

Developing	Web	Apps	with	Haskell	and
Yesod

Second	Edition

Michael	Snoyman

Developing	Web	Apps	with	Haskell	and	Yesod,	Second	Edition

by	Michael	Snoyman

Copyright	©	2015	Michael	Snoyman.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editors:	Simon	St.	Laurent	and	Allyson	MacDonald

Production	Editor:	Nicole	Shelby

Copyeditor:	Jasmine	Kwityn

Proofreader:	Rachel	Head

Indexer:	Ellen	Troutman

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

February	2015:	Second	Edition

Revision	History	for	the	Second	Edition
2015-02-09:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491915592	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Developing	Web	Apps
with	Haskell	and	Yesod,	Second	Edition,	the	cover	image,	and	related	trade	dress	are
trademarks	of	O’Reilly	Media,	Inc.	

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
author	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-91559-2

[LSI]

Preface

It’s	fair	to	say	that	dynamic	languages	currently	dominate	the	web	development	scene.
Ruby,	Python,	and	PHP	are	common	choices	for	quickly	creating	a	powerful	web
application.	They	provide	a	much	faster	and	more	comfortable	development	setting	than
standard	static	languages	in	the	C	family,	like	Java.

But	some	of	us	are	looking	for	a	bit	more	in	our	development	toolbox.	We	want	a
language	that	gives	us	guarantees	that	our	code	is	doing	what	it	should.	Instead	of	writing
up	a	unit	test	to	cover	every	bit	of	functionality	in	our	application,	wouldn’t	it	be
wonderful	if	the	compiler	could	automatically	ensure	that	our	code	is	correct?	And	as	an
added	bonus,	wouldn’t	it	be	nice	if	our	code	ran	quickly	too?

These	are	the	goals	of	Yesod.	Yesod	is	a	web	framework	bringing	the	strengths	of	the
Haskell	programming	language	to	the	web	development	world.	Yesod	not	only	uses	a	pure
language	to	interact	with	an	impure	world,	but	allows	safe	interactions	with	the	outside
world	by	automatically	sanitizing	incoming	and	outgoing	data.	It	helps	us	avoid	basic
mistakes	such	as	mixing	up	integers	and	strings,	and	even	allows	us	to	statically	prevent
many	cases	of	security	holes	like	cross-site	scripting	(XSS)	attacks.

Who	This	Book	Is	For
In	general,	there	are	two	groups	of	people	coming	to	Yesod.	The	first	group	is	comprised
of	longtime	Haskell	users	—	already	convinced	of	the	advantages	of	Haskell	—	who	are
looking	for	a	powerful	framework	for	creating	web	applications.	The	second	consists	of
web	developers	who	either	are	dissatisfied	with	their	existing	tools	or	are	looking	to
expand	their	horizons	into	the	functional	world.

This	book	assumes	a	basic	familiarity	with	both	web	development	and	Haskell.	We	don’t
use	many	complicated	Haskell	concepts,	and	those	we	do	use	are	introduced	separately.
For	the	most	part,	understanding	the	basics	of	the	syntax	of	the	language	should	be
sufficient.

If	you	want	to	come	up	to	speed	on	Haskell,	I	recommend	another	wonderful	O’Reilly
book:	Real	World	Haskell	by	Bryan	O’Sullivan,	John	Goerzen,	and	Donald	Bruce	Stewart.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	commands,	libraries,	packages,	tools,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

NOTE
This	icon	signifies	a	tip,	suggestion,	or	general	note.

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	you	may	use	the	code	in	this
book	in	your	programs	and	documentation.	You	do	not	need	to	contact	us	for	permission
unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a
program	that	uses	several	chunks	of	code	from	this	book	does	not	require	permission.
Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does	require
permission.	Answering	a	question	by	citing	this	book	and	quoting	example	code	does	not
require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Developing	Web	Apps	with	Haskell	and	Yesod,
Second	Edition	by	Michael	Snoyman	(O’Reilly).	Copyright	2015	Michael	Snoyman,	978-
1-449-31697-6.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/dwa-haskell-yesod.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
Yesod	was	created	by	an	entire	community	of	developers,	all	of	whom	have	put	in
significant	effort	to	make	sure	that	the	final	product	is	as	polished	and	user-friendly	as
possible.	Everyone	from	the	core	development	team	to	the	person	making	an	API	request
on	the	mailing	list	has	had	an	impact	on	bringing	Yesod	to	where	it	is	today.

In	particular,	I’d	like	to	thank	Greg	Weber,	who	has	shared	the	maintenance	burden	of	the
project;	Kazu	Yamamoto	and	Matt	Brown,	who	transformed	Warp	from	a	simple	testing
server	to	one	of	the	fastest	application	servers	available	today;	and	Felipe	Lessa,	Patrick
Brisbin,	and	Luite	Stegeman	for	their	numerous	contributions	across	the	board.

A	big	thank	you	to	my	editor,	Simon	St.	Laurent,	for	all	of	his	guidance	and	support.	Mark
Lentczner,	Johan	Tibell,	and	Adam	Turoff	provided	incredibly	thorough	reviews	of	this
book,	cleaning	up	many	of	my	mistakes.	Additionally,	there	have	been	dozens	of	readers
who	have	looked	over	the	content	of	this	book	online,	and	provided	feedback	on	where
either	the	prose	or	the	message	was	not	coming	through	clearly	—	not	to	mention
numerous	spelling	errors.

But	finally,	and	most	importantly,	I’d	like	to	thank	my	wife,	Miriam,	for	enduring	all	of
the	time	spent	on	both	this	book	and	Yesod	in	general.	She	has	been	my	editor	and
sounding	board,	though	I’m	sure	the	intricacies	of	Template	Haskell	sometimes	worked
more	as	a	sedative	than	any	meaningful	conversation.	Without	her	support,	neither	the
Yesod	project	nor	this	book	would	have	been	able	to	happen.

Also,	you’ll	notice	that	I	use	my	kids’	names	(Eliezer	and	Gavriella)	in	some	examples
throughout	the	book.	They	deserve	special	mention	in	a	Haskell	text,	as	I	think	they’re	the
youngest	people	to	ever	use	the	word	“monad”	in	a	sentence.

Part	I.	Basics

Chapter	1.	Introduction

Since	web	programming	began,	people	have	been	trying	to	make	the	development	process
a	more	pleasant	one.	As	a	community,	we	have	continually	pushed	new	techniques	in	an
effort	to	solve	some	of	the	lingering	difficulties	of	security	threats,	the	stateless	nature	of
HTTP,	the	multiple	languages	(HTML,	CSS,	JavaScript)	necessary	to	create	a	powerful
web	application,	and	more.

Yesod	attempts	to	ease	the	web	development	process	by	playing	to	the	strengths	of	the
Haskell	programming	language.	Haskell’s	strong	compile-time	guarantees	of	correctness
do	not	encompass	only	types;	referential	transparency	ensures	that	we	don’t	have	any
unintended	side	effects.	Pattern	matching	on	algebraic	data	types	can	help	guarantee
we’ve	accounted	for	every	possible	case.	By	building	upon	Haskell,	entire	classes	of	bugs
disappear.

Unfortunately,	using	Haskell	isn’t	enough.	The	Web,	by	its	very	nature,	is	not	type	safe.
Even	the	simplest	case	of	distinguishing	between	an	integer	and	a	string	is	impossible:	all
data	on	the	Web	is	transferred	as	raw	bytes,	evading	our	best	efforts	at	type	safety.	Every
app	writer	is	left	with	the	task	of	validating	all	input.	I	call	this	problem	the	boundary
issue:	however	type	safe	your	application	is	on	the	inside,	every	boundary	with	the	outside
world	still	needs	to	be	sanitized.

Type	Safety
This	is	where	Yesod	comes	in.	By	using	high-level	declarative	techniques,	you	can	specify
the	exact	input	types	you	are	expecting.	And	the	process	works	the	other	way	as	well:	by
using	type-safe	URLs,	you	can	make	sure	that	the	data	you	send	out	is	also	guaranteed	to
be	well	formed.

The	boundary	issue	is	not	just	a	problem	when	dealing	with	the	client:	the	same	problem
exists	when	persisting	and	loading	data.	Once	again,	Yesod	saves	you	on	the	boundary	by
performing	the	marshaling	of	data	for	you.	You	can	specify	your	entities	in	a	high-level
definition	and	remain	blissfully	ignorant	of	the	details.

Concise	Code
We	all	know	that	there	is	a	lot	of	boilerplate	coding	involved	in	web	applications.
Wherever	possible,	Yesod	tries	to	use	Haskell’s	features	to	save	your	fingers	the	work:

The	forms	library	reduces	the	amount	of	code	used	for	common	cases	by	leveraging
the	Applicative	typeclass.

Routes	are	declared	in	a	very	terse	format,	without	sacrificing	type	safety.

Serializing	your	data	to	and	from	a	database	is	handled	automatically	via	code
generation.

In	Yesod,	we	have	two	kinds	of	code	generation.	To	get	your	project	started,	we	provide	a
scaffolding	tool	to	set	up	your	file	and	folder	structure.	However,	most	code	generation	is
done	at	compile	time	via	metaprogramming.	This	means	your	generated	code	will	never
get	stale,	as	a	simple	library	upgrade	will	bring	all	your	generated	code	up	to	date.

But	if	you	prefer	to	retain	more	control,	and	you	want	to	know	exactly	what	your	code	is
doing,	you	can	always	run	closer	to	the	compiler	and	write	all	your	code	yourself.

Performance
Haskell’s	main	compiler,	the	Glasgow	Haskell	Compiler	(GHC),	has	amazing
performance	characteristics	and	is	improving	all	the	time.	This	choice	of	language	by
itself	gives	Yesod	a	large	performance	advantage	over	other	offerings.	But	that’s	not
enough:	we	need	an	architecture	designed	for	performance.

Our	approach	to	templates	is	one	example:	by	allowing	HTML,	CSS,	and	JavaScript	to	be
analyzed	at	compile	time,	Yesod	both	avoids	costly	disk	I/O	at	runtime	and	can	optimize
the	rendering	of	this	code.	But	the	architectural	decisions	go	deeper:	we	use	advanced
techniques	such	as	conduits	and	builders	in	the	underlying	libraries	to	make	sure	our	code
runs	in	constant	memory,	without	exhausting	precious	file	handles	and	other	resources.	By
offering	high-level	abstractions,	you	can	get	highly	compressed	and	properly	cached	CSS
and	JavaScript.

Yesod’s	flagship	web	server,	Warp,	is	the	fastest	Haskell	web	server	around.	When	these
two	pieces	of	technology	are	combined,	it	produces	one	of	the	fastest	web	application
deployment	solutions	available.

Modularity
Yesod	has	spawned	the	creation	of	dozens	of	packages,	most	of	which	are	usable	in	a
context	outside	of	Yesod	itself.	One	of	the	goals	of	the	project	is	to	contribute	back	to	the
community	as	much	as	possible;	as	such,	even	if	you	are	not	planning	on	using	Yesod	in
your	next	project,	a	large	portion	of	this	book	may	still	be	relevant	for	your	needs.

Of	course,	these	libraries	have	all	been	designed	to	integrate	well	together.	Using	the
Yesod	framework	should	give	you	a	strong	feeling	of	consistency	throughout	the	various
APIs.

A	Solid	Foundation
I	remember	once	seeing	a	PHP	framework	advertising	support	for	UTF-8.	This	struck	me
as	surprising:	you	mean	having	UTF-8	support	isn’t	automatic?	In	the	Haskell	world,
issues	like	character	encoding	are	already	well	addressed	and	fully	supported.	In	fact,	we
usually	have	the	opposite	problem:	there	are	a	number	of	packages	providing	powerful
and	well-designed	support	for	the	problem.	The	Haskell	community	is	constantly	pushing
the	boundaries	to	find	the	cleanest,	most	efficient	solutions	for	each	challenge.

The	downside	of	such	a	powerful	ecosystem	is	the	complexity	of	choice.	By	using	Yesod,
you	will	already	have	most	of	the	tools	chosen	for	you,	and	you	can	be	guaranteed	they
work	together.	And	of	course,	you	always	have	the	option	of	pulling	in	your	own	solution.

As	a	real-life	example,	Yesod	and	Hamlet	(the	default	templating	language)	use	blaze-
builder	for	textual	content	generation.	This	choice	was	made	because	blaze-builder
provides	the	fastest	interface	for	generating	UTF-8	data.	Anyone	who	wants	to	use	one	of
the	other	great	libraries	out	there,	such	as	text,	should	have	no	problem	dropping	it	in.

Chapter	2.	Haskell

Haskell	is	a	powerful,	fast,	type-safe,	functional	programming	language.	This	book	takes
as	an	assumption	that	you	are	already	familiar	with	most	of	the	basics	of	Haskell.	There
are	two	wonderful	books	for	learning	Haskell,	both	of	which	are	available	for	reading
online:

Learn	You	a	Haskell	for	Great	Good!	by	Miran	Lipovača	(No	Starch	Press)

Real	World	Haskell	by	Bryan	O’Sullivan,	John	Goerzen,	and	Donald	Bruce	Stewart
(O’Reilly)

Additionally,	there	are	a	number	of	great	articles	on	School	of	Haskell.

In	order	to	use	Yesod,	you’re	going	to	have	to	know	at	least	the	basics	of	Haskell.
Additionally,	Yesod	uses	some	features	of	Haskell	that	aren’t	covered	in	most	introductory
texts.	While	this	book	assumes	the	reader	has	a	basic	familiarity	with	Haskell,	this	chapter
is	intended	to	fill	in	the	gaps.

If	you	are	already	fluent	in	Haskell,	feel	free	to	completely	skip	this	chapter.	Also,	if	you
would	prefer	to	start	off	by	getting	your	feet	wet	with	Yesod,	you	can	always	come	back	to
this	chapter	later	as	a	reference.

Terminology
Even	for	those	familiar	with	Haskell	as	a	language,	there	can	occasionally	be	some
confusion	about	terminology.	Let’s	establish	some	base	terms	that	we	can	use	throughout
this	book:

Data	type

This	is	one	of	the	core	building	blocks	for	a	strongly	typed	language	like	Haskell.
Some	data	types	(e.g.,	Int)	can	be	treated	as	primitive	values,	while	other	data	types
will	build	on	top	of	these	to	create	more	complicated	values.	For	example,	you	might
represent	a	person	with:

data	Person	=	Person	Text	Int

Here,	the	Text	would	give	the	person’s	name,	and	the	Int	would	give	the	person’s
age.	Due	to	its	simplicity,	this	specific	example	type	will	recur	throughout	the	book.

There	are	essentially	three	ways	you	can	create	a	new	data	type:

A	type	declaration	such	as	type	GearCount	=	Int.	This	merely	creates	a	synonym
for	an	existing	type.	The	type	system	will	do	nothing	to	prevent	you	from	using	an
Int	where	you	asked	for	a	GearCount.	Using	this	can	make	your	code	more	self-
documenting.

A	newtype	declaration	such	as	newtype	Make	=	Make	Text.	In	this	case,	you	cannot
accidentally	use	a	Text	in	place	of	a	Make;	the	compiler	will	stop	you.	The	newtype
wrapper	always	disappears	during	compilation	and	will	introduce	no	overhead.

A	data	declaration	such	as	Person.	You	can	also	create	algebraic	data	types	(ADTs)
—	for	example,	data	Vehicle	=	Bicycle	GearCount	|	Car	Make	Model.

Data	constructor

In	our	examples,	Person,	Make,	Bicycle,	and	Car	are	all	data	constructors.

Type	constructor

In	our	examples,	Person,	Make,	and	Vehicle	are	all	type	constructors.

Type	variables

Consider	the	data	type	data	Maybe	a	=	Just	a	|	Nothing.	In	this	case,	a	is	a
type	variable.

NOTE
In	both	our	Person	and	Make	data	types,	our	data	type	and	data	constructor	share	the	same	name.	This	is	a
common	practice	when	dealing	with	a	data	type	with	a	single	data	constructor.	However,	it	is	not	a
requirement;	you	can	always	name	the	data	types	and	data	constructors	differently.

Tools
There	are	two	main	tools	you’ll	need	for	Haskell	development.	The	Glasgow	Haskell
Compiler	(GHC)	is	the	standard	Haskell	compiler,	and	the	only	one	officially	supported
by	Yesod.	You’ll	also	need	Cabal,	which	is	the	standard	Haskell	build	tool.	Not	only	do
we	use	Cabal	for	building	our	local	code,	but	it	can	automatically	download	and	install
dependencies	from	Hackage,	the	Haskell	package	repository.

The	Yesod	website	keeps	an	up-to-date	quick	start	guide	that	includes	information	on	how
to	install	and	configure	the	various	tools.	It’s	highly	recommended	that	you	follow	these
instructions.	In	particular,	these	steps	make	use	of	Stackage	to	avoid	many	common
dependency-resolution	issues.

If	you	decide	to	install	your	tools	yourself,	make	sure	to	avoid	these	common	pitfalls:

Some	JavaScript	tools	that	ship	with	Yesod	require	the	build	tools	alex	and	happy	to
be	installed.	These	can	be	added	with	cabal	install	alex	happy.

Cabal	installs	an	executable	to	a	user-specific	directory,	which	needs	to	be	added	to
your	PATH.	The	exact	location	is	OS-specific;	be	sure	to	add	the	correct	directory.

On	Windows,	it’s	difficult	to	install	the	network	package	from	source,	as	it	requires	a
POSIX	shell.	Installing	the	Haskell	Platform	avoids	this	issue.

On	Mac	OS	X,	there	are	multiple	C	preprocessors	available:	one	from	Clang,	and	one
from	GCC.	Many	Haskell	libraries	depend	on	the	GCC	preprocessor.	Again,	the
Haskell	Platform	sets	things	up	correctly.

Some	Linux	distributions	—	Ubuntu	in	particular	—	typically	have	outdated
packages	for	GHC	and	the	Haskell	Platform.	These	may	no	longer	be	supported	by
the	current	version	of	Yesod.	Check	the	quick	start	guide	for	minimum	version
requirements.

Make	sure	you	have	all	necessary	system	libraries	installed.	This	is	usually	handled
automatically	by	the	Haskell	Platform,	but	may	require	extra	work	on	Linux	distros.
If	you	get	error	messages	about	missing	libraries,	you	usually	just	need	to	apt-get
install	or	yum	install	the	relevant	libraries.

Once	you	have	your	toolchain	set	up	correctly,	you’ll	need	to	install	a	number	of	Haskell
libraries.	For	the	vast	majority	of	the	book,	the	following	command	will	install	all	the
libraries	you	need:

cabal	update	&&	cabal	install	yesod	yesod-bin	persistent-sqlite	yesod-static

Again,	refer	to	the	quick	start	guide	for	the	most	up-to-date	and	accurate	information.

Language	Pragmas
GHC	will	run	by	default	in	something	very	close	to	Haskell98	mode.	It	also	ships	with	a
large	number	of	language	extensions,	allowing	more	powerful	typeclasses,	syntax
changes,	and	more.	There	are	multiple	ways	to	tell	GHC	to	turn	on	these	extensions.	For
most	of	the	code	snippets	in	this	book,	you’ll	see	language	pragmas,	which	look	like	this:

{-#	LANGUAGE	MyLanguageExtension	#-}

These	should	always	appear	at	the	top	of	your	source	file.	Additionally,	there	are	two	other
common	approaches:

On	the	GHC	command	line,	pass	an	extra	argument:	-XMyLanguageExtension.

In	your	cabal	file,	add	a	default-extensions	block.

I	personally	never	use	the	GHC	command-line	argument	approach.	It’s	a	personal
preference,	but	I	like	to	have	my	settings	clearly	stated	in	a	file.	In	general,	it’s
recommended	to	avoid	putting	extensions	in	your	cabal	file;	however,	this	rule	mostly
applies	when	writing	publicly	available	libraries.	When	you’re	writing	an	application	that
you	and	your	team	will	be	working	on,	having	all	of	your	language	extensions	defined	in	a
single	location	makes	a	lot	of	sense.	The	Yesod	scaffolded	site	specifically	uses	this
approach	to	avoid	the	boilerplate	of	specifying	the	same	language	pragmas	in	every	source
file.

We’ll	end	up	using	quite	a	few	language	extensions	in	this	book	(at	the	time	of	writing,	the
scaffolding	uses	13).	We	will	not	cover	the	meaning	of	all	of	them.	Instead,	see	the	GHC
documentation.

Overloaded	Strings
What’s	the	type	of	"hello"?	Traditionally,	it’s	String,	which	is	defined	as	type	String	=
[Char].	Unfortunately,	there	are	a	few	limitations	with	this:

It’s	a	very	inefficient	implementation	of	textual	data.	We	need	to	allocate	extra
memory	for	each	cons	cell,	plus	the	characters	themselves	each	take	up	a	full
machine	word.

Sometimes	we	have	string-like	data	that’s	not	actually	text,	such	as	ByteStrings	and
HTML.

To	work	around	these	limitations,	GHC	has	a	language	extension	called
OverloadedStrings.	When	enabled,	literal	strings	no	longer	have	the	monomorphic	type
String;	instead,	they	have	the	type	IsString	a	->	a,	where	IsString	is	defined	as:

class	IsString	a	where

				fromString	::	String	->	a

There	are	IsString	instances	available	for	a	number	of	types	in	Haskell,	such	as	Text	(a
much	more	efficient	packed	String	type),	ByteString,	and	Html.	Virtually	every	example
in	this	book	will	assume	that	this	language	extension	is	turned	on.

Unfortunately,	there	is	one	drawback	to	this	extension:	it	can	sometimes	confuse	GHC’s
type	checker.	For	example,	imagine	we	use	the	following	code:

{-#	LANGUAGE	OverloadedStrings,	TypeSynonymInstances,	FlexibleInstances	#-}

import	Data.Text	(Text)

class	DoSomething	a	where

				something	::	a	->	IO	()

instance	DoSomething	String	where

				something	_	=	putStrLn	"String"

instance	DoSomething	Text	where

				something	_	=	putStrLn	"Text"

myFunc	::	IO	()

myFunc	=	something	"hello"

Will	the	program	print	out	String	or	Text?	It’s	not	clear.	So	instead,	you’ll	need	to	give
an	explicit	type	annotation	to	specify	whether	"hello"	should	be	treated	as	a	String	or
Text.

NOTE
In	some	cases,	you	can	overcome	these	problems	by	using	the	ExtendedDefaultRules	language	extension,
though	we’ll	instead	try	to	be	explicit	in	the	book	and	not	rely	on	defaulting.

Type	Families
The	basic	idea	of	a	type	family	is	to	state	some	association	between	two	different	types.
Suppose	we	want	to	write	a	function	that	will	safely	take	the	first	element	of	a	list.	But	we
don’t	want	it	to	work	just	on	lists;	we’d	like	it	to	treat	a	ByteString	like	a	list	of	Word8s.
To	do	so,	we	need	to	introduce	some	associated	type	to	specify	what	the	contents	of	a
certain	type	are:

{-#	LANGUAGE	TypeFamilies,	OverloadedStrings	#-}

import	Data.Word	(Word8)

import	qualified	Data.ByteString	as	S

import	Data.ByteString.Char8	()	--	get	an	orphan	IsString	instance

class	SafeHead	a	where

				type	Content	a

				safeHead	::	a	->	Maybe	(Content	a)

instance	SafeHead	[a]	where

				type	Content	[a]	=	a

				safeHead	[]	=	Nothing

				safeHead	(x:_)	=	Just	x

instance	SafeHead	S.ByteString	where

				type	Content	S.ByteString	=	Word8

				safeHead	bs

								|	S.null	bs	=	Nothing

								|	otherwise	=	Just	$	S.head	bs

main	::	IO	()

main	=	do

				print	$	safeHead	(""	::	String)

				print	$	safeHead	("hello"	::	String)

				print	$	safeHead	(""	::	S.ByteString)

				print	$	safeHead	("hello"	::	S.ByteString)

The	new	syntax	is	the	ability	to	place	a	type	inside	of	a	class	and	instance.	We	can	also
use	data	instead,	which	will	create	a	new	data	type	instead	of	referencing	an	existing	one.

NOTE
There	are	other	ways	to	use	associated	types	outside	the	context	of	a	typeclass.	For	more	information	on
type	families,	see	the	Haskell	wiki	page.

Template	Haskell
Template	Haskell	(TH)	is	an	approach	to	code	generation.	We	use	it	in	Yesod	in	a	number
of	places	to	reduce	boilerplate,	and	to	ensure	that	the	generated	code	is	correct.	Template
Haskell	is	essentially	Haskell	that	generates	a	Haskell	abstract	syntax	tree	(AST).

NOTE
There’s	actually	more	power	in	TH	than	that,	as	it	can	in	fact	introspect	code.	We	don’t	use	these	facilities
in	Yesod,	however.

Writing	TH	code	can	be	tricky,	and	unfortunately	there	isn’t	very	much	type	safety
involved.	You	can	easily	write	TH	that	will	generate	code	that	won’t	compile.	This	is	only
an	issue	for	the	developers	of	Yesod,	not	for	its	users.	During	development,	we	use	a	large
collection	of	unit	tests	to	ensure	that	the	generated	code	is	correct.	As	a	user,	all	you	need
to	do	is	call	these	already	existing	functions.	For	example,	to	include	an	externally	defined
Hamlet	template	(discussed	in	Chapter	4),	you	can	write:

$(hamletFile	"myfile.hamlet")

The	dollar	sign	immediately	followed	by	parentheses	tell	GHC	that	what	follows	is	a
Template	Haskell	function.	The	code	inside	is	then	run	by	the	compiler	and	generates	a
Haskell	AST,	which	is	then	compiled.	And	yes,	it’s	even	possible	to	go	meta	with	this.

A	nice	trick	is	that	TH	code	is	allowed	to	perform	arbitrary	IO	actions,	and	therefore	we
can	place	some	input	in	external	files	and	have	it	parsed	at	compile	time.	One	example
usage	is	to	have	compile-time–checked	HTML,	CSS,	and	JavaScript	templates.

If	our	Template	Haskell	code	is	being	used	to	generate	declarations	and	is	being	placed	at
the	top	level	of	our	file,	we	can	leave	off	the	dollar	sign	and	parentheses.	In	other	words:

{-#	LANGUAGE	TemplateHaskell	#-}

--	Normal	function	declaration,	nothing	special

myFunction	=	...

--	Include	some	TH	code

$(myThCode)

--	Or	equivalently

myThCode

It	can	be	useful	to	see	what	code	is	being	generated	by	Template	Haskell	for	you.	To	do
so,	you	should	use	the	-ddump-splices	GHC	option.

NOTE
There	are	many	other	features	of	Template	Haskell	not	covered	here.	For	more	information,	see	the	Haskell
wiki	page.

Template	Haskell	introduces	something	called	the	stage	restriction,	which	essentially

means	that	code	before	a	Template	Haskell	splice	cannot	refer	to	code	in	the	Template
Haskell,	or	what	follows.	This	will	sometimes	require	you	to	rearrange	your	code	a	bit.
The	same	restriction	applies	to	QuasiQuotes.

Out	of	the	box,	Yesod	is	really	geared	for	using	code	generation	to	avoid	boilerplate,	but
it’s	perfectly	acceptable	to	use	Yesod	in	a	Template	Haskell–free	way.	There’s	more
information	on	that	in	Chapter	20.

QuasiQuotes
QuasiQuotes	(QQ)	are	a	minor	extension	of	Template	Haskell	that	let	us	embed	arbitrary
content	within	our	Haskell	source	files.	For	example,	we	mentioned	previously	the
hamletFile	TH	function,	which	reads	the	template	contents	from	an	external	file.	We	also
have	a	quasiquoter	named	hamlet	that	takes	the	content	inline:

{-#	LANGUAGE	QuasiQuotes	#-}

[hamlet|<p>This	is	quasi-quoted	Hamlet.|]

The	syntax	is	set	off	using	square	brackets	and	pipes.	The	name	of	the	quasiquoter	is	given
between	the	opening	bracket	and	the	first	pipe,	and	the	content	is	given	between	the	pipes.

Throughout	the	book,	we	will	frequently	use	the	QQ	approach	over	a	TH-powered
external	file,	as	the	former	is	simpler	to	copy	and	paste.	However,	in	production,	external
files	are	recommended	for	all	but	the	shortest	of	inputs,	as	it	gives	a	nice	separation	of	the
non-Haskell	syntax	from	your	Haskell	code.

API	Documentation
The	standard	API	documentation	program	in	Haskell	is	called	Haddock.	The	standard
Haddock	search	tool	is	called	Hoogle.	I	recommend	using	FP	Complete’s	Hoogle	search
and	its	accompanying	Haddocks	for	searching	and	browsing	documentation,	because	the
database	covers	a	very	large	number	of	open	source	Haskell	packages,	and	the
documentation	provided	is	always	fully	generated	and	known	to	link	to	other	working
Haddocks.

The	more	commonly	used	sources	for	these	are	Hackage	itself,	and	Haskell.org’s	Hoogle
instance.	The	downsides	to	these	are	that	—	based	on	build	issues	on	the	server	—
documentation	is	sometimes	not	generated,	and	the	Hoogle	search	defaults	to	searching
only	a	subset	of	available	packages.	Most	importantly	for	us,	Yesod	is	indexed	by	FP
Complete’s	Hoogle,	but	not	by	Haskell.org’s.

If	you	run	into	types	or	functions	that	you	do	not	understand,	try	doing	a	Hoogle	search
with	FP	Complete’s	Hoogle	to	get	more	information.

Summary
You	don’t	need	to	be	an	expert	in	Haskell	to	use	Yesod	—	a	basic	familiarity	will	suffice.
This	chapter	hopefully	gave	you	just	enough	extra	information	to	feel	more	comfortable	as
you	follow	along	throughout	the	rest	of	the	book.

Chapter	3.	Basics

The	first	step	with	any	new	technology	is	getting	it	running.	The	goal	of	this	chapter	is	to
get	you	started	with	a	simple	Yesod	application	and	cover	some	of	the	basic	concepts	and
terminology.

Hello,	World
Let’s	get	this	book	started	properly	with	a	simple	web	page	that	says	“Hello,	World”:

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	HelloWorld	=	HelloWorld

mkYesod	"HelloWorld"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	HelloWorld

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	[whamlet|Hello,	World!|]

main	::	IO	()

main	=	warp	3000	HelloWorld

If	you	save	the	preceding	code	in	helloworld.hs	and	run	it	with	runhaskell
helloworld.hs,	you’ll	get	a	web	server	running	on	port	3000.	If	you	point	your	browser
to	http://localhost:3000,	you’ll	get	the	following	HTML:

<!DOCTYPE	html>

<html><head><title></title></head><body>Hello,	World!</body></html>

We’ll	refer	back	to	this	example	throughout	the	rest	of	the	chapter.

Routing
Like	most	modern	web	frameworks,	Yesod	follows	a	front	controller	pattern.	This	means
that	every	request	to	a	Yesod	application	enters	at	the	same	point	and	is	routed	from	there.
As	a	contrast,	in	systems	like	PHP	and	ASP,	you	usually	create	a	number	of	different	files,
and	the	web	server	automatically	directs	requests	to	the	relevant	file.

In	addition,	Yesod	uses	a	declarative	style	for	specifying	routes.	In	our	earlier	example,
this	looked	like:

mkYesod	"HelloWorld"	[parseRoutes|

/	HomeR	GET

|]

NOTE
mkYesod	is	a	Template	Haskell	function,	and	parseRoutes	is	a	quasiquoter.

In	other	words,	the	preceding	code	simply	creates	a	route	in	the	Hello,	World	application
called	HomeR.	It	should	listen	for	requests	to	/	(the	root	of	the	application)	and	should
answer	GET	requests.	We	call	HomeR	a	resource,	which	is	where	the	R	suffix	comes	from.

NOTE
The	R	suffix	on	resource	names	is	simply	convention,	but	it’s	a	fairly	universally	followed	convention.	It
makes	it	just	a	bit	easier	to	read	and	understand	code.

The	mkYesod	TH	function	generates	quite	a	bit	of	code	here:	a	route	data	type,
parser/render	functions,	a	dispatch	function,	and	some	helper	types.	We’ll	look	at	this	in
more	detail	in	Chapter	7,	but	by	using	the	-ddump-splices	GHC	option	we	can	get	an
immediate	look	at	the	generated	code.	Here’s	a	cleaned-up	version	of	it:

instance	RenderRoute	HelloWorld	where

				data	Route	HelloWorld	=	HomeR

								deriving	(Show,	Eq,	Read)

				renderRoute	HomeR	=	([],	[])

instance	ParseRoute	HelloWorld	where

				parseRoute	([],	_)	=	Just	HomeR

				parseRoute	_							=	Nothing

instance	YesodDispatch	HelloWorld	where

				yesodDispatch	env	req	=

								yesodRunner	handler	env	mroute	req

						where

								mroute	=	parseRoute	(pathInfo	req,	textQueryString	req)

								handler	=

												case	mroute	of

																Nothing	->	notFound

																Just	HomeR	->

																				case	requestMethod	req	of

																								"GET"	->	getHomeR

																								_					->	badMethod

type	Handler	=	HandlerT	HelloWorld	IO

NOTE
In	addition	to	using	-ddump-splices,	it	can	often	be	useful	to	generate	Haddock	documentation	for	your
application	to	see	which	functions	and	data	types	were	generated	for	you.

We	can	see	that	the	RenderRoute	class	defines	an	associated	data	type	providing	the
routes	for	our	application.	In	this	simple	example,	we	have	just	one	route:	HomeR.	In	real-
life	applications,	we’ll	have	many	more,	and	they	will	be	more	complicated	than	our
HomeR.

renderRoute	takes	a	route	and	turns	it	into	path	segments	and	query	string	parameters.
Again,	our	example	is	simple,	so	the	code	is	likewise	simple:	both	values	are	empty	lists.

ParseRoute	provides	the	inverse	function,	parseRoute.	Here	we	see	the	first	strong
motivation	for	our	reliance	on	Template	Haskell:	it	ensures	that	the	parsing	and	rendering
of	routes	correspond	correctly	with	each	other.	This	kind	of	code	can	easily	become
difficult	to	keep	in	sync	when	written	by	hand.	By	relying	on	code	generation,	we’re
letting	the	compiler	(and	Yesod)	handle	those	details	for	us.

YesodDispatch	provides	a	means	of	taking	an	input	request	and	passing	it	to	the
appropriate	handler	function.	The	process	is	essentially:

1.	 Parse	the	request.

2.	 Choose	a	handler	function.

3.	 Run	the	handler	function.

The	code	generation	follows	a	simple	format	for	matching	routes	to	handler	function
names,	which	I’ll	describe	in	the	next	section.

Finally,	we	have	a	simple	type	synonym	defining	Handler	to	make	our	code	a	little	easier
to	write.

There’s	a	lot	more	going	on	here	than	we’ve	described.	The	generated	dispatch	code
actually	uses	the	view	patterns	language	extension	for	efficiency;	also,	more	typeclass
instances	are	created,	and	there	are	other	cases	to	handle,	such	as	subsites.	We’ll	get	into
the	details	later	in	the	book,	especially	in	Chapter	18.

Handler	Function
So	we	have	a	route	named	HomeR,	and	it	responds	to	GET	requests.	How	do	you	define	your
response?	You	write	a	handler	function.	Yesod	follows	a	standard	naming	scheme	for
these	functions:	it’s	the	lowercase	method	name	(e.g.,	GET	becomes	get)	followed	by	the
route	name.	In	this	case,	the	function	name	would	be	getHomeR.

Most	of	the	code	you	write	in	Yesod	lives	in	handler	functions.	This	is	where	you	process
user	input,	perform	database	queries,	and	create	responses.	In	our	simple	example,	we
create	a	response	using	the	defaultLayout	function.	This	function	wraps	up	the	content
it’s	given	in	your	site’s	template.	By	default,	it	produces	an	HTML	file	with	a	doctype	and
<html>,	<head>,	and	<body>	tags.	As	we’ll	see	in	Chapter	6,	this	function	can	be
overridden	to	do	much	more.

In	our	example,	we	pass	[whamlet|Hello,	World!|]	to	defaultLayout.	whamlet	is
another	quasiquoter.	In	this	case,	it	converts	Hamlet	syntax	into	a	widget.	Hamlet	is	the
default	HTML	templating	engine	in	Yesod.	Together	with	its	siblings	Cassius,	Lucius,	and
Julius,	you	can	create	HTML,	CSS,	and	JavaScript	in	a	fully	type-safe	and	compile-time-
checked	manner.	We’ll	see	much	more	about	this	in	Chapter	4.

Widgets	are	another	cornerstone	of	Yesod.	They	allow	you	to	create	modular	components
of	a	site	consisting	of	HTML,	CSS,	and	JavaScript	and	reuse	them	throughout	your	site.
Widgets	are	covered	in	more	depth	in	Chapter	5.

The	Foundation
The	string	HelloWorld	shows	up	a	number	of	times	in	our	example.	Every	Yesod
application	has	a	foundation	data	type.	This	data	type	must	be	an	instance	of	the	Yesod
typeclass,	which	provides	a	central	place	for	declaring	a	number	of	different	settings
controlling	the	execution	of	our	application.

In	our	case,	this	data	type	is	pretty	boring:	it	doesn’t	contain	any	information.	Nonetheless,
the	foundation	is	central	to	how	our	example	runs:	it	ties	together	the	routes	with	the
instance	declaration	and	lets	it	all	be	run.	We’ll	see	throughout	this	book	that	the
foundation	pops	up	in	a	whole	bunch	of	places.

But	foundations	don’t	have	to	be	boring.	They	can	be	used	to	store	lots	of	useful
information	—	usually	stuff	that	needs	to	be	initialized	at	program	launch	and	used
throughout.	Here	are	some	very	common	examples:

A	database	connection	pool

Settings	loaded	from	a	config	file

An	HTTP	connection	manager

A	random	number	generator

NOTE
By	the	way,	the	word	Yesod	(יסוד)	means	foundation	in	Hebrew.

Running
We	mention	HelloWorld	again	in	our	main	function.	Our	foundation	contains	all	the
information	we	need	to	route	and	respond	to	requests	in	our	application;	now	we	just	need
to	convert	it	into	something	that	can	run.	A	useful	function	for	this	in	Yesod	is	warp,
which	runs	the	Warp	web	server	with	a	number	of	default	settings	enabled	on	the	specified
port	(here,	it’s	3000).

