
Generic Data
Structures and
Algorithms in Go

An Applied Approach Using Concurrency,
Genericity and Heuristics
—
Richard Wiener

Generic Data Structures
and Algorithms in Go

An Applied Approach Using
Concurrency, Genericity

and Heuristics

Richard Wiener

Generic Data Structures and Algorithms in Go

ISBN-13 (pbk): 978-1-4842-8190-1 ISBN-13 (electronic): 978-1-4842-8191-8
https://doi.org/10.1007/978-1-4842-8191-8

Copyright © 2022 by Richard Wiener

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Jim Markham
Coordinating Editor: Gryffin Winkler

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub at http://github.com/Apress/Generic-Data-Structures-and-Algorithms-in-Go.

Printed on acid-free paper

Richard Wiener
Colorado Springs, CO, USA

https://doi.org/10.1007/978-1-4842-8191-8

This book is dedicated to my wife Hanne.

v

Chapter 1: A Tour of Generics and Concurrency in Go �� 1

1.1 Brief History and Description of Go ... 1

1.2 Introducing Generic Parameters ... 2

Adding a New Student by Name .. 3

Adding a New Student by ID Number .. 4

Adding a New Student by Student Struct .. 5

Introducing Generics ... 6

Stringer Type ... 8

Constrained Generic Type .. 8

Implementing an Interface .. 9

Instantiating a Generic Type .. 9

Unconstrained Generic Type any ... 9

Benefits of Generics .. 10

Using Go’s Sort Package.. 11

Sort Type .. 12

Map Functions ... 15

Making MyMap Generic ... 16

Filter Functions .. 16

Making MyFilter Generic ... 17

Table of Contents
About the Author ���xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

vi

1.3 Concurrency .. 19

Goroutine ... 19

WaitGroup .. 21

The Channel ... 24

Select Statement ... 26

Use a quit Channel to Avoid Using WaitGroup .. 26

Channel Direction .. 28

Race Condition .. 30

Mutex ... 31

Playing Chess Using Goroutines .. 32

Fibonacci Numbers Using Goroutines ... 35

1.4 Benchmarking Concurrent Applications .. 37

Generating Prime Numbers Using Concurrency .. 42

Sieve of Eratosthenes Algorithm ... 42

Segmented Sieve Algorithm .. 46

Concurrent Sieve Solution ... 50

1.5 Summary... 54

Chapter 2: Algorithm Efficiency: Sorting and Searching �� 55

2.1 Describing the Speed Efficiency of an Algorithm .. 55

Working with Big O .. 55

Determining Whether a Slice of Numbers Is Sorted .. 56

Using Concurrency .. 60

2.2 Sorting Algorithms .. 64

Bubblesort Algorithm ... 64

Quicksort Algorithm ... 66

Big O Analysis .. 68

Worst Case for Quicksort ... 68

Comparing Bubblesort to Quicksort ... 69

Concurrent Quicksort ... 70

Mergesort Algorithm .. 75

Table of ConTenTs

vii

Concurrent Mergesort ... 78

Conclusions ... 82

2.3 Searching Array Slices .. 82

Linear Searches ... 83

Concurrent Searches ... 84

Binary Searches .. 87

2.4 Summary... 89

Chapter 3: Abstract Data Types: OOP Without Classes in Go ���������������������������������� 91

3.1 Abstract Data Type Using Classes ... 91

3.2 Abstract Data Types in Go ... 94

ADT Counter... 94

Creating a counter Package .. 98

Mechanics of Creating a Package ... 98

Another Example of Implementing an ADT .. 101

Using Composition ... 103

3.3 Polymorphism ... 106

Using Interfaces to Achieve Polymorphism ... 107

3.4 OOP Application: Simplified Game of Blackjack .. 109

3.5 Another OOP Application: Permutation Group of Words .. 117

Using the Standard map Data Structure .. 117

3.6 Summary... 121

Chapter 4: ADT in Action: Game of Life ��� 123

4.1 Game ... 123

Rules of Grid Cell Evolution ... 123

4.2 ADT for Grid ... 128

4.3 Console Implementation of the Game ... 128

4.4 GUI Implementation of the Game of Life ... 135

Creating go.mod file .. 138

Program Output ... 138

4.5 Summary... 140

Table of ConTenTs

viii

Chapter 5: Stacks ��� 141

5.1 Stack ADT .. 141

5.2 Slice Implementation of Generic Stack ... 142

The Get Zero Function ... 145

Why T Is Declared As Ordered ... 145

5.3 Node Implementation of a Generic Stack ... 149

5.4 Compare the Efficiency of Node and Slice Stacks .. 153

5.5 Stack Application: Function Evaluation ... 156

Postfix Evaluation .. 157

We Walk Through Algorithm .. 160

Evaluating Postfix Expression .. 162

5.6 Converting Decimal Number to Binary .. 164

5.7 Maze Application ... 166

Efficient Strategy for Maze Path Using a Stack ... 166

Building Infrastructure for Maze Application ... 167

Completed Maze App ... 176

5.8 Summary... 185

Chapter 6: Queues and Lists ��� 187

6.1 Queue ADT... 188

6.2 Implementation of Slice Queue ... 188

Iterator ... 190

6.3 Implementation of Node Queue .. 191

6.4 Comparing the Performance of Slice and Node Queue ... 194

6.5 Deque .. 195

6.6 Deque Application ... 198

6.7 Priority Queue ... 203

6.8 Queue Application: Discrete Event Simulation of Waiting Line .. 207

Poisson Process .. 207

Simulation Logic .. 208

Implementation of System .. 209

Table of ConTenTs

ix

6.9 Queue Application: Shuffling Cards ... 215

Card Shuffling Model ... 216

6.10 Linked Lists ... 219

6.11 Singly Linked List .. 220

6.12 Doubly Linked List ... 228

Benefit of Double Linking .. 235

6.13 Summary... 236

Chapter 7: Hash Tables ��� 237

7.1 Map ... 237

Hash Encryption .. 239

7.2 How Fast Is a Map? ... 240

7.3 Building a Hash Table .. 244

Create an Empty Hash Table .. 245

Insertion into Hash Table ... 245

Collisions and Collison Resolution ... 246

Load Factor .. 246

Determining Whether a Key Is Present .. 246

Comparing the Performance of Hash Table with Standard Map .. 247

7.4 Hash Application: String Search .. 250

Rolling Hash Computation ... 251

Rabin-Karp Algorithm .. 252

7.5 Generic Set.. 256

7.6 Summary... 263

Chapter 8: Binary Trees �� 265

8.1 Binary Trees .. 265

8.2 Tree Traversal .. 266

Inorder Traversal .. 266

Preorder Traversal ... 267

Postorder Traversal .. 267

8.3 Draw Tree .. 267

Binary Tree Structure ... 269

Table of ConTenTs

x

Infrastructure Used to Display Binary Tree .. 269

Explanation of Code ... 271

Implementation of ShowTreeGraph ... 273

Creating go.mod Files in Subdirectories binarytree and main .. 283

8.4 Summary... 286

Chapter 9: Binary Search Tree �� 287

9.1 Overview ... 287

Searching .. 288

Insertion .. 289

Ordered Output .. 289

Deletion ... 290

9.2 Generic Binary Search Tree ... 291

Type OrderedStringer ... 291

Generic Types Needed for Binary Search Tree ... 291

Methods for Binary Search Tree .. 293

Discussion of Insert, Delete, and Inorder Traversal .. 294

Support Functions ... 295

Implementation of Tree Graphics ... 297

Discussion of binarysearchtree Package and Main Driver .. 313

9.3 Summary... 314

Chapter 10: AVL Trees ��� 315

10.1 Overview: Adelson Velsky and Landis ... 315

Tree Rotations .. 316

Insertion .. 317

Deletion ... 318

Facts About AVL Trees .. 319

10.2 Implementation of a Generic AVL Tree .. 320

Explanation of avl Package.. 332

Discussion of Main Driver Results ... 338

Table of ConTenTs

xi

10.3 Set Using Map, AVL, and Concurrent AVL .. 339

Implementation of Set Using Map, AVL Tree, and Concurrent AVL Tree 341

Explanation of Concurrent AVL Set .. 343

Comparing the Three Set Implementations ... 343

Discussion of Results .. 346

10.4 Summary... 347

Chapter 11: Heap Trees ��� 349

11.1 Heap Tree Construction ... 349

11.2 Deletion from a Heap Tree ... 351

11.3 Implementation of a Heap Tree ... 352

Logic for Building a Heap Tree ... 352

Package Heap .. 353

Explanation of Package heap .. 356

11.4 Heap Sort .. 358

Discussion of heapsort Results ... 360

11.5 Heap Application: Priority Queue ... 360

11.6 Summary... 362

Chapter 12: Red-Black Trees �� 363

12.1 Red-Black Trees .. 363

Definition of Red-Black Tree .. 363

Example of Red-Black Tree .. 364

12.2 Insertion Process .. 364

Detailed Walk-Through of Many Insertions ... 367

12.3 Implementation of Red-Black Tree .. 373

Comparing the Performance of Red-Black Tree to AVL Tree .. 384

Benchmark Conclusion .. 384

12.4 Summary... 385

Chapter 13: Expression Trees ��� 387

13.1 Expression Trees ... 387

13.2 Construction of an Expression Tree ... 389

Table of ConTenTs

xii

Building a New Expression Tree .. 389

Explanation of Function NewTree .. 390

Function Evaluation Using Expression Tree ... 391

Explanation of Method Evaluate .. 391

13.3 Implementation of ShowTreeGraph ... 396

13.4 Summary... 399

Chapter 14: Ecological Simulation with Concurrency �� 401

14.1 Overview ... 401

14.2 Specifications ... 402

Mackerel .. 402

Tuna ... 403

Shark ... 403

Output .. 404

14.3 The Design .. 406

14.4 The Implementation .. 406

Data Model for Each Species ... 406

Discussion of Code .. 407

Support Functions ... 408

Discussion of Code .. 409

Required Methods for Mackerel to Be of Type MarineLife ... 409

Discussion of Code .. 411

Move Method for Shark .. 412

Discussion of Code .. 413

Move Method for Tuna ... 414

Output Function for the Graphical Display of Critters .. 416

Discussion of Code .. 418

Full Implementation of Simulation ... 418

14.5 Summary... 425

Table of ConTenTs

xiii

Chapter 15: Dynamic Programming ��� 427

15.1 Example of Dynamic Programming: nth Fibonacci Number .. 427

Top-Down Dynamic Programming ... 428

Bottom-Up Dynamic Programming .. 428

Recursive Solution ... 429

Discussion of Code .. 431

15.2 Another Application: 0/1 Knapsack Problem ... 432

Brute-Force Solution ... 432

Discussion of Code .. 433

Dynamic Programming Solution .. 433

Discussion of Code .. 434

Discussion of Code .. 436

15.3 DNA Subsequences ... 437

Discussion of Code .. 440

15.4 Summary... 440

Chapter 16: Graph Structures ��� 441

16.1 Representing Graphs... 441

16.2 Traversing Graphs ... 442

16.3 Depth- and Breadth-First Search .. 442

Depth-First Search .. 444

Breadth-First Search ... 445

16.4 Single-Source Shortest Path in Graph .. 451

Implementation ... 452

Explanation of Solution .. 455

16.5 Minimum Spanning Tree ... 457

Kruskal Algorithm .. 457

16.6 Implementation of Kruskal Algorithm ... 458

Explanation of Kruskal Implementation .. 464

16.7 Summary... 464

Table of ConTenTs

xiv

Chapter 17: Travelling Salesperson Problem �� 465

17.1 Travelling Salesperson Problem and Its History .. 465

17.2 An Exact Brute-Force Solution .. 466

Finding Permutations .. 467

Brute-Force Computation for TSP .. 469

Discussion of Code .. 472

Other Solutions .. 473

17.3 Displaying a TSP Tour .. 473

Discussion of Code .. 475

17.4 Summary... 476

Chapter 18: Branch-and-Bound Solution to TSP ��� 477

18.1 Branch and Bound for TSP .. 477

An Example .. 478

Computation of Lower Bound .. 478

Branch-and-Bound Algorithm .. 479

The Priority Queue ... 480

A Walk-Through Part of the Five-City Example Presented Earlier 480

18.2 Branch-and-Bound Implementation .. 481

Implementation of Priority Queue .. 483

Generating Branch-and-Bound Solution .. 485

Data for main ... 490

Results ... 490

18.3 Summary... 491

Chapter 19: Simulated Annealing Heuristic Solution to TSP �������������������������������� 493

19.1 Combinatorial Optimization ... 493

Heuristic Solutions .. 494

19.2 Simulated Annealing ... 495

Simulated Annealing Steps .. 495

Problem of Convergence to Local Minimum Rather Than Global Minimum 496

Table of ConTenTs

xv

19.3 Implementation of Simulated Annealing ... 497

Discussion of Code .. 516

Results ... 516

Displaying Final Results .. 516

Lines Crossing ... 517

19.4 Summary... 521

Chapter 20: Genetic Algorithm for TSP ��� 523

20.1 Genetic Algorithm .. 523

High-Level Description of Genetic Algorithm ... 523

More Detailed Description of Genetic Algorithm .. 524

20.2 Implementation of Genetic Algorithm ... 525

Step 1 – Form an Initial Population of Random Tours ... 525

Step 2 – Form an Elite Group of Best Tours ... 526

Step 3 – Tournament Selection ... 527

Step 4 – Mating of Parents .. 527

Form Next Generation .. 531

Putting the Pieces Together ... 534

20.3 Summary... 547

Chapter 21: Neural Networks and Machine Learning ��� 549

21.1 Overview of Neural Networks and Machine Learning ... 549

Training .. 550

Neural Networks .. 550

Perceptron ... 551

Schematics of Neural Networks .. 552

A Neuron .. 553

21.2 A Concrete Example .. 553

21.3 Constructing a Neural Network ... 554

Matrices That Represent Network ... 554

Table of ConTenTs

xvi

21.4 Neural Network Implementation ... 555

Estimating the Partial Derivatives of Cost with Respect to Each Weight 560

21.5 Output from Neural Network ... 568

21.6 Summary... 572

 Index ��� 573

Table of ConTenTs

xvii

About the Author

Richard Wiener, PhD, authored or coauthored 22

professional, software development, and computer science

textbooks published by Wiley, Addison-Wesley, Prentice

Hall, Cambridge University Press, and Thompson.

He served as founding Editor-in-Chief of the Journal of

Object-Oriented Programming for 12 years and, later,

founding Editor-in- Chief of the Journal of Object Technology

for 9 years. He worked as Associate Professor of Computer

Science at the University of Colorado Colorado Springs

(UCCS) from 1977 to 2012. He served as Department

Chair during the last four years at UCCS. He also served

as consultant and software developer for IBM, HP, Boeing,

Tektronix, DEC, and many other companies. He presented

industry short courses all over the world from 1980 to 2006.

He earned a BS and an MS in Electrical Engineering from the City University of New York

and PhD from the Polytechnic Institute of New York.

xix

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer

using Microsoft technologies. He works for Bluarancio (www.bluarancio.com).

He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified

Application Developer for .NET, a Microsoft Certified Professional, and a prolific

author and technical reviewer. Over the past ten years, he’s written articles for Italian

and international magazines and coauthored more than ten books on a variety of

computer topics.

http://www.bluarancio.com

xxi

Acknowledgments

The author thanks the reviewers at Apress including Gryffin Winkler and James

Markham; the technical reviewer, Fabio Claudio Ferracchiati; and Steve Anglin for

signing the book.

xxiii

Introduction

This book is aimed at practicing Go software developers and students who wish to

experience the excitement and see the benefits of data structures and algorithms in

action. Because of its clean and readable syntax, outstanding support for concurrency

and generics, and execution speed, Go was chosen to present the implementations of

the data structures and algorithms along with many applications. It is assumed that the

reader has basic familiarity with Go. The numerous code listings and their explanations

will hopefully serve to improve your programming skills using Go.

The latest version of Go, Version 1.18, features genericity (generic and constrained

generic parameters for data types and functions). This long-awaited addition to the Go

language is ideally suited for use in building reusable data structure packages. Prior

to Go Version 1.18, separate implementations of data structures and their associated

algorithms were limited to a particular data type. So, for example, a list containing

information of type int would have to be reimplemented if the underlying type was, for

example, changed to float64 or to a more complex user-defined custom type. With the

new Version 1.18 of Go, generic and constrained generic data types remove this severe

restriction. Generic and constrained generic data types will be featured throughout this

book, and all source listings will use Version 1.18 of Go.

Computer science, like many sciences, has many areas of specialization – network

security, e-commerce, general web application development, graphics, game design,

database applications, encryption, natural language processing, text analysis, compiler

design, operating systems, simulation, machine learning, and AI, just to name a few.

Knowledge of the effective design and use of data structures and algorithms are useful in

these areas of specialization and are therefore a fundamental part of computer science

and software development methodology.

Over the years and because of application development in the areas mentioned

and not mentioned previously, a consensus has emerged about which data structures

and algorithms have the greatest utility. Nothing is static in this area, so new data

structures and algorithms are being designed. The task of successfully advancing and

moving ahead as a developer is greatly enhanced by studying the great works already

established. The goal of education is learning how to learn. In the context of this book,

xxiv

the great works are the data structures and accompanying algorithms that have been

shown to have utility in a large variety of computation problem domains.

This is not a theoretical book laden with formal proofs. There are many such books

already available. For the data structures presented, not every use case is included. It

is hoped and expected that after focusing on the major data structures and associated

algorithms presented, the reader will be better prepared to extend their knowledge

as they move forward in creating or discovering new data structures and algorithms.

It is also hoped that by presenting a variety of problems that are solved by hitching a

ride with one or more of the data structures and algorithms introduced, the reader will

appreciate the power that mastery of this subject matter brings to the table of software

development.

The use of concurrency in implementing data structures is a major feature of this

book. Concurrent implementations are utilized whenever appropriate throughout

the book.

Chapter 1 presents a tour of generics and concurrency in Go.

Chapters 2 through 16 present classic data structures and algorithms and show them

in action. These include sorting and searching, stack, queue, lists, deque, hash table,

binary search tree, AVL tree, red-black tree, heap, expression tree, and graph. Many

examples and applications are presented. Dynamic programming and branch-and-

bound algorithms are used to solve classic problems such as shortest path in a graph and

minimum spanning tree.

Chapter 17 introduces combinatorial optimization problems and focuses on the

famed Travelling Salesperson Problem (TSP). Exact solutions are intractable both

in memory and execution time. A brute-force solution is presented in Chapter 17. A

branch-and-bound solution is presented in Chapter 18. This sets the stage for Chapters

19 and 20, which present heuristic solutions to this problem.

Chapter 19 presents a simulated annealing heuristic solution, which is shown to be

very effective in solving large TSP problems.

Chapter 20 presents a genetic algorithm, another effective heuristic solution to TSP.

Chapter 21 introduces machine learning and neural networks. A neural network is

constructed from scratch and used to train a network to evaluate medical test results.

In summary, this book will

• Explore classical data structures and algorithms aimed at making

your applications run faster or require less storage

• Use the new generic features of Go to build reusable data structures

InTroduCTIon

xxv

• Utilize concurrency for maximizing application performance

• See the power of heuristic algorithms for computationally intractable

problems

• Enhance and improve your Go programming skills

InTroduCTIon

1

CHAPTER 1

A Tour of Generics and
Concurrency in Go
This chapter introduces the syntax and semantics of generics in Go. Many coding

examples are presented that illustrate this new and powerful feature of Go. This sets the

stage for the continued use of generics throughout the book.

Concurrency in Go is also reviewed in this chapter. Many coding examples are

presented along with benchmarks that contrast the performance of algorithms with

and without concurrency. This also sets the stage for the continued use of concurrency

throughout the book.

1.1 Brief History and Description of Go
Go is a relatively new programming language released in late 2009 and developed at

Google by Robert Griesemer (a Swiss computer scientist who helped create Google’s V8

JavaScript engine), Rob Pike (a Canadian computer scientist and part of the Unix team at

Bell Labs and creator of the Limbo programming language), and Ken Thompson (creator

of the Unix operating system and the B programming language).

The Go programming language is sometimes called Golang. Why? The domain “go.

org” wasn’t available at the time the language was released, so golang.org (a mix of Go

and language) was born. The official name of the language is Go, but the Twitter tag is

#golang. Go figure!

One of the major goals in creating Go was to produce an easily readable, strong, and

statically typed language with garbage collection and fast compilation and execution

speed particularly suited for concurrent applications.

The goroutine is a lightweight process that requires less memory overhead than a

normal thread seen in other languages such as Java and C#. A concurrent Go program

may spawn thousands of goroutines running on a much smaller number of threads.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_1

https://doi.org/10.1007/978-1-4842-8191-8_1

2

The channel construct (to be explained later in this chapter) allows information to be

passed into and taken out of goroutines and is used to synchronize these concurrent

lightweight processes. Although parallel processing is not the primary objective of

goroutines, they can be used to approximate this on a shared memory multiprocessor

computer.

Go is a platform-independent language that runs on various Unix platforms

including MacOS and also runs on MS Windows. Go applications compile to a binary

executable so they can be distributed to a customer without having to package an

interpreter and runtime libraries as is the case with Python and other interpreted

languages.

Go, like many recent languages, is a public open source project. There are a bevy of

free tools that are downloadable. New packages are constantly being released, so much

of the power of the language resides outside the language in the plethora of high-quality

packages available to the programmer. In this sense, Go is like Python.

Among the tools that are available are high-quality editors, debuggers, and IDEs.

Go requires a prescribed format, so the gofmt tool is often integrated into various code

editors. Having a standard code format provides a huge advantage to Go programming

teams as well as solo programmers inspecting the code written by others.

So what is missing in Go? What is its downside? Up until the most recent and

perhaps most important new release, Version 1.18, Go lacked genericity. With this new

release of Go, this major shortcoming is gone.

Now one can build an algorithm or data structure that does not have to be modified

every time the underlying information to be stored changes. Data structure and

algorithm implementations can focus on the core logic needed to manipulate the

information. A new syntax associated with generics allows a programmer to precisely

describe the requirements that data must satisfy to be stored in a particular data

structure. This furthers a programmer’s ability to have a program specify its intent in the

code itself. The use of constrained and unconstrained generic parameters is introduced

and illustrated in the next section.

1.2 Introducing Generic Parameters
In this section, we present a series of examples that introduce and illustrate the use of

generic-type parameters, both unconstrained and constrained.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

3

In the first several code listings, we present a set of related problems of adding a new

student to an existing slice of students. First, we add just the name of the student to our

existing slice. Next, we add the student’s ID number to a slice containing ID numbers.

Next, we add a struct containing name, ID, and age to an existing slice of structs. Then

finally, we bring generics on stage and show the simplification that is achievable using a

generic-type parameter.

 Adding a New Student by Name
Consider the simple Go application given in Listing 1-1.

Listing 1-1. A slice of students

package main

import(

 "fmt"

)

func addStudent(students []string, student string) []string {

 return append(students, student)

}

func main() {

 students := []string{} // Empty slice

 result := addStudent(students, "Michael")

 result = addStudent(result, "Jennifer")

 result = addStudent(result, "Elaine")

 fmt.Println(result)

}

/*

Output:

[Michael Jennifer Elaine]

*/

The function addStudent takes a slice of string representing the current collection of

students as the first parameter and a string representing a new student to be added to the

collection as the second parameter. The append function is used to add the new student

to the existing slice, and that result is returned.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

4

 Adding a New Student by ID Number
Suppose we wish to specify the slice of students using their ID number, an int, instead of

their name, a string.

We would need to modify Listing 1-1 as shown in Listing 1-2.

Listing 1-2. Adding student IDs

package main

import(

 "fmt"

)

func addStudent(students []string, student string) []string {

 return append(students, student)

}

func addStudentID(students []int, student int) []int {

 return append(students, student)

}

func main() {

 students := []string{} // Empty slice

 result := addStudent(students, "Michael")

 result = addStudent(result, "Jennifer")

 result = addStudent(result, "Elaine")

 fmt.Println(result)

 students1 := []int{} // Empty slice

 result1 := addStudentID(students1, 155)

 result1 = addStudentID(result1, 112)

 result1 = addStudentID(result1, 120)

 fmt.Println(result1)

}

/* Output

[Michael Jennifer Elaine]

[155 112 120]

*/

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

5

The logic in function addStudentID is essentially the same as in function

addStudent. Only the base type of the slice is changed from string to int.

 Adding a New Student by Student Struct
And to take this one step further, suppose we define a Student type as

type Student struct {

 Name string

 ID int

 age float64

}

and we modify Listing 1-2 as shown in Listing 1-3.

Listing 1-3. Adding Student type to the mix

package main

import(

 "fmt"

)

type Student struct {

 Name string

 ID int

 age float64

}

func addStudent(students []string, student string) []string {

 return append(students, student)

}

func addStudentID(students []int, student int) []int {

 return append(students, student)

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

6

func addStudentStruct(students []Student, student Student) []Student {

 return append(students, student)

}

func main() {

 students := []string{} // Empty slice

 result := addStudent(students, "Michael")

 result = addStudent(result, "Jennifer")

 result = addStudent(result, "Elaine")

 fmt.Println(result)

 students1 := []int{} // Empty slice

 result1 := addStudentID(students1, 155)

 result1 = addStudentID(result1, 112)

 result1 = addStudentID(result1, 120)

 fmt.Println(result1)

 students2 := []Student{} // Empty slice

 result2 := addStudentStruct(students2, Student{"John", 213, 17.5})

 result2 = addStudentStruct(result2, Student{"James", 111, 18.75})

 result2 = addStudentStruct(result2, Student{"Marsha", 110, 16.25})

 fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[155 112 120]

[{John 213 17.5} {James 111 18.75} {Marsha 110 16.25}]

*/

Having to add a new function each time we wish to add a new underlying data

type to our various student collections is tedious and a major downside to earlier

versions of Go.

 Introducing Generics
Enter Go, Version 1.18, that introduces support for generics.

A generic solution to this problem is presented in Listing 1-4.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

7

Listing 1-4. Generic solution to problem

package main

import (

 "fmt"

)

type Stringer = interface {

 String() string

}

type Integer int

func (i Integer) String() string {

 return fmt.Sprintf("%d", i)

}

type String string

func (s String) String() string {

 return string(s)

}

type Student struct {

 Name string

 ID int

 Age float64

}

func (s Student) String() string {

 return fmt.Sprintf("%s %d %0.2f", s.Name, s.ID, s.Age)

}

func addStudent[T Stringer](students []T, student T) []T {

 return append(students, student)

}

func main() {

 students := []String{}

 result := addStudent[String](students, "Michael")

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

8

 result = addStudent[String](result, "Jennifer")

 result = addStudent[String](result, "Elaine")

 fmt.Println(result)

 students1 := []Integer{}

 result1 := addStudent[Integer](students1, 45)

 result1 = addStudent[Integer](result1, 64)

 result1 = addStudent[Integer](result1, 78)

 fmt.Println(result1)

 students2 := []Student{}

 result2 := addStudent[Student](students2, Student{"John", 213, 17.5})

 result2 = addStudent[Student](result2, Student{"James", 111, 18.75})

 result2 = addStudent(result2, Student{"Marsha", 110, 16.25})

 fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[45 64 78]

[John 213 17.50 James 111 18.75 Marsha 110 16.25]

*/

 Stringer Type
A type Stringer is defined as an interface containing a single method signature:

String() string.
Any entity that implements this type by having a well-defined String() definition

can be converted to a string for output purposes. Since we wish to be able to output our

various student collections (slices), we constrain the data type, T, in the signature of our

generic addStudent function to be of type Stringer.

 Constrained Generic Type
The generic signature of our single addStudent function becomes

func addStudent[T Stringer](students []T, student T) []T
Types Integer, String, and Student are defined along with their definitions

of String() so that we can use generic function addStudent using each of these

Stringer types.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

9

 Implementing an Interface
In Go, one implements an interface implicitly by implementing the function(s) specified

in the interface definition. In this case, any type that implements a String() function can

be considered to be of type Stringer.

 Instantiating a Generic Type
In main, after declaring students to be an empty slice of String (not a slice of string), we

invoke addStudent[String](students, “Michael”).
The generic parameter T constrained to be of type Stringer is replaced by the actual

instantiated type String which we know is of type Stringer because it implements the

Stringer interface (which has a concrete definition of String()).

We next use addStudent with Integer used as the Stringer type. And finally, we use

addStudent with Student as the Stringer type.

 Unconstrained Generic Type any
The Go compiler can do type inferencing if we replace the constrained generic type

[T Stringer] with the unconstrained type any.

Listing 1-5 presents a simpler, less verbose, generic implementation of addStudent

along with a driver function main that exercises this generic function.

Listing 1-5. Simpler generic function addStudent

package main

import (

 "fmt"

)

type Student struct {

 Name string

 ID int

 Age float64

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

10

func addStudent[T any](students []T, student T) []T {

 return append(students, student)

}

func main() {

 students := []string{}

 result := addStudent[string](students, "Michael")

 result = addStudent[string](result, "Jennifer")

 result = addStudent[string](result, "Elaine")

 fmt.Println(result)

 students1 := []int{}

 result1 := addStudent[int](students1, 45)

 result1 = addStudent[int](result1, 64)

 result1 = addStudent[int](result1, 78)

 fmt.Println(result1)

 students2 := []Student{}

 result2 := addStudent[Student](students2, Student{"John", 213, 17.5})

 result2 = addStudent[Student](result2, Student{"James", 111, 18.75})

 result2 = addStudent(result2, Student{"Marsha", 110, 16.25})

 fmt.Println(result2)

}

/* Output

[Michael Jennifer Elaine]

[45 64 78]

[John 213 17.50 James 111 18.75 Marsha 110 16.25]

*/

Using type inferences, the compiler uses the default conversions of string, int, and

Student to allow program output by converting each of these types to string.

 Benefits of Generics
In Listing 1-5, the benefits of generics are evident. The simple algorithm for appending

a new student (second parameter) to the existing collection of students is expressed

independently of the type being used to represent a student.

Suppose we wish to sort each collection of students prior to outputting the

collection. We can do so with the sort package discussed in the next section.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

11

 Using Go’s Sort Package
The Sort function in Go’s sort package, sort.Sort, requires that the type in the slice being

sorted must implement three methods:

 1. Len

 2. Less

 3. Swap

We show how a generic collection implemented as a slice can be sorted.

We define OrderedSlice as follows and provide the required group of Len, Less,

and Swap.

// Group of functions that ensure that an OrderedSlice can be sorted

type OrderedSlice[T Ordered] []T // T must implement < and >

func (s OrderedSlice[T]) Len() int {

 return len(s)

}

func (s OrderedSlice[T]) Less(i, j int) bool {

 return s[i] < s[j]

}

func (s OrderedSlice[T]) Swap(i, j int) {

 s[i], s[j] = s[j], s[i]

}

// end group for OrderedSice

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

12

 Sort Type
We introduce another type, SortType, along with the required group of Len, Less, and Swap.

// Group of functions that ensure that SortType can be sorted

type SortType[T any] struct {

 slice []T

 compare func(T, T) bool

}

func (s SortType[T]) Len() int {

 return len(s.slice)

}

func (s SortType[T]) Less(i, j int) bool {

 return s.compare(s.slice[i], s.slice[j])

}

func (s SortType[T]) Swap(i, j int) {

 s.slice[i], s.slice[j] = s.slice[j], s.slice[i]

}

// end of group for SortType

Finally, we define a function, PerformSort, that uses SortType as follows:

func PerformSort[T any](slice []T, compare func(T, T) bool) {

 sort.Sort(SortType[T]{slice, compare})

}

The user of PerformSort must supply a function for comparing two elements of type T.

Listing 1-6 integrates this functionality into the code that implements the generic

addStudent function to allow us to use the imported sort package and its function Sort.

Listing 1-6. Building and sorting slices of students

package main

import (

 "fmt"

 "sort"

)

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

13

type Ordered interface {

 ~int | ~float64 | ~string

}

type Student struct {

 Name string

 ID int

 Age float64

}

func addStudent[T any](students []T, student T) []T {

 return append(students, student)

}

// Group of functions that ensure that an OrderedSlice can be sorted

type OrderedSlice[T Ordered] []T // T must implement < and >

func (s OrderedSlice[T]) Len() int {

 return len(s)

}

func (s OrderedSlice[T]) Less(i, j int) bool {

 return s[i] < s[j]

}

func (s OrderedSlice[T]) Swap(i, j int) {

 s[i], s[j] = s[j], s[i]

}

// end group for OrderedSice

// Group of functions that ensure that SortType can be sorted

type SortType[T any] struct {

 slice []T

 compare func(T, T) bool

}

func (s SortType[T]) Len() int {

 return len(s.slice)

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

14

func (s SortType[T]) Less(i, j int) bool {

 return s.compare(s.slice[i], s.slice[j])

}

func (s SortType[T]) Swap(i, j int) {

 s.slice[i], s.slice[j] = s.slice[j], s.slice[i]

}

// end of group for SortType

func PerformSort[T any](slice []T, compare func(T, T) bool) {

 sort.Sort(SortType[T]{slice, compare})

}

func main() {

 students := []string{}

 result := addStudent[string](students, "Michael")

 result = addStudent[string](result, "Jennifer")

 result = addStudent[string](result, "Elaine")

 sort.Sort(OrderedSlice[string](result))

 fmt.Println(result)

 students1 := []int{}

 result1 := addStudent[int](students1, 78)

 result1 = addStudent[int](result1, 64)

 result1 = addStudent[int](result1, 45)

 sort.Sort(OrderedSlice[int](result1))

 fmt.Println(result1)

 students2 := []Student{}

 result2 := addStudent[Student](students2, Student{"John", 213, 17.5})

 result2 = addStudent[Student](result2, Student{"James", 111, 18.75})

 result2 = addStudent(result2, Student{"Marsha", 110, 16.25})

 PerformSort[Student](result2, func(s1, s2 Student) bool {

 return s1.Age < s2.Age // comparing two Student values

 })

 fmt.Println(result2)

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

15

/* Output

[Elaine Jennifer Michael]

[45 64 78]

[{Marsha 110 16.25} {John 213 17.5} {James 111 18.75}]

*/

 Map Functions
Map functions in Go are commonplace and perform a transformation in a slice to

produce a new slice with the transformed results. Consider this example:

func MyMap(input []int, f func(int) int) []int {

 result := make([]int, len(input))

 for index, value := range input {

 result[index] = f(value)

 }

 return result

}

func main() {

 slice := []int{1, 5, 2, 7, 4}

 result := MyMap(slice, func(i int) int {

 return i * i

 })

 fmt.Println(result)

}

/* Output

[1 25 4 49 16]

*/

The MyMap function produces an output slice containing the square of the integers

contained in the input slice. After declaring result to be a slice of len(slice) integers, it

iterates over the range of values in input, transforming each value based on the function

f passed in to MyMap.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

16

 Making MyMap Generic
MyMap can be made generic as follows:

func GenericMap[T1, T2 any](input []T1, f func(T1) T2) []T2 {

 result := make([]T2, len(input))

 for index, value := range input {

 result[index] = f(value)

 }

 return result

}

Function GenericMap takes two generic parameters, T1 and T2. Using the function f

that is passed in, it transforms the data in the input slice to type T2. Here, T1 and T2 are

not constrained. They are of type any.

 Filter Functions
Filter functions in Go are also commonplace and perform a filtering operation on an

input slice based on a function passed in. Consider this example:

func MyFilter(input []float64, f func(float64) bool) []float64 {

 var result []float64

 for _, value := range input {

 if f(value) == true {

 result = append(result, value)

 }

 }

 return result

}

func main() {

 input := []float64{17.3, 11.1, 9.9, 4.3, 12.6}

 res := MyFilter(input, func(num float64) bool {

 if num <= 10.0 {

 return true

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

17

 return false

 })

 fmt.Println(res)

}

/* Output

[9.9 4.3]

*/

Here, any value in the input slice that is less than or equal to 10.0 is retained, and all

other values are filtered out.

 Making MyFilter Generic
MyFilter can be made generic as follows:

func GenericFilter[T any](input []T, f func(T) bool) []T {

 var result []T

 for _, val := range input {

 if f(val) {

 result = append(result, val)

 }

 }

 return result

}

In Listing 1-7, we exercise the generic map and filter functions.

Listing 1-7. Using generic map and filter functions

package main

import (

 "fmt"

)

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

18

func GenericMap[T1, T2 any](input []T1, f func(T1) T2) []T2 {

 result := make([]T2, len(input))

 for index, value := range input {

 result[index] = f(value)

 }

 return result

}

func GenericFilter[T any](input []T, f func(T) bool) []T {

 var result []T

 for _, val := range input {

 if f(val) {

 result = append(result, val)

 }

 }

 return result

}

func main() {

 input := []float64{-5.0, -2.0, 4.0, 8.0}

 result1 := GenericMap[float64, float64](input, func(n float64)

float64 {

 return n * n

 })

 fmt.Println(result1)

 greaterThanFive := GenericFilter[int]([]int{4, 6, 5, 2, 20, 1, 7},

 func(i int) bool {

 return i > 5

 })

 fmt.Println(greaterThanFive)

 oddNumbers := GenericFilter[int]([]int{4, 6, 5, 2, 20, 1, 7},

 func(i int) bool {

 return i % 2 == 1

 })

 fmt.Println(oddNumbers)

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

19

 lengthGreaterThan3 := GenericFilter[string]([]string{"hello", "or",

"the", "maybe"}, func(s string) bool {

 return len(s) > 3

 })

 fmt.Println(lengthGreaterThan3)

}

/* Output

[25 4 16 64]

[6 20 7]

[5 1 7]

[hello maybe]

*/

We now turn our attention to the use of concurrency.

1.3 Concurrency
Concurrency allows a program to process multiple tasks at the same time (parallel

processing where each task is assigned to a separate processor) or what appears to be at

the same time where tasks are multiplexed so progress is made on all tasks over time. If

the multiplexing is very fast, it appears that the concurrent processes are running at the

same time but are run in overlapping periods of time.

In most languages that support concurrent processing, the thread construct is used

to support concurrency. There is memory overhead associated with a thread, so the

number of threads that can be spawned at the same time is limited.

 Goroutine
In developing the Go language, Google introduced a lightweight process called a

goroutine that requires less memory overhead than a thread. Their motivation was

to be able to serve multiple HTML web pages made from many web browsers at the

same time.

Goroutines are functions that run concurrent with other functions. When a regular

function is invoked, the code below the function gets executed after the function

completes its work. When a goroutine function is invoked, the code directly below it gets

executed immediately since the goroutine runs concurrently with code beneath it.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

20

We illustrate this in Listing 1-8.

Listing 1-8. Simple goroutine running concurrent with main

package main

import (

 "fmt"

 "time"

)

func regularFunction() {

 fmt.Println("Just entered regularFunction()")

 time.Sleep(5 * time.Second)

}

func goroutineFunction() {

 fmt.Println("Just entered goroutineFunction()")

 time.Sleep(10 * time.Second)

 fmt.Println("goroutineFunction finished its work")

}

func main() {

 go goroutineFunction()

 fmt.Println("In main one line below goroutineFunction()")

 regularFunction()

 fmt.Println("In main one line below regularFunction()")

}

/* Output

In main, one line below goroutineFunction()

Just entered regularFunction()

Just entered goroutineFunction()

In main one line below regularFunction()

*/

When the goroutineFunction is launched as a goroutine using go
goroutineFunction(), it runs concurrently with the main function, which is a goroutine.

The first line of output occurs immediately even though the goroutineFunction requires

ten seconds to complete its work. When the regularFunction() is invoked next, five

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

21

seconds elapses before the line of output. “In main, one line below regularFunction()” is

emitted. Function main terminates immediately after this output is emitted, which ends

the program before the goroutineFunction can complete its work. It gets interrupted and

terminates when the program ends.

If we swap the time delays so that the goroutineFunction has a time delay of five

seconds and the regularFunction has a time delay of ten seconds, the output becomes

In main one line below goroutineFunction()

Just entered regularFunction()

Just entered goroutineFunction()

goroutineFunction finished its work

In main, one line below regularFunction()

Now the goroutine running concurrently with main completes it work before the

regularFunction and before the main goroutine exits.

 WaitGroup
Go provides a mechanism for allowing multiple goroutines to all complete their work

before main exits while killing off unfinished goroutines.

We introduce the sync package and the WaitGroup construct and illustrate its use in

Listing 1-9.

Listing 1-9. The sync package and WaitGroup

package main

import (

 "fmt"

 "time"

 "math/rand"

 "sync"

)

var wg sync.WaitGroup

func outputStrings() {

 defer wg.Done()

 strings := [5]string{"One", "Two", "Three", "Four", "Five"}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

22

 for i := 0; i < 5; i++ {

 delay := 1 + rand.Intn(3)

 time.Sleep(time.Duration(delay) * time.Second)

 fmt.Println(strings[i])

 }

}

func outputInts() {

 defer wg.Done()

 for i := 0; i < 5; i++ {

 delay := 1 + rand.Intn(3)

 time.Sleep(time.Duration(delay) * time.Second)

 fmt.Println(i)

 }

}

func outputFloats() {

 defer wg.Done()

 for i := 0; i < 5; i++ {

 delay := 1 + rand.Intn(3)

 time.Sleep(time.Duration(delay) * time.Second)

 fmt.Println(float64(i * i) + 0.5)

 }

}

func main() {

 wg.Add(3)

 go outputStrings()

 go outputInts()

 go outputFloats()

 wg.Wait()

}

/* Output

One

0.5

0

1

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

23

Two

1.5

2

4.5

3

Three

Four

4

9.5

Five

16.5

*/

This program does nothing useful except illustrating the WaitGroup construct and

shows three goroutines running concurrently.

A global variable wg of type sync.WaitGroup is declared.

In main, we invoke wg.Add(3). The last line of code in main is wg .Wait(). This

causes main to pause until the value in wg is zero. This assures us that all three

goroutines complete their work before the program terminates.

In each of the goroutines, the first line of code, defer wg.Done(), causes the value of

the global variable wg to be decremented when the goroutine completes its work. When

wg reaches a value of zero, the function main is allowed to exit.

The sequence of random numbers generated is the same each time the program is

run, but the output sequence varies from run to run. This is because the time multiplexer

allocates different chunks of execution time to each concurrent goroutine differently

each time the program runs. After the second run of the program, the output is

One

0

0.5

1.5

Two

1

4.5

2

Three

9.5

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

24

16.5

Four

3

Five

4

 The Channel
We often want to be able to synchronize the sequence of goroutines and have them

communicate with each other. We introduce the powerful construct of the channel to

accomplish this.

Consider the goroutines in Listing 1-10.

Listing 1-10. Deadlock

package main

import (

 "fmt"

 "time"

 "sync"

)

var wg sync.WaitGroup

func pingGenerator(c chan string) {

 defer wg.Done()

 for i := 0; i < 5; i++ {

 c <- "ping"

 time.Sleep(time.Second * 1)

 }

}

func output(c chan string) {

 defer wg.Done()

 for {

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

25

 value := <- c

 fmt.Println(value)

 }

}

func main() {

 c := make(chan string)

 wg.Add(2)

 go pingGenerator(c)

 go output(c)

 wg.Wait()

}

/* Output

ping

ping

ping

ping

ping

fatal error: all goroutines are asleep - deadlock!

*/

The first line of code in main initializes a channel, c. Channels must be initialized

with a make statement before they can be used.

As in the previous listing, we create a WaitGroup variable, wg, with the initial value of 2.

We next launch the two goroutines, pingGenerator and output, passing the channel

variable c to each.

The pingGenerator goroutine assigns the string “ping” to the channel variable c

every second and does this five times. The left arrow from the value “ping” to the variable

c represents the assignment of the “ping” value to c.

The channel must be empty for this assignment to be made. In the output goroutine,

the assignment to value, using value := <- c, gobbles up the channel variable c as

soon as it is assigned in the pingGenerator. This occurs every second. During the time

between “ping” assignments from the pingGenerator, the value assignment is blocked.

That is execution is halted within the output goroutine until there is information in the

channel assigning to value. So the two goroutines are being affected by the channel

variable c, common to both.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

26

There is a problem. When the pingGenerator has emitted its five “ping”

assignments, each displayed on the console through the output goroutine, it blocks

while waiting for a sixth channel assignment. This never occurs. The program crashes

with the error message shown earlier. A deadlock has occurred. The program cannot

terminate.

 Select Statement
We can resolve this problem by modifying the output goroutine and using a select

statement.

func output(c chan string) {

 for {

 select {

 case value := <- c:

 fmt.Println(value)

 case <-time.After(3 * time.Second):

 fmt.Println("Program timed out.")

 wg.Done()

 }

 }

}

In a select statement, the case that occurs first gets executed. If two or more cases are

ready to execute, the system chooses one at random. Since the channel c gets assigned to

value every second (blocks between assignments), the program outputs the five “ping”

assignments. Instead of deadlocking as before, the second case gets executed after three

seconds from the time the fifth and final “ping” is assigned to value.

 Use a quit Channel to Avoid Using WaitGroup
We can use a quit channel to block main from exiting and avoid the use of WaitGroup as

shown in Listing 1-11.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

27

Listing 1-11. Using a quit channel instead of WaitGroup

package main

import (

 "fmt"

 "time"

)

var quit chan bool

func pingGenerator(c chan string) {

 for i := 0; i < 5; i++ {

 c <- "ping"

 time.Sleep(time.Second * 1)

 }

}

func output(c chan string) {

 for {

 select {

 case value := <- c:

 fmt.Println(value)

 case <-time.After(3 * time.Second):

 fmt.Println("Program timed out.")

 quit <- true

 }

 }

}

func main() {

 quit = make(chan bool)

 c := make(chan string)

 go pingGenerator(c)

 go output(c)

 <- quit

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

28

/* Output

ping

ping

ping

ping

ping

Program timed out.

*/

The quit channel is initialized as the first line of code in main. The last line of code

in main, <- quit, blocks main from ending until a Boolean value is assigned to quit. This

occurs in the second case statement in goroutine output.

This mechanism for controlling the end of the program is simpler and less

encumbered than using WaitGroup.

We add the inevitable pongGenerator to this program.

 Channel Direction
Channel direction can be added to a goroutine signature as shown in Listing 1-12. An

arrow pointing to the chan from the right, as shown in the signatures to pingGenerator

and pongGenerator, requires the goroutine to assign to the channel (a generator). An

arrow to the left of chan and pointing to the channel variable requires the goroutine to

only consume values in the channel.

If an attempt is made to send information to the channel when it is specified as a

consumer, or if an attempt is made to access information from the channel in the case

that it is specified as a generator, a compiler error will occur.

Listing 1-12. Ping pong using direction channels in goroutine signatures

package main

import (

 "fmt"

 "time"

)

var quit chan bool

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

29

func pingGenerator(c chan<- string) {

 // The channel can only be sent to - a generator

 for i := 0; i < 5; i++ {

 c <- "ping"

 }

}

func pongGenerator(c chan<- string) {

 // Information can only be sent to the channel - a generator

 for i := 0; i < 5; i++ {

 c <- "pong"

 }

}

func output(c <- chan string) {

 // Information can only be received from the channel - a consumer

 for {

 time.Sleep(time.Second * 1)

 select {

 case value := <- c:

 fmt.Println(value)

 case <-time.After(3 * time.Second):

 fmt.Println("Program timed out.")

 quit <- true

 }

 }

}

func main() {

 quit = make(chan bool)

 c := make(chan string)

 go pingGenerator(c)

 go pongGenerator(c)

 go output(c)

 <- quit

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

30

/* Output

ping

pong

ping

pong

ping

pong

ping

pong

ping

pong

Program timed out.

*/

We have moved the one-second time delay into the output goroutine. This allows

the ping and pong generators to alternate since each assignment to the channel blocks

alternately until the channel is read by the consuming output goroutine.

 Race Condition
A pervasive problem using concurrency is race condition. This problem occurs when

two or more goroutines modify the same shared data.

A simple example is presented in Listing 1-13.

Listing 1-13. Example of race condition

package main

import (

 "fmt"

 "sync"

)

const (

 number = 1000

)

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

31

var countValue int

func main() {

 var wg sync.WaitGroup

 wg.Add(number)

 for i := 0; i < number; i++ {

 go func() {

 countValue++

 wg.Done()

 }()

 }

 wg.Wait()

 fmt.Printf("\ncountValue = %d", countValue)

}

One thousand goroutines are spawned in a for-loop within main. Each goroutine

increments countValue exactly once. Therefore, one would expect the output of the

program to be 1000.

Each time the program is run, the output is different. This is because of the conflict

of multiple goroutines attempting to modify the global changeValue at nearly the same

time. There is no error message generated by the system. But the output is incorrect.

 Mutex
We can correct the race-condition problem by using a mutex. This locks the global

countValue while each goroutine modifies its value and protects this shared data from

being corrupted.

Listing 1-14 shows the use of a mutex to remove the race condition.

Listing 1-14. Using mutex to avoid race condition

package main

import (

 "fmt"

 "sync"

)

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

32

const number = 1000

var countValue int

var m sync.Mutex

func main() {

 var wg sync.WaitGroup

 wg.Add(number)

 for i := 0; i < number; i++ {

 go func() {

 m.Lock()

 countValue++

 m.Unlock()

 wg.Done()

 }()

 }

 wg.Wait()

 fmt.Printf("\ncountValue = %d", countValue)

}

The code m.Lock() within each goroutine protects the global countValue from

modification outside of the goroutine in which it is invoked. No other goroutine can

change countValue until the m.Unlock() is invoked.

Program execution is slowed down using the mutex, but the program is protected

from the race condition shown in Listing 1-13.

 Playing Chess Using Goroutines
Listing 1-15 simulates the sequence of two chess players making moves using

goroutines.

Listing 1-15. Concurrent moves in chess

// This sample program demonstrates how to use an unbuffered

// channel to simulate a move of chess between two goroutines.

package main

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

33

import (

 "fmt"

 "math/rand"

 "time"

)

var quit chan bool

func main() {

 rand.Seed(time.Now().UnixNano())

 move := make(chan int)

 quit = make(chan bool)

 // Launch two players.

 go player("Bobby Fischer", move)

 go player("Boris Spassky", move)

 // Start the move

 move <- 1

 <-quit // Blocks until quit assigned a value

}

// player simulates a person moving in chess.

func player(name string, move chan int) {

 // This function takes data out of the move channel

 // and puts data back into the move channel

 for {

 // Wait for turn to play

 turn := <-move // blocks until move assigned a value (every second)

 // Pick a random number and see if we lose the move

 n := rand.Intn(100)

 if n <= 5 && turn >= 5 {

 fmt.Printf("Player %s was check mated and loses!", name)

 quit <- true

 return

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

34

 // Display and then increment the total move count by one.

 fmt.Printf("Player %s has moved. Turn %d.\n", name, turn)

 turn++

 // Yield the turn back to the opposing player

 time.Sleep(1 * time.Second)

 move <- turn

 }

}

/*

Player Boris Spassky has moved. Turn 1.

Player Bobby Fischer has moved. Turn 2.

Player Boris Spassky has moved. Turn 3.

Player Bobby Fischer has moved. Turn 4.

Player Boris Spassky has moved. Turn 5.

Player Bobby Fischer has moved. Turn 6.

Player Boris Spassky has moved. Turn 7.

Player Bobby Fischer has moved. Turn 8.

Player Boris Spassky has moved. Turn 9.

Player Bobby Fischer has moved. Turn 10.

Player Boris Spassky has moved. Turn 11.

Player Bobby Fischer has moved. Turn 12.

Player Boris Spassky has moved. Turn 13.

Player Bobby Fischer has moved. Turn 14.

Player Boris Spassky has moved. Turn 15.

Player Bobby Fischer has moved. Turn 16.

Player Boris Spassky has moved. Turn 17.

Player Bobby Fischer has moved. Turn 18.

Player Boris Spassky has moved. Turn 19.

Player Bobby Fischer has moved. Turn 20.

Player Boris Spassky has moved. Turn 21.

Player Bobby Fischer has moved. Turn 22.

Player Boris Spassky has moved. Turn 23.

Player Bobby Fischer has moved. Turn 24.

Player Boris Spassky has moved. Turn 25.

Player Bobby Fischer was check mated and loses!

*/

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

35

The first line within the for-loop of the goroutine player blocks until an int is taken

out of the move channel. With a 5 percent probability, the player loses the game and sets

quit to true.

After outputting that the player has moved and posting the player’s turn, it puts an

int back into the move channel, freeing the other player to move.

 Fibonacci Numbers Using Goroutines
The next example, in Listing 1-16, shows how we can output a sequence of Fibonacci

numbers using a goroutine.

Listing 1-16. Fibonacci numbers using a goroutine

package main

import "fmt"

func fibonacci(c chan<- int, quit <-chan bool) {

 x, y := 0, 1

 for {

 select {

 case c <- x:

 x, y = y, x + y // Generates the sequence

 case <- quit:

 fmt.Println("quit")

 return

 }

 }

}

func main() {

 c := make(chan int)

 quit := make(chan bool)

 go func() {

 for i := 0; i < 20; i++ {

 fmt.Println(<-c)

 }

 quit <- true

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

36

 }()

 fibonacci(c, quit)

}

/* Output

0

1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

1597

2584

4181

quit

*/

The first parameter, c, in function fibonacci puts information into the channel, and

the second parameter, quit, takes information out of the channel.

The goroutine is launched within main as an internal function. The Println(<-c)

statement blocks until the fibonacci function puts the value x into the integer channel c.

The select statement in function fibonacci either takes the next value of x into

channel c or ends the program as soon as quit becomes true. The actual fibonacci

sequence is computed as the second line within the case c <-x statement.

In the next section, we examine the possible performance improvements that are

attainable by using concurrency.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

37

1.4 Benchmarking Concurrent Applications
The goal in using concurrency is to speed up program execution. There is overhead

in deploying goroutines, so sometimes, using concurrency is counterproductive.

Because debugging concurrent code is challenging and dealing with deadlocks and

race conditions is sometimes tricky, one needs to be careful when crafting concurrent

solutions to a problem. Testing a concurrent application and comparing its performance

with a nonconcurrent solution is useful.

In this section, we present several applications in which we compare the

performance of a concurrent solution with a nonconcurrent solution. Since the result

of a benchmark test is dependent on the processor and memory used, the ambient

workload of the machine (how many processes are running in the background), and

the machine architecture, one must be careful in generalizing and possibly drawing

incorrect conclusions from a benchmark result.

Consider the program in Listing 1-17. Here, we compare the time required to

construct and sum 100 million floating-point numbers into a slice with and without

concurrency.

Listing 1-17. Computing Sum With and Without Concurrency

package main

import "fmt"

import "time"

import "sync"

var output1 float64

var output2 float64

var output3 float64

var output4 float64

var wg sync.WaitGroup

func worker1() {

 defer wg.Done()

 var output []float64

 sum := 0.0

 for index := 0; index < 100_000_000; index++ {

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

38

 output = append(output, 89.6)

 sum += 89.6

 }

 output1 = sum

}

func worker2() {

 defer wg.Done()

 var output []float64

 sum := 0.0

 for index := 0; index < 100_000_000; index++ {

 output = append(output, 64.8)

 sum += 64.8

 }

 output2 = sum

}

func worker3() {

 defer wg.Done()

 var output []float64

 sum := 0.0

 for index := 0; index < 100_000_000; index++ {

 output = append(output, 956.8)

 sum += 956.8

 }

 output3 = sum

}

func worker4() {

 defer wg.Done()

 var output []float64

 sum := 0.0

 for index := 0; index < 100_000_000; index++ {

 output = append(output, 1235.8)

 sum += 1235.8

 }

 output4 = sum

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

39

func main() {

 wg.Add(8)

 // Compute time with no concurrent processing

 start := time.Now()

 worker1()

 worker2()

 worker3()

 worker4()

 elapsed := time.Since(start)

 fmt.Println("\nTime for 4 workers in series: ", elapsed)

 fmt.Printf("Output1: %f \nOutput2: %f \nOutput3: %f \nOutput4: %f\n",

 output1, output2, output3, output4)

 // Compute time with concurrent processing

 start = time.Now()

 go worker1()

 go worker2()

 go worker3()

 go worker4()

 wg.Wait()

 elapsed = time.Since(start)

 fmt.Println("\nTime for 4 workers in parallel: ", elapsed)

 fmt.Printf("Output1: %f \nOutput2: %f \nOutput3: %f \nOutput4: %f",

 output1, output2, output3, output4)

}

/* Output on a Macbook Pro with M1 Max chip with 10-core CPU, 32-core GPU,

and 16-core Neural Engine

Time for 4 workers in series: 1.133640541s

Output1: 8960000016.634367

Output2: 6480000011.637030

Output3: 95680000176.244049

Output4: 123580000205.352280

Time for 4 workers in parallel: 756.305958ms

Output1: 8960000016.634367

Output2: 6480000011.637030

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

40

Output3: 95680000176.244049

Output4: 123580000205.352280

*/

Each worker function appends a float64 value to construct an output slice of 100

million values while computing the sum in the slice.

In main, we compute and output the computation time if the worker functions are

executed sequentially. Then we execute the four worker functions concurrently using

goroutines. We compare the computation time and verify the correctness of the results

by outputting the sums with and without concurrency.

The computation time running the four worker functions concurrently is 67 percent

the time running the four functions sequentially. As expected, the sums computed are

the same.

Suppose we wish to speed up the computation of summing a sequence of numbers

by using concurrency. Listing 1-18 demonstrates this.

Listing 1-18. Using concurrency to speed up the computation of sum

package main

import (

 "fmt"

 "time"

)

const (

 NumbersToSum = 10_000_000

)

func sum(s []float64, c chan<- float64) {

 // A generator that puts data into channel

 sum := 0.0

 for _, v := range s {

 sum += float64(v)

 }

 c <- sum // blocks until c is taken out of the channel

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

41

func plainSum(s []float64) float64 {

 sum := 0.0

 for _, v := range s {

 sum += float64(v)

 }

 return sum

}

func main() {

 s := []float64{}

 for i := 0; i < NumbersToSum; i++ {

 s = append(s, 1.0)

 }

 c := make(chan float64)

 start := time.Now()

 go sum(s[:len(s) / 2], c)

 go sum(s[len(s) / 2 :], c)

 first, second := <-c, <-c // receive from each c

 elapsed := time.Since(start)

 fmt.Printf("first: %f second: %f elapsed time: %v", first, second,

 elapsed)

 start = time.Now()

 answer := plainSum(s)

 elapsed = time.Since(start)

 fmt.Printf("\nplain sum: %f elapsed time: %v", answer, elapsed)

}

/*

first: 5000000.000000 second: 5000000.000000 elapsed time: 5.864275ms

plain sum: 10000000.000000 elapsed time: 11.601511ms

*/

By summing half the numbers in each of two goroutines, a substantial improvement

in execution time occurs as is evident in the program output.

The two goroutines perform their computation in a for-loop concurrently and return

their values by assigning to the channel variable c. In main, the assignment of the two

sums to first and second is blocked until both values are assigned to the channel.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

42

 Generating Prime Numbers Using Concurrency
Next, we turn to the generation of prime numbers. The classic algorithm for doing this is

the Sieve of Eratosthenes. This is an extremely fast nonconcurrent algorithm.

The goal is to find all the prime numbers up to a specified number, say, ten million.

A prime number is an integer that is only divisible by 1 or itself. The first several prime

numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23. With the exception of 2, all other prime numbers

are odd numbers.

 Sieve of Eratosthenes Algorithm
The Sieve of Eratosthenes algorithm is presented in the following function:

func SieveOfEratosthenes(n int) []int {

 // Finds all primes up to n

 primes := make([]bool, n+1)

 for i := 2; i < n+1; i++ {

 primes[i] = true

 }

 The sieve logic for removing non-prime indices

 for p := 2; p * p <= n; p++ {

 if primes[p] == true {

 // Update all multiples of p

 for i := p * 2; i <= n; i += p {

 primes[i] = false

 }

 }

 }

 // return all prime numbers <= n

 var primeNumbers []int

 for p := 2; p <= n; p++ {

 if primes[p] == true {

 primeNumbers = append(primeNumbers, p)

 }

 }

 return primeNumbers

}

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

43

A slice of bool is initialized to contain n + 1 boolean values. Each element in the slice

is initialized to true, indicating that all are initially considered to be primes.

In the for-loop that follows, an index variable p is run from 2 up to the square root

of n. If the value prime[p] is true (indicating that p is a prime), all indices that are

multiples of p are removed from the primes slice. Say, n = 20. When p is 2, the prime slice

is set to false at the following indices: 4, 6, 8, 10, 12, 14, 16, 18, 20. When p is 3, the prime

slice is set to false at the following indices: 6, 9, 12, 15, 18. When p is 4, the prime slice is

set to false at the following indices: 8, 12, 16, 20. Since p = 5 squared exceeds 20, we are

done. The sieve has done its work. The indices whose prime values have not been set to

false are 2, 3, 5, 7, 11, 13, 17, and 19.

Listing 1-19 presents a program for benchmarking the performance of the sieve.

Listing 1-19. Benchmarking the Sieve of Eratosthenes

// Sieve of Eratosthenes

package main

import (

 "fmt"

 "time"

)

const LargestPrime = 10_000_000

func SieveOfEratosthenes(n int) []int {

 // Finds all primes up to n

 primes := make([]bool, n+1)

 for i := 2; i < n+1; i++ {

 primes[i] = true

 }

 // The Sieve logic

 for p := 2; p*p <= n; p++ {

 if primes[p] == true {

 // Update all multiples of p

 for i := p * 2; i <= n; i += p {

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

44

 primes[i] = false

 }

 }

 }

 // return all prime numbers <= n

 var primeNumbers []int

 for p := 2; p <= n; p++ {

 if primes[p] == true {

 primeNumbers = append(primeNumbers, p)

 }

 }

 return primeNumbers

}

func main() {

 start := time.Now()

 sieve := SieveOfEratosthenes(LargestPrime)

 elapsed := time.Since(start)

 fmt.Println("\nComputation time: ", elapsed)

 fmt.Println("Largest prime: ", sieve[len(sieve)-1])

}

/* Output

Computation time: 28.881792ms

Number of primes = 664579

*/

Lest you think that all concurrent solutions are superior, consider the concurrent

solution to generating prime numbers in Listing 1-20.

The concurrent solution is so slow compared to the nonconcurrent Sieve of

Eratosthenes presented in Listing 1-19 that the constant LargestPrime is lowered by

two orders of magnitude to 100,000 instead of the 10 million. Even then, the solution

is slower.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

45

Listing 1-20. A concurrent daisy chain solution to generating prime numbers

// A concurrent prime sieve

package main

import (

 "fmt"

 "time"

)

const LargestPrime = 100_000

var primes []int

// Send the sequence 3, 5, ... to channel 'ch'.

func Generate(prime1 chan<- int) {

 for i := 3; ; i += 2 {

 prime1 <- i // Send 'i' to channel prime1.

 }

}

// Copy the values from channel 'in' to channel 'out',

// removing those divisible by 'prime'.

func Filter(in <-chan int, out chan<- int, prime int) {

 for {

 i := <-in // Receive value from 'in'.

 if i % prime != 0 {

 out <- i // Send 'i' to 'out'.

 }

 }

}

func main() {

 start := time.Now()

 prime1 := make(chan int) // Create a new channel.

 go Generate(prime1) // Launch goroutine.

 for {

 prime := <-prime1 // Take prime1 out of channel

 if prime > LargestPrime {

 break

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

46

 primes = append(primes, prime)

 prime2 := make(chan int)

 go Filter(prime1, prime2, prime)

 prime1 = prime2

 }

 elapsed := time.Since(start)

 fmt.Println("Computation time: ", elapsed)

 fmt.Println("Number of primes = ", len(primes))

}

/* Output

Computation time: 1.462818125s

Number of primes = 9591

*/

The use of the remainder operator, %, in the Filter goroutine imposes a significant

performance penalty. This goroutine receives information from the in channel and

outputs information to the out channel as shown by the directional arrows in the

signature to the function.

Can we do better by using another concurrent solution?

 Segmented Sieve Algorithm
As a stepping stone toward answering this question, we introduce a modification to

the Sieve of Eratosthenes algorithm implemented in Listing 1-19. Listing 1-21 presents

a segmented sieve algorithm that provides the basis for a concurrent solution to be

presented later.

Listing 1-21. Segmented sieve algorithm

package main

import (

 "fmt"

 "math"

 "time"

)

const LargestPrime = 10_000_000

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

47

var cores int

func SieveOfEratosthenes(n int) []int {

 // Finds all primes up to n

 primes := make([]bool, n+1)

 for i := 2; i < n+1; i++ {

 primes[i] = true

 }

 // The Sieve logic

 for p := 2; p*p <= n; p++ {

 if primes[p] == true {

 // Update all multiples of p

 for i := p * 2; i <= n; i += p {

 primes[i] = false

 }

 }

 }

 // return all prime numbers <= n

 var primeNumbers []int

 for p := 2; p <= n; p++ {

 if primes[p] == true {

 primeNumbers = append(primeNumbers, p)

 }

 }

 return primeNumbers

}

func primesBetween(prime []int, low, high int) []int {

 // Computes the prime numbers between low and high

 // given the initial set of primes from the SieveOfEratosthenes

 limit := high - low

 var result []int

 segment := make([]bool, limit+1)

 for i := 0; i < len(segment); i++ {

 segment[i] = true

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

48

 // Find the primes in the current segment based on initial primes

 for i := 0; i < len(prime); i++ {

 lowlimit := int(math.Floor(float64(low)/float64(prime[i])) *

 float64(prime[i]))

 if lowlimit < low {

 lowlimit += prime[i]

 }

 for j := lowlimit; j < high; j += prime[i] {

 segment[j-low] = false

 }

 }

 for i := low; i < high; i++ {

 if segment[i-low] == true {

 result = append(result, i)

 }

 }

 return result

}

func SegmentedSieve(n int) []int {

 // Each segment is of size square root of n

 // Finds all primes up to n

 var primeNumbers []int

 limit := (int)(math.Floor(math.Sqrt(float64(n))))

 prime := SieveOfEratosthenes(limit)

 for i := 0; i < len(prime); i++ {

 primeNumbers = append(primeNumbers, prime[i])

 }

 low := limit

 high := 2 * limit

 if high >= n {

 high = n

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

49

 for {

 if low < n {

 next := primesBetween(prime, low, high)

 // fmt.Printf("\nprimesBetween(%d, %d) = %v", low, high, next)

 for i := 0; i < len(next); i++ {

 primeNumbers = append(primeNumbers, next[i])

 }

 low = low + limit

 high = high + limit

 if high >= n {

 high = n

 }

 } else {

 break

 }

 }

 return primeNumbers

}

func main() {

 start := time.Now()

 primeNumbers := SegmentedSieve(LargestPrime)

 elapsed := time.Since(start)

 fmt.Println("\nComputation time: ", elapsed)

 fmt.Println("Number of primes = ", len(primeNumbers))

}

/* Output

Computation time: 50.557584ms

Number of primes = 664579

*/

A series of array segments, each of size square root of n (where n is the highest

number to be considered in the array of primes), are defined. Using the prime

numbers in the first such array segment, 0 to sqrt(n), which are computed using the

SieveOfEratosthenes function, we compute the prime numbers in each succeeding

array segment using the primesBetween function.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

50

Let us walk through this function when n is 100 and the size of each array segment

is 10. Specifically, let us examine the computation of the primes in the segment 10 to 20.

The primes up to 10 are 2, 3, 7.

The variable low is 10 and high is 20.

An empty slice result is defined, and a segment slice of bool is created of size

limit + 1. This segment slice is initialized with values of true.

In a for-loop ranging from 0 to 3 (the length of prime), we define variable

lowlimit using

int(math.Floor(float64(low)/float64(prime[i]))* float64(prime[i]))

This evaluates to (10.0 / 2.0) * 2 = 10.

In another for-loop that ranges from lowlimit to high in increments of 2, we set

segment at indices 10, 12, 14, 16, 18, and 20 to false.

We advance the index i from 0 to 1 and compute lowlimit as floor(10 / 3) * 3 = 9.

Since lowlimit is now less than low, we set it to 12 using lowlimit += prime[1].

In the loop with index j, we set segment slice to false at indices 12, 15, and 18.

Continuing with i set to 2, lowlimit is floor(10 / 7) * 7, which equals 7. Since that is

less than low, we reassign it to 14 (lowlimt += prime[2]).

In the j loop, we set the segment slice to false at index 14.

Finally, we capture the values in the segment slice that are still true: 11, 13,

17, and 19.

This pattern is the same for each of the segment slices. The number of computations

is the same as the original Sieve of Eratosthenes function. But now the array slice is much

smaller (size 10 instead of size 100).

As you can see from the program output, the segmented sieve solution is 1.75

times slower (50.557584ms) compared to the original Sieve of Eratosthenes solution

(28.881792ms). This is due to the overhead of defining the ten segment slices and

the overhead of the function calls to these slices, not needed in the original sieve

computation.

The stage has been set now for a concurrent solution that leverages off the

segmented sieve.

 Concurrent Sieve Solution
This concurrent solution is presented in Listing 1-22.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

51

Listing 1-22. Concurrent segmented sieve

package main

import (

 "fmt"

 "math"

 "runtime"

 "sync"

 "time"

)

const LargestPrime = 10_000_000

var cores int

var primeNumbers []int

var m sync.Mutex

var wg sync.WaitGroup

func SieveOfEratosthenes(n int) []int {

 // Finds all primes up to n

 primes := make([]bool, n+1)

 for i := 2; i < n+1; i++ {

 primes[i] = true

 }

 // The Sieve logic

 for p := 2; p*p <= n; p++ {

 if primes[p] == true {

 // Update all multiples of p

 for i := p * 2; i <= n; i += p {

 primes[i] = false

 }

 }

 }

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

52

 // return all prime numbers <= n

 var primeNumbers []int

 for p := 2; p <= n; p++ {

 if primes[p] == true {

 primeNumbers = append(primeNumbers, p)

 }

 }

 return primeNumbers

}

func primesBetween(prime []int, low, high int) {

 // Computes the prime numbers between low and high

 // given the initial set of primes from the SieveOfEratosthenes

 defer wg.Done()

 limit := high - low

 segment := make([]bool, limit+1)

 for i := 0; i < len(segment); i++ {

 segment[i] = true

 }

 // Find the primes in the current segment based on initial primes

 for i := 0; i < len(prime); i++ {

 lowlimit := int(math.Floor(float64(low)/float64(prime[i])) *

 float64(prime[i]))

 if lowlimit < low {

 lowlimit += prime[i]

 }

 for j := lowlimit; j < high; j += prime[i] {

 segment[j-low] = false

 }

 // Each number in [low to high] is mapped to [0, high - low]

 for j := lowlimit; j < high; j += prime[i] {

 segment[j-low] = false

 }

 }

 m.Lock()

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

53

 for i := low; i < high; i++ {

 if segment[i-low] == true {

 primeNumbers = append(primeNumbers, i)

 }

 }

 m.Unlock()

}

func SegmentedSieve(n int) {
 limit := int(math.Floor(float64(n) / float64(cores)))

 prime := SieveOfEratosthenes(limit)

 for i := 0; i < len(prime); i++ {

 primeNumbers = append(primeNumbers, prime[i])

 }

 for low := limit; low < n; low += limit {

 high := low + limit

 if high >= n {

 high = n

 }

 wg.Add(1)

 go primesBetween(prime, low, high)
 }

 wg.Wait()

}

func main() {
 cores = runtime.NumCPU()
 start := time.Now()

 SegmentedSieve(LargestPrime)

 elapsed := time.Since(start)

 fmt.Println("\nComputation time for concurrrent: ", elapsed)

 fmt.Println("Number of primes = ", len(primeNumbers))

}

/* Output

Computation time for concurrrent: 19.783666ms

Number of primes = 664579

*/

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

54

The concurrency is achieved in function SegmentedSieve, which launches a series

of goroutines, primesBetween, and uses a WaitGroup to block the completion of

SegmentedSieve until all the goroutines have completed their work.

To prevent a race condition from occurring, a mutex, m, is used at the end of each

goroutine to guarantee that the assignment to the globally shared primeNumbers

slice is controlled using an m.Lock() at the beginning of the assignment loop and an

m.UnLock() at the end of this assignment loop.

The time required to obtain prime numbers up to the number 10 million is

19.78366ms, which is smaller than the Sieve of Eratosthenes computation, which

requires 28.881792ms. The segment size is computed by choosing a number of cores

given by runtime.NumCPU(). In principle, this should allow a computation that utilizes

each of the computer cores approximating parallel processing. The use of the mutex to

protect against a race condition compromises the efficiency of the concurrent solution

but is essential using the approach taken to avoid a race condition.

The sequence of primes that are generated using the concurrent segmented sieve

is not in order but is complete. This is because the goroutines run asynchronously in

random order.

1.5 Summary
In this chapter, we introduced and illustrated the use of generic types. We demonstrated

that using generic types can greatly simplify application development by avoiding

duplication of code each time we change an underlying type used by the code. We set

the stage for using generic types in the data structures and algorithms to be presented

throughout this book.

We also demonstrated the potential benefits of using concurrency. We showed that

the use of concurrency does not automatically guarantee improved performance. We

looked at the use of goroutines and channels as a vehicle of communication between

goroutines. We introduced the mutex as a construct for avoiding race conditions and the

WaitGroup as a construct for assuring some synchronization between goroutines.

In the next chapter, we enter the world of algorithm design. We discuss methods for

characterizing algorithm efficiency. We look at some classic sorting algorithms and the

use of concurrency to attain faster sorting.

Chapter 1 a tour of GeneriCs and ConCurrenCy in Go

55

CHAPTER 2

Algorithm Efficiency:
Sorting and Searching
The previous chapter introduced generics and reviewed concurrency. We utilize both

going forward in this chapter and the rest of the book.

The principal goal of this book is providing techniques based on data structures and

algorithms for making programs run faster or in less space (more efficiently). The first

question we address in this chapter is how we describe the efficiency of an algorithm. We

then examine sorting and searching algorithms and examine their efficiency.

2.1 Describing the Speed Efficiency of an Algorithm
The normal practice in determining the efficiency of an algorithm is to estimate its

performance as a function of problem size, asymptotically. That is, we are concerned

with the speed of computation as the size of the problem becomes significant. In this

section, we’ll introduce Big O notation and its application in algorithm design.

 Working with Big O
Big O notation characterizes how the execution time of an algorithm grows as a function

of problem size as the problem size becomes large. It is based on an analysis of how

many basic operations such as assignment, swapping, and accessing a value are required

to perform the task. Because of the requirement that the problem size must become

large, big O is an asymptotic performance indicator.

For example, suppose we were able to characterize the runtime of some algorithm as

a function of problem size n as follows: execution-time(n) = 12n2 + 117n +25.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_2

https://doi.org/10.1007/978-1-4842-8191-8_2

56

When n is large, the first term in the preceding expression dominates. We ignore the

constant 12 and focus on the n2. This leads us to characterize the algorithm as O(n2). For

large n, if we were to double the value of n, the execution time would quadruple. This

would not hold if n were small.

Big O provides an asymptotic upper bound. The actual performance for large n

(problem size) is bounded by the function inside the O notation. So O(n) implies that for

large n, the algorithm’s execution time is bounded by n or is linear with respect to n.

