)
trusty ssh://trusty.domain.com/~/net-auto (push)

Collaborating with Git | 343

This is useful, as it shows the full location of the remote repository. We’ve discussed
the use of git fetch to retrieve information from the remote repository, but what’s
this idea of push?

So far we’ve only discussed the idea of retrieving information from a remote reposi‐
tory to your local repository through the use of commands like git remote update,
git fetch, and git pull. It is possible, though, to send (Git uses the term push)
changes to a remote repository from your local repository. However, in such cases, it
is strongly recommended that the remote repository should be a bare repository.

What is a bare repository? Put simply, a bare repository is a Git repository without a
working directory. (Recall that the term working directory has a very specific defini‐
tion in Git, and shouldn’t be taken to mean the same as the current directory.) All the
discussions of Git repositories so far have assumed the presence of a working direc‐
tory, because someone—a user like you—was going to be working on the repository.
You, as the user of the repository, had to have some way of interacting with the con‐
tent in the repository, and the working directory was how Git provided that method
of interaction.

The reason you are strongly recommended against pushing to a non-bare repository
(a repository with a working directory) is that a push doesn’t reset the working direc‐
tory. Let’s go back to our previous example—two systems configured with remotes
and remote tracking branches pointing to the other system—and see how this might
cause problems:

1. Let’s say you’re being a really good Git citizen and you’re working from a branch.
We’ll call this branch new-feature. You’ve got new-feature checked out on your
first system, so it’s the contents of the new-feature branch that are in the working
directory. As the day ends, you still have a few unfinished changes left in the
working directory, but you commit a few other changes.

2. From your second system, you fetch the changes, review them, merge them into
the local new-feature branch, and continue working. You know that you can’t see
the uncommitted changes in the working directory on your first system, but
that’s no problem. All is well so far.

3. It’s the end of the evening now, and you’ve just completed some work. You decide
to push your changes to your work system’s new-feature branch.

4. The next day, you come into work and decide to get started. Your uncommitted
changes are still in the working directory, but you don’t see the changes you
pushed last night. What’s going on here?

This is the issue with pushing to a non-bare repository: the changes were pushed to
the remote repository, but the working directory was not updated. That’s why you
can’t see the changes. In order to be able to see the changes, you’ll have to run git

344 | Chapter 8: Source Control with Git

reset --hard HEAD, which will throw away the changes in the working directory in
order to show the pushed changes. Not a good situation, right?

Using a bare repository eliminates these problems, but it also eliminates the possibil‐
ity of being able to interactively work with the repository. This is probably perfectly
fine for a shared repository being used by multiple developers, though.

To create a new, bare repository, simply add the --bare option to git init:

vagrant@trusty:~$ git init --bare shared-repo.git
Initialized empty Git repository in /home/vagrant/shared-repo.git/
vagrant@trusty:~$ git init non-bare-repo
Initialized empty Git repository in /home/vagrant/non-bare-repo/.git/

Note the difference in the output of Git when --bare is used and when it is not used.
In a non-bare repository, the actual Git repository is in the .git subdirectory, and Git’s
response indicates this. In a bare repository, though, there’s no working directory, so
the Git repository sits directly at the root of the directory specified.

Although not required, it is accepted convention to end the name
of a bare repository in .git.

In our case, though, we have an existing repository, and we need to somehow transi‐
tion that into a bare repository that we can now share among multiple users. Git is
prepared for such a scenario: we can use git clone to clone an existing repository
into a new bare repository.

vagrant@trusty:~$ git clone --bare net-auto na-shared.git
Cloning into bare repository 'na-shared.git'...
done.
vagrant@trusty:~$

When you use git clone --bare, Git does not add any remotes or remote tracking
branches. This makes sense, if you think about it; generally, remotes and remote
tracking branches are useful only when you are interacting with the repository
directly. With a bare repository, you aren’t interacting with the repository directly;
you’ll use a clone on another system, which will have remotes and remote tracking
branches.

Let’s take our two-system setup (with the repository on Trusty and Jessie and remotes
pointing back to each other) and transition it into a shared, bare repository on a third
system. We’ll introduce our third system, a CentOS system, to serve as the shared
repository.

Collaborating with Git | 345

First, we need to get the repository onto the CentOS system. Here’s where git clone
--bare will come into play:

[vagrant@centos ~]$ git clone --bare ssh://trusty.domain.com/~/net-auto
na-shared.git
Cloning into bare repository 'na-shared.git'...
remote: Counting objects: 32, done.
remote: Compressing objects: 100% (30/30), done.
Receiving objects: 100% (32/32), done.
remote: Total 32 (delta 12), reused 0 (delta 0)
Resolving deltas: 100% (12/12), done.
[vagrant@centos ~]$

Now we can clone this bare repository onto our two work systems. First, the Ubuntu
system:

vagrant@trusty:~$ git clone ssh://centos.domain.com/~vagrant/na-shared.git
na-shared
Cloning into 'na-shared'...
remote: Counting objects: 32, done.
remote: Compressing objects: 100% (18/18), done.
remote: Total 32 (delta 12), reused 32 (delta 12)
Receiving objects: 100% (32/32), done.
Resolving deltas: 100% (12/12), done.
Checking connectivity... done.
vagrant@trusty:~$ cd na-shared
vagrant@trusty:~/na-shared$ git remote -v
origin ssh://centos.domain.com/~vagrant/na-shared.git (fetch)
origin ssh://centos.domain.com/~vagrant/na-shared.git (push)
vagrant@trusty:~/na-shared$ git branch -r
 origin/HEAD -> origin/master
 origin/master
vagrant@trusty:~/na-shared$ git log --oneline HEAD~2..HEAD
7c2a3e6 Update sw2 configuration
81f5963 Merge branch 'sw4'
40e88b8 Add port descriptions for sw4
vagrant@trusty:~/na-shared$

You can see that the git clone into the bare repository and subsequently back down
to your Ubuntu system preserved all the data and metadata in the repository, and
automatically created Git remotes and remote tracking branches. (You can verify the
Git history, if you’d like, by running git log in the new na-shared repository as well
as in the old net-auto repository still on your system.)

Next, we perform the same steps on the Debian system:

vagrant@jessie:~$ git clone ssh://centos.domain.com/~vagrant/na-shared.git
na-shared
Cloning into 'na-shared'...
remote: Counting objects: 32, done.
remote: Compressing objects: 100% (18/18), done.
remote: Total 32 (delta 12), reused 32 (delta 12)

346 | Chapter 8: Source Control with Git

Receiving objects: 100% (32/32), done.
Resolving deltas: 100% (12/12), done.
Checking connectivity... done.
vagrant@jessie:~$ cd na-shared
vagrant@jessie:~/na-shared$ git remote -v
origin ssh://centos.domain.com/~vagrant/na-shared.git (fetch)
origin ssh://centos.domain.com/~vagrant/na-shared.git (push)
vagrant@jessie:~/na-shared$ git branch -r
 origin/HEAD -> origin/master
 origin/master
vagrant@jessie:~/na-shared$

Now that you have the new na-shared repository on all your systems, you can simply
remove the old net-auto repository with rm -rf net-auto.

What does the workflow look like now?

1. You’ll still want to work almost exclusively in branches other than the master
branch. This becomes particularly important when working with other users in
the same shared repository.

2. Before starting work on the local clone on any system, run git fetch to retrieve
any changes present on the shared repository but not in your local clone. Merge
the changes into local branches as needed with git merge.

3. Make changes in the local repository and commit them to your local clone.
4. Push the changes up to the shared repository using git push.

We haven’t talked about the git push command before, so it probably deserves a bit
of explanation.

Pushing changes to a shared repository

Now that you have a bare repository, you can push changes to the remote using git
push. The general syntax is git push remote branch, where remote is the name of
the Git remote and branch is the name of the branch to which these changes should
be pushed.

To illustrate this in action, let’s make some changes to the network automation repos‐
itory on our Debian system. We’ll add a Jinja template, hv-tor-config.j2, that repre‐
sents the base configuration for a top-of-rack switch to which hypervisors are
connected.

First, because we don’t want to work off the master branch, we create a new branch to
hold our changes:

vagrant@jessie:~/na-shared$ git checkout -b add-sw-tmpl
Switched to a new branch 'add-sw-tmpl'
vagrant@jessie:~/na-shared$

Collaborating with Git | 347

After we add the file to the working directory (by creating it from scratch or by copy‐
ing it in from elsewhere), we’ll stage and commit the changes:

vagrant@jessie:~/na-shared$ git add hv-tor-config.j2
vagrant@jessie:~/na-shared$ git commit -m "Add Jinja template for TOR config"
[add-sw-tmpl 8cbbe6f] Add Jinja template for TOR config
 1 file changed, 15 insertions(+)
 create mode 100644 hv-tor-config.j2
vagrant@jessie:~/na-shared$

Now, we’ll push the changes to the origin remote, which points to our shared (bare)
repository:

vagrant@jessie:~/na-shared$ git push origin add-sw-tmpl
Counting objects: 3, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 423 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
To ssh://centos.domain.com/~vagrant/na-shared.git
 * [new branch] add-sw-tmpl -> add-sw-tmpl
vagrant@jessie:~/na-shared$

This allows coworkers and others with whom we are collaborating to then fetch the
changes on their systems. They would just use git fetch to retrieve the changes,
make a local branch corresponding to the remote tracking branch, then review the
changes using whatever methods they wanted. Here, we’ll show git diff, which isn’t
terribly useful considering the only change is adding a single new file.

vagrant@trusty:~/na-shared$ git fetch origin
remote: Counting objects: 4, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From ssh://centos.domain.com/~vagrant/na-shared
 * [new branch] add-sw-tmpl -> origin/add-sw-tmpl
vagrant@trusty:~/na-shared$ git checkout --track -b add-sw-tmpl origin/add-sw-tmpl
Branch add-sw-tmpl set up to track remote branch add-sw-tmpl from origin.
Switched to a new branch 'add-sw-tmpl'
vagrant@trusty:~/na-shared$ git diff master..HEAD
diff --git a/hv-tor-config.j2 b/hv-tor-config.j2
new file mode 100644
index 0000000..989d723
--- /dev/null
+++ b/hv-tor-config.j2
@@ -0,0 +1,15 @@
+interface ethernet0
+ switchport mode access vlan {{ mgmt_vlan_id }}
+
+interface ethernet1
+ description Connected to {{ server_uplink_1 }}
+ switchport mode trunk
+

348 | Chapter 8: Source Control with Git

+interface ethernet2
+ description Connected to {{ server_uplink_2 }}
+ switchport mode trunk
+
+interface ethernet3
+ description Connected to {{ server_uplink_3 }}
+ switchport mode trunk
+
vagrant@trusty:~/na-shared$

Once everyone agrees that the changes are OK, then you can merge the changes into
the master branch. First, perform the merge locally:

vagrant@jessie:~/na-shared$ git checkout master
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'
vagrant@jessie:~$ git merge add-sw-tmpl
Updating 7c2a3e6..8cbbe6f
Fast-forward
 hv-tor-config.j2 | 15 +++++++++++++++
 1 file changed, 15 insertions(+)
 create mode 100644 hv-tor-config.j2
vagrant@jessie:~/na-shared$

This a fast-forward, so there’s no commit merge. Now push the changes to the shared
repository:

vagrant@jessie:~/na-shared$ git push origin master
Total 0 (delta 0), reused 0 (delta 0)
To ssh://centos.domain.com/~vagrant/na-shared.git
 7c2a3e6..8cbbe6f master -> master
vagrant@jessie:~/na-shared$

Finally, delete your branch (also frequently referred to as a feature branch or a topic
branch) and push that change to the shared repository:

vagrant@jessie:~/na-shared$ git branch -d add-sw-tmpl
Deleted branch add-sw-tmpl (was 8cbbe6f).
vagrant@jessie:~/na-shared$ git push origin --delete add-sw-tmpl
To ssh://centos.domain.com/~vagrant/na-shared.git
 - [deleted] add-sw-tmpl
vagrant@jessie:~/na-shared$

Your collaborators can then get the changes that were merged into the master branch,
delete the local branch they created, then delete the remote tracking branch that is no
longer needed using the git fetch --prune command:

vagrant@trusty:~/na-shared$ git pull origin master
From ssh://centos.domain.com/~vagrant/na-shared
 * branch master -> FETCH_HEAD
 7c2a3e6..8cbbe6f master -> origin/master
Updating 7c2a3e6..8cbbe6f
Fast-forward

Collaborating with Git | 349

 hv-tor-config.j2 | 15 +++++++++++++++
 1 file changed, 15 insertions(+)
 create mode 100644 hv-tor-config.j2
vagrant@trusty:~/na-shared$ git fetch --prune origin
From ssh://192.168.100.12/~vagrant/na-shared
 x [deleted] (none) -> origin/add-sw-tmpl
vagrant@trusty:~/na-shared$ git branch -d add-sw-tmpl
Deleted branch add-sw-tmpl (was 8cbbe6f).
vagrant@trusty:~/na-shared$

The git fetch --prune command is new; it’s used to delete a remote tracking
branch when the branch no longer exists on the remote. In this particular case, we’re
removing the remote tracking branch for origin/add-sw-tmpl, as noted in the output
of the command.

Be Patient When Learning Git

We know that all this may sound really complicated if you’re new to
Git. It’s OK—everyone was new to Git at some point (except maybe
Linus). Take it slow, and be patient with yourself. After a little while
of using Git, the commands will start to feel more natural. Until
then, you might find it handy to have a Git “cheat sheet” nearby to
remind you of some of the commands and their syntax.

Before we move on to our final topic—collaborating using Git-based online services
—let’s recap what we’ve discussed in this section:

• Git uses the concept of remotes to create links between repositories. You’ll use the
git remote command to manipulate remotes. A remote can point to a filesystem
location as well as a location across the network, such as another system via SSH.

• To retrieve changes from a remote repository into your local repository, use git
fetch remote.

• Git relies heavily on branches when working with remote repositories. Special
branches known as remote tracking branches are automatically created when you
use git fetch to retrieve changes.

• Changes retrieved from a remote repository can be merged into your local repos‐
itory just like any other branch merge using git merge.

• If you don’t want to follow the two-step git fetch followed by git merge, you
can use git pull.

• You’ll use git push to push changes to a remote repository, but this remote
repository should be a bare repository.

350 | Chapter 8: Source Control with Git

• Using a bare repository as a central, shared repository can enable multiple users
to collaborate on a single repository. Changes are exchanged via branches and
through the use of git push, git fetch, git merge, and git pull.

Our last section in this chapter builds on everything we’ve shown you so far, and
focuses on using Git-based online services to collaborate with other users.

Collaborating Using Git-Based Online Services
Fundamentally, collaborating with other users using a Git-based online services will
look and feel very much like what we described in the previous section. All the same
concepts apply—using clones to make copies of repositories, using remotes and
remote tracking branches, and working in branches to exchange changes with other
users in the same repository. You’ll even continue to use the same commands: git
fetch, git push, git merge, and git pull.

All that being said, there are a few differences that we’d like to cover. For the sake of
brevity, we’ll focus here on the use of GitHub as the Git-based online service by which
you are collaborating. The topics we’ll cover in this section are:

• Forking repositories
• Pull requests

Ready? Let’s start with forking repositories.

Forking repositories
Forking a GitHub project is essentially the same as cloning a Git repository. (We’ll use
the terms project and repository somewhat interchangeably in this section.) When you
fork a GitHub repository, you are issuing a command to GitHub’s servers to clone the
repository into your user account. At the time of creation, your fork will be a full and
complete copy of the original repository, including all the content and the commit
history. Once the repository has been forked into your account, it’s just as if you’d
issued a git clone from the command line—links are maintained back to the origi‐
nal project, much like a Git remote. (These remotes are not exposed to the user,
though.) The key difference here is that forking a repository on GitHub does not cre‐
ate a local copy of the repository; you’ll still need to use git clone to clone the
forked copy down to your local system, as we’ll show you shortly.

So why fork a repository? In the case of a large online service such as GitHub, there
are hundreds of thousands of repositories hosted there. Each of these repositories is
associated with a GitHub user ID, and that user ID is allowed to control who may or
may not contribute to the repository. What if you found a repository to which you
wanted to contribute? The owner of that repository may not know you (a very likely

Collaborating with Git | 351

situation), and may not trust your ability to contribute to his or her repository. How‐
ever, if you had your own copy of the repository, you could make the contributions
you wanted to make and then let the owner of the original decide if such contribu‐
tions were worthwhile. So, instead of trying to get approval to contribute directly to a
repository, you instead fork (clone) the repository to your own account, where you
can work with it. At some point later, you can (optionally) see if the original reposi‐
tory wants to include your changes moving forward (we’ll discuss this in the section
“Pull requests” on page 354).

To fork a GitHub repository, just follow these steps:

1. Log into GitHub using your security credentials.
2. Locate the repository you’d like to fork into your own account, and click the Fork

button in the upper-right corner of the screen.
3. If you are a member of any GitHub organizations, you may be prompted for the

user account or organization where you’d like this repository to be forked.
Choose your own user account unless you know you need a different option.

That’s it! GitHub will fork (clone) the repository into your user account.

Because GitHub repositories are bare repositories, you’ll generally need to then clone
this bare repository down to your local system to work with it. (Note that GitHub
provides some web-based tools to create files, edit files, make commits, and similar.)
To clone a GitHub repository out of your account, you’d just use the git clone com‐
mand, followed by the URL of the GitHub repository. For example, here’s the URL of
one of the authors’ GitHub repositories: https://github.com/lowescott/learning-tools.git

Let’s say your GitHub username is npabook (this user did not exist at the time of this
writing). If you were to fork the preceding repository, it would make a full and com‐
plete copy of the repository into your user account, just as if you’d used git clone. At
this point, the URL for your forked repository would be: https://github.com/npabook/
learning-tools.git

If you ran git clone https://github.com/npabook/learning-tools.git from
your local system, Git would clone the repository down to your local system, create a
remote named origin that points back to your forked repository on GitHub, and cre‐
ate remote tracking branches—just as git clone worked in our earlier examples.

Once you have a clone of the repository on your local system, working with your
forked GitHub repository is exactly like we described in the previous section:

1. Create new feature/topic branches locally to isolate changes away from the mas‐
ter branch.

2. Use git push to push those changes to the remote GitHub repository.

352 | Chapter 8: Source Control with Git

https://github.com/lowescott/learning-tools.git
https://github.com/npabook/learning-tools.git
https://github.com/npabook/learning-tools.git

3. Merge the changes into the master branch using git merge whenever you’re
ready.

4. Use git fetch followed by git merge to pull down the changes to the master
branch, or combine those steps using git pull.

5. Delete the local feature/topic branch and the remote branch on the GitHub
repository.

So far, this should all seem pretty straightforward to you—we haven’t really seen any‐
thing different from what we described earlier. There is one situation, though, that
requires some discussion: how do you keep your fork in sync with the original?

Keeping forked repositories in sync
Although GitHub maintains links back to the original repository when you fork it
into your user account, GitHub does not provide a way to keep the two repositories
synchronized. Why would it be important to keep your fork synchronized with the
original? Suppose you wanted to contribute to an ongoing project. Over time, your
forked copy would fall hopelessly behind the original as development continued,
branches were merged, and changes committed to the original. In order for your fork
to be useful for you to use to contribute changes, it needs to be up-to-date with the
original.

To keep your forked repository up-to-date, you’re going to need to use multiple
remotes. (We did say earlier that multiple remotes is definitely something you might
need to use with Git.) Let’s walk through how this would work. We’ll assume you’ve
already forked the repository in GitHub.

First, clone the forked repository down to your system using git clone. The com‐
mand would look something like this:

git clone https://username@github.com/username/repository-name.git

This will clone the repository down to your local system, create a remote named ori‐
gin that points back to the URL specified before, and creates remote tracking
branches. At this point, if you ran git remote in this repository, you’d see a single
remote named origin (remember that git remote -v will also show the location of
the remote—in this case, the HTTPS URL).

Next, add a second remote that points to the original repository. The command would
look something like this:

git remote upstream add https://github.com/original-user/repository-name.git

The name “upstream” here is strictly symbolic, but we like to use it, as this reminds us
that the remote points to the upstream (or original) project. (We’ve also found that
“upstream” is commonly used, so it may make sense to use the same remote name

Collaborating with Git | 353

that others use for consistency.) Your local repository now has two remotes: origin,
which points to your forked repository, and upstream, which points to the original
repository.

Now, to keep your repository up-to-date with the original (all these steps are taken
from within the cloned Git repository on your local system):

1. Check out the master branch using git checkout master.
2. Get the changes from the original repository. You can use a combination of git

fetch upstream master followed by git merge upstream/master, or you can
use git pull upstream master (which combines the steps). Your local, cloned
repository is now in sync with the original repository.

3. Push the changes from your local repository to the forked repository using git
push origin master. Now your forked repository is up-to-date with the original
repository.

This process doesn’t keep any feature/topic branches up-to-date, but that’s generally
not a problem—most of the time you’ll only want to keep master synchronized
between the original and the forked repository.

The next section talks about how to let the owner of a repository know that you have
changes you’d like her to consider including in her repository.

Pull requests
Let’s quickly recap the recommended process for working with a shared repository
such as that offered by GitHub:

1. Create a local branch—called a feature or topic branch—in which to store the
changes you’re going to make.

2. Stage and commit the changes to the new local branch.
3. Push the local branch to the remote repository using git push remote branch.

That gets the changes into your forked repository, but how does the owner of the
original repository know that you’ve pushed some changes up to your forked copy?
In short: he or she doesn’t. Why? Well, for one, it’s entirely possible that you are truly
forking—creating a divergent codebase—and don’t want or need the original
author(s) to know about your changes. Second, what if the changes you committed
don’t contain all the changes you want the original authors to consider? How would
Git or GitHub know when you are ready? In short: it can’t. Only you can know when
your code is ready for the original authors to review for inclusion, and that’s the pur‐
pose of a pull request.

354 | Chapter 8: Source Control with Git

A pull request is a notification to the authors of the original repository that you have
changes you’d like them to consider including in their repository. Creating a pull
request comes after step 3 in the preceding list. Once you’ve pushed your changes
into a branch in your forked repository, you can create a pull request against the orig‐
inal repository. (Note that other Git-based platforms, such as GitLab, may use terms
like merge request instead of pull request. The basic idea and workflow are much the
same.)

To create a pull request after pushing a branch up to GitHub, go to the original repos‐
itory. Just under the line listing the commits, branches, releases, and contributors, a
new line will appear with a button labeled “Compare & pull request.” This is illustra‐
ted in Figure 8-10.

Figure 8-10. Creating a new pull request in GitHub

Click that button, and GitHub will open a screen to create the pull request. The base
fork, base branch, head fork, and comparison branch will all be automatically filled in
for you, and the notes in the pull request will be taken from the last commit message.
Make any changes as needed, then click the green “Create pull request” button.

The owners of the original repository then have to decide if the changes found in
your branch can and should be merged into their repository. If they agree—or if you
are the one receiving the pull request—then you can merge the changes in GitHub’s
web interface.

Once the changes have been merged into the original repository, you can update your
fork’s master branch from the original (using git fetch and git merge, or the one-
step git pull). Since the changes from your feature/topic branch are now found in
the master branch, you can then delete the branch (as well as any remote tracking
branches for your forked repository), as it is no longer needed.

As you can see, aside from a few minor differences, the general workflow for collabo‐
rating via GitHub is very similar to the workflow for collaborating using only a
shared (bare) repository. By and large, the same terms, concepts, and commands are
used in both cases, which makes it easier for you to collaborate with others using Git.

Summary
In this chapter, we’ve provided an introduction to Git, a very widely used version
control system. Git is a fully distributed version control system that provides strong

Summary | 355

support for nonlinear development with branches. Like other version control sys‐
tems, Git offers accountability (who made what changes) and change tracking (know‐
ing the changes that were made). These attributes are just as applicable in
networking-centric use cases as they are in developer-centric use cases. Branches are
a key part of collaborating with Git. To help with Git collaboration, a number of
online services (such as GitHub or BitBucket) have appeared, allowing users across
organizations to collaborate on repositories with relative ease.

356 | Chapter 8: Source Control with Git

CHAPTER 9

Automation Tools

No discussion of network automation would be complete without evaluating the role
that automation tools—tools like Ansible, Chef, Puppet, StackStorm, and Salt—play
in a network automation context.

Traditionally, these tools have been more focused on the server automation use case.
This was an understandable focus given that most, if not all, of these tools had their
origins in automating server operating systems and managing operating system (OS)
and/or application configuration. In recent years, though, there has been a great deal
of effort by a number of companies to enhance the network automation functionality
of their products. These enhancements make these products much more useful and
powerful in a network automation use case.

In this chapter, we’ll discuss how to use some major automation tools for network
automation. The tools we’ll cover in this chapter are:

• Ansible
• Salt
• StackStorm

Before we get into the details and examples of how to use these tools for network
automation, let’s first take a quick look at an overview of the various tools we’re going
to discuss.

Reviewing Automation Tools
While all of these tools are focused on automation, each tool has its own architecture
and approaches automation in a slightly different way. This gives each tool its own set

357

of strengths and weaknesses. In this section, we’d like to quickly review each of the
tools so that you can begin to see how these tools might be used in their environment.

At a high level, some of the major architectural differences between the tools include:

Agent-based versus agentless
Some tools require an agent—a piece of software—to be running on the system
or device being managed. In a network automation use case, this could prove to
be a problem, as not every network operating system (NOS) supports running
agents on a network device. In situations where the NOS doesn’t support running
an agent natively on the device, there are sometimes workarounds involving a
“proxy agent.” Agentless tools, obviously, don’t require an agent, and may be
more applicable in network automation use cases.

Centralized versus decentralized
Agent-based architectures often also require a centralized “master server.” Some
agentless products also leverage a master server, but most agentless products are
decentralized.

Custom protocol versus standards-based protocol
Some tools have a custom protocol they use; this is often tied to agent-based
architectures. Other tools leverage SSH as the transport protocol. Given the ubiq‐
uity of SSH in network devices, tools leveraging SSH as their transport protocol
may be better suited to network automation use cases.

Domain-specific language (DSL) versus standards-based data formats and general-
purpose languages

Some tools have their own DSL; to use this tool, users must create the appropri‐
ate files in that DSL to be consumed by the automation tool. A DSL is a language
purpose-built for a specific domain (or tool). For organizations that aren’t
already familiar with the DSL, this might create an additional learning curve.
Other tools leverage YAML, which is considered a general-purpose language in
this context. Remember, we discussed YAML in Chapter 5.

Language for extensibility
Most of these automation tools support the ability to add or extend functionality
using a high-level scripting language. Some tools use Ruby as their language of
choice for extending functionality; others leverage Python.

Push versus pull versus event-driven
Some automation tools operate in a “push” model; that is, information is pushed
from one place out to the devices or systems being managed. Others operate in a
pull model, typically pulling configuration information or instructions (often on
some sort of scheduled basis). Finally, there are also event-driven tools, which
perform an action in response to some other event or trigger.

358 | Chapter 9: Automation Tools

With this high-level set of architectural differences in mind, let’s take a quick look at
the three tools we’re going to discuss in this chapter.

Ansible
Ansible uses a decentralized, agentless architecture with SSH as the underlying
transport protocol. It is typically operated in a push model, though it also sup‐
ports a pull model. Ansible is built using Python and leverages Python for exten‐
sibility. Ansible supports templating using the Jinja templating language. Ansible
originally targeted a way to run ad hoc commands on servers, but has since
evolved into task orchestration using “playbooks” that perform idempotent tasks
on target systems. Playbooks can be written in standard YAML or an Ansible
derivation of YAML.

Salt
Salt can use either an agent-based architecture or an agentless architecture. In an
agent-based architecture, Salt agents communicate with the Salt master over a
message bus; in the agentless architecture, they communicate via SSH or other
third-party libraries such as NAPALM (covered later). Salt is built using Python,
and can be extended with Python. Jinja provides default templating functionality.
Salt started out as a tool for remote server management, much like Ansible, and
has since gained idempotent configuration management via Salt States, which are
written in YAML. One distinction to make with Salt is that it is also a platform
for event-driven automation beyond general configuration management.

StackStorm
StackStorm takes a dramatically different approach than the other tools listed
here. StackStorm focuses solely on event-driven automation; that is, tasks are
performed in response to events. StackStorm leverages Python to build sensors
that emit events or actions that perform a task. StackStorm uses YAML in several
places to provide metadata for sensors or actions, or to define a workflow.

Now, let’s dive a bit deeper into each of the products we’re going to discuss and take a
more in-depth look at how each product can be used for network automation. We’ve
arranged the in-depth discussion of the products in alphabetical order, so we’ll start
with Ansible.

Using Ansible
Most tools we’re covering in this chapter take months (or more) to master. Our goal
in this chapter, and specifically now with respect to Ansible, is to provide a jump start
with enough information so you can start automating common tasks immediately. In
order to do this, we’ve broken this section into six major areas:

• Understanding how Ansible works

Using Ansible | 359

• Constructing an inventory file
• Executing an Ansible playbook
• Understanding variable files
• Writing Ansible playbooks for network automation
• Using third-party modules

By the time you complete this section, you’ll have a solid foundation on Ansible, the
different types of network automation you can accomplish using Ansible, and most
importantly, enough to continue on your automation journey.

We’ll start by looking at how Ansible works.

Ansible is an open source platform by Red Hat. In this section, we
only cover Ansible core—the open source platform. However, it’s
worth noting that Red Hat does sell a commercial offering, Ansible
Tower, that sits above Ansible core and offers Enterprise features
such as Role Based Access Control (RBAC), secure storage for net‐
work credentials, and a number of other features such as a RESTful
API so you can programmatically execute Ansible playbooks (just
to name a few).

Understanding How Ansible Works
The first thing we’re to going review is how Ansible works from an architectural per‐
spective when automating not only network devices, but also Linux servers. It is
important to differentiate, as there is a subtle but important difference, and this ulti‐
mately is reflected when we’re creating automation workflows with Ansible.

Automating Linux servers
When Ansible is used to automate Linux servers, it operates in a distributed fashion.
The Ansible control host, the machine that has Ansible installed, connects to each
server being automated via SSH. The control host subsequently copies Python code
to each server—this code is what performs the automation task at hand. This includes
anything from restarting a Linux process and installing Linux packages to updating
text files, pulling updates down from a Git repository, or simply running a bash script
on the target Linux hosts being automated. If 100 Linux servers were being automa‐
ted, 100 servers execute the Ansible “code” (or modules) to perform the task.

Ansible can also be used to automate Windows servers, but the
context here is to describe the origins and most common use of
Ansible, and how that compares to automating networking devices.

360 | Chapter 9: Automation Tools

Automating network devices
How Ansible works when automating network devices is a little different. Ansible
works in a local, or centralized, fashion when automating network devices. When
automating network devices, the Ansible control host gets configured to run in local
mode. When Ansible runs in local mode, Ansible does not connect to each device via
SSH and copy Python code to each network device. In fact, when running in local
mode, Ansible actually connects to itself and executes the Python code locally. The
Python code that runs locally may still connect to the network device via SSH, but it
may also be via an API (or Telnet or SNMP). However, even when Ansible connects
via SSH for network devices, Python files are not copied to the device and CLI com‐
mands are simply sent over a SSH connection. From an extremely high-level view,
this becomes analogous to executing Python scripts on a server and automating some
number of network devices in parallel.

It is possible to have network modules not operate in local mode,
but it requires updates to many network operating systems. In
order to support this, the network device must currently permit
you to SSH into the device, copy Python files to a temp directory,
and then execute those files with a Python execution engine. This,
of course, works natively with Cumulus Linux. Two other operat‐
ing systems that currently support this are Cisco IOS-XR and
Arista EOS.

Now that you understand how Ansible operates differently for network devices as
compared to Linux hosts (which is what Ansible was initially built for), let’s review
some Ansible vernacular that’s critical to getting started and using Ansible.

Constructing an Inventory File
The first Ansible file we’re going to look at is the Ansible inventory file. The inventory
file is one of two files required in order to start automating network devices with
Ansible. The second, which we’ll cover next, is the playbook. The inventory file is an
ini-like file that contains the devices that will be automated with Ansible.

The following is a basic example of an Ansible inventory file:

10.1.100.10
10.5.10.10
nyc-lf01

This example is one of the simplest inventory files you can have. The file literally has
three lines in it, one per device. As you can see, by default you can use either IP
addresses or hostnames (that are fully qualified domain names).

Using Ansible | 361

While an inventory file can seem very basic, you can gradually add more structure
and data to it as you start doing more with Ansible. If you’re only testing and getting
started with three devices, the previous example may suffice. However, you need to
consider more realistic scenarios such as having larger quantities of devices, having
different types of devices, and deploying those devices in different parts of a network
(e.g., data center, DMZ, WAN, or access, just to name a few). In the upcoming exam‐
ples, we’ll introduce how to create groups and define variables in the inventory file.

Let’s walk through building out an inventory file that will represent the devices for
two regions, EMEA and AMERS, and two device roles, dc and cpe (see Figure 9-1).
Each device role per region comprises different types of network equipment as you
can see in the diagram.

Figure 9-1. Network topology diagram

The devices in Figure 9-1 were used for both the Ansible and Salt
sections in this chapter. The AMERS region has Cisco routers
being used as CPE edge devices and Nexus switches in the DC,
while the EMEA region has Juniper routers being used as CPE edge
devices and Arista switches in the DC.

362 | Chapter 9: Automation Tools

Working with inventory groups
As you can see, there are two core geographic locations with different device types in
the AMERS and EMEA regions. We’ll want to create different groups such that we
can easily automate all devices of a certain type, for a certain operating system, or
within a given location.

To do this, we’ll start by creating two groups for the devices in the AMERS region
called amers-cpe and amers-dc. Each group will have two devices. The cpe group will
have two Cisco CSR 1000V devices and the dc group will have two Nexus switches.

[amers-cpe]
csr1
csr2

[amers-dc]
nxos-spine1
nxos-spine2

The bracket [] syntax is how you’re able to create logical groups within the inventory
file. You’ll see later how we can reference these groups in a playbook so they are easily
automated.

Using nested groups in an inventory file
You can also create groups of groups, or nested groups, in an inventory file. For
example, you may want to automate all devices in the AMERS region. To do this, we’ll
add a group called amers that contains amers-cpe and amers-dc.

[amers:children]
amers-cpe
amers-dc

[amers-cpe]
csr1
csr2

[amers-dc]
nxos-spine1
nxos-spine2

When creating nested groups, you must use :children in the group name definition.
After we’ve added the amers group, there are three explicitly defined groups in our
inventory file: amers, amers-cpe, and amers-dc.

Using the same approach, we can build out the inventory for the EMEA region as
shown in the next example:

[emea:children]
emea-cpe
emea-dc

Using Ansible | 363

[emea-cpe]
vmx1
vmx2

[emea-dc]
eos-spine1
eos-spine2

You may also want to create groups to automate all devices of a particular role in the
network such as all CPE devices or all DC devices. To do this, you can create addi‐
tional groups.

[all-cpe:children]
amers-cpe
emea-cpe

[all-dc:children]
amers-dc
emea-dc

As you’re seeing, inventory files can be extremely basic when you’re just getting
started, but can quickly expand based on how you want to automate your network
devices.

After getting your group structure defined and into your desired state, it’s good to
know that you can even define variables within your inventory file.

Using variables in Ansible
There are two types of variables that you can define in your Ansible inventory file:

• Group-based variables
• Host-based variables

Managing group variables. Group variables are assigned at the group level. For exam‐
ple, you may define a variable such as the NTP Server IP address to use for all devices
in the AMERS and then another NTP IP address for devices in EMEA.

This is reflected in an inventory like this:

[amers:vars]
ntp_server=10.1.200.11

[emea:vars]
ntp_server=10.10.200.11

When defining group variables, you create a new section in the inventory file with the
name of the group and append :vars. In this section, you define group-based vari‐
ables. Our example created a single variable called ntp_server. When you’re auto‐

364 | Chapter 9: Automation Tools

mating devices in the AMERS group and reference this variable, the value of
10.1.200.11 is used and when automating devices in the EMEA group, the value of
10.10.200.11 is used.

There is no specific requirement around the ordering of groups
and variables in your inventory file. You can have all groups and
then all variables, or group 1, group 1 variables, group 2, group 2
variables, and so on.

Managing host variables. You can also define host-based variables that are specific to a
given device in the inventory file. To define a host variable, you put the variable on
the same line as the host. One scenario, given our NTP example, is that there is a
dedicated NTP server per region. But what if there is a device called nxos-spine1 that
must use a different address?

This is accomplished as shown here:

[amers-dc]
nxos-spine1 ntp_server=10.1.200.200
nxos-spine2

Adding a variable=value on the same line as the device is how you add host-specific
variables within the inventory file. You can also add multiple variables on the same
line, such as the following:

[amers-dc]
nxos-spine1 ntp_server=10.1.200.200 syslog_server=10.1.200.201
nxos-spine2

Understanding variable priority. It’s important to understand that more specific vari‐
ables have priority, meaning that if you have nested groups such as amers and amers-
cpe, a group variable in amers-cpe will override the same variable if defined as an
amers group variable. If there was a host-specific variable for a device in amers-cpe,
that would then have higher priority and override the amers-cpe group variable.

There are many more ways to use variables than this book outlines, and variable pri‐
ority may not seem like an issue when you’re getting started, but it’s a much larger
topic to consider in large Ansible projects. The priority of Ansible variables is well
defined on Ansible’s website.

Getting familiar with the all group. Be aware that there is an implicit group that always
exists called all. This group is used to automate all devices in an inventory file. You
can also assign group variables in the all group like this:

Using Ansible | 365

[all:vars]
ntp_server=10.1.200.199
syslog_server=10.1.200.201

Variables defined in the all group end up being “defaults” and are only used if the
given variable isn’t defined in a more specific group or as a host-based variable.

You need to know how group and host-based variables work, but
the inventory file is not the proper place to define all of your vari‐
ables for a given project. Dedicated files are recommended for
defining variables—these files are covered in “Managing host vari‐
ables” on page 365.

If you’re testing along as you’re reading, you’ll want to add a few more groups and
variables to the inventory file as shown here:

[nxos]
nxos-spine1
nxos-spine2

[nxos:vars]
os=nxos

[eos]
eos-spine1
eos-spine2

[eos:vars]
os=eos

[iosxe]
csr1
csr2

[iosxe:vars]
os=ios

[junos]
vmx1
vmx2

[junos:vars]
os=junos

The reason we’ve added groups and group-based variables for each OS is that in
many cases this information is required to automate a given device because many
modules either (a) only work for a particular device OS, or (b) are multi-vendor and
still require knowing the OS up front.

366 | Chapter 9: Automation Tools

After constructing the complete inventory, we end up with the following:

[all:vars]
ntp_server=10.1.200.199
syslog_server=10.1.200.201

[amers-cpe]
csr1
csr2

[amers-dc]
nxos-spine1
nxos-spine2

[amers:children]
amers-cpe
amers-dc

[amers-cpe]
csr1
csr2

[amers-dc]
nxos-spine1 ntp_server=10.1.200.200 syslog_server=10.1.200.201
nxos-spine2

[emea:children]
emea-cpe
emea-dc

[emea-cpe]
vmx1
vmx2

[emea-dc]
eos-spine1
eos-spine2

[all-cpe:children]
amers-cpe
emea-cpe

[all-dc:children]
amers-dc
emea-dc

[amers:vars]
ntp_server=10.1.200.11

[emea:vars]
ntp_server=10.10.200.11

[nxos]

Using Ansible | 367

nxos-spine1
nxos-spine2

[nxos:vars]
os=nxos

[eos]
eos-spine1
eos-spine2

[eos:vars]
os=eos

[iosxe]
csr1
csr2

[iosxe:vars]
os=ios

[junos]
vmx1
vmx2

[junos:vars]
os=junos

The easiest and most common way to get started with inventory is
to use the inventory file. However, if you happen to work in a very
dynamic or large environment, or have an existing CMDB or net‐
work management system that contains inventory data, Ansible
can be integrated with those systems. Ansible supports dynamic
inventory scripts such that an inventory file is replaced with a
script. The script queries your CMDB/NMS, normalizes the data,
and then returns valid JSON in the structure Ansible requires as
defined in their docs (out of scope for this book). You can also
return variables in the dynamic inventory script such that if you’re
a large enterprise, all you’d manage are playbooks—all inventory
and variables are then returned dynamically as you execute your
playbook.

Earlier we stated that the Ansible inventory file was one of two files required in order
to start automating network devices with Ansible. The second file is the Ansible play‐
book—this is what we’ll dive into next.

Executing an Ansible Playbook
The playbook is a file that contains your automation instructions. In other words,
playbooks contain the individual tasks and workflows that you want to use to auto‐

368 | Chapter 9: Automation Tools

mate your network. The playbook itself is written in YAML. This is when being famil‐
iar with YAML, as covered in Chapter 5, will come in handy.

The term playbook comes from a sports analogy, and thus each playbook file contains
one or more plays. And if we expand on that, each play contains one or more tasks.

Let’s take a look at an example playbook to better understand its structure and associ‐
ated terminology. We are going to review plays, tasks, modules, and using variables in
a playbook, as well as the link from the playbook to the inventory file.

 - name: PLAY 1 - ISSUE SNMP COMMANDS
 hosts: iosxe
 connection: local
 gather_facts: no

 tasks:

 - name: TASK1 - DEPLOY SNMP COMMANDS
 ios_command:
 commands:
 - show run | inc snmp
 provider:
 username: ntc
 password: ntc123
 host: "{{ inventory_hostname }}"

 - name: TASK 2- DEPLOY SNMP COMMANDS
 ios_config:
 commands:
 - snmp-server community public RO
 provider:
 username: ntc
 password: ntc123
 host: "{{ inventory_hostname }}"

Our example playbook includes a single play and two tasks. You should already be
familiar with the basics of YAML and indentation from Chapter 5. What is ultimately
required is a YAML list of plays and a YAML list of tasks as the value of the tasks key.
If your indentation is off even slightly, you’ll receive error messages from Ansible
when you try to run your playbook, so you must be careful.

Let’s start reviewing this playbook going top-down:

• YAML files always start with three hyphens --- and since the playbooks are writ‐
ten using YAML, we need them.

• The next few lines are our play definition. Notice the keys name, hosts, connec
tion, and gather_facts.

Using Ansible | 369

name

This is optional, but recommended. This is used to define what the play is for
and what task is being performed. In other words, it’s arbitrary text.

hosts

This is how you specify which devices you want to automate. You can specify
a host, group, multiple of each, or even expressions that refer back to names
in your inventory file. For example, if you wanted to automate all devices in
EMEA using our previous inventory file, you can use hosts: emea or for
devices that are IOS and NXOS groups, you could do hosts: iosxe,nxos
denoting a comma-separated list.

connection

This is used to define the connection type a play uses. Most networking devi‐
ces require setting the connection to local. This directly maps to the archi‐
tecture of Ansible, which we originally covered in “Automating network
devices” on page 361 earlier in the chapter.

gather_facts

Since we’re automating network devices and running in local mode, we’re
simply saying do not collect facts on the machine running Ansible. If you
were running Ansible out of the box automating Linux servers, Ansible
would by default collect facts from each node, including items such as OS
type, OS version, vendor, IPv4 addresses, and much more.

Next, we’ll take a look at tasks, what they are, and how they relate to modules.

Understanding tasks in an Ansible playbook
After you define the high-level attributes of your play, such as the connection type
and the hosts you want to automate, you need to define tasks. Each task runs an Ansi‐
ble module, which is performing some form of automation. In our example there are
two tasks, denoted by the task names.

Just like the play definition using name, it’s common practice to have a name key used
and defined for each task to better identify tasks as they’re running in real time when
the playbook is executed.

Getting familiar with Ansible modules

On the same indent level as name in both tasks, you’ll see ios_command and ios_con
fig. These are called Ansible modules. Ansible modules perform a specific operation.
In particular, ios_command is used to issue exec-level commands to Cisco IOS devices
and ios_config is used to send configuration-level commands to Cisco IOS devices.

370 | Chapter 9: Automation Tools

We’ll cover many more modules in this section as we walk through example play‐
books.

Ansible has over 700+ modules that allow you to automate Linux
servers, network devices, Windows servers, public cloud environ‐
ments, and much more.

Let’s look at the task again that uses the ios_command module:

 - name: TASK1 - DEPLOY SNMP COMMANDS
 ios_command:
 commands:
 - show run | inc snmp
 provider:
 username: ntc
 password: ntc123
 host: "{{ inventory_hostname }}"

You’ll notice that there is more data indented under ios_command, specifically the
words commands and provider. These words are parameters and are being passed into
the module. You can think of this process as being similar to passing variables or key-
value pairs into a Python function.

Understanding YAML data types is extremely important as you use Ansible. For
example, the commands parameter accepts a list and the provider parameter accepts a
dictionary. Both of these data types were covered in Chapters 4 and 5.