One	of	the	features	of	Yesod	is	that	you	aren’t	tied	down	to	a	single	deployment	strategy.
Yesod	is	built	on	top	of	the	Web	Application	Interface	(WAI),	allowing	it	to	run	on
FastCGI,	SCGI,	Warp,	or	even	as	a	desktop	application	using	the	WebKit	library.	We’ll
discuss	some	of	these	options	in	Chapter	11.	And	at	the	end	of	this	chapter,	we	will
explain	the	development	server.

Warp	is	the	premier	deployment	option	for	Yesod.	It	is	a	lightweight,	highly	efficient	web
server	developed	specifically	for	hosting	Yesod.	It	is	also	used	outside	of	Yesod	for	other
Haskell	development	(both	framework	and	nonframework	applications),	and	as	a	standard
file	server	in	a	number	of	production	environments.

Resources	and	Type-Safe	URLs
In	our	Hello,	World	application	we	defined	just	a	single	resource	(HomeR),	but	real-life	web
applications	are	usually	much	more	exciting	and	include	more	than	one	page.	Let’s	take	a
look	at	another	example:

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	Links	=	Links

mkYesod	"Links"	[parseRoutes|

/	HomeR	GET

/page1	Page1R	GET

/page2	Page2R	GET

|]

instance	Yesod	Links

getHomeR		=	defaultLayout	[whamlet|Go	to	page	1!|]

getPage1R	=	defaultLayout	[whamlet|Go	to	page	2!|]

getPage2R	=	defaultLayout	[whamlet|Go	home!|]

main	=	warp	3000	Links

Overall,	this	is	very	similar	to	Hello,	World.	Our	foundation	is	now	Links	instead	of
HelloWorld,	and	in	addition	to	the	HomeR	resource,	we’ve	added	Page1R	and	Page2R.	As
such,	we’ve	also	added	two	more	handler	functions:	getPage1R	and	getPage2R.

The	only	truly	new	feature	is	inside	the	whamlet	quasiquotation.	We’ll	delve	into	syntax	in
Chapter	4,	but	we	can	see	the	following	creates	a	link	to	the	Page1R	resource:

Go	to	page	1!

The	important	thing	to	note	here	is	that	Page1R	is	a	data	constructor.	By	making	each
resource	a	data	constructor,	we	have	a	feature	called	type-safe	URLs.	Instead	of	splicing
together	strings	to	create	URLs,	we	simply	create	a	plain	old	Haskell	value.	By	using	at-
sign	interpolation	(@{…}),	Yesod	automatically	renders	those	values	to	textual	URLs	before
sending	things	off	to	the	user.	We	can	see	how	this	is	implemented	by	looking	again	at	the
-ddump-splices	output:

instance	RenderRoute	Links	where

				data	Route	Links	=	HomeR	|	Page1R	|	Page2R

						deriving	(Show,	Eq,	Read)

				renderRoute	HomeR		=	([],	[])

				renderRoute	Page1R	=	(["page1"],	[])

				renderRoute	Page2R	=	(["page2"],	[])

In	the	Route	associated	type	for	Links,	we	have	additional	constructors	for	Page1R	and
Page2R.	We	also	now	have	a	better	glimpse	of	the	return	values	for	renderRoute.	The	first

part	of	the	tuple	gives	the	path	pieces	for	the	given	route.	The	second	part	gives	the	query
string	parameters;	for	almost	all	use	cases,	this	will	be	an	empty	list.

It’s	hard	to	overestimate	the	value	of	type-safe	URLs.	They	give	you	a	huge	amount	of
flexibility	and	robustness	when	developing	your	application.	You	can	move	URLs	around
at	will	without	ever	breaking	links.	In	Chapter	7,	we’ll	see	that	routes	can	take	parameters,
such	as	a	blog	entry	URL	taking	the	blog	post	ID.

Let’s	say	you	want	to	switch	from	routing	on	the	numerical	post	ID	to	a	year/month/slug
setup.	In	a	traditional	web	framework,	you	would	need	to	go	through	every	single
reference	to	your	blog	post	route	and	update	appropriately.	If	you	miss	one,	you’ll	have
404s	at	runtime.	In	Yesod,	all	you	do	is	update	your	route	and	compile:	GHC	will	pinpoint
every	single	line	of	code	that	needs	to	be	corrected.

Non-HTML	Responses
Yesod	can	serve	up	any	kind	of	content	you	want,	and	has	first-class	support	for	many
commonly	used	response	formats.	You’ve	seen	HTML	so	far,	but	JSON	data	is	just	as
easy,	via	the	aeson	package:

{-#	LANGUAGE	ExtendedDefaultRules	#-}

{-#	LANGUAGE	OverloadedStrings				#-}

{-#	LANGUAGE	QuasiQuotes										#-}

{-#	LANGUAGE	TemplateHaskell						#-}

{-#	LANGUAGE	TypeFamilies									#-}

import	Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR		=	return	$	object	["msg"	.=	"Hello,	World"]

main	=	warp	3000	App

We’ll	cover	JSON	responses	in	more	detail	in	later	chapters,	including	how	to
automatically	switch	between	HTML	and	JSON	representations	depending	on	the	Accept
request	header.

The	Scaffolded	Site
Installing	Yesod	will	give	you	both	the	Yesod	library,	and	a	yesod	executable.	This
executable	accepts	a	few	commands,	but	the	first	one	you’ll	want	to	be	acquainted	with	is
yesod	init.	It	will	ask	you	some	questions,	and	then	generate	a	folder	containing	the
default	scaffolded	site.	Inside	that	directory,	you	can	run	cabal	install	--only-
dependencies	to	build	any	extra	dependencies	(such	as	your	database	backends),	and	then
yesod	devel	to	run	your	site.

The	scaffolded	site	gives	you	a	lot	of	best	practices	out	of	the	box,	setting	up	files	and
dependencies	in	a	time-tested	approach	used	by	most	production	Yesod	sites.	However,	all
this	convenience	can	get	in	the	way	of	actually	learning	Yesod.	Therefore,	most	of	this
book	will	avoid	the	scaffolding	tool,	and	instead	deal	directly	with	Yesod	as	a	library.	But
if	you’re	going	to	build	a	real	site,	I	strongly	recommend	using	the	scaffolding.

We	will	cover	the	structure	of	the	scaffolded	site	in	Chapter	15.

Development	Server
One	of	the	advantages	interpreted	languages	have	over	compiled	languages	is	fast
prototyping:	you	save	changes	to	a	file	and	hit	refresh.	If	we	want	to	make	any	changes	to
our	Yesod	apps,	we’ll	need	to	call	runhaskell	from	scratch,	which	can	be	a	bit	tedious.

Fortunately,	there’s	a	solution	to	this:	yesod	devel	automatically	rebuilds	and	reloads
your	code	for	you.	This	can	be	a	great	way	to	develop	your	Yesod	projects,	and	when
you’re	ready	to	move	to	production,	you	still	get	to	compile	down	to	incredibly	efficient
code.	The	Yesod	scaffolding	automatically	sets	things	up	for	you.	This	gives	you	the	best
of	both	worlds:	rapid	prototyping	and	fast	production	code.

It’s	a	little	bit	more	involved	to	set	up	your	code	to	be	used	by	yesod	devel,	so	our
examples	will	just	use	warp.	Fortunately,	the	scaffolded	site	is	fully	configured	to	use	the
development	server,	so	when	you’re	ready	to	move	over	to	the	real	world,	it	will	be
waiting	for	you.

Summary
Every	Yesod	application	is	built	around	a	foundation	data	type.	We	associate	some
resources	with	that	data	type	and	define	some	handler	functions,	and	Yesod	handles	all	of
the	routing.	These	resources	are	also	data	constructors,	which	lets	us	have	type-safe	URLs.

By	being	built	on	top	of	WAI,	Yesod	applications	can	run	with	a	number	of	different
backends.	For	simple	apps,	the	warp	function	provides	a	convenient	way	to	use	the	Warp
web	server.	For	rapid	development,	using	yesod	devel	is	a	good	choice.	And	when	you’re
ready	to	move	to	production,	you	have	the	full	power	and	flexibility	to	configure	Warp	(or
any	other	WAI	handler)	to	suit	your	needs.

When	developing	in	Yesod,	we	get	a	number	of	choices	for	coding	style:	quasiquotation	or
external	files,	warp	or	yesod	devel,	and	so	on.	The	examples	in	this	book	deliberately	use
the	choices	that	are	easiest	to	copy	and	paste,	but	more	powerful	options	will	be	available
when	you	start	building	real	Yesod	applications.

Chapter	4.	Shakespearean	Templates

Yesod	uses	the	Shakespearean	family	of	template	languages	as	its	standard	approach	to
HTML,	CSS,	and	JavaScript	creation.	This	language	family	shares	some	common	syntax,
as	well	as	a	few	overarching	principles:

As	little	interference	to	the	underlying	language	as	possible,	while	providing
conveniences	where	unobtrusive

Compile-time	guarantees	on	well-formed	content

Static	type	safety,	greatly	helping	the	prevention	of	XSS	(cross-site	scripting)	attacks

Automatic	validation	of	interpolated	links,	whenever	possible,	through	type-safe
URLs

There	is	nothing	inherently	tying	Yesod	to	these	languages,	or	the	other	way	around:	each
can	be	used	independently	of	the	other.	This	chapter	will	address	these	template	languages
on	their	own,	while	the	remainder	of	the	book	will	use	them	to	enhance	Yesod	application
development.

Synopsis
There	are	four	main	languages	at	play:	Hamlet	is	an	HTML	templating	language,	Julius	is
for	JavaScript,	and	Cassius	and	Lucius	are	both	for	CSS.	Hamlet	and	Cassius	are	both
whitespace-sensitive	formats,	using	indentation	to	denote	nesting.	By	contrast,	Lucius	is	a
superset	of	CSS,	keeping	CSS’s	braces	for	denoting	nesting.	Julius	is	a	simple	passthrough
language	for	producing	JavaScript;	the	only	added	feature	is	variable	interpolation.

NOTE
Cassius	is,	in	fact,	just	an	alternative	syntax	for	Lucius.	They	both	use	the	same	processing	engine
underneath,	but	Cassius	files	have	indentation	converted	into	braces	before	processing.	The	choice	between
the	two	is	purely	one	of	syntactical	preference.

Hamlet	(HTML)
$doctype	5

<html>

				<head>

								<title>#{pageTitle}	-	My	Site

								<link	rel=stylesheet	href=@{Stylesheet}>

				<body>

								<h1	.page-title>#{pageTitle}

								<p>Here	is	a	list	of	your	friends:

								$if	null	friends

												<p>Sorry,	I	lied,	you	don't	have	any	friends.

								$else

												

																$forall	Friend	name	age	<-	friends

																				#{name}	(#{age}	years	old)

								<footer>^{copyright}

Lucius	(CSS)
section.blog	{

				padding:	1em;

				border:	1px	solid	#000;

				h1	{

								color:	#{headingColor};

								background-image:	url(@{MyBackgroundR});

				}

}

Cassius	(CSS)
The	following	is	equivalent	to	the	Lucius	example:

section.blog

				padding:	1em

				border:	1px	solid	#000

				h1

								color:	#{headingColor}

								background-image:	url(@{MyBackgroundR})

Julius	(JavaScript)
$(function(){

				$("section.#{sectionClass}").hide();

				$("#mybutton").click(function(){document.location	=	"@{SomeRouteR}";});

				^{addBling}

});

Types
Before	we	jump	into	syntax,	let’s	take	a	look	at	the	various	types	involved.	We	mentioned
in	the	introduction	that	types	help	protect	us	from	XSS	attacks.	For	example,	let’s	say	that
we	have	an	HTML	template	that	should	display	someone’s	name.	It	might	look	like	this:

<p>Hello,	my	name	is	#{name}

NOTE
{…}	is	how	we	do	variable	interpolation	in	Shakespeare.

What	should	happen	to	name,	and	what	should	its	data	type	be?	A	naive	approach	would
be	to	use	a	Text	value,	and	insert	it	verbatim.	But	that	would	give	us	quite	a	problem	when
name	is	equal	to	something	like:

<script	src='http://nefarious.com/evil.js'></script>

What	we	want	is	to	be	able	to	entity-encode	the	name,	so	that	<	becomes	<.

An	equally	naive	approach	is	to	simply	entity-encode	every	piece	of	text	that	gets
embedded.	What	happens	when	you	have	some	preexisting	HTML	generated	from	another
process?	For	example,	on	the	Yesod	website,	all	Haskell	code	snippets	are	run	through	a
colorizing	function	that	wraps	up	words	in	appropriate	span	tags.	If	we	entity-escaped
everything,	code	snippets	would	be	completely	unreadable!

Instead,	we	have	an	Html	data	type.	In	order	to	generate	an	Html	value,	we	have	two
options	for	APIs.	The	ToMarkup	typeclass	provides	a	way	to	convert	String	and	Text
values	into	Html	via	its	toHtml	function,	automatically	escaping	entities	along	the	way.
This	would	be	the	approach	we’d	want	for	name.	For	the	code	snippet	example,	we	would
use	the	preEscapedToMarkup	function.

When	you	use	variable	interpolation	in	Hamlet	(the	HTML	Shakespeare	language),	it
automatically	applies	a	toHtml	call	to	the	value	inside.	So,	if	you	interpolate	a	String,	it
will	be	entity-escaped,	but	if	you	provide	an	Html	value,	it	will	appear	unmodified.	In	the
code	snippet	example,	we	might	interpolate	with	something	like	#{preEscapedToMarkup
myHaskellHtml}.

NOTE
The	Html	data	type	and	the	functions	mentioned	are	all	provided	by	the	blaze-html	package.	This	allows
Hamlet	to	interact	with	all	other	blaze-html	packages,	and	lets	Hamlet	provide	a	general	solution	for
producing	blaze-html	values.	Also,	we	get	to	take	advantage	of	blaze-html’s	amazing	performance.

Similarly,	we	have	Css/ToCss,	as	well	as	Javascript/ToJavascript.	These	provide	some
compile-time	sanity	checks	to	ensure	we	haven’t	accidentally	stuck	some	HTML	in	our

CSS.

NOTE
One	other	advantage	on	the	CSS	side	is	some	helper	data	types	for	colors	and	units.	For	example:

.red	{	color:	#{colorRed}	}

Refer	to	the	Haddock	documentation	for	more	details.

Type-Safe	URLs
Possibly	the	most	unique	feature	in	Yesod	is	type-safe	URLs,	and	the	ability	to	use	them
conveniently	is	provided	directly	by	Shakespeare.	Usage	is	nearly	identical	to	variable
interpolation;	we	just	use	the	at	sign	(@)	instead	of	the	hash	(#).	We’ll	cover	the	syntax
later,	but	first	let’s	clarify	the	intuition.

Suppose	we	have	an	application	with	two	routes:	http://example.com/profile/home	is	the
homepage,	and	http://example.com/display/time	displays	the	current	time.	If	we	want	to
link	from	the	homepage	to	the	time,	there	are	three	different	ways	of	constructing	the
URL:

As	a	relative	link	(e.g.,	../display/time)

As	an	absolute	link,	without	a	domain	(e.g.,	/display/time)

As	an	absolute	link,	with	a	domain	(e.g.,	http://example.com/display/time)

But	there	are	problems	with	each	approach.	The	first	will	break	if	either	URL	changes.
Also,	it’s	not	suitable	for	all	use	cases;	RSS	and	Atom	feeds,	for	instance,	require	absolute
URLs.	The	second	is	more	resilient	to	change	than	the	first,	but	still	won’t	be	acceptable
for	RSS	and	Atom.	And	while	the	third	works	fine	for	all	use	cases,	you’ll	need	to	update
every	single	URL	in	your	application	whenever	your	domain	name	changes.	You	think
that	doesn’t	happen	often?	Just	wait	till	you	move	from	using	a	development	server	to	a
staging	server	and	finally	into	production.

But	more	importantly,	there	is	one	huge	issue	with	all	three	approaches:	if	you	change
your	routes	at	all,	the	compiler	won’t	warn	you	about	the	broken	links.	Not	to	mention	that
typos	can	wreak	havoc	as	well.

The	goal	of	type-safe	URLs	is	to	let	the	compiler	check	things	for	us	as	much	as	possible.
In	order	to	facilitate	this,	our	first	step	must	be	to	move	away	from	plain	old	text,	which
the	compiler	doesn’t	understand,	to	some	well-defined	data	types.	For	our	simple
application,	let’s	model	our	routes	with	a	sum	type:

data	MyRoute	=	Home	|	Time

Instead	of	placing	a	link	like	/display/time	in	our	template,	we	can	use	the	Time
constructor.	But	at	the	end	of	the	day,	HTML	is	made	up	of	text,	not	data	types,	so	we
need	some	way	to	convert	these	values	to	text.	We	call	this	a	URL	rendering	function	—
here’s	a	simple	example:

renderMyRoute	::	MyRoute	->	Text

renderMyRoute	Home	=	"http://example.com/profile/home"

renderMyRoute	Time	=	"http://example.com/display/time"

NOTE
URL	rendering	functions	are	actually	a	bit	more	complicated	than	this.	They	need	to	address	query	string
parameters,	handle	records	within	the	constructor,	and	more	intelligently	handle	the	domain	name.	But	in
practice,	you	don’t	need	to	worry	about	this,	because	Yesod	will	automatically	create	your	render	functions.
The	one	thing	to	point	out	is	that	the	type	signature	is	actually	a	little	more	complicated	to	handle	query
strings:

type	Query	=	[(Text,	Text)]

type	Render	url	=	url	->	Query	->	Text

renderMyRoute	::	Render	MyRoute

renderMyRoute	Home	_	=	...

renderMyRoute	Time	_	=	...

OK,	we	have	our	render	function,	and	we	have	type-safe	URLs	embedded	in	the
templates.	How	exactly	does	this	fit	together?	Instead	of	generating	an	Html	(or	Css	or
Javascript)	value	directly,	Shakespearean	templates	actually	produce	a	function,	which
takes	the	render	function	and	produces	HTML.	Let’s	take	a	quick	peek	to	see	how	Hamlet
would	work	under	the	surface.	Supposing	we	had	a	template:

The	time

this	would	translate	roughly	into	the	Haskell	code:

\render	->	mconcat	["The	time"]

Syntax
All	Shakespearean	languages	share	the	same	interpolation	syntax	and	are	able	to	utilize
type-safe	URLs.	They	differ	in	the	syntax	specific	for	their	target	language	(HTML,	CSS,
or	JavaScript).	Let’s	explore	each	language	in	turn.

Hamlet	Syntax
Hamlet	is	the	most	sophisticated	of	the	languages.	Not	only	does	it	provide	syntax	for
generating	HTML,	but	it	also	allows	for	basic	control	structures:	conditionals,	looping,
and	maybes.

Tags

Obviously,	tags	will	play	an	important	part	in	any	HTML	template	language.	In	Hamlet,
we	try	to	stick	very	close	to	existing	HTML	syntax	to	make	the	language	more
comfortable.	However,	instead	of	using	closing	tags	to	denote	nesting,	we	use	indentation.
So,	something	like	this	in	HTML:

<body>

<p>Some	paragraph.</p>

Item	1

Item	2

</body>

would	be:

<body>

				<p>Some	paragraph.

				

								Item	1

								Item	2

In	general,	we	find	this	to	be	easier	to	follow	than	HTML	once	you	get	accustomed	to	it.
The	only	tricky	part	arises	when	dealing	with	whitespace	before	and	after	tags.	For
example,	let’s	say	we	want	to	create	the	following	HTML:

<p>Paragraph	<i>italic</i>	end.</p>

We	want	to	make	sure	that	whitespace	is	preserved	after	the	word	“Paragraph”	and	before
the	word	“end.”	To	do	so,	we	use	two	simple	escape	characters:

<p>

				Paragraph	#

				<i>italic

				\	end.

The	whitespace	escape	rules	are	actually	quite	simple:

If	the	first	non-space	character	in	a	line	is	a	backslash,	the	backslash	is	ignored.
(Note:	this	will	also	cause	any	tag	on	this	line	to	be	treated	as	plain	text.)

If	the	last	character	in	a	line	is	a	hash,	it	is	ignored.

One	other	thing:	Hamlet	does	not	escape	entities	within	its	content.	This	is	done	on

purpose	to	allow	existing	HTML	to	be	more	easily	copied	in.	So,	the	preceding	example
could	also	be	written	as:

<p>Paragraph	<i>italic</i>	end.

Notice	that	the	first	tag	will	be	automatically	closed	by	Hamlet,	while	the	inner	<i>	tag
will	not.	You	are	free	to	use	whichever	approach	you	want;	there	is	no	penalty	for	either
choice.	Be	aware,	however,	that	the	only	time	you	use	closing	tags	in	Hamlet	is	for	such
inline	tags;	normal	tags	are	not	closed.

Another	outcome	of	this	is	that	any	tags	after	the	first	tag	do	not	have	special	treatment	for
IDs	and	classes.	For	example,	the	following	Hamlet	snippet:

<p	#firstid>Paragraph	<i	#secondid>italic	end.

generates	the	HTML:

<p	id="firstid">Paragraph	<i	#secondid>italic</i>	end.</p>

Notice	how	the	<p>	tag	is	automatically	closed,	and	its	attributes	get	special	treatment,
whereas	the	<i>	tag	is	treated	as	plain	text.

Interpolation

What	we	have	so	far	is	nice,	simplified	HTML,	but	it	doesn’t	let	us	interact	with	our
Haskell	code	at	all.	How	do	we	pass	in	variables?	The	answer	is	simple	—	by	using
interpolation:

<head>

				<title>#{title}

The	hash	followed	by	a	pair	of	braces	denotes	variable	interpolation.	In	this	case,	the
title	variable	from	the	scope	in	which	the	template	was	called	will	be	used.	Let	me	state
that	again:	Hamlet	automatically	has	access	to	the	variables	in	scope	when	it’s	called.
There	is	no	need	to	specifically	pass	variables	in.

You	can	apply	functions	within	an	interpolation.	You	can	use	string	and	numeric	literals	in
an	interpolation.	You	can	also	use	qualified	modules.	Both	parentheses	and	the	dollar	sign
can	be	used	to	group	statements	together.	And	at	the	end,	the	toHtml	function	is	applied	to
the	result,	meaning	any	instance	of	ToHtml	can	be	interpolated.	Take,	for	instance,	the
following	code:

--	Just	ignore	the	QuasiQuote	stuff	for	now,	and	that	shamlet	thing.

--	It	will	be	explained	later.

{-#	LANGUAGE	QuasiQuotes	#-}

import	Text.Hamlet	(shamlet)

import	Text.Blaze.Html.Renderer.String	(renderHtml)

import	Data.Char	(toLower)

import	Data.List	(sort)

data	Person	=	Person

				{	name	::	String

				,	age		::	Int

				}

main	::	IO	()

main	=	putStrLn	$	renderHtml	[shamlet|

<p>Hello,	my	name	is	#{name	person}	and	I	am	#{show	$	age	person}.

<p>

				Let's	do	some	funny	stuff	with	my	name:	#

				#{sort	$	map	toLower	(name	person)}

<p>Oh,	and	in	5	years	I'll	be	#{show	((+)	5	(age	person))}	years	old.

|]

		where

				person	=	Person	"Michael"	26

What	about	our	much-touted	type-safe	URLs?	They	are	almost	identical	to	variable
interpolation	in	every	way,	except	they	start	with	an	at	sign	(@)	instead.	In	addition,	there
is	embedding	via	a	caret	(^),	which	allows	you	to	embed	another	template	of	the	same
type.	The	next	code	sample	demonstrates	both	of	these:

{-#	LANGUAGE	QuasiQuotes	#-}

{-#	LANGUAGE	OverloadedStrings	#-}

import	Text.Hamlet	(HtmlUrl,	hamlet)

import	Text.Blaze.Html.Renderer.String	(renderHtml)

import	Data.Text	(Text)

data	MyRoute	=	Home

render	::	MyRoute	->	[(Text,	Text)]	->	Text

render	Home	_	=	"/home"

footer	::	HtmlUrl	MyRoute

footer	=	[hamlet|

<footer>

				Return	to	#

				Homepage

				.

|]

main	::	IO	()

main	=	putStrLn	$	renderHtml	$	[hamlet|

<body>

				<p>This	is	my	page.

				^{footer}

|]	render

Additionally,	there	is	a	variant	of	URL	interpolation	that	allows	you	to	embed	query	string
parameters.	This	can	be	useful,	for	example,	for	creating	paginated	responses.	Instead	of
using	@{…},	you	add	a	question	mark	(@?{…})	to	indicate	the	presence	of	a	query	string.
The	value	you	provide	must	be	a	two-tuple	with	the	first	value	being	a	type-safe	URL	and
the	second	being	a	list	of	query	string	parameter	pairs.	The	following	code	snippet	shows
an	example:

{-#	LANGUAGE	QuasiQuotes	#-}

{-#	LANGUAGE	OverloadedStrings	#-}

import	Text.Hamlet	(HtmlUrl,	hamlet)

import	Text.Blaze.Html.Renderer.String	(renderHtml)

import	Data.Text	(Text,	append,	pack)

import	Control.Arrow	(second)

import	Network.HTTP.Types	(renderQueryText)

import	Data.Text.Encoding	(decodeUtf8)

import	Blaze.ByteString.Builder	(toByteString)

data	MyRoute	=	SomePage

render	::	MyRoute	->	[(Text,	Text)]	->	Text

render	SomePage	params	=	"/home"	`append`

				decodeUtf8	(toByteString	$	renderQueryText	True	(map	(second	Just)	params))

main	::	IO	()

main	=	do

				let	currPage	=	2	::	Int

				putStrLn	$	renderHtml	$	[hamlet|

<p>

				You	are	currently	on	page	#{currPage}.

				Previous

				Next

|]	render

This	generates	the	expected	HTML:

<p>You	are	currently	on	page	2.

Previous

Next

</p>

Attributes

In	the	preceding	example,	we	put	an	href	attribute	on	the	<a>	tag.	Let’s	elaborate	on	the
syntax:

You	can	have	interpolations	within	the	attribute	value.

The	equal	sign	and	value	for	an	attribute	are	optional,	just	like	in	HTML.	So,	<input
type=checkbox	checked>	is	perfectly	valid.

There	are	two	convenience	attributes:	for	id,	you	can	use	the	hash,	and	for	classes,
the	period	(in	other	words,	<p	#paragraphid	.class1	.class2>).

Although	quotes	around	the	attribute	value	are	optional,	they	are	required	if	you	want
to	embed	spaces.

You	can	add	an	attribute	optionally	by	using	colons.	To	make	a	checkbox	only
checked	if	the	variable	isChecked	is	True,	you	would	write	<input	type=checkbox
:isChecked:checked>.	To	have	a	paragraph	be	optionally	red,	you	could	use	<p
:isRed:style="color:red">.	(This	also	works	for	class	names	—	for	example,	<p
:isCurrent:.current>	will	set	the	class	current	to	True.)

Conditionals

Eventually,	you’ll	want	to	put	some	logic	in	your	page.	The	goal	of	Hamlet	is	to	make	the
logic	as	minimalistic	as	possible,	pushing	the	heavy	lifting	into	Haskell.	As	such,	our
logical	statements	are	very	basic…	so	basic,	that	it’s	if,	elseif,	and	else:

$if	isAdmin

				<p>Welcome	to	the	admin	section.

$elseif	isLoggedIn

				<p>You	are	not	the	administrator.

$else

				<p>I	don't	know	who	you	are.	Please	log	in	so	I	can	decide	if	you	get	access.

All	the	same	rules	of	normal	interpolation	apply	to	the	content	of	the	conditionals.

maybe

Similarly,	we	have	a	special	construct	for	dealing	with	maybe	values.	These	could
technically	be	dealt	with	using	if,	isJust,	and	fromJust,	but	this	is	more	convenient	and
avoids	partial	functions:

$maybe	name	<-	maybeName

				<p>Your	name	is	#{name}

$nothing

				<p>I	don't	know	your	name.

In	addition	to	simple	identifiers,	you	can	use	a	few	other,	more	complicated	values	on	the
lefthand	side,	such	as	constructors	and	tuples:

$maybe	Person	firstName	lastName	<-	maybePerson

				<p>Your	name	is	#{firstName}	#{lastName}

The	righthand	side	follows	the	same	rules	as	interpolations	and	allows	variables,	function
application,	and	so	on.

forall

And	what	about	looping	over	lists?	We	have	you	covered	there	too:

$if	null	people

				<p>No	people.

$else

				

								$forall	person	<-	people

												#{person}

case

Pattern	matching	is	one	of	the	great	strengths	of	Haskell.	Sum	types	allow	you	to	cleanly
model	many	real-world	types,	and	case	statements	let	you	safely	match,	enabling	the
compiler	to	warn	you	if	a	case	was	missed.	Hamlet	gives	you	the	same	power:

$case	foo

				$of	Left	bar

								<p>It	was	left:	#{bar}

				$of	Right	baz

								<p>It	was	right:	#{baz}

with

Rounding	out	our	statements,	we	have	with.	It’s	basically	just	a	convenience	for	declaring
a	synonym	for	a	long	expression:

$with	foo	<-	some	very	(long	ugly)	expression	that	$	should	only	$	happen	once

				<p>But	I'm	going	to	use	#{foo}	multiple	times.	#{foo}

doctype

One	last	bit	of	syntactic	sugar:	the	doctype	statement.	There	is	support	for	a	number	of
different	versions	of	doctype,	though	we	recommend	$doctype	5	for	modern	web
applications,	which	generates	<!DOCTYPE	html>:

$doctype	5

<html>

				<head>

								<title>Hamlet	is	Awesome

				<body>

								<p>All	done.

NOTE
There	is	an	older	and	still	supported	syntax:	three	exclamation	points	(!!!).	You	may	still	see	this	in	code
out	there.	There	are	no	plans	to	remove	support	for	this,	but	in	general	the	$doctype	approach	is	easier	to
read.

Lucius	Syntax
Lucius	is	one	of	two	CSS	templating	languages	in	the	Shakespeare	family.	It	is	intended	to
be	a	superset	of	CSS,	leveraging	the	existing	syntax	while	adding	in	a	few	more	features.
Here	are	some	key	points:

Like	Hamlet,	it	allows	both	variable	and	URL	interpolation.

CSS	blocks	are	allowed	to	nest.

You	can	declare	variables	in	your	templates.

A	set	of	CSS	properties	can	be	created	as	a	mixin	and	reused	in	multiple	declarations.

Starting	with	the	second	point,	let’s	say	you	want	to	have	special	styling	for	some	tags
within	your	article.	In	plain	ol’	CSS,	you’d	have	to	write:

article	code	{	background-color:	grey;	}

article	p	{	text-indent:	2em;	}

article	a	{	text-decoration:	none;	}

In	this	case,	there	aren’t	that	many	clauses,	but	having	to	type	out	article	each	time	is
still	a	bit	of	a	nuisance.	Imagine	if	you	had	a	dozen	or	so	of	these	—	not	the	worst	thing	in
the	world,	but	a	bit	of	an	annoyance.	Lucius	helps	you	out	here:

article	{

				code	{	background-color:	grey;	}

				p	{	text-indent:	2em;	}

				a	{	text-decoration:	none;	}

				>	h1	{	color:	green;	}

}

Having	Lucius	variables	allows	you	to	avoid	repeating	yourself.	A	simple	example	would
be	to	define	a	commonly	used	color:

@textcolor:	#ccc;	/*	just	because	we	hate	our	users	*/

body	{	color:	#{textcolor}	}

a:link,	a:visited	{	color:	#{textcolor}	}

Mixins	are	a	relatively	new	addition	to	Lucius.	The	idea	is	to	declare	a	mixin	providing	a
collection	of	properties,	and	then	embed	that	mixin	in	a	template	using	caret	interpolation
(^).	The	following	example	demonstrates	how	we	could	use	a	mixin	to	deal	with	vendor
prefixes:

{-#	LANGUAGE	QuasiQuotes	#-}

import	Text.Lucius

import	qualified	Data.Text.Lazy.IO	as	TLIO

--	Dummy	render	function.

render	=	undefined

--	Our	mixin,	which	provides	a	number	of	vendor	prefixes	for	transitions.

transition	val	=

				[luciusMixin|

								-webkit-transition:	#{val};

								-moz-transition:	#{val};

								-ms-transition:	#{val};

								-o-transition:	#{val};

								transition:	#{val};

				|]

--	Our	actual	Lucius	template,	which	uses	the	mixin.

myCSS	=

				[lucius|

								.some-class	{

												^{transition	"all	4s	ease"}

								}

				|]

main	=	TLIO.putStrLn	$	renderCss	$	myCSS	render

Cassius	Syntax
Cassius	is	a	whitespace-sensitive	alternative	to	Lucius.	As	mentioned	in	the	synopsis,	it
uses	the	same	processing	engine	as	Lucius	but	preprocesses	all	input	to	insert	braces	to
enclose	subblocks	and	semicolons	to	terminate	lines.	This	means	you	can	leverage	all
features	of	Lucius	when	writing	Cassius.	Here’s	a	simple	example:

#banner

				border:	1px	solid	#{bannerColor}

				background-image:	url(@{BannerImageR})

Julius	Syntax
Julius	is	the	simplest	of	the	languages	discussed	here.	In	fact,	some	might	even	say	it’s
really	just	JavaScript.	Julius	allows	the	three	forms	of	interpolation	we’ve	mentioned	so
far,	and	otherwise	applies	no	transformations	to	your	content.

NOTE
If	you	use	Julius	with	the	scaffolded	Yesod	site,	you	may	notice	that	your	JavaScript	is	automatically
minified.	This	is	not	a	feature	of	Julius;	instead,	Yesod	uses	the	hjsmin	package	to	minify	Julius	output.

Calling	Shakespeare
The	question,	of	course,	arises	at	some	point:	how	do	I	actually	use	this	stuff?	There	are
three	different	ways	to	call	out	to	Shakespeare	from	your	Haskell	code:

QuasiQuotes

QuasiQuotes	allow	you	to	embed	arbitrary	content	within	your	Haskell	that	is
converted	into	Haskell	code	at	compile	time.

External	file

In	this	case,	the	template	code	is	in	a	separate	file	that	is	referenced	via	Template
Haskell.

Reload	mode

Both	of	the	preceding	modes	require	a	full	recompile	to	see	any	changes.	In	reload
mode,	your	template	is	kept	in	a	separate	file	and	referenced	via	Template	Haskell.
But	at	runtime,	the	external	file	is	reparsed	from	scratch	each	time.

NOTE
Reload	mode	is	not	available	for	Hamlet	but	is	for	Cassius,	Lucius,	and	Julius.	There	are	too	many
sophisticated	features	in	Hamlet	that	rely	directly	on	the	Haskell	compiler	and	could	not	feasibly	be
reimplemented	at	runtime.

One	of	the	first	two	approaches	should	be	used	in	production.	They	both	embed	the
entirety	of	the	template	in	the	final	executable,	simplifying	deployment	and	increasing
performance.	The	advantage	of	the	QuasiQuotes	approach	is	the	simplicity:	everything
stays	in	a	single	file.	For	short	templates,	this	can	be	a	very	good	fit.	However,	in	general,
the	external	file	approach	is	recommended	because:

It	follows	nicely	in	the	tradition	of	separating	logic	from	presentation.

You	can	easily	switch	between	external	file	and	debug	mode	with	some	simple	C
preprocessor	macros,	meaning	you	can	keep	development	rapid	and	still	achieve	high
performance	in	production.

Because	special	quasiquoters	and	Template	Haskell	functions	are	involved,	you	need	to	be
sure	to	enable	the	appropriate	language	extensions	and	use	correct	syntax.	You	can	see	a
simple	example	of	each	approach	in	the	following	code	snippets:

{-#	LANGUAGE	OverloadedStrings	#-}	--	we're	using	Text	below

{-#	LANGUAGE	QuasiQuotes	#-}

import	Text.Hamlet	(HtmlUrl,	hamlet)

import	Data.Text	(Text)

import	Text.Blaze.Html.Renderer.String	(renderHtml)

data	MyRoute	=	Home	|	Time	|	Stylesheet

render	::	MyRoute	->	[(Text,	Text)]	->	Text

render	Home	_	=	"/home"

render	Time	_	=	"/time"

render	Stylesheet	_	=	"/style.css"

template	::	Text	->	HtmlUrl	MyRoute

template	title	=	[hamlet|

$doctype	5

<html>

				<head>

								<title>#{title}

								<link	rel=stylesheet	href=@{Stylesheet}>

				<body>

								<h1>#{title}

|]

main	::	IO	()

main	=	putStrLn	$	renderHtml	$	template	"My	Title"	render

{-#	LANGUAGE	OverloadedStrings	#-}	--	we're	using	Text	below

{-#	LANGUAGE	TemplateHaskell	#-}

{-#	LANGUAGE	CPP	#-}	--	to	control	production	versus	debug

import	Text.Lucius	(CssUrl,	luciusFile,	luciusFileDebug,	renderCss)

import	Data.Text	(Text)

import	qualified	Data.Text.Lazy.IO	as	TLIO

data	MyRoute	=	Home	|	Time	|	Stylesheet

render	::	MyRoute	->	[(Text,	Text)]	->	Text

render	Home	_	=	"/home"

render	Time	_	=	"/time"

render	Stylesheet	_	=	"/style.css"

template	::	CssUrl	MyRoute

#if	PRODUCTION

template	=	$(luciusFile	"template.lucius")

#else

template	=	$(luciusFileDebug	"template.lucius")

#endif

main	::	IO	()

main	=	TLIO.putStrLn	$	renderCss	$	template	render

--	@template.lucius

foo	{	bar:	baz	}

The	naming	scheme	for	the	functions	is	very	consistent:

Language Quasiquoter External	file Reload

Hamlet hamlet hamletFile N/A

Cassius cassius cassiusFile cassiusFileReload

Lucius lucius luciusFile luciusFileReload

Julius julius juliusFile juliusFileReload

Alternative	Hamlet	Types
So	far,	we’ve	seen	how	to	generate	an	HtmlUrl	value	from	Hamlet,	which	is	a	piece	of
HTML	with	embedded	type-safe	URLs.	There	are	currently	three	other	values	we	can
generate	using	Hamlet:	plain	HTML,	HTML	with	URLs,	and	internationalized
messages/widgets.	That	last	one	will	be	covered	in	more	detail	in	Chapter	5.