Algorithms with O(2n), exponential complexity, are intractable. Likewise, algorithms

of O(n!) are intractable. As the size of the problem, n, becomes large, the computation

time becomes too great to provide any reasonable completion. We examine and tackle

computationally intractable problems later in this book.

We return to computationally tractable problems now and consider the following

example. We wish to determine whether an array slice of floating-point numbers is

sorted from smallest to largest.

 Determining Whether a Slice of Numbers Is Sorted
One approach to solving this problem is to use the Sort function in package sort and

then compare the resultant array slice with the array slice we wish to test. This is an

approach that I have seen many less experienced programmers take.

A function that performs this is given as follows:

func isSorted1(data []float64) bool {

 var data1 []float64

 data1 = make([]float64, len(data)) // Creates a slice of len(data)

 copy(data1, data) // Copies data into data1

 sort.Float64s(data1)

 // Compare data and data1

 for i := 0; i < size; i++ {

 if data[i] != data1[i] {

 return false

 }

 }

 return true

}

Chapter 2 algorithm effiCienCy: Sorting and SearChing

57

We allocate storage for the data1 slice and copy the input data into data1. We sort

data1 using sort.Float64s(data1). Finally, we compare each element of data1 with

data and return false if there is a mismatch.

It is known that the asymptotic complexity of the Sort algorithm is O(nlog2n).

Now consider as an alternative approach function isSorted2, given as follows:

func isSorted2(data []float64) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i - 1] {

 return false

 }

 }

 return true

}

This function compares all consecutive pairs of data. If an instance of data[i] is less

than data[i – 1], the function immediately returns false. If no returns of false occur, the

function returns true.

This function has an asymptotic complexity of O(n). For large n, isSorted2 should be

much faster than isSorted1.

Listing 2-1 does a benchmark comparison between the two isSorted functions.

Listing 2-1. Comparing two isSorted functions

package main

import (

 "fmt"

 "math/rand"

 "time"

 "sort"

)

const size = 100_000_000

var data []float64

func isSorted1(data []float64) bool {

 var data1 []float64

 data1 = make([]float64, len(data))

Chapter 2 algorithm effiCienCy: Sorting and SearChing

58

 copy(data1, data) // Copies data into data1

 sort.Float64s(data1)

 // Compare data and data1

 for i := 0; i < size; i++ {

 if data[i] != data1[i] {

 return false

 }

 }

 return true

}

func isSorted2(data []float64) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i - 1] {

 return false

 }

 }

 return true

}

func main() {

 data = make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 start := time.Now()

 result := isSorted1(data)

 elapsed := time.Since(start)

 fmt.Println("Sorted: ", result)

 fmt.Println("elapsed using sorted1:", elapsed)

 data2 := make([]float64, size)

 for i := 0; i < size; i++ {

 data2[i] = float64(2 * i)

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

59

 start = time.Now()

 result = isSorted1(data2)

 elapsed = time.Since(start)

 fmt.Println("Sorted: ", result)

 fmt.Println("elapsed using sorted1:", elapsed)

 start = time.Now()

 result = isSorted2(data)

 elapsed = time.Since(start)

 fmt.Println("\nSorted: ", result)

 fmt.Println("elapsed using sorted2", elapsed)

 start = time.Now()

 result = isSorted2(data2)

 elapsed = time.Since(start)

 fmt.Println("Sorted: ", result)

 fmt.Println("elapsed using sorted2:", elapsed)

}

/* Output

Sorted: false

elapsed using sorted1: 20.554518978s

Sorted: true

elapsed using sorted1: 7.328819941s

Sorted: false

elapsed using sorted2 291ns

Sorted: true

elapsed using sorted2: 76.644396ms

*/

Each function is invoked with an array, data1, of random float64 values. Next, each

function is invoked with an array that is already sorted, data2.

As evident in the output, isSorted2 is over 100 times faster than isSorted1,

confirming the analysis with big O.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

60

 Using Concurrency
Can we do better by using concurrency? Consider function isSorted3 as follows:

func isSegmentSorted(data []float64, a, b int, ch chan<- bool) {

 // Generates boolean value put into ch

 for i := a + 1; i < b; i++ {

 if data[i] < data[i - 1] {

 ch <- false

 }

 }

 ch <- true

}

func isSorted3(data []float64) bool {

 ch := make(chan bool)

 numSegments := runtime.NumCPU()

 segmentSize := int(float64(len(data)) / float64(numSegments))

 // Launch numSegments goroutines

 for index := 0; index < numSegments; index++ {

 go isSegmentSorted(data, index * segmentSize,

 index * segmentSize + segmentSize, ch)

 }

 num := 0 // completed goroutines

 for {

 select {

 case value := <- ch: // Blocks until a goroutine puts a bool into the

 // channel

 if value == false {

 return false

 }

 num += 1

 if num == numSegments { // All goroutiines have completed

 return true

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

61

 }

 }

 return true

}

In function isSorted3, we subdivide the data into numberSegments given by the

number of CPUs on the computer. In a for-loop, we launch numSegments goroutines,

passing the starting and ending indices, a and b, along with a channel variable, ch, of

type bool.
Each goroutine uses the same logic as in function isSorted2 over a much smaller

interval and concurrent with the other goroutines. Each goroutine assigns its result to

the channel variable ch.

In a for-loop in function isSorted3, a select statement reads a Boolean value from

the channel ch and blocks program execution until another goroutine has completed its

work. If a value of false is received, isSorted3 immediately returns false. If not, the value

of num, which counts the goroutines that have completed their work, is incremented by

one. If num reaches numberSegments, isSorted3 returns true since all segments have

reported true.

In Listing 2-2, we extend the benchmark test to include the concurrent isSorted3.

Listing 2-2. Concurrent implementation and timing of isSorted

package main

import (

 "fmt"

 "math/rand"

 "time"

 "sort"

 "runtime"

)

const size = 1_000_000_000

var data []float64

// Snip

Chapter 2 algorithm effiCienCy: Sorting and SearChing

62

func isSorted3(data []float64) bool {

 ch := make(chan bool)

 numSegments := runtime.NumCPU()

 segmentSize := int(float64(len(data)) / float64(numSegments))

 // Launch numSegments goroutines

 for index := 0; index < numSegments; index++ {

 go isSegmentSorted(data, index * segmentSize,

 index * segmentSize + segmentSize, ch)

 }

 num := 0 // Completed goroutines

 for {

 select {

 case value := <- ch:

 if value == false {

 return false

 }

 num += 1

 if num == numSegments { // All goroutiines have completed

 return true

 }

 }

 }

 return true

}

func main() {

 data = make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 data2 := make([]float64, size)

 // Create a sorted sequence of numbers

 for i := 0; i < size; i++ {

 data2[i] = float64(2 * i)

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

63

 start := time.Now()

 result := isSorted2(data)

 elapsed := time.Since(start)

 fmt.Println("\nSorted: ", result)

 fmt.Println("elapsed using sorted2", elapsed)

 start = time.Now()

 result = isSorted2(data2)

 elapsed = time.Since(start)

 fmt.Println("Sorted: ", result)

 fmt.Println("elapsed using sorted2:", elapsed)

 start = time.Now()

 result = isSorted3(data)

 elapsed = time.Since(start)

 fmt.Println("\nSorted: ", result)

 fmt.Println("elapsed using concurrent sorted3", elapsed)

 start = time.Now()

 result = isSorted3(data2)

 elapsed = time.Since(start)

 fmt.Println("Sorted: ", result)

 fmt.Println("elapsed using concurrent sorted3:", elapsed)

}

/* Output

Sorted: false

elapsed using sorted2 594ns

Sorted: true

elapsed using sorted2: 845.586082ms

Sorted: false

elapsed using concurrent sorted3 61.863μs
Sorted: true

elapsed using concurrent sorted3: 132.375156ms

*/

Chapter 2 algorithm effiCienCy: Sorting and SearChing

64

The size of the array to test for isSorted has been increased to a billion floating-point

numbers.

The results are dramatic. The concurrent isSorted solution is over six times faster

than the noncurrent solution. Both solutions are of O(n). Improving performance by a

constant factor does not change the big O complexity of the algorithm.

In the next section, we present several classic sorting algorithms and their

complexity.

2.2 Sorting Algorithms
Sorting collections of data such as a slice in Go has always been a fundamental part of

learning computer science. In this section, we look at two well-known sorting algorithms

and examine their complexity using a big O analysis.

 Bubblesort Algorithm
Listing 2-3 implements a generic bubblesort algorithm assuming an ordered slice of

data (base type where each element can be compared with respect to greater than or

less than).

Listing 2-3. Generic bubble sort

package main

import(

 "fmt"

)

type Ordered interface {

 ~float64 | ~int | ~string

}

func bubblesort[T Ordered](data []T) {

 n := len(data)

 for i:= 0; i < n - 1; i++ {

 for j:= 0; j < n - 1 - i; j++ {

 if data[j] > data[j + 1] {

Chapter 2 algorithm effiCienCy: Sorting and SearChing

65

 data[j], data[j + 1] = data[j + 1], data[j]

 }

 }

 }

}

func main() {

 numbers := []float64{3.5, -2.4, 12.8, 9.1}

 names := []string{"Zachary", "John", "Moe", "Jim", "Robert"}

 bubblesort[float64](numbers)

 fmt.Println(numbers)

 bubblesort[string](names)

 fmt.Println(names)

}

/* Output

[-2.4 3.5 9.1 12.8]

[Jim John Moe Robert Zachary]

*/

The type Ordered can have many more basic types included. The tilde symbol in

front of each of the basic types means that any user-defined type that uses the given base

type is considered Ordered.

Bubblesort has earned its popularity in CS 1 courses because of its relative simplicity.

Elements are compared sequentially and interchanged if out of order. On each iteration

of the outer loop, the largest value “bubbles” to the rightmost position in the slice. This

position is not considered during the next iteration of the inner loop because of

j < n – 1 – i.

The nested for-loops, shown in boldface, make this an O(n2) algorithm. In general, k

nested loops produce an algorithm of O(nk).

Bubblesort is most efficient when the slice being sorted is already sorted and slowest

when the slice is in reverse order.

Next, we examine one of the most widely used sorting algorithms, the classic

quicksort.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

66

 Quicksort Algorithm
As the name implies, this algorithm is reputed to perform very fast sorts.

Listing 2-4 shows the implementation of a generic quicksort.

Listing 2-4. Generic quicksort

package main

import(

 "fmt"

)

type Ordered interface {

 ~float64 | ~int | ~string

}

func quicksort[T Ordered](data []T, low, high int) {

 if low < high {

 var pivot = partition(data, low, high)

 quicksort(data, low, pivot)

 quicksort(data, pivot + 1, high)

 }

}

func partition[T Ordered](data []T, low, high int) int {

 // Pick a lowest bound element as a pivot value

 var pivot = data[low]

 var i = low

 var j = high

 for i < j {

 for data[i] <= pivot && i < high {

 i++;

 }

 for data[j] > pivot && j > low {

 j--

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

67

 if i < j {

 data[i], data[j] = data[j], data[i]

 }

 }

 data[low] = data[j]

 data[j] = pivot

 return j

}

func main() {

 numbers := []float64{3.5, -2.4, 12.8, 9.1}

 names := []string{"Zachary", "John", "Moe", "Jim", "Robert"}

 quicksort[float64](numbers, 0, len(numbers) - 1)

 fmt.Println(numbers)

 quicksort[string](names, 0, len(names) - 1)

 fmt.Println(names)

}

/* Output

[-2.4 3.5 9.1 12.8]

[Jim John Moe Robert Zachary]

*/

The quicksort algorithm is an example of a divide-and-conquer algorithm. We

partition the original slice into two smaller slices and sort each of these by continuing

to partition each into two more until eventually we get slices of two elements that we

compare with each other.

If the original slice has n elements, we can perform the divide-and-conquer log2n

times (the number of times we can divide n by 2 to get down to two elements).

This assumes that we partition the slices by cutting them in half each time. A close

examination of the partition function reveals that this is not always the case.

The partition function uses its leftmost element as the pivot element. It then moves

data around the slice to ensure that elements to the left of the pivot element are smaller

and elements to the right of the pivot are larger.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

68

 Big O Analysis
We “walk” through an example to illustrate, in detail, how partition does its work.

Suppose our array slice that we wish to partition is

[6, 2, 3, 9, 8, 17, 4]

We choose the pivot element to be 6 (the leftmost element).

We increment the index i until we find an element larger than the pivot element 6.

That is element 9 in position 3.

Now starting with index j in position 6 (the rightmost position), we decrement j

until we find an element whose value is less than the pivot element. That is element 4 in

position 6. We interchange the elements in positions 3 and 6 producing

[6, 2, 3, 4, 8, 17, 9]

Starting at index 3, we again increment i until we find an element greater than 6,

which is 8 in position 4. We decrement j (in position 6) until we find an element less than

the pivot element 6. That is element 4 in position 3. We don’t interchange the elements

in positions 3 and 4 since i is not less than j.

Since i is no longer less than j, we exit the outer for-loop.

We perform the final interchange of the pivot element with position j to get

[4, 2, 3, 6, 8, 17, 9]

All the elements to the left of the pivot element 6 are less than 6, and those to the

right of 6 are greater than 6.

 Worst Case for Quicksort
If the original array were sorted, so the pivot element was the smallest, this would be

worst case. We would have to interchange n – 1 elements on the first pass, n – 2 elements

on the second pass, etc., giving us an O(n2) algorithm. This is one of the ironies of

quicksort. The closer the data is to initially sorted, the worse quicksort performs.

A useful filter to impose in front of quicksort would be to test the input to see

whether it is already sorted. If so, bail out and don’t perform any sorting.

Since the partition function is O(n), the quicksort algorithm is O(nlog2n) when the

data being sorted is not already sorted or close to sorted.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

69

 Comparing Bubblesort to Quicksort
In Listing 2-5, we compare bubblesort with quicksort using sine wave data for our

array slice.

Listing 2-5. Comparing bubblesort with quicksort

package main

import(

 "fmt"

 "math"

 "time"

)

const size = 100_000

type Ordered interface {

 ~float64 | ~int | ~string

}

// Snip – See Listings 2.3 and 2.4

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = math.Sin(float64(i * i))

 }

 start := time.Now()

 quicksort[float64](data, 0, len(data) - 1)

 elapsed := time.Since(start)

 fmt.Println("Elapsed sort time for sine wave using quicksort: ",

elapsed)

 data = make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = math.Sin(float64(i * i))

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

70

 start = time.Now()

 bubblesort[float64](data)

 elapsed = time.Since(start)

 fmt.Println("Elapsed sort time for sine wave using bubblesort: ",

elapsed)

}

/*Output

lapsed sort time for sine wave using quicksort: 7.808522ms

Elapsed sort time for sine wave using bubblesort: 12.26859692s

*/

The O(nlog2n) quicksort performs almost 1600 times faster than the O(n2)

bubblesort.

 Concurrent Quicksort
Can we improve the performance of quicksort using concurrency?

As a stepping stone toward a concurrent solution, we consider another O(n2) sorting

algorithm, InsertSort, implemented as follows:

func InsertSort[T Ordered](data[] T) {

 i := 1

 for i < len(data) {

 h := data[i]

 j := i - 1

 for j >= 0 && h < data[j] {

 data[j + 1] = data[j]

 j -= 1

 }

 data[j + 1] = h

 i += 1

 }

}

Let us “walk” through a simple example to see how this sorting algorithm works.

Suppose the slice, data, that we wish to sort is [5, 1, 12, 9].

The variable i is initialized to 1.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

71

In the for-loop, h is set to data[1], which is 1. The variable j is set to 0. In a nested for-

loop, data[j + 1] is set to data[0], so data[1] is set to 5. The inner loop terminates. Next,

data[0] is set to 1. The slice is now [1, 5, 12, 9].

After incrementing i, we execute the outer loop again. The variable h is set to 12,

and j is set to 1. The inner loop terminates since 12 is not less than either 1 or 5. We

increment i to 3. Variable h is set to 9. In the inner loop, since 9 is less than 12, the slice

becomes [1, 5, 9, 12], and we are done.

Because of the two nested loops, the InsertSort is O(n2) for large n.

For each iteration of the outer loop, the next element, not yet considered, is inserted

to the left of the first element that is larger than it.

In Listing 2-6, we consider a concurrent implementation of quicksort of 50 million

numbers.

Listing 2-6. Concurrent implementation of quicksort

package main

import (

 "fmt"

 "time"

 "math/rand"

 "sync"

)

const size = 50_000_000

const threshold = 5000

type Ordered interface {

 ~float64 | ~int | ~string

}

func InsertSort[T Ordered](data[] T) {

 i := 1

 for i < len(data) {

 h := data[i]

 j := i - 1

 for j >= 0 && h < data[j] {

 data[j + 1] = data[j]

 j -= 1

Chapter 2 algorithm effiCienCy: Sorting and SearChing

72

 }

 data[j + 1] = h

 i += 1

 }

}

func Partition[T Ordered](data[] T) int {

 data[len(data) / 2], data[0] = data[0], data[len(data) / 2]

 pivot := data[0]

 mid := 0

 i := 1

 for i < len(data) {

 if data[i] < pivot {

 mid += 1

 data[i], data[mid] = data[mid], data[i]

 }

 i += 1

 }

 data[0], data[mid] = data[mid], data[0]

 return mid

}

func IsSorted[T Ordered](data[] T) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i - 1] {

 return false

 }

 }

 return true

}

func ConcurrentQuicksort[T Ordered](data[] T, wg *sync.WaitGroup) {

 for len(data) >= 30 {

 mid := Partition(data)

 var portion[] T

 if mid < len(data) / 2 {

 portion = data[:mid]

Chapter 2 algorithm effiCienCy: Sorting and SearChing

73

 data = data[mid + 1:]

 } else {

 portion = data[mid + 1:]

 data = data[:mid]

 }

 if (len(portion) > threshold) {

 wg.Add(1)

 go func(data[] T) {

 defer wg.Done()

 ConcurrentQuicksort(data, wg)

 }(portion)

 } else {

 ConcurrentQuicksort(portion, wg)

 }

 }

 InsertSort(data)

}

func QSort[T Ordered](data[] T) {

 var wg sync.WaitGroup

 ConcurrentQuicksort(data, &wg)

 wg.Wait()

}

func partition[T Ordered](data []T, low, high int) int {

 var pivot = data[low]

 var i = low

 var j = high

 for i < j {

 for data[i] <= pivot && i < high {

 i++;

 }

 for data[j] > pivot && j > low {

 j--

 }

 if i < j {

Chapter 2 algorithm effiCienCy: Sorting and SearChing

74

 data[i], data[j] = data[j], data[i]

 }

 }

 data[low] = data[j]

 data[j] = pivot

 return j

}

func quicksort[T Ordered](data []T, low, high int) {

 if low < high {

 var pivot = partition(data, low, high)

 quicksort(data, low, pivot)

 quicksort(data, pivot + 1, high)

 }

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 data2 := make([]float64, size)

 copy(data2, data)

 start := time.Now()

 QSort[float64](data)

 elapsed := time.Since(start)

 fmt.Println("Elapsed time for concurrent quicksort = ", elapsed)

 fmt.Println("Is sorted: ", IsSorted(data))

 start = time.Now()

 quicksort(data2, 0, len(data2) - 1)

 elapsed = time.Since(start)

 fmt.Println("Elapsed time for regular quicksort = ", elapsed)

 fmt.Println("Is sorted: ", IsSorted(data2))

}

/* Output

Chapter 2 algorithm effiCienCy: Sorting and SearChing

75

Elapsed time for concurrent quicksort = 710.431619ms

Is sorted: true

Elapsed time for regular quicksort = 5.382400384s

Is sorted: true

*/

The results are again dramatic. In sorting 50 million numbers and comparing the

sort time of regular quicksort with that of concurrent quicksort, we find the regular

quicksort is about 7.6 times slower than the concurrent quicksort.

When the length of the slice is less than 30, we use InsertSort to complete the

sorting of the slice. When the length of the slice is less than the threshold of 5000, we use

ordinary quicksort to complete the sorting. The constants 30 and 5000 are determined

empirically. The motivation is to prevent the overhead associated with many goroutines

deployed to sort small-sized slices.

It is noted that the performance of InsertSort on a slice whose size is less than 30 is

not governed by O(n2), which is an asymptotic bound for large n.

 Mergesort Algorithm
The next sorting algorithm we examine is the classic mergesort algorithm. It is a divide-

and-conquer algorithm, just like quicksort. We replace the original slice with two slices,

each of size a half of the original slice size. Each of these half-slices is further divided into

quarter slices, and this pattern continues until we get slices of size 1. Using recursion, we

weave the slices together by merging them as shown in Listing 2-7.

Listing 2-7. Mergesort algorithm

package main

import (

 "fmt"

 "math/rand"

 "time"

)

Chapter 2 algorithm effiCienCy: Sorting and SearChing

76

const size = 50_000_000

type Ordered interface {

 ~float64 | ~int | ~string

}

func IsSorted[T Ordered](data[] T) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i - 1] {

 return false

 }

 }

 return true

}

func InsertSort[T Ordered](data[] T) {

 i := 1

 for i < len(data) {

 h := data[i]

 j := i - 1

 for j >= 0 && h < data[j] {

 data[j + 1] = data[j]

 j -= 1

 }

 data[j + 1] = h

 i += 1

 }

}

func Merge[T Ordered](left, right []T) []T {

 result := make([]T, len(left) + len(right))

 i, j, k := 0, 0, 0

 for i < len(left) && j < len(right) {

 if left[i] < right[j] {

 result[k] = left[i]

 i++

 } else {

Chapter 2 algorithm effiCienCy: Sorting and SearChing

77

 result[k] = right[j]

 j++

 }

 k++

 }

 for i < len(left) {

 result[k] = left[i]

 i++

 k++

 }

 for j < len(right) {

 result[k] = right[j]

 j++

 k++

 }

 return result

}

func MergeSort[T Ordered](data []T) []T {

 if len(data) > 100 {

 middle := len(data) / 2

 left := data[:middle]

 right := data[middle:]

 data = Merge(MergeSort(right), MergeSort(left))

 } else {

 InsertSort(data)

 }

 return data

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 /*

Chapter 2 algorithm effiCienCy: Sorting and SearChing

78

 data2 := make([]float64, size)

 copy(data2, data)

 */

 start := time.Now()

 result := MergeSort[float64](data)

 elapsed := time.Since(start)

 fmt.Println("Elapsed time for MergeSort = ", elapsed)

 fmt.Println("Is sorted: ", IsSorted(result))

}

/* Output

Elapsed time for MergeSort = 6.18063849s

Is sorted: true

*/

This algorithm is simpler to understand than quicksort. Function Merge constructs

a new slice, result, by merging elements from the two input slices, left and right, so that

result is sorted.

The recursive MergeSort function partitions the input array into left and right and

calls Merge on the results of recursively invoking MergeSort.

It is noted that MergeSort does not sort in place as quicksort does. This requires

extra memory allocation compared to quicksort.

Since Merge is O(n) and there are log2n recursive calls in MergeSort, the complexity

of MergeSort is O(nlog2n).

 Concurrent Mergesort
Can we improve the performance of MergeSort with concurrency? Yes!

Listing 2-8 shows a concurrent implementation of MergeSort.

Listing 2-8. Concurrent implementation of MergeSort

package main

import (

 "fmt"

Chapter 2 algorithm effiCienCy: Sorting and SearChing

79

 "time"

 "math/rand"

 "sync"

)

const size = 50_000_000

const max = 5000

type Ordered interface {

 ~float64 | ~int | ~string

}

func IsSorted[T Ordered](data[] T) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i - 1] {

 return false

 }

 }

 return true

}

func InsertSort[T Ordered](data[] T) {

 i := 1

 for i < len(data) {

 h := data[i]

 j := i - 1

 for j >= 0 && h < data[j] {

 data[j + 1] = data[j]

 j -= 1

 }

 data[j + 1] = h

 i += 1

 }

}

func Merge[T Ordered](left, right []T) []T {

 result := make([]T, len(left) + len(right))

 i, j, k := 0, 0, 0

Chapter 2 algorithm effiCienCy: Sorting and SearChing

80

 for i < len(left) && j < len(right) {

 if left[i] < right[j] {

 result[k] = left[i]

 i++

 } else {

 result[k] = right[j]

 j++

 }

 k++

 }

 for i < len(left) {

 result[k] = left[i]

 i++

 k++

 }

 for j < len(right) {

 result[k] = right[j]

 j++

 k++

 }

 return result

}

func MergeSort[T Ordered](data []T) []T {

 if len(data) > 100 {

 middle := len(data) / 2

 left := data[:middle]

 right := data[middle:]

 data = Merge(MergeSort(right), MergeSort(left))

 } else {

 InsertSort(data)

 }

 return data

}

Chapter 2 algorithm effiCienCy: Sorting and SearChing

81

func ConcurrentMergeSort[T Ordered](data []T) []T {

 if len(data) > 1 {

 if len(data) <= max {

 return MergeSort(data)

 } else { // Concurrent

 middle := len(data) / 2

 left := data[:middle]

 right := data[middle:]

 var wg sync.WaitGroup

 wg.Add(2)

 var data1, data2 []T

 go func() {

 defer wg.Done()

 data1 = ConcurrentMergeSort(left)

 }()

 go func() {

 defer wg.Done()

 data2 = ConcurrentMergeSort(right)

 }()

 wg.Wait()

 return Merge(data1, data2)

 }

 }

 return nil

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 start := time.Now()

 result := ConcurrentMergeSort(data)

 elapsed := time.Since(start)

 fmt.Println("Elapsed time for concurrent mergesort = ", elapsed)

Chapter 2 algorithm effiCienCy: Sorting and SearChing

82

 fmt.Println("Sorted: ", IsSorted(result))

}

/* Output

Elapsed time for concurrent mergesort = 1.275120179s

Sorted: true

*/

The two goroutines, shown in boldface, perform MergeSort concurrently. The wg.
Wait() forces the Merge of the two results to wait for both goroutines to finish.

To avoid the overhead of spawning goroutines for small-sized data, ordinary

sequential MergeSort is used when data has a size less than max (5000 in this case).

The performance of ConcurrentMergeSort on a random slice of 50 million floating-

point numbers is slightly slower than ConcurrentQuickSort but faster than the

sequential version.

 Conclusions
Quicksort has an average complexity of O(nlog2n) and sorts in place (no need for extra

storage). If the input data is already sorted or close to sorted, the complexity falls to

O(n2). The concurrent quicksort is extremely fast.

MergeSort has an average complexity of O(nlog2n). It does not sort in place, so

there is a need for extra storage. Generally, it is slower than quicksort. If the input data is

sorted or close to sorted, mergesort is very fast. The concurrent mergesort is extremely

fast but slower than the concurrent quicksort.

In the next section, we examine the issue of searching array slices.

2.3 Searching Array Slices
In this section, we restrict our attention to searching array slices efficiently.

Searching a data structure for the presence of stored information is one of the

important operations we perform and is often the reason we create the data structure.

As we introduce data structures in later sections of the book, we examine methods for

efficiently searching for information stored in the data structure.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

83

 Linear Searches
The simplest search algorithm for searching a slice is a linear search. We iterate through

all the elements of the slice sequentially until we find a matchup or complete searching

all the elements of the slice.

Listing 2-9 presents the linear search in a slice.

Listing 2-9. Linear search of a slice

package main

import (

 "fmt"

 "time"

 "math/rand"

)

const size = 100_000_000

type Ordered interface {

 ~float64 | ~int | ~string

}

func linearSearch[T Ordered](slice []T, target T) bool {

 // Return true if T is in the slice

 for i := 0; i < len(slice); i++ {

 if slice[i] == target {

 return true

 }

 }

 return false

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 start := time.Now()

Chapter 2 algorithm effiCienCy: Sorting and SearChing

84

 result := linearSearch[float64](data, 54.0)

 elapsed := time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

linearSearch = ", elapsed)

 fmt.Println("Result of search is ", result)

 start = time.Now()

 result = linearSearch[float64](data, data[size / 2])

 elapsed = time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

linearSearch = ", elapsed)

 fmt.Println("Result of search is ", result)

}

/* Output

Time to search slice of 100_000_000 floats using linearSearch = 54.464458ms

Result of search is false

Time to search slice of 100_000_000 floats using linearSearch = 17.981833ms

Result of search is true

*/

The preceding benchmark was done on a MacBook Pro with M1 Max processor and

32G of RAM.

 Concurrent Searches
In Listing 2-10, we show the details of a concurrent search of an array slice.

Listing 2-10. Concurrent search of a slice

package main

import (

 "fmt"

 "time"

 "math/rand"

 "runtime"

)

Chapter 2 algorithm effiCienCy: Sorting and SearChing

85

type Ordered interface {

 ~float64 | ~int | ~string

}

const size = 100_000_000

func searchSegment[T Ordered](slice []T, target T, a, b int, ch

chan<- bool) {

 // Generates boolean value put into ch

 for i := a; i < b; i++ {

 if slice[i] == target {

 ch <- true

 }

 }

 ch <- false

}

func concurrentSearch[T Ordered](data []T, target T) bool {

 ch := make(chan bool)

 numSegments := runtime.NumCPU()

 segmentSize := int(float64(len(data)) / float64(numSegments))

 // Launch numSegments goroutines

 for index := 0; index < numSegments; index++ {

 go searchSegment(data, target, index * segmentSize, index *

 segmentSize + segmentSize, ch)

 }

 num := 0 // Completed goroutines

 for {

 select {

 case value := <- ch: // Blocks until a goroutine puts a bool into the

 //channel

 if value == true {

 return true

 }

 num += 1

Chapter 2 algorithm effiCienCy: Sorting and SearChing

86

 if num == numSegments { // All goroutiines have completed

 return false

 }

 }

 }

 return false

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 start := time.Now()

 result := concurrentSearch[float64](data, 54.0) // Should return false

 elapsed := time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

 concurrentSearch = ", elapsed)

 fmt.Println("Result of search is ", result)

 start = time.Now()

 result = concurrentSearch[float64](data, data[size / 2]) // true

 elapsed = time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

 concurrentSearch = ", elapsed)

 fmt.Println("Result of search is ", result)

}

/*

Time to search slice of 100_000_000 floats using concurrentSearch

= 9.666792ms

Result of search is false

Time to search slice of 100_000_000 floats using concurrentSearch

= 5.311917ms

Result of search is true

*/

Chapter 2 algorithm effiCienCy: Sorting and SearChing

87

An improvement of over a factor of 5 in worst-case search time is achieved using

concurrency. The complexity of the linear search and concurrent search is O(n).

 Binary Searches
If the data in the slice to be searched is sorted, a binary search algorithm could be used.

This algorithm is O(log2n) since the search space is halved during each iteration.

Listing 2-11 presents the details of this binary search on sorted data.

Listing 2-11. Binary search on sorted data

package main

import (

 "fmt"

 "time"

)

const size = 100_000_000

type Ordered interface {

 ~float64 | ~int | ~string

}

func binarySearch[T Ordered](slice []T, target T) bool {

 low := 0

 high := len(slice) - 1

 for low <= high {

 median := (low + high) / 2

 if slice[median] < target {

 low = median + 1

 } else {

 high = median - 1

 }

 }

Chapter 2 algorithm effiCienCy: Sorting and SearChing

88

 if low == len(slice) || slice[low] != target {

 return false

 }

 return true

}

func main() {

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = float64(i) // is sorted

 }

 start := time.Now()

 result := binarySearch[float64](data, -10.0)

 elapsed := time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

binarySearch = ", elapsed)

 fmt.Println("Result of search is ", result)

 start = time.Now()

 result = binarySearch[float64](data, float64(size / 2))

 elapsed = time.Since(start)

 fmt.Println("Time to search slice of 100_000_000 floats using

binarySearch = ", elapsed)

 fmt.Println("Result of search is ", result)

}

/* Output

Time to search slice of 100_000_000 floats using binarySearch = 1.375μs
Result of search is false

Time to search slice of 100_000_000 floats using binarySearch = 334ns

Result of search is true

*/

The search time here is significantly smaller than the search times on random data

achieved earlier. That is because the data is sorted.

The fastest sorting algorithm has complexity O(nlog2n). If one needed to perform

many independent searches within the slice, it might pay to sort the data first and then

conduct the many searches using a binary search.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

89

It would not be beneficial to sort the slice before performing a single search of the

slice because of the overhead of sorting.

2.4 Summary
Big O notation describes the asymptotic efficiency of an algorithm. We examined several

classic sorting and searching algorithms in this chapter and characterized them by their

big O property. We presented concurrent solutions for each of the sorting algorithms and

observed significant improvements in their performance.

In the next chapter, we discuss object-oriented programming in Go without classes.

Chapter 2 algorithm effiCienCy: Sorting and SearChing

91

CHAPTER 3

Abstract Data Types: OOP
Without Classes in Go
In the previous chapter, we discussed algorithm complexity and presented examples

with and without the use of concurrency.

In this chapter, we show how object-oriented programming can be done without the

class construct. We review the fundamental concept of abstract data types and illustrate

their use with many examples.

3.1 Abstract Data Type Using Classes
In 1980, the Smalltalk language, developed at Xerox PARC, was released. This

seminal language set the stage for a new paradigm of programming: object-oriented

programming. The centerpiece of Smalltalk and newer object-oriented languages

that followed is the class construct. Some of the major object-oriented languages

that followed Smalltalk include Eiffel, C++ (a hybrid language that includes the class

construct), Java, Swift, Python, and C#. Each uses the class as the central construct for

defining abstract data types and describing the behavior of objects that are instances of

a class.

The class construct implements some older well-established ideas about how

software is constructed. Specifically, classes implement abstract data types.

An abstract data type is characterized by a set of operations that can be performed

on the underlying type. Consider the following simple example.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_3

https://doi.org/10.1007/978-1-4842-8191-8_3

92

We define the Counter abstract data type as follows:

Attributes

count int – The internal data of each Counter object (instance)

Methods

Increment() – Adds one to the current value of the attribute count

Decrement() – Subtracts one from the current value of the attribute count only if count > 0

Reset() – Sets the value of count to zero

GetCount() – Returns the current value of count

If myCounter is defined as being of type Counter (an instance of some class

Counter), the following operations would be legal:

myCounter.Increment()

myCounter.Decrement()

myCounter.Reset()

countValue = myCounter.GetCount()

In the preceding example, myCounter is referred to as an object (an instance of class

Counter), and the method calls connected to each object with the dot operator are the

legal operations that could be performed on each object, thus the name object-oriented
programming.

Object-oriented languages supporting the class construct provide a mechanism for

extending the operation set defined in a parent class using inheritance. Languages like

C++ and Eiffel allows a subclass to inherit operations from two or more parent classes,

while languages such as Java and C# allow inheritance from only one parent class.

Much has been written about inheritance in object-oriented languages. Inheritance

has fallen out of favor in recent years because of the complexity it can introduce and the

dependencies that may be created in a class hierarchy.

Two recent languages that have abandoned inheritance and in fact have abandoned

classes are Go and Rust. But Go and Rust have not abandoned object-oriented

programming (OOP) but have changed how this paradigm is used.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

93

Before we delve into the details of OOP in Go, let us examine how we might

implement the Counter abstract data type in Python.

class Counter:

 def __init__(self):

 self.count = 0

 def increment(self):

 self.count += 1

 def decrement(self):

 self.count -= 1

 def reset():

 self,count = 0

 def get_count(self) -> int:

 return self.count

if __name__ == "__main__":

 my_counter = Counter()

 for index in range(10):

 my_counter.increment()

 my_counter.decrement()

 current_count = my_counter.get_count()

 print(current_count)

''' Output

9

'''

The keyword self is used as a reference to any instance of class Counter. The

attribute count, defined in the __init__ method, is stored in each instance (object) of

class Counter.

One obvious appeal of the class construct is that all the operations on the underlying

attribute(s) are encapsulated in this single construct.

What about Go? In the next section, we look at defining abstract data types in Go

without the use of classes.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

94

3.2 Abstract Data Types in Go
Go does not include the class construct. This is a major departure from recent object-

oriented languages. Since there is no class construct in Go, there is no inheritance.

 ADT Counter
The ADT Counter must restrict the operations that can be performed on an instance of

Counter. Specifically, we cannot assign an arbitrary value to a counter. We cannot change

the value of a counter by more than one. Without these restrictions, there would be no

value in defining this abstract data type. We could use a simple int type instead.

Listing 3-1 shows our first implementation of the Counter abstract data type (ADT).

As we will see shortly, this implementation is faulty. After defining Counter as a struct

with the field count, we define a series of methods that operate on instances, c, of

Counter or pointer to Counter.

Listing 3-1. First implementation of Counter ADT

package main

import (

 "fmt"

)

type Counter struct {

 count int

}

// Methods

func (c *Counter) Increment() {

 c.count++

}

func (c *Counter) Decrement() {

 c.count--

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

95

func (c *Counter) Reset() {

 c.count = 0

}

func (c Counter) GetCount() int {

 return c.count

}

func main() {

 myCounter := new(Counter)

 // myCounter.count = 100 // Defeats the encapsulatiom of Counter

 fmt.Println(myCounter.GetCount())

 for i := 1; i <= 10; i++ {

 myCounter.Increment()

 }

 myCounter.Decrement()

 // myCounter.count -= 6 // Defeats the encapsulation of Counter

 fmt.Println(myCounter.GetCount())

}

/*

0

9

*/

There is a problem with this first implementation. If one were to uncomment the two

commented lines of code:

myCounter.count = 100

myCounter.count -= 6

the encapsulation that preserves the integrity of the ADT would be broken. The whole

point of creating and implementing an ADT is to enforce the abstraction. In this case,

that means not allowing the count value to be changed by more than one and not

allowing the count value to be arbitrarily assigned.

We repair the problem and enforce the abstraction, as shown in Listing 3-2. We

define a Counter interface (using an uppercase C) to formally define the ADT.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

96

Listing 3-2. Second implementation of Counter ADT

// Creating ADT Counter

package main

import (

 "fmt"

)

// This type implicitly implements Counter ADT

type counter struct {

 count int

}

// Interface serves to expose public features of counter

// The attribute count is private

type Counter interface {

 increment()

 decrement()

 reset()

 getCount() int

}

func (c *counter) increment() {

 c.count += 1

}

func (c *counter) decrement() {

 if c.count > 0 {

 c.count -= 1

 }

}

func (c *counter) reset() {

 c.count = 0

}

func (c counter) getCount() int {

 return c.count

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

97

func main() {

 myCounter := Counter(&counter{})

 // The only operations that can be performed on myCounter

 // are specified in the Counter interface

 myCounter.increment()

 myCounter.increment()

 myCounter.reset()

 myCounter.increment()

 myCounter.increment()

 myCounter.increment()

 myCounter.increment()

 myCounter.decrement()

 countValue := myCounter.getCount()

 fmt.Println(countValue)

}

// 3

The Counter interface specifies the signature of the four operations that can be

performed on an ADT Counter.

The methods increment(), decrement(), reset(), and getCount(), each defined on a

counter type, implicitly make counter implement the ADT Counter.

If we were to comment out the reset() method and comment out the myCounter.
reset() in function main, we would get the following compiler error message:

./counter2.go:41:26: cannot convert &counter{} (value of type *counter) to type
Counter:

*counter does not implement Counter (missing reset method)
Without the reset() method defined on counter, the type counter no longer can be

considered to be of type Counter, and the compiler detects this error.

Abstract data types in Go are always implicitly defined by defining an interface that

specifies the operations associated with the ADT and then implementing methods on

the underlying type that have the exact signatures given in the interface specification.

With this accomplished in Listing 3-2, there is no way to violate the ADT

encapsulation as was evident in Listing 3-1.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

98

 Creating a counter Package
Another way to protect count and preserve the encapsulation of the counter abstraction

is to create a counter package and export Counter but not count.

package counter

// Field count is encapsulated as private because it is lowercase

type Counter struct {

 count int // private field

}

func (c *Counter) Increment() {

 c.count += 1

}

func (c *Counter) Decrement() {

 if c.count > 0 {

 c.count -= 1

 }

}

func (c *Counter) Reset() {

 c.count = 0

}

func (c Counter) GetCount() int {

 return c.count

}

In package counter, we protect the count field of Counter from being assigned to

outside the package by using a lowercase character as the first character in count.

 Mechanics of Creating a Package
In order to define a package in a subdirectory of your own choosing, we must follow a set

of steps that are outlined in the following. Here, we desire to include the counter.go file

that defines the counter package in a subdirectory counter in some work directory.

A main driver program, main.go, is defined in another subdirectory, maincounter.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

99

The steps needed to create package counter are the following:

 1. Create a subdirectory counter in your work directory.

 2. Save the counter.go file that contains package counter (see the

preceding text) in this subdirectory.

 3. Create a subdirectory maincounter in your work directory.

 4. Save the maincounter.go file in this subdirectory.

 5. Open a terminal window to the counter directory.

 6. Type the following command: go mod init example.com/counter

 7. Type the following command: go mod tidy

 8. Open a terminal window to the maincounter directory.

 9. Type the following command: go mod init example.com/
maincounter

 10. Edit the go.mod file to be

module example.com/maincounter

go 1.18

replace example.com/counter => ../counter

 11. Type the following command: go mod tidy

Listing 3-3 shows the third implementation of Counter ADT.

Listing 3-3. Third implementation of Counter ADT using package counter

// In subdirectory counter

package counter

type Counter struct {

 count int

}

func (c *Counter) Increment() {

 c.count += 1

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

100

func (c *Counter) Decrement() {

 if c.count > 0 {

 c.count -= 1

 }

}

func (c *Counter) Reset() {

 c.count = 0

}

func (c Counter) GetCount() int {

 return c.count

}

// In subdirectory maincounter

package main

import (

 "fmt"

 "example.com/counter"

)

func main() {

 myCounter := counter.Counter{}

 myCounter.Increment()

 myCounter.Increment()

 myCounter.Reset()

 myCounter.Increment()

 myCounter.Increment()

 myCounter.Increment()

 myCounter.Increment()

 myCounter.Decrement()

 countValue := myCounter.GetCount()

 fmt.Println(countValue)

}

// 3

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

101

Identifiers that are exported and therefore available outside of a package must start

with an uppercase character. This includes type names such as Counter and method

names. The field count in the Counter struct purposely uses a lowercase letter so that

its value cannot be accessed outside the package. The only way to change the count is

through the methods that operate on Counter.

Which of the two approaches, given in Listings 3-2 and 3-3, should one use in

implementing the ADT Counter?

If an ADT is to be used in two or more applications, the solution in Listing 3-3 that

defines a package for the ADT is preferred. If an ADT is a one-off, needed only in a

specialized application, then the solution using the interface type is easier.

 Another Example of Implementing an ADT
We look at another example with more complexity to illustrate how Go implements

abstract data types without the use of classes.

Consider the ADT Employee.

Attributes

lastname string

Firstname string

Role string

Salary float64

Methods

Get lastname (read-only)

Get Firstname (read-only)

Set/Get Role

Set/Get Salary

String() string – Represents the instance as a string

We have specified LastName and FirstName as read-only. Once their values have

been assigned, they cannot be changed.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

102

Also consider the ADT PartTimeEmployee that is an Employee with an additional

feature.

Attributes

employee

hourlyWage float64

Methods

Set/Get hourlyWage

String() string – Represents the instance as a string

We deploy the struct and interface definitions shown in the following to establish

the ADT:

type employee struct {

 lastName string

 firstName string

 role string

 salary float64

}

type Employee interface {

 SetLastName(lName string)

 SetFirstName(fName string)

 SetRole(r string)

 GetRole() string

 SetSalary(s float64)

 GetSalary() float64

 String() string

}

type partTimeEmployee struct {

 employee

 hourlyWage float64

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

103

type PartTimeEmployee interface {

 Employee

 SetHourlyWage(hourly float64)

 GetHourlyWage() float64

}

 Using Composition
Each of the struct types, employee and partTimeEmployee, is accompanied by interface

types. These define the operations required on their respective struct types to implicitly

make the struct types implement the interfaces given.

We use embedding when we define the first field of partTimeEmployee to be

employee.

In software design, this is called composition. The abstraction for a part time

employee is composed of an employee and an hourly wage.

The PartTimeEmployee interface also uses embedding by including the interface

Employee first. This requires that all the methods of Employee be implemented along

with the two new methods, Set/Get hourly wage.

Listing 3-4 fleshes out the ADTs defined previously and presents a short main driver

program.

Listing 3-4. Employee and PartTimeEmployee ADTs in action

package main

import (

 "fmt"

)

type employee struct {

 lastName string

 firstName string

 role string

 salary float64

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

104

type Employee interface {

 SetLastName(lName string)

 SetFirstName(fName string)

 SetRole(r string)

 GetRole() string

 SetSalary(s float64)

 GetSalary() float64

 String() string

}

type partTimeEmployee struct {

 employee

 hourlyWage float64

}

type PartTimeEmployee interface {

 Employee

 SetHourlyWage(hourly float64)

 GetHourlyWage() float64

}

// Methods

func (person *employee) SetSalary(yearly float64) {

 person.salary = yearly

}

func (person employee) GetSalary() float64 {

 return person.salary

}

func (person *employee) SetFirstName(firstN string) {

 person.firstName= firstN

}

func (person employee) GetFirstName() string {

 return person.firstName

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

105

func (person *employee) SetLastName(lastN string) {

 person.lastName = lastN

}

func (person *employee) SetRole(r string) {

 person.role = r

}

func (person employee) GetRole() string {

 return person.role

}

func (person employee) String() string {

 result := "Name: " + person.firstName + " " + person.lastName + "\n"

 result += "Role: " + person.role + "\n"

 result += "Annual salary: $" + fmt.Sprintf("%0.2f", person.

salary) + "\n"

 return result

}

func (person partTimeEmployee) String() string {

 result := "Name: " + person.firstName + " " + person.lastName + "\n"

 result += "Role: " + person.role + "\n"

 result += "HourlyWage: $" + fmt.Sprintf("%0.2f", person.

hourlyWage) + "\n"

 return result

}

func (person *partTimeEmployee) SetHourlyWage(amt float64) {

 person.hourlyWage = amt

}

func (person partTimeEmployee) GetHourlyWage() float64 {

 return person.hourlyWage

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

106

func main() {

 person := new(employee) // Returns the address of an employee

 person.SetFirstName("Helen")

 person.SetLastName("Rose")

 person.SetRole("Technical Lead")

 person.SetSalary(125_644.0)

 fmt.Println(person.String())

 hourlyWorker := new(partTimeEmployee) // Returns address

 hourlyWorker.SetFirstName("Mark")

 hourlyWorker.SetLastName("Smith")

 hourlyWorker.SetRole("Software Developer")

 hourlyWorker.SetHourlyWage(85.00)

 fmt.Println(hourlyWorker.String())

}

/*

Name: Helen Rose

Role: Technical Lead

Annual salary: $125644.00

Name: Mark Smith

Role: Software Developer

HourlyWage: $85.00

*/

Variables person and hourlyWorker act like objects (instances of a class) in

traditional object-oriented programming (OOP) languages. Methods are invoked on

these variables as one would do in traditional OOP languages.

In the next section, we discuss polymorphism in Go. This is another fundamental

pillar of object-oriented programming.

3.3 Polymorphism
Polymorphism is a basic pillar of object-oriented programming. It allows actions to

be taken on objects at runtime, where the action is based on the type of object that

receives the action.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

107

In traditional strongly typed object-oriented languages like C#, Java, and Swift, if the

action is declared on a formal type and the actual type is an instance of a descendant

class, the runtime system chooses the method belonging to the actual type receiving the

message.

This cannot happen in Go since descendant classes (inheritance) do not exist.

 Using Interfaces to Achieve Polymorphism
We can achieve polymorphic behavior using interfaces as the next example in Listing 3-5

illustrates.

Listing 3-5. Polymorphism in action

package main

import (

 "fmt"

)

type FixedPriceJob struct {

 description string

 fixedPrice float64

}

type HourlyJob struct {

 description string

 hourlyRate float64

 numberHours int

}

type JobInterface interface {

 Cost() float64

 GetDescription() string

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

108

// Implicitly defines FixedPriceJob as implementing the JobInterface

func (job FixedPriceJob) Cost() float64 {

 return job.fixedPrice

}

func (job FixedPriceJob) GetDescription() string {

 return job.description

}

// Implicitly defines HourlyJob as implementing the JobInterface

func (hourlyJob HourlyJob) Cost() float64 {

 return hourlyJob.hourlyRate * float64(hourlyJob.numberHours)

}

func (hourlyJob HourlyJob) GetDescription() string {

 return hourlyJob.description

}

func TotalJobCost(jobs []JobInterface) float64 {

 result := 0.0

 for _, job := range jobs {

 result += job.Cost()

 }

 return result

}

func main() {

 job1 := FixedPriceJob{"Stucco House", 34760.0}

 job2 := HourlyJob{"Landscaping", 40.0, 50}

 jobs := []JobInterface{job1, job2}

 totalCost := TotalJobCost(jobs)

 fmt.Printf("Total job cost: $%0.2f", totalCost)

}

// Total job cost: $36760.00

Any type that defines methods with the signatures given in JobInterface implicitly

implements this interface. That is what we do in Listing 3-5. We define Cost() and

GetDescription() methods on both FixedPriceJob and HourlyJob.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

109

In function TotalJobCost, we input a slice of type JobInterface. We iterate over

the range of input jobs and accumulate the total cost by invoking the Cost() method

on each job. The runtime system binds the correct Cost() method based on the type

of job receiving this method (whether the job is a FixedPriceJob or HourlyJob in this

example). That is polymorphism in action.

In the next section, we present an object-oriented programming (OOP) application.

A simple Blackjack card game is developed.

3.4 OOP Application: Simplified Game of Blackjack
In traditional object-oriented languages such as Smalltalk, Java, C#, and Swift, the design

process involves problem decomposition into classes. This is not possible in Go since

classes do not exist.

We illustrate how problem decomposition can be achieved in Go. We design and

implement a small, simplified Blackjack card game. This game is console based.

In Blackjack, two cards are dealt from the deck to the player and to the house. The

goal is to accumulate points but not exceed 21 points. The point value of a card is the

number on its face or 10 if the card is a jack, queen, or king or 11 if the card is an ace.

If the hand has two or more aces, then 10 is subtracted from the total point count of

the hand.

The player goes first and acquires additional cards, if she wishes to, by saying “hit

me.” When the player’s score gets close to 21, the player stops. If the player’s score

exceeds 21 after being “hit,” the game ends with the house as the winner. If not, it is the

house’s turn. Here, we simplify things by assuming that the house will request “hit me”

if its total score is less than 17. After the house is finished with its play, the winner is the

one with the highest score if that score is less than or equal to 21. Ties are possible.

In traditional object-oriented languages, we would define classes Card, Hand, and

Deck and also define methods for taking actions on these entities.

In Go, we model the system using structs and methods.

Consider the following:

var ranks = []string {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J",

"Q", "K", "A"}

var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663'}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

110

type Card struct {

 Rank string

 Suit string

}

type Hand struct {

 Cards []Card

}

type Deck struct {

 Cards []Card

}

Variable ranks is a slice containing the available cards, each a string. Variable suits

contains a slice of four rune values representing the symbols for club, diamond, heart,

and spade.

Type Card is a struct with the fields Rank and Suit.

The method value operates on a hand as follows:

func (hand Hand) value() int {

 result := 0

 numberAces := 0

 for index := 0; index < len(hand.Cards); index++ {

 if hand.Cards[index].Rank != "A" && hand.Cards[index].Rank

!= "K" &&

 hand.Cards[index].Rank != "Q" && hand.Cards[index].

Rank != "J" {

 intVal, _ := strconv.Atoi(hand.Cards[index].Rank)

 result += intVal

 } else if hand.Cards[index].Rank == "J" || hand.Cards[index].

Rank == "Q" ||

 hand.Cards[index].Rank == "K" {

 result += 10

 } else if hand.Cards[index].Rank == "A"{

 result += 11

 numberAces += 1

 }

 }

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

111

 if result > 21 && numberAces > 1 {

 result -= 10 * numberAces

 }

 return result

}

The other supporting methods are presented in the following:

func (hand *Hand) addCard(card Card) {

 hand.Cards = append(hand.Cards, card)

}

func (hand Hand) Display() {

 fmt.Println("\n")

 for _, card := range hand.Cards {

 fmt.Print(card.Rank + card.Suit + " ")

 }

}

func (deck *Deck) dealCard() Card {

 result := deck.Cards[0]

 deck.Cards = deck.Cards[1:]

 return result

}

func (deck *Deck) shuffle() {

 rand.Seed(time.Now().UnixNano())

 rand.Shuffle(len(deck.Cards), func(i, j int) { deck.Cards[i],

 deck.Cards[j] = deck.Cards[j], deck.Cards[i]

 })

}

func (deck *Deck) initializeDeck() Deck{

 for _, suit := range suits {

 for _, rank := range ranks {

 deck.Cards = append(deck.Cards, Card{rank, string(suit)})

 }

 }

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

112

 deck.shuffle()

 return *deck

}

func (deck Deck) display() {

 for _, card := range deck.Cards {

 fmt.Print(card.Rank + card.Suit + " ")

 }

}

Method shuffle utilizes the Shuffle function from package “math/rand”.

Listing 3-6 presents the complete Go application for Blackjack.

Listing 3-6. Blackjack

package main

import (

 "strconv"

 "fmt"

 "math/rand"

 "time"

 "bufio"

 "os"

)

var ranks = []string {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J",

"Q", "K", "A"}

var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663'}

type Card struct {

 Rank string

 Suit string

}

type Hand struct {

 Cards []Card

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

113

type Deck struct {

 Cards []Card

}

func (hand Hand) value() int {

 result := 0

 numberAces := 0

 for index := 0; index < len(hand.Cards); index++ {

 if hand.Cards[index].Rank != "A" && hand.Cards[index].

Rank != "K" &&

 hand.Cards[index].Rank != "Q" && hand.Cards[index].

Rank != "J" {

 intVal, _ := strconv.Atoi(hand.Cards[index].Rank)

 result += intVal

 } else if hand.Cards[index].Rank == "J" || hand.

Cards[index].Rank == "Q" ||

 hand.Cards[index].Rank == "K" {

 result += 10

 } else if hand.Cards[index].Rank == "A"{

 result += 11

 numberAces += 1

 }

 }

 if result > 21 && numberAces > 1 {

 result -= 10 * numberAces

 }

 return result

}

func (hand *Hand) addCard(card Card) {

 hand.Cards = append(hand.Cards, card)

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

114

func (hand Hand) Display() {

 fmt.Println("\n")

 for _, card := range hand.Cards {

 fmt.Print(card.Rank + card.Suit + " ")

 }

}

func (deck *Deck) dealCard() Card {

 result := deck.Cards[0]

 deck.Cards = deck.Cards[1:]

 return result

}

func (deck *Deck) shuffle() {

 rand.Seed(time.Now().UnixNano())

 rand.Shuffle(len(deck.Cards), func(i, j int) { deck.Cards[i],

 deck.Cards[j] = deck.Cards[j], deck.Cards[i] })

}

func (deck *Deck) initializeDeck() Deck{

 for _, suit := range suits {

 for _, rank := range ranks {

 deck.Cards = append(deck.Cards, Card{rank, string(suit)})

 }

 }

 deck.shuffle()

 return *deck

}

func (deck Deck) display() {

 for _, card := range deck.Cards {

 fmt.Print(card.Rank + card.Suit + " ")

 }

}

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

115

func main() {

 gameOver := false

 myDeck := Deck{}

 myDeck.initializeDeck()

 houseHand := Hand{}

 playerHand := Hand{}

 for i := 1; i <= 2; i++ {

 card := myDeck.dealCard()

 houseHand.addCard(card)

 card = myDeck.dealCard()

 playerHand.addCard(card)

 }

 playerHand.Display()

 fmt.Println(" Do you want to be hit (y/n)?")

 reader := bufio.NewReader(os.Stdin)

 res, _ , _:= reader.ReadRune()

 for ; ; {

 if res != 'y' {

 break

 }

 card := myDeck.dealCard()

 playerHand.addCard(card)

 playerHand.Display()

 if playerHand.value() > 21 {

 fmt.Println("PLAYER'S SCORE EXCEEDS 21. GAME OVER. HOUSE WINS!")

 gameOver = true

 break

 }

 fmt.Println(" Do you want to be hit (y/n)?")

 reader = bufio.NewReader(os.Stdin)

 res, _ , _ = reader.ReadRune()

 }

 if !gameOver {

 for ; ; {

 if houseHand.value() > 21 {

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

116

 fmt.Println("HOUSE SCORE EXCEEDS 21. GAME OVER. PLAYER WINS!")

 gameOver = true

 break

 }

 if houseHand.value() < 17 {

 card := myDeck.dealCard()

 houseHand.addCard(card)

 } else {

 break

 }

 }

 }

 if !gameOver {

 if playerHand.value() > houseHand.value() {

 fmt.Println("PLAYER SCORE EXCEEDS HOUSE SCORE. GAME OVER.

 PLAYER WINS!")

 } else if playerHand.value() == houseHand.value() {

 fmt.Println("PLAYER SCORE EQUALS HOUSE SCORE. GAME OVER.

 TIE GAME!")

 } else {

 fmt.Println("HOUSE SCORE EXCEEDS PLAYER SCORE. GAME OVER.

HOUSE WINS!")

 }

 }

}

The output of one of many runs is

4♡ 3♣ Do you want to be hit (y/n)?

y

4♡ 3♣ 6♠ Do you want to be hit (y/n)?

y

4♡ 3♣ 6♠ 5♡ Do you want to be hit (y/n)?

n

HOUSE SCORE EXCEEDS PLAYER SCORE. GAME OVER. HOUSE WINS!

In the final section of this chapter, we present another OOP application. This

application utilizes the standard map data structure defined in Go.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

117

3.5 Another OOP Application: Permutation Group
of Words
A permutation group of words contains a collection of words that are formed from the

same letters and are all found in the same dictionary.

For example, a permutation group for “persist” contains a collection of words that

are formed from the same letters and are all found in the same dictionary.

The permutation group for “persist” is [‘esprits’, ‘persist’, ‘priests’, ‘spriest’, ‘sprites’,

‘stirpes’, ‘stripes’].

One’s first thought might be to enumerate all permutations of the group of letters

and see what subset is in the dictionary.

 Using the Standard map Data Structure
We will take a different approach. As we scan an entire file of words, we construct a map

with key-value pairs as follows:

key: Alphabetized word (all the letters of the given word rearranged from

smallest letter to largest letter). For example, alphabetized(“camp”) = “acmp”,

alphabetized(“balloon”) = “abllnoo”

value: A collection of dictionary words that can be reduced to the same

alphabetized word

As we process each word in a words.txt file, we compute the key by alphabetizing

the word and then check to see whether the key is already present in our map. If it is, we

add the word we are processing to the value collection associated with this key. If not, we

create a new collection and add the <alphabetized(word), new collection> key-value pair

to our map.

When the map is done, we find the permutations of a specified word by computing

its key and then getting the collection associated with this key from our map.

We start by defining a global variable dictionary.

var dictionary map[string][]string

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

118

Next, we define a function, alphabetize.

func alphabetize(word string) string {

 s := strings.Split(word, "")

 sort.Strings(s)

 return strings.Join(s, "")

}

The first line creates an array of characters. The next line sorts this array in place. The

third line joins the sorted array forming the resulting string.

The function, buildDictionary, creates a map with each key representing a sorted

alphabetized word and each value being a slice of words that alphabetize to the key.

This function is shown next.

func buildDictionary() {

 dictionary = make(map[string][]string)

 file, err := os.Open("words.txt")

 if err != nil {

 log.Fatalf("failed opening file: %s", err)

 }

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

 var txtwords []string

 for scanner.Scan() {

 txtwords = append(txtwords, scanner.Text())

 }

 file.Close()

 for _, word := range txtwords {

 alphabetized := alphabetize(word)

 var lst []string

 if len(dictionary) > 0 && len(dictionary[alphabetized]) > 0 {

 lst = dictionary[alphabetized]

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

119

 } else {

 lst = []string{}

 }

 lst = append(lst, word)

 dictionary[alphabetized] = lst

 }

}

The file handling portion of buildDictionary is the most complex.

 file, err := os.Open("words.txt")

 if err != nil {

 log.Fatalf("failed opening file: %s", err)

 }

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

 var txtwords []string

 for scanner.Scan() {

 txtwords = append(txtwords, scanner.Text())

 }

 file.Close()

Using the imported package, os, a text file of words is opened. A scanner is defined

by using NewScanner on the bufio package that is imported. Using scanner.Scan(), the

slice of words contained in the words.txt file is generated.

Each word in this slice is alphabetized and either added to the existing map for that

key or a new key is created and the first value in the slice of words associated with the key

is inserted.

Listing 3-7 presents the full source code for this application.

Listing 3-7. Permutation Group of Words

package main

import (

 "fmt"

 "sort"

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

120

 "strings"

 "bufio"

 "log"

 "os"

)

func init() {

 buildDictionary()

}

var dictionary map[string][]string

func alphabetize(word string) string {

 s := strings.Split(word, "")

 sort.Strings(s)

 return strings.Join(s, "")

}

func buildDictionary() {

 dictionary = make(map[string][]string)

 file, err := os.Open("words.txt")

 if err != nil {

 log.Fatalf("failed opening file: %s", err)

 }

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

 var txtwords []string

 for scanner.Scan() {

 txtwords = append(txtwords, scanner.Text())

 }

 file.Close()

 for _, word := range txtwords {

 alphabetized := alphabetize(word)

 var lst []string

 if len(dictionary) > 0 && len(dictionary[alphabetized]) > 0 {

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

121

 lst = dictionary[alphabetized]

 } else {

 lst = []string{}

 }

 lst = append(lst, word)

 dictionary[alphabetized] = lst

 }

}

func output(word string) {

 wd := alphabetize(word)

 fmt.Printf("Permutation group of %s is %s", word, dictionary[wd])

}

func main() {

 output("parties")

}

// Permutation group of parties is [parties pastier piaster piastre pirates

// raspite spirate tapiser traipse]

3.6 Summary
We focused on the implementation of abstract data types in this chapter. Two

approaches were shown to accomplish this. The first uses an interface to define the

required operations given by the ADT. The second uses a package to expose the

public features required by the ADT while hiding internal features. We introduced the

important concept of polymorphism. This allows the runtime system to determine

which particular method to bind to an object receiving the method assuming that the

object is of a type implementing the interface. We presented several examples of object-

oriented programming.

In the next chapter, we present a larger example of object-oriented programming by

showing an implementation of the Game of Life. We utilize a third-party graphical user

interface (GUI) package.

ChApTeR 3 AbSTRACT DATA TypeS: OOp WIThOuT ClASSeS In GO

123

CHAPTER 4

ADT in Action:
Game of Life
In the previous chapter, we showed how abstract data types can be implemented and

how object-oriented programming can be performed in Go. In this chapter, we continue

to explore object-oriented programming in Go. We implement the classic Game of Life.

We introduce and utilize a third-party GUI package as part of our implementation.

In the next section, we specify the Game of Life.

4.1 Game
To illustrate the central role that ADTs can play in software design, we explore the Game

of Life, invented by John Conway and published in 1970 by Scientific American. This

game is a cellular automaton and interesting to design, implement, and observe.

In addition to showcasing the central role of an ADT in the design of this game, we

introduce the fyne graphical user interface (GUI) framework in Go.

We start with an empty grid with R rows and C columns. Clusters of live cells are

created at random locations. Then the internal rules of grid evolution take over, and the

user can observe each successive grid evolution at one-second intervals.

 Rules of Grid Cell Evolution
The rules of grid cell evolution to produce the next generation of grid cells are the following:

 1. Any live cell that has zero or one neighbor dies (disappears from

the grid in the next generation).

 2. Any live cell with four or more neighboring live cells dies

(disappears from the grid in the next generation).

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_4

https://doi.org/10.1007/978-1-4842-8191-8_4

124

 3. Any live cell with two or three neighboring live cells survives to the

next generation.

 4. Any empty cell with exactly three live neighbors becomes a live

cell in the next generation.

Let us consider the evolution of the game starting with Figure 4-1.

Figure 4-2. First iteration

Figure 4-1. Initial configuration

The next iteration evolves into Figure 4-2.

Chapter 4 aDt in aCtion: Game of Life

125

Here, two cells are brought to life (rightmost cell and leftmost cell), and one cell

survives (second rightmost cell). The other cells die.

Then the next iteration evolves into Figure 4-3.

Figure 4-3. Second iteration

Figure 4-4. Final iteration

Very interesting patterns emerge as the Game of Life evolves. Sometimes, oscillations

occur forever. Figures 4-5 and 4-6 provide an example.

And finally on the last iteration, the configuration evolves into Figure 4-4.

Chapter 4 aDt in aCtion: Game of Life

126

Figure 4-5. Initial configuration for oscillation

Chapter 4 aDt in aCtion: Game of Life

127

Figure 4-6. Final configuration for oscillation

The pattern jumps back and forth from the first pattern to the second pattern as the

game evolves.

In the next section, we define an abstract data type (ADT) for grid.

Chapter 4 aDt in aCtion: Game of Life

128

4.2 ADT for Grid
There are five operations that define the Grid ADT. These are given as follows:

the underlying grid has dimensions <rows, cols>.

operations

initializeGrid(rows, cols) – allocates storage for a grid with given rows and cols

bringAlive(row, col) – Brings cell <row, col> to life

kill(row, col) – removes the cell <row, col> from the grid and makes it an empty cell

numberLiveNeighbors(row, col) – returns the number of live neighbors from grid position <row,

col>

evolveGrid() – obtains the next grid based on the four rules of evolution

In the next section, we present a console-based implementation of the game.

4.3 Console Implementation of the Game
In this section, we implement the ADT defined in Section 4.2 and enable a stepwise

console output.

The ADT defined is implemented using the following methods with g of type Grid,

the receiver:

type Grid [][]bool

func (g *Grid) initializeGrid(r, c int)

func (g Grid) bringAlive(row, col int)

func (g Grid) kill(row, col int)

func (g Grid) numberLiveNeighbors(row, col int) int

func (g Grid) evolveGrid()

Chapter 4 aDt in aCtion: Game of Life

129

The method initializeGrid is implemented as follows:

func (g *Grid) initializeGrid(r, c int) {

 rows = r

 cols = c

 *g = make([][]bool, rows)

 for row := 0; row < rows; row++ {

 (*g)[row] = make([]bool, cols)

 }

}

The global variables rows and cols are assigned to the input parameters r and c.

Storage is allocated to hold rows of data. For each row, storage is allocated to hold cols

of data.

Because the receiver is a pointer to Grid, the receiver, grid, is initialized in place.

The function numberLiveNeighbors is implemented in the following. Although the

details are somewhat tedious, they are straightforward.

func (g Grid) numberLiveNeighbors(row, col int) int {

 result := 0

 if row > 0 && g[row - 1][col] == true {

 result++

 }

 if row > 0 && col < cols - 1 && g[row - 1][col + 1]

 == true {

 result += 1

 }

 if col < cols - 1 && g[row][col + 1] == true {

 result += 1

 }

 if row < rows - 1 && col < cols -1

 && g[row + 1][col + 1] == true {

 result += 1

 }

 if row < rows - 1 && g[row + 1][col] == true {

 result += 1

 }

Chapter 4 aDt in aCtion: Game of Life

130

 if row < rows - 1 && col > 0 &&

 g[row + 1][col - 1] == true {

 result += 1

 }

 if col > 0 && g[row][col - 1] == true {

 result += 1

 }

 if row > 0 && col > 0 &&

 g[row - 1][col - 1] == true {

 result += 1

 }

 return result

}

The method evolveGrid implements the business logic – the four rules that specify

how the game evolves. This method is implemented as follows:

func (g Grid) evolveGrid() {

 Copy(newGrid, g)

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 liveN := g.numberLiveNeighbors(row, col)

 // Rules 1 and 2

 if g[row][col] == true && (liveN < 2 ||

 liveN >= 4) {

 newGrid[row][col] = false

 }

 // Rule 4

 if g[row][col] == false && liveN == 3 {

 newGrid[row][col] = true

 }

 }

 }

 Copy(g, newGrid)

}

Chapter 4 aDt in aCtion: Game of Life

131

A locally created newGrid is used and initialized to the receiver, g. The number of

live neighbors is computed, and in the next two if clauses, the rules for a live cell being

killed or an empty cell coming alive are exercised.

At the end, the locally created newGrid is copied back to the receiver, g.

Listing 4-1 puts the pieces together along with a main driver and shows the output

for a specified input.

Listing 4-1. Console implementation of the Game of Life

package main

import (

 "fmt"

 "time"

)

var (

 rows int

 cols int

)

type Grid [][]bool

var grid Grid

var newGrid Grid

func (g *Grid) initializeGrid(r, c int) {

 rows = r

 cols = c

 *g = make([][]bool, rows)

 for row := 0; row < rows; row++ {

 (*g)[row] = make([]bool, cols)

 }

}

func Copy(target [][]bool, source [][]bool) {

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

Chapter 4 aDt in aCtion: Game of Life

132

 target[row][col] = source[row][col]

 }

 }

}

func (g Grid) bringAlive(row, col int) {

 g[row][col] = true

}

func (g Grid) kill(row, col int) {

 g[row][col] = false

}

func (g Grid) numberLiveNeighbors(row, col int) int {

 result := 0

 if row > 0 && g[row - 1][col] == true {

 result++

 }

 if row > 0 && col < cols - 1 && g[row - 1][col + 1] == true {

 result += 1

 }

 if col < cols - 1 && g[row][col + 1] == true {

 result += 1

 }

 if row < rows - 1 && col < cols -1 && g[row + 1][col + 1] == true {

 result += 1

 }

 if row < rows - 1 && g[row + 1][col] == true {

 result += 1

 }

 if row < rows - 1 && col > 0 && g[row + 1][col - 1] == true {

 result += 1

 }

 if col > 0 && g[row][col - 1] == true {

 result += 1

 }

Chapter 4 aDt in aCtion: Game of Life

133

 if row > 0 && col > 0 && g[row - 1][col - 1] == true {

 result += 1

 }

 return result

}

func (g Grid) evolveGrid() {

 Copy(newGrid, g)

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 liveN := g.numberLiveNeighbors(row, col)

 // Rules 1 and 2

 if g[row][col] == true && (liveN < 2 || liveN >= 4) {

 newGrid[row][col] = false

 }

 // Rule 4

 if g[row][col] == false && liveN == 3 {

 newGrid[row][col] = true

 }

 }

 }

 Copy(g, newGrid)

}

func consoleOutput() {

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 if grid[row][col] == true {

 fmt.Print("$ ")

 } else {

 fmt.Print("# ")

 }

 }

 fmt.Print("\n")

 }

 fmt.Println("-----")

}

Chapter 4 aDt in aCtion: Game of Life

134

func main() {

 grid.initializeGrid(3, 3)

 newGrid.initializeGrid(3, 3)

 grid.bringAlive(0, 0)

 grid.bringAlive(0, 2)

 grid.bringAlive(1, 0)

 grid.bringAlive(1, 1)

 grid.bringAlive(2, 2)

 consoleOutput()

 for iteration := 1; iteration < 5; iteration++ {

 time.Sleep(1 * time.Second)

 grid.evolveGrid()

 consoleOutput()

 }

}

/* Output

$ # $

$ $ #

$

$ # #

$ # $

$

$

$ # #

$

#

$ $ #

#

#

Chapter 4 aDt in aCtion: Game of Life

135

#

#

*/

In the text-based console output, dollar signs, $, are used to represent live cells, and

pound symbols, #, are used to represent empty cells.

A new grid is displayed every second.

Let us carefully examine the evolution from the initial state to the next state.

$ # $

$ $ #

$

$ # #

$ # $

$

The live cell at <0, 0> survives since it has two live neighbors.

The empty cell at <0, 1> remains empty since it has four live neighbors.

The live cell at <0, 2> does not survive since it has only one live neighbor.

The live cell at <1, 0> survives since it has two live neighbors.

The live cell at <1, 1> does not survive since it has four live neighbors.

The empty cell at <1, 2> comes alive since it has three live neighbors.

The empty cell at <2, 0> remains empty since it has two live neighbors.

The empty cell at <2, 1> comes alive since it has three live neighbors.

And finally, the live cell at <2,2> does not survive since it has one live neighbor.

It is left to the reader to verify that the remaining three grids correctly follow the rules

of evolution.

In the next section, we implement a GUI version of the game.

4.4 GUI Implementation of the Game of Life
Applications that require graphical user interfaces (GUIs) in Go are dependent on third-

party libraries since there are no built-in GUI libraries. One such third-party library that

we shall use here and in later chapters is the Fyne library.

Chapter 4 aDt in aCtion: Game of Life

136

A reference on the Fyne library is the book by Andrew Williams: Building Cross-

Platform GUI Applications with Fyne and the Go Programming Language, Packt

Publishing, 2021.

Listing 4-2 presents a GUI solution to the Game of Life.

Listing 4-2. GUI version of the Game of Life
package main

import (

 "math/rand"

 "time"

 "image/color"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/container"

)

var (

 rows int

 cols int

 rect *canvas.Rectangle

 // Holds rectangle objects

 segments = []fyne.CanvasObject

)

// Snip from Listing 4.1

func output() *fyne.Container {

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 if grid[col][row] == false {

 rect =

 canvas.NewRectangle(&color.RGBA{B:

 200, R: 200, G:200, A: 255})

 } else {

 rect =

Chapter 4 aDt in aCtion: Game of Life

137

 canvas.NewRectangle(&color.RGBA{B:

 0, R: 255, G: 0, A: 255})

 }

 rect.Resize(fyne.NewSize(10, 10))

 rect.Move(fyne.NewPos(float32(row * 11),

 float32(col * 11)))

 segments = append(segments, rect)

 }

 }

 return container.NewWithoutLayout(segments...)

}

func main() {

 grid.initializeGrid(25, 25)

 newGrid.initializeGrid(25, 25)

 for numberCritters := 0; numberCritters < 4;

 numberCritters++ {

 r := 5 + rand.Intn(10)

 c := 5 + rand.Intn(10)

 grid.bringAlive(r, c)

 grid.bringAlive(r + 1, c)

 grid.bringAlive(r + 1, c + 1)

 grid.bringAlive(r - 1, c)

 grid.bringAlive(r - 2, c - 1)

 }

 a := app.New()

 w := a.NewWindow("GAME OF LIFE - Hit Any Key To

 Quit")

 w.Resize(fyne.NewSize(300, 300))

 w.SetFixedSize(true)

 go func() {

 for ; ; {

 container := output()

 w.SetContent(container)

Chapter 4 aDt in aCtion: Game of Life

138

 time.Sleep(1 * time.Second)

 grid.evolveGrid()

 }

 }()

 w.Canvas().SetOnTypedKey(func(k *fyne.KeyEvent) {

 // Shuts down simulation

 w.Close()

 })

 w.ShowAndRun()

}

Function output returns a fyne container. This container contains a grid of colored

10 x 10 rectangles based on whether grid[row][col] is true or false.

In main, four clusters of live cells are created at random locations. A new fyne

window is created and sized at 300 × 300 pixels.