As a network engineer, sending a list of commands to a network device probably
makes sense, so let’s focus on the provider parameter. The provider parameter is a
dictionary that is used to pass in connection information, such as credentials and the
host (device) being automated, as well as port and protocol information. In our
example, the value of provider has three key-value pairs—namely, username, pass
word, and host. Note: many more keys are supported within the provider top-level
object based on you using SSH keys, setting enable passwords, and changing port/
protocol information.

In this case, we are passing in the username and password values as clear text to
define and demonstrate how tasks, modules, and parameters are related to one
another. The last key host is assigned the value of {{ inventory_hostname }}. You
need to understand two things about this value.

The first is that this is the syntax of a variable within Ansible. More specifically, this is
a Jinja variable. You should recognize this from covering Jinja configuration templates
in Chapter 6. This particular variable, inventory_hostname, is a built-in Ansible vari‐
able that is equal to the device name as defined in the inventory file. In our example

Using Ansible | 371

playbook, we’re automating all devices in the group called iosxe, which is two Cisco
routers: csr1 and csr2. For all devices in that group, both tasks are executed by Ansi‐
ble. When the device being automated is csr1, inventory_hostname is equal to csr1;
when the device being automated is csr2, inventory_hostname is equal to csr2.

We’ve now provided a high-level overview of how to construct a playbook. As this
section progresses, we’ll continue to dive into more detail on how certain modules
work, including ios_command and ios_config, and cover much more about Ansible
and automating network devices.

Executing a playbook
As we’ve stated, the two files required to get started with Ansible are the inventory file
and playbook. We’ve reviewed both and are ready to execute a playbook against a set
of network devices.

In our example, we saved the inventory file as inventory and the
playbook as snmp-intro.yml. Both filenames are arbitrary and user-
defined.

In order to execute a playbook, you use the ansible-playbook Linux program using
the -i flag to reference the inventory file and then the name of the playbook:

$ ansible-playbook -i inventory snmp-intro.yml

PLAY [PLAY 1 - ISSUE SNMP COMMANDS] ***

TASK [TASK1 - DEPLOY SNMP COMMANDS] ***
ok: [csr2]
ok: [csr1]

TASK [TASK 2- DEPLOY SNMP COMMANDS] ***
ok: [csr2]
ok: [csr1]

PLAY RECAP **
csr1 : ok=2 changed=0 unreachable=0 failed=0
csr2 : ok=2 changed=0 unreachable=0 failed=0

You also have the option to not specify the inventory file every time you execute a
playbook. To do this, you can either use the default inventory file /etc/ansible/hosts,
set the ANSIBLE_INVENTORY environment variable, or define it in the ansible.cfg file.
For example, you can do the following:

372 | Chapter 9: Automation Tools

$ export ANSIBLE_INVENTORY=inventory
$
$ ansible-playbook snmp-intro.yml
$

Using Variable Files
If you understand how to construct an inventory file with groups and variables and
the basics of writing playbooks, you can accomplish quite a bit with Ansible. How‐
ever, using the inventory file is not the recommended place to keep large amounts of
variables. It’s quick and easy for testing, but when managing a production implemen‐
tation, you should use variable files (when not using dynamic inventory and CMDB).

Understanding variable files requires that you understand the naming necessary to
use them. The concept of using variables is no different than group- and host-based
variables in the inventory file—the only difference is that they are stored in YAML
files.

Group-based variable files
In order to store group variables in YAML files, you must store them in a directory
called group_vars, often in the same directory as your playbooks for basic projects.
This is a special and unique name for Ansible—this directory must be called
group_vars.

In the group_vars directory, you have two options.

The first and most common for getting started with Ansible is to have YAML files
that are equal to the group names as they’re defined in the inventory file. When con‐
structing our inventory file, we had explicitly defined groups such as emea, amers, and
iosxe, but also the implicitly defined group called all. To define variables in these
files, we’d need files named emea.yml, amers.yml, iosxe.yml, and all.yml. These files
are only required if you need to define group variables for that specific group.

This is an example of defining group variables for the amers group:

ntc@ntc:~/testing$ more group_vars/amers.yml

snmp:
 contact: Joe Smith
 location: AMERICAS-NJ
 communities:
 - community: public
 type: ro
 - community: public123
 type: ro
 - community: private
 type: rw

Using Ansible | 373

 - community: secure
 type: rw
ntc@ntc:~/testing$

You would do the same for each group you need to define variables for.

As you define more variables for a given group, it may seem logical to want to have
particular variables in their own files—for example, AAA variables in their own, NTP
in their own, and so on. This is the second option.

In the second option, you create a subdirectory equal to the group name, and in it,
you put multiple files named whatever you like. Here is an example showing both
options:

ntc@ntc:~/testing/group_vars$ tree
.
├── all.yml
├── amers.yml
├── apac
│ ├── aaa.yml
│ ├── interfaces.yml
│ └── ntp.yml
└── emea.yml

1 directory, 6 files

Using host-based variable files
Using host-based variable files is exactly like using group variables, but the directory
is called host_vars and files (or directories) need to match the the device name as
defined in the inventory file.

Here is an example highlighting both options, analogous to what we showed earlier in
the group variables example:

cisco@cisco:~/testing/host_vars$ tree
.
├── csr1.yml
├── csr2.yml
└── vmx1
 ├── interfaces.yml
 └── ntp.yml

1 directory, 4 files

Now that we’ve covered variables and how to use them in a more robust manner, it’s
time to move on to writing more useful Ansible playbooks.

374 | Chapter 9: Automation Tools

Writing Ansible Playbooks for Network Automation
At this point, we’ve taken a look at the Ansible architecture, reviewed the Ansible
inventory file, and playbook, and also introduced common Ansible terminology such
as plays, tasks, modules, parameters, and variables. In this section, we are going to
introduce more Ansible modules and specific Ansible functionality while highlight‐
ing what is possible with Ansible, specifically for network automation. Our focus is
on showing how Ansible is used to automate the following tasks:

• Creating multi-vendor configuration templates and autogenerating configura‐
tions

• Deploying configurations and ensuring a given configuration exists
• Gathering data from network devices
• Performing compliance checks
• Generating reports

Breaking down common core network modules
Before we walk through the aforementioned tasks and examples, we need to review
the common set of core modules that Ansible has for a large set of network vendors
and operating systems. It’s critical to understand these, as they are the core modules
that ship with Ansible and they all operate in a similar fashion. Three types of com‐
mon core network modules are:

command

Used to send exec-level commands to network devices. These are implemented
and named as xos_command (i.e., ios_command, nxos_command, junos_command,
and so on).

config

Used to send configuration commands to network devices. These are imple‐
mented and named as xos_config (i.e., ios_config, nxos_config, junos_con
fig, and so on).

facts

Used to gather information from network devices such as OS version, hardware
platform, serial number, hostname, neighbors, and much more. These are imple‐
mented and named as xos_facts (i.e., ios_facts, nxos_facts, junos_facts,
and so on).

With these three modules per network OS, you can accomplish quite a bit with Ansi‐
ble for network automation. Each of these modules does have parameters, such as

Using Ansible | 375

commands and provider, which we previously looked at (as well as a number of oth‐
ers). We’ll review a few more of these in our upcoming examples.

In order to see which parameters a given module supports along
with a few examples, you can use the ansible-doc utility. For
example, in order to learn how to use ios_config, you can enter
the following command at your Linux bash prompt:

$ ansible-doc ios_config

Now that you understand more about the common core modules, we’re going to
review our first real network example.

Creating and using configuration templates
In our first example, the goal is to show you can use Ansible to auto-generate SNMP
configurations provided you have SNMP configuration templates and the associated
input data.

The following SNMP CLI commands for IOS are what we want to deploy for IOS, but
the goal is to deploy the same data across Arista EOS, Cisco NXOS, and Juniper Junos
too. You need to consider this when building out an Ansible project.

snmp-server location AMERICAS-NJ
snmp-server contact Joe Smith
snmp-server community public RO
snmp-server community public123 RO
snmp-server community private RW
snmp-server community secure RW

At this point, we need to deconstruct the CLI commands into configuration templates
using Jinja and YAML files that will store our inputs as variables, more specifically
group-based variable files.

Since the goal is to support four operating systems, we’re going to need a Jinja tem‐
plate per network OS. We also need to consider that there could be different input
data for a given geography, which our example happens to have. We are going to
show how to use the same template, but use different data since we have different
SNMP community strings, contact, and location per region.

Creating variable files. First, we’ll show our data variables in each respective group
variables file. The first is the SNMP data that is getting used for the devices in the
Americas region:

ntc@ntc:~/testing$ more group_vars/amers.yml

snmp:

376 | Chapter 9: Automation Tools

 contact: Joe Smith
 location: AMERICAS-NJ
 communities:
 - community: public
 type: ro
 - community: public123
 type: ro
 - community: private
 type: rw
 - community: secure
 type: rw
ntc@ntc:~/testing$

Next, we’ll use the same structure for the data required for the EMEA region.

$ more group_vars/emea.yml

snmp:
 contact: Scott Grady
 location: EMEA-IE
 communities:
 - community: public123
 type: ro
 - community: supersecure
 type: rw
cisco@cisco:~/testing$

We aren’t spending time covering the details or data types of a
given YAML variable and how to consume that in Jinja, as this has
already been covered in Chapters 5 and 6.

We’ve also chosen to define our connection and credential information, which we’ll
use in upcoming playbooks in the all group variables file.

ntc@ntc:~/testing$ more group_vars/all.yml

base_provider:
 username: ntc
 password: ntc123
 host: "{{ inventory_hostname }}"

ntc@ntc:~/testing$

Creating Jinja templates. The SNMP data is now defined that’ll be used for configura‐
tion inputs. Now the associated Jinja templates need to get created. Ansible automati‐
cally looks for templates in the directory your playbooks are executed from and in a

Using Ansible | 377

directory called templates relative to the same path. We are going to store the SNMP
templates in ./templates/snmp.

We can prebuild our files as shown here:

ntc@ntc:~/testing$ tree templates/
templates/
├── snmp
 ├── eos.j2
 ├── ios.j2
 ├── junos.j2
 ├── nxos.j2

The following is the template that was constructed in ios.j2:

snmp-server location {{ snmp.location }}
snmp-server contact {{ snmp.contact }}
{% for community in snmp.communities %}
snmp-server community {{ community.community }} {{ community.type | upper }}
{% endfor %}

The IOS template is straightforward; however, it does show the use of the Jinja filter
called upper, which capitalizes the type we’ve defined as ro or rw in the YAML data
file. While both work on the IOS CLI, it translates to RO and RW when entered into the
configuration. It will become more apparent why this is important after deploying
these configurations.

This following is the Juniper template to configure the same SNMP data on a Junos
device:

set snmp location {{ snmp.location }}
set snmp contact {{ snmp.contact | replace(' ', '_') }}
{% for community in snmp.communities %}
{% if community.type | lower == "rw" %}
set snmp community {{ community.community }} authorization read-write
{% elif community.type | lower == "ro" %}
set snmp community {{ community.community }} authorization read-only
{% endif %}
{% endfor %}

There are a few things to point out about the Junos template:

• The replace filter was used since Junos doesn’t support spaces in their contact.
The other option is to change the data itself, but we wanted to show how a tem‐
plate for one OS compares to a template for another OS.

• A conditional was added because ro and rw aren’t used in Junos commands and
we needed to map our data to the right Junos commands.

Here is also what the EOS and NXOS templates look like:

378 | Chapter 9: Automation Tools

snmp-server location {{ snmp.location }}
snmp-server contact {{ snmp.contact }}
{% for community in snmp.communities %}
snmp-server community {{ community.community }} {{ community.type }}
{% endfor %}

snmp-server location {{ snmp.location }}
snmp-server contact {{ snmp.contact }}
{% for community in snmp.communities %}
{% if community.type | lower == "rw" %}
snmp-server community {{ community.community }} group network-admin
{% elif community.type | lower == "ro" %}
snmp-server community {{ community.community }} group network-operator
{% endif %}
{% endfor %}

Generating network configuration files. Now that the data variables and templates are in
place, the final step prior to deployment is to generate the SNMP configuration files.
In order to do this, we’ll use the Ansible module called template. The template mod‐
ule automates the creation of files rendering input data (variables) with Jinja tem‐
plates.

The next example shows how to use the template module. It uses the src and dest
parameters. The src parameter references the proper template you want to use, and
the dest parameter points to the location where you want the final rendered config to
be stored.

 - name: PLAY 1 - GENERATE SNMP CONFIGURATIONS
 hosts: all
 connection: local
 gather_facts: no

 tasks:

 - name: GENERATE CONFIGS FOR EACH OS
 template:
 src: "./snmp/{{ os }}.j2"
 dest: "./configs/snmp/{{ inventory_hostname }}.cfg"

In our test environment, we manually created the configs directory
and the snmp subdirectory. You could have also automated this
with Ansible using the file module.

Note in the previous example that you can also use variables within paths, values, or
anywhere else within a playbook. This makes it so that within a single task in a play‐

Using Ansible | 379

book, you can auto-generate the required configurations for any number of devices
regardless of OS type.

Remember that we added a variable called os as a group-based
variable when constructing the inventory file earlier in this section.

At this point, the playbook is ready to be executed to generate the desired configs.
This is shown in the following example:

cisco@cisco:~/testing$ ansible-playbook -i inventory snmp.yml

After the playbook is executed, we end up with the following files automatically cre‐
ated by inserting the proper data variables into the respective Jinja templates.

ntc@ntc:~/testing$ tree configs/snmp/
configs/snmp/
├── csr1.cfg
├── csr2.cfg
├── eos-spine1.cfg
├── eos-spine2.cfg
├── nxos-spine1.cfg
├── nxos-spine2.cfg
├── vmx1.cfg
└── vmx2.cfg

0 directories, 8 files

To validate that each of the YAML data variables was inserted correctly, let’s see the
outputs for one device in AMERS and one device in EMEA:

ntc@ntc:~/testing$ cat configs/snmp/csr1.cfg
snmp-server location AMERICAS-NJ
snmp-server contact Joe Smith
snmp-server community public RO
snmp-server community public123 RO
snmp-server community private RW
snmp-server community secure RW
ntc@ntc:~/testing$

ntc@ntc:~/testing$ cat configs/snmp/vmx1.cfg
set snmp location EMEA-IE
set snmp contact Scott_Grady
set snmp community public123 authorization read-only
set snmp community supersecure authorization read-write
ntc@ntc:~/testing$

Creating templates, variables, and a single task playbook is one of the common ways
to get started with Ansible, as it doesn’t require any network devices. It allows you to

380 | Chapter 9: Automation Tools

gradually hone your Jinja and YAML skills while building and standardizing network
device configurations.

Ensuring a configuration exists
In the previous example, there were eight configurations developed and automatically
generated. In this example, we are going to deploy those configurations and ensure
they exist on each device.

Understanding idempotency. As we go through this example, pay attention to the
words and phrases being used, such as configuring SNMP versus ensuring the SNMP
configuration exists. In a traditional Python script, it may send the SNMP commands
every time you execute the script. With Ansible, like many DevOps configuration
management tools, the approach for configuration management is to be idempotent,
meaning only make the change if needed. In the context of networking modules, each
module has added intelligence to ensure that configuration commands are only sent
to the device if they are needed to get the device into its desired state.

From a high level, modules accomplish this by always first collecting the existing con‐
figuration of the device. The commands that you want to ensure exist on the device
are compared against the current state (running configuration). Only if the desired
commands do not exist in the current configuration are they sent to the device. This
is safer in that the module runs a playbook N times and sends the commands to the
device only once.

This is exactly how the config modules work within Ansible. By default, they obtain
a show run and the commands within the playbook are only sent to the device if they
don’t exist within the show run.

Using the config module. Let’s see how to use the eos_config module to deploy the
SNMP configuration file for the Arista EOS devices.

 - name: PLAY 2 - ENSURE EOS SNMP CONFIGS ARE DEPLOYED
 hosts: eos
 connection: local
 gather_facts: no

 tasks:

 - name: DEPLOY CONFIGS FOR EOS
 eos_config:
 src: "./configs/snmp/{{ inventory_hostname }}.cfg"
 provider: "{{ base_provider }}"

This play was added to the existing playbook that generated the configurations as
we’re showing here, denoted by PLAY 2; we also could have created a new playbook
strictly for deploying configurations.

Using Ansible | 381

The config modules accept a number of different parameters while the previous task
simply uses two of them: provider and src. We’re referencing base_provider, which
we defined in group_vars for the all group, and passing that into the module as the
provider value. This simplifies all tasks within a playbook such that you don’t need to
define the provider dictionary N times if you have N tasks in the playbook.

The src parameter can reference a config file or a Jinja template directly. As you can
see, we’re referencing the exact file that was generated in the first play.

Other common parameters used in the config modules are:

commands

Mutually exclusive with src; rather than reference a template
or configuration file, it allows you to embed a list of com‐
mands directly in the playbook.

parents

List of parent commands that identify the hierarchy that com‐
mands should be evaluated against (required when you’re
using commands and configuring a device with commands that
go outside of global configuration mode). For example, an
example parent is ['interface Eth1'] and the commands
list is ['duplex full'] when you’re trying to configure
duplex on Eth1.

There are even more parameters for the config modules, such as
those that allow you to issue a particular command before and after
issuing the commands from parents and commands. Remember to
use `ansible-doc <os>_config to see all parameters supported and
even more examples.

Understanding check mode, verbosity, and limit. Before we execute the playbook that’ll
create the configurations and deploy them, let’s review a few other features you need
to know when running Ansible playbooks:

Check mode
This is the ability to run playbooks in “dry run” mode—the ability of knowing if
changes will occur. It does everything as you’d expect when running a task, but
does not actually make the given change. To use check mode, add the --check
flag when executing your playbook. Note: check mode is a feature of individual
modules.

Verbosity
Every module returns JSON data. This JSON data contains metadata about the
task at hand. For the config modules, it contains the commands being sent to the

382 | Chapter 9: Automation Tools

device; and for command modules, it contains the response from the device. To
run a playbook in verbose mode and see the JSON data returned from each mod‐
ule, add the -v flag when executing the playbook. You can use use up to four v’s
(-vvvv) when troubleshooting.

Limit
The common place to change the devices being automated is in the play defini‐
tions of a playbook using hosts such as hosts: all. If you wanted to automate
just junos devices, one option is to change it to hosts: junos. Of course, this
depends on having the junos defined in your inventory file. Another option is to
use the --limit flag when executing a playbook such as --limit junos. Note:
what you pass in with the --limit flag must be in the group or groups defined
already within the hosts key in the playbook. Note that you can also pass in a
single device, group, or multiple of each as such: --limit junos,eos,csr1.

The next example shows how you can use all three of these flags when running a sin‐
gle playbook. Using check mode in conjunction with verbose mode is valuable when
deploying configurations because it shows exactly which commands will get sent to
the device, but does not actually deploy them.

ntc@ntc:~/testing$ ansible-playbook -i inventory snmp.yml --limit eos-spine1
--check -v
Using /etc/ansible/ansible.cfg as config file

PLAY [PLAY 1 - GENERATE SNMP CONFIGURATIONS] **********************************

TASK [GENERATE CONFIGS FOR EACH OS] ***
ok: [eos-spine1] => {"changed": false, "gid": 1000, "group": "cisco",
"mode": "0664", "owner": "cisco", "path": "./configs/snmp/eos-spine1.cfg",
"size": 133, "state": "file", "uid": 1000}

PLAY [PLAY 2 - ENSURE EOS SNMP CONFIGS ARE DEPLOYED] **************************

TASK [DEPLOY CONFIGS FOR EOS] ***

changed: [eos-spine1] => {"changed": true, "commands": ["snmp-server location
EMEA-IE",
"snmp-server contact Scott Grady", "snmp-server community public123 ro",
"snmp-server community supersecure rw"], "session": "ansible_1497404657",
"updates": ["snmp-server location EMEA-IE", "snmp-server contact Scott Grady",
"snmp-server community public123 ro", "snmp-server community supersecure rw"]}

PLAY RECAP **
eos-spine1 : ok=2 changed=1 unreachable=0 failed=0

ntc@ntc:~/testing$

As you can see in the example, there is much more output displayed because it was
executed in verbose mode—this allows us to see the JSON data returned by each task

Using Ansible | 383

and module. One other important point on reading playbook output is to understand
what ok and changed are referring to. In the previous example, the last line states
ok=2 changed=1. This tells us that two tasks were ok and successfully executed; how‐
ever, only one of those tasks would have made a change (since this was run in check
mode). If you are running a fully idempotent playbook for the second or more time,
you’ll always have changed=0 as no changes would occur.

You can now easily add subsequent plays that’ll deploy the SNMP per OS. Here is one
more for Junos:

 - name: PLAY 3 - ENSURE JUNOS SNMP CONFIGS ARE DEPLOYED USING SET COMMANDS
 hosts: junos
 connection: local
 gather_facts: no

 tasks:

 - name: DEPLOY CONFIGS FOR JUNOS
 junos_config:
 src: "./configs/snmp/{{ inventory_hostname }}.cfg"
 provider: "{{ base_provider }}"

As you can see, the only difference is the module being used. Nothing else changes
from the previous play.

Gathering and viewing network data
Ansible, like many automation tools, is used often to deploy configurations. However,
Ansible also makes it possible to automate the collection of data from network devi‐
ces. We’re going to focus on two key methods for gathering data: using the core facts
modules and issuing arbitrary show commands with the command module.

Using the core facts modules. We’ll first look at using the facts module. Core facts
modules return the following data as JSON:

Table 9-1. Core facts modules used to automate the collection of data from network devices

Core facts module Result

ansible_net_model The model name returned from the device.

ansible_net_serialnum The serial number of the remote device.

ansible_net_version The operating system version running on the remote device.

ansible_net_hostname The configured hostname of the device.

ansible_net_image The image file the device is running.

ansible_net_filesystems All filesystem names available on the device.

ansible_net_memfree_mb The available free memory on the remote device in Mb.

ansible_net_memtotal_mb The total memory on the remote device in Mb.

384 | Chapter 9: Automation Tools

Core facts module Result

ansible_net_config The current active config from the device.

ansible_net_all_ipv4_addresses All IPv4 addresses configured on the device.

ansible_net_all_ipv6_addresses All IPv6 addresses configured on the device.

ansible_net_interfaces A hash of all interfaces running on the system.

ansible_net_neighbors The list of LLDP neighbors from the remote device.

After running a task to gather facts, we can access each of the previous keys directly
in a playbook or a Jinja template just like any other variable (usually with double
curly braces).

Let’s take a look at an example.

 - name: PLAY 1 - COLLECT FACTS FOR IOS
 hosts: iosxe
 connection: local
 gather_facts: no

 tasks:

 - name: COLLECT FACTS FOR IOS
 ios_facts:
 provider: "{{ base_provider }}"

You could optionally add more plays to gather facts per device type based on OS.

Using the debug module. In order to view the facts that are being returned from the
module, you can run the playbook in verbose mode or simply use the debug module
with the var parameter while referencing a valid facts key, as shown here:

play definition omitted
 tasks:

 - name: COLLECT FACTS FOR IOS
 ios_facts:
 provider: "{{ base_provider }}"

 - name: DEBUG OS VERSION
 debug:
 var: ansible_net_version

 - name: DEBUG HOSTNAME
 debug:
 var: ansible_net_hostname

Using Ansible | 385

You usually reference variables with double curly braces within a
playbook and Jinja template. Using the debug module with the var
parameter is one of the times you do not use the curly brace nota‐
tion! And remember, any variable in the playbook is also accessible
in a Jinja template.

Running the tasks shown in the previous example produces the following output:

TASK [COLLECT FACTS FOR IOS] **
ok: [csr1]

TASK [DEBUG OS VERSION] ***
ok: [csr1] => {
 "ansible_net_version": "16.3.1",
 "changed": false
}

TASK [DEBUG HOSTNAME] ***
ok: [csr1] => {
 "ansible_net_hostname": "csr1",
 "changed": false
}

Note the playbook output and how you see the exact variables being referenced in the
debug statements.

Issuing show commands and writing data to a file
You now know how to gather facts and debug the data being returned. In this section,
we examine performing the same operation, but with the core command module. We’ll
show how to issue show commands, debug the response, and then subsequently write
the show command output to a file.

Remember that one way to view the JSON response data from a task is simply execut‐
ing the playbook in verbose mode. There is another way that allows you to use the
debug module—to use this approach, you must first save the JSON response from the
module as a variable and then debug that variable. Note: you don’t need to save facts
as a variable since facts are available to use natively within Ansible.

Using the register task attribute. In order to save the JSON output that is returned
from a module, you use the register task attribute. This allows you to save the JSON
response data as a variable of the dictionary data type.

A task attribute gets inserted on the same indent level as the module name. In this
example, we’ll use the ios_command module, and thus we’ll use the register attribute
as a key on the same indent level as ios_command; register’s associated value is the
variable you want to save the data in. This is shown in the following example:

386 | Chapter 9: Automation Tools

 - name: ISSUE SHOW COMMAND
 ios_command:
 commands:
 - show run | inc snmp-server community
 provider: "{{ base_provider }}"
 register: snmp_data

After the playbook is executed, the value of snmp_data is the JSON object returned by
ios_command, which you also see when running the playbook in verbose mode.

Since the snmp_data variable is now created, or registered, the debug module can be
used to view the data. The next example shows the playbook output for the previous
task after the playbook was executed.

TASK [DEBUG COMPLETE SNMP RESPONSE] ***
ok: [csr1] => {
 "changed": false,
 "snmp_data": {
 "changed": false,
 "stdout": [
 "snmp-server community ntc RO\nsnmp-server
 community public RO\nsnmp-server community public123 RO\nsnmp-server
 community private RW\nsnmp-server community secure RW"
],
 "stdout_lines": [
 [
 "snmp-server community ntc RO",
 "snmp-server community public RO",
 "snmp-server community public123 RO",
 "snmp-server community private RW",
 "snmp-server community secure RW"
]
]
 }
}

As you can see, using register along with the debug module provides a way to save
and view the response data. After you view it, you need to understand the data struc‐
ture to know how to access the data desired. For example, command modules return
keys such as stdout and stdout_lines. Each of those respective values is a list—
stdout is a list of command responses with a list length equal to the quantity of com‐
mands sent to the device and each element is the command response for that particu‐
lar ordered command; stdout_lines is a nested object where the outer object is a list
and the inner object changes based on the transport being used: list for CLI/SSH or
dictionary for API (such as NX-API and eAPI). Our focus is on using stdout.

This means if you wanted to debug only the actual response as a string, you’d need to
use one of the following debug statements:

Using Ansible | 387

- name: DEBUG COMMAND STRING RESPONSE WITH JINJA SHORTHAND SYNTAX
 debug:
 var: snmp_data.stdout.0

- name: DEBUG COMMAND STRING RESPONSE WITH STANDARD PYTHON SYNTAX
 debug:
 var: snmp_data['stdout'][0]

Additionally, as we’ve said, any variable in a playbook is also accessible in a template,
so if you want to write the data to a file, you can use the template module with a
basic template like the following:

{{ snmp_data['stdout'][0] }}

You can then use a single task to write the data to a file using the previously defined
template:

 - name: WRITE DATA TO FILE
 template:
 src: basic.j2
 # this template was saved in the templates directory
 dest: ./commands/snmp/{{ inventory_hostname }}.txt
 # the commands and snmp directories were created manually

It’s critical to understand that every module returns JSON, and that data is saved with
the register task attribute. Not only is this approach used for debugging data or
writing data to file, but it’s also used for performing compliance checks and generat‐
ing reports, which we cover next.

Performing compliance checks
Compliance checks are quite often done manually by SSH’ing into devices and verify‐
ing something is either enabled or disabled, or configured or not configured, in order
to satisfy a given network or security requirement. Automating these types of checks
streamlines the process of ensuring the configuration and operational state is always
as expected. These checks are always helpful for security engineers too—for example,
when they’re looking to validate that devices are hardened per requirements.

In order to perform compliance checks with Ansible, we need to first cover two more
concepts within Ansible.

set_fact

This is a module that creates an ad hoc variable out of some other complex set of
data. For example, if you already registered a new variable that is a large dictio‐
nary, you may only care about a single key-value pair in that object. Using
set_fact allows you to save one of those values as a new fact, or variable.

388 | Chapter 9: Automation Tools

assert

It’s quite common in software development to use assert statements for testing
to ensure that a given condition is True or False. In Ansible, you can use the
assert module to ensure that a condition is True or False.

Let’s take a look at an example of asserting that VLAN 20 is configured on our two
Arista EOS switches. The example consists of the following tasks:

1. Gather VLAN data.
2. Save VLAN data as vlan_data.
3. Print (debug) all VLAN data to see what’s being returned.
4. Extract just the VLAN IDs from the full response.
5. Print just the VLAN IDs (validate that the extraction worked as expected).
6. Finally, perform the assertion that VLAN 20 is in the list of VLANs.

Here is the associated playbook:

 - name: PLAY 1 - ISSUE SHOW COMMANDS
 hosts: eos
 connection: local
 gather_facts: no

 tasks:

 - name: RETRIEVE VLANS JSON RESPONSE
 eos_command:
 commands:
 - show vlan brief | json
 provider: "{{ base_provider }}"
 register: vlan_data

 - name: DEBUG VLANS AS JSON
 debug:
 var: vlan_data

 - name: CREATE EXISTING_VLANS FACT TO SIMPLIFY ACCESSING VLANS
 set_fact:
 existing_vlan_ids: "{{ vlan_data.stdout.0.vlans.keys() }}"

 - name: DEBUG EXISTING VLAN IDs
 debug:
 var: existing_vlan_ids

 - name: PERFORM COMPLIANCE CHECKS
 assert:

Using Ansible | 389

 that:
 - "'20' in existing_vlan_ids"

Running this playbook produces the following output for the last task, showing that
VLAN is configured on eos-spine1, but not on eos-spine2.

TASK [PERFORM COMPLIANCE CHECKS] **
fatal: [eos-spine2]: FAILED! => {
 "assertion": "'20' in existing_vlan_ids",
 "changed": false,
 "evaluated_to": false,
 "failed": true
}
ok: [eos-spine1] => {
 "changed": false,
 "msg": "All assertions passed"
}

Once you understand what data is being returned from a given task and show com‐
mand, you can perform an endless amount of assertions based on your exact need.

Next, we’ll show how we can auto-generate reports from data coming back from devi‐
ces too.

Generating reports
This section continues to build on the topic of gathering data. We first showed how to
gather facts data, issue show commands, register the data, write the data to file, and
finally perform assertions. In this section, we are going to refocus on writing data to a
file, but in the context of generating a report.

Earlier, we showed how to gather facts using the core facts modules. We fully built
out three plays in a single playbook that gathers facts using ios_facts, eos_facts,
and nxos_facts. In the next example, we’ve added a fourth play to the playbook that
autogenerates a facts report.

While our report is for device facts, the same approach can be
taken for any data returned from show commands or from any
other variable that exists in an Ansible project.

 - name: PLAY 4 - CREATE REPORTS
 hosts: "iosxe,eos,nxos"
 connection: local
 gather_facts: no

 tasks:

 - name: GENERATE DEVICE SPECIFIC REPORTS

390 | Chapter 9: Automation Tools

 template:
 src: ./reports/facts.j2
 # these sub-directories were created manually
 dest: ./reports/facts/{{ inventory_hostname }}.md

 - name: CREATE MASTER REPORT
 assemble:
 src: ./reports/facts/
 dest: ./reports/master-report.md
 delimiter: "---"
 run_once: true

There are a few things to take note of in this playbook:

• This example is automating three groups of devices from the inventory file as
denoted with hosts: "iosxe,eos,nxos".

• The template task generates a Markdown-based (.md) report per device.
• The assemble module assembles all of the individual reports into a single master

report. This task also introduces another task attribute called run_once. Techni‐
cally, it’s not needed; but remember, we have several hosts being automated in
this play, and only need one master report. So we simply tell Ansible to run it for
the first device that happens to get automated—since the module is idempotent,
even if you ran it N times without run_once, it wouldn’t adversely impact the sys‐
tem. To build on this, you could also include the task attribute called dele
gate_to and use the line delegate_to: localhost so it’s run for the system
(localhost) versus running once on the first host automated. At this point, it’s
semantics because both options work and solve the problem.

• The --- in Markdown is a horizontal bar across the page. This is being used as a
device delimeter as the individual reports are combined into the master report.

The following shows the template used to generate the facts report:

{{ inventory_hostname }}

Facts

Serial Number: {{ ansible_net_serialnum }}

OS Version: {{ ansible_net_version }}

Neighbors

| Device | Local Interface | Neighbor | Neighbor Interface |
|--------|-----------------|----------|--------------------|
{% for interface, neighbors in ansible_net_neighbors.items() %}
{% for neighbor in neighbors %}
| {{ inventory_hostname }} | {{ interface }} | {{ neighbor.host }} |

Using Ansible | 391

{{ neighbor.port }} |
{% endfor %}
{% endfor %}

Interface List
{% for interface in ansible_net_interfaces.keys() %}
 - {{ interface }}
{% endfor %}

This syntax is how you can build a Markdown-based table. This renders as an
HTML-like table if you push it to GitHub or use a Markdown viewer. Most web
browsers have plug-ins for viewing Markdown files; you can also easily try a Mark‐
down editor such as SlackEdit.

Viewing the rendered text output for a single device looks like this:

csr1

Facts

Serial Number: 9KXI0D7TVFI

OS Version: 16.3.1

Neighbors

| Device | Local Interface | Neighbor | Neighbor Interface |
|-----------------|----------|-------|-------------|
| csr1 | Gi4 | csr2.ntc.com | Gi4 |
| csr1 | Gi1 | csr2.ntc.com | Gi1 |
| csr1 | Gi1 | eos-spine1.ntc.com | Management1 |
| csr1 | Gi1 | vmx1 | fxp0 |
| csr1 | Gi1 | eos-spine2.ntc.com | Management1 |
| csr1 | Gi1 | vmx2 | fxp0 |

Interface List
 - GigabitEthernet4
 - GigabitEthernet1
 - GigabitEthernet2
 - GigabitEthernet3

After pushing the rendered Markdown file to GitHub, you can see how it renders
when viewing it online on GitHub (see Figure 9-2).

392 | Chapter 9: Automation Tools

https://stackedit.io/editor

Figure 9-2. Viewing the facts generated report on GitHub

You can create any kind of templates desired: we’ve looked at configuration templates
and Markdown templates, but you can just as easily create HTML templates too for
ever greater customization.

Using Third-Party Ansible Modules
All of the examples we’ve reviewed in this chapter have used Ansible core modules—
these are modules you can use right after installing Ansible. You can accomplish a
tremendous amount with these modules from configuration to compliance checks to
generating reports, as you’ve seen. However, there is an active community for third-
party Ansible modules relevant for network automation. In this section, we’ll review
two core sets of open source third-party modules and how to manage installing third-
party modules on your Ansible control host.

Using Ansible | 393

Many of the open source modules complement what is in Ansible
core. It’s also worth noting that many of these third-party modules
predate any networking modules now in Ansible core.

Getting familiar with NTC modules
The company Network to Code open sourced several multi-vendor Ansible modules
two years ago, now often referred to as NTC modules.

This suite of modules is most commonly used for three primary reasons:

• Automatic parsing of raw text output from legacy devices using prebuilt TextFSM
templates. TextFSM simplifies performing regular expressions on command out‐
put. All templates are also open sourced on GitHub. This parsing is accomplished
with the ntc_show_command module, which is merely a wrapper for netmiko +
TextFSM. The module also has an offline mode that allows you to use command
modules, write the data to a file, and still parse that data with this module.

• Issuing commands on devices not yet supported in Ansible core. Because the
ntc_show_command and ntc_config_command are using netmiko internally, you
can automate any device netmiko supports (all via SSH). The netmiko library
supports over two dozen device types, so the support for these modules is quite
robust.

• Handling device OS management. There are a few modules within the NTC suite
that allow you to back up config files, save configs, copy files to devices, upgrade
OS images, and reboot them. These modules are quite commonly used for IOS
and NXOS upgrades, but there is also some support for EOS and Junos.

Getting familiar with NAPALM modules
The Network Automation and Programmability Abstraction Layer with Multi-vendor
Support (NAPALM) Project is a growing open source community developing multi-
vendor network automation integrations.

There is deeper dive on NAPALM in Appendix B, but over the past two years, there
have been two primary reasons that the NAPALM Ansible modules have been used:

Declarative configuration management
NAPALM focuses on the desired state configuration. It offers a common mecha‐
nism, using intelligence mostly found on network devices, to apply a desired state
configuration file. When managing full configuration files in this fashion, you
simply deploy the new configuration—the configuration you want applied. You
do not send command negations (“no” commands). NAPALM abstracts away
how this operates per vendor and makes it so you don’t have to micromanage

394 | Chapter 9: Automation Tools

https://github.com/networktocode/ntc-ansible
https://github.com/networktocode/ntc-templates
https://napalm-automation.net
https://github.com/napalm-automation/napalm-ansible

device configurations. There is an option to send partial configurations as well,
and based on network OS support. Still, only the commands that do not exist yet
on the device are applied to it. You accomplish all of this by using the
napalm_install_config module.

Obtaining configuration and operational state from devices
NAPALM also has a module called napalm_get_facts that is used to obtain a
base set of facts as well as other information such as route entries, MAC table,
BGP neighbors, LLDP neighbors, and much more. The benefit of using this
module is that the data is preparsed and normalized for all vendors supported,
eliminating the need for you to do that elsewhere in your playbook.

Both NTC and NAPALM modules are multi-vendor and the mod‐
ules themselves have a parameter that dictates the OS of the device
being automated. There is not a module per OS as there is within
Ansible core.

Being aware of non-core vendor modules
When you do not find modules of a given vendor in Ansible core, you should always
check their GitHub page. There are a few companies that haven’t yet contributed their
modules to core. A few of them include:

• HPE for Comware7 switches
• Juniper for Junos devices
• Citrix for Netscaler devices
• Palo Alto for PAN Security appliances

So, remember to always check GitHub and with your vendor if you’re looking for
modules to manage a certain platform.

Installing third-party modules
The installation for third-party open source or custom modules is quite straightfor‐
ward. There are only a few steps required.

1. Choose a path on your Linux system where you want to store all of your third-
party modules.

2. Navigate to that path and perform a git clone on each repository that has mod‐
ules you want to use.

3. Open your Ansible config vile (ansible.cfg) and update your module path with the
directory where you performed your clones.

Using Ansible | 395

4. If you don’t know where your ansible.cfg is, simply do an ansible --version on
your system. You’ll see an output like the following:

ntc@ntc:~/testing$ ansible --version
ansible 2.3.0.0
 config file = /etc/ansible/ansible.cfg
 configured module search path = [u'/etc/ntc/ansible/']
 python version = 2.7.6 (default, Jun 22 2015, 17:58:13) [GCC 4.8.2]
 ntc@ntc:~/testing$

You’ll see a line that states library =. This is where you’ll update with the direc‐
tory that has all of your cloned repos (e.g., library = /etc/ntc/ansible/).
Once it’s updated properly, you’ll see the output of ansible --version update
accordingly.

5. Finally, you still need to install any dependencies the modules have. These should
be documented on each project’s GitHub site and probably require a few pack‐
ages to be installed via pip. Note: if you’re using Python virtualenvs or a system
with several Python versions, you may need to use the ansible_python_inter
preter variable within Ansible.

Ansible Summary
As you’ve now seen, Ansible is quite robust and versatile with what can be achieved
with respect to network automation, from compliance checks and reports to more
general configuration management and automation. Its agentless architecture is what
makes Ansible have a lower barrier to entry for network automation. Note that we
only scratched the surface with showing what’s possible when using Ansible. For
more information on Ansible, check out http://docs.ansible.com.

Next, we are going to transition and take a look at Salt, which takes a different
approach to automation.

Automating with Salt
Salt is a robust framework designed as an extremely fast and lightweight communica‐
tion bus that offers capabilities such as automated configuration management, cloud
provisioning, network automation, and event-driven automation, allowing you to
achieve modern network operations of your infrastructure.

Salt is very flexible, and allows you to automate a wide variety of network devices and
components, as do other tools in this chapter. Despite its somewhat perceived com‐
plexity, Salt can be set up in minutes so you can start automating network devices.

Similar to what we did in the previous section on Ansible, our goal is to provide a
jump start with enough information so you can use Salt to start automating common

396 | Chapter 9: Automation Tools

http://docs.ansible.com

network tasks immediately. In order to do this, we’ve divided this section into six
major areas:

• Understanding the Salt architecture
• Getting familiar with Salt
• Managing network configurations with Salt
• Executing Salt functions remotely
• Diving into Salt’s event-driven infrastructure
• Diving into Salt a bit further

Understanding the Salt Architecture
From an architectural perspective, Salt is designed as a simple core with pluggable
interfaces. As you will see throughout this section, everything in Salt is pluggable and
extensible, including the creation of new device drivers to automate network devices
that use different APIs. To that end, Salt can be used to automate any type of network
device.

Salt was initially developed to be an agent-based architecture, which wasn’t well
suited for network automation because, as we know, it’s not easy to load software
agents on all types of network devices. In fact, it’s very hard or even impossible on
traditional network equipment. Due to the demand for agentless automation solu‐
tions, Salt updated their architecture to offer both agentless and agent-based solu‐
tions. Additionally, in either deployment option, Salt facilitates event-driven network
automation, which is covered later in this section.

At its core and default setup, Salt is a hub-and-spoke architecture. The hub, or central
server, is referred to as the Salt master (running software called salt-master) and
manages the spokes, which are referred to as Salt minions (running software called
salt-minion), which in essence are the nodes being automated. The Salt master has
the ability to manage thousands of minions. The communication between the master
and minions is persistent and uses lightweight protocols to enable real-time commu‐
nication—this approach allows Salt to scale and manage more than 30,000 minions
using a single master server. For even larger designs, it’s possible to distribute the
minions to multiple master servers, which are eventually managed by a higher-level
master.

This is how Salt operates quite commonly when automating servers. To understand
how Salt operates when automating network devices, we need to review how Salt
operates in an agentless architecture.

Automating with Salt | 397

Using Salt in an agentless architecture with salt-ssh
The Salt architecture was extended to operate in an agentless mode of operation. In
this mode of operation, the target nodes being automated do not have the salt-
minion software package installed. Rather, another package called salt-ssh is used
instead and can be installed directly on the master, or distributed on other nodes, as
Salt provides a communication bus between all Salt-related processes.

In this design, the master connects to the target device using SSH, which is why this
architecture is sometimes compared to Ansible. It’s also worth noting that when using
salt-ssh, you are still able to leverage the full functionality of Salt when automating
your infrastructure.

The salt-ssh subsystem is just another process used within the
Salt architecture and can be installed on the master or another
system.

Even the agentless mode of operation with salt-ssh, however, it hasn’t particularly
helped yet with automating network devices due to various transport types, APIs, and
network operating systems. This is largely due to the lack of SSH-based integrations
that have been built thus far for Salt.

This leads us to the next option that is most applicable to automating network devi‐
ces, which is using Salt proxy minions.

Using Salt in an agentless architecture with proxy minions
Another approach Salt uses for agentless automation uses the concept of a Salt proxy
minion. A proxy minion is a superset of the minion, thus offering all the features of
the regular minions. For all intents and purposes, it is a virtual minion. This virtual
minion is not installed on the devices you are automating—they simply proxy access
to the devices you are automating. Proxy minions are extensible, offering you the
ability to create (or choose) the preferred communication channel from a given proxy
minion to the target devices being automated. This is how network automation is
performed today with Salt.

398 | Chapter 9: Automation Tools

A device managed, or minion, has a proxy process associated with
it on the proxy minion, each consuming about 40 MB RAM. Using
the proxy architecture, each proxy minion is capable of managing
100 devices from a proxy machine having only 4 GB RAM avail‐
able. These characteristics make the proxy minion a solid choice
for network automation. The proxy processes are controlled by the
master, and very often, they run on the same physical server, but
can also be placed in a distributed architecture, improving Salt’s
scaling capabilities for managing network devices. For example,
Salt can automate a network consisting of 10,000 nodes by distrib‐
uting the proxy minions on 10 machines, with each server running
1,000 proxy minion processes, thus managing 1,000 nodes each.

Automating network devices with Salt
Salt supports network automation through the use proxy minions. Four core proxy
minions exist specifically for networking. They include:

NAPALM
This natively offers multi-vendor network automation using the NAPALM open
source Python library, which we cover in Appendix B.

Cisco Network Services Orchestrator (NSO)
A commercial solution from Cisco that offers multi-vendor model-driven net‐
work automation primarily using NETCONF.

Juniper
Used to manage Juniper Junos devices and developed by Juniper.

Cisco NX-OS
Used to manage Cisco NXOS devices and developed by SaltStack.

For all of our examples going forward in this chapter, we’re going to be strictly
focused on using the NAPALM proxy minion to interact with various devices, includ‐
ing Cisco IOS, Cisco NXOS, Arista EOS, and Juniper Junos devices. This was our
choice as it’s open source, multi-vendor, and actively being developed.