To	generate	plain	HTML	without	any	embedded	URLs,	we	use	“simplified	Hamlet.”
There	are	a	few	changes:

We	use	a	different	set	of	functions,	prefixed	with	an	“s”.	So,	the	quasiquoter	is
shamlet	and	the	external	file	function	is	shamletFile.	How	we	pronounce	those	is
still	up	for	debate.

No	URL	interpolation	is	allowed.	Doing	so	will	result	in	a	compile-time	error.

Embedding	(the	caret	interpolator)	no	longer	allows	arbitrary	HtmlUrl	values.	The
rule	is	that	the	embedded	value	must	have	the	same	type	as	the	template	itself,	so	in
this	case	it	must	be	Html.	That	means	that	for	shamlet,	embedding	can	be	completely
replaced	with	normal	variable	interpolation	(with	a	hash).

Dealing	with	internationalization	(i18n)	in	Hamlet	is	a	bit	complicated.	Hamlet	supports
i18n	via	a	message	data	type,	very	similar	in	concept	and	implementation	to	a	type-safe
URL.	As	an	example,	let’s	say	we	want	to	create	an	application	that	says	“hello”	and
indicates	how	many	apples	you’ve	eaten.	Those	messages	can	be	represented	with	a	data
type:

data	Msg	=	Hello	|	Apples	Int

Next,	we	need	to	convert	that	into	something	human	readable,	so	we	define	some	render
functions:

renderEnglish	::	Msg	->	Text

renderEnglish	Hello	=	"Hello"

renderEnglish	(Apples	0)	=	"You	did	not	buy	any	apples."

renderEnglish	(Apples	1)	=	"You	bought	1	apple."

renderEnglish	(Apples	i)	=	T.concat	["You	bought	",	T.pack	$	show	i,	"	apples."]

Now	we	want	to	interpolate	those	Msg	values	directly	in	the	template.	For	that,	we	use
underscore	interpolation:

$doctype	5

<html>

				<head>

								<title>i18n

				<body>

								<h1>_{Hello}

								<p>_{Apples	count}

This	kind	of	a	template	now	needs	some	way	to	turn	those	values	into	HTML.	So,	just	like
with	type-safe	URLs,	we	pass	in	a	render	function.	To	represent	this,	we	define	a	new	type
synonym:

type	Render	url	=	url	->	[(Text,	Text)]	->	Text

type	Translate	msg	=	msg	->	Html

type	HtmlUrlI18n	msg	url	=	Translate	msg	->	Render	url	->	Html

At	this	point,	you	can	pass	renderEnglish,	renderSpanish,	or	renderKlingon	to	this
template,	and	it	will	generate	nicely	translated	output	(depending,	of	course,	on	the	quality
of	your	translators).	Here’s	the	complete	program:

{-#	LANGUAGE	QuasiQuotes	#-}

{-#	LANGUAGE	OverloadedStrings	#-}

import	Data.Text	(Text)

import	qualified	Data.Text	as	T

import	Text.Hamlet	(HtmlUrlI18n,	ihamlet)

import	Text.Blaze.Html	(toHtml)

import	Text.Blaze.Html.Renderer.String	(renderHtml)

data	MyRoute	=	Home	|	Time	|	Stylesheet

renderUrl	::	MyRoute	->	[(Text,	Text)]	->	Text

renderUrl	Home	_	=	"/home"

renderUrl	Time	_	=	"/time"

renderUrl	Stylesheet	_	=	"/style.css"

data	Msg	=	Hello	|	Apples	Int

renderEnglish	::	Msg	->	Text

renderEnglish	Hello	=	"Hello"

renderEnglish	(Apples	0)	=	"You	did	not	buy	any	apples."

renderEnglish	(Apples	1)	=	"You	bought	1	apple."

renderEnglish	(Apples	i)	=	T.concat	["You	bought	",	T.pack	$	show	i,	"	apples."]

template	::	Int	->	HtmlUrlI18n	Msg	MyRoute

template	count	=	[ihamlet|

$doctype	5

<html>

				<head>

								<title>i18n

				<body>

								<h1>_{Hello}

								<p>_{Apples	count}

|]

main	::	IO	()

main	=	putStrLn	$	renderHtml

					$	(template	5)	(toHtml	.	renderEnglish)	renderUrl

Other	Shakespeare
In	addition	to	HTML,	CSS,	and	JavaScript	helpers,	there	is	also	some	more	general-
purpose	Shakespeare	available.	shakespeare-text	provides	a	simple	way	to	create
interpolated	strings,	much	like	people	are	accustomed	to	in	scripting	languages	like	Ruby
and	Python.	This	package’s	utility	is	definitely	not	limited	to	Yesod:

{-#	LANGUAGE	QuasiQuotes,	OverloadedStrings	#-}

import	Text.Shakespeare.Text

import	qualified	Data.Text.Lazy.IO	as	TLIO

import	Data.Text	(Text)

import	Control.Monad	(forM_)

data	Item	=	Item

				{	itemName	::	Text

				,	itemQty	::	Int

				}

items	::	[Item]

items	=

				[Item	"apples"	5

				,	Item	"bananas"	10

]

main	::	IO	()

main	=	forM_	items	$	\item	->	TLIO.putStrLn

				[lt|You	have	#{show	$	itemQty	item}	#{itemName	item}.|]

Some	quick	points	about	this	simple	example:

Notice	that	we	have	three	different	textual	data	types	involved	(String,	strict	Text,
and	lazy	Text).	They	all	play	together	well.

We	use	a	quasiquoter	named	lt,	which	generates	lazy	text.	There	is	also	st.

Also,	there	are	longer	names	for	these	quasiquoters	(ltext	and	stext).

General	Recommendations
Here	are	some	general	hints	from	the	Yesod	community	on	how	to	get	the	most	out	of
Shakespeare:

For	actual	sites,	use	external	files.	For	libraries,	it’s	OK	to	use	quasiquoters,	assuming
they	aren’t	too	long.

Patrick	Brisbin	has	put	together	an	immensely	helpful	Vim	code	highlighter.

You	should	almost	always	start	Hamlet	tags	on	their	own	line	instead	of	embedding
start/end	tags	after	an	existing	tag.	The	only	exception	to	this	is	the	occasional	<i>	or
	tag	inside	a	large	block	of	text.

Chapter	5.	Widgets

One	of	the	challenges	in	web	development	is	that	we	have	to	coordinate	three	different
client-side	technologies:	HTML,	CSS,	and	JavaScript.	Worse	still,	we	have	to	place	these
components	in	different	locations	on	the	page:	CSS	in	a	<style>	tag	in	the	head,
JavaScript	in	a	<script>	tag	in	the	head,	and	HTML	in	the	body.	And	never	mind	if	you
want	to	put	your	CSS	and	JavaScript	in	separate	files!

In	practice,	this	works	out	fairly	nicely	when	building	a	single	page,	because	we	can
separate	our	structure	(HTML),	style	(CSS),	and	logic	(JavaScript).	But	when	we	want	to
build	modular	pieces	of	code	that	can	be	easily	composed,	it	can	be	a	headache	to
coordinate	all	three	pieces	separately.	Widgets	are	Yesod’s	solution	to	the	problem.	They
also	help	with	the	issue	of	including	libraries,	such	as	jQuery,	one	time	only.

Our	four	template	languages	—	Hamlet,	Cassius,	Lucius,	and	Julius	—	provide	the	raw
tools	for	constructing	our	output.	Widgets	provide	the	glue	that	allows	them	to	work
together	seamlessly.

Synopsis
{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	=	defaultLayout	$	do

				setTitle	"My	Page	Title"

				toWidget	[lucius|	h1	{	color:	green;	}	|]

				addScriptRemote

					"https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js"

				toWidget

								[julius|

												$(function()	{

																$("h1").click(function(){

																				alert("You	clicked	on	the	heading!");

																});

												});

								|]

				toWidgetHead

								[hamlet|

												<meta	name=keywords	content="some	sample	keywords">

								|]

				toWidget

								[hamlet|

												<h1>Here's	one	way	of	including	content

								|]

				[whamlet|<h2>Here's	another	|]

				toWidgetBody

								[julius|

												alert("This	is	included	in	the	body	itself");

								|]

main	=	warp	3000	App

This	produces	the	following	HTML	(indentation	added):

<!DOCTYPE	html>

<html>

		<head>

				<title>My	Page	Title</title>

				<meta	name="keywords"	content="some	sample	keywords">

				<style>h1{color:green}</style>

		</head>

		<body>

				<h1>Here's	one	way	of	including	content</h1>

				<h2>Here's	another</h2>

				<script>

						alert("This	is	included	in	the	body	itself");

				</script>

				<script	src="

					https://ajax.googleapis.com/ajax/libs/jquery/1.6.2/jquery.min.js">

				</script><script>

						$(function()	{

								$('h1').click(function()	{

										alert("You	clicked	on	the	heading!");

								});

						});

				</script>

		</body>

</html>

What’s	in	a	Widget?
At	a	very	superficial	level,	an	HTML	document	is	just	a	bunch	of	nested	tags.	This	is	the
approach	most	HTML-generation	tools	take:	you	define	hierarchies	of	tags	and	are	done
with	it.	But	let’s	imagine	that	we	want	to	write	a	component	of	a	page	for	displaying	the
navbar.	We	want	this	to	be	“plug	and	play”:	the	function	is	called	at	the	right	time,	and	the
navbar	is	inserted	at	the	correct	point	in	the	hierarchy.

This	is	where	our	superficial	HTML	generation	breaks	down.	Our	navbar	likely	consists	of
some	CSS	and	JavaScript	in	addition	to	HTML.	By	the	time	we	call	the	navbar	function,
we	have	already	rendered	the	<head>	tag,	so	it	is	too	late	to	add	a	new	<style>	tag	for	our
CSS	declarations.	Under	normal	strategies,	we	would	need	to	break	up	our	navbar
function	into	three	parts	—	HTML,	CSS,	and	JavaScript	—	and	make	sure	that	we	always
call	all	three	pieces.

Widgets	take	a	different	approach.	Instead	of	viewing	an	HTML	document	as	a	monolithic
tree	of	tags,	widgets	see	a	number	of	distinct	components	in	the	page.	In	particular,
widgets	are	interested	in	the	following:

The	title

External	stylesheets

External	JavaScript

CSS	declarations

JavaScript	code

Arbitrary	<head>	content

Arbitrary	<body>	content

Different	components	have	different	semantics.	For	example,	there	can	only	be	one	title,
but	there	can	be	multiple	external	scripts	and	stylesheets.	However,	those	external	scripts
and	stylesheets	should	only	be	included	once.	Arbitrary	head	and	body	content,	on	the
other	hand,	has	no	limitation	(someone	may	want	to	have	five	lorem	ipsum	blocks,	after
all).

The	job	of	a	widget	is	to	hold	onto	these	disparate	components	and	apply	proper	logic	for
combining	different	widgets.	This	consists	of	things	like	taking	the	last	title	set	and
ignoring	others,	filtering	duplicates	from	the	list	of	external	scripts	and	stylesheets,	and
concatenating	head	and	body	content.

Constructing	Widgets
In	order	to	use	widgets,	you’ll	obviously	need	to	be	able	to	get	your	hands	on	them.	The
most	common	way	will	be	via	the	ToWidget	typeclass	and	its	toWidget	method.	This
allows	you	to	convert	your	Shakespearean	templates	directly	to	a	Widget:	Hamlet	code
will	appear	in	the	body,	Julius	scripts	inside	a	<script>,	and	Cassius	and	Lucius	in	a
<style>	tag.

NOTE
You	can	actually	override	the	default	behavior	and	have	the	script	and	style	code	appear	in	a	separate	file.
The	scaffolded	site	provides	this	for	you	automatically.

But	what	if	you	want	to	add	some	<meta>	tags,	which	need	to	appear	in	the	head?	Or	if
you	want	some	JavaScript	to	appear	in	the	body	instead	of	the	head?	For	these	purposes,
Yesod	provides	two	additional	typeclasses:	ToWidgetHead	and	ToWidgetBody.	These	work
exactly	as	they	seem	they	should.	One	example	use	case	for	this	is	to	have	fine-grained
control	over	where	your	<script>	tags	end	up	getting	inserted:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/						HomeR		GET

|]

instance	Yesod	App	where

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	"toWidgetHead	and	toWidgetBody"

				toWidgetBody

								[hamlet|<script	src=/included-in-body.js>|]

				toWidgetHead

								[hamlet|<script	src=/included-in-head.js>|]

main	::	IO	()

main	=	warp	3001	App

Note	that	even	though	toWidgetHead	was	called	after	toWidgetBody,	the	latter	<script>
tag	appears	first	in	the	generated	HTML.

In	addition,	there	are	a	number	of	other	functions	for	creating	specific	kinds	of	widgets:
setTitle

Turns	an	HTML	value	into	the	page	title.
toWidgetMedia

Works	the	same	as	toWidget,	but	takes	an	additional	parameter	to	indicate	what	kind
of	media	this	applies	to.	Useful	for	creating	print	stylesheets,	for	instance.

addStylesheet

Adds	a	reference,	via	a	<link>	tag,	to	an	external	stylesheet.	Takes	a	type-safe	URL.
addStylesheetRemote

Same	as	addStylesheet,	but	takes	a	normal	URL.	Useful	for	referring	to	files	hosted
on	a	content	distribution	network	(CDN),	like	Google’s	jQuery	UI	CSS	files.

addScript

Adds	a	reference,	via	a	<script>	tag,	to	an	external	script.	Takes	a	type-safe	URL.
addScriptRemote

Same	as	addScript,	but	takes	a	normal	URL.	Useful	for	referring	to	files	hosted	on	a
CDN,	like	Google’s	jQuery.

Combining	Widgets
The	whole	idea	of	widgets	is	to	increase	composability.	You	can	take	individual	pieces	of
HTML,	CSS,	and	JavaScript,	combine	them	into	something	more	complicated,	and	then
combine	these	larger	entities	into	complete	pages.	This	all	works	naturally	through	the
Monad	instance	of	Widget,	meaning	you	can	use	do	notation	to	compose	pieces:

myWidget1	=	do

				toWidget	[hamlet|<h1>My	Title|]

				toWidget	[lucius|h1	{	color:	green	}	|]

myWidget2	=	do

				setTitle	"My	Page	Title"

				addScriptRemote	"http://www.example.com/script.js"

myWidget	=	do

				myWidget1

				myWidget2

--	or,	if	you	want

myWidget'	=	myWidget1	>>	myWidget2

NOTE
If	you’re	so	inclined,	there’s	also	a	Monoid	instance	of	Widget,	meaning	you	can	use	mconcat	or	a	Writer
monad	to	build	things	up.	In	my	experience,	it’s	easiest	and	most	natural	to	just	use	do	notation.

Generating	IDs
If	we’re	really	going	for	true	code	reuse	here,	we’re	eventually	going	to	run	into	name
conflicts.	Let’s	say	that	there	are	two	helper	libraries	that	both	use	the	class	name	“foo”	to
affect	styling.	We	want	to	avoid	such	a	possibility.	Therefore,	we	have	the	newIdent
function.	This	function	automatically	generates	a	word	that	is	unique	for	this	handler:

getRootR	=	defaultLayout	$	do

				headerClass	<-	newIdent

				toWidget	[hamlet|<h1	.#{headerClass}>My	Header|]

				toWidget	[lucius|	.#{headerClass}	{	color:	green;	}	|]

whamlet
Let’s	say	we’ve	got	a	fairly	standard	Hamlet	template	that	embeds	another	Hamlet
template	to	represent	the	footer:

page	=

				[hamlet|

								<p>This	is	my	page.	I	hope	you	enjoyed	it.

								^{footer}

				|]

footer	=

				[hamlet|

								<footer>

												<p>That's	all	folks!

				|]

That	works	fine	if	the	footer	is	plain	old	HTML,	but	what	if	we	want	to	add	some	style?
Well,	we	can	easily	spice	up	the	footer	by	turning	it	into	a	widget:

footer	=	do

				toWidget

								[lucius|

												footer	{

																font-weight:	bold;

																text-align:	center

												}

								|]

				toWidget

								[hamlet|

												<footer>

																<p>That's	all	folks!

								|]

But	now	we’ve	got	a	problem:	a	Hamlet	template	can	only	embed	another	Hamlet
template;	it	knows	nothing	about	a	widget.	This	is	where	whamlet	comes	in.	It	takes
exactly	the	same	syntax	as	normal	Hamlet,	and	variable	(#{…})	and	URL	(@{…})
interpolation	are	unchanged.	But	embedding	(^{…})	takes	a	Widget,	and	the	final	result	is	a
Widget.	To	use	it,	we	can	just	do:

page	=

				[whamlet|

								<p>This	is	my	page.	I	hope	you	enjoyed	it.

								^{footer}

				|]

There	is	also	whamletFile,	if	you	prefer	to	keep	your	template	in	a	separate	file.

NOTE
The	scaffolded	site	has	an	even	more	convenient	function,	widgetFile,	which	will	also	include	your
Lucius,	Cassius,	and	Julius	files	automatically.	We’ll	cover	that	in	Chapter	15.

Types
You	may	have	noticed	that	I’ve	been	avoiding	type	signatures	so	far.	Why?	The	simple
answer	is	that	each	widget	is	a	value	of	type	Widget.	But	if	you	look	through	the	Yesod
libraries,	you’ll	find	no	definition	of	the	Widget	type.	What	gives?

Yesod	defines	a	very	similar	type:	data	WidgetT	site	m	a.	This	data	type	is	a	monad
transformer.	The	last	two	arguments	are	the	underlying	monad	and	the	monadic	value,
respectively.	The	site	parameter	is	the	specific	foundation	type	for	your	individual
application.	Because	this	type	varies	for	each	and	every	site,	it’s	impossible	for	the
libraries	to	define	a	single	Widget	data	type	that	would	work	for	every	application.

Instead,	the	mkYesod	Template	Haskell	function	generates	this	type	synonym	for	you.
Assuming	your	foundation	data	type	is	called	MyApp,	your	Widget	synonym	is	defined	as
follows:

type	Widget	=	WidgetT	MyApp	IO	()

We	set	the	monadic	value	to	be	(),	as	a	widget’s	value	will	ultimately	be	thrown	away.	IO
is	the	standard	base	monad,	and	will	be	used	in	almost	all	cases.	The	only	exception	is
when	writing	a	subsite.	Subsites	are	a	more	advanced	topic	and	will	be	covered	later,	in
Chapter	17.

Once	we	know	about	our	Widget	type	synonym,	it’s	easy	to	add	signatures	to	our	previous
code	samples:

footer	::	Widget

footer	=	do

				toWidget

								[lucius|

												footer	{

																font-weight:	bold;

																text-align:	center

												}

								|]

				toWidget

								[hamlet|

												<footer>

																<p>That's	all	folks!

								|]

page	::	Widget

page	=

				[whamlet|

								<p>This	is	my	page.	I	hope	you	enjoyed	it.

								^{footer}

				|]

When	we	start	digging	into	handler	functions	some	more,	we’ll	encounter	a	similar
situation	with	the	HandlerT	and	Handler	types.

Using	Widgets
It’s	all	well	and	good	that	we	have	these	beautiful	Widget	data	types,	but	how	exactly	do
we	turn	them	into	something	the	user	can	interact	with?	The	most	commonly	used
function	is	defaultLayout,	which	essentially	has	the	type	signature	Widget	->	Handler
Html.

defaultLayout	is	actually	a	typeclass	method,	which	can	be	overridden	for	each
application.	This	is	how	Yesod	apps	are	themed.	So	we’re	still	left	with	the	question:	when
we’re	inside	defaultLayout,	how	do	we	unwrap	a	Widget?	The	answer	is
widgetToPageContent.	Let’s	look	at	some	(simplified)	types:

data	PageContent	url	=	PageContent

				{	pageTitle	::	Html

				,	pageHead	::	HtmlUrl	url

				,	pageBody	::	HtmlUrl	url

				}

widgetToPageContent	::	Widget	->	Handler	(PageContent	url)

This	is	getting	closer	to	what	we	need.	We	now	have	direct	access	to	the	HTML	making
up	the	head	and	body,	as	well	as	the	title.	At	this	point,	we	can	use	Hamlet	to	combine
them	all	into	a	single	document,	along	with	our	site	layout,	and	we	use	withUrlRenderer
to	convert	that	Hamlet	result	into	actual	HTML	that’s	ready	to	be	shown	to	the	user.	The
next	example	demonstrates	this	process:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

myLayout	::	Widget	->	Handler	Html

myLayout	widget	=	do

				pc	<-	widgetToPageContent	widget

				withUrlRenderer

								[hamlet|

												$doctype	5

												<html>

																<head>

																				<title>#{pageTitle	pc}

																				<meta	charset=utf-8>

																				<style>body	{	font-family:	verdana	}

																				^{pageHead	pc}

																<body>

																				<article>

																								^{pageBody	pc}

								|]

instance	Yesod	App	where

				defaultLayout	=	myLayout

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>Hello,	World!

				|]

main	::	IO	()

main	=	warp	3000	App

But	there’s	still	one	thing	that	bothers	me:	that	<style>	tag.	There	are	a	few	problems
with	it:

Unlike	with	Lucius	or	Cassius,	it	doesn’t	get	compile-time	checked	for	correctness.

Granted,	the	current	example	is	very	simple,	but	in	something	more	complicated	we
could	get	into	character	escaping	issues.

We’ll	now	have	two	<style>	tags	instead	of	one:	the	one	produced	by	myLayout,	and
the	one	generated	in	the	pageHead	based	on	the	styles	set	in	the	widget.

We	have	one	more	trick	in	our	bag	to	address	this:	we	apply	some	last-minute	adjustments
to	the	widget	itself	before	calling	widgetToPageContent.	It’s	actually	very	easy	to	do	—
we	just	use	do	notation	again:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

myLayout	::	Widget	->	Handler	Html

myLayout	widget	=	do

				pc	<-	widgetToPageContent	$	do

								widget

								toWidget	[lucius|	body	{	font-family:	verdana	}	|]

				withUrlRenderer

								[hamlet|

												$doctype	5

												<html>

																<head>

																				<title>#{pageTitle	pc}

																				<meta	charset=utf-8>

																				^{pageHead	pc}

																<body>

																				<article>

																								^{pageBody	pc}

								|]

instance	Yesod	App	where

				defaultLayout	=	myLayout

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>Hello,	World!

				|]

main	::	IO	()

main	=	warp	3000	App

Using	Handler	Functions
We	haven’t	covered	too	much	of	the	handler	functionality	yet,	but	once	we	do,	the
question	arises:	how	do	we	use	those	functions	in	a	widget?	For	example,	what	if	your
widget	needs	to	look	up	a	query	string	parameter	using	lookupGetParam?

The	first	answer	is	the	function	handlerToWidget,	which	can	convert	a	Handler	action
into	a	Widget	answer.	However,	in	many	cases,	this	won’t	be	necessary.	Consider	the	type
signature	of	lookupGetParam:

lookupGetParam	::	MonadHandler	m	=>	Text	->	m	(Maybe	Text)

This	function	will	live	in	any	instance	of	MonadHandler.	And	conveniently,	Widget	is	also
a	MonadHandler	instance.	This	means	that	most	code	can	be	run	in	either	Handler	or
Widget.	And	if	you	need	to	explicitly	convert	from	Handler	to	Widget,	you	can	always	use
handlerToWidget.

NOTE
This	is	a	significant	departure	from	how	Yesod	worked	in	versions	1.1	and	earlier.	Previously,	there	was	no
MonadHandler	typeclass,	and	all	functions	needed	to	be	explicitly	converted	using	lift,	not
handlerToWidget.	The	new	system	is	not	only	easier	to	use,	but	also	avoids	any	strange	monad	transformer
tricks	that	were	previously	employed.

Summary
The	basic	building	block	of	each	page	is	the	widget.	Individual	snippets	of	HTML,	CSS,
and	JavaScript	can	be	turned	into	widgets	via	the	polymorphic	toWidget	function.	Using
do	notation,	you	can	combine	these	individual	widgets	into	larger	widgets,	eventually
containing	all	the	content	of	your	page.

Unwrapping	these	widgets	is	usually	performed	within	the	defaultLayout	function,
which	can	be	used	to	apply	a	unified	look	and	feel	to	all	your	pages.

Chapter	6.	The	Yesod	Typeclass

Every	one	of	our	Yesod	applications	requires	an	instance	of	the	Yesod	typeclass.	So	far,
we’ve	just	relied	on	default	implementations	of	the	methods	of	the	Yesod	typeclass.	In	this
chapter,	we’ll	explore	the	meaning	of	many	of	these	methods	Yesod	typeclass.

The	Yesod	typeclass	gives	us	a	central	place	for	defining	settings	for	our	application.
Everything	has	a	default	definition,	which	is	often	the	right	thing.	But	in	order	to	build	a
powerful,	customized	application,	you’ll	usually	end	up	wanting	to	override	at	least	a	few
of	these	methods.

NOTE
A	common	question	I	hear	is,	“Why	use	a	typeclass	instead	of	a	record	type?”	There	are	two	main
advantages:

The	methods	of	the	Yesod	typeclass	may	wish	to	call	other	methods.	With	typeclasses,	this	kind	of
usage	is	trivial.	It	becomes	slightly	more	complicated	with	a	record	type.

Simplicity	of	syntax.	We	want	to	provide	default	implementations	and	allow	users	to	override	just
the	necessary	functionality.	Typeclasses	make	this	both	easy	and	syntactically	nice.	Records	have	a
slightly	larger	overhead.

Rendering	and	Parsing	URLs
We’ve	already	mentioned	how	Yesod	is	able	to	automatically	render	type-safe	URLs	into
textual	URLs	that	can	be	inserted	into	an	HTML	page.	Let’s	say	we	have	a	route	definition
that	looks	like	the	following:

mkYesod	"MyApp"	[parseRoutes|

/some/path	SomePathR	GET

]

If	we	place	SomePathR	into	a	Hamlet	template,	how	does	Yesod	render	it?	Yesod	always
tries	to	construct	absolute	URLs.	This	is	especially	useful	once	we	start	creating	XML
sitemaps	and	Atom	feeds,	or	sending	emails.	But	in	order	to	construct	an	absolute	URL,
we	need	to	know	the	domain	name	of	the	application.

You	might	think	we	could	get	that	information	from	the	user’s	request,	but	we	still	need	to
deal	with	ports.	And	even	if	we	get	the	port	number	from	the	request,	are	we	using	HTTP
or	HTTPS?	And	even	if	we	know	that,	such	an	approach	would	mean	that,	depending	on
how	the	user	submitted	a	request,	different	URLs	would	be	generated.	For	example,	a
different	URL	would	be	generated	if	the	user	connected	to	example.com	versus
www.example.com.	For	search	engine	optimization,	we	want	to	be	able	to	consolidate	on	a
single	canonical	URL.

And	finally,	Yesod	doesn’t	make	any	assumption	about	where	you	host	your	application.
For	example,	you	may	have	a	mostly	static	site	(http://static.example.com/),	but	want	to
stick	a	Yesod-powered	wiki	at	/wiki/.	There	is	no	reliable	way	for	an	application	to
determine	what	subpath	it	is	being	hosted	from.	So	instead	of	doing	all	of	this	guesswork,
Yesod	needs	you	to	tell	it	the	application	root.

Using	the	wiki	example,	you	would	write	your	Yesod	instance	as	follows:

instance	Yesod	MyWiki	where

				approot	=	ApprootStatic	"http://static.example.com/wiki"

Notice	that	there	is	no	trailing	slash	there.	Next,	when	Yesod	wants	to	construct	a	URL	for
SomePathR,	it	determines	that	the	relative	path	for	SomePathR	is	/some/path,	appends	that
to	your	approot,	and	creates	http://static.example.com/wiki/some/path.

The	default	value	of	approot	is	ApprootRelative,	which	essentially	means	“don’t	add
any	prefix.”	In	that	case,	the	generated	URL	would	be	/some/path.	This	works	fine	for	the
common	case	of	a	link	within	your	application,	and	your	application	being	hosted	at	the
root	of	your	domain.	But	if	you	have	any	use	cases	that	demand	absolute	URLs	(e.g.,
sending	an	email),	it’s	best	to	use	ApprootStatic.

In	addition	to	the	ApprootStatic	constructor	just	demonstrated,	you	can	also	use	the
ApprootMaster	and	ApprootRequest	constructors.	The	former	allows	you	to	determine

the	approot	from	the	foundation	value,	which	would	let	you	load	up	the	approot	from	a
config	file,	for	instance.	The	latter	allows	you	to	additionally	use	the	request	value	to
determine	the	approot;	using	this,	you	could,	for	example,	provide	a	different	domain
name	depending	on	how	the	user	requested	the	site	in	the	first	place.

The	scaffolded	site	uses	ApprootMaster	by	default,	and	pulls	your	approot	from	either	the
APPROOT	environment	variable	or	a	config	file	on	launch.	Additionally,	it	loads	different
settings	for	testing	and	production	builds,	so	you	can	easily	test	on	one	domain	(e.g.,
localhost)	and	serve	from	a	different	domain.	You	can	modify	these	values	from	the	config
file.

joinPath
In	order	to	convert	a	type-safe	URL	into	a	text	value,	Yesod	uses	two	helper	functions.
The	first	is	the	renderRoute	method	of	the	RenderRoute	typeclass.	Every	type-safe	URL
is	an	instance	of	this	typeclass.	renderRoute	converts	a	value	into	a	list	of	path	pieces.	For
example,	the	SomePathR	we	used	earlier	would	be	converted	into	["some",	"path"].

NOTE
Actually,	renderRoute	produces	both	the	path	pieces	and	a	list	of	query	string	parameters.	The	default
instances	of	renderRoute	always	provide	an	empty	list	of	query	string	parameters.	However,	it	is	possible
to	override	this.	One	notable	case	is	the	static	subsite,	which	puts	a	hash	of	the	file	contents	in	the	query
string	for	caching	purposes.

The	other	function	is	the	joinPath	method	of	the	Yesod	typeclass.	This	function	takes
four	arguments:

The	foundation	value

The	application	root

A	list	of	path	segments

A	list	of	query	string	parameters

It	returns	a	textual	URL.	The	default	implementation	does	the	“right	thing”:	it	separates
the	path	pieces	by	forward	slashes,	prepends	the	application	root,	and	appends	the	query
string.

If	you	are	happy	with	the	default	URL	rendering,	you	should	not	need	to	modify	it.
However,	if	you	want	to	modify	URL	rendering	to	do	things	like	append	a	trailing	slash,
this	would	be	the	place	to	do	it.

cleanPath
The	flip	side	of	joinPath	is	cleanPath.	Let’s	look	at	how	it	gets	used	in	the	dispatch
process:

1.	 The	path	info	requested	by	the	user	is	split	into	a	series	of	path	pieces.

2.	 We	pass	the	path	pieces	to	the	cleanPath	function.

3.	 If	cleanPath	indicates	a	redirect	(a	Left	response),	then	a	301	response	is	sent	to	the
client.	This	is	used	to	force	canonical	URLs	(e.g.,	remove	extra	slashes).

4.	 Otherwise,	we	try	to	dispatch	using	the	response	from	cleanPath	(a	Right).	If	this
works,	we	return	a	response.	Otherwise,	we	return	a	404.

This	combination	allows	subsites	to	retain	full	control	over	how	their	URLs	appear,	yet
allows	master	sites	to	have	modified	URLs.	As	a	simple	example,	let’s	see	how	we	could
modify	Yesod	to	always	produce	trailing	slashes	on	URLs:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Blaze.ByteString.Builder.Char.Utf8	(fromText)

import											Control.Arrow																						((***))

import											Data.Monoid																								(mappend)

import	qualified	Data.Text																										as	T

import	qualified	Data.Text.Encoding																	as	TE

import											Network.HTTP.Types																	(encodePath)

import											Yesod

data	Slash	=	Slash

mkYesod	"Slash"	[parseRoutes|

/	RootR	GET

/foo	FooR	GET

|]

instance	Yesod	Slash	where

				joinPath	_	ar	pieces'	qs'	=

								fromText	ar	`mappend`	encodePath	pieces	qs

						where

								qs	=	map	(TE.encodeUtf8	***	go)	qs'

								go	""	=	Nothing

								go	x	=	Just	$	TE.encodeUtf8	x

								pieces	=	pieces'	++	[""]

				--	We	want	to	keep	canonical	URLs.	Therefore,	if	the	URL	is	missing	a

				--	trailing	slash,	redirect.	But	the	empty	set	of	pieces	always	stays	the

				--	same.

				cleanPath	_	[]	=	Right	[]

				cleanPath	_	s

								|	dropWhile	(not	.	T.null)	s	==	[""]	=

								--	the	only	empty	string	is	the	last	one

												Right	$	init	s

								--	Because	joinPath	will	append	the	missing	trailing	slash,	we

								--	simply	remove	empty	pieces.

								|	otherwise	=	Left	$	filter	(not	.	T.null)	s

getRootR	::	Handler	Html

getRootR	=	defaultLayout

				[whamlet|

								<p>

												RootR

								<p>

												FooR

				|]

getFooR	::	Handler	Html

getFooR	=	getRootR

main	::	IO	()

main	=	warp	3000	Slash

First,	let’s	look	at	our	joinPath	implementation.	This	is	copied	almost	verbatim	from	the
default	Yesod	implementation,	with	one	difference:	we	append	an	extra	empty	string	to	the
end.	When	dealing	with	path	pieces,	an	empty	string	will	append	another	slash,	so	adding
an	extra	empty	string	will	force	a	trailing	slash.

cleanPath	is	a	little	bit	trickier.	First,	we	check	for	the	empty	path	like	before,	and	if
found,	we	pass	it	through	as	is.	We	use	Right	to	indicate	that	a	redirect	is	not	necessary.
The	next	clause	is	actually	checking	for	two	different	possible	URL	issues:

There	is	a	double	slash,	which	would	show	up	as	an	empty	string	in	the	middle	of	our
paths.

There	is	a	missing	trailing	slash,	which	would	show	up	as	the	last	piece	not	being	an
empty	string.

Assuming	neither	of	those	conditions	hold,	then	only	the	last	piece	is	empty,	and	we
should	dispatch	based	on	all	but	the	last	piece.	However,	if	this	is	not	the	case,	we	want	to
redirect	to	a	canonical	URL.	In	this	case,	we	strip	out	all	empty	pieces	and	do	not	bother
appending	a	trailing	slash,	as	joinPath	will	do	that	for	us.

defaultLayout
Most	websites	like	to	apply	some	general	template	to	all	of	their	pages.	defaultLayout	is
the	recommended	approach	for	this.	While	you	could	just	as	easily	define	your	own
function	and	call	that	instead,	when	you	override	defaultLayout	all	of	the	Yesod-
generated	pages	(error	pages,	authentication	pages)	automatically	get	this	style.

Overriding	is	very	straightforward:	we	use	widgetToPageContent	to	convert	a	Widget	to	a
title,	<head>	tags,	and	<body>	tags,	and	then	use	withUrlRenderer	to	convert	a	Hamlet
template	into	an	Html	value.	We	can	even	add	extra	widget	components,	like	a	Lucius
template,	from	within	defaultLayout.	For	more	information,	see	Chapter	5.

If	you	are	using	the	scaffolded	site,	you	can	modify	the	files	templates/default-
layout.hamlet	and	templates/default-layout-wrapper.hamlet.	The	former	contains	most	of
the	contents	of	the	<body>	tag,	while	the	latter	has	the	rest	of	the	HTML,	such	as	the
doctype	and	the	<head>	tag.	See	those	files	for	more	details.

getMessage
Even	though	we	haven’t	covered	sessions	yet,	I’d	like	to	mention	getMessage	here.	A
common	pattern	in	web	development	is	setting	a	message	in	one	handler	and	displaying	it
in	another.	For	example,	if	a	user	POSTs	a	form,	you	may	want	to	redirect	her	to	another
page	along	with	a	“Form	submission	complete”	message.	This	is	commonly	known	as
Post/Redirect/Get.

To	facilitate	this,	Yesod	comes	with	a	pair	of	functions	built	in:	setMessage	sets	a	message
in	the	user	session,	and	getMessage	retrieves	the	message	(and	clears	it,	so	it	doesn’t
appear	a	second	time).	It’s	recommended	that	you	put	the	result	of	getMessage	into	your
defaultLayout.	For	example:

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

import	Data.Time	(getCurrentTime)

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App	where

				defaultLayout	contents	=	do

								PageContent	title	headTags	bodyTags	<-	widgetToPageContent	contents

								mmsg	<-	getMessage

								withUrlRenderer	[hamlet|

												$doctype	5

												<html>

																<head>

																				<title>#{title}

																				^{headTags}

																<body>

																				$maybe	msg	<-	mmsg

																								<div	#message>#{msg}

																				^{bodyTags}

								|]

getHomeR	::	Handler	Html

getHomeR	=	do

				now	<-	liftIO	getCurrentTime

				setMessage	$	toHtml	$	"You	previously	visited	at:	"	++	show	now

				defaultLayout	[whamlet|<p>Try	refreshing|]

main	::	IO	()

main	=	warp	3000	App

We’ll	cover	getMessage/setMessage	in	more	detail	when	we	discuss	sessions	in
Chapter	9.

Custom	Error	Pages
One	of	the	marks	of	a	professional	website	is	a	properly	designed	error	page.	Yesod	gets
you	a	long	way	there	by	automatically	using	your	defaultLayout	for	displaying	error
pages.	But	sometimes	you’ll	want	to	go	even	further.	For	this,	you’ll	want	to	override	the
errorHandler	method:

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/error	ErrorR	GET

/not-found	NotFoundR	GET

|]

instance	Yesod	App	where

				errorHandler	NotFound	=	fmap	toTypedContent	$	defaultLayout	$	do

								setTitle	"Request	page	not	located"

								toWidget	[hamlet|

<h1>Not	Found

<p>

We	apologize	for	the	inconvenience,	but	the	requested	page	could	not	be	located.

|]

				errorHandler	other	=	defaultErrorHandler	other

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>

												Internal	server	error

												Not	found

				|]

getErrorR	::	Handler	()

getErrorR	=	error	"This	is	an	error"

getNotFoundR	::	Handler	()

getNotFoundR	=	notFound

main	::	IO	()

main	=	warp	3000	App

Here	we	specify	a	custom	404	error	page.	We	can	also	use	the	defaultErrorHandler
when	we	don’t	want	to	write	a	custom	handler	for	each	error	type.	Due	to	type	constraints,
we	need	to	start	off	our	methods	with	fmap	toTypedContent,	but	otherwise	we	can	write	a
typical	handler	function.	(We’ll	learn	more	about	TypedContent	in	the	next	chapter.)