In a goroutine, the content of the container is displayed on the fyne window every

second. The content is changed by the method evolveGrid(). The output keeps evolving

until the user presses any key. This action closes the window and terminates the

program.

 Creating go.mod file
For your program to access the myriad of functions imported from the fyne library, you

need to create a go.mod file as follows:

(1) go mod init guigameoflife.go
(2) go mod tidy
These two commands, executed from a terminal window containing the program,

produce the needed go.mod and sum.mod files needed for program execution.

 Program Output
Two screenshots taken during the evolution of the game are shown in the following. The

second screen shot shows a steady-state unchanging pattern. This often happens.

Beautiful patterns evolve as the game progresses (Figures 4-7 and 4-8).

Chapter 4 aDt in aCtion: Game of Life

139

Figure 4-7. Pattern during game evolution

Chapter 4 aDt in aCtion: Game of Life

140

4.5 Summary
In this chapter, we presented a console-based and GUI-based implementation of

the Game of Life. We defined an ADT based on the rules of evolution in the game

specification. We used a third-party GUI package to depict the grid and its cells.

In the next chapter, we start the data structure portion of this book. We focus on

Stack and present some generic stack implementations along with some applications

that use a stack.

Figure 4-8. Steady-state pattern

Chapter 4 aDt in aCtion: Game of Life

141

CHAPTER 5

Stacks
The previous chapter presented an application of abstract data types, the Game of Life.

In this chapter, we switch gears and begin our exploration of generic data structures.

The first and perhaps simplest data structure we look at is the Stack. It has many

practical uses in application development.

A stack organizes data in a last-in, first-out (LIFO). Only the last item inserted into a

stack is accessible.

Because of LIFO, the most obvious application is to reverse a sequence of insertions.

For example, if the items in a list are inserted onto a stack, a new list that is the reverse of

the original list may be obtained by successively popping the elements of the stack.

In the next section, we formalize the Stack abstract data type.

5.1 Stack ADT
There are four operations that characterize a Stack ADT.

Push(item) – Adds item to the stack

Pop() item – Removes and returns the last item pushed onto the stack

Top() item – Accesses the last item pushed onto the stack without altering the stack

IsEmpty bool – Returns true if the stack has no items, otherwise returns false

The first implementation of a stack that we consider is presented in the next section

where we consider a slice implementation.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_5

https://doi.org/10.1007/978-1-4842-8191-8_5

142

5.2 Slice Implementation of Generic Stack
The first implementation of generic stack, presented in Listing 5-1, uses a slice to hold

the data in the stack.

Listing 5-1. Slice implementation of generic stack

package main

import (

 "fmt"

)

type Ordered interface {

 ~float64 | ~int | ~string

}

type Stack[T Ordered] struct {

 items []T

}

func getZero[T Ordered]() T {

 var result T

 return result

}

// Methods

func (stack *Stack[T]) Push(item T) {

 // item is added to the right-most position in the

 // slice

 if item != getZero[T]() { // We exclude item if it

 // is getZero[T]()

 stack.items = append(stack.items, item)

 }

}

func (stack *Stack[T]) Pop() T {

 length := len(stack.items)

 if length > 0 {

ChAPTER 5 STACkS

143

 returnValue := stack.items[length - 1]

 stack.items = stack.items[:(length - 1)]

 return returnValue

 } else {

 return getZero[T]()

 }

}

func (stack Stack[T]) Top() T {

 length := len(stack.items)

 if length > 0 {

 return stack.items[length - 1]

 } else {

 return getZero[T]()

 }

}

func (stack Stack[T]) IsEmpty() bool {

 return len(stack.items) == 0

}

func main() {

 // Create a stack of names

 nameStack := Stack[string]{}

 nameStack.Push("Zachary")

 nameStack.Push("Adolf")

 topOfStack := nameStack.Top()

 if topOfStack != getZero[string]() {

 fmt.Printf("\nTop of stack is %s", topOfStack)

 }

 poppedFromStack := nameStack.Pop()

 if poppedFromStack != getZero[string]() {

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 poppedFromStack = nameStack.Pop()

 if poppedFromStack != getZero[string]() {

ChAPTER 5 STACkS

144

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 poppedFromStack = nameStack.Pop()

 if poppedFromStack != getZero[string]() {

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 poppedFromStack = nameStack.Pop()

 if poppedFromStack != getZero[string]() {

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 // Create a stack of integers

 intStack := Stack[int]{}

 intStack.Push(5)

 intStack.Push(10)

 intStack.Push(0) // Problem since 0 is the zero

 // value for int

 top := intStack.Top()

 if top != getZero[int]() {

 fmt.Printf("\nValue on top of intStack is %d", top)

 }

 popFromStack := intStack.Pop()

 if popFromStack != getZero[int]() {

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 popFromStack = intStack.Pop()

 if popFromStack != getZero[int]() {

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 popFromStack = intStack.Pop()

ChAPTER 5 STACkS

145

 if popFromStack != getZero[int]() {

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

}

/* Output

Top of stack is Adolf

Value popped from stack is Adolf

Value popped from stack is Zachary

Value on top of intStack is 10

Value popped from intStack is 10

Value popped from intStack is 5

*/

 The Get Zero Function
The function getZero[T]() returns a “zero value” associated with the generic parameter,

T. This special value is returned from the functions Pop() and Top() if the slice, items,

contained within the stack is empty.

Since we are using the “zero value” as a sentinel, indicating an empty stack, we

cannot allow this “zero value” to be pushed onto the stack.

 Why T Is Declared As Ordered
If you are wondering why we require T to be Ordered, rather than any, consider the

statement if item != getZero[T]() in method Push. The generic type, T, must be Ordered

for this statement to be valid. That is, we need to be assured that two variables of type T

can be compared. This is an unfortunate requirement fostered by this implementation

since there is nothing intrinsic about the stack abstraction that requires the data being

held to be ordered.

When we create a stack of integers, the third value we push, value 0, is blocked from

insertion onto the stack because it happens to be the “zero value” of type int.
So this first implementation of generic stack using a slice to hold the data is

seriously flawed.

We examine a second implementation in Listing 5-2.

ChAPTER 5 STACkS

146

Listing 5-2. Another slice implementation of generic stack

package main

import (

 "fmt"

)

type Stack[T any] struct {

 items []T

}

// Methods

func (stack *Stack[T]) Push(item T) {

 // item is added to the right-most position in the

 // slice

 stack.items = append(stack.items, item)

}

func (stack *Stack[T]) Pop() T {

 length := len(stack.items)

 returnValue := stack.items[length - 1]

 stack.items = stack.items[:(length - 1)]

 return returnValue

}

func (stack Stack[T]) Top() T {

 length := len(stack.items)

 return stack.items[length - 1]

}

func (stack Stack[T]) IsEmpty() bool {

 return len(stack.items) == 0

}

func main() {

 // Create a stack of names

 nameStack := Stack[string]{}

 nameStack.Push("Zachary")

ChAPTER 5 STACkS

147

 nameStack.Push("Adolf")

 if !nameStack.IsEmpty() {

 topOfStack := nameStack.Top()

 fmt.Printf("\nTop of stack is %s", topOfStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 // Create a stack of integers

 intStack := Stack[int]{}

 intStack.Push(5)

 intStack.Push(10)

 intStack.Push(0)

ChAPTER 5 STACkS

148

 if !intStack.IsEmpty() {

 top := intStack.Top()

 fmt.Printf("\nValue on top of intStack is %d", top)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

}

/* Output

Top of stack is Adolf

Value popped from stack is Adolf

Value popped from stack is Zachary

Value on top of intStack is 0

Value popped from intStack is 0

Value popped from intStack is 10

Value popped from intStack is 5

*/

In this second implementation, the parameter T is of type any, as it should be. The

methods Top() and Pop() produce a fatal index violation error if an attempt is made to

exercise either of these methods on an empty stack.

The main driver illustrates the proper way to avoid this problem. Before invoking

either of these methods, the stack is tested to see whether it is empty.

ChAPTER 5 STACkS

149

Here, the stack was implemented in package main. Ordinarily, we would create a

package stack, separate from the main package. We did it this way to keep things simple.

In the next section, we present a Node implementation of a generic stack.

5.3 Node Implementation of a Generic Stack
Listing 5-3 presents an alternative implementation of stack.

Listing 5-3. Node implementation of generic stack

package main

import (

 "fmt"

)

type Node[T any] struct {

 value T

 next *Node[T]

}

type Stack[T any] struct {

 first *Node[T]

}

// Methods

func (stack *Stack[T]) Push(item T) {

 newNode := Node[T]{item, nil}

 newNode.next = stack.first

 stack.first = &newNode

}

func (stack *Stack[T]) Top() T {

 return stack.first.value

}

func (stack *Stack[T]) Pop() T {

 result := stack.first.value

ChAPTER 5 STACkS

150

 stack.first = stack.first.next

 return result

}

func (stack Stack[T]) IsEmpty() bool {

 return stack.first == nil

}

func main() {

 // Create a stack of names

 nameStack := Stack[string]{}

 nameStack.Push("Zachary")

 nameStack.Push("Adolf")

 if !nameStack.IsEmpty() {

 topOfStack := nameStack.Top()

 fmt.Printf("\nTop of stack is %s", topOfStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

ChAPTER 5 STACkS

151

 if !nameStack.IsEmpty() {

 poppedFromStack := nameStack.Pop()

 fmt.Printf("\nValue popped from stack is %s",

 poppedFromStack)

 }

 // Create a stack of integers

 intStack := Stack[int]{}

 intStack.Push(5)

 intStack.Push(10)

 intStack.Push(0)

 if !intStack.IsEmpty() {

 top := intStack.Top()

 fmt.Printf("\nValue on top of intStack is %d", top)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

 if !intStack.IsEmpty() {

 popFromStack := intStack.Pop()

 fmt.Printf("\nValue popped from intStack is

 %d", popFromStack)

 }

}

ChAPTER 5 STACkS

152

/* Output

Top of stack is Adolf

Value popped from stack is Adolf

Value popped from stack is Zachary

Value on top of intStack is 0

Value popped from intStack is 0

Value popped from intStack is 10

Value popped from intStack is 5

*/

A generic type Node is defined along with a generic type Stack.

type Node[T any] struct {

 value T

 next *Node[T]

}

type Stack[T any] struct {

 first *Node[T]

}

We may visualize the data structure as shown in Figure 5-1.

Figure 5-1. Stack structure

Function main is identical to main in Listing 5-2, and the output is identical. If Top()

or Pop() are invoked on an empty stack, a memory segment violation would occur. So it

is imperative, as in Listing 5-2, to verify that the stack is not empty before invoking either

of these methods.

In the next section, we compare the efficiency of the node vs. the slice

implementations of stack.

ChAPTER 5 STACkS

153

5.4 Compare the Efficiency of Node and
Slice Stacks

Which of the two Stack implementations is more efficient?

The slice implementation requires less memory because the node implementation

requires the memory overhead of pointers to each succeeding node.

To compare the speed efficiency of these two Stack types, we run a benchmark that

pushes 10 million int values onto the stack and then pops the stack until it is empty.

We package the two stack types as nodestack and slicestack as shown in Listings 5-4

and 5-5. In Listing 5-6, we present the application that compares the speed of these two

stack packages.

Listing 5-4. Package nodestack

package nodestack

type Node[T any] struct {

 value T

 next *Node[T]

}

type Stack[T any] struct {

 first *Node[T]

}

// Methods

func (stack *Stack[T]) Push(item T) {

 newNode := Node[T]{item, nil}

 // newNode.value = item

 newNode.next = stack.first

 stack.first = &newNode

}

func (stack *Stack[T]) Top() T {

 return stack.first.value

}

ChAPTER 5 STACkS

154

func (stack *Stack[T]) Pop() T {

 result := stack.first.value

 stack.first = stack.first.next

 return result

}

func (stack Stack[T]) IsEmpty() bool {

 return stack.first == nil

}

Listing 5-5. Package slicestack

package slicestack

type Stack[T any] struct {

 items []T

}

// Methods

func (stack *Stack[T]) Push(item T) {

 // item is added to the right-most position in the

 // slice

 stack.items = append(stack.items, item)

}

func (stack *Stack[T]) Pop() T {

 length := len(stack.items)

 returnValue := stack.items[length - 1]

 stack.items = stack.items[:(length - 1)]

 return returnValue

}

func (stack Stack[T]) Top() T {

 length := len(stack.items)

 return stack.items[length - 1]

}

func (stack Stack[T]) IsEmpty() bool {

 return len(stack.items) == 0

}

ChAPTER 5 STACkS

155

Listing 5-6. Speed comparison of nodestack and slicestack

package main

import (

 "example.com/nodestack"

 "example.com/slicestack"

 "time"

 "fmt"

)

const size = 10_000_000

func main() {

 nodeStack := nodestack.Stack[int]{}

 sliceStack := slicestack.Stack[int]{}

 // Benchmark nodeStack

 start := time.Now()

 for i := 0; i < size; i++ {

 nodeStack.Push(i)

 }

 elapsed := time.Since(start)

 fmt.Println("\nTime for 10 million Push() operations on nodeStack: ",

elapsed)

 start = time.Now()

 for i := 0; i < size; i++ {

 nodeStack.Pop()

 }

 elapsed = time.Since(start)

 fmt.Println("\nTime for 10 million Pop() operations on nodeStack: ",

elapsed)

 // Benchmark sliceStack

 start = time.Now()

 for i := 0; i < size; i++ {

 sliceStack.Push(i)

 }

ChAPTER 5 STACkS

156

 elapsed = time.Since(start)

 fmt.Println("\nTime for 10 million Push()

 operations on sliceStack: ", elapsed)

 start = time.Now()

 for i := 0; i < size; i++ {

 sliceStack.Pop()

 }

 elapsed = time.Since(start)

 fmt.Println("\nTime for 10 million Pop() operations

 on sliceStack: ", elapsed)

}

/* Output

Time for 10 million Push() operations on nodeStack: 616.365084ms

Time for 10 million Pop() operations on nodeStack: 29.104829ms

Time for 10 million Push() operations on sliceStack: 148.623915ms

Time for 10 million Pop() operations on sliceStack: 11.485335ms

*/

The slicestack is significantly faster than the nodestack. As always, benchmark

results are affected by the processor, the amount of RAM, clock speed, and other factors

that vary from machine to machine.

In the next section, we present an application of the stack.

5.5 Stack Application: Function Evaluation
We wish to build a function that takes as input a string representing a mathematical

expression with operand symbols from a to z and operators from the set “+”, “-”, “*”, “/”,

“(”, “)”.

For example, the input to the function might be “(a + (b - c) / (d * e)”. After assigning

each operand value a float number, the function must evaluate the expression.

As we will soon see, the stack plays a critical role in designing and implementing this

application although this is not at all obvious.

ChAPTER 5 STACkS

157

 Postfix Evaluation
If one were to perform this computation on a Hewlett-Packard (HP) calculator, the

sequence of steps would be the following:

 1. Enter the quantity a.

 2. Enter the quantity b.

 3. Enter the quantity c.

 4. Push the subtract button.

 5. Enter the quantity d.

 6. Enter the quantity e.

 7. Push the multiply button.

 8. Push the divide button.

 9. Push the add button.

Symbolically, this sequence of operations could be written as follows: abc-de*/+.

There are no parentheses in the preceding expression. The precedence of operations

is encapsulated in the expression. We call the expression a postfix representation of the

original expression.

To clarify further, suppose a were assigned the value 2, b the value 3, c the value 1, d

the value 5, and e the value 2; the postfix evaluation would be performed as follows:

The operator – (the fourth character in the infix expression) would operate on the

previous two operands, b and c. That would produce b – c, which is 2. The next operator,

*, would operate on its previous two operands producing d * e, which is 10. The next

operator, /, would divide its two previous operands, which are 2 and 10, to produce 0.2.

Finally, the last operator, +, would add its two previous operands, which are a and 0.2,

producing the answer 2.2.

Following this approach to expression evaluation, we divide the problem into two

subproblems. The first subproblem is converting the input expression into a postfix

expression. The second subproblem is evaluating this postfix expression.

Each of these subproblems utilizes a stack to accomplish their work.

Function infixpostfix in Listing 5-7 converts the infix expression to a postfix form.

ChAPTER 5 STACkS

158

Listing 5-7. Conversion from infix to postfix

package main

import (

 "fmt"

 "example.com/nodestack"

)

func precedence(symbol1, symbol2 string) bool {

 // Returns true if symbol1 has a higher precedence

 // than symbol2

 if (symbol1 == "+" || symbol1 == "-") && (symbol2

 == "(" || symbol2 == "/") {

 return false

 } else if (symbol1 == "(" && symbol2 != ")") ||

 symbol2 == "(" {

 return false

 } else {

 return true

 }

}

func isPresent(symbol string, operators []string) bool {

 for i := 0; i < len(operators); i++ {

 if symbol == string(operators[i]) {

 return true

 }

 }

 return false

}

func infixpostfix(infix string) (postfix string) {

 operators := []string{"+", "-", "*", "/", "(", ")"}

 postfix = ""

 nodeStack := nodestack.Stack[string]{}

ChAPTER 5 STACkS

159

 for index := 0; index < len(infix); index++ {

 newSymbol := string(infix[index])

 if newSymbol == " " || newSymbol == "\n" {

 continue

 }

 if newSymbol >= "a" && newSymbol <= "z" {

 postfix += newSymbol

 }

 if isPresent(newSymbol, operators) {

 if !nodeStack.IsEmpty() {

 topSymbol := nodeStack.Top()

 if precedence(topSymbol, newSymbol) ==

 true {

 if topSymbol != "(" {

 postfix += topSymbol

 }

 nodeStack.Pop()

 }

 }

 if newSymbol != ")" {

 nodeStack.Push(newSymbol)

 } else { // Pop nodeStack down to first

 // left parenthesis

 for {

 if nodeStack.IsEmpty() == true {

 break

 }

 ch := nodeStack.Top()

 if ch != "(" {

 postfix += ch

 nodeStack.Pop()

 } else {

 nodeStack.Pop()

 break

 }

ChAPTER 5 STACkS

160

 }

 }

 }

 }

 for {

 if nodeStack.IsEmpty() == true {

 break

 }

 if nodeStack.Top() != "(" {

 postfix += nodeStack.Top()

 nodeStack.Pop()

 }

 }

 return postfix

}

func main() {

 postfix := infixpostfix("a + (b - c) / (d * e)")

 fmt.Println(postfix)

}

// Output: abc-de*/+

The nodeStack is the centerpiece of this algorithm.

 We Walk Through Algorithm
Let us “walk” through function infixpostfix for the infix expression given. We depict the

stack with the top of the stack shown on the right and previous items pushed on the stack

shown from right to left. The oldest item pushed on our stack depiction is the leftmost

item, and the most recent item pushed on our stack is the rightmost item.

The infix expression is “a + (b -c) / (d * e)”.

We initialize the operators slice, the output postfix string, and the nodeStack as

follows:

operators := []string{"+", "-", "*", "/", "(", ")"}

postfix = ""

nodeStack := nodestack.Stack[string]{}

ChAPTER 5 STACkS

161

In a loop that captures each newSymbol of the infix expression, if the newSymbol is

whitespace, we skip the rest of the loop and continue back to the top of the loop.

The first nonwhitespace character is the operand “a”. The first “if” statement appends

this operand to the postfix string.

The next nonwhitespace character is “+”. This operator gets pushed onto the

nodeStack. The state of the system is

Stack: +

postfix: a

The next nonwhitespace character is “(”. Using the precedence function and

comparing topSymbol (“+”) with newSymbol (“(”), it returns false. We therefore push

the “(” onto the stack yielding a system state:

Stack (top on the right): + (

postfix: a

The next nonwhitespace character gets appended to postfix. The system state is

Stack: + (

postfix: ab

We next process the “-” operator. The precedence of “(” with “-” is false, so the “-”

operator is pushed onto the stack.

Stack (top on the right): + (-

postfix: ab

Next, we process the operand “c”. It gets appended to the result.

Stack (top on the right): + (-

postfix: abc

The next character we process is “)”. The precedence is false between “-” and “)”. The

conditional logic drops us to the “else” clause. As the comment suggests, this causes us

to deposit all operands on the stack onto postfix until we encounter the “(” symbol.

Stack (top on the right): +

postfix: abc-

ChAPTER 5 STACkS

162

The next character, “/”, gets pushed onto the stack because of the false precedence

between “+” and “/”.

Stack (top on the right): + /

postfix: abc-

For the same reason as earlier, the next symbol, “(”, gets pushed onto the stack.

Stack (top on the right): + / (

postfix: abc-

As before, the next operator symbol “*” gets pushed onto the stack.

Stack (top on the right): + / (*

postfix: abc-

At each stage of this process, the operators on the stack are in increasing order of

precedence going from left to right. This is what assures us that the result requires no

parentheses.

The next symbol, “)”, causes the stack to be cleared up to the “(”.

Stack (top on the right): + /

postfix: abc-*

With all the symbols from the infix expression processed, only the final loop remains.

In this loop, all remaining operator symbols are appended to postfix as the stack

is popped.

The final state of the system is

Stack (top on the right):

postfix: abc-*/+

 Evaluating Postfix Expression
Next, we grapple with the second part of this problem: evaluating the postfix expression

when each operand is assigned a float64 value.

Listing 5-8 presents the function evaluate, which takes as input a postfix expression

as well as a map of numeric values for each operand symbol.

ChAPTER 5 STACkS

163

Listing 5-8. Evaluating postfix expression

package main

// Snip from Listing 5.7

var values map[string]float64

func evaluate(postfix string) float64 {

 operandStack := nodestack.Stack[float64]{}

 for index := 0; index < len(postfix); index++ {

 ch := string(postfix[index])

 if ch >= "a" && ch <= "z" {

 operandStack.Push(values[ch])

 } else { // ch is an operator

 operand1 := operandStack.Pop()

 operand2 := operandStack.Pop()

 if ch == "+" {

 operandStack.Push(operand1 + operand2)

 } else if ch == "-" {

 operandStack.Push(operand2 - operand1)

 } else if ch == "*" {

 operandStack.Push(operand1 * operand2)

 } else if ch == "/" {

 operandStack.Push(operand2 / operand1)

 }

 }

 }

 return operandStack.Top()

}

func main() {

 postfix := infixpostfix("a + (b - c) / (d * e)")

 fmt.Println(postfix)

 values = make(map[string]float64)

 values["a"] = 10

 values["b"] = 5

 values["c"] = 2

ChAPTER 5 STACkS

164

 values["d"] = 4

 values["e"] = 3

 result := evaluate(postfix)

 fmt.Println("function evaluates to: ", result)

}

// Output: abc-de*/+

// function evaluates to: 10.25

In function evaluate, another stack, operandStack, is the centerpiece. This function

is much simpler than the infixpostfix function and is left to the reader to walk through a

simple example.

The benefit of genericity should be evident. The nodeStack in Listing 5-7 used

string as its type instance, and the operandStack in Listing 5-8 used float64 as its type

instance.

In the next section, we consider another application of stack – converting a decimal

number to binary.

5.6 Converting Decimal Number to Binary
A much simpler application of stacks is converting a decimal number to binary.

Listing 5-9 shows how to do this.

Listing 5-9. Converting decimal number to binary using a stack

package main

import (

 "fmt"

 "example.com/slicestack"

)

func convertToBinary(input int) (binary []int) {

 binaryNumberStack := slicestack.Stack[int]{}

 for {

 binaryNumberStack.Push(input % 2)

 input = input / 2

ChAPTER 5 STACkS

165

 if input == 0 {

 break

 }

 }

 binary = []int{}

 for {

 if !binaryNumberStack.IsEmpty() {

 binary = append(binary,

 binaryNumberStack.Pop())

 } else {

 break

 }

 }

 return binary

}

func main() {

 number := 1_000_000

 binaryNumber := convertToBinary(number)

 fmt.Printf("\n%d converted to binary is \n%v",

 number, binaryNumber)

}

/* Output

1000000 converted to binary is

[1 1 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0]

*/

Here, the binaryNumberStack[int] is used to reverse the sequence of 0’s and 1’s

produced by finding the sequence of remainders, input % 2, as input is reduced by a

factor of 2 at every iteration.

In the next section, we present another application of stack, finding a path

through a maze.

ChAPTER 5 STACkS

166

5.7 Maze Application
Although the study of data structures, like the stack and many others to be explored later,

is interesting, it is when data structures and their associated operations are deployed in

applications that they come to life.

In this section, we present a more complex application in which the stack plays a

central role.

Note This application is an adaptation of an example presented in Section 3.2
of Data Structures Using Modula-2 by Richard Sincovec and Richard Wiener (John
Wiley, 1986) and later implemented in C# in Modern Software Development Using
C#.Net by Richard Wiener (Thompson Learinng, 2007).

We represent a maze with a two-dimensional list of 0’s and 1’s. Cells with value 1

represent obstacles that block a maze path. Cells with value 0 represent possible maze

path locations. Given such a matrix file of 0’s and 1’s and given the starting location

and ending location, the goal is to write a Go application that finds a path from starting

location to ending location, if one or more such paths exist.

We wish to avoid a brute-force strategy that enumerates every possible path from

starting point to ending point.

 Efficient Strategy for Maze Path Using a Stack
Using a stack, we can develop an efficient strategy, which is outlined as follows.

At any location along the maze path, the next move can be chosen from among the

eight adjacent locations (north, northeast, east, southeast, south, southwest, west, and

northwest) providing that the given location has value 0 (is open). We let the program

make a random choice among the open adjacent locations. The program will possibly

produce different viable paths each time it is run.

Since a path cannot visit the same location more than once, we set the value along

each cell in the path from 0 to 1.

After each move, we push the current position along with the direction of the move

to be made onto the path stack. If the path hits a dead end as many typically will, we can

backtrack and access the last safe position and continue from there.

ChAPTER 5 STACkS

167

More formally, our maze algorithm uses a stack as its central control mechanism and

is the following:

 1. Load the maze file, number of rows, number of columns, and the

starting and ending locations.

 2. Initialize a path stack that holds path objects. We use a generic

stack with the base type T of type Path.

 3. A path object contains a coordinate within the maze, a current

move direction, and a list of available move directions.

 4. Choose an initial move direction from among the open

neighboring locations.

 5. As each move direction is attempted, delete it from the list of eight

possible move directions.

 6. Construct a new path object from the starting point, an initial

move direction, and a list of remaining move directions.

 7. Push the initial path object onto the stack.

 8. While the stack is not empty, get the path object at the top of the

stack by popping the stack.

 9. Start a loop: While the current path object has more available

moves, choose one of the available locations randomly and set its

value from 0 to 1. Construct a new path object and push it onto the

stack. While the stack is not empty, get the path object at the top of

the stack by popping the stack.

 Building Infrastructure for Maze Application
Before we plunge into the maze implementation, we build some infrastructure by

defining some relevant types and their operations – some abstract data types.

Listing 5-10 introduces the basic types needed for the maze application.

ChAPTER 5 STACkS

168

Listing 5-10. Type infrastructure for maze application

package main

import (

 "fmt"

 "math/rand"

 "time"

)

// Direction abstraction

type Direction int

const (

 N int = 0

 NE = 1

 E = 2

 SE = 3

 S = 4

 SW = 5

 W = 6

 NW = 7

 NotAvailable = 8

)

func (d Direction) String() string {

 switch d {

 case 0:

 return "north"

 case NE:

 return "north-east"

 case E:

 return "east"

 case SE:

 return "south-east"

 case S:

 return "south"

ChAPTER 5 STACkS

169

 case SW:

 return "south-west"

 case W:

 return "west"

 case NW:

 return "north-west"

 case NotAvailable:

 return "not available"

 }

 return "unknown"

}

func (d Direction) PrintDirection() {

 fmt.Println("direction: ", d)

}

// Point abstraction

type Point struct {

 x, y int

}

func (p Point) Equals(other Point) bool {

 return p.x == other.x && p.y == other.y

}

func (p Point) PrintPoint() {

 fmt.Printf("<%d, %d>\n", p.x, p.y)

}

// Path abstraction

type Path struct {

 point Point

 move Direction

 movesAvailable []Direction

}

func NewPath(point Point) Path {

 path := Path{point, Direction(NotAvailable),

 []Direction{}}

ChAPTER 5 STACkS

170

 path.move = NotAvailable

 // Initially all directions available

 path.movesAvailable = []Direction{0, NE, E, SE, S, SW, W, NW}

 return path

}

func (path *Path) RandomMove() Direction {

 // Returns value of move and changes the receiver

 indicesAvailable := []int{}

 for index := 0; index < 8; index++ {

 if path.movesAvailable[index] != NotAvailable {

 indicesAvailable =

 append(indicesAvailable, index)

 }

 }

 count := len(indicesAvailable)

 if count > 0 {

 randomIndex := rand.Intn(count)

 path.move =

 path.movesAvailable[indicesAvailable[randomIndex]]

 path.movesAvailable[indicesAvailable[randomIndex]]

 = NotAvailable

 return path.move

 } else {

 return NotAvailable

 }

}

func main() {

 rand.Seed(time.Now().UnixNano())

 myDirection := Direction(6)

 myDirection.PrintDirection()

 myPoint := Point{3, 4}

 myPoint.PrintPoint()

 result := myPoint.Equals(Point{3, 4})

 fmt.Println(result)

ChAPTER 5 STACkS

171

 myPath := NewPath(Point{3, 4})

 randomMove := myPath.RandomMove()

 fmt.Println(randomMove)

 fmt.Println(myPath)

}

/* Output

direction: west

<3, 4>

true

south

{{3 4} 4 [0 1 2 3 8 5 6 7]}

*/

The method RandomMove changes the receiver and returns the direction of

the move.

Go does not support enum types, so we simulate an enum type by defining

type Direction int

Creating this new type allows us to protect entities of this type from being

manipulated and possibly corrupted like they were ordinary integers.

We define a set of constants representing the nine directions that are possible (if we

consider NotAvailable to be one of these).

Function main does nothing useful but is there to illustrate how variables of each

type can be created and used.

Now we are ready to introduce the Maze abstraction and write this application. Since

we will need a stack (we will use a slicestack for this application although a nodestack

would do just as well), we will create a separate subdirectory for the Maze functionality

(the code in package main) and import the slicestack. We will create a go.mod file in the

subdirectory mainmaze that contains the main package. The go.mod file is

module example.com/main

go 1.18

replace example.com/slicestack => ../slicestack

require example.com/slicestack v0.0.0-00010101000000-000000000000

ChAPTER 5 STACkS

172

The Maze type is defined as follows:

type Maze struct {

 rows, cols int

 start, end Point

 mazefile string

 barriers [][]bool

 current Path

 moveCount int

 pathStack slicestack.Stack[Path]

 gameOver bool

}

The field barriers, which defines the locations that are either blocked or open, is a

two-dimensional slice of bool. A rune of “1” in the mazefile indicates a blocked location,

and a rune of “0” indicates an open location.

The field pathStack is a slicestack.Stack with Path as its generic type.

The function NewMaze creates an instance of Maze as follows:

func NewMaze(rows int, cols int, start Point, end

 Point, mazefile string) (maze Maze) {

 maze.rows = rows

 maze.cols = cols

 maze.start = start

 maze.end = end

 // Initialize maze.barriers

 maze.barriers = make([][]bool, rows)

 for i := range maze.barriers {

 maze.barriers[i] = make([]bool, cols)

 }

 file, err := os.Open(mazefile)

 if err != nil {

 log.Fatal(err)

 }

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

ChAPTER 5 STACkS

173

 var textlines []string

 for scanner.Scan() {

 textlines = append(textlines, scanner.Text())

 }

 defer file.Close()

 for row := 0; row < rows; row++ {

 line := textlines[row]

 for col := 0; col < cols; col++ {

 if string(line[col]) == "1" {

 maze.barriers[row][col] = true

 } else {

 maze.barriers[row][col] = false

 }

 }

 }

 maze.current = NewPath(start)

 maze.pathStack = slicestack.Stack[Path]{}

 maze.pathStack.Push(maze.current)

 maze.barriers[start.x][start.y] = true

 return maze

}

The two-dimensional slice barriers are initialized by allocating storage for the given

number of rows and then for each row allocating storage for the columns.

The input text file, mazefile, is read line by line using NewScanner from

package bufio.

Then the barriers slice is assigned true at a given row and column if a “1” is present

and false if a “0” is present.

A support function, NewPosition, returns a Point based on the oldPosition and the

move direction and is given as follows:

func NewPosition(oldPosition Point, move Direction)

 Point {

 if move == Direction(N) {

 return Point{oldPosition.x, oldPosition.y - 1}

 } else if move == NE {

 return Point{oldPosition.x + 1, oldPosition.y - 1}

ChAPTER 5 STACkS

174

 } else if move == E {

 return Point{oldPosition.x + 1, oldPosition.y}

 } else if move == SE {

 return Point{oldPosition.x + 1, oldPosition.y + 1}

 } else if move == S {

 return Point{oldPosition.x, oldPosition.y + 1}

 } else if move == SW {

 return Point{oldPosition.x - 1, oldPosition.y + 1}

 } else if move == W {

 return Point{oldPosition.x - 1, oldPosition.y}

 } else {

 return Point{oldPosition.x - 1, oldPosition.y - 1}

 }

}

The main program logic for advancing through the maze is given in method

StepAhead. This function returns a new position and backtracks location, each of

type Point.

This function is given as follows:

func (m *Maze) StepAhead() (Point, Point) {

 validMove := false

 backTrackPoint := None

 newPos := None

 for {

 if m.gameOver || validMove ||

 m.pathStack.IsEmpty() {

 break

 }

 validMove = false

 m.current = m.pathStack.Pop()

 m.moveCount += 1

 nextMove := m.current.RandomMove()

 for {

 if validMove || nextMove == NotAvailable {

 break

 }

ChAPTER 5 STACkS

175

 newPos = NewPosition(m.current.point,

 m.current.move)

 if m.barriers[newPos.y][newPos.x] == false

 {

 validMove = true

 if newPos.Equals(m.end) {

 for {

 if m.pathStack.IsEmpty() ==

 true {

 break

 }

 m.pathStack.Pop()

 }

 m.gameOver = true

 }

 m.barriers[newPos.y][newPos.x] = true

 m.pathStack.Push(m.current)

 newPathObject := NewPath(newPos)

 m.pathStack.Push(newPathObject)

 } else {

 nextMove = m.current.RandomMove()

 }

 }

 if !validMove && !m.pathStack.IsEmpty() {

 fmt.Printf("\nBacktrack from %v to %v\n",

 m.current.point,

 m.pathStack.Top().point)

 backTrackPoint = m.pathStack.Top().point

 }

 }

 if m.pathStack.IsEmpty() {

 fmt.Println("No solution is possible")

 return None, None

 }

 return newPos, backTrackPoint

}

ChAPTER 5 STACkS

176

Figure 5-2. maze.txt

11
1011110111111111111111111111111111111111
1101101111111111111111111111111111111111
1000011111111111111110111111100001111111
1111011111111111111110111111111111111111
1111101111111111111110111111111111111111
1111110111111111111110111111111111111111
1111101011111111111110111111111111111111
1111011100011111111110111111111111111111
1111011111101111111110111111111111111111
1111011111101111111110111111111111111111
1111011111110111111110111111111111111111
1111011111110000011101111111111111111111
1111101111111111000011111111111111111111
1111100111111111101111111111111111111111
1111110011111111101111111111111111111111
1111101111111111101111111111111111111111
1111011111111111110000011110000000000111
1111101111111111111111000000111111111111

Two nested for-loops control the logic of finding the next position in the maze. The

outer loop terminates if the gameOver field of the maze m is true or if a validMove

is true or if the pathStack of the maze is empty. If the pathStack is empty, then the

application terminates with the message “No solution is possible.” The inner loop

terminates if a valid move is found, or the next random move is NotAvalable.

The pieces of this application fit together tightly and are moderately complex. It

should be evident that the slicestack.Stack[Path] plays a central role in moving through

the maze.

 Completed Maze App
Listing 5-11 presents the complete maze app with a main driver and output from a

typical run. The maze file, maze.txt, for this run is illustrated in Figure 5-2.

ChAPTER 5 STACkS

177

You can see from the sequence of zeros that a solution is possible if the starting

location is <1, 1> and the ending location is <38, 38> in this 40 × 40 grid of possible

locations. You can also see the possibility of several side tracks that lead to dead ends.

Listing 5-11. Maze application

// MAZE application

package main

import (

 "bufio"

 "example.com/slicestack"

 "fmt"

 "log"

1111110111111111111111111111111111111111
1100101011111111111111111111111111111111
1111001001111111111111111111111111111111
1111111100000000000000000000000011111111
1111111111111111111111111111110101111111
1111111111111111111111111111110110111111
1111111111111111111111111111110111011111
1111111111111111111111111111110111101111
1111111111111111111111111111110111110111
1111111111111111111111111111110111110111
1111111111111111111111111111101111110111
1111111111111111111111111111011111110111
1111111111111111111111111110111111110111
1111111111111111111111111101111111110111
1111111111111111111111111011111111110111
1111111111111111111111111111111111110111
1111111111111111111111111111111111110111
1111111111111111111111111111111111110111
1111111111111111111111111111111111110111
1111111111111111111111111111111111111001
11

Figure 5.2. (continued)

ChAPTER 5 STACkS

178

 "math/rand"

 "os"

 "time"

)

// Snip from Listing 5.10

// ********************************

// MAZE abstraction

type Maze struct {

 rows, cols int

 start, end Point

 mazefile string

 barriers [][]bool

 current Path

 moveCount int

 pathStack slicestack.Stack[Path]

 gameOver bool

}

func NewMaze(rows int, cols int, start Point, end

 Point, mazefile string) (maze Maze) {

 maze.rows = rows

 maze.cols = cols

 maze.start = start

 maze.end = end

 // Initialize maze.barriers

 maze.barriers = make([][]bool, rows)

 for i := range maze.barriers {

 maze.barriers[i] = make([]bool, cols)

 }

 file, err := os.Open(mazefile)

 if err != nil {

 log.Fatal(err)

 }

ChAPTER 5 STACkS

179

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

 var textlines []string

 for scanner.Scan() {

 textlines = append(textlines, scanner.Text())

 }

 defer file.Close()

 for row := 0; row < rows; row++ {

 line := textlines[row]

 for col := 0; col < cols; col++ {

 if string(line[col]) == "1" {

 maze.barriers[row][col] = true

 } else {

 maze.barriers[row][col] = false

 }

 }

 }

 maze.current = NewPath(start)

 maze.pathStack = slicestack.Stack[Path]{} // generic instance

 maze.pathStack.Push(maze.current)

 maze.barriers[start.x][start.y] = true

 return maze

}

func NewPosition(oldPosition Point, move Direction)

 Point {

 if move == Direction(N) {

 return Point{oldPosition.x, oldPosition.y - 1}

 } else if move == NE {

 return Point{oldPosition.x + 1, oldPosition.y - 1}

 } else if move == E {

 return Point{oldPosition.x + 1, oldPosition.y}

 } else if move == SE {

 return Point{oldPosition.x + 1, oldPosition.y + 1}

 } else if move == S {

 return Point{oldPosition.x, oldPosition.y + 1}

ChAPTER 5 STACkS

180

 } else if move == SW {

 return Point{oldPosition.x - 1, oldPosition.y + 1}

 } else if move == W {

 return Point{oldPosition.x - 1, oldPosition.y}

 } else {

 return Point{oldPosition.x - 1, oldPosition.y - 1}

 }

}

func (m *Maze) StepAhead() (Point, Point) {

 validMove := false

 backTrackPoint := None

 newPos := None

 for {

 if m.gameOver || validMove ||

 m.pathStack.IsEmpty() {

 break

 }

 validMove = false

 m.current = m.pathStack.Pop()

 m.moveCount += 1

 nextMove := m.current.RandomMove()

 for {

 if validMove || nextMove == NotAvailable {

 break

 }

 newPos = NewPosition(m.current.point, m.current.move)

 if m.barriers[newPos.y][newPos.x] == false

 {

 validMove = true

 if newPos.Equals(m.end) {

 for {

 if m.pathStack.IsEmpty() ==

 true {

 break

 }

ChAPTER 5 STACkS

181

 m.pathStack.Pop()

 }

 m.gameOver = true

 }

 m.barriers[newPos.y][newPos.x] = true

 m.pathStack.Push(m.current)

 newPathObject := NewPath(newPos)

 m.pathStack.Push(newPathObject)

 } else {

 nextMove = m.current.RandomMove()

 }

 }

 if !validMove && !m.pathStack.IsEmpty() {

 fmt.Printf("\nBacktrack from %v to %v\n",

 m.current.point,

 m.pathStack.Top().point)

 backTrackPoint = m.pathStack.Top().point

 }

 }

 if m.pathStack.IsEmpty() {

 fmt.Println("No solution is possible")

 return None, None

 }

 return newPos, backTrackPoint

}

// ***

func main() {

 rand.Seed(time.Now().UnixNano())

 start := Point{1, 1}

 end := Point{38, 38}

 maze := NewMaze(40, 40, start, end, "maze.txt")

 newPos, _ := maze.StepAhead()

 time.Sleep(1 * time.Second)

ChAPTER 5 STACkS

182

 if newPos != None {

 fmt.Println(newPos)

 }

 for {

 if newPos == None || newPos.Equals(end) {

 break

 }

 newPos, _ = maze.StepAhead()

 time.Sleep(100 * time.Millisecond)

 if newPos != None {

 fmt.Println(newPos)

 }

 }

 if newPos.Equals(end) {

 fmt.Println("SUCCESS! Reached ", end)

 }

}

/* Output

{2 2}

{1 3}

{2 3}

{3 3}

{4 4}

{4 3}

{5 2}

{6 1}

Backtrack from {6 1} to {5 2}

Backtrack from {5 2} to {4 3}

Backtrack from {4 3} to {4 4}

{5 5}

{6 6}

{5 7}

{4 8}

{4 9}

ChAPTER 5 STACkS

183

{4 10}

{4 11}

{4 12}

{5 13}

{6 14}

{6 15}

{5 16}

{4 17}

{5 18}

{6 19}

{5 20}

{5 21}

{4 21}

{3 20}

{2 20}

Backtrack from {2 20} to {3 20}

Backtrack from {3 20} to {4 21}

Backtrack from {4 21} to {5 21}

Backtrack from {5 21} to {5 20}

Backtrack from {5 20} to {6 19}

{7 20}

{8 21}

{8 22}

{7 21}

Backtrack from {7 21} to {8 22}

{9 22}

{10 22}

{11 22}

{12 22}

{13 22}

{14 22}

{15 22}

{16 22}

ChAPTER 5 STACkS

184

{17 22}

{18 22}

{19 22}

{20 22}

{21 22}

{22 22}

{23 22}

{24 22}

{25 22}

{26 22}

{27 22}

{28 22}

{29 22}

{30 23}

{31 22}

{32 23}

{33 24}

{34 25}

{35 26}

{36 27}

{36 28}

{36 29}

{36 30}

{36 31}

{36 32}

{36 33}

{36 34}

{36 35}

{36 36}

{36 37}

{37 38}

{38 38}

SUCCESS! Reached {38 38}

*/

ChAPTER 5 STACkS

185

In the output shown, there were three dead end detours. The pathStack enabled

backtracking recovery from each of these detours and the eventual successful path

through the maze.

5.8 Summary
In this chapter, we showed two implementations of a generic stack. We then proceeded

with several applications of stack including algebraic function evaluation, converting

decimal to binary and finding the path through a maze.

In the next chapter, we focus on the queue and list data structures.

ChAPTER 5 STACkS

187

CHAPTER 6

Queues and Lists
Queue is another relatively simple data type. It has many practical uses in application

development.

A queue organizes data in a first-in, first-out (FIFO) manner. Because of FIFO, the

most obvious application is to model a waiting line. This could be a line of customers

waiting for some service, a print job waiting in a print queue, a concurrent process

waiting for CPU access, and many other applications that require waiting lines. New

items are inserted into the back of a queue, and items are removed from the front of the

queue. The queue maintains the order in which the items are inserted.

We present two implementations of Queue in this chapter and compare their

efficiency. We also present several applications of Queue.

Deque is more general than a Queue. It allows insertion and deletion from the front

as well as the back of the structure. We present an implementation of Deque and an

application that uses Deque.

PriorityQueue is a specialized type of Queue. We show an implementation of

PriorityQueue and an application involving airline passengers.

List is a more general data type than a Queue. Items can be inserted in the front,

back, or anywhere in the middle. We present the implementation of a singly linked and

doubly linked list.

In the next section, we define the Queue abstract data type (ADT).

© Richard Wiener, PhD 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_6

https://doi.org/10.1007/978-1-4842-8191-8_6

188

6.1 Queue ADT
There are six operations that characterize a Queue ADT.

Insert(item) – Adds item to the queue

Remove() item – Removes and returns the first item inserted in the queue

First() item – Accesses the first item inserted in the queue without altering the queue

Size int – Returns the number of items in the queue

Range() – Returns an Iterator

Empty() – Returns a bool, true if the Iterator it is applied to has no items

Next() – Returns the next item in the Iterator

We present two implementations of Queue: slice based and node based. In the next

section, we focus on a slice-based implementation of Queue.

6.2 Implementation of Slice Queue
Listing 6-1 presents a generic slice implementation of Queue in package slicequeue.

The Queue struct contains a field, items, a slice of generic type T.

Listing 6-1. Generic slice implementation of Queue

package slicequeue

type Queue[T any] struct {

 items []T

}

type Iterator[T any] struct {

 next int // index in items

 items []T

}

ChAptER 6 QuEuES ANd LIStS

189

// Queue Methods

func (queue *Queue[T]) Insert(item T) {

 // item is added to the right-most position in the slice

 queue.items = append(queue.items, item)

}

func (queue *Queue[T]) Remove() T {

 returnValue := queue.items[0]

 queue.items = queue.items[1:]

 return returnValue

}

func (queue Queue[T]) First() T {

 return queue.items[0]

}

func (queue Queue[T]) Size() int {

 return len(queue.items)

}

func (queue *Queue[T]) Range() Iterator[T] {

 return Iterator[T]{0, queue.items}

}

// Iterator Methods

func (iterator *Iterator[T]) Empty() bool {

 return iterator.next == len(iterator.items)

}

func (iterator *Iterator[T]) Next() T {

 returnValue := iterator.items[iterator.next]

 iterator.next++

 return returnValue

}

The FIFO protocol of Queue is achieved by inserting new items in the rightmost

position of the items slice and removing items from the leftmost position, index 0, in the

items slice.

ChAptER 6 QuEuES ANd LIStS

190

 Iterator
An Iterator type is a struct containing an index next and the items slice.

The Empty method on Iterator is true if the iterator field next equals the length of

the items slice.

The Next method on Iterator returns the value T in index next of the items slice.

The Range method on Queue returns an Iterator.
Listing 6-2 shows a simple main driver program that exercises a generic queue.

Listing 6-2. Driver Program for Generic Queue

package main

import (

 "fmt"

 "example.com/slicequeue"

)

func main() {

 myQueue := slicequeue.Queue[int]{}

 myQueue.Insert(15)

 myQueue.Insert(20)

 myQueue.Insert(30)

 myQueue.Remove()

 fmt.Println(myQueue.First())

 queue := slicequeue.Queue[float64]{}

 for i := 0; i < 10; i++ {

 queue.Insert(float64(i))

 }

 iterator := queue.Range()

 for {

 if iterator.Empty() {

 break

 }

 fmt.Println(iterator.Next())

 }

 fmt.Println("queue.First() = ", queue.First())

}

ChAptER 6 QuEuES ANd LIStS

191

/* Output

20

0

1

2

3

4

5

6

7

8

9

queue.First() = 0

*/

The package slicequeue is imported. A queue with type int and another queue

with type float64 are defined and exercised. It is noted that when the float64 queue is

constructed and the values are displayed using an iterator, the state of the queue is not

changed.

In the next section, we present the implementation of a node-based Queue.

6.3 Implementation of Node Queue
Listing 6-3 presents a node implementation of Queue.

Listing 6-3. Generic node implementation of queue

package nodequeue

type Node[T any] struct {

 item T

 next *Node[T]

}

ChAptER 6 QuEuES ANd LIStS

192

type Queue[T any] struct {

 first, last *Node[T]

 length int

}

type Iterator[T any] struct {

 next *Node[T]

}

// Methods

func (queue *Queue[T]) Insert(item T) {

 newNode := &Node[T]{item, nil}

 if queue.first == nil {

 queue.first = newNode

 queue.last = queue.first

 } else {

 queue.last.next = newNode

 queue.last = newNode

 }

 queue.length +=1

}

func (queue *Queue[T]) Remove() T {

 returnValue := queue.first.item

 queue.first = queue.first.next

 if queue.first == nil {

 queue.last = nil

 }

 return returnValue

}

func (queue Queue[T]) First() T {

 return queue.first.item

}

func (queue Queue[T]) Size() int {

 return queue.length

}

ChAptER 6 QuEuES ANd LIStS

193

func (queue *Queue[T]) Range() Iterator[T] {

 return Iterator[T]{queue.first}

}

func (iterator *Iterator[T]) Empty() bool {

 return iterator.next == nil

}

func (iterator *Iterator[T]) Next() T {

 returnValue := iterator.next.item

 if iterator.next != nil {

 iterator.next = iterator.next.next

 }

 return returnValue

}

A generic Node type is defined containing an item field of type T and a next field, a

pointer to Node. This recursive structure is similar to what we did in defining a node in

nodestack.

The Queue type is a struct containing two pointers to Node, first and last. They point

to the beginning and end of the queue.

The Insert method creates a first value if the queue is empty and sets last to equal

first. If the queue already has a non-nil first value, it links the current last value to the

new node and replaces last with a pointer to this new node. The first value is unaffected.

The Remove method returns the item in the first Node and resets first to its

first.next link. If first becomes nil, then the last field is also set to nil; otherwise, it is

unaffected.

The Iterator is a struct with a next field that points to a Node.

The Range method returns an Iterator that contains a next field pointing to the first

item in the queue.

The Empty method on Iterator returns true if the next field points to nil; otherwise,

it returns false.

Finally, the Next method on Iterator returns the value in the next Node and

advances the field iterator.next to the iterator.next.next link.

A main driver program that exercises the queuenode is the same as in Listing 6-2

except the package “example.com/nodequeue” is used.

ChAptER 6 QuEuES ANd LIStS

194

In the next section, we compare the performance of a slice-based Queue with a

node-based Queue.

6.4 Comparing the Performance of Slice
and Node Queue

Listing 6-4 presents a program that compares the execution time of inserting and

removing items from a slicequeue and a nodequeue.

Listing 6-4. Benchmarking the performance of slicequeue and nodequeue

// We compare the performance of slicequeue and nodequeue

package main

import (

 "fmt"

 "example.com/nodequeue"

 "example.com/slicequeue"

 "time"

)

const size = 1_000_000

func main() {

 sliceQueue := slicequeue.Queue[int]{}

 nodeQueue := nodequeue.Queue[int]{}

 start := time.Now()

 for i := 0; i < size; i++ {

 sliceQueue.Insert(i)

 }

 elapsed := time.Since(start)

 fmt.Println("Time for inserting 1 million ints in sliceQueue is",

elapsed)

 start = time.Now()

 for i := 0; i < size; i++ {

 nodeQueue.Insert(i)

 }

ChAptER 6 QuEuES ANd LIStS

195

 elapsed = time.Since(start)

 fmt.Println("Time for inserting 1 million ints in nodeQueue is",

elapsed)

 start = time.Now()

 for i := 0; i < size; i++ {

 sliceQueue.Remove()

 }

 elapsed = time.Since(start)

 fmt.Println("Time for removing 1 million ints from sliceQueue is",

elapsed)

 start = time.Now()

 for i := 0; i < size; i++ {

 nodeQueue.Remove()

 }

 elapsed = time.Since(start)

 fmt.Println("Time for removing 1 million ints from nodeQueue is",

elapsed)

}

/* Output

Time for inserting 1 million ints in sliceQueue is 18.841914ms

Time for inserting 1 million ints in nodeQueue is 30.275662ms

Time for removing 1 million ints from sliceQueue is 1.413447ms

Time for removing 1 million ints from nodeQueue is 2.818313ms

*/

As expected, the slice queue is significantly faster than the node queue because of

the overhead associated with pointer access in the node-based queue.

In the next section, we introduce and implement the Deque data structure.

6.5 Deque
A Deque is a queue in which items may be inserted or deleted from the front or the back

of the structure.

Listing 6-5 presents a slice implementation of a generic Deque.

ChAptER 6 QuEuES ANd LIStS

196

Listing 6-5. Generic slice implementation of Deque

package deque

type Deque[T any] struct {

 items []T

}

func (deque *Deque[T]) InsertFront(item T) {

 deque.items = append(deque.items, item) // Expands deque.items

 for i := len(deque.items) - 1; i > 0 ; i-- {

 deque.items[i] = deque.items[i - 1]

 }

 deque.items[0] = item

}

func (deque *Deque[T]) InsertBack(item T) {

 deque.items = append(deque.items, item)

}

func (deque *Deque[T]) First() T {

 return deque.items[0]

}

func (deque *Deque[T]) RemoveFirst() T {

 returnValue := deque.items[0]

 deque.items = deque.items[1:]

 return returnValue

}

func (deque *Deque[T]) Last() T {

 return deque.items[len(deque.items) - 1]

}

func (deque *Deque[T]) RemoveLast() T {

 length := len(deque.items)

 returnValue := deque.items[length - 1]

 deque.items = deque.items[:(length - 1)]

 return returnValue

}

ChAptER 6 QuEuES ANd LIStS

197

func (deque *Deque[T]) Empty() bool {

 return len(deque.items) == 0

}

Listing 6-6 presents a simple driver program that uses Deque.

Listing 6-6. Exercising Deque

package main

import (

 "fmt"

 "example.com/deque"

)

func main() {

 myDeque := deque.Deque[int]{}

 myDeque.InsertFront(5)

 myDeque.InsertBack(10)

 myDeque.InsertFront(2)

 myDeque.InsertBack(12) // 2 5 10 12

 fmt.Println("myDeque.First() = ", myDeque.First())

 fmt.Println("myDeque.Last() = ", myDeque.Last())

 myDeque.RemoveLast()

 myDeque.RemoveFirst()

 fmt.Println("myDeque.First() = ", myDeque.First())

 fmt.Println("myDeque.Last() = ", myDeque.Last())

}

/* Output

myDeque.First() = 2

myDeque.Last() = 12

myDeque.First() = 5

myDeque.Last() = 10

*/

In the next section, we present an application that uses Deque.

ChAptER 6 QuEuES ANd LIStS

198

6.6 Deque Application
Given an array and an integer k, find the maximum value for every contiguous subarray

of size k.

As an example, consider the following problem:

Input array: input := []int{9, 1, 1, 0, 0, 0, 1, 0, 6, 8} with k = 3

Max of 9, 1, 1 is 9.

Max of 1, 1, 0 is 1.

Max of 1, 0, 0 is 1.

Max of 0, 0, 0 is 0.

Max of 0, 0, 1 is 1.

…

So the output is [9 1 1 0 1 1 6 8].

Listing 6-7 presents a simple brute-force solution to this problem.

Listing 6-7. Brute-force solution to the maximum contiguous array problem

package main

import (

 "fmt"

)

func MaxSubarray(input []int, k int) (output []int) {

 for first := 0; first <= len(input) - k; first++ {

 max := input[first]

 for second := 0; second < k; second++ {

 if input[first + second] > max {

 max = input[first + second]

 }

 }

 output = append(output, max)

 }

 return output

}

ChAptER 6 QuEuES ANd LIStS

199

func main() {

 input := []int{3, 1, 6, 4, 2, 10, 5, 9}

 output := MaxSubarray(input, 3)

 fmt.Println("Output = ", output)

}

/* Output

Output = [6 6 6 10 10 10]

*/

Because of the nested loops, the computational complexity of this solution is O(n * k),

where n is the size of the input slice.

Can we do better? This would be useful if n and k were large. We can do much better

using the services of a Deque.

Consider function MaxSubarrayUsingDeque as follows:

func MaxSubarrayUsingDeque(input []int, k int) (output []int) {

 deque := deque.Deque[int]{}

 var index int

 // First window

 for index = 0; index < k; index++ {

 for {

 if deque.Empty() || input[index] < input[deque.Last()] {

 break

 }

 deque.RemoveLast()

 }

 deque.InsertBack(index)

 }

 for ; index < len(input); index++ {

 output = append(output, input[deque.First()])

 // Remove elements out of the window

 for {

 if deque.Empty() || deque.First() > index - k {

 break

 }

ChAptER 6 QuEuES ANd LIStS

200

 deque.RemoveFirst()

 }

 // Remove values smaller than the element currently being added

 for {

 if deque.Empty() || input[index] < input[deque.Last()] {

 break

 }

 deque.RemoveLast()

 }

 deque.InsertBack(index)

 }

 output = append(output, input[deque.First()])

 return output

}

Let us walk through the function for a portion of the example before.

A deque with generic type int is initialized to empty.

Since deque is empty, we break out of the inner for-loop and insert index 0 into the

deque and then advance index from 0 to 1.

Since input[1] is less than input[0], we again break out of the inner for-loop and

insert index 1 into the back of the deque so the deque contains [0 1]. We advance

index to 2.

Since input[2] is not less than index[1], we remove the last element, 1, from the

deque, leaving the deque as [0]. Since index[2] is less than input[0], we break out of the

inner loop and insert index 2 to the back of the deque producing [0 2]. The outer for-loop

is done. We are assured that the first element in the deque is the largest in the deque.

In the second outer for-loop, we append input[deque,First()] to the output, namely,

the value of 9.

The logic of the second outer for-loop mirrors the first outer for-loop. First, the deque

is purged of values out of the index window of the deque, which gets shifted by one to the

right after each iteration. Then the deque is filled with the next k values, and the values

are rotated so that the first value in the deque is largest.

The computational complexity of this algorithm is O(n).

Listing 6-8 compares the performance of the brute-force algorithm with the deque-

based algorithm.

ChAptER 6 QuEuES ANd LIStS

201

Listing 6-8. Comparing the performance of the brute-force algorithm with the

deque-based algorithm

package main

import (

 "fmt"

 "example.com/deque"

 "time"

 "math/rand"

)

const size = 1_000_000

func MaxSubarrayBruteForce(input []int, k int) (output []int) {

 for first := 0; first <= len(input) - k; first++ {

 max := input[first]

 for second := 0; second < k; second++ {

 if input[first + second] > max {

 max = input[first + second]

 }

 }

 output = append(output, max)

 }

 return output

}

func MaxSubarrayUsingDeque(input []int, k int) (output []int) {

 deque := deque.Deque[int]{}

 var index int

 // First window

 for index = 0; index < k; index++ {

 for {

 if deque.Empty() || input[index] < input[deque.Last()] {

 break

 }

ChAptER 6 QuEuES ANd LIStS

202

 deque.RemoveLast()

 }

 deque.InsertBack(index)

 }

 for ; index < len(input); index++ {

 output = append(output, input[deque.First()])

 // Remove elements out of the window

 for {

 if deque.Empty() || deque.First() > index - k {

 break

 }

 deque.RemoveFirst()

 }

 // Remove values smaller than the element currently being added

 for {

 if deque.Empty() || input[index] < input[deque.Last()] {

 break

 }

 deque.RemoveLast()

 }

 deque.InsertBack(index)

 }

 output = append(output, input[deque.First()])

 return output

}

func main() {

 input := []int{9, 1, 1, 0, 0, 0, 1, 0, 6, 8}

 output1 := MaxSubarrayBruteForce(input, 3)

 fmt.Println("Output = ", output1)

 output2 := MaxSubarrayUsingDeque(input, 3)

 fmt.Println("Output = ", output2)

 // Benchmark performance of two algorithms

 input = []int{}

ChAptER 6 QuEuES ANd LIStS

203

 for i := 0; i < size; i++ {

 input = append(input, rand.Intn(1000))

 }

 start := time.Now()

 MaxSubarrayUsingDeque(input, 10000)

 elapsed := time.Since(start)

 fmt.Println("Using Deque: ", elapsed)

 start = time.Now()

 MaxSubarrayBruteForce(input, 10000)

 elapsed = time.Since(start)

 fmt.Println("Using Brute Force: ", elapsed)

}

/* Output

Output = [9 1 1 0 1 1 6 8]

Output = [9 1 1 0 1 1 6 8]

Using Deque: 21.873658ms

Using Brute Force: 6.042102028s

*/

The results are dramatic: 21.87ms for the deque-based algorithm and 6.04 seconds

for the brute-force algorithm.

In the next section, we introduce and implement a priority queue.

6.7 Priority Queue
Priority queues exist in many real-world situations. For example, when passengers line

up to board a plane, many airlines associate a priority with each passenger. This may be

based on age (children enjoy high priority), price for the ticket (first-class passengers

get high priority), loyalty points (frequent traveler), disability, or other factors that

determine the customer’s priority. Within each priority grouping, the usual FIFO queue

rules apply.

We assume here that only a bounded number of priorities can be assigned to each

item to be inserted in the queue.

We show one implementation in which we use a slice in which each element of the

slice contains an ordinary queue.

ChAptER 6 QuEuES ANd LIStS

204

The first queue in the slice contains items assigned the highest priority. The second

queue in the slice contains items assigned the second highest priority and so on.

When an item is inserted, we access the queue corresponding to its priority and do

an insertion in that queue.

Using a node-based queue for each element of the slice, we define a generic

PriorityQueue and a function for creating the priority queue as follows:

type PriorityQueue[T any] struct {

 q []nodequeue.Queue[T] // slice of queues

 size int

}

func NewPriorityQueue[T any](numberPriorities int) (pq PriorityQueue[T]) {

 pq.q = make([]nodequeue.Queue[T], numberPriorities)

 return pq

}

The NewPriorityQueue constructor function defines a slice with numberPriorities

node queues.

Listing 6-9 defines a Passenger type and presents an implementation of

PriorityQueue along with a main driver. In the main driver, an airline queue with

Passenger as the generic type is defined, and a group of passengers are inserted into the

queue. Several passengers are removed, and the head of the line is output.

Listing 6-9. A slice implementation of priority queue and driver program

package main

import (

 "example.com/nodequeue"

 "fmt"

)

type Passenger struct {

 name string

 priority int

}

ChAptER 6 QuEuES ANd LIStS

205

type PriorityQueue[T any] struct {

 q []nodequeue.Queue[T]

 size int

}

func NewPriorityQueue[T any](numberPriorities int) (pq PriorityQueue[T]) {

 pq.q = make([]nodequeue.Queue[T], numberPriorities)

 return pq

}

// Methods for priority queue

func (pq *PriorityQueue[T]) Insert(item T, priority int) {

 pq.q[priority - 1].Insert(item)

 pq.size++

}

func (pq *PriorityQueue[T]) Remove() T {

 pq.size--

 for i := 0; i < len(pq.q); i++ {

 if pq.q[i].Size() > 0 {

 return pq.q[i].Remove()

 }

 }

 var zero T

 return zero

}

func (pq *PriorityQueue[T]) First() T {

 for _, queue := range(pq.q) {

 if queue.Size() > 0 {

 return queue.First()

 }

 }

 var zero T

 return zero

}

ChAptER 6 QuEuES ANd LIStS

206

func (pq *PriorityQueue[T]) IsEmpty() bool {

 result := true

 for _, queue := range(pq.q) {

 if queue.Size() > 0 {

 result = false

 break

 }

 }

 return result

}

func main() {

 airlineQueue := NewPriorityQueue[Passenger](3)

 passengers := []Passenger{ {"Erika", 3},{"Robert", 3}, {"Danielle", 3},

 {"Madison", 1}, {"Frederik", 1}, {"James", 2},

 {"Dante", 2}, {"Shelley", 3} }

 fmt.Println("Passsengers: ",passengers)

 for i := 0; i < len(passengers); i++ {

 airlineQueue.Insert(passengers[i], passengers[i].priority)

 }

 fmt.Println("First passenger in line: ", airlineQueue.First())

 airlineQueue.Remove()

 airlineQueue.Remove()

 airlineQueue.Remove()

 fmt.Println("First passenger in line: ", airlineQueue.First())

}

/* Output

Passsengers: [{Erika 3} {Robert 3} {Danielle 3} {Madison 1} {Frederik 1}

{James 2} {Dante 2} {Shelley 3}]

First passenger in line: {Madison 1}

First passenger in line after three Removes: {Dante 2}*/

The Remove method returns the zero value of T (Passenger in this case) if all the

queues in the slice are empty.

The first three Remove invocations strip both priority 1 passengers from the queue

and the first priority 2 passenger from the queue, making “Dante” the first in line.

ChAptER 6 QuEuES ANd LIStS

207

We see in Listing 6-9 a layering of abstractions, a common practice in software

development. We could have used a slice queue instead of the node queue by changing

one line of code in the imports and changing each occurrence of nodequeue.Queue to

slicequeue.Queue.

In the next section, we present an important application of Queue – a discrete event

simulation of a waiting line. A typical waiting line occurs when customers compete

for service by lining up and waiting for a server to process each customer. An example

would be the checkout process at a supermarket.

6.8 Queue Application: Discrete Event Simulation
of Waiting Line

Suppose we have a waiting line for service at a bank. Customers arrive according to a

Poisson arrival process with a specified average rate of arrival. Customers are served

with a service time specified by a uniformly distributed random service time between

a specified lower and upper bound. Our goal is to construct a simulation that estimates

the average wait time (time from arrival on the line to time of completion of service) for a

customer joining the line as well as other statistics taken over an eight-hour day.

 Poisson Process
Events modeled by a Poisson arrival process satisfy the following conditions:

 1. Events are independent of each other. The occurrence of an event

does not influence when another event occurs. If the events being

modeled are customers arriving at a bank waiting line, this is

probably a reasonable requirement to meet.

 2. The average rate of events remains constant. Here, we shall use

a minute as the basic unit of time, so the average rate will be in

events per minute.

It can be shown that the time between events, a random variable, can be generated

using the function shown in the following:

func InterArrivalInterval(arrivalRate float64) float64 {

 // Models a Poisson process and returns

ChAptER 6 QuEuES ANd LIStS

208

 rn := rand.Float64() // random float between 0.0 and 1

 return -math.Log(1.0 - rn) / arrivalRate

}

This corresponds to a probability that the wait time between events greater than

some t is

P(Wait time > t) = e-λ * t

where λ is the average arrival rate in events/minute. This is an exponential distribution.

As t increases, the probability of the wait time exceeding t approaches 0. When t equals

0, the probability is 1. As the arrival rate λ increases (more events on average per

minute), the probability of having the wait time for the next event to be greater than

some t decreases.

We model the service duration (the time that it takes to process a customer) as a

uniform distribution between 0.5 / arrival rate and 1.4 / arrival rate. So, for example, if

the arrival rate is 0.25 (an average of one customer every 4 minutes), the service time is

modeled as uniformly distributed between 2 minutes and 5.6 minutes or an average of

3.8 minutes. This leads to a stable queue since average service time is less than average

time between arrivals.

 Simulation Logic
Let us examine a typical sequence of events to set the stage for our simulation logic. The

a’s represent customer arrival times. The d’s represent customer departure times. The

line forms from left to right, so the leftmost customer is at the head of the line and is next

to depart.

 t1

0 a1 line: c1

 t2

0 a1 a2 line: c1, c2

 t3

0 a1 a2 d1 line: c2

 | <- a1 service time -> |

ChAptER 6 QuEuES ANd LIStS

209

 t4

0 a1 a2 d1 a3 line: c2, c3

 t5

0 a1 a2 d1 a3 d2 line: c3

 t6

0 a1 a2 d1 a3 d2 d3 line: empty

The variable t (time) advances in discrete steps based on the next event – either an

arrival or a departure – thus the name discrete-event simulation.

For the sequence of events shown, the wait times for customers 1, 2, and 3 are the

following:

Customer 1: (d1 – a1)

Customer 2: (d2 – a2)

Customer 3: (d3 – a3)

The queue time is as follows: (t2 – t1) * 1 + (t3 – t2) * 2 + (t4 – t3) * 1 + (t5 – t4) * 2 +

(t6 - t5) * 1

Average queue size: queue time / t6.

After each event (arrival or departure), the queue time is updated by taking the new

event time – the last event time multiplied by the size of the queue. If the next event is a

departure, the first customer on the queue is removed; its departure time – arrival time

is added to the wait times. If the next event is an arrival, the customer is inserted into

the queue.

The next arrival time is the previous arrival time + interval between arrivals. The next

departure time is computed as the time when the customer becomes the first in the line

+ service time for the customer.

 Implementation of System
With these observations in hand, we present Listing 6-10, which implements this system.

Listing 6-10. Discrete event simulation of waiting line

// Discrete event simulation of waiting line

package main

import (

ChAptER 6 QuEuES ANd LIStS

210

 "math/rand"

 "math"

 "fmt"

 "time"

 "example.com/nodequeue"

)

const (

 arrivalRate = 0.25 // average customer arrivals per minute

 lowerBoundServiceTime = 0.5 / arrivalRate

 upperBoundServicetime = 2.0 / arrivalRate

 quitTime = 480 // Minutes in an 8 hour day

)

func InterArrivalInterval(arrivalRate float64) float64 {

 // Models a Poisson process and returns

 rn := rand.Float64() // random float between 0.0 and 1

 return -math.Log(1.0 - rn) / arrivalRate

}

func ServiceTime() float64 {

 // Uniform distribution

 rn := rand.Float64() // rn between 0.0 and 1.0

 return lowerBoundServiceTime +

 (upperBoundServicetime - lowerBoundServiceTime) * rn

}

type Customer struct {

 arrivalTime float64

 serviceDuration float64

}

// ADT for Statistics

type Statistics struct {

 waitTimes []float64

 queueTime float64 // Accumulated time * queue size

ChAptER 6 QuEuES ANd LIStS

211

 longestQueue int

 longestWaitTime float64

}

func (s *Statistics) AddWaitTime(wait float64) {

 s.waitTimes = append(s.waitTimes, wait)

 if wait > s.longestWaitTime {

 s.longestWaitTime = wait

 }

}

func (s *Statistics) AddQueueSizeTime(queueSize int, timeAtSize float64) {

 s.queueTime += float64(queueSize) * timeAtSize

}

func (s *Statistics) AddLength(length int) {

 if length > s.longestQueue {

 s.longestQueue = length

 }

}

var lastArrivalTime, departureTime, lastEventTime float64

func main() {

 rand.Seed(time.Now().UnixNano())

 lastEventTime := 0.0 // beginning of day

 line := nodequeue.Queue[Customer]{}

 statistics := Statistics{}

 // Start simulation

 for {

 lastArrivalTime = lastArrivalTime + InterArrivalInterval(ar

rivalRate)

 if lastArrivalTime > quitTime {

 break

 }

 if line.Size() == 0 {

 lastEventTime = lastArrivalTime

ChAptER 6 QuEuES ANd LIStS

212

// fmt.Printf("\nline no longer empty at time: %0.2f. line size is 1",

lastEventTime)

 serviceTime := ServiceTime()

 customer := Customer{lastArrivalTime, serviceTime}

 line.Insert(customer)

 statistics.AddLength(line.Size())

 departureTime = lastArrivalTime + serviceTime

 } else {

 if lastArrivalTime < departureTime { // next event is an arrival

 customer := Customer{lastArrivalTime, ServiceTime()}

 statistics.AddQueueSizeTime(line.Size(), lastArrivalTime -

 lastEventTime)

 lastEventTime = lastArrivalTime

 line.Insert(customer)

// fmt.Printf("\nArrival event at %0.2f - line size is: %d: ",

lastEventTime, line.Size())

 statistics.AddLength(line.Size())

 } else { // next event is a departure

 statistics.AddQueueSizeTime(line.Size(), departureTime -

 lastEventTime)

 departingCustomer := line.Remove()

 statistics.AddWaitTime(departureTime -

 departingCustomer.arrivalTime)

 lastEventTime = departureTime

// fmt.Printf("\nDeparture event at %0.2f - line size is: %d: ",

lastEventTime, line.Size())

 if line.Size() > 0 {

 departureTime = lastEventTime +

 line.First().serviceDuration

 }

 }

 }

 }

ChAptER 6 QuEuES ANd LIStS

213

 totalWaitTime := 0.0

 for i := 0; i < len(statistics.waitTimes); i++ {

 totalWaitTime += statistics.waitTimes[i]

 }

 averageWaitTime := totalWaitTime / float64(len(statistics.waitTimes))

 fmt.Printf("\nAverage Time from Arrival to Departure: %0.2f minutes",

 averageWaitTime)

 fmt.Printf("\nAverage size of waiting line: %0.2f", statistics.

queueTime / lastEventTime)

 fmt.Printf("\nLongest queue during the day: %d", statistics.

longestQueue)

 fmt.Printf("\nLongest wait time during the day: %0.2f minutes",

 statistics.longestWaitTime)

}

/* An output

Average Time from Arrival to Departure: 16.19 minutes

Average size of waiting line: 2.28

Longest queue during the day: 8

Longest wait time during the day: 40.18 minutes

*/

Multiple runs of the simulation exhibit a relatively large variance in the output

statistics shown previously.

If we instrument the code with the three commented lines of code indented flush

left, we output the exact sequence of events along with their event times.

A portion of the output produced during a typical run of the simulation is

shown here:

line no longer empty at time: 0.81. line size is 1

Departure event at 6.23 - line size is: 0:

line no longer empty at time: 7.82. line size is 1

Departure event at 12.91 - line size is: 0:

line no longer empty at time: 28.79. line size is 1

Arrival event at 29.87 - line size is: 2:

Departure event at 33.56 - line size is: 1:

ChAptER 6 QuEuES ANd LIStS

214

Departure event at 41.07 - line size is: 0:

line no longer empty at time: 53.59. line size is 1

Arrival event at 55.22 - line size is: 2:

Departure event at 58.17 - line size is: 1:

Departure event at 61.30 - line size is: 0:

line no longer empty at time: 62.79. line size is 1

Arrival event at 67.35 - line size is: 2:

Departure event at 70.29 - line size is: 1:

Arrival event at 71.87 - line size is: 2:

Departure event at 77.07 - line size is: 1:

Departure event at 81.35 - line size is: 0:

line no longer empty at time: 85.97. line size is 1

Arrival event at 89.44 - line size is: 2:

Departure event at 90.97 - line size is: 1:

Departure event at 93.27 - line size is: 0:

line no longer empty at time: 95.92. line size is 1

Departure event at 99.66 - line size is: 0:

line no longer empty at time: 105.60. line size is 1

Arrival event at 105.96 - line size is: 2:

Arrival event at 108.51 - line size is: 3:

Departure event at 109.23 - line size is: 2:

Arrival event at 114.78 - line size is: 3:

Arrival event at 115.19 - line size is: 4:

Arrival event at 115.93 - line size is: 5:

Departure event at 117.01 - line size is: 4:

Arrival event at 119.26 - line size is: 5:

Arrival event at 120.21 - line size is: 6:

Departure event at 124.32 - line size is: 5:

Departure event at 129.74 - line size is: 4:

Departure event at 133.90 - line size is: 3:

Departure event at 137.58 - line size is: 2:

Departure event at 140.13 - line size is: 1:

Departure event at 147.02 - line size is: 0:

line no longer empty at time: 170.46. line size is 1

Arrival event at 170.87 - line size is: 2:

ChAptER 6 QuEuES ANd LIStS

215

Arrival event at 173.63 - line size is: 3:

Departure event at 177.92 - line size is: 2:

Arrival event at 181.92 - line size is: 3:

Departure event at 184.98 - line size is: 2:

Departure event at 192.90 - line size is: 1:

Departure event at 195.10 - line size is: 0:

line no longer empty at time: 211.92. line size is 1

Departure event at 215.48 - line size is: 0:

line no longer empty at time: 217.21. line size is 1

Many variations of the simulation presented here are interesting and useful. For

example, we could investigate whether in the presence of multiple servers (e.g., bank

tellers), it would be more efficient to have a single waiting line feeding all the tellers (line

decreases in size by one when a teller is free) or separate waiting lines. We leave such

investigations to the reader.