Remember, we also used the devices and topology shown in Figure 9-3 (repeated
from Figure 9-1) for the examples within this section (in addition to the Ansible sec‐
tion).

Automating with Salt | 399

Figure 9-3. Network topology diagram

Again, Salt is very extensible and custom proxy minions can be
written for different devices that have unique APIs or legacy inter‐
faces, such as SNMP or Telnet.

Getting Familiar with Salt
There are many terms you should be aware of in order to start using Salt. In order to
understand and use the system, you must have an idea of what these concepts are and
how they fit into the overall Salt framework. We’ll walk through a few of them now.
First, we’ll look at the SLS file format.

Understanding the SLS file format
Throughout this book, you’ve learned about Jinja templates and YAML files. In both
cases, Jinja is just one type of templating language and YAML is just one way to struc‐
ture data in a very human-readable format. Imagine using a single file that under‐

400 | Chapter 9: Automation Tools

stands Jinja (and other templating languages) and YAML (and other data formats) in
order to create different sets of data (the process of inserting data into the template).
This is exactly what SLS files are.

SLS is a Salt-specific file format and it stands for SaLt State. It is a mixture of data
representation and templating languages that can be used within the same file.

By default, an SLS file is YAML + Jinja. However, due to the flexibility of Salt and SLS,
it can be easily switched to a different combination. This is an example of Salt’s plugg‐
ability—you are not limited to Jinja and YAML only, but you’re able to choose from a
variety of options. For example, for data representation you can pick one of the fol‐
lowing: YAML, YAMLEX, JSON, JSON5, HJSON, or even pure Python, and for tem‐
plating, you can pick one of the following: Jinja, Mako, Genshi, Cheetah, Wempy, or,
again, pure Python. The list of options can also be extended based on your require‐
ments and preferences.

One case for supporting different types of data representations and templating
engines is that it eases migrations from other tools. For example, if you had an inter‐
nal (or custom) tool using Mako templates, another Python-based templating engine,
you could easily use them with Salt—not being forced to use Jinja, as an example.

Here is a very basic SLS file that can be written as a pure YAML data file:

ntp_peers:
 - 10.10.10.1
 - 10.10.10.2
 - 10.10.10.3

You can add a Jinja for loop inside the same file to make it more dynamic:

ntp_peers:
 {%- for peer_id in range(1, 4) %}
 - 10.10.10.{{ peer_id }}
 {%- endfor %}

Showing the power of using SLS data files and other data and template types, the fol‐
lowing is an example of using an HJSON data format with a Mako template.

#!hjson|mako
ntp_peers: [
 % for peer_id in range(1, 4):
 ${peer_id},
 % endfor
]

These three examples represent exactly the same data—a list of three NTP peers. The
last one is a combination of HJSON and Mako—note the shebang at the top of the file
specifying this. HJSON is a syntax extension to JSON, making it potentially more
human-readable and less error-prone.

Automating with Salt | 401

As stated earlier, you can also create SLS data files in pure Python. Here is another
example that represents the same data:

#!py
def run():
 return [
 '10.0.10.{}'.format(peer_id) for peer_id in range(1, 4)
]

While all of these examples are SLS files, they are data files. They contain data that
we’ll eventually want to use to perform network automation tasks such as creating
configuration files and configuring devices.

Please note that all of the SLS files noted here would be saved with a .sls extension.

Next we’ll take a look at what pillars are and how they map back to SLS data files.

Understanding pillars
A pillar is a data resource that can either be a file that is an SLS file or data pulled from
an external service such as a CMDB or another network management platform.

When working with pillar files, keep in mind that the Salt master
configuration file, which we cover in the next section, needs to
have the proper paths defined for where you will store your pillars.

Within pillar files, you store all data required to manage network devices. This
includes any common information such as authentication credentials, but also
includes the actual configuration data for anything you wish to configure on the
device, from interface configuration and protocols configuration to the BGP or NTP
configuration.

The following is an example pillar file using the SLS file format:

proxy:
 proxytype: napalm
 driver: nxos
 fqdn: nxos-spine1.dc.amers
 username: ntc
 password: ntc123
hostname: nxos-spine1
openconfig-bgp:
 bgp:
 global:
 config:
 as: 65001
 router_id: 172.17.17.1

402 | Chapter 9: Automation Tools

For our deployment, this pillar is added to the master. It is then dis‐
tributed to all proxy minions, and in our case, we only have one
proxy minion that is installed directly on the master server.

In the preceding pillar file, there are three keys defined. The first is called proxy,
which is a special Salt keyword that requires key-value pairs that map to the specific
proxy minion being used. The other keys, hostname and openconfig-bgp, are arbi‐
trary user-defined keys that we’re defining as they contain data values we want to
configure and send to the network device.

In our example, this pillar was saved as /etc/salt/pillar/nxos_spine1_pillar.sls. This par‐
ticular pillar is device-specific, but as we’ll see later in this section, they can also be
broader for storing data used across a set of devices.

To avoid exposing sensitive data, you can encrypt the data using
GPG and Salt will decrypt it during runtime, or you can store it in
a secured external pillar (for example, Vault).

For large deployments, you may want to retrieve data from some
external system that already exists internal to your organization
rather than manage large quantities of pillar files. For these use
cases, it’s possible to have external pillars. External pillars can be
any external services including, but not limited to, databases, Git
repositories, HTTP APIs, or even Excel files. The complete refer‐
ence can be found at https://docs.saltstack.com/en/latest/topics/devel
opment/external_pillars.html.
A common use case for network automation is fetching the data
from an IP address management (IPAM) solution. Considering
that most IPAM solutions expose data through an HTTP-based
API, the next three lines could also be added to a pillar file:

ext_pillar:
 - http_yaml:
 url: https://my-ipam.org/api/<node>

In this case, all data returned from the IPAM can be data leveraged
in some fashion when executing a Salt task such as rendering data
into a template that’ll be used to generate configurations.

Understanding the top file
We’re now aware of the SLS file format and pillar data files that leverage the SLS file
format. Another type of file in Salt that uses the SLS file format is called the top file.

Automating with Salt | 403

https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.com/en/latest/topics/development/external_pillars.html
https://docs.saltstack.com/en/latest/topics/development/external_pillars.html

The top file, often referred to simply as the top, defines the mapping between a min‐
ion or groups of minions and the data (through the use of pillars) that should be
applied to them. To a certain extent, you can look at the top file as being similar to an
Ansible inventory file, which we covered in the last section, but there are in fact many
differences that you’ll see.

Within the top file, you have the ability to specify which pillar(s) are assigned to
which device(s). When new devices are added to Salt management, they are identified
by a unique minion ID—this ID is assigned by you, the user. You can then reference
this ID and map specific pillars (data) to the new device, or create broader groups
based on device type, site, or region.

The top file is commonly defined as top.sls. Our file was saved
as /srv/pillar/top.sls.

Here is a basic example of a top file that uses exact matches based on the minion ID
and matches each device to a pillar data file.

base:
 csr1: # minion id
 - csr1_pillar # pillar mapped to csr1
 vmx1:
 - vmx1_pillar
 nxos-spine1:
 - nxos_spine1_pillar
 eos-spine1:
 - eos_spine1_pillar

In this basic example, the minion with the ID nxos-spine1 uses the nxos_spine1_pil‐
lar.sls pillar.

Take notice of the base keyword as the root key in the top file. In
Salt, base is a reserved keyword indicating that this is the default
environment being managed by this Salt system. Thus, as you can
imagine, you can manage different environments (prod, test, DR,
QA) with Salt and reference them using different keys in your top
file. We are using the default, or “base,” environment for our exam‐
ples.

As we alluded to, you may want to map a single pillar data file that contains certain
configuration inputs for a certain device type to more than one device. In this case,
you don’t use the minion ID. You can use more advanced methods such as shell-like

404 | Chapter 9: Automation Tools

globbing and regular expressions, or even use device characteristics including grains,
which we cover in an upcoming section, or pillar data.

Let’s take a look at a few more examples of more realistic and advanced top files that
leverage shell-like globbing and regular expressions.

The following example maps pillars to devices using characteristics about a device,
called Salt grains, including vendor and OS version:

base:
 'G@vendor:juniper':
 - junos
 'G@os:ios and G@version:16*'
 - ios_16
 'E@(.*)-spine(\d)':
 - spine

In this example, the junos.sls pillar is loaded only for devices that are identified as
manufactured by Juniper using the vendor characteristic. Again, these characteristics
are called grains, which we cover in the next section. For now, you can see the G@,
which indicates grains are being used. Similarly, the ios_16.sls pillar is mapped and
loaded for all devices that are IOS and are version 16.X. Finally, you can also see in
the last example, the spine pillar is loaded for any spine device (e.g., nxos-spine1 or
eos-spine2). In this example, regular expressions are being used—note the E@
(expression). The minion ID must contain any characters (.*), followed by -spine,
then followed by a single digit (\d) to match the spine devices in our topology.

You can also have default pillars that you want to apply to all devices. For example, to
load a pillar, which we defined previously, called ntp_peers.sls, you can add the fol‐
lowing to the top file:

 '*':
 - ntp_peers

In this case, you can ensure that the entire network uses the same set of NTP peers.

You can also define custom groups based on your own business logic. To map a cus‐
tom group of devices identified by a user-defined name (and a little more analogous
to what’s defined with Ansible), we need to use the nodegroups key in the Salt master
configuration file—ours is stored at /etc/salt/master:

nodegroups:
 amers:
 - 'csr*'
 - 'or'
 - 'nxos-spine*'
 emea:
 - 'vmx* and G@os:junos'
 - 'or'
 - 'eos-spine*'

Automating with Salt | 405

Don’t worry, we cover the Salt master configuration file in more
detail in an upcoming section too.

There are now groups defined called amers and emea, such that the amers groups all
devices whose minion ID starts with csr or nxos-spine, while emea groups devices
whose ID starts with eos-spine, or running Junos and their ID starts with vmx.

Once these groups are defined in the master configuration file, they can be referenced
in the top file. In the next example, pay attention to the two new keys called N@emea
and N@amers. They are referencing the node groups (N@) that were just defined in the
master configuration file.

base:
 'G@vendor:juniper':
 - junos
 'G@os:ios and G@version:16*'
 - ios_16
 'E@(.*)-spine(\d)':
 - spine
 'N@emea':
 - communities_emea
 'N@amers':
 - communities_amers

This assumes two pillars for BGP communities were created, communities_amers.sls
and communities_emea.sls.

Don’t forget that the top file is still SLS, thus Jinja + YAML by
default, which can be leveraged to generate dynamic mappings. For
example, if we have a longer list of regions, the last example could
be written like this:

base:
 'G@vendor:juniper':
 - junos
 'G@os:ios and G@version:16*'
 - ios_16
 'E@(.*)-spine(\d)':
 - spine
 {% for region in ['emea', 'amers', 'apac'] -%}
 'N@{{ region }}':
 - communities_{{ region }}
 {% endfor -%}

406 | Chapter 9: Automation Tools

While our focus is on getting started with Salt, you should be aware
that you can integrate Salt to use external systems that offer more
dynamic tops. Rather than a top file, you’d use an external service.
This is helpful if you already have inventory and groupings in some
other internal system or tool.

Understanding grains
We’ve already alluded to grains, but now we’ll cover them in a little more detail.
Remember that we’ve already defined pillars in SLS files. Thus, pillars are data pro‐
vided by the user. In contrast, grains represent data gathered by Salt.

Grains are information that Salt collects about a given device such as device vendor,
model, serial number, OS version, kernel, DNS, disks, GPUs, and uptime. You don’t
need to do anything with this data, but you should be aware that this data exists
because it has many uses. For example, we’ve already shown how you can leverage
grains in top files. You can also use this data in templates, conditional statements, and
reports.

Grains is a Salt-specific term, but in other tools, this type of data is
often referred to as facts. However, please note that they are not
quite equivalent—grains are purely static data and they are cached.
Dynamic details (such as interfaces details, BGP configuration,
LLDP neighbors) is retrieved on runtime, via Salt execution mod‐
ules.

Additionally, you have the ability to create your own grains either by using custom
Salt integrations in the form of execution modules or by statically defining them in
files. One option is to statically store grains data in the proxy minion configuration
file as shown here:

grains:
 role: spine
 production: true

Before adding a new grain, it is recommended that you evaluate
how dynamic the information is. Grains are more suitable for data
very unlikely to change; otherwise, storing the data in a pillar is the
preferred option.

In the next section, we’ll look at using execution modules to view grains for one or
more devices using the salt command.

Automating with Salt | 407

Using execution modules
Salt uses execution modules, more commonly referred to as modules, in order to
retrieve either data that’s stored under Salt management or data directly from the
device.

We only review a handful of modules in this book. For a complete
list of modules, please view them at https://docs.saltstack.com/en/
latest/salt-modindex.html.

First, we’ll review common modules and associated functions that are used to view
both grains and pillar data. We’ll show this using the salt command, but as you’ll see
later, you can also leverage these modules directly within SLS files that are used for
templates, pillars, and other software artifacts within Salt.

In the first example, we’ll simply print the grain called model for csr1 using the get
function within the grains execution module.

$ sudo salt csr1 grains.get model
csr1:
 CSR1000V

To see the complete list of grains available for a minion, you’d use grains.items
instead, without passing any arguments.

You can also access specific data from a pillar while using the salt CLI command. In
the next example, we check to see what the ntp_peers value is specifically for csr1.
Similar to grains, pillar.get returns the value of specific pillar data.

$ sudo salt csr1 pillar.get ntp_peers
csr1:
 - 10.10.10.1
 - 10.10.10.2
 - 10.10.10.3

To retrieve a value from a more complex data structure in a pillar file, you use the :
delimiter to navigate through key-value hierarchies. Using the previously defined
structure from nxos_spine1_pillar.sls and shown here again, you can print just the
BGP ASN for nxos-spine1:

sample object in a pillar data file: nxos_spine1_pillar.sls
openconfig-bgp:
 bgp:
 global:
 config:
 as: 65001
 router_id: 172.17.17.1

408 | Chapter 9: Automation Tools

https://docs.saltstack.com/en/latest/salt-modindex.html
https://docs.saltstack.com/en/latest/salt-modindex.html

$ sudo salt nxos-spine1 pillar.get openconfig-bgp:bgp:global:config:as
nxos-spine1:
 65001

As you start using the salt command, be aware of the general
syntax:

$ sudo salt [options] <target> <function> [arguments]

In this case, target is used to specify the minions that are going to
be automated with the arguments specified.
You can use salt --help for added assistance as you continue to
use salt. We’ll continue showing various examples using the salt
command throughout this section.

Collecting device data using network modules
The previous examples used the grains and pillar modules. Those modules were sim‐
ply accessing data that was predefined or cached data that was previously collected.

Salt also has over a dozen modules for retrieving feature-specific data from network
devices including, but not limited to, NTP configuration, NTP peers, BGP, routes,
SNMP, and users. There are even more advanced modules for extracting data from
devices and representing it in YAML such that it maps to YANG models.

Remember all of this functionality, such as retrieving grains or con‐
figuration data from devices, while exposed to Salt, is occurring
through the use of the NAPALM Python library.

The following are a few examples using modules on the CLI.

Retrieve the ARP table from the device with a minion ID of csr1:

$ sudo salt csr1 net.arp
output omitted

Retrieve the MAC address table from the device with a minion ID of vmx1:

$ sudo salt vmx1 net.mac
output omitted

Retrieve NTP statistics from the device with a minion ID of vmx1:

$ sudo salt vmx1 ntp.stats
output omitted

Retrieve the active BGP neighbors from the device with a minion ID of vmx1:

Automating with Salt | 409

$ sudo salt vmx1 bgp.neighbors
output omitted

Retrieve the BGP configuration from the device with a minion ID of eos-spine1:

$ sudo salt eos-spine1 bgp.config
output omitted

In these examples, specific network functions are being executed
within an execution module. In these examples, net, ntp, and bgp
are the execution modules and what follows is the function inside
the module (e.g., bgp.neighbors and bgp.config).

Understanding targeting and compound matching
In the previous examples, we were automating only a single device. Salt offers the
ability to use targeting to automate more than one device. Targeting can be very sim‐
ple, but can become as complex as required by the business logic. Let’s look at a few
examples.

Using the -L command line flag, you can explicitly define a list of devices you want to
target:

$ sudo salt -L csr1,vmx1,nxos-spine1 net.mac

Using what’s called globbing, you can use expressions such as a wildcard:

$ sudo salt 'vmx*' ntp.stats

Additionally, you can use grain data with the -G flag and target devices based on
grains.

$ sudo salt -G 'os:junos' bgp.neighbors

You can even match devices using their static pillar data using the -I flag:

$ sudo salt -I 'bgp:as_number:65512' bgp.config

For the previous example to work, it would require the BGP configuration data to
have the following equivalent YAML structure in a pillar file:

bgp:
 as_number: 65512

Now that you know how to automate a single minion or a group of minions based on
a variety of options, it’s worth understanding compound matching. Compound match‐
ing allows you to perform conditional-like logic, adding more flexibility to target the
devices being automated.

In order to retrieve the BGP configuration from minions whose IDs start with vmx,
running 15.1x, and have a predefined ASN of 65512 in the pillar file, you can use the
following statement:

410 | Chapter 9: Automation Tools

$ sudo salt -C 'vmx* and G@version:15.1* and I@bgp:as_number:65512' bgp.config

When using compound matching, you use the -C flag and then reference the other
flags we previously covered using the flag and the @ symbol.

As compound matchers can get very complex at times, they can be defined in the
master config file under nodegroups:

nodegroups:
 vmx-15-bgp: 'vmx* and G@os:junos and G@version:15.1* and I@bgp:as_number:65512'

You can then access and reference the node group on the CLI:

$ sudo salt -N vmx-15-bgp bgp.config

Verifying minions are up with the test module
In any size deployment, verifying minions are up and functional is a critical step in
troubleshooting. You can accomplish this using the test module and more specifi‐
cally the test.ping function.

$ sudo salt vmx1 test.ping
vmx1:
 True

test.ping is a simple function that only returns True. It is used to check if the min‐
ion is up and accepted by the master. Note: this is not an ICMP ping.

Viewing module and function docstrings
When just getting started with Salt, you may not be aware of how a particular func‐
tion within a module works. In this case, you use the sys.doc option in the com‐
mand being executed. sys.doc without any arguments returns the documentation for
all modules.

Optionally, you can specify to return the docstring for a particular module or execu‐
tion function:

$ sudo salt vmx1 sys.doc test.ping
test.ping:

 Used to make sure the minion is up and responding. Not an ICMP ping.

 Returns `True`.

 CLI Example:

 salt '*' test.ping

Automating with Salt | 411

Understanding different output options for modules

The salt command permits a significant number of options. One of the most com‐
mon is --out, which returns the output in the format specified. By default, the struc‐
ture is displayed on the command line, in a human-readable and colorful format
called nested:

$ sudo salt vmx1 ntp.peers
vmx1:

 comment:
 out:
 - 1.2.3.4
 - 5.6.7.8
 result:
 True

Using the --out option, we can elect to return the structure in YAML, in JSON, or
even as a table:

$ sudo salt --out=json vmx1 net.arp
{
 "vmx1": {
 "comment": "",
 "result": true,
 "out": [
 {
 "interface": "fxp0.0",
 "ip": "10.0.0.2",
 "mac": "2C:C2:60:FF:00:5F",
 "age": 1424.0
 },
 {
 "interface": "em1.0",
 "ip": "128.0.0.16",
 "mac": "2C:C2:60:64:28:01",
 "age": null
 }
]
 }
}

Next is an example of outputting the data to a table:

$ sudo salt --out=table vmx1 net.arp
vmx1:

 comment:

 out:

 --
 | Age | Interface | Ip | Mac |

412 | Chapter 9: Automation Tools

 --
 | 991.0 | fxp0.0 | 10.0.0.2 | 2C:C2:60:FF:00:5F |
 --
 | None | em1.0 | 128.0.0.16 | 2C:C2:60:64:28:01 |
 --
 result:

There are several output types available and many others can be added. Although the
--out option is for CLI usage, we are able to take the output in the format displayed
on the screen and reuse it as-is in different services, including passing data to an
external service.

While data can be passed to an external service, it can also be returned to an external
service, which we cover next.

Sending data to external services
As you’ve seen, data is easily returned and viewed on the command line. However,
you may also need to send this data to an external service. Using the --return CLI
option, you define where to send the data, but you need to specify the name of a
returner.

The list of available returners is diverse, some of the most usual being Slack, HipChat,
Redis, SMS, SMTP, Kafka, and MySQL.

For example, we can configure the Slack returner by adding in the (proxy) minion or
master configuration:

slack.channel: Network Automation
slack.api_key: d4735e3a265e16eee03f59718b
slack.username: salt

At this point, we can execute a command with the --return flag and the typical
stdout is sent to Slack.

Here is an example:

$ sudo salt --return slack test.ping
output omitted

The output is still displayed on the command line, in the shape we
want, while it is also forwarded to the selected service. If you do
not want to return anything at all on the CLI, you can use the --
out=quiet option.

While the outputters make sense only on the command line, returners can be used in
other applications. For example, using the Salt scheduler, we can execute a job at spe‐
cific intervals and its output is then sent to the designated returner. Similarly, when a

Automating with Salt | 413

task is performed as a result of a trigger, we may need to see its result from a monitor‐
ing tool.

Understanding states, state SLS files, and state modules
Salt states are modules used to manage, maintain, and enforce configuration. They
are a declarative or imperative representation of a system configuration. Having the
source of truth in the pillar, the state compares it with the current configuration, then
decides what is required to be removed and what has to be added. Given modern net‐
work devices able to apply atomic configurations, it is even easier. In that case, we
only need to generate the expected configuration and let the device compute the dif‐
ference. In cases where the device does not have such capabilities, or it’s more optimal
to determine the difference ourselves, we need one additional step, as illustrated in
the previous example.

Understanding the state SLS. The state SLS is a descriptor that defines which states will
be executed when the state is applied. Each state is identified by a unique state_name
that you define, which invokes a state function (built into Salt) passing a list of argu‐
ments.

<state_name>:
 <state_function>:
 - list of state arguments

Remember the following when you start working with state SLS files.

• state_name is an arbitrary name assigned.
• state_function is the state function we want to execute.

Do not conflate the state SLS with the state module: the latter is a
Python module that processes the arguments, executes the code,
and produces the result, while the state SLS invokes one or more
state functions.

State modules for network automation. For network automation needs, there are sev‐
eral state modules available, including netyang, netconfig, netacl, netntp, netsnmp,
or netusers.

One of the most flexible is netconfig, which manages and deploys configurations on
network devices using arbitrary user-defined templates. Our focus is on netconfig.

In this example, we use the netconfig.managed state function:

414 | Chapter 9: Automation Tools

ntp_peers_example:
 netconfig.managed:
 - template_name: salt://ntp_template.j2
 - debug: true

Here is an overview of the various uses of the word state within the previous file:

• The file is a state SLS file.
• ntp_peers_example is a state name that we defined.
• netconfig is a built-in state module that manages configurations.
• managed or netconfig.managed is a built-in function that’s part of the netconfig

state module that specifically deploys the configurations onto network devices.

Additionally, remember that ntp_template.j2 is a template that can leverage SLS func‐
tionality, and data inserted into the template could come from pillar data files that are
SLS files. The main point is to remember that SLS is a file type.

Updating the master configuration file
We’ve made reference to various files that are used within Salt, such as pillars and
templates. These types of files need to be stored in particular locations on your master
server. You define these locations within the master configuration file.

The master configuration file is a YAML file that is preconfigured with default
options as soon as Salt is installed. The default path for the master configuration file
is either /etc/salt/master or /srv/master.

The list of options that can be configured in the master configuration file is long, but
two of the most important are configuring file_roots and pillar_roots. These are
keys in the config file—remember the file is YAML based.

Within file_roots you specify the paths local to the master server, where different
files are stored, such as templates, states, pillars, and extension modules. The struc‐
ture used is also flexible enough to allow you to have different environments on the
same machine (e.g., production, test, and DR).

Here is a snippet from our sample configuration file that configures the file_roots:

file_roots:
 base:
 - /etc/salt/pillar
 - /etc/salt/templates
 - /etc/salt/states
 - /etc/salt/reactors

Note base, the special keyword in Salt we mentioned earlier. When used, it designates
the respective paths that map to the default environment (since you can define multi‐
ple environments each as a different key). For example, if you wanted to define an

Automating with Salt | 415

environment called dev used for development only, the structure would be the follow‐
ing:

file_roots:
 dev:
 - /home/admin/pillar
 - /home/admin/states

The structure of pillar_roots is very similar to that of the file_roots, pointing to
the directory where the pillar files are stored:

pillar_roots:
 base:
 - /etc/salt/pillar

You could subsequently update pillar_roots to support a development environment
too:

pillar_roots:
 dev:
 - /home/admin/pillar

It is not required to define templates within a flat directory such
as /etc/salt/template. There are designs where the templates are
actually stored under each state, grouped more logically by how
they’re used and what devices are using them.

Once you have a base configuration on the master, the next step will be to perform
similar tasks on the proxy minion, specifically when automating network devices.

Updating the minion and proxy minion configuration file
The minion has its own configuration file. The default paths supported are /etc/salt/
minion and /srv/minion. As the proxy minion is a superset of the regular minion, it
inherits all the options (YAML keys) supported by the minion configuration.

The proxy configuration file is stored either at /etc/salt/proxy or /srv/proxy (depend‐
ing on the OS).

We did not make any changes or updates to the default proxy minion configuration
file.

Next, we’ll look at a few workflows that build and deploy network configurations.

Managing Network Configurations with Salt
We’ve seen how flexible SLS files are and what can be done with the salt command,
but another unique capability of Salt is that any function available on the CLI can also
be executed inside SLS files, including templates.

416 | Chapter 9: Automation Tools

We’re now going to walk through the process of auto-generating configurations
through the use of templates.

Accessing data within templates
There are also a number of built-in identifiers (almost like variables) available, such as
grains pillar opts (the dictionary of configuration options) or env (provides the
environment variables). These can also be used directly inside a template similar to
how they’re used on the CLI (e.g., grains.get os). This adds value as you start tem‐
plating out network configurations, as you’ll see in the next few examples.

Execution functions can be accessed with the salt reserved keyword. While on the
CLI we just execute ntp.peers; inside the template we only need to prepend salt:

{%- set configured_peers = salt.ntp.peers()['out'] -%}

configured_peers is a variable created in the template via the set statement in Jinja.
configured_peers is a Jinja variable and when this template is executed, it’ll be
assigned the list of active NTP peers configured on the device through the ntp execu‐
tion module.

In Salt as in many other tools, it’s good practice to move the complexity of the Jinja
templates into the actual functions such that the data or task can be eventually reused
in other applications. This provides major benefits: making templates more readable,
opening the gate to reusability, and providing a great way to reintroduce data into the
system.

Custom execution modules take just a short time to write in
Python and are automatically distributed to minions (or proxy
minions). They can then be used within templates, other SLS files,
or from the command line.

When using the grains, pillar, and opts keywords within a template, you can
define high-level business logic and design templates in a vendor-agnostic manner, in
such a way that the same template can be executed against different platforms, and it
is intelligent enough to identify what configuration changes to load.

Creating Jinja network configuration templates
For example, you can define the Salt template to generate the configuration for the
NTP peers, using the input data from the pillar defined earlier with a Jinja template
that looks like this:

{%- if grains.os == 'junos' %}
system {
 replace:

Automating with Salt | 417

 ntp {
 {%- for peer in pillar.ntp_peers %}
 peer {{ peer }};
 {%- endfor %}
 }
}
{%- elif grains.vendor | lower == 'cisco' %}
no ntp
 {%- for peer in pillar.ntp_peers %}
ntp peer {{ peer }}
 {%- endfor %}
{%- endif %}

The unique piece here is the use of the pillar keyword directly in the template. This
allows you to access data defined in the pillar files.

If your goal was to ensure that a specific feature is configured exactly as desired in a
declarative manner (with no extra peers still on the device), you can perform a
replace operation on the device. On Junos, you do this using the replace keyword,
while with other more traditional operating systems, command negations (“no” com‐
mands) are required.

The replace keyword here for Junos maps back to the NETCONF
replace operation that we covered in Chapter 7 and allows you to
replace a full hierarchy within a configuration.

In this example, we saved the template as ntp_template.j2 within the /etc/salt/
templates directory, as this was one of the file_roots defined originally in the master
configuration file.

We can then reference this template as salt://ntp_template.j2 when using it from
the command line or from within Salt state files.

At this point, we’ve simply built out the Jinja template—we haven’t yet rendered it
with data, or created a configuration file.

To highlight what’s possible using of the salt directive inside the template, we’re able
to determine the NTP peers to be added or removed based on retrieving in real time
the existing peers using the statement salt.ntp.peers.

The following template creates the configuration for both IOS and Junos for config‐
uring NTP peers. This template has the logic required to ensure only the peers
defined in the pillar end up configured on the device, meaning any unwanted peers
will be purged from the device (when the configuration is deployed).

{%- set configured_peers = salt.ntp.peers()['out'] -%}
{%- set add_peers = pillar.ntp_peers | difference(configured_peers) -%}

418 | Chapter 9: Automation Tools

{%- set rem_peers = configured_peers | difference(pillar.ntp_peers) -%}
{%- if grains.os == 'junos' -%}
 {%- for peer in rem_peers -%}
delete system ntp peer {{ peer }}
 {% endfor -%}
 {%- for peer in add_peers -%}
set system ntp peer {{ peer }}
 {% endfor -%}
{%- elif grains.vendor | lower == 'cisco' %}
 {%- for peer in rem_peers -%}
no ntp peer {{ peer }}
 {% endfor -%}
 {%- for peer in add_peers -%}
ntp peer {{ peer }}
 {% endfor -%}
{%- endif -%}

For devices such as Juniper that provide support for partial configuration replace
capabilities, this is quite a nice solution. For others, it could seem tedious due to the
logic required to determine which “no” commands are needed to purge the un-
wanted peers. However, this is the best way to handle those scenarios where there isn’t
a native way for partial configuration replace operations.

Deploying network configurations with netconfig
Next, we need to define a state that can be executed to insert the data from the NTP
pillar(s) into the NTP template to generate the required commands that’ll send com‐
mands to the devices.

Here is where we’ll use the netconf.managed state function. This renders the desired
configuration and deploys the commands to the network device.

ntp_peers_example:
 netconfig.managed:
 - template_name: salt://ntp_template.j2
 - debug: true

This SLS state file was saved under one of the file_roots paths (e.g., /etc/salt/states)
as ntp.sls.

To execute this SLS state file, we need to call the execution function state.apply or
state.sls with the name of the state file as an argument:

$ sudo salt vmx1 state.apply ntp
vmx1:

 ID: ntp_peer_example
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 10:48:16.160777

Automating with Salt | 419

 Duration: 4331.08 ms
 Changes:

 diff:
 [edit system ntp]
 + peer 10.10.10.1;
 + peer 10.10.10.3;
 + peer 10.10.10.2;
 - peer 1.2.3.4;
 - peer 5.6.7.8;
 loaded_config:
 delete system ntp peer 1.2.3.4
 delete system ntp peer 5.6.7.8
 set system ntp peer 10.10.10.1
 set system ntp peer 10.10.10.3
 set system ntp peer 10.10.10.2

Summary for vmx1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 4.331 s

Note that in a single execution, the commands were generated in memory and
deployed to a network device. This example did not create a config file first.

The format of the output displayed in the previous example on the CLI is called high‐
state, but the object returned is still a Python object (we can verify using --out=raw);
hence, it can be reused and define complex workflows.

Note the loaded_config key returned as we specified debug: true in the state SLS,
having the configuration generated as required by the business logic.

The execution time is quite fast here given all the steps performed: it retrieved the
current configuration, determined the difference, generated the configuration (all
within the template), and subsequently loaded the commands onto the device, gener‐
ated a diff, and then committed the configuration to memory on the device, all within
4.3 seconds.

We can also run the same exact state file, ntp.sls, against csr1. The state will process
the same template, which knows from the grains that csr1 is a Cisco IOS device and
will generate the appropriate configuration to be loaded on the device:

$ sudo salt csr1 state.apply ntp
csr1:

 ID: ntp_peer_example
 Function: netconfig.managed
 Result: True

420 | Chapter 9: Automation Tools

 Comment: Configuration changed!
 Started: 11:38:14.609398
 Duration: 3414.471 ms
 Changes:

 diff:
 + ntp peer 10.10.10.1
 + ntp peer 10.10.10.3
 + ntp peer 10.10.10.2
 loaded_config:
 ntp peer 10.10.10.1
 ntp peer 10.10.10.3
 ntp peer 10.10.10.2

Summary for csr1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 3.414 s

Using state dependencies
Another important feature you can leverage within state files is creating state depen‐
dencies.

When you need to apply several states that depend on each other, you will find state
requisites very helpful. For example, if you need the ntp_peer_example state to be
executed only if another state (such as bgp_neighbors_example) has been success‐
fully executed, you only need to add two more lines:

ntp_peers_example:
 netconfig.managed:
 - template_name: salt://ntp_template.j2
 - require:
 - bgp_neighbors_example

Generating network configuration files
We also have the ability to decouple the configuration generation and deployment
into separate steps—similar to what we showed in the Ansible section too. This is
often helpful if you want to version or view the commands before you try doing any
deployments.

In order to accomplish this, we’ll use the file.managed state function. As arguments,
we’ll specify the template type and location of the template. Once the data is rendered
in the template, we’ll save it as ntp_generated.conf using the name key:

build_config:
 file.managed:

Automating with Salt | 421

https://docs.saltstack.com/en/develop/ref/states/requisites.html
https://docs.saltstack.com/en/develop/ref/states/requisites.html

 - name: /home/admin/ntp_generated.conf
 - source: salt://ntp_template.j2
 - template: jinja

If we saved this build-ntp.sls, we could just build the configuration as follows:

$ sudo salt csr1 state.apply build-ntp

Generating and deploying network configurations from files
Another option if you did want to build the config and deploy within a single work‐
flow, but still wanted to generate a config file on the server first, would be to have
both of these states in the same SLS file.

generate_config:
 file.managed:
 - name: /home/admin/ntp_generated.conf
 - source: salt://ntp_template.j2
 - template: jinja
ntp_peer_example:
 netconfig.managed:
 - template_name: /home/admin/ntp_generated.conf
 - require:
 - file: /home/admin/ntp_generated.conf

If we saved this as ntp-build-deploy.sls and executed it, we’d see the following output:

$ sudo salt vmx1 state.sls ntp-build-deploy
vmx1:

 ID: /home/admin/ntp_generated.conf
 Function: file.managed
 Result: True
 Comment: File /home/admin/ntp_generated.conf updated
 Started: 12:17:25.544779
 Duration: 141.895 ms
 Changes:

 diff:

 +++
 @@ -0,0 +1,4 @@
 + set system ntp peer 10.10.10.1
 + set system ntp peer 10.10.10.3
 + set system ntp peer 10.10.10.2
 +

 ID: ntp_peer_example
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 12:17:25.687279
 Duration: 4189.027 ms

422 | Chapter 9: Automation Tools

 Changes:

 diff:
 [edit system]
 + ntp {
 + peer 10.10.10.1;
 + peer 10.10.10.3;
 + peer 10.10.10.2;
 + }

Summary for vmx1

Succeeded: 2 (changed=2)
Failed: 0

Total states run: 2
Total run time: 4.331 s

Parameterizing configuration filenames
In both previous examples when config files were generated, the filename used was /
home/admin/ntp_generated.conf. This is not scalable, as the filename is static. To
avoid hardcoding the filename, but generate the name depending on the device or
minion ID, we can specify this using the id field from the opts SLS special variable:

generate_config:
 file.managed:
 - name: /home/admin/{{ opts.id }}_ntp_generated.conf
 - source: salt://ntp_template.j2
 - template: jinja

The state above generates a file called home/admin/vmx1_ntp_generate.conf for the
vmx1 minion, home/admin/csr1_ntp_generate.conf for csr1, and so on.

Scheduling state execution
In Salt, it is very important to distinguish between jobs executed on the master and
jobs executed on the minion. While the minions run execution functions, the master
executes runners (covered in the next paragraphs). This is significantly important
when we are scheduling jobs: if we want to schedule an execution function, we add
the instructions in the (proxy) minion configuration file, while we schedule a runner
by adding the options in the master configuration file. In both cases, the syntax is the
same. For example, if we need to schedule the preceding state to be applied every
Monday at 11 a.m., we’d only need the following lines in the (proxy) minion configu‐
ration file:

schedule:
 ntp_state_weekly:
 function: state.sls
 args:

Automating with Salt | 423

 - ntp
 kwargs:
 test: true
 ret: smtp
 when:
 - Monday 11:00am

Under kwargs we configured test: true, which means the state is going to execute a
dry run, but it will return the configuration difference. Moreover, we have subtly
introduced another feature with the field ret: smtp. This tells Salt to take the output
of the state and forward it to the returner called smtp. This returner takes the data
from the output of the state and sends an email with the configuration diff.

Generating reports
Generating reports is even more useful when they are also consumed by a process or
a human. For this, the returners are very handy and easy to use. In the previous exam‐
ple, the NTP state is executed, and then its output is processed via the SMTP returner
—this is basically sending the execution report as email.

To send the email with the content as-is, we only need to configure the following
options on the minion:

smtp.from: ping@mirceaulinic.net
smtp.to: jason@networktocode.com
smtp.host: localhost
smtp.subject: NTP state report

We can customize the subject body using a template, as follows:

smtp.template: salt://ntp_state_report.j2

Where ntp_state_report.j2 is found in the Salt filesystem, for example under the /etc/
salt/templates directory:

NTP consistency check

Running on {{ id }}, which is a {{ grains.vendor }} {{ grains.model }} device,
running {{ grains.os }} {{ grains.version }}:

{{ result }}

When the scheduler is executed, it will send an email with the following body:

NTP consistency check

Running on vmx1, which is a Juniper VMX device,
running junos 15.1F4.15:

vmx1:

424 | Chapter 9: Automation Tools

https://docs.saltstack.com/en/develop/ref/returners/all/salt.returners.smtp_return.html

 ID: ntp_peer_example
 Function: netconfig.managed
 Result: None
 Comment: diff:
 [edit system]
 + ntp {
 + peer 10.10.10.1;
 + peer 10.10.10.3;
 + peer 10.10.10.2;
 + }

 Configuration discarded.
 Started: 15:14:09.911816
 Duration: 969.945 ms
 Changes:

Summary for vmx1

Succeeded: 1 (unchanged=1)
Failed: 0

Total states run: 1
Total run time: 969.945 ms

With this setup, we can ensure that Salt periodically executes the NTP state in test
mode, then generates and sends an email with the report.

From the CLI, we could achieve this by manually executing:

`$ sudo salt vmx1 state.sls ntp test=True --return smtp`.

In a very similar way, we can set this up to send reports with the result from multiple
devices at a time, using a runner instead of an execution function. While the execu‐
tion function is run by the minion process, a runner function is executed by the mas‐
ter process, which gives visibility over the entire network. In Python language, the
result is a dictionary whose keys are the minion IDs matched, while the values are the
actual result of each device.

Available from both CLI and scheduled process, returners are a very powerful tool for
post-processing and data transformation. Later, we will see they can be reused when
reacting to events, or to monitor the entire Salt activity.

Executing Salt Functions Remotely
We’ve covered quite a bit thus far on Salt, but one of the most important components
to understand is the architecture employed by Salt for network devices. However, as
you’ve learned a lot in this section, be aware that Salt offers two primary ways you can
interact with Salt, and execute any command or tasks remotely from another

Automating with Salt | 425

machine. They are the built-in RESTful API and an external Python package called
pepper that remotely executes salt commands on the master.

Using the Salt API
This RESTful API is included with Salt and can be used to perform any operation you
can when using the salt command-line programs within the Linux shell.

A core feature of the RESTful API is that it allows you to pick one of three web
servers supported out of the box. They include CherryPy, uWSGI, or Tornado.

The following is how you’d enable CherryPy by editing the master configuration file:

rest_cherrypy:
 port: 8001
 ssl_crt: /etc/nginx/ssl/my_certificate.pem
 ssl_key: /etc/nginx/ssl/my_key.key

This configures the server to listen on port 8001 and use the certificate and the key
for secured requests.

Afterward, you can start executing Salt functions remotely through the use of custom
scripts, Postman, or cURL. The following example shows the use of cURL to retrieve
the ARP table for vmx1.

curl -sSk https://salt-master-ns-or-ip:8001/run \
 -H 'Content-type: application/json' \
 -d '[{
 "client": "local",
 "tgt": "vmx1",
 "fun": "net.arp",
 "username": "ntc",
 "password": "ntc123",
 "eauth": "pam"
 }]'

For configuration-related requests, the function is then replaced by state.sls or
state.apply and the name of the state is specified in the args field:

curl -sSk https://salt-master-ns-or-ip:8001/run \
 -H 'Content-type: application/json' \
 -d '[{
 "client": "local",
 "tgt": "vmx1",
 "fun": "state.sls",
 "args": ["ntp"],
 "username": "ntc",
 "password": "ntc123",
 "eauth": "pam"
 }]'

426 | Chapter 9: Automation Tools

This example, when executed, would run the NTP state that was defined earlier in the
chapter.

Shaking it up with salt and pepper
Using the API is one option, and the preferred choice if you need to integrate Salt
with third-party systems. However, another option is pepper—a Python library in
which you can execute CLI commands, from a personal machine, directly on the Salt
master server.

pepper is installed from PyPI via pip like so: pip install salt-
pepper.

pepper only requires you to configure the credentials as environment variables or in a
configuration file $HOME/.pepperrc:

[main]
SALTAPI_URL=https://salt-master-ns-or-ip:8001/
SALTAPI_USER=my_username
SALTAPI_PASS=my_password
SALTAPI_EAUTH=pam

Pepper comes with a command-line binary (pepper) that can be used exactly like the
master salt command. For example, we can execute NTP state from our machine
and it’ll run directly on the master:

$ pepper 'vmx1' state.sls ntp
output omitted

Diving into Salt’s Event-Driven Infrastructure
Salt is built around an event bus, which is an open system, based on ZeroMQ, used to
notify Salt and other systems about operations. ZeroMQ is a cross-platform high-
performance asynchronous messaging toolkit that focuses on handling tasks very
efficiently, without additional overheads.

To watch the events in real time, we execute the following command on the master:

$ sudo salt-run state.event pretty=True

If we looked at using a module with the salt command, we’d see that there are three
individual events that take place when the command is executed. For example, a
command such as $ sudo salt -G os:nxos test.ping executes the following three
events.

Automating with Salt | 427

First, there is a Job ID, a way to uniquely reference any given event that is mapped to
target minions. The event is described and shown as follows:

20170619145155855122 {
 "_stamp": "2017-06-19T14:51:55.855336",
 "minions": [
 "nxos-spine1"
]
}

Next, the job is executed on the appropriate minions. This event is described and
shown as follows:

salt/job/20170619145155855122/new {
 "_stamp": "2017-06-19T14:51:55.855656",
 "arg": [],
 "fun": "test.ping",
 "jid": "20170619145155855122",
 "minions": [
 "nxos-spine1"
],
 "tgt": "os:nxos",
 "tgt_type": "grain",
 "user": "sudo_admin"
}

The final event for this command is the response and status for each minion that was
in the target scope.

salt/job/20170619145155855122/ret/nxos-spine1 {
 "_stamp": "2017-06-19T14:51:55.867958",
 "cmd": "_return",
 "fun": "test.ping",
 "fun_args": [],
 "id": "nxos-spine1",
 "jid": "20170619145155855122",
 "retcode": 0,
 "return": true,
 "success": true
}

Note that in the final event there is a unique tag pattern for each minion. As you can
see, the preceding example is showing the tag of salt/job/

20170619145155855122/ret/nxos-spine1.

Next, we’ll take a look at several items that have very specific meaning within Salt for
event-driven network automation.

Watching external processes with beacons
In Salt, beacons are used to watch external processes that are not related to Salt and to
import and return events onto the Salt bus.

428 | Chapter 9: Automation Tools

For example, the inotify beacon is used to monitor when a file is changed. If we
want to monitor when the ntp_peers.sls file is updated, the following lines need to be
added in the (proxy) minion configuration:

beacons:
 inotify:
 - /etc/salt/pillar/ntp_peers.sls:
 mask:
 - modify
 disable_during_state_run: True

This instructs Salt to start monitoring the file /etc/salt/pillar/ntp_peers.sls and push
events onto the bus. Modifying the contents, we will see events with the following
structure:

salt/beacon/vmx1/inotify//etc/salt/pillar/ntp_peers.sls {
 "_stamp": "2017-06-20T10:17:49.651695",
 "change": "IN_IGNORED",
 "id": "vmx1",
 "path": "/etc/salt/pillar/ntp_peers.sls"
}

This may be valuable for you to track data as it changes in the system. Since you can
use modules within pillars (as an example), the data is dynamic, often getting pulled
from the devices in real time. You’d be able to see this data change in real time using
beacons.