In	fact,	you	could	even	use	special	responses	like	redirects:

				errorHandler	NotFound	=	redirect	HomeR

				errorHandler	other	=	defaultErrorHandler	other

NOTE
Although	you	can	do	this,	I	don’t	actually	recommend	such	practices.	A	404	should	be	a	404.

External	CSS	and	JavaScript
One	of	the	most	powerful,	and	most	intimidating,	methods	in	the	Yesod	typeclass	is
addStaticContent.	Remember	that	a	widget	consists	of	multiple	components,	including
CSS	and	JavaScript.	How	exactly	does	that	CSS/JS	arrive	in	the	user’s	browser?	By
default,	these	resources	are	served	in	the	<head>	of	the	page,	inside	<style>	and	<script>
tags,	respectively.

NOTE
The	functionality	described	here	is	automatically	included	in	the	scaffolded	site,	so	you	don’t	need	to	worry
about	implementing	this	yourself.

That	might	be	simple,	but	it’s	far	from	efficient.	Every	page	load	will	now	require	loading
up	the	CSS/JS	from	scratch,	even	if	nothing	has	changed!	What	we	really	want	is	to	store
this	content	in	an	external	file	and	then	refer	to	it	from	the	HTML.

This	is	where	addStaticContent	comes	in.	It	takes	three	arguments:	the	filename
extension	of	the	content	(.css	or	.js),	the	MIME	type	of	the	content	(text/css	or
text/javascript),	and	the	content	itself.	It	will	then	return	one	of	three	possible	results:

Nothing

No	static	file	saving	occurred;	embed	this	content	directly	in	the	HTML.	This	is	the
default	behavior.

Just	(Left	Text)

This	content	was	saved	in	an	external	file.	The	given	textual	link	should	be	used	to
refer	to	it.

Just	(Right	(Route	a,	Query))

Same	as	Just	(Left	Text),	but	now	a	type-safe	URL	should	be	used	along	with
some	query	string	parameters.

The	Left	result	is	useful	if	you	want	to	store	your	static	files	on	an	external	server,	such	as
a	CDN	or	memory-backed	server.	The	Right	result	is	more	commonly	used,	and	ties	in
very	well	with	the	static	subsite.	This	is	the	recommended	approach	for	most	applications,
and	is	provided	by	the	scaffolded	site	by	default.

NOTE
You	might	be	wondering:	if	this	is	the	recommended	approach,	why	isn’t	it	the	default?	The	problem	is	that
it	makes	a	number	of	assumptions	that	don’t	universally	hold,	such	as	the	presence	of	a	static	subsite	and
the	location	of	your	static	files.

The	scaffolded	addStaticContent	does	a	number	of	intelligent	things	to	help	you	out:

It	automatically	minifies	your	JavaScript	using	the	hjsmin	package.

It	names	the	output	files	based	on	a	hash	of	the	file	contents.	This	means	you	can	set
your	cache	headers	to	far	in	the	future	without	fears	of	stale	content.

Because	filenames	are	based	on	hashes,	you	can	be	guaranteed	that	a	file	doesn’t
need	to	be	written	if	a	file	with	the	same	name	already	exists.	The	scaffold	code
automatically	checks	for	the	existence	of	that	file,	and	avoids	the	costly	disk	I/O	of	a
write	if	it’s	not	necessary.

Smarter	Static	Files
Google	recommends	an	important	optimization:	serve	static	files	from	a	separate	domain.
The	advantage	to	this	approach	is	that	cookies	set	on	your	main	domain	are	not	sent	when
retrieving	static	files,	thus	saving	on	a	bit	of	bandwidth.

To	facilitate	this,	we	have	the	urlRenderOverride	method.	This	method	intercepts	the
normal	URL	rendering	and	sets	a	special	value	for	some	routes.	For	example,	the
scaffolding	defines	this	method	as:

urlRenderOverride	y	(StaticR	s)	=

				Just	$	uncurry	(joinPath	y	(Settings.staticRoot	$	settings	y))

									$	renderRoute	s

urlRenderOverride	_	_	=	Nothing

This	means	that	static	routes	are	served	from	a	special	static	root,	which	you	can	configure
to	be	a	different	domain.	This	is	a	great	example	of	the	power	and	flexibility	of	type-safe
URLs:	with	a	single	line	of	code,	you’re	able	to	change	the	rendering	of	static	routes
throughout	all	of	your	handlers.

Authentication/Authorization
For	simple	applications,	checking	permissions	inside	each	handler	function	can	be	a
simple,	convenient	approach.	However,	it	doesn’t	scale	well.	Eventually,	you’re	going	to
want	to	have	a	more	declarative	approach.	Many	systems	out	there	define	access	control
lists,	special	config	files,	and	a	lot	of	other	hocus-pocus.	In	Yesod,	it’s	just	plain	old
Haskell.	There	are	three	methods	involved:
isWriteRequest

Determines	if	the	current	request	is	a	“read”	or	“write”	operation.	By	default,	Yesod
follows	RESTful	principles	and	assumes	GET,	HEAD,	OPTIONS,	and	TRACE	requests	are
read-only,	while	all	others	are	writable.

isAuthorized

Takes	a	route	(i.e.,	type-safe	URL)	and	a	Boolean	indicating	whether	or	not	the
request	is	a	write	request.	It	returns	an	AuthResult,	which	can	have	one	of	the
following	three	values.	By	default,	it	returns	Authorized	for	all	requests.

Authorized

AuthenticationRequired

Unauthorized

authRoute

If	isAuthorized	returns	AuthenticationRequired,	then	redirects	to	the	given	route.
If	no	route	is	provided	(the	default),	returns	a	401	“authentication	required”	message.

These	methods	tie	in	nicely	with	the	yesod-auth	package,	which	is	used	by	the	scaffolded
site	to	provide	a	number	of	authentication	options,	such	as	OpenID,	Mozilla	Persona,
email,	username,	and	Twitter.	We’ll	cover	more	concrete	examples	in	Chapter	14.

Some	Simple	Settings
Not	everything	in	the	Yesod	typeclass	is	complicated.	Some	methods	are	simple	functions.
Let’s	just	go	through	the	list:
maximumContentLength

To	prevent	denial-of-service	(DoS)	attacks,	Yesod	will	limit	the	size	of	request
bodies.	Some	of	the	time,	you’ll	want	to	bump	that	limit	for	some	routes	(e.g.,	a	file
upload	page).	This	is	where	you’d	do	that.

fileUpload

Determines	how	uploaded	files	are	treated,	based	on	the	size	of	the	request.	The	two
most	common	approaches	are	saving	the	files	in	memory,	or	streaming	to	temporary
files.	By	default,	small	requests	are	kept	in	memory	and	large	ones	are	stored	to	disk.

shouldLog

Determines	if	a	given	log	message	(with	associated	source	and	level)	should	be	sent
to	the	log.	This	allows	you	to	put	lots	of	debugging	information	into	your	app,	but
only	turn	it	on	as	necessary.

For	the	most	up-to-date	information,	see	the	Haddock	API	documentation	for	the	Yesod
typeclass.

Summary
The	Yesod	typeclass	has	a	number	of	overrideable	methods	that	allow	you	to	configure
your	application.	They	are	all	optional,	and	provide	sensible	defaults.	By	using	built-in
Yesod	constructs	like	defaultLayout	and	getMessage,	you’ll	get	a	consistent	look	and
feel	throughout	your	site,	including	pages	automatically	generated	by	Yesod	such	as	error
pages	and	authentication.

We	haven’t	covered	all	the	methods	in	the	Yesod	typeclass	in	this	chapter.	For	a	full	listing
of	methods	available,	you	should	consult	the	Haddock	documentation.

Chapter	7.	Routing	and	Handlers

If	we	look	at	Yesod	as	a	model-view-controller	framework,	routing	and	handlers	make	up
the	controller.	For	contrast,	let’s	describe	two	other	routing	approaches	used	in	other	web
development	environments:

Dispatch	based	on	filename.	This	is	how	PHP	and	ASP	work,	for	example.

Have	a	centralized	routing	function	that	parses	routes	based	on	regular	expressions.
Django	and	Rails	follow	this	approach.

Yesod	is	closer	in	principle	to	the	latter	technique.	Even	so,	there	are	significant
differences.	Instead	of	using	regular	expressions,	Yesod	matches	on	pieces	of	a	route.
Instead	of	having	a	one-way	route-to-handler	mapping,	Yesod	has	an	intermediate	data
type	(called	the	route	or	type-safe	URL	data	type)	and	creates	two-way	conversion
functions.

Coding	this	more	advanced	system	manually	is	tedious	and	error	prone.	Therefore,	Yesod
defines	a	domain-specific	language	(DSL)	for	specifying	routes,	and	provides	Template
Haskell	functions	to	convert	this	DSL	to	Haskell	code.	This	chapter	will	explain	the
syntax	of	the	routing	declarations,	give	you	a	glimpse	of	what	code	is	generated	for	you,
and	explain	the	interaction	between	routing	and	handler	functions.

Route	Syntax
Instead	of	trying	to	shoehorn	route	declarations	into	an	existing	syntax,	Yesod’s	approach
is	to	use	a	simplified	syntax	designed	just	for	routes.	This	has	the	advantage	of	making	the
code	not	only	easy	to	write,	but	simple	enough	that	someone	with	no	Yesod	experience
can	read	and	understand	the	sitemap	of	your	application.

A	basic	example	of	this	syntax	is:

/													HomeR					GET

/blog									BlogR					GET	POST

/blog/#BlogId	BlogPostR	GET	POST

/static							StaticR			Static	getStatic

The	next	few	sections	explain	the	full	details	of	what	goes	on	in	the	route	declaration.

Pieces
One	of	the	first	things	Yesod	does	when	it	gets	a	request	is	split	up	the	requested	path	into
pieces.	The	pieces	are	tokenized	at	all	forward	slashes.	For	example:

toPieces	"/"	=	[]

toPieces	"/foo/bar/baz/"	=	["foo",	"bar",	"baz",	""]

You	may	notice	that	there	are	some	funny	things	going	on	with	trailing	slashes,	or	double
slashes	(/foo//bar//),	or	a	few	other	things.	Yesod	believes	in	having	canonical	URLs;	if
users	request	a	URL	with	a	trailing	slash,	or	with	a	double	slash,	they	are	automatically
redirected	to	the	canonical	version.	This	ensures	you	have	one	URL	for	one	resource,	and
can	help	with	your	search	rankings.

What	this	means	for	you	is	that	you	needn’t	concern	yourself	with	the	exact	structure	of
your	URLs:	you	can	safely	think	about	pieces	of	a	path,	and	Yesod	automatically	handles
intercalating	the	slashes	and	escaping	problematic	characters.

If,	by	the	way,	you	want	more	fine-tuned	control	of	how	paths	are	split	into	pieces	and
joined	together	again,	you’ll	want	to	look	at	the	cleanPath	and	joinPath	methods	in
Chapter	6.

Types	of	pieces

When	you	are	declaring	your	routes,	you	have	three	types	of	pieces	at	your	disposal:

Static

This	is	a	plain	string	that	must	be	matched	against	precisely	in	the	URL.

Dynamic	single

This	is	a	single	piece	(i.e.,	between	two	forward	slashes),	but	represents	a	user-
submitted	value.	This	is	the	primary	method	of	receiving	extra	user	input	on	a	page
request.	These	pieces	begin	with	a	hash	(#)	and	are	followed	by	a	data	type.	The	data
type	must	be	an	instance	of	PathPiece.

Dynamic	multi

The	same	as	the	previous	type,	but	can	receive	multiple	pieces	of	the	URL.	This	must
always	be	the	last	piece	in	a	resource	pattern.	It	is	specified	by	an	asterisk	(*)
followed	by	a	data	type,	which	must	be	an	instance	of	PathMultiPiece.	Multipieces
are	not	as	common	as	the	other	two,	though	they	are	very	important	for	implementing
features	like	static	trees	representing	file	structure	or	wikis	with	arbitrary	hierarchies.

NOTE
Since	Yesod	1.4,	you	can	additionally	use	a	+	to	indicate	a	dynamic	multi.	This	is	important,	because	the	C
preprocessor	can	be	confused	by	the	/*	character	combination.

Let	us	take	a	look	at	some	standard	kinds	of	resource	patterns	you	may	want	to	write.
Starting	simply,	the	root	of	an	application	will	just	be	/.	Similarly,	you	may	want	to	place
your	FAQ	at	/page/faq.

Now	let’s	say	we	are	going	to	write	a	Fibonacci	website.	We	might	construct	our	URLs
like	/fib/#Int.	But	there’s	a	slight	problem	with	this:	we	do	not	want	to	allow	negative
numbers	or	zero	to	be	passed	into	our	application.	Fortunately,	the	type	system	can	protect
us:

newtype	Natural	=	Natural	Int

instance	PathPiece	Natural	where

				toPathPiece	(Natural	i)	=	T.pack	$	show	i

				fromPathPiece	s	=

								case	reads	$	T.unpack	s	of

												(i,	""):_

																|	i	<	1	->	Nothing

																|	otherwise	->	Just	$	Natural	i

												[]	->	Nothing

On	line	1	we	define	a	simple	newtype	wrapper	around	Int	to	protect	ourselves	from
invalid	input.	We	can	see	that	PathPiece	is	a	typeclass	with	two	methods.	toPathPiece
does	nothing	more	than	convert	to	a	Text.	fromPathPiece	attempts	to	convert	a	Text	to
our	data	type,	returning	Nothing	when	this	conversion	is	impossible.	By	using	this	data
type,	we	can	ensure	that	our	handler	function	is	only	ever	given	natural	numbers,	allowing
us	to	once	again	use	the	type	system	to	battle	the	boundary	issue.

NOTE
In	a	real-life	application,	we	would	also	want	to	ensure	we	never	accidentally	constructed	an	invalid
Natural	value	internally	to	our	app.	To	do	so,	we	could	use	an	approach	like	smart	constructors.	For	the
purposes	of	this	example,	we’ve	kept	the	code	simple.

Defining	a	PathMultiPiece	is	just	as	simple.	Let’s	say	we	want	to	have	a	wiki	with	at
least	two	levels	of	hierarchy.	We	might	define	a	data	type	such	as:

data	Page	=	Page	Text	Text	[Text]	--	2	or	more

instance	PathMultiPiece	Page	where

				toPathMultiPiece	(Page	x	y	z)	=	x	:	y	:	z

				fromPathMultiPiece	(x:y:z)	=	Just	$	Page	x	y	z

				fromPathMultiPiece	_	=	Nothing

Overlap	checking

By	default,	Yesod	will	ensure	that	no	two	routes	have	the	potential	to	overlap	with	each
other.	So,	for	example,	consider	the	following	routes:

/foo/bar			Foo1R	GET

/foo/#Text	Foo2R	GET

This	route	declaration	will	be	rejected	as	overlapping,	because	/foo/bar	will	match	both
routes.	However,	there	are	two	cases	where	you	may	wish	to	allow	overlapping:

If	you	know	by	the	definition	of	your	data	type	that	the	overlap	can	never	happen.

For	example,	if	you	replace	Text	with	Int	in	the	preceding	example,	it’s	easy	to
convince	yourself	that	there’s	no	route	that	exists	that	will	overlap.	Yesod	is	currently
not	capable	of	performing	such	an	analysis.

If	you	have	some	extra	knowledge	about	how	your	application	operates,	and	know
that	such	a	situation	should	never	be	allowed	—	for	example,	if	the	Foo2R	route
should	never	be	allowed	to	receive	the	parameter	bar.

You	can	turn	off	overlap	checking	by	using	an	exclamation	mark	at	the	beginning	of	your
route.	For	example,	the	following	will	be	accepted	by	Yesod:

/foo/bar				Foo1R	GET

!/foo/#Int		Foo2R	GET

!/foo/#Text	Foo3R	GET

NOTE
You	can	also	place	the	exclamation	point	at	the	beginning	of	any	of	the	path	pieces,	or	following	the	#,	*,	or
+	characters.	However,	this	newer	syntax	should	be	preferred	as	it’s	clearer	what	the	goal	is.

One	issue	that	overlapping	routes	introduces	is	ambiguity.	In	the	preceding	example,
should	/foo/bar	route	to	Foo1R	or	Foo3R?	And	should	/foo/42	route	to	Foo2R	or	Foo3R?
Yesod’s	rule	for	this	is	simple:	the	first	route	wins.

Resource	Name
Each	resource	pattern	also	has	a	name	associated	with	it.	That	name	will	become	the
constructor	for	the	type-safe	URL	data	type	associated	with	your	application.	Therefore,	it
has	to	start	with	a	capital	letter.	By	convention,	these	resource	names	all	end	with	a	capital
R.	There	is	nothing	forcing	you	to	do	this;	it	is	just	common	practice.

The	exact	definition	of	our	constructor	depends	on	the	resource	pattern	it	is	attached	to.
Whatever	data	types	are	used	as	single	pieces	or	multipieces	of	the	pattern	become
arguments	to	the	data	type.	This	gives	us	a	one-to-one	correspondence	between	our	type-
safe	URL	values	and	valid	URLs	in	our	application.

NOTE
This	doesn’t	necessarily	mean	that	every	value	is	a	working	page,	just	that	it	is	a	potentially	valid	URL.	As
an	example,	the	value	PersonR	"Michael"	may	not	resolve	to	a	valid	page	if	there	is	no	Michael	in	the
database.

Let’s	get	some	real	examples	going	here.	If	you	had	the	resource	patterns	/person/#Text
named	PersonR,	/year/#Int	named	YearR,	and	/page/faq	named	FaqR,	you	would	end
up	with	a	route	data	type	roughly	looking	like:

data	MyRoute	=	PersonR	Text

													|	YearR	Int

													|	FaqR

If	a	user	requests	/year/2009,	Yesod	will	convert	it	into	the	value	YearR	2009.
/person/Michael	becomes	PersonR	"Michael",	and	/page/faq	becomes	FaqR.	On	the
other	hand,	/year/two-thousand-nine,	/person/michael/snoyman,	and	/page/FAQ
would	all	result	in	404	errors	without	ever	seeing	your	code.

Handler	Specification
The	last	piece	of	the	puzzle	when	declaring	your	resources	is	how	they	will	be	handled.
There	are	three	options	in	Yesod:

A	single	handler	function	for	all	request	methods	on	a	given	route.

A	separate	handler	function	for	each	request	method	on	a	given	route.	Any	other
request	method	will	generate	a	405	Method	Not	Allowed	response.

You	want	to	pass	off	to	a	subsite.

The	first	two	can	be	easily	specified.	A	single	handler	function	will	be	a	line	with	just	a
resource	pattern	and	the	resource	name,	such	as	/page/faq	FaqR.	In	this	case,	the	handler
function	must	be	named	handleFaqR.

A	separate	handler	for	each	request	method	will	be	the	same,	plus	a	list	of	request
methods.	The	request	methods	must	be	in	all	capital	letters;	for	example,
/person/#String	PersonR	GET	POST	DELETE.	In	this	case,	you	would	need	to	define
three	handler	functions:	getPersonR,	postPersonR,	and	deletePersonR.

Subsites	are	a	very	useful	—	but	more	complicated	—	topic	in	Yesod.	We	will	cover
writing	subsites	later,	but	using	them	is	not	too	difficult.	The	most	commonly	used	subsite
is	the	static	subsite,	which	serves	static	files	for	your	application.	In	order	to	serve	static
files	from	/static,	you	would	need	a	resource	line	like:

/static	StaticR	Static	getStatic

In	this	line,	/static	just	says	where	in	your	URL	structure	to	serve	the	static	files	from.
There	is	nothing	magical	about	the	word	“static”;	you	could	easily	replace	it	with
/my/non-dynamic/files.

The	next	word,	StaticR,	gives	the	resource	name.	The	next	two	words	specify	that	we	are
using	a	subsite.	Static	is	the	name	of	the	subsite	foundation	data	type,	and	getStatic	is	a
function	that	gets	a	Static	value	from	a	value	of	your	master	foundation	data	type.

Let’s	not	get	too	caught	up	in	the	details	of	subsites	now.	We	will	look	more	closely	at	the
static	subsite	in	Chapter	15.

Dispatch
Once	you	have	specified	your	routes,	Yesod	will	take	care	of	all	the	pesky	details	of	URL
dispatch	for	you.	You	just	need	to	make	sure	to	provide	the	appropriate	handler	functions.
For	subsite	routes,	you	do	not	need	to	write	any	handler	functions,	but	you	do	for	the	other
two.	We	mentioned	the	naming	rules	earlier	(MyHandlerR	GET	becomes	getMyHandlerR,
MyOtherHandlerR	becomes	handleMyOtherHandlerR).

Now	that	we	know	which	functions	we	need	to	write,	let’s	figure	out	what	their	type
signatures	should	be.

Return	Type
Let’s	look	at	a	simple	handler	function:

mkYesod	"Simple"	[parseRoutes|

/	HomeR	GET

|]

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	[whamlet|<h1>This	is	simple|]

There	are	two	components	to	this	return	type:	Handler	and	Html.	Let’s	analyze	each	in
more	depth.

Handler	monad

Like	the	Widget	type,	the	Handler	data	type	is	not	defined	anywhere	in	the	Yesod
libraries.	Instead,	the	libraries	provide	the	data	type:

data	HandlerT	site	m	a

And	like	WidgetT,	this	has	three	arguments:	a	base	monad	m,	a	monadic	value	a,	and	the
foundation	data	type	site.	Each	application	defines	a	Handler	synonym	that	constrains
site	to	that	application’s	foundation	data	type,	and	sets	m	to	IO.	If	your	foundation	is
MyApp,	in	other	words,	you’d	have	the	synonym:

type	Handler	=	HandlerT	MyApp	IO

We	need	to	be	able	to	modify	the	underlying	monad	when	writing	subsites,	but	otherwise
we’ll	use	IO.

The	HandlerT	monad	provides	access	to	information	about	the	user	request	(e.g.,	query
string	parameters),	allows	modifying	the	response	(e.g.,	response	headers),	and	more.	This
is	the	monad	that	most	of	your	Yesod	code	will	live	in.

In	addition,	there’s	a	typeclass	called	MonadHandler.	Both	HandlerT	and	WidgetT	are
instances	of	this	typeclass,	allowing	many	common	functions	to	be	used	in	both	monads.
If	you	see	MonadHandler	in	any	API	documentation,	you	should	remember	that	the
function	can	be	used	in	your	Handler	functions.

Html

There’s	nothing	too	surprising	about	this	type.	This	function	returns	some	HTML	content,
represented	by	the	Html	data	type.	But	clearly	Yesod	would	not	be	useful	if	it	only	allowed
HTML	responses	to	be	generated.	We	want	to	respond	with	CSS,	JavaScript,	JSON,
images,	and	more.	So	the	question	is:	what	data	types	can	be	returned?

In	order	to	generate	a	response,	we	need	to	know	two	pieces	of	information:	the	content

type	(e.g.,	text/html,	image/png)	and	how	to	serialize	it	to	a	stream	of	bytes.	This	is
represented	by	the	TypedContent	data	type:

data	TypedContent	=	TypedContent	!ContentType	!Content

We	also	have	a	typeclass	for	all	data	types,	which	can	be	converted	to	a	TypedContent:

class	ToTypedContent	a	where

				toTypedContent	::	a	->	TypedContent

Many	common	data	types	are	instances	of	this	typeclass,	including	Html,	Value	(from	the
aeson	package,	representing	JSON),	Text,	and	even	()	(for	representing	an	empty
response).

Arguments
Let’s	return	to	our	simple	example:

mkYesod	"Simple"	[parseRoutes|

/	HomeR	GET

|]

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	[whamlet|<h1>This	is	simple|]

Not	every	route	is	as	simple	as	this	HomeR.	Take,	for	instance,	our	PersonR	route	from
earlier.	The	name	of	the	person	needs	to	be	passed	to	the	handler	function.	This	translation
is	very	straightforward,	and	hopefully	intuitive.	For	example:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

{-#	LANGUAGE	ViewPatterns						#-}

import											Data.Text	(Text)

import	qualified	Data.Text	as	T

import											Yesod

data	App	=	App

instance	Yesod	App

mkYesod	"App"	[parseRoutes|

/person/#Text	PersonR	GET

/year/#Integer/month/#Text/day/#Int	DateR

/wiki/*Texts	WikiR	GET

|]

getPersonR	::	Text	->	Handler	Html

getPersonR	name	=	defaultLayout	[whamlet|<h1>Hello	#{name}!|]

handleDateR	::	Integer	->	Text	->	Int	->	Handler	Text	--	text/plain

handleDateR	year	month	day	=

				return	$

								T.concat	[month,	"	",	T.pack	$	show	day,	",	",	T.pack	$	show	year]

getWikiR	::	[Text]	->	Handler	Text

getWikiR	=	return	.	T.unwords

main	::	IO	()

main	=	warp	3000	App

The	arguments	have	the	types	of	the	dynamic	pieces	for	each	route,	in	the	order	specified.
Also	notice	how	we	are	able	to	use	both	Html	and	Text	return	values.

The	Handler	Functions
Because	the	majority	of	your	code	will	live	in	the	Handler	monad,	it’s	important	to	invest
some	time	in	understanding	it	better.	The	remainder	of	this	chapter	will	give	a	brief
introduction	to	some	of	the	most	common	functions	living	in	the	Handler	monad.	I	am
specifically	not	covering	any	of	the	session	functions;	those	will	be	addressed	in
Chapter	9.

Application	Information
There	are	a	number	of	functions	that	return	information	about	your	application	as	a	whole,
and	give	no	information	about	individual	requests.	Some	of	these	are:
getYesod

Returns	your	application	foundation	value.	If	you	store	configuration	values	in	your
foundation,	you	will	probably	end	up	using	this	function	a	lot.	(If	you’re	so	inclined,
you	can	also	use	ask	from	Control.Monad.Reader;	getYesod	is	simply	a	type-
constrained	synonym	for	it.)

getUrlRender

Returns	the	URL	rendering	function,	which	converts	a	type-safe	URL	into	a	Text.
Most	of	the	time	—	like	with	Hamlet	—	Yesod	calls	this	function	for	you,	but	you
may	occasionally	need	to	call	it	directly.

getUrlRenderParams

A	variant	of	getUrlRender	that	converts	both	a	type-safe	URL	and	a	list	of	query
string	parameters.	This	function	handles	all	percent-encoding	necessary.

Request	Information
The	most	common	information	you	will	want	to	get	about	the	current	request	is	the
requested	path,	the	query	string	parameters,	and	POSTed	form	data.	The	first	of	those	is
dealt	with	in	the	routing,	as	described	earlier.	The	other	two	are	best	dealt	with	using	the
forms	module.

That	said,	you	will	sometimes	need	to	get	the	data	in	a	more	raw	format.	For	this	purpose,
Yesod	exposes	the	YesodRequest	data	type	along	with	the	getRequest	function	to	retrieve
it.	This	gives	you	access	to	the	full	list	of	GET	parameters,	cookies,	and	preferred
languages.	There	are	some	convenient	functions	to	make	these	lookups	easier,	such	as
lookupGetParam,	lookupCookie,	and	languages.	For	raw	access	to	the	POST	parameters,
you	should	use	runRequestBody.

If	you	need	even	more	raw	data,	like	request	headers,	you	can	use	waiRequest	to	access
the	Web	Application	Interface	(WAI)	request	value.	See	Appendix	B	for	more	details.

Short-Circuiting
The	following	functions	immediately	end	execution	of	a	handler	function	and	return	a
result	to	the	user:
redirect

Sends	a	redirect	response	to	the	user	(a	303	response).	If	you	want	to	use	a	different
response	code	(e.g.,	a	permanent	301	redirect),	you	can	use	redirectWith.

NOTE
Yesod	uses	a	303	response	for	HTTP/1.1	clients,	and	a	302	response	for	HTTP/1.0	clients.	You	can	read	up
on	this	sordid	saga	in	the	HTTP	spec.

notFound

Returns	a	404	response.	This	can	be	useful	if	a	user	requests	a	database	value	that
doesn’t	exist.

permissionDenied

Returns	a	403	response	with	a	specific	error	message.
invalidArgs

Returns	a	400	response	with	a	list	of	invalid	arguments.
sendFile

Sends	a	file	from	the	filesystem	with	a	specified	content	type.	This	is	the	preferred
way	to	send	static	files,	because	the	underlying	WAI	handler	may	be	able	to	optimize
this	to	a	sendfile	system	call.	Using	readFile	for	sending	static	files	should	not	be
necessary.

sendResponse

Sends	a	normal	response	with	a	200	status	code.	This	is	really	just	a	convenience	for
when	you	need	to	break	out	of	some	deeply	nested	code	with	an	immediate	response.
Any	instance	of	ToTypedContent	may	be	used.

sendWaiResponse

Used	when	you	need	to	get	low-level	and	send	out	a	raw	WAI	response.	This	can	be
especially	useful	for	creating	streaming	responses	or	for	a	technique	like	server-sent
events.

Response	Headers
The	following	functions	allow	you	to	generate	various	response	headers:
setCookie

Sets	a	cookie	on	the	client.	Instead	of	taking	an	expiration	date,	this	function	takes	a
cookie	duration	in	minutes.	Remember,	you	won’t	see	this	cookie	using
lookupCookie	until	the	following	request.

deleteCookie

Tells	the	client	to	remove	a	cookie.	Once	again,	lookupCookie	will	not	reflect	this
change	until	the	next	request.

setHeader

Sets	an	arbitrary	response	header.
setLanguage

Sets	the	preferred	user	language,	which	will	show	up	in	the	result	of	the	languages
function.

cacheSeconds

Sets	a	Cache-Control	header	to	indicate	how	many	seconds	this	response	can	be
cached.	This	can	be	particularly	useful	if	you	are	using	Varnish	on	your	server.

neverExpires

Sets	the	Expires	header	to	the	year	2037.	You	can	use	this	for	content	that	should
never	expire,	such	as	when	the	request	path	has	a	hash	value	associated	with	it.

alreadyExpired

Sets	the	Expires	header	to	the	past.
expiresAt

Sets	the	Expires	header	to	the	specified	date/time.

I/O	and	Debugging
The	HandlerT	and	WidgetT	monad	transformers	are	both	instances	of	a	number	of
typeclasses.	For	this	section,	the	important	typeclasses	are	MonadIO	and	MonadLogger.	The
former	allows	you	to	perform	arbitrary	IO	actions	inside	your	handler,	such	as	reading
from	a	file.	In	order	to	achieve	this,	you	just	need	to	prepend	liftIO	to	the	call.

MonadLogger	provides	a	built-in	logging	system.	There	are	many	ways	you	can	customize
this	system,	including	what	messages	get	logged	and	where	logs	are	sent.	By	default,	logs
are	sent	to	standard	output.	In	development,	all	messages	are	logged,	and	in	production,
warnings	and	errors	are	logged.

When	logging,	we	often	want	to	know	where	in	the	source	code	the	logging	occurred.	For
this,	MonadLogger	provides	a	number	of	convenience	Template	Haskell	functions	that	will
automatically	insert	the	source	code	location	into	the	log	messages.	These	functions	are
$logDebug,	$logInfo,	$logWarn,	and	$logError.	Let’s	look	at	a	short	example	of	some	of
these	functions:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Control.Exception	(IOException,	try)

import											Control.Monad					(when)

import											Yesod

data	App	=	App

instance	Yesod	App	where

				--	This	function	controls	which	messages	are	logged

				shouldLog	App	src	level	=

								True	--	good	for	development

								--	level	==	LevelWarn	||	level	==	LevelError—good	for	production

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

getHomeR	::	Handler	Html

getHomeR	=	do

				$logDebug	"Trying	to	read	data	file"

				edata	<-	liftIO	$	try	$	readFile	"datafile.txt"

				case	edata	::	Either	IOException	String	of

								Left	e	->	do

												$logError	$	"Could	not	read	datafile.txt"

												defaultLayout	[whamlet|An	error	occurred|]

								Right	str	->	do

												$logInfo	"Reading	of	data	file	succeeded"

												let	ls	=	lines	str

												when	(length	ls	<	5)	$	$logWarn	"Less	than	5	lines	of	data"

												defaultLayout

																[whamlet|

																				

																								$forall	l	<-	ls

																												#{l}

																|]

main	::	IO	()

main	=	warp	3000	App

Query	String	and	Hash	Fragments
We’ve	seen	a	number	of	functions	that	work	on	URL-like	things,	such	as	redirect.	These
functions	all	work	with	type-safe	URLs,	but	what	else	do	they	work	with?	There’s	a
typeclass	called	RedirectUrl	that	contains	the	logic	for	converting	some	type	into	a
textual	URL.	This	includes	type-safe	URLs,	textual	URLs,	and	two	special	instances:

A	tuple	of	a	URL	and	a	list	of	key/value	pairs	of	query	string	parameters

The	Fragment	data	type,	used	for	adding	a	hash	fragment	to	the	end	of	a	URL

Both	of	these	instances	allow	you	to	“add	on”	extra	information	to	a	type-safe	URL.	Let’s
see	some	examples	of	how	these	can	be	used:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Set									(member)

import											Data.Text								(Text)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Dummy

data	App	=	App

mkYesod	"App"	[parseRoutes|

/						HomeR		GET

/link1	Link1R	GET

/link2	Link2R	GET

/link3	Link3R	GET

/link4	Link4R	GET

|]

instance	Yesod	App	where

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	"Redirects"

				[whamlet|

								<p>

												Click	to	start	the	redirect	loop!

				|]

getLink1R,	getLink2R,	getLink3R	::	Handler	()

getLink1R	=	redirect	Link2R	--	/link1

getLink2R	=	redirect	(Link3R,	[("foo",	"bar")])	--	/link3?foo=bar

getLink3R	=	redirect	$	Link4R	:#:	("baz"	::	Text)	--	/link4#baz

getLink4R	::	Handler	Html

getLink4R	=	defaultLayout

				[whamlet|

								<p>You	made	it!

				|]

main	::	IO	()

main	=	warp	3000	App

Of	course,	inside	a	Hamlet	template	this	is	usually	not	necessary,	as	you	can	simply
include	the	hash	after	the	URL	directly.	For	example:

Link	to	hash

Summary
Routing	and	dispatch	is	arguably	the	core	of	Yesod:	it	is	from	here	that	our	type-safe
URLs	are	defined,	and	the	majority	of	our	code	is	written	within	the	Handler	monad.	This
chapter	covered	some	of	the	most	important	and	central	concepts	of	Yesod,	so	it	is
important	that	you	properly	digest	it.

This	chapter	also	hinted	at	a	number	of	more	complex	Yesod	topics	that	we	will	be
covering	later,	but	you	should	be	able	to	write	some	very	sophisticated	web	applications
with	just	the	knowledge	you	have	learned	up	until	this	point.

Chapter	8.	Forms

I’ve	mentioned	the	boundary	issue	already:	whenever	data	enters	or	leaves	an	application,
we	need	to	validate	it.	Probably	the	most	difficult	place	this	occurs	is	in	forms.	Coding
forms	is	complex;	in	an	ideal	world,	we’d	like	a	solution	that	can	do	all	of	the	following:

Ensure	data	is	valid.

Marshal	string	data	in	the	form	submission	to	Haskell	data	types.

Generate	HTML	code	for	displaying	the	form.

Generate	JavaScript	to	do	client-side	validation	and	provide	more	user-friendly
widgets,	such	as	date	pickers.

Build	up	more	complex	forms	by	combining	together	simpler	forms.

Automatically	assign	names	to	our	fields	that	are	guaranteed	to	be	unique.

The	yesod-form	package	provides	all	these	features	in	a	simple,	declarative	API.	It	builds
on	top	of	Yesod’s	widgets	to	simplify	styling	of	forms	and	applying	JavaScript
appropriately.	And	like	the	rest	of	Yesod,	it	uses	Haskell’s	type	system	to	make	sure
everything	is	working	correctly.

Synopsis
{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Control.Applicative	((<$>),	(<*>))

import											Data.Text											(Text)

import											Data.Time											(Day)

import											Yesod

import											Yesod.Form.Jquery

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/person	PersonR	POST

|]

instance	Yesod	App

--	Tells	our	application	to	use	the	standard	English	messages.

--	If	you	want	i18n,	then	you	can	supply	a	translating	function	instead.

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

--	And	tell	us	where	to	find	the	jQuery	libraries.	We'll	just	use	the	defaults,

--	which	point	to	the	Google	CDN.

instance	YesodJquery	App

--	The	data	type	we	wish	to	receive	from	the	form

data	Person	=	Person

				{	personName										::	Text

				,	personBirthday						::	Day

				,	personFavoriteColor	::	Maybe	Text

				,	personEmail									::	Text

				,	personWebsite							::	Maybe	Text

				}

		deriving	Show

--	Declare	the	form.	The	type	signature	is	a	bit	intimidating,	but	here's	the

--	overview:

--

--	*	The	Html	parameter	is	used	for	encoding	some	extra	information.	See	the

--	discussion	regarding	runFormGet	and	runFormPost	below	for	further

--	explanation.

--

--	*	We	have	our	Handler	as	the	inner	monad,	which	indicates	which	site	this	is

--	running	in.

--

--	*	FormResult	can	be	in	three	states:	FormMissing	(no	data	available),

--	FormFailure	(invalid	data),	and	FormSuccess.

--

--	*	The	Widget	is	the	viewable	form	to	place	into	the	web	page.

--

--	Note	that	the	scaffolded	site	provides	a	convenient	Form	type	synonym,

--	so	that	our	signature	could	be	written	as:

--

--	>	personForm	::	Form	Person

--

--	For	our	purposes,	it's	good	to	see	the	long	version.

personForm	::	Html	->	MForm	Handler	(FormResult	Person,	Widget)

personForm	=	renderDivs	$	Person

				<$>	areq	textField	"Name"	Nothing

				<*>	areq	(jqueryDayField	def

								{	jdsChangeYear	=	True	--	give	a	year	drop-down

								,	jdsYearRange	=	"1900:-5"	--	1900	to	five	years	ago

								})	"Birthday"	Nothing

				<*>	aopt	textField	"Favorite	color"	Nothing

				<*>	areq	emailField	"Email	address"	Nothing

				<*>	aopt	urlField	"Website"	Nothing

--	The	GET	handler	displays	the	form

getHomeR	::	Handler	Html

getHomeR	=	do

				--	Generate	the	form	to	be	displayed

				(widget,	enctype)	<-	generateFormPost	personForm

				defaultLayout

								[whamlet|

												<p>

																The	widget	generated	contains	only	the	contents

																of	the	form,	not	the	form	tag	itself.	So...