In the next section, we present another application of Queue: shuffling a deck

of cards.

6.9 Queue Application: Shuffling Cards
In Section 3.4, Blackjack Game, we introduced the Deck abstraction as follows:

var ranks = []string {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J",

"Q", "K", "A"}

var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663'}

type Card struct {

 Rank string

 Suit string

}

type Deck struct {

 Cards []Card

}

ChAptER 6 QuEuES ANd LIStS

216

We saw that the math/rand package contains a Shuffle() method that can be

applied to a slice, in this case, a slice of Card.

In this section, we construct our own Shuffle method using two queues.

 Card Shuffling Model
Shuffling a deck of playing cards can be modeled as follows: Cut the deck of 52 cards

into two piles, with a random size mismatch in the two piles of at most five cards. Then

grab a card from alternating piles until the deck is reformed from the two separate piles.

When the shorter pile has no more cards to contribute, add the cards from the larger pile

directly to the deck.

If we model each pile as a queue of cards, then the shuffling process is

straightforward.

Listing 6-11 presents the Shuffle method described earlier. We display the original

deck and the shuffled deck.

Listing 6-11. Shuffling a deck of cards

// Shuffle deck of cards

package main

import (

 "example.com/nodequeue"

 "math/rand"

 "time"

 "fmt"

)

type Card struct {

 Rank string

 Suit string

}

type Deck struct {

 Cards []Card

}

ChAptER 6 QuEuES ANd LIStS

217

var ranks = []string {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J",

"Q", "K", "A"}

var suits = []rune {'\u2660', '\u2661', '\u2662', '\u2663'}

func NewDeck() (deck Deck) {

 for _, suit := range(suits) {

 for _, rank := range(ranks) {

 deck.Cards = append(deck.Cards, Card{rank, string(suit)})

 }

 }

 return deck

}

func (deck Deck) Shuffle() Deck {

 q1 := nodequeue.Queue[Card]{}

 q2 := nodequeue.Queue[Card]{}

 // Cut deck

 mismatch := -5 + rand.Intn(11) // -5 to 5

 var i int

 for i = 0; i < 26 + mismatch; i++ {

 q1.Insert(deck.Cards[i])

 }

 for ; i < 52; i++ {

 q2.Insert(deck.Cards[i])

 }

 // Rebuild deck

 deck = Deck{}

 for {

 if q1.Size() == 0 || q2.Size() == 0 {

 break

 }

 card := q1.Remove()

 deck.Cards = append(deck.Cards, card)

 card = q2.Remove()

 deck.Cards = append(deck.Cards, card)

 }

ChAptER 6 QuEuES ANd LIStS

218

 if q2.Size() == 0 {

 for {

 if q1.Size() == 0 {

 break

 }

 card := q1.Remove()

 deck.Cards = append(deck.Cards, card)

 }

 }

 if q1.Size() == 0 {

 for {

 if q2.Size() == 0 {

 break

 }

 card := q2.Remove()

 deck.Cards = append(deck.Cards, card)

 }

 }

 return deck

}

func main() {

 rand.Seed(time.Now().UnixNano())

 deck := NewDeck()

 fmt.Println("\nOriginal deck: ", deck)

 // Cut deck 5 times

 for index := 0; index < 5; index++ {

 deck = deck.Shuffle()

 }

 fmt.Println("\nShuffled deck: ", deck)

}

A typical output is shown as follows after five shuffles:

Original deck: {[{2 ♠} {3 ♠} {4 ♠} {5 ♠} {6 ♠} {7 ♠} {8 ♠} {9 ♠} {10 ♠} {J ♠} {Q ♠} {K ♠} {A

♠} {2 ♡} {3 ♡} {4 ♡} {5 ♡} {6 ♡} {7 ♡} {8 ♡} {9 ♡} {10 ♡} {J ♡} {Q ♡} {K ♡} {A ♡} {2 ♢} {3 ♢} {4

♢} {5 ♢} {6 ♢} {7 ♢} {8 ♢} {9 ♢} {10 ♢} {J ♢} {Q ♢} {K ♢} {A ♢} {2 ♣} {3 ♣} {4 ♣} {5 ♣} {6 ♣} {7

♣} {8 ♣} {9 ♣} {10 ♣} {J ♣} {Q ♣} {K ♣} {A ♣}]}

ChAptER 6 QuEuES ANd LIStS

219

Shuffled deck: {[{2 ♠} {10 ♡} {Q ♡} {7 ♡} {9 ♣} {4 ♣} {6 ♣} {A ♠} {2 ♡} {J ♢} {K ♢} {8 ♢} {9

♠} {4 ♠} {6 ♠} {A ♡} {3 ♢} {J ♣} {K ♣} {8 ♣} {9 ♡} {4 ♡} {6 ♡} {2 ♣} {3 ♣} {J ♠} {K ♠} {8 ♠} {10

♢} {5 ♢} {7 ♢} {2 ♢} {3 ♠} {J ♡} {K ♡} {8 ♡} {10 ♣} {5 ♣} {7 ♣} {9 ♢} {3 ♡} {Q ♢} {A ♢} {5 ♠} {10

♠} {Q ♣} {7 ♠} {5 ♡} {4 ♢} {Q ♠} {A ♣} {6 ♢}]}

In method Shuffle, the availability of a generic queue (in this case, from package

nodequeue with generic parameter Card) greatly simplifies our work.

In the next section, we introduce the more general data structure, linked list.

6.10 Linked Lists
Lists play a fundamental role in software development. They hold a sequence of items

from first to last. In a singly linked list, discussed in Section 6.11, each node containing

an item points to the next node in the sequence. In a doubly linked list, discussed in

Section 6.12, each node points forward to the next node in the list and backward to the

previous node in the list. This allows us to traverse the list from first to last or from last

to first.

Because of the linear structure of a list, it takes longer to access a particular item

than in an array or slice. One needs to traverse the list, item by item, until the item being

sought is found. In applications where fast direct access to an item through a location

index is needed, arrays or slices are preferable.

We have already seen two specialized examples of linked lists: nodestack and
nodequeue. In nodestack, information is inserted and removed from the leftmost

node in the linked structure, assuming that elements are inserted from the left side with

LIFO. In nodequeue, information is inserted into the linked structure from left to right

with FIFO.

In a linked list, information may be inserted anywhere (front, middle, end).

Each insertion adds a new node to the list that is linked to the next node in a singly

linked list or the next node and previous node in a doubly linked list. We shall show

implementations of each.

ChAptER 6 QuEuES ANd LIStS

220

The ADT operations that characterize a linked list are the following:

First() – Returns the first node in the list

Size() – Returns the number of nodes in the list

Insert(i, item) – Creates and inserts item in the ith node of the list

RemoveAt(i) – Removes and returns the item in the ith node of the list

Append(item) – Creates and inserts item into the last node of the list

IndexOf(item) – Returns the node position containing item in the list

Items() – Returns a slice of all the items in the list

In the next section, we present the implementation of a singly linked list.

6.11 Singly Linked List
A data structure for a generic singly linked list is given as follows:

package singlylinkedlist

import (

 "fmt"

)

type Ordered interface {

 ~string | ~int | ~float64

}

type Node[T Ordered] struct {

 Item T

 next *Node[T]

}

type List[T Ordered] struct {

 first *Node[T]

 numberItems int

}

ChAptER 6 QuEuES ANd LIStS

221

Type Node contains an Item (uppercase so it can be accessed outside the package)

and a pointer to the next node in the list.

Type List contains a pointer, first, to the head node of the list and an integer

numberItems.

Let us discuss in some detail two of the methods that can be invoked on List.

Method Append creates a new node and adds it to the end of the list as follows:

func (list *List[T]) Append(item T) {

 // Adds item to a new node at the end of the list

 newNode := Node[T]{item, nil}

 if list.first == nil {

 list.first = &newNode

 } else {

 last := list.first

 for {

 if last.next == nil {

 break

 }

 last = last.next

 }

 last.next = &newNode

 }

 list.numberItems += 1

}

A newNode with generic type T is defined with item and pointing to nil.

If the list the method is invoked on is empty, list.first is assigned to the address of

newNode.

Otherwise, a for-loop is executed, advancing the pointer last until last.next is nil.

Then last.next is assigned to the address of newNode.

Method InsertAt creates a new node and adds it at location index as follows:

func (list *List[T]) InsertAt(index int, item T) error {

 // Adds item to a new node at position index in the list

 if index < 0 || index > list.numberItems {

 return fmt.Errorf("Index out of bounds error")

 }

ChAptER 6 QuEuES ANd LIStS

222

 newNode := Node[T]{item, nil}

 if index == 0 {

 newNode.next = list.first

 list.first = &newNode

 list.numberItems += 1

 return nil // No error

 }

 node := list.first

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 newNode.next = node

 previous.next = &newNode

 list.numberItems += 1

 return nil // no error

}

A test is first performed on the value of index and an error returned if index is less

than 0 or greater than the number of existing items in the list.

As before, a new node is created with item and pointing to nil. If index is zero, new

node is set to point to list.first. Then list.first is assigned to the address of new node.

If index is not zero, a for-loop moves pointer node (initially assigned to list.first) to

the next node location with a trailing node, previous, index – 1 times.

Then two link assignments are made. The new node is inked to node, and the

previous node is assigned to the address of new node.

ChAptER 6 QuEuES ANd LIStS

223

Listing 6-12 presents the entire package singlylinkedlist, and Listing 6-13 shows a

driver program that exercises all the methods defined in Listing 6-12.

Listing 6-12. Package singlylinkedlist

package singlylinkedlist

import (

 "fmt"

)

type Ordered interface {

 ~string | ~int | ~float64

}

type Node[T Ordered] struct {

 Item T

 next *Node[T]

}

type List[T Ordered] struct {

 first *Node[T]

 numberItems int

}

// Methods

func (list *List[T]) Append(item T) {

 // Adds item to a new node at the end of the list

 newNode := Node[T]{item, nil}

 if list.first == nil {

 list.first = &newNode

 } else {

 last := list.first

 for {

 if last.next == nil {

 break

 }

 last = last.next

 }

ChAptER 6 QuEuES ANd LIStS

224

 last.next = &newNode

 }

 list.numberItems += 1

}

func (list *List[T]) InsertAt(index int, item T) error {

 // Adds item to a new node at position index in the list

 if index < 0 || index > list.numberItems {

 return fmt.Errorf("Index out of bounds error")

 }

 newNode := Node[T]{item, nil}

 if index == 0 {

 newNode.next = list.first

 list.first = &newNode

 list.numberItems += 1

 return nil // No error

 }

 node := list.first

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 newNode.next = node

 previous.next = &newNode

 list.numberItems += 1

 return nil // no error

}

func (list *List[T]) RemoveAt(index int) (T, error) {

 if index < 0 || index > list.numberItems {

 var zero T

 return zero, fmt.Errorf("Index out of bounds error")

 }

ChAptER 6 QuEuES ANd LIStS

225

 node := list.first

 if index == 0 {

 toRemove := node

 list.first = toRemove.next

 list.numberItems -= 1

 return toRemove.Item, nil

 }

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 toRemove := node

 previous.next = toRemove.next

 list.numberItems -= 1

 return toRemove.Item, nil

}

func (list *List[T]) IndexOf(item T) int {

 node := list.first

 count := 0

 for {

 if node.Item == item {

 return count

 }

 if node.next == nil {

 return -1

 }

 node = node.next

 count += 1

 }

}

ChAptER 6 QuEuES ANd LIStS

226

func (list *List[T]) ItemAfter(item T) T {

 // Scan list for the first occurence of item

 node := list.first

 for {

 if node == nil { // item not found

 var zero T

 return zero

 }

 if node.Item == item {

 break

 }

 node = node.next

 }

 return node.next.Item

}

func (list *List[T]) Items() []T {

 result := []T{}

 node := list.first

 for i := 0; i < list.numberItems; i++ {

 result = append(result, node.Item)

 node = node.next

 }

 return result

}

func (list *List[T]) First() *Node[T] {

 return list.first

}

func (list *List[T]) Size() int {

 return list.numberItems

}

ChAptER 6 QuEuES ANd LIStS

227

Listing 6-13. Main driver program for singlylinkedlist

package main

import (

 "fmt"

 "example.com/singlylinkedlist"

)

func main() {

 cars := singlylinkedlist.List[string]{}

 cars.Append("Honda")

 cars.InsertAt(0, "Nissan")

 cars.InsertAt(0, "Chevy")

 cars.InsertAt(1, "Ford")

 cars.InsertAt(1, "Tesla")

 cars.InsertAt(0, "Audi")

 cars.InsertAt(2, "Volkswagon")

 cars.Append("Volvo")

 fmt.Println(cars.Items())

 fmt.Println("Index of Tesla: ", cars.IndexOf("Tesla"))

 cars.RemoveAt(0)

 car, _ := cars.RemoveAt(3)

 fmt.Println("car removed is: ", car)

 fmt.Println(cars.Items())

 cars.RemoveAt(cars.Size() - 1)

 fmt.Println(cars.Items())

 cars.Append("Lexus")

 fmt.Println(cars.Items())

 fmt.Println("First car in the list is: ", cars.First().Item)

 fmt.Println("Last car in the list is: ", cars.Items()[cars.Size() - 1])

}

/* Output

[Audi Chevy Volkswagon Tesla Ford Nissan Honda Volvo]

ChAptER 6 QuEuES ANd LIStS

228

Index of Tesla: 3

car removed is: Ford

[Chevy Volkswagon Tesla Nissan Honda Volvo]

[Chevy Volkswagon Tesla Nissan Honda]

[Chevy Volkswagon Tesla Nissan Honda Lexus]

First car in the list is: Chevy

Last car in the list is: Lexus

*/

It is left to the reader to examine and understand the remaining methods in package

singlylinkedlist and verify that the output for the main driver program is correct.

In the next section, for completeness, we present the implementation details of a

doubly linked list.

6.12 Doubly Linked List
In a doubly linked list, each node points to the previous as well as the next node in the

list. This leads us to a data structure for a generic doubly linked list as follows:

type Ordered interface {

 ~string | ~int | ~float64

}

type Node[T Ordered] struct {

 Item T

 next *Node[T]

 prev *Node[T]

}

type List[T Ordered] struct {

 first *Node[T]

 last *Node[T]

 numberItems int

}

ChAptER 6 QuEuES ANd LIStS

229

The List contains an additional field, last, that points to the end of the list. The

methods for a doubly linked list are more complex because of the need to have each

node link backward in addition to forward. These details are presented in Listing 6-14.

Listing 6-14. Package doublylinkedlist

package doublylinkedlist

import (

 "fmt"

)

type Ordered interface {

 ~string | ~int | ~float64

}

type Node[T Ordered] struct {

 Item T

 next *Node[T]

 prev *Node[T]

}

type List[T Ordered] struct {

 first *Node[T]

 last *Node[T]

 numberItems int

}

// Methods

func (list *List[T]) Append(item T) {

 // Adds item to a new node at the end of the list

 newNode := Node[T]{item, nil, nil}

 if list.first == nil {

 list.first = &newNode

 list.last = list.first

 } else {

 list.last.next = &newNode

 newNode.prev = list.last

 list.last = &newNode

ChAptER 6 QuEuES ANd LIStS

230

 }

 list.numberItems += 1

}

func (list *List[T]) InsertAt(index int, item T) error {

 // Adds item to a new node at position index in the list

 if index < 0 || index > list.numberItems {

 return fmt.Errorf("Index out of bounds error")

 }

 newNode := Node[T]{item, nil, nil}

 if index == 0 {

 newNode.next = list.first

 if list.first != nil {

 list.first.prev = &newNode

 }

 list.first = &newNode

 list.numberItems += 1

 if list.numberItems == 1 {

 list.last = list.first

 }

 return nil // No error

 }

 node := list.first

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 newNode.next = node

 previous.next = &newNode

 node.prev = &newNode

 newNode.prev = previous

ChAptER 6 QuEuES ANd LIStS

231

 list.numberItems += 1

 return nil // no error

}

func (list *List[T]) RemoveAt(index int) (T, error) {

 if index < 0 || index > list.numberItems {

 var zero T

 return zero, fmt.Errorf("Index out of bounds error")

 }

 node := list.first

 if index == 0 {

 toRemove := node

 list.first = toRemove.next

 list.numberItems -= 1

 if list.numberItems <= 1 {

 list.last = list.first

 }

 return toRemove.Item, nil

 }

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 toRemove := node

 previous.next = toRemove.next

 toRemove.next.prev = previous

 list.numberItems -= 1

 if list.numberItems <= 1 {

 list.last = list.first

 }

 return toRemove.Item, nil

}

ChAptER 6 QuEuES ANd LIStS

232

func (list *List[T]) IndexOf(item T) int {

 node := list.first

 count := 0

 for {

 if node.Item == item {

 return count

 }

 if node.next == nil {

 return -1

 }

 node = node.next

 count += 1

 }

}

func (list *List[T]) ItemAfter(item T) T {

 // Scan list for the first occurence of item

 node := list.first

 for {

 if node == nil { // item not found

 var zero T

 return zero

 }

 if node.Item == item {

 break

 }

 node = node.next

 }

 return node.next.Item

}

func (list *List[T]) ItemBefore(item T) T {

 // Scan list for the first occurence of item

 node := list.first

 for {

ChAptER 6 QuEuES ANd LIStS

233

 if node == nil { // item not found

 var zero T

 return zero

 }

 if node.Item == item {

 break

 }

 node = node.next

 }

 return node.prev.Item

}

func (list *List[T]) Items() []T {

 result := []T{}

 node := list.first

 for i := 0; i < list.numberItems; i++ {

 result = append(result, node.Item)

 node = node.next

 }

 return result

}

func (list *List[T]) ReverseItems() []T {

 result := []T{}

 node := list.last

 for {

 if node == nil {

 break

 }

 result = append(result, node.Item)

 node = node.prev

 }

 return result

}

ChAptER 6 QuEuES ANd LIStS

234

func (list *List[T]) First() *Node[T] {

 return list.first

}

func (list *List[T]) Last() *Node[T] {

 return list.last

}

func (list *List[T]) Size() int {

 return list.numberItems

}

If we compare the implementation details of this doubly linked list to the details

presented earlier for the singly linked list, we see several assignment statements that link

a node being added to the node that precedes it. When the list contains one node, the

first and last pointers are the same.

We examine method InsertAt in detail. This is the most complex of all the methods.

The other methods work in a similar way.

func (list *List[T]) InsertAt(index int, item T) error {

 // Adds item to a new node at position index in the list

 if index < 0 || index > list.numberItems {

 return fmt.Errorf("Index out of bounds error")

 }

 newNode := Node[T]{item, nil, nil}

 if index == 0 {

 newNode.next = list.first

 if list.first != nil {

 list.first.prev = &newNode

 }

 list.first = &newNode

 list.numberItems += 1

 if list.numberItems == 1 {

 list.last = list.first

 }

 return nil // No error

 }

ChAptER 6 QuEuES ANd LIStS

235

 Node := list.first

 count := 0

 previous := node

 for count < index {

 previous = node

 count++

 node = node.next

 }

 newNode.next = node

 previous.next = &newNode

 node.prev = &newNode

 newNode.prev = previous

 list.numberItems += 1

 return nil // no error

}

After verifying that the index value sent in is not out of range, we create a newNode

that contains item and points forward and backward to nil.

We first consider the case when index is 0. In this case, we link newNode.next to

the existing list.first, even if it is nil (empty list). We then set list.first to newNode and

increment list.numberItems. If the number of items is 1, we assign list.last to list.first

since they are one in the same. We return nil to indicate no error.

In the case where index is not 0, we assign local variable node to list.first, local

variable count to 0, and local variable previous to node.

In a for-loop that runs until count equals index, we set previous to node, increment

count, and advance node to node.next.

Below the loop, having found the location in which to insert newNode, we do this

insertion by setting newNode.next to node, setting previous.next to &newNode, setting

node.prev to &newNode, setting newNode.prev to previous, and incrementing list.
numberItems.

 Benefit of Double Linking
What, you may be thinking, is the benefit of double linking considering the extra

complexity required to construct and maintain a doubly linked list?

ChAptER 6 QuEuES ANd LIStS

236

The most important benefit is the ability to traverse the list in reverse, from

end to beginning. Although this is possible using a singly linked list, it would be

computationally expensive.

6.13 Summary
In this chapter, we presented several important and useful generic data structures

including Queue, Deque, PriorityQueue, and singly and doubly linked lists. We

presented several applications that utilize these generic data structures.

In the next chapter, we present the hash table structure and some applications that

use this structure.

ChAptER 6 QuEuES ANd LIStS

237

CHAPTER 7

Hash Tables
In the previous chapter, we introduced queues and lists. We presented several

specialized types of queues and their applications.

A map is a function that converts (maps) some key to a value in a key-value pair.

The key and value may be of any type. A hash table is an unordered collection of key-

value pairs where each key is distinct (no duplicate keys). Values are not required to be

distinct, so two or more keys may map to the same value. Hash tables support very fast

access to information accessed through keys. Fast table lookup is achieved by computing

the hash value of a key and obtaining the location in the table containing the value.

In the next section, we review the standard Go data structure, map.

7.1 Map
A Go map type is declared as follows:

map[KeyType]ValueType
Listing 7-1 is a simple program that illustrates the basic operations using a

standard map.

Listing 7-1. Using a standard map

package main

import (

 "fmt"

)

type map1 map[string]string

func main() {

 nicknames := make(map1, 5)

 nicknames["Charles"] = "Chuck"

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_7

https://doi.org/10.1007/978-1-4842-8191-8_7

238

 nicknames["Robert"] = "Bob"

 nicknames["Richard"] = "Rick"

 nicknames["Teddy"] = "Ted"

 nicknames["Mohammad"] = "Mo"

 for key, value := range (nicknames) {

 fmt.Printf("\nThe nickname of %s is %s", key, value)

 }

 // Test for the presence of James in the map

 _, present := nicknames["James"]

 fmt.Println("\nThe key James is present: ", present)

 // Test for the presence of Teddy in the map

 _, present = nicknames["Teddy"]

 fmt.Println("The key Teddy is present: ", present)

 delete(nicknames, "Robert")

 // Test for the presence of Robert in the map

 _, present = nicknames["Robert"]

 fmt.Println("The key Robert is present: ", present)

 // Modify the nickname of Charles

 nicknames["Charles"] = "Charlie”

}

/* Output

The nickname of Robert is Bob

The nickname of Richard is Rick

The nickname of Teddy is Ted

The nickname of Mohammad is Mo

The nickname of Charles is Chuck

The key James is present: false

The key Teddy is present: true

The key Robert is present: false

*/

The sequence of key-value output produced by the for-loop in Listing 7-1 may

change from run to run of the program. A map is an unordered collection.

Chapter 7 hash tables

239

If a key is not present in a map, the value returned when testingx the key is the zero

value associated with the value type stored in the map. But there are two return values

when accessing a key. The first is the value associated with the key, and the second is

a Boolean that determines the presence of the key in the map. We used this in several

places in Listing 7-1 to determine whether a particular key is present in the map.

 Hash Encryption
Hash function packages have been produced to support encryption. In Listing 7-2, we

examine the use of two such hash-encryption packages.

Listing 7-2. Hash encryption

package main

import (

 "crypto/md5"

 "crypto/sha256"

 "fmt"

)

func main() {

 name1 := "Richard"

 name2 := "Richards"

 md5hash := md5.Sum([]byte(name1))

 sha256hash := sha256.Sum256([]byte(name1))

 fmt.Println(" MD5: ", md5hash)

 fmt.Println("SHA256: ", sha256hash)

 md5hash = md5.Sum([]byte(name2))

 sha256hash = sha256.Sum256([]byte(name2))

 fmt.Println(" MD5: ", md5hash)

 fmt.Println("SHA256: ", sha256hash)

}

Chapter 7 hash tables

240

/* Output

 MD5:[197 28 139 189 158 140 139 196 144 66 204 213 211 233 134 77]

SHA256:[29 235 10 59 134 117 13 14 74 76 33 220 150 1 115 105 84 174 92 202

198 84 197 127 61 69 86 58 31 89 89 152]

 MD5:[166 13 63 148 118 202 25 29 165 242 21 183 0 101 165 76]

SHA256:[107 180 140 197 199 134 66 52 247 101 104 172 63 77 46 205 135 103

147 106 45 109 84 183 195 48 107 144 11 99 127 198]

*/

The Sum method is invoked on md5 with the input string converted to [][byte. The

Sum256 method is invoked on sha256 with the input string converted to [][byte.

It is interesting to see how the addition of one character from name1 to name2

significantly changes the md5 and sha256 hash values.

These encryption functions are widely used to secure passwords.

In the next section, we examine the efficiency of a map and compare its search time

with a slice.

7.2 How Fast Is a Map?
Suppose we examine the speed of accessing a large collection of dictionary words.

Specifically, we construct a slice of 466,551 English words taken from a text file. We

next construct a map containing the same 466,551 words from the same text file. Then

we compare the time it takes to look up every word in the slice vs. the map.

To speed up the sliceCollection search, we sort the words so we can use a binary

search. We compare the map search time to the slice search time after we have sorted

the words in the slice.

Listing 7-3 presents the details of this comparison.

Listing 7-3. Search time of map vs. slice

// We compare dictionary lookup using map versus slice

package main

import (

 "bufio"

 "fmt"

 "log"

Chapter 7 hash tables

241

 "os"

 "sort"

 "time"

)

var mapCollection map[string]string

var sliceCollection []string

func IsPresent(word string, sliceCollection []string) bool {

 for i := 0; i < len(sliceCollection); i++ {

 if sliceCollection[i] == word {

 return true

 }

 }

 return false

}

func IsPresentBinarySearch(word string, sliceCollection []string) bool {

 // The slice collection is sorted

 low := 0

 high := len(sliceCollection) - 1

 for low <= high {

 median := (low + high) / 2

 if sliceCollection[median] < word {

 low = median + 1

 } else {

 high = median - 1

 }

 }

 if low == len(sliceCollection) || sliceCollection[low] != word {

 return false

 }

 return true

}

Chapter 7 hash tables

242

func main() {

 file, err := os.Open("words.txt")

 defer file.Close()

 if err != nil {

 log.Fatalf("Error opening file: %s", err)

 }

 // Fill mapCollection and sliceConnection with words

 scanner := bufio.NewScanner(file)

 scanner.Split(bufio.ScanLines)

 mapCollection = make(map[string]string)

 sliceCollection = make([]string, 1)

 var words []string

 for scanner.Scan() {

 word := scanner.Text()

 words = append(words, word)

 mapCollection[word] = word

 sliceCollection = append(sliceCollection, word)

 }

 // Benchmark time to test for presence of each word in mapCollection

 start := time.Now()

 for i := 0; i < len(words); i++ {

 _, present := mapCollection[words[i]]

 if !present {

 fmt.Println("Word not found in mapCollectio0n")

 }

 }

 elapsed := time.Since(start)

 fmt.Println("Number of words in mapCollection: ", len(mapCollection))

 fmt.Println("\nTime to test words in mapCollection: ", elapsed)

 sort.Strings(sliceCollection)

Chapter 7 hash tables

243

 // Benchmark time to test for presence of each word in sliceCollection

 start = time.Now()

 for i := 0; i < len(sliceCollection); i++ {

 if !IsPresent(sliceCollection[i], sliceCollection) {

 fmt.Println("Word not found in mapCollectio0n")

 }

 }

 elapsed = time.Since(start)

 fmt.Println("Time to test words in sliceCollection: ", elapsed)

 // Benchmark time to test for presence of each word in sorted

 // sliceCollection

 start = time.Now()

 for i := 0; i < len(sliceCollection); i++ {

 if !IsPresentBinarySearch(sliceCollection[i], sliceCollection) {

 fmt.Println("Word not found in mapCollectio0n")

 }

 }

 elapsed = time.Since(start)

 fmt.Println("Time to test words in sorted sliceCollection: ", elapsed)

}

/* Output

Number of words in mapCollection: 466468

Time to test words in mapCollection: 29.022542ms

Time to test words in sliceCollection: 2m20.874580833s

Time to test words in sorted sliceCollection: 51.836708ms

*/

The map-based collection is almost twice as fast as the sorted slice collection,

confirming our earlier statement that maps provide very fast access to their information.

The unsorted slice collection is inefficient and is many times slower than the map

collection.

In the next section, we show how to build a hash table.

Chapter 7 hash tables

244

7.3 Building a Hash Table
Commercial-grade hash tables (maps) are complex and, as the previous section

demonstrated, extremely efficient.

The details of how the Go map function is constructed are given in https://github.

com/golang/go/blob/master/src/runtime/map.go.

In this section, we construct a relatively inefficient hash table from scratch so that we

can briefly explore the issues related to hash-table construction.

Consider the following code segment:

package main

import (

 "hash/fnv" // Fowler–Noll–Vo algorithm

 // Other details not shown yet

)

const tableSize = 100_000

func hash(s string) uint32 {

 h := fnv.New32a() // Fowler-Noll-Vo algorithm

 h.Write([]byte(s))

 return h.Sum32()

}

type WordType struct {

 word string

 list []string

}

// At every index there is a word and slice of words

type HashTable [tableSize]WordType

The function hash uses the Fowler-Noll-Vo algorithm to map a string to an unsigned

32-bit integer. The interested reader may wish to research the details of this algorithm.

We define a WordType as a struct with fields word and list.

Next, consider the function NewTable that creates and returns a Hashtable.

Chapter 7 hash tables

https://github.com/golang/go/blob/master/src/runtime/map.go
https://github.com/golang/go/blob/master/src/runtime/map.go

245

 Create an Empty Hash Table
func NewTable() HashTable {

 var table HashTable

 for i := 0; i < tableSize; i++ {

 table[i] = WordType{"", []string{}}

 }

 return table

}

At every location in the HashTable array (fixed size tableSize), a variable of

WordType is assigned with empty word and empty string slice, []string{}.

 Insertion into Hash Table
Now consider method Insert as follows:

func (table *HashTable) Insert(word string) {

 index := hash(word) % tableSize // Between 0 and tableSize - 1

 // Search table[index] for word

 if table[index].word == word {

 return // duplicates not allowed

 }

 if len(table[index].list) > 0 {

 for i := 0; i < len(table[index].list); i++ {

 if table[index].list[i] == word {

 return // duplicates not allowed

 }

 }

 }

 if table[index].word == "" {

 table[index].word = word

 } else {

 table[index].list = append(table[index].list, word)

 }

 length += 1

}

Chapter 7 hash tables

246

We “map” the input parameter, word (a string), to an index using the hash function

displayed earlier.

A hash table cannot contain duplicate keys, so we test to see whether word already

exists at index. If so, we return without changing the table.

We further test for a duplicate entry by scanning the list, if non-empty, for word and

again return without changing the table if a duplicate is found.

Assuming the input word is not already in the table, we assign word to table at

index. If there is already a word at the table of index, we append the input word to the

string slice at location index.

 Collisions and Collison Resolution
For a string slice at some index location to grow, there must be a collision. That is, the index

assigned to the input word must collide with an existing word already at that location. Such

collisions are inevitable since we compress index to be within the table size using

index := hash(word) % tableSize // Between 0 and tableSize - 1

 Load Factor
The load factor of the table is the number of words in the table divided by the table size.

Even if the load factor is less than 1, collisions may still occur because the hash function

does not produce unique values for all input words. A table with many string slices

(collision chains) at various index locations takes longer to access.

 Determining Whether a Key Is Present
We next consider function IsPresent given as follows:

func (table HashTable) IsPresent(word string) bool {

 index := hash(word) % tableSize // Between 0 and tableSize - 1

 // Search table[index] for word

 if table[index].word == word {

 return true

 }

 if len(table[index].list) > 0 {

Chapter 7 hash tables

247

 for i := 0; i < len(table[index].list); i++ {

 if table[index].list[i] == word {

 return true

 }

 }

 }

 return false

}

This function returns true if the input word is at location index or in a non-empty list

rooted at index.

 Comparing the Performance of Hash Table
with Standard Map
Listing 7-4 puts the pieces discussed earlier together and compares the execution time of

the hash table with the standard map.

Listing 7-4. Comparing hash table to map

// Hash table construction

package main

import (

 "fmt"

 "hash/fnv" // Fowler–Noll–Vo algorithm

 "strconv"

 "time"

)

const tableSize = 100_000

var length int

func hash(s string) uint32 {

 h := fnv.New32a()

 h.Write([]byte(s))

 return h.Sum32()

}

Chapter 7 hash tables

248

type WordType struct {

 word string

 list []string

}

// At every index there is a slice of words

type HashTable [tableSize]WordType

func NewTable() HashTable {

 var table HashTable

 for i := 0; i < tableSize; i++ {

 table[i] = WordType{"", []string{}}

 }

 return table

}

// Methods

func (table *HashTable) Insert(word string) {

 index := hash(word) % tableSize // Between 0 and tableSize - 1

 // Search table[index] for word

 if table[index].word == word {

 return // duplicates not allowed

 }

 if len(table[index].list) > 0 {

 for i := 0; i < len(table[index].list); i++ {

 if table[index].list[i] == word {

 return // duplicates not allowed

 }

 }

 }

 if table[index].word == "" {

 table[index].word = word

 } else {

 table[index].list = append(table[index].list, word)

 }

 length += 1

}

Chapter 7 hash tables

249

func (table HashTable) IsPresent(word string) bool {

 index := hash(word) % tableSize // Between 0 and tableSize - 1

 // Search table[index] for word

 if table[index].word == word {

 return true

 }

 if len(table[index].list) > 0 {

 for i := 0; i < len(table[index].list); i++ {

 if table[index].list[i] == word {

 return true

 }

 }

 }

 return false

}

func main() {

 myTable := NewTable()

 mapCollection := make(map[string]string)

 words := []string{}

 for i := 0; i < 500_000; i++ {

 word := strconv.Itoa(i)

 words = append(words, word)

 myTable.Insert(word)

 mapCollection[word] = ""

 }

 fmt.Println("Benchmark test begins to test words: ", length)

 start := time.Now()

 for i := 0; i < length; i++ {

 if myTable.IsPresent(words[i]) == false {

 fmt.Println("Word not found in table: ", words[i])

 }

 }

 elapsed := time.Since(start)

Chapter 7 hash tables

250

 fmt.Println("Time to test all words in myTable: ", elapsed)

 start = time.Now()

 for i := 0; i < len(mapCollection); i++ {

 _, present := mapCollection[words[i]]

 if !present {

 fmt.Println("Word not found in mapCollection: ", words[i])

 }

 }

 elapsed = time.Since(start)

 fmt.Println("Time to test words in mapCollection: ", elapsed)

}

/* Output

Benchmark test begins to test words: 500000

Time to test all words in myTable: 1m17.880336666s

Time to test words in mapCollection: 24.405583ms

*/

A half-million words are generated by converting the integer index in a loop to a

string and using the resulting strings as inputs to the table and to the map. The table

takes almost 138 seconds to search for all the words that are entered compared to less

than 25 milliseconds for the map. Quite a dramatic difference!

In the next section, we delve into the important application area of string searching.

We present a classic string search algorithm that uses hashing as its basis.

7.4 Hash Application: String Search
We explore a classic and important string search application in this section. The Rabin-
Karp algorithm features hashing and attempts to reduce the complexity of searching

from O(n*m) to O(n), where n is the length of the string to be searched and m is the

length of the pattern we are searching for.

Chapter 7 hash tables

251

A function that accomplishes a string search using brute force is given as follows:

func BruteForceSearch(txt, pattern string) (bool, int) {

 patternLength := len(pattern)

 for outer := 0; outer < len(txt)-patternLength; outer++ {

 if txt[(outer):(outer+patternLength)] == pattern {

 return true, outer

 }

 }

 return false, -1

}

As an outer loop ranges from 0 to len(txt) – patternLength, we compare the

string bounded by txt[(outer):(outer+patternLength)] to pattern. If the two strings

are equal, we return true and the outer position. Since the string comparison is of

O(patternLength) and we perform this operation n times, we have an O(n * m)

algorithm, where m is the pattern length.

At this moment, you may rightfully be asking “what does this have to do with hashing?”

Suppose we replace the test for string equality, performed n – m times with a comparison

of their hash values. That is, we compare hash(txt[(outer):(outer+patternLength)] with

hash(pattern) and do this n – m times, returning true if their hash values are the same.

 Rolling Hash Computation
What if the first hash computation, as outer index is incremented by one, can be

determined from the previous hash value, avoiding the need to perform a separate

hash from scratch? This is what the Rabin-Karp algorithm does. It uses a “rolling” hash

function, where succeeding hash computations are inexpensively computed from the

previous hash computation.

The hash function, H, is defined as follows for a portion of the text going from i to i+
m – 1, where m is the length of the pattern:

Hi = (ciRm–1 + ci+1Rm–2 + … + ci+m–1R0) mod Q

The c’s are integer character values at the given locations in the string being

searched, and R is a radix that corresponds to the number of possible values that each

character can have. Q is a large prime number that serves to prevent the computed hash

value from overflowing.

Chapter 7 hash tables

252

This function does not guarantee unique hash values for different strings, but if Q

and n (the string length) are large, it minimizes the probability of a collision.

The hash value at location i + 1 can be computed from the hash value at i, in

constant time, as follows:

Hi+1 = (Hi – ciRm-1)R + ci+m

Suppose we limit the character set to the numerals from “0” to “9”. Our string search

attempts to see whether a pattern defined by a string of numerals is contained in a larger

string of numerals.

The hash function is given as follows:

const (

 Radix = uint64(10)

 Q = uint64(10 ^ 9 + 9)

)

func Hash(s string, Length int) uint64 {

 // Horner's method

 h := uint64(0)

 for i := 0; i < Length; i++ {

 h = (h*Radix + uint64(s[i])) % Q

 }

 return h

}

This is Horner’s method for evaluating a polynomial. We use uint64 for the integer

values to avoid overflow.

 Rabin-Karp Algorithm
The Search method uses the Rabin-Karp algorithm outlined earlier and is shown here:

func Search(txt, pattern string) (bool, int) {

 strings.ToLower(txt)

 strings.ToLower(pattern)

 n := len(txt)

 m := len(pattern)

Chapter 7 hash tables

253

 patternHash := Hash(pattern, m)

 textHash := Hash(txt, m)

 if textHash == patternHash {

 return true, 0

 }

 PM := uint64(1)

 for i := 1; i <= m-1; i++ {

 PM = (Radix * PM) % Q

 }

 for i := m; i < n; i++ {

 textHash = (textHash + Q - PM*uint64(txt[i-m])%Q) % Q

 textHash = (textHash*Radix + uint64(txt[i])) % Q

 if (patternHash == textHash) && pattern == txt[(i-m+1):(i+1)] {

 return true, i - m + 1

 }

 }

 return false, -1

}

Since the equality of patternHash and textHash does not guarantee that the pattern

has been found, we test the pattern against the segment of text to be sure.

Listing 7-5. Comparing Rabin-Karp to brute-force search

package main

import (

 "fmt"

 "strings"

 "time"

)

const (

 Radix = uint64(10)

 Q = uint64(10 ^ 9 + 9)

)

Chapter 7 hash tables

254

func BruteForceSearch(txt, pattern string) (bool, int) {

 patternLength := len(pattern)

 for outer := 0; outer < len(txt)-patternLength; outer++ {

 if txt[(outer):(outer+patternLength)] == pattern {

 return true, outer

 }

 }

 return false, -1

}

func Hash(s string, Length int) uint64 {

 // Horner's method

 h := uint64(0)

 for i := 0; i < Length; i++ {

 h = (h*Radix + uint64(s[i])) % Q

 }

 return h

}

func Search(txt, pattern string) (bool, int) {

 strings.ToLower(txt)

 strings.ToLower(pattern)

 n := len(txt)

 m := len(pattern)

 patternHash := Hash(pattern, m)

 textHash := Hash(txt, m)

 if textHash == patternHash {

 return true, 0

 }

 PM := uint64(1)

 for i := 1; i <= m-1; i++ {

 PM = (Radix * PM) % Q

 }

 for i := m; i < n; i++ {

 textHash = (textHash + Q - PM*uint64(txt[i-m])%Q) % Q

 textHash = (textHash*Radix + uint64(txt[i])) % Q

Chapter 7 hash tables

255

 if (patternHash == textHash) && pattern == txt[(i-m+1):(i+1)] {

 return true, i - m + 1

 }

 }

 return false, -1

}

func main() {

 text :="3141592653589793238462643383279502884197169399375105820974944592307816406

 2862089986280348253421170679"

 pattern := "816406286208998628034825342"

 start := time.Now()

 _, _ = BruteForceSearch(text, pattern)

 elapsed := time.Since(start)

 fmt.Println("Computation time using BruteForceSearch: ", elapsed)

 start = time.Now()

 _, _ = Search(text, pattern)

 elapsed = time.Since(start)

 fmt.Println("Computation time using Search: ", elapsed)

 fmt.Println(BruteForceSearch(text, pattern))

 fmt.Println(Search(text, pattern))

}

/* Output with Macbook Pro using M1 Max

Computation time using BruteForceSearch: 10.083μs

Computation time using Search: 1.375μs

true 67

true 67

Using iMac with 3.2 GHz 8-Core Intel Xeon W

Computation time using BruteForceSearch: 354ns

Computation time using Search: 1.161μs

*/

Chapter 7 hash tables

256

The program was run on two computers, and the results are surprising. On the

MacBook Pro with M1 Max processor and 32G of combined RAM, the Rabin-Karp search

is over seven times faster in searching the first 100 digits of Pi, not surprising. On the

iMac with a 3.2-GHz 8-core Xeon W processor, the opposite occurs. The brute-force

algorithm returns a time that is over three times faster than the Rabin-Karp algorithm.

These contradictory benchmarks again highlight the fact that the hardware and

instruction set of a particular machine can greatly influence the outcome of such a

benchmark.

In the next section, we use hashing to implement a generic Set.

7.5 Generic Set
The Go language does not provide a Set data structure. In this section, we implement a

generic Set data structure. A set stores unique values with ordering of the values.

The operations that define a Set are the following:

Insert(item) – adds item to the existing set if not already present

Delete(item) – removes item from the existing set if present

In(item) – returns true if item is in the existing set, otherwise returns false

Items() – returns a slice of items from the existing set

size() – returns the number of items in the existing set

Union(set2) – returns all the unique items in the existing set and set2

Intersection(set2) – returns all the items in both the existing set and set2

Difference(set2) – returns the items in the existing set, not in set2

subset(set2) – returns true if all the items in set2 are in set1, otherwise false

Chapter 7 hash tables

257

In our package set, we define generic type Set as follows:

package set

type Ordered interface {

 ~string | ~int | ~float64

}

type Set[T Ordered] struct {

 items map[T]bool

}

Here, we define the items field of Set as a map with generic parameter T of type

Ordered.

The map structure in Go requires that the key value type be ordered.

The Insert method is implemented as follows:

// Add item to set

func (set *Set[T]) Insert(item T) {

 if set.items == nil {

 set.items = make(map[T]bool)

 }

 // Prevent duplicate entry

 _, present := set.items[item]

 if !present {

 set.items[item] = true

 }

}

We first determine whether the set is empty, in which case set.items would be nil. In

this case, we initialize the map using make.

To prevent a duplicate entry, which is not legal in a set, we test to see whether item is

already in the set. If not, we assign item to the set.items map.

The Delete method is implemented as follows:

// Remove item from set

func (set *Set[T]) Delete(item T) {

 _, present := set.items[item]

Chapter 7 hash tables

258

 if present {

 delete(set.items, item)

 }

}

If the item is present, we delete it from the set.items map.

The In method is implemented as follows:

// Return true if item is in set, otherwise false

func (set *Set[T]) In(item T) bool {

 _, present := set.items[item]

 return present

}

We return true if item is in the set.items map, otherwise false.

The Items method is implemented as follows:

// Return a slice of all the items in set

func (set *Set[T]) Items() []T {

 items := []T{}

 for item := range set.items {

 items = append(items, item)

 }

 return items

}

We initialize an empty slice of type T. We iterate through the range of the set.items

map and append each item to items which we return.

The complete package set is presented in Listing 7-6. The other methods are equally

straightforward.

Listing 7-6. Package set

package set

type Ordered interface {

 ~string | ~int | ~float64

}

Chapter 7 hash tables

259

type Set[T Ordered] struct {

 items map[T]bool

}

// Methods

// Add item to set

func (set *Set[T]) Insert(item T) {

 if set.items == nil {

 set.items = make(map[T]bool)

 }

 // Prevent duplicate entry

 _, present := set.items[item]

 if !present {

 set.items[item] = true

 }

}

// Remove item from set

func (set *Set[T]) Delete(item T) {

 _, present := set.items[item]

 if present {

 delete(set.items, item)

 }

}

// Return true if item is in set, otherwise false

func (set *Set[T]) In(item T) bool {

 _, present := set.items[item]

 return present

}

// Return a slice of all the items in set

func (set *Set[T]) Items() []T {

 items := []T{}

Chapter 7 hash tables

260

 for item := range set.items {

 items = append(items, item)

 }

 return items

}

// Return the number of items in set

func (set *Set[T]) Size() int {

 return len(set.items)

}

// Return a new set containing all the unique items of set and set2

func (set *Set[T]) Union(set2 Set[T]) *Set[T] {

 result := Set[T]{}

 result.items = make(map[T]bool)

 for index := range set.items {

 result.items[index] = true

 }

 for j := range set2.items {

 _, present := result.items[j]

 if !present {

 result.items[j] = true

 }

 }

 return &result

}

// Return a new set containing the items found in both set and set2

func (set *Set[T]) Intersection(set2 Set[T]) *Set[T] {

 result := Set[T]{}

 result.items = make(map[T]bool)

 for i := range set2.items {

 _, present := set.items[i]

 if present {

 result.items[i] = true

 }

 }

Chapter 7 hash tables

261

 return &result

}

// Return a new set of items in set not found in set2

func (set *Set[T]) Difference(set2 Set[T]) *Set[T] {

 result := Set[T]{}

 result.items = make(map[T]bool)

 for i := range set.items {

 _, present := set2.items[i]

 if !present {

 result.items[i] = true

 }

 }

 return &result

}

// Return true if all items of set2 are in set

func (set *Set[T]) Subset(set2 Set[T]) bool {

 for i := range set.items {

 _, present := set2.items[i]

 if !present {

 return false

 }

 }

 return true

}

Listing 7-7 presents a main driver test program that exercises the methods of

package set.

Listing 7-7. Main driver to exercise set package

package main

import (

 "example.com/set"

 "fmt"

)

Chapter 7 hash tables

262

func main() {

 set1 := set.Set[int]{}

 set1.Insert(3)

 set1.Insert(5)

 set1.Insert(7)

 set1.Insert(9)

 set2 := set.Set[int]{}

 set2.Insert(3)

 set2.Insert(6)

 set2.Insert(8)

 set2.Insert(9)

 set2.Insert(11)

 set2.Delete(11)

 fmt.Println("Items in set2: ", set2.Items())

 fmt.Println("5 in set1: ", set1.In(5))

 fmt.Println("5 in set2: ", set2.In(5))

 fmt.Println("Union of set1 and set2: ", set1.Union(set2).Items())

 fmt.Println("Intersection of set1 and set2: ",

 set1.Intersection(set2).Items())

 fmt.Println("Difference of set2 with respect to set1: ",

 set2.Difference(set1).Items())

 fmt.Println("Size of this difference: ", set1.

Intersection(set2).Size())

}

/* Output

Items in set2: [6 8 9 3]

5 in set1: true

5 in set2: false

Union of set1 and set2: [9 3 5 7 6 8]

Intersection of set1 and set2: [3 9]

Difference of set2 with respect to set1: [6 8]

Size of this difference: 2

*/

Chapter 7 hash tables

263

7.6 Summary
We examined hash functions and hash tables in this chapter. We saw that hash tables

using the standard map data structure are extremely efficient in searching an unordered

collection. We looked at the classic Rabin- Karp for efficiently searching a string for a

pattern. This algorithm uses a rolling hash function. Finally, we implemented a Set using

a hash map.

In the next chapter, we turn our attention to Tree data structures. This is the first of

several chapters that focus on binary trees.

Chapter 7 hash tables

265

CHAPTER 8

Binary Trees
In the previous chapter, we examined hash functions and hash tables and looked at

several applications including string searching and the implementation of a Set that

utilizes hashing.

In this chapter, we turn our attention to Tree structures. This is the first of

several chapters that focus on trees. We introduce binary trees in this chapter. We

look at mechanisms for traversing a binary tree. We tackle the challenging problem

of graphically displaying a binary tree. To do this, we again use the third-party Fyne

package to obtain the resources needed for such graphics.

In the next section, we define a binary tree.

8.1 Binary Trees
A binary tree is a specialized type of tree in which

• Every node has at most two children

• The children are called left and right

A binary tree with 7 nodes of height 5 with 3 leaf nodes is shown in Figure 8-1.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_8

https://doi.org/10.1007/978-1-4842-8191-8_8

266

Figure 8-1. Binary tree

In contrast with trees in nature, the root of a binary tree is at the top of the structure,

and the tree grows downward as more nodes are added. Leaf nodes have no children.

In the next section, we look at three methods for traversing a binary tree.

8.2 Tree Traversal
A tree traversal visits each node once operating on the data stored in each node. There

are three traversals that we shall consider for binary trees: inorder, preorder, and

postorder. Each of these traversals is defined recursively. We illustrate with the tree

shown previously.

 Inorder Traversal
Starting at the root, we descend left from A to B. We descend again left arriving at

D. Then left again to E and finally again to F. No output has occurred yet. From F, we

descend left only to find no left child. Then we backtrack and visit F. A visit could simply

output the data stored in F or perform some operation on this data. We descend to

the right of F again finding no right child. Having gone to F’s left and outputting F and

Chapter 8 Binary trees

267

F’s right, we backtrack to E. Having already gone to E’s left, we visit node E. We then

descend to E’s right. We go left from G; then we visit G. We backtrack to D. We visit D. We

backtrack to B. We visit B. We backtrack to A. Having gone to A’s left, we visit A. We

descend to the right to node C. We go left. We visit C. We go right. We backtrack to A, and

we are done.

The sequence of visitation is therefore F, E, G, D, B, A, C.

 Preorder Traversal
For this traversal, we visit node A first. A visit could simply output the data stored in A

or perform some operation on this data. After visiting A, we descend to the left reaching

node B. We visit node B. Then we descend to the left and visit node D. Then we descend

to the left and visit node E. Then we descend to the left and visit node F. Since node F

does not have a left child, and having visited node F, we descend to the right and visit

node G. We backtrack up the tree to node A. Having already visited A, we descend to the

right and visit node C. The sequence of visitation is therefore A B D E F G C.

 Postorder Traversal
Here, the recursive sequence of operations is descend left, descend right, and then visit.

See whether you agree that this produces the sequence of visitation F G E D B C A for the

tree shown previously.

In the next section, we implement a graphical depiction of a binary tree using the

support of the third-party Fyne package.

8.3 Draw Tree
We wish to be able to draw a binary tree using graphics from the fyne graphical user

interface package. Such a drawing must show all tree nodes with their key values and

lines connecting parent and child nodes with the level of each node respected in the

drawing.

Figure 8-2 shows a screenshot of the tree constructed from the code that we

present in this section. The base type assumed for the data in each node is a single-

character string.

Chapter 8 Binary trees

268

Figure 8-2. Screenshot of a binary tree

We simplify the explanation of the fairly complex draw-tree algorithm by first

presenting a nongeneric version that uses string as the base type. In the next chapter,

we present a generic version. Listing 8-1 presents the core data structures for drawing a

binary tree.

Listing 8-1. Core data structures for drawing a binary tree

package main

type BinaryTree struct {

 Root *Node

 NumNodes int

}

type Node struct {

 Value string

 Left *Node

 Right *Node

Chapter 8 Binary trees

269

}

type nodePair struct {

 Val1, Val2 string

}

type nodePos struct {

 Val string

 YPos int

 XPos int

}

var data []nodePos // Used to get node positions (Val, XPos, YPos)

var endPoints []nodePair // Used to plot lines

 Binary Tree Structure
BinaryTree is defined as a struct containing a Root field specified as a pointer to a Node

and a field NumNodes, an int.

Node is defined as a struct with a Value field of type string (later, it will be a generic

type) and fields Left and Right each defined as a pointer to Node. A Node contains two

recursive references to Node through Left and Right pointers.

Type nodePair is defined as a struct containing fields Val1 and Val2 (string).

Variable endPoints is defined as a slice of nodePair and is used to keep track of the end

point values of the lines connecting nodes in the binary tree.

Type nodePos is a struct containing Val (string) and YPos and XPos (int). Variable

data is defined as a slice of nodePos and is used to define the position and value of each

node to be graphed.

 Infrastructure Used to Display Binary Tree
Listing 8-2 shows the support functions that set up the infrastructure to display the

graphics of the binary tree.

Listing 8-2. Functions for setting up the display of the binary tree

func prepareDrawTree(tree BinaryTree) {

 prepareToDraw(tree)

Chapter 8 Binary trees

270

 fmt.Println(endPoints)

 fmt.Println(data)

}

func findXY(val string) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

func findX(val string) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

 return -1

}

func setXValues() {

 for index := 0; index < len(data); index++ {

 xValue := findX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw(tree BinaryTree) {

 inorderLevel(tree.Root, 1)

 setXValues()

 getEndPoints(tree.Root, nil)

}

func inorderLevel(node *Node, level int) {

 if node != nil {

 inorderLevel(node.Left, level + 1)

Chapter 8 Binary trees

271

 data = append(data, nodePos{node.Value, 100 - level, -1})

 inorderLevel(node.Right, level + 1)

 }

}

func getEndPoints(node *Node, parent *Node) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints, nodePair{node.Value,

parent.Value})

 }

 getEndPoints(node.Left, node)

 getEndPoints(node.Right, node)

 }

}

 Explanation of Code
The function prepareDrawTree invokes prepareToDraw, each taking a parameter tree

(BinaryTree).

Function prepareToDraw invokes inorderLevel passing the root node of the tree

and the level 1. This inorder traversal tests if the node is not nil and, if so, recursively calls

itself passing the parameters node.Left and level + 1.

The second line of code is the visitation, which appends to the global data slice

a nodePos with node.Value and YPos equal to 100 – level and an XPos of -1 (just a

temporary place holder). Since trees are built from the root downward, the higher the

level, the lower the YPos, thus the 100 – level for YPos.

The third line of code is the recursive call to node.Right and level + 1.

The second line of code in prepareToDraw is an invocation of the setXValues()

function. This function uses findX to locate the index in the data slice that contains the

value of every nodePos in data. This index is used as the XValue in the nodePos as we

iterate through the data slice. The first nodePos in data will be the node furthest to the

left (node F in the tree shown earlier) and will have an XPos of 0. The second nodePos in

data will be node E in that tree. The slice data needs to be computed (except for XPos)

before the setXY() function can do its work.

Chapter 8 Binary trees

272

Upon the completion of setXY(), the preorder recursive function getEndPoints is

invoked.

As each node is visited, the slice of nodePair is built using the node visited and its

parent. This information will be used to draw the edges connecting the tree nodes.

We illustrate the construction of data and endPoints using a simple tree containing

four nodes.

Listing 8-3 shows a simple main function and the resulting data and endPoints

slices displayed in the console.

Listing 8-3. Main function with four nodes

package main

func main() {

 root := Node{"A", nil, nil}

 nodeB := Node{"B",nil, nil}

 nodeC := Node{"C", nil, nil}

 nodeD := Node{"D", nil, nil}

 root.Left = &nodeB

 root.Right = &nodeC

 nodeC.Right = &nodeD

 myTree := BinaryTree{&root, 4}

 ShowTreeGraph(myTree)

}

The console output is:

slice of endPoints: [{B A} {C A} {D C}]
slice of data: [{B 98 0} {A 99 1} {C 98 2} {D 97 3}]
The data slice reveals that node B has an XPos of 0 (leftmost node); node A, an XPos

of 1; node C, an XPos of 2; and node D, an XPos of 3. This sequence results from the

inorder traversal shown previously.

The end points of the three lines that must be drawn are shown in the slice of

endPoints (a line from B to A, from C to A, and from D to C).

The tree that is constructed using the fyne GUI package is shown in Figure 8-3.

Chapter 8 Binary trees

273

Figure 8-3. Another binary tree screenshot

 Implementation of ShowTreeGraph
With the computation of the global variables data and endPoints, we are ready to plot

the graph representing the binary tree.

Listing 8-4 presents the details of plotting the tree graph.

Listing 8-4. Plotting the graph of the binary tree

func drawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

 w.SetContent(image)

 w.Show()

}

func ShowTreeGraph(myTree BinaryTree) {

 prepareDrawTree(myTree)

Chapter 8 Binary trees

274

 myApp := app.New()

 myWindow := myApp.NewWindow("Binary Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.NumNodes)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{G: 255, A: 255}

 nodePoints.Radius = vg.Points(12)

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := findXY(val1)

 val2 := endPoints[index].Val2

 x2, y2 := findXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y: float64(y1)}, {X: float64(x2),

 Y: float64(y2)}}

 line, err := plotter.NewLine(pts)

 if err != nil {

 log.Panic(err)

 }

 scatter, err := plotter.NewScatter(pts)

 if err != nil {

Chapter 8 Binary trees

275

 log.Panic(err)

 }

 p.Add(line, scatter)

 }

 p.Add(nodePoints)

 // Add Labels

 for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.05

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

 label, err := plotter.NewLabels(plotter.XYLabels {

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{str},

 },)

 if err != nil {

 log.Fatalf("Could not creates labels plotter: %+v", err)

 }

 p.Add(label)

 }

 path, _ = homedir.Dir()

 path += "/Desktop/GoDS/"

 err = p.Save(1000, 600, "tree.png")

 if err != nil {

 log.Panic(err)

 }

 drawGraph(myApp, myWindow)

 myWindow.ShowAndRun()

}

Chapter 8 Binary trees

276

The first line of code in ShowTreeGraph is prepareDrawTree. This populates data

with a slice of nodePos, with each nodePos containing the key value stored in a node as

well as its XPos and YPos in the graph.

A new fyne.Window, myWindow, is created with the title “Binary Tree: and width

1000 and height 600 pixels”.

A new plotter, nodePts, is created. The X and Y coordinates of the plotter are

assigned from the XPos and YPos in the data slice.

A new plot is created and populated with the information in plotter. A scatter plot,

nodePoints, is created from plotter using nodePtsData.

The Shape, Color, and Radius of each node point are assigned.

The same approach is taken in drawing the lines and creating the labels on

each node.

Finally, a file “tree.png” is saved to the main directory.

The support function drawGraph is invoked with the fyne.App (myApp) and fyne.

Window (myWindow) passed as parameters.

Function drawGraph loads and displays the “tree.png” image.

Many packages from the fyne framework need to be imported for the code to work.

These imports are shown in Listing 8-5, which presents the complete binarytree package.

Listing 8-5. Complete binarytree package

package binarytree

import (

 "fmt"

 "image/color"

 "log"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/theme"

 "github.com/mitchellh/go-homedir"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

Chapter 8 Binary trees

277

type BinaryTree struct {

 Root *Node

 NumNodes int

}

type Node struct {

 Value string

 Left *Node

 Right *Node

}

type nodePair struct {

 Val1, Val2 string

}

type nodePos struct {

 Val string

 YPos int

 XPos int

}

var data []nodePos // Used to get (Val, XPos, YPos) of each node

var endPoints []nodePair // Used to plot lines

func prepareDrawTree(tree BinaryTree) {

 prepareToDraw(tree)

 fmt.Printf("\nslice of endPoints: %v", endPoints)

 fmt.Printf("\nslice of data: %v", data)

}

func findXY(val string) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

Chapter 8 Binary trees

278

func findX(val string) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

 return -1

}

func setXValues() {

 for index := 0; index < len(data); index++ {

 xValue := findX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw(tree BinaryTree) {

 inorderLevel(tree.Root, 1)

 setXValues()

 getEndPoints(tree.Root, nil)

}

func inorderLevel(node *Node, level int) {

 if node != nil {

 inorderLevel(node.Left, level + 1)

 data = append(data, nodePos{node.Value, 100 - level, -1})

 inorderLevel(node.Right, level + 1)

 }

}

func getEndPoints(node *Node, parent *Node) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints, nodePair{node.Value,

parent.Value})

 }

Chapter 8 Binary trees

279

 getEndPoints(node.Left, node)

 getEndPoints(node.Right, node)

 }

}

var path string

func drawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

 w.SetContent(image)

 w.Show()

}

func ShowTreeGraph(myTree BinaryTree) {

 prepareDrawTree(myTree)

 myApp := app.New()

 myWindow := myApp.NewWindow("Binary Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.NumNodes)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{G: 255, A: 255}

 nodePoints.Radius = vg.Points(12)

Chapter 8 Binary trees

280

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := findXY(val1)

 val2 := endPoints[index].Val2

 x2, y2 := findXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},

 {X: float64(x2), Y: float64(y2)}}

 line, err := plotter.NewLine(pts)

 if err != nil {

 log.Panic(err)

 }

 scatter, err := plotter.NewScatter(pts)

 if err != nil {

 log.Panic(err)

 }

 p.Add(line, scatter)

 }

 p.Add(nodePoints)

 // Add Labels

 for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.05

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

 label, err := plotter.NewLabels(plotter.XYLabels {

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{str},

 },)

Chapter 8 Binary trees

281

 if err != nil {

 log.Fatalf("Could not creates labels plotter: %+v", err)

 }

 p.Add(label)

 }

 path, _ = homedir.Dir()

 path += "/Desktop/GoDS/"

 err = p.Save(1000, 600, "tree.png")

 if err != nil {

 log.Panic(err)

 }

 drawGraph(myApp, myWindow)

 myWindow.ShowAndRun()

}

Listing 8-6 presents a main driver program that uses package binarytree to

construct a BinaryTree with 18 nodes and then displays this tree.

Listing 8-6. A main driver program that builds and displays a binary tree

package main

import bt"example.com/binarytree"

func main() {

 root := bt.Node{"A", nil, nil}

 nodeB := bt.Node{"B",nil, nil}

 nodeC := bt.Node{"C", nil, nil}

 nodeD := bt.Node{"D", nil, nil}

 nodeE := bt.Node{"E", nil, nil}

 nodeF := bt.Node{"F",nil, nil}

 nodeG := bt.Node{"G", nil, nil}

 nodeH := bt.Node{"H", nil, nil}

 nodeI := bt.Node{"I", nil, nil}

 nodeJ := bt.Node{"J", nil, nil}

 nodeK := bt.Node{"K", nil, nil}

 nodeL := bt.Node{"L", nil, nil}

Chapter 8 Binary trees

282

 nodeM := bt.Node{"M", nil, nil}

 nodeN := bt.Node{"N", nil, nil}

 nodeO := bt.Node{"O", nil, nil}

 nodeP := bt.Node{"P", nil, nil}

 nodeQ := bt.Node{"Q", nil, nil}

 nodeR := bt.Node{"R", nil, nil}

 root.Left = &nodeB

 root.Right = &nodeC

 nodeB.Left = &nodeD

 nodeD.Right = &nodeH

 nodeD.Left = &nodeE

 nodeE.Left = &nodeF

 nodeE.Right = &nodeG

 nodeC.Right = &nodeI

 nodeC.Left = &nodeJ

 nodeI.Right = &nodeK

 nodeK.Left = &nodeL

 nodeL.Left = &nodeM

 nodeL.Right = &nodeN

 nodeN.Right = &nodeO

 nodeO.Left = &nodeP

 nodeO.Right = &nodeQ

 nodeM.Left = &nodeR

 myTree := bt.BinaryTree{&root, 18}

 bt.ShowTreeGraph(myTree)

}

The binary tree produced is shown in Figure 8-4.

Chapter 8 Binary trees

283

Figure 8-4. Output of program

 Creating go.mod Files in Subdirectories binarytree
and main
As discussed in Section 3.2, a module file, go.mod, must be generated in each of the

subdirectories main and binarytree containing main.go and binarytree.go.

The invocation of go mod tidy in subdirectories main and binarytree causes the

correct require clauses to be built in each of these go.mod files. The first time main is

run, the imports from GitHub are downloaded.

The files generated are as follows:

module example.com/main

go 1.18

replace example.com/binarytree => ../binarytree

require (

 example.com/binarytree v0.0.0-00010101000000-000000000000 // indirect

Chapter 8 Binary trees

284

 fyne.io/fyne/v2 v2.1.2 // indirect

 github.com/ajstarks/svgo v0.0.0-20210923152817-c3b6e2f0c527 // indirect

 github.com/davecgh/go-spew v1.1.1 // indirect

 github.com/fogleman/gg v1.3.0 // indirect

 github.com/fredbi/uri v0.0.0-20181227131451-3dcfdacbaaf3 // indirect

 github.com/fsnotify/fsnotify v1.4.9 // indirect

 github.com/go-fonts/liberation v0.2.0 // indirect

 github.com/go-gl/gl v0.0.0-20210813123233-e4099ee2221f // indirect

 github.com/go-gl/glfw/v3.3/glfw v0.0.0-20211024062804-40e447a793be

 github.com/go-latex/latex v0.0.0-20210823091927-c0d11ff05a81 // indirect

 github.com/go-pdf/fpdf v0.5.0 // indirect

 github.com/godbus/dbus/v5 v5.0.4 // indirect

 github.com/goki/freetype v0.0.0-20181231101311-fa8a33aabaff // indirect

 github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect

 github.com/mitchellh/go-homedir v1.1.0 // indirect

 github.com/pmezard/go-difflib v1.0.0 // indirect

 github.com/srwiley/oksvg v0.0.0-20200311192757-870daf9aa564 // indirect

 github.com/srwiley/rasterx v0.0.0-20200120212402-85cb7272f5e9 // indirect

 github.com/stretchr/testify v1.5.1 // indirect

 github.com/yuin/goldmark v1.3.8 // indirect

 golang.org/x/image v0.0.0-20210628002857-a66eb6448b8d // indirect

 golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4 // indirect

 golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c // indirect

 golang.org/x/text v0.3.6 // indirect

 gonum.org/v1/plot v0.10.0 // indirect

 gopkg.in/yaml.v2 v2.2.8 // indirect

)

module example.com/binarytree

go 1.18

require (

 fyne.io/fyne/v2 v2.1.2

 github.com/mitchellh/go-homedir v1.1.0

 gonum.org/v1/plot v0.10.0

)

Chapter 8 Binary trees

285

require (

 github.com/ajstarks/svgo v0.0.0-20210923152817-c3b6e2f0c527 // indirect

 github.com/davecgh/go-spew v1.1.1 // indirect

 github.com/fogleman/gg v1.3.0 // indirect

 github.com/fredbi/uri v0.0.0-20181227131451-3dcfdacbaaf3 // indirect

 github.com/fsnotify/fsnotify v1.4.9 // indirect

 github.com/go-fonts/liberation v0.2.0 // indirect

 github.com/go-gl/gl v0.0.0-20210813123233-e4099ee2221f // indirect

 github.com/go-gl/glfw/v3.3/glfw v0.0.0-20211024062804-40e447a793be

 github.com/go-latex/latex v0.0.0-20210823091927-c0d11ff05a81 // indirect

 github.com/go-pdf/fpdf v0.5.0 // indirect

 github.com/godbus/dbus/v5 v5.0.4 // indirect

 github.com/goki/freetype v0.0.0-20181231101311-fa8a33aabaff // indirect

 github.com/golang/freetype v0.0.0-20170609003504-e2365dfdc4a0 // indirect

 github.com/pmezard/go-difflib v1.0.0 // indirect

 github.com/srwiley/oksvg v0.0.0-20200311192757-870daf9aa564 // indirect

 github.com/srwiley/rasterx v0.0.0-20200120212402-85cb7272f5e9 // indirect

 github.com/stretchr/testify v1.5.1 // indirect

 github.com/yuin/goldmark v1.3.8 // indirect

 golang.org/x/image v0.0.0-20210628002857-a66eb6448b8d // indirect

 golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4 // indirect

 golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c // indirect

 golang.org/x/text v0.3.6 // indirect

 gopkg.in/yaml.v2 v2.2.8 // indirect

)

Now the import statement

package main

import bt"example.com/binarytree"

will work and allow the resources defined in package binarytree to be available in

main.go.

Chapter 8 Binary trees

286

8.4 Summary
We introduced the binary tree structure. We showed three mechanisms for visiting each

tree node exactly once. We presented a nongeneric implementation of a binary tree and

a suite of functions for graphically displaying a binary tree using the resources in the

third-party fyne package.

In the next chapter, we continue our exploration of trees and examine binary

search trees.

Chapter 8 Binary trees

287

CHAPTER 9

Binary Search Tree
In the previous chapter, we introduced and implemented binary trees and explained the

code for traversing and displaying such trees graphically.

In this chapter, we explore an important specialized binary tree, the binary

search tree. The goal of a search tree is to organize data to support rapid access to

the information stored in the tree. Search trees that are relatively balanced have a

logarithmic relationship between the maximum depth of the tree and the number of

nodes in the tree and therefore the number of operations required to search the tree for a

particular item stored in the tree.

Tree search algorithms with complexity limited by maximum depth are highly

efficient.

In the next section, we present an overview of search trees.

9.1 Overview
There are many types of search trees.

The first type of search tree we examine is the binary search tree. In later chapters,

we explore other types of search trees.

A binary search tree (BST) is a special type of binary tree in which every node

contains a search key and

 1. All keys smaller than the key in node X are stored in the left

subtree of X

 2. All keys greater than the key in node X are stored in the right

subtree of X

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_9

https://doi.org/10.1007/978-1-4842-8191-8_9

288

This implies that in a search tree, we must be able to compare the Value fields of

each node.

As an example, consider the BST shown in Figure 9-1. This tree is not balanced, but

conditions 1 and 2 stated previously hold for every node in the tree.

Figure 9-1. Binary search tree

 Searching
Searching a binary search tree uses a simple algorithm. Compare the key you are

searching for with the key in the root node. If the search key is smaller, descend to the

left; if larger, descend to the right. Continue this pattern recursively until the bottom of

the tree is reached or a node is found with a value that equals the search key.

As an example, if we were to search for node 12 in the tree shown previously, we

would descend left (to node 15), descend left (to mode 10), descend right (to node 14),

and descend left to our target, node 12. This would require five comparison operations,

which is the depth of this tree.

Chapter 9 Binary SearCh tree

289

 Insertion
To insert a node into a search tree, we search for the node we wish to insert. This takes us

to the bottom of the tree since we will not allow nodes with duplicate values in a search

tree. We then insert the new node where it would have been found if initially present in

the tree.

For the tree given earlier, if we were to insert node 13, it would be inserted as the

right child of node 12 since that is where it would have been found if initially present in

the tree.

 Ordered Output
An inorder traversal of this search tree, and all search trees, produces a sequence of

visitation from smallest value to largest value, ordered output. Try this out for the tree

given in Figure 9-2 and verify this fact.

Figure 9-2. Binary search tree for inorder traversal

Chapter 9 Binary SearCh tree

290

 Deletion
The algorithm and method for removing a key from a search tree are more complicated.

After the removal, we must be guaranteed to still have a search tree.

There are three special cases:

 1. The node to be removed is a leaf node.

 2. The node to be removed has one child.

 3. The node to be removed has two children.

Case 1 is the simplest. We find the parent of the leaf node and set the appropriate link

(left or right) of the parent to nil, effectively clipping the leaf node from the tree.

The second case (the node to be removed has one child) is handled as a linked list

deletion as follows:

Assume left is the left child of the node being deleted, or assume right is the right

child of the node being deleted.

if node to be deleted has one child (left or right):

 if left != nil and parent.left == keyNode:

 parent.left = left

 else if left != nil and parent.right == keyNode:

 parent.right = left

 else if right != nil and parent.left == keyNode:

 parent.left = right

 else if right != nil and parent.right == keyNode:

 parent.right = right

As an exercise, diagram out these four cases to verify that the keyNode is unlinked

from its parent and the parent reattached to its grandchild.

The third case (the node to be removed has two children) is the most complex. It is a

three-step process:

 1. Find the inorder successor of keyNode (the smallest node to the

right of keyNode).

 2. Copy the key from successor node to keyNode.

 3. Remove the successor node.

Chapter 9 Binary SearCh tree

291

As an exercise, show that the successor node has either zero or one child, so its

removal is a case 1 or case 2 deletion shown previously.

In the next section, we present a generic binary search tree implementation.

9.2 Generic Binary Search Tree
We present a generic implementation of binary search tree. We must constrain the

generic type, T, so that it satisfies two conditions:

 1. The values of type T stored in the tree nodes can be compared.

 2. The values of type T stored in the tree nodes can be converted to a

string using the String() function.

 Type OrderedStringer
We define a constraint type OrderedStringer that satisfies the two preceding conditions

as follows:

type ordered interface {

 ~int | ~float64 | ~string

}

type OrderedStringer interface {

 ordered

 String() string

}

Requirement 1 is specified using the ordered type. Requirement 2 is specified using

the signature for the String() function.

Any instantiation of the generic binary search tree must use a value type that satisfies

the OrderedStringer type given previously. We will present examples later in this section

that illustrates this usage.

 Generic Types Needed for Binary Search Tree
Listing 9-1 presents the generic data structures needed in package binarysearchtree.

Chapter 9 Binary SearCh tree

292

Listing 9-1. Generic data structures in package binarysearchtree

package binarysearchtree

import (

 "image/color"

 "log"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/theme"

 "github.com/mitchellh/go-homedir"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

type ordered interface {

 ~int | ~float64 | ~string

}

type BinarySearchTree[T OrderedStringer] struct {

 Root *Node[T]

 NumNodes int

}

type Node[T OrderedStringer] struct {

 Value T

 Left *Node[T]

 Right *Node[T]

}

type OrderedStringer interface {

 ordered

 String() string

}

Chapter 9 Binary SearCh tree

293

The type BinarySearchTree and the type Node are each defined with a generic

parameter T of type OrderedStringer. This assures us that we can compare node values

and output the values as strings in our graphical display of the generic tree. If we were

not using the functions for displaying our binary search tree, we would not need the

second constraint on the generic parameter T.

 Methods for Binary Search Tree
The methods defined for type BinarySearchTree are presented in Listing 9-2.