Forwarding events with engines
Engines are another subsystem interfacing with the event bus. While beacons only lis‐
ten to external processes and transform them into Salt events, engines can be bidirec‐
tional. Although their main scope is the forwarding of events, there are also engines
able to inject messages on the bus. And that is the main difference between beacons
and engines: beacons poll the service at specific intervals (default: 1 second), while the
engines can fire and forward events on immediate occurrence.

A very good application could be logging Salt events to a syslog server such as Log‐
stash, using the http-logstash engine. This would be defined on the master like so:

engines:
 - http_logstash:
 url: https://logstash.elastic.co/salt
 tags:
 - salt/job/*/new
 - salt/job/*/ret/*

The YAML configuration on the master configures the master to send events to Log‐
stash. However, it’s configured to send the events only matching the tags
salt/job/*/new and salt/job/*/ret/*. For reference, if tags is not configured or
empty, the engine would forward all events.

Automating with Salt | 429

Listening to the salt bus with reactors
The reactor system listens to the event bus and executes an action when an event
occurs. The reactors are configured on the master, the global syntax being:

reactor:
 - <tag match>:
 - <list of SLS descriptors to execute>

The tag match describes the pattern to be matched against the event tag.

reactor:
 - 'salt/beacon/*/inotify//etc/salt/pillar/ntp_peers.sls':
 - salt://run_ntp_state_on_pillar_update.sls

This example instructs Salt to execute the run_ntp_state_on_pillar_update.sls data file
when the inotify beacon injects the corresponding event on the bus, on file update.

The reactor SLS, run_ntp_state_on_pillar_update.sls, can have any structure you’d
like. For our example, we’re using the following:

run_ntp_state:
 local.state.sls:
 - tgt: {{ data['id'] }}
 - arg:
 - ntp
 - ret: mongo

This executes the execution function state.sls with the argument ntp against the
minion whose ID is extracted from the event body, under the field id.

The following events are what you’d see on the event bus. First, you’d see the pillar
file, ntp_peers.sls, being changed.

salt/beacon/vmx1/inotify//etc/salt/pillar/ntp_peers.sls {
 "_stamp": "2017-06-20T10:57:24.651644",
 "change": "IN_IGNORED",
 "id": "vmx1",
 "path": "/etc/salt/pillar/ntp_peers.sls"
}
20170620105724736722 {
 "_stamp": "2017-06-20T10:57:24.737525",
 "minions": [
 "vmx1"
]
}
salt/job/20170620105724736722/new {
 "_stamp": "2017-06-20T10:57:24.737804",
 "arg": [
 "ntp"
],
 "fun": "state.sls",
 "jid": "20170620105724736722",
 "minions": [

430 | Chapter 9: Automation Tools

 "vmx1"
],
 "tgt": "vmx1",
 "tgt_type": "glob",
 "user": "sudo_admin"
}
followed also by the result of the state execution, omitted here due to size
limits further output omitted

The first event is fired by the inotify beacon; then, the reactor kicks in and creates a
new job and identifies the minions, then sends the task to the minions (only vmx1 in
this case).

Note the ret field in the reactor SLS: the mongo returner is invoked, which means
Salt will forward the state results into MongoDB. This statement is optional and not
required.

Suppose we have the pillar files maintained in Git. Configuring the local clone to
track the remote origin server, the previous example is an excellent orchestration
example: a pull request merged triggers automatic configuration deployment of the
NTP peers for the entire network, without any manual work. Note also the difference
between configuration management only and event-driven automation: beacon, reac‐
tor setup, and SLS—15 lines in total, and the results are sent into a structured data‐
base service. Moreover, we maintain vendor-agnostic entities of data, not pseudo-
formatted files.

Adding business logic using Thorium
The reactor has the limitation that we are able to trigger actions only to individual
events. Thorium is the next step: it is a complex system that can define business logic
based on aggregate data and multiple events.

As with any other Salt system, Thorium has its own file roots, pointing by default
to /srv/thorium, and can be changed in the master configuration:

thorium_roots:
 base:
 - /etc/salt/thorium

Under the Thorium file roots, we have a dedicated top.sls file to include the Thorium
descriptors.

For example, let’s say we want to push a HipChat notification after we commit (exe‐
cuting the function net.commit) three times.

In the first place, as we need to count, we need to define a register that matches the
net.commit function and counts:

commits:
 reg.list:

Automating with Salt | 431

 - add: fun
 - match: salt/job/*/new
 check.contains:
 - value:
 fun: net.commit
 - count_gte: 3

In the commits register we store the function names extracted from the events having
the tag matching salt/job/*/new. Then, check.contains ensures that the register
contains the net.commit function and there are at least three occurrences.

The second part is pushing the HipChat notification:

too_many_commits:
 runner.cmd:
 - fun: salt.cmd
 - arg:
 - hipchat.send_message
 - kwargs:
 - room_id: 1717
 - message: too many commits
 - from_name: ''
 - api_key: Ag56uXGGB6jTh1Lc8sEpZOgX6rMCm7M5wN6dPLFd
 - api_version: v2
 - require:
 - check: commits

This configuration instructs Thorium to execute the salt.cmd runner to invoke the
hipchat.send_message execution function with the necessary details, but only when
the commits register defined earlier is matched.

Save the preceding configurations in an SLS file—say, too_many_commits.sls—
under /etc/salt/thorium, and include it in the corresponding top file (/etc/salt/
thorium/top.sls):

base:
 '*':
 - too_many_commits

After three commits, the Thorium complex reactor will push a HipChat notification.

Although this example is very minimalist, there are no complexity boundaries.

You can do quite a lot with Salt without event-driven network
automation. Our recommendation is to first start using the salt
command and start creating relevant SLS data files in the form of
pillars and templates. Once you’ve mastered the basics, you’ll be
ready to start exploring the event-driven capabilities of Salt and
have a much greater grasp on what it offers.

432 | Chapter 9: Automation Tools

Diving into Salt a Bit Further
The community has built a document of best practices to secure the Salt environ‐
ment, hosted under the official documentation.

One good practice we’ll point out now is restricting users from having the ability to
use any command they want. Using the Publisher ACL system, you can define what
permissions each user has:

publisher_acl:
 mircea:
 - .*
 jason:
 - csr*:
 - ntp.*
 - test.*

In this example, mircea is allowed to execute anything, while jason is allowed to use
the execution functions from the ntp and test modules, but only on the csr* min‐
ions.

To restrict the access through the REST API, you can configure the External Authen‐
tication system (eAuth):

external_auth:
 pam:
 matt:
 - 'vmx*':
 - ntp.*
 - napalm_yang.*
 scott:
 - '@runner'

The configuration structure is very similar to the Publisher ACL system, where the
authentication is PAM (Pluggable Authentication Modules): matt can execute the
functions from the ntp and napalm_yang modules, while scott can invoke any run‐
ner. Note that PAM is just one option to use as the authentication system.

Understanding small database queries (SDB)
The SDB interface is designed to store and retrieve data that, unlike pillars and grains,
is not necessarily minion-specific, through small database queries (hence the name
SDB) using a compact URI. This allows users to reference a database value quickly
inside a number of Salt configuration areas, without a lot of overhead. The basic for‐
mat of an SDB URI is: sdb://<profile>/<args>.

There are a number of SDB modules available, including: SQLite3, CouchDB, Consul,
Keyring, Memcached, REST API calls, Vault, or environment variables. For Vault, the
configuration becomes as simple as the following.

Automating with Salt | 433

https://docs.saltstack.com/en/latest/topics/hardening.html

/etc/salt/minion or /etc/salt/master:

myvault:
 driver: vault

Once this is configured on the minion, we can access data from any configuration file
(/etc/salt/master, /etc/salt/minion, or /etc/salt/proxy), using a URI such as:

password: sdb://myvault/secret/passwords?get_pass

where myvault is the configuration profile, secret/passwords is the path where data
is available, and get_pass is the key of the data to return.

SDB proves to be a nice way to manage sensitive data and avoid repeating the same
configuration in multiple places by referencing it using a basic URI.

Understanding the Salt cache
Salt is caching a variety of details, mainly for performance improvements, but not
limited to that. One of the most important is the job cache—after a job is executed,
the results are stored, by default on the local filesystem—/var/cache/salt/master/
jobs/—for 24 hours. We can turn off the job cache by configuring job_cache: false,
or adjusting the caching period using the keep_jobs (in hours) option on the master.
Additionally, we can forward everything to a third-party service. We can reuse the
returners configuration described earlier, and thus we have many options to choose
from: Cassandra, Elasticsearch, MySQL, Redis, Slack, SMS, SMTP, and so on. For
example, if we want to monitor the entire Salt activity from a HipChat room, this is
possible too.

Grains and pillar data is also cached on the master; similarly, the local filesystem is
preferred and is the default, but you can choose to store the data in a remote system
or using a local in-memory Redis database as well.

SLS files defined under the file_roots paths or fetched from external services are
also cached, but refreshed when their content has changed in their original location.
This optimization is very important when the (proxy) minion and the master are
running on separate physical machines (eventually, having poor connectivity between
them), as the files are not fetched unless required. For large files, this brings an
important improvement in terms of execution speed. The default caching path is
under /var/cache/salt/minion for regular minions, or /var/cache/salt/proxy/<ID> for
proxy minions. This can also be changed via the cachedir option.

Understanding Salt logging
Salt will catch and log everything possible from the underlying applications. The log‐
ging level can be adjusted with the log_level option on the master or minion (each
application has its own independent logging process), the possibilities being garbage,

434 | Chapter 9: Automation Tools

trace, debug, info, warning, error, or critical—with the caveat that the first three
may log sensitive data.

For more granular logging, we can set different levels per module type:

log_granular_levels:
 salt.states: warning
 salt.beacon: error
 salt.modules: info

Extending Salt
As we hope we have emphasized in this section, every Salt component is pluggable.
The extension modules can be placed in a directory with subdirectories for each of
Salt’s module types, such as modules, states, returners, output, and runners. The nam‐
ing convention for subdirectories is to prepend a _ to the module type, so execution
modules are defined under _module, runners under _runners, and output under out‐
put. The parent directory can be specified with the option extension_modules, or
module_dirs—which accepts a list of paths. Alternatively, we can also include it as
one of the file_roots paths.

extension_modules
 - /etc/salt/extmods

For example, a new execution module called example.py can be placed under /etc/salt/
extmods/_modules:

-*- coding: utf-8 -*-

def test():
 return {
 'network_programming_with_salt': True
 }

To make Salt aware of the new module, we need to resynchronize the modules using
the saltutil.sync_all execution function:

$ sudo salt vmx1 saltutil.sync_all
vmx1:

 beacons:
 clouds:
 engines:
 grains:
 log_handlers:
 modules:
 - modules.example
 output:
 proxymodules:
 renderers:
 returners:

Automating with Salt | 435

 sdb:
 states:
 utils:

Here you can see module.example, which is telling us that the new execution module
example has been synchronized and is available to be invoked:

$ sudo salt vmx1 example.test
vmx1:

 network_programming_with_salt:
 True

Remember, modules can be used from the CLI or directly within SLS files such as
templates:

{%- set successful = salt.example.test()['network_programming_with_salt'] -%}

Salt Summary
In this section, we covered some of the most important topics to be aware of when
just getting started with Salt for network automation. One of the greatest attributes of
Salt that we covered was the use of the SLS file. Remember, you have complete control
of how to write SLS data files, from using Jinja and YAML (as the defaults), to using
Mako and HJSON, to adding in a new or custom templating language or even data
format. This allows you to maintain the use of Salt and extend its capabilities accord‐
ing to the environmental requirements, without depending on the official codebase.
Another major benefit of Salt is the use of proxy minions. With Salt, you have a
natively built-in ability to distribute load between proxy minions that make it a great
choice for large and distributed networks.

Event-Driven Network Automation with StackStorm
StackStorm is an open source software project for providing flexible event-driven
automation. It is often lumped together with some of the other tools in this chapter,
but StackStorm actually wasn’t built to replace existing configuration management
tools. For instance, many popular workflows in StackStorm actually leverage tools
like Ansible for performing configuration management tasks.

The best way to think about StackStorm is that it fits in the sweet spot between con‐
figuration management (or general automation) and monitoring. It aims to provide a
set of primitives for allowing the user to describe the tasks that should take place in
response to certain events. For this reason, StackStorm can be thought of as the
IFTTT (if-this-then-that) of IT infrastructure.

In many areas of IT, we usually respond to problems or outages manually. One very
popular use case for StackStorm is the concept of auto-remediation, which is the idea

436 | Chapter 9: Automation Tools

of attempting to resolve issues without any human intervention. Naturally, if you’re
just getting started, there’s not a magical button you can press to automatically fix
problems. However, auto-remediation is the idea that after you’ve fixed a problem
manually, you should commit that same procedure as some sort of automated work‐
flow, reducing the number of manual tasks over time. StackStorm aims to allow you
to do just that.

The design of StackStorm is meant to work well with
infrastructure-as-code practices. These practices take the approach
that your infrastructure can be described using text files (such as
YAML files and Jinja templates we’ve used in many other places in
this book), and that these files can and should be managed in the
same way that software developers manage source code for applica‐
tions.
In StackStorm, nearly everything is described using YAML files. As
we go through the following examples, keep this paradigm in
mind, and remember that it’s always a good idea to use version
control and automated testing for the files we use to manage our
infrastructure.

In the following section, we’ll explore some of the basic StackStorm concepts you’ll
need to understand in order to get started. You’ll find that many of the concepts
within StackStorm embrace infrastructure-as-code—everything in StackStorm is
defined using plain-text files. So you can (and should) manage everything in Stack‐
Storm using the concepts we learned in Chapter 8.

StackStorm Concepts
There are a number of concepts we’ll need to familiarize ourselves with in order to
use StackStorm, as shown in Figure 9-4. Together, they form a set of tools that make
event-driven automation possible.

First, actions are conceptually closest to the functionality offered by some of the other
tools discussed in this chapter. They’re where the actual work gets done. They’re logi‐
cally distinct bits of code that perform tasks like making API calls and executing
scripts. They’re the atomic building blocks of the “automation” part of event-driven
automation.

From there, we want to talk about workflows. Workflows are a way to stitch actions
together coherently to accomplish your business logic. You may start a workflow by
running a few actions to gather some additional data from your infrastructure, then
use that data to make decisions about which actions you should run in order to fix a
problem. Workflows are available in StackStorm in two forms. The simplest format is
ActionChains, which are a rudimentary way to “chain” actions together. The second

Event-Driven Network Automation with StackStorm | 437

format is Mistral, which is an OpenStack project with its own workflow definition
that comes bundled with StackStorm, and it is much more flexible.

Figure 9-4. StackStorm concepts

Now that we have actions and workflows to do the work on our behalf, we’ll want to
bring these concepts into the world of “event-driven” automation. For this, we use
sensors and triggers. You can think of sensors as little bits of Python code whose sole
purpose is to gather data about your infrastructure. Note that these aren’t agents that
you deploy to endpoints like servers or network devices; rather, sensors run within
StackStorm itself, and usually connect programmatically to external entities like
monitoring or management systems, or in some cases, discrete nodes like virtual
machines or network devices, in order to gather the information they need. However,
this data is meaningless unless we have a way of recognizing what an “event” is. For
that, sensors can also define triggers, which fire when something meaningful has
occurred as indicated by the data being brought in by the sensor. For instance, the
napalm.LLDPNeighborDecrease trigger notifies StackStorm when a given network
device experiences a reduction in LLDP neighbors.

The crux of event-driven automation with StackStorm comes in the form of rules.
Rules are the StackStorm equivalent of “if-this-then-that”—they’re a way to connect
incoming triggers to actions or workflows that respond to events. You may want to
execute a workflow that pushes a new configuration to a network device when the
napalm.LLDPNeighborDecrease trigger fires; this automated response would be
defined in a rule.

Finally, it’s worth mentioning that all of these concepts are distributed in StackStorm
via packs. Packs are the atomic unit of distribution for all manner of extensibility in
StackStorm—sensors, rules, workflows, and actions are all defined with text files, and

438 | Chapter 9: Automation Tools

those files are placed in a pack so they can be referenced. For instance, the
napalm.LLDPNeighborDecrease sensor is in the napalm pack. Not all packs are
installed by default, but there are CLI commands for easily installing new packs from
the StackStorm Exchange. For instance, to download the napalm pack, you would
simply run:

st2 pack install napalm

This will make all of the actions, workflows, sensors, or rules present in the napalm
pack available to you in your instance of StackStorm.

Now that we have the basic concepts in mind, let’s talk about how StackStorm works
under the covers.

StackStorm Architecture
StackStorm is not really one component, but several microservices that work together
to make event-driven automation possible (see Figure 9-5). The distributed nature of
StackStorm was designed so that each component could scale independently as needs
change. This also allows each function to be more resilient in a failure scenario.

Figure 9-5. StackStorm components

Event-Driven Network Automation with StackStorm | 439

For instance, if you know you will require a lot of horsepower for your workflows,
but won’t be watching for that many events in order to kick them off, you may want
to spin up some additional st2actionrunner components to handle the load. If you
wanted to handle a large number of events you would scale the st2sensorcontainer
component in the same way.

Note that none of these components are “agents”; this does not mean you need to
install any of these components on the rest of your infrastructure. Everything you see
in Figure 9-5 is still self-contained within the servers or instances running Stack‐
Storm.

One component in particular is worth talking about—st2web. This is just a handy
name for the web UI that comes with StackStorm (see Figure 9-6).

Figure 9-6. StackStorm web UI

You can use this web UI to do almost anything in StackStorm. So, if you’re just getting
used to the idea of working in the bash shell, this may be a more friendly option. The
examples we’ll use in this chapter will use the StackStorm CLI, as it is a bit clearer for
our purposes.

Actions and Workflows
Now that we have the concepts and high-level architecture down, we should move
into some practical examples of everything we’ve learned thus far.

440 | Chapter 9: Automation Tools

StackStorm is very powerful, and as a result, there’s a lot to discuss.
Rather than cram this section full of examples for everything you
could possibly want to know, we’ll give an overview of the impor‐
tant details. For everything else, bookmark the StackStorm docu‐
mentation and refer to that for much more detailed explanations,
code snippets, and more.
In addition, StackStorm has a very active Slack community (sign
up for free at https://stackstorm.com/?#community), and it’s the best
place to get questions or concerns answered.

You may wish to follow along—and to that end, you should check out the
“st2vagrant” repository. There, you’ll find a Vagrantfile and some scripts for easily
spinning up a single-instance deployment of StackStorm.

Vagrant is described in detail in the next chapter, Chapter 10.

Let’s start with something simple, like running a single echo command to print “Hello
World.” For this we’ll use the core.local action, which allows us to execute any com‐
mand we’d otherwise run directly in bash.

A variety of backends can be leveraged within actions to actually
perform the work. For instance, core.local happens to simply
pass a value to the bash shell, but an action may use a Python or
bash script to drive more complicated logic.

StackStorm comes with its own command-line interface: the st2 command. One sub‐
command available to use is the st2 run command, which allows us to directly run
actions or workflows without having to mess with sensors or rules.

We can run st2 run core.local -h to see what parameters are required by that
action without actually running it:

vagrant@st2vagrant:~$ st2 run core.local echo -h

Action that executes an arbitrary Linux command on the localhost.

Required Parameters:
 cmd
 Arbitrary Linux command to be executed on the local host.
 Type: string

Event-Driven Network Automation with StackStorm | 441

https://docs.stackstorm.com
https://docs.stackstorm.com
https://stackstorm.com/?#community
https://github.com/StackStorm/st2vagrant

Optional Parameters:
 cwd
 Working directory where the command will be executed in
 Type: string

 env
 Environment variables which will be available to the command(e.g.
 key1=val1,key2=val2)
 Type: object

 kwarg_op
 Operator to use in front of keyword args i.e. "--" or "-".
 Type: string
 Default: --

 timeout
 Action timeout in seconds. Action will get killed if it doesn't finish
 in timeout seconds.
 Type: integer
 Default: 60

As shown in the previous example, the core.local action requires a single positional
parameter—namely, the command you wish the action to execute (which in our case
is the echo command):

vagrant@st2vagrant:~$ st2 run core.local echo "Hello World!"
.
id: 59598d2bc4da5f0506c24981
status: succeeded
parameters:
 cmd: echo Hello World!
result:
 failed: false
 return_code: 0
 stderr: ''
 stdout: Hello World!
 succeeded: true

The output shows that our command succeeded, and that stdout contains the string
we passed to echo.

Now that we’re comfortable with the command line, we can look at something a bit
more relevant to network automation. Assuming we’ve installed the napalm pack
using the st2 pack install napalm command shown previously, we can use st2
actions list to view all the actions available to us in this pack:

vagrant@st2vagrant:~$ st2 action list --pack=napalm
+--------------------------------------+
| ref |
+--------------------------------------+
| napalm.bgp_prefix_exceeded_chain |
| napalm.check_consistency |

442 | Chapter 9: Automation Tools

| napalm.cli |
| napalm.configuration_change_workflow |
| napalm.get_arp_table |
| napalm.get_bgp_config |
| napalm.get_bgp_neighbors |
| napalm.get_bgp_neighbors_detail |
| napalm.get_config |
| napalm.get_environment |
| napalm.get_facts |
| napalm.get_firewall_policies |
| napalm.get_interfaces |
| napalm.get_lldp_neighbors |
| napalm.get_log |
| napalm.get_mac_address_table |
| napalm.get_network_instances |
| napalm.get_ntp |
| napalm.get_optics |
| napalm.get_probes_config |
| napalm.get_probes_results |
| napalm.get_route_to |
| napalm.get_snmp_information |
| napalm.interface_down_workflow |
| napalm.loadconfig |
| napalm.ping |
| napalm.traceroute |
+--------------------------------------+

In order to use this pack, we need to configure it so that the pack is able to under‐
stand how to reach our network devices and how to authenticate to them. All packs
are configured with YAML files located at /opt/stackstorm/configs/, so this pack’s con‐
figuration will be located at /opt/stackstorm/configs/napalm.yaml. A minimal configu‐
ration is shown here:

html_table_class: napalm
config_repo: https://github.com/StackStorm/vsrx-configs.git

credentials:
 local:
 username: root
 password: Juniper

devices:
- hostname: vsrx01
 driver: junos
 credentials: local

In this configuration, we have a single device with a hostname vsrx01, using the
local credentials, resulting in a username root and a password Juniper.

When we make changes to the configuration, it’s important to ensure StackStorm is
aware of those changes by reloading them. The st2ctl utility is useful for doing this:

Event-Driven Network Automation with StackStorm | 443

vagrant@st2vagrant:~$ st2ctl reload --register-configs
Registering content...[flags = --config-file /etc/st2/st2.conf --register-configs]
2017-07-03 01:49:44,941 INFO [-] Connecting to database "st2" @ "0.0.0.0:27017" as
user "stackstorm".
2017-07-03 01:49:45,056 INFO [-] ===
2017-07-03 01:49:45,056 INFO [-] ############## Registering configs ##############
2017-07-03 01:49:45,056 INFO [-] ===
2017-07-03 01:49:45,181 INFO [-] Registered 1 configs.
st2 components status
st2actionrunner PID: 1007
st2actionrunner PID: 1053
st2api PID: 891
st2api PID: 1286
st2stream PID: 893
st2stream PID: 1288
st2auth PID: 874
st2auth PID: 1287
st2garbagecollector PID: 872
st2notifier PID: 884
st2resultstracker PID: 879
st2rulesengine PID: 888
st2sensorcontainer PID: 864
st2chatops PID: 881
mistral-server PID: 1032
mistral-api PID: 987
mistral-api PID: 2703
mistral-api PID: 2706

At the time of this writing all actions in the napalm pack require at
least one argument, namely hostname. This lets the action know
which device in the pack configuration you intend to work with.

Now, we should be able to run NAPALM actions. The napalm.get_facts action will
retrieve facts about our network device:

vagrant@st2vagrant:~$ st2 run napalm.get_facts hostname=vsrx01
..
id: 5959a495c4da5f0506c2498a
status: succeeded
parameters:
 hostname: vsrx01
result:
 exit_code: 0
 result:
 raw:
 fqdn: vsrx01
 hostname: vsrx01
 interface_list:
 - ge-0/0/0

444 | Chapter 9: Automation Tools

 - ge-0/0/1
 - ge-0/0/2
 - ge-0/0/3
 model: FIREFLY-PERIMETER
 os_version: 12.1X47-D15.4
 serial_number: da12e84e2e72
 uptime: 240
 vendor: Juniper
 stderr: ''
 stdout: ''

Here, we’re able to see some useful information about our device, like the vendor and
the list of interfaces present.

Actions by design are really intended to perform a single task well. However, in the
real world, our day-to-day tasks in infrastructure rarely take the form of a single task.
Usually, the work we do is accomplished over several discrete tasks, and includes
some decision making along the way.

For instance, if we notice a router has gone offline, we might want to gather informa‐
tion from its peers. We might want to perform cable checks. For other issues, there
may be an entirely different set of tasks required. As discussed previously, workflows
allow us to use actions in more interesting ways by allowing us to commit all of these
complicated decisions into a text file as if it were source code.

For the sake of brevity, we’ll only cover one of the workflow options in StackStorm—
specifically, Mistral. Mistral is an OpenStack project that provides two main things:

• A standardized YAML-based language for defining workflows
• Open source software for receiving and processing workflow execution requests

When you install StackStorm using the instructions in the docu‐
mentation, Mistral is installed and runs alongside the other Stack‐
Storm processes.

Let’s look at a simple example of a Mistral workflow so you can become familiar with
how it works.

version: '2.0'

examples.mistral-basic:
 description: A basic workflow that runs an arbitrary linux command.
 type: direct
 input:
 - cmd

Event-Driven Network Automation with StackStorm | 445

 output:
 stddout: "{{ _.cmd }}"
 tasks:
 task1:
 action: core.local cmd="{{ _.cmd }}"
 publish:
 stdout: "{{ task('task1').result.stdout }}"

This workflow has a few important focus points:

• input is where we declare the parameters for the workflow. These are published
within the workflow as named variables, which can be used in other tasks.

• output controls which values are published from the workflow when it finishes.
• tasks contains a list of tasks. In this simple example, we have only one: task1.

Note that this task not only references the action we want to run in that task
(namely core.local) but also contains a key, publish, which assigns the values
of stdout and stderr to similarly named variables (you may have noticed it’s
using small Jinja snippets to do this). Note also that stdout is being passed to
output so we can see the result when the workflow finishes.

Workflows are executed in the same way we executed our actions earlier. As men‐
tioned previously, the actual work being done by actions can take the form of a bash
or Python script, a simple shell command, or in this case, a Mistral workflow. We can
use st2 run once more, taking care to pass in the required cmd parameter, which the
workflow passes into the familiar core.local action:

vagrant@st2vagrant:~$ st2 run examples.mistral-basic cmd="echo Hello, Mistral!"
.
id: 595ad9c3c4da5f0521ea906c
action.ref: examples.mistral-basic
parameters:
 cmd: echo Hello, Mistral!
status: succeeded
result_task: task1
result:
 failed: false
 return_code: 0
 stderr: ''
 stdout: Hello, Mistral!
 succeeded: true
start_timestamp: 2017-07-03T23:56:51.069066Z
end_timestamp: 2017-07-03T23:56:52.442155Z
+--------------------------+------------------------+-------+------------+
| id | status | task | action |
+--------------------------+------------------------+-------+------------+
| 595ad9c3c4da5f0521ea906f | succeeded (0s elapsed) | task1 | core.local |
+--------------------------+------------------------+-------+------------+

This output is a bit different from our last example. Any time you run an action,
StackStorm produces an action “execution.” This execution represents everything
about how that action ran. You’ll notice in this output as well as the previous exam‐

446 | Chapter 9: Automation Tools

ples that each time we call st2 run, an execution ID is produced. In the output for
our Mistral workflow, this is true, but we also see a table of child executions. These
child executions are the tasks in our workflow.

For a more network-centric example, let’s look at one of the Mistral workflows in the
napalm pack (modified for brevity):

version: '2.0'

napalm.interface_down_workflow:

 input:
 - hostname
 - interface

 type: direct

 tasks:

 show_interface:
 action: "napalm.get_interfaces"
 input:
 hostname: "{{ _.hostname }}"
 interface: "{{ _.interface }}"
 on-success: "show_interface_counters"

 show_interface_counters:
 action: "napalm.get_interfaces"
 input:
 hostname: "{{ _.hostname }}"
 interface: "{{ _.interface }}"
 counters: true
 on-success: "show_log"

 show_log:
 action: "napalm.get_log"
 input:
 hostname: "{{ _.hostname }}"
 lastlines: 10

You’ll notice the first two tasks use the on-success keyword to control which task
runs next (if the statement’s enclosing task results in a successful status, that is).

Event-Driven Network Automation with StackStorm | 447

Running this workflow results in some familiar output, showing three executions,
one for each of the tasks in our workflow:

vagrant@st2vagrant:~$ st2 run napalm.interface_down_workflow hostname=vsrx01
interface="ge-0/0/1"
......
id: 595adf58c4da5f0521ea90a0
action.ref: napalm.interface_down_workflow
parameters:
 hostname: vsrx01
 interface: ge-0/0/1
status: succeeded
start_timestamp: 2017-07-04T00:20:40.895706Z
end_timestamp: 2017-07-04T00:20:52.735536Z
+--------------------------+-----------+-------------------------+-----------------------+
| id | status | task | action |
+--------------------------+-----------+-------------------------+-----------------------+
| 595adf59c4da5f0521ea90a3 | succeeded | show_interface | napalm.get_interfaces |
| 595adf5cc4da5f0521ea90a5 | succeeded | show_interface_counters | napalm.get_interfaces |
| 595adf5fc4da5f0521ea90a7 | succeeded | show_log | napalm.get_log |
+--------------------------+-----------+-------------------------+-----------------------+

We can use st2 execution get <id> to view the result of one of these executions:

vagrant@st2vagrant:~$ st2 execution get 595adf5cc4da5f0521ea90a5
id: 595adf5cc4da5f0521ea90a5
status: succeeded (3s elapsed)
parameters:
 counters: true
 hostname: vsrx01
 interface: ge-0/0/1
result:
 exit_code: 0
 result:
 raw:
 name: ge-0/0/1
 rx_broadcast_packets: 0
 rx_discards: 0
 rx_errors: 0
 rx_multicast_packets: 0
 rx_octets: 0
 rx_unicast_packets: 0
 tx_broadcast_packets: 0
 tx_discards: 0
 tx_errors: 0
 tx_multicast_packets: 0
 tx_octets: 0
 tx_unicast_packets: 0
 stderr: ''
 stdout: ''

Finally, we can use some basic branching logic in Mistral to make some more
advanced decisions within the workflow. The following example is a slightly modified
version of the previous example, but with a new task added at the beginning:

448 | Chapter 9: Automation Tools

version: '2.0'

napalm.interface_down_workflow:

 input:
 - hostname
 - interface
 - skip_show_interface

 type: direct

 tasks:

 decide_task:
 action: "core.noop"
 on-success:
 - show_interface: "{{ _.skip_show_interface != True }}"
 - show_interface_counters: "{{ _.skip_show_interface == True }}"

 show_interface:
 action: "napalm.get_interfaces"
 input:
 hostname: "{{ _.hostname }}"
 interface: "{{ _.interface }}"
 on-success: "show_interface_counters"

 show_interface_counters:
 action: "napalm.get_interfaces"
 input:
 hostname: "{{ _.hostname }}"
 interface: "{{ _.interface }}"
 counters: true
 on-success: "show_log"

 show_log:
 action: "napalm.get_log"
 input:
 hostname: "{{ _.hostname }}"
 lastlines: 10

The core.noop action essentially does nothing. This is a common way of making
early decisions in a Mistral workflow. The value of the on-success key for this task is
a list instead of a simple string indicating the next task. In this case, the conditions
listed in each list item will determine the next task to run. We can pass
skip_show_interface into the workflow, and see that show_interface does not run.

vagrant@st2vagrant:~$ st2 run napalm.interface_down_workflow hostname=vsrx01
interface="ge-0/0/1" skip_show_interface=True
....
id: 595b4a7ec4da5f0521ea90b4
action.ref: napalm.interface_down_workflow
parameters:

Event-Driven Network Automation with StackStorm | 449

 hostname: vsrx01
 interface: ge-0/0/1
 skip_show_interface: true
status: succeeded
start_timestamp: 2017-07-04T07:57:50.606796Z
end_timestamp: 2017-07-04T07:57:58.032456Z
+--------------------------+-----------+-------------------------+-----------------------+
| id | status | task | action |
+--------------------------+-----------+-------------------------+-----------------------+
| 595b4a7ec4da5f0521ea90b7 | succeeded | decide_task | core.noop |
| 595b4a7fc4da5f0521ea90b9 | succeeded | show_interface_counters | napalm.get_interfaces |
| 595b4a81c4da5f0521ea90bb | succeeded | show_log | napalm.get_log |
+--------------------------+-----------+-------------------------+-----------------------+

There’s a lot more you can do with actions and workflows, but this will be enough to
get you started.

Sensors and Triggers
Actions and workflows are useful in their own right, but in order to enable event-
driven automation, we need to gather information about our infrastructure and rec‐
ognize when actionable events happen. This is accomplished through sensors and
triggers. Sensors are little bits of Python code that bring external data into StackStorm
—for instance, by periodically pollling REST APIs or subscribing to message queues.

StackStorm also allows you to configure incoming webhooks,
which allows external systems to “push” events to StackStorm (sen‐
sors provide more of a “pull” model of integration).
Sensors are the preferred integration method since they offer a
more granular and tighter integration, but webhooks offer a simple
integration mechanism that allows you to get data into StackStorm
quickly. This can be helpful when working with systems that don’t
yet have a sensor built for them, or that only offer outgoing web‐
hooks as an integration mechanism.

We can see the sensors available on the system using st2 sensor list (using the
pack flag to focus on the napalm pack for brevity):

vagrant@st2vagrant:~$ st2 sensor list --pack=napalm
+-------------------------+--------+--+---------+
| ref | pack | description | enabled |
+-------------------------+--------+--+---------+
| napalm.NapalmLLDPSensor | napalm | Sensor that uses NAPALM to retrieve LLDP | True |
| | | information from network devices | |
+-------------------------+--------+--+---------+

This particular sensor periodically queries each of the devices in our configuration
file for the LLDP neighbor table. It will keep track of the number of LLDP neighbors
active for each device.

450 | Chapter 9: Automation Tools

https://docs.stackstorm.com/webhooks.html

As mentioned previously, triggers are the way that StackStorm knows an “event” has
occurred. For instance, if the LLDP neighbor count stays the same, we don’t need to
do anything. However, if that number changes, that’s an actionable event. For our
example, we have two triggers, one representing a neighbor increase, and the other a
neighbor decrease:

vagrant@st2vagrant:~$ st2 trigger list --pack=napalm
+-----------------------------+--------+---+
| ref | pack | description |
+-----------------------------+--------+---+
| napalm.LLDPNeighborDecrease | napalm | Trigger which occurs when a device's LLDP neighbors |
| | | decrease |
| napalm.LLDPNeighborIncrease | napalm | Trigger which occurs when a device's LLDP neighbors |
| | | increase |
+-----------------------------+--------+---+

The code that implements our LLDP sensor is responsible for determining when the
neighbor count has changed and firing the appropriate trigger.

Let’s see if we can cause one of these triggers to fire. We’ll log in to our network device
and confirm that we can see at least one LLDP neighbor:

root@vsrx01> show lldp neighbors
Local Interface Parent Interface Chassis Id Port info System Name
ge-0/0/1.0 - 4c:96:14:10:01:00 ge-0/0/2.0 vsrx02

Since we are seeing a neighbor on ge-0/0/1, we can shut that interface to clear it
from the table.

root@vsrx01# set interfaces ge-0/0/1 unit 0 disable

[edit]
root@vsrx01# commit
commit complete

This particular sensor periodically provides some useful log messages about the
neighbor count.

The log file for all sensor activity is usually located at /var/log/st2/
st2sensorcontainer.log but can be located elsewhere via configura‐
tion.

2017-07-04 23:54:16,134 139956844022352 INFO lldp_sensor [-] vsrx01 LLDP neighbors
STAYED at 1
2017-07-04 23:54:22,732 139956844022352 INFO lldp_sensor [-] vsrx01 LLDP neighbors
STAYED at 1
2017-07-04 23:54:28,701 139956844022352 INFO lldp_sensor [-] vsrx01 LLDP neighbors
went DOWN to 0
2017-07-04 23:54:34,748 139956844022352 INFO lldp_sensor [-] vsrx01 LLDP neighbors
STAYED at 0

We can see that the sensor knew that the neighbor count was staying constant at 1,
until it decreased to 0, and stayed there.

Event-Driven Network Automation with StackStorm | 451

However, as we’ve discussed, the trigger is the important part. We can query Stack‐
Storm for a list of “trigger instances,” which are specific occurrences that a trigger was
fired. Each time a neighbor count decreases for a device, the napalm.LLDPNeighborDe
crease trigger should fire. We can see that this has indeed happened:

vagrant@st2vagrant:~$ st2 trigger-instance list --trigger=napalm.LLDPNeighborDecrease
+--------------------------+-----------------------------+------------------------------+
| id | trigger | occurrence_time | status |
+--------------------------+-----------------------------+------------------+-----------+
| 595c2ab4c4da5f035af38903 | napalm.LLDPNeighborDecrease | < truncated > | processed |
+--------------------------+-----------------------------+------------------------------+

Finally, in the same way we retrieved details for action executions, we can use the ID
for this trigger instance to see the details (payload) of this particular event:

vagrant@st2vagrant:~$ st2 trigger-instance get 595c2ab4c4da5f035af38903
+-----------------+---+
| Property | Value |
+-----------------+---+
| id | 595c2ab4c4da5f035af38903 |
| trigger | napalm.LLDPNeighborDecrease |
| occurrence_time | 2017-07-04T23:54:28.713000Z |
| payload | { |
| | "device": "vsrx01", |
| | "timestamp": "2017-07-04 23:54:28.701351", |
| | "oldpeers": 1, |
| | "newpeers": 0 |
| | } |
| status | processed |
+-----------------+---+

This will come in handy as we discuss rules in the next section.

Rules
We finally arrive at the crux of everything we’ve learned thus far. To recap, actions
allow us to perform bread-and-butter automation. Sensors and triggers represent
“events” in StackStorm. Now to perform event-driven automation, we need a way to
tie events from triggers to actions or workflows. That’s where rules come in.

Rules are defined (much like a lot of other things in StackStorm) in YAML files. The
plain-English version of a rule might be: “When X happens, do Y.” In our case, X is a
trigger instance, and Y is an action or workflow.

One of the simplest examples of a rule is the ability to run an echo every few seconds.
There’s a special trigger in StackStorm called core.st2.IntervalTimer that allows us
to treat the passage of a certain amount of time as an actionable event:

name: sample_rule_with_timer
pack: "examples"
description: Sample rule using an Interval Timer.

452 | Chapter 9: Automation Tools

enabled: true

trigger:
 parameters:
 delta: 5
 unit: seconds
 type: core.st2.IntervalTimer

criteria: {}

action:
 parameters:
 cmd: echo "{{trigger.executed_at}}"
 ref: core.local

There are three main parts to every rule:

trigger

This section specifies the name of the trigger we want to watch for (in this case,
core.st2.IntervalTimer) as well as any parameters that trigger requires.

criteria

This will further restrict which trigger instances will match this rule. Since noth‐
ing is specified here, all instances of core.st2.IntervalTimer will fire this rule.

action

Here we specify the action or workflow we want to fire, as well as any parameters
it requires. As long as a trigger instance is seen that matches the other two sec‐
tions, this action or workflow will execute.
vagrant@st2vagrant:~$ st2 execution list -a id action.ref context.user status
+----------------------------+--------------------+--------------+-------------------------+
| id | action.ref | context.user | status |
+----------------------------+--------------------+--------------+-------------------------+
| 595c3093c4da5f035af38bb0 | core.local | stanley | succeeded (1s elapsed) |
| 595c3098c4da5f035af38bb6 | core.local | stanley | succeeded (1s elapsed) |
| 595c309dc4da5f035af38bbc | core.local | stanley | succeeded (1s elapsed) |
+----------------------------+--------------------+--------------+-------------------------+
vagrant@st2vagrant:~$ st2 execution get 595c309dc4da5f035af38bbc
id: 595c309dc4da5f035af38bbc
status: succeeded (1s elapsed)
parameters:
 cmd: echo "2017-07-05 00:19:41.779821+00:00"
result:
 failed: false
 return_code: 0
 stderr: ''
 stdout: '2017-07-05 00:19:41.779821+00:00'
 succeeded: true

A dead giveaway that these executions were fired by our rule is that the user that exe‐
cuted them is the built-in user stanley, instead of the user we’re logged in with (in
this case, st2admin).

Event-Driven Network Automation with StackStorm | 453

We can use a rule to notify us via Slack when our LLDP neighbor count decreases:

name: "lldp_notify"
pack: "napalm"
enabled: true
description: "Notify of LLDP Neighbor Decrease"

trigger:
 type: "napalm.LLDPNeighborDecrease"
 parameters: {}

criteria: {}

action:
 ref: slack.post_message
 parameters:
 message: "WARNING: {{trigger.device}}'s LLDP Neighbors just went DOWN to
 {{trigger.newpeers}} (was {{ trigger.oldpeers }})""
 channel: '#general'

In the previous example, we’re watching for all instances of the trigger
napalm.LLDPNeighborDecrease. When one occurs, the slack.post_message action
is called to post a message to slack (notice that fields in this trigger’s payloads like
device and newpeers are referenced to add context to the message).

We could, of course, go further than simple notifications. Let’s say the number of
LLDP neighbors decreased because someone logged on to our device and accidentally
shut one of the interfaces (like we did in the section on triggers). We’d probably push
a config like this to bring the interface back online:

interfaces {
 ge-0/0/1 {
 unit 0 {
 enable;
 }
 }
}

Instead of simply raising a notification, we could react to this event by automatically
pushing this configuration using the napalm pack’s loadconfig action:

name: "lldp_remediate"
pack: "napalm"
enabled: true
description: "Bring interface back up when LLDP neighbor count decreases"

trigger:
 type: "napalm.LLDPNeighborDecrease"
 parameters: {}

454 | Chapter 9: Automation Tools

criteria: {}

action:
 ref: napalm.loadconfig
 parameters:
 hostname: "{{ trigger.device }}"
 config_file: /vagrant/remediation_config.txt

As discussed previously, running workflows is functionally very similar to running
actions. You may have a full workflow for doing troubleshooting, auto-remediation,
notifications, or a combination of these. Rules can execute full-blown workflows, or
simple actions.

StackStorm Summary
There’s a lot more to StackStorm, but these core concepts will get you started down
the road of auto-remediation and event-driven network automation. The idea behind
StackStorm is to give you the tools that allow you to put processes in place that react
autonomously to infrastructure events, in the same way that you would manually, but
in a more reliable fashion.

For more information on StackStorm, the best place to visit is the project’s documen‐
tation, as well as the free Slack channel, where there’s almost always someone on hand
ready to answer any questions.

Summary
In this chapter, we discussed how some automation tools—like Ansible, Salt, and
StackStorm—can be put to work in a network automation use case. We provided
examples for using the products for network automation, and we discussed the
advantages and disadvantages of each product along the way.

Summary | 455

https://docs.stackstorm.com/
https://docs.stackstorm.com/
https://stackstorm.com/?#community

CHAPTER 10

Continuous Integration

In this chapter, we are going to change direction a little bit. Up until now, this book
has provided details on specific tools and technologies that you can learn, all for the
purpose of applying them toward network automation. However, it would be
improper to assume that network automation is all about shiny new tools—in fact,
that’s only one piece of the bigger picture.

This chapter is going to instead focus much more on optimizing the processes
around network management and operations. Armed with knowledge of the specific
tools and technologies mentioned in previous chapters, you can use this chapter as a
guide for using those tools to solve the real, challenging problems that network oper‐
ators at any scale are facing. This chapter will answer questions like:

• How can I use network automation to produce a more stable, more available net‐
work?

• How can I help the network move as quickly as the rest of the business demands,
without compromising on availability?

• What kind of software or tools can I use to help me implement better processes
around my network?

Networking touches every other area of IT, and any outages, policy changes, or
impediments to efficient process will impact any technology connected to the net‐
work. In modern times, these impacts are felt by every other technology discipline.
This has caused the rest of IT and the business at large to view the network as some‐
thing that should “get out of the way” and “just work.” These days, the network is
called upon to be always accessible, and be more flexible at a more rapid pace than
ever before, ensuring it support any service or application the business requires.

457

The reality is there is no magic bullet here; to accomplish these goals takes discipline,
and it requires a disruption of your existing processes and communication silos. It
also takes a significant amount of work, learning, and new tools. That work may seem
like you’re just adding more complexity, but it will pay off in the long run by adding
both stability and speed to your network operations processes.