												<form	method=post	action=@{PersonR}	enctype=#{enctype}>

																^{widget}

																<p>It	also	doesn't	include	the	submit	button.

																<button>Submit

								|]

--	The	POST	handler	processes	the	form.	If	it	is	successful,	it	displays	the

--	parsed	person.	Otherwise,	it	displays	the	form	again	with	error	messages.

postPersonR	::	Handler	Html

postPersonR	=	do

				((result,	widget),	enctype)	<-	runFormPost	personForm

				case	result	of

								FormSuccess	person	->	defaultLayout	[whamlet|<p>#{show	person}|]

								_	->	defaultLayout

												[whamlet|

																<p>Invalid	input,	let's	try	again.

																<form	method=post	action=@{PersonR}	enctype=#{enctype}>

																				^{widget}

																				<button>Submit

												|]

main	::	IO	()

main	=	warp	3000	App

Kinds	of	Forms
Before	jumping	into	the	types	themselves,	we	should	begin	with	an	overview	of	the
different	kinds	of	forms.	There	are	three	categories:

Applicative

These	are	the	most	commonly	used	(it’s	what	appeared	in	the	preceding	code).	This
approach	has	some	nice	properties:	it	lets	error	messages	coalesce	and	remains	a	very
high-level,	declarative	approach.	(For	more	information	on	applicative	code,	see	the
Haskell	wiki.)

Monadic

A	more	powerful	alternative	to	the	applicative	style.	Although	this	approach	allows
for	more	flexibility,	it	does	so	at	the	cost	of	being	more	verbose.	However,	it’s	useful
if	you	want	to	create	forms	that	don’t	fit	into	the	standard	two-column	look.

Input

Used	only	for	receiving	input.	No	HTML	is	generated	for	receiving	the	user	input.
Useful	for	interacting	with	existing	forms.

In	addition,	there	are	a	number	of	different	variables	that	come	into	play	for	each	form	and
field	you	will	want	to	set	up:

Is	the	field	required	or	optional?

Should	it	be	submitted	with	GET	or	POST?

Does	it	have	a	default	value,	or	not?

An	overriding	goal	is	to	minimize	the	number	of	field	definitions	and	let	them	work	in	as
many	contexts	as	possible.	One	result	of	this	is	that	we	end	up	with	a	few	extra	words	for
each	field.	In	the	synopsis,	you	may	have	noticed	things	like	areq	and	that	extra	Nothing
parameter.	We’ll	cover	why	all	of	those	exist	in	the	course	of	this	chapter,	but	for	now
realize	that	by	making	these	parameters	explicit,	we	are	able	to	reuse	the	individual	fields
(like	intField)	in	many	different	ways.

A	quick	note	on	naming	conventions:	each	form	type	has	a	one-letter	prefix	(A,	M,	or	I)
that	is	used	in	a	few	places,	such	as	MForm.	We	also	use	req	and	opt	to	mean	required	and
optional.	Combining	these,	we	create	a	required	applicative	field	with	areq,	or	an	optional
input	field	with	iopt.

Types
The	Yesod.Form.Types	module	declares	a	few	types.	We	won’t	cover	all	the	types
available,	but	will	instead	focus	on	the	most	crucial.	Let’s	start	with	some	of	the	simple
ones:
enctype

The	encoding	type,	either	UrlEncoded	or	Multipart.	This	data	type	declares	an
instance	of	ToHtml,	so	you	can	use	the	enctype	directly	in	Hamlet.

FormResult

This	data	type	has	one	of	three	possible	states:	FormMissing	if	no	data	was	submitted,
FormFailure	if	there	was	an	error	parsing	the	form	(e.g.,	missing	a	required	field	or
including	invalid	content),	or	FormSuccess	if	everything	went	smoothly.

FormMessage

Represents	all	of	the	different	messages	that	can	be	generated	as	a	data	type.	For
example,	MsgInvalidInteger	is	used	by	the	library	to	indicate	that	the	textual	value
provided	is	not	an	integer.	By	keeping	this	data	highly	structured,	you	are	able	to
provide	any	kind	of	rendering	function	you	want,	which	allows	for
internationalization	(i18n)	of	your	application.

Next,	we	have	some	data	types	used	for	defining	individual	fields.	We	define	a	field	as	a
single	piece	of	information,	such	as	a	number,	a	string,	or	an	email	address.	Fields	are
combined	to	build	forms.	The	two	key	data	types	here	are:
Field

Defines	two	pieces	of	functionality:	how	to	parse	the	text	input	from	a	user	into	a
Haskell	value,	and	how	to	create	the	widget	to	be	displayed	to	the	user.	yesod-form
defines	a	number	of	individual	Field+s	in	+Yesod.Form.Fields.

FieldSettings

Contains	basic	information	on	how	a	field	should	be	displayed,	such	as	the	display
name,	an	optional	tooltip,	and	possibly	hardcoded	id	and	name	attributes.	(If	none	are
provided,	they	are	automatically	generated.)	Note	that	FieldSettings	provides	an
IsString	instance,	so	when	you	need	to	provide	a	FieldSettings	value,	you	can
actually	type	in	a	literal	string.	That’s	how	we	interacted	with	it	in	the	synopsis.

And	finally,	we	get	to	the	important	stuff:	the	forms	themselves.	There	are	three	types:
MForm	is	for	monadic	forms,	AForm	for	applicative,	and	FormInput	for	input.	MForm	is
actually	a	type	synonym	for	a	monad	stack	that	provides	the	following	features:

A	Reader	monad	giving	us	the	parameters	submitted	by	the	user,	the	foundation	data
type,	and	the	list	of	languages	the	user	supports.	The	last	two	are	used	for	rendering
of	the	FormMessages	to	support	i18n	(more	on	this	later).

A	Writer	monad	keeping	track	of	the	Enctype.	A	form	will	be	UrlEncoded	by	default
unless	there	is	a	file	input	field,	which	will	force	us	to	use	Multipart	instead.

A	State	monad	keeping	track	of	generated	names	and	identifiers	for	fields.

An	AForm	is	pretty	similar.	However,	there	are	a	few	major	differences:

It	produces	a	list	of	FieldViews,	which	are	used	for	tracking	what	we	will	display	to
the	user.	This	allows	us	to	keep	an	abstract	idea	of	the	form	display,	and	then	at	the
end	of	the	day	choose	an	appropriate	function	for	laying	it	out	on	the	page.	In	the
synopsis,	we	used	renderDivs,	which	creates	a	bunch	of	<div>	tags.	Two	other
options	are	renderBootstrap	and	renderTable.

It	does	not	provide	a	Monad	instance.	The	goal	of	Applicative	is	to	allow	the	entire
form	to	run,	grab	as	much	information	on	each	field	as	possible,	and	then	create	the
final	result.	This	cannot	work	in	the	context	of	Monad.

A	FormInput	is	even	simpler:	it	returns	either	a	list	of	error	messages	or	a	result.

Converting
“But	wait	a	minute,”	you	say.	“You	said	the	synopsis	code	uses	an	applicative	form,	but
I’m	sure	the	type	signature	said	MForm.	Shouldn’t	it	be	monadic?”	That’s	true;	the	final
form	we	produced	was	monadic.	But	what	really	happened	is	that	we	converted	an
applicative	form	to	a	monadic	one.

Again,	our	goal	is	to	reuse	code	as	much	as	possible,	and	minimize	the	number	of
functions	in	the	API.	And	monadic	forms	are	more	powerful	than	applicative	forms,	if	a
bit	clumsy,	so	anything	that	can	be	expressed	in	an	applicative	form	could	also	be
expressed	in	a	monadic	form.	There	are	two	core	functions	that	help	out	with	this:
aformToForm	converts	any	applicative	form	to	a	monadic	one,	and	formToAForm	converts
certain	kinds	of	monadic	forms	to	applicative	forms.

“But	wait	another	minute,”	you	insist.	“I	didn’t	see	any	aformToForm!”	Also	true.	The
renderDivs	function	takes	care	of	that	for	us.

Creating	AForms
Now	that	I’ve	(hopefully)	convinced	you	that	we	were	really	dealing	with	applicative
forms,	let’s	have	a	look	and	try	to	understand	how	these	things	get	created.	Let’s	take	a
simple	example:

data	Car	=	Car

				{	carModel	::	Text

				,	carYear		::	Int

				}

		deriving	Show

carAForm	::	AForm	Handler	Car

carAForm	=	Car

				<$>	areq	textField	"Model"	Nothing

				<*>	areq	intField	"Year"	Nothing

carForm	::	Html	->	MForm	Handler	(FormResult	Car,	Widget)

carForm	=	renderTable	carAForm

Here,	we’ve	explicitly	split	up	applicative	and	monadic	forms.	In	carAForm,	we	use	the
<$>	and	<*>	operators.	This	should	not	be	surprising;	these	are	almost	always	used	in
applicative-style	code.	And	we	have	one	line	for	each	record	in	our	Car	data	type.	Perhaps
also	unsurprisingly,	we	have	a	textField	for	the	Text	record,	and	an	intField	for	the	Int
record.

Let’s	look	a	bit	more	closely	at	the	areq	function.	Its	(simplified)	type	signature	is	Field
a	->	FieldSettings	->	Maybe	a	->	AForm	a.	That	first	argument	specifies	the	data
type	of	this	field,	how	to	parse	it,	and	how	to	render	it.	The	next	argument,
FieldSettings,	tells	us	the	label,	tooltip,	name,	and	ID	of	the	field.	In	this	case,	we’re
using	the	previously	mentioned	IsString	instance	of	FieldSettings.

And	what’s	up	with	that	Maybe	a?	It	provides	the	optional	default	value.	For	example,	if
we	wanted	our	form	to	fill	in	“2007”	as	the	default	car	year,	we	would	use	areq	intField
"Year"	(Just	2007).	We	can	even	take	this	to	the	next	level,	and	have	a	form	that	takes
an	optional	parameter	giving	the	default	values:

carAForm	::	Maybe	Car	->	AForm	Handler	Car

carAForm	mcar	=	Car

				<$>	areq	textField	"Model"	(carModel	<$>	mcar)

				<*>	areq	intField		"Year"		(carYear		<$>	mcar)

Optional	Fields
Suppose	we	wanted	to	have	an	optional	field	(like	the	car	color).	All	we	do	for	this	is	use
the	aopt	function:

carAForm	::	AForm	Handler	Car

carAForm	=	Car

				<$>	areq	textField	"Model"	Nothing

				<*>	areq	intField	"Year"	Nothing

				<*>	aopt	textField	"Color"	Nothing

Like	with	required	fields,	the	last	argument	is	the	optional	default	value.	However,	this	has
two	layers	of	Maybe	wrapping.	This	is	actually	a	bit	redundant,	but	it	makes	it	much	easier
to	write	code	that	takes	an	optional	default	form	parameter,	such	as	in	the	next	example:

carAForm	::	Maybe	Car	->	AForm	Handler	Car

carAForm	mcar	=	Car

				<$>	areq	textField	"Model"	(carModel	<$>	mcar)

				<*>	areq	intField		"Year"		(carYear		<$>	mcar)

				<*>	aopt	textField	"Color"	(carColor	<$>	mcar)

carForm	::	Html	->	MForm	Handler	(FormResult	Car,	Widget)

carForm	=	renderTable	$	carAForm	$	Just	$	Car	"Forte"	2010	$	Just	"gray"

Validation
How	would	we	make	our	form	only	accept	cars	created	after	1990?	If	you	remember,	the
Field	itself	contained	the	information	on	what	is	a	valid	entry.	So	all	we	need	to	do	is
write	a	new	Field,	right?	Well,	that	would	be	a	bit	tedious.	Instead,	let’s	just	modify	an
existing	one:

carAForm	::	Maybe	Car	->	AForm	Handler	Car

carAForm	mcar	=	Car

				<$>	areq	textField				"Model"	(carModel	<$>	mcar)

				<*>	areq	carYearField	"Year"		(carYear		<$>	mcar)

				<*>	aopt	textField				"Color"	(carColor	<$>	mcar)

		where

				errorMessage	::	Text

				errorMessage	=	"Your	car	is	too	old,	get	a	new	one!"

				carYearField	=	check	validateYear	intField

				validateYear	y

								|	y	<	1990	=	Left	errorMessage

								|	otherwise	=	Right	y

The	trick	here	is	the	check	function.	It	takes	a	function	(validateYear)	that	returns	either
an	error	message	or	a	modified	field	value.	In	this	example,	we	haven’t	modified	the	value
at	all.	That	is	usually	going	to	be	the	case.	This	kind	of	checking	is	very	common,	so	we
have	a	shortcut:

carYearField	=	checkBool	(>=	1990)	errorMessage	intField

checkBool	takes	two	parameters:	a	condition	that	must	be	fulfilled,	and	an	error	message
to	be	displayed	if	it	was	not.

NOTE
You	may	have	noticed	the	explicit	Text	type	signature	on	errorMessage.	In	the	presence	of
OverloadedStrings,	this	is	necessary.	In	order	to	support	i18n,	messages	can	have	many	different	data
types,	and	GHC	has	no	way	of	determining	which	instance	of	IsString	you	intended	to	use.

It’s	great	to	make	sure	the	car	isn’t	too	old.	But	what	if	we	want	to	make	sure	that	the	year
specified	is	not	in	the	future?	In	order	to	look	up	the	current	year,	we’ll	need	to	run	some
IO.	For	such	circumstances,	we’ll	need	checkM,	which	allows	our	validation	code	to
perform	arbitrary	actions:

				carYearField	=	checkM	inPast	$	checkBool	(>=	1990)	errorMessage	intField

				inPast	y	=	do

								thisYear	<-	liftIO	getCurrentYear

								return	$	if	y	<=	thisYear

												then	Right	y

												else	Left	("You	have	a	time	machine!"	::	Text)

getCurrentYear	::	IO	Int

getCurrentYear	=	do

				now	<-	getCurrentTime

				let	today	=	utctDay	now

				let	(year,	_,	_)	=	toGregorian	today

				return	$	fromInteger	year

inPast	is	a	function	that	will	return	an	Either	result	in	the	Handler	monad.	We	use
liftIO	getCurrentYear	to	get	the	current	year	and	then	compare	it	against	the	user-
supplied	year.	Also,	notice	how	we	can	chain	together	multiple	validators.

NOTE
Because	the	checkM	validator	runs	in	the	Handler	monad,	it	has	access	to	a	lot	of	the	stuff	you	can	normally
do	in	Yesod.	This	is	especially	useful	for	running	database	actions,	which	we’ll	cover	in	Chapter	10.

More	Sophisticated	Fields
Our	color	entry	field	is	nice,	but	it’s	not	exactly	user-friendly.	What	we	really	want	is	a
drop-down	list:

data	Car	=	Car

				{	carModel	::	Text

				,	carYear	::	Int

				,	carColor	::	Maybe	Color

				}

		deriving	Show

data	Color	=	Red	|	Blue	|	Gray	|	Black

				deriving	(Show,	Eq,	Enum,	Bounded)

carAForm	::	Maybe	Car	->	AForm	Handler	Car

carAForm	mcar	=	Car

				<$>	areq	textField	"Model"	(carModel	<$>	mcar)

				<*>	areq	carYearField	"Year"	(carYear	<$>	mcar)

				<*>	aopt	(selectFieldList	colors)	"Color"	(carColor	<$>	mcar)

		where

				colors	::	[(Text,	Color)]

				colors	=	[("Red",	Red),	("Blue",	Blue),	("Gray",	Gray),	("Black",	Black)]

selectFieldList	takes	a	list	of	pairs.	The	first	item	in	the	pair	is	the	text	displayed	to	the
user	in	the	drop-down	list,	and	the	second	item	is	the	actual	Haskell	value.	Of	course,	this
code	looks	really	repetitive;	we	can	get	the	same	result	using	the	Enum	and	Bounded
instance	GHC	automatically	derives	for	us:

colors	=	map	(pack	.	show	&&&	id)	[minBound..maxBound]

[minBound..maxBound]	gives	us	a	list	of	all	the	different	Color	values.	We	then	apply	a
map	and	&&&	(a.k.a.,	the	to	turn	that	into	a	list	of	pairs.	And	even	this	can	be	simplified	by
using	the	optionsEnum	function	provided	by	yesod-form,	which	would	turn	our	original
code	into:

carAForm	::	Maybe	Car	->	AForm	Handler	Car

carAForm	mcar	=	Car

				<$>	areq	textField	"Model"	(carModel	<$>	mcar)

				<*>	areq	carYearField	"Year"	(carYear	<$>	mcar)

				<*>	aopt	(selectFieldList	optionsEnum)	"Color"	(carColor	<$>	mcar)

Some	people	prefer	radio	buttons	to	drop-down	lists.	Fortunately,	this	is	just	a	one-word
change:

carAForm	=	Car

				<$>	areq	textField																				"Model"	Nothing

				<*>	areq	intField																					"Year"		Nothing

				<*>	aopt	(radioFieldList	optionsEnum)	"Color"	Nothing

Running	Forms
At	some	point,	we’re	going	to	need	to	take	our	beautiful	forms	and	produce	some	results.
There	are	a	number	of	different	functions	available	for	this,	each	with	its	own	purpose.	I’ll
go	through	them,	starting	with	the	most	common:
runFormPost

This	will	run	your	form	against	any	submitted	POST	parameters.	If	this	is	not	a	POST
submission,	it	will	return	FormMissing.	This	automatically	inserts	a	security	token	as
a	hidden	form	field	to	avoid	cross-site	request	forgery	(CSRF)	attacks.

runFormGet

The	equivalent	of	runFormPost	for	GET	parameters.	In	order	to	distinguish	a	normal
GET	page	load	from	a	GET	submission,	it	includes	an	extra	_hasdata	hidden	field	in
the	form.	Unlike	runFormPost,	it	does	not	include	CSRF	protection.

runFormPostNoToken

Same	as	runFormPost,	but	does	not	include	(or	require)	the	CSRF	security	token.
generateFormPost

Instead	of	binding	to	existing	POST	parameters,	acts	as	if	there	are	none.	This	can	be
useful	when	you	want	to	generate	a	new	form	after	a	previous	form	was	submitted,
such	as	in	a	wizard.

generateFormGet

Same	as	generateFormPost,	but	for	GET.

The	return	type	from	the	first	three	is	((FormResult	a,	Widget),	Enctype).	The	Widget
will	already	have	any	validation	errors	and	previously	submitted	values.

NOTE
Why	the	nested	tuple	instead	of	a	specialized	data	type?	It’s	because	runFormPostNoToken	and	runFormGet
can	both	be	used	with	forms	that	don’t	return	a	FormResult	or	Widget,	which	can	be	useful	when	dealing
with	more	complicated	monadic	forms	(discussed	later).

i18n
There	have	been	a	few	references	to	i18n	in	this	chapter.	The	topic	will	get	more	thorough
coverage	in	Chapter	22,	but	because	it	has	such	a	profound	effect	on	yesod-form,	I	wanted
to	give	a	brief	overview	here.	The	idea	behind	i18n	in	Yesod	is	to	have	data	types
represent	messages.	Each	site	can	have	an	instance	of	RenderMessage	for	a	given	data
type,	which	will	translate	that	message	based	on	a	list	of	languages	the	user	accepts.	As	a
result	of	all	this,	there	are	a	few	things	you	should	be	aware	of:

There	is	an	automatic	instance	of	RenderMessage	for	Text	in	every	site,	so	you	can
just	use	plain	strings	if	you	don’t	care	about	i18n	support.	However,	you	may	need	to
use	explicit	type	signatures	occasionally.

yesod-form	expresses	all	of	its	messages	in	terms	of	the	FormMessage	data	type.
Therefore,	to	use	yesod-form,	you’ll	need	to	have	an	appropriate	RenderMessage
instance.	A	simple	one	that	uses	the	default	English	translations	would	be:

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

This	is	provided	automatically	by	the	scaffolded	site.

Monadic	Forms
Oftentimes,	a	simple	form	layout	is	adequate,	and	applicative	forms	excel	at	this	approach.
Sometimes,	however,	you’ll	want	your	form	to	have	a	more	customized	look,	such	as	that
shown	in	Figure	8-1.

Figure	8-1.	A	nonstandard	form	layout

For	these	use	cases,	monadic	forms	fit	the	bill.	They	are	a	bit	more	verbose	than	their
applicative	cousins,	but	this	verbosity	allows	you	to	have	complete	control	over	what	the
form	will	look	like.	In	order	to	generate	the	form	in	Figure	8-1,	we	could	use	code	like	the
following:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Control.Applicative

import											Data.Text											(Text)

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

data	Person	=	Person

				{	personName	::	Text

				,	personAge		::	Int

				}

				deriving	Show

personForm	::	Html	->	MForm	Handler	(FormResult	Person,	Widget)

personForm	extra	=	do

				(nameRes,	nameView)	<-	mreq	textField	"this	is	not	used"	Nothing

				(ageRes,	ageView)	<-	mreq	intField	"neither	is	this"	Nothing

				let	personRes	=	Person	<$>	nameRes	<*>	ageRes

				let	widget	=	do

												toWidget

																[lucius|

																				##{fvId	ageView}	{

																								width:	3em;

																				}

																|]

												[whamlet|

																#{extra}

																<p>

																				Hello,	my	name	is	#

																				^{fvInput	nameView}

																				\	and	I	am	#

																				^{fvInput	ageView}

																				\	years	old.	#

																				<input	type=submit	value="Introduce	myself">

												|]

				return	(personRes,	widget)

getHomeR	::	Handler	Html

getHomeR	=	do

				((res,	widget),	enctype)	<-	runFormGet	personForm

				defaultLayout

								[whamlet|

												<p>Result:	#{show	res}

												<form	enctype=#{enctype}>

																^{widget}

								|]

main	::	IO	()

main	=	warp	3000	App

Similar	to	the	applicative	areq,	we	use	mreq	for	monadic	forms.	(And	yes,	there’s	also
mopt	for	optional	fields.)	But	there’s	a	big	difference:	mreq	gives	us	back	a	pair	of	values.
Instead	of	hiding	away	the	FieldView	value	and	automatically	inserting	it	into	a	widget,
we	have	the	ability	to	insert	it	as	we	see	fit.

FieldView	has	a	number	of	pieces	of	information.	The	most	important	is	fvInput,	which
is	the	actual	form	field.	In	this	example,	we	also	use	fvId,	which	gives	us	back	the	HTML
id	attribute	of	the	<input>	tag.	In	our	example,	we	use	that	to	specify	the	width	of	the
field.

You	might	be	wondering	what	the	story	is	with	the	“this	is	not	used”	and	“neither	is	this”
values.	mreq	takes	FieldSettings	as	its	second	argument.	FieldSettings	provides	an
IsString	instance,	so	the	strings	are	essentially	expanded	by	the	compiler	as	follows:

fromString	"this	is	not	used"	==	FieldSettings

				{	fsLabel	=	"this	is	not	used"

				,	fsTooltip	=	Nothing

				,	fsId	=	Nothing

				,	fsName	=	Nothing

				,	fsAttrs	=	[]

				}

In	the	case	of	applicative	forms,	the	fsLabel	and	fsTooltip	values	are	used	when
constructing	your	HTML.	In	the	case	of	monadic	forms,	Yesod	does	not	generate	any	of
the	“wrapper”	HTML	for	you,	and	therefore	these	values	are	ignored.	However,	we	still
keep	the	FieldSettings	parameter	to	allow	you	to	override	the	id	and	name	attributes	of
your	fields	if	desired.

The	other	interesting	bit	is	the	extra	value.	GET	forms	include	an	extra	field	to	indicate
that	they	have	been	submitted,	and	POST	forms	include	a	security	token	to	prevent	CSRF
attacks.	If	you	don’t	include	this	extra	hidden	field	in	your	form,	the	form	submission	will
fail.

Other	than	that,	things	are	pretty	straightforward.	We	create	our	personRes	value	by
combining	the	nameRes	and	ageRes	values,	and	then	return	a	tuple	of	the	person	and	the
widget.	And	in	the	getHomeR	function,	everything	looks	just	like	an	applicative	form.	In
fact,	you	could	swap	our	monadic	form	with	an	applicative	one	and	the	code	would	still
work.

Input	Forms
Applicative	and	monadic	forms	handle	both	the	generation	of	your	HTML	code	and	the
parsing	of	user	input.	Sometimes	you	only	want	to	do	the	latter,	such	as	when	there’s	an
already	existing	form	in	HTML	somewhere,	or	if	you	want	to	generate	a	form	dynamically
using	JavaScript.	In	such	a	case,	you’ll	want	input	forms.

These	work	mostly	the	same	as	applicative	and	monadic	forms,	with	some	differences:

You	use	runInputPost	and	runInputGet.

You	use	ireq	and	iopt.	These	functions	now	only	take	two	arguments:	the	field	type
and	the	name	(i.e.,	HTML	name	attribute)	of	the	field	in	question.

After	running	a	form,	it	returns	the	value.	It	doesn’t	return	a	widget	or	an	encoding
type.

If	there	are	any	validation	errors,	the	page	returns	an	“invalid	arguments”	error	page.

You	can	use	input	forms	to	re-create	the	previous	example.	Note,	however,	that	the	input
version	is	less	user-friendly.	If	you	make	a	mistake	in	an	applicative	or	monadic	form,	you
will	be	brought	back	to	the	same	page,	with	your	previously	entered	values	in	the	form,
and	an	error	message	explaining	what	you	need	to	correct.	With	input	forms,	the	user
simply	gets	an	error	message:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Control.Applicative

import											Data.Text											(Text)

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/input	InputR	GET

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

data	Person	=	Person

				{	personName	::	Text

				,	personAge		::	Int

				}

				deriving	Show

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<form	action=@{InputR}>

												<p>

																My	name	is

																<input	type=text	name=name>

																and	I	am

																<input	type=text	name=age>

																years	old.

																<input	type=submit	value="Introduce	myself">

				|]

getInputR	::	Handler	Html

getInputR	=	do

				person	<-	runInputGet	$	Person

																<$>	ireq	textField	"name"

																<*>	ireq	intField	"age"

				defaultLayout	[whamlet|<p>#{show	person}|]

main	::	IO	()

main	=	warp	3000	App

Custom	Fields
The	fields	that	come	built	in	with	Yesod	will	likely	cover	the	vast	majority	of	your	form
needs.	But	occasionally,	you’ll	need	something	more	specialized.	Fortunately,	you	can
create	new	fields	in	Yesod	yourself.	The	Field	constructor	has	three	values.	The	first,
fieldParse,	takes	a	list	of	values	submitted	by	the	user	and	returns	one	of	three	results:

An	error	message	saying	validation	failed

The	parsed	value

Nothing,	indicating	that	no	data	was	supplied

That	last	case	might	sound	surprising.	It	would	seem	that	Yesod	can	automatically	know
that	no	information	is	supplied	when	the	input	list	is	empty.	But	in	reality,	for	some	field
types,	the	lack	of	any	input	is	actually	valid	input.	Checkboxes,	for	instance,	indicate	an
unchecked	state	by	sending	in	an	empty	list.

Also,	what’s	up	with	the	list?	Shouldn’t	it	be	a	Maybe?	That’s	also	not	the	case.	With
grouped	checkboxes	and	multiselect	lists,	you’ll	have	multiple	widgets	with	the	same
name.	We	also	use	this	trick	in	our	example.

The	second	value	in	the	constructor	is	fieldView,	and	it	renders	a	widget	to	display	to	the
user.	This	function	has	the	following	arguments:

The	id	attribute.

The	name	attribute.

Any	other	arbitrary	attributes.

The	result,	given	as	an	Either	value.	This	will	provide	either	the	unparsed	input
(when	parsing	failed)	or	the	successfully	parsed	value.	intField	is	a	great	example
of	how	this	works.	If	you	type	in	42,	the	value	of	the	result	will	be	Right	42.	But	if
you	type	in	turtle,	the	result	will	be	Left	"turtle".	This	lets	you	put	in	a	value
attribute	on	your	<input>	tag	that	will	give	the	user	a	consistent	experience.

A	Bool	indicating	if	the	field	is	required.

The	final	value	in	the	constructor	is	fieldEnctype.	If	you’re	dealing	with	file	uploads,	this
should	be	Multipart;	otherwise,	it	should	be	UrlEncoded.

As	a	small	example,	let’s	create	a	new	field	type	that	is	a	password	confirm	field.	This
field	has	two	text	inputs	—	both	with	the	same	name	attribute	—	and	returns	an	error
message	if	the	values	don’t	match.	Note	that,	unlike	most	fields,	it	does	not	provide	a
value	attribute	on	the	<input>	tags,	as	you	don’t	ever	want	to	send	back	a	user-entered

password	in	your	HTML:

passwordConfirmField	::	Field	Handler	Text

passwordConfirmField	=	Field

				{	fieldParse	=	\rawVals	_fileVals	->

								case	rawVals	of

												[a,	b]

																|	a	==	b	->	return	$	Right	$	Just	a

																|	otherwise	->	return	$	Left	"Passwords	don't	match"

												[]	->	return	$	Right	Nothing

												_	->	return	$	Left	"You	must	enter	two	values"

				,	fieldView	=	\idAttr	nameAttr	otherAttrs	eResult	isReq	->

								[whamlet|

												<input	id=#{idAttr}	name=#{nameAttr}	*{otherAttrs}	type=password>

												<div>Confirm:

												<input	id=#{idAttr}-confirm	name=#{nameAttr}	*{otherAttrs}

												type=password>

								|]

				,	fieldEnctype	=	UrlEncoded

				}

getHomeR	::	Handler	Html

getHomeR	=	do

				((res,	widget),	enctype)	<-	runFormGet	$	renderDivs

								$	areq	passwordConfirmField	"Password"	Nothing

				defaultLayout

								[whamlet|

												<p>Result:	#{show	res}

												<form	enctype=#{enctype}>

																^{widget}

																<input	type=submit	value="Change	password">

								|]

Values	That	Don’t	Come	from	the	User
Imagine	you’re	writing	a	blog	hosting	web	app,	and	you	want	to	have	a	form	for	users	to
enter	a	blog	post.	A	blog	post	will	consist	of	four	pieces	of	information:

Title

HTML	contents

User	ID	of	the	author

Publication	date

We	want	the	user	to	enter	the	first	two	values,	but	not	the	second	two.	User	ID	should	be
determined	automatically	by	authenticating	the	user	(a	topic	we	haven’t	covered	yet),	and
the	publication	date	should	just	be	the	current	time.	The	question	is,	how	do	we	keep	our
simple	applicative	form	syntax,	and	yet	pull	in	values	that	don’t	come	from	the	user?

The	answer	is	two	separate	helper	functions:

pure	allows	us	to	wrap	up	a	plain	value	as	an	applicative	form	value.

lift	allows	us	to	run	arbitrary	Handler	actions	inside	an	applicative	form.

Let’s	see	an	example	of	using	these	two	functions:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Control.Applicative

import											Data.Text											(Text)

import											Data.Time

import											Yesod

--	We'll	address	this	properly	in	Chapter	14

newtype	UserId	=	UserId	Int

				deriving	Show

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET	POST

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

type	Form	a	=	Html	->	MForm	Handler	(FormResult	a,	Widget)

data	Blog	=	Blog

				{	blogTitle				::	Text

				,	blogContents	::	Textarea

				,	blogUser					::	UserId

				,	blogPosted			::	UTCTime

				}

				deriving	Show

form	::	UserId	->	Form	Blog

form	userId	=	renderDivs	$	Blog

				<$>	areq	textField	"Title"	Nothing

				<*>	areq	textareaField	"Contents"	Nothing

				<*>	pure	userId

				<*>	lift	(liftIO	getCurrentTime)

getHomeR	::	Handler	Html

getHomeR	=	do

				let	userId	=	UserId	5	--	again,	see	Chapter	14

				((res,	widget),	enctype)	<-	runFormPost	$	form	userId

				defaultLayout

								[whamlet|

												<p>Previous	result:	#{show	res}

												<form	method=post	action=@{HomeR}	enctype=#{enctype}>

																^{widget}

																<input	type=submit>

								|]

postHomeR	::	Handler	Html

postHomeR	=	getHomeR

main	::	IO	()

main	=	warp	3000	App

One	trick	we’ve	introduced	here	is	using	the	same	handler	code	for	both	the	GET	and	POST
request	methods.	This	is	enabled	by	the	implementation	of	runFormPost,	which	will
behave	exactly	like	generateFormPost	in	the	case	of	a	GET	request.	Using	the	same
handler	for	both	request	methods	cuts	down	on	some	boilerplate.

Summary
Forms	in	Yesod	are	broken	up	into	three	groups.	Applicative	is	the	most	common,	as	it
provides	a	nice	user	interface	with	an	easy-to-use	API.	Monadic	forms	give	you	more
power,	but	are	harder	to	use.	Input	forms	are	intended	for	when	you	just	want	to	read	data
from	the	user,	not	generate	the	input	widgets.

Out	of	the	box,	Yesod	provides	a	number	of	different	Fields.	In	order	to	use	these	in	your
forms,	you	need	to	indicate	the	kind	of	form	and	whether	the	field	is	required	or	optional.
The	result	is	six	helper	functions:	areq,	aopt,	mreq,	mopt,	ireq,	and	iopt.

Forms	have	significant	power	available.	They	can	automatically	insert	JavaScript	to	help
you	leverage	nicer	UI	controls,	such	as	a	jQuery	UI	date	picker.	Forms	are	also	fully	i18n-
ready,	so	you	can	support	a	global	community	of	users.	And	when	you	have	more	specific
needs,	you	can	slap	some	validation	functions	onto	an	existing	field,	or	write	a	new	one
from	scratch.

Chapter	9.	Sessions

HTTP	is	a	stateless	protocol.	Although	some	view	this	as	a	disadvantage,	advocates	of
RESTful	web	development	laud	this	as	a	plus.	When	state	is	removed	from	the	picture,	we
get	some	automatic	benefits,	such	as	easier	scalability	and	caching.	You	can	draw	many
parallels	with	the	nonmutable	nature	of	Haskell	in	general.

As	much	as	possible,	RESTful	applications	should	avoid	storing	state	about	an	interaction
with	a	client.	However,	it	is	sometimes	unavoidable.	Features	like	shopping	carts	are	the
classic	example,	but	other,	more	mundane	interactions	like	proper	login	handling	can	be
greatly	enhanced	by	correct	usage	of	sessions.

This	chapter	will	describe	how	Yesod	stores	session	data,	how	you	can	access	this	data,
and	some	special	functions	to	help	you	make	the	most	of	sessions.

clientsession
One	of	the	earliest	packages	spun	off	from	Yesod	was	clientsession.	This	package	uses
encryption	and	signatures	to	store	data	in	a	client-side	cookie.	The	encryption	prevents	the
user	from	inspecting	the	data,	and	the	signature	ensures	that	the	session	cannot	be
tampered	with.

It	might	sound	like	a	bad	idea	from	an	efficiency	standpoint	to	store	data	in	a	cookie.	After
all,	this	means	that	the	data	must	be	sent	on	every	request.	However,	in	practice,
clientsession	can	be	a	great	boon	for	performance:

No	server-side	database	lookup	is	required	to	service	a	request.

We	can	easily	scale	horizontally:	each	request	contains	all	the	information	we	need	to
send	a	response.

To	avoid	undue	bandwidth	overhead,	production	sites	can	serve	their	static	content
from	a	separate	domain	name,	thereby	skipping	transmission	of	the	session	cookie	for
each	request.

Storing	megabytes	of	information	in	the	session	will	be	a	bad	idea.	But	for	that	matter,
most	session	implementations	recommend	against	such	practices.	If	you	really	need
massive	storage	for	a	user,	it	is	best	to	store	a	lookup	key	in	the	session	and	put	the	actual
data	in	a	database.

All	of	the	interaction	with	clientsession	is	handled	by	Yesod	internally,	but	there	are	a
few	spots	where	you	can	tweak	the	behavior	just	a	bit.

Controlling	Sessions
By	default,	your	Yesod	application	will	use	clientsession	for	its	session	storage,	getting
the	encryption	key	from	the	client	client-session-key.aes	and	giving	a	session	a	two-hour
timeout.	(Note:	timeout	is	measured	from	the	last	time	the	client	sent	a	request	to	the	site,
not	from	when	the	session	was	first	created.)	However,	all	of	those	points	can	be	modified
by	overriding	the	makeSessionBackend	method	in	the	Yesod	typeclass.

One	simple	way	to	override	this	method	is	to	simply	turn	off	session	handling.	To	do	so,
return	Nothing:

instance	Yesod	App	where

				makeSessionBackend	_	=	return	Nothing

If	your	app	has	absolutely	no	session	needs,	disabling	them	can	give	a	bit	of	a
performance	increase.	But	be	careful	about	disabling	sessions:	this	will	also	disable	such
features	as	cross-site	request	forgery	protection.

Another	common	approach	is	to	modify	the	filepath	or	timeout	value,	but	continue
using	clientsession.	In	order	to	do	so,	use	the	defaultClientSessionBackend	helper
function:

instance	Yesod	App	where

				makeSessionBackend	_	=	do

								let	minutes	=	24	*	60	--	1	day

												filepath	=	"mykey.aes"

								backend	<-	defaultClientSessionBackend	minutes	filepath

There	are	a	few	other	functions	to	grant	you	more	fine-grained	control	over
clientsession,	but	they	will	rarely	be	necessary.	Refer	to	Yesod.Core’s	documentation	if
you	are	interested.	It’s	also	possible	to	implement	some	other	form	of	session,	such	as	a
server-side	session.	To	my	knowledge,	at	the	time	of	writing,	no	other	such
implementations	exist.

NOTE
If	the	given	key	file	does	not	exist,	it	will	be	created	and	populated	with	a	randomly	generated	key.	When
you	deploy	your	app	to	production,	you	should	include	a	pregenerated	key	with	it;	otherwise,	all	existing
sessions	will	be	invalidated	when	your	new	key	file	is	generated.	The	scaffolding	addresses	this	for	you.