Listing 9-2. Methods for BinarySearchTree

func (bst *BinarySearchTree[T]) Insert(newValue T) {

 if bst.Search(newValue) == false { // newValue not in existing tree

 n := &Node[T]{newValue, nil, nil}

 if bst.Root == nil { // First value in bst

 bst.Root = &Node[T]{newValue, nil, nil}

 } else {

 insertNode(bst.Root, n)

 }

 bst.NumNodes += 1

 }

}

func (bst *BinarySearchTree[T]) Delete(value T) {

 if bst.Search(value) == true {

 deleteNode(bst.Root, value)

 bst.NumNodes -= 1

 }

}

func (bst *BinarySearchTree[T]) Search(value T) bool {

 return search(bst.Root, value)

}

func (bst *BinarySearchTree[T]) InOrderTraverse(op func(T)) {

 inOrderTraverse(bst.Root, op)

}

Chapter 9 Binary SearCh tree

294

func (bst *BinarySearchTree[T]) Min() *T {
 node := bst.Root
 if node == nil {
 return nil
 }
 for {
 if node.Left == nil {
 return &node.Value
 }
 node = node.Left
 }
}

func (bst *BinarySearchTree[T]) Max() (*T, int) { // second return value is
 // height
 node := bst.Root
 height := 1
 if node == nil {
 return nil, 0
 }
 for {
 if node.Right == nil {
 return &node.Value, height
 }
 height += 1
 node = node.Right
 }
}

 Discussion of Insert, Delete, and Inorder Traversal
Methods Insert and Delete require that the node being inserted is not currently in

the search tree and that the node being deleted is in the search tree. There is a small

performance penalty imposed by this testing if the tree is relatively balanced.

The generic parameter constraint is not present in any of the methods. The compiler

can infer this constraint since it is defined in type BinarySearchTree.

The method InOrderTraversal takes a function op as input. This represents the

operation to be performed when visiting each node of the binary search tree.

Chapter 9 Binary SearCh tree

295

 Support Functions
Listing 9-3 contains the support functions that do the actual work defined in the publicly

available methods defined in Listing 9-2.

Listing 9-3. Support functions for implementing methods

func insertNode[T OrderedStringer](node, newNode *Node[T]) {

 if newNode.Value < node.Value {

 if node.Left == nil {

 node.Left = newNode

 } else {

 insertNode(node.Left, newNode)

 }

 } else {

 if node.Right == nil {

 node.Right = newNode

 } else {

 insertNode(node.Right, newNode)

 }

 }

}

func deleteNode[T OrderedStringer](node *Node[T], value T) *Node[T] {

 if node == nil { return nil }

 if value < node.Value {

 node.Left = delete(node.Left, value)

 return node

 }

 if value> node.Value {

 node.Right = delete(node.Right, value)

 return node

 }

 if node.Left == nil && node.Right == nil {

 node = nil

 return nil

 }

Chapter 9 Binary SearCh tree

296

 if node.Left == nil {

 node = node.Right

 return node

 }

 if node.Right == nil {

 node = node.Left

 return node

 }

 LeftmostRightside := node.Right

 for {

 //find smallest value on the Right side

 if LeftmostRightside != nil && LeftmostRightside.Left != nil {

 LeftmostRightside = LeftmostRightside.Left

 } else {

 break

 }

 }

 node.Value = LeftmostRightside.Value

 node.Right = delete(node.Right, node.Value)

 return node

}

func search[T OrderedStringer](n *Node[T], value T) bool {

 if n == nil {

 return false

 }

 if value < n.Value {

 return search(n.Left, value)

 }

 if value > n.Value {

 return search(n.Right, value)

 }

 return true

}

Chapter 9 Binary SearCh tree

297

func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {

 if n != nil {

 inOrderTraverse(n.Left, op)

 op(n.Value)

 inOrderTraverse(n.Right, op)

 }

}

Each of these support functions requires the explicit specification of the generic type

constraint since the compiler cannot infer this from the function signature.

The support functions presented in Listing 9-3 are relatively simple recursive

functions that perform the task indicated. It is left as an exercise for the reader to

verify this.

 Implementation of Tree Graphics
Listing 9-4 presents the code needed to display the binary search tree.

Listing 9-4. Code for graphing binary search tree

type NodePair struct {

 Val1, Val2 string

}

type NodePos struct {

 Val string

 YPos int

 XPos int

}

var data []NodePos

var endPoints []NodePair

func PrepareDrawTree[T OrderedStringer](tree BinarySearchTree[T]) {

 prepareToDraw(tree)

 // fmt.Println(endPoints)

 // fmt.Println(data)

}

Chapter 9 Binary SearCh tree

298

func FindXY(val interface{}) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

func FindX(val interface{}) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

 return -1

}

func SetXValues() {

 for index := 0; index < len(data); index++ {

 xValue := FindX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw[T OrderedStringer](tree BinarySearchTree[T]) {

 inorderLevel(tree.Root, 1)

 SetXValues()

 getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {

 if node != nil {

 inorderLevel(node.Left, level + 1)

 data = append(data, NodePos{node.Value.String(), 100 - level, -1})

 inorderLevel(node.Right, level + 1)

 }

}

Chapter 9 Binary SearCh tree

299

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints, NodePair{node.Value.String(),

 parent.Value.String()})

 }

 getEndPoints(node.Left, node)

 getEndPoints(node.Right, node)

 }

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

 w.SetContent(image)

 w.Close()

 w.Show()

}

func ShowTreeGraph[T OrderedStringer](myTree BinarySearchTree[T]) {

 PrepareDrawTree(myTree)

 myApp := app.New()

 myWindow := myApp.NewWindow("Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.NumNodes)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

Chapter 9 Binary SearCh tree

300

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{G: 255, A: 255}

 nodePoints.Radius = vg.Points(12)

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := FindXY(val1)

 val2 := endPoints[index].Val2

 x2, y2 := FindXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},

{X: float64(x2), Y: float64(y2)}}

 line, err := plotter.NewLine(pts)

 if err != nil {

 log.Panic(err)

 }

 scatter, err := plotter.NewScatter(pts)

 if err != nil {

 log.Panic(err)

 }

 p.Add(line, scatter)

 }

 p.Add(nodePoints)

 // Add Labels

 for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.2

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

Chapter 9 Binary SearCh tree

301

 label, err := plotter.NewLabels(plotter.XYLabels {

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{str},

 },)

 if err != nil {

 log.Fatalf("could not creates labels plotter: %+v", err)

 }

 p.Add(label)

 }

 path, _ = homedir.Dir()

 path += "/Desktop/GoDS/"

 err = p.Save(1000, 600, "tree.png")

 if err != nil {

 log.Panic(err)

 }

 DrawGraph(myApp, myWindow)

 myWindow.ShowAndRun()

}

The code follows the logic presented in Chapter 8 for displaying a binary tree.

Listings 9-5 and 9-6 present the complete code for package binarysearchtree and a

main driver program that exercises the features of such a tree.

Listing 9-5. Package binarysearchtree

package binarysearchtree

import (

 "image/color"

 "log"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/theme"

 "github.com/mitchellh/go-homedir"

Chapter 9 Binary SearCh tree

302

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

type ordered interface {

 ~int | ~float64 | ~string

}

type BinarySearchTree[T OrderedStringer] struct {

 Root *Node[T]

 NumNodes int

}

type Node[T OrderedStringer] struct {

 Value T

 Left *Node[T]

 Right *Node[T]

}

type OrderedStringer interface {

 ordered

 String() string

}

// Methods

func (bst *BinarySearchTree[T]) Insert(newValue T) {

 if bst.Search(newValue) == false { // newValue not in existing tree

 n := &Node[T]{newValue, nil, nil}

 if bst.Root == nil { // First value in bst

 bst.Root = &Node[T]{newValue, nil, nil}

 } else {

 insertNode(bst.Root, n)

 }

 bst.NumNodes += 1

 }

}

Chapter 9 Binary SearCh tree

303

func (bst *BinarySearchTree[T]) Delete(value T) {

 if bst.Search(value) == true {

 deleteNode(bst.Root, value)

 bst.NumNodes -= 1

 }

}

func (bst *BinarySearchTree[T]) Search(value T) bool {

 return search(bst.Root, value)

}

func (bst *BinarySearchTree[T]) InOrderTraverse(op func(T)) {

 inOrderTraverse(bst.Root, op)

}

func (bst *BinarySearchTree[T]) Min() *T {

 node := bst.Root

 if node == nil {

 return nil

 }

 for {

 if node.Left == nil {

 return &node.Value

 }

 node = node.Left

 }

}

func (bst *BinarySearchTree[T]) Max() (*T, int) { // second return value is

 // height

 node := bst.Root

 height := 1

 if node == nil {

 return nil, 0

 }

Chapter 9 Binary SearCh tree

304

 for {

 if node.Right == nil {

 return &node.Value, height

 }

 height += 1

 node = node.Right

 }

}

// For internal use

func insertNode[T OrderedStringer](node, newNode *Node[T]) {

 if newNode.Value < node.Value {

 if node.Left == nil {

 node.Left = newNode

 } else {

 insertNode(node.Left, newNode)

 }

 } else {

 if node.Right == nil {

 node.Right = newNode

 } else {

 insertNode(node.Right, newNode)

 }

 }

}

func deleteNode[T OrderedStringer](node *Node[T], value T) *Node[T] {

 if node == nil {

 return nil

 }

 if value < node.Value {

 node.Left = deleteNode(node.Left, value)

 return node

 }

Chapter 9 Binary SearCh tree

305

 if value> node.Value {

 node.Right = deleteNode(node.Right, value)

 return node

 }

 if node.Left == nil && node.Right == nil {

 node = nil

 return nil

 }

 if node.Left == nil {

 node = node.Right

 return node

 }

 if node.Right == nil {

 node = node.Left

 return node

 }

 LeftmostRightside := node.Right

 for {

 //find smallest value on the Right side

 if LeftmostRightside != nil && LeftmostRightside.Left != nil {

 LeftmostRightside = LeftmostRightside.Left

 } else {

 break

 }

 }

 node.Value = LeftmostRightside.Value

 node.Right = deleteNode(node.Right, node.Value)

 return node

}

func search[T OrderedStringer](n *Node[T], value T) bool {

 if n == nil {

 return false

 }

Chapter 9 Binary SearCh tree

306

 if value < n.Value {

 return search(n.Left, value)

 }

 if value > n.Value {

 return search(n.Right, value)

 }

 return true

}

func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {

 if n != nil {

 inOrderTraverse(n.Left, op)

 op(n.Value)

 inOrderTraverse(n.Right, op)

 }

}

// Logic for drawing tree

type NodePair struct {

 Val1, Val2 string

}

type NodePos struct {

 Val string

 YPos int

 XPos int

}

var data []NodePos

var endPoints []NodePair // Used to plot lines

func PrepareDrawTree[T OrderedStringer](tree BinarySearchTree[T]) {

 prepareToDraw(tree)

 // fmt.Println(endPoints)

 // fmt.Println(data)

}

Chapter 9 Binary SearCh tree

307

func FindXY(val interface{}) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

func FindX(val interface{}) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

 return -1

}

func SetXValues() {

 for index := 0; index < len(data); index++ {

 xValue := FindX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw[T OrderedStringer](tree BinarySearchTree[T]) {

 inorderLevel(tree.Root, 1)

 SetXValues()

 getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {

 if node != nil {

 inorderLevel(node.Left, level + 1)

 data = append(data, NodePos{node.Value.String(), 100 - level, -1})

 inorderLevel(node.Right, level + 1)

 }

}

Chapter 9 Binary SearCh tree

308

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints, NodePair{node.Value.String(),

 parent.Value.String()})

 }

 getEndPoints(node.Left, node)

 getEndPoints(node.Right, node)

 }

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

 w.SetContent(image)

 w.Close()

 w.Show()

}

func ShowTreeGraph[T OrderedStringer](myTree BinarySearchTree[T]) {

 PrepareDrawTree(myTree)

 myApp := app.New()

 myWindow := myApp.NewWindow("Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.NumNodes)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

Chapter 9 Binary SearCh tree

309

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{G: 255, A: 255}

 nodePoints.Radius = vg.Points(12)

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := FindXY(val1)

 val2 := endPoints[index].Val2

 x2, y2 := FindXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},

{X: float64(x2),

 Y: float64(y2)}}

 line, err := plotter.NewLine(pts)

 if err != nil {

 log.Panic(err)

 }

 scatter, err := plotter.NewScatter(pts)

 if err != nil {

 log.Panic(err)

 }

 p.Add(line, scatter)

 }

 p.Add(nodePoints)

 // Add Labels

 for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.2 // Originall .05

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

 label, err := plotter.NewLabels(plotter.XYLabels {

Chapter 9 Binary SearCh tree

310

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{str},

 },)

 if err != nil {

 log.Fatalf("could not create labels plotter: %+v", err)

 }

 p.Add(label)

 }

 path, _ = homedir.Dir()

 path += "/Desktop/GoDS/"

 err = p.Save(1000, 600, "tree.png")

 if err != nil {

 log.Panic(err)

 }

 DrawGraph(myApp, myWindow)

 myWindow.ShowAndRun()

}

Listing 9-6. Main driver program that uses binarysearchtree package

package main

import (

 bst"example.com/binarysearchtree"

 "math/rand"

 "time"

 "fmt"

)

// Satisfies OrderedStringer because of ~int

// Also satisfies OrderedStringer because of String() method below

type Number int

Chapter 9 Binary SearCh tree

311

func (num Number) String() string {

 return fmt.Sprintf("%d", num)

}

type Float float64

func (num Float) String() string {

 return fmt.Sprintf("%0.1f", num)

}

func inorderOperator(val Float) {

 fmt.Println(val.String())

}

func main() {

 rand.Seed(time.Now().UnixNano())

 // Generate a random search tree

 randomSearchTree := bst.BinarySearchTree[Float]{nil, 0}

 for i := 0; i < 30; i++ {

 rn := 1.0 + 99.0 * rand.Float64()

 randomSearchTree.Insert(Float(rn))

 }

 time.Sleep(3 * time.Second)

 bst.ShowTreeGraph(randomSearchTree)

 randomSearchTree.InOrderTraverse(inorderOperator)

 min := randomSearchTree.Min()

 max, _ := randomSearchTree.Max()

 fmt.Printf("\nMinimum value in random search tree is %0.1f \nMaximum

 value in random search tree is %0.1f", *min, *max)

 start := time.Now()

 tree := bst.BinarySearchTree[Number]{nil, 0}

 for val := 0; val < 100_000; val++ {

 tree.Insert(Number(val))

 }

 elapsed := time.Since(start)

 _, ht := tree.Max()

Chapter 9 Binary SearCh tree

312

 fmt.Printf("\nTime to build BST tree with 100,000 nodes in sequential

 order: %s. Height of tree: %d", elapsed, ht)

}

/* Output

1.2

4.4

6.9

7.7

13.8

14.7

17.3

17.9

20.8

21.2

24.6

25.0

25.1

30.2

33.6

33.9

38.0

46.5

47.0

56.1

56.5

57.2

57.4

60.7

70.5

72.6

75.5

83.3

92.1

94.5

Chapter 9 Binary SearCh tree

313

Minimum value in random search tree is 1.2

Maximum value in random search tree is 94.5

Time to build BST tree with 100,000 nodes in sequential order:

35.645312291s. Height of tree: 100000

*/

 Discussion of binarysearchtree Package and Main Driver
The code for displaying a binary search tree in Listing 9-5 uses .String() in multiple

places since the type T is not known. This invocation of String() is boldfaced in that

listing.

There are two binary search trees used in the main driver. The generic types used are

Number and Float. Both of these types are implicitly of type OrderedStringer since they

have a String() function defined.

A binary search tree of base type float64 is constructed with 30 nodes. Each

invocation produces a different tree. One such tree is shown in Figure 9-3.

Figure 9-3. A 30-node binary search tree

Chapter 9 Binary SearCh tree

314

This random binary search tree is unbalanced. The depth of the left subtree is 5,

whereas the depth of the right subtree is 8.

The second binary search tree, with base type Number, is constructed by inserting

100,000 integers in sequential order. Essentially, this is a linked list. It took 35.6 seconds

to build this completely unbalanced search tree.

9.3 Summary
In this chapter, we implemented a generic binary search tree. We made slight

modifications to the draw tree logic so that the base type T could be output.

In the next chapter, we introduce one of the most important binary search trees, the

AVL tree. This tree maintains its balance as new nodes are added to the tree.

Chapter 9 Binary SearCh tree

315

CHAPTER 10

AVL Trees
In the previous chapter, we introduced the binary search tree. In such a tree, each node

contains a key that is larger than all the keys in its left subtree and smaller than all the

keys in its right subtree. Duplicate keys are not allowed.

In building a binary search tree, the balance is dependent on the order in which keys

are inserted. For example, if the keys are inserted in ascending order, the search tree

resembles a linked list with its nodes to the right of the root node.

In 1962, two Russian mathematicians, Adelson Velsky and Landis, defined a useful

definition of search tree balance (later called AVL balance in their honor) and described

algorithms for insert and remove that preserve AVL balance. Their work has become a

classic part of data structure legacy.

In the next section, we present an overview of AVL trees.

10.1 Overview: Adelson Velsky and Landis
In this chapter, we explore and implement a generic AVL tree.

For any binary search tree, the efficiency of Insert, Delete, and Search is dependent

on how balanced the search is. Each of these operations requires approximately log2n

operations, if n is the number of nodes in the tree and the tree is balanced.

A binary search tree is defined as an AVL tree if for every node in the tree, the
maximum depth of the left subtree minus the maximum depth of the right subtree is
equal or less than 1 in magnitude. That is the AVL balance of every node is either -1, 0,

or 1 and is given by the depth of the left subtree minus the depth of the right subtree.

In the following tree, the AVL balance (hereby called balance) of each node is shown.

Balance 0 is not shown. This is not an AVL tree because of node A.

© Richard Wiener, PhD 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_10

https://doi.org/10.1007/978-1-4842-8191-8_10

316

Please verify that the following search tree is an AVL tree.

10

5 15

3 6 13 20

2 4 8 12

1

The AVL algorithms for insert and delete involve tree rotations. We illustrate with the

previous tree.

 Tree Rotations
A right rotate on node 10 yields

5

3 10

2 4 6 15

1 8 13 20

12

When 10 is rotated to the right, 5’s right child becomes node 10. This makes 6 and 8

orphans. Since they are both greater than 5 and less than 10, they are placed into the left

subtree of 10 and the right subtree of 5 as shown previously.

A left rotate on node 10 produces

Chapter 10 aVL trees

317

The orphan nodes 13 and 12 are larger than 10 and smaller than 15 and are placed as

shown previously.

There is very little computational work involved in performing tree rotation. Only

two links in the entire tree must be modified. This is true regardless of tree size.

The brilliance of the AVL algorithms is in the Insert and Delete methods. Both these

methods are required to yield an AVL tree after either of these operations.

 Insertion
We consider AVL insertion first. There are four steps.

 1. Perform an ordinary binary search tree insertion into the AVL tree.

If the tree is still an AVL tree, stop.

 2. Starting at the node inserted (always at a leaf position), backtrack

up the search path toward the root node. If a combination of

nodes is found in which the parent has a balance whose absolute

value is 2 and its child has a balance whose magnitude is 1,

if the signs are the same (e.g., -2 and -1 or 2 and 1), a type 1

configuration exists. If the signs are opposite (e.g., -2 and 1 or 2

and -1), a type 2 configuration exists.

 3. If the configuration is of type 1, perform a single rotation on the

parent node in a direction to restore balance.

 4. If the configuration is of type 2, perform a sequence of two

rotations. The first rotation is on the child in a direction to restore

balance. Then perform a second rotation in a direction opposite

the first rotation on the parent.

Chapter 10 aVL trees

318

These steps are guaranteed to produce a search tree with the AVL property intact.

The proof of this is beyond the scope of this book.

 Deletion
The steps for AVL deletion are given as follows:

 1. Perform an ordinary binary search tree deletion. If the tree is an

AVL tree, stop.

 2. If the tree is not an AVL tree after the ordinary deletion, traverse

up the search path from the node being deleted to the root node.

Stop when one of the following combinations of balance occurs:

 a. Parent with balance whose absolute value is 2 and child with balance

whose absolute value is 1. Determine the type of configuration as with

insertion and perform the same type of either single rotation or sequence of

two rotations.

 b. The parent has a balance of 2 or -2, and the child has a balance of 0.

Consider this a type 1 configuration and perform the appropriate single

rotation on the parent node.

 c. Reevaluate the balance of nodes above the parent. There is a possibility that

because of the rotation(s) performed in step a or b, another configuration

of type 1 or 2 needs to be dealt with. Continue step c until the root node is

reached and no further rotational corrections are needed.

A tree that demonstrates the need for step c is shown in Figure 10-1.

Chapter 10 aVL trees

319

Figure 10-1. A tree illustrating AVL deletion

We wish to remove node 20. After the ordinary deletion of 20, node 15 has a balance

of 2. This causes us to perform a right rotation on node 15. Node 13 moves upward and

becomes the right child of the root node 10.

But now the root node 10 also has a balance of 2 since its left subtree is level 4 and

its right subtree is level 2 (we lost a level in the right subtree during the first rotation). We

correct this with a right rotation on node 10. As an exercise, sketch the resulting tree.

As an exercise, sketch the AVL tree resulting from step c.

 Facts About AVL Trees
The following are some interesting facts about AVL trees:

• When inserting into AVL trees, approximately 50 percent of insertions

require no rotational correction. Among the remaining 50 percent,

about half require a type 1 single rotational correction, and half

require the type 2 rotational corrections.

Chapter 10 aVL trees

320

• When deleting from an AVL tree, about 80 percent require no

rotational corrections. Among the remaining 20 percent, about

half are type 1 and half type 2. Only rarely are multiple rotational

corrections required up the search tree.

In the next section, we present an implementation of a generic AVL tree.

10.2 Implementation of a Generic AVL Tree
We present an entire avl package in Listing 10-1. Like the binary search tree, we include

the supporting code for displaying the AVL tree.

Listing 10-1. Package avl

package avl

import (

 "image/color"

 "log"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/theme"

 "github.com/mitchellh/go-homedir"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

type ordered interface {

 ~int | ~float64 | ~string

}

type AVLTree[T OrderedStringer] struct {

 Root *Node[T]

 NumNodes int

}

Chapter 10 aVL trees

321

type Node[T OrderedStringer] struct {

 Value T

 Left *Node[T]

 Right *Node[T]

 Ht int

}

type OrderedStringer interface {

 ordered

 String() string

}

// Methods

func (avl *AVLTree[T]) Insert(newValue T) {

 if avl.Search(newValue) == false { // newValue is not in existing tree

 avl.Root = insertNode(avl.Root, newValue)

 avl.NumNodes += 1

 }

}

func (avl *AVLTree[T]) Delete(value T) {

 if avl.Search(value) == true {

 avl.Root = deleteNode(avl.Root, value)

 avl.NumNodes -= 1

 }

}

func (avl *AVLTree[T]) Search(value T) bool {

 return search(avl.Root, value)

}

func (avl *AVLTree[T]) Height() int {

 return avl.Root.Height()

}

func (avl *AVLTree[T]) InOrderTraverse(f func(T)) {

 inOrderTraverse(avl.Root, f)

}

Chapter 10 aVL trees

322

func (avl *AVLTree[T]) Min() *T {

 node := avl.Root

 if node == nil {

 return nil

 }

 for {

 if node.Left == nil {

 return &node.Value

 }

 node = node.Left

 }

}

func (avl *AVLTree[T]) Max() *T {

 node := avl.Root

 if node == nil {

 return nil

 }

 for {

 if node.Right == nil {

 return &node.Value

 }

 node = node.Right

 }

}

func (n *Node[T]) balanceFactor() int {

 if n == nil {

 return 0

 }

 return n.Left.Height() - n.Right.Height()

}

func (n *Node[T]) Height() int {

 if n == nil {

 return 0

 } else {

Chapter 10 aVL trees

323

 return n.Ht

 }

}

func (n *Node[T]) updateHeight() {

 max := func (a, b int) int {

 if a > b {

 return a

 }

 return b

 }

 n.Ht = max(n.Left.Height(), n.Right.Height()) + 1

}

// Support functions

func newNode[T OrderedStringer](val T) *Node[T] {

 return &Node[T] {

 Value: val,

 Left: nil,

 Right: nil,

 Ht: 1,

 }

}

func search[T OrderedStringer](n *Node[T], value T) bool {

 if n == nil {

 return false

 }

 if value < n.Value {

 return search(n.Left, value)

 }

 if value > n.Value {

 return search(n.Right, value)

 }

 return true

}

Chapter 10 aVL trees

324

func insertNode[T OrderedStringer](node *Node[T], val T) *Node[T] {

 // if there's no node, create one

 if node == nil {

 return newNode(val)

 }

 // if value is greater than current node's value, insert to the right

 if val > node.Value {

 right := insertNode(node.Right, val)

 node.Right = right

 }

 // if value is less than current node's value, insert to the left

 if val < node.Value {

 left:= insertNode(node.Left, val)

 node.Left = left

 }

 return rotateInsert(node, val)

}

func rightRotate[T OrderedStringer](x *Node[T]) *Node[T] {

 y := x.Left

 t := y.Right

 y.Right = x

 x.Left = t

 x.updateHeight()

 y.updateHeight()

 return y

}

func leftRotate[T OrderedStringer](x *Node[T]) *Node[T] {

 y := x.Right

 t := y.Left

 y.Left = x

 x.Right = t

 x.updateHeight()

Chapter 10 aVL trees

325

 y.updateHeight()

 return y

}

func rotateInsert[T OrderedStringer](node *Node[T], val T) *Node[T] {

 node.updateHeight()

 bFactor := node.balanceFactor()

 if bFactor > 1 && val < node.Left.Value {

 return rightRotate(node)

 }

 if bFactor < -1 && val > node.Right.Value {

 return leftRotate(node)

 }

 if bFactor > 1 && val > node.Left.Value {

 node.Left = leftRotate(node.Left)

 return rightRotate(node)

 }

 if bFactor < -1 && val < node.Right.Value {

 node.Right = rightRotate(node.Right)

 return leftRotate(node)

 }

 return node

}

func inOrderTraverse[T OrderedStringer](n *Node[T], op func(T)) {

 if n != nil {

 inOrderTraverse(n.Left, f)

 op(n.Value)

 inOrderTraverse(n.Right, f)

 }

}

Chapter 10 aVL trees

326

func largest[T OrderedStringer](node *Node[T]) *Node[T] {

 if node == nil {

 return nil

 }

 if node.Right == nil {

 return node

 }

 return largest(node.Right)

}

func rotateDelete[T OrderedStringer](node *Node[T]) *Node[T] {

 node.updateHeight()

 bFactor := node.balanceFactor()

 if bFactor > 1 && node.Left.balanceFactor() >= 0 {

 return rightRotate(node)

 }

 if bFactor > 1 && node.Left.balanceFactor() < 0 {

 node.Left = leftRotate(node.Left)

 return rightRotate(node)

 }

 if bFactor < -1 && node.Right.balanceFactor() <= 0 {

 return leftRotate(node)

 }

 if bFactor < -1 && node.Right.balanceFactor() > 0 {

 node.Right = rightRotate(node.Right)

 return leftRotate(node)

 }

 return node

}

func deleteNode[T OrderedStringer](node *Node[T], val T) *Node[T] {

 if node == nil {

 return nil

 }

Chapter 10 aVL trees

327

 if val > node.Value {

 right := deleteNode(node.Right, val)

 node.Right = right

 } else if val < node.Value {

 left := deleteNode(node.Left, val)

 node.Left = left

 } else {

 if node.Left != nil && node.Right != nil {

 // has 2 children, find the successor

 successor := largest(node.Left)

 value := successor.Value

 // remove the successor

 left := deleteNode(node.Left, value)

 node.Left = left

 // copy the successor value to the current node

 node.Value = value

 } else if node.Left != nil || node.Right != nil {

 // has 1 child

 // move the child position to the current node

 if node.Left != nil {

 node = node.Left

 } else {

 node = node.Right

 }

 } else if node.Left == nil && node.Right == nil {

 // has no child

 // simply remove the node

 node = nil

 }

 if node == nil {

 return nil

 }

 return rotateDelete(node)

}

Chapter 10 aVL trees

328

// Logic for drawing tree

type NodePair struct {

 Val1, Val2 string

}

type NodePos struct {

 Val string

 YPos int

 XPos int

}

var data []NodePos

var endPoints []NodePair

func PrepareDrawTree[T OrderedStringer](tree AVLTree[T]) {

 prepareToDraw(tree)

 // fmt.Println(endPoints)

 // fmt.Println(data)

}

func FindXY(val interface{}) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

func FindX(val interface{}) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

 return -1

}

Chapter 10 aVL trees

329

func SetXValues() {

 for index := 0; index < len(data); index++ {

 xValue := FindX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw[T OrderedStringer](tree AVLTree[T]) {

 inorderLevel(tree.Root, 1)

 SetXValues()

 getEndPoints(tree.Root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {

 if node != nil {

 inorderLevel(node.Left, level + 1)

 data = append(data, NodePos{node.Value.String(), 100 - level, -1})

 inorderLevel(node.Right, level + 1)

 }

}

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints, NodePair{node.Value.String(),

 parent.Value.String()})

 }

 getEndPoints(node.Left, node)

 getEndPoints(node.Right, node)

 }

}

var path string

func DrawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

Chapter 10 aVL trees

330

 w.SetContent(image)

 w.Close()

 w.Show()

}

func ShowTreeGraph[T OrderedStringer](myTree AVLTree[T]) {

 PrepareDrawTree(myTree)

 myApp := app.New()

 myWindow := myApp.NewWindow("Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.NumNodes)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{G: 255, A: 255}

 nodePoints.Radius = vg.Points(12)

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := FindXY(val1)

 val2 := endPoints[index].Val2

 x2, y2 := FindXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y: float64(y1)},

{X: float64(x2), Y: float64(y2)}}

Chapter 10 aVL trees

331

 line, err := plotter.NewLine(pts)
 if err != nil {
 log.Panic(err)
 }
 scatter, err := plotter.NewScatter(pts)
 if err != nil {
 log.Panic(err)
 }
 p.Add(line, scatter)
 }

 p.Add(nodePoints)

 // Add Labels
 for index := 0; index < len(data); index++ {
 x := float64(data[index].XPos) - 0.2 // Originall .05
 y := float64(data[index].YPos) - 0.02
 str := data[index].Val
 label, err := plotter.NewLabels(plotter.XYLabels {
 XYs: []plotter.XY {
 {X: x ,Y: y},
 },
 Labels: []string{str},
 },)
 if err != nil {
 log.Fatalf("could not creates labels plotter: %+v", err)
 }
 p.Add(label)
 }

 path, _ = homedir.Dir()
 path += "/Desktop/GoDS/"
 err = p.Save(1000, 600, "tree.png")
 if err != nil {
 log.Panic(err)
 }
 DrawGraph(myApp, myWindow)
 myWindow.ShowAndRun()
}

Chapter 10 aVL trees

332

 Explanation of avl Package
There are many functions to dissect. The easiest way to do this is using a debugger. I have

used VS Code and IntelliJ IDEA Ultimate, which has a Go plug-in and an outstanding

debugger.

We construct the tree shown earlier using the main driver code given in Listing 10-2.

Listing 10-2. Main driver code

package main

import (

 avl "example.com/avl"

 "fmt"

)

type Integer int

func (num Integer) String() string {

 return fmt.Sprintf("%d", num)

}

func main() {

 myTree := avl.AVLTree[Integer]{nil, 0}

 myTree.Insert(10)

 myTree.Insert(15)

 myTree.Insert(5)

 myTree.Insert(3)

 myTree.Insert(6)

 myTree.Insert(13)

 myTree.Insert(20)

 myTree.Insert(2)

 myTree.Insert(4)

 myTree.Insert(8)

 myTree.Insert(12)

 myTree.Insert(1)

Chapter 10 aVL trees

333

 // myTree.Delete(20)

 avl.ShowTreeGraph(myTree)

}

This produces the tree display shown in Figure 10-2.

Figure 10-2. Resulting AVL tree

Using a debugger, let us “walk” through the code for deleting node 20, one of the

harder use cases. If you do not have a debugger, just perform the “walk” visually, line

by line.

We uncomment the line of code, myTree.Delete(20), and set a break point at this

line of code using IntelliJ IDEA.

Chapter 10 aVL trees

334

We recursively descend to the right down the tree in function deleteNode until node

is equal to nil. Then the recursion backtracks to node equal to 15.

We enter function rotateDelete with node at 15. The right child of 15 has been

set to nil.

The bFactor (balance) of node 15 is 2, and its left node has a bFactor of 1.

We invoke rightRotate(node), where node is 15. The variable y gets set to 13; the

right child of 13 gets set to 15. Node 13 is returned up the recursive chain (as right in the

debugger code shown in the following).

Chapter 10 aVL trees

335

Node 10 assigns its right child to 13. The return statement at the end of deleteNode

returns the result of rotateDelete(10).

Based on the bFactor of 10 (greater than 1) and the bFactor of 5 (equal or greater

than 0), we next perform a rightRotate(10).

The value of 5 is returned up the chain and becomes the new root node of the tree.

The right child of 5 becomes 10. The left child of 10 becomes 6.

The new tree is shown in Figure 10-3.

Chapter 10 aVL trees

336

Figure 10-3. Tree resulting from deletion

Some additional tests of AVL trees are presented in Listing 10-3 (uncomment the test

you wish to perform).

Listing 10-3. Another main driver with more AVL tests

package main

import (

 avl "example.com/avl"

 "fmt"

 "math/rand"

 "time"

)

func inorderOperator(val Float) {

 val *= val

 fmt.Println(val.String())

}

Chapter 10 aVL trees

337

// Satisfies OrderedStringer because of ~float64

// Also satisfies OrderedStringer because of String() method below

type Float float64

func (num Float) String() string {

 return fmt.Sprintf("%0.1f", num)

}

type Integer int

func (num Integer) String() string {

 return fmt.Sprintf("%d", num)

}

func main() {

 rand.Seed(time.Now().UnixNano())

 // Generate a random search tree

 randomSearchTree := avl.AVLTree[Float]{nil, 0}

 for i := 0; i < 30; i++ {

 rn := 1.0 + 99.0 * rand.Float64()

 randomSearchTree.Insert(Float(rn))

 }

 time.Sleep(3 * time.Second)

 avl.ShowTreeGraph(randomSearchTree)

 randomSearchTree.InOrderTraverse(inorderOperator)

 min := randomSearchTree.Min()

 max := randomSearchTree.Max()

 fmt.Printf("\nMinimum value in tree is %0.1f Maximum value in tree is

 %0.1f", *min, *max)

 /*

 start := time.Now()

 tree := avl.AVLTree[Integer]{nil, 0}

 for val := 0; val < 100_000; val++ {

 tree.Insert(Integer(val))

 }

 elapsed := time.Since(start)

Chapter 10 aVL trees

338

 fmt.Printf("\nTime to build AVL tree with 100,000 nodes: %s. Height of

 tree: %d", elapsed, tree.Height())

 numbers := make([]int, 100_000)

 for i := 0; i < 100_000; i++ {

 numbers[i] = i

 }

 start = time.Now()

 sort.Ints(numbers)

 elapsed = time.Since(start)

 fmt.Printf("\nTime to sort 100_000 ints: %s", elapsed)

 */

}

/*

Time to build BST tree with 100,000 nodes: 17.054928498s

Time to build AVL tree with 100,000 nodes: 24.698786ms

Time to build AVL tree with 1_000_000 nodes: 281.799923ms

*/

 Discussion of Main Driver Results
The graph of a 30-node AVL tree generated using Listing 10-3 is shown in Figure 10-4.

Chapter 10 aVL trees

339

Figure 10-4. A thirty-node AVL tree

An AVL tree is an Ordered Set. The Search method allows us to determine the

presence or absence of a key value in the data structure. This is a central requirement

of any set. It also allows us to perform an inorder traversal that accesses the nodes from

smallest to largest.

In the next section, we implement a Set first using an AVL tree and then using a

concurrent AVL tree. We assume that the set holds floating-point values. In the next

chapter, we present a more complete generic Set implementation.

10.3 Set Using Map, AVL, and Concurrent AVL
A set is typically implemented using a map. Listing 10-4 presents a few important

methods of a set.

Listing 10-4. Set implemented using map

func NewSet() *Set {

 return &Set{

Chapter 10 aVL trees

340

 container: make(map[float64]struct{}),

 }

}

type Set struct {

 container map[float64]struct{}

}

func (c *Set) IsPresent(key float64) bool {

 _, present := c.container[key]

 return present

}

func (c *Set) Add(key float64) {

 c.container[key] = struct{}{}

}

func (c *Set) Remove(key float64) error {

 _, present := c.container[key]

 if !present {

 return fmt.Errorf("Remove Error: Item doesn't exist in set")

 }

 delete(c.container, key)

 return nil

}

func (c *Set) Size() int {

 return len(c.container)

}

In Listing 10-4, we assume a base type of float64 as the elements of the set. The

map structure associates an empty struct{ } with each float64 key value. Here, we are

concerned only with the key in the key-value pair in the map.

A map is known to produce high speed access to its members. We wish to compare

the performance of this map implementation of set with an AVL tree. Following this,

we define a concurrent avl set that constructs many AVL trees concurrently, and we

compare its performance with the map and single AVL tree implementations.

Chapter 10 aVL trees

341

 Implementation of Set Using Map, AVL Tree,
and Concurrent AVL Tree
Listing 10-5 presents a floatset package that includes the map, AVL, and concurrent AVL

implementations of set. We skip the implementation details of AVL tree to save space

since it has been presented earlier.

Listing 10-5. Package floatset

package floatset

import (

 "fmt"

 "sort"

 "sync"

)

const (

 Concurrent = 32

)

var max [Concurrent]float64 // Holds the maximum value in each AVL tree

func NewSet() *Set { // Creates a new Set

 return &Set{

 container: make(map[float64]struct{}),

 }

}

type Set struct {

 container map[float64]struct{}

}

func (c *Set) IsPresent(key float64) bool {

 _, present := c.container[key]

 return present

}

func (c *Set) Add(key float64) {

Chapter 10 aVL trees

342

 c.container[key] = struct{}{}

}

func (c *Set) Remove(key float64) error {

 _, present := c.container[key]

 if !present {

 return fmt.Errorf("Remove Error: Item doesn't exist in set")

 }

 delete(c.container, key)

 return nil

}

func (c *Set) Size() int {

 return len(c.container)

}

// Skip AVL tree details

var concurrrentSet [Concurrent]AVLTree // Slice of AVL trees

func BuildConcurrentSet(dataSet []float64) {

 // Use concurrent processing to construct concurrent AVL trees

 var wg sync.WaitGroup

 sort.Float64s(dataSet)

 segment := len(dataSet) / Concurrent

 for treeNumber := 0; treeNumber < Concurrent; treeNumber++ {

 wg.Add(1)

 go func(num int) {

 defer wg.Done()

 startVal := segment * num

 for j := startVal; j < startVal+segment; j++ {

 concurrrentSet[num].Insert(dataSet[j])

 }

 max[num] = dataSet[startVal+segment-1]

 }(treeNumber)

 }

 wg.Wait()

Chapter 10 aVL trees

343

}

func IsPresent(val float64) bool {

 // Determine which AVL tree val is in

 treeNumber := 0

 for ; treeNumber < len(max); treeNumber++ {

 if val <= max[treeNumber] {

 break

 }

 }

 return concurrrentSet[treeNumber].Search(val)

}

 Explanation of Concurrent AVL Set
The constant Concurrent (in this case, 32) defines the number of AVL trees that we build

concurrently. The variable concurrentSet holds an array of AVLTree.

First, we sort the incoming dataSet slice. We compute the number of nodes in each

AVL, segment, by dividing the length of the dataSet with the number of concurrent trees.

In a loop that iterates over tree number, we invoke goroutines, each one inserting

the sorted values from the incoming dataSet slice. The wait group assures that each

concurrently constructed AVL tree is complete before we exit this function.

The global max array stores the maximum value in each of the AVL trees. There is

no conflict among goroutines assigning to max since the index in max is unique to each

goroutine (the tree number sent in).

Function IsPresent first determines which AVL tree the incoming val belongs to by

comparing its value to the maximum values of each AVL tree stored in the max array.

Once determined, the function returns the result of invoking the Search method on the

correct tree number.

 Comparing the Three Set Implementations
Listing 10-6 is a driver program that performs the experiment of comparing set

construction time and most importantly the time for determining whether a value is

present. To do this, we access every element in the data set and determine whether it is

present in the set type we are timing.

Chapter 10 aVL trees

344

Listing 10-6. Comparing the performance of three set types

package main

import (

 "fmt"

 "math/rand"

 "time"

 "example.com/floatset"

)

const (

 size = 1_000_000

)

var dataSet []float64

func main() {

 mySet := floatset.NewSet()

 dataSet = make([]float64, size)

 for i := 0; i < size; i++ {

 dataSet[i] = 100.0 * rand.Float64()

 }

 // Time construction of Set

 start := time.Now()

 for i := 0; i < size; i++ {

 mySet.Add(dataSet[i])

 }

 elapsed := time.Since(start)

 fmt.Printf("\nTime to build Set with %d numbers: %s", size, elapsed)

 // Time to test the presence of all numbers in dataSet

 start = time.Now()

 for i := 0; i < len(dataSet); i++ {

 if !mySet.IsPresent(dataSet[i]) {

 fmt.Println("%f not present", dataSet[i])

 }

 }

Chapter 10 aVL trees

345

 elapsed = time.Since(start)

 fmt.Printf("\nTime to test the presence of all numbers in Set: %s",

 elapsed)

 avlSet := floatset.AVLTree{nil, 0}

 // Time construction of avlSet

 start = time.Now()

 for i := 0; i < size; i++ {

 avlSet.Insert(dataSet[i])

 }

 elapsed = time.Since(start)

 fmt.Printf("\n\nTime to build avlSet with %d numbers: %s", size,

elapsed)

 // Time to test the presence of all numbers in avlSet

 start = time.Now()

 for i := 0; i < len(dataSet); i++ {

 if !mySet.IsPresent(dataSet[i]) {

 fmt.Println("%f not present", dataSet[0])

 }

 }

 elapsed = time.Since(start)

 fmt.Printf("\nTime to test the presence of all numbers in avlSet: %s",

 elapsed)

 // Use concurrent processing to construct concurrent avl trees

 start = time.Now()

 floatset.BuildConcurrentSet(dataSet)

 elapsed = time.Since(start)

 fmt.Printf("\n\nTime to build concurrent (%d) avlSet with %d numbers:

%s", floatset.Concurrent, size, elapsed)

 // Test every number in dataSet against the concurrent set

 start = time.Now()

 for i := 0; i < len(dataSet); i++ {

 if !floatset.IsPresent(dataSet[i]) {

 fmt.Println("%f not present", dataSet[i])

Chapter 10 aVL trees

346

 }

 }

 elapsed = time.Since(start)

 fmt.Printf("\nTime to test the presence of all numbers in concurrent

(%d) avlSet: %s", floatset.Concurrent, elapsed)

}

/*

On iMac Pro with 32G Ram and 3.2 GHz 8-Core Intel Xeon W

Time to build Set with 1000000 numbers: 184.442966ms

Time to test the presence of all numbers in Set: 105.600217ms

Time to build avlSet with 1000000 numbers: 819.517251ms

Time to test the presence of all numbers in avlSet: 103.422116ms

Time to build concurrent (32) avlSet with 1000000 numbers: 184.681628ms

Time to test the presence of all numbers in concurrent (32) avlSet:

66.183935ms

On iMac Pro Apple M1 Max with 32G Ram

Time to build Set with 1000000 numbers: 90.186209ms

Time to test the presence of all numbers in Set: 44.667542ms

Time to build avlSet with 1000000 numbers: 421.970625ms

Time to test the presence of all numbers in avlSet: 39.154042ms

Time to build concurrent (32) avlSet with 1000000 numbers: 172.478583ms

Time to test the presence of all numbers in concurrent (32) avlSet:

47.972875ms

*/

 Discussion of Results
The program was run on two computers, and the results are surprising.

On a 2017 iMac Pro with 32G of RAM and a 3.2-GHz 8-Core Intel Xeon W processor,

the concurrentAVLSet turns in the fastest isPresent performance, faster than a single

AVL tree and over twice as fast as the map implementation of set.

Chapter 10 aVL trees

347

On a MacBook Pro with 32G of unified RAM and an Apple M1 Max chip with 10-core

CPU and 32-core GPU, the concurrentAVLSet turns in the slowest performance, and the

single AVL tree turns in the fastest performance.

It must be noted that all the set implementations on the Apple M1 Max computer

are significantly faster than their corresponding execution times on the Intel Xeon W

computer.

It is therefore not clear whether the use of go-routines and concurrent processing

in populating 32 AVL trees with the input data provides a meaningful benefit since the

results are processor dependent.

10.4 Summary
We presented the properties of an AVL tree. The operations of Insert and Delete

preserve the AVL properties. We outlined the logic for performing these operations. Then

we presented a package that includes these operations and examined the performance

associated with constructing and searching an AVL tree. Finally, we presented three

different implementations of a Set using a map, an AVL tree, and a concurrent AVL tree

and compared their performance.

In the next chapter, we focus on hash functions and hash tables along with several

important applications.

Chapter 10 aVL trees

349

CHAPTER 11

Heap Trees
The previous chapter presented AVL trees. These trees are extremely useful when many

fast lookups are needed.

In this chapter, we present another important tree structure, Heap. A heap tree is

another balanced tree type with the largest item in the tree always in the root of the tree.

We use a heap tree to implement an efficient sorting algorithm.

In the next section, we define heap tree and illustrate heap tree construction.

11.1 Heap Tree Construction
A heap is a complete binary tree such that each node has a value greater than its two
children. The largest value in a heap tree will always be in the root node. A complete tree

has leaf nodes filled from left to right, all at the deepest level in the tree.

Consider the heap tree shown in the following. Each node has a value greater than its

two children.

We wish to insert a new node with the value 90. See Figure 11-1.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_11

https://doi.org/10.1007/978-1-4842-8191-8_11

350

Figure 11-1. Insertion of 90

We fill the leaf nodes from left to right, so node 90 needs to be the left node of 30. But

90 is larger than its parent 30. So we exchange the two nodes. See Figure 11-2.

Figure 11-2. Insertion continued

But 90 is larger than its parent 60, so we do another exchange producing the new

heap tree that contains 90. See Figure 11-3.

Chapter 11 heap trees

351

Figure 11-3. Result after insertion

In the next section, we show how to perform deletion from a heap tree.

11.2 Deletion from a Heap Tree
We can only delete the value in the root node of a heap tree. To delete the root node

value 100, we replace the value in the root node with the value in the rightmost node on

the lowest level of the tree, 30 in this case. Then we compare the new root value with the

values of its two children, swapping with the larger of the children. We continue this sift-

down process until there are no further nodes to swap. So 30 gets swapped with 90 (the

largest of the children, 90 and 80); then 30 gets swapped with 60 (the larger of the two

children, 50 and 60). This leads to the new heap tree shown in Figure 11-4.

Chapter 11 heap trees

352

Figure 11-4. Result after deletion

In the next section, we examine the implementation details for building a generic

heap tree from a slice of items and inserting a new item.

11.3 Implementation of a Heap Tree
 Logic for Building a Heap Tree
The logic for building and inserting items in a heap tree flows from the following

relationship between the index of an item in a slice and the location of that item in a

heap tree. Suppose we have an item at a specified index.

• Its parent is at location index / 2 if index is odd and at location index
/ 2 – 1 if index is even.

• Its left child is at index 2 * index + 1.

• Its right child is at index 2 * index + 2.

Consider the slice [90, 60, 80, 50, 30, 75, 40, 10, 35] that corresponds to the

preceding heap tree. The slice values relate to the values in the heap tree by traversing

the values from left to right at each succeeding level in the tree.

Consider the node with value 50 at index 3 in the slice.

Chapter 11 heap trees

353

The parent is at index 3 / 2, which equals 1. This corresponds to the node with value

60. The two children are at index values 2 * 3 + 1 and 2 * 3 + 2 or indices 7 and 8. This

corresponds to the nodes with values 10 and 35.

 Package Heap
Listing 11-1 presents a package for a generic heap, and Listing 11-2 shows a main driver

program to test and exercise the methods of package heap.

Listing 11-1. Package heap

package heap

type Ordered interface {

 ~float64 | ~int | ~string

}

type Heap[T Ordered] struct {

 Items []T

}

// Methods

func (heap *Heap[T]) Swap(index1, index2 int) {

 heap.Items[index1], heap.Items[index2] =

 heap.Items[index2], heap.Items[index1]

}

func NewHeap[T Ordered](input []T) *Heap[T] {

 heap := &Heap[T]{}

 for i := 0; i < len(input); i++ {

 heap.Insert(input[i])

 }

 return heap

}

func (heap *Heap[T]) Insert(value T) {

 heap.Items = append(heap.Items, value)

 heap.buildHeap(len(heap.Items) - 1)

}

Chapter 11 heap trees

354

func (heap *Heap[T]) Remove() {

 // Can only remove Items[0], the largest value

 heap.Items[0] = heap.Items[len(heap.Items)-1]

 heap.Items = heap.Items[:(len(heap.Items) - 1)]

 heap.rebuildHeap(0)

}

func (heap *Heap[T]) Largest() T {

 return heap.Items[0]

}

func (heap *Heap[T]) buildHeap(index int) {

 var parent int

 if index > 0 {

 parent = (index - 1) / 2

 if heap.Items[index] > heap.Items[parent] {

 heap.Swap(index, parent)

 }

 heap.buildHeap(parent)

 }

}

func (heap *Heap[T]) rebuildHeap(index int) {

 length := len(heap.Items)

 if (2 * index + 1) < length {

 left := 2*index + 1

 right := 2*index + 2

 largest := index

 if left < length && right < length &&

 heap.Items[left] >= heap.Items[right] &&

 heap.Items[index] < heap.Items[left] {

 largest = left

 } else if right < length &&

 heap.Items[right] >= heap.Items[left] &&

 heap.Items[index] < heap.Items[right]{

 largest = right

 } else if left < length && right >= length &&

Chapter 11 heap trees

355

 heap.Items[index] < heap.Items[left] {

 largest = left

 }

 if index != largest {

 heap.Swap(index, largest)

 heap.rebuildHeap(largest)

 }

 }

}

Listing 11-2. Main driver for heap

package main

import (

 "fmt"

 "example.com/heap"

)

func main() {

 slice1:= []int{100, 60, 80, 50, 30, 75, 40, 10, 35}

 heap1 := heap.NewHeap[int](slice1)

 heap1.Insert(90)

 fmt.Println("heap1 after inserting 90")

 fmt.Println(heap1.Items)

 fmt.Println("Largest item in heap: ", heap1.Largest())

 heap1.Remove()

 fmt.Println("Removing largest item from heap

 yielding the heap: ")

 fmt.Println(heap1.Items)

 fmt.Println("Largest item in heap: ", heap1.Largest())

 slice2:= []int{10, 35, 100, 80, 30, 75, 40, 50, 60}

 heap2 := heap.NewHeap[int](slice2)

 heap2.Insert(90)

 fmt.Println("heap2 with rearranged slice2 after inserting 90")

 fmt.Println(heap2.Items)

}

Chapter 11 heap trees

356

/* Output

heap1 after inserting 90

[100 90 80 50 60 75 40 10 35 30]

Largest item in heap: 100

Removing largest item from heap yielding the heap:

[90 60 80 50 30 75 40 10 35]

Largest item in heap: 90

heap2 with rearranged slice2 after inserting 90

[100 90 75 60 80 35 40 10 50 30]

*/

 Explanation of Package heap
The generic Heap structure is given by a struct containing a slice of generic

ordered type T.

type Heap[T Ordered] struct {

 Items []T

}

We focus on the function NewHeap and on the methods Insert and Remove. The

other methods are much simpler and do not need explanation.

To build a heap from a slice of some ordered type T, we perform

func NewHeap[T Ordered](input []T) *Heap[T] {

 heap := &Heap[T]{}

 for i := 0; i < len(input); i++ {

 heap.Insert(input[i])

 }

 return heap

}

The first line of code defines a heap as the address (since we are returning a pointer

to a Heap) of Heap with an empty slice of Items.

A for-loop follows that invokes the Insert method on each item in the input slice.

Chapter 11 heap trees

357

The Insert method, given as

func (heap *Heap[T]) Insert(value T) {

 heap.Items = append(heap.Items, value)

 heap.buildHeap(len(heap.Items) - 1)

}

appends the input value to the heap.Items slice. It then invokes the private method

buildHeap.

This private method buildHeap directly follows the example shown in Section

11.1 and works upward from the bottom of the tree doing swaps when necessary to

produce a heap.

The Remove method, given as

func (heap *Heap[T]) Remove() {

 // Can only remove Items[0], the largest value

 heap.Items[0] = heap.Items[len(heap.Items)-1]

 heap.Items = heap.Items[:(len(heap.Items) - 1)]

 heap.rebuildHeap(0)

}

assigns the item in the lowest rightmost position to index 0 in the heap.Items slice.

It then reassigns this slice to exclude this rightmost item. The heap structure is

temporarily broken by placing the deepest, rightmost value in the root. A private method

rebuildHeap is invoked, which restores the heap property.

The method rebuildHeap is closely reasoned and requires care in understanding

how it works. At each level of recursion, the item at index is initially assumed to be the

largest. The values at index left and index right (or just left if right is out of range) are

compared. If the value at index is less than the larger of the children, largest is set to

the index of the larger child. Then a swap of values between value at index and largest

is made, and a recursive call to rebuildHeap is made with parameter largest sent into

rebuildHeap. Upon the completion of this method, the heap structure is restored.

Since a heap is close to perfectly balanced, its height is related to the number of

nodes with a logarithmic relationship, height = log2n, where n is the number of nodes.

Therefore, the methods buildHeap and rebuildHeap have complexity O(log2n).

Chapter 11 heap trees

358

In the main driver program, a second heap, heap2, is constructed using the same

input integers but arranged in a different order. The resulting tree is indeed a heap but

with a slightly different sequence of values in the slice.

In the next section, we examine an important application of a heap tree – a sorting

algorithm, heap sort.

11.4 Heap Sort
The heap tree provides the basis for a sorting algorithm. It works as follows:

Build a heap from the initial list to be sorted. Extract the largest from the root and

append it to the result list (initialized to empty). Apply the Remove method to the heap.

Continue this process until the heap is shrunk to empty.

This process will produce a slice sorted from largest to smallest. We can produce

output in ascending order by reversing the sequence in the slice produced previously.

The details of heap sort are presented in Listing 11-3.

Listing 11-3. Heap sort

package main

import (

 "example.com/heap"

 "fmt"

 "math/rand"

 "time"

)

type Ordered interface {

 ~float64 | ~int | ~string

}

func heapSort[T Ordered](input []T) []T {

 heap1 := heap.NewHeap[T](input)

 descending := []T{}

 for {

 if len(heap1.Items) > 0 {

 descending = append(descending, heap1.Largest())

Chapter 11 heap trees

359

 heap1.Remove()

 } else {

 break

 }

 }

 ascending := []T{}

 for i := len(descending) - 1; i >= 0; i-- {

 ascending = append(ascending, descending[i])

 }

 return ascending

}

const size = 50_000_000

func IsSorted[T Ordered](data []T) bool {

 for i := 1; i < len(data); i++ {

 if data[i] < data[i-1] {

 return false

 }

 }

 return true

}

func main() {

 slice := []float64{0.0, 2.7, -3.3, 9.6, -13.8, 26.0, 4.9, 2.6,

5.1, 1.1}

 sorted := heapSort[float64](slice)

 fmt.Println("After heapSort on slice: ", sorted)

 data := make([]float64, size)

 for i := 0; i < size; i++ {

 data[i] = 100.0 * rand.Float64()

 }

 start := time.Now()

 largeSorted := heapSort[float64](data)

 elapsed := time.Since(start)

 fmt.Println("Time for heapSort of 50 million floats: ", elapsed)

Chapter 11 heap trees

360

 if !IsSorted[float64](largeSorted) {

 fmt.Println("largeSorted is not sorted.")

 }

}

/* Output

Elapsed time for regular quicksort = 5.382400384s (from Chapter 1)

Elapsed time for concurrent quicksort = 710.431619ms (from Chapter 1)

After heapSort on slice: [-13.8 -3.3 0 1.1 2.6 2.7 4.9 5.1 9.6 26]

Time for heapSort of 50 million floats: 23.978801647s

*/

 Discussion of heapsort Results
The complexity of heapsort is O(nlog2n) since the complexity of buildHeap and

rebuildHeap is log2n, and we do this n times.

Comparing the time to sort 50 million floating-point numbers with quicksort or

concurrent quicksort, we see that heapSort is about four times slower than quicksort.

In the next section, we examine another application of Heap, a priority queue.

11.5 Heap Application: Priority Queue
A heap provides a natural model for a priority queue. Each item is assumed to

encapsulate a priority. For example, if we insert string values into the priority queue, we

assume that the larger the string in a lexical sense, the higher its priority. So the string

“Zachary” has a higher priority than the string “Robert”.

Listing 11-4 shows an implementation of priority queue using heaps.

Listing 11-4. Priority queue using heap

package main

import (

 "example.com/heap"

 "fmt"

)

Chapter 11 heap trees

361

type Ordered interface {

 ~float64 | ~int | ~string

}

type PriorityQueue[T Ordered] struct {

 infoHeap heap.Heap[T]

}

// Methods

func (queue *PriorityQueue[T]) Push(item T) {

 queue.infoHeap.Insert(item)

}

func (queue *PriorityQueue[T]) Pop() T {

 returnValue := queue.infoHeap.Largest()

 queue.infoHeap.Remove()

 return returnValue

}

func main() {

 myQueue := PriorityQueue[string]{}

 myQueue.Push("Helen")

 myQueue.Push("Apollo")

 myQueue.Push("Richard")

 myQueue.Push("Barbara")

 fmt.Println(myQueue)

 myQueue.Pop()

 fmt.Println(myQueue)

 myQueue.Push("Arlene")

 fmt.Println(myQueue)

 myQueue.Pop()

 myQueue.Pop()

 fmt.Println(myQueue)

}

/* Output

{{[Richard Barbara Helen Apollo]}}

{{[Helen Barbara Apollo]}}

Chapter 11 heap trees

362

{{[Helen Barbara Apollo Arlene]}}

{{[Arlene Apollo]}}

*/

11.6 Summary
In this chapter, we defined a heap structure and presented an implementation. Building

a heap from a slice of items guarantees that the largest item is in the root node. Every

item in a heap is larger than its left and right child items. We used a heap to implement

an efficient sorting algorithm. We also used a heap to implement a priority queue.

In the next chapter, we introduce and implement red-black trees.

Chapter 11 heap trees

363

CHAPTER 12

Red-Black Trees
In the previous chapter, we presented heap trees. These are close to fully balanced trees

in which the largest item is always found in the root node and each node has a value

greater than its children.

In this chapter, we present another balanced tree structure, the red-black tree.

Like the AVL tree presented in Chapter 10, the red-black tree data structure is aimed at

efficient insertion, deletion, and searching of items stored in the tree.

In the next section, we introduce red-black trees.

12.1 Red-Black Trees
An interesting and important balanced binary search tree is the red-black tree. Rudolf

Bayer invented this tree structure in 1972, ten years after the AVL tree was invented.

Red-black trees, like AVL trees, are self-balancing. After an insertion or deletion,

the resulting tree is a red-black tree. Like AVL trees, the computational complexity for

insertion, deletion, or search is O(log2n).

Insertion and deletion for red-black trees generally involve fewer rotational

corrections, but the resulting tree is less balanced than an AVL tree. In applications

that expect many insertions and deletions and fewer searches, red-black trees may be

preferable to AVL trees.

Because of the complexity of red-black trees, we limit ourselves in this chapter

to implementing insertion into a red-black tree. The interested reader will find an

implementation for deletion in Chapter 13 (page 545) of my book, Modern Software

Development Using C#.Net, Thompson, 2006.

 Definition of Red-Black Tree
A binary search tree is a red-black tree if

© Richard Wiener, PhD 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_12

https://doi.org/10.1007/978-1-4842-8191-8_12

364

 1. Every node is assigned a color of red or black.

 2. The root node is always black.

 3. The children of a red node are black.

 4. Every path from the root node to a leaf node contains the same

number of black nodes.

 Example of Red-Black Tree

In this ten-node red-black tree, every path from the root to a leaf node contains exactly

two black nodes.

Some terminologies we will use include parent, grandparent, and uncle.

As an example, the parent of node 217 is 250. The uncle of 217 is 150 (sibling of

parent). The grandparent of 217 is 175.

In the next section, we discuss the logic of inserting an item into a red-black tree. We

“walk” through an example in detail to illustrate the process.

12.2 Insertion Process
We discuss the logic of insertion with a series of examples.

Chapter 12 red-BlaCk trees

365

The first step for insertion is to do an ordinary search-tree insertion.

The new node added to the tree is always colored red. Our goal is to keep the number

of black nodes between root and all leaf nodes constant.

If the new inserted node has a red parent, this violates condition 3 in the

preceding text, which requires the child of a red node to be black. We then must take

corrective action.

The first case we consider is when the parent of the node inserted is red and the
uncle of the node inserted exists and is red. Consider the following tree after inserting

25. The uncle of 25 is 150 and is red.

We perform a correction by modifying the color of the parent (change red to black)

and uncle (change red to black) and grandparent if it is not the root (which it is in this

case). The corrected tree is shown in the following. If 100 was not the root, we might have

to continue the search for violations up the tree after changing node 100 to red.

The result of performing color modification is shown as follows:

Chapter 12 red-BlaCk trees

366

The next case we consider is when the parent of the node inserted is red and the
uncle is black or does not exist. There are four cases to consider.

In the first case, we insert 25. Parent is red and uncle does not exist.

In the second case, we again insert 25. Parent is red and uncle does not exist.

The other two cases are symmetric with respect to the root node (are on the right

side of the root).

The corrective action we take involves tree rotations as follows:

We take an inorder traversal of the subtree starting at the grandparent and label the

nodes first, second, and third in the traversal; then the second node will always be the

new root of the subtree and its left child the first and right child the third.

In case 1, the traversal produces first = 25, second = 50, and third = 100.
In case 2, the traversal produces first = 25, second = 50, and third = 100.

We recolor the new subroot black, and its two children remain red.

Chapter 12 red-BlaCk trees

367

This produces the corrected tree.

In case 1, we perform a right rotate on node 100. In case 2, we perform a left rotate
on node 25 (producing case 1) and then a right rotate on node 100. Cases 3 and 4 follow

a symmetric pattern.

 Detailed Walk-Through of Many Insertions
To solidify our understanding of insertion, we construct a red-black tree, step by step, by

inserting the sequence of values: 10, 20, 4, 15, 17, 40, 50, 60, 70, 35, 38, 18, 19, 45, 30, 25.

We show the work for some of the insertions and leave the rest as an exercise.

After inserting 10, 20, and 4, we have

After inserting 15, we have

Chapter 12 red-BlaCk trees

368

Since the parent of 15 is red and uncle is red, we do recoloring to produce

After inserting 17, we get

Chapter 12 red-BlaCk trees

369

But this needs correction. Since the parent of 17 is red and uncle does not exist, we

perform rotational corrections (left on 15 and right on 20) and recoloring to get

We next insert 40. We show only the result after reconfiguring (recoloring case)

because the parent and uncle are red.

Chapter 12 red-BlaCk trees

370

We next insert 50. This is a case 4 requiring one left rotational correction on 20

producing

We next insert 60. Because of the red parent and red uncle, this requires only

recoloring. The result is

Chapter 12 red-BlaCk trees

371

We are halfway there! As an exercise, please continue the insertions and show that

the final red-black tree is

Chapter 12 red-BlaCk trees

372

A careful inspection of this tree shows that the number of black nodes from root 17 to

every leaf is exactly 3. Every red node has only black children.

This tree is clearly less balanced than an AVL tree (the maximum depth on the right

side of the root is 5 and the maximum depth on the left side of the root is 2).

In the next section, we present an implementation of Insertion into a red-black tree.

The details are complex because of the many special cases.

Chapter 12 red-BlaCk trees

373

12.3 Implementation of Red-Black Tree
The implementation details for insertion into a red-black tree are daunting. This is

because of the number of possible rotational or color corrections that are potentially

possible based on the logic discussed and illustrated in Section 12.2.

The best strategy for unraveling the logic in the implementation presented in

Listing 12-1 is to “walk” as far as you can, step by step, through the example presented in

Section 12.2.

A few small changes to the display tree function, defined and discussed in

Section 8.3, were made for drawing a red-black tree. The changes in this portion of the

implementation are shown in boldface.

Listing 12-1 presents the implementation of a red-black tree, including logic for

drawing the tree, but only including the Insert method. The tree implementation is

combined with a short driver program, main, without creating a separate package for

the tree.

Listing 12-1. Red-black tree

package main

import (

 "image/color"

 "log"

 "fyne.io/fyne/v2"

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/theme"

 "github.com/mitchellh/go-homedir"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

 "strconv"

)

type ordered interface {

 ~int | ~float64 | ~string

}

Chapter 12 red-BlaCk trees

374

type OrderedStringer interface {

 ordered

 String() string

}

type Node[T OrderedStringer] struct {

 value T

 red bool

 parent *Node[T]

 left *Node[T]

 right *Node[T]

}

type RedBlackTree[T OrderedStringer] struct {

 count int

 root *Node[T]

}

func NewTree[T OrderedStringer](value T) *RedBlackTree[T] {

 return &RedBlackTree[T]{1, &Node[T]{value, false, nil, nil, nil}}

}

// Methods

func (tree *RedBlackTree[T]) Insert(value T) {

 if tree.root == nil { // Empty tree

 tree.root = &Node[T]{value, false, nil, nil, nil}

 tree.count += 1

 return

 }

 parent, nodeDirection := tree.findParent(value)

 if nodeDirection == "" {

 return

 }

 newNode := Node[T]{value, true, parent, nil, nil}

 if nodeDirection == "L" {

 parent.left = &newNode

Chapter 12 red-BlaCk trees

375

 } else {

 parent.right = &newNode

 }

 tree.checkReconfigure(&newNode)

 tree.count += 1

}

func (tree *RedBlackTree[T]) IsPresent(value T, node

 *Node[T]) bool {

 if node == nil {

 return false

 }

 if value < node.value {

 return tree.IsPresent(value, node.left)

 }

 if value > node.value {

 return tree.IsPresent(value, node.right)

 }

 return true

}

func (tree *RedBlackTree[T]) findParent(value T)

 (*Node[T], string) {

 return search(value, tree.root)

}

func (tree *RedBlackTree[T]) checkReconfigure(node *Node[T]) {

 var nodeDirection, parentDirection, rotation string

 var uncle *Node[T]

 parent := node.parent

 value := node.value

 if parent == nil || parent.parent == nil ||

 node.red == false || parent.red == false {

 return

 }

 grandfather := parent.parent

Chapter 12 red-BlaCk trees

376

 if value < parent.value {

 nodeDirection = "L"

 } else {

 nodeDirection = "R"

 }

 if grandfather.value > parent.value {

 parentDirection = "L"

 } else {

 parentDirection = "R"

 }

 if parentDirection == "L" {

 uncle = grandfather.right

 } else {

 uncle = grandfather.left

 }

 rotation = nodeDirection + parentDirection

 if uncle == nil || uncle.red == false {

 if rotation == "LL" {

 tree.rightRotate(node, parent, grandfather, true)

 } else if rotation == "RR" {

 tree.leftRotate(node, parent, grandfather, true)

 } else if rotation == "LR" {

 tree.rightRotate(nil, node, parent, false)

 tree.leftRotate(parent, node, grandfather, true)

 node, parent = parent, node

 } else if rotation == "RL" {

 tree.leftRotate(nil, node, parent, false)

 tree.rightRotate(parent, node, grandfather, true)

 }

 } else {

 tree.modifyColor(grandfather)

 }

}

func (tree *RedBlackTree[T]) leftRotate(node, parent, grandfather

*Node[T], modifyColor bool) {

Chapter 12 red-BlaCk trees

377

 greatgrandfather := grandfather.parent

 tree.updateParent(parent, grandfather, greatgrandfather)

 oldLeft := parent.left

 parent.left = grandfather

 grandfather.parent = parent

 grandfather.right = oldLeft

 if oldLeft != nil {

 oldLeft.parent = grandfather

 }

 if modifyColor == true {

 parent.red = false

 node.red = true

 grandfather.red = true

 }

}

func (tree *RedBlackTree[T]) rightRotate(node, parent,

 grandfather *Node[T], modifyColor bool) {

 greatgrandfather := grandfather.parent

 tree.updateParent(parent, grandfather,

 greatgrandfather)

 oldRight := parent.right

 parent.right = grandfather

 grandfather.parent = parent

 grandfather.left = oldRight

 if oldRight != nil {

 oldRight.parent = grandfather

 }

 if modifyColor == true {

 parent.red = false

 node.red = true

 grandfather.red = true

 }

}

Chapter 12 red-BlaCk trees

378

func (tree *RedBlackTree[T]) modifyColor(grandfather

 *Node[T]) {

 grandfather.right.red = false

 grandfather.left.red = false

 if grandfather != tree.root {

 grandfather.red = true

 }

 tree.checkReconfigure(grandfather)

}

func (tree *RedBlackTree[T]) updateParent(node,

 parentOldChild, newParent *Node[T]) {

 node.parent = newParent

 if newParent != nil {

 if newParent.value > parentOldChild.value {

 newParent.left = node

 } else {

 newParent.right = node

 }

 } else {

 tree.root = node

 }

}

func search[T OrderedStringer](value T, node *Node[T])

 (*Node[T], string) {

 if value == node.value {

 return nil, ""

 } else if value > node.value {

 if node.right == nil {

 return node, "R"

 }

 return search(value, node.right)

 } else if value < node.value {

 if node.left == nil {

 return node, "L"

 }

Chapter 12 red-BlaCk trees

379

 return search(value, node.left)

 }

 return nil, ""

}

// Logic for drawing tree

type NodePair struct {

 Val1, Val2 string

}

type NodePos struct {

 Val string

 Red bool

 YPos int

 XPos int

}

var data []NodePos

var endPoints []NodePair // Used to plot lines

func PrepareDrawTree[T OrderedStringer](tree RedBlackTree[T]) {

 prepareToDraw(tree)

}

func FindXY(val interface{}) (int, int) {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return data[i].XPos, data[i].YPos

 }

 }

 return -1, -1

}

func FindX(val interface{}) int {

 for i := 0; i < len(data); i++ {

 if data[i].Val == val {

 return i

 }

 }

Chapter 12 red-BlaCk trees

380

 return -1

}

func SetXValues() {

 for index := 0; index < len(data); index++ {

 xValue := FindX(data[index].Val)

 data[index].XPos = xValue

 }

}

func prepareToDraw[T OrderedStringer](tree RedBlackTree[T]) {

 inorderLevel(tree.root, 1)

 SetXValues()

 getEndPoints(tree.root, nil)

}

func inorderLevel[T OrderedStringer](node *Node[T], level int) {

 if node != nil {

 inorderLevel(node.left, level + 1)

 data = append(data,

 NodePos{node.value.String(), node.red,

 100 - level, -1})

 inorderLevel(node.right, level + 1)

 }

}

func getEndPoints[T OrderedStringer](node *Node[T], parent *Node[T]) {

 if node != nil {

 if parent != nil {

 endPoints = append(endPoints,

 NodePair{node.value.String(),

 parent.value.String()})

 }

 getEndPoints(node.left, node)

 getEndPoints(node.right, node)

 }

}

var path string

Chapter 12 red-BlaCk trees

381

func DrawGraph(a fyne.App, w fyne.Window) {

 image := canvas.NewImageFromResource(theme.FyneLogo())

 image = canvas.NewImageFromFile(path + "tree.png")

 image.FillMode = canvas.ImageFillOriginal

 w.SetContent(image)

 w.Close()

 w.Show()

}

func ShowTreeGraph[T OrderedStringer](myTree RedBlackTree[T]) {

 PrepareDrawTree(myTree)

 myApp := app.New()

 myWindow := myApp.NewWindow("Tree")

 myWindow.Resize(fyne.NewSize(1000, 600))

 path, _ := homedir.Dir()

 path += "/Desktop//"

 nodePts := make(plotter.XYs, myTree.count)

 for i := 0; i < len(data); i++ {

 nodePts[i].Y = float64(data[i].YPos)

 nodePts[i].X = float64(data[i].XPos)

 }

 nodePtsData := nodePts

 p := plot.New()

 p.Add(plotter.NewGrid())

 nodePoints, err := plotter.NewScatter(nodePtsData)

 if err != nil {

 log.Panic(err)

 }

 nodePoints.Shape = draw.CircleGlyph{}

 nodePoints.Color = color.RGBA{R: 255, G: 255, B:

 250, A: 255} // White fill

 nodePoints.Radius = vg.Points(12)

 // Plot lines

 for index := 0; index < len(endPoints); index++ {

 val1 := endPoints[index].Val1

 x1, y1 := FindXY(val1)

Chapter 12 red-BlaCk trees

382

 val2 := endPoints[index].Val2

 x2, y2 := FindXY(val2)

 pts := plotter.XYs{{X: float64(x1), Y:

 float64(y1)},{X: float64(x2), Y: float64(y2)}}

 line, err := plotter.NewLine(pts)

 if err != nil {

 log.Panic(err)

 }

 scatter, err := plotter.NewScatter(pts)

 if err != nil {

 log.Panic(err)

 }

 p.Add(line, scatter)

 }

 p.Add(nodePoints)

 // Add Labels

 for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.10

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

 if data[index].Red == true {

 str += "(RED)"

 } else {

 str += "(BLACK)"

 }

 label, err :=

 plotter.NewLabels(plotter.XYLabels {

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{str},

 },)

Chapter 12 red-BlaCk trees

383

 if err != nil {

 log.Fatalf("could not creates labels

 plotter: %+v", err)

 }

 p.Add(label)

 }

 path, _ = homedir.Dir()

 path += "/Desktop/GoDS/"

 err = p.Save(1000, 600, "tree.png")

 if err != nil {

 log.Panic(err)

 }

 DrawGraph(myApp, myWindow)

 myWindow.ShowAndRun()

}

// Make int comply with Stringer interface

type Integer int

func (i Integer) String() string {

 return strconv.Itoa(int(i))

}

func main() {

 myTree := NewTree[Integer](10)

 myTree.Insert(20)

 myTree.Insert(4)

 myTree.Insert(15)

 myTree.Insert(17)

 myTree.Insert(40)

 myTree.Insert(50)

 myTree.Insert(60)

 myTree.Insert(70)

 myTree.Insert(35)

 myTree.Insert(38)

Chapter 12 red-BlaCk trees

384

 myTree.Insert(18)

 myTree.Insert(19)

 myTree.Insert(45)

 myTree.Insert(30)

 myTree.Insert(25)

 ShowTreeGraph(*myTree)

}

The output produced by main is shown in the following. This is the same as the tree

constructed in Section 12.2.

The OrderedStringer interface was brought back into play because the display tree

requires it to create the labels for each tree node.

 Comparing the Performance of Red-Black Tree
to AVL Tree
A benchmark test was performed to see how long it takes to construct a red-black tree

from a sequence of 100,000 random integers. The same test was performed to see the

time required to build an AVL tree from 100,000 random integers.