One common underlying theme is the removal of humans from the direct control
path of the network. You would be right to be skeptical of this idea, since we’ve talked
about automating humans out of a job for a long time. However, removal of humans
from direct control is not the same thing as removing humans entirely. Today,
humans maintain direct control over the network by forming a manual, human pipe‐
line for making changes to the network, as illustrated in Figure 10-1.

Figure 10-1. Humans in direct path of network

This technique has proven to be slow and arduous, while also not providing much, if
any, additional reliability to making changes on the network. This method mostly just
gets in the way, while providing the illusion of safety around making changes.

When we talk about removing humans from the direct path, we’re talking about Con‐
tinuous Integration—that is, automating the discrete tasks that should be taking place
when we are managing infrastructure change, and freeing technical resources to sit
above that pipeline, improving it and making it more efficient (Figure 10-2).

As a result of this fundamental shift toward Continuous Integration, we can actually
introduce real protections against human error in network operations instead of the
“Change Management Theater” that we’ve relied on historically.

458 | Chapter 10: Continuous Integration

Figure 10-2. Automated change with Continuous Integration

Important Prerequisites
To maximize your success in using the concepts in this chapter, there are a few things
to keep in mind.

Simple Is Better
One of the best things you can do to enable your network for network automation
has nothing to do with learning to code or using a hot new automation tool—it’s all
about your network design. Stay away from snowflakes, and strive to deploy network
services in a cookie-cutter fashion.

In other words, you may decide you want to deploy network configurations driven by
templates. If each of your network devices has a unique configuration with a wide
variety of features, it’s going to be fairly difficult to build templates for a large group
of devices.

Network configuration templates were discussed in detail in Chap‐
ter 6.

Important Prerequisites | 459

The more thought you put into the consistency of network design, the less work
you’ll have to do when it comes time to automate the network. Often this means stay‐
ing away from vendor-specific features, or bypassing embedded features entirely and
implementing network services right at the compute layer.

People, Process, and Technology
In the previous chapters, we’ve discussed a lot of great technologies and tools, but
there are a lot more serious challenges facing the network industry today—challenges
of process and of working with other IT teams that may not share your primary skill
set.

Many of the chapters in this book address specific technologies and tools that you can
use to build efficient systems for network automation. There are a multitude of tech‐
nologies that can be used for purposes of automation—many of which may be new to
many network engineers, and it’s important to be aware of them. It’s also important to
improve and change the ways that we communicate with other areas of IT and the
business at large—which we discuss in Chapter 11.

In this chapter, however, we’re going to discuss some process enhancements that soft‐
ware developers have used for quite some time to improve the way they make
changes to applications. The ultimate goal is to make such changes quickly, and push
them into production while minimizing the risk of negative impact. There are many
important lessons here that can be learned by the network engineering community,
especially when considering network automation.

Learn to Code
First, you don’t have to be a software developer to leverage the concepts in this chap‐
ter. In fact, this chapter primarily exists to convey that message. However, you will
likely find that no one tool (or even set of tools) will solve all your problems.

It’s likely that you’ll have to fill in some gaps in your Continuous Integration journey
by writing some sort of custom solution, like a script. Use this as an opportunity to
broaden your skill set. As discussed in Chapter 4, Python is a great language to start
with, as it’s simple enough to learn quickly and robust enough to solve a lot of com‐
plex problems.

Introduction to Continuous Integration
Before we dive into how Continuous Integration (CI) is useful within a network auto‐
mation context, let’s first talk about its origins, and how it provides value to software
development teams.

460 | Chapter 10: Continuous Integration

First, when we talk about implementing CI, we’re looking to accomplish two primary
objectives:

Move faster
Be able to respond to the changing needs of the business more quickly.

Improve reliability
Learn from old lessons, and improve quality and stability of the overall system.

Before CI, changes to software were often made in large batches and sometimes it
took months for developers to see their features make it into production. This made
for incredibly long feedback loops, and if there were any serious issues, or new fea‐
tures/requirements, it took a very long time for issues to be addressed. This ineffi‐
ciency meant not only that new features took much longer to get developed, but also
that software quality suffered.

Naturally, it would be great if developers could simply make changes and push them
directly to production, right? It would certainly solve the speed problem—and devel‐
opers would certainly be able to see the results of their changes more quickly. How‐
ever, as you might expect, this is incredibly risky. In this model, it’s very easy to
introduce bugs into production, which could seriously impact the bottom line for
many businesses.

Continuous Integration (when combined with Continuous Deployment, which we’ll
explore later in this chapter) is the best of both worlds. In this model, we’re pushing
changes to production very quickly—but we’re doing so within a context that tests
and validates these changes, to be more confident that they’re not going to cause
problems when they’re manifested in production.

In the sections to come, we’re going to discuss some of the components of and con‐
cepts related to Continuous Integration, and then look at how we can apply these
concepts to our network automation journey.

Basics of Continuous Integration
In short, Continuous Integration is all about being able to merge changes to a source
code repository at any time. A team of developers, no matter when they’re working,
can “integrate” changes to some shared repository at any time because there are tools
in place that allow the team to know—in an automated fashion—that those changes
are not going to break the functionality of the overall system.

You might have heard the term pipeline used when discussing CI. This is used because
CI is not one particular technology, but usually a suite of different tools and technolo‐
gies used together to accomplish the goal. Changes to a codebase flow through these
tools in some sort of predetermined way, which forms a CI pipeline. All changes must

Introduction to Continuous Integration | 461

go through this pipeline in its entirety before moving on to deployment
(Figure 10-3).

Figure 10-3. Deploying software directly to production

The diagram in Figure 10-3 should look very familiar. Network engineers around the
world do this all the time. Maybe they’re not deploying software, but what they are
deploying is a critical change to infrastructure that tends to have a higher “blast
radius” than most other infrastructure changes. Logging in to an SSH session to a
router to make some config changes is no less risky than editing the source code of an
application live in production.

In contrast, Continuous Integration offers only one place where a human can push
changes, and that’s the CI pipeline—specifically the very first part of the pipeline
known as peer review. This is the first in a long line of automated steps such as auto‐
mated testing and sanity checks. In order for changes to make it into production, they
must go through this pipeline without exception (Figure 10-4).

Figure 10-4. Deploying software to a Continuous Integration pipeline

Again, the point of CI is to increase speed while also maintaining (or improving) sta‐
bility. It does so by creating a single point of entry for making any changes. It
becomes nonoptional to change your infrastructure without subjecting that change to
a suite of tests that ensure it undergoes to technical peer review, as well as prevent old
mistakes from being repeated.

462 | Chapter 10: Continuous Integration

Some organizations hire specialists called release engineers to man‐
age the Continuous Integration pipeline. They’re skilled with tools
like Git, testing tools, build servers, and peer review systems. They
maintain the integrity of the pipeline so the developers don’t have
to. Ultimately, their goal is to automate the process from the laptop
to production (thus, “release” engineer).
It’s not always easy to get head count for a dedicated release engi‐
neer, but if you can, and if your team is large enough to warrant it,
it’s nice to have.

We’ve talked about the basics of Continuous Integration, so now let’s dive into some
of the components and related concepts and technologies you might encounter along
the way.

Continuous Delivery
Continuous Delivery (CD) is another term you may have heard as closely related to
CI. Continuous Delivery is the idea that the software team is continuously providing
software that is able to be deployed into production; they are delivering working soft‐
ware in the form of an always-deployable codebase.

Continuous Deployment tends to imply that you’re always pushing
new code to production immediately. The industry has lately been
using the term Continuous Delivery instead. This term generally
means that your code is always in a condition where it could be
deployed at any time, but doesn’t have to be. Your organization may
still wish to keep deployments on a set schedule, such as on a
nightly or weekly basis.

Continuous Integration is fairly easy to apply to network automation (as we’ll see in
upcoming sections), but Continuous Delivery requires a bit more thought. The rest of
this chapter may blur the lines between CI and CD with respect to network automa‐
tion, so keep in mind a few things:

• What am I deploying?
• To what/whom am I deploying it?

These are important questions to address because they determine your delivery
model. For instance, some network teams may perform all their automation with in-
house Python applications. This is fairly simple since they are essentially a software
development shop within the infrastructure team.

On the other hand is the canonical network automation example: provide some kind
of configuration artifact (say, some YAML file) into a Git repository, and have the

Introduction to Continuous Integration | 463

CI/CD pipeline take it through some basic sanity checks before finally calling it with
a tool like Ansible, resulting in actual and immediate changes to network devices in
production. This may work for some organizations, but this is analogous to a soft‐
ware development team deploying each and every software patch to production
immediately—and this is not always desired.

Consider, perhaps, a “staging” environment to which these changes can be continu‐
ously delivered, and whenever the business requires that those changes are finally
deployed to production, they can be moved from staging, where (hopefully) they’ve
been tested. At the time this chapter was written, many network vendors have heard
our demands for providing virtual images of their platforms, so this is much easier to
do than it used to be.

While all of these virtual appliances work great for testing automa‐
tion, not all are actually meant to carry production network traffic.
Please refer to your vendor’s documentation for clarity on this.

You also need to think about rollback procedures. Are you periodically taking the
configurations that are in your “production” Git repository and using them to over‐
write the current “production” configurations, or at least making comparisons
between the two? If you’re not, even if you roll back the repository, the production
“deployment” of those configurations may not get rolled back. What will be the
impact, based on whether you’re using Ansible or Puppet, or maybe some custom
Python programs, if you roll back the Git repository? You need to own that layer of
your software stack and understand how your tools and software will react (if at all)
when your production configurations get rolled back.

The truth is, you’ll likely have to address the Continuous Delivery question on your
own. What works for one organization probably won’t work for yours, due to the
large number of tools and languages available for solving network automation prob‐
lems. However, this chapter should at least provide some starting points, and ideas for
how to properly deliver changes to your network in an automated fashion.

Test-Driven Development
It’s also important to discuss yet another software development paradigm that has
seen a growing amount of adoption—Test-Driven Development (TDD).

Let’s say you’re working as a software developer and you’ve been tasked with creating
a new feature in your software project. Naturally, you might first gather some basic
requirements, put together a minimal design, and then move forward with building
the feature (Figure 10-5). We’ll even say that you’re on board with Continuous Inte‐
gration, so you will then build some unit tests that validate the functionality that

464 | Chapter 10: Continuous Integration

you’ve built. Unfortunately, it doesn’t always happen this way. In reality, building tests
after the feature has been built is often difficult to justify, or at the very least, deemed
less important than the feature itself.

Figure 10-5. Software development life cycle before test-driven development

In practice, this can easily lead to the accumulation of “technical debt.” In other
words, if you don’t build your tests first, there’s always a temptation to not build them
immediately after you develop the desired feature, or to not build them at all. This
inevitably leads to gaps in test coverage, and on large projects, this gap only increases
over time.

Test-driven development turns this idea on its head. When using TDD, after going
through requirements gathering and putting together a basic design, you would first
write a test for that feature, before the feature is even implemented (Figure 10-6).
Naturally, this means the test would fail, since there’s no code to test against. So, the
final validation of this feature is to write code that passes that test (or tests).

Figure 10-6. Software development life cycle after test-driven development

Why use a test-driven approach? The most immediate benefit is the reduction of
technical debt—if the tests are built before the feature, then there’s no temptation to
let test coverage fall behind while the shiny new features take priority. However,
there’s also a bit of a conceptual difference. By writing tests first, the developer must
have a strong grasp on how their software is being used—since they’re writing tests to
do just that. This is widely believed to have a positive influence on software quality.

When you apply these concepts to network automation, you begin to realize numer‐
ous parallels. The network is as much of a business resource as the applications that
flow on top of it. Therefore, it’s important to have adequate testing in place that not
only validates any changes made on the network, but also helps warn of any problems

Introduction to Continuous Integration | 465

ahead of time (capacity planning). Are you gathering detailed statistics about the
applications flowing on your network? Not just what the SNMP service on your net‐
work devices are telling you—but from the perspective of the applications them‐
selves? It’s important as network engineers to learn the lesson that TDD is teaching
software developers: the use case matters. User experience matters.

The point of bringing up TDD in this chapter is twofold. We want to remember two
things whether leveraging existing network automation tools, or writing our own
software:

• We care enough about the quality of our network automation system, our net‐
work’s uptime, and the positive experience of our users and applications to
ensure our system is properly—not minimally—tested.

• Testing is so important that it should be done before you automate a single thing
on your network. With the software available today, and the increasingly lower
barrier to entry for these tools to nondevelopers, there really is no excuse for not
doing this.

We’ll see a lot more detail about how to do this testing in a future
section of this chapter, in case those two points seem a little far-
fetched. For now, just keep those two points in mind—they are cru‐
cial for the success of any network automation effort.

By adopting a methodology similar to TDD, we are not only helping to put the appli‐
cations first, but we’re also building a repeatable process by which we can constantly
be sure that our network is serving the needs of the application, despite changes to
configuration or environment. Later in this chapter we’ll discuss some specific tools
and technologies that we can use to accomplish these goals.

Why Continuous Integration for Networking?
So far, we’ve discussed ideas like Continuous Integration as well as test-driven devel‐
opment, and how those concepts have provided value to software development
teams. From now on, however, we’ll be applying concepts like these exclusively to our
network automation journey.

Why are we doing this? What value could Continuous Integration or test-driven
development have to network engineers? Remember the goals of Continuous Integra‐
tion:

Move faster
Be able to respond to the changing needs of the business more quickly

466 | Chapter 10: Continuous Integration

Improve reliability
Learn from old lessons, and improve quality and stability of the overall system

These goals, which have driven results for more stable software and more agile devel‐
opment teams, can also help us to create a more reliable network—not less. Automa‐
tion that compromises on either of these two goals is pointless.

“CI for networking” means a lot of the same things as the canonical software
example—creating a single point where changes to network infrastructure are per‐
formed, where testing and reviewing those changes is automated and nonoptional.

For a long time, we’ve thought about and administered our networks as black boxes
that happen to be connected to each other, and this mindset isn’t very conducive to
the practices and concepts implemented in CI. So the first thing to do is start to think
about your network as a pool of resources and fluid configurations—a system with
ever-changing environments and requirements.

This is the driving idea behind the “infrastructure as code” movement—maintaining
the state and configuration of your infrastructure with the same processes developers
use to manage source code.

A Continuous Integration Pipeline for Networking
At this point, we’ve discussed a lot of the high-level concepts and theories behind
Continuous Integration, but now it’s time to put these concepts into practice. In this
section, we’ll go through a few practical examples and tools for helping us achieve the
goals we’ve discussed within the context of network automation.

While reading the following examples, keep these tips in mind:

• The tools used in this section are just examples. In every category, there are
choices beyond what’s presented here. It is encouraged that you evaluate the tools
available in each category and determine if they fit your needs.

• This section comes after the previous section for a reason. Implementing these
tools without fixing the bad process that has plagued many organizations for
years will accomplish nothing.

It’s also worth noting that these tools can be configured in a variety
of ways. Only one approach will be presented in this section, so
remember the fundamental concepts here, and adopt the right con‐
figuration to realize the same benefits within your organization.

A Continuous Integration Pipeline for Networking | 467

There are five main components to our Continuous Integration pipeline for network‐
ing:

• Peer review
• Build automation
• Deployment tools
• Test/dev/staging environment
• Testing tools and test-driven network automation

To illustrate the concepts in this chapter, we’ll use a project called Templatizer, which
renders Jinja templates into network device configurations based on data found in
YAML data files. Many of the examples will center on the Templatizer Git repository
hosted on our private Git server.

Figure 10-7 will serve as a useful illustrative example for our Continuous Integration
journey.

Figure 10-7. Templatizer project

Peer Review
When we talk about peer review in a traditional software sense, we’re typically talking
about source code for an application. A developer will submit a patch containing

468 | Chapter 10: Continuous Integration

some diffs to some source code files, that patch will be posted to the code review sys‐
tem in some way, and a reviewer (or reviewers) will look at the patch and provide
comments or approval.

When adapting this portion of the pipeline for network automation, we’re not that far
off from this example. Several other chapters in this book, like Chapters 5 and 6, have
advocated an “infrastructure-as-code” approach with network automation, where any
and all relevant configuration information is treated in the same way a developer
would treat source code. In our case, instead of Java code, we might have YAML files
or Jinja templates. They’re all just text files, and we can run automated tests on them
just the same.

We’re going to be building on the knowledge we gained about version control in
Chapter 8 by using Git to not only control the versions of our various configuration
artifacts like YAML files, but also leverage the first stage of this pipeline—peer
review—to get an additional pair of eyes on our change to make sure we’re doing the
right thing.

If you’ve maintained any form of production IT infrastructure, you’ve likely taken
part in Change Approval Board (CAB) meetings. Perhaps you were responsible for
filling out a form where you describe the configuration change you want to make,
and then attending long conference calls to say a few quick words that were carefully
constructed to appease the approvers and get them out of your way. This process has
deep roots in modern IT, but it doesn’t do much to actually minimize risk, or provide
transparency between related technical teams. This is the old way of doing things.

When we talk about using Continuous Integration for networking, we start with the
idea of peer review, and it might seem similar to what was just described, but there
are some fundamental differences. In CI, if you want to make the change, you simply
cut a new branch in Git, and make the change. By having our configurations per‐
formed in a Git repository that is part of a CI pipeline, we don’t have to ask for per‐
mission before doing the work in a branch, because that work is not actually pushed
through production until it has been reviewed and merged to master.

This new model has some very attractive benefits. With respect to peer review, there
is now no need to “describe” the change you want to make, and hope you get it right
when it comes time to implement—now, the description of the change is the same as
the change itself. There is no ambiguity about what you’re going to do because it’s dis‐
played right in the peer review system being used. In order to put your change into
production, the approver(s) will simply merge your working branch into master.

When it comes to code review platforms, we have a few options. Here is a non-
exhaustive list:

A Continuous Integration Pipeline for Networking | 469

GitHub
Very popular SaaS offering for reviewing and displaying source code (enterprise
edition also available for a cost).

GitLab
Community edition is open source and free to download and run behind your
firewall. There is also a tiered SaaS offering, as well as a closed-source enterprise
edition.

Gerrit
Open source, complicated, but lots of integrations available, and a popular choice
for many open source projects.

All three options leverage Git for the actual version control portion (and Git is there‐
fore the way that you will interface with them when submitting code) but on top of
Git, they implement a fairly unique code review workflow. For instance, with GitHub,
you can submit additional changes by simply pushing more commits to the same
branch, but with Gerrit, the submitter must always work with the same commit
(meaning additional changes require the --amend flag to be used).

We’ll be using GitLab throughout this chapter, primarily because it offers a lot for
free, and we don’t have to fuss around with setup too much. Know, however, that the
other systems may work out better for you.

At this point, you should be familiar with not only Jinja templates
and YAML files, but also how to work with a Git repository. Our
example assumes the Templatizer project has already been cloned
to the local filesystem, and we’re ready to do some work.

As an illustrative example, we’ll add some Jinja templates and YAML files so the Tem‐
platizer project is able to create configurations for network device interfaces. We’ll
start by creating a new Git branch for committing our changes:

~$ git checkout -b "add-interface-template"

Switched to a new branch 'add-interface-template'

We’re on a branch that is only on our machine (we haven’t run git push yet) and it’s
on a non-master branch. So we simply make the change. No waiting for approval
before we get started—we do the work first, and let the work speak for itself when the
time comes for approval.

470 | Chapter 10: Continuous Integration

After we’ve added the template and YAML file, Git should notify us that two new files
are present but untracked:

~$ git status

On branch add-interface-template
Untracked files:
 (use "git add <file>..." to include in what will be committed)

 datafiles/interfaces.yml
 templatizer/templates/interfaces.j2

nothing added to commit but untracked files present (use "git add" to track)

We need only make a commit and push to our origin remote, which in this case is the
GitLab repository shown earlier:

 ~$ git add datafiles/ templatizer/

 ~$ git commit -s -m "Added template and datafile for device interfaces"
 [add-interface-template 4121bfa] Added template and datafile for device interfaces
 2 files changed, 10 insertions(+)
 create mode 100644 datafiles/interfaces.yml
 create mode 100644 templatizer/templates/interfaces.j2

 ~$ git push origin add-interface-template
 Counting objects: 7, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (7/7), done.
 Writing objects: 100% (7/7), 718 bytes | 0 bytes/s, done.
 Total 7 (delta 2), reused 0 (delta 0)
 To http://gitlab/Matt/templatizer.git
 * [new branch] add-interface-template -> add-interface-template

The next step is to log in to our code review system (GitLab) and initiate the step that
would kick off a peer review. Every code review system has its own workflow, but ulti‐
mately they all accomplish the same thing. For instance, Gerrit uses terminology like
change and patchset, and GitHub uses pull requests. In short, these tools are a way of
saying, “I have a change, and I’d like it to be merged into the main branch” (usually
master).

GitLab uses a concept very similar to GitHub pull requests called merge requests. Now
that we’ve pushed our changes to a branch, we can specify in the merge request cre‐
ation wizard that we’d like to merge the commit we made on “add-interface-template”
to the master branch, which is considered “stable” for this project (Figure 10-8).

A Continuous Integration Pipeline for Networking | 471

Figure 10-8. Creating a merge request

After we click through to the follow-up confirmation screen, our merge request is
created. Keep in mind that this is still just that—a request. There has still been zero
impact to the master branch, and as a result, the current “stable” version of the Tem‐
platizer project. This is just a proposal that we’ve made, and will serve as a point of
reference for the upcoming peer review.

So the next step is to get our merge request reviewed by someone in authority. This
part of the workflow can differ based on the culture of the team, as well as the review
platform. Some teams restrict access to the master branch so that only certain senior
members can accept merge requests, while other teams use the honor system and ask
that each merge request is reviewed by at least one other team member. A common
convention is to refrain from merging any changes until someone gives a “+1,” which
is a way of saying, “From my perspective, this change is ready to be merged.” This
may happen right away, or a reviewer may have some comments or pointers before
they’re ready to give their +1.

Our imaginary teammate Fred is on hand to review our Templatizer change, and we
can engage him any number of ways. Most code review tools have a way of “adding” a
reviewer, which should notify them by email, or you can message them directly.
Either way, Figure 10-9 shows what Fred will see when reviewing our change in
GitLab.

472 | Chapter 10: Continuous Integration

Figure 10-9. Fred providing comments to merge request

As you can see, Fred left a message indicating he felt we should add a comment to our
template, explaining how it works. It’s not uncommon for a change to go through
multiple iterations before being merged, and most platforms have facilities for this.
With GitLab, we only need to add another commit to this branch and push to GitLab,
and the new commit will be added to this merge request. Fred can easily see these
additional changes, and once he is satisfied that this change is ready to be merged, he
can do so.

Figure 10-10 shows us how GitLab can track this entire event stream for anyone that
may want to see the status of this change.

A Continuous Integration Pipeline for Networking | 473

Figure 10-10. Change accepted and merged

Build Automation
Next up is an extremely important topic, build automation. This term largely stems
from the use of Continuous Integration tooling as a way of automatically compiling
or installing software in order to test it. For instance, a program written in C must be
compiled before it can be run in a test environment.

We may not necessarily be compiling software in our pipeline, but we can reuse many
of the tasks that software developers will want to automatically perform on every pro‐
posed change to the repository. For instance, a pipeline for a Python project may per‐
form some static code analysis to ensure the code conforms to Python’s style guide,
PEP8. In a network automation context, we may only be making changes to YAML
files, but we can perform similar checks to automate some of the simple stuff that we
don’t want human reviewers to deal with, including verifying that the file is in fact
valid YAML (ensuring indentation is correct)!

474 | Chapter 10: Continuous Integration

This is the crux of what makes build automation so valuable. Before even bothering a
human reviewer, there are a number of things we can automatically do to ensure that
the reviewer is providing useful comments:

• Static code analysis (checking for proper syntax and adherence to any style
guides)

• Unit testing (unit tests, parsing of data files or templates, etc.)
• Integration testing (does this change break any existing functionality in the

whole system?)

With these out of the way, the reviewer can leave comments like “this needs to be
more readable,” instead of “add a space here.” For this reason, these automated steps
usually take place immediately when a change is submitted (our merge request from
the previous example), and a reviewer is only engaged when these checks pass.

This process saves time for both the submitter and the reviewer, since the submitter
gets close to immediate feedback if their change breaks something, and the reviewer
knows that if a change passes these basic tests, they won’t be wasting their time with
simple comments. It also produces repeatable, more stable changes to network auto‐
mation efforts—when a bug is discovered, it can be added to these automated tests to
ensure it doesn’t happen again.

As expected, there are a number of platforms that provide this kind of functionality.
One very popular choice is Jenkins, which is an open source build server with a mul‐
titude of integrations and capabilities. For our example, we’re going to stick with
GitLab, since it offers all of the features we need for these examples, and they’re all
bundled into the single piece of software. In addition, much of the actual automation
can be done by scripts in the repository itself, keeping the dependence on the actual
build server to a minimum, and providing for a lot of transparency for anyone work‐
ing with the repository.

Let’s say we make a minor change to our new interfaces.yml file, and Fred reviews it.
Everything looks good to him, so he gives a +1 and merges the change to the master
branch (Figure 10-11).

A Continuous Integration Pipeline for Networking | 475

Figure 10-11. Minor change to YAML

However, we have a problem. This change produces invalid YAML, which shows
when we try to run our Templatizer program:

File "/Users/mierdin/Code/Python/templatizer/lib/python2.7/site-packages/yaml/scanner.py", line 289,
 in stale_possible_simple_keys "could not found expected ':'", self.get_mark())
yaml.scanner.ScannerError: while scanning a simple key
 in "datafiles/interfaces.yml", line 7, column 1
could not found expected ':'
 in "datafiles/interfaces.yml", line 8, column 14

This was a very minor change, but Fred is still a human being and overlooks typos
like this, just as Matt did. In larger changes, where multiple files undergo multiple
changes, this can be an even more common occurrence.

On the other hand, it should be trivial to write a script that checks for this error, and
provides feedback to our build system. If we can do this, and configure our automa‐
ted build system to check for this on all future patches, we should avoid this problem
in the future:

476 | Chapter 10: Continuous Integration

#!/usr/bin/env python

import os
import sys
import yaml

YAML_DIR is the location of the directory where the YAML files are kept
YAML_DIR = "%s/../datafiles/" % os.path.dirname(os.path.abspath(__file__))

Let's loop over the YAML files and try to load them
for filename in os.listdir(YAML_DIR):
 yaml_file = "%s%s" % (YAML_DIR, filename)

 if os.path.isfile(yaml_file) and ".yml" in yaml_file:
 try:
 with open(yaml_file) as yamlfile:
 configdata = yaml.load(yamlfile)

 # If there was a problem importing the YAML, we can print
 # an error message, and quit with a non-zero error code
 # (which will trigger our CI system to indicate failure)
 except Exception:
 print("%s failed YAML import" % yaml_file)
 sys.exit(1)

sys.exit(0)

This is a highly simplified example. There are several libraries that
can allow you to do much more detailed validation. Check out pyk
walify for more detailed YAML validation (not just syntax, but the
presence of expected values).

Once we’ve committed that script to our tools directory in the repo, since we’re run‐
ning GitLab we also need to modify the CI configuration file .gitlab-ci.yml:

test:
 script:
 - cd tools/ && python validate_yaml.py

Now, GitLab will run this script every time a change is proposed. Now that this vali‐
dator script is in place, let’s take a look at what Fred sees now, when Matt proposes
another change with invalid YAML (Figure 10-12):

A Continuous Integration Pipeline for Networking | 477

Figure 10-12. CI build failed due to invalid YAML

Both Matt and Fred are able to plainly see that there was a problem during automated
testing. They can also click through to see details about what happened, including a
full console log that shows the output of the script, indicating which file had the issue
(Figure 10-13).

Figure 10-13. YAML validation script output

478 | Chapter 10: Continuous Integration

This is just one example in a multitude of possibilities with respect to automated vali‐
dation and testing. Templatizer is also a Python project, so we can explore some of
the tooling present in that ecosystem to run some Python-specific validation and test‐
ing as part of this CI pipeline. For instance, Tox is a popular tool for doing all kinds of
automated testing within a Python project. The OpenStack community uses Tox to
really simplify the CI process, by summarizing a slew of tasks within a small list of
commands:

test:
 script:
 - cd tools/ && python validate_yaml.py
 - tox -epep8 # Checks for PEP8 compliance with Python files
 - tox -epy27 # Runs unit tests
 - tox -ecover # Checks for unit test coverage

Again, all of these commands must pass without error in order to “pass” the build
process. When a reviewer receives a merge request that shows that these checks were
passed, they know it’s ready for a real review.

This part of the pipeline is crucial and is a great way to keep the workflow efficient,
while also helping to ensure that past mistakes are not repeated. Here are some addi‐
tional ideas that may be useful at this stage in the pipeline—explore each in your own
journey toward network automation:

• Unit testing any code (e.g., Python)
• Integration testing to ensure any code is able to interoperate with other projects

and APIs
• Syntax and style validation (both source code as well as data formats like YAML)

Test/Dev/Staging Environment
After some basic automated testing of simple things like syntax or style, it’s usually
desirable to run more “real-world” testing on the changes we make to our repository.
In the case of Templatizer, we might want to actually render real configurations using
the Jinja templates and YAML files against virtual devices that mimic the real produc‐
tion devices we’d like to eventually target. There are a number of ways to do this, and
we’ll discuss some of them here.

One interesting solution, if you’re just looking to do some small-scale testing on your
laptop, is Vagrant. Vagrant is a tool developed by HashiCorp to make management of
virtual machines easier. The configuration for this environment is contained within a
file called a Vagrantfile. This is a plain-text file that’s easy to place in a Git repository,
and useful for ensuring that anyone working on a repository can spin up identical
virtual environments. Virtual images can also be automatically downloaded from a
predetermined location, reducing the need for users to put together their own

A Continuous Integration Pipeline for Networking | 479

images. If configured properly, a user needs only to type vagrant up into a shell and
the environment will be instantiated automatically.

This has useful implications for software developers (a Vagrantfile can be configured
to spin up identical development environments for all developers working on a code‐
base), but network engineers can also use Vagrant to spin up multi-vendor lab topol‐
ogies. For instance, Juniper makes their Junos images publicly available to be used
with Vagrant.

We can devise a Vagrantfile that constructs a simple three-node topology:

Vagrant.configure(2) do |config|

 # NOTE - by the time this book was released, this image was quite old.
 # Please refer to Juniper documentation on the appropriate image to use.
 config.vm.box = "juniper/ffp-12.1X47-D15.4-packetmode"
 config.vm.box_version = "0.2.0"

 config.vm.define "vsrx01" do |vsrx01|
 vsrx01.vm.host_name = "vsrx01"
 vsrx01.vm.network "private_network",
 ip: "192.168.12.11",
 virtualbox__intnet: "01-to-02"
 vsrx01.vm.network "private_network",
 ip: "192.168.31.11",
 virtualbox__intnet: "03-to-01"
 end

 config.vm.define "vsrx02" do |vsrx02|
 vsrx02.vm.host_name = "vsrx02"
 vsrx02.vm.network "private_network",
 ip: "192.168.23.12",
 virtualbox__intnet: "02-to-03"
 vsrx02.vm.network "private_network",
 ip: "192.168.12.12",
 virtualbox__intnet: "01-to-02"
 end

 config.vm.define "vsrx03" do |vsrx03|
 vsrx03.vm.host_name = "vsrx03"
 vsrx03.vm.network "private_network",
 ip: "192.168.31.13",
 virtualbox__intnet: "03-to-01"
 vsrx03.vm.network "private_network",
 ip: "192.168.23.13",
 virtualbox__intnet: "02-to-03"
 end
end

In the directory where this Vagrantfile is located, we need only run vagrant up, a
Junos image will be downloaded, and three virtual Junos routers will be started and

480 | Chapter 10: Continuous Integration

connected as described. We can immediately log in to any one of these devices quite
easily:

~$ vagrant up vsrx01
Bringing machine 'vsrx01' up with 'virtualbox' provider...
==> vsrx01: Checking if box 'juniper/ffp-12.1X47-D15.4-packetmode' is up to date...
==> vsrx01: Clearing any previously set forwarded ports...
==> vsrx01: Clearing any previously set network interfaces...
==> vsrx01: Preparing network interfaces based on configuration...
 vsrx01: Adapter 1: nat
 vsrx01: Adapter 2: intnet
 vsrx01: Adapter 3: intnet
==> vsrx01: Forwarding ports...
 vsrx01: 22 (guest) => 2222 (host) (adapter 1)
==> vsrx01: Booting VM...
==> vsrx01: Waiting for machine to boot. This may take a few minutes...
 vsrx01: SSH address: 127.0.0.1:2222
 vsrx01: SSH username: root
 vsrx01: SSH auth method: private key
==> vsrx01: Machine booted and ready!
==> vsrx01: Checking for guest additions in VM...
 vsrx01: No guest additions were detected on the base box for this VM! Guest
 vsrx01: additions are required for forwarded ports, shared folders, host only
 vsrx01: networking, and more. If SSH fails on this machine, please install
 vsrx01: the guest additions and repackage the box to continue.
 vsrx01:
 vsrx01: This is not an error message; everything may continue to work properly,
 vsrx01: in which case you may ignore this message.
==> vsrx01: Setting hostname...
==> vsrx01: Configuring and enabling network interfaces...
==> vsrx01: Machine already provisioned. Run `vagrant provision` or use the `--provision`
==> vsrx01: flag to force provisioning. Provisioners marked to run always will still run.

[output omitted for similar output from vsrx02 and vsrx03...]

~$ vagrant ssh vsrx01
--- JUNOS 12.1X47-D15.4 built 2014-11-12 02:13:59 UTC
root@vsrx01% cli
root@vsrx01> show version
Hostname: vsrx01
Model: firefly-perimeter
JUNOS Software Release [12.1X47-D15.4]

Provided there are sufficient resources present on your machine to run the topology,
and that the images you need are available, there are a multitude of ways this can be
used for testing network changes. This is fairly unprecedented—network vendors
have historically been very slow to provide free-to-use virtual images of their plat‐
forms. However, more and more vendors are starting to do just that.

To bring this back to Continuous Integration and automated testing, this concept
could be very useful for validating our changes. For instance, if you made a change to
our Templatizer repository that we would like to test before rolling into production,
we could render one of these templates and automatically deploy that configuration
change to a virtual topology provisioned by Vagrant. Even if you’re just looking to
test something out on your laptop, Vagrant remains an increasingly useful tool for
evaluating network platforms.

A Continuous Integration Pipeline for Networking | 481

It’s also possible to run a virtual environment in the public or private cloud. For
instance, if your organization is running an OpenStack deployment, many of these
virtual network devices can be run as virtual machines in OpenStack. You could even
automate their deployment using OpenStack Heat templates. Alternatively, compa‐
nies like Network to Code provide workflow automation with their On Demand Labs
platform for network engineers to leverage public cloud resources to run these virtual
topologies. These methods are useful if you want the same topology to be accessible
by multiple engineers, all the time.

Disclosure: Jason Edelman, one of the authors of this book, is the
founder of Network to Code.

Many of these options can be automated using many of the same tools that you would
use to automate the “real thing,” and it’s important that you consistently use the same
tooling between your test and production environments, otherwise the testing is
pointless. For instance, if your goal is to use a virtual environment to test the deploy‐
ment of a configuration change using Ansible, construct a virtual topology that mim‐
ics your production infrastructure as closely as possible, then run through the same
Ansible workflow in both the test environment and production. This gives you
greater confidence that if it worked in test, it will work in production.

Test environments are one of the key components that force organizations to seri‐
ously consider a dedicated engineer for maintaining them. To do this right, test envi‐
ronments need to be carefully maintained, so that they’re not a tremendous
bottleneck to the rest of the pipeline, and that they are an adequate simulation of the
real network environment.

Deployment Tools
Earlier in the chapter, we discussed the importance of understanding what you’re
deploying in a Continuous Integration/Continuous Delivery pipeline. One reason for
this is that it has a big impact on the tools you use to actually deploy the changes you
make.

For instance, if you’re writing some Python code to automate some tasks around your
network, you should consider treating it like a full-fledged software project. Regard‐
less of the size, production code is production code. A small script is as likely to have
bugs as a large web application.

In addition to the very important testing and peer review discussed earlier, you may
find it useful to explore the delivery mechanisms that software developers are starting
to use. If your organization uses cloud platforms like OpenStack, you may be able to

482 | Chapter 10: Continuous Integration

http://networktocode.com/
https://labs.networktocode.com
https://labs.networktocode.com

leverage the available APIs to automatically deploy your changes at the end of the CI
pipeline.

It’s also becoming increasingly popular to deploy software in Docker containers. You
could instruct your CI pipeline to automatically build a Docker image once a new
change is reviewed and merged. This image can be deployed to a Docker Swarm or
Kubernetes cluster in production.

On the other hand, sometimes we’re not deploying custom software—sometimes our
Git repositories are used simply to store configuration artifacts like YAML or Jinja
templates. This is common for network automation efforts that use configuration
management tools like Ansible to push network device configurations onto the infra‐
structure. However, while the method of deployment may differ between network
engineers and software developers, Continuous Integration plays a vital role
(Figure 10-14).

Figure 10-14. A comparison of development and networking CI pipelines

In this case, it’s important to understand how these configurations are going to be
used in production, as well as how rollbacks will be handled. This is an important
idea not only for deciding how Ansible will actually run in production, but also how
the configuration templates themselves are constructed. For instance, you might con‐
sider running an Ansible playbook to deploy some configuration templates onto a set
of network devices every time a new change is merged to the master branch—but
what impact will that have on the configuration? Will the configuration always be
overwritten? If so, will that overwrite a crucial part of the configuration that you
didn’t intend?

Some vendors provide tools to assist with this. For instance, when pushing an XML-
based configuration to a Junos device, you can use the operation flag with a value of
"replace" to specify that you want to replace an entire section of configuration. The
following example shows a Jinja template for a Junos configuration that uses this
option:

<configuration>
 <protocols>

A Continuous Integration Pipeline for Networking | 483

 <bgp operation="replace">
 {% for groupname, grouplist in bgp.groups.iteritems() %}
 <group>
 <name>{{ groupname }}</name>
 <type>external</type>
 {% for neighbor in grouplist %}
 <neighbor>
 <name>{{ neighbor.addr }}</name>
 <peer-as>{{ neighbor.as }}</peer-as>
 </neighbor>
 {% endfor %}
 </group>
 {% endfor %}
 </bgp>
 </protocols>
</configuration>

Unfortunately, not all vendors allow for this, but in this particular case, you could
simply overwrite entire sections of configuration for each new patch in the CI pipe‐
line, to ensure that “what it should be” (WISB) always equals “what it really is”
(WIRI).

This is another area where there is no silver bullet. The answer to the deployment
question depends largely on what you are deploying, and how often. It’s best to first
settle on a strategy for network automation; decide if you want to invest in some
developers and write more formalized software, or if you want to leverage existing
open source or commercial tools to deploy simple scripts and templates. This will
guide you toward the appropriate deployment model.

Above all, however, deployment should never take place until the aforementioned
concepts like peer review and automated testing have taken place. A network auto‐
mation effort that does not prioritize quality and stability above all is doomed to
failure.

Testing Tools and Test-Driven Network Automation
Earlier in this chapter, we talked a lot about the influence that test-driven develop‐
ment can have on network automation. In that section, we discussed how important
it was to go beyond the traditional network statistics that we use as network engineers
and leverage additional tools and metrics more useful for determining application
and user experience. These metrics can be used before and after each change to truly
determine the health of the network and its configuration (Figure 10-15).

484 | Chapter 10: Continuous Integration

Figure 10-15. Continuously testing automated changes

Unfortunately, after several decades, the tools available for determining application
experience or troubleshooting on the network haven’t improved or evolved very
much. These days, troubleshooting a network problem is typically relegated to one of
only a handful of tools like ping, traceroute, iperf, and whatever your network man‐
agement platform is able to poll via SNMP.

Largely, these tools are insufficient even from a network engineer’s perspective, let
alone the fact that they provide minimal visibility into application performance,
which is why we run networks in the first place. However, thanks to the rise of open
source, and offerings like GitHub that make open source software much easier to
consume, this is starting to change.

One area that is ripe for improvement, especially within network infrastructure, is the
ability to gather detailed telemetry in a flexible and scalable way. Currently, network
engineers are limited to what SNMP can provide, which has a few shortcomings.
SNMP is a monitoring tool that is not only limited to network infrastructure itself,
but even then only exposes a subset of available data points within those devices.

The main problem here is that we’re ignoring a lot of really valuable context available
outside the network itself. Using frameworks like Intel’s Snap, we can constantly and
intelligently gather telemetry about infrastructure elements that rely on the network,
like application servers, clusters, containers, and more. If we make a change on the
network that adversely affects one of these entities, we can see that in the available
telemetry, and perhaps automatically roll back those changes based on a set thres‐
hold.

An additional, complementary approach is to actively test the network and applica‐
tion infrastructure using tools like ToDD, which provides a mechanism to perform
network testing like ping, http, port scanning, and bandwidth testing in a fully dis‐
tributed manner. ToDD also aggregates reported data in a single JSON document so
you can make decisions on the resulting test data, regardless of scale. It’s important to
test application-level performance (not just “ping”) and to also test at a scale compa‐
rable to peak real-world activity.

A Continuous Integration Pipeline for Networking | 485

https://github.com/intelsdi-x/snap
https://github.com/toddproject/todd

The ToDD project was started by one of the authors of this book—
Matt Oswalt.

Tools like these can provide additional visibility during failover testing, such as the
simulation of a data center failure. Failover testing is an under-appreciated activity
when it comes to network infrastructure. Often, it’s hard to get the approval to run
such a test, and in the rare cases where such approval is obtained, it’s even more diffi‐
cult to determine how the network and the connected applications are performing.
Using these and other tools, we can gather a baseline of what “normal” application
performance looks like, and by running the same tests after a failover, we can have
greater confidence that we have sufficient capacity to keep the business running.

These are just a few examples—the point is that open source software is no longer
just an elite club only for software developers. These days, there is no excuse not to at
least consider using tools like these to fill in some of the huge gaps in existing moni‐
toring strategies—specifically the lack of application-level visibility into network per‐
formance.

Summary
These days, chances are good that your organization has some kind of in-house soft‐
ware development shop. Reach out to those teams and ask about their processes. If
they’re using Continuous Integration, there’s a chance that they’d be willing to let you
leverage some of their existing tooling to accomplish similar goals with network auto‐
mation. As mentioned previously, a dedicated release engineer can help greatly with
management of the pipeline itself.

In this chapter we talked about a lot of process improvements (as well as some tooling
to help enforce these processes), but the real linchpin to all of this transformative
change is a culture that understands the costs and benefits of this approach. We’ll talk
a lot more about this in Chapter 11. If you don’t have buy-in from the business to
make these improvements, they will not last.

It’s also important to remember that a big part of CI/CD is continuously learning.
Continuously challenge the status quo, and ask yourself if the current model of man‐
aging and monitoring your network is really sufficient. Application requirements
change often, so the answer to this question is often “no.” Try to stay plugged in to the
application and software development communities so you can get ahead of these
requirements and build a pipeline that can respond to these changes quickly.

486 | Chapter 10: Continuous Integration

CHAPTER 11

Building a Culture for Network Automation

The network industry is heavily product-driven, perhaps more than nearly any other
technology discipline. Very rarely do we hear about “revolutionary” new IT processes
or stories of how an organization won against its competitors because of its great IT
team; it’s always the shiny new hardware or software products that grab the headlines.

However, new products—even “revolutionary” ones—don’t solve business problems
on their own. The advent of x86 virtualization technologies is arguably one of the big‐
gest disruptions we’ve ever seen in IT, yet 10 years later despite this disruption, we’re
still taking weeks or even months to provision virtual machines. Clearly, our prob‐
lems aren’t limited to the technology we use. Maybe we need a change in our culture
as well. That’s what this chapter is about—why a good culture is a crucial, founda‐
tional element for network automation, and how to get there.

It’s also easy to over-rotate on topics of culture and think that it’s the sole cause of all
of our problems. The reality is that we need a balance of good people, good process,
and good technology in order to win. The cultural change discussed in this chapter is
all about satisfying our desire to get things done and work on a team of similarly
minded individuals.

In this chapter you won’t read about how many hugs your engineers should be giving
per day, or why it’s important for a company to have an indoor trampoline to keep
engineers happy. This chapter will take a different view on the subject of “culture,”
and you’ll find that it all revolves around one very simple idea: people want to work
with other people that give a crap about what they do.

If you’re in a position where you’re looking to keep things pretty consistent career-
wise and not looking to make major changes, this chapter probably won’t mean much
to you. However, if you picked up this book, and read this far (kudos, by the way), it’s
quite likely you’re looking to improve, even a little bit. You’re not quite happy with

487

the status quo. You want to be an agent for change in your organization, and on a
personal note, you want to “level up” your technical skill set.