Session	Operations
As	in	most	frameworks,	a	session	in	Yesod	is	a	key/value	store.	The	base	session	API
boils	down	to	four	functions:	lookupSession	gets	a	value	for	a	key	(if	available),
getSession	returns	all	of	the	key/value	pairs,	setSession	sets	a	value	for	a	key,	and
deleteSession	clears	a	value	for	a	key.	Let’s	look	at	an	example:

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

{-#	LANGUAGE	MultiParamTypeClasses	#-}

import											Control.Applicative	((<$>),	(<*>))

import	qualified	Web.ClientSession			as	CS

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET	POST

|]

getHomeR	::	Handler	Html

getHomeR	=	do

				sess	<-	getSession

				defaultLayout

								[whamlet|

												<form	method=post>

																<input	type=text	name=key>

																<input	type=text	name=val>

																<input	type=submit>

												<h1>#{show	sess}

								|]

postHomeR	::	Handler	()

postHomeR	=	do

				(key,	mval)	<-	runInputPost	$	(,)

								<$>	ireq	textField	"key"

								<*>	iopt	textField	"val"

				case	mval	of

								Nothing	->	deleteSession	key

								Just	val	->	setSession	key	val

				liftIO	$	print	(key,	mval)

				redirect	HomeR

instance	Yesod	App	where

				--	Make	the	session	timeout	1	minute	so	that	it's	easier	to	play	with

				makeSessionBackend	_	=	do

								backend	<-	defaultClientSessionBackend	1	"keyfile.aes"

								return	$	Just	backend

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

main	::	IO	()

main	=	warp	3000	App

Messages
One	usage	of	sessions	previously	alluded	to	is	for	messages.	They	solve	a	common
problem	in	web	development:	the	user	performs	a	POST	request,	the	web	app	makes	a
change,	and	then	the	web	app	wants	to	simultaneously	redirect	the	user	to	a	new	page	and
send	the	user	a	success	message.	(This	is	known	as	Post/Redirect/Get.)

Yesod	provides	a	pair	of	functions	to	enable	this	workflow:	setMessage	stores	a	value	in
the	session,	and	getMessage	both	reads	the	value	most	recently	put	into	the	session	and
clears	the	old	value	so	it	is	not	displayed	twice.

It	is	recommended	to	have	a	call	to	getMessage	in	defaultLayout	so	that	any	available
message	is	shown	to	the	user	immediately,	without	having	to	add	getMessage	calls	to
every	handler:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/												HomeR							GET

/set-message	SetMessageR	POST

|]

instance	Yesod	App	where

				defaultLayout	widget	=	do

								pc	<-	widgetToPageContent	widget

								mmsg	<-	getMessage

								withUrlRenderer

												[hamlet|

																$doctype	5

																<html>

																				<head>

																								<title>#{pageTitle	pc}

																								^{pageHead	pc}

																				<body>

																								$maybe	msg	<-	mmsg

																												<p>Your	message	was:	#{msg}

																								^{pageBody	pc}

												|]

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<form	method=post	action=@{SetMessageR}>

												My	message	is:	#

												<input	type=text	name=message>

												<button>Go

				|]

postSetMessageR	::	Handler	()

postSetMessageR	=	do

				msg	<-	runInputPost	$	ireq	textField	"message"

				setMessage	$	toHtml	msg

				redirect	HomeR

main	::	IO	()

main	=	warp	3000	App

The	screenshots	in	Figures	9-1	through	9-4	demonstrate	how	you	would	interact	with	this
program.

Figure	9-1.	Initial	page	load,	no	message

Figure	9-2.	New	message	entered	in	text	box

Figure	9-3.	After	form	submit,	message	appears	at	top	of	page

Figure	9-4.	After	refresh,	message	is	cleared

Ultimate	Destination
Not	to	be	confused	with	a	horror	film,	“ultimate	destination”	is	a	technique	that	was
originally	developed	for	Yesod’s	authentication	framework,	but	which	has	more	general
usefulness.	Suppose	a	user	requests	a	page	that	requires	authentication.	If	the	user	is	not
yet	logged	in,	you	need	to	send	him	to	the	login	page.	A	well-designed	web	app	will	then
send	the	user	back	to	the	first	page	he	requested.	That’s	what	we	call	the	ultimate
destination.

redirectUltDest	sends	the	user	to	the	ultimate	destination	set	in	that	user’s	session,
clearing	that	value	from	the	session.	It	takes	a	default	destination	as	well,	in	case	there	is
no	destination	set.	For	setting	the	session,	there	are	three	options:

setUltDest	sets	the	destination	to	the	given	URL,	which	can	be	provided	either	as	a
textual	URL	or	a	type-safe	URL.

setUltDestCurrent	sets	the	destination	to	the	currently	requested	URL.

setUltDestReferer	sets	the	destination	based	on	the	Referer	header	(the	page	that
led	the	user	to	the	current	page).

Additionally,	there	is	the	clearUltDest	function,	to	drop	the	ultimate	destination	value
from	the	session	if	present.

Let’s	look	at	a	small	sample	app.	It	will	allow	the	user	to	set	her	name	in	the	session,	and
then	tell	the	user	her	name	from	another	route.	If	the	name	hasn’t	been	set	yet,	the	user
will	be	redirected	to	the	set	name	page,	with	an	ultimate	destination	set	to	come	back	to
the	current	page:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/									HomeR					GET

/setname		SetNameR		GET	POST

/sayhello	SayHelloR	GET

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>

												Set	your	name

								<p>

												Say	hello

				|]

--	Display	the	set	name	form

getSetNameR	::	Handler	Html

getSetNameR	=	defaultLayout

				[whamlet|

								<form	method=post>

												My	name	is	#

												<input	type=text	name=name>

												.	#

												<input	type=submit	value="Set	name">

				|]

--	Retrieve	the	submitted	name	from	the	user

postSetNameR	::	Handler	()

postSetNameR	=	do

				--	Get	the	submitted	name	and	set	it	in	the	session

				name	<-	runInputPost	$	ireq	textField	"name"

				setSession	"name"	name

				--	After	we	get	a	name,	redirect	to	the	ultimate	destination.

				--	If	no	destination	is	set,	default	to	the	homepage.

				redirectUltDest	HomeR

getSayHelloR	::	Handler	Html

getSayHelloR	=	do

				--	Look	up	the	name	value	set	in	the	session

				mname	<-	lookupSession	"name"

				case	mname	of

								Nothing	->	do

												--	No	name	in	the	session,	so	set	the	current	page	as

												--	the	ultimate	destination	and	redirect	to	the

												--	SetName	page

												setUltDestCurrent

												setMessage	"Please	tell	me	your	name"

												redirect	SetNameR

								Just	name	->	defaultLayout	[whamlet|<p>Welcome	#{name}|]

main	::	IO	()

main	=	warp	3000	App

Summary
Sessions	are	the	primary	means	by	which	we	bypass	the	statelessness	imposed	by	HTTP.
We	shouldn’t	consider	this	an	escape	hatch	to	perform	whatever	actions	we	want:
statelessness	in	web	applications	is	a	virtue,	and	we	should	respect	it	whenever	possible.
However,	there	are	specific	cases	where	it	is	vital	to	retain	some	state.

The	session	API	in	Yesod	is	very	simple.	It	provides	a	key/value	store	and	a	few
convenience	functions	built	on	top	for	common	use	cases.	If	used	properly,	with	small
payloads,	sessions	should	be	an	unobtrusive	part	of	your	web	development.

Chapter	10.	Persistent

Forms	deal	with	the	boundary	between	the	user	and	the	application.	Another	boundary	we
need	to	deal	with	is	between	the	application	and	the	storage	layer.	Whether	it	be	a	SQL
database,	a	YAML	file,	or	a	binary	blob,	odds	are	your	storage	layer	does	not	natively
understand	your	application’s	data	types,	and	you’ll	need	to	perform	some	marshaling.
Persistent	is	Yesod’s	answer	to	data	storage	—	a	type-safe,	universal	data	store	interface
for	Haskell.

Haskell	has	many	different	database	bindings	available.	However,	most	of	these	have	little
knowledge	of	a	schema	and	therefore	do	not	provide	useful	static	guarantees.	They	also
force	database-dependent	APIs	and	data	types	on	the	programmer.

Some	Haskellers	have	attempted	a	more	revolutionary	route:	creating	Haskell-specific
data	stores	that	allow	one	to	easily	store	any	strongly	typed	Haskell	data.	These	options
are	great	for	certain	use	cases,	but	they	constrain	one	to	the	storage	techniques	provided
by	the	library	and	do	not	interface	well	with	other	languages.

In	contrast,	Persistent	allows	us	to	choose	among	existing	databases	that	are	highly	tuned
for	different	data	storage	use	cases,	to	interoperate	with	other	programming	languages,	and
to	use	a	safe	and	productive	query	interface,	while	still	keeping	the	type	safety	of	Haskell
data	types.

Persistent	follows	the	guiding	principles	of	type	safety	and	concise,	declarative	syntax.
Some	other	nice	features	include	the	following:

Database	agnosticity

There	is	first-class	support	for	PostgreSQL,	SQLite,	MySQL,	and	MongoDB,	and
experimental	Redis	support.

Convenient	data	modeling

Persistent	lets	you	model	relationships	and	use	them	in	type-safe	ways.	The	default
type-safe	persistent	API	does	not	support	joins,	allowing	support	for	a	wider	number
of	storage	layers.	Joins	and	other	SQL-specific	functionality	can	be	achieved	through
using	a	raw	SQL	layer	(with	very	little	type	safety).	An	additional	library,	Esqueleto,
builds	on	top	of	the	Persistent	data	model,	adding	type-safe	joins	and	SQL
functionality.

Easy	database	migrations

Persistent	automatically	performs	database	migrations.

Persistent	works	well	with	Yesod,	but	it	is	quite	usable	on	its	own	as	a	standalone	library.
Most	of	this	chapter	will	address	Persistent	on	its	own.

Synopsis
{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import											Control.Monad.IO.Class		(liftIO)

import											Database.Persist

import											Database.Persist.Sqlite

import											Database.Persist.TH

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				deriving	Show

BlogPost

				title	String

				authorId	PersonId

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				johnId	<-	insert	$	Person	"John	Doe"	$	Just	35

				janeId	<-	insert	$	Person	"Jane	Doe"	Nothing

				insert	$	BlogPost	"My	fr1st	p0st"	johnId

				insert	$	BlogPost	"One	more	for	good	measure"	johnId

				oneJohnPost	<-	selectList	[BlogPostAuthorId	==.	johnId]	[LimitTo	1]

				liftIO	$	print	(oneJohnPost	::	[Entity	BlogPost])

				john	<-	get	johnId

				liftIO	$	print	(john	::	Maybe	Person)

				delete	janeId

				deleteWhere	[BlogPostAuthorId	==.	johnId]

NOTE
The	type	annotations	in	the	preceding	snippet	are	not	required	to	get	your	code	to	compile,	but	are	present
to	clarify	the	types	of	each	value.

Solving	the	Boundary	Issue
Suppose	you	are	storing	information	on	people	in	a	SQL	database.	Your	table	might	look
something	like:

CREATE	TABLE	person(id	SERIAL	PRIMARY	KEY,	name	VARCHAR	NOT	NULL,	age	INTEGER)

And	if	you	are	using	a	database	like	PostgreSQL,	you	can	be	guaranteed	that	the	database
will	never	store	some	arbitrary	text	in	your	age	field.	(The	same	cannot	be	said	of	SQLite,
but	let’s	forget	about	that	for	now.)	To	mirror	this	database	table,	you	would	likely	create	a
Haskell	data	type	that	looks	something	like:

data	Person	=	Person

				{	personName	::	Text

				,	personAge		::	Int

				}

It	looks	like	everything	is	type	safe:	the	database	schema	matches	our	Haskell	data	types,
the	database	ensures	that	invalid	data	can	never	make	it	into	our	data	store,	and	everything
is	generally	awesome.	Well,	until	you	encounter	scenarios	such	as	the	following:

You	want	to	pull	data	from	the	database,	and	the	database	layer	gives	you	the	data	in
an	untyped	format.

You	want	to	find	everyone	older	than	32,	and	you	accidentally	write	“thirtytwo”	in
your	SQL	statement.	Guess	what:	that	will	compile	just	fine,	and	you	won’t	find	out
you	have	a	problem	until	runtime.

You	decide	you	want	to	find	the	first	10	people	alphabetically.	No	problem…	until
you	make	a	typo	in	your	SQL.	Once	again,	you	don’t	find	out	until	runtime.

In	dynamic	languages,	the	answer	to	these	issues	is	unit	testing.	For	everything	that	can	go
wrong,	make	sure	you	write	a	test	case.	But	as	I	am	sure	you	are	aware	by	now,	that
doesn’t	jive	well	with	the	Yesod	approach	to	things.	We	like	to	take	advantage	of	Haskell’s
strong	typing	to	save	us	wherever	possible,	and	data	storage	is	no	exception.

So	the	question	remains:	how	can	we	use	Haskell’s	type	system	to	save	the	day?

Types
Like	routing,	there	is	nothing	intrinsically	difficult	about	type-safe	data	access.	It	just
requires	a	lot	of	monotonous,	error-prone	boilerplate	code.	As	usual,	this	means	we	can
use	the	type	system	to	keep	us	honest.	And	to	avoid	some	of	the	drudgery,	we’ll	use	a
sprinkling	of	Template	Haskell.

PersistValue	is	the	basic	building	block	of	Persistent.	It	is	a	sum	type	that	can	represent
data	that	gets	sent	to	and	from	a	database.	Its	definition	is:

data	PersistValue

				=	PersistText	Text

				|	PersistByteString	ByteString

				|	PersistInt64	Int64

				|	PersistDouble	Double

				|	PersistRational	Rational

				|	PersistBool	Bool

				|	PersistDay	Day

				|	PersistTimeOfDay	TimeOfDay

				|	PersistUTCTime	UTCTime

				|	PersistNull

				|	PersistList	[PersistValue]

				|	PersistMap	[(Text,	PersistValue)]

				|	PersistObjectId	ByteString

				--	^	Intended	especially	for	MongoDB	backend

				|	PersistDbSpecific	ByteString

				--	^	Using	'PersistDbSpecific'	allows	you	to	use	types

				--	specific	to	a	particular	backend

Each	Persistent	backend	needs	to	know	how	to	translate	the	relevant	values	into	something
the	database	can	understand.	However,	it	would	be	awkward	to	have	to	express	all	of	our
data	simply	in	terms	of	these	basic	types.	The	next	layer	is	the	PersistField	typeclass,
which	defines	how	an	arbitrary	Haskell	data	type	can	be	marshaled	to	and	from	a
PersistValue.	A	PersistField	correlates	to	a	column	in	a	SQL	database.	In	our	person
example,	name	and	age	would	be	our	PersistFields.

To	tie	up	the	user	side	of	the	code,	our	last	typeclass	is	PersistEntity.	An	instance	of
PersistEntity	correlates	with	a	table	in	a	SQL	database.	This	typeclass	defines	a	number
of	functions	and	some	associated	types.	To	review,	we	have	the	following	correspondence
between	Persistent	and	SQL:

SQL Persistent

Data	type	(VARCHAR,	INTEGER,	etc.) PersistValue

Column PersistField

Table PersistEntity

Code	Generation
In	order	to	ensure	that	the	PersistEntity	instances	match	up	properly	with	your	Haskell
data	types,	Persistent	takes	responsibility	for	both.	This	is	also	good	from	a	DRY	(Don’t
Repeat	Yourself)	perspective:	you	only	need	to	define	your	entities	once.	Let’s	see	a	quick
example:

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.TH

import	Database.Persist.Sqlite

import	Control.Monad.IO.Class	(liftIO)

mkPersist	sqlSettings	[persistLowerCase|

Person

				name	String

				age	Int

				deriving	Show

|]

We	use	a	combination	of	Template	Haskell	and	quasiquotation	(like	when	defining
routes):	persistLowerCase	is	a	quasiquoter	that	converts	a	whitespace-sensitive	syntax
into	a	list	of	entity	definitions.	LowerCase	refers	to	the	format	of	the	generated	table
names.	In	this	scheme,	an	entity	like	SomeTable	would	become	the	SQL	table	some_table.
You	can	also	declare	your	entities	in	a	separate	file	using	persistFileWith.	mkPersist
takes	that	list	of	entities	and	declares:

One	Haskell	data	type	for	each	entity

A	PersistEntity	instance	for	each	data	type	defined

The	preceding	example	generates	code	that	looks	like	the	following:

{-#	LANGUAGE	TypeFamilies,	GeneralizedNewtypeDeriving,

OverloadedStrings,	GADTs	#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Control.Monad.IO.Class	(liftIO)

import	Control.Applicative

data	Person	=	Person

				{	personName	::	!String

				,	personAge	::	!Int

				}

		deriving	Show

type	PersonId	=	Key	Person

instance	PersistEntity	Person	where

				newtype	Key	Person	=	PersonKey	(BackendKey	SqlBackend)

								deriving	(PersistField,	Show,	Eq,	Read,	Ord)

				--	A	generalized	algebraic	data	type	(GADT).

				--	This	gives	us	a	type-safe	approach	to	matching	fields	with

				--	their	data	types.

				data	EntityField	Person	typ	where

								PersonId			::	EntityField	Person	PersonId

								PersonName	::	EntityField	Person	String

								PersonAge		::	EntityField	Person	Int

				data	Unique	Person

				type	PersistEntityBackend	Person	=	SqlBackend

				toPersistFields	(Person	name	age)	=

								[SomePersistField	name

								,	SomePersistField	age

]

				fromPersistValues	[nameValue,	ageValue]	=	Person

								<$>	fromPersistValue	nameValue

								<*>	fromPersistValue	ageValue

				fromPersistValues	_	=	Left	"Invalid	fromPersistValues	input"

				--	Information	on	each	field,	used	internally	to	generate	SQL	statements

				persistFieldDef	PersonId	=	FieldDef

								(HaskellName	"Id")

								(DBName	"id")

								(FTTypeCon	Nothing	"PersonId")

								SqlInt64

								[]

								True

								NoReference

				persistFieldDef	PersonName	=	FieldDef

								(HaskellName	"name")

								(DBName	"name")

								(FTTypeCon	Nothing	"String")

								SqlString

								[]

								True

								NoReference

				persistFieldDef	PersonAge	=	FieldDef

								(HaskellName	"age")

								(DBName	"age")

								(FTTypeCon	Nothing	"Int")

								SqlInt64

								[]

								True

								NoReference

As	you	might	expect,	our	Person	data	type	closely	matches	the	definition	we	gave	in	the
original	Template	Haskell	version.	We	also	have	a	generalized	algebraic	data	type
(GADT)	that	gives	a	separate	constructor	for	each	field.	This	GADT	encodes	both	the	type
of	the	entity	and	the	type	of	the	field.	We	use	its	constructors	throughout	Persistent,	such
as	to	ensure	that	when	we	apply	a	filter,	the	types	of	the	filtering	value	match	the	field.
There’s	another	associated	newtype	for	the	database	primary	key	of	this	entity.

We	can	use	the	generated	Person	type	like	any	other	Haskell	type,	and	then	pass	it	off	to
other	Persistent	functions:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import											Control.Monad.IO.Class		(liftIO)

import											Database.Persist

import											Database.Persist.Sqlite

import											Database.Persist.TH

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				michaelId	<-	insert	$	Person	"Michael"	$	Just	26

				michael	<-	get	michaelId

				liftIO	$	print	michael

NOTE
This	code	compiles,	but	will	generate	a	runtime	exception	about	a	missing	table.	We’ll	explain	and	address
that	problem	next.

We	start	off	with	some	standard	database	connection	code.	In	this	case,	we	used	the	single-
connection	functions.	Persistent	also	comes	built	in	with	connection	pool	functions,	which
we	will	generally	want	to	use	in	production.

In	this	example,	we	have	seen	two	functions.	insert	creates	a	new	record	in	the	database
and	returns	its	ID.	Like	everything	else	in	Persistent,	IDs	are	type	safe.	(We’ll	get	into
more	details	of	how	these	IDs	work	later.)	So,	when	you	call	insert	$	Person
"Michael"	26,	it	gives	you	a	value	back	of	type	PersonId.

The	next	function	we	see	is	get,	which	attempts	to	load	a	value	from	the	database	using	an
Id.	In	Persistent,	you	never	need	to	worry	that	you	are	using	the	key	from	the	wrong	table:
trying	to	load	up	a	different	entity	(like	House)	using	a	PersonId	will	never	compile.

PersistStore
One	last	detail	is	left	unexplained	from	the	previous	example:	what	exactly	does
runSqlite	do,	and	what	is	that	monad	that	our	database	actions	are	running	in?

All	database	actions	require	a	parameter	that	is	an	instance	of	PersistStore.	As	its	name
implies,	every	data	store	(PostgreSQL,	SQLite,	MongoDB)	has	an	instance	of
PersistStore.	This	is	where	all	the	translations	from	PersistValue	to	database-specific
values	occur,	where	SQL	query	generation	happens,	and	so	on.

NOTE
As	you	can	imagine,	even	though	PersistStore	provides	a	safe,	well-typed	interface	to	the	outside	world,
there	are	a	lot	of	database	interactions	that	could	go	wrong.	However,	by	testing	this	code	automatically	and
thoroughly	in	a	single	location,	we	can	centralize	our	error-prone	code	and	make	sure	it	is	as	bug-free	as
possible.

runSqlite	creates	a	single	connection	to	a	database	using	its	supplied	connection	string.
For	our	test	cases,	we	will	use	:memory:,	which	uses	an	in-memory	database.	All	of	the
SQL	backends	share	the	same	instance	of	PersistStore:	SqlBackend.	runSqlite	then
provides	the	SqlBackend	value	as	an	environment	parameter	to	the	action	via	runReaderT.

NOTE
There	are	actually	a	couple	of	other	typeclasses:	PersistUpdate	and	PersistQuery.	Different	typeclasses
provide	different	functionality,	which	allows	us	to	write	backends	that	use	simpler	data	stores	(e.g.,	Redis)
even	though	they	can’t	provide	us	with	all	the	high-level	functionality	available	in	Persistent.

One	important	thing	to	note	is	that	everything	that	occurs	inside	a	single	call	to	runSqlite
runs	in	a	single	transaction.	This	has	two	important	implications:

For	many	databases,	committing	a	transaction	can	be	a	costly	activity.	By	putting
multiple	steps	into	a	single	transaction,	you	can	speed	up	code	dramatically.

If	an	exception	is	thrown	anywhere	inside	a	single	call	to	runSqlite,	all	actions	will
be	rolled	back	(assuming	your	backend	has	rollback	support).

NOTE
This	actually	has	farther-reaching	impact	than	it	may	initially	seem.	A	number	of	the	short-circuit
functions	in	Yesod,	such	as	redirects,	are	implemented	using	exceptions.	If	you	use	such	a	call	from
inside	a	Persistent	block,	it	will	roll	back	the	entire	transaction.

Migrations
I’m	sorry	to	tell	you,	but	so	far	I	have	lied	to	you	a	bit:	the	example	from	the	previous
section	does	not	actually	work.	If	you	try	to	run	it,	you	will	get	an	error	message	about	a
missing	table.

For	SQL	databases,	one	of	the	major	pains	can	be	managing	schema	changes.	Instead	of
leaving	this	to	the	user,	Persistent	steps	in	to	help,	but	you	have	to	ask	it	to	help.	Let’s	see
what	this	looks	like:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.TH

import	Database.Persist.Sqlite

import	Control.Monad.IO.Class	(liftIO)

share	[mkPersist	sqlSettings,	mkSave	"entityDefs"]	[persistLowerCase|

Person

				name	String

				age	Int

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				--	this	line	added:	that's	it!

				runMigration	$	migrate	entityDefs	$	entityDef	(Nothing	::	Maybe	Person)

				michaelId	<-	insert	$	Person	"Michael"	26

				michael	<-	get	michaelId

				liftIO	$	print	michael

With	this	one	little	code	change,	Persistent	will	automatically	create	your	Person	table	for
you.	This	split	between	runMigration	and	migrate	allows	you	to	migrate	multiple	tables
simultaneously.

This	works	when	dealing	with	just	a	few	entities,	but	can	quickly	get	tiresome	once	you
are	dealing	with	a	dozen	entities.	Instead	of	repeating	yourself,	Persistent	provides	a
helper	function,	mkMigrate:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int

				deriving	Show

Car

				color	String

				make	String

				model	String

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do	runMigration	migrateAll

mkMigrate	is	a	Template	Haskell	function	that	creates	a	new	function	that	will
automatically	call	migrate	on	all	entities	defined	in	the	persist	block.	The	share
function	is	just	a	little	helper	that	passes	the	information	from	the	persist	block	to	each
Template	Haskell	function	and	concatenates	the	results.

Persistent	has	very	conservative	rules	about	what	it	will	do	during	a	migration.	It	starts	by
loading	up	table	information	from	the	database,	complete	with	all	defined	SQL	data	types.
It	then	compares	that	against	the	entity	definition	given	in	the	code.	For	the	following
cases,	it	will	automatically	alter	the	schema:

The	data	type	of	a	field	changed.	However,	the	database	may	object	to	this
modification	if	the	data	cannot	be	translated.

A	field	was	added.	However,	if	the	field	is	not	null,	no	default	value	is	supplied
(we’ll	discuss	defaults	later),	and	there	is	already	data	in	the	database,	the	database
will	not	allow	this	to	happen.

A	field	was	converted	from	not	null	to	null.	In	the	opposite	case,	Persistent	will
attempt	the	conversion,	contingent	upon	the	database’s	approval.

A	brand	new	entity	was	added.

However,	there	are	some	cases	that	Persistent	will	not	handle:

Field	or	entity	renames

Persistent	has	no	way	of	knowing	that	name	has	now	been	renamed	to	fullName:	all	it
sees	is	an	old	field	called	name	and	a	new	field	called	fullName.

Field	removals

Because	this	can	result	in	data	loss,	Persistent	by	default	will	refuse	to	perform	the
action	(you	can	force	the	issue	by	using	runMigrationUnsafe	instead	of
runMigration,	though	it	is	not	recommended).

runMigration	will	print	out	the	migrations	it	is	running	on	stderr	(you	can	bypass	this	by
using	runMigrationSilent).	Whenever	possible,	it	uses	ALTER	TABLE	calls.	However,	in
SQLite,	ALTER	TABLE	has	very	limited	abilities,	and	therefore	Persistent	must	resort	to
copying	the	data	from	one	table	to	another.

Finally,	if	instead	of	performing	a	migration	you	want	Persistent	to	give	you	hints	about
what	migrations	are	necessary,	use	the	printMigration	function.	This	function	will	print
out	the	migrations	that	runMigration	would	perform	for	you.	This	may	be	useful	for
performing	migrations	that	Persistent	is	not	capable	of,	for	adding	arbitrary	SQL	to	a
migration,	or	just	to	log	what	migrations	occurred.

Uniqueness
In	addition	to	declaring	fields	within	an	entity,	you	can	also	declare	uniqueness
constraints.	A	typical	example	would	be	requiring	that	a	username	be	unique:

User

				username	Text

				UniqueUsername	username

Each	field	name	must	begin	with	a	lowercase	letter,	but	the	uniqueness	constraint	must
begin	with	an	uppercase	letter	because	it	will	be	represented	in	Haskell	as	a	data
constructor:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Data.Time

import	Control.Monad.IO.Class	(liftIO)

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				firstName	String

				lastName	String

				age	Int

				PersonName	firstName	lastName

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				insert	$	Person	"Michael"	"Snoyman"	26

				michael	<-	getBy	$	PersonName	"Michael"	"Snoyman"

				liftIO	$	print	michael

To	declare	a	unique	combination	of	fields,	we	add	an	extra	line	to	our	declaration.
Persistent	knows	that	it	is	defining	a	unique	constructor,	because	the	line	begins	with	a
capital	letter.	Each	following	word	must	be	a	field	in	this	entity.

The	main	restriction	on	uniqueness	is	that	it	can	only	be	applied	to	non-null	fields.	The
reason	for	this	is	that	the	SQL	standard	is	ambiguous	on	how	uniqueness	should	be
applied	to	NULL	(e.g.,	is	NULL=NULL	true	or	false?).	Besides	that	ambiguity,	most	SQL
engines	in	fact	implement	rules	that	would	be	contrary	to	what	the	Haskell	data	types
anticipate	(e.g.,	PostgreSQL	says	that	NULL=NULL	is	false,	whereas	Haskell	says	Nothing
==	Nothing	is	true).

In	addition	to	providing	nice	guarantees	at	the	database	level	about	the	consistency	of	your
data,	uniqueness	constraints	can	also	be	used	to	perform	some	specific	queries	within	your

Haskell	code,	like	the	getBy	demonstrated	earlier.	This	happens	via	the	Unique	associated
type.	In	the	preceding	example,	we	end	up	with	a	new	constructor:

PersonName	::	String	->	String	->	Unique	Person

NOTE
With	the	MongoDB	backend,	a	uniqueness	constraint	cannot	be	created:	you	must	place	a	unique	index	on
the	field.

Queries
Depending	on	what	your	goal	is,	there	are	different	approaches	to	querying	the	database.
Some	commands	query	based	on	a	numeric	ID,	while	others	will	filter.	Queries	also	differ
in	the	number	of	results	they	return:	some	lookups	should	return	no	more	than	one	result
(if	the	lookup	key	is	unique),	while	others	can	return	many	results.

Persistent	therefore	provides	a	few	different	query	functions.	As	usual,	we	try	to	encode	as
many	invariants	in	the	types	as	possible.	For	example,	a	query	that	can	return	only	zero	or
one	result	will	use	a	Maybe	wrapper,	whereas	a	query	returning	many	results	will	return	a
list.

Fetching	by	ID
The	simplest	query	you	can	perform	in	Persistent	is	getting	based	on	an	ID.	Because	this
value	may	or	may	not	exist,	its	return	type	is	wrapped	in	a	Maybe:

personId	<-	insert	$	Person	"Michael"	"Snoyman"	26

maybePerson	<-	get	personId

case	maybePerson	of

				Nothing	->	liftIO	$	putStrLn	"Just	kidding,	not	really	there"

				Just	person	->	liftIO	$	print	person

This	can	be	very	useful	for	sites	that	provide	URLs	like	/person/5.	However,	in	such	a
case,	we	don’t	usually	care	about	the	Maybe	wrapper	and	just	want	the	value,	returning	a
404	message	if	it	is	not	found.	Fortunately,	the	get404	function	(provided	by	the	yesod-
persistent	package)	helps	us	out	here.	We’ll	go	into	more	details	when	we	look	at
integration	with	Yesod.

Fetching	by	Unique	Constraint
getBy	is	almost	identical	to	get,	except:

It	takes	a	uniqueness	constraint	(i.e.,	instead	of	an	ID	it	takes	a	Unique	value).

It	returns	an	Entity	instead	of	a	value.	An	Entity	is	a	combination	of	database	ID
and	value:

personId	<-	insert	$	Person	"Michael"	"Snoyman"	26

maybePerson	<-	getBy	$	PersonName	"Michael"	"Snoyman"

case	maybePerson	of

				Nothing	->	liftIO	$	putStrLn	"Just	kidding,	not	really	there"

				Just	(Entity	personId	person)	->	liftIO	$	print	person

Like	get404,	there	is	also	a	getBy404	function.

Select	Functions
Most	likely,	you’re	going	to	want	more	powerful	queries.	You’ll	want	to	find	everyone
over	a	certain	age;	all	cars	available	in	blue;	all	users	without	a	registered	email	address.
For	this,	you	need	one	of	the	select	functions.

All	the	select	functions	use	a	similar	interface,	with	slightly	different	outputs.	They	are:

selectSource

Returns	a	Source	containing	all	the	IDs	and	values	from	the	database.	This	allows
you	to	write	streaming	code.

selectList

Returns	a	list	containing	all	the	IDs	and	values	from	the	database.	All	records	will	be
loaded	into	memory.

selectFirst

Takes	just	the	first	ID	and	value	from	the	database,	if	available.

selectKeys

Returns	only	the	keys,	without	the	values,	as	a	Source.

A	Source	is	a	stream	of	data,	and	is	part	of	the	conduit	package.	I	recommend	reading	the
School	of	Haskell	conduit	tutorial	to	get	started.

selectList	is	the	most	commonly	used,	so	we	will	cover	it	specifically.	Understanding
the	others	should	be	trivial	after	that.

selectList	takes	two	arguments:	a	list	of	Filters,	and	a	list	of	SelectOpts.	The	former
is	what	limits	your	results	based	on	characteristics;	it	allows	for	equals,	less	than,	is
member	of,	and	such.	The	SelectOpts	list	provides	for	three	different	features:	sorting,
limiting	output	to	a	certain	number	of	rows,	and	offsetting	results	by	a	certain	number	of
rows.

NOTE
The	combination	of	limits	and	offsets	is	very	important;	it	allows	for	efficient	pagination	in	your	web	apps.

Let’s	jump	straight	into	an	example	of	filtering,	and	then	analyze	it:

people	<-	selectList	[PersonAge	>.	25,	PersonAge	<=.	30]	[]

liftIO	$	print	people

As	simple	as	that	example	is,	we	really	need	to	cover	three	points:

PersonAge	is	a	constructor	for	an	associated	phantom	type.	That	might	sound	scary,
but	what’s	important	is	that	it	uniquely	identifies	the	“age”	column	of	the	“person”
table,	and	that	it	knows	that	the	age	field	is	an	Int.	(That’s	the	phantom	part.)

We	have	a	bunch	of	Persistent	filtering	operators.	They’re	all	pretty	straight-forward:
just	tack	a	period	onto	the	end	of	what	you’d	expect.	There	are	three	gotchas	here,
which	I’ll	explain	momentarily.

The	list	of	filters	is	ANDed	together,	so	that	our	constraint	means	“age	is	greater	than
25	AND	age	is	less	than	or	equal	to	30.”	We’ll	describe	ORing	later.

The	one	operator	that’s	surprisingly	named	is	“not	equals.”	We	use	!=.,	because	/=.	is
used	for	updates	(described	later).	Don’t	worry:	if	you	use	the	wrong	one,	the	compiler
will	catch	you.	The	other	two	surprising	operators	are	“is	member”	and	“is	not	member.”
They	are,	respectively,	<-.	and	/<-.	(both	end	with	a	period).

And	regarding	ORs,	we	use	the	||.	operator.	For	example:

people	<-	selectList

				([PersonAge	>.	25,	PersonAge	<=.	30]

								||.	[PersonFirstName	/<-.	["Adam",	"Bonny"]]

								||.	([PersonAge	==.	50]	||.	[PersonAge	==.	60])

)

				[]

liftIO	$	print	people

This	(completely	nonsensical)	example	means:	find	people	who	are	26–30	years	old,
inclusive,	OR	whose	names	are	neither	Adam	nor	Bonny,	OR	whose	age	is	either	50	or	60.

SelectOpt

All	of	our	selectList	calls	have	included	an	empty	list	as	the	second	parameter.	That
specifies	no	options,	meaning:	sort	however	the	database	wants,	return	all	results,	and
don’t	skip	any	results.	A	SelectOpt	has	four	constructors	that	can	be	used	to	change	all
that:
Asc

Sorts	by	the	given	column	in	ascending	order.	This	uses	the	same	phantom	type	as
filtering,	such	as	PersonAge.

Desc

Same	as	Asc,	but	in	descending	order.
LimitTo

Takes	an	Int	argument.	Only	returns	up	to	the	specified	number	of	results.
OffsetBy

Takes	an	Int	argument.	Skips	the	specified	number	of	results.

The	following	code	defines	a	function	that	will	break	down	results	into	pages.	It	returns	all
people	aged	18	and	over,	and	then	sorts	them	by	age	(oldest	person	first).	People	with	the
same	age	are	sorted	alphabetically	by	last	name,	then	first	name:

resultsForPage	pageNumber	=	do

				let	resultsPerPage	=	10

				selectList

								[PersonAge	>=.	18

]

								[Desc	PersonAge

								,	Asc	PersonLastName

								,	Asc	PersonFirstName

								,	LimitTo	resultsPerPage

								,	OffsetBy	$	(pageNumber	-	1)	*	resultsPerPage

]

Manipulation
Querying	is	only	half	the	battle.	We	also	need	to	be	able	to	add	data	to	and	modify	existing
data	in	the	database.

Insert
It’s	all	well	and	good	to	be	able	to	play	with	data	in	the	database,	but	how	does	it	get	there
in	the	first	place?	The	answer	is	the	insert	function.	You	just	give	it	a	value,	and	it	gives
back	an	ID.

At	this	point,	it	makes	sense	to	explain	a	bit	of	the	philosophy	behind	Persistent.	In	many
other	object-relational	mapping	(ORM)	solutions,	the	data	types	used	to	hold	data	are
opaque:	you	need	to	go	through	their	defined	interfaces	to	get	at	and	modify	the	data.
That’s	not	the	case	with	Persistent:	we’re	using	plain	old	algebraic	data	types	for	the
whole	thing.	This	means	you	still	get	all	the	great	benefits	of	pattern	matching,	currying,
and	everything	else	you’re	used	to.

There	are	a	few	things	you	can’t	do.	For	one,	there’s	no	way	to	automatically	update
values	in	the	database	every	time	the	record	is	updated	in	Haskell.	Of	course,	with
Haskell’s	normal	stance	of	purity	and	immutability,	this	wouldn’t	make	much	sense
anyway,	so	I	don’t	shed	any	tears	over	it.

However,	there	is	one	issue	that	newcomers	are	often	bothered	by:	why	are	IDs	and	values
completely	separate?	It	seems	like	it	would	be	very	logical	to	embed	the	ID	inside	the
value.	In	other	words,	instead	of	having:

data	Person	=	Person	{	name	::	String	}

have:

data	Person	=	Person	{	personId	::	PersonId,	name	::	String	}

Well,	there’s	one	problem	with	this	right	off	the	bat:	how	do	we	do	an	insert?	If	a	Person
needs	to	have	an	Id,	and	we	get	the	Id	by	inserting,	and	an	insert	needs	a	Person,	we
have	an	impossible	loop.	We	could	solve	this	with	undefined,	but	that’s	just	asking	for
trouble.

OK,	you	say,	let’s	try	something	a	bit	safer:

data	Person	=	Person	{	personId	::	Maybe	PersonId,	name	::	String	}

Most	definitely	prefer	insert	$	Person	Nothing	"Michael"	to	insert	$	Person
undefined	"Michael".	And	now	our	types	will	be	much	simpler,	right?	For	example,
selectList	could	return	a	simple	[Person]	instead	of	that	ugly	[Entity	SqlPersist
Person].