The results are interesting and the following:

Insertion time for red-black tree: 27.62615ms
Search time for red-black tree: 16.037945ms
Insertion time for AVL tree: 48.315163ms
Search time for AVL tree: 3.914522ms

 Benchmark Conclusion
The red-black tree takes about half as long to build but takes four times as long to
search compared to the AVL tree. The AVL tree is more balanced than the red-black tree

but requires many more rotations during construction.

Since we typically build search trees for many fast lookups, the AVL is generally

preferable in such cases.

Chapter 12 red-BlaCk trees

385

12.4 Summary
The logic for building a red-black tree was presented and illustrated. An implementation

of a generic red-black tree was presented with the Insert method along with many

supporting methods. With small modifications, the code for drawing a red-black tree was

shown. The performance of a red-black tree was compared to an AVL tree. Red-black

trees can be more efficiently generated but are less efficient to search than AVL trees.

In the next chapter, we introduce expression trees.

Chapter 12 red-BlaCk trees

387

CHAPTER 13

Expression Trees
In the previous chapter, we presented red-black trees. These binary search trees provide

faster insertion performance compared to AVL trees but slower search time.

In this chapter, we introduce and implement expression trees. These are used to

represent and evaluate some mathematical expressions.

In the next section, we introduce expression trees.

13.1 Expression Trees
Expression trees are used to represent and evaluate mathematical expressions. Here, we

limit such expressions to have operands given by a single character between “a” and “z”

and operators that include “+”, “-”, “*”, and “/”.

Consider the expression “((a + b) + (c - d) / (f + g) + h)) + y / (x - z)”.

An expression tree representing this mathematical expression is shown in

Figure 13-1.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_13

https://doi.org/10.1007/978-1-4842-8191-8_13

388

Figure 13-1. Expression tree for mathematical expression

The operands are contained in the leaf nodes and the operators in the interior nodes.

We interpret and obtain the mathematical expression represented by this tree by

starting at the various leaf nodes and working upward toward the root node.

Starting with the leftmost leaf nodes, we have (a + b) + ….

Moving to the middle section leaf nodes, we have

(c – d) / (f + g) + h

From the rightmost leaf nodes, we have

y / (x – z) + …

Putting the three sections together gives us the original expression.

In the next section, we present and discuss the construction of an expression tree.

Chapter 13 expression trees

389

13.2 Construction of an Expression Tree
The construction of an expression tree requires a layering of abstractions. We need a

Stack to assist in the construction process.

We define two types, Node and ExpressionTree, as follows:

type Node struct {

 ch string

 left *Node

 right *Node

}

type ExpressionTree struct {

 postfix string

 root *Node

}

Type Node is the familiar binary tree node with a string, ch, stored in each node. This

string will be either an operand or operator.

Type ExpressionTree contains two fields. Field postfix is the postfix string

representation of the mathematical expression we input to build the expression tree.

Field root is a pointer to Node.

 Building a New Expression Tree
Function NewTree, presented in the following, is used to build our expression tree.

func NewTree(infix string) (tree *ExpressionTree) {

 infix = strings.ToLower(infix)

 tree = &ExpressionTree{"", nil}

 tree.postfix = infixpostfix(infix)

 stack := nodestack.Stack[*Node]{} // Create stack

 // of Node

 str := strings.Split(tree.postfix, "")

 for index := 0; index < len(str); index++ {

 if str[index] >= string('a') &&

 str[index] <= string('z') {

 node := &Node{str[index], nil, nil}

Chapter 13 expression trees

390

 stack.Push(node)

 } else if (str[index] == "+") ||

 (str[index] == "-") ||

 (str[index] == "*") ||

 (str[index] == "/") {

 right := stack.Top()

 stack.Pop()

 left := stack.Top()

 stack.Pop()

 node := &Node{str[index], nil, nil}

 node.left = left

 node.right = right

 stack.Push(node)

 }

 }

 tree.root = stack.Top()

 return tree

}

 Explanation of Function NewTree
The first four lines of code create an empty tree (the tree variable is used as the return

variable) and an empty Stack of base type pointer to Node.

This is another example of how useful generic data structures are. Instead of having

to duplicate a new stack implementation with *Node as a base type, we can simply use

the generic stack package and specify the base type as *Node.

In a for-loop that accesses each character of the postfix string, if the character is an

operand, we create a node with the character and push the node onto the stack.

If the character is one of the four possible operators, we grab the top two characters

from the stack, create a node containing the operator character, and set its left and right

child to the two nodes popped from the stack. Finally, we push this new node onto the

stack. This is equivalent to moving upward from the leaf nodes to the root of the tree that

we described in the previous section.

Chapter 13 expression trees

391

 Function Evaluation Using Expression Tree
Method Evaluate, presented in the following, takes the root of an expression tree as its

first parameter and a map of operand values as its second parameter and returns the

value of the function (float64).

func (tree *ExpressionTree) Evaluate(node *Node,

 operandValues map[string]float64) float64 {

 if node == nil {

 return 0.0

 }

 if node.left == nil && node.right == nil {

 value := operandValues[node.ch]

 return value

 }

 leftValue := tree.Evaluate(node.left, operandValues)

 rightValue := tree.Evaluate(node.right, operandValues)

 if node.ch == "+" {

 return leftValue + rightValue

 } else if node.ch == "-" {

 return leftValue - rightValue

 } else if node.ch == "*" {

 return leftValue * rightValue

 } else {

 return leftValue / rightValue

 }

}

 Explanation of Method Evaluate
If the expression tree node is a leaf node, we assign and return value by accessing the

operandValues map.

Otherwise, we assign leftValue and rightValue by recursively invoking Evaluate

sending in node.left and node.right, along with the operandValues map.

Then, based on the operator contained in node, we combine leftValue and

rightValue accordingly.

Chapter 13 expression trees

392

In Listing 13-1, we present the full implementation of expression tree construction

and evaluation along with a main driver.

Listing 13-1. Expression tree

package main

import (

 "fmt"

 "example.com/nodestack"

 "strings"

)

type Node struct {

 ch string

 left *Node

 right *Node

}

type ExpressionTree struct {

 postfix string

 root *Node

}

func NewTree(infix string) (tree *ExpressionTree) {

 infix = strings.ToLower(infix)

 tree = &ExpressionTree{"", nil}

 tree.postfix = infixpostfix(infix)

 stack := nodestack.Stack[*Node]{}

 str := strings.Split(tree.postfix, "")

 for index := 0; index < len(str); index++ {

 if str[index] >= string('a') && str[index] <=

 string('z') {

 node := &Node{str[index], nil, nil}

 stack.Push(node)

 } else if (str[index] == "+") ||

 (str[index] == "-") ||

 (str[index] == "*") ||

Chapter 13 expression trees

393

 (str[index] == "/") {

 right := stack.Top()

 stack.Pop()

 left := stack.Top()

 stack.Pop()

 node := &Node{str[index], nil, nil}

 node.left = left

 node.right = right

 stack.Push(node)

 }

 }

 tree.root = stack.Top()

 return tree

}

func (tree *ExpressionTree) Evaluate(node *Node,

 operandValues map[string]float64) float64 {

 if node == nil {

 return 0.0

 }

 if node.left == nil && node.right == nil {

 value := operandValues[node.ch]

 return value

 }

 leftValue := tree.Evaluate(node.left, operandValues)

 rightValue := tree.Evaluate(node.right, operandValues)

 if node.ch == "+" {

 return leftValue + rightValue

 } else if node.ch == "-" {

 return leftValue - rightValue

 } else if node.ch == "*" {

 return leftValue * rightValue

 } else {

 return leftValue / rightValue

 }

}

Chapter 13 expression trees

394

// From Listing 5.7

func infixpostfix(infix string) (postfix string) {

 operators := []string{"+", "-", "*", "/",, ")"}

 postfix = ""

 nodeStack := nodestack.Stack[string]{}

 for index := 0; index < len(infix); index++ {

 newSymbol := string(infix[index])

 if newSymbol == " " || newSymbol == "\n" {

 continue

 }

 if newSymbol >= "a" && newSymbol <= "z" {

 postfix += newSymbol

 }

 if isPresent(newSymbol, operators) {

 if !nodeStack.IsEmpty() {

 topSymbol := nodeStack.Top()

 if precedence(topSymbol, newSymbol) ==

 true {

 if topSymbol != "(" {

 postfix += topSymbol

 }

 nodeStack.Pop()

 }

 }

 if newSymbol != ")" {

 nodeStack.Push(newSymbol)

 } else {

 for {

 if nodeStack.IsEmpty() == true {

 break

 }

 ch := nodeStack.Top()

 if ch != "(" {

 postfix += ch

 nodeStack.Pop()

Chapter 13 expression trees

395

 } else {

 nodeStack.Pop()

 break

 }

 }

 }

 }

 }

 for {

 if nodeStack.IsEmpty() == true {

 break

 }

 if nodeStack.Top() != "(" {

 postfix += nodeStack.Top()

 nodeStack.Pop()

 }

 }

 return postfix

}

// From Listing 5.7

func precedence(symbol1, symbol2 string) bool {

 if (symbol1 == "+" || symbol1 == "-") &&

 (symbol2 == "(" || symbol2 == "/") {

 return false

 } else if (symbol1 == "(" && symbol2 != ")") ||

 symbol2 == "(" {

 return false

 } else {

 return true

 }

}

// From Listing 5.7

func isPresent(symbol string,operators []string) bool {

 for i := 0; i < len(operators); i++ {

Chapter 13 expression trees

396

 if symbol == string(operators[i]) {

 return true

 }

 }

 return false

}

func main() {

 operandValues := map[string]float64{"a": 5.0, "b":

 2.0, "c": 3.0, "d": 2.0,

 "f": 4.0, "g": 8, "h": 17, "y": 20,

 "x": 14, "z": 3}

 infix := "((a+b)+(- d)/(f+g)+ h))+ y / (x - z)"

 expressionTree := NewTree(infix)

 fmt.Println("Expression tree evaluates to: ",

 expressionTree.Evaluate(expressionTree.root,

 operandValues))

}

/* Output

Expression tree evaluates to: 25.90151515151515

*/

In the next section, we implement the ShowTreeGraph function for an

expression tree.

13.3 Implementation of ShowTreeGraph
If we use the code from Chapter 8 for graphing a binary tree and apply it, as is, to

an expression tree, we get the graph shown in Figure 13-2 for the tree produced in

Listing 13-1.

Why the failure? An expression tree is a binary tree, so one would expect the code of

Chapter 8 to work here.

The suite of code for graphically displaying a binary tree assumes that each node has

a unique value field.

Chapter 13 expression trees

397

An expression tree fails this requirement because there are nodes with identical

values. For example, how many nodes contain a “+” for their value? Many!

To fix the problem so that we can deploy the code to graph an expression tree, we

concatenate a unique numerical tag, as a string, to each node’s ch field. Then when we

create labels; we extract only the first character from node.ch. In this way, we have forced

each node to have a unique string representation while we build the tree.

Listing 13-2 presents the revised portion of the suite of functions for graphing an

expression tree. The four lines of code that are added are shown in boldface.

A variable c is defined global to function inorderLevel. Each time this function

is invoked, c is incremented by one, and node.ch is modified with this additional

unique tag.

When adding labels in function ShowTreeGraph, only the first character of node.ch

is used, blocking out the unique tag.

Figure 13-2. Expression tree resulting from code in Chapter 8

Chapter 13 expression trees

398

Listing 13-2. Code for graphing an expression tree

var c = 0

func inorderLevel(node *Node, level int) {

 if node != nil {

 inorderLevel(node.left, level + 1)

 c += 1

 node.ch += string(c)

 data = append(data, NodePos{node.ch, 100 -

 level, -1})

 inorderLevel(node.right, level + 1)

 }

}

// Add Labels

for index := 0; index < len(data); index++ {

 x := float64(data[index].XPos) - 0.1

 y := float64(data[index].YPos) - 0.02

 str := data[index].Val

 label, err := plotter.NewLabels(plotter.XYLabels {

 XYs: []plotter.XY {

 {X: x ,Y: y},

 },

 Labels: []string{string(str[0])},

 },)

 if err != nil {

 log.Fatalf("could not creates labels

 plotter: %+v", err)

 }

 p.Add(label)

}

When the modified suite of tree graphing functions is added to the code in

Listing 13-2, the tree graph produced is shown in Figure 13-3.

Chapter 13 expression trees

399

Figure 13-3. Expression tree from modified code for graphing

13.4 Summary
In this chapter, we implemented and discussed the details of building and evaluating an

expression tree. We showed the modification needed for graphing an expression tree.

In the next chapter, we present a larger application that features concurrency.

Chapter 13 expression trees

401

CHAPTER 14

Ecological Simulation
with Concurrency
The previous chapter introduced expression trees. We showed how we can represent and

evaluate simple mathematical expressions using such trees.

In this chapter, we switch gears. We present a concurrent implementation of an

ecological simulation.

In the next section, we present an overview of the simulation.

14.1 Overview
This chapter presents an interesting emergent computation using a predator/prey model

of a simple ecological system that simulates population dynamics. The design uses

concurrency.

Many important concepts and techniques from previous chapters are used in this

example. These include a graphical framework, extensive use of goroutines, object-

oriented programming, type assertions (introduced in this chapter), implementing

interfaces, and protecting shared data, to name a few.

We simulate the dynamics of three simplified marine-life species coexisting in an

ocean with positions at any instant defined in a 50 × 50 grid of locations. At any moment,

each of the 2500 locations contains nothing or a shark or a tuna or a mackerel.
In this simple food chain, shark is the top of the chain because shark can eat tuna.

Tuna is second in the food chain because tuna can eat mackerel. Mackerel are at the

bottom of the food chain. They are strictly a prey (can be eaten by tuna). Tuna is both a

predator (can eat mackerel) and a prey (can be eaten by shark).

Each of the three species can reproduce according to rules to be specified. The two

species that are predators (shark and tuna) can die of starvation. Tuna can also die

because they are eaten by shark. All three species can die of old age. Since shark cannot

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_14

https://doi.org/10.1007/978-1-4842-8191-8_14

402

be eaten, their population declines because of starvation (failure to eat tuna within a

specified interval of time) or old age. Tuna also can reproduce and can die of starvation

or old age. Mackerel can reproduce, die of old age, or die because they are eaten.

The rules of movement within the 50 × 50 grid of locations allow each critter (shark,

tuna, or mackerel) to move concurrently once they are created. When they die (from

starvation, old age, or being eaten), their movement stops, and they are purged from the

ocean. Snapshots of the entire ocean are taken periodically to display the location of all

the species along with empty locations.

We color-code each species, so the simulation output is most interesting as it shows

the migration and population dynamics of the three species as a function of time. There

is no communication between the critters. Each critter is an independent agent moving

concurrently with all the other critters.

14.2 Specifications
We specify the rules that govern each of the three species.

 Mackerel
A mackerel moves to an empty location in its immediate neighborhood (the collection

of up to eight cells from the mackerel’s current location, fewer if the mackerel is at one

of the boundaries of the ocean (row 0, row 49, col 0, col 49)). If more than one empty

location is found, it chooses one randomly and moves to this empty location, vacating its

previous location. All mackerel, when created, are assigned a reproduction value. Each

time it moves, its reproduction value is decremented by one. When its reproduction

value becomes equal or less than zero, and the mackerel has been able to move to a

neighboring empty location, it reproduces by creating a new mackerel and placing it

in the location just vacated. This new mackerel takes on a life of its own and moves

concurrently with the rest of the sea critters. If the mackerel was able to reproduce, its

reproduction value is reset to its initial value. If the reproduction value is equal or less

than zero but the mackerel was blocked from movement (no empty locations in its

immediate neighborhood), it cannot reproduce on that move and must wait for a future

move. Reproduction can occur only when the mackerel has moved, to allow the newly

created mackerel to occupy the cell vacated by the mackerel that is reproducing.

Chapter 14 eCologiCal Simulation with ConCurrenCy

403

If a mackerel is eaten by some tuna, it must be blocked from further moves because a

dead mackerel cannot move or reproduce.

A mackerel is also assigned an age value when created. On each move, its age value

is decremented by one. When the age value reaches 0, the mackerel dies. The dead

mackerel must be blocked from further movement and purged from the ocean.

 Tuna
The behavior of a tuna is only slightly different than a mackerel. On each move, its

reproduction value, starvation value, and age value are decremented by one. If its

starvation value or age value is zero, it dies and cannot move again and is purged from

the ocean.

The tuna first attempts to move to a neighboring location containing a mackerel.

If there is more than one mackerel found, it chooses one at random and moves to

its location. The dead mackerel can no longer move and is purged from the ocean.

The tuna’s starvation value is reset to its original state. If there are no mackerel in the

immediate neighborhood of the tuna, it attempts to move to a neighboring empty

location, choosing a random empty cell if there is more than one. When its reproduction

value is equal or less than 0, it reproduces using the same mechanism described for the

mackerel. It cannot reproduce unless it has moved.

If some tuna is eaten by a shark, it cannot move again and must be purged from

the ocean.

 Shark
The behavior of a shark is like a tuna except that it cannot be eaten. When it moves, it

first attempts to find and eat some tuna in one of its neighboring cells. Failing that, it

moves to a neighboring empty location if one exists, choosing one randomly if more than

one exists. Its rules for reproduction are identical to tuna and mackerel.

In summary, the population of mackerel increases because of reproduction. Its

population decreases because of being eaten or old age.

The population of tuna increases because of reproduction. Its population decreases

because of being eaten, starvation, or old age.

The population of shark increases because of reproduction. Its population decreases

because of starvation or old age.

Chapter 14 eCologiCal Simulation with ConCurrenCy

404

 Output
Each critter is represented by a colored rectangle in the 50 × 50 grid of cells. Red

rectangles represent shark. Blue rectangles represent tuna, and green rectangles

represent mackerel. Empty cells are colored gray.

A census is conducted periodically, and the current positions of each critter and

empty cells in the 50 × 50 grid are displayed graphically. This enables the migration

pattern of each species to be dramatically displayed as the critters move concurrently.

A screenshot of the simulation in action is shown in Figure 14-1.

Chapter 14 eCologiCal Simulation with ConCurrenCy

405

Figure 14-1. Simulation in action

Here, the population of mackerel has exploded outward, the population of tuna is

about to encroach on the mackerel, and the sharks are waiting for the tuna to increase so

they can feed on the tuna.

Chapter 14 eCologiCal Simulation with ConCurrenCy

406

14.3 The Design
A global grid of location objects is constructed. Each location object contains an x and

y position and a critter. This critter is either a shark, tuna, or mackerel. As each critter

moves, the global location grid (a two-dimensional array) is updated.

The movement of each critter is controlled by an independent goroutine spawned

when the critter is born (from reproduction or from the initial population). When the

critter dies either from being eaten (mackerel or tuna) or starvation (tuna or shark) or old

age (mackerel, tuna, or shark), its goroutine must be halted to prevent further movement

and to control computer resources. As the ocean cells become occupied with critters,

there could be thousands of goroutines running concurrently, each representing a critter

that is moving.

To achieve continual movement of each critter, a loop is constructed within the

goroutine of the critter, with a random sleep delay of between a half second and one

second. This loop must be terminated when the simulation ends or when the critter dies.

Terminating (breaking out of) the loop ends the goroutine for that critter.

A separate output goroutine is constructed in a loop with a sleep delay of one

second. So every second, the census of critters is computed, and the positions of all the

critters are displayed with colored rectangles. During this output, the global matrix of

locations containing critters is displayed.

Using a mutex, the global locations matrix must be frozen when a critter moves or

when the ocean is displayed to prevent a race condition.

14.4 The Implementation
Before presenting the entire implementation (over 400 lines of code), we show and

discuss various pieces.

 Data Model for Each Species
We start by examining the data model of each species and most importantly the global

location matrix.

type Location struct {

 x int

 y int

Chapter 14 eCologiCal Simulation with ConCurrenCy

407

 critter MarineLife

}

type MarineLife interface {

 Move()

 Reproduce(l Location)

 Starve() bool

 LifeOver() bool

}

type Tuna struct {

 repro int

 starv int

 life int

 x, y int // Set x to -1, y = -1 if dead

}

type Shark struct {

 repro int

 starv int

 life int

 x, y int // Set x to -1, y = -1 if dead

}

type Mackerel struct {

 repro int

 starv int

 life int

 x, y int // Set x to -1, y = -1 if dead

}

var locations [numRows][numCols]Location

 Discussion of Code
Type location specifies critter as type MarineLife. For this to work, each of the concrete

critter types (shark, tuna, and mackerel) must implement the MarineLife interface. This

means that each of the concrete types must implement methods Move, Reproduce,

Starve, and LifeOver.

Chapter 14 eCologiCal Simulation with ConCurrenCy

408

Each of the critter types is defined by a struct containing the fields repro, starv, life,

x, and y.

The global locations two-dimensional array is defined as containing Location

objects.

 Support Functions
Several support functions are defined that are needed to implement the MarineLife

interface methods. These are shown as follows:

func init() {

 rand.Seed(time.Now().UTC().UnixNano())

}

func distanceOfOne(x1, y1, x2, y2 float64) bool {

 return (math.Abs(x2-x1) == 0 &&

 math.Abs(y2-y1) == 1) ||

 (math.Abs(x2-x1) == 1 && math.Abs(y2-y1) == 0)

 || (math.Abs(x2-x1) == 1 &&

 math.Abs(y2-y1) == 1)

}

func initializeLocations() {

 for row := 0; row < numRows; row++ {

 for col := 0; col < numCols; col++ {

 locations[row][col] =

 Location{col, row, nil}

 }

 }

}

func findRandomCritter(x int, y int,

 critter MarineLife) (bool, Location) {

 // Send in nil for critter to get random empty

 // location

 result := []Location{}

 for r := 0; r < numRows; r++ {

Chapter 14 eCologiCal Simulation with ConCurrenCy

409

 for c := 0; c < numCols; c++ {

 d := distanceOfOne(float64(x), float64(y),

 float64(c), float64(r))

 if d == true &&

 reflect.TypeOf(locations[c][r].critter) ==

 reflect.TypeOf(critter) {

 result = append(result, Location{r, c,

 critter})

 }

 }

 }

 if len(result) == 0 {

 return false, Location{}

 } else {

 return true, result[rand.Intn(len(result))]

 }

}

 Discussion of Code
We use the reflect.TypeOf method in function findRandomCritter to create a slice

of Location objects containing the critter that is input to this function. This function

returns two outputs and allows the caller to determine whether a target location has

been found.

Function init() seeds the random number generator with the current clock time that

assures different results each time the simulation is run.

Function initializeLocations assigns an x and y coordinate to each cell and assigns

each cell with a nil critter.

 Required Methods for Mackerel to Be of Type MarineLife
func (mackerel *Mackerel) Move() {

 for ; quit == false ; {

 if mackerel.x == -1 { // mackerel has been

 // killed

Chapter 14 eCologiCal Simulation with ConCurrenCy

410

 break

 }

 mutex.Lock()

 mackerel.repro -= 1

 mackerel.starv -= 1

 mackerel.life -= 1

 if mackerel.LifeOver() || mackerel.Starve() {

 locations[mackerel.y][mackerel.x].critter

 = nil

 mackerel.x = -1

 mackerel.y = -1

 mutex.Unlock()

 break

 }

 // Find random neighbor that has no critter

 found, newLoc := findRandomCritter(mackerel.x,

 mackerel.y, nil)

 if found == true {

 fmt.Printf("\nMackerel Move from <%d, %d>

 to <%d, %d>", mackerel.x,

 mackerel.y, newLoc.x, newLoc.y)

 mackerel.Reproduce(newLoc)

 }

 mutex.Unlock()

 time.Sleep(time.Duration(rand.Intn(500) + 500)

 * time.Millisecond)

 }

}

func (mackerel Mackerel) Starve() bool {

 return mackerel.starv <= 0

}

func (mackerel Mackerel) LifeOver() bool {

 return mackerel.life <= 0

}

Chapter 14 eCologiCal Simulation with ConCurrenCy

411

func (mackerel *Mackerel) Reproduce(l Location) {

 if mackerel.x == -1 {

 return

 }

 if mackerel.repro <= 0 {

 newMackerel := new(Mackerel)

 newMackerel.repro = MACKERELREPRO

 newMackerel.starv = MACKERELSTARVE

 newMackerel.life = MACKERELLIFE

 newMackerel.x = mackerel.x

 newMackerel.y = mackerel.y

 locations[mackerel.y][mackerel.x].critter =

 newMackerel

 go newMackerel.Move()

 } else {

 locations[mackerel.y][mackerel.x].critter = nil

 }

 mackerel.x = l.x // assign mackerel to new location

 mackerel.y = l.y

 // add mackerel to new location

 locations[l.y][l.x].critter = mackerel

}

 Discussion of Code
The Move method for mackerel takes a pointer to a Mackerel as receiver of the method.

This is needed since the mackerel receiver may have its internal data modified.

In the for-loop that defines successive moves, if the x coordinate of the mackerel

object is negative 1, we break out of the loop, which terminates the method. This method

will be defined elsewhere as a goroutine.

We lock the mutex to prevent the global locations matrix from being changed

outside of this goroutine. We decrement the three fields repro, starv, and life.

If either Starve or LifeOver is true, we purge the mackerel object from the ocean

(setting its critter value to nil at the appropriate location[mackerel.y][mackerel.x]). We

terminate the goroutine of the dead mackerel object by setting its x and y values to -1. We

unlock the mutex.

Chapter 14 eCologiCal Simulation with ConCurrenCy

412

If an empty target location is found, we output the move to the console and pass the

newLoc to the Reproduce method. We unlock the mutex. We pause the goroutine loop

using a random sleep interval.

The Reproduce method uses a pointer receiver since the receiver’s internal data may

be changed.

If the repro value is equal or less than zero, we create a new mackerel object using

global constants that define the initial field values repro, starv, and life. We assign the

new mackerel object to the critter field of Location and its x and y values to the location

vacated by the reproducing mackerel.

If the repro value is greater than one, we set the vacated location to a critter

value of nil.

Finally, we set the x and y coordinates of the mackerel to the new location.

 Move Method for Shark
We next show the implementation of the Move method for Shark.

func (shark *Shark) Move() {

 for ; quit == false ; {

 if shark.x == -1 { // Shark no longer alive

 break

 }

 mutex.Lock()

 shark.repro -= 1

 shark.starv -= 1

 shark.life -= 1

 if shark.LifeOver() || shark.Starve() {

 locations[shark.y][shark.x].critter = nil

 shark.x = -1

 shark.y = -1

 mutex.Unlock()

 break

 }

 // Find random neighbor that has tuna

 found, newLoc := findRandomCritter(shark.x,

 shark.y, new(Tuna))

Chapter 14 eCologiCal Simulation with ConCurrenCy

413

 if found == true {

 fmt.Printf("\nShark Move from <%d, %d> to

 <%d, %d>", shark.x, shark.y, newLoc.x,

 newLoc.y)

 shark.starv = SHARKSTARVE

 // Type assertion

 eatenTuna := locations[newLoc.y][newLoc.x].critter.(*Tuna)

 // Must stop go routine for tuna that was

 // eaten

 eatenTuna.x = -1

 eatenTuna.y = -1

 fmt.Printf("\nEaten tuna = %v", eatenTuna)

 shark.Reproduce(newLoc)

 } else {

 found, newLoc = findRandomCritter(shark.x,

 shark.y, nil)

 if found == true {

 fmt.Printf("\nShark Move from <%d, %d>

 to <%d, %d>", shark.x,

 shark.y, newLoc.x, newLoc.y)

 shark.Reproduce(newLoc)

 }

 }

 mutex.Unlock()

 time.Sleep(time.Duration(rand.Intn(500) + 500)

 * time.Millisecond)

 }

}

 Discussion of Code
Most of the implementation details of Move for Shark are the same as for Mackerel. The

only change is that the shark first looks for a neighboring tuna to eat.

Here, we encounter a type assertion. Let’s look closely at this.

Chapter 14 eCologiCal Simulation with ConCurrenCy

414

We invoke the findRandomCritter method as follows passing new(Tuna) as the

third parameter:

found, newLoc := findRandomCritter(shark.x, shark.y,

 new(Tuna))

If found is true, we set the starv value back to its SHARKSTARVE initial value. Then

we assign the variable eatenTuna as follows:

// Type assertion

eatenTuna := locations[newLoc.y][newLoc.x].critter.(*Tuna)

This type assertion asserts that locations[[newLoc.y][newLoc.x] is of type *Tuna.

Since this assertion is true, we can treat eatenTuna as if it had been defined to be of

type *Tuna.

By setting the x and y values of eatenTuna to -1, we effectively terminate the

goroutine for the eaten Tuna object.

Type assertions of this kind are useful when it is necessary to act on the actual type of

an object whose formal type is an interface.

It is essential that the Tuna type implement the MarineLife interface for this to work.

It does!

The other three methods that implement the MarineLife interface for type Shark are

the same.

 Move Method for Tuna
The Move method for class Tuna is essentially the same as the Move method just

described for type Shark.

func (tuna *Tuna) Move() {

 for ; quit == false ; {

 if tuna.x == -1 { // Tuna no longer alive

 break

 }

 mutex.Lock()

 tuna.repro -= 1

 tuna.starv -= 1

 tuna.life -= 1

Chapter 14 eCologiCal Simulation with ConCurrenCy

415

 if tuna.LifeOver() || tuna.Starve() {

 locations[tuna.y][tuna.x].critter = nil

 tuna.x = -1

 tuna.y = -1

 mutex.Unlock()

 break

 }

 // Find random neighbor that is a Mackerel

 found, newLoc := findRandomCritter(tuna.x,

 tuna.y, new(Mackerel))

 if found == true {

 fmt.Printf("\nTuna Move from <%d, %d> to

 <%d, %d>", tuna.x, tuna.y, newLoc.x,

 newLoc.y)

 tuna.starv = TUNASTARVE

 // Must stop go routine for mackerel that

 // was eaten

 // Type assertion

 eatenMackerel:= locations[newLoc.y][newLoc.x].critter.

(*Mackerel)

 eatenMackerel.x = -1

 eatenMackerel.y = -1

 fmt.Printf("\nEaten mackerel = %v",

 eatenMackerel)

 tuna.Reproduce(newLoc)

 }

 found, newLoc = findRandomCritter(tuna.x,

 tuna.y, nil)

 if found == true {

 fmt.Printf("\nTuna Move from <%d, %d> to

 <%d, %d>", tuna.x, tuna.y, newLoc.x,

 newLoc.y)

 tuna.Reproduce(newLoc)

 }

 mutex.Unlock()

Chapter 14 eCologiCal Simulation with ConCurrenCy

416

 time.Sleep(time.Duration(rand.Intn(500) + 500)

 * time.Millisecond)

 }

}

A similar type assertion is used to enable the killing of the eaten mackerel.

 Output Function for the Graphical Display of Critters
The output function that produces a graphical display of the critters is given as follows:

func output() *fyne.Container {

 for col := 0; col < numCols; col++ {

 for row := 0; row < numRows; row++ {

 if locations[col][row].critter == nil {

 rect =

 canvas.NewRectangle(&color.RGBA{B:

 200, R: 200, G: 200, A: 255})

 } else if

 reflect.TypeOf(locations[col][row].critter) ==

 reflect.TypeOf(new(Tuna)) {

 rect =

 canvas.NewRectangle(&color.RGBA{B:

 255, R: 0, G: 0, A: 255})

 } else if

 reflect.TypeOf(locations[col][row].critter) ==

 reflect.TypeOf(new(Shark)) {

 rect =

 canvas.NewRectangle(&color.RGBA{B:

 0, R: 255, G: 0, A: 255})

 } else if

 reflect.TypeOf(locations[col][row].critter) ==

 reflect.TypeOf(new(Mackerel)) {

 rect =

 canvas.NewRectangle(&color.RGBA{B:

Chapter 14 eCologiCal Simulation with ConCurrenCy

417

 0, R: 0, G: 255, A: 255})

 }

 rect.Resize(fyne.NewSize(10, 10))

 rect.Move(fyne.NewPos(float32(col * 11),

 float32(row * 11)))

 segments[col + numCols * row] = rect

 }

 }

 return container.NewWithoutLayout(segments...)

}

It is supported by the following global declarations:

const (

 numRows int = 50

 numCols int = 50

 MAKERELREPRO int = 4

 MAKERELSTARVE int = 10000000

 MAKERELLIFE int = 30

 TUNAREPRO int = 8

 TUNASTARVE int = 11

 TUNALIFE int = 18

 SHARKREPRO int = 15

 SHARKSTARVE int = 25

 SHARKLIFE int = 30

)

var (

 quit bool

 contain *fyne.Container

 rect *canvas.Rectangle

 mutex = &sync.Mutex{}

 // Holds rectangle objects

 segments = make([]fyne.CanvasObject, numRows *

 numCols)

)

Chapter 14 eCologiCal Simulation with ConCurrenCy

418

The output function is contained within the following goroutine in function main:

 go func() {

 for ; ; {

 mutex.Lock()

 contain := output()

 mutex.Unlock()

 w.SetContent(contain)

 time.Sleep(1000 * time.Millisecond)

 }

 }()

 Discussion of Code
In a loop that queries every location object, a rectangle, rect, is defined with its color

based on the type of critter occupying the location. These rectangles are assigned to the

segments array that allows w.SetContent to display the rectangles.

 Full Implementation of Simulation
The implementation of the ecological simulation is presented in Listing 14-1. Functions

presented and discussed previously are snipped out in the interest of space. You can

download the full source code from the website specified in the Preface and run the

simulation.

Listing 14-1. Ecological simulation

package main

import (

 "fmt"

 "math"

 "math/rand"

 "reflect"

 "time"

 "image/color"

 "fyne.io/fyne/v2"

Chapter 14 eCologiCal Simulation with ConCurrenCy

419

 "fyne.io/fyne/v2/app"

 "fyne.io/fyne/v2/canvas"

 "fyne.io/fyne/v2/container"

 "sync"

)

const (

 numRows int = 50

 numCols int = 50

 MAKERELREPRO int = 4

 MAKERELSTARVE int = 10000000

 MAKERELLIFE int = 30

 TUNAREPRO int = 8

 TUNASTARVE int = 11

 TUNALIFE int = 18

 SHARKREPRO int = 15

 SHARKSTARVE int = 25

 SHARKLIFE int = 30

)

var (

 quit bool

 contain *fyne.Container

 rect *canvas.Rectangle

 mutex = &sync.Mutex{}

 // Holds rectangle objects

 segments = make([]fyne.CanvasObject, numRows *

 numCols)

)

type Location struct {

 x int

 y int

 critter MarineLife

}

type MarineLife interface {

Chapter 14 eCologiCal Simulation with ConCurrenCy

420

 Move()

 Reproduce(l Location)

 Starve() bool

 LifeOver() bool

}

type Tuna struct {

 repro int // Moves til reproduction

 starv int // Movew til starvation

 life int // Moves til life over

 x, y int // Set x to -1, y = -1 if dead

}

type Shark struct {

 repro int

 starv int

 life int

 x, y int // Set x to -1, y = -1 if dead

}

type Mackerel struct {

 repro int

 starv int

 life int

 x, y int // Set x to -1, y = -1 if dead

}

var locations [numRows][numCols]Location

func init() {

 rand.Seed(time.Now().UTC().UnixNano())

}

func distanceOfOne(x1, y1, x2, y2 float64) bool {

 // snip

}

Chapter 14 eCologiCal Simulation with ConCurrenCy

421

func initializeLocations() {

 // snip

}

func findRandomCritter(x int, y int, critter MarineLife) (bool, Location) {

 // snip

}

func (tuna *Tuna) Move() {

 // snip

}

func (shark *Shark) Move() {

 // snip

}

func (mackerel *Mackerel) Move() {

 // snip

}

func (tuna Tuna) Starve() bool {

 // snip

}

func (tuna Tuna) LifeOver() bool {

 // snip

}

func (shark Shark) Starve() bool {

 // snip

}

func (shark Shark) LifeOver() bool {

 // snip

}

func (mackerel Mackerel) Starve() bool {

 // snip

}

Chapter 14 eCologiCal Simulation with ConCurrenCy

422

func (mackerel Mackerel) LifeOver() bool {

 // snip

}

func (tuna *Tuna) Reproduce(l Location) {

 // snip

}

func (shark *Shark) Reproduce(l Location) {

 // snip

}

func (mackerel *Mackerel) Reproduce(l Location) {

 // snip

}

func output() *fyne.Container {

 // snip

}

func main() {

 quit = false

 a := app.New()

 w := a.NewWindow("Ecological Simulation - Type Any

 Key To Quit")

 w.Resize(fyne.NewSize(600, 600))

 w.SetFixedSize(true)

 initializeLocations()

 newTuna := new(Tuna)

 newTuna.repro = TUNAREPRO

 newTuna.starv = TUNASTARVE

 newTuna.life = TUNALIFE

 newTuna.x = 15

 newTuna.y = 15

 locations[15][15].critter = newTuna

 go newTuna.Move()

Chapter 14 eCologiCal Simulation with ConCurrenCy

423

 newTuna = new(Tuna)

 newTuna.repro = TUNAREPRO

 newTuna.starv = TUNASTARVE

 newTuna.life = TUNALIFE

 newTuna.x = 19

 newTuna.y = 19

 locations[19][19].critter = newTuna

 go newTuna.Move()

 newTuna = new(Tuna)

 newTuna.repro = TUNAREPRO

 newTuna.starv = TUNASTARVE

 newTuna.life = TUNALIFE

 newTuna.x = 4

 newTuna.y = 4

 locations[4][4].critter = newTuna

 go newTuna.Move()

 newShark := new(Shark)

 newShark.repro = SHARKREPRO

 newShark.starv = SHARKSTARVE

 newShark.life = SHARKLIFE

 newShark.x = 11

 newShark.y = 11

 locations[11][11].critter = newShark

 go newShark.Move()

 newShark = new(Shark)

 newShark.repro = SHARKREPRO

 newShark.starv = SHARKSTARVE

 newShark.life = SHARKLIFE

 newShark.x = 16

 newShark.y = 16

 locations[16][16].critter = newShark

 go newShark.Move()

 newMackerel := new(Mackerel)

Chapter 14 eCologiCal Simulation with ConCurrenCy

424

 newMackerel.repro = MAKERELREPRO

 newMackerel.starv = MAKERELSTARVE

 newMackerel.life = MAKERELLIFE

 newMackerel.x = 2

 newMackerel.y = 2

 locations[2][2].critter = newMackerel

 go newMackerel.Move()

 newMackerel = new(Mackerel)

 newMackerel.repro = MAKERELREPRO

 newMackerel.starv = MAKERELSTARVE

 newMackerel.life = MAKERELLIFE

 newMackerel.x = 13

 newMackerel.y = 8

 locations[8][13].critter = newMackerel

 go newMackerel.Move()

 newMackerel = new(Mackerel)

 newMackerel.repro = MAKERELREPRO

 newMackerel.starv = MAKERELSTARVE

 newMackerel.life = MAKERELLIFE

 newMackerel.x = 16

 newMackerel.y = 16

 locations[16][16].critter = newMackerel

 go newMackerel.Move()

 newMackerel = new(Mackerel)

 newMackerel.repro = MAKERELREPRO

 newMackerel.starv = MAKERELSTARVE

 newMackerel.life = MAKERELLIFE

 newMackerel.x = 28

 newMackerel.y = 28

 locations[28][28].critter = newMackerel

 go newMackerel.Move()

 go func() {

 for ; ; {

Chapter 14 eCologiCal Simulation with ConCurrenCy

425

 mutex.Lock()

 contain := output()

 mutex.Unlock()

 w.SetContent(contain)

 time.Sleep(1000 * time.Millisecond)

 }

 }()

 w.Canvas().SetOnTypedKey(func(k *fyne.KeyEvent) { // Shuts down

simulation

 quit = true

 w.Close()

 })

 w.ShowAndRun()

}

14.5 Summary
A concurrent implementation of an ecological simulation is presented in this chapter.

Type assertions are introduced and used in the implementation.

Many important concepts and techniques from previous chapters are used in this

example. These include a graphical framework, extensive use of goroutines, object-

oriented programming, type assertions, implementing interfaces, and protecting

shared data.

In the next chapter, we introduce an important technique of algorithm design,

dynamic programming.

Chapter 14 eCologiCal Simulation with ConCurrenCy

427

CHAPTER 15

Dynamic Programming
The previous chapter presented a concurrent implementation of an ecological

simulation. It used many of the techniques presented earlier in this book.

This chapter changes focus from data structures to algorithm design.

We introduce an algorithmic technique for solving optimization problems, dynamic

programming, and apply this technique to several problems.

As you will see in this chapter, “if you cannot remember the past, you are destined to

repeat it.”

In the next section, we present a simple example of dynamic programming, the

computation of the nth Fibonacci number. We explore two dynamic programming

approaches.

15.1 Example of Dynamic Programming: nth
Fibonacci Number

The central mechanism of dynamic programming is representing the solution to a

problem in terms of smaller subproblems, each of which has optimal solutions. Each

subproblem is a smaller version of the original problem. By storing the results to the

smaller problems, we can efficiently obtain the results to the larger problem.

A simple example involves the computation of the nth Fibonacci number.

Fib(n) = Fib(n-1) + Fib(n-2), for n > 1

The first two numbers in the sequence are 0 and 1.

The initial sequence of Fibonacci numbers is

[0, 1, 1, 2, 3, 5, 8, 13, 21, …]

We examine three alternative algorithms for computing the nth Fibonacci number.

The first two involve dynamic programming, and the third involves recursion.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_15

https://doi.org/10.1007/978-1-4842-8191-8_15

428

 Top-Down Dynamic Programming
Consider the function FibonacciTopDown and its support function

computeFromCache given as follows:

func FibonacciTopDown(n int) int64 {

 firstTwoCases := map[int]int64{

 0: 0,

 1: 1,

 }

 return computeFromCache(n, firstTwoCases)

}

func computeFromCache(n int, cache map[int]int64) int64 {

 // If answer already found for n, return it

 if val, found := cache[n]; found {

 return val

 }

 cache[n] = computeFromCache(n - 1, cache) +

 computeFromCache(n - 2, cache)

 return cache[n]

}

A map is used in computeFromCache to return a solution if it has already been

calculated.

The variable cache holds the key-value pairs (n and the nth Fibonacci number).

This is dynamic programming because a problem of size n is computed in terms of

problems of size n – 1 and n – 2.

The computational complexity of this top-down approach is O(n). The space

complexity is also O(n) because of the map that holds previous computations.

 Bottom-Up Dynamic Programming
Consider the function FibonacciBottomUp presented as follows:

func FibonacciBottomUp(n int) int64 {

 table := []int64{0, 1}

 for i := 2; i <= n; i++ {

Chapter 15 DynamiC programming

429

 table = append(table, table[i - 1] +

 table[i - 2])

 }

 return table[n]

}

We construct the variable table from 0 to n, bottom-up.

The computational complexity of this solution is also O(n). The space complexity

is O(1).

 Recursive Solution
The function Fib, presented in the following, is a recursive solution. But it is of

computational complexity O(2n). This is intractable.

func Fib(n int64) int64 {

 if n < 2 {

 return n

 }

 return Fib(n - 1) + Fib(n - 2)

}

Listing 15-1 presents the three approaches along with a main driver that does a

timing analysis.

Listing 15-1. Fibonacci numbers

package main

import (

 "fmt"

 "time"

)

func FibonacciTopDown(n int) int64 {

 firstTwoCases := map[int]int64{

 0: 0,

 1: 1,

 }

Chapter 15 DynamiC programming

430

 return computeFromCache(n, firstTwoCases)

}

func computeFromCache(n int, cache map[int]int64) int64 {

 // If answer already found for n, return it

 if val, found := cache[n]; found {

 return val

 }

 cache[n] = computeFromCache(n - 1, cache) +

 computeFromCache(n - 2, cache)

 return cache[n]

}

func FibonacciBottomUp(n int) int64 {

 table := []int64{0, 1}

 for i := 2; i <= n; i++ {

 table = append(table, table[i - 1] +

 table[i - 2])

 }

 return table[n]

}

func Fib(n int64) int64 {

 if n < 2 {

 return n

 }

 return Fib(n - 1) + Fib(n - 2)

}

func main() {

 fmt.Println("fib(7) = ", FibonacciTopDown(7))

 start := time.Now()

 fib40 := FibonacciTopDown(40)

 elapsed := time.Since(start)

 fmt.Println("Value of FibonacciTopDown(40): ", fib40)

 fmt.Println("Computation time: ", elapsed)

 fmt.Println("fib(7) = ", FibonacciBottomUp(7))

Chapter 15 DynamiC programming

431

 start = time.Now()

 fib40 = FibonacciBottomUp(40)

 elapsed = time.Since(start)

 fmt.Println("\nValue of FibonacciBottomUp(40): ", fib40)

 fmt.Println("Computation time: ", elapsed)

 fmt.Println("fib(7) = ", Fib(7))

 start = time.Now()

 fib40 = Fib(40)

 elapsed = time.Since(start)

 fmt.Println("\nValue of Fib(40): ", fib40)

 fmt.Println("Computation time: ", elapsed)

}

/* Output

fib(7) = 13

Value of FibonacciTopDown(40): 102334155

Computation time: 36.136μs
fib(7) = 13

Value of FibonacciBottomUp(40): 102334155

Computation time: 7.377μs
fib(7) = 13

Value of Fib(40): 102334155

Computation time: 424.44211ms

*/

 Discussion of Code
The dynamic programming bottom-up approach is roughly five times faster than the

dynamic programming top-down approach. Both are significantly faster than the

recursive approach.

In the next section, we examine a classic problem from algorithm design, the 0/1

knapsack problem.

Chapter 15 DynamiC programming

432

15.2 Another Application: 0/1 Knapsack Problem
Suppose we are given a set of objects. We wish to pack a subset of these objects into a

knapsack with a specified weight limit. Each object to be considered has a specified

weight and profit, if included in the knapsack. We wish to choose a subset of the objects

that maximizes our profit.

As a small example, suppose the four potential objects have weights 4, 6, 2, 8 and

profits 12, 15, 9, 21. Suppose the weight limit on the knapsack is 10.

Let us enumerate combinations of objects whose total weight is <= 10.

Object1 + Object2 (total weight 10), profit 27

Object1 + Object3 (total weight 6), profit 21

Object2 + Object3 (total weight 8), profit 24

Object3 + Object4 (total weight 10), profit 30

The optimum solution is to include Object3 and Object4 in the knapsack.

 Brute-Force Solution
A brute-force solution enumerates every combination of subsets of weights and profits.

Consider the following function:

// Brute Force solution

func KnapSackBF(weightLimit int, weights []int, profits []int, n int) int {

 if n == 0 || weightLimit == 0 {

 return 0

 }

 if weights[n - 1] > weightLimit {

 return KnapSackBF(weightLimit, weights, profits, n - 1)

 } else {

 // Assume that we include object n - 1

 value1 := profits[n - 1] +

 KnapSackBF(weightLimit –

 weights[n - 1], weights, profits, n - 1)

 // Assume that we do not include object n - 1

 value2 := KnapSackBF(weightLimit, weights,

 profits, n - 1)

 if value1 >= value2 {

Chapter 15 DynamiC programming

433

 return value1

 } else {

 return value2

 }

 }

}

 Discussion of Code
If the weight at weights[n – 1] exceeds weightLimit, recursively invoke KnapSackBF

replacing n by n – 1.

Otherwise, compute value1, which assumes that you include object n – 1, and

value2, which assumes that you exclude object n – 1. Return the larger of value1 and

value2 at this level of recursion.

This brute-force algorithm is our first example of a computationally intractable

procedure.

Since all the subsets are encompassed and used in this recursive function, and it is

well known that the number of subsets of a set of size n is 2n, we conclude that this brute-

force method is O(2n). The computation time grows exponentially, asymptotically.

 Dynamic Programming Solution
A dynamic programming solution to this problem is given as follows:

// Dynamic Programming solution

func KnapSackDP(weightLimit int, weights []int, profits

 []int) int {

 n := len(weights)

 if weightLimit <= 0 || n == 0 || len(profits) != n {

 return 0

 }

 // Create a (n + 1 x weighlimit + 1) table

 table := make([][]int, n + 1)

 for row := 0; row < n + 1; row++ {

 table[row] = make([]int, weightLimit + 1)

 }

Chapter 15 DynamiC programming

434

 for i := 0; i < n + 1; i++ {

 for w := 0; w < weightLimit + 1; w++ {

 if i == 0 || w == 0 {

 table[i][w] = 0

 } else if weights[i - 1] <= w {

 // Include item i

 wt := w - weights[i - 1]

 profit1 := profits[i - 1] +

 table[i - 1][wt]

 // Exclude item i

 profit2 := table[i - 1][w]

 if profit1 >= profit2 {

 table[i][w] = profit1

 } else {

 table[i][w] = profit2

 }

 } else {

 // Exclude item

 table[i][w] = table[i - 1][w]

 }

 }

 }

 return table[n][weightLimit]

}

 Discussion of Code
We utilize a two-dimensional slice to accomplish the dynamic programming. Let us

“walk” through a small example to see how the algorithm works.

Suppose our weights and profits arrays are as follows:

Weights = [3, 5, 1]

Profits = [10, 20, 1]

WeightLimit = 5

We compute n equal to 2.

We create a 4 × 6 table.

Chapter 15 DynamiC programming

435

The following table is generated in KnapsackDP:

0 0 0 0 0 0
0 0 0 0 10 10
0 0 0 10 10 20
0 1 1 10 11 20
Because the dynamic programming solution is found using two nested loops, the

computation is O(n x L) complexity where L is the weight limit.

In Listing 15-2, we compare the computation time for each of the algorithms for

solving the 0/1 knapsack problem.

Listing 15-2. 0/1 Knapsack computation times

package main

import (

 "fmt"

 "time"

)

// Brute Force solution - Snip

// Dynamic Programming solution - Snip

func main() {

 weights := []int{4, 6, 2, 8}

 profits := []int{12, 15, 9, 21}

 fmt.Println("Solution 1 = ", KnapSackBF(10, weights, profits, 4))

 weights1 := []int{4, 6, 2, 8, 1, 17, 23, 10, 4, 8}

 profits1 := []int{12, 15, 9, 21, 5, 8, 20, 6, 1, 15}

 result := KnapSackBF(20, weights1, profits1, 10)

 fmt.Println("Solution 2 = ", result)

 weights2 := []int{}

 for i := 0; i < 800; i++ {

 weights2 = append(weights2, 2 * i)

 }

 profits2 := []int{}

 for i := 0; i < 800; i++ {

Chapter 15 DynamiC programming

436

 profits2 = append(profits2, 3 * i)

 }

 start := time.Now()

 result2 := KnapSackBF(400, weights2, profits2, 800)

 elapsed := time.Since(start)

 fmt.Println("Solution 3 = ", result2)

 fmt.Println("Time for solution3 (brute force): ",

 elapsed)

 start = time.Now()

 result3 := KnapSackDP(400, weights2, profits2)

 elapsed = time.Since(start)

 fmt.Println("Solution 3 = ", result3)

 fmt.Println("Time for solution3 (dynamic programming): ", elapsed)

}

/* Output

Solution 1 = 30

Solution 2 = 57

Solution 3 = 600

Time for solution3 (brute force): 1m10.248200934s

Solution 3 = 600

Time for solution3 (dynamic prograamming): 1.621038ms

*/

 Discussion of Code
For a problem involving 800 weights and profits, the dynamic programming solution is

43,000 times faster than the brute-force solution. If the weight limit in this problem were

increased, the computation time for the brute-force solution would become intractable.

In the next section, we apply dynamic programming to finding the longest

subsequence in two DNA strings.

Chapter 15 DynamiC programming

437

15.3 DNA Subsequences
DNA strings are a sequence of characters taken from the alphabet {A, C, G, T}. An

example of such a string is “CGTTACAATTTGCG”.

We define a subsequence of a string to be a sequence of characters taken in order

(not necessarily contiguous order) from the characters of the original string as one scans

from left to right in the original string.

For the preceding string, a subsequence would be “GTAAAGG”. This sequence is

taken from the characters shown in boldface from the original string.

In computational genetics, an important problem is finding the longest subsequence

that is common to two DNA strings. This is the longest subsequence problem.

A brute-force approach would be to enumerate all the subsequences of string1

and then test each one against string2. If string1 has n characters and string2 has m

characters, it would take O(2nm) for this brute-force algorithm. This is computationally

intractable for a large string1.

We use dynamic programming to solve this problem.

We define Length(j, k) as the length of a longest string that is a subsequence of X[0:j]

and Y[0:k].

There are two cases to consider. In the first, Xj-1 is equal to yk-1.

It follows then that Length(j, k) = 1 + Length(j-1, k–1).

If xj-1 is not equal to yk-1, we cannot have a subsequence that includes xj-1 and yk-12.

We then set Length(j, k) = max{Length(j-1, k), Length(j, k – 1)}.

Length(j, 0) is 0 for j = 0, 1, …, n and

Length(0, k) is 0 for k = 0, 1, …, m
These recurrence relations give rise to a dynamic programming solution.

We create an (n + 1) x (m + 1) two-dimensional slice, L. We initialize this list to 0’s.

We iteratively construct L until we get Ln,m.

Listing 15-3 presents a dynamic programming solution to the longest common

subsequence problem along with a main driver program with two test cases.

Listing 15-3. Longest common subsequence

package main

import (

 "fmt"

)

Chapter 15 DynamiC programming

438

func max(value1, value2 int) int {

 if value1 >= value2 {

 return value1

 } else {

 return value2

 }

}

func reverse(x []rune) []rune {

 result := []rune{}

 for index := len(x) - 1; index >= 0; index-- {

 result = append(result, x[index])

 }

 return result

}

func longestCommonSubsequenceTable(x, y []rune) (LCS [][]int) {

 // Return matrix so that LCS[j][k] is longest

 // common sequence for x[0:j] and y[0:k]

 n := len(x)

 m := len(y)

 // Initialize LCS table of size (n + 1 x m + 1)

 LCS = make([][]int, n + 1)

 for row := 0; row < n + 1; row++ {

 LCS[row] = make([]int, m + 1)

 }

 for row := 0; row < n; row++ {

 for col := 0; col < m; col++ {

 if x[row] == y[col] {

 LCS[row + 1][col + 1] = 1 +

 LCS[row][col]

 } else {

 LCS[row + 1][col + 1] =

 max(LCS[row][col + 1],

 LCS[row + 1][col])

 }

 }

Chapter 15 DynamiC programming

439

 }

 return LCS

}

func LongestCommonSequence(x, y []rune) string {

 table := longestCommonSubsequenceTable(x, y)

 result := []rune{}

 j, k := len(x), len(y)

 for {

 if table[j][k] == 0 {

 break

 }

 if x[j - 1] == y[k - 1] {

 result = append(result, x[j - 1])

 j -= 1

 k -= 1

 } else if table[j - 1][k] >= table[j][k - 1] {

 j -= 1

 k -= 1

 }

 }

 return string(reverse(result))

}

func main() {

 x := "CGTTACAATTTGCG"

 y := "TTTTAAACGTGCG"

 lcs := LongestCommonSequence([]rune(x), []rune(y))

 fmt.Println(lcs)

 x = "ATCGAATTCCGGTAGTCGT"

 y = "CGATAGTTCAGCCAG"

 lcs = LongestCommonSequence([]rune(x), []rune(y))

 fmt.Println(lcs)

}

Chapter 15 DynamiC programming

440

/* Output

TTAATGCG

TAGC

*/

 Discussion of Code
In order to be able to access individual characters of the x and y input strings, we need to

convert each to a slice of rune.

The recurrence relationships described earlier form the basis for the details in

function longestCommonSubsequenceTable.

In function LongestCommonSequence, we start at the right of the table and work

leftward toward the beginning of the table. Therefore, we need to reverse the result and

convert the reversed slice of rune to a string.

The computational complexity of this dynamic programming solution is O(n x m).

15.4 Summary
The algorithm design technique of dynamic programming was introduced. It was

applied to several problems including Fibonacci numbers, 0/1 knapsack, and DNA

subsequences. In all three problems, dynamic programming provides an efficient

solution.

In the next chapter, we turn our attention to graph structures and some classic

algorithms that utilize graphs.

Chapter 15 DynamiC programming

441

CHAPTER 16

Graph Structures
In the previous chapter, we presented dynamic programming and three applications.

In this chapter, we introduce graph structures and some applications. We show

several examples of how to represent a graph, and we examine some basic algorithms

associated with graph traversal.

In the next section, we examine how graphs can be represented.

16.1 Representing Graphs
Graph data structures provide one of the most useful and powerful frameworks for

algorithm design. A graph (not to be confused with a pictorial representation of a

mathematical function) can represent a huge number of systems from communication

networks, transportation, electrical grid, online interactions, games, and pattern

matching, to name a few.

A graph consists of a set of nodes and edges between them: Graph = (N, E), where N

is the collection of nodes and E the collection of edges.

In a directed graph, each edge has a specified direction.

Nodes are adjacent if there is an edge connecting them. Nodes that are adjacent to a

given node are neighbors.

The degree of a node is the number of nodes incident to it.

A path in a graph is a subgraph (subset of N and E) where the edges connect a series

of nodes in a sequence without visiting any node more than once.

A weighted graph has a weight associated with each edge. The length of a path is the

sum of its edge weights.

Consider the weighted directed graph shown in Figure 16-1.

© Richard Wiener, PhD 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_16

https://doi.org/10.1007/978-1-4842-8191-8_16

442

Figure 16-1. A weighted graph

In the next section, we discuss two methods for traversing this graph or any graph.

We allow the node to be of generic type OrderedStringer. Here, the generic type

is String.

16.2 Traversing Graphs
We look at two important traversal algorithms:

 1. Depth-first search (DFS)

 2. Breadth-first search (BFS)

The method DFS uses recursion and moves in a sequence outward from the starting

node and continues to visit nodes in a sequence as far as possible from the starting node

without revisiting a node and getting progressively closer to the starting node.

The method BFS uses iteration and an internal queue to traverse the graph

incrementally from the starting node. Nodes are visited at distances progressively further

from the starting vertex toward the furthest vertex from the starting vertex.

The edge values are stored in a global map variable as edges are defined.

In the next section, we discuss and implement a depth-first traversal and a breadth-

first traversal of a graph with generic vertex values.

16.3 Depth- and Breadth-First Search
We start by defining important data types.

Chapter 16 Graph StruCtureS

443

type OrderedStringer interface {

 comparable

 String() string

}

type Vertex[T OrderedStringer] struct {

 Key T

 Neighbors map[T]*Vertex[T]

}

type Graph[T OrderedStringer] struct {

 Vertices map[T]*Vertex[T]

}

var visitation []string

Our generic type is OrderedStringer. Entities of this type must be comparable and

have a string representation using the String() function.

A generic Vertex contains a Key (type T) and a map, Neighbors, mapping keys

(type T) to pointers to other vertices.

A generic Graph contains a map, Vertices, mapping keys (type T) to pointers to

vertices.

A global visitation variable is defined. This variable is a slice of string representing

the traversal keys.

Several important functions and methods are shown as follows:

func NewVertex[T OrderedStringer](key T) *Vertex[T] {

 return &Vertex[T]{

 Key: key,

 Neighbors: map[T]*Vertex[T]{},

 }

}

func NewGraph[T OrderedStringer]() *Graph[T] {

 return &Graph[T]{Vertices: map[T]*Vertex[T]{}}

}

Chapter 16 Graph StruCtureS

444

func (g *Graph[T]) AddVertex(key T) {

 vertex := NewVertex(key)

 g.Vertices[key] = vertex

}

func (g *Graph[T]) AddEdge(key1, key2 T, edgeValue int) {

 vertex1 := g.Vertices[key1]

 vertex2 := g.Vertices[key2]

 if vertex1 == nil || vertex2 == nil {

 return

 }

 vertex1.Neighbors[vertex2.Key] = vertex2

 g.Vertices[vertex1.Key] = vertex1

 g.Vertices[vertex2.Key] = vertex2

}

The function NewVertex takes a key (of type T) and returns a pointer to a Vertex with

an empty map, Neighbors.

The function NewGraph returns an empty graph with an empty map of Vertices.

The method AddVertex creates a new vertex and assigns Vertices[key] to the

new vertex.

The method AddEdge takes the two keys, assigns these to the Vertices field of graph,

and assigns the Neighbors field of vertex1 to vertex2.

 Depth-First Search
The first traversal method we examine is depth-first search. This method moves outward

from the starting vertex and moves directly to the furthest vertex not yet visited.

It is implemented as follows:

func (g *Graph[T]) DepthFirstSearch(start *Vertex[T],

 visited map[T]bool) {

 if start == nil {

 return

 }

 visited[start.Key] = true

 visitation = append(visitation, start.Key.String())

Chapter 16 Graph StruCtureS

445

 // for each of the adjacent vertices, call the

 // function recursively if it hasn't yet been

 // visited

 for _, v := range start.Neighbors {

 // The sequence of v may change from run to run

 if visited[v.Key] {

 continue

 }

 g.DepthFirstSearch(v, visited)

 }

}

The parameter, visited, passed in must be initialized to an empty map before

invoking the method.

The sequence of recursive calls causes the traversal to move away from the starting

vertex until it is furthest away before backtracking and finding other vertices far away

from the starting vertex.

 Breadth-First Search
The second traversal method we examine is breadth-first search. This method visits

vertices close to the starting vertex slowly moving outward and away from the starting

vertex. There is no recursion used here. A queue is used to store vertices that neighbor

visited vertices. These neighboring vertices are traversed first. So as the name of this

method implies, this traversal moves to adjacent vertices slowly getting further from the

starting vertex. It is implemented as follows:

type Queue[T any] struct {

 items []T

}

// Methods

func (queue *Queue[T]) Insert(item T) {

 // item is added to the right-most position in the

 // slice

 queue.items = append(queue.items, item)

}

Chapter 16 Graph StruCtureS

446

func (queue *Queue[T]) Remove() T {

 returnValue := queue.items[0]

 queue.items = queue.items[1:]

 return returnValue

}

func (g *Graph[T]) BreadthFirstSearch(start *Vertex[T],

 visited map[T]bool) {

 if start == nil {

 return

 }

 queue := Queue[*Vertex[T]]{} // Queue hold pointers

 // to Vertex

 current := start

 for {

 if !visited[current.Key] {

 visitation = append(visitation,

 current.Key.String())

 }

 visited[current.Key] = true

 // Insert each neighboring vertex not visited

 // onto the queue

 for _, v := range current.Neighbors {

 if !visited[v.Key] {

 queue.Insert(v)

 }

 }

 // Grab first vertex in the queue and remove it

 if len(queue.items) > 0 {

 current = queue.Remove()

 } else {

 break

 }

 }

}

Chapter 16 Graph StruCtureS

447

The queue plays a central role in the implementation of this method. It forces

all nearby vertices to be visited early in contrast to depth-first search. Like the latter

method, this method requires the parameter visited to be initialized to an empty map

before invoking the method.

Listing 16-1 presents all the details of defining and traversing a graph. The graph

shown in Section 16.1 is constructed in the main driver program.

Listing 16-1. Defining and traversing a graph

package main

import (

 "fmt"

)

type OrderedStringer interface {

 comparable

 String() string

}

type Graph[T OrderedStringer] struct {

 Vertices map[T]*Vertex[T]

}

type Vertex[T OrderedStringer] struct {

 Key T

 Neighbors map[T]*Vertex[T]

}

var visitation []string

func NewVertex[T OrderedStringer](key T) *Vertex[T] {

 return &Vertex[T]{

 Key: key,

 Neighbors: map[T]*Vertex[T]{},

 }

}

Chapter 16 Graph StruCtureS

448

func NewGraph[T OrderedStringer]() *Graph[T] {

 return &Graph[T]{Vertices: map[T]*Vertex[T]{}}

}

func (g *Graph[T]) AddVertex(key T) {

 vertex := NewVertex(key)

 g.Vertices[key] = vertex

}

func (g *Graph[T]) AddEdge(key1, key2 T,

 edgeValue int) {

 vertex1 := g.Vertices[key1]

 vertex2 := g.Vertices[key2]

 if vertex1 == nil || vertex2 == nil {

 return

 }

 vertex1.Neighbors[vertex2.Key] = vertex2

 g.Vertices[vertex1.Key] = vertex1

 g.Vertices[vertex2.Key] = vertex2

}

func (g *Graph[T]) DepthFirstSearch(start *Vertex[T],

 visited map[T]bool) {

 if start == nil {

 return

 }

 visited[start.Key] = true

 visitation = append(visitation, start.Key.String())

 for _, v := range start.Neighbors {

 // The sequence of v may change from run to run

 if visited[v.Key] {

 continue

 }

 g.DepthFirstSearch(v, visited)

 }

}

Chapter 16 Graph StruCtureS

449

type Queue[T any] struct {

 items []T

}

// Methods

func (queue *Queue[T]) Insert(item T) {

 queue.items = append(queue.items, item)

}

func (queue *Queue[T]) Remove() T {

 returnValue := queue.items[0]

 queue.items = queue.items[1:]

 return returnValue

}

func (g *Graph[T]) BreadthFirstSearch(start *Vertex[T],

 visited map[T]bool) {

 if start == nil {

 return

 }

 queue := Queue[*Vertex[T]]{}

 current := start

 for {

 if !visited[current.Key] {

 visitation = append(visitation,

 current.Key.String())

 }

 visited[current.Key] = true

 for _, v := range current.Neighbors {

 if !visited[v.Key] {

 queue.Insert(v)

 }

 }

 // Grab first vertex in the queue and remove it

 if len(queue.items) > 0 {

 current = queue.Remove()

 } else {

Chapter 16 Graph StruCtureS

450

 break

 }

 }

}

func (g *Graph[T]) String() string {

 result := ""

 for i := 0; i < len(visitation); i++ {

 result += " " + visitation[i]

 }

 return result

}

// Make String implement Stringer

type String string

func (str String) String() string {

 return string(str)

}

func main() {

 g := NewGraph[String]()

 g.AddVertex("A")

 start := g.Vertices["A"]

 g.AddVertex("B")

 g.AddVertex("C")

 g.AddVertex("D")

 g.AddVertex("E")

 g.AddVertex("F")

 g.AddVertex("G")

 g.AddEdge("A", "B", 2)

 g.AddEdge("A", "C", 5)

 g.AddEdge("A", "D", 9)

 g.AddEdge("B", "D", 3)

 g.AddEdge("C", "F", 9)

 g.AddEdge("D", "E", 4)

 g.AddEdge("E", "D", 4)

Chapter 16 Graph StruCtureS

451

 g.AddEdge("F", "E", 6)

 g.AddEdge("E", "G", 7)

 g.AddEdge("F", "G", 3)

 visited := make(map[String]bool)

 visitation = []string{}

 g.DepthFirstSearch(start, visited)

 fmt.Println("Depth First Search:", g.String())

 visited = make(map[String]bool)

 visitation = []string{}

 g.BreadthFirstSearch(start, visited)

 fmt.Println("Breadth First Search:", g.String())

}

/* Output

Depth First Search: A B D E G C F

Breadth First Search: A C D B F E G

*/

The two output traversal sequences confirm our assertions about the sequence of

visited nodes for depth- vs. breadth-first search.

In the next section, we present and implement a solution to a classic graph problem.

We show how to find the shortest path from a source node to every other node in

a graph.

16.4 Single-Source Shortest Path in Graph
Given a graph and a source node in the graph. Find the shortest paths from the source

node to all the nodes in the graph.

The celebrated Dijkstra algorithm is presented. It was conceived by computer

scientist Edsger W. Dijkstra in 1956 and published three years later.

Consider the graph with source node “A” shown in Figure 16-2.

Chapter 16 Graph StruCtureS

https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

452

Figure 16-2. Graph for single-source shortest path

The Dijkstra algorithm returns the shortest distance from source node “A” to all the

other nodes in the graph.

 Implementation
Listing 16-2 presents an implementation of the Dijkstra algorithm.

Listing 16-2. Dijkstra algorithm

package main

import (

 "fmt"

 "github.com/jiaxwu/container/heap"

)

// PriorityQueue Priority queue

type PriorityQueue[T any] struct {

 h *heap.Heap[T]

}

func New[T any](less func(e1 T, e2 T) bool)

 *PriorityQueue[T] {

 return &PriorityQueue[T]{

Chapter 16 Graph StruCtureS

453

 h: heap.New(less),

 }

}

func (p *PriorityQueue[T]) Add(elem T) {

 p.h.Push(elem)

}

func (p *PriorityQueue[T]) Remove() T {

 return p.h.Pop()

}

func (p *PriorityQueue[T]) Len() int {

 return p.h.Len()

}

func (p *PriorityQueue[T]) Empty() bool {

 return p.Len() == 0

}

func Less(a, b tuple) bool {

 return a.weight < b.weight

}

// end priority queue

type edges = map[rune]int

type Graph map[rune]edges

type tuple struct {

 node rune

 weight int

}

func convert(r rune) int {

 return int(r) - 65

}

func Dijkastra(graph Graph) []tuple {

Chapter 16 Graph StruCtureS

454

 distances := make([]tuple, len(graph))

 for i := 0; i < len(graph); i++ {

 distances[i] = tuple{'A', 32767}

 }

 distances[0] = tuple{'A', 0}

 heapQueue := New[tuple](Less)

 t := tuple{'A', 0}

 heapQueue.Add(t)

 for {

 if heapQueue.Len() == 0 {

 break

 }

 t = heapQueue.Remove()

 currentNode := t.node

 currentDistance := t.weight

 if currentDistance >

 distances[convert(currentNode)].weight {

 continue

 }

 for t, w := range graph[currentNode] {

 neighbor := t

 weight := w

 distance := currentDistance + weight

 /*

 Only consider this new path if it's

 better than any path we've already

 found

 */

 if distance <

 distances[convert(neighbor)].weight {

 distances[convert(neighbor)] =

 tuple{neighbor, distance}

 heapQueue.Add(tuple{neighbor,

 distance})

 }

Chapter 16 Graph StruCtureS

455

 }

 }

 return distances

}

func main() {

 graph := make(map[rune]edges)

 graph['A'] = edges{'B': 4, 'H': 1}

 graph['B'] = edges{'A': 4, 'C': 1, 'H': 11}

 graph['C'] = edges{'B': 1, 'I': 2, 'F': 1, 'D': 7}

 graph['D'] = edges{'C': 7, 'F': 8, 'E': 1}

 graph['E'] = edges{'D': 1, 'F': 10}

 graph['F'] = edges{'G': 2, 'C': 1, 'D': 8, 'E': 10}

 graph['G'] = edges{'F': 2, 'I': 1, 'H': 1}

 graph['H'] = edges{'G': 1, 'I': 7, 'B': 11, 'A': 1}

 graph['I'] = edges{'C': 2, 'H': 7, 'G': 1}

 solution := Dijkastra(graph)

 for node, weight := range solution {

 fmt.Printf("%s %d ", string(node + 65), weight)

 }

}

/* Output

A {65 0} B {66 4} C {67 5} D {68 12} E {69 13} F {70 4} G {71 2} H {72 1}

I {73 3}

*/

 Explanation of Solution
Each node in the graph is represented by a tuple defined as

type tuple struct {

 node rune

 weight int

}

type edges = map[rune]int

Chapter 16 Graph StruCtureS

456

A Graph is defined as:

type Graph map[rune]edges

In a graph, each node, with key of type rune, such as “A”, is mapped to another map,

edges, from rune to int. This layering of abstractions is needed to represent a structure as

complicated as a graph.

A priority queue plays a central role in implementing a solution to the problem.

Here, we implement PriorityQueue with generic type T by importing package

“github.com/jiaxwu/container/heap”.

We define a Less function that compares the int field of the tuples to order them from

smallest to largest.

We initialize the queue using

heapQueue := New[tuple](Less)

Here, we see another example whereby having a generic structure, PriorityQueue,

makes it easy to create an instance with base-type tuple, useful in this application.

We define a slice, distances, as containing tuples of node (type rune) and an int that

represents the best distance so far. We initialize distances to have very large initial value.

We set distances[0] to tuple{‘A’, 0}.

We push this tuple onto the heap queue. This heap queue is set up to ensure that

the tuple with the smallest distance is at the head of the line, the first tuple that can be

removed.

In a loop that terminates when the queue becomes empty, we remove the head of

the queue and assign current distance to its weight field. If this value is greater than the

second field of the tuple removed from the queue, we discard it by continuing the loop.

In a second inner loop in which we range over the connections from the current

node, we compare the sum of the current distance and the weight of each graph

connection to the best distance so far for the given connection. If this best distance so far

is less than the value in the distances slice, we push the tuple onto the queue and update

the distances slice.

In main, we define the graph shown earlier. The output displays the shortest

distances from source node “A” to each of the other nodes.

In the next section, we present another classic graph problem and its

solution – minimum spanning tree.

Chapter 16 Graph StruCtureS

457

16.5 Minimum Spanning Tree
A minimum spanning tree for a weighted undirected connected graph is a collection

of edges that touch all nodes of the graph without any cycles and with minimum weight.

The weight of the spanning tree is defined as the sum of the weights of the edges that

comprise the tree.

Although several people have laid claim to creating an algorithm for creating a

minimum spanning tree from a weighted graph, the two most famous algorithms for

doing this are by Prim and Kruskal.

We shall present the Kruskal algorithm and its implementation. This algorithm first

appeared in Proceedings of the American Mathematical Society, pp. 48–50, in 1956 and

was written by Joseph Kruskal.

The approach that is taken is to incrementally build the tree one edge at a time by

choosing the cheapest edge among those still available. This strategy is a classic greedy

strategy in which a local optimization leads to a global optimum solution.

 Kruskal Algorithm

 1. Sort the edges in ascending order of their weights.

 2. Select the edge having minimum weight and add it to the

spanning tree providing that a cycle does not occur.

 3. Repeat steps 1 and 2 until all nodes have been covered.

To see how the algorithm works, we shall walk through an example.

Consider the tree shown in Figure 16-3.

Chapter 16 Graph StruCtureS

https://en.wikipedia.org/wiki/Proceedings_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/Joseph_Kruskal

458

Figure 16-3. Graph for Kruskal algorithm

The first edge that we insert into our spanning tree has the smallest weight. There

are three such edges, “AB”, “AC”, and “CG”, each with weight equal to 1. We insert all three

into the spanning tree since no cycles are produced. Next, we insert “DE” and “EF”, with

weights 2 and 3, since these produce no cycles.

The next smallest edge is “BC”, with a weight of 4. If we were to add this edge to the

spanning tree, we would get a cycle among the nodes, “A”, “B”, and “C”. So we reject this

edge. Likewise, we reject the next smallest available edge, “DF”, since its inclusion would

produce a cycle among the nodes, “D”, “E”, and “F”.

The next smallest node, “GD”, with weight 6, is added next. The remaining available

node, “CD”, is rejected since its inclusion would create a cycle among the nodes, “C”, “G”,

and “D”.

A minimum spanning tree for this graph is therefore

{1 A B} {1 A C} {1 C G} {2 D E} {3 E F} {6 G D} with a total weight of 14.

In the next section, we implement the Kruskal algorithm. The main driver program

uses the graph shown previously.

16.6 Implementation of Kruskal Algorithm
Our implementation of the Kruskal algorithm is relatively short. The details are

presented in Listing 16-3 and carefully explained after the listing.