To that end, we’ll discuss three topics in particular:

• Organizational strategy and flexibility
• Embracing failure
• Skills and education

Organizational Strategy and Flexibility
The first thing you need to address is your team and its place within the organization.
If your team isn’t right, all of the other topics in this book will collapse under weight.

Transforming an Old-World Organization
Enterprise IT is not known for its ability to be on the cutting edge. Traditionally, the
technology stack in an IT shop can lag behind by 5, or sometimes even 10 years, com‐
pared to what technology leaders are doing or thinking about. This trend isn’t totally
unwarranted; the cutting edge got its name for a reason. However, there’s also a lot of
bad or outdated reasoning for why an IT shop might use a “legacy” technology stack.

Automation encounters this hurdle all the time. There are often concerns from folks
who want to automate but just can’t convince anyone else in their organization to take
even the first steps. Or (and this is often worse because of the “bad reputation” it cre‐
ates) someone started doing basic automation, it went wrong, and it took down a
revenue-generating system.

Unfortunately, there’s no easy answer to this. Each organization has its own battle
scars and unique history. However, one potential answer can be found in a great
book, How to Win Friends and Influence People. In it, Dale Carnegie hands down sev‐
eral nuggets of wisdom that are useful for life in general—but one theme that’s
present in many places in the book is the need to see things from others’ perspective.
To (heavily) paraphrase:

You can’t get anyone to do anything they don’t want to do. So you have to make them
want to do it.

We’ll discuss this a bit more in the next section, but in short, the business has to want
the automation or in-house scripting. This cannot be some science project that upper
management only finds out about when things go wrong.

Even if you start the right way, by communicating your automation strategy to the
business, there will be opposition. Change always brings out the antibodies. It would
be strange if it didn’t at least make someone feel uncomfortable. The important thing

488 | Chapter 11: Building a Culture for Network Automation

is to remember why you’re doing this—it’s not because automation is cool (even
though it is), it’s for the tangible, measurable benefits it can provide to your business.

Another very important point is the need to do things slowly, building good, lasting
engineering habits, and to set the right expectations from the beginning. Automation
is not unlike healthy weight loss. Anyone that has been able to lose weight and keep it
off will tell you it’s not about fad diets, it’s about fundamentals like eating the right
things, in the right portions, and exercising. Short-term gains are not nearly as
important as building healthy habits over the long term. Fad diets may show some
short-term success, and they’re certainly flashy, but they aren’t meant to provide any
lasting benefits or success.

Similarly, automation is incremental. If your organization is focused on putting
together an “automation” or “DevOps” team, the effort is already doomed to failure.
Automation is one of those things that needs buy-in across silos, and needs to grow
organically over time. It is for this reason that those organizations that already heavily
automate usually don’t really call it anything special. It’s just “modern operations.”

Some organizations have had success with a temporary “virtual”
team assembled from members of various IT disciplines, who are
tasked with bringing automation into the organization. This can be
helpful to get started, but don’t lose sight of the fact that the ulti‐
mate goal is to improve operations across the entire organization,
not to have a team dedicated to automation so the rest of the orga‐
nization doesn’t have to worry about it.

To recap, don’t try to boil the ocean or try to formally define everything you’ll need to
automate in the next century. Just get started. Start small, and automate the simple
stuff, even if it involves writing a few scripts and running them with cron, or focusing
on automated troubleshooting initially. You’ll find there’s a lot more to do once you’ve
simply gotten started, and you’ll have a lot more confidence to keep it up.

The Importance of Executive Buy-in
Again, it is very important that automation is done with a well-communicated pur‐
pose and strategy. That purpose has to focus on delivering value to the business—
whether it’s better uptime, security, or just responding more quickly to changing
business needs. Those metrics should already be tracked, and if you’re thinking about
starting automation without these, you have the order wrong. The very first thing you
should be addressing is how well you are communicating your short- and long-term
technology goals with the business.

Once this is addressed, there are some very tangible benefits you’ll realize once start‐
ing down the automation path. First, any additional head count that’s needed for

Organizational Strategy and Flexibility | 489

automation will be an easier pill to swallow. A very common complaint among engi‐
neers struggling to get automation started in their organization is the lack of resour‐
ces to do it. With proper communication with the business, it will be widely
understood that the cost of a bit of additional head count would pale in comparison
to ongoing outages resulting from either totally manual processes, or half-baked
automation tooling that was written by an overworked engineer.

However, the single most important reason to have frequent, quality communication
regarding automation with the business leadership is that when things go wrong—
and they will—you won’t find yourself ripping out all those new tools and processes,
but rather working forward to fix them. We’ll discuss this later in the chapter, but one
of the reasons the hyper-scale web companies like Facebook and Google talk about
embracing failure is because they ensure they learn from their failures, and strive to
ensure they don’t encounter the same problems twice. Each failure is an opportunity
to grow. Getting the business on board with this plan from the get-go will make sure
that any failures are not only learned from, but planned for.

As an illustrative example, GitLab (the SaaS version of the software we used in Chap‐
ter 10) famously had a significant outage in January 2017. Not only did the service go
down, but restoring the service took 18 hours due to a series of previously undetected
failures in their backup procedures. Rather than shut the doors and try to figure out
what went wrong in private, GitLab published a Google Doc outlining everything
they knew, and exposed it publicly so users could see what was going on. They even
live-streamed their work to bring the service back online. Once the service was avail‐
able again, they published an extremely thorough blog post outlining not only what
went wrong and how they fixed it, but also what they’re putting into place to ensure
this event doesn’t happen again. This went a long way to assure customers that GitLab
was serious about their service and that they were interested in learning from mis‐
takes.

The bottom line is that failures will happen and that automation doesn’t obviate the
need for proper architectural design. Establishing a contract of transparency and fre‐
quent communication with the business leadership will help get the time and tools
you need to build a proper foundation for an automation initiative.

Build Versus Buy
With all of IT becoming embroiled in the “open source movement,” it’s easy to get
caught up in the hype. “Stop buying everything from vendors, and build everything
yourself using open source software,” right? Unfortunately, this sentiment differs
from reality.

Despite what the analysts might have you believe, big organizations like Facebook or
Google—known for their automation chops—don’t build everything from scratch. At
every part of their technology stack, they make compromises on what’s economical

490 | Chapter 11: Building a Culture for Network Automation

for them to “build” versus “buy off the shelf.” For instance, they may build their own
servers for their huge data centers, but they don’t fabricate every single component
from its base elements. They still have to buy something—they’ve just made the deci‐
sion to go deeper into that stack. In contrast, they may find it perfectly acceptable to
go with a canned solution from Cisco for their corporate wireless connectivity.

The point here is that everyone has to make this decision for themselves. It is likely
that you are not at the scale of Facebook or Google, and therefore you won’t get the
same benefits of building your own servers that they do, but it’s also very possible that
you could benefit from taking on a bit more of the pie than you traditionally have.

A good rule of thumb to follow in Enterprise IT is that you can buy your way into
80% of the features you need. Vendors can’t cater to every enterprise (try as they
might), so they have to spread their engineering across their entire customer base and
put out products that are good enough for the immediate use cases. This means that
the technology stack you acquire in this way will leave about 20% of your specific use
case unaddressed. Traditionally, Enterprise IT has just simply accepted this—but they
don’t have to.

Even basic scripting can help fill in this remaining 20% feature gap. For instance, you
may have a wireless controller that doesn’t generate reports the way you want. Instead
of waiting for months/years for your vendor to change their UI (which may never
happen), perhaps investigate if the controller comes with an API. Maybe you could
write a Python script to retrieve this data and use a graphics library to generate some
nice visuals for you. Note that this doesn’t mean you’re a software developer now—it’s
simply knowing enough about scripting that you have an alternative to waiting years
for your vendor to respond to your feature request.

Each side of the “Build versus Buy” paradigm tends to have its own traits
(Figure 11-1). Organizations that choose to go with a commercial, off-the-shelf solu‐
tion in one area tend to rely on external resources for support, whereas a technology
stack that’s built in-house tends to keep the support model in-house as well, which
relies much more heavily on promoting self-sufficient expertise in that area.

Figure 11-1. Build versus Buy

However, no technology decision is so binary. A good way of looking at the “Build
versus Buy” paradigm—as with many other concepts in this chapter—is as a spec‐

Organizational Strategy and Flexibility | 491

trum. No organization builds everything from scratch. Each technology team must
figure out the right mix for their business. In reality, each organization will have a
combination of these two strategies.

Embracing Failure
It’s easy to become jaded against hyper-scale web companies talking about “failing
fast,” and “embracing failure.” It does sound a bit absurd, doesn’t it? There are usually
serious financial penalties associated with failure at the infrastructure layer, so it’s no
wonder these ideas are met with a bit of resistance.

However, this resistance is often born out of a misunderstanding of the principle
behind these catchphrases. The point of “embracing failure” isn’t that failure is awe‐
some. It’s not. However, as bad as failure is, repeated failure is far worse. The idea
behind “failing fast” is to never fail the same way twice. Go in with the assumption
that failure will happen (because it will) and have a game plan for how you’ll learn
from it. The reason it may appear that some of the web-scale companies are excited
about failure is because with the processes and the culture they have, it usually repre‐
sents a failure they’ve not yet seen, so they get to work on a new problem. They get to
modify or build their systems in a way to account for that failure.

So, for the rest of us, the idea of embracing failure is not so different. The idea is to
learn from failure, whether it’s an outage caused by a bug in the technology you
already use, or someone fat-fingering an automation workflow or script and bringing
down a data center. Failure happens with or without automation; the key is to under‐
stand and plan how your organization is going to react to it.

This is why automated testing is so important. Putting this into
place means that testing is not optional when changes are made—
they’re literally part of how the change goes into production. Your
automated tests are the machine-language version of the lessons
you’ve learned in the past. We discussed automated testing in
Chapter 10.

In a previous section, we talked about the importance of obtaining buy-in from the
business, and this is a big reason for doing just that. Failure is a natural part of IT
regardless of where you are on the automation spectrum. Getting buy-in from the
business can turn conversations about ripping out those “scripts gone wild” into con‐
versations about learning from a failure and ensuring it doesn’t happen twice. Hold
proper postmortems and be clear about where the problem occurred, bringing data
to the conversation and being analytical rather than assigning blame. Failure isn’t
always a sign that you’re doing the wrong thing, it can also be a sign that your tech‐
nology stack or skill sets are maturing and experiencing growing pains. Include “what

492 | Chapter 11: Building a Culture for Network Automation

if ” scenarios in both your architectural discussions as well as when coordinating
resources and goals with the business. Build failure planning into everything you do,
so there are no surprises when everyone has to rush to the network operations center
(NOC) to fix something.

Failure is also a really common reason automation breaks down and organizations
revert to manual processes. It may happen very subtly. Especially in network automa‐
tion, when things go wrong, it’s tempting to circumvent the automation and log
directly into infrastructure nodes, as you did before the automation was in place.
Depending on how much automation is in place, this may literally be the only way to
fix the problem, so this isn’t always a bad thing.

However, a good litmus test for the “automation health” of an organization is what
that organization does to the automation after the failure. The healthiest organiza‐
tions immediately work to modify the automation so the failure doesn’t occur again.
We should learn from examples like the previously discussed outage at GitLab, who
started working immediately after fixing the problem to ensure it never happened
again. Software development teams do this often; when a bug is discovered in soft‐
ware, the bug is fixed, but a unit test is also created to re-create the parameters that
caused the bug, to ensure that the bug is not reintroduced in the future (known as a
regression).

Failure happens. Learn from it, and use a process that helps ensure you don’t make
the same mistake twice.

Skills and Education
Having the right skills has always been important in IT, especially if you want to dif‐
ferentiate yourself. This is certainly going to become even more critical as the pace of
change continues to accelerate and you find your favorite technology stack being out‐
dated by something new.

If you’re reading this book, congratulations—you’ve already taken a great first step in
the right direction. The chapters of this book were written to the IT professional
who’s looking for something “more,” who isn’t content with the traditional vendor-
centric, coin-operated model of the past few decades.

We’ll dive into a few specific areas of focus for enhancing your IT education and
bringing your skill set into the next generation.

Learn What You Don’t Know
One of the most common reactions when we have conversations with peers or cus‐
tomers about what kind of things they can do to get started with automation is: “I
didn’t even know that was possible!”

Skills and Education | 493

Indeed, working in IT can have a tendency to keep one in a bubble: constantly hear‐
ing different versions of the same message, and working on mostly the same things.
This is one of the most dangerous scenarios for a technologist, because it’s worse than
simply not knowing another technical discipline. In this scenario, you don’t know
what you don’t know. It might never have occurred to you that you could use Python
to talk to that switch in your broom closet, because those conversations just never
made it into your world. If you stay in your bubble, you will have no idea what’s out
there and will have difficulty growing as a technologist.

Fortunately, preventing this is easy. Frequently go outside your comfort zone. Jump
into some kind of environment that operates outside your current “bubble.” There are
an absolute multitude of technologies that may be interesting to you, and you may
not ever even find out about them until you challenge yourself to explore a new area.

This has tremendous value to you in your own career development, but it also essen‐
tially brings fresh ideas into your organization. This benefit isn’t always tangible, as
evidenced by how difficult it can be to get approval to go to conferences, especially
conferences that are outside your technical discipline. If you’re in a position where
you’re in charge of deciding which conferences to invest in, realize that this is one of
the least expensive ways to get fresh ideas into your own organization.

In short, go outside your comfort zone. Things don’t change that much in Enterprise
IT, because our culture is very focused on and attached to IT vendors. These vendors
have a vested interest in keeping things constant; rapid change doesn’t fit their sales
model. One thing we can do to fight this is to stop getting all our ideas and guidance
from vendors. Instead of going to your vendor’s big week-long marketing festival,
maybe go to some smaller meet-ups, like your local network operator group. Or
maybe check out some conferences outside your skill set entirely, like a developer or
automation conference.

Focus on Fundamentals
In any technical discipline, we always hear new terms like “digital transformation”
and “software defined” to describe the latest shiny new technology to enter the mar‐
ket. These terms give you a sense that you’re falling behind in the technology realm,
and that buying the latest product (physical or virtual) will bring you back to the cut‐
ting edge.

In truth, most of us actually are a bit behind the times when it comes to technology.
Especially in Enterprise IT, the technology stack can lag 5, 10, or maybe even more
years behind what’s considered the cutting-edge stuff that folks in Silicon Valley are
working with. However, buying the latest shiny product from your vendor never has
and never will solve this problem for you. If this were the case, we would have solved
this a long time ago. The real reason for stagnation in technology is an underinvest‐

494 | Chapter 11: Building a Culture for Network Automation

ment in people and skill sets outside the traditional vendor-driven messaging we, at
times, blindly follow.

This book has focused primarily on vendor-agnostic skill sets, processes, and culture
for a reason—technology doesn’t really change that much. Speeds and feeds get big‐
ger and better, and the industry can tend to go in strange directions at times, but it’s
always a pendulum. Old patterns become new again, and the fundamental technology
in use at the lowest level is usually the same. The TCP/IP you’ve known and loved
from your earliest CCNA days is still very relevant in the latest Software Defined Net‐
working products. The latest wireless products still reduce down to RF at their core.

This is one of the lessons that infrastructure professionals can learn from software
developers. In general terms, infrastructure professionals don’t “build” as much as
they “operate,” whereas software developers are accustomed to thinking like builders.
To that end, software development is less of a skill than it is a collection of micro-
skills. Just like a painter learns things like brush technique and the science of mixing
colors, software developers pick up languages, tools, algorithms, and hardware
knowledge, with the understanding that they will all become useful some day when
the next big project calls for them.

These days, especially with the increasing importance of open source software in IT,
the need for systems or computer science fundamentals has never been higher. Learn
about Linux. Explore a programming language. These fundamentals will help lead
you to understanding more about what we’ve taken for granted in IT for so long. New
IT products come out all the time, but they all run on hardware and software. So,
whether you’re looking to make an entrance to a new discipline, or get deeper within
your current one, focusing on the fundamentals is the best way to stay relevant across
the vast yet shallow changes in the IT stack over the long term.

Certifications?
Inevitably, we must answer the ever-popular question: “What is the value of IT certif‐
ications in the era of automation?” It’s an intriguing question, especially since it can‐
not be answered identically for everyone, as each one of us is at a different place in
our IT career.

Certifications carry with them an implication that you know the material covered. So,
while there are problems with IT certifications today, there’s no denying that there’s
an interesting trade-off worth investigating. The certification will somewhat inflexibly
define your capabilities in that area, but it’s something concrete and well recognized
by employers. Without certifications, you’d have to start every interview from scratch
and prove to your potential employer that you know what you’re talking about. Cer‐
tifications are a good way to short-circuit this, and certainly, if you’re new in IT, this is
a very useful tool to have.

Skills and Education | 495

However, there are some limitations to what certifications bring to you. The value of
this short circuit decreases over time as you gather more experience. In addition, cer‐
tifications often serve the vendor first, so they won’t get you 100% coverage of every‐
thing you might want to know. You may find it useful to rely more on certifications at
the beginning of your career, and as you gain experience, you can dive deeper into
fundamentals, relying less on vendors to prove to employers what you know.

If you focus on the fundamentals, IT certifications become much more of a tactical
tool than a career-defining education path. Certifications are perfectly fine for cutting
through the initial stages of a hiring process, and for some employers, certifications
are a requirement. However, understanding the fundamentals will not only help you
win in an interview, it will also ensure that you continue to climb the technical ladder
as the winds of IT change.

Won’t Automation Take My Job?!
One of the most common questions about automation is: “What will happen to my
job?” Indeed, there’s a widespread belief that automation will mean a reduction in
head count. After all, if a machine can do my job, who will pay me to do it manually?

This idea seems to be predicated on a few incorrect assumptions. The first of these is
that automation is somehow an instantaneous, night/day difference, which is never
the case. Automation is always incremental, and imperfect at every layer. You solve
the easiest problems first, and gradually move up the stack to bigger problems. You
occasionally go back and improve what you wrote last year.

Another incorrect assumption is that once automation is in place, there will be noth‐
ing left to do. This is also incorrect, not only because of the first reason given in the
previous paragraph, but also because automation unlocks new capabilities you didn’t
have before. It’s true that automation does eliminate the need for a warm-blooded
human being to fill a certain role, but doing so creates new challenges that simply
didn’t exist before, and those people should be reallocated to deal with the new prob‐
lems. So while a certain role might be replaced by automation, there are always new
opportunities opening up further up the stack.

So in a “post-automation” organization, it’s clear that roles and responsibilities will
change. You still need good, well-trained people, they’ll just need to be reallocated to
take on new challenges uncovered through the introduction of automation.

Summary
Hopefully this chapter has highlighted one very important truth: movements like
DevOps aren’t just about new technology or tools, but they’re also not all about pro‐
cess, or even culture. DevOps is about all three working together. You have to
approach your organization and your people with a systems mindset, in the same way

496 | Chapter 11: Building a Culture for Network Automation

you might approach a technology problem. DevOps is about optimizing a human
system and improving communication so that all three pillars of IT are working in
harmony. Proper communication is extremely critical. You will not have success if
you don’t understand how the business works. Nor will you have success if you are
not able to communicate the value of what you’re doing.

Many of the thoughts shared in this chapter stem from the belief that, while society
often likes to break every issue down into a binary, absolute choice between two polar
opposites, the reality is often much more like a spectrum. This is very true in IT as
well. What works for one organization may not work for you. It is up to you to take
the pragmatic approach and really think about the problems you’re trying to solve.
Don’t simply rely on IT analysts or big web-scale companies to make your strategic
technology decisions for you.

Finally, the journey you need to undergo can’t possibly be contained in a single chap‐
ter (or even a whole book). You need to get involved with other communities of peo‐
ple that have already made this journey, so you can learn from their mistakes. One
great resource for this is the Slack team for “Network to Code” (sign up for free at
http://slack.networktocode.com/). There, you’ll find over 50 channels focused on vari‐
ous topics related to infrastructure automation, broken down by vendor or open
source project. Especially if you’re new to automation, this is an extremely good place
to get started.

In conclusion, be the automator—not the automated.

Summary | 497

http://slack.networktocode.com/

APPENDIX A

Advanced Networking in Linux

In Chapter 3, we discussed some basic Linux networking concepts. In this appendix,
we’ll use the building blocks from Chapter 3 as a basis for discussing a few advanced
Linux networking concepts and configurations.

The topics we’ll cover in this appendix include:

• Using macvlan interfaces
• Networking virtual machines (VMs)
• Working with network namespaces
• Networking Linux containers
• Using Open vSwitch (OVS)

Many of these topics could be books on their own! Thus, our focus in discussing
these topics won’t be to provide comprehensive, in-depth coverage; instead, we’ll
focus on providing enough information for you to understand where these topics fit
into the overall networking picture as well as the basics of how to install, configure, or
manage these networking configurations.

We’ll start with using macvlan interfaces.

Using macvlan Interfaces
The macvlan interface is sort of like the reverse of a VLAN interface, which we dis‐
cussed in Chapter 3. VLAN interfaces allow a single physical interface to communi‐
cate in multiple VLANs (broadcast domains) simultaneously; you can think of this as
a “many (networks) to one (physical interface)” arrangement. Contrast that to mac
vlan interfaces, which allow you to create multiple logical interfaces on a single
broadcast domain—a “one (network) to many (logical interfaces)” arrangement. Each

499

macvlan logical interface will have its own Media Access Control (MAC) address, and
will only be able to see traffic destined for its MAC address. (One macvlan interface
can’t snoop on another macvlan interface’s traffic, in other words.)

This may sound a bit esoteric, but there are at least a couple of use cases where this
functionality can come in handy—let’s explore those first.

Use Cases for macvlan Interfaces
Currently, macvlan interfaces have a couple use cases:

• If you’re consolidating hosts and want to preserve the MAC address and IP
address of hosts being retired, you can re-create those interfaces as macvlan
interfaces on the new hosts. This will allow services to continue without any
changes, even though the services are now running on a different host.

• You may also wish to use macvlan interfaces instead of a traditional Linux bridge
in cases where you don’t need the full functionality of the Linux bridge. We’ll
look at a couple examples of this, one in the next section and one later in the
appendix.

Armed with this context of how macvlan interfaces could be used, we can dig into
some of the technical details of working with macvlan interfaces.

Creating, Configuring, and Deleting macvlan Interfaces
To create a macvlan interface, you’ll once again turn to the ip command—specifically,
the ip link command. The generic syntax for the command to add a macvlan inter‐
face is ip link add link parent-device macvlan-device type macvlan.

Breaking that command down a bit:

• The parent-device is the physical interface with which the new macvlan inter‐
face should be associated. You may also see this referred to as the lower device.

• The macvlan-device is the name to be given to the new macvlan logical inter‐
face. Unlike with VLAN interfaces, there is no established naming convention.

So, let’s say you wanted to create a macvlan interface on a CentOS system, and the
new logical interface should be linked to the physical interface named ens33. The
command would look like this:

[vagrant@centos ~]$ ip link add link ens33 macvlan0 type macvlan
[vagrant@centos ~]$

500 | Appendix A: Advanced Networking in Linux

If you wanted to create the macvlan interface with a specific MAC address (the previ‐
ous command uses an auto-generated MAC address), then insert address desired-
MAC-address between the macvlan device name and the type macvlan statement.

Once you’ve created the interface, you can verify that the interface was created using
ip link list, and the -d parameter—which exposed additional information about
VLAN interfaces—will expose additional information about macvlan interfaces:

[vagrant@centos ~]$ ip -d link list macvlan0
6: macvlan0@ens33: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 link/ether b6:73:dc:60:a3:10 brd ff:ff:ff:ff:ff:ff promiscuity 0
 macvlan mode vepa

Note the macvlan mode vepa on the last line; this indicates the current mode of the
macvlan device. A mode of vepa indicates that the Linux host expects the upstream
switch to support 802.1Qbg, which—as of this writing—was fairly limited. Other
modes are available; in addition to vepa, you can use bridge, private, and passthru.
The bridge mode is probably what you’ll want in most cases, and you can set the
mode either when the interface is created or later.

To set the mode when the interface is created:

[vagrant@centos ~]$ ip link add link ens33 macvlan0 type macvlan mode bridge
[vagrant@centos ~]$

Or, if you need to set the mode after the interface has been created, use ip link set:

[vagrant@centos ~]$ ip link set macvlan0 type macvlan mode bridge
[vagrant@centos ~]$ ip -d link list macvlan0
6: macvlan0@ens33: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 link/ether b6:73:dc:60:a3:10 brd ff:ff:ff:ff:ff:ff promiscuity 0
 macvlan mode bridge
[vagrant@centos ~]$

As with almost all other kinds of interfaces, you’ll still need to enable the interface
(set the state to up) and assign an IP address for the interface to be fully functional:

[vagrant@centos ~]$ ip link set macvlan0 up
[vagrant@centos ~]$ ip addr add 192.168.100.112/24 dev macvlan0
[vagrant@centos ~]$

To delete a macvlan interface, first disable it with ip link set, then delete it with ip
link delete:

[vagrant@centos ~]$ ip link set macvlan0 down
[vagrant@centos ~]$ ip link delete macvlan0
[vagrant@centos ~]$

So how does one make macvlan interface configurations persistent? By default,
RHEL/Fedora/CentOS systems (as of the time of writing) did not have a means
whereby you could use a per-interface configuration file in /etc/sysconfig/network-

Advanced Networking in Linux | 501

scripts to create persistent macvlan interface configurations. There are workarounds
for this; for example, we found at least one GitHub repository that has scripts to make
this possible.

On Debian/Ubuntu systems, there is a workaround that leverages the pre-up func‐
tionality in network configuration stanzas to run other commands before bringing up
the network interface. This configuration, for example, would create a persistent
macvlan interface associated with the eth2 physical interface:

auto macvlan0
iface macvlan0 inet static
 address 192.168.100.110/24
 pre-up ip link add link eth2 macvlan0 type macvlan

Networking Virtual Machines
Providing networking for VMs running on a Linux-based hypervisor is a topic that
could be a book unto itself, but in this section we’re going to attempt to tackle a cou‐
ple of high-level configurations that should cover the majority of the implementa‐
tions you’re likely to encounter in the real world. To help keep the amount of material
we need to cover manageable, we’ll limit our discussion in this section to using the
KVM hypervisor (as opposed to Xen or another Linux-based solution) and generally
only with the Libvirt virtualization API. There are, of course, other hypervisors, other
tools, and other configurations; unfortunately, we can’t cover all possible combina‐
tions here.

The two VM networking configurations we’ll discuss are:

• Networking VMs using a Linux bridge
• Networking VMs using macvtap interfaces

Let’s start by looking at using a Linux bridge.

Using a Bridge
Bridging VMs onto a physical network via one (or more) of the Linux host’s physical
interfaces is a very common use case for the Linux bridge. In fact, it was one of the
examples we used in Chapter 3 when we first introduced bridging in Linux. In this
section, we’ll take a slightly more detailed look at how this works.

When you are networking VMs using a bridge with KVM and Libvirt, several differ‐
ent components come into play:

• A Linux bridge (naturally)
• A Libvirt virtual network that tells Libvirt which Linux bridge to use

502 | Appendix A: Advanced Networking in Linux

https://github.com/larsks/initscripts-macvlan

• A virtual network interface
• A KVM guest domain (the word domain is used to refer to a VM running on

KVM)

Let’s see how all these pieces fit together.

Generally, one of the first things you’d do is use Libvirt to create a virtual network by
defining it via some XML. (If you’re not familiar with XML, no problem; refer to
Chapter 5.) A virtual network is an abstraction used by Libvirt to refer to a specific
underlying networking configuration. The underlying network configuration could
be a bridge (as in this case), or it could be some other configuration (as we’ll see in
the next section).

Libvirt uses XML for the definitions of its abstractions, including virtual networks.
The following XML code would create a virtual network named network-br0 that ref‐
erences a Linux bridge named br0. Note that it’s up to the system administrator to
create br0 and associate a physical interface with the bridge, using the procedures and
commands outlined in Chapter 3.

<network>
 <name>network-br0</name>
 <forward mode="bridge"/>
 <bridge name="br0"/>
</network>

To tell a KVM domain to use this virtual network, you’d configure its domain XML to
look something like this (we’re only showing you the networking-relevant portion of
the domain’s XML definition, and not all possible options are included):

<interface type="network">
 <source network="network-br0"/>
</interface>

In this case, we’re telling Libvirt (via this XML definition for a guest domain) to refer‐
ence the Libvirt network named network-br0. This Libvirt network, in turn, refer‐
ences the Linux bridge named br0. The advantage of using the virtual network
abstraction is that we could switch the underlying network bridge from br0 to br1 by
simply modifying the virtual network definition. We wouldn’t have to modify any of
the VMs because they reference the virtual network.

With this configuration in place, when the guest domain is started KVM and Libvirt
will automatically create a virtual network interface (a TAP device) and attach it to
the bridge specified by the Libvirt virtual network definition (in this case, br0). The
guest domain will have its own network interface, which will be associated by the
hypervisor with the TAP device. This creates a “chain” of connectivity: the guest’s eth0
is connected to the TAP device, which is connected to the bridge, which is connected
to the physical interface and the network beyond.

Advanced Networking in Linux | 503

Libvirt automates almost all of this for you, which can make it a bit more difficult to
observe it in action. It’s possible, though, to manually set all this up so that you can
see how the pieces fit together. The next few paragraphs will walk you through the
steps required to manually bridge a VM onto a network. We don’t recommend this
for any sort of production use, but it can be useful as a learning exercise to better
understand what’s happening “behind the scenes” with KVM and Libvirt.

First, you’ll want to create the Linux bridge and attach a physical interface to the
bridge. Assuming that eth1 is the interface you want to attach to the bridge, you’d run
commands like these:

vagrant@trusty:~$ ip link add name br0 type bridge
vagrant@trusty:~$ ip link set br0 up
vagrant@trusty:~$ ip link set eth1 master br0
vagrant@trusty:~$ ip link set eth1 up
vagrant@trusty:~$

Note that whether you are manually attaching VMs to a bridge or
using Libvirt, you would still have to use the various ip commands
to create the Linux bridge and attach one (or more) interfaces.
Note that the interfaces you attach to the bridge could be VLAN
interfaces!

Next, you’d want to create the TAP device using a new command we haven’t shown
you yet: the ip tuntap command. The generic form of the command to add a TAP
device is ip tuntap add dev-name mode tap. If we wanted to use the name tap0 for
the TAP device to which we’ll connect our VM, we run these commands:

vagrant@trusty:~$ ip tuntap add tap0 mode tap
vagrant@trusty:~$ ip link set tap0 up
vagrant@trusty:~$ ip -d link list tap0
5: tap0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast state DOWN
 mode DEFAULT group default qlen 500
 link/ether 7e:28:d5:99:ca:ab brd ff:ff:ff:ff:ff:ff promiscuity 0
 tun
vagrant@trusty:~$

The first command creates the TAP device, the second command enables the link,
and the third command verifies the status of the device. The output of the third com‐
mand tells you the interface is enabled but not connected to anything (note the NO-
CARRIER in the output).

Next, add the TAP device to the existing bridge, then verify using the bridge link
command:

vagrant@trusty:~$ ip link set tap0 master br0
vagrant@trusty:~$ bridge link list
3: eth1 state UP : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 master br0 state

504 | Appendix A: Advanced Networking in Linux

forwarding priority 32 cost 4
5: tap0 state DOWN : <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 master br0 state
disabled priority 32 cost 100
vagrant@trusty:~$

The final step is to launch a virtual machine and attach it to the TAP device. We won’t
go into any great detail on the command used here, if for no other reason than we
think it’s unlikely you’ll need it in real-world usage (you’re far more likely to use the
virsh command that comes with Libvirt). Note that the command is line-wrapped
with backslashes here to make it more readable.

vagrant@trusty:~$ qemu-system-x86_64 -enable-kvm -hda cirros-01.qcow2 \
-net nic -net tap,ifname=tap0,script=no,downscript=no -vnc :1 &
[1] 866
vagrant@trusty:~$

This will boot a KVM domain in the background. If you now run ip -d link list
tap0, you’ll see that the TAP device is active (note that bridge link list would also
show you the TAP device is up and active):

vagrant@trusty:~$ ip -d link list tap0
5: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master br0
 state UP mode DEFAULT group default qlen 500
 link/ether 7e:28:d5:99:ca:ab brd ff:ff:ff:ff:ff:ff promiscuity 1
 tun
 bridge_slave
vagrant@trusty:~$

If you have a DHCP server running on the network segment to which the KVM host’s
eth1 is connected, then your KVM guest domain should obtain an IP address and be
reachable from other systems on the same subnet.

Again, let us reiterate that you don’t have to perform all the manual steps we outlined
here to use bridged networking with KVM and Libvirt. We included the manual steps
here to help you better understand all the various pieces that are involved. KVM and
Libvirt automate the majority of these steps.

Also, now that we’ve covered VLAN interfaces we can point out that you can also use
VLAN interfaces in a bridge. This might be one way of bridging different VMs on a
single Linux hypervisor onto different VLANs—create a bridge for each VLAN, add a
VLAN interface to each bridge, and then attach VMs to that bridge.

While using a bridge is one (very common) way to provide networking for VMs, it’s
by far not the only way. Later in this appendix in “Using Open vSwitch” on page 517,
we’ll talk about how to use Open vSwitch (OVS) to provide networking for VMs.
First, though, let’s take a look at another way of providing network connectivity to
VMs: macvtap interfaces.

Advanced Networking in Linux | 505

Using macvtap Interfaces
In “Using macvlan Interfaces” on page 499 we showed you how to use macvlan inter‐
faces to configure a Linux system with multiple network identities on a single physi‐
cal interface. A close relative (it uses the same Linux kernel driver) of the macvlan
interface is the macvtap interface, which allows us to use these multiple identities to
provide network connectivity for VMs.

To use macvtap interfaces with KVM and Libvirt, you’d again first start with defining
a Libvirt virtual network that references macvtap interfaces. This snippet of XML
would allow you to define a virtual network named macvtap-net that leverages macv‐
tap interfaces running in bridge mode and is associated with the eth1 physical inter‐
face:

<network>
 <name>macvtap-net</name>
 <forward mode="bridge">
 <interface dev="eth1"/>
 </forward>
</network>

Just as when we use a bridge with KVM and Libvirt, the domain XML configuration
then needs to only reference the Libvirt network:

<interface type="network">
 <source network="macvtap-net"/>
</interface>

When you start/launch a VM using Libvirt, it will automatically create a macvtap
interface on the associated physical interface. You can verify this by running ip link
list; you should see a macvtap interface in the output.

One interesting side effect, if you will, of using macvtap interfaces is that the MAC
address seen inside the guest domain will be the same as the MAC address used by
the macvtap interface. For example, here’s the output of ip link list eth0 from
within a guest domain when using a macvtap interface:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000
 link/ether 52:54:00:9c:51:74 brd ff:ff:ff:ff:ff:ff

For comparison, here’s the output of ip link list macvtap0 on the host system,
where macvtap0 is the macvtap interface created by Libvirt when the guest domain
was launched:

5: macvtap0@eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
 UNKNOWN mode DEFAULT group default qlen 500
 link/ether 52:54:00:9c:51:74 brd ff:ff:ff:ff:ff:ff

506 | Appendix A: Advanced Networking in Linux

This direct correlation between the MAC address inside the guest and the MAC
address outside the guest may simplify some troubleshooting and/or information
gathering efforts.

We’re going to discuss one other way of providing networking for VMs (using Open
vSwitch), but before we do that we’re going to take a slight detour into a couple other
advanced Linux networking topics.

Working with Network Namespaces
Network namespaces in Linux are a way to support multiple separate routing tables
and multiple separate iptables configurations, and to “scope” or limit network inter‐
faces to a particular namespace. They are probably most closely related to Virtual
Routing and Forwarding (VRF) instances in the networking world, but are used in a
variety of ways. One notable way we’ll discuss later is in conjunction with Linux con‐
tainers.

While network namespaces can be used to create VRF instances,
there is separate work going on the Linux kernel community right
now to build “proper” VRF functionality into Linux. This proposed
VRF functionality would provide additional logical Layer 3 separa‐
tion within a namespace. It’s still too early yet to see where this will
lead, but we wanted you to know about it nevertheless.

Every Linux system comes with a default network namespace, and this is the name‐
space where you (as the user) can see the routing table, iptables configuration, and
network interfaces. However, as we’ll show in this section, it’s possible to create non-
default network namespaces, and to assign network interfaces to these non-default
network namespaces for a variety of purposes.

We’ll start by examining some use cases for network namespaces; this will help pro‐
vide context on how they might be used.

Use Cases for Network Namespaces
So what sort of use cases exist for network namespaces? There are a few that spring to
mind:

Per-process routing
Running a process in its own network namespace allows you to do configure
routing on a per-process basis.

Enabling VRF configurations
We mentioned at the start of this section that network namespaces were probably
most closely related to VRF instances in the networking world, so it’s only natural

Advanced Networking in Linux | 507

that enabling VRF-like configurations would be a prime use case for network
namespaces.

Support for overlapping IP address spaces
You might also use network namespaces to provide support for overlapping IP
address spaces, where the same address (or address range) might be used for dif‐
ferent purposes and have different meanings. In the bigger picture, you’d proba‐
bly need to combine this with overlay networking and/or network address
translation (NAT) in order to fully support such a use case.

Let’s continue our discussion of network namespaces by looking at how to create (and
remove) non-default network namespaces.

Creating and Removing Network Namespaces
Creating a network namespace is really pretty straightforward. The tool of choice is
again the ip command from the iproute2 package, this time using the netns set of
subcommands.

To create a network namespace, the syntax for the command is ip netns add

namespace-name. As an example, let’s say that you wanted to create a namespace
called blue:

[vagrant@centos ~]$ ip netns add blue
[vagrant@centos ~]$

Note there’s no feedback for a successful command; to verify the namespace was
added, you’ll need to use ip netns list:

[vagrant@centos ~]$ ip netns list
blue
[vagrant@centos ~]$

Deleting network namespaces is equally straightforward:

[vagrant@centos ~]$ ip netns del blue
[vagrant@centos ~]$ ip netns list
[vagrant@centos ~]$

The lack of output from the ip netns list command indicates there are no network
namespaces other than the “default” namespace in which all networking objects nor‐
mally reside.

While adding and deleting namespaces is (somewhat) interesting, the real value lies
in actually using network namespaces. To do that, we’ll first need to look at how to
assign interfaces to a particular namespace.

508 | Appendix A: Advanced Networking in Linux

Placing Interfaces in a Network Namespace
By default, all of the networking-related objects and configurations belong to the
“default” network namespace (also known as “netns 0”). Also by default, a newly cre‐
ated network namespace contains no network interfaces. Thus, a newly created net‐
work namespace has no network connectivity to anything: not to the default
namespace, not to the outside world, not to anything. To fix that, you need to place an
interface into the namespace.

To place an interface into a namespace, use the ip link command (obviously this
command assumes that the blue namespace has already been created):

vagrant@jessie:~$ ip link set eth1 netns blue
vagrant@jessie:~$

As you can tell from this example, the general syntax to place an interface into a net‐
work namespace is ip link set interface-name netns namespace-name.

Once you place an interface into a namespace, it disappears from the default name‐
space. This makes sense, because an interface can exist in only a single namespace at
any given time. For example, consider Figures A-1 and A-2. Figure A-1 shows the
output of ip link list on a CentOS 7 system with two physical interfaces (ens32
and ens33).

Figure A-1. Listing of interfaces before we assign an interface to a namespace

Now look at Figure A-2, which shows the output of ip link list on the same
CentOS 7 system after one of the physical interfaces has been moved to a different
network namespace.

Advanced Networking in Linux | 509

Figure A-2. Listing of interfaces after we assign an interface to a namespace

As you can see, the interface has disappeared from the default namespace.

Although we’ve only shown you examples that assign a physical interface to a name‐
space, you’re not limited to physical interfaces. Suppose you wanted to assign a
VLAN interface to a namespace:

[vagrant@centos ~]$ ip link set ens33.150 netns blue
[vagrant@centos ~]$

Or suppose you want to assign a macvlan interface to a particular namespace:

[vagrant@centos ~]$ ip link set macvlan0 netns red
[vagrant@centos ~]$

This gives you a great deal of flexibility in how you connect network namespaces to
the outside world.

Regardless of the type of interface, the command to assign it to a namespace remains
the same: ip link set interface-name netns namespace-name. And regardless of
the type of interface, once it is assigned to a namespace it disappears from the default
namespace. To work with any interface assigned to a non-default namespace, you
need to run commands within the context of the namespace in which it resides. In
other words, you’re going to need to execute commands inside a particular name‐
space.

510 | Appendix A: Advanced Networking in Linux

Executing Commands in a Network Namespace
To execute a command in the context of a specific network namespace, you’ll need to
use the ip netns exec command. The general syntax for this command is ip netns
exec namespace-name command. Let’s look at a few examples.

In the previous section, we used the ip link set command to assign the eth1 inter‐
face on a Debian 8.x system into the blue namespace. If we now want to be able to see
that interface, we’ll combine ip netns exec (to execute a command inside a particu‐
lar namespace) with ip link list (to show us the list of network interfaces), like
this:

vagrant@jessie:~$ ip netns exec blue ip link list
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group
 default qlen 1000
 link/ether 00:0c:29:7d:38:9d brd ff:ff:ff:ff:ff:ff
vagrant@jessie:~$

We can see from this output that the eth1 interface exists inside the blue namespace,
but is currently disabled (note state DOWN in the output). To enable this interface:

vagrant@jessie:~$ ip netns exec blue ip link set eth1 up
vagrant@jessie:~$ ip netns exec blue ip link list eth1
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT group default qlen 1000
 link/ether 00:0c:29:7d:38:9d brd ff:ff:ff:ff:ff:ff
vagrant@jessie:~$

Now the interface is up, and we could assign an IP address and check the namespace’s
routing table:

vagrant@jessie:~$ ip netns exec blue ip addr add 192.168.100.10/24 dev eth1
vagrant@jessie:~$ ip netns exec blue ip route list
192.168.100.0/24 dev eth1 proto kernel scope link src 192.168.100.11
vagrant@jessie:~$

To prove that the namespaces are separate—in other words, that the IP configuration
within the blue namespace does not affect the default namespace—run the ip route
list command in the default namespace as follows:

vagrant@jessie:~$ ip route list
default via 192.168.70.2 dev eth0
192.168.70.0/24 dev eth0 proto kernel scope link src 192.168.70.242
vagrant@jessie:~$

The IP configuration and associated route linked to eth1 no longer affect the default
namespace, only the blue namespace where the interface is assigned. (We’ll leave it as
an exercise for the readers to check the routing table in the blue namespace.)

Advanced Networking in Linux | 511

Now that we have an interface that is assigned to a namespace, is enabled, and has an
IP address configured, we can test connectivity from that specific namespace to the
outside world using ip netns exec and the ubiquitous ping command:

vagrant@jessie:~$ ip netns exec blue ping -c 4 192.168.100.100

Throughout all these examples we’re showing, you may have noticed that we keep
having to type ip netns exec in front of commands in order to execute them in a
particular namespace. Here, you may find leveraging bash’s alias functionality—the
ability to create commands that reference other commands—to be extraordinarily
helpful. For example, you could define the alias nsblue to execute commands inside
the blue network namespace:

vagrant@trusty:~$ alias nsblue="ip netns exec blue"
vagrant@trusty:~$

With this alias defined, you can now just type nsblue instead of ip netns exec blue
when you want to execute commands inside the blue network namespace.

vagrant@trusty:~$ nsblue ip link list
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP
 mode DEFAULT group default qlen 1000
 link/ether 00:0c:29:7d:38:9d brd ff:ff:ff:ff:ff:ff
vagrant@trusty:~$

Although these examples show physical interfaces being assigned to a network name‐
space, remember that you can assign just about any type of interface—physical inter‐
faces, VLAN interfaces, or macvlan interfaces—to a network namespace. When you
assign one of these types of interfaces to a network namespace, though, you’re con‐
necting that namespace to the outside world (a particular VLAN if you’re using a
VLAN interface, for example). What if you wanted to connect this new namespace
with the default namespace? This is where veth (virtual Ethernet) pairs come into
play.

Connecting Network Namespaces with veth Pairs
Virtual Ethernet pairs (more commonly known as veth pairs) are a special kind of log‐
ical interface supported by the Linux kernel. Because of the way veth pairs work they
always come in pairs: traffic entering one interface in the pair comes out the other
interface in the pair. Like other types of interfaces, one member of a veth pair can be
assigned to a non-default network namespace—thus enabling users to connect net‐
work namespaces to each other.