The	problem	is	that	the	“ugliness”	is	incredibly	useful.	Having	Entity	Person	makes	it
obvious,	at	the	type	level,	that	we’re	dealing	with	a	value	that	exists	in	the	database.	Let’s
say	we	want	to	create	a	link	to	another	page	that	requires	the	PersonId	(not	an	uncommon

occurrence,	as	we’ll	discuss	later).	The	Entity	Person	form	gives	us	unambiguous	access
to	that	information;	embedding	PersonId	within	Person	with	a	Maybe	wrapper	means	an
extra	runtime	check	for	Just,	instead	of	a	more	error-proof	compile-time	check.

Finally,	there’s	a	semantic	mismatch	with	embedding	the	ID	within	the	value.	The	Person
is	the	value.	Two	people	are	identical	(in	the	context	of	Haskell)	if	all	their	fields	are	the
same.	By	embedding	the	ID	in	the	value,	we’re	no	longer	talking	about	a	person,	but	about
a	row	in	the	database.	Equality	is	no	longer	really	equality,	it’s	identity;	we	want	to	know
if	this	is	the	same	person,	as	opposed	to	an	equivalent	person.

In	other	words,	there	are	some	annoyances	with	having	the	ID	separated	out,	but	overall,
it’s	the	right	approach,	which	in	the	grand	scheme	of	things	leads	to	better,	less	buggy
code.

Update
Now,	in	the	context	of	that	discussion,	let’s	think	about	updating.	The	simplest	way	to
update	is:

let	michael	=	Person	"Michael"	26

				michaelAfterBirthday	=	michael	{	personAge	=	27	}

But	that’s	not	actually	updating	anything;	it’s	just	creating	a	new	Person	value	based	on
the	old	one.	When	we	say	“update,”	we’re	not	talking	about	modifications	to	the	values	in
Haskell	(we’d	better	not	be,	of	course,	because	data	in	Haskell	is	immutable).

Instead,	we’re	looking	at	ways	of	modifying	rows	in	a	table.	And	the	simplest	way	to	do
that	is	with	the	update	function:

personId	<-	insert	$	Person	"Michael"	"Snoyman"	26

update	personId	[PersonAge	=.	27]

update	takes	two	arguments:	an	ID,	and	a	list	of	updates.	The	simplest	update	is
assignment,	but	it’s	not	always	the	best.	What	if	you	want	to	increase	someone’s	age	by	1,
but	you	don’t	have	that	person’s	current	age?	Persistent	has	you	covered:

haveBirthday	personId	=	update	personId	[PersonAge	+=.	1]

And	as	you	might	expect,	we	have	all	the	basic	mathematical	operators:	+=.,	-=.,	*=.,	and
/=.	(full	stop).	These	can	be	convenient	for	updating	a	single	record,	but	they	are	also
essential	for	proper	ACID	guarantees.	Imagine	the	alternative:	pull	out	a	Person,
increment	the	age,	and	update	the	new	value.	If	you	have	two	threads/processes	working
on	this	database	at	the	same	time,	you’re	in	for	a	world	of	hurt	(hint:	race	conditions).

Sometimes	you’ll	want	to	update	many	rows	at	once	(give	all	your	employees	a	5%	pay
increase,	for	example).	updateWhere	takes	two	parameters	—	a	list	of	filters,	and	a	list	of
updates	to	apply:

updateWhere	[PersonFirstName	==.	"Michael"]	[PersonAge	*=.	2]

--	it's	been	a	long	day

Occasionally,	you’ll	just	want	to	completely	replace	the	value	in	a	database	with	a
different	value.	For	that,	you	use	(surprise)	the	replace	function:

personId	<-	insert	$	Person	"Michael"	"Snoyman"	26

replace	personId	$	Person	"John"	"Doe"	20

Delete
As	much	as	it	pains	us,	sometimes	we	must	part	with	our	data.	To	do	so,	we	have	three
functions:
delete

Deletes	based	on	an	ID
deleteBy

Deletes	based	on	a	unique	constraint
deleteWhere

Deletes	based	on	a	set	of	filters:

personId	<-	insert	$	Person	"Michael"	"Snoyman"	26

delete	personId

deleteBy	$	PersonName	"Michael"	"Snoyman"

deleteWhere	[PersonFirstName	==.	"Michael"]

We	can	even	use	deleteWhere	to	wipe	out	all	the	records	in	a	table;	we	just	need	to	give
some	hints	to	GHC	as	to	what	table	we’re	interested	in:

				deleteWhere	([]	::	[Filter	Person])

Attributes
So	far,	we	have	seen	a	basic	syntax	for	our	persistLowerCase	blocks:	a	line	for	the	name
of	our	entities;	and	then	an	indented	line	for	each	field	with	two	words,	the	name	of	the
field	and	the	data	type	of	the	field.	Persistent	handles	more	than	this,	though	you	can
assign	an	arbitrary	list	of	attributes	after	the	first	two	words	on	a	line.

Suppose	we	want	to	have	a	Person	entity	with	an	(optional)	age	and	the	timestamp	of
when	the	entity	was	added	to	the	system.	For	entities	already	in	the	database,	we	want	to
just	use	the	current	date-time	for	that	timestamp:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Data.Time

import	Control.Monad.IO.Class

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				created	UTCTime	default=CURRENT_TIME

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				time	<-	liftIO	getCurrentTime

				runMigration	migrateAll

				insert	$	Person	"Michael"	(Just	26)	time

				insert	$	Person	"Greg"	Nothing	time

				return	()

Maybe	is	a	built-in,	single-word	attribute.	It	makes	the	field	optional.	In	Haskell,	this
means	it	is	wrapped	in	a	Maybe.	In	SQL,	it	makes	the	column	nullable.

The	default	attribute	is	backend-specific	and	uses	whatever	syntax	is	understood	by	the
database.	In	this	case,	it	uses	the	database’s	built-in	CURRENT_TIME	function.	Suppose	that
we	now	want	to	add	a	field	for	a	person’s	favorite	programming	language:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Data.Time

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				created	UTCTime	default=CURRENT_TIME

				language	String	default='Haskell'

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

NOTE
The	default	attribute	has	absolutely	no	impact	on	the	Haskell	code	itself;	you	still	need	to	fill	in	all	values.
This	will	only	affect	the	database	schema	and	automatic	migrations.

We	need	to	surround	the	string	with	single	quotes	so	that	the	database	can	properly
interpret	it.	Finally,	Persistent	can	use	double	quotes	for	containing	whitespace,	so	if	we
want	to	set	someone’s	default	home	country	to	be	El	Salvador,	we	would	use	the
following:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Data.Time

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				created	UTCTime	default=CURRENT_TIME

				language	String	default='Haskell'

				country	String	"default='El	Salvador'"

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

One	last	trick	you	can	do	with	attributes	is	to	specify	the	names	to	be	used	for	the	SQL
tables	and	columns.	This	can	be	convenient	when	interacting	with	existing	databases:

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person	sql=the-person-table	id=numeric_id

				firstName	String	sql=first_name

				lastName	String	sql=fldLastName

				age	Int	"sql=The	Age	of	the	Person"

				PersonName	firstName	lastName

				deriving	Show

|]

There	are	a	number	of	other	features	to	the	entity	definition	syntax.	An	up-to-date	list	is
maintained	on	the	Persistent	wiki.

Relations
Persistent	allows	references	between	your	data	types	in	a	manner	that	is	consistent	with
supporting	non-SQL	databases.	You	do	this	by	embedding	an	ID	in	the	related	entity.	So	if
a	person	has	many	cars:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Control.Monad.IO.Class	(liftIO)

import	Data.Time

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				deriving	Show

Car

				ownerId	PersonId

				name	String

				deriving	Show

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				bruce	<-	insert	$	Person	"Bruce	Wayne"

				insert	$	Car	bruce	"Bat	Mobile"

				insert	$	Car	bruce	"Porsche"

				--	this	could	go	on	a	while

				cars	<-	selectList	[CarOwnerId	==.	bruce]	[]

				liftIO	$	print	cars

Using	this	technique,	you	can	define	one-to-many	relationships.	To	define	many-to-many
relationships,	you	need	a	join	entity,	which	has	a	one-to-many	relationship	with	each	of
the	original	tables.	It	is	also	a	good	idea	to	use	uniqueness	constraints	on	these.	For
example,	to	model	a	situation	where	we	want	to	track	which	people	have	shopped	in
which	stores:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Data.Time

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

Store

				name	String

PersonStore

				personId	PersonId

				storeId	StoreId

				UniquePersonStore	personId	storeId

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				bruce	<-	insert	$	Person	"Bruce	Wayne"

				michael	<-	insert	$	Person	"Michael"

				target	<-	insert	$	Store	"Target"

				gucci	<-	insert	$	Store	"Gucci"

				sevenEleven	<-	insert	$	Store	"7-11"

				insert	$	PersonStore	bruce	gucci

				insert	$	PersonStore	bruce	sevenEleven

				insert	$	PersonStore	michael	target

				insert	$	PersonStore	michael	sevenEleven

				return	()

A	Closer	Look	at	Types
So	far,	we’ve	spoken	about	Person	and	PersonId	without	really	explaining	what	they	are.
In	the	simplest	sense,	for	a	SQL-only	system,	the	PersonId	could	just	be	type	PersonId
=	Int64.	However,	that	means	there	is	nothing	binding	a	PersonId	at	the	type	level	to	the
Person	entity.	As	a	result,	you	could	accidentally	use	a	PersonId	and	get	a	Car.	In	order	to
model	this	relationship,	we	could	use	phantom	types.	So,	our	next	naive	step	would	be:

newtype	Key	entity	=	Key	Int64

type	PersonId	=	Key	Person

And	that	works	out	really	well,	until	you	get	to	a	backend	that	doesn’t	use	Int64	for	its
IDs.	And	that’s	not	just	a	theoretical	possibility;	MongoDB	uses	ByteStrings	instead.	So
what	we	need	is	a	key	value	that	can	contain	an	Int	and	a	ByteString.	Seems	like	a	great
time	for	a	sum	type:

data	Key	entity	=	KeyInt	Int64	|	KeyByteString	ByteString

But	that’s	just	asking	for	trouble.	Next	we’ll	have	a	backend	that	uses	timestamps,	so	we’ll
need	to	add	another	constructor	to	Key.	This	could	go	on	for	a	while.	Fortunately,	we
already	have	a	sum	type	intended	for	representing	arbitrary	data,	called	PersistValue:

newtype	Key	entity	=	Key	PersistValue

And	this	is	(more	or	less)	what	Persistent	did	until	version	2.0.	However,	this	has	a
different	problem:	it	throws	away	data.	For	example,	when	dealing	with	a	SQL	database,
we	know	that	the	key	type	will	be	an	Int64	(assuming	defaults	are	being	used).	However,
we	can’t	assert	that	at	the	type	level	with	this	construction.	So	instead,	starting	with
Persistent	2.0,	we	now	use	an	associated	data	type	inside	the	PersistEntity	class:

class	PersistEntity	record	where

				data	Key	record

				...

When	you’re	working	with	a	SQL	backend	and	aren’t	using	a	custom	key	type,	this
becomes	a	newtype	wrapper	around	an	Int64,	and	the	toSqlKey/fromSqlKey	functions
can	perform	that	type-safe	conversion	for	you.	With	MongoDB,	on	the	other	hand,	it’s	a
wrapper	around	a	ByteString.

More	Complicated,	More	Generic
By	default,	Persistent	will	hardcode	your	data	types	to	work	with	a	specific	database
backend.	When	using	sqlSettings,	this	is	the	SqlBackend	type.	But	if	you	want	to	write
Persistent	code	that	can	be	used	on	multiple	backends,	you	can	enable	more	generic	types
by	replacing	sqlSettings	with	sqlSettings	{	mpsGeneric	=	True	}.

To	understand	why	this	is	necessary,	consider	relations.	Let’s	say	we	want	to	represent
blogs	and	blog	posts.	We	would	use	the	entity	definition:

Blog

				title	Text

Post

				title	Text

				blogId	BlogId

We	know	that	BlogId	is	just	a	type	synonym	for	Key	Blog,	but	how	will	Key	Blog	be
defined?	We	can’t	use	an	Int64,	as	that	won’t	work	for	MongoDB.	And	we	can’t	use
ByteString,	because	that	won’t	work	for	SQL	databases.

To	allow	for	this,	once	mpsGeneric	is	set	to	True,	our	resulting	data	types	have	a	type
parameter	to	indicate	the	database	backend	they	use,	so	that	keys	can	be	properly	encoded.
This	looks	like	the	following:

data	BlogGeneric	backend	=	Blog	{	blogTitle	::	Text	}

data	PostGeneric	backend	=	Post

				{	postTitle		::	Text

				,	postBlogId	::	Key	(BlogGeneric	backend)

				}

Notice	that	we	still	keep	the	short	names	for	the	constructors	and	the	records.	Finally,	to
give	a	simple	interface	for	normal	code,	we	define	some	type	synonyms:

type	Blog			=	BlogGeneric	SqlBackend

type	BlogId	=	Key	Blog

type	Post			=	PostGeneric	SqlBackend

type	PostId	=	Key	Post

And	no,	SqlBackend	isn’t	hardcoded	into	Persistent	anywhere.	That	sqlSettings
parameter	you’ve	been	passing	to	mkPersist	is	what	tells	it	to	use	SqlBackend.	Mongo
code	will	use	mongoSettings	instead.

This	might	be	quite	complicated	under	the	surface,	but	user	code	hardly	ever	touches	this.
Look	back	through	this	whole	chapter:	not	once	did	we	need	to	deal	with	the	Key	or
Generic	stuff	directly.	The	most	common	place	for	it	to	pop	up	is	in	compiler	error
messages.	So,	it’s	important	to	be	aware	that	this	exists,	but	it	shouldn’t	affect	you	on	a
day-to-day	basis.

Custom	Fields
Occasionally,	you	will	want	to	define	a	custom	field	to	be	used	in	your	data	store.	The
most	common	case	is	an	enumeration,	such	as	employment	status.	For	this,	Persistent
provides	a	helper	Template	Haskell	function:

--	@Employment.hs

{-#	LANGUAGE	TemplateHaskell	#-}

module	Employment	where

import	Database.Persist.TH

data	Employment	=	Employed	|	Unemployed	|	Retired

				deriving	(Show,	Read,	Eq)

derivePersistField	"Employment"

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist.Sqlite

import	Database.Persist.TH

import	Employment

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				employment	Employment

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				insert	$	Person	"Bruce	Wayne"	Retired

				insert	$	Person	"Peter	Parker"	Unemployed

				insert	$	Person	"Michael"	Employed

				return	()

derivePersistField	stores	the	data	in	the	database	using	a	string	field,	and	performs
marshaling	using	the	Show	and	Read	instances	of	the	data	type.	This	may	not	be	as	efficient
as	storing	via	an	integer,	but	it	is	much	more	future-proof:	even	if	you	add	extra
constructors	in	the	future,	your	data	will	still	be	valid.

NOTE
We	split	our	definition	into	two	separate	modules	in	this	case.	This	is	necessary	due	to	the	GHC	stage
restriction,	which	essentially	means	that,	in	many	cases,	Template	Haskell	generated	code	cannot	be	used	in
the	same	module	it	was	created	in.

Persistent:	Raw	SQL
The	Persistent	package	provides	a	type-safe	interface	to	data	stores.	It	tries	to	be	backend-
agnostic	(e.g.,	by	not	relying	on	relational	features	of	SQL).	My	experience	has	been	that
you	can	easily	perform	95%	of	what	you	need	to	do	with	the	high-level	interface	(in	fact,
most	of	my	web	apps	use	the	high-level	interface	exclusively).

But	occasionally	you’ll	want	to	use	a	feature	that’s	specific	to	a	backend.	One	feature	I’ve
used	in	the	past	is	full-text	search.	In	this	case,	we’ll	use	the	SQL	LIKE	operator,	which	is
not	modeled	in	Persistent.	We’ll	get	all	people	with	the	last	name	“Snoyman”	and	print	the
records	out:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import	Database.Persist.TH

import	Data.Text	(Text)

import	Database.Persist.Sqlite

import	Control.Monad.IO.Class	(liftIO)

import	Data.Conduit

import	qualified	Data.Conduit.List	as	CL

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	Text

|]

main	::	IO	()

main	=	runSqlite	":memory:"	$	do

				runMigration	migrateAll

				insert	$	Person	"Michael	Snoyman"

				insert	$	Person	"Miriam	Snoyman"

				insert	$	Person	"Eliezer	Snoyman"

				insert	$	Person	"Gavriella	Snoyman"

				insert	$	Person	"Greg	Weber"

				insert	$	Person	"Rick	Richardson"

				--	Persistent	does	not	provide	the	LIKE	keyword,	but	we'd	like	to	get	the

				--	whole	Snoyman	family…

				let	sql	=	"SELECT	name	FROM	Person	WHERE	name	LIKE	'%Snoyman'"

				rawQuery	sql	[]	$$	CL.mapM_	(liftIO	.	print)

There	is	also	higher-level	support	that	allows	for	automated	data	marshaling.	Refer	to	the
Haddock	API	docs	for	more	details.

NOTE
Actually,	you	can	express	a	LIKE	operator	directly	in	the	normal	syntax	due	to	a	feature	added	in	Persistent
0.6,	which	allows	backend-specific	operators.	But	this	is	still	a	good	example,	so	let’s	roll	with	it.

Integration	with	Yesod
So	you’ve	been	convinced	of	the	power	of	Persistent.	How	do	you	integrate	it	with	your
Yesod	application?	If	you	use	the	scaffolding,	most	of	the	work	is	done	for	you	already.
But	as	we	normally	do,	we’ll	build	up	everything	manually	here	to	point	out	how	it	works
under	the	surface.

The	yesod-persistent	package	provides	the	meeting	point	between	Persistent	and	Yesod.
It	provides	the	YesodPersist	typeclass,	which	standardizes	access	to	the	database	via	the
runDB	method.	Let’s	see	this	in	action:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

{-#	LANGUAGE	ViewPatterns															#-}

import	Yesod

import	Database.Persist.Sqlite

import	Control.Monad.Trans.Resource	(runResourceT)

import	Control.Monad.Logger	(runStderrLoggingT)

--	Define	our	entities	as	usual

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				firstName	String

				lastName	String

				age	Int

				deriving	Show

|]

--	We	keep	our	connection	pool	in	the	foundation.	At	program	initialization,	we

--	create	our	initial	pool,	and	each	time	we	need	to	perform	an	action	we	check

--	out	a	single	connection	from	the	pool.

data	PersistTest	=	PersistTest	ConnectionPool

--	We'll	create	a	single	route,	to	access	a	person.	It's	a	very	common

--	occurrence	to	use	an	Id	type	in	routes.

mkYesod	"PersistTest"	[parseRoutes|

/	HomeR	GET

/person/#PersonId	PersonR	GET

|]

--	Nothing	special	here

instance	Yesod	PersistTest

--	Now	we	need	to	define	a	YesodPersist	instance,	which	will	keep	track	of

--	which	backend	we're	using	and	how	to	run	an	action.

instance	YesodPersist	PersistTest	where

				type	YesodPersistBackend	PersistTest	=	SqlBackend

				runDB	action	=	do

								PersistTest	pool	<-	getYesod

								runSqlPool	action	pool

--	List	all	people	in	the	database

getHomeR	::	Handler	Html

getHomeR	=	do

				people	<-	runDB	$	selectList	[]	[Asc	PersonAge]

				defaultLayout

								[whamlet|

												

																$forall	Entity	personid	person	<-	people

																				

																								#{personFirstName	person}

								|]

--	We'll	just	return	the	show	value	of	a	person,	or	a	404	if	the	Person	doesn't

--	exist.

getPersonR	::	PersonId	->	Handler	String

getPersonR	personId	=	do

				person	<-	runDB	$	get404	personId

				return	$	show	person

openConnectionCount	::	Int

openConnectionCount	=	10

main	::	IO	()

main	=	runStderrLoggingT	$	withSqlitePool	"test.db3"	openConnectionCount

		$	\pool	->	liftIO	$	do

				runResourceT	$	flip	runSqlPool	pool	$	do

								runMigration	migrateAll

								insert	$	Person	"Michael"	"Snoyman"	26

				warp	3000	$	PersistTest	pool

There	are	two	important	pieces	here	for	general	use.	runDB	is	used	to	run	a	DB	action	from
within	a	Handler.	Within	the	runDB,	you	can	use	any	of	the	functions	we’ve	spoken	about
so	far,	such	as	insert	and	selectList.

NOTE
The	type	of	runDB	is	YesodDB	site	a	->	HandlerT	site	IO	a.	YesodDB	is	defined	as:

type	YesodDB	site	=

		YesodPersistBackend	site	(HandlerT	site	IO)

Because	it	is	built	on	top	of	the	YesodPersistBackend	associated	type,	it	uses	the	appropriate	database
backend	based	on	the	current	site.

The	other	new	feature	is	get404.	It	works	just	like	get,	but	instead	of	returning	a	Nothing
when	a	result	can’t	be	found,	it	returns	a	404	message	page.	The	getPersonR	function	is	a
very	common	approach	used	in	real-world	Yesod	applications:	get404	a	value	and	then
return	a	response	based	on	it.

More	Complex	SQL
Persistent	strives	to	be	backend-agnostic.	The	advantage	of	this	approach	is	code	that
easily	moves	between	different	backend	types.	The	downside	is	that	you	lose	out	on	some
backend-specific	features.	Probably	the	biggest	casualty	is	SQL	join	support.

Fortunately,	thanks	to	Felipe	Lessa,	you	can	have	your	cake	and	eat	it	too.	The	Esqueleto
library	provides	support	for	writing	type-safe	SQL	queries,	using	the	existing	Persistent
infrastructure.	The	Haddocks	for	that	package	provide	a	good	introduction	to	its	usage.
And	because	it	uses	many	Persistent	concepts,	most	of	your	existing	Persistent	knowledge
should	transfer	over	easily.

For	a	simple	example	of	using	Esqueleto,	see	Chapter	19.

Something	Besides	SQLite
To	keep	the	examples	in	this	chapter	simple,	we’ve	used	the	SQLite	backend.	Just	to
round	things	out,	here’s	our	original	code	rewritten	to	work	with	PostgreSQL:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import											Control.Monad.IO.Class		(liftIO)

import											Control.Monad.Logger				(runStderrLoggingT)

import											Database.Persist

import											Database.Persist.Postgresql

import											Database.Persist.TH

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Person

				name	String

				age	Int	Maybe

				deriving	Show

BlogPost

				title	String

				authorId	PersonId

				deriving	Show

|]

connStr	=	"host=localhost	dbname=test	user=test	password=test	port=5432"

main	::	IO	()

main	=	runStderrLoggingT	$	withPostgresqlPool	connStr	10	$	\pool	->	liftIO	$	do

				flip	runSqlPersistMPool	pool	$	do

								runMigration	migrateAll

								johnId	<-	insert	$	Person	"John	Doe"	$	Just	35

								janeId	<-	insert	$	Person	"Jane	Doe"	Nothing

								insert	$	BlogPost	"My	fr1st	p0st"	johnId

								insert	$	BlogPost	"One	more	for	good	measure"	johnId

								oneJohnPost	<-	selectList	[BlogPostAuthorId	==.	johnId]	[LimitTo	1]

								liftIO	$	print	(oneJohnPost	::	[Entity	BlogPost])

								john	<-	get	johnId

								liftIO	$	print	(john	::	Maybe	Person)

								delete	janeId

								deleteWhere	[BlogPostAuthorId	==.	johnId]

Summary
Persistent	brings	the	type	safety	of	Haskell	to	your	data	access	layer.	Instead	of	writing
error-prone	untyped	data	access	code,	or	manually	writing	boilerplate	marshal	code,	you
can	rely	on	Persistent	to	automate	the	process	for	you.

The	goal	is	to	provide	everything	you	need,	most	of	the	time.	For	the	times	when	you	need
something	a	bit	more	powerful,	Persistent	gives	you	direct	access	to	the	underlying	data
store,	so	you	can	write	whatever	five-way	joins	you	want.

Persistent	integrates	directly	into	the	general	Yesod	workflow.	Not	only	do	helper
packages	like	yesod-persistent	provide	a	nice	layer,	but	packages	like	yesod-form	and
yesod-auth	also	leverage	Persistent’s	features.

Chapter	11.	Deploying	Your	Web	App

I	can’t	speak	for	others,	but	I	personally	prefer	programming	to	system	administration.	But
the	fact	is	that	eventually	you’ll	need	to	serve	your	app	somehow,	and	odds	are	that	you’ll
need	to	be	the	one	to	set	it	up.

There	are	some	promising	initiatives	in	the	Haskell	web	community	toward	making
deployment	easier.	In	the	future,	we	may	even	have	a	service	that	allows	you	to	deploy
your	app	with	a	single	command.

But	we’re	not	there	yet.	And	even	if	we	were,	such	a	solution	will	never	work	for
everyone.	This	chapter	covers	the	different	deployment	options,	and	gives	some	general
recommendations	on	what	you	should	choose	in	different	situations.

Keter
The	Yesod	scaffolding	comes	with	some	built-in	support	for	the	Keter	deployment	engine,
which	is	also	written	in	Haskell	and	uses	many	of	the	same	underlying	technologies,	like
WAI	and	http-client.	Keter	works	as	a	reverse	proxy	to	your	applications,	as	well	as	a
system	for	starting,	monitoring,	and	redeploying	running	apps.	If	you’d	like	to	deploy	with
Keter,	follow	these	steps:

1.	 Edit	the	config/keter.yaml	file	in	your	scaffolded	application	as	necessary.

2.	 Set	up	some	kind	of	server	for	hosting	your	apps.	I	recommend	trying	Ubuntu	on
Amazon	EC2.

3.	 Install	Keter	on	that	machine	(follow	the	instructions	on	the	Keter	website,	as	they
will	be	the	most	up	to	date).

4.	 Run	yesod	keter	to	generate	a	Keter	bundle	(e.g.,	myapp.keter).

5.	 Copy	myapp.keter	to	the	/opt/keter/incoming	directory	on	your	server.

If	you’ve	gotten	things	configured	correctly,	you	should	now	be	able	to	view	your	website,
running	in	a	production	environment!	In	the	future,	upgrades	can	be	handled	by	simply
rerunning	yesod	keter	and	recopying	the	myapp.keter	bundle	to	the	server.	Note	that
Keter	will	automatically	detect	the	presence	of	the	new	file	and	reload	your	application.

The	rest	of	this	chapter	will	provide	some	more	details	about	various	steps,	and	present
some	alternatives	in	case	you’d	prefer	not	to	use	the	scaffolding	or	Keter.

Compiling
The	biggest	advice	I	can	give	is	this:	don’t	compile	on	your	server.	It’s	tempting	to	do	so,
as	you	just	have	to	transfer	source	code	around	and	you	avoid	confusing	dependency
issues.	However,	compiling	a	Yesod	application	takes	significiant	memory	and	CPU
resources,	which	means:

While	you’re	recompiling	your	app,	your	existing	applications	will	suffer
performance-wise.

You	will	need	to	get	a	much	larger	machine	to	handle	compilation,	and	that	capacity
will	likely	sit	idle	most	of	the	time,	as	Yesod	applications	tend	to	require	far	less	CPU
and	memory	than	GHC	itself.

Once	you’re	ready	to	compile,	you	should	always	make	sure	to	run	cabal	clean	before	a
new	production	build,	to	make	sure	no	old	files	are	lying	around.	Then,	you	can	run	cabal
configure	&&	cabal	build	to	get	an	executable,	which	will	be	located	at
dist/build/myapp/myapp.	(The	yesod	keter	command	does	cabal	clean	for	you
automatically.)

Files	to	Deploy
With	a	Yesod	scaffolded	application,	there	are	essentially	three	sets	of	files	that	need	to	be
deployed:

Your	executable

The	config/	folder

The	static/	folder

Everything	else	(e.g.,	Shakespearean	templates),	gets	compiled	into	the	executable	itself.

There	is	one	caveat,	however,	regarding	the	config/client_session_key.aes	file.	This	file
controls	the	server-side	encryption	used	for	securing	client-side	session	cookies.	Yesod
will	automatically	generate	a	new	one	of	these	keys	if	none	is	present.	In	practice,	this
means	that,	if	you	do	not	include	this	file	in	your	deployment,	all	of	your	users	will	have
to	log	in	again	when	you	redeploy.	If	you	follow	this	advice	and	include	the	config/	folder,
this	issue	will	be	partially	resolved.	Another	approach	is	to	put	your	session	key	in	an
environment	variable.

The	other	half	of	the	resolution	is	to	ensure	that	once	you	generate	a
config/client_session_key.aes	file,	you	keep	the	same	one	for	all	future	deployments.	The
simplest	way	to	ensure	this	is	to	keep	that	file	in	your	version	control.	However,	if	your
version	control	is	open	source,	this	will	be	dangerous:	anyone	with	access	to	your
repository	will	be	able	to	spoof	login	credentials!

The	problem	described	here	is	essentially	one	of	system	administration,	not	programming.
Yesod	does	not	provide	any	built-in	approach	for	securely	storing	client	session	keys.	If
you	have	an	open	source	repository,	or	do	not	trust	everyone	who	has	access	to	your
source	code	repository,	it’s	vital	to	figure	out	a	safe	storage	solution	for	the	client	session
key.

SSL	and	Static	Files
There	are	two	commonly	used	features	in	the	Yesod	world:	serving	your	site	over	HTTPS,
and	placing	your	static	files	in	a	separate	domain	name.	Both	of	these	are	good	practices,
but	used	together	they	can	lead	to	problems	if	you’re	not	careful.	In	particular,	most	web
browsers	will	not	load	up	JavaScript	files	from	a	non-HTTPS	domain	name	if	your	HTML
is	served	from	an	HTTPS	domain	name.	In	this	situation,	you’ll	need	to	do	one	of	two
things:

Serve	your	static	files	over	HTTPS	as	well.

Serve	your	static	files	from	the	same	domain	name	as	your	main	site.

Note	that	if	you	go	for	the	first	option	(which	is	the	better	one),	you’ll	need	either	two
separate	SSL	certificates	or	a	wildcard	certificate.

Warp
As	we	have	mentioned	before,	Yesod	is	built	on	the	Web	Application	Interface	(WAI),
allowing	it	to	run	on	any	WAI	backend.	At	the	time	of	writing,	the	following	backends	are
available:

Warp

FastCGI

SCGI

CGI

WebKit

Development	server

The	last	two	are	not	intended	for	production	deployments.	Of	the	remaining	four,	all	can
be	used	for	production	deployment	in	theory.	In	practice,	a	CGI	backend	will	likely	be
horribly	inefficient,	because	a	new	process	must	be	spawned	for	each	connection.	And
SCGI	is	not	nearly	as	well	supported	by	frontend	web	servers	as	Warp	(via	reverse
proxying)	or	FastCGI.

Between	the	two	remaining	choices,	Warp	gets	a	very	strong	recommendation,	for	the
following	reasons:

It	is	significantly	faster.

Like	FastCGI,	it	can	run	behind	a	frontend	server	like	Nginx,	using	a	reverse	HTTP
proxy.

It	is	a	fully	capable	server	of	its	own	accord,	and	can	therefore	be	used	without	any
frontend	server.

So	that	leaves	one	last	question:	should	Warp	run	on	its	own,	or	via	a	reverse	proxy	behind
a	frontend	server?	For	most	use	cases	I	recommend	the	latter,	because:

Having	a	reverse	proxy	in	front	of	your	app	makes	it	easier	to	deploy	new	versions.

If	you	have	a	bug	in	your	application,	a	reverse	proxy	can	give	slightly	nicer	error
messages	to	users.

You	can	host	multiple	applications	from	a	single	host	via	virtual	hosting.

Your	reverse	proxy	can	function	as	a	load	balancer	or	SSL	proxy	as	well,	simplifying
your	application.

As	already	discussed,	Keter	is	a	great	way	to	get	started.	If	you	have	an	existing	web
server	running,	like	Nginx,	Yesod	will	work	just	fine	sitting	behind	it	instead.

Nginx	Configuration
Keter	configuration	is	trivial,	as	it	is	designed	to	work	with	Yesod	applications.	But	if	you
want	to	instead	use	Nginx,	how	do	you	set	it	up?

In	general,	Nginx	will	listen	on	port	80	and	your	Yesod/Warp	app	will	listen	on	some
unprivileged	port	(let’s	say	4321).	You	will	then	need	to	provide	an	nginx.conf	file,	such	as
the	following:

daemon	off;	#	Don't	run	nginx	in	the	background,	good	for	monitoring	apps

events	{

				worker_connections	4096;

}

http	{

				server	{

								listen	80;	#	Incoming	port	for	Nginx

								server_name	www.myserver.com;

								location	/	{

												proxy_pass	http://127.0.0.1:4321;	#	Reverse	proxy	to	your	Yesod	app

								}

				}

}

You	can	add	as	many	server	blocks	as	you	like.	A	common	addition	is	to	ensure	users
always	access	your	pages	with	the	www	prefix	on	the	domain	name,	guaranteeing	the
RESTful	principle	of	canonical	URLs.	(You	could	just	as	easily	do	the	opposite	and
always	strip	the	www;	just	make	sure	that	your	choice	is	reflected	in	both	the	Nginx	config
and	the	approot	of	your	site.)	In	this	case,	we	would	add	the	block:

server	{

				listen	80;

				server_name	myserver.com;

				rewrite	^/(.*)	http://www.myserver.com/$1	permanent;

}

A	highly	recommended	optimization	is	to	serve	static	files	from	a	separate	domain	name,
thereby	bypassing	the	cookie	transfer	overhead.	Assuming	that	our	static	files	are	stored	in
the	static/	folder	within	our	site	folder,	and	the	site	folder	is	located	at
/home/michael/sites/mysite,	this	would	look	like:

server	{

				listen	80;

				server_name	static.myserver.com;

				root	/home/michael/sites/mysite/static;

				#	Because	yesod-static	appends	a	content	hash	in	the	query	string,

				#	we	are	free	to	set	expiration	dates	far	in	the	future	without

				#	concerns	of	stale	content.

				expires	max;

}

In	order	for	this	to	work,	your	site	must	properly	rewrite	static	URLs	to	this	alternative
domain	name.	The	scaffolded	site	is	set	up	to	make	this	fairly	simple	via	the
Settings.staticRoot	function	and	the	definition	of	urlRenderOverride.	However,	if

you	just	want	to	get	the	benefit	of	Nginx’s	faster	static	file	serving	without	dealing	with
separate	domain	names,	you	can	instead	modify	your	original	server	block	like	so:

server	{

				listen	80;	#	Incoming	port	for	Nginx

				server_name	www.myserver.com;

				location	/	{

								proxy_pass	http://127.0.0.1:4321;	#	Reverse	proxy	to	your	Yesod	app

				}

				location	/static	{

								root	/home/michael/sites/mysite;	#	Notice	we	do	*not*	include	/static

								expires	max;

				}

}

Server	Process
Many	people	are	familiar	with	an	Apache/mod_php	or	Lighttpd/FastCGI	kind	of	setup,
where	the	web	server	automatically	spawns	the	web	application.	With	Nginx,	either	for
reverse	proxying	or	with	FastCGI,	this	is	not	the	case:	you	are	responsible	for	running
your	own	process.	I	strongly	recommend	using	a	monitoring	utility	that	will	automatically
restart	your	application	in	case	it	crashes.	There	are	many	great	options	out	there,	such	as
angel	or	daemontools.

To	give	a	concrete	example,	here	is	an	Upstart	config	file.	The	file	must	be	placed	in
/etc/init/mysite.conf:

description	"My	awesome	Yesod	application"

start	on	runlevel	[2345];

stop	on	runlevel	[!2345];

respawn

chdir	/home/michael/sites/mysite

exec	/home/michael/sites/mysite/dist/build/mysite/mysite

Once	this	is	in	place,	bringing	up	your	application	is	as	simple	as	sudo	start	mysite.

Nginx	+	FastCGI
Some	people	may	prefer	using	FastCGI	for	deployment.	In	this	case,	you’ll	need	to	add	an
extra	tool	to	the	mix.	FastCGI	works	by	receiving	new	connections	from	a	file	descriptor.
The	C	library	assumes	that	this	file	descriptor	will	be	0	(standard	input),	so	you	need	to
use	the	spawn-fcgi	program	to	bind	your	application’s	standard	input	to	the	correct
socket.

It	can	be	very	convenient	to	use	Unix	named	sockets	for	this	instead	of	binding	to	a	port,
especially	when	hosting	multiple	applications	on	a	single	host.	A	possible	script	to	load	up
your	app	could	be:

spawn-fcgi	\

				-d	/home/michael/sites/mysite	\

				-s	/tmp/mysite.socket	\

				-n	\

				-M	511	\

				-u	michael	\

			—/home/michael/sites/mysite/dist/build/mysite-fastcgi/mysite-fastcgi

You	will	also	need	to	configure	your	frontend	server	to	speak	to	your	app	over	FastCGI.
This	is	relatively	painless	in	Nginx:

server	{

				listen	80;

				server_name	www.myserver.com;

				location	/	{

								fastcgi_pass	unix:/tmp/mysite.socket;

				}

}

That	should	look	pretty	familiar.	The	only	last	trick	is	that,	with	Nginx,	you	need	to
manually	specify	all	of	the	FastCGI	variables.	It	is	recommended	to	store	these	in	a
separate	file	(say,	fastcgi.conf)	and	then	add	include	fastcgi.conf;	to	the	end	of	your
http	block.	The	contents	of	the	file,	to	work	with	WAI,	should	be:

fastcgi_param		QUERY_STRING							$query_string;

fastcgi_param		REQUEST_METHOD					$request_method;

fastcgi_param		CONTENT_TYPE							$content_type;

fastcgi_param		CONTENT_LENGTH					$content_length;

fastcgi_param		PATH_INFO										$fastcgi_script_name;

fastcgi_param		SERVER_PROTOCOL				$server_protocol;

fastcgi_param		GATEWAY_INTERFACE		CGI/1.1;

fastcgi_param		SERVER_SOFTWARE				nginx/$nginx_version;

fastcgi_param		REMOTE_ADDR								$remote_addr;

fastcgi_param		SERVER_ADDR								$server_addr;

fastcgi_param		SERVER_PORT								$server_port;

fastcgi_param		SERVER_NAME								$server_name;

Desktop
Another	nifty	backend	is	wai-handler-webkit.	This	backend	combines	Warp	and
QtWebKit	to	create	an	executable	that	a	user	simply	double-clicks.	This	can	be	a
convenient	way	to	provide	an	offline	version	of	your	application.