Chapter 16 Graph StruCtureS

459

Listing 16-3. Kruskal algorithm

package main

import (

 "fmt"

 "sort"

)

type Edge struct {

 weight int

 node1 Node

 node2 Node

}

type Node = string

type EdgeSlice []Edge

// Infrastructure to allow []Edges to be sorted

func (edges EdgeSlice) Len() int {

 return len(edges)

}

func (edges EdgeSlice) Swap(i, j int) {

 edges[i], edges[j] = edges[j], edges[i]

}

func (edges EdgeSlice) Less(i, j int) bool {

 return edges[i].weight < edges[j].weight

}

var connection map[Node]Node

/*

 The initial level of each Node is 0.

 If the node is node2 of an Edge,

 increase its level by 1.

*/

Chapter 16 Graph StruCtureS

460

var end map[Node]int

func Initialize(node Node) {

 connection[node] = node

 end[node] = 0

}

func Find(node Node) Node {

 // Stops a cycle

 if connection[node] != node {

 connection[node] = Find(connection[node])

 }

 return connection[node]

}

func Connect(node1, node2 Node) {

 n1 := Find(node1)

 n2 := Find(node2)

 fmt.Printf("\nFind(%s) = %s", node1, n1)

 fmt.Printf("\nFind(%s) = %s", node2, n2)

 if n1 != n2 {

 fmt.Printf("\nend[%s] = %d", n1, end[n1])

 fmt.Printf("\nend[%s] = %d", n2, end[n2])

 if end[n1] > end[n2] {

 connection[n2] = n1

 fmt.Printf("\nconnection[%s] = %s", n2,

 n1)

 } else {

 connection[n1] = n2

 fmt.Printf("\nconnection[%s] = %s", n1,

 n2)

 if end[n1] == end[n2] {

 end[n2] += 1

 fmt.Printf("\nend[%s] = 1", n2)

 }

 }

Chapter 16 Graph StruCtureS

461

 }

}

func Kruskal(nodes []Node, edges EdgeSlice) []Edge {

 for _, node := range nodes {

 Initialize(node)

 }

 spanningTree := []Edge{}

 sort.Sort(edges)

 for _, edge := range edges {

 node1 := edge.node1

 node2 := edge.node2

 n1 := Find(node1)

 n2 := Find(node2)

 fmt.Printf("\nFind(%s) = %s", node1, n1)

 fmt.Printf("\nFind(%s) = %s", node2, n2)

 if n1 != n2 {

 Connect(node1, node2)

 fmt.Printf("\nConnect(%s, %s)", node1,

 node2)

 spanningTree = append(spanningTree, edge)

 } else {

 fmt.Printf("\nReject edge %s and %s",

 node1, node2)

 }

 }

 return spanningTree

}

func main() {

 connection = make(map[Node]Node)

 end = make(map[Node]int)

 // Define the graph by its nodes and edges

 nodes := []Node{"A", "B", "C", "D", "E", "F", "G"}

 edges := []Edge{ {1, "A", "B"}, {1, "A", "C"},

 {4, "B", "C"}, {20, "C", "D"},

Chapter 16 Graph StruCtureS

462

 {2, "D", "E"}, {3, "E", "F"},

 {6, "G", "D"}, {1, "C", "G"},

 {5, "D", "F"} }

 spanningTree := Kruskal(nodes, edges)

 fmt.Println("\n", spanningTree)

}

/* Output

Find(A) = A

Find(B) = B

Find(A) = A

Find(B) = B

end[A] = 0

end[B] = 0

connection[A] = B

end[B] = 1

Connect(A, B)

Find(A) = B

Find(C) = C

Find(A) = B

Find(C) = C

end[B] = 1

end[C] = 0

connection[C] = B

Connect(A, C)

Find(C) = B

Find(G) = G

Find(C) = B

Find(G) = G

end[B] = 1

end[G] = 0

connection[G] = B

Connect(C, G)

Find(D) = D

Find(E) = E

Find(D) = D

Chapter 16 Graph StruCtureS

463

Find(E) = E

end[D] = 0

end[E] = 0

connection[D] = E

end[E] = 1

Connect(D, E)

Find(E) = E

Find(F) = F

Find(E) = E

Find(F) = F

end[E] = 1

end[F] = 0

connection[F] = E

Connect(E, F)

Find(B) = B

Find(C) = B

Reject edge B and C

Find(D) = E

Find(F) = E

Reject edge D and F

Find(G) = B

Find(D) = E

Find(G) = B

Find(D) = E

end[B] = 1

end[E] = 1

connection[B] = E

end[E] = 1

Connect(G, D)

Find(C) = E

Find(D) = E

Reject edge C and D

 [{1 A B} {1 A C} {1 C G} {2 D E} {3 E F} {6 G D}]*/

Chapter 16 Graph StruCtureS

464

 Explanation of Kruskal Implementation
We walk through the example given in the main driver to uncover the details of this

implementation.

We initialize the connection and end maps.

We define the input, the slice of Node values, and the slice of Edge values in main.

We pass these slices to the Kruskal function.

In function Kruskal, we initialize all the nodes by setting the connection of the node

to itself and the end value to 0.

We define spanningTree as an empty slice of edges. We sort the edges by their

weight, having created the infrastructure for ensuring that an edge slice can be sorted

(functions Len, Swap, and Less).

In a loop over the edges, for each edge, we define node1 and node2 as the beginning

and ending nodes of the edge.

The code has been instrumented with many fmt.Printf outputs that chronicle the

algorithm in detail showing, in particular, the rejection of edges that cause cycles.

Let’s take a look.

The first edge that needs to be rejected is the link from “B” to “C”. Let’s zoom in on

the details following the connection from “E” to “F”. The next link to be inserted is the

link from “C” to “B”.

Since Find(“B”) equals Find(“C”), this link is not appended to the spanning tree.

The output lines shown in boldface lead to the rejections of the links shown. The link

from “D” to “F” is rejected for the same reason.

16.7 Summary
In this chapter, we introduced graph structures and some applications. We showed

several examples of how to represent a graph, and we examined some basic algorithms

associated with graph traversal.

The next chapter introduces the famed Travelling Salesperson Problem (TSP). All

known exact solutions to this problem are computationally intractable. We introduce

one such solution and test it on a smaller-sized problem. We also show how to plot a tour

associated with a TSP solution.

Chapter 16 Graph StruCtureS

465

CHAPTER 17

Travelling Salesperson
Problem
The previous chapter introduced the graph data structure. A generic implementation

was shown. Several classic graph algorithms were implemented and discussed.

This chapter is the first of several chapters that examine solutions to the classic

Travelling Salesperson Problem. An exact solution to this problem is computationally

intractable. In this chapter, we present and implement an algorithm for obtaining an

exact solution to this problem.

In the next section, we introduce this classic problem.

17.1 Travelling Salesperson Problem and Its History
The Travelling Salesperson Problem (TSP) is a classic problem with a rich history. Given

a set of cities and the distance between every pair of cities, the problem is to find the
shortest tour that visits every city exactly once and returns to the starting city. The

problem was first formulated in 1930. It has become one of the most intensively studied

problems in optimization.

Some history:

See

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_

algorithms.

 1. An exact solution for 15,112 German towns from TSPLIB was

found in 2001 using the cutting- plane method proposed by

George Dantzig, Ray Fulkerson, and Selmer M. Johnson in 1954,

based on linear programming.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_17

https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_algorithms
https://en.wikipedia.org/wiki/Travelling_salesman_problem#Exact_algorithms
https://en.wikipedia.org/wiki/Cutting-plane_method
https://en.wikipedia.org/wiki/George_Dantzig
https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/Selmer_M._Johnson
https://en.wikipedia.org/wiki/Linear_programming
https://doi.org/10.1007/978-1-4842-8191-8_17

466

 2. In May 2004, the Travelling Salesman Problem of visiting all 24,978

towns in Sweden was solved: a tour of length approximately

72,500 kilometers was computed, and it was proven that no

shorter tour exists.

 3. In March 2005, the Travelling Salesman Problem of visiting all

33,810 points in a circuit board was solved using Concorde TSP
Solver. The computation took approximately 15.7 CPU-years.

TSP is a member of a group of problems that are NP-hard (nondeterministic

polynomial time hard). If a polynomial-time-based solution could be found for any

problem in this group, it can be proven that a polynomial-time solution for all the

problems in this group could be found. To date, no such polynomial-time solutions have

been found for any NP-hard problem.

In the next section, we present a brute-force solution to this problem that produces

an exact solution.

17.2 An Exact Brute-Force Solution
Cities will be represented by vertices in a graph and numbered 0, 1, 2, …, n. The distance

between cities will be specified as either integer or floating-point numbers and shown as

the edges in the graph.

Consider the graph shown in Figure 17-1. This graph represents a four-city problem.

The edge values represent the distance between cities.

Figure 17-1. Graph of a four-city TSP

Chapter 17 travelling SaleSperSon problem

https://en.wikipedia.org/wiki/Concorde_TSP_Solver
https://en.wikipedia.org/wiki/Concorde_TSP_Solver

467

The brute-force solution requires that we obtain all permutations of tours that start

with city 0 and end with city 0. For each tour in the permutation, we compute its cost. We

return the tour with the lowest cost.

The tour permutations that we consider are shown in Figure 17-2.

Figure 17-2. Tour permutations

For each tour permutation, we compute the length of the tour. The tour permutation

with the smallest length is an optimum solution to the problem. There may be ties.

 Finding Permutations
The first task is to compute all the permutations of a slice containing consecutive

integers starting at 0.

Listing 17-1 performs this task.

Listing 17-1. Permutations of slice

package main

import (

 "fmt"

)

func Permutations(data []int, operation func([]int)) {

 permute(data, operation, 0)

}

func permute(data []int, operation func([]int), step

 int) {

 if step > len(data) {

 operation(data)

Chapter 17 travelling SaleSperSon problem

468

 return

 }

 permute(data, operation, step + 1)

 for k := step + 1; k < len(data); k++ {

 data[step], data[k] = data[k], data[step]

 permute(data, operation, step + 1)

 data[step], data[k] = data[k], data[step]

 }

}

func main() {

 data := []int{0, 1, 2, 3}

 Permutations(data, func(a []int) {

 fmt.Println(a)

 })

}

/* Output

[0 1 2 3]

[0 1 3 2]

[0 2 1 3]

[0 2 3 1]

[0 3 2 1]

[0 3 1 2]

[1 0 2 3]

[1 0 3 2]

[1 2 0 3]

[1 2 3 0]

[1 3 2 0]

[1 3 0 2]

[2 1 0 3]

[2 1 3 0]

[2 0 1 3]

[2 0 3 1]

[2 3 0 1]

[2 3 1 0]

[3 1 2 0]

Chapter 17 travelling SaleSperSon problem

469

[3 1 0 2]

[3 2 1 0]

[3 2 0 1]

[3 0 2 1]

[3 0 1 2]

*/

We leave it to the reader to walk through the code for a small problem and verify that

it produces the desired permutation.

The second parameter in the Permutations function is an operation that must be

performed on each slice. In the example presented in Listing 17-1, the operation is to

output the slice. This is shown in main in boldface.

 Brute-Force Computation for TSP
Listing 17-2 presents a brute-force computation for the TSP. It uses the permutation logic

presented in Listing 17-1. It finds all the permutations of tours that start at 0 and end at 0.

For each tour, it computes the cost of the tour and saves the best tour along with its cost.

Listing 17-2. Brute-force solution to TSP

package main

import (

 "fmt"

 "math/rand"

 "time"

)

type Graph [][]int

type TourCost struct {

 cost int

 tour []int

}

var minimumTourCost TourCost

var graph Graph

Chapter 17 travelling SaleSperSon problem

470

func Permutations(data []int, operation func([]int)) {

 permute(data, operation, 0)

}

func permute(data []int, operation func([]int), step

 int) {

 if step > len(data) {

 operation(data)

 return

 }

 permute(data, operation, step+1)

 for k := step + 1; k < len(data); k++ {

 data[step], data[k] = data[k], data[step]

 permute(data, operation, step+1)

 data[step], data[k] = data[k], data[step]

 }

}

func TSP(graph Graph, numCities int) {

 tour := []int{}

 for i := 1; i < numCities; i++ {

 tour = append(tour, i)

 }

 minimumTourCost = TourCost{32767, []int{}}

 Permutations(tour, func(tour []int) {

 // Compute cost of tour

 cost := graph[0][tour[0]]

 for i := 0; i < len(tour)-1; i++ {

 cost += graph[tour[i]][tour[i+1]]

 }

 cost += graph[tour[len(tour)-1]][0]

 if cost < minimumTourCost.cost {

 minimumTourCost.cost = cost

 var tourCopy []int

 tourCopy = append(tourCopy, 0)

 tourCopy = append(tourCopy, tour...)

Chapter 17 travelling SaleSperSon problem

471

 tourCopy = append(tourCopy, 0)

 minimumTourCost.tour = tourCopy

 }

 })

}

func main() {

 graph = Graph{{0, 5, 3, 9}, {5, 0, 2, 1}, {3, 2, 0, 6},

 {9, 1, 6, 0}}

 TSP(graph, 4)

 fmt.Printf("\nOptimum tour cost: %d An Optimum

 Tour %v", minimumTourCost.cost,

 minimumTourCost.tour)

 numCities := 14

 graph2 := make([][]int, numCities)

 for i := 0; i < numCities; i++ {

 graph2[i] = make([]int, numCities)

 }

 for row := 0; row < numCities; row++ {

 for col := 0; col < numCities; col++ {

 graph2[row][col] = rand.Intn(9) + 2

 }

 }

 // Create a short path for test purposes

 for i := 0; i < numCities-1; i++ {

 graph2[i][i+1] = 1

 }

 graph2[numCities-1][0] = 1

 start := time.Now()

 TSP(graph2, numCities)

 elapsed := time.Since(start)

 fmt.Printf("\nOptimum tour cost: %d An Optimum

 Tour %v", minimumTourCost.cost,

 minimumTourCost.tour)

Chapter 17 travelling SaleSperSon problem

472

 fmt.Println("\nComputation time: ", elapsed)

}

/* Output

Optimum tour cost: 15 An Optimum Tour [0 1 3 2 0]

Optimum tour cost: 14 An Optimum Tour [0 1 2 3 4 5 6 7 8 9 10 11 12 13 0]

Computation time: 2m15.918717943s

*/

 Discussion of Code
We focus on the invocation of Permutations inside of function TSP. In particular, we

look at the function defined as the second parameter, shown in boldface.

For each tour in the permutation, we compute the cost of the tour.

The first cost computed is the cost of going from city 0 to the first city in the tour

permutation. Following that, in a loop, we compute and add the costs for the sequence

of cities in the tour permutation. The final cost computed is the cost from the last city in

the tour permutation back to city 0.

We compare the cost of the tour permutation with the lowest cost thus far. This is

held as a global variable of type TourCost.

type TourCost struct {

 cost int

 tour []int

}

A programming subtlety requires that we make a copy of the tour that we save in the

global minimumTourCost. This is needed because assigning one slice to another makes

a shallow copy. We are interested here in copying the information, not the address of

the slice.

We accomplish this with the append function as follows:

var tourCopy []int

tourCopy = append(tourCopy, 0)

tourCopy = append(tourCopy, tour...)

tourCopy = append(tourCopy, 0)

Chapter 17 travelling SaleSperSon problem

473

This block of code also adds the tour link from the starting city 0 and the tour link of

getting back to city 0.

The computational cost of this brute-force solution is (n – 1)! That is why the brute-

force method is intractable.

To illustrate this, we solve a 14-city problem with random integer distances between

cities. We embed a low-cost path from city 0 to 1, 1 to 2, …, 13 to 0, each a distance 1

apart, for a total cost of 14. This does not affect computation time but gives us a test of

correctness of the TSP algorithm.

As you can see from the output, we pass this test. The computation time for a 14-city

problem is over two minutes.

If we were to increase the size of the problem by one city, the computation time

would increase by a factor of 14. The computational complexity, O(n!), clearly makes this

brute-force algorithm intractable.

 Other Solutions
There are many algorithms, all intractable, that produce exact solutions to TSP. These

algorithms employ dynamic programming, branch and bound, linear programming, and

other techniques. They work well for small-sized problems but are impractical when the

number of cities exceeds several dozen.

Before we examine heuristic algorithms for solving TSP that produce solutions close

to the exact solution in reasonable time and storage space for large-sized problems, the

next section presents code for displaying a TSP tour.

17.3 Displaying a TSP Tour
Listing 17-3 uses a third-party package to graphically display a tour given a slice of points

that define the cities in the tour.

Listing 17-3. Displaying a TSP tour

package main

import (

 "image/color"

 "gonum.org/v1/plot"

Chapter 17 travelling SaleSperSon problem

474

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

type Point struct {

 X float64

 Y float64

}

func definePoints(cities []Point, tour []int)

 plotter.XYs {

 pts := make(plotter.XYs, len(cities) + 1)

 pts[0].X = cities[0].X

 pts[0].Y = cities[0].Y

 for i := 1; i < len(cities); i++ {

 pts[i].X = cities[tour[i]].X

 pts[i].Y = cities[tour[i]].Y

 }

 pts[len(cities)].X = cities[0].X

 pts[len(cities)].Y = cities[0].Y

 return pts

}

func DrawTour(cities []Point, tour []int) {

 data := definePoints(cities, tour) // plotter.XYs

 p := plot.New()

 p.Title.Text = "TSP Tour"

 lines, points, err := plotter.NewLinePoints(data)

 if err != nil {

 panic(err)

 }

 lines.Color = color.RGBA{R: 255, A: 255}

 points.Shape = draw.PyramidGlyph{}

 points.Color = color.RGBA{B: 255, A: 255}

 p.Add(lines, points)

 // Save the plot to a PNG file.

Chapter 17 travelling SaleSperSon problem

475

 if err := p.Save(4*vg.Inch, 4*vg.Inch,

 "tour.png"); err != nil {

 panic(err)

 }

}

func main() {

 numCities := 4

 cities := make([]Point, numCities)

 cities[0] = Point{0.0, 0.0}

 cities[1] = Point{3.0, 0.0}

 cities[2] = Point{3.0, 4.0}

 cities[3] = Point{1.0, 11.0}

 tour := []int{0, 3, 1, 2}

 DrawTour(cities, tour)

}

 Discussion of Code
The helper function, definePoints, returns a plotter.XYs. It uses the input slice, cities,

to obtain the X and Y coordinates of each city that are assigned to pts. It assigns the

sequence of points based on the input slice, tour.

The DrawTour function invokes definePoints and assigns the result to data. The

remaining code follows the protocol in the plot package that is imported. A new plot, p,

is defined. The lines and points variables are obtained from plotter.NewLinePoints.

After adding these to the plot, p, a png file is saved, which contains the points and

lines that graphically display the tour.

The output of this program is shown in Figure 17-3.

Chapter 17 travelling SaleSperSon problem

476

Figure 17-3. Output from Listing 17-3

17.4 Summary
The famed Travelling Salesperson Problem is introduced. A brute-force solution is

presented. This solution, like all known exact solutions, is computationally intractable

with a big O of O(n!).

Code for displaying a tour with specified coordinate locations is presented and

illustrated with a simple example.

In the next chapter, we present another algorithm for obtaining an exact solution solving

TSP. This algorithm uses a powerful technique called branch and bound. Like all known

exact solutions to TSP, this branch-and-bound algorithm is computationally intractable.

Chapter 17 travelling SaleSperSon problem

477

CHAPTER 18

Branch-and-Bound
Solution to TSP
The previous chapter introduced the famed Travelling Salesperson Problem (TSP).

A brute-force solution was presented. Like all exact solutions to this problem, it is

computationally intractable. A third-party package was presented along with code for

graphically displaying a TSP tour.

This chapter presents another exact solution to TSP using a powerful technique,

branch and bound. It too is computationally intractable.

In the next section, we introduce the technique of branch and bound and show how

it can be applied to TSP.

18.1 Branch and Bound for TSP
Much of this chapter is based on a paper written by this author and published in the

Journal of Object Technology in 2003. The paper is “Branch and Bound Implementation

for the Traveling Salesperson Problem” (Richard Wiener, Journal of Object Technology,

Vol 2. No. 3, May–June 2003).

We are given a graph that contains distances connecting all cities (each city is

connected to every other city with an edge representing the distance between the two

cities). The nodes of the graph are the cities, numbered 0, …, n - 1. A tour is a sequence

of cities that starts at city 0, visits each of the other cities exactly once, and returns to the

starting city 0.

In any tour, the value of an edge when leaving a city must be equal or greater
than the value of the shortest edge leaving the city.

This forms the basis for a branch-and-bound solution to TSP.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_18

https://doi.org/10.1007/978-1-4842-8191-8_18

478

 An Example
Consider a TSP with the following distance matrix (cost matrix):

 0 14 4 11 20

14 0 7 8 7

 4 7 0 7 16

11 8 7 0 2

20 7 16 2 0

We build a solution tree as follows:

At level 0, the root node represents a partial tour [0].

At level 1, nodes representing the partial tours [0, 1], [0, 2], [0, 3], …, [0, n - 1] are

generated.

At level 2, nodes representing the partial tours [0, 1, 2], [0, 1, 3], [0, 1, 4], … are

generated.

This pattern continues until at the lowest level, we have every permutation for

all tours.

 Computation of Lower Bound
For the root node of the preceding graph, with partial tour [0], the lower bound on the

costs of leaving the five vertices is

City 0: minimum (14, 4, 11, 20) = 4.

City 1: minimum (14, 7, 8, 7) = 7.

City 2: minimum (4, 7, 7, 16) = 4.

City 3: minimum (11, 8, 7, 2) = 2.

City 4: minimum (20, 7, 16, 2) = 2.

Therefore, the lower bound for the TSP solution based on the partial tour [0] is the

sum of these values, which is 19.

Let us compute the lower bound for a partial tour [0, 2, 3].

City 0: 4 (since the tour contains 0 -> 2)

City 1: 7 (cannot touch node already on tour)

City 2: 7 (since the tour contains 2 -> 3)

City 3: 11 (since the tour contains 3 -> 0)

City 4: 7 (cannot touch node already on tour)

Therefore, the lower bound for the partial tour [0, 2, 3] is the sum, which equals 36.

The computational cost of computing the lower bound for a partial tour is low.

Chapter 18 BranCh-and-Bound Solution to tSp

479

At any level in the tree containing partial tours, the nodes can be ranked by their

computed lower bounds. We can use a priority queue to hold the tree structure.

 Branch-and-Bound Algorithm
• Set an initial value for the best tour cost.

• Initialize a priority queue (PQ).

• Generate the first node with partial tour [0] and compute its

lower bound.

• Insert this node into PQ.

• While the PQ is not empty, remove the first node from the PQ and

assign it to parent.

• If its lower bound < best tour cost, set its level to the level of parent

node + 1.

• If this level is N – 1, where N is the number of cities, add starting city 0

to the end of the partial tour and compute the cost of the full tour.

• If this cost of full tour < best tour cost, update the best tour cost and

save the best tour.

• If the level of the parent node + 1 is not equal to N – 1,

• For all i such that 1 <= i < N and i is not in the partial tour of

the parent,

• Copy the partial tour from parent to new node and add i to the end of

this partial tour.

• Compute the lower bound for this new node.

• If this lower bound is less than the best tour cost, insert this new node

into the priority queue; otherwise, prune this node.

Chapter 18 BranCh-and-Bound Solution to tSp

480

 The Priority Queue
Before a node is inserted into the PQ, it is screened to determine whether its lower

bound is less than the currently known best tour. This helps to keep the number of nodes

in the PQ to a manageable level.

What priority rules must the queue enforce?

Nodes at a deeper level (higher level number) have priority over nodes at a

shallower level in the PQ. This assures that the tree grows downward and that leaf nodes

representing complete tours are generated as quickly as possible. In comparing two

nodes at the same level, priority is given to the node with the smallest lower bound. In

the event of a tie (two nodes with equal lower bound), the sum of the cities in the partial

tour is computed. The node with the smaller sum is given a higher priority than the node

with the larger sum (a tie cannot occur). The rules just stated disallow two distinct nodes

from having an equal priority.

We walk through a portion of the five-city example presented earlier to see how the

priority queue is built.

 A Walk-Through Part of the Five-City Example
Presented Earlier
The initial cost is computed by finding the cost of the tour, [0, 1, …, n – 1, 0], which is

50. Since the lower bound (LB) of the root node was shown earlier to be 19, we push

the partial tour [0] onto the PQ. We remove tour[0] from the PQ and generate nodes at

level 1. All but one of these nodes have LB < 50, so we push them onto the PQ. The top of

the PQ is [0, 2] with LB = 19. Next comes [0, 1] with LB = 39, and third comes [0, 3] with

LB= 43. We continue to generate nodes as specified in the algorithm and as shown in

Figure 18-1.

Chapter 18 BranCh-and-Bound Solution to tSp

481

Figure 18-1. Part of solution tree

The full tour [0, 2, 1, 3, 4] is the first to be generated. Since its cost is less than the best

so far of 50, we assign the best tour to be [0, 2, 1, 3, 4] and its cost 41.

The front of the PQ contains the node [0, 2, 1, 4] since it is at the deepest level. The

algorithm backtracks to that node and then generates another full tour [0, 2, 1, 4, 3] also

with cost 41. This allows some of the nodes to be pruned when they are taken off the PQ

since their lower bounds are greater than 41.

You may wish to continue this process for this example.

In the next section, we look at the implementation of this algorithm.

18.2 Branch-and-Bound Implementation
One of the most important functions needed to support this branch-and-bound

algorithm is the computation of a lower bound for a given tour. This function is as follows:

func LowerBound(tour []int) float64 {

 edges := make([]float64, 0)

 sum := 0.0

 n := len(tour)

Chapter 18 BranCh-and-Bound Solution to tSp

482

 for city := 0; city < NUMCITIES; city++ {

 for index := 0; index < NUMCITIES; index++ {

 // index is part of tour

 found, pos := In(city, tour)

 if n > 1 && found {

 if pos == n-1 {

 edges = append(edges,

 graph[city][0])

 } else {

 edges = append(edges,

 graph[city][tour[pos+1]])

 }

 break

 }

 found, _ = In(index, tour)

 if n == 1 || !found {

 // Don't allow an index already in

 // tour

 edges = append(edges,

 graph[city][index])

 }

 }

 sum += Minimum(edges)

 edges = make([]float64, 0)

 }

 return sum

}

The function works exactly as specified in the outline of the algorithm presented in

Section 18.1.

A key support function is In given as follows:

func In(value int, values []int) (bool, int) {

 // Returns true if value in values

 // Returns index of location or -1 if not found

 for index := 0; index < len(values); index++ {

Chapter 18 BranCh-and-Bound Solution to tSp

483

 if values[index] == value {

 return true, index

 }

 }

 return false, -1

}

 Implementation of Priority Queue
The priority queue plays a central role in this algorithm. It stores nodes, each containing

a tour, a lower bound, and a level with priorities defined as specified in Section 18.1 and

repeated here for your convenience:

• Nodes at a deeper level (higher level number) have priority over

nodes at a shallower level in the PQ.

• Priority is given to the node with the smallest lower bound if the

nodes are at the same level.

• If two nodes at the same level have the same lower bound, we add up

the cities in the node’s tour, and the node with the higher sum has a

higher priority.

The code that supports the implementation of the priority queue is given as follows:

type Node struct {

 tour []int

 lowerBound float64

 level int

}

type Nodes []Node

// Allow nodes to be sorted

func (nodes Nodes) Len() int {

 return len(nodes)

}

Chapter 18 BranCh-and-Bound Solution to tSp

484

func (nodes Nodes) Swap(i, j int) {

 nodes[i], nodes[j] = nodes[j], nodes[i]

}

func (nodes Nodes) Less(i, j int) bool {

 if nodes[i].level > nodes[j].level {

 return true

 }

 if nodes[i].level == nodes[j].level &&

 nodes[i].lowerBound == nodes[j].lowerBound {

 // Return the smaller sum of cities

 tour1 := nodes[i].tour

 sum1 := 0;

 for i := 0; i < len(tour1); i++ {

 sum1 += tour1[i]

 }

 tour2 := nodes[j].tour

 sum2 := 0;

 for i := 0; i < len(tour2); i++ {

 sum2 += tour2[i]

 }

 return sum1 < sum2

 }

 if nodes[i].level == nodes[j].level &&

 nodes[i].lowerBound != nodes[j].lowerBound {

 return nodes[i].lowerBound <

 nodes[j].lowerBound

 }

 return false

}

type PriorityQueue struct {

 items Nodes

}

func NewPriorityQueue() PriorityQueue {

 return PriorityQueue{}

}

Chapter 18 BranCh-and-Bound Solution to tSp

485

func (pq *PriorityQueue) Insert(node Node) {

 tourToInsert := DeepCopy(node.tour)

 nodeToInsert := Node{tourToInsert, node.lowerBound,

 node.level}

 pq.items = append(pq.items, nodeToInsert)

 sort.Sort(pq.items)

}

func (pq *PriorityQueue) Remove() Node {

 result := pq.items[0]

 pq.items = pq.items[1:]

 return result

}

The priority queue (PQ) holds entities of type Node. Each time we insert a new node

into the queue, we sort the queue to ensure that the node with the highest priority is at

the front of the queue.

To enable the sorting of nodes in the PQ, we need to implement the interface to the

Sort method from package sort.

This is accomplished with the functions Len, Swap, and Less as given earlier. Each of

the three priority rules is implemented in the function Less.

The Insert function sorts the items (slice of Node) after appending the node being

inserted.

 Generating Branch-and-Bound Solution
The function that generates nodes according to the outline from Section 18.1, inserts

them into the priority queue, finds best new tours, and backtracks while pruning

nodes whose lower bound exceeds the known best tour to date is given as follows in

function TSP:

func TSP() {

 var elapsed time.Duration

 start := time.Now()

 bestTour := []int{}

 for i := 0; i < NUMCITIES; i++ {

 bestTour = append(bestTour, i)

 }

Chapter 18 BranCh-and-Bound Solution to tSp

486

 pq := NewPriorityQueue()

 bestCost := LowerBound(bestTour)

 tour := []int{0}

 lowerBound := LowerBound(tour)

 node := Node{tour, lowerBound, 0}

 nodesGenerated += 1

 pq.Insert(node)

 for {

 if len(pq.items) == 0 {

 break

 }

 top := pq.Remove()

 topLevel := top.level

 topTour := top.tour

 // Generate nodes at topLevel + 1

 for i := 0; i < NUMCITIES; i++ {

 tour := DeepCopy(topTour)

 found, _ := In(i, topTour)

 if !found {

 tour = append(tour, i)

 nodesGenerated += 1

 if nodesGenerated %

 10_000_000 == 0 {

 fmt.Println("\nNodes generated (in

 millions): ", nodesGenerated /

 1_000_000)

 fmt.Printf("\n\nOptimum tour cost:

 %0.2f \nBest tour: %v", bestCost,

 bestTour)

 elapsed = time.Since(start)

 seconds := elapsed / 1_000_000_000

 rate := float64(nodesGenerated) /

 float64(seconds)

 fmt.Printf("\nNodes generated per

 second: %0.0f Length of PQ: %d

Chapter 18 BranCh-and-Bound Solution to tSp

487

 Time elapsed: %v", rate,

 len(pq.items), elapsed)

 }

 if len(tour) == NUMCITIES {

 // A complete tour is obtained

 tourCost := LowerBound(tour)

 if tourCost < bestCost {

 bestTour = tour

 bestCost = tourCost

 fmt.Println("\n\nBest cost of

 tour so far: ", bestCost)

 }

 } else {

 tourCost := LowerBound(tour)

 if tourCost < bestCost {

 node := Node{tour, tourCost,

 topLevel + 1}

 pq.Insert(node)

 }

 }

 }

 }

 }

 fmt.Printf("\n\nOptimum tour cost: %0.2f \nBest

 tour: %v \nNodes generated: %d", bestCost,

 bestTour, nodesGenerated)

}

Listing 18-1 puts all the pieces together and shows all the support functions and a

main driver that attempts to solve a 33-city problem.

Chapter 18 BranCh-and-Bound Solution to tSp

488

Listing 18-1. Branch-and-bound solution to TSP

package main

import (

 "fmt"

 "sort"

 "time"

)

const (

 NUMCITIES = 33

)

type Node struct {

 tour []int

 lowerBound float64

 level int

}

type Graph [][]float64

var graph Graph

var nodesGenerated int64

type Nodes []Node

// Allow nodes to be sorted

func (nodes Nodes) Len() int {

 return len(nodes)

}

func (nodes Nodes) Swap(i, j int) {

 nodes[i], nodes[j] = nodes[j], nodes[i]

}

func (nodes Nodes) Less(i, j int) bool {

 // Snip

}

Chapter 18 BranCh-and-Bound Solution to tSp

489

type PriorityQueue struct {

 items Nodes

}

func NewPriorityQueue() PriorityQueue {

 return PriorityQueue{}

}

func (pq *PriorityQueue) Insert(node Node) {

 // Snip

}

func (pq *PriorityQueue) Remove() Node {

 // Snip

}

func DeepCopy(tour []int) []int {

 result := []int{}

 for i := range tour {

 result = append(result, tour[i])

 }

 return result

}

func Minimum(values []float64) float64 {

 // This function excludes value 0

 min := 100000000.0

 for i := 0; i < len(values); i++ {

 if values[i] != 0 && values[i] < min {

 min = values[i]

 }

 }

 if min == 100000000.0 {

 return 0.0

 }

 return min

}

Chapter 18 BranCh-and-Bound Solution to tSp

490

func In(value int, values []int) (bool, int) {

 // Snip

}

func LowerBound(tour []int) float64 {

 // Snip

}

func TSP() {

 // Snip

}

func main() {

 graph = // Download from publisher’s website

 TSP()

}

 Data for main
The graph is constructed from data taken from a Rand McNally Atlas of 33 US cities with

distances between them specified.

The details in main are omitted here because of limited space. Please download the

entire listing from the publisher’s website.

The known solution to this problem is an optimum tour of 10,861 miles.

 Results
After running the branch-and-bound program for 18 hours and 42 minutes and

generating 4.6 billion nodes at about 70,000 nodes per second, the best tour generated

so far is

[0 13 1 2 3 5 4 6 7 8 9 10 11 17 18 19 27 29 30 28 31 32 22 21 23 24 25 26 20 14 15 16 12]

This tour is 11,553 miles, which is an error of about 6 percent. We must remind

ourselves that the total number of nodes in the full tree representing this problem is 26

3,130,836,933,693,530,167,218,012,160,000,000 nodes.

At an average rate of 71,874 nodes per second, it would take about 1.39 × 1030

seconds or about 4.41 × 1022 years to generate all the leaf nodes in this tree.

Chapter 18 BranCh-and-Bound Solution to tSp

491

18.3 Summary
We presented a branch-and-bound algorithm that provides an exact solution to the

TSP. The problem is that this is a computationally intractable problem. If allowed to run

long enough, it will find an exact solution to the problem.

A priority queue is used to hold a sequence of nodes, where each node contains

a tour (may be a partial tour), a lower bound, and a level. The nodes are sorted in the

queue by level, lower bound, and, in the case of a tie, sum of city values in the tour.

A 33-city problem is attempted. After two hours of computation, the best tour

obtained is about 6 percent higher than the known optimum tour. This best tour so far

remains the same after 16 hours.

This sets the stage for the next two chapters in which we present heuristic solutions

to the TSP. These heuristic solutions execute in a matter of seconds and produce

solutions that are either exact or have small error.

The next chapter presents a heuristic algorithm, simulated annealing.

Chapter 18 BranCh-and-Bound Solution to tSp

493

CHAPTER 19

Simulated Annealing
Heuristic Solution to TSP
The previous chapter presented a branch-and-bound algorithm for producing an exact

solution to TSP. Like all known exact solutions, it is computationally intractable.

This chapter presents the powerful simulated annealing heuristic solution to the TSP.

In the next section, we introduce combinatorial optimization problems and set the

stage for our presentation of heuristic algorithms for solving TSP.

19.1 Combinatorial Optimization
Combinatorial optimization problems are computationally hard. As the size of these

problems increases, the computation time for an exact solution becomes infeasible – years

or centuries of computation time and memory requirements that are not realizable.

One such famous and interesting problem is the Travelling Salesperson Problem (TSP),

introduced in the previous chapter. The problem is easy to state and understand. Given

n cities, with specified distances between the cities, find the shortest tour that starts at

a given city, say, city 0; visits the remaining n – 1 cities; and returns to the starting city.

In other words, find the sequence of cities visited so that the total distance travelled is

minimum.

Often, we are given the location of the n cities from which we can compute distances

between them. We shall assume bidirectional links between cities in a fully connected

graph (every city has a link to every other city).

As we saw in Chapter 17, a brute-force solution that enumerates all possible

combinations of tours and chooses the tour of lowest distance travelled is of complexity

(n – 1)! For example, for four cities labelled 1,2 3, and 4, the possible tours starting and

returning to city 1 are

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_19

https://doi.org/10.1007/978-1-4842-8191-8_19

494

1 -> 2 -> 3 -> 4

1 -> 2 -> 4 -> 3

1 -> 3 -> 2 -> 4

1 -> 3 -> 4 -> 2

1 -> 4 -> 2 -> 3

1 -> 4 -> 3 -> 2

As predicted, there are (4 – 1)! or 3! = 6 possible tours.

For a 29-city problem, the number of possible tours is 28! = 3.0488834e+29. If we

could evaluate the tours at a rate of 10 million tours per second, it would take about

317,000,000,000,000 years to complete this computation.

So getting an exact solution to TSP is computationally intractable for problems even

of modest size such as a 29-city problem.

 Heuristic Solutions
Since there are many important “real-world” applications of TSP (e.g., printed circuit

boards, transportation), researchers have devised many heuristic solutions to TSP. A

heuristic solution is one that is not guaranteed to be optimum but is computationally

tractable (polynomial complexity) and hopefully produces a solution near optimal.

Often. a heuristic algorithm will produce the optimum solution to the problem.

Two major frameworks for such approximate solutions to the TSP are

 1. Simulated annealing

 2. Genetic programming

What makes the two major frameworks given previously so interesting is that they

are each taken from processes and systems unrelated to TSP specifically. They can be

deployed on a wide range of combinatorial optimizations problems. There are other

such frameworks that are used to obtain heuristic solutions to TSP.

The first of these heuristic frameworks utilizes models from thermodynamics and

the second from genetics and survival of the fittest.

In the next section, we examine the first of these heuristic frameworks, simulated

annealing.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

495

19.2 Simulated Annealing
The seminal work that has led to this framework for solving combinatorial optimization

problems was published in 1953 by Nicholas Constantine Metropolis. Later, he and a

colleague, W.K. Hastings, published the Metropolis- Hastings algorithm, which forms the

basis of simulated annealing.

Simulated annealing is a Monte Carlo algorithm. Such algorithms rely on repeated

statistical sampling of a system. Many random configurations of the system are

generated while computing properties of interest and refining the sampling based on

experimental results.

Simulated annealing relies on mimicking the thermodynamic properties of the

molecular lattice structure of metal as it is heated and slowly cooled to produce a

rigid and strong lattice structure. This process when done by metallurgists is called

“annealing.” It is done to minimize microscopic deformities in steel load-bearing

beams by creating a lattice structure of minimum internal energy. The average energy

in such beams during the annealing process (slow cooling of the beam) is given by the

Boltzmann factor, e-E/kT, where E is the average energy of the beam, T is the temperature,

and k is the Boltzmann constant.

A critically important part of the physical annealing process of metallic beams is

to lower the temperature slowly. This increases the probability that the internal lattice

structure of the beam has minimum energy and is strongest.

 Simulated Annealing Steps
An outline of the simulated-annealing algorithm is the following:

 1. Choose an initial tour and find its cost.

 2. Choose a high initial temperature T for an artificial temperature

variable.

 3. Modify the tour by making a change to the existing tour (e.g.,

modifying the order of two cities in the tour or other modifications

to be seen shortly).

 4. If the new tour cost is smaller than the old tour cost, accept this

new tour (downhill move).

Chapter 19 Simulated annealing heuriStiC Solution to tSp

https://en.wikipedia.org/wiki/Nicholas_Metropolis
https://en.wikipedia.org/wiki/Nicholas_Metropolis
https://en.wikipedia.org/wiki/Nicholas_Metropolis

496

 5. If the new tour cost is higher than the old tour cost, accept this

uphill move with probability given by the Boltzmann factor, e-E/kT.

 6. At high temperature, the probability of accepting such an “uphill

move” is close to 1. This allows the simulation to explore many

regions in the solution space and not be driven into a local valley

in the tour-cost vs. temperature space.

 7. Lower the temperature based on a cooling curve. This cooling

curve can be obtained empirically by observing the rate of decline

in tour cost as a function of temperature and slowing down the

reduction in temperature when this rate of decline is high.

 8. Repeat steps 3 to 7.

 9. As the temperature gets lower, the probability of accepting uphill

moves decreases. This allows a descent hopefully to a lowest

energy state (lowest tour cost) close to the global minimum.

What is so special about this algorithm is that it evolves statistically to better and

better tours as the temperature variable is slowly lowered. It is a guided random walk of

the solution space based on the physics of metallurgy annealing.

It is relatively easy to implement and, as we will demonstrate, produces high-quality

solutions, either optimum or close to optimum.

 Problem of Convergence to Local Minimum Rather Than
Global Minimum
An ever-present challenge in solving combinatorial optimization problems is having a

solution converge to a local minimum rather than the desired global minimum. For this

reason, it is desirable to allow the solution space to be explored and not to be in a great

rush to evolve to a solution.

In the simulated annealing algorithm, we achieve this by allowing “uphill moves.”

These are moves in the solution space that produce tours that are greater than the best-

known tour to date. The goal is to be able to climb out of local valleys in the solution

space while finding deeper valleys that hopefully contain the global minimum.

In the next section, we present an implementation of simulated annealing that

follows the steps just presented.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

497

19.3 Implementation of Simulated Annealing
We create a type Status, which encapsulates the relevant state information about

the system.

type Status struct {

 tour []int

 bestTour []int

 bestCostToDate float64

 previousCost float64

 temperature float64

 downhillMoves int

 uphillMoves int

 rejectedMoves int

 inverseOps int

 swapOps int

 insertOps int

}

var status Status

There are three separate operations that we use to perturb a tour in the

solution space:

• Inverse Operation – We reverse the tour within two index values

chosen randomly.

• Swap – We swap two cities, chosen randomly, in a given tour.

• Insert – Move city in random position second to random

position first.

The details of this simulated annealing implementation along with extensive

comments and program output are presented in Listing 19-1.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

498

Listing 19-1. Simulated annealing solution to TSP

package main

import (

 "fmt"

 "math"

 "math/rand"

 "time"

)

const (

 NUMCITIES = 29

)

type Point struct {

 x float64

 y float64

}

func init() {

 rand.Seed(time.Now().UnixNano())

}

func (pt Point) distance(other Point) float64 {

 dx := pt.x - other.x

 dy := pt.y - other.y

 return math.Sqrt(dx*dx + dy*dy)

}

func createGraph(numCities int, cities []Point, graph

 [][]float64) {

 for row := 0; row < numCities; row++ {

 for col := 0; col < numCities; col++ {

 if row == col {

 graph[row][col] = 0.0

 } else {

 graph[row][col] =

 cities[row].distance(cities[col])

Chapter 19 Simulated annealing heuriStiC Solution to tSp

499

 }

 }

 }

}

func cost(graph [][]float64, tour []int) float64 {

 result := 0.0

 for index := 0; index < len(tour) - 2; index++ {

 result += graph[tour[index]][tour[index+1]]

 }

 result += graph[tour[NUMCITIES - 1]][tour[0]]

 return result

}

func randomFrom(min int, max int) int {

 return rand.Intn(max - min) + min

}

func inverseOperation(tour []int) []int {

 /*

 Choose city i randomly from 1 to count - 1.

 Choose city j randomly from 1 to count - 1

 let first be the minimum of index i and j.

 let second be the larger of index i and j.

 reverse the order of cities in the tour from

 index first to index second

 Consider tour = [0, 3, 2, 1, 5, 4] and first = 1

 and second = 4

 The segment 3, 2, 1, 5 is replaced by 5, 1, 2, 3

 and the new tour is

 [0, 5, 1, 2, 3, 4].

 */

 // Choose first and second

 firstIndex := randomFrom(1, len(tour) - 1)

 secondIndex := randomFrom(1, len(tour) - 1)

 for firstIndex == secondIndex {

 firstIndex = randomFrom(1, len(tour) - 1)

Chapter 19 Simulated annealing heuriStiC Solution to tSp

500

 secondIndex = randomFrom(1, len(tour) - 1)

 }

 if firstIndex > secondIndex {

 firstIndex, secondIndex = secondIndex,

 firstIndex

 }

 result := deepcopy(tour[:firstIndex])

 for index := 0; index <

 (secondIndex - firstIndex + 1); index += 1 {

 result = append(result, tour[secondIndex -

 index])

 }

 for index := secondIndex + 1; index < len(tour);

 index += 1 {

 result = append(result, tour[index])

 }

 return result

}

func swap(tour []int) []int {

 /*

 Swap the city in position first with city in

 position second

 Consider tour [0, 3, 2, 1, 5, 4] and first = 1

 and second = 4

 The new tour would be [0, 5, 2, 1, 3, 4]

 */

 // Choose first and second

 firstIndex := randomFrom(1, len(tour) - 1)

 secondIndex := randomFrom(1, len(tour) - 1)

 for firstIndex == secondIndex {

 firstIndex = randomFrom(1, len(tour) - 1)

 secondIndex = randomFrom(1, len(tour) - 1)

 }

Chapter 19 Simulated annealing heuriStiC Solution to tSp

501

 if firstIndex > secondIndex {

 firstIndex, secondIndex = secondIndex,

 firstIndex

 }

 result := deepcopy(tour)

 result[firstIndex], result[secondIndex] =

 result[secondIndex], result[firstIndex]

 return result

}

func insert(tour []int) []int {

 /*

 It means to move the city in position second to

 position first.

 Consider tour [0, 3, 2, 1, 5, 4] and first = 1

 and second = 4

 The new tour would be [0, 5, 3, 2, 1, 4]

 */

 // Choose first and second

 // Choose first and second

 firstIndex := randomFrom(1, len(tour) - 1)

 secondIndex := randomFrom(1, len(tour) - 1)

 for firstIndex == secondIndex {

 firstIndex = randomFrom(1, len(tour) - 1)

 secondIndex = randomFrom(1, len(tour) - 1)

 }

 if firstIndex > secondIndex {

 firstIndex, secondIndex = secondIndex,

 firstIndex

 }

 result := []int{}

 for index := 0; index < len(tour) + 1; index += 1 {

 if index < firstIndex {

 result = append(result, tour[index])

 } else if index == firstIndex {

Chapter 19 Simulated annealing heuriStiC Solution to tSp

502

 result = append(result, tour[secondIndex])

 } else if index > firstIndex && index !=

 secondIndex + 1 {

 result = append(result, tour[index-1])

 }

 }

 return result

}

type Status struct {

 tour []int

 bestTour []int

 bestCostToDate float64

 previousCost float64

 temperature float64

 downhillMoves int

 uphillMoves int

 rejectedMoves int

 inverseOps int

 swapOps int

 insertOps int

}

var status Status

func deepcopy(tour []int) []int {

 result := []int{}

 for i := range tour {

 result = append(result, tour[i])

 }

 return result

}

func simulatedAnnealing(graph [][]float64) {

 for i := 0; i < NUMCITIES; i++ {

 status.tour = append(status.tour, i)

 }

Chapter 19 Simulated annealing heuriStiC Solution to tSp

503

 status.tour = append(status.tour, 0)

 fmt.Printf("\n\nCost of initial tour %v is %f\n\n",

 status.tour, cost(graph, status.tour))

 status.bestTour = deepcopy(status.tour)

 status.bestCostToDate = cost(graph,

 status.bestTour)

 status.previousCost = status.bestCostToDate

 numberIterationsAtTemperature := 5000

 lowestTemperature := 5.0

 for status.temperature >= lowestTemperature {

 for iteration := 0; iteration <

 numberIterationsAtTemperature; iteration

 += 1 {

 tour1 := inverseOperation(status.tour)

 cost1 := cost(graph, tour1)

 tour2 := swap(status.tour)

 cost2 := cost(graph, tour2)

 tour3 := insert(status.tour)

 cost3 := cost(graph, tour3)

 newCost1 := math.Min(cost1, cost2)

 newCost := math.Min(newCost1, cost3)

 if newCost == cost1 {

 status.inverseOps += 1

 // Determine whether to accept this

 // tour1

 if newCost < status.previousCost {

 status.downhillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour1)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate =

 newCost

 status.bestTour =

 deepcopy(tour1)

Chapter 19 Simulated annealing heuriStiC Solution to tSp

504

 fmt.Printf("\nLowest cost

 tour to-date = %0.2f at

 Temperature = %0.2f Best

 tour: %v",

 status.bestCostToDate,

 status.temperature,

 status.bestTour)

 }

 } else {

 metropolis :=

 math.Exp((status.previousCost

 - newCost) /

 status.temperature)

 r := rand.Float64()

 if r <= metropolis {// Uphill move

 status.uphillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour1)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate =

 newCost

 status.bestTour =

 deepcopy(tour1)

 fmt.Printf("\nLowest cost

 tour to-date = %0.2f at

 Temperature = %0.2f Best

 tour: %v",

 status.bestCostToDate,

 status.temperature,

 status.bestTour)

 } else {

 status.rejectedMoves += 1

 }

 }

 }

Chapter 19 Simulated annealing heuriStiC Solution to tSp

505

 } else if newCost == cost2 {

 status.swapOps += 1

 // Determine whether to accept this

 // tour2

 if newCost < status.previousCost {

 status.downhillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour2)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate =

 newCost

 status.bestTour =

 deepcopy(tour2)

 fmt.Printf("\nLowest cost

 tour to-date = %0.2f at

 Temperature = %0.2f Best

 tour: %v", status.bestCostToDate,

 status.temperature,

 status.bestTour)

 }

 } else {

 metropolis :=

 math.Exp((status.previousCost

 - newCost) /

 status.temperature)

 r := rand.Float64()

 if r <= metropolis {// Uphill move

 status.uphillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour2)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate =

 newCost

Chapter 19 Simulated annealing heuriStiC Solution to tSp

506

 status.bestTour =

 deepcopy(tour2)

 fmt.Printf("\nLowest cost

 tour to-date = %0.2f at

 Temperature = %0.2f Best

 tour: %v",

 status.bestCostToDate,

 status.temperature,

 status.bestTour)

 } else {

 status.rejectedMoves += 1

 }

 }

 }

 } else if newCost == cost3 {

 status.insertOps += 1

 // Determine whether to accept this

 // tour3

 if newCost < status.previousCost {

 status.downhillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour3)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate = newCost

 status.bestTour =

 deepcopy(tour3)

 fmt.Printf("\nLowest cost tour

 to-date = %0.2f at Temperature

 = %0.2f Best tour: %v",

 status.bestCostToDate,

 status.temperature,

 status.bestTour)

 }

Chapter 19 Simulated annealing heuriStiC Solution to tSp

507

 } else {

 metropolis :=

 math.Exp((status.previousCost

 - newCost) /

 status.temperature)

 r := rand.Float64()

 if r <= metropolis {// Uphill move

 status.uphillMoves += 1

 status.previousCost = newCost

 status.tour = deepcopy(tour3)

 if newCost <

 status.bestCostToDate {

 status.bestCostToDate =

 newCost

 status.bestTour =

 deepcopy(tour3)

 fmt.Printf("\nLowest cost

 tour to-date = %0.2f at

 Temperature = %0.2f Best

 tour: %v",

 status.bestCostToDate,

 status.temperature,

 status.bestTour)

 } else {

 status.rejectedMoves += 1

 }

 }

 }

 }

 }

 // Cooling curve

 if status.temperature >= 1000.0 {

 status.temperature *= 0.90

 } else if status.temperature >= 500 {

 status.temperature *= 0.94

Chapter 19 Simulated annealing heuriStiC Solution to tSp

508

 } else if status.temperature >= 200 {

 status.temperature *= 0.97

 } else if status.temperature >= 50 {

 status.temperature *= 0.98

 } else {

 status.temperature *= 0.99

 }

 }

}

func main() {

 cities := []Point{}

 pt1 := Point{1150.0,1760.0}

 cities = append(cities, pt1)

 pt2 := Point{630.0, 1660.0}

 cities = append(cities, pt2)

 pt3 := Point{40.0, 2090.0}

 cities = append(cities, pt3)

 pt4 := Point{750.0, 1100.0}

 cities = append(cities, pt4)

 pt5 := Point{750.0, 2030.0}

 cities = append(cities, pt5)

 pt6 := Point{1030.0, 2070.0}

 cities = append(cities, pt6)

 pt7 := Point{1650.0, 650.0}

 cities = append(cities, pt7)

 pt8 := Point{1490.0, 1630.0}

 cities = append(cities, pt8)

 pt9 := Point{790.0, 2260.0}

 cities = append(cities, pt9)

 pt10 := Point{710.0, 1310.0}

 cities = append(cities, pt10)

 pt11 := Point{840.0, 550.0}

 cities = append(cities, pt11)

 pt12 := Point{1170.0, 2300.0}

 cities = append(cities, pt12)

Chapter 19 Simulated annealing heuriStiC Solution to tSp

509

 pt13 := Point{970.0, 1340.0}

 cities = append(cities, pt13)

 pt14 := Point{510.0, 700.0}

 cities = append(cities, pt14)

 pt15 := Point{750.0, 900.0}

 cities = append(cities, pt15)

 pt16 := Point{1280.0, 1200.0}

 cities = append(cities, pt16)

 pt17 := Point{230.0, 590.0}

 cities = append(cities, pt17)

 pt18 := Point{460.0, 860.0}

 cities = append(cities, pt18)

 pt19 := Point{1040.0, 950.0}

 cities = append(cities, pt19)

 pt20 := Point{590.0, 1390.0}

 cities = append(cities, pt20)

 pt21 := Point{830.0, 1770.0}

 cities = append(cities, pt21)

 pt22 := Point{490.0, 500.0}

 cities = append(cities, pt22)

 pt23 := Point{1840.0, 1240.0}

 cities = append(cities, pt23)

 pt24 := Point{1260.0, 1500.0}

 cities = append(cities, pt24)

 pt25 := Point{1280.0, 790.0}

 cities = append(cities, pt25)

 pt26 := Point{490.0, 2130.0}

 cities = append(cities, pt26)

 pt27 := Point{1460.0, 1420.0}

 cities = append(cities, pt27)

 pt28 := Point{1260.0, 1910.0}

 cities = append(cities, pt28)

 pt29 := Point{360.0, 1980.0}

 cities = append(cities, pt29)

 graph := make([][]float64, NUMCITIES)

Chapter 19 Simulated annealing heuriStiC Solution to tSp

510

 for i:=0; i < NUMCITIES ; i++ {

 graph[i] = make([]float64, NUMCITIES)

 }

 createGraph(NUMCITIES, cities, graph)

 status.temperature = 2000.0

 simulatedAnnealing(graph)

 fmt.Printf("\nInverse Operations: %d Swap Operations: %d Insert

Operations: %d Downhill moves: %d Uphill moves, %d", status.inverseOps,

status.swapOps, status.insertOps, status.downhillMoves, status.uphillMoves)

}

/* Output

Cost of initial tour [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 0] is 25814.877363

Lowest cost tour to-date = 25669.20 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

27 28 0]

Lowest cost tour to-date = 25456.00 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 21 22 23 24 20

27 28 0]

Lowest cost tour to-date = 24872.68 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 27 21 22 23 24 20

25 28 0]

Lowest cost tour to-date = 24249.12 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 15 10 11 12 13 14 16 17 18 19 27 21 22 23 24 20

25 28 0]

Lowest cost tour to-date = 22921.49 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 15 27 19 18 17 16 14 13 12 11 10 21 22 23 24 20

25 28 0]

Lowest cost tour to-date = 22479.54 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 7 8 9 15 27 19 18 13 17 16 14 12 11 10 21 22 23 24 20

25 28 0]

Lowest cost tour to-date = 21640.15 at Temperature = 2000.00 Best tour:

[0 1 2 3 26 4 5 6 24 8 9 15 27 19 18 13 17 16 14 12 11 10 21 22 23 7 20

25 28 0]

Chapter 19 Simulated annealing heuriStiC Solution to tSp

511

Lowest cost tour to-date = 21208.12 at Temperature = 2000.00 Best tour:

[0 1 2 3 15 26 4 5 6 24 8 9 27 19 18 13 17 16 14 12 11 10 21 22 23 7 20

25 28 0]

Lowest cost tour to-date = 18984.25 at Temperature = 2000.00 Best tour:

[0 1 7 23 15 22 21 10 9 12 14 16 17 13 18 19 27 11 8 24 6 5 4 26 3 2 20

25 28 0]

Lowest cost tour to-date = 18849.81 at Temperature = 2000.00 Best tour:

[0 1 7 23 15 22 21 16 10 9 12 14 17 13 18 19 27 11 8 24 6 5 4 26 3 2 20

25 28 0]

Lowest cost tour to-date = 18735.36 at Temperature = 2000.00 Best tour:

[0 1 27 23 18 13 17 14 12 9 5 11 7 19 15 22 21 16 10 24 6 8 4 26 3 2 20

25 28 0]

Lowest cost tour to-date = 18218.92 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 22 15 19 7 11 5 9 12 14 17 13 18 23 27 1 8 4 26 3 2 20

25 28 0]

Lowest cost tour to-date = 18110.89 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 22 15 12 7 11 1 18 13 17 14 19 9 5 23 27 8 4 26 3 2 20

25 28 0]

Lowest cost tour to-date = 17873.48 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 22 15 12 7 11 4 1 18 13 17 14 19 9 8 23 27 5 26 3 2 20

25 28 0]

Lowest cost tour to-date = 17544.27 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 18 1 4 11 7 12 15 22 14 19 9 8 23 27 5 26 3 2 20

25 28 0]

Lowest cost tour to-date = 17327.28 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 3 1 4 11 7 12 15 22 14 19 9 8 23 27 5 26 18 2 20

25 28 0]

Lowest cost tour to-date = 17300.34 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 8 11 7 15 22 14 19 9 4 23 27 5 26 18 25 2

20 28 0]

Lowest cost tour to-date = 16585.81 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 8 11 4 9 19 14 22 15 7 23 27 5 26 18 25 2

20 28 0]

Chapter 19 Simulated annealing heuriStiC Solution to tSp

512

Lowest cost tour to-date = 15655.98 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 20 8 11 4 9 19 14 22 15 7 23 27 5 26 18

25 2 28 0]

Lowest cost tour to-date = 15655.04 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 20 8 11 4 9 19 14 22 7 15 23 27 5 26 18

25 2 28 0]

Lowest cost tour to-date = 15439.96 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 18 26 5 27 23 15 7 22 14 19 9 4 11 8 20

25 2 28 0]

Lowest cost tour to-date = 15315.97 at Temperature = 2000.00 Best tour:

[0 6 24 10 16 21 17 13 12 3 1 23 27 5 26 18 15 7 22 14 19 9 4 11 8 20

25 2 28 0]

Lowest cost tour to-date = 14339.52 at Temperature = 2000.00 Best tour:

[0 11 7 22 14 9 3 1 28 2 25 8 20 19 12 15 26 10 16 21 17 13 24 6 18 4 5

27 23 0]

Lowest cost tour to-date = 14118.61 at Temperature = 2000.00 Best tour:

[0 6 22 15 24 10 21 14 18 3 12 16 17 13 7 26 23 27 11 4 25 5 8 1 19 9 2

28 20 0]

Lowest cost tour to-date = 14082.51 at Temperature = 1800.00 Best tour:

[0 27 7 6 22 26 23 4 9 13 17 12 15 24 18 10 3 14 16 21 19 11 5 8 1 28 2

25 20 0]

Lowest cost tour to-date = 14009.54 at Temperature = 1800.00 Best tour:

[0 27 7 6 22 26 23 4 9 13 17 12 15 24 18 10 14 3 16 21 19 11 5 8 1 28 2

25 20 0]

Lowest cost tour to-date = 13848.14 at Temperature = 1800.00 Best tour:

[0 27 7 6 22 26 23 4 11 9 13 16 21 17 18 15 24 10 14 3 19 12 25 2 1 28

8 5 20 0]

Lowest cost tour to-date = 13659.70 at Temperature = 1800.00 Best tour:

[0 27 7 23 12 15 26 19 1 28 20 17 13 21 16 9 2 25 4 5 8 11 3 14 18 10

24 6 22 0]

Lowest cost tour to-date = 13386.10 at Temperature = 1800.00 Best tour:

[0 27 7 23 26 15 12 1 19 28 20 17 13 21 16 9 2 25 4 5 8 11 18 3 14 10

24 6 22 0]

Chapter 19 Simulated annealing heuriStiC Solution to tSp

513

Lowest cost tour to-date = 13074.00 at Temperature = 1620.00 Best tour:

[0 27 20 9 3 19 14 24 26 18 10 13 17 16 21 1 28 25 2 8 4 5 11 12 15 6

22 7 23 0]

Lowest cost tour to-date = 12666.24 at Temperature = 1180.98 Best tour:

[0 20 28 25 2 4 7 8 5 11 27 1 19 6 22 24 18 14 10 21 13 16 17 3 9 12 15

26 23 0]

Lowest cost tour to-date = 12643.30 at Temperature = 794.53 Best tour:

[0 27 5 11 8 20 25 2 28 4 19 1 9 7 26 22 24 6 14 10 13 16 21 17 3 23 15

12 18 0]

Lowest cost tour to-date = 12487.86 at Temperature = 746.86 Best tour:

[0 23 15 12 9 3 18 6 24 22 26 5 11 20 1 25 8 4 28 2 19 17 21 13 16 10

14 7 27 0]

Lowest cost tour to-date = 12162.28 at Temperature = 702.05 Best tour:

[0 20 5 11 4 25 2 28 8 9 19 3 17 16 21 13 10 14 15 12 1 18 6 24 26 22 7

23 27 0]

Lowest cost tour to-date = 11764.31 at Temperature = 702.05 Best tour:

[0 27 5 11 8 4 28 2 25 20 3 12 15 18 7 26 23 1 19 9 16 21 10 13 17 14

24 6 22 0]

Lowest cost tour to-date = 11640.94 at Temperature = 484.32 Best tour:

[0 7 15 19 14 3 12 20 8 4 5 23 26 22 6 24 18 10 21 13 16 17 9 1 28 2 25

11 27 0]

Lowest cost tour to-date = 11428.50 at Temperature = 484.32 Best tour:

[0 5 4 25 2 20 19 12 3 14 9 17 16 13 21 10 18 24 6 22 7 23 26 15 1 28 8

11 27 0]

Lowest cost tour to-date = 11411.98 at Temperature = 469.79 Best tour:

[0 27 23 26 7 22 15 19 3 9 14 13 17 16 21 10 6 24 18 12 20 1 11 5 4 25

28 2 8 0]

Lowest cost tour to-date = 11140.76 at Temperature = 469.79 Best tour:

[0 27 23 7 26 15 22 6 24 18 10 14 21 13 16 3 17 19 9 12 1 20 11 5 4 25

2 28 8 0]

Lowest cost tour to-date = 11091.14 at Temperature = 455.70 Best tour:

[0 27 11 5 8 4 28 2 25 20 1 12 24 6 10 21 16 17 13 18 9 19 3 14 15 23 7

22 26 0]

Chapter 19 Simulated annealing heuriStiC Solution to tSp

514

Lowest cost tour to-date = 10549.20 at Temperature = 346.44 Best tour:

[0 27 11 5 4 8 25 28 2 19 9 14 3 17 16 10 21 13 18 24 6 22 26 15 23 7

12 1 20 0]

Lowest cost tour to-date = 10477.04 at Temperature = 346.44 Best tour:

[0 5 27 11 4 8 25 28 2 19 9 14 3 17 21 16 13 10 18 24 6 22 26 15 7 23

12 1 20 0]

Lowest cost tour to-date = 10368.42 at Temperature = 325.96 Best tour:

[0 27 5 11 8 2 28 25 4 20 1 19 9 3 18 12 10 21 17 16 13 14 24 6 22 26 7

23 15 0]

Lowest cost tour to-date = 10162.14 at Temperature = 325.96 Best tour:

[0 27 11 5 8 2 28 25 4 20 12 1 19 9 3 14 10 21 17 16 13 18 24 6 22 26 7

23 15 0]

Lowest cost tour to-date = 9899.85 at Temperature = 247.81 Best tour: [0 5

27 11 8 25 2 28 4 20 1 19 9 12 15 18 14 13 3 17 16 21 10 24 6 22 26 7 23 0]

Lowest cost tour to-date = 9846.42 at Temperature = 226.17 Best tour: [0 7

23 26 15 22 6 24 18 3 13 21 16 17 10 14 12 9 19 1 20 28 2 25 4 8 5 11 27 0]

Lowest cost tour to-date = 9829.90 at Temperature = 179.14 Best tour:

[0 23 15 7 26 22 6 24 18 14 10 21 16 13 17 3 9 12 19 1 20 11 8 28 2 25

4 5 27 0]

Lowest cost tour to-date = 9740.09 at Temperature = 179.14 Best tour:

[0 23 7 26 15 22 6 24 18 14 10 21 16 13 17 3 9 12 19 1 20 11 8 28 2 25

4 5 27 0]

Lowest cost tour to-date = 9677.66 at Temperature = 175.56 Best tour:

[0 23 7 22 26 15 12 3 14 17 16 13 21 10 6 24 18 9 19 1 20 4 28 2 25 8

11 5 27 0]

Lowest cost tour to-date = 9642.94 at Temperature = 175.56 Best tour:

[0 23 7 26 22 15 12 3 14 17 16 13 21 10 6 24 18 9 19 1 20 4 28 2 25 8

11 5 27 0]

Lowest cost tour to-date = 9606.44 at Temperature = 175.56 Best tour:

[0 23 7 26 22 6 24 15 12 14 21 16 17 13 10 18 3 9 19 1 20 4 28 2 25 8

11 5 27 0]

Lowest cost tour to-date = 9596.98 at Temperature = 175.56 Best tour:

[0 23 7 26 22 6 24 10 13 17 16 21 14 12 15 18 3 9 19 1 20 4 28 2 25 8

11 5 27 0]

Chapter 19 Simulated annealing heuriStiC Solution to tSp

515

Lowest cost tour to-date = 9569.98 at Temperature = 175.56 Best tour:

[0 27 11 5 8 4 28 2 25 20 1 19 9 3 10 21 16 13 17 14 18 12 15 24 6 22 7

26 23 0]

Lowest cost tour to-date = 9490.31 at Temperature = 172.05 Best tour:

[0 27 20 5 11 8 4 25 2 28 1 19 9 3 12 15 18 14 17 16 21 13 10 24 6 22

26 7 23 0]

Lowest cost tour to-date = 9406.00 at Temperature = 161.93 Best tour:

[0 23 7 26 22 6 24 15 18 10 16 21 13 17 14 3 9 12 19 1 20 4 28 2 25 8

11 5 27 0]

Lowest cost tour to-date = 9248.08 at Temperature = 161.93 Best tour:

[0 23 7 26 22 6 24 15 18 10 21 16 13 17 14 3 9 12 19 1 20 4 28 2 25 8

11 5 27 0]

Lowest cost tour to-date = 9248.08 at Temperature = 161.93 Best tour:

[0 27 5 11 8 25 2 28 4 20 1 19 12 9 3 14 17 13 16 21 10 18 15 24 6 22

26 7 23 0]

Lowest cost tour to-date = 9120.82 at Temperature = 161.93 Best tour:

[0 27 5 11 8 25 2 28 4 20 1 19 9 12 3 14 17 13 16 21 10 18 15 24 6 22

26 7 23 0]

Lowest cost tour to-date = 9107.19 at Temperature = 93.85 Best tour: [0 27

5 11 8 25 2 28 4 20 1 19 9 12 3 14 17 13 16 21 10 18 24 6 22 26 15 23 7 0]

Lowest cost tour to-date = 9077.92 at Temperature = 93.85 Best tour: [0 27

5 11 8 25 2 28 4 20 1 19 9 12 3 14 17 13 16 21 10 18 24 6 22 15 26 7 23 0]

Lowest cost tour to-date = 9076.98 at Temperature = 72.17 Best tour: [0 23

15 26 7 22 6 24 18 10 21 16 13 17 14 3 12 9 19 1 20 4 28 2 25 8 11 5 27 0]

Lowest cost tour to-date = 9074.15 at Temperature = 72.17 Best tour: [0 27

5 11 8 25 2 28 4 20 1 19 9 3 14 17 13 16 21 10 18 24 6 22 7 26 15 12 23 0]

Inverse Operations: 748742 Swap Operations: 345285 Insert Operations:

625973 Downhill moves: 95259 Uphill moves, 96014

> Elapsed: 2.288s

*/

Chapter 19 Simulated annealing heuriStiC Solution to tSp

516

 Discussion of Code
Let’s focus on function simulatedAnnealing.

A for-loop runs if temperature is greater than lowestTemperature, which we set at

5.0. We consider perturbing the existing tour using the three operations discussed earlier.

We assign the new tour to the tour among the three choices with the lowest tour cost.

If the cost of this new tour is smaller than the previous tour cost, we accept this new

tour, increment the number of downhill moves, and update other status values.

Otherwise, we compute a metropolis value using the Boltzmann-like function to

determine whether we accept an uphill move (a tour cost greater than the previous

tour cost).

metropolis :=

 math.Exp((status.previousCost - newCost) /

 status.temperature)

Next, we generate a random float value between 0 and 1. If this value is less than

metropolis, we accept an uphill move by changing the tour to the tour with worse cost

(uphill move) and then update the appropriate status values.

If the random float value is equal or greater than the metropolis value, we do not

modify the current tour.

Following this, a new potential modification to the tour occurs using the three

operations defined earlier. This continues until we have performed the requisite number

of modifications specified for the given temperature. Then we use the logic of the cooling

curve to lower the temperature and start the process just described again.

 Results
The execution time of this run is 2.3 seconds on an iMac. The lowest-cost tour of 9074.15

is the known optimum tour for this 29-city problem. It is not unusual for the simulated

annealing heuristic algorithm to find the optimum tour, although this is not guaranteed.

 Displaying Final Results
If the code from Listing 17-3 is added to Listing 19-1 and the line DrawTour is added

as the last line in function simulatedAnnealing, we obtain the drawing shown in

Figure 19-1.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

517

Figure 19-1. A 29-city tour from simulated annealing

 Lines Crossing
As expected, this tour has no lines crossing. It is well known that if two edges in a closed

polygon cross, there is a polygon with the same vertices that has a smaller perimeter.

This follows from the triangle inequality. This inequality is that in any triangle, the sum

of any two sides must be greater than the third side.

So a necessary condition for a tour to be optimum is that no lines cross in the tour.

But that is not a sufficient condition. It is possible for suboptimal tours to not have

lines cross.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

518

The additional code for producing the graphical output is shown in Listing 19-2.

Only the changed functions are shown.

Listing 19-2. Simulated annealing with graphical output

package main

import (

 "fmt"

 "math"

 "math/rand"

 "time"

 "image/color"

 "gonum.org/v1/plot"

 "gonum.org/v1/plot/plotter"

 "gonum.org/v1/plot/vg"

 "gonum.org/v1/plot/vg/draw"

)

const (

 NUMCITIES = 29

)

type Point struct {

 x float64

 y float64

}

var cities []Point

func init() {

 // Snip

}

func (pt Point) distance(other Point) float64 {

 // Snip

}

Chapter 19 Simulated annealing heuriStiC Solution to tSp

519

func createGraph(numCities int, cities []Point, graph

 [][]float64) {

 // Snip

}

func cost(graph [][]float64, tour []int) float64 {

 // Snip

}

func swap(tour []int) []int {

 // Snip

}

func insert(tour []int) []int {

 // snip

}

type Status struct {

 // Snip

}

var status Status

func deepcopy(tour []int) []int {

 // Snip

}

func simulatedAnnealing(graph [][]float64) {

 // Snip

 DrawTour(cities, status.bestTour)

}

func definePoints(cities []Point, tour []int)

 plotter.XYs {

 pts := make(plotter.XYs, len(cities) + 1)

 pts[0].X = cities[0].x

 pts[0].Y = cities[0].y

 for i := 1; i < len(cities); i++ {

Chapter 19 Simulated annealing heuriStiC Solution to tSp

520

 pts[i].X = cities[tour[i]].x

 pts[i].Y = cities[tour[i]].y

 }

 pts[len(cities)].X = cities[0].x

 pts[len(cities)].Y = cities[0].y

 return pts

}

func DrawTour(cities []Point, tour []int) {

 data := definePoints(cities, tour) // plotter.XYs

 p := plot.New()

 p.Title.Text = "TSP Tour"

 lines, points, err := plotter.NewLinePoints(data)

 if err != nil {

 panic(err)

 }

 lines.Color = color.RGBA{R: 255, A: 255}

 points.Shape = draw.PyramidGlyph{}

 points.Color = color.RGBA{B: 255, A: 255}

 p.Add(lines, points)

 // Save the plot to a PNG file.

 if err := p.Save(6*vg.Inch, 6*vg.Inch, "tour.png");

 err != nil {

 panic(err)

 }

}

func main() {

 // Snip

}

Chapter 19 Simulated annealing heuriStiC Solution to tSp

521

19.4 Summary
This chapter presented a simulated annealing heuristic algorithm for solving TSP. The

steps of this algorithm mimic the annealing of metal beams where the goal is to immerse

the beam in a hot liquid and cool the beam slowly until the internal average energy of

the lattice structure is minimized. Using an artificial temperature variable, the simulated

annealing algorithm cools the solution space slowly while attempting to lower the cost

of a tour.

We obtained remarkable results applying this heuristic algorithm to a 29-city

problem.

The next chapter presents another heuristic algorithm for tackling TSP, a genetic

algorithm.

Chapter 19 Simulated annealing heuriStiC Solution to tSp

523

CHAPTER 20

Genetic Algorithm for TSP
The previous chapter presented an implementation of simulated annealing, a powerful

and useful heuristic algorithm for solving TSP. We saw that this heuristic algorithm often

obtains the optimum solution to the problem with relatively little computational effort.

This chapter presents another heuristic approach for TSP – genetic algorithm.

In the next section, we introduce the basis for this heuristic algorithm

20.1 Genetic Algorithm
A genetic algorithm is inspired by the biological maxim survival of the fittest.

As species evolve, traits that resonate with the ecosystem in which the species exist

prevail. The traits that promote the greatest ability to survive in a hostile environment

become dominant, and the traits that promote weakness disappear over time. This

evolutionary process assumes continual changes in the underlying genetic structure of

the species resulting from reproduction.

We apply this evolutionary model to TSP.

 High-Level Description of Genetic Algorithm
An initial population of tours that visit each city once and return to the starting city

is randomly generated. The fitness of each tour is the reciprocal of the tour cost. The

smaller the tour cost, the higher the fitness.

We define a mating process as combining two tours to produce two offspring tours

that are formed by some combination of the parent tours.