Let’s take a quick look at how this works. First, you’ll create the veth pair using the ip
command. The syntax for the command is ip link add veth-name type veth peer
name veth-peer. If you wanted to create a veth pair named veth0 and veth1, then the
command would look like this:

512 | Appendix A: Advanced Networking in Linux

vagrant@trusty:~$ ip link add veth0 type veth peer name veth1
vagrant@trusty:~$ ip -d link list veth0
5: veth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group
 default qlen 1000
 link/ether f6:67:c0:f8:75:7d brd ff:ff:ff:ff:ff:ff promiscuity 0
 veth
vagrant@trusty:~$

Any traffic that enters either member of the veth pair will exit the other member of
the veth pair. So, if we place veth1 into a network namespace, then traffic that enters
veth1 in whatever namespace we place it will exit veth0 in the default namespace,
thus connecting the two namespaces together.

In the following set of commands, we’ll create a network namespace called green,
then place veth1 into that namespace. We’ll then use ip netns exec to configure
veth1, and then test connectivity between the two namespaces.

vagrant@trusty:~$ ip netns add green
vagrant@trusty:~$ ip link set veth1 netns green
vagrant@trusty:~$ ip netns exec green ip addr add 10.0.3.1/24 dev veth1
vagrant@trusty:~$ ip netns exec green ip link set veth1 up
vagrant@trusty:~$ ip addr add 10.0.3.2/24 dev veth0
vagrant@trusty:~$ ip link set veth0 up
vagrant@trusty:~$ ping -c 4 10.0.3.1
PING 10.0.3.1 (10.0.3.1) 56(84) bytes of data.
64 bytes from 10.0.3.1: icmp_seq=1 ttl=64 time=0.046 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=64 time=0.078 ms
64 bytes from 10.0.3.1: icmp_seq=3 ttl=64 time=0.066 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=64 time=0.077 ms

--- 10.0.3.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 0.046/0.066/0.078/0.016 ms
vagrant@trusty:~$

So what did we just do here? We already had the veth pair, so we created a namespace
named green and placed veth1 into that namespace. We then assigned an IP address
to veth1, and enabled the interface. Then, so that the default namespace had a route to
the destination, we added an IP address to veth0. We then pinged between the two
network namespaces.

What if you wanted to connect a network namespace to the outside world using veth
pairs? No problem—create the veth pair, place one veth interface in the network
namespace, and then put the other veth interface into a bridge with a physical inter‐
face. Your network namespace is now bridged to the outside world. (We’ll leave it to
you to do this as a learning exercise.)

Naturally, we could create more complex topologies, but this gives you an idea of
what’s possible using veth pairs to connect network namespaces.

Advanced Networking in Linux | 513

In the next section, we’ll take a look at a practical application of network namespaces:
Linux containers.

Networking Linux Containers
In the previous section, we talked about how network namespaces were a way for
Linux to “scope,” or limit, network interfaces to a particular subset of the overall sys‐
tem—in other words, to isolate network interfaces in their own little space (a network
namespace). The Linux kernel also supports other types of namespaces: a mount
namespace, a process namespace, and (in newer kernel versions) a user namespace.
In each case, the purpose of the namespace is to scope or limit resources in their own
sub-OS. When you combine namespaces with other Linux kernel–level features like
control groups (cgroups), you gain the ability to create lightweight sandboxes that
isolate processes (or groups of processes) from one another. This is the basis for
Linux containers, which are a lightweight way of running multiple, isolated processes
on a single Linux instance.

Linux containers have been around for a while, but it’s only in the last couple of years
that the world has really taken notice. This is due in part to the rise of Docker (the
open source project), which is one particular model for working with Linux contain‐
ers. Docker uses namespaces, cgroups, and a layered copy-on-write filesystem com‐
bined with an easy-to-use CLI tool to make it extraordinarily easy to create and
leverage Linux containers.

If you’re interested in more details on Docker, we recommend the
O’Reilly book Using Docker, by Adrian Mouat.

However, Docker is not the only container game in town. An older (and some might
say more mature) approach is known as LXC (which stands for LinuX Containers).
Docker and LXC leverage the exact same kernel features (namespaces for isolation
and cgroups for resource accounting and limiting); where they differ is in how they
build their containers and how a user leverages their containers. Each approach has
its advantages and disadvantages.

What LXC and Docker do share (in addition to their use of the same underlying
Linux kernel constructs) are certain facets of how they do container networking (all
these are default settings):

• Both LXC and Docker leverage veth pairs, placing one of the veth interfaces into
a network namespace with the container and leaving the peer interface in the
default network namespace.

514 | Appendix A: Advanced Networking in Linux

• Both LXC and Docker leverage a Linux bridge to which the veth peer interface in
the default namespace is attached. The default LXC bridge is named lxcbr0,
whereas the default Docker bridge is named docker0.

• Both LXC and Docker use custom iptables rules to perform network address
translation (NAT) for container connectivity.

Aside from the use of iptables, we’ve discussed all these mechanisms in previous sec‐
tions, so you should already be familiar with veth interfaces, placing veth interfaces
into a network namespace, and using bridges to provide connectivity.

Although you can see that LXC and Docker share a fair number of similarities, there
are also quite a few differences, especially in terms of how you configure network set‐
tings for each. Let’s take a closer look at configuring container networking for both
LXC and Docker.

Configuring LXC Networking
LXC stores networking configuration on a per-container basis. On Ubuntu systems
(this path may vary from distribution to distribution), the file /var/lib/lxc/<container-
name>/config contains some critical LXC networking configuration options:

• The lxc.network.type option controls the networking type for the containers.
The default is veth, which tells LXC to use veth pairs. You can also specify macv
lan, which tells LXC to use macvlan interfaces. In the event of using macvlan
interfaces, you can use the lxc.network.macvlan.mode to set the mode (pri
vate, vepa, bridge) of the macvlan interfaces. LXC also supports a value of vlan,
which means containers will leverage a VLAN interface for connectivity.

• The lxc.network.link setting controls the bridge to which the LXC will be con‐
nected in the default namespace. By default, this value is lxcbr0. Leaving this
value blank means that the container won’t be connected to a bridge. Later in this
appendix in “Using Open vSwitch” on page 517, we’ll show you a use case for
leaving this setting blank.

• The lxc.network.veth.pair option specifies the name of the veth pair that will
sit outside the container namespace (the other member of the pair will be moved
into the container’s network namespace). This lets you control the naming con‐
vention used for the veth peer that remains in the default network namespace.

• The lxc.network.ipv4, lxc.network.ipv4.gateway, lxc.network.ipv6, and
lxc.network.ipv6.gateway settings control IPv4 and IPv6 configuration for the
container, respectively.

In short, LXC provides pretty extensive control over how networking is provided for
containers.

Advanced Networking in Linux | 515

Configuring Docker Networking
Configuring Docker networking is both simpler and also more complicated than con‐
figuring LXC networking. This sounds odd, but allow us to explain.

Prior to the release of Docker 1.9, Docker relied solely upon the use of veth interfaces,
a Linux bridge, and a set of iptables rules. Configuring any of these settings involved
making changes to the DOCKER_OPTS environment variable one uses when launching
the Docker daemon. This is the simple part.

With the release of Docker 1.9, Docker added a pluggable network subsystem that
enables multiple types of networks to be created and managed by the Docker dae‐
mon. The “old” Docker bridge network is still available, but it was also possible to
create multi-host overlay networks, and third-party network plug-ins were sup‐
ported.

Docker networking changed again with the release of Docker 1.12, which introduced
“Swarm mode” and built-in VXLAN multi-host overlay networking. Third-party net‐
working plug-ins needed to be rewritten, which—as of the time of this writing—was
still under way.

What’s this about ipvlan interfaces?

In this section we’ve discussed a few different types of logical inter‐
faces: VLAN interfaces, macvlan interfaces, and veth pairs, for
example. We haven’t discussed ipvlan interfaces, which are like
macvlan interfaces but are differentiated at Layer 3 using IP
addresses instead of at Layer 2 using MAC addresses. The support
for ipvlan interfaces is still quite new, though, and ipvlan interfaces
really only have a use case in container networking.

Because Docker’s multi-host networking functionality is still changing rapidly, we’ll
focus on the default bridge network that Docker offers. Almost all of the configura‐
tion of Docker’s default bridge network involves changing the flags passed to the
Docker daemon when it is launched, either by modifying the DOCKER_OPTS environ‐
ment variable or by modifying the file used to launch the daemon. Some of the appli‐
cable configuration options include:

• The -b or --bridge option allows you to specify the name of the bridge that
Docker should use. You can set this parameter to use a bridge other than
docker0.

• The --bip parameter allows you to specify the IP address assigned to the bridge
interface.

516 | Appendix A: Advanced Networking in Linux

• The --iptables=true option enables Docker to automatically add the appropri‐
ate iptables rules to perform NAT.

In addition to these daemon-wide settings, some networking options—specifically,
exposed ports—are per-container. Exposed ports can be found in two possible places:

• The container’s Dockerfile may contain one or more ports in an EXPOSE state‐
ment, which tells the Docker daemon which ports need to be exposed to the out‐
side world. For example, an EXPOSE 80 statement in a Dockerfile tells the
Docker daemon to dynamically link a public port on the Docker host to port 80
on the container. The key thing to note there is that the assigned public port is
non-deterministic and allocated dynamically by the Docker daemon.

• The command used to launch a container may contain one or more -p parame‐
ters, which allows the user to control the mapping between public ports and con‐
tainer ports. For example, using -p 80:80 tells the Docker daemon to link the
Docker host’s port 80 to the container’s port 80.

Fortunately, Docker offers a docker inspect command, which—when given the ID
of a running container—will provide all the information you need about the contain‐
er’s networking configuration. This includes the container’s IP address and port map‐
ping.

Having taken a look at networking with Docker and LXC, let’s turn our attention to
our last major section: using Open vSwitch for networking.

Using Open vSwitch
Open vSwitch (OVS) is an open source, production-quality multi-layer virtual switch
designed to run within a hypervisor (although, as we’ll see later, OVS has lots of appli‐
cations besides just using it with a hypervisor). OVS was designed with network auto‐
mation in mind, built to support programmatic control while still supporting a wide
range of management protocols and standards. OVS was also designed from the
ground up to support OpenFlow, the seminal SDN protocol, and is considered by
many to be the definitive reference OpenFlow implementation. OVS is also widely
supported: both the Xen and KVM hypervisors support OVS, and at the time of this
writing a port of OVS to Hyper-V was nearly complete (it will likely be complete by
the time this book makes it to print). Numerous management and orchestration sys‐
tems, including OpenStack, have support for OVS.

Given its prominent role in the SDN and network automation spaces, it’s fully
expected that we should provide coverage of OVS in a book on network automation.
However, because of the broad swath of features that OVS supports, we’ll have to con‐
strain our discussion. As a result, we’ll focus on three core areas:

Advanced Networking in Linux | 517

• Installing OVS (discussing OVS on Linux only)
• Configuring OVS
• Connecting workloads to OVS

Let’s start at the beginning, and that’s installing OVS.

Installing OVS
Due to OVS’s architecture—comprising both a userspace daemon as well as a kernel
module—the procedure for installing OVS varies depending on your Linux distribu‐
tion and which version of the OVS kernel module you want to use.

Since version 3.3, the upstream Linux kernel has shipped with an OVS module. To
use the upstream kernel module, no further action is required; you need only to
install the userspace components. If, on the other hand, you prefer to use the kernel
module from the OVS tree (which may be newer than the upstream module and
therefore support more features), then you’ll need to install and compile a kernel
module for the currently running kernel.

If you’d like to verify whether your Linux kernel supports the
upstream OVS kernel module, just run modprobe openvswitch

(you may need to use sudo if you don’t have superuser privileges).
If the command reports an error, your kernel doesn’t have the OVS
upstream module, and you’ll need to install a kernel module. Keep
in mind, though, that the upstream OVS module has been in the
Linux kernel since version 3.3, so virtually all modern distributions
will have the upstream OVS module available in the kernel.

On Debian 8.x and Ubuntu 14.04, installation packages for both the userspace com‐
ponents and the kernel module are available in the primary repositories. Installation,
therefore, is just a matter of using apt-get install:

• To use the upstream kernel module, just install the userspace packages. The
names of the userspace components are openvswitch-common and openvswitch-
switch.

• To use the kernel module that ships with OVS, also install the openvswitch-
datapath-dkms package (and the necessary prerequisites, dkms, make, and libc6-
dev).

518 | Appendix A: Advanced Networking in Linux

We stated that Debian 8.x has packages for OVS in the primary
repositories, but be aware that, depending on your installation
method, the primary repositories may not be enabled. Check your
repository configuration in /etc/apt/sources.list if you are unsure
(you can use the cat command to view the configuration, and edit
it to enable the primary repositories if necessary).

On RHEL/CentOS/Fedora, the story is—as of this writing—a bit more complicated.
RHEL 7.x and CentOS 7.x do not ship with a repository enabled that contains OVS.
In order to install OVS, you either have to compile from source, or add a repository
that contains OVS packages. One such repository is the OpenStack repository from
the CentOS Cloud Special Interest Group (SIG). You can enable this repository by
running yum install centos-release-openstack; when that command completes,
verify the repository has been added using yum repolist. Fedora, however, ships
with OVS packages available in the default Fedora repositories; no additional reposi‐
tories need to be added or enabled.

To install OVS on RHEL/CentOS/Fedora once you have an available package, it’s just
a matter of running yum install to install the openvswitch package.

Note that as of this writing RHEL/CentOS/Fedora don’t offer a package to install the
kernel module from the OVS tree; if you want that kernel module, you’ll have to
manually compile it and install it. Given that manually compiling and installing a ker‐
nel module is a fairly in-depth topic, it’s not something we’ll discuss here. There are,
however, a number of guides available online from various sources.

Once you have OVS installed, we can move on to our next section: configuring OVS.

Configuring OVS
OVS can be configured in a couple of different ways: you can use the OVS-specific
command-line tools, or you can leverage OVS integration into the Linux network
configuration scripts (/etc/network/interfaces on Debian/Linux, /etc/sysconfig/
network-scripts on RHEL/CentOS/Fedora). In this section, we’ll focus primarily on
the use of the OVS-specific command-line tools. The reason for this is that OVS
doesn’t follow the general Linux convention of needing to edit configuration files in
order for a configuration to be persistent.

That’s right—changes you make to the OVS configuration using the OVS command-
line tools are persistent. OVS maintains its own configuration database, and the OVS
command-line tools manipulate that database. When a system is restarted, OVS will
reread its configuration from the configuration database; thus, every change you
make to OVS using the OVS command-line tool is a persistent change. This is a key
difference with OVS versus a lot of the other network configurations we discussed in
Chapter 3 and in this appendix.

Advanced Networking in Linux | 519

The primary tool you will use to configure OVS is ovs-vsctl. Like the ip commands
we discussed both here and in Chapter 3, the ovs-vsctl command has a number of
subcommands for various purposes:

• The show subcommand simply prints an overview of the configuration database’s
contents (i.e., prints an overview of OVS’s configuration).

• The add-br command adds an OVS bridge to the OVS configuration. Any OVS
bridge is conceptually and functionally similar to the Linux bridge, but with a
vastly expanded set of capabilities.

• The del-br command deletes an OVS bridge.
• The add-port command adds a port to an OVS bridge. Ports can be physical

interfaces (like eth1 or ens33) or logical network interfaces (like a VLAN inter‐
face or a veth interface).

• Similarly, the del-port command removes a port from an OVS bridge.

There are more commands, but these comprise the bulk of the functionality you’ll
need to get started with OVS. Let’s look at some examples.

Assuming you have OVS installed and running, let’s start by creating an OVS bridge.
First, we’ll show the current configuration (to show that it is empty—that OVS is
essentially unconfigured), and then we’ll add a bridge and show the configuration
again. The syntax for adding a bridge to OVS is ovs-vsctl add-br bridge-name.
Here’s the command in action:

[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 ovs_version: "2.4.0"
[vagrant@centos ~]$ ovs-vsctl add-br br0
[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.4.0"
[vagrant@centos ~]$

You now have an OVS bridge—but like a Linux bridge, it doesn’t really do anything
until you add some ports. Let’s add the physical ens33 interface to this bridge:

[vagrant@centos ~]$ ovs-vsctl add-port br0 ens33

As you can see, the syntax for adding a port to a bridge is ovs-vsctl add-port
bridge-name port-name. With one exception that we’ll discuss later, the port you’re
adding to OVS needs to already exist and be recognized by Linux.

520 | Appendix A: Advanced Networking in Linux

Running ovs-vsctl show now will show the physical port has been added:

[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 Bridge "br0"
 Port "ens33"
 Interface "ens33"
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.4.0"

To delete a port or a bridge, you’d use the del-port or del-br commands, respec‐
tively:

[vagrant@centos ~]$ ovs-vsctl del-port br0 ens33
[vagrant@centos ~]$ ovs-vsctl del-br br0
[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 ovs_version: "2.4.0"
[vagrant@centos ~]$

In addition to the subcommands we’ve shown you so far, you may also find yourself
needing to use the set subcommand to set properties or values. For example, to apply
a VLAN tag to an OVS port, you’d use the command syntax ovs-vsctl set port
port-name tag=value. Suppose you have a port named vnet0 that represents a VM
(this is a scenario we’ll discuss shortly in “Using VMs with OVS” on page 525), and
you want that VM to be on VLAN 10. You’d use this command:

vagrant@trusty:~$ ovs-vsctl set port vnet0 tag=10
vagrant@trusty:~$ ovs-vsctl show
fe63a9ea-f72f-4aa2-b390-42ecbed6deef
 Bridge "br0"
 Port "vnet0"
 tag: 10
 Interface "vnet0"
 Port "br0"
 Interface "br0"
 type: internal
 Port "eth1"
 Interface "eth1"
 ovs_version: "2.0.2"
vagrant@trusty:~$

You may also find the list subcommand helpful, as it will list all the properties/
values associated with a configuration object in the OVS configuration database. If
you wanted to see all the configuration values for the vnet0 port, you’d run this com‐
mand:

vagrant@trusty:~$ ovs-vsctl list port vnet0
_uuid : cc51fc7e-ce14-41c6-9ad6-7b3ae717afa9
bond_downdelay : 0

Advanced Networking in Linux | 521

bond_fake_iface : false
bond_mode : []
bond_updelay : 0
external_ids : {}
fake_bridge : false
interfaces : [74e6ede7-1a13-45c1-84d6-f66cbfc5a353]
lacp : []
mac : []
name : "vnet0"
other_config : {}
qos : []
statistics : {}
status : {}
tag : 10
trunks : []
vlan_mode : []
vagrant@trusty:~$

There’s obviously much, much more—like creating overlay networks with a protocol
like VXLAN or Geneve, working with OpenFlow flows, or setting OVS to use an
external controller—but the majority of what you’ll do with OVS will involve adding
and removing bridges, adding and removing ports, and setting properties on ports.

Let’s turn our attention now to putting some of the commands we’ve shown you in
the section to work as we look at connecting various types of workloads to OVS.

Connecting Workloads to OVS
Here we’ll use the term workloads to refer to any sort of entity that needs network
connectivity—this could be a network namespace, a container, a virtual machine (like
a KVM guest domain), or the OVS host system itself.

The process for connecting workloads to OVS will vary based on a variety of factors,
but it will generally look like this:

• For network namespaces and containers, you’ll often use a veth pair to connect a
network namespace to OVS.

• For KVM guest domains, attaching to OVS is typically handled via a TAP inter‐
face.

• For the host system, you can direct traffic through OVS by using an OVS internal
port.

Let’s take a look at each of these scenarios in a bit more detail. Refer back to previous
sections if you need a refresher on any of the commands used.

522 | Appendix A: Advanced Networking in Linux

Connecting network namespaces with OVS
Recall from our earlier discussion on network namespaces that one way to connect
network namespaces is to use a veth pair. One of the veth interfaces is placed in a
network namespace (using the ip link set command), and the peer interface
remains in the primary namespace.

We can use veth pairs with OVS to connect network namespaces to OVS (and thus to
any sort of network topology that OVS supports—a physical network or an overlay
network). To do this, we’d use the same basic setup we described earlier to bridge a
network namespace onto the network.

Assuming you have a network namespace named green, then you’d first create the
veth pair, place one of the veth interfaces into the green namespace, and configure
the interface in the green namespace:

[vagrant@centos ~]$ ip link add veth0 type veth peer name veth1
[vagrant@centos ~]$ ip link set veth1 netns green
[vagrant@centos ~]$ ip netns exec green ip addr add 192.168.100.12/24 dev veth1
[vagrant@centos ~]$ ip netns exec green ip link set veth1 up
[vagrant@centos ~]$ ip link set veth0 up

At this point, you have a veth pair (veth0 and veth1), and the veth1 interface has been
assigned to the green interface and given an IP address. Both veth interfaces are also
up (enabled), so that traffic will flow between them. Now, to connect the green net‐
work namespace to OVS, just add veth0 to an OVS bridge. Let’s assume you already
have an OVS bridge named br0, and that bridge also contains the ens33 physical
interface:

[vagrant@centos ~]$ ovs-vsctl add-port br0 veth0
[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 Bridge "br0"
 Port "veth0"
 Interface "veth0"
 Port "br0"
 Interface "br0"
 type: internal
 Port "ens33"
 Interface "ens33"
 ovs_version: "2.4.0"
[vagrant@centos ~]$

You can see that we just used the ovs-vsctl add-port command, along with the
name of the bridge (br0) and the name of the interface to add (veth0). The network
namespace is now connected to OVS (in this particular configuration, we’ve just
bridged the network namespace onto the network connected to the ens33 physical
interface).

Advanced Networking in Linux | 523

Naturally, once you have a network namespace connected to OVS, it can then take
advantage of all of OVS’s features. We’ve only shown you a simple example here.

Now that you’ve seen one way of using network namespaces with OVS, let’s look at a
practical example: using containers with OVS.

Using containers with OVS
Because containers leverage network namespaces, a lot of what we discussed in the
previous section applies here. The key differences are primarily in the container-
specific workflow.

As of this writing, Docker containers did not have a built-in method for connecting
containers to OVS for networking. Although Docker uses veth pairs and has the abil‐
ity to use a Linux bridge, and although OVS has bridges that behave a lot like a Linux
bridge, the glue to connect Docker containers to OVS has not yet materialized. How‐
ever, things are moving very rapidly in this area, and we anticipate that a link between
Docker containers and OVS will appear in the very near future.

LXC, on the other hand, has built-in support for OVS. There are at least two ways to
accomplish this:

• First, if you’re using Libvirt with LXC, you can use a Libvirt virtual network to
frontend an OVS bridge. We describe this process in the next section, “Using
VMs with OVS” on page 525. The use of a Libvirt virtual network is identical,
whether you’re using containers or VMs.

• Alternatively, you can configure LXC to use a script to attach one of the veth
interfaces to OVS.

Let’s take a slightly closer look at that second option. (We’re going to narrow our
focus during this discussion to cover only LXC on Ubuntu.) We mentioned earlier
that, by default, LXC stores container configuration information in /var/lib/lxc/
<container-name>/config, and it’s in this file that you’ll find the configuration options
necessary to link LXC with OVS for networking. We covered a lot of these configura‐
tion options in “Configuring LXC Networking” on page 515, but there’s one setting
that is particularly applicable in this instance.

• The lxc.network.script.up option provides the name of a script that will be
run when a container’s network interface is set to up (enabled). Here is where you
can provide a script that will take the veth pair (whose name is known, since it’s
controlled by the lxc.network.veth.pair directive) and attach it to an OVS
bridge. A (simple) sample script might look something like this:

#!/bin/bash

BRIDGE="br0"

524 | Appendix A: Advanced Networking in Linux

ovs-vsctl --may-exist add-br $BRIDGE
ovs-vsctl --if-exists del-port $BRIDGE $5
ovs-vsctl --may-exist add-port $BRIDGE $5

The $5 refers to the fifth parameter supplied to the script, which—in this specific
case--is the name of the veth interface specified in the lxc.network.veth.pair con‐
figuration option. We haven’t really discussed the --may-exist or --if-exists
options to ovs-vsctl, but their behavior is just as you might expect. The --may-
exist option prevents an error if the bridge or port already exists, while the --if-
exists option takes an action only if the specified object exists.

Using this sort of configuration, LXC will create the veth pair (naming the interfaces
according to the lxc.network.veth.pair configuration directive) and then run this
script. The script will take the veth interface and attach it to the specified OVS bridge,
and the container now has connectivity to OVS and whatever network topologies
OVS is configured to support (bridged or overlay connectivity, for example).

What about using OVS with VMs? In the next section, you’ll see that using VMs with
OVS is generally also pretty straightforward.

Using VMs with OVS
To keep our discussion manageable, we’ll focus (as we have in previous sections) on
the KVM hypervisor with Libvirt. This is by no means a limit on OVS’s part; it’s sim‐
ply a way for us to keep the amount of material manageable.

In “Networking Virtual Machines” on page 502, we introduced you to the concept of
a Libvirt virtual network, which is an abstraction Libvirt uses to refer to lower-level
constructs. For the last few years, Libvirt has offered built-in support for OVS, so that
Libvirt virtual networks can leverage OVS directly.

The following bit of XML would define an OVS-backed Libvirt virtual network:

<network>
 <name>ovs-net</name>
 <forward mode="bridge"/>
 <bridge name="br0"/>
 <virtualport type="openvswitch"/>
</network>

You’d then reference this Libvirt virtual network by name in the KVM guest domain’s
configuration, like the following example (which shows only the networking-relevant
portion of the guest domain’s configuration):

<interface type="network">
 <source network="ovs-net"/>
</interface>

Advanced Networking in Linux | 525

When using this sort of configuration, after the KVM guest domain is started you’ll
see a new interface attached to OVS when you run ovs-vsctl show:

vagrant@trusty:~$ ovs-vsctl show
fe63a9ea-f72f-4aa2-b390-42ecbed6deef
 Bridge "br0"
 Port "eth1"
 Interface "eth1"
 Port "br0"
 Interface "br0"
 type: internal
 Port "vnet0"
 Interface "vnet0"
 ovs_version: "2.0.2"
vagrant@trusty:~$

This is a TAP interface, which you can verify with ip -d link list vnet0 (note the
“tun” in the output, which indicates it is a TUN/TAP device):

vagrant@trusty:~$ ip -d link list vnet0
7: vnet0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master
 ovs-system state UNKNOWN mode DEFAULT group default qlen 500
 link/ether fe:54:00:19:bc:6f brd ff:ff:ff:ff:ff:ff promiscuity 1
 tun
vagrant@trusty:~$

This VM is now bridged onto the physical network attached to eth1, but as with net‐
work namespaces you could leverage any of OVS’s advanced features with this con‐
nection.

So far we’ve shown you connecting network namespaces, containers, and VMs to
OVS. What if we want traffic from the host OVS system itself to flow through OVS?
For that, you can use an OVS internal port.

Using OVS internal ports
OVS internal ports allow you to present a logical network interface to the host’s
TCP/IP stack. In that respect, you can compare OVS internal ports to VLAN inter‐
faces, macvlan interfaces, or veth interfaces—all of these are logical network inter‐
faces. The key difference here is that OVS internal ports only exist within the context
of a particular OVS configuration.

Let’s consider an example. We’ve shown you how to use an OVS bridge named br0 in
the previous two sections. Every OVS bridge comes with a corresponding OVS inter‐
nal port. You’ve seen this already, but you may not have noticed it. Consider this out‐
put of ovs-vsctl show:

vagrant@trusty:~$ ovs-vsctl show
fe63a9ea-f72f-4aa2-b390-42ecbed6deef
 Bridge "br0"
 Port "eth1"

526 | Appendix A: Advanced Networking in Linux

 Interface "eth1"
 Port "br0"
 Interface "br0"
 type: internal
 ovs_version: "2.0.2"
vagrant@trusty:~$

Note that br0 exists as a port, and as an interface with type internal. This is an OVS
internal port, and the fact that ip link list shows the interface proves that the
host’s networking stack recognizes this as a logical network interface.

vagrant@trusty:~$ ip link list br0
6: br0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT
 group default
 link/ether 00:0c:29:7d:38:9d brd ff:ff:ff:ff:ff:ff
vagrant@trusty:~$

If you now delete the OVS bridge with ovs-vsctl del-br br0, what happens when
we try to use ip link list to view the interface?

vagrant@trusty:~$ ip link list br0
Device "br0" does not exist.
vagrant@trusty:~$

This is what we mean when we say that an OVS internal port exists only within the
context of an OVS configuration. It’s not part of the host’s network stack configura‐
tion; rather, it’s part of the OVS configuration. Remove it from OVS, and it is
removed from the host’s network configuration.

You can use this to influence how the host’s networking stack directs traffic. Let’s say
that you wanted to create a logical network interface that would serve as a tunnel
endpoint (TEP) for VXLAN overlay traffic managed by OVS. Here are the commands
you’d use to create an OVS internal port (we’ll break this down after the example):

[vagrant@centos ~]$ ovs-vsctl add-port br0 tep0 -- set interface tep0 type=internal
[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 Port "ens33"
 Interface "ens33"
 Port "tep0"
 Interface "tep0"
 type: internal
 ovs_version: "2.4.0"

The unusual command syntax is needed because OVS expects interfaces to already
exist when they are added to OVS. Naturally, tep0 doesn’t exist, because we’re creating

Advanced Networking in Linux | 527

it. So, we use the double-hyphen to tell OVS to link the commands together—thus
creating the tep0 port and setting its type to internal at the same time.

Note that you can split the commands, if you don’t mind OVS reporting an error first:

[vagrant@centos ~]$ ovs-vsctl add-port br0 tep0
ovs-vsctl: Error detected while setting up 'tep0'. See ovs-vswitchd log for details.
[vagrant@centos ~]$ ovs-vsctl set interface tep0 type=internal
[vagrant@centos ~]$ ovs-vsctl show
e1b45dda-69fa-4cb1-ad37-23eea2e63052
 Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 Port "ens33"
 Interface "ens33"
 Port "tep0"
 Interface "tep0"
 type: internal
 ovs_version: "2.4.0"
[vagrant@centos ~]$

Now that the tep0 interface exists, you can configure it like you would any other logi‐
cal interface. Here, we’ll assign an IP address to the tep0 interface and set the interface
to up (enabled):

[vagrant@centos ~]$ ip link list tep0
10: tep0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
 link/ether 9e:da:79:89:c3:6a brd ff:ff:ff:ff:ff:ff
[vagrant@centos ~]$ ip addr add 10.1.1.100/24 dev tep0
[vagrant@centos ~]$ ip link set tep0 up
[vagrant@centos ~]$ ip route list
default via 192.168.70.2 dev ens32 proto static metric 100
10.1.1.0/24 dev tep0 proto kernel scope link src 10.1.1.100
192.168.70.0/24 dev ens32 proto kernel scope link src 192.168.70.244
192.168.70.0/24 dev ens32 proto kernel scope link src 192.168.70.244 metric
100 [vagrant@centos ~]$

Based on the output of the ip route list command, you can see that the host’s net‐
work configuration has been influenced by the configuration of the OVS internal port
—this CentOS system now has a new route associated with the IP address assigned to
the tep0 interface.

Now let’s see if you really understand how this configuration works: how does the
traffic from tep0 get onto the network? If you said via the ens33 interface, you’re
exactly right! The OVS internal interface is a logical interface that is bridged onto the
physical network via the br0 bridge, which contains the ens33 physical interface.
Likewise, inbound traffic bound for 10.1.1.100/24 will enter the system via the ens33
interface.

528 | Appendix A: Advanced Networking in Linux

This just barely scratches the surface of what is possible with OVS, but it should at
least give you an idea of the basic concepts that are involved. As we mentioned earlier,
OVS is a key part of a number of influential open source projects, so time spent work‐
ing with OVS will pay off in a number of different areas.

Advanced Networking in Linux | 529

APPENDIX B

Using NAPALM

NAPALM, Network Automation and Programmability Abstraction Layer with Multi‐
vendor support, is a Python library that offers a robust set of operations to manage
network devices using a common set of Python objects regardless of how each opera‐
tion is performed for a given device type.

While NAPALM has a growing set of features, we’re focused on two core primary
functions of NAPALM in this section:

• Configuration management
• Retrieving information from network devices

In each of these, note that performing any given operation is the same no matter
which vendor or OS you’re working with, as long as there is a supported NAPALM
driver and feature for the given operation.

NAPALM supports a large quantity of device vendors and uses different APIs to com‐
municate to each of them. For example, Cisco Nexus currently uses NX-API, Arista
EOS uses eAPI, Cisco IOS uses SSH, and the Juniper Junos drivers use NETCONF.
When evaluating NAPALM, you should be aware of which API is required for the
device(s) you’re working with.

For more details on supported APIs and devices, as well as greater detail on topics not
covered in this appendix, consult the NAPALM documentation. For now, we’ll start
by looking at managing configurations with NAPALM.

531

https://napalm.readthedocs.io/en/latest/

Understanding Configuration Management in NAPALM
NAPALM offers a different approach to managing device configurations while still
allowing for a more traditional approach to configuring devices. The unique
approach NAPALM takes is referred to as declarative configuration management.

The sole focus with declarative configuration is what you want the device configura‐
tion to be. This is in stark contrast to worrying about what it is, and how to go from
what it is to what you want it to be. While this is a major benefit and feature of
NAPALM, it’s actually a by-product of particular features that exist on the actual net‐
work devices. A few of these device-centric features include candidate configurations
with Juniper, configuration sessions with Arista, and the config replace feature
with Cisco IOS.

In NAPALM terminology, managing a full configuration in a declarative fashion is a
configuration replace operation.

For a more traditional mode of operations, NAPALM also offers a configuration
merge operation—this is the ability to take a partial configuration or just a few device
commands and ensure they exist on the target network device.

In either case and largely based on the underlying device OS supported, changes only
take place if they’re needed. You’ll get to see this as we walk through a few examples.

We’ll get started with performing a configuration replace.

Performing a Configuration Replace
Performing a configuration replace means that we’re sending the full active configu‐
ration on the device, and the goal is to ensure that particular configuration exists on
the device. In essence, we are declaring what the configuration should be, not worry‐
ing about any “no” or “delete” commands.

Our Arista EOS device, eos-spine1 currently has the following full configuration
(minus a few interfaces we removed to shorten it):

eos-spine1#show run
! Command: show running-config
! device: eos-spine1 (vEOS, EOS-4.15.2F)
!
! boot system flash:vEOS-lab.swi
!
transceiver qsfp default-mode 4x10G
!
hostname eos-spine1
ip domain-name ntc.com
!
snmp-server community networktocode ro
!

532 | Appendix B: Using NAPALM

spanning-tree mode mstp
!
aaa authorization exec default local
!
no aaa root
!
username ntc privilege 15 secret 5 1KergS3bl$RFVho/GXf.3bQHhOCbeky1
!
vrf definition MANAGEMENT
 rd 100:100
!
interface Ethernet1
 no switchport
!
interface Ethernet2
 no switchport
!
interface Ethernet3
 no switchport
!
interface Ethernet4
 no switchport
!
...
!
interface Management1
 vrf forwarding MANAGEMENT
 ip address 10.0.0.11/24
!
ip route vrf MANAGEMENT 0.0.0.0/0 10.0.0.2
!
ip routing
ip routing vrf MANAGEMENT
!
router ospf 100
 router-id 100.100.100.100
 network 10.0.0.10/32 area 0.0.0.0
 network 10.0.1.10/32 area 0.0.0.0
 network 10.0.2.10/32 area 0.0.0.0
 network 10.0.3.10/32 area 0.0.0.0
 network 10.0.4.10/32 area 0.0.0.0
 max-lsa 12000
!
management api http-commands
 protocol http
 no shutdown
 vrf MANAGEMENT
 no shutdown
!
management ssh
 vrf MANAGEMENT
 no shutdown

Using NAPALM | 533

!
!
end
eos-spine1#

In order to perform a configuration replace, we first need to store the configuration
we want to deploy locally on our server. We’ll save this as eos-spine1.conf without
making any changes so it’s exactly what’s on the device.

We’re now ready to redeploy this configuration onto the device.

Before you do anything with NAPALM, you need to load the correct driver and
instantiate a NAPALM device object.

You can easily install NAPALM with pip install napalm.

>>> from napalm import get_network_driver
>>>
>>> driver = get_network_driver('eos')
>>> device = driver('eos-spine1', 'ntc', 'ntc123')
>>>

At this point, device is a variable that is a NAPALM device object. This object has
methods for working with device configurations including performing the configura‐
tion replace operation. This operation is executed with the method
load_replace_candidate().

>>> device.open() # required to load credentials and connect to device
>>> # based on API being used
>>>
>>> device.load_replace_candidate(filename='eos-spine1.conf')
>>>

When load_replace_candidate() is executed, it is only loading the configuration
onto the device. It is not making any changes to the running configuration. For
Arista, the new configuration is loaded into an active session. You can even view this
on the EOS CLI.

eos-spine1#show configuration sessions
Maximum number of completed sessions: 1
Maximum number of pending sessions: 5

 Name State User Terminal
 ------------- ------------- ---------- --------
 napalm_574288 pending

eos-spine1#

534 | Appendix B: Using NAPALM

The Arista EOS NAPALM driver uses configuration sessions for
the configuration management operations within NAPALM. Note
that how the methods operate under the covers within NAPALM is
in fact different per device driver. As mentioned earlier, Juniper
uses candidate configurations, Cisco IOS uses configuration
replace, and Cisco NXOS uses checkpoint files for full config repla‐
ces. How the configuration merge, which we cover next, works may
differ per device too.

At this point the configuration is loaded into an active EOS session. You could also
view the diffs, or the commands that’ll be applied, with a command on the CLI. For
EOS, that command would be show session-config named napalm_574288 diffs.

However, more important is the uniform NAPALM method that retrieves the com‐
mand diffs that’ll be applied to the device. You can use the method compare_con
fig() to see the commands that will get applied.

>>> diffs = device.compare_config()
>>> print(diffs)

>>>

As expected, since we were deploying the same configuration that exists on the
device, there aren’t any diffs. However, if there were diffs, we could add a conditional
check in Python and then commit the configuration to the active running configura‐
tion using the NAPALM method commit_config().

>>> if diffs:
... device.commit_config()
...
>>>

We’ll now walk through an example that actually makes a change. On the EOS device,
there is a single community string in the full config file:

!
snmp-server community networktocode ro
!

We’re going to remove that community from eos-spine1.conf and replace it with two
other commands:

!
snmp-server community ntc ro
snmp-server community secret123 rw
!

Let’s use the same two methods to load the config onto the device and view the diffs.

>>> device.load_replace_candidate(filename='eos-spine1.conf')
>>>

Using NAPALM | 535

>>> diffs = device.compare_config()
>>> print(diffs)
@@ -7,7 +7,8 @@
 hostname eos-spine1
 ip domain-name ntc.com
 !
-snmp-server community networktocode ro
+snmp-server community ntc ro
+snmp-server community secret123 rw
 !
 spanning-tree mode mstp
 !
>>>

Take note of the diff generated and what was in the new configuration file. We did not
send any “no” commands to device. Rather, we deployed the full desired configura‐
tion and EOS calculated the commands that need to be removed and added in order
to apply the configuration. This is a huge difference compared to more traditional
approaches to configuration management.

Finally, if the diffs look good, you can apply (or commit) them using the commit_con
fig() method.

>>> device.commit_config()
>>>

If, for whatever reason, you need to revert to the original configuration, you can use
the built-in method rollback().

>>> device.rollback()
>>>

From a workflow perspective and our examples, we’re exactly back to where we
started with a configuration that has a single SNMP community string.

We’re going to shift now and take a look at only sending a partial configuration to an
Arista switch.

Performing a Configuration Merge
Remember at this point, there is only a single community string on the Arista EOS
switch.

eos-spine1#show run | inc snmp-server
snmp-server community networktocode ro
eos-spine1#

It may be difficult to always build (through Jinja templating) and deploy a full config‐
uration. It’s more realistic for those just starting their automation journey to manage
specific features. In this example, we’re only worrying about SNMP. Thus, we’ve cre‐
ated a configuration file called snmp.conf.

536 | Appendix B: Using NAPALM

In snmp.conf, we’ve put only the two community strings that we want to deploy to the
device.

snmp-server community ntc ro
snmp-server community secret123 rw

We’re now ready to deploy the commands from this file to the device. In order to do
this, we’ll use the load_merge_candiate() method. This method is used when you’re
not sending a full configuration to the device.

>>> device.load_merge_candidate(filename='snmp.conf')
>>>
>>> diffs = device.compare_config()
>>>
>>> print(diffs)
@@ -8,6 +8,8 @@
 ip domain-name ntc.com
 !
 snmp-server community networktocode ro
+snmp-server community ntc ro
+snmp-server community secret123 rw
 !
 spanning-tree mode mstp
 !
>>>

Take note of the diffs generated. Notice how the existing SNMP community is
unchanged. In a configuration merge, the goal is a bit different. It’s ensuring the new
commands exist, but it will not purge or remove any existing configurations.

While a configuration merge does not purge any commands or specific configuration
hierarchy in a declarative fashion, if you know how NAPALM is functioning for a
specific device driver, you can use it to your advantage to manage a specific feature in
a declarative fashion.

For example, let’s manage OSPF using the merge configuration operation. As you saw
before, the current configuration for OSPF is as follows.

eos-spine1#show run section ospf
router ospf 100
 router-id 100.100.100.100
 network 10.0.0.10/32 area 0.0.0.0
 network 10.0.1.10/32 area 0.0.0.0
 network 10.0.2.10/32 area 0.0.0.0
 network 10.0.3.10/32 area 0.0.0.0
 network 10.0.4.10/32 area 0.0.0.0
 max-lsa 12000
eos-spine1#

We’ve created a configuration file called ospf.conf that has the following commands.

Using NAPALM | 537

router ospf 100
 router-id 100.100.100.100
 network 10.0.4.10/32 area 0.0.0.0
 network 10.0.5.10/32 area 0.0.0.0
 max-lsa 12000

Let’s load these commands to device.

>>> device.load_merge_candidate(filename='ospf.conf')
>>>
>>> diffs = device.compare_config()
>>>
>>> print(diffs)
@@ -54,6 +56,7 @@
 network 10.0.2.10/32 area 0.0.0.0
 network 10.0.3.10/32 area 0.0.0.0
 network 10.0.4.10/32 area 0.0.0.0
+ network 10.0.5.10/32 area 0.0.0.0
 max-lsa 12000
 !
 management api http-commands
>>>

As you may have expected, there is only one change, which is the additional new net‐
work statement.

However, since we know the NAPALM driver for Arista EOS is using configuration
sessions (which applies all commands in a session as a single transaction), we can
take advantage of that and declaratively manage the full OSPF configuration. Let’s see
how.

We’ve now created a new OSPF configuration called ospf-2.conf. This is the same con‐
figuration as we previously used, but we’ve simply added the no router ospf 100
commands at the top of the file.

no router ospf 100
router ospf 100
 router-id 100.100.100.100
 network 10.0.4.10/32 area 0.0.0.0
 network 10.0.5.10/32 area 0.0.0.0
 max-lsa 12000

Let’s load this OSPF configuration onto the device and view the diffs.

>>> device.load_merge_candidate(filename='ospf-2.conf')
>>>
>>> diffs = device.compare_config()
>>> print(diffs)
@@ -49,11 +51,8 @@
 !
 router ospf 100
 router-id 100.100.100.100
- network 10.0.0.10/32 area 0.0.0.0

538 | Appendix B: Using NAPALM

- network 10.0.1.10/32 area 0.0.0.0
- network 10.0.2.10/32 area 0.0.0.0
- network 10.0.3.10/32 area 0.0.0.0
 network 10.0.4.10/32 area 0.0.0.0
+ network 10.0.5.10/32 area 0.0.0.0
 max-lsa 12000
 !
 management api http-commands
>>>

You can see that the final configuration for OSPF will end up being exactly what was
in the ospf-2.conf. We did not need to send N “no” commands to remove the un-
desired network statements. In this workflow, the OSPF process was not removed and
readded. There was no drop in OSPF adjacencies. Of course, this is something you’d
want to test yourself too.

Retrieving Data with NAPALM
The second major function delivered by NAPALM is the ability to retrieve informa‐
tion from network devices in a uniform fashion. Any data returned with NAPALM is
normalized and the same for all devices NAPALM supports.

If you recall, when we looked at various APIs in Chapter 7, each vendor or device
returned vendor-specific key-value pairs. The caveat to this is if the device supports
vendor-neutral data models such as YANG models from the OpenConfig working
group that we mentioned in Chapter 5, which isn’t yet too widely adopted by network
vendors.

We still have our device object instantiated. Let’s use the dir() function, which we
originally introduced way back in Chapter 4, to see the methods that the NAPALM
device object supports.