We define a mating pool as a collection of parent tours to be combined (mated) to

produce the next generation of tours.

We define a mutation of a tour as a new tour that results from some small random

perturbation of an existing tour.

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_20

https://doi.org/10.1007/978-1-4842-8191-8_20

524

 More Detailed Description of Genetic Algorithm
Initial Generation: We define a constant population size, say, PopSize. We generate

PopSize random tours, each starting and ending at city 0. These tours represent our

initial generation.

Rank the Population: We rank the tours that comprise the initial generation based

on the fitness of each tour. The smaller the cost of the tour, the higher the fitness. We sort

the tours by their fitness.

Mating Pool: We use a tournament selection rule that works as follows: A specified

group of tours are randomly selected from the population, and the one with the highest

fitness in the group is chosen as the first parent. This is repeated to choose the second

parent. We continue this process until we have created PopSize / 2 mating pairs.

Mating: This is the most challenging and important aspect of the genetic algorithm.

We need to combine two tours to produce two child tours where each child retains a

portion of its parents. We will utilize several crossover algorithms to accomplishing

this mating.

Mutation: We will use a simple swap of two randomly chosen cities in a tour to

produce a new tour. Such a new tour may have inferior fitness compared to the tour being

mutated. This is like an uphill move in the simulated annealing algorithm. It promotes

diversity and helps stave off a premature descent to a local minimum in the solution

space. We apply mutation to a randomly selected small percentage of a given generation.

The steps for our genetic algorithm are the following:

 1. Form an initial population of random tours of size

ToursPerGeneration.

 2. Select a small elite group of the fittest tours in the existing

generation to be moved to the next generation.

 3. Use tournament selection on the tours that remain to define a

mating pool.

 4. Perform mating of the parents in the mating pool to form a new

generation of tours. This new generation contains the elite group

from the previous generation along with the new children formed

by mating.

Chapter 20 GenetiC alGorithm for tSp

525

 5. Perform mutation on a randomly selected small fraction of the

new generation.

 6. Repeat steps 2 through 5 for a specified number of generations.

Output the best tour to date as the tours progress from one

generation to another.

In the next section, we construct our solution, following these steps.

20.2 Implementation of Genetic Algorithm
 Step 1 – Form an Initial Population of Random Tours
We form an initial population of tours as follows:

var population [][]int

func CreateInitialPopulation() {

 firstCities := make([]int, NUMCITIES - 1)

 for i := 1; i < NUMCITIES; i++ {

 firstCities[i - 1] = i

 }

 for row := 0; row < ToursPerGeneration; row++ {

 rand.Shuffle(len(firstCities), func(i, j int) {

 firstCities[i], firstCities[j] =

 firstCities[j], firstCities[i]

 })

 population[row] = []int{0}

 for col := 1; col < NUMCITIES; col++ {

 population[row] = append(population[row],

 firstCities[col - 1])

 }

 }

}

We utilize the Shuffle function from package rand by producing a random sequence

of integers from 1 to NUMCITIES. We initialize the global population variable at each

row with value 0 and then append the random sequence to this initial value.

Chapter 20 GenetiC alGorithm for tSp

526

When we are done, each row of the population matrix contains a sequence of cities,

each starting with city 0. When we compute the cost of each tour, we add the cost of

going from the last city in the sequence back to city 0.

The Cost function for a given tour (row of the population matrix) is the following:

func Cost(graph [][]float64, tour []int) float64 {

 result := 0.0

 for index := 0; index < len(tour) - 2; index++ {

 result += graph[tour[index]][tour[index+1]]

 }

 result += graph[tour[NUMCITIES - 1]][tour[0]]

 return result

}

 Step 2 – Form an Elite Group of Best Tours
The function ChooseEliteGroup() returns a matrix of ELITENU best tours in the current

population.

This function is given as follows:

func ChooseEliteGroup() (elite [][]int) {

 // The population is sorted prior calling

 // this function

 // Initialize elite

 elite = make([][]int, EliteNumber)

 for row := 0; row < EliteNumber; row++ {

 elite[row] = make([]int, EliteNumber)

 }

 for row := 0; row < EliteNumber; row++ {

 elite[row] = DeepCopy(population[row])

 }

 return elite

}

The DeepCopy is needed because we wish to copy the values in each row of the

sorted population and not the address of the row.

Chapter 20 GenetiC alGorithm for tSp

527

 Step 3 – Tournament Selection
To obtain mating pairs from the current population minus the elite tours, we grab

TournamentNumber tours chosen randomly from the population minus elite tours, sort

them, and return the best tour (lowest cost) among them. That tour is parent1. We do

the same again to produce parent2. We mate the two parents and add the children into

newpopulation matrix.

We choose EliteNumber so that ToursPerGeneration – EliteNumber is an even

number. The number of parent pairs that we need to mate is (ToursPerGeneration –

EliteNumber) / 2.

 Step 4 – Mating of Parents
The OrderedCrossover function which we use to mate two parent tours transmits

information about the relative ordering of the parents to the children.

We create two random crossover points in the parents and copy the segment

between them from parent1 to child1.

Starting from the second crossover point in parent2, we copy the remaining numbers

from the second parent to the first child, not allowing duplicates and wrapping when the

end of parent2 is encountered.

Do the same for the second child, reversing the role of the parents.

Consider the following example.

parent1: 0, 1, 2, | 3, 4, 5, 6, | 7, 8, 9
parent2: 0, 8, 7, | 4, 3, 2, 1, | 9, 6, 5
Here, the crossover indices are 3 and 6 shown with the vertical lines.

Let’s walk through the process of obtaining child1.

After copying from parent1, child1 is the following:

x, x, x, 3, 4, 5, 6, x, x, x

Starting with the 9 in parent2 and working to the right and wrapping back to the

beginning of parent2 and child1, we add the values not in child1 to get

7, 2, 1, 3, 4, 5, 6, 9, 0, 8
Reversing the roles of parent1 and parent2, show that child2 is

0, 5, 6, 4, 3, 2, 1, 7, 8, 9
Now the challenge is to write function OrderedCrossover that implements the

preceding logic.

The logic is nontrivial. Function OrderedCrossover is the following:

Chapter 20 GenetiC alGorithm for tSp

528

func OrderedCrossOver(parent1, parent2 []int) (child1,

 child2 []int) {

 var index1, index2 int

 n := len(parent1)

 for {

 index1 = 1 + rand.Intn(len(parent1)-1)

 index2 = 1 + rand.Intn(len(parent1)-1)

 if index1 != index2 {

 break // the two indices are different

 }

 }

 if index1 > index2 {

 index1, index2 = index2, index1

 }

 child1 = make([]int, len(parent1))

 child2 = make([]int, len(parent1))

 for i := 0; i < len(parent1); i++ {

 // Since 0 is a legal value

 child1[i] = -1

 child2[i] = -1

 }

 // Logic for child1

 for i := index1; i <= index2; i++ {

 child1[i] = parent1[i]

 }

 k := index2 + 1 // index for child1

 for i := index2 + 1; i < len(parent1); i++ {

 found, _ := In(parent2[i], child1)

 if !found {

 child1[k%n] = parent2[i]

 k += 1

 }

 }

Chapter 20 GenetiC alGorithm for tSp

529

 for i := 0; i <= index2; i++ {

 found, _ := In(parent2[i], child1)

 if !found {

 // j := (i + index2 + 1) % n

 child1[k%n] = parent2[i]

 k += 1

 }

 }

 // Logic for child2

 for i := index1; i <= index2; i++ {

 child2[i] = parent2[i]

 }

 k = index2 + 1 // index for child2

 for i := index2 + 1; i < len(parent2); i++ {

 found, := In(parent1[i], child2)

 if !found {

 child2[k%n] = parent1[i]

 k += 1

 }

 }

 for i := 0; i <= index2; i++ {

 found, _ := In(parent1[i], child2)

 if !found {

 // j := (i + index2 + 1) % n

 child2[k%n] = parent1[i]

 k += 1

 }

 }

 // Form child11 and child22

 // so they both start at 0

 child11 := []int{}

 child22 := []int{}

 _, index0 := In(0, child1)

Chapter 20 GenetiC alGorithm for tSp

530

 for i := index0; i < len(child1); i++ {

 child11 = append(child11, child1[i])

 }

 for i := 0; i < index0; i++ {

 child11 = append(child11, child1[i])

 }

 _, index0 = In(0, child2)

 for i := index0; i < len(child2); i++ {

 child22 = append(child22, child2[i])

 }

 for i := 0; i < index0; i++ {

 child22 = append(child22, child2[i])

 }

 return child11, child22

}

We force each child to start their tour at city 0 by creating child11 and child22 from

child1 and child2 in such a way that child11 and child22 start at city 0. The final portion

of the OrderedCrossover function accomplishes this.

Helper function In is used in several places and is given as follows:

func In(value int, values []int) (bool, int) {

 // Returns true if value in values

 // returns index of location or -1 if not found

 for index := 0; index < len(values); index++ {

 if values[index] == value {

 return true, index

 }

 }

 return false, -1

}

Chapter 20 GenetiC alGorithm for tSp

531

 Form Next Generation
We define a global variable newpopulation that is created from the global variable

population.

The new population consists of the elite tours from population, the children from

the parents that have been mated, and mutations that are performed with specified

probability for each tour in the newpopulation. These mutations involve swapping two

randomly chosen cities in the tour.

The function for doing this is presented next.

func FormNextGeneration() {

 elite := ChooseEliteGroup()

 // Move elite into newpopulation

 row := 0 // index into newpopulaton

 for ; row < EliteNumber; row++ {

 newpopulation[row] = DeepCopy(elite[row])

 }

 // Remove the first EliteNumber rows from

 // population

 population = population[EliteNumber:]

 // Initialize group1 and group2

 group1 := make([][]int, TournamentNumber)

 for i := 0; i < TournamentNumber; i++ {

 group1[i] = make([]int, NUMCITIES)

 }

 group2 := make([][]int, TournamentNumber)

 for i := 0; i < TournamentNumber; i++ {

 group2[i] = make([]int, NUMCITIES)

 }

 MatingPoolSize := (ToursPerGeneration -

 EliteNumber) / 2

 for index := 0; index < MatingPoolSize; index++ {

 // Grap first group

 indicesChosen := []int{}

 rowsChosen := 0;

Chapter 20 GenetiC alGorithm for tSp

532

 for {

 randomRow := rand.Intn(TournamentNumber)

 found, _ := In(randomRow, indicesChosen)

 if !found {

 indicesChosen = append(indicesChosen,

 randomRow)

 group1[rowsChosen] =

 DeepCopy(population[randomRow])

 rowsChosen += 1

 }

 if rowsChosen == TournamentNumber {

 break

 }

 }

 // Grap second group

 indicesChosen = []int{}

 rowsChosen = 0;

 for {

 randomRow := rand.Intn(TournamentNumber)

 found, _ := In(randomRow, indicesChosen)

 if !found {

 indicesChosen = append(indicesChosen,

 randomRow)

 group2[rowsChosen] =

 DeepCopy(population[randomRow])

 rowsChosen += 1

 }

 if rowsChosen == TournamentNumber {

 break

 }

 }

 // Sort group1 and group2

 sort.Slice(group1, func(i, j int) bool {

 return Cost(group1[i]) < Cost(group1[j])

 })

Chapter 20 GenetiC alGorithm for tSp

533

 sort.Slice(group2, func(i, j int) bool {

 return Cost(group2[i]) < Cost(group2[j])

 })

 parent1 := group1[0] // The best from group1

 parent2 := group2[0] // The best from group2

 child1, child2 := OrderedCrossOver(parent1,

 parent2)

 newpopulation[row] = child1

 row += 1

 newpopulation[row] = child2

 row += 1

 }

 // Perform mutations

 for row := 0; row < ToursPerGeneration; row++ {

 r := rand.Float64()

 if r <= ProbMutation {

 SwapMutation(newpopulation[row])

 }

 }

 population = make([][]int, ToursPerGeneration)

 for i := 0; i < NUMCITIES; i++ {

 population[i] = make([]int, NUMCITIES)

 }

 // Copy newpopulation to population

 for row := 0; row < ToursPerGeneration; row++ {

 for col := 0; col < NUMCITIES; col++ {

 population[row][col] =

 newpopulation[row][col]

 }

 }

}

The code is heavily commented and should be straightforward to understand.

Chapter 20 GenetiC alGorithm for tSp

534

Sorting is accomplished using the Slice function from package sort.

sort.Slice(group1, func(i, j int) bool {

 return Cost(group1[i]) < Cost(group1[j])

})

Here, it is specified that the cost of a tour is the basis for sorting where lower-cost

tours occur before higher-cost tours.

 Putting the Pieces Together
In Listing 20-1, we present the entire program for solving the TSP with the heuristic

genetic programming algorithm. We include a main driver that loads the same 29-city

problem presented in Chapter 19 where it was tackled using simulated annealing. We

present and compare the results of these two approaches to obtaining heuristic solutions

to this TSP.

Listing 20-1. Genetic algorithm for TSP

package main

import (

 "fmt"

 "math"

 "math/rand"

 "sort"

 "time"

)

const (

 NUMCITIES = 29

 EliteNumber = 2

 ToursPerGeneration = 100

 NumberGenerations = 50000

 TournamentNumber = 4

 ProbMutation = 0.25

)

Chapter 20 GenetiC alGorithm for tSp

535

type Point struct {

 x float64

 y float64

}

var population [][]int

var newpopulation [][]int

var graph [][]float64

func (pt Point) distance(other Point) float64 {

 dx := pt.x - other.x

 dy := pt.y - other.y

 return math.Sqrt(dx*dx + dy*dy)

}

func CreateGraph(numCities int, cities []Point,

 graph [][]float64) {

 for row := 0; row < numCities; row++ {

 for col := 0; col < numCities; col++ {

 if row == col {

 graph[row][col] = 0.0

 } else {

 graph[row][col] =

 cities[row].distance(cities[col])

 }

 }

 }

}

func DeepCopy(tour []int) []int {

 result := []int{}

 for i := range tour {

 result = append(result, tour[i])

 }

 return result

}

Chapter 20 GenetiC alGorithm for tSp

536

func In(value int, values []int) (bool, int) {

 // Returns true if value in values

 // returns index of location or -1 if not found

 for index := 0; index < len(values); index++ {

 if values[index] == value {

 return true, index

 }

 }

 return false, -1

}

func Cost(tour []int) float64 {

 result := 0.0

 for index := 0; index < len(tour)-2; index++ {

 result += graph[tour[index]][tour[index+1]]

 }

 result += graph[tour[NUMCITIES-1]][tour[0]]

 return result

}

func CreateInitialPopulation() {

 firstCities := make([]int, NUMCITIES-1)

 for i := 1; i < NUMCITIES; i++ {

 firstCities[i-1] = i

 }

 for row := 0; row < ToursPerGeneration; row++ {

 rand.Shuffle(len(firstCities), func(i, j int) {

 firstCities[i], firstCities[j] =

 firstCities[j], firstCities[i]

 })

 population[row] = []int{0}

 for col := 1; col < NUMCITIES; col++ {

 population[row] = append(population[row],

 firstCities[col-1])

 }

 }

}

Chapter 20 GenetiC alGorithm for tSp

537

func ChooseEliteGroup() (elite [][]int) {

 // The population is sorted prior calling

 // this function

 // Initialize elite

 elite = make([][]int, EliteNumber)

 for row := 0; row < EliteNumber; row++ {

 elite[row] = make([]int, EliteNumber)

 }

 for row := 0; row < EliteNumber; row++ {

 elite[row] = DeepCopy(population[row])

 }

 return elite

}

func FormNextGeneration() {

 elite := ChooseEliteGroup()

 // Move elite into newpopulation

 row := 0 // index into newpopulaton

 for ; row < EliteNumber; row++ {

 newpopulation[row] = DeepCopy(elite[row])

 }

 // Remove the first EliteNumber rows from

 // population

 population = population[EliteNumber:]

 // Initialize group1 and group2

 group1 := make([][]int, TournamentNumber)

 for i := 0; i < TournamentNumber; i++ {

 group1[i] = make([]int, NUMCITIES)

 }

 group2 := make([][]int, TournamentNumber)

 for i := 0; i < TournamentNumber; i++ {

 group2[i] = make([]int, NUMCITIES)

 }

 MatingPoolSize := (ToursPerGeneration -

 EliteNumber) / 2

Chapter 20 GenetiC alGorithm for tSp

538

 for index := 0; index < MatingPoolSize; index++ {

 // Grap first group

 indicesChosen := []int{}

 rowsChosen := 0;

 for {

 randomRow := rand.Intn(TournamentNumber)

 found, _ := In(randomRow, indicesChosen)

 if !found {

 indicesChosen = append(indicesChosen,

 randomRow)

 group1[rowsChosen] =

 DeepCopy(population[randomRow])

 rowsChosen += 1

 }

 if rowsChosen == TournamentNumber {

 break

 }

 }

 // Grap second group

 indicesChosen = []int{}

 rowsChosen = 0;

 for {

 randomRow := rand.Intn(TournamentNumber)

 found, _ := In(randomRow, indicesChosen)

 if !found {

 indicesChosen = append(indicesChosen,

 randomRow)

 group2[rowsChosen] =

 DeepCopy(population[randomRow])

 rowsChosen += 1

 }

 if rowsChosen == TournamentNumber {

 break

 }

 }

Chapter 20 GenetiC alGorithm for tSp

539

 // Sort group1 and group2

 sort.Slice(group1, func(i, j int) bool {

 return Cost(group1[i]) < Cost(group1[j])

 })

 sort.Slice(group2, func(i, j int) bool {

 return Cost(group2[i]) < Cost(group2[j])

 })

 parent1 := group1[0] // The best from group1

 parent2 := group2[0] // The best from group2

 child1, child2 := OrderedCrossOver(parent1,

 parent2)

 newpopulation[row] = child1

 row += 1

 newpopulation[row] = child2

 row += 1

 }

 // Perform mutations

 for row := 0; row < ToursPerGeneration; row++ {

 r := rand.Float64()

 if r <= ProbMutation {

 SwapMutation(newpopulation[row])

 }

 }

 population = make([][]int, ToursPerGeneration)

 for i := 0; i < ToursPerGeneration; i++ {

 population[i] = make([]int, NUMCITIES)

 }

 // Copy newpopulation to population

 for row := 0; row < ToursPerGeneration; row++ {

 for col := 0; col < NUMCITIES; col++ {

 population[row][col] =

 newpopulation[row][col]

 }

 }

}

Chapter 20 GenetiC alGorithm for tSp

540

func SwapMutation(tour []int) {

 var index1, index2 int

 n := len(tour)

 for {

 index1 = 1 + rand.Intn(n-1)

 index2 = 1 + rand.Intn(n-1)

 if index2 != index1 + 4 {

 break // the two indices are different

 }

 }

 if index1 > index2 {

 index1, index2 = index2, index1

 }

 tour[index1], tour[index2] = tour[index2],

 tour[index1]

}

func OrderedCrossOver(parent1, parent2 []int)

 (child1, child2 []int) {

 var index1, index2 int

 n := len(parent1)

 for {

 index1 = 1 + rand.Intn(len(parent1)-1)

 index2 = 1 + rand.Intn(len(parent1)-1)

 if index1 != index2 {

 break // the two indices are different

 }

 }

 if index1 > index2 {

 index1, index2 = index2, index1

 }

 child1 = make([]int, len(parent1))

 child2 = make([]int, len(parent1))

 for i := 0; i < len(parent1); i++ {

 // Since 0 is a legal value

 child1[i] = -1

Chapter 20 GenetiC alGorithm for tSp

541

 child2[i] = -1

 }

 // Logic for child1

 for i := index1; i <= index2; i++ {

 child1[i] = parent1[i]

 }

 k := index2 + 1 // index for child1

 for i := index2 + 1; i < len(parent1); i++ {

 found, _ := In(parent2[i], child1)

 if !found {

 child1[k%n] = parent2[i]

 k += 1

 }

 }

 for i := 0; i <= index2; i++ {

 found, _ := In(parent2[i], child1)

 if !found {

 // j := (i + index2 + 1) % n

 child1[k%n] = parent2[i]

 k += 1

 }

 }

 // Logic for child2

 for i := index1; i <= index2; i++ {

 child2[i] = parent2[i]

 }

 k = index2 + 1 // index for child2

 for i := index2 + 1; i < len(parent2); i++ {

 found, _ := In(parent1[i], child2)

 if !found {

 child2[k%n] = parent1[i]

 k += 1

 }

 }

Chapter 20 GenetiC alGorithm for tSp

542

 for i := 0; i <= index2; i++ {

 found, _ := In(parent1[i], child2)

 if !found {

 // j := (i + index2 + 1) % n

 child2[k%n] = parent1[i]

 k += 1

 }

 }

 // Form child11 and child22

 // so they both start at 0

 child11 := []int{}

 child22 := []int{}

 _, index0 := In(0, child1)

 for i := index0; i < len(child1); i++ {

 child11 = append(child11, child1[i])

 }

 for i := 0; i < index0; i++ {

 child11 = append(child11, child1[i])

 }

 _, index0 = In(0, child2)

 for i := index0; i < len(child2); i++ {

 child22 = append(child22, child2[i])

 }

 for i := 0; i < index0; i++ {

 child22 = append(child22, child2[i])

 }

 return child11, child22

}

func GeneticAlgorithm() {

 generation := 0

 population = make([][]int, ToursPerGeneration)

 for i := 0; i < ToursPerGeneration; i++ {

 population[i] = make([]int, NUMCITIES)

 }

Chapter 20 GenetiC alGorithm for tSp

543

 newpopulation = make([][]int, ToursPerGeneration)

 for i := 0; i < ToursPerGeneration; i++ {

 newpopulation[i] = make([]int, NUMCITIES)

 }

 lowestCostTour := 1000000000.0

 CreateInitialPopulation()

 for {

 if generation == NumberGenerations {

 break

 }

 // Sort the population based on tour cost

 sort.Slice(population, func(i, j int) bool {

 return Cost(population[i]) <

 Cost(population[j])

 })

 bestCost := Cost(population[0])

 if bestCost < lowestCostTour {

 lowestCostTour = bestCost

 fmt.Printf("\nLowest cost tour at

 generation %d = %0.2f", generation,

 lowestCostTour)

 }

 FormNextGeneration()

 generation += 1

 }

}

func main() {

 rand.Seed(time.Now().UnixNano())

 cities := []Point{}

 // Known solution: 9074.15

 pt1 := Point{1150.0,1760.0}

 cities = append(cities, pt1)

 pt2 := Point{630.0, 1660.0}

 cities = append(cities, pt2)

 pt3 := Point{40.0, 2090.0}

Chapter 20 GenetiC alGorithm for tSp

544

 cities = append(cities, pt3)

 pt4 := Point{750.0, 1100.0}

 cities = append(cities, pt4)

 pt5 := Point{750.0, 2030.0}

 cities = append(cities, pt5)

 pt6 := Point{1030.0, 2070.0}

 cities = append(cities, pt6)

 pt7 := Point{1650.0, 650.0}

 cities = append(cities, pt7)

 pt8 := Point{1490.0, 1630.0}

 cities = append(cities, pt8)

 pt9 := Point{790.0, 2260.0}

 cities = append(cities, pt9)

 pt10 := Point{710.0, 1310.0}

 cities = append(cities, pt10)

 pt11 := Point{840.0, 550.0}

 cities = append(cities, pt11)

 pt12 := Point{1170.0, 2300.0}

 cities = append(cities, pt12)

 pt13 := Point{970.0, 1340.0}

 cities = append(cities, pt13)

 pt14 := Point{510.0, 700.0}

 cities = append(cities, pt14)

 pt15 := Point{750.0, 900.0}

 cities = append(cities, pt15)

 pt16 := Point{1280.0, 1200.0}

 cities = append(cities, pt16)

 pt17 := Point{230.0, 590.0}

 cities = append(cities, pt17)

 pt18 := Point{460.0, 860.0}

 cities = append(cities, pt18)

 pt19 := Point{1040.0, 950.0}

 cities = append(cities, pt19)

 pt20 := Point{590.0, 1390.0}

 cities = append(cities, pt20)

Chapter 20 GenetiC alGorithm for tSp

545

 pt21 := Point{830.0, 1770.0}

 cities = append(cities, pt21)

 pt22 := Point{490.0, 500.0}

 cities = append(cities, pt22)

 pt23 := Point{1840.0, 1240.0}

 cities = append(cities, pt23)

 pt24 := Point{1260.0, 1500.0}

 cities = append(cities, pt24)

 pt25 := Point{1280.0, 790.0}

 cities = append(cities, pt25)

 pt26 := Point{490.0, 2130.0}

 cities = append(cities, pt26)

 pt27 := Point{1460.0, 1420.0}

 cities = append(cities, pt27)

 pt28 := Point{1260.0, 1910.0}

 cities = append(cities, pt28)

 pt29 := Point{360.0, 1980.0}

 cities = append(cities, pt29)

 graph = make([][]float64, NUMCITIES)

 for i:=0; i < NUMCITIES ; i++ {

 graph[i] = make([]float64, NUMCITIES)

 }

 CreateGraph(NUMCITIES, cities, graph)

 GeneticAlgorithm()

}

/* Output

Lowest cost tour at generation 0 = 22019.11

Lowest cost tour at generation 1 = 20169.35

Lowest cost tour at generation 5 = 20017.31

Lowest cost tour at generation 6 = 19545.05

Lowest cost tour at generation 7 = 18447.20

Lowest cost tour at generation 12 = 18340.78

Lowest cost tour at generation 13 = 17953.87

Lowest cost tour at generation 15 = 17350.68

Chapter 20 GenetiC alGorithm for tSp

546

Lowest cost tour at generation 16 = 17095.07

Lowest cost tour at generation 18 = 16612.21

Lowest cost tour at generation 19 = 16425.63

Lowest cost tour at generation 20 = 16299.86

Lowest cost tour at generation 24 = 16002.17

Lowest cost tour at generation 28 = 15749.40

Lowest cost tour at generation 30 = 14754.66

Lowest cost tour at generation 53 = 13900.84

Lowest cost tour at generation 68 = 13831.31

Lowest cost tour at generation 72 = 13668.22

Lowest cost tour at generation 73 = 13636.80

Lowest cost tour at generation 77 = 13392.64

Lowest cost tour at generation 92 = 12979.84

Lowest cost tour at generation 103 = 12200.31

Lowest cost tour at generation 123 = 12030.21

Lowest cost tour at generation 186 = 11960.10

Lowest cost tour at generation 191 = 11860.86

Lowest cost tour at generation 204 = 11647.36

Lowest cost tour at generation 209 = 11639.41

Lowest cost tour at generation 215 = 11582.62

Lowest cost tour at generation 218 = 11580.22

Lowest cost tour at generation 224 = 11255.27

Lowest cost tour at generation 280 = 11150.08

Lowest cost tour at generation 344 = 11099.42

Lowest cost tour at generation 423 = 10775.75

Lowest cost tour at generation 482 = 10717.58

Lowest cost tour at generation 492 = 10592.38

Lowest cost tour at generation 496 = 10587.10

Lowest cost tour at generation 503 = 10556.30

Lowest cost tour at generation 508 = 10489.54

Lowest cost tour at generation 513 = 10415.89

Lowest cost tour at generation 519 = 10409.44

Lowest cost tour at generation 527 = 10292.43

Lowest cost tour at generation 536 = 10256.38

Lowest cost tour at generation 561 = 9990.04

Chapter 20 GenetiC alGorithm for tSp

547

Lowest cost tour at generation 795 = 9936.06

Lowest cost tour at generation 810 = 9869.37

Lowest cost tour at generation 883 = 9817.69

Lowest cost tour at generation 891 = 9694.19

Lowest cost tour at generation 909 = 9616.14

Lowest cost tour at generation 956 = 9541.14

Lowest cost tour at generation 965 = 9456.43

Lowest cost tour at generation 970 = 9362.68

Lowest cost tour at generation 1179 = 9285.43

*/

It takes less than ten seconds for this program to terminate.

After ten runs, the lowest-cost tour at generation 1179 is 9285. This is an error of 2

percent from the known optimum solution of 9074.

Clearly, this approach to solving TSP is useful.

20.3 Summary
In this chapter, we presented an approach to solving TSP based on genetic modeling

and survival of the fittest. As the program moves from one generation to another and

solutions evolve, the best tours converge to approximate the optimum solution.

Each run of the genetic algorithm is a new experiment. The results are greatly

dependent on the constants chosen.

In the next chapter, we turn our attention to machine learning and neural networks.

Chapter 20 GenetiC alGorithm for tSp

549

CHAPTER 21

Neural Networks
and Machine Learning
The previous chapter presented an implementation of a generic algorithm for

solving TSP.

This chapter introduces neural networks and machine learning. We present an

implementation of a neural network from scratch.

In the next section, we present an overview of machine learning and neural networks.

21.1 Overview of Neural Networks
and Machine Learning

AI (artificial intelligence) has its roots in research done at Dartmouth in 1956. Its goal is

to mimic human reasoning.

Machine learning is a subfield of AI. It uses statistics, operations research, and neural

network models to obtain insights from data. It allows the computer (machine) to obtain

insights through an iterative process that mimics how we believe the human brain learns

new things. It allows computers the ability to learn to perform complex tasks without

explicitly being programmed.

Applications of machine learning include natural language processing, including

language translation, image classification and analysis, chatbots, medical diagnosis,

game playing, pattern recognition, and stock price prediction.

Machine learning starts with data, often a huge quantity of data. This data may be

numerical time series, photos, text, repair records, bank transactions, sales reports, or

sensor data from a multitude of sources (weather data, seismic data, medical data, etc.).

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8_21

https://doi.org/10.1007/978-1-4842-8191-8_21

550

Such data is used to “train” a computer model such as a neural network. After

sufficient training, the model is used to perform classification, to predict future

outcomes, make a move in a game, provide a translation of some text, etc., based on the

learning achieved from the training data.

 Training
Training a neural network model involves feeding forward input data through the

network to one or more outputs, feeding back errors that are detected in the output to

modify the network to minimize these errors. We will examine this important process in

detail in this chapter.

 Neural Networks
Neural networks are function approximators. By training such a network with many

observed inputs and corresponding outputs, the goal is to obtain a reliable output when

new inputs are applied.

For example, if our goal is to have our network distinguish between a photo of a dog

and a photo of a cat, we train the network by sending in numerous cat and dog images,

each time informing the network whether the image (a two-dimensional matrix of pixel

values) is a dog or cat. Then when images the network has never seen are sent in, the

network will hopefully determine with high accuracy whether it is a dog or cat image.

Such a trained neural network may be thought of as a mathematical function that

when presented with input produces some output (a classification in this case).

A neural network generally contains

 1. A collection of input values that comprise an input layer

 2. One or more hidden layers

 3. An output layer with output values

 4. A collection of weights and biases between layers

 5. An activation function for each layer

Chapter 21 Neural Networks aNd MaChiNe learNiNg

551

 Perceptron
In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts defined

a simple model of a neuron that takes a set of inputs, multiplies them by weighted

values and adds a bias value, and then puts them through an activation function, which

produces an output of 0 or 1. This model is called the McCulloch-Pitts perceptron.

A schematic of this perceptron is shown in Figure 21-1.

Figure 21-1. Perceptron

The output, y, is the sum of the input values multiplied by the set of weights, W, and

a bias value b and followed by a threshold function that converts the sum to a value

between zero and one.

Next, the expected value is compared to the actual value to form an error. This

computed error is fed back to the weights to modify the weights to reduce this error. After

many iterations, it is hoped that the error can be made very small.

The process of obtaining the output from the inputs and weights is called forward

propagation. The process of modifying the weights based on the error is called

backpropagation. By knowing the derivative of the error with respect to each weight, a

recursive-descent algorithm that successively modifies the weights while decreasing the

output error is achieved.

By stacking a collection of neurons in various layers, a neural network is created.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

552

 Schematics of Neural Networks
Schematics of two such neural networks are shown in Figures 21-2 and 21-3. The first has

one “hidden” layer containing four neurons and a single output layer.

The second neural network has three layers containing four neurons each and is a

deep neural network because of the many layers.

Figure 21-2. Neural network with one hidden layer

Figure 21-3. Neural network with many hidden layers

Chapter 21 Neural Networks aNd MaChiNe learNiNg

553

 A Neuron
We drill deeper and examine an individual neuron or node in a neural network. In

Figure 21-4, we show such a neuron.

Figure 21-4. A neuron

The output, y, is computed from the inputs x1, x2, and x3 as follows:

z = w1x1 + w2x2 + w3x3 + b

We follow this by taking this linear combination of inputs and bias and using a

nonlinear activation function such as the sigmoid function as follows:

y = sigmoid(z) = 1 / (1 + e-z)

The use of the sigmoid activation function forces the result to be between 0 and 1 as

z varies from a large negative number to a large positive number.

In the next section, we define a simple problem that we will solve.

21.2 A Concrete Example
Suppose we wish to construct and train a neural network to determine whether a

diagnostic test indicates that a patient has a particular disease. There are two numbers

from the test, x and y, each between 0.0 and 1.0. If x2 < y, the test is negative; otherwise,

it is positive. We will represent a negative test by the numerical label 0 and a positive test

with the numerical label 1.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

554

The neural network will receive 150 test results (each result a pair of numbers, each

between 0.0 and 1.0). The output of the neural network contains 150 computed scores, each

between 0.0 and 1.0, as well as 150 correct labels, each between 0.0 and 1.0, based on the.

This example allows us to introduce the methodology of neural network modeling

and computation and see how the important pieces fit together.

In the next section, we will build a neural network from scratch to solve this problem.

21.3 Constructing a Neural Network
We will construct a simple neural network, from scratch, that solves the problem

presented in Section 21.2.

We define a weight matrix. Each column of this weight matrix shows the weights

from all neurons in the previous layer to a particular neuron in the current layer.

So, for example, the values w[0][2], w[1][2], w[2][[2], ..., w[n – 1][2] (the third

column of the weight matrix) represent the weights from the n neurons in the previous

level to neuron 3 in the current level.

The neural network that we will build contains 150 nodes for the input layer (one

node for each test result containing two numbers), 25 nodes for the hidden layer, and

150 nodes for the output layer.

 Matrices That Represent Network
The input matrix is of dimension 150 × 2. Each row of this matrix contains the test result

numbers x and y.

The weight matrix that connects the input layer to the hidden layer is of

dimension 2 × 25.

The weight matrix that connects the hidden layer to the output layer is of

dimension 25 × 1.

The output of the neural network is of dimension 150 × 1.

We will set the biases to zero for this example.

Some sample input and output would be

Input 1: <0.42, 0.1> (positive test since 0.422 > 0.1)

Input 2: <0.6, 0.8> (negative test since 0.62 < 0.8)

We will generate the test results by generating random x and y values for each test,

each between 0.0 and 1.0.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

555

We use the 150 test results to train the network. We then generate 25 more fresh test

results randomly, as before. We then use the fully trained network to predict whether

each of the 25 new tests is positive or negative and tabulate our errors.

In the next section, we present and explain the implementation of a neural network

that classifies the results of the diagnostic tests.

21.4 Neural Network Implementation
We begin the implementation by defining some global variables and initializing all

weights with random values from 0 to 1.

package main

import (

 "fmt"

 "math"

 "math/rand"

 "time"

)

var (

 InputLayer = 150

 HiddenLayer = 25

 OutputLayer = InputLayer

 Inputs = 2 // x and y values

)

var weights1 [][]float64

var derivatives1 [][]float64

var weights2 [][]float64

var derivatives2 [][]float64

var input [][]float64

func InitializeWeights1() {

 weights1 = make([][]float64, Inputs)

 derivatives1 = make([][]float64, Inputs)

 for row := 0; row < Inputs; row++ {

 weights1[row] = make([]float64, HiddenLayer)

Chapter 21 Neural Networks aNd MaChiNe learNiNg

556

 derivatives1[row] = make([]float64,

 HiddenLayer)

 }

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 weights1[row][col] = rand.Float64()

 }

 }

}

func InitializeWeights2() {

 weights2 = make([][]float64, HiddenLayer)

 derivatives2 = make([][]float64, HiddenLayer)

 for row := 0; row < HiddenLayer; row++ {

 weights2[row] = make([]float64, 1)

 derivatives2[row] = make([]float64,

 OutputLayer)

 }

 for row := 0; row < HiddenLayer; row++ {

 for col := 0; col < 1; col++ {

 weights2[row][col] = rand.Float64()

 }

 }

}

The derivatives1 and derivatives2 matrices will be explained later.

Next, we look at two functions: trueOutput and cost.

The trueOutput function evaluates a[0], representing x, and a[1], representing y,

and returns 0 for a negative test result and 1 for a positive test result.

The cost function compares the values in column zero (the only column) of the

neural network output with the correct values, squares each error, adds the errors, and

divides by the number of errors.

func trueOutput(a []float64) float64 {

 if a[0] * a[0] <= a[1] {

 return 0.0

 } else {

Chapter 21 Neural Networks aNd MaChiNe learNiNg

557

 return 1.0

 }

}

func cost(output [][]float64) float64 {

 result := 0.0

 for i := 0; i < InputLayer; i++ {

 correctAnswer := trueOutput(input[i])

 result += (output[i][0] - correctAnswer) * (output[i][0] -

correctAnswer)

 }

 return result / float64(InputLayer)

}

The functions dot, DotProduct, and Sigmoid are support functions that support the

neural network matrix operations that are needed.

func dot(vector1 []float64, vector2 []float64) float64 {

 if len(vector1) != len(vector2) {

 panic("Illegal vector dimensions for dot product.")

 }

 result := 0.0

 for i := 0; i < len(vector1); i++ {

 result += vector1[i] * vector2[i]

 }

 return result

}

func DotProduct(matrix1, matrix2 [][]float64) (result [][]float64) {

 rows1 := len(matrix1)

 cols1 := len(matrix1[0])

 rows2 := len(matrix2)

 cols2 := len(matrix2[0])

 if cols1 != rows2 {

 panic("Cannot take dot product")

 }

 result = make([][]float64, rows1)

Chapter 21 Neural Networks aNd MaChiNe learNiNg

558

 for row := 0; row < rows1; row++ {

 result[row] = make([]float64, cols2)

 }

 for row := 0; row < rows1; row++ {

 for col := 0; col < cols2; col++ {

 column := []float64{}

 for r := 0; r < cols1; r++ {

 column = append(column,

 matrix2[r][col])

 }

 result[row][col] = dot(matrix1[row],

 column)

 }

 }

 return result

}

func Sigmoid(matrix [][]float64) (result [][]float64) {

 rows := len(matrix)

 cols := len(matrix[0])

 result = make([][]float64, rows)

 for row := 0; row < rows; row++ {

 result[row] = make([]float64, cols)

 }

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 result[row][col] = 1.0 / (1.0 + math.Exp(-

 matrix[row][col]))

 }

 }

 return result

}

Chapter 21 Neural Networks aNd MaChiNe learNiNg

559

These functions are needed in the FeedForward function that transforms the neural

network input to its output.

func FeedForward() [][]float64 {

 hidden := Sigmoid(DotProduct(input, weights1))

 output := Sigmoid(DotProduct(hidden, weights2))

 return output

}

We see that by taking the dot product of the input matrix with the weights1 matrix

and following this by the dot product of the resulting hidden matrix with the weights2

matrix, we get the output matrix.

The Sigmoid activation function ensures that all the values are scaled to be between

0 and 1.

So far, we have examined how the inputs to the network (a matrix of 150 test results,

each test having two real numbers) produce 150 outputs.

The magic of neural networks is the process of training the network. This means

making modifications to the weight’s matrices (weights1 and weights2 in this case) and

to lower the mean-squared average error between the computed output and the correct

results (the cost).

The process for achieving this is called backpropagation.

The mathematics related to backpropagation is complex. See, for example,

https://hmkcode.com/ai/backpropagation- step- by- step/.

Backpropagation involves taking partial derivatives of the cost with respect to each

of the many weights. Each of these partial derivatives characterizes how the cost would

be increased or decreased if a small change in a particular weight were made. If we knew

the partial derivative for each of the weights, we could modify each weight with the goal

of lowering the mean-squared error (the cost). The partial derivative would specify the

direction and magnitude of the needed weight modification.

Since this chapter aims at introducing the mechanics of neural networks, we will

bypass the mathematics by estimating the partial derivatives empirically. The price we

pay for this is performance. At each iteration of backpropagation, we need to evaluate

the effect of changing each weight on the overall cost of the network output.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

https://hmkcode.com/ai/backpropagation-step-by-step/

560

 Estimating the Partial Derivatives of Cost with Respect
to Each Weight
For each weight in weights1 and weights2, we add 0.01 or any other small amount to

the weight. We compute the output of the network and its cost after making this change.

The partial derivative of cost with respect to this weight is the ratio of the change in cost

resulting from the tweak in the weight to the change in weight. If this ratio is positive, we

save this positive partial derivative in a separate matrix with the same dimensions as the

weight matrix. If the ratio is negative, we change the sign of the ratio and save it in the

separate partial derivative matrix.

After we have estimated and saved all the partial derivatives, we modify the entire

weights1 and weights2 matrices by the partial derivative amounts. This represents the

first iteration of training in the network.

The function ComputeDerivatives, shown in the following, performs the estimation

of partial derivatives:

func ComputeDerivatives() {

 // Estimates the partial derivative of the cost

 // with respect to each weight

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 output1 := FeedForward()

 c1 := cost(output1)

 weights1[row][col] += .01

 output2 := FeedForward()

 c2 := cost(output2)

 weights1[row][col] -= .01

 derivatives1[row][col] = (c2 - c1) / .01

 weights2[col][0] += .01

 output3 := FeedForward()

 c3 := cost(output3)

 weights2[col][0] -= .01

 derivatives2[col][0] = (c3 - c1) / .01

 }

 }

}

Chapter 21 Neural Networks aNd MaChiNe learNiNg

561

The function BackPropagate changes each weight, as shown, based on the values in

the derivatives matrix.

func BackPropagate() {

 ComputeDerivatives()

 // Modifiy weights1 and weights2

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 weights1[row][col] -=

 derivatives1[row][col]

 }

 }

 for row := 0; row < HiddenLayer; row++ {

 for col := 0; col < 1; col++ {

 weights2[row][col] -=

 derivatives2[row][col]

 }

 }

}

Finally, the function Train() iteratively modifies the weights with the goal of

lowering the cost.

func Train() {

 for epoch := 1; epoch < 1500; epoch++ {

 output := FeedForward()

 fmt.Println("cost = ", cost(output))

 BackPropagate()

 }

}

We put all the pieces together in Listing 21-1 including a main driver function that

builds inputs for the neural network, trains the network, and outputs the results on fresh

data after the training is completed.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

562

Listing 21-1. Neural network from scratch

package main

import (

 "fmt"

 "math"

 "math/rand"

 "time"

)

var (

 InputLayer = 150

 HiddenLayer = 25

 OutputLayer = InputLayer

 Inputs = 2 // x and y values

)

var weights1 [][]float64

var derivatives1 [][]float64

var weights2 [][]float64

var derivatives2 [][]float64

var input [][]float64

func InitializeWeights1() {

 weights1 = make([][]float64, Inputs)

 derivatives1 = make([][]float64, Inputs)

 for row := 0; row < Inputs; row++ {

 weights1[row] = make([]float64, HiddenLayer)

 derivatives1[row] = make([]float64,

 HiddenLayer)

 }

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 weights1[row][col] = rand.Float64()

 }

 }

}

Chapter 21 Neural Networks aNd MaChiNe learNiNg

563

func InitializeWeights2() {

 weights2 = make([][]float64, HiddenLayer)

 derivatives2 = make([][]float64, HiddenLayer)

 for row := 0; row < HiddenLayer; row++ {

 weights2[row] = make([]float64, 1)

 derivatives2[row] = make([]float64,

 OutputLayer)

 }

 for row := 0; row < HiddenLayer; row++ {

 for col := 0; col < 1; col++ {

 weights2[row][col] = rand.Float64()

 }

 }

}

func dot(vector1 []float64,vector2 []float64) float64 {

 if len(vector1) != len(vector2) {

 panic("Illegal vector dimensions for dot

 product.")

 }

 result := 0.0

 for i := 0; i < len(vector1); i++ {

 result += vector1[i] * vector2[i]

 }

 return result

}

func DotProduct(matrix1, matrix2 [][]float64) (result

 [][]float64) {

 rows1 := len(matrix1)

 cols1 := len(matrix1[0])

 rows2 := len(matrix2)

 cols2 := len(matrix2[0])

 if cols1 != rows2 {

 panic("Cannot take dot product")

 }

Chapter 21 Neural Networks aNd MaChiNe learNiNg

564

 result = make([][]float64, rows1)

 for row := 0; row < rows1; row++ {

 result[row] = make([]float64, cols2)

 }

 for row := 0; row < rows1; row++ {

 for col := 0; col < cols2; col++ {

 column := []float64{}

 for r := 0; r < cols1; r++ {

 column = append(column,

 matrix2[r][col])

 }

 result[row][col] = dot(matrix1[row],

 column)

 }

 }

 return result

}

func Sigmoid(matrix [][]float64) (result [][]float64) {

 rows := len(matrix)

 cols := len(matrix[0])

 result = make([][]float64, rows)

 for row := 0; row < rows; row++ {

 result[row] = make([]float64, cols)

 }

 for row := 0; row < rows; row++ {

 for col := 0; col < cols; col++ {

 result[row][col] = 1.0 / (1.0 + math.Exp(-

 matrix[row][col]))

 }

 }

 return result

}

func trueOutput(a []float64) float64 {

 if a[0] * a[0] <= a[1] {

 return 0.0

Chapter 21 Neural Networks aNd MaChiNe learNiNg

565

 } else {

 return 1.0

 }

}

func cost(output [][]float64) float64 {

 result := 0.0

 for i := 0; i < InputLayer; i++ {

 correctAnswer := trueOutput(input[i])

 result += (output[i][0] - correctAnswer) *

 (output[i][0] - correctAnswer)

 }

 return result / float64(InputLayer)

}

func ComputeDerivatives() {

 // Estimates the partial derivative of the cost

 // with respect to each weight

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 output1 := FeedForward()

 c1 := cost(output1)

 weights1[row][col] += .01

 output2 := FeedForward()

 c2 := cost(output2)

 weights1[row][col] -= .01

 derivatives1[row][col] = (c2 - c1) / .01

 weights2[col][0] += .01

 output3 := FeedForward()

 c3 := cost(output3)

 weights2[col][0] -= .01

 derivatives2[col][0] = (c3 - c1) / .01

 }

 }

}

Chapter 21 Neural Networks aNd MaChiNe learNiNg

566

func FeedForward() [][]float64 {

 hidden := Sigmoid(DotProduct(input, weights1))

 output := Sigmoid(DotProduct(hidden, weights2))

 return output

}

func BackPropagate() {

 ComputeDerivatives()

 // Modifiy weights1 and weights2

 for row := 0; row < Inputs; row++ {

 for col := 0; col < HiddenLayer; col++ {

 weights1[row][col] -=

 derivatives1[row][col]

 }

 }

 for row := 0; row < HiddenLayer; row++ {

 for col := 0; col < 1; col++ {

 weights2[row][col] -=

 derivatives2[row][col]

 }

 }

}

func Train() {

 for epoch := 1; epoch < 1500; epoch++ {

 output := FeedForward()

 fmt.Println("cost = ", cost(output))

 BackPropagate()

 }

}

func main() {

 rand.Seed(time.Now().UnixNano())

 InitializeWeights1()

 InitializeWeights2()

 input = make([][]float64, InputLayer)

Chapter 21 Neural Networks aNd MaChiNe learNiNg

567

 for row := 0; row < InputLayer; row++ {

 input[row] = make([]float64, Inputs)

 }

 for row := 0; row < InputLayer; row++ {

 for col := 0; col < Inputs; col++ {

 input[row][col] = rand.Float64()

 input[row][col] = rand.Float64()

 }

 }

 Train()

 // Use existing weights and see how well

 // the neural network handles new data

 InputLayer = 25

 OutputLayer = 25

 input = make([][]float64, InputLayer)

 for row := 0; row < InputLayer; row++ {

 input[row] = make([]float64, Inputs)

 }

 for row := 0; row < InputLayer; row++ {

 for col := 0; col < Inputs; col++ {

 input[row][col] = rand.Float64()

 input[row][col] = rand.Float64()

 }

 }

 output := FeedForward()

 var verdict bool // false by default

 for i := 0; i < InputLayer; i++ {

 if output[i][0] > 0.5 && trueOutput(input[i])

 == 1 {

 verdict = true

 } else if output[i][0] < 0.5 &&

 trueOutput(input[i]) == 0 {

 verdict = true

 }

Chapter 21 Neural Networks aNd MaChiNe learNiNg

568

 fmt.Printf("\nComputed value: %f correct

 answer = %f Correct Estimate: %v",

 output[i][0], trueOutput(input[i]), verdict)

 }

 fmt.Println()

}

In the next section, we examine the program output.

21.5 Output from Neural Network
The output is voluminous. The function Train performs 1500 epochs, each epoch

involving a forward and back computation that trains the network. And each iteration

causes an output of the current mean-squared error, cost. It is interesting and important

to observe the evolution of these costs and see how they decrease as the network gets

trained.

Only a portion of the output is shown in the interest of space. Of notice are the

results of testing 25 fresh inputs. The outputs for these fresh inputs indicate 100 percent

accuracy by the neural network if we interpret an output greater than 0.5 as positive and

less than 0.5 as negative.

cost = 0.6637402659161185

cost = 0.6636630956218156

cost = 0.6635817634090139

cost = 0.6634959251095335

cost = 0.6634051977180305

cost = 0.6633091537786991

cost = 0.6632073147732753

cost = 0.663099143297417

cost = 0.6629840337592922

cost = 0.6628613012653831

cost = 0.6627301682691753

cost = 0.6625897484413662

cost = 0.6624390270658043

cost = 0.6622768370596327

cost = 0.6621018294396175

Chapter 21 Neural Networks aNd MaChiNe learNiNg

569

cost = 0.6619124366814639

cost = 0.6617068269041807

cost = 0.6614828460975539

cost = 0.6612379446084452

cost = 0.6609690826757143

cost = 0.660672607747008

cost = 0.660344093298625

cost = 0.6599781243955765

...

cost = 0.5811888364173224

cost = 0.5117698491474624

cost = 0.3431174223399081

cost = 0.22278592696925442

cost = 0.22219689682890306

cost = 0.22164595119640423

cost = 0.22109565104100137

cost = 0.22054536159623406

cost = 0.21999484909425368

cost = 0.21944389274059498

cost = 0.21889227410423057

cost = 0.2183397768384557

cost = 0.21778618670317892

cost = 0.21723129159816149

cost = 0.21667488160010032

cost = 0.21611674900371572

cost = 0.21555668836712247

cost = 0.21499449656177205

cost = 0.21442997282722046

cost = 0.21386291883096756

cost = 0.21329313873359648

cost = 0.21272043925942305

cost = 0.21214462977284917

cost = 0.21156552236059478

cost = 0.21098293191996614

cost = 0.2103966762532983

Chapter 21 Neural Networks aNd MaChiNe learNiNg

570

cost = 0.209806576168689

...

cost = 0.14066304727899404

cost = 0.1397261098810677

cost = 0.138792748311244

cost = 0.13786318684860793

cost = 0.13693764327438454

cost = 0.1360163286396859

cost = 0.13509944705792176

cost = 0.1341871955218915

cost = 0.13327976374542316

cost = 0.13237733402931087

cost = 0.13148008115118084

cost = 0.13058817227880457

cost = 0.1297017669062738

cost = 0.12882101681236946

cost = 0.1279460660403555

cost = 0.12707705089837232

cost = 0.1262140999795274

cost = 0.1253573342007353

cost = 0.12450686685930376

cost = 0.12366280370623699

cost = 0.12282524303519099

cost = 0.121994275786003

cost = 0.12116998566170542

cost = 0.12035244925792699

cost = 0.1195417362035959

cost = 0.11873790931186408

cost = 0.117941024740192

cost = 0.1171511321585531

cost = 0.11636827492474516

cost = 0.11559249026582975

cost = 0.11482380946475092

cost = 0.11406225805122268

...

Chapter 21 Neural Networks aNd MaChiNe learNiNg

571

cost = 0.016816878951632613

cost = 0.01680969687113106

cost = 0.016802523693735683

cost = 0.0167953594016083

cost = 0.01678820397696063

cost = 0.01678105740205403

cost = 0.016773919659199398

cost = 0.016766790730756983

cost = 0.016759670599136158

cost = 0.01675255924679531

cost = 0.01674545665624165

cost = 0.016738362810030993

cost = 0.016731277690767675

cost = 0.016724201281104255

Computed value: 0.991841 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.001271 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.025702 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.998475 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.958112 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.021453 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000903 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.963236 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.854382 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.115060 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.528623 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.996182 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.000672 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.168254 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.525666 correct answer = 1.000000 Correct Estimate: true

Computed value: 0.004078 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000913 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000013 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.549601 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000007 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.926115 correct answer = 1.000000 Correct Estimate: true

Chapter 21 Neural Networks aNd MaChiNe learNiNg

572

Computed value: 0.292149 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000013 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.000048 correct answer = 0.000000 Correct Estimate: true

Computed value: 0.882903 correct answer = 1.000000 Correct Estimate: true

The results shown in boldface show the 100 percent correct outcomes generated

by the neural network. Not bad for a network constructed from scratch and without

requiring the complex partial derivative computations associated with backtracking.

21.6 Summary
A relatively simple neural network with one hidden layer containing 25 nodes is

constructed from scratch. It is trained with 150 pairs of diagnostic test results and

associated labels with known correct results, over 1500 epochs. The network is then

tested against 25 fresh test results, not in the original training set. The results are

encouraging. The mean-squared error is shown to decrease to a small error as training

progresses. All 25 test results produce the correct outcome.

Chapter 21 Neural Networks aNd MaChiNe learNiNg

573

Index

A
Abstract data types (ADTs)

game, 123–127
game, console implementation

of, 128–135
game of life, GUI implementation

of, 135–138
Go

counter, 94–97
counter package, creating, 98
counter package,

mechanics, 98–101
implementing, 101–103
OOP application, 109–121
polymorphism, 106–109
using composition, 103–106
using classes, 91–93

go.mod file, 138
for grid, 128
program output, 138, 139
stacks, 141

Adelson Velsky and Landis (AVL)
trees, 315

avl package
code implementation, 320
deleteNode function, 334
IntelliJ IDEA, 333
main driver code, 332, 336
map, 339
rightRotate(node) function, 334
rotateDelete function, 334
Search method, 339

binary search tree, 315
comparing set construction, 343
concurrentAVLSet, 346
dataSet slice, 343
deletion, 318
floatset package, 341
insert and delete, 316
insertion, 317
interesting facts, 319
tree Rotations, 316

Algorithm efficiency
Big O, 55, 56
searching array slices, 82–89
slice of numbers, determining, 56–59
sorting (see Sorting algorithms)
speed efficiency, describing, 55
using concurrency, 60–63

Artificial intelligence (AI), 549

B
Big O, 55, 56, 68
Binary searches, 87–89
Binary search tree (BST)

deletion, 290
generic implementation, 291

data structures, 291
delete, 294
graphing, 297
InOrderTraversal, 294
insert, 294
Main driver program, 310
methods, 293

© Richard Wiener 2022
R. Wiener, Generic Data Structures and Algorithms in Go, https://doi.org/10.1007/978-1-4842-8191-8

https://doi.org/10.1007/978-1-4842-8191-8

574

package, 301
support functions, 295
type OrderedStringer, 291

inorder traversal, 289
insertion, 289
overview, 287
searching, 288
String() function, 313

Binary tree, 265, 266
draw tree, 267–285
tree traversal, 266, 267

Blackjack, simplified game of, 109–116
Bottom-up dynamic programming, 428, 429
Branch-and-bound algorithm, 476, 479,

481, 491, 493
Brute-force computation, 432, 433

finding permutations, 467–469
Travelling Salesperson Problem,

466, 467, 469–473
Bubblesort algorithm, 64, 65

C
Card shuffling model, 216–219
Channel, 2, 24–26
Classes, abstract data type using, 91–93
Combinatorial optimization problems,

395, 493, 496
Concurrency, 19

channel, 24–26
channel direction, 28–30
generating prime numbers using, 42
goroutine, 19–21
goroutines, Fibonacci numbers

using, 35, 36
goroutines, playing chess using, 32–35
mutex, 31, 32

race condition, 30, 31
Segmented Sieve algorithm, 46–50
select statement, 26
Sieve of Eratosthenes algorithm, 42–46
sieve solution, 50–54
use quit channel, 26–28
WaitGroup, 21–23

Converting decimal number, to binary,
164, 165

D
Deque, 187, 195–203
Dijkstra algorithm, 451, 452
DNA subsequences, 437–440
Doubly linked list, 187, 219, 228–236
Draw tree, 267–269

binary tree structure, 269
explanation of code, 271–273
go.mod files, in subdirectories

binarytree and main, 283–285
infrastructure, 269–271
ShowTreeGraph, implementation

of, 273–282
Dynamic programming

DNA subsequences, 437–440
knapsack problem, 432–436
nth Fibonacci number, 427–431

E
Ecological simulation, 401

code implementation, 418, 425
data model, 406
design, 406
findRandomCritter method, 414
mackerel, 402
Move method, 411–413

Binary search tree (BST) (cont.)

INDEX

575

output, 404
overview, 401
reflect.TypeOf method, 409
shark, 403
support functions, 408
tuna, 403

Expression trees, 387
building new tree, 389
construction, 389
explanation, 390, 391, 396
function evaluation, 391
mathematical expression, 388
ShowTreeGraph function, 396, 397, 399

F
FeedForward function, 559
Fibonacci numbers, using goroutines, 35, 36
Filter functions, 16, 17

G
Game, 123

console implementation of, 128–135
grid cell evolution, rules of, 123–127

Generics, 6–8
benefits of, 10
parameters, 2, 16

Generic set, hash tables, 256–262
Genetic algorithm

definition, 523
implementation

elite group, 526
form next generation, 531–533
initial population, random tours, 525
mating of parents, 527–530
tournament selection, 527
TSP, 534–546

mating process, 523
PopSize, 524
steps, 524, 525

Get Zero function, 145
Go

benchmarking concurrent
applications, 37–54

concurrency, 19–36
history and description of, 1, 2

Go, abstract data types in
ADT Counter, 94–97
ADT, implementing, 101–103
counter package, creating, 98
counter package,

mechanics, 98–101
OOP application, 109–121
polymorphism, 106–109
using composition, 103–106

gofmt tool, 2
Go, generic parameters, 2

constrained generic type, 8
filter functions, 16, 17
generics, 6–8
generics, benefits of, 10
generic type, instantiating, 9
interface, implementing an, 9
making MyFilter Generic, 17–19
making MyMap Generic, 16
Map functions, 15
new student by ID number,

adding, 4, 5
new student by name, adding, 3
new student by Student Struct,

adding, 5, 6
sort package, 11
sort type, 12–15
stringer type, 8
unconstrained generic type any, 9, 10

INDEX

576

go.mod file, 99, 138
Goroutine, 1, 19–21

fibonacci numbers using, 35, 36
playing chess using, 32–35

Graph, 441
AddEdge method, 444
AddVertex method, 444
breadth-first search method, 445
defining and traversing, 447
depth-first search method, 444
Dijkstra algorithm, 451, 452
directed graph, 441
Kruskal algorithm, code

implementation, 458, 464
minimum spanning tree, 457
NewGraph function, 444
OrderedStringer interface, 443
queue, 447
traversal algorithms, 442
tuple, 455
visitation variable, 443
weighted graph, 441

Grid, ADT for, 128
GUI, implementation, game of

life, 135–138

H
Hash encryption, 239–243
Hash tables, 237

building, 244
collisions and collison

resolution, 246
creation, 245
determination, 246, 247
generic set, 256–262
Hash encryption, 239–243
insertion into, 245, 246

load factor, 246
map, 237–239
performance of, 247–250
Rabin-Karp algorithm, 252–256
rolling hash computation, 251, 252
string search, 250, 251

Heap sort, 358–360
Heap trees

application, 360, 361
construction, 349–351
deletion from, 351, 352
heap sort, 358–360
logic for building, 352, 353
package, 353–356
package heap, explanation

of, 356–358
Horner’s method, 252

I, J
Inorder traversal, 266, 267, 271, 272, 289,

294, 339, 366
Iterator, 188, 190, 191

K
Knapsack problem, 432

brute-force solution, 432, 433
dynamic programming

solution, 433–436
Kruskal algorithm, 457, 458, 464

L
Linear searches, 83, 84
Linked lists, 219, 220

doubly linked list, 228–235
singly linked list, 220–228

INDEX

577

M
Machine learning, 547, 549
Map, 237–239
Map functions, 15
Maze application, 166

building infrastructure
for, 167–176

completed, 176–185
efficient strategy for, 166, 167

Mergesort algorithm, 75–82
Move method, 411, 412, 414
Mutex, 31, 32, 406, 411, 412
MyFilter Generic, 17–19

N
Neural network

concrete example, 554
definition, 550
implementation, 555–557, 559
layers, 552
matrices, 554
neuron, 553
output, 568–572
partial derivatives of cost,

weight, 560–567
perceptron, 551
training, 550

Node implementation,
stacks, 149–152

Node queue
implementation of, 191–194
performance of, 194, 195

nth Fibonacci number, 427
bottom-up dynamic programming,

428, 429
recursive solution, 429–431
top-down dynamic programming, 428

O
Object-oriented programming (OOP)

application, 92, 106, 109
OOP application, permutation group of

words, 109–121

P
Permutation group of words, 117–121
Poisson process, queue application,

207, 208
Polymorphism, 106–109
Postfix evaluation, stacks, 157–160, 162
Postfix expression, evaluating, 162–164
Postorder traversal, 267
Preorder traversal, 267
Priority queue (PQ), 203–207

implementation of, 483–485
TSP, 480

Program output, 138, 139, 497

Q
Queue, 187

ADT, 188
application, 207–219
iterator, 190, 191

Quicksort
algorithm, 66, 67
bubblesort, 69, 70
concurrent quicksort, 70–75
worst case for, 68

R
Rabin-Karp algorithm, 250, 252–256
Recursive solution, nth Fibonacci

Number, 429–431

INDEX

578

Red-black trees, 363
definition of, 363, 364
example of, 364
implementation of, 373–384
insertion process, 364–367
insertions, detailed walk-through

of, 367–372
performance of, 384

Rolling hash computation, hash tables,
251, 252

S
Searching array slices, 82

binary searches, 87–89
concurrent searches, 84–87
linear searches, 83, 84

Segmented Sieve algorithm, 46–50
Shuffling cards, card shuffling

model, 216–219
Sieve of Eratosthenes algorithm, 42–46
Sigmoid activation function, 553, 559
Simulated annealing, TSP

algorithm, 495, 496
artificial temperature variable, 521
combinatorial optimization, 493
convergence problem, 496
definition, 495
heuristic solutions, 494
implementation

code, 516
lines crossing, 517–520
operations, 497, 498, 500–508, 510,

511, 513, 514
results, 516
status, 497

Simulation logic, queue
application, 208, 209

Singly linked list, 219–228
Slice queue

implementation of, 188, 189
performance of, 194, 195

Smalltalk language, 91
Sorting algorithms

Big O analysis, 68
bubblesort algorithm, 64, 65
concurrent mergesort, 78–82
concurrent quicksort, 70–75
mergesort algorithm, 75–78
quicksort algorithm, 66, 67
quicksort, bubblesort and, 69, 70
quicksort, worst case for, 68

Stacks, 141
ADT, 141
converting decimal

number, 164, 165
efficiency of node and slice, 153–156
function evaluation, 156
Get Zero function, 145
Maze application, 166–185
node implementation, 149–152
postfix evaluation, 157–160, 162
postfix expression,

evaluating, 162–164
slice implementation, 142–145
T, declared as ordered, 145–149

Statement, concurrency, 26
Steady-state pattern, 140
Stringer, 8, 9
String search, hash tables, 250, 251

T, U, V
Top-down dynamic programming, 428
Travelling Salesperson Problem (TSP),

464, 493

INDEX

579

branch-and-bound algorithm, 479
branch and bound for, 477, 478
branch-and-bound

implementation, 481–483
branch-and-bound solution,

generating, 485–490
brute-force computation, 469–473
exact brute-force solution, 466–469
five-city example, walk-through part of,

480, 481
and history, 465, 466
lower bound, computation

of, 478, 479
priority queue, 480

priority queue, implementation
of, 483–485

tour, displaying, 473–476
Tree traversal, 266

inorder traversal, 266, 267
postorder traversal, 267
preorder traversal, 267

trueOutput function, 556

W, X, Y, Z
WaitGroup, 21–23
Waiting line, discrete event simulation

of, 207–215

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: A Tour of Generics and Concurrency in Go
	1.1 Brief History and Description of Go
	1.2 Introducing Generic Parameters
	Adding a New Student by Name
	Adding a New Student by ID Number
	Adding a New Student by Student Struct
	Introducing Generics
	Stringer Type
	Constrained Generic Type
	Implementing an Interface
	Instantiating a Generic Type
	Unconstrained Generic Type any
	Benefits of Generics
	Using Go’s Sort Package
	Sort Type
	Map Functions
	Making MyMap Generic
	Filter Functions
	Making MyFilter Generic

	1.3 Concurrency
	Goroutine
	WaitGroup
	The Channel
	Select Statement
	Use a quit Channel to Avoid Using WaitGroup
	Channel Direction
	Race Condition
	Mutex
	Playing Chess Using Goroutines
	Fibonacci Numbers Using Goroutines

	1.4 Benchmarking Concurrent Applications
	Generating Prime Numbers Using Concurrency
	Sieve of Eratosthenes Algorithm
	Segmented Sieve Algorithm
	Concurrent Sieve Solution

	1.5 Summary

	Chapter 2: Algorithm Efficiency: Sorting and Searching
	2.1 Describing the Speed Efficiency of an Algorithm
	Working with Big O
	Determining Whether a Slice of Numbers Is Sorted
	Using Concurrency

	2.2 Sorting Algorithms
	Bubblesort Algorithm
	Quicksort Algorithm
	Big O Analysis
	Worst Case for Quicksort
	Comparing Bubblesort to Quicksort
	Concurrent Quicksort
	Mergesort Algorithm
	Concurrent Mergesort
	Conclusions

	2.3 Searching Array Slices
	Linear Searches
	Concurrent Searches
	Binary Searches

	2.4 Summary

	Chapter 3: Abstract Data Types: OOP Without Classes in Go
	3.1 Abstract Data Type Using Classes
	3.2 Abstract Data Types in Go
	ADT Counter
	Creating a counter Package
	Mechanics of Creating a Package
	Another Example of Implementing an ADT
	Using Composition

	3.3 Polymorphism
	Using Interfaces to Achieve Polymorphism

	3.4 OOP Application: Simplified Game of Blackjack
	3.5 Another OOP Application: Permutation Group of Words
	Using the Standard map Data Structure

	3.6 Summary

	Chapter 4: ADT in Action: Game of Life
	4.1 Game
	Rules of Grid Cell Evolution

	4.2 ADT for Grid
	4.3 Console Implementation of the Game
	4.4 GUI Implementation of the Game of Life
	Creating go.mod file
	Program Output

	4.5 Summary

	Chapter 5: Stacks
	5.1 Stack ADT
	5.2 Slice Implementation of Generic Stack
	The Get Zero Function
	Why T Is Declared As Ordered

	5.3 Node Implementation of a Generic Stack
	5.4 Compare the Efficiency of Node and Slice Stacks
	5.5 Stack Application: Function Evaluation
	Postfix Evaluation
	We Walk Through Algorithm
	Evaluating Postfix Expression

	5.6 Converting Decimal Number to Binary
	5.7 Maze Application
	Efficient Strategy for Maze Path Using a Stack
	Building Infrastructure for Maze Application
	Completed Maze App

	5.8 Summary

	Chapter 6: Queues and Lists
	6.1 Queue ADT
	6.2 Implementation of Slice Queue
	Iterator

	6.3 Implementation of Node Queue
	6.4 Comparing the Performance of Slice and Node Queue
	6.5 Deque
	6.6 Deque Application
	6.7 Priority Queue
	6.8 Queue Application: Discrete Event Simulation of Waiting Line
	Poisson Process
	Simulation Logic
	Implementation of System

	6.9 Queue Application: Shuffling Cards
	Card Shuffling Model

	6.10 Linked Lists
	6.11 Singly Linked List
	6.12 Doubly Linked List
	Benefit of Double Linking

	6.13 Summary

	Chapter 7: Hash Tables
	7.1	 Map
	Hash Encryption

	7.2	 How Fast Is a Map?
	7.3	 Building a Hash Table
	Create an Empty Hash Table
	Insertion into Hash Table
	Collisions and Collison Resolution
	Load Factor
	Determining Whether a Key Is Present
	Comparing the Performance of Hash Table with Standard Map

	7.4	 Hash Application: String Search
	Rolling Hash Computation
	Rabin-Karp Algorithm

	7.5	 Generic Set
	7.6	 Summary

	Chapter 8: Binary Trees
	8.1 Binary Trees
	8.2 Tree Traversal
	Inorder Traversal
	Preorder Traversal
	Postorder Traversal

	8.3 Draw Tree
	Binary Tree Structure
	Infrastructure Used to Display Binary Tree
	Explanation of Code
	Implementation of ShowTreeGraph
	Creating go.mod Files in Subdirectories binarytree and main

	8.4 Summary

	Chapter 9: Binary Search Tree
	9.1 Overview
	Searching
	Insertion
	Ordered Output
	Deletion

	9.2 Generic Binary Search Tree
	Type OrderedStringer
	Generic Types Needed for Binary Search Tree
	Methods for Binary Search Tree
	Discussion of Insert, Delete, and Inorder Traversal
	Support Functions
	Implementation of Tree Graphics
	Discussion of binarysearchtree Package and Main Driver

	9.3 Summary

	Chapter 10: AVL Trees
	10.1 Overview: Adelson Velsky and Landis
	Tree Rotations
	Insertion
	Deletion
	Facts About AVL Trees

	10.2 Implementation of a Generic AVL Tree
	Explanation of avl Package
	Discussion of Main Driver Results

	10.3 Set Using Map, AVL, and Concurrent AVL
	Implementation of Set Using Map, AVL Tree, and Concurrent AVL Tree
	Explanation of Concurrent AVL Set
	Comparing the Three Set Implementations
	Discussion of Results

	10.4 Summary

	Chapter 11: Heap Trees
	11.1 Heap Tree Construction
	11.2 Deletion from a Heap Tree
	11.3 Implementation of a Heap Tree
	Logic for Building a Heap Tree
	Package Heap
	Explanation of Package heap

	11.4 Heap Sort
	Discussion of heapsort Results

	11.5 Heap Application: Priority Queue
	11.6 Summary

	Chapter 12: Red-Black Trees
	12.1 Red-Black Trees
	Definition of Red-Black Tree
	Example of Red-Black Tree

	12.2 Insertion Process
	Detailed Walk-Through of Many Insertions

	12.3 Implementation of Red-Black Tree
	Comparing the Performance of Red-Black Tree to AVL Tree
	Benchmark Conclusion

	12.4 Summary

	Chapter 13: Expression Trees
	13.1 Expression Trees
	13.2 Construction of an Expression Tree
	Building a New Expression Tree
	Explanation of Function NewTree
	Function Evaluation Using Expression Tree
	Explanation of Method Evaluate

	13.3 Implementation of ShowTreeGraph
	13.4 Summary

	Chapter 14: Ecological Simulation with Concurrency
	14.1 Overview
	14.2 Specifications
	Mackerel
	Tuna
	Shark
	Output

	14.3 The Design
	14.4 The Implementation
	Data Model for Each Species
	Discussion of Code
	Support Functions
	Discussion of Code
	Required Methods for Mackerel to Be of Type MarineLife
	Discussion of Code
	Move Method for Shark
	Discussion of Code
	Move Method for Tuna
	Output Function for the Graphical Display of Critters
	Discussion of Code
	Full Implementation of Simulation

	14.5 Summary

	Chapter 15: Dynamic Programming
	15.1 Example of Dynamic Programming: nth Fibonacci Number
	Top-Down Dynamic Programming
	Bottom-Up Dynamic Programming
	Recursive Solution
	Discussion of Code

	15.2 Another Application: 0/1 Knapsack Problem
	Brute-Force Solution
	Discussion of Code
	Dynamic Programming Solution
	Discussion of Code
	Discussion of Code

	15.3 DNA Subsequences
	Discussion of Code

	15.4 Summary

	Chapter 16: Graph Structures
	16.1 Representing Graphs
	16.2 Traversing Graphs
	16.3 Depth- and Breadth-First Search
	Depth-First Search
	Breadth-First Search

	16.4 Single-Source Shortest Path in Graph
	Implementation
	Explanation of Solution

	16.5 Minimum Spanning Tree
	Kruskal Algorithm

	16.6 Implementation of Kruskal Algorithm
	Explanation of Kruskal Implementation

	16.7 Summary

	Chapter 17: Travelling Salesperson Problem
	17.1 Travelling Salesperson Problem and Its History
	17.2 An Exact Brute-Force Solution
	Finding Permutations
	Brute-Force Computation for TSP
	Discussion of Code
	Other Solutions

	17.3 Displaying a TSP Tour
	Discussion of Code

	17.4 Summary

	Chapter 18: Branch-and-Bound Solution to TSP
	18.1 Branch and Bound for TSP
	An Example
	Computation of Lower Bound
	Branch-and-Bound Algorithm
	The Priority Queue
	A Walk-Through Part of the Five-City Example Presented Earlier

	18.2 Branch-and-Bound Implementation
	Implementation of Priority Queue
	Generating Branch-and-Bound Solution
	Data for main
	Results

	18.3 Summary

	Chapter 19: Simulated Annealing Heuristic Solution to TSP
	19.1 Combinatorial Optimization
	Heuristic Solutions

	19.2 Simulated Annealing
	Simulated Annealing Steps
	Problem of Convergence to Local Minimum Rather Than Global Minimum

	19.3 Implementation of Simulated Annealing
	Discussion of Code
	Results
	Displaying Final Results
	Lines Crossing

	19.4 Summary

	Chapter 20: Genetic Algorithm for TSP
	20.1 Genetic Algorithm
	High-Level Description of Genetic Algorithm
	More Detailed Description of Genetic Algorithm

	20.2 Implementation of Genetic Algorithm
	Step 1 – Form an Initial Population of Random Tours
	Step 2 – Form an Elite Group of Best Tours
	Step 3 – Tournament Selection
	Step 4 – Mating of Parents
	Form Next Generation
	Putting the Pieces Together

	20.3 Summary

	Chapter 21: Neural Networks and Machine Learning
	21.1 Overview of Neural Networks and Machine Learning
	Training
	Neural Networks
	Perceptron
	Schematics of Neural Networks
	A Neuron

	21.2 A Concrete Example
	21.3 Constructing a Neural Network
	Matrices That Represent Network

	21.4 Neural Network Implementation
	Estimating the Partial Derivatives of Cost with Respect to Each Weight

	21.5 Output from Neural Network
	21.6 Summary

	Index