>>> dir(device)
[...omitted methods..., 'cli', 'close', 'commit_config', 'compare_config',
compliance_report', 'config_session', 'device', 'discard_config', 'enablepwd',
'get_arp_table', 'get_bgp_config', 'get_bgp_neighbors',
'get_bgp_neighbors_detail', 'get_config', 'get_environment', 'get_facts',
'get_firewall_policies', 'get_interfaces', 'get_interfaces_counters',
'get_interfaces_ip', 'get_lldp_neighbors', 'get_lldp_neighbors_detail',
'get_mac_address_table', 'get_network_instances', 'get_ntp_peers',
'get_ntp_servers', 'get_ntp_stats', 'get_optics', 'get_probes_config',
'get_probes_results', 'get_route_to', 'get_snmp_information', 'get_users',
'hostname', 'is_alive', 'load_merge_candidate', 'load_replace_candidate',
'load_template', 'locked', 'open', 'password', 'ping', 'port', 'profile',
'rollback', 'timeout', 'traceroute', 'transport', 'username']
>>>

Using NAPALM | 539

You’ll see the two methods we covered earlier, load_merge_candidate() and
load_replace_candidate(), but you’ll also see that the majority of methods are get_
methods used to retrieve information from network devices.

We’re going to review a few of these now.

The first one we’re going to look at is called get_facts(). This is used to retrieve
common information from the device, such as OS, uptime, interfaces, vendor, model,
hostname, and FQDN.

>>> device.get_facts()
{u'os_version': u'4.15.2F-2663444.4152F', u'uptime': 15645,
u'interface_list': [u'Ethernet1', u'Ethernet2', u'Ethernet3', u'Ethernet4',
u'Ethernet5', u'Ethernet6', u'Ethernet7', u'Management1'],
u'vendor': u'Arista', u'serial_number': u'', u'model': u'vEOS',
u'hostname': u'eos-spine1', u'fqdn': u'eos-spine1.ntc.com'}
>>>

The great thing about the data that is returned is structured exactly the same no mat‐
ter which vendor you’re using within NAPALM. In this case, NAPALM is normaliz‐
ing and doing the heavy lifting, making it so you don’t need to integrate/translate
each vendor you’re working with. NAPALM is already doing that for you.

Let’s take a look at a few more examples. The get_snmp_information() function
retrieves a dictionary that summarizes the SNMP configuration present on a device:

>>> device.get_snmp_information()
{u'community': {u'networktocode': {u'mode': u'ro', u'acl': u''}}, u'contact': u'',
u'location': u'', u'chassis_id': u''}
>>>

The get_lldp_neighbors() function provides a dictionary that summarizes a list of
currently seen LLDP neighbors, on a per-interface basis:

>>> device.get_lldp_neighbors()
{u'Ethernet2': [{u'hostname': u'eos-spine2.ntc.com', u'port': u'Ethernet2'}],
u'Ethernet3': [{u'hostname': u'eos-spine2.ntc.com', u'port': u'Ethernet3'}],
u'Ethernet1': [{u'hostname': u'eos-spine2.ntc.com', u'port': u'Ethernet1'}],
u'Ethernet4': [{u'hostname': u'eos-spine2.ntc.com', u'port': u'Ethernet4'}],
u'Management1': [{u'hostname': u'eos-spine2.ntc.com', u'port': u'Management1'},
{u'hostname': u'vmx2', u'port': u'fxp0'}, {u'hostname': u'vmx1', u'port': u'fxp0'},
{u'hostname': u'csr2.ntc.com', u'port': u'Gi1'}, {u'hostname': u'csr1.ntc.com',
u'port': u'Gi1'}]}
>>>

Both of these functions return a dictionary. We can create a small script to consume
and print the LLDP neighbors dictionary in a human-friendly format:

>>> for interface, neighbors in device.get_lldp_neighbors().items():
... print("INTERFACE: " + interface)
... print("NEIGHBORS: ")
... for neighbor in neighbors:

540 | Appendix B: Using NAPALM

... print(" - {}".format(neighbor['hostname']))

...
INTERFACE: Ethernet2
NEIGHBORS:
 - eos-spine2.ntc.com
INTERFACE: Ethernet3
NEIGHBORS:
 - eos-spine2.ntc.com
INTERFACE: Ethernet1
NEIGHBORS:
 - eos-spine2.ntc.com
INTERFACE: Ethernet4
NEIGHBORS:
 - eos-spine2.ntc.com
INTERFACE: Management1
NEIGHBORS:
 - eos-spine2.ntc.com
 - vmx2
 - vmx1
 - csr2.ntc.com
 - csr1.ntc.com
>>>

There are other NAPALM functions that work in a similar way. Understanding the
output format of each of these functions is a good first step to being able to perform
further tasks based on the current state of the network.

NAPALM Integrations
NAPALM can be used to build custom Python applications. As you’ve seen, at its
core, it is a Python library. However, due to the openness of NAPALM and extensibil‐
ity of other open source Python projects, NAPALM is also heavily used within other
tools, such as Ansible, Salt, and StackStorm.

Using NAPALM in Ansible
NAPALM integrations in Ansible come in the form of Ansible modules. This was also
mentioned in the Ansible section in Chapter 9.

There are two primary Ansible modules that map back to what we discussed in this
section with regard to NAPALM managing configuration and retrieving device con‐
figurations. They are called napalm_install_config, used to perform configuration
replace and configuration merge operations, and napalm_get_facts, used as a wrap‐
per for any get_ method supported by NAPALM.

Let’s take a look at an example using napalm_install_config.

 - name: DEPLOY CONFIGURATIONS WITH NAPALM
 napalm_install_config:

Using NAPALM | 541

 hostname: "{{ inventory_hostname }}"
 username: "{{ un }}"
 password: "{{ pwd }}"
 dev_os: "{{ os }}"
 config_file: configs/snmp.conf
 diff_file: diffs/{{ inventory_hostname }}-snmp.diffs
 commit_changes: True
 replace_config: False

The napalm_install_config modules support a number of parameters, several being
self-explanatory, including hostname, username, and password. The next few are
defined as follows:

dev_os

OS, device driver of NAPALM for the device being managed (e.g., eos, ios,
junos)

config_file

File that has the configuration commands to be loaded onto the network device

diff_file

File on the Ansible server that’ll have the diffs generated from the compare_con
fig() method

commit_changes

Boolean value and if True, the commit_config() method will be executed. You
can set it so commands are not applied if you just want to see the diffs.

replace_config

Boolean value and if True, the load_replace_candidate() method is executed,
else if False, the load_merge_candidate() method is executed.

If you’ve properly installed the NAPALM Ansible modules, you can also use the
ansible-doc utility to see more examples using the NAPALM modules:

ntc@ntc:~$ ansible-doc napalm_install_config
output omitted
ntc@ntc:~$ ansible-doc napalm_get_facts
output omitted

As we said earlier, we did not cover NAPALM YANG integrations
in this section. There are Ansible modules for that as well, which
are out of the scope of this book.

542 | Appendix B: Using NAPALM

Using NAPALM in Salt
Salt is a little different than Ansible when it comes to NAPALM integrations in that
everything we showed with regard to Salt in Chapter 9 used NAPALM.

NAPALM is natively integrated to Salt and is the most popular network driver for
managing network devices with Salt.

Here are a few of the integrations that you’ll find more detail about as you read the
Salt section in Chapter 9.

There is a specific proxy minion integration for NAPALM. Here is a sample configu‐
ration:

proxy:
 proxytype: napalm
 driver: nxos
 fqdn: nxos-spine1.dc.amers
 username: ntc
 password: ntc123

Each NAPALM getter maps to one or more specific Salt execution modules that are
used to retrieve information from devices.

Retrieve NTP statistics from the device with a minion ID of vmx1:

$ sudo salt vmx1 ntp.stats
output omitted

Retrieve the active BGP neighbors from the device with a minion ID of vmx1:

$ sudo salt vmx1 bgp.neighbors
output omitted

There is also a state function in Salt called netconfig.managed that is performing the
configuration replace and merge functions we reviewed earlier.

For example, suppose there was an SLS state file called ntp.sls that contained the fol‐
lowing:

ntp_peers_example:
 netconfig.managed:
 - template_name: salt://ntp_template.j2
 - debug: true

You can apply the configuration generated from the template to the device using the
salt CLI, but the main point as you view the following output is that you can see the
diffs. These diffs are the same ones you’d see when using the compare_config()
method with NAPALM.

$ sudo salt vmx1 state.apply ntp
vmx1:

Using NAPALM | 543

 ID: ntp_peer_example
 Function: netconfig.managed
 Result: True
 Comment: Configuration changed!
 Started: 10:48:16.160777
 Duration: 4331.08 ms
 Changes:

 diff:
 [edit system ntp]
 + peer 10.10.10.1;
 + peer 10.10.10.3;
 + peer 10.10.10.2;
 - peer 1.2.3.4;
 - peer 5.6.7.8;
 loaded_config:
 delete system ntp peer 1.2.3.4
 delete system ntp peer 5.6.7.8
 set system ntp peer 10.10.10.1
 set system ntp peer 10.10.10.3
 set system ntp peer 10.10.10.2

Summary for vmx1

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1
Total run time: 4.331 s

Using NAPALM in StackStorm
As also covered in Chapter 9, there is also a NAPALM integration in StackStorm. The
NAPALM integration to StackStorm comes in the form of a StackStorm pack.

Here is a list of actions supported via the StackStorm pack:

vagrant@st2vagrant:~$ st2 action list --pack=napalm -a ref
+--------------------------------------+
| ref |
+--------------------------------------+
| napalm.bgp_prefix_exceeded_chain |
| napalm.check_consistency |
| napalm.cli |
| napalm.configuration_change_workflow |
| napalm.get_arp_table |
| napalm.get_bgp_config |
| napalm.get_bgp_neighbors |
| napalm.get_bgp_neighbors_detail |
| napalm.get_config |
| napalm.get_environment |
| napalm.get_facts |

544 | Appendix B: Using NAPALM

| napalm.get_firewall_policies |
| napalm.get_interfaces |
| napalm.get_lldp_neighbors |
| napalm.get_log |
| napalm.get_mac_address_table |
| napalm.get_network_instances |
| napalm.get_ntp |
| napalm.get_optics |
| napalm.get_probes_config |
| napalm.get_probes_results |
| napalm.get_route_to |
| napalm.get_snmp_information |
| napalm.interface_down_workflow |
| napalm.loadconfig |
| napalm.ping |
| napalm.traceroute |
+--------------------------------------+

As you can see by now, these map directly back to specific NAPALM device object
methods you saw earlier in this section.

And here is how you’d get facts using the StackStorm st2 CLI:

vagrant@st2vagrant:~$ st2 run napalm.get_facts hostname=vsrx01
output omitted

You can, of course, use the data in actual StackStorm workflows, which we show in
Chapter 9.

Using NAPALM | 545

Index

Symbols
!= (does not equal to) expression, 105
(hash sign), 43, 157
$ (dollar sign), 43
% (modulus operator), 102
* (multiplication operator), 101
--- (triple hyphens), 155
-i parameter, 48
-r parameter, 48, 49
.. (two periods), 44
./ command, 47
/ (root) directory, 41
: (colon), 117
; (semicolon), 99
== (equal to) expression, 105
\n (End of Line) character, 99
{} (curly braces), 98, 169
~ (tilde), 42
… (ellipsis), 155

A
absolute paths, 44
Accept header, 215
Accton, 12
Actions (StackStorm), 437, 440-450
Active Networks, 3
Address Resolution Protocol (ARP), 42
advanced data structures, 154
Ansible

vs. Ansible Tower, 360
automating Linux servers, 360
automating network devices, 361
benefits of, 396
check mode, verbosity, and limit, 382

compliance checks, 388
configuration templates, 376
inventory files, 361-368
Jinja templates, 377
Linux and, 35
modules, basics of, 370
modules, common core network, 375
modules, config, 381
modules, debug, 385
modules, facts, 384
modules, third-party, 393-396
network automation using, 375-393
network configuration files, 379
overview of, 359
playbooks, 368-372
provider parameter, 371
register task attribute, 386
report generation, 390-393
role in device provisioning, 21
show commands, 386
using NAPALM in, 394, 541
variable files, 373-374, 376
writing data to files, 386

append() method, 107
Application Programming Interfaces (APIs)

(see also network APIs)
basics of, 28, 289
constructing proper requests, 220, 229
NETCONF, 30, 204-213, 220-229
RESTful APIs, 31, 200
Simple Network Management Protocol

(SNMP), 23, 28, 485
SSH/Telnet and the CLI, 29

Application Virtual Switch (AVS), 8

547

application-specific integrated circuits (ASICs),
2

Arista eAPI, 243-249
Arista Networks, 10
arp utility, 42
arrays, 154
artifacts, defined, 291
ASA RESTful API, 214
automation tools (see also CI pipeline)

Ansible, 359-396
overview of, 357-359
Salt, 359, 396-436
StackStorm, 359, 436-455

B
background services/processes (see daemons)
bare repositories (Git), 344
bare-metal switching, 11-13
bash (Bourne Again Shell), 41
bash shell scripts, 53
beacons (Salt), 428
Big Cloud Fabric (BCF), 14
Big Switch Networks, 12, 14, 35
BitKeeper, 294
block statement, 195
boolean values, 95, 102-105, 154
branches (Git), 321-333
bridging (switching), 77-83, 502-505
build automation

benefits of, 475
example of, 475-479
overview of, 474

Build versus Buy paradigm, 490
built-in methods (Python), 90
buy-in, importance of, 489

C
candidate configuration datastores, 205
Canonical Ltd., 39
Casado, Martin, 1, 3
cd (change directory) command, 43
cd - notation, 45
CentOS

availability and use of, 37
default prompt in, 43
working with daemons, 59

certifications, 495
Change Approval Board (CAB), 469
change management, 457

(see also Continuous Integration (CI))
changes, tracking with source control, 292
check mode (Ansible), 382
chgrp command, 52
chmod utility, 51
chown (change ownership) command, 52
CI pipeline

build automation, 474-479
defined, 461
deployment tools, 482-484
overview of, 467
peer review, 468-473
staging environments, 479-482
testing tools, 484-486

Cisco
Application Centric Infrastructure (ACI), 14
Application Virtual Switch (AVS), 8
ASA RESTful API, 214
IOS-XE, 273-275
IWAN, 14
Nexus 1000V, 8
Nexus NX-API, 233-243

CLI (command-line interface), 29
cloning (Git), 340-341
CloudGenix, 14
colon (:), 117
comments and questions, xix
commits (Git), 295
commit_config(), 535
commodity switching, 11-13
compare_config(), 535, 543
compliance, 25
compound matching (Salt), 410
conditionals (Jinja), 185-191
conditionals (Python), 117-119
config modules (Ansible), 381
configuration file (Salt), 415
configuration management

defined, 25
evolution of, 28-33
one vs. separate configuration files, 77
per-interface configuration files, 68
using NAPALM, 531-545
using Salt, 416-425

configuration merge operation, 532, 536-539
(see also NAPALM)

configuration replace operation, 532-536 (see
also NAPALM)

548 | Index

configuration templates (see network configu‐
ration templates)

contact information, xix
containment (Python), 119
Content-Type header, 215
Continuous Deployment, 463
Continuous Integration (CI)

basics of, 461-463
benefits of for networking, 466
challenges of, 457-460
CI pipeline for, 467-486
Continuous Delivery (CD), 463
goals of, 460
networking CI pipeline, 458
prerequisites to adopting, 459
test-driven development (TDD), 464-466

control plane, 1, 6
controller networking, 15
count() method, 96, 108
cp command, 49, 298
Cumulus Networks, 12, 35
cURL command-line tool, 213-215
curly braces ({}), 98, 169

D
daemons

in CentOS 7.1, 59
in Debian GNU/Linux 8.1, 56
in Ubunto Linux 14.04 LTS, 58
overview of, 55
presenting process information to, 60
showing network connections to, 60

Data Center Network Fabrics, 13
data formats

defined, xiv, 151, 176
JSON, 167-171
overview of, 151-154
types of data, 153
XML, 160-167
YAML, 154-160

data models
defined, 151, 176
in JSON, 171
in XSD, 161-163
in YAML, 159
in YANG, 172-176
key facts of, 172
language selection, 176

data plane, 1, 6

data retrieval
data collection example, 23
push model of, 23
using NAPALM, 539-541

data types (generic), 153-154
data types (Python)

boolean values, 102-105
dictionaries, 111-115
lists, 105-110
numbers, 100-102
overview of, 90
sets and tuples, 115-117
strings, 91-100

Debian
Debian package format, 39
history of, 39
working with daemons, 56

debug module (Ansible), 385
declarative configuration, 257-259, 532 (see

also configuration management)
DELETE requests, 202
dependencies, defined, 38
deployment tools, 482-484
development environments, 479-482
device APIs, 10
device provisioning, 20-22
DevOps, 496
dictionaries

accessing and iterating over values, 114
accessing key-value pairs, 112
accessing lists of keys and values, 113
built-in methods of, 112
converting lists to, 111
overview of, 111, 154
removing values from, 113
updating information in, 113

dict[key], 111
dir() function, 92, 107, 539
directories (see files and directories (Linux))
distributed version control system (DVCS), 310

(see also Git; source control)
Django, 179
dnf (Dandified YUM), 38
Docker, 483, 514, 516, 524
does not equal to != expression, 105
dollar sign ($), 43
double periods (..), 44
dynamic routing protocol, 77

Index | 549

E
eAPI, 10
ellipsis (…), 155
else if (elif) statements, 118
embracing failure, 492
End of Line (EOL) character, 99
endswith() method, 94
engines (Salt), 429
enumerate function, 125
environment variables, 55
equal to == expression, 105
errata, xix
execute permission, 50-54
execution modules (Salt), 408
executive buy-in, 489
Extensible Stylesheet Language Transforma‐

tions (XSLT), 163-167

F
facts modules (Ansible), 384
failover testing, 486
failure, embracing, 492
Fedora, 37
file utility, 53
files (Python)

reading, 130-132
writing to, 132-134

files and directories (Linux)
cd (change directory) command, 43
changing permissions, 49-52
creating, 46-48
deleting, 48
filesystem navigation, 41-46
home directory, 42
moving one directory up (..), 44
moving, copying, and renaming, 49
paths, 42-46
pwd (print working directory) command,

43
root permissions, 43
specifying current directory, 46
switching to last directory, 45

filters (Jinja), 191-195
for loop, 122-125
forking (Git), 351
format() method, 97
Forwarding and Control Element Separation

(ForCES), 3
functions (Python), 126-129

functions, vs. methods, 106 (see also individual
functions)

G
Genshi, 179
Gerrit, 470
GET requests, 202
get() method, 112
get_facts(), 540
get_lldp_neighbors(), 540
get_snmp_information(), 540
Git, 294-355

adding files to repositories, 298
architecture, 296
bare repositories, 344
branching, 321-333
changing and committing tracked files, 303
cloning repositories, 340-341
collaborating using online services, 351-355
collaborating with, 334-351
command overview, 350
commits, 295
commits amendments, 303
commits best practices, 302
committing changes to repositories, 300,

301
comparing file versions, 317
excluding files from repositories, 309-313
forking, 351
HEAD pointer reference, 307
history of, 294
index, 295
installing, 297
providing user information to, 300
pull requests, 354, 471
remotes, 335
repositories, 295
repository creation, 297
shared repositories, 343
terminology used in, 295
unstaging files, 306
viewing repository information, 313
working directory, 295

git add command, 299, 301, 304, 308
git branch command, 326
git cat-file command, 315, 316
git checkout command, 327
git clone --bare command, 345
git clone command, 340

550 | Index

git commit -a command, 305
git commit -m command, 305
git commit command, 301, 304
git config command, 300
git diff command, 317
git fetch --prune command, 349
git help <command>, 306
git init command, 298
git log --oneline command, 312, 314
git log command, 301, 311, 313, 314
git ls-tree command, 312, 315
git merge command, 330
git pull command, 339
git push command, 347
git remote -v command, 343
Git remote add command, 336
git remote command, 335
git remote update command, 336
git reset command, 308
git status command, 299, 301, 304, 307
GitHub, 351-355, 470
GitLab, 470, 490
Glue Networks, 14
Go, 179
grains (Salt), 407
group permissions, 49-52

H
hash sign (#), 43, 157
hash tables/maps, 154
help() function, 93
home directory, 42
HTTP-based APIs

Accept header, 215
Content-Type header, 215
cURL command-line tool, 213-215
HTTP request types, 202
HTTP response codes, 203
non-RESTful APIs, 203
Postman tool, 215-220
RESTful APIs, 200-203
types of, 200

I
idempotency, 381
if name == “main”: statement, 136
if statements, 117
if-elif-else statements, 121
include statement, 195

index (Git), 295
index value, 106, 109
index() method, 109
infrastructure-as-code practices, 437, 469
init scripts, 55
insert() method, 107
int (integer) data type, 100-102, 153
Interactive Interpreter (Python), 88-90
interfaces (see also macvlan interfaces)

configuration via command line, 61-65
configuration via configuration files, 65-68
types supported, 60
VLAN interfaces, 68-71

inventory files (Ansible), 361-368
IOS-XE, 261
IP address management (IPAM), 22, 403
ip command

connecting network namespaces with veth
pairs, 512

creating macvlan interfaces, 500
executing commands in network namespa‐

ces, 511
interface configuration via, 61-65
placing interfaces in namespaces, 509
routing as an end host, 71
VLAN interface configuration, 69

iproute2 utilities, 61
ipvlan interfaces, 516
isdigit() method, 96
IT certifications, 495
items() method, 114
IWAN, 14

J
Jenkins, 475
Jinja

benefits of, 181
block statement, 195
conditionals and loops, 185-191
dynamic data insertion, 182
filters, 191-195
include statement, 195
rendering templates in Python, 183-185
switchport configuration, 186-191
template inheritance in, 195-196
templates in Ansible, 377
variable creation in, 196

Jinja2 library, 183
join() method, 98

Index | 551

JSON (JavaScript Object Notation)
basics of, 167-169
curly braces, 169
data models in, 171
in Python, 170
JSON Schema, 171

Juniper’s Contrail, 9

K
key-value pairs, 154
keys() method, 113
KVM hypervisor, 502, 525

L
len() function, 106
Libvirt virtualization API, 502, 525
limit (Ansible), 382
Linux

applications of, 40
automating servers using Ansible, 360
benefits of understanding, 35
distributions available, 37-40
distributions covered, xvii
file and directory manipulation, 46-52
filesystem navigation, 41-46
history of, 36
interfaces, 60-71
Linux bridge, 77-83, 502-505
macvlan interfaces, 499-502
network namespaces, 507-514
networking Linux containers, 514-517, 524
Open vSwitch (OVS) and, 517-529
package format, 38
routing as a router, 75-77
routing as an end host, 71-75
running programs, 52-55
shebang, 53
shells, 41
Vagrant environments for, 43
virtual machine networking, 502-507
working with daemons, 55-60

lists
accessing individual elements of, 106, 143
appending elements to, 107
built-in methods of, 107
converting to dictionaries, 111
counting objects in, 108
creating, 105
creating empty, 107

inserting elements in, 107
overview of, 154
removing elements from, 109
sorting, 110

load_merge_candiate(), 537, 540
load_replace_candidate(), 534, 540
loops (Jinja), 185-191
loops (Python)

enumerate function, 125
for loop, 122-125
iterating over dictionaries with, 114
overview of, 121
while loop, 121

lower() method, 93
ls utility, 51
LXC (LinuX Containers), 514, 524
LXML library, 160

M
macvlan interfaces

creating, configuring, and deleting, 500
use cases for, 500
vs. VLAN interfaces, 499

macvtap interfaces, 506
Mako, 179
man (manual) command, 49
management information bases (MIBs), 23
mathematical operators, 100-102
McKeown, Nick, 1
merge requests (GitLab), 471
methods (Python), 90
methods, vs. functions, 106 (see also individual

methods)
migrations, 24
mkdir (make directory) command, 46
modules (Ansible), 370, 375
modules (Python), 138-140
modules (Salt), 408, 435
modulus operator (%), 102
multiplication operator (*), 101
mv command, 49

N
NAPALM (Network Automation and Pro‐

grammability Abstraction Layer with Multi‐
vendor support)
Ansible modules, 394
benefits of, 531
configuration management in, 532-539

552 | Index

data retrieval with NAPALM, 539-541
documentation, 531
integrations using, 541-545
using netmiko with, 289
vendor and OS support, 531

napalm_get_facts, 541
napalm_install_config, 541
ncclient library (Python)

exploring ncclient replies, 265-268
get method, 261
installing, 259
IOS-XE configuration changes, 273-275
IOS-XE device configurations, 261
IOS-XR configuration changes, 280-281
issuing NETCONF API calls, 260
Juniper vMX Junos configuration, 270-273,

277-280
Manager object, 260
minimizing response data, 268-270
NETCONF delete operation, 275
NETCONF replace operation, 276
NETCONF replies, 263-265
NETCONF vendor-specific operations,

282-283
NETCONF

capabilities, 212
configuration datastores in, 205
constructing proper requests, 229
content, 212
delete operation using ncclient, 275
interactive NETCONF sessions, 220-229
IOS-XE and, 249-259
messages in, 207
operations, 207-211
overview of, 30, 204, 290
protocol stack, 206
transport mechanism, 206
vendor-specific operations, 282-283
]]>]]> characters, 222

netmiko
benefits of, 284
checking available methods, 285
data collection example, 23
entering configuration mode, 286
establishing SSH connections, 285
importing device objects, 284
installing, 142, 284
reasons for SSH use, 284
send commands, 286-289

verifying device prompt, 285
network APIs (see also Application Program‐

ming Interfaces (APIs))
device APIs, 10
HTTP-based, 200-204, 213-220
NETCONF, 30, 204-213, 220-229
netmiko, 284-289
network automation using, 229-289
overview of, 28-33, 289
Python ncclient library, 259-283
Python requests library, 230-259
RESTful APIs, 31, 200-203

network automation (see also automation
tools)
benefits of, 18-20
benefits of source control for, 293
benefits of templates for, 177, 180
building and nurturing a culture for,

487-493
challenges of, 458, 460
continued human role in, 458, 496
defined, xiii
guidelines for template use, 196
network APIs, 28-32, 229-289
open networking impact, 32
overview of topics covered, 17
prerequisites to learning, xvi-xvii, 493-496
recommendations for instituting, 19, 25,

459-460
role in software defined networks, 10
skills and education enhancing, 493-496
Software Defined Networking (SDN) and,

33
types of, 20-28

network configuration templates
in Ansible, 376
applications of, 178, 180
benefits of, 177, 180
components required, 178
guidelines for use, 196
Jinja templates, 181-196
role in device provisioning, 20-22
template inheritance, 195-196
web development using, 179
XSLT templates, 163-167

network design, 459
Network Functions Virtualization (NFV), 6-8
network management system (NMS), 22
Network Management System (NMS), 29

Index | 553

network modeling languages, 172-176
network namespaces

connecting with veth pairs, 512
connection with OVS, 523
creating and removing, 508
executing commands in, 511
interface placement in, 509
in Linux, 507
use cases for, 507

network operating systems (NOSes), 35
network programmability

defined, xiii
prerequisites to learning, xvi-xvii

network protocols, 152
network virtualization, 9
Nexus 1000V, 8
Nexus NX-API, 10
non-RESTful APIs, 203
NTC (Network to Code) modules, 394, 482
Nuage’s Virtual Service Platform (VSP), 9
numbers, using in Python, 100-102

O
object-oriented programming, 185
octothorpe (#), 43
On Demand Labs, 482
Open Network Linux (ONL), 35
open networking, 32
Open vSwitch (OVS)

benefits of, 517
configuring, 519-522
installing, 518
role in software defined networks, 8
workload connections, 522-529

OpenCompute Project (OCP), 35
OpenDaylight (ODL), 15
OpenFlow, 1-5, 6
organizational strategy

build vs. buy, 490
embracing failure, 492
importance of executive buy-in, 489
transforming old-world organizations, 488

overlay networks, 9

P
package format, 38
packages (Python), 141
packet forwarding, 1
Packs (StackStorm), 438

passwords, 310
PATCH requests, 202
patches, 468

(see also Continuous Integration (CI))
Path Computation Element (PCE), 3
paths

absolute paths, 44
customizing, 55
denoting, 42
relative paths, 44
search paths, 47, 54

pay-as-you-grow model, 7
peer review process, 468-473
pepper library, 427
permissions, 49-52
Pica8, 12
pillars (Salt), 402
pip command, 141
playbooks (Ansible), 368-372
Plexxi’s fabric and hyperconverged network, 14
Policy Based Routing, 3
pop() method, 109, 113
POST requests, 202
Postman, 215-220
print command, 102
programs (Python)

creating, 134
if name == “main”: statement, 136
migrating code from Interpreter, 137
shebang, 135

prompt, 42
provider parameter (Ansible), 371
proxy minions (Salt), 398
ps command, 60
Publisher ACL system, 433
pull requests (Git), 354, 471
PUT requests, 202
pwd (print working directory) command, 43
pyeapi library, 249
Python

benefits of understanding, 85
classes, 185
conditionals, 117-119
containment, 119
data types, 90-117
files, 129-134
four-space indent, 118
functions, 126-129
Interactive Interpreter, 88-90

554 | Index

loops, 121-125
modules, 138-140
ncclient library, 259-283
packages, 141
pepper library, 427
programs, 134-138
rendering Jinja templates in, 183-185
requests library, 229-259
scripts, 134, 140-141
tips and tricks, 143-149
working with JSON in, 170

Python Package Index (PyPI), 141

Q
Quanta, 12
questions and comments, xix

R
reactors (Salt), 430
read/write permission, 49-52
Red Hat Enterprise Linux (RHEL), 37
relative paths, 44
release engineers, 463
remote procedure call (RPC), 207
remotes (Git), 335-340
render() function, 184
reporting, 26
repositories (Git), 295, 297-321
requests library (Python)

applications for, 229
Arista eAPI, 243-249
benefits of, 230
Cisco Nexus NX-API, 233-243
GET request example, 230
installing, 230
sending data, 232
updating interface descriptions, 232

response codes, 203
REST (REpresentational State Transfer)

architectural constraints of, 201
basics of RESTful APIs, 200-202
Cisco ASA RESTful API, 214
defined, 31
HTTP request types, 202
HTTP response codes, 203

RESTCONF API
API calls using, 250
API responses, 253
benefts of, 249-259

consuming using Python, 256
enabling, 250
HTTP support, 250
Postman tool and, 274
PUT and PATCH verbs, 254
vs. RESTful APIs, 250

revision control, 291
(see also source control)

rm command, 48
rmdir command, 48
rollback procedures, 464
rollback(), 536
root (/) directory, 41
root permissions, 43
Routing Control Platform (RCP), 3
RPM Manager, 38
Ruby, 179
Rules (StackStorm), 438, 452

S
Salt

architecture, 397-400
automating network devices, 399
beacons, 428
benefits of, 436
best practices, 433
cache, 434
collecting device data, 409
engines, 429
event driven infrastructure, 427-432
execution modules, 408
extension modules, 435
grains, 407
logging, 434
master configuration file, 415
module output options, 412
network configurations using, 416-425
overview of, 359, 396
pepper library, 427
pillars, 402
proxy minions, 398
Publisher ACL system, 433
reactors, 430
remote execution, 425
role in device provisioning, 21
Salt API, 426
Salt master and Salt minions, 397
salt-ssh package, 398
sending data to external services, 413

Index | 555

SLS file format, 400
small database queries (SDB), 433
states, 414
sys.doc option, 411
targeting and compound matching, 410
Thorium, 431
top file, 403
topology diagram, 400
troubleshooting, 411
using NAPALM in, 543

scripts (Python), 140-141
creating, 134

SDB (small database queries), 433
search paths, 47, 54
semicolon (;), 99
Sensors (StackStorm), 438, 450
service command, 55
set data type, 115
shebang, 53, 135
shell (Python), 88
show commands (Ansible), 386
Silverpeak, 14
Simple Network Management Protocol

(SNMP), 23, 28, 485
single-root filesystem, 41
skills and education, 493-496
SLS file format (Salt), 400
small database queries (SDB), 433
Snap, 485
Software Defined Networking (SDN)

defined, 5
network automation and, 33
rise of, 1-5, 16
technologies and trends in, 5-16

Software Defined Wide Area Networking (SD-
WAN), 14

sort() method, 110
source control

benefits of, 291
change tracking using, 292
in CI pipelines, 469
effect on networking, 293
increased accountability using, 292
process and workflow benefits of, 293
use cases for, 291
using Git for, 294-355

split() method, 98
ss command, 60
SSH/Telnet, 29

StackStorm
actions and workflows, 440-450
architecture, 439
benefits of, 455
concepts, 437
documentation, 441
overview of, 359, 436
rules, 452
sensors and triggers, 450
using NAPALM in, 439, 442-450, 544
webhooks, 450

staging environments, 464, 479-482
startswith() method, 94
states (Salt), 414
streaming telemetry, 23
strings

comparing non-case sensitive, 93
concatenating, 92, 145
count() method, 96
formatting, 97
help feature, 93
joining and splitting, 98
overview of, 153
removing whitespace, 95
using, 91
verifying characters in, 94
verifying numbers in, 96
viewing available methods, 92

strip() method, 95
Super Micro, 12
Switch Light, 35
switchport configuration, 186-191
symbolic links, 59
symbolic notation, 51
systemd, 56

T
TAP device, 503-505
targeting (Salt), 410
telemetry, gathering detailed, 485
Telnet/SSH, 29
templates (see network configuration tem‐

plates)
Test-Driven Development (TDD), 464-466
testing environments, 479-482
testing tools, 484-486
Thorium, 431
tilde (~), 42
ToDD, 485

556 | Index

top file (Salt), 403
touch command, 46-48
Tox, 479
tracking changes, 292
Triggers (StackStorm), 438, 450
triple hyphens (---), 155
troubleshooting, 26-28
truth tables, 102
try/except statements, 144
tuple data type, 116, 154
type function, 92, 100
typographical conventions, xvii

U
Ubuntu Linux, 39, 58
update() method, 113
updates, 468

(see also Continuous Integration (CI))
upper() method, 93
user permissions, 49-52

V
Vagrant, 43, 479-482
values() method, 113
variable files (Ansible), 373-374, 376
VeloCloud, 14
verbosity (Ansible), 382
version control, 291, 469

(see also source control)
Viptela, 14
Virtual Ethernet pairs (veth pairs), 512
Virtual eXtensible LAN (VxLAN), 9
virtual machines (VMs), 502-507, 525
Virtual Routing and Forwarding (VRF), 507
virtual switching, 8
VLAN interfaces, 68-71
VMware distributed switch (VDS), 8
VMware standard switch (VSS), 8
VMware’s NSX, 9

W
web development, templates for, 179
webhooks (StackStorm), 450

which command, 55
while loop, 121
white-box switching, 11-13
whitespace, removing, 95
Wide Area Networking (WAN), 14
Workflows (StackStorm), 437, 440-450
working directory (Git), 295

X
XML (eXtensible Markup Language)

basics of, 160-161
benefits of, 160
data models using XSD, 161-163
Junos representation, 152
searching using XQuery, 167
transforming with XSLT, 163-167

XML Schema Definition (XSD), 161-163
XQuery, 167

Y
YAML (YAML Ain't Markup Language)

basics of, 154-158
data models in, 159
device provisioning example, 21
double curly braces in, 22
ellipsis, 155
hash sign, 157
three hyphens, 155
YAML from Python, 158

YANG
benefits of, 176
key facts of data models, 172
leaf statement, 173
leaf-list statement, 174
list statement, 174
overview of, 172-173
YANG containers, 175

yum (Yellowdog Updater, Modified), 38

Z
zero touch provisioning (ZTP), 15
ZeroMQ, 427

Index | 557

About the Authors
Jason Edelman, CCIE 15394 & VCDX-NV 167, is a born and bred network engineer
from the great state of New Jersey. He was the typical “lover of the CLI” or “router
jockey.” At some point several years ago, he made the decision to focus more on soft‐
ware, development practices, and how they are converging with network engineering.
Jason currently runs a boutique consulting firm, Network to Code, helping vendors
and end users take advantage of new tools and technologies to reduce their opera‐
tional inefficiencies. Jason has a Bachelor’s of Engineering from Stevens Institute of
Technology in New Jersey and still resides locally in the New York City metro area.
Jason also writes regularly on his personal blog at jedelman.com and can be found on
Twitter as @jedelman8.

Scott S. Lowe is an engineering architect at VMware, Inc. He currently focuses on
cloud computing and network virtualization after having spent a number of years
specializing in compute virtualization. Scott has authored a number of technical
books on vSphere and OpenStack, and shares technical content regularly on his blog
at blog.scottlowe.org. He lives in Denver, Colorado, with his wife and the two youngest
of their seven kids.

Matt Oswalt is a network software developer, working on the technical and non-
technical challenges at the intersection of software development and network infra‐
structure. He is at his happiest in front of a keyboard, next to a brewing kettle, or
wielding his silo-smashing sledgehammer. He publishes his work in this area and
more at keepingitclassless.net, and on Twitter as @Mierdin.

Colophon
The animal on the cover of Network Programmability and Automation is a gavial
crocodile (Gavialis gangeticus). This reptile can be found in two countries: India,
along the Chambal, Girwa, and Son Rivers; and Nepal, along the Narayani River. The
gavial’s name originated from the knob of tissue that grows on the tip of the male’s
snout called a ghara, the Hindi word for pot.

The gavial is easily distinguishable from other crocodiles because of its long, slender
snout and narrow, sharp teeth. It feeds primarily on small fish and crustaceans. It
herds fish toward the shore, and stuns them using an underwater jaw clap. It does not
chew its prey, but swallows it whole. This species rarely attacks humans, but with 110
interdigitated teeth, you don’t want to get too close.

This crocodile is very long, measuring 13–20 ft (4–6 m). The color ranges from olive
green to brown-gray with a light underside. It reaches maturity at 8–12 years. Males
use their gharas to vocalize and blow bubbles during mating displays. Females make

http://jedelman.com/
https://twitter.com/jedelman8
http://blog.scottlowe.org
http://keepingitclassless.net
https://twitter.com/Mierdin

nests in the sand banks and guard the eggs for 83–94 days, then tend to the hatchlings
for several months.

The preferred habitat of the gavial is high-banked rivers with clear, fast-flowing water
and deep pools. Since the mid-1900s, the gavial’s numbers have declined as much as
98 percent due to hunting for traditional medicine and drastic changes to their fresh‐
water habitats.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Braukhaus Lexicon. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	What This Book Covers
	How This Book Is Organized
	Who Should Read This Book
	Network Engineers
	Systems Administrators
	Software Developers

	Tools Used in this Book
	Online Resources
	Conventions Used in This Book
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Network Industry Trends
	The Rise of Software Defined Networking
	OpenFlow
	What Is Software Defined Networking?

	Summary

	Chapter 2. Network Automation
	Why Network Automation?
	Simplified Architectures
	Deterministic Outcomes
	Business Agility

	Types of Network Automation
	Device Provisioning
	Data Collection
	Migrations
	Configuration Management
	Compliance
	Reporting
	Troubleshooting

	Evolving the Management Plane from SNMP to Device APIs
	Application Programming Interfaces (APIs)
	Impact of Open Networking

	Network Automation in the SDN Era
	Summary

	Chapter 3. Linux
	Examining Linux in a Network Automation Context
	A Brief History of Linux
	Linux Distributions
	Red Hat Enterprise Linux, Fedora, and CentOS
	Debian, Ubuntu, and Other Derivatives
	Other Linux Distributions

	Interacting with Linux
	Navigating the Filesystem
	Manipulating Files and Directories
	Running Programs
	Working with Daemons

	Networking in Linux
	Working with Interfaces
	Routing as an End Host
	Routing as a Router
	Bridging (Switching)

	Summary

	Chapter 4. Learning Python in a Network Context
	Should Network Engineers Learn to Code?
	Using the Python Interactive Interpreter
	Understanding Python Data Types
	Learning to Use Strings
	Learning to Use Numbers
	Learning to Use Booleans
	Learning to Use Python Lists
	Learning to Use Python Dictionaries
	Learning About Python Sets and Tuples

	Adding Conditional Logic to Your Code
	Understanding Containment
	Using Loops in Python
	Understanding the while Loop
	Understanding the for Loop

	Using Python Functions
	Working with Files
	Reading from a File
	Writing to a File

	Creating Python Programs
	Creating a Basic Python Script
	Understanding the Shebang
	Migrating Code from the Python Interpreter to a Python Script

	Working with Python Modules
	Passing Arguments into a Python Script
	Using pip and Installing Python Packages
	Learning Additional Tips, Tricks, and General Information When Using Python
	Summary

	Chapter 5. Data Formats and Data Models
	Introduction to Data Formats
	Types of Data

	YAML
	Reviewing YAML Basics
	Working with YAML in Python
	Data Models in YAML

	XML
	Reviewing XML Basics
	Using XML Schema Definition (XSD) for Data Models
	Transforming XML with XSLT
	Searching XML Using XQuery

	JSON
	Reviewing JSON Basics
	Working with JSON in Python
	Using JSON Schema for Data Models

	Data Models Using YANG
	YANG Overview
	Taking a Deeper Dive into YANG

	Summary

	Chapter 6. Network Configuration Templates
	The Rise of Modern Template Languages
	Using Templates for Web Development
	Expanding On the Use of Templates

	The Value of Templates in Network Automation
	Jinja for Network Configuration Templates
	Why Jinja?
	Dynamically Inserting Data into a Basic Jinja Template
	Rendering a Jinja Template File in Python
	Conditionals and Loops
	Jinja Filters
	Template Inheritance in Jinja
	Variable Creation in Jinja

	Summary

	Chapter 7. Working with Network APIs
	Understanding Network APIs
	Getting Familiar with HTTP-Based APIs
	Diving into NETCONF

	Exploring Network APIs
	Exploring HTTP-Based APIs
	Exploring NETCONF

	Automating Using Network APIs
	Using the Python requests Library
	Using the Python ncclient Library
	Using netmiko

	Summary

	Chapter 8. Source Control with Git
	Use Cases for Source Control
	Benefits of Source Control
	Change Tracking
	Accountability
	Process and Workflow

	Benefits of Source Control for Networking
	Enter Git
	Brief History of Git
	Git Terminology
	Overview of Git’s Architecture

	Working with Git
	Installing Git
	Creating a Repository
	Adding Files to a Repository
	Committing Changes to a Repository
	Changing and Committing Tracked Files
	Unstaging Files
	Excluding Files from a Repository
	Viewing More Information About a Repository
	Distilling Differences Between Versions of Files

	Branching in Git
	Creating a Branch
	Checking Out a Branch
	Merging and Deleting Branches

	Collaborating with Git
	Collaborating Between Multiple Systems Running Git
	Collaborating Using Git-Based Online Services

	Summary

	Chapter 9. Automation Tools
	Reviewing Automation Tools
	Using Ansible
	Understanding How Ansible Works
	Constructing an Inventory File
	Executing an Ansible Playbook
	Using Variable Files
	Writing Ansible Playbooks for Network Automation
	Using Third-Party Ansible Modules
	Ansible Summary

	Automating with Salt
	Understanding the Salt Architecture
	Getting Familiar with Salt
	Managing Network Configurations with Salt
	Executing Salt Functions Remotely
	Diving into Salt’s Event-Driven Infrastructure
	Diving into Salt a Bit Further
	Salt Summary

	Event-Driven Network Automation with StackStorm
	StackStorm Concepts
	StackStorm Architecture
	Actions and Workflows
	Sensors and Triggers
	Rules
	StackStorm Summary

	Summary

	Chapter 10. Continuous Integration
	Important Prerequisites
	Simple Is Better
	People, Process, and Technology
	Learn to Code

	Introduction to Continuous Integration
	Basics of Continuous Integration
	Continuous Delivery
	Test-Driven Development
	Why Continuous Integration for Networking?

	A Continuous Integration Pipeline for Networking
	Peer Review
	Build Automation
	Test/Dev/Staging Environment
	Deployment Tools
	Testing Tools and Test-Driven Network Automation

	Summary

	Chapter 11. Building a Culture for Network Automation
	Organizational Strategy and Flexibility
	Transforming an Old-World Organization
	The Importance of Executive Buy-in
	Build Versus Buy

	Embracing Failure
	Skills and Education
	Learn What You Don’t Know
	Focus on Fundamentals
	Certifications?
	Won’t Automation Take My Job?!

	Summary

	Appendix A. Advanced Networking in Linux
	Using macvlan Interfaces
	Use Cases for macvlan Interfaces
	Creating, Configuring, and Deleting macvlan Interfaces

	Networking Virtual Machines
	Using a Bridge
	Using macvtap Interfaces

	Working with Network Namespaces
	Use Cases for Network Namespaces
	Creating and Removing Network Namespaces
	Placing Interfaces in a Network Namespace
	Executing Commands in a Network Namespace
	Connecting Network Namespaces with veth Pairs

	Networking Linux Containers
	Configuring LXC Networking
	Configuring Docker Networking

	Using Open vSwitch
	Installing OVS
	Configuring OVS
	Connecting Workloads to OVS

	Appendix B. Using NAPALM
	Understanding Configuration Management in NAPALM
	Performing a Configuration Replace
	Performing a Configuration Merge

	Retrieving Data with NAPALM
	NAPALM Integrations
	Using NAPALM in Ansible
	Using NAPALM in Salt
	Using NAPALM in StackStorm

	Index
	About the Authors
	Colophon