One	of	the	very	nice	conveniences	of	Yesod	for	this	is	that	your	templates	are	all	compiled
into	the	executable,	and	thus	do	not	need	to	be	distributed	with	your	application.	Static
files	do,	however.

NOTE
There’s	actually	support	for	embedding	your	static	files	directly	in	the	executable	as	well.	See	the	yesod-
static	docs	for	more	details.

A	similar	approach,	without	requiring	the	QtWebKit	library,	is	using	wai-handler-
launch,	which	launches	a	Warp	server	and	then	opens	up	the	user’s	default	web	browser.
There’s	a	little	trickery	involved	here:	in	order	to	know	that	the	user	is	still	using	the	site,
wai-handler-launch	inserts	a	“ping”	JavaScript	snippet	to	every	HTML	page	it	serves.	If
wai-handler-launch	doesn’t	receive	a	ping	for	two	minutes,	it	shuts	down.

CGI	on	Apache
CGI	and	FastCGI	work	almost	identically	on	Apache,	so	it	should	be	fairly	straight-
forward	to	port	this	configuration.	You	essentially	need	to	accomplish	two	goals:

1.	 Get	the	server	to	serve	your	file	as	(Fast)CGI.

2.	 Rewrite	all	requests	to	your	site	to	go	through	the	(Fast)CGI	executable.

Here	is	a	configuration	file	for	serving	a	blog	application,	with	an	executable	named
bloggy.cgi,	living	in	a	subfolder	named	blog/	of	the	document	root.	This	example	was
taken	from	an	application	living	in	the	path	/f5/snoyman/public/blog:

Options	+ExecCGI

AddHandler	cgi-script	.cgi

Options	+FollowSymlinks

RewriteEngine	On

RewriteRule	^/f5/snoyman/public/blog$	/blog/	[R=301,S=1]

RewriteCond	$1	!^bloggy.cgi

RewriteCond	$1	!^static/

RewriteRule	^(.*)	bloggy.cgi/$1	[L]

The	first	RewriteRule	is	to	deal	with	subfolders.	In	particular,	it	redirects	a	request	for
/blog	to	/blog/.	The	first	RewriteCond	prevents	directly	requesting	the	executable,	the
second	allows	Apache	to	serve	the	static	files,	and	the	last	line	does	the	actual	rewriting.

FastCGI	on	lighttpd
For	this	example,	I’ve	left	off	some	of	the	basic	FastCGI	settings	like	MIME	types.	I	also
have	a	more	complex	file	in	production	that	prepends	www	when	absent	and	serves	static
files	from	a	separate	domain.	However,	this	should	serve	to	show	the	basics.

Here,	/home/michael/fastcgi	is	the	FastCGI	application.	The	idea	is	to	rewrite	all	requests
to	start	with	/app,	and	then	serve	everything	beginning	with	/app	via	the	FastCGI
executable:

server.port	=	3000

server.document-root	=	"/home/michael"

server.modules	=	("mod_fastcgi",	"mod_rewrite")

url.rewrite-once	=	(

		"(.*)"	=>	"/app/$1"

)

fastcgi.server	=	(

				"/app"	=>	((

								"socket"	=>	"/tmp/test.fastcgi.socket",

								"check-local"	=>	"disable",

								"bin-path"	=>	"/home/michael/fastcgi",	#	full	path	to	executable

								"min-procs"	=>	1,

								"max-procs"	=>	30,

								"idle-timeout"	=>	30

))

)

CGI	on	lighttpd
This	is	basically	the	same	as	the	FastCGI	version,	but	tells	lighttpd	to	run	a	file	ending	in
.cgi	as	a	CGI	executable.	In	this	case,	the	file	lives	at	/home/michael/myapp.cgi:

server.port	=	3000

server.document-root	=	"/home/michael"

server.modules	=	("mod_cgi",	"mod_rewrite")

url.rewrite-once	=	(

				"(.*)"	=>	"/myapp.cgi/$1"

)

cgi.assign	=	(".cgi"	=>	"")

Part	II.	Advanced

Chapter	12.	RESTful	Content

One	of	the	stories	from	the	early	days	of	the	Web	is	how	search	engines	wiped	out	entire
websites.	When	dynamic	websites	were	still	a	new	concept,	developers	didn’t	appreciate
the	difference	between	a	GET	and	POST	request.	As	a	result,	they	created	pages	—	accessed
with	the	GET	method	—	that	would	delete	pages.	When	search	engines	started	crawling
these	sites,	they	could	wipe	out	all	the	content.

If	these	web	developers	had	followed	the	HTTP	spec	properly,	this	would	not	have
happened.	A	GET	request	is	supposed	to	cause	no	side	effects	(you	know,	like	wiping	out	a
site).	Recently,	there	has	been	a	move	in	web	development	to	properly	embrace
representational	state	transfer	(a.k.a.	REST).	This	chapter	describes	the	RESTful	features
in	Yesod	and	how	you	can	use	them	to	create	more	robust	web	applications.

Request	Methods
In	many	web	frameworks,	you	write	one	handler	function	per	resource.	In	Yesod,	the
default	is	to	have	a	separate	handler	function	for	each	request	method.	The	two	most
common	request	methods	you	will	deal	with	in	creating	websites	are	GET	and	POST.	These
are	the	most	well	supported	methods	in	HTML,	as	they	are	the	only	ones	supported	by
web	forms.	However,	when	creating	RESTful	APIs,	the	other	methods	are	very	useful.

Technically	speaking,	you	can	create	whichever	request	methods	you	like,	but	it	is
strongly	recommended	to	stick	to	the	ones	spelled	out	in	the	HTTP	spec.	The	most
common	of	these	are	the	following:
GET

Used	for	read-only	requests.	Assuming	no	other	changes	occur	on	the	server,	calling
a	GET	request	multiple	times	should	result	in	the	same	response,	barring	such	things
as	“current	time”	or	randomly	assigned	results.

POST

Used	for	general	mutating	requests.	A	POST	request	should	never	be	submitted	twice
by	the	user.	A	common	example	of	this	would	be	to	transfer	funds	from	one	bank
account	to	another.

PUT

Creates	a	new	resource	on	the	server,	or	replaces	an	existing	one.	It	is	safe	to	call	this
method	multiple	times.

DELETE

Just	like	it	sounds:	wipes	out	a	resource	on	the	server.	Calling	multiple	times	should
be	OK.

To	a	certain	extent,	this	fits	in	very	well	with	Haskell	philosophy:	a	GET	request	is	similar
to	a	pure	function,	which	cannot	have	side	effects.	In	practice,	your	GET	functions	will
probably	perform	IO,	such	as	reading	information	from	a	database,	logging	user	actions,
and	so	on.

See	Chapter	7	for	more	information	on	the	syntax	of	defining	handler	functions	for	each
request	method.

Representations
Suppose	we	have	a	Haskell	data	type	and	value:

data	Person	=	Person	{	name	::	String,	age	::	Int	}

michael	=	Person	"Michael"	25

We	could	represent	that	data	as	HTML:

<table>

				<tr>

								<th>Name</th>

								<td>Michael</td>

				</tr>

				<tr>

								<th>Age</th>

								<td>25</td>

				</tr>

</table>

or	we	could	represent	it	as	JSON:

{"name":"Michael","age":25}

or	as	XML:

<person>

				<name>Michael</name>

				<age>25</age>

</person>

Web	applications	often	use	a	different	URL	to	get	each	of	these	representations	—	perhaps
/person/michael.html,	/person/michael.json,	and	so	on.	But	Yesod	follows	the	RESTful
principle	of	a	single	URL	for	each	resource,	so	in	Yesod,	all	of	these	would	be	accessed
from	/person/michael.

Then	the	question	becomes	how	we	determine	which	representation	to	serve.	The	answer
is	the	HTTP	Accept	header:	it	gives	a	prioritized	list	of	content	types	the	client	is
expecting.	Yesod	provides	a	pair	of	functions	to	abstract	away	the	details	of	parsing	that
header	directly,	and	instead	allows	you	to	talk	at	a	much	higher	level	of	representations.
Let’s	make	that	last	sentence	a	bit	more	concrete	with	some	code:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text	(Text)

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	TypedContent

getHomeR	=	selectRep	$	do

				provideRep	$	return

								[shamlet|

												<p>Hello,	my	name	is	#{name}	and	I	am	#{age}	years	old.

								|]

				provideRep	$	return	$	object

								["name"	.=	name

								,	"age"	.=	age

]

		where

				name	=	"Michael"	::	Text

				age	=	28	::	Int

main	::	IO	()

main	=	warp	3000	App

The	selectRep	function	says,	“I’m	about	to	give	you	some	possible	representations.”
Each	provideRep	call	provides	an	alternative	representation.	Yesod	uses	the	Haskell	types
to	determine	the	MIME	type	for	each	representation.	Because	shamlet	(a.k.a.,	simple
Hamlet)	produces	an	Html	value,	Yesod	can	determine	that	the	relevant	MIME	type	is
text/html.	Similarly,	object	generates	a	JSON	value,	which	implies	the	MIME	type
application/json.	TypedContent	is	a	data	type	provided	by	Yesod	for	some	raw	content
with	an	attached	MIME	type.	We’ll	cover	it	in	more	detail	in	a	little	bit.

To	test	this,	start	up	the	server	and	try	running	each	of	the	following	curl	commands:

curl	http://localhost:3000	--header	"accept:	application/json"

curl	http://localhost:3000	--header	"accept:	text/html"

curl	http://localhost:3000

Notice	how	the	response	changes	based	on	the	Accept	header	value.	Also,	when	you	leave
off	the	header,	the	HTML	response	is	displayed	by	default.	The	rule	here	is	that	if	there	is
no	Accept	header,	the	first	representation	is	displayed.	If	an	Accept	header	is	present,	but
we	have	no	matches,	then	a	406	Not	Acceptable	response	is	returned.

By	default,	Yesod	provides	a	convenience	middleware	that	lets	you	set	the	Accept	header
via	a	query	string	parameter.	This	can	make	it	easier	to	test	from	your	browser.	To	try	this
out,	you	can	visit	http://localhost:3000/?_accept=application/json.

JSON	Conveniences
Because	JSON	is	such	a	commonly	used	data	format	in	web	applications	today,	we	have
some	built-in	helper	functions	for	providing	JSON	representations.	These	are	built	off	of
the	wonderful	aeson	library,	so	let’s	start	off	with	a	quick	explanation	of	how	that	library
works.

aeson	has	a	core	data	type,	Value,	which	represents	any	valid	JSON	value.	It	also	provides
two	typeclasses	—	ToJSON	and	FromJSON	—	to	automate	marshaling	to	and	from	JSON
values,	respectively.	For	our	purposes,	we’re	currently	interested	in	ToJSON.	Let’s	look	at	a
quick	example	of	creating	a	ToJSON	instance	for	our	ever-recurring	Person	data	type
examples:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	RecordWildCards			#-}

import											Data.Aeson

import	qualified	Data.ByteString.Lazy.Char8	as	L

import											Data.Text																		(Text)

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

instance	ToJSON	Person	where

				toJSON	Person	{..}	=	object

								["name"	.=	name

								,	"age"		.=	age

]

main	::	IO	()

main	=	L.putStrLn	$	encode	$	Person	"Michael"	28

I	won’t	go	into	further	detail	on	aeson,	as	the	Haddock	documentation	already	provides	a
great	introduction	to	the	library.	What	I’ve	described	so	far	is	enough	to	understand	our
convenience	functions.

Let’s	suppose	that	you	have	such	a	Person	data	type,	with	a	corresponding	value,	and
you’d	like	to	use	it	as	the	representation	for	your	current	page.	For	that,	you	can	use	the
returnJson	function:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	RecordWildCards			#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

instance	ToJSON	Person	where

				toJSON	Person	{..}	=	object

								["name"	.=	name

								,	"age"		.=	age

]

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Value

getHomeR	=	returnJson	$	Person	"Michael"	28

main	::	IO	()

main	=	warp	3000	App

returnJson	is	actually	a	trivial	function	—	it	is	implemented	as	return	.	toJSON	—	but,
it	makes	things	just	a	bit	more	convenient.	Similarly,	if	you	would	like	to	provide	a	JSON
value	as	a	representation	inside	a	selectRep,	you	can	use	provideJson:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	RecordWildCards			#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

instance	ToJSON	Person	where

				toJSON	Person	{..}	=	object

								["name"	.=	name

								,	"age"		.=	age

]

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	TypedContent

getHomeR	=	selectRep	$	do

				provideRep	$	return

								[shamlet|

												<p>Hello,	my	name	is	#{name}	and	I	am	#{age}	years	old.

								|]

				provideJson	person

		where

				person@Person	{..}	=	Person	"Michael"	28

main	::	IO	()

main	=	warp	3000	App

provideJson	is	similarly	trivial;	in	this	case,	it	is	implemented	as	provideRep	.
returnJson.

New	Data	Types
Let’s	say	I’ve	come	up	with	some	new	data	format	based	on	using	Haskell’s	Show
instance;	I’ll	call	it	“Haskell	Show,”	and	give	it	a	MIME	type	of	text/haskell-show.	And
let’s	say	that	I	decide	to	include	this	representation	from	my	web	app.	How	do	I	do	it?	For
a	first	attempt,	let’s	use	the	TypedContent	data	type	directly:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

				deriving	Show

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

mimeType	::	ContentType

mimeType	=	"text/haskell-show"

getHomeR	::	Handler	TypedContent

getHomeR	=

				return	$	TypedContent	mimeType	$	toContent	$	show	person

		where

				person	=	Person	"Michael"	28

main	::	IO	()

main	=	warp	3000	App

There	are	a	few	important	things	to	note	here:

We’ve	used	the	toContent	function.	This	is	a	typeclass	function	that	can	convert	a
number	of	data	types	to	raw	data	ready	to	be	sent	over	the	wire.	In	this	case,	we’ve
used	the	instance	for	String,	which	uses	UTF8	encoding.	Other	common	data	types
with	instances	are	Text,	ByteString,	Html,	and	the	aeson	library’s	Value.

We’re	using	the	TypedContent	constructor	directly.	It	takes	two	arguments:	a	MIME
type	and	the	raw	content.	Note	that	ContentType	is	simply	a	type	alias	for	a	strict
ByteString.

That’s	all	well	and	good,	but	it	bothers	me	that	the	type	signature	for	getHomeR	is	so
uninformative.	Also,	the	implementation	of	getHomeR	looks	pretty	boilerplate.	I’d	rather
just	have	a	data	type	representing	“Haskell	Show”	data,	and	provide	some	simple	means
of	creating	such	values.	Let’s	try	this	on	for	size:

{-#	LANGUAGE	ExistentialQuantification	#-}

{-#	LANGUAGE	OverloadedStrings									#-}

{-#	LANGUAGE	QuasiQuotes															#-}

{-#	LANGUAGE	TemplateHaskell											#-}

{-#	LANGUAGE	TypeFamilies														#-}

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

				deriving	Show

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

mimeType	::	ContentType

mimeType	=	"text/haskell-show"

data	HaskellShow	=	forall	a.	Show	a	=>	HaskellShow	a

instance	ToContent	HaskellShow	where

				toContent	(HaskellShow	x)	=	toContent	$	show	x

instance	ToTypedContent	HaskellShow	where

				toTypedContent	=	TypedContent	mimeType	.	toContent

getHomeR	::	Handler	HaskellShow

getHomeR	=

				return	$	HaskellShow	person

		where

				person	=	Person	"Michael"	28

main	::	IO	()

main	=	warp	3000	App

The	magic	here	lies	in	two	typeclasses.	As	we	mentioned	before,	ToContent	tells	how	to
convert	a	value	into	a	raw	response.	In	our	case,	we	would	like	to	show	the	original	value
to	get	a	String,	and	then	convert	that	String	into	the	raw	content.	Oftentimes,	instances
of	ToContent	will	build	on	each	other	in	this	way.

ToTypedContent	is	used	internally	by	Yesod	and	is	called	on	the	result	of	all	handler
functions.	As	you	can	see,	the	implementation	is	fairly	trivial,	simply	stating	the	MIME
type	and	then	calling	out	to	toContent.

Finally,	let’s	make	this	a	bit	more	complicated	and	get	it	to	play	well	with	selectRep:

{-#	LANGUAGE	ExistentialQuantification	#-}

{-#	LANGUAGE	OverloadedStrings									#-}

{-#	LANGUAGE	QuasiQuotes															#-}

{-#	LANGUAGE	RecordWildCards											#-}

{-#	LANGUAGE	TemplateHaskell											#-}

{-#	LANGUAGE	TypeFamilies														#-}

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	name	::	Text

				,	age		::	Int

				}

				deriving	Show

instance	ToJSON	Person	where

				toJSON	Person	{..}	=	object

								["name"	.=	name

								,	"age"		.=	age

]

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

mimeType	::	ContentType

mimeType	=	"text/haskell-show"

data	HaskellShow	=	forall	a.	Show	a	=>	HaskellShow	a

instance	ToContent	HaskellShow	where

				toContent	(HaskellShow	x)	=	toContent	$	show	x

instance	ToTypedContent	HaskellShow	where

				toTypedContent	=	TypedContent	mimeType	.	toContent

instance	HasContentType	HaskellShow	where

				getContentType	_	=	mimeType

getHomeR	::	Handler	TypedContent

getHomeR	=	selectRep	$	do

				provideRep	$	return	$	HaskellShow	person

				provideJson	person

		where

				person	=	Person	"Michael"	28

main	::	IO	()

main	=	warp	3000	App

The	important	addition	here	is	the	HasContentType	instance.	This	may	seem	redundant,
but	it	serves	an	important	role.	We	need	to	be	able	to	determine	the	MIME	type	of	a
possible	representation	before	creating	that	representation.	ToTypedContent	only	works
on	a	concrete	value,	and	therefore	can’t	be	used	before	creating	the	value.
getContentType	instead	takes	a	proxy	value,	indicating	the	type	without	providing
anything	concrete.

NOTE
If	you	want	to	provide	a	representation	for	a	value	that	doesn’t	have	a	HasContentType	instance,	you	can
use	the	provideRepType	function,	which	requires	you	to	explicitly	state	the	MIME	type	present.

Other	Request	Headers
There	are	a	great	deal	of	other	request	headers	available.	Some	of	them	only	affect	the
transfer	of	data	between	the	server	and	client,	and	should	not	affect	the	application	at	all.
For	example,	Accept-Encoding	informs	the	server	which	compression	schemes	the	client
understands,	and	Host	informs	the	server	which	virtual	host	to	serve	up.

Other	headers	do	affect	the	application,	but	are	automatically	read	by	Yesod.	For	example,
the	Accept-Language	header	specifies	which	human	language	(English,	Spanish,	German,
Swiss-German)	the	client	prefers.	See	Chapter	22	for	details	on	how	this	header	is	used.

Summary
Yesod	adheres	to	the	following	tenets	of	REST:

Use	the	correct	request	method.

Each	resource	should	have	precisely	one	URL.

Allow	multiple	representations	of	data	on	the	same	URL.

Inspect	request	headers	to	determine	extra	information	about	what	the	client	wants.

This	makes	it	easy	to	use	Yesod	not	just	for	building	websites,	but	for	building	APIs.	In
fact,	using	techniques	such	as	selectRep/provideRep,	you	can	serve	both	a	user-friendly
HTML	page	and	a	machine-friendly	JSON	page	from	the	same	URL.

Chapter	13.	Yesod’s	Monads

As	you’ve	progressed	through	this	book	so	far,	a	number	of	monads	have	appeared:
Handler,	Widget,	and	YesodDB	(for	Persistent).	As	with	most	monads,	each	one	provides
some	specific	functionality:	Handler	gives	access	to	the	request	and	allows	you	to	send
responses;	a	Widget	contains	HTML,	CSS,	and	JavaScript;	and	YesodDB	lets	you	make
database	queries.	In	model-view-controller	(MVC)	terms,	we	could	consider	YesodDB	to
be	the	model,	Widget	to	be	the	view,	and	Handler	to	be	the	controller.

So	far,	we’ve	presented	some	very	straightforward	ways	to	use	these	monads:	your	main
handler	will	run	in	Handler,	using	runDB	to	execute	a	YesodDB	query	and	defaultLayout
to	return	a	Widget,	which	in	turn	was	created	by	calls	to	toWidget.

However,	if	we	have	a	deeper	understanding	of	these	types,	we	can	achieve	some	fancier
results.

Monad	Transformers
Monads	are	like	onions.	Monads	are	not	like	cakes.

Variation	on	a	quote	from	Shrek

Before	we	get	into	the	heart	of	Yesod’s	monads,	we	need	to	understand	a	bit	about	monad
transformers.	(If	you	already	know	all	about	monad	transformers,	you	can	likely	skip	this
section.)	Different	monads	provide	different	functionality:	Reader	allows	read-only	access
to	some	piece	of	data	throughout	a	computation,	Error	allows	you	to	short-circuit
computations,	and	so	on.

Oftentimes,	however,	you’ll	want	to	be	able	to	combine	a	few	of	these	features	together.
After	all,	why	not	have	a	computation	with	read-only	access	to	some	settings	variable,	that
could	error	out	at	any	time?	One	approach	to	this	would	be	to	write	a	new	monad	like
ReaderError,	but	this	has	the	obvious	downside	of	exponential	complexity:	you’ll	need	to
write	a	new	monad	for	every	single	possible	combination.

Instead,	we	have	monad	transformers.	For	example,	in	addition	to	Reader,	we	have
ReaderT,	which	adds	reader	functionality	to	any	other	monad.	So,	conceptually,	we	could
represent	our	ReaderError	as	follows:

type	ReaderError	=	ReaderT	Error

In	order	to	access	our	settings	variable,	we	can	use	the	ask	function.	But	what	about	short-
circuiting	a	computation?	We’d	like	to	use	throwError,	but	that	won’t	exactly	work.
Instead,	we	need	to	lift	our	call	into	the	next	monad	up.	In	other	words:

throwError	::	errValue	->	Error

lift	.	throwError	::	errValue	->	ReaderT	Error

There	are	a	few	things	you	should	pick	up	here:

A	transformer	can	be	used	to	add	functionality	to	an	existing	monad.

A	transformer	must	always	wrap	around	an	existing	monad.

The	functionality	available	in	a	wrapped	monad	will	be	dependent	not	only	on	the
monad	transformer,	but	also	on	the	inner	monad	that	is	being	wrapped.

A	great	example	of	that	last	point	is	the	IO	monad.	No	matter	how	many	layers	of
transformers	you	have	around	an	IO,	there’s	still	an	IO	at	the	core,	meaning	you	can
perform	I/O	in	any	of	these	monad	transformer	stacks.	You’ll	often	see	code	that	looks
like	liftIO	$	putStrLn	"Hello	There!".

The	Three	Transformers
We’ve	already	discussed	two	of	our	transformers:	Handler	and	Widget.	Remember	that
these	are	each	application-specific	synonyms	for	the	more	generic	HandlerT	and	WidgetT.
Each	of	those	transformers	takes	two	type	parameters:	your	foundation	data	type,	and	a
base	monad.	The	most	commonly	used	base	monad	is	IO.

NOTE
In	earlier	versions	of	Yesod,	Handler	and	Widget	were	far	more	magical	and	scary.	Since	version	1.2,
things	are	much	simplified.	So,	if	you	remember	reading	some	scary	stuff	about	fake	transformers	and
subsite	parameters,	rest	assured:	you	haven’t	gone	crazy,	things	have	actually	changed	a	bit.	The	story	with
Persistent	is	likewise	much	simpler.

In	Persistent,	we	have	a	typeclass	called	PersistStore.	This	typeclass	defines	all	of	the
primitive	operations	you	can	perform	on	a	database,	like	get.	There	are	instances	of	this
typeclass	for	each	database	backend	supported	by	Persistent.	For	example,	for	SQL
databases,	there	is	a	data	type	called	SqlBackend.	We	then	use	a	standard	ReaderT
transformer	to	provide	that	SqlBackend	value	to	all	of	our	operations.	This	means	that	we
can	run	a	SQL	database	with	any	underlying	monad	that	is	an	instance	of	MonadIO.	The
takeaway	here	is	that	we	can	layer	our	Persistent	transformer	on	top	of	Handler	or	Widget.

In	order	to	make	it	simpler	to	refer	to	the	relevant	Persistent	transformer,	the	yesod-
persistent	package	defines	the	YesodPersistBackend	associated	type.	For	example,	if	I
have	a	site	called	MyApp	and	it	uses	SQL,	I	would	define	something	like	type	instance
YesodPersistBackend	MyApp	=	SqlBackend.	And	for	more	convenience,	we	have	a	type
synonym	called	YesodDB,	which	is	defined	as:

type	YesodDB	site	=	ReaderT	(YesodPersistBackend	site)	(HandlerT	site	IO)

Our	database	actions	will	then	have	types	that	look	like	YesodDB	MyApp	SomeResult.	In
order	to	run	these,	we	can	use	the	standard	Persistent	unwrap	functions	(like	runSqlPool)
to	run	the	action	and	get	back	a	normal	Handler.	To	automate	this,	we	provide	the	runDB
function.	Putting	it	all	together,	we	can	now	run	database	actions	inside	our	handlers.

Most	of	the	time	in	Yesod	code,	and	especially	thus	far	in	this	book,	widgets	have	been
treated	as	actionless	containers	that	simply	combine	HTML,	CSS,	and	JavaScript.	But	in
reality,	a	Widget	can	do	anything	that	a	Handler	can	do,	by	using	the	handlerToWidget
function.	So,	for	example,	you	can	run	database	queries	inside	a	Widget	by	using
something	like	handlerToWidget	.	runDB.

Example:	Database-Driven	Navbar
Let’s	put	some	of	this	new	knowledge	into	action.	We	want	to	create	a	Widget	that
generates	its	output	based	on	the	contents	of	the	database.	Previously,	our	approach	would
have	been	to	load	up	the	data	in	a	Handler,	and	then	pass	that	data	into	a	Widget.	Now,
we’ll	do	the	loading	of	data	in	the	Widget	itself.	This	is	a	boon	for	modularity,	as	this
Widget	can	be	used	in	any	Handler	we	want,	without	any	need	to	pass	in	the	database
contents:

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import											Control.Monad.Logger				(runNoLoggingT)

import											Data.Text															(Text)

import											Data.Time

import											Database.Persist.Sqlite

import											Yesod

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Link

				title	Text

				url	Text

				added	UTCTime

|]

data	App	=	App	ConnectionPool

mkYesod	"App"	[parseRoutes|

/									HomeR				GET

/add-link	AddLinkR	POST

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

instance	YesodPersist	App	where

				type	YesodPersistBackend	App	=	SqlBackend

				runDB	db	=	do

								App	pool	<-	getYesod

								runSqlPool	db	pool

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<form	method=post	action=@{AddLinkR}>

												<p>

																Add	a	new	link	to

																<input	type=url	name=url	value=http://>

																titled

																<input	type=text	name=title>

																<input	type=submit	value="Add	link">

								<h2>Existing	links

								^{existingLinks}

				|]

existingLinks	::	Widget

existingLinks	=	do

				links	<-	handlerToWidget	$	runDB	$	selectList	[]	[LimitTo	5,	Desc	LinkAdded]

				[whamlet|

								

												$forall	Entity	_	link	<-	links

																

																				#{linkTitle	link}

				|]

postAddLinkR	::	Handler	()

postAddLinkR	=	do

				url	<-	runInputPost	$	ireq	urlField	"url"

				title	<-	runInputPost	$	ireq	textField	"title"

				now	<-	liftIO	getCurrentTime

				runDB	$	insert	$	Link	title	url	now

				setMessage	"Link	added"

				redirect	HomeR

main	::	IO	()

main	=	runNoLoggingT	$	withSqlitePool	"links.db3"	10	$	\pool	->	liftIO	$	do

				runSqlPersistMPool	(runMigration	migrateAll)	pool

				warp	3000	$	App	pool

Pay	attention	in	particular	to	the	existingLinks	function.	Notice	how	all	we	needed	to	do
was	apply	handlerToWidget	.	runDB	to	a	normal	database	action.	And	from	within
getHomeR,	we	treated	existingLinks	like	any	ordinary	Widget,	with	no	special
parameters	at	all.	Figure	13-1	shows	the	output	of	this	app.

Figure	13-1.	Screenshot	of	the	navbar

Example:	Request	Information
Likewise,	you	can	get	request	information	inside	a	Widget.	Here	we	can	determine	the	sort
order	of	a	list	based	on	a	GET	parameter:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Data.List	(sortBy)

import											Data.Ord		(comparing)

import											Data.Text	(Text)

import											Yesod

data	Person	=	Person

				{	personName	::	Text

				,	personAge		::	Int

				}

people	::	[Person]

people	=

				[Person	"Miriam"	25

				,	Person	"Eliezer"	3

				,	Person	"Michael"	26

				,	Person	"Gavriella"	1

]

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>

												Sort	by	name

												|

												Sort	by	age

												|

												No	sort

								^{showPeople}

				|]

showPeople	::	Widget

showPeople	=	do

				msort	<-	runInputGet	$	iopt	textField	"sort"

				let	people'	=

												case	msort	of

																Just	"name"	->	sortBy	(comparing	personName)	people

																Just	"age"		->	sortBy	(comparing	personAge)		people

																_											->	people

				[whamlet|

								<dl>

												$forall	person	<-	people'

																<dt>#{personName	person}

																<dd>#{show	$	personAge	person}

				|]

main	::	IO	()

main	=	warp	3000	App

Notice	that	in	this	case,	we	didn’t	even	have	to	call	handlerToWidget.	The	reason	is	that	a
number	of	the	functions	included	in	Yesod	automatically	work	for	both	Handler	and
Widget,	by	means	of	the	MonadHandler	typeclass.	In	fact,	MonadHandler	will	allow	these
functions	to	be	“autolifted”	through	many	common	monad	transformers.

But	if	you	want	to,	you	can	wrap	up	the	call	to	runInputGet	using	handlerToWidget,	and
everything	will	work	the	same.

Performance	and	Error	Messages
At	this	point,	you	may	be	just	a	bit	confused.	As	I	already	mentioned,	the	Widget	synonym
uses	IO	as	its	base	monad,	not	Handler.	So	how	can	Widget	perform	Handler	actions?
And	why	not	just	make	Widget	a	transformer	on	top	of	Handler,	and	then	use	lift	instead
of	this	special	handlerToWidget?	And	finally,	I	mentioned	that	Widget	and	Handler	were
both	instances	of	MonadResource.	If	you’re	familiar	with	MonadResource,	you	may	be
wondering	why	ResourceT	doesn’t	appear	in	the	monad	transformer	stack.

NOTE
You	can	consider	this	section	extra	credit.	It	gets	into	some	of	the	design	motivation	behind	Yesod,	which
isn’t	necessary	for	usage	of	Yesod.

The	fact	of	the	matter	is	that	there’s	a	much	simpler	(in	terms	of	implementation)	approach
we	could	take	for	all	of	these	monad	transformers.	Handler	could	be	a	transformer	on	top
of	ResourceT	IO	instead	of	just	IO,	which	would	be	a	bit	more	accurate.	And	Widget
could	be	layered	on	top	of	Handler.	The	end	result	would	look	something	like	this:

type	Handler	=	HandlerT	App	(ResourceT	IO)

type	Widget		=	WidgetT		App	(HandlerT	App	(ResourceT	IO))

Doesn’t	look	too	bad,	especially	considering	you	mostly	deal	with	the	friendlier	type
synonyms	instead	of	directly	with	the	transformer	types.	The	problem	is	that	any	time
those	underlying	transformers	leak	out,	these	larger	type	signatures	can	be	incredibly
confusing.	And	the	most	common	time	for	them	to	leak	out	is	in	error	messages,	when
you’re	probably	already	pretty	confused!	(Another	time	is	when	working	on	subsites,
which	happens	to	be	confusing	too.)

One	other	concern	is	that	each	monad	transformer	layer	does	add	some	amount	of
performance	penalty.	This	will	probably	be	negligible	compared	to	the	I/O	you’ll	be
performing,	but	the	overhead	is	there.

So,	instead	of	having	properly	layered	transformers,	we	flatten	out	each	of	HandlerT	and
WidgetT	into	a	one-level	transformer.	Here’s	a	high-level	overview	of	the	approach	we
use:

HandlerT	is	really	just	a	ReaderT	monad.	(We	give	it	a	different	name	to	make	error
messages	clearer.)	This	is	a	reader	for	the	HandlerData	type,	which	contains	request
information	and	some	other	immutable	contents.

In	addition,	HandlerData	holds	an	IORef	to	a	GHState	(badly	named	for	historical
reasons),	which	holds	some	data	that	can	be	mutated	during	the	course	of	a	handler
(e.g.,	session	variables).	The	reason	we	use	an	IORef	instead	of	a	StateT	kind	of
approach	is	that	IORef	will	maintain	the	mutated	state	even	if	a	runtime	exception	is
thrown.

The	ResourceT	monad	transformer	is	essentially	a	ReaderT	holding	onto	an	IORef.
This	IORef	contains	the	information	on	all	cleanup	actions	that	must	be	performed.
(This	is	called	InternalState.)	Instead	of	having	a	separate	transformer	layer	to
hold	onto	that	reference,	we	hold	onto	the	reference	ourselves	in	HandlerData.	(And
yes,	the	reason	for	an	IORef	here	is	also	for	runtime	exceptions.)

A	WidgetT	is	essentially	just	a	WriterT	on	top	of	everything	that	a	HandlerT	does.
But	because	HandlerT	is	just	a	ReaderT,	we	can	easily	compress	the	two	aspects	into
a	single	transformer,	which	looks	something	like	newtype	WidgetT	site	m	a	=
WidgetT	(HandlerData	->	m	(a,	WidgetData)).

The	definitions	of	HandlerT	and	WidgetT	in	Yesod.Core.Types	are	useful	if	you	want	to
better	understand	this.

Adding	a	New	Monad	Transformer
At	times,	you’ll	want	to	add	your	own	monad	transformer	in	part	of	your	application.	As	a
motivating	example,	let’s	consider	the	monadcryptorandom	package	from	Hackage,	which
defines	both	a	MonadCRandom	typeclass	for	monads	that	allow	generating	cryptographically
secure	random	values,	and	CRandT	as	a	concrete	instance	of	that	typeclass.	Say	we	want	to
write	some	code	that	generates	a	random	Bytestring	such	as	the	following:

import	Control.Monad.CryptoRandom

import	Data.ByteString.Base16	(encode)

import	Data.Text.Encoding	(decodeUtf8)

getHomeR	=	do

				randomBS	<-	getBytes	128

				defaultLayout

								[whamlet|

												<p>Here's	some	random	data:	#{decodeUtf8	$	encode	randomBS}

								|]

However,	this	results	in	an	error	message	along	the	lines	of:

				No	instance	for	(MonadCRandom	e0	(HandlerT	App	IO))

						arising	from	a	use	of	'getBytes'

				In	a	stmt	of	a	'do'	block:	randomBS	<-	getBytes	128

How	do	we	get	such	an	instance?	One	approach	is	to	simply	use	the	CRandT	monad
transformer	when	we	call	getBytes.	A	complete	example	of	doing	so	would	be:

{-#	LANGUAGE	OverloadedStrings,	QuasiQuotes,	TemplateHaskell,	TypeFamilies	#-}

import	Yesod

import	Crypto.Random	(SystemRandom,	newGenIO)

import	Control.Monad.CryptoRandom

import	Data.ByteString.Base16	(encode)

import	Data.Text.Encoding	(decodeUtf8)

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Html

getHomeR	=	do

				gen	<-	liftIO	newGenIO

				eres	<-	evalCRandT	(getBytes	16)	(gen	::	SystemRandom)

				randomBS	<-

								case	eres	of

												Left	e	->	error	$	show	(e	::	GenError)

												Right	gen	->	return	gen

				defaultLayout

								[whamlet|

												<p>Here's	some	random	data:	#{decodeUtf8	$	encode	randomBS}

								|]

main	::	IO	()

main	=	warp	3000	App

Note	that	what	we’re	doing	is	layering	the	CRandT	transformer	on	top	of	the	HandlerT
transformer.	It	does	not	work	to	do	things	the	other	way	around:	Yesod	itself	would
ultimately	have	to	unwrap	the	CRandT	transformer,	and	it	has	no	knowledge	of	how	to	do
so.	Notice	that	this	is	the	same	approach	we	take	with	Persistent:	its	transformer	goes	on
top	of	HandlerT.

But	there	are	two	downsides	to	this	approach:

It	requires	you	to	jump	into	this	alternative	monad	each	time	you	want	to	work	with
random	values.

It’s	inefficient:	you	need	to	create	a	new	random	seed	each	time	you	enter	this	other
monad.

The	second	point	could	be	worked	around	by	storing	the	random	seed	in	the	foundation
data	type,	in	a	mutable	reference	like	an	IORef,	and	then	atomically	sampling	it	each	time
we	enter	the	CRandT	transformer.	But	we	can	even	go	a	step	further,	and	use	this	trick	to
make	our	Handler	monad	itself	an	instance	of	MonadCRandom!	Let’s	look	at	the	code,
which	is	in	fact	a	bit	involved:

{-#	LANGUAGE	FlexibleInstances					#-}

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

{-#	LANGUAGE	TypeSynonymInstances		#-}

import											Control.Monad														(join)

import											Control.Monad.Catch								(catch,	throwM)

import											Control.Monad.CryptoRandom

import											Control.Monad.Error.Class		(MonadError	(..))

import											Crypto.Random														(SystemRandom,	newGenIO)

import											Data.ByteString.Base16					(encode)

import											Data.IORef

import											Data.Text.Encoding									(decodeUtf8)

import											Yesod

data	App	=	App

				{	randGen	::	IORef	SystemRandom

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Html

getHomeR	=	do

				randomBS	<-	getBytes	16

				defaultLayout

								[whamlet|

												<p>Here's	some	random	data:	#{decodeUtf8	$	encode	randomBS}

								|]

instance	MonadError	GenError	Handler	where

				throwError	=	throwM

				catchError	=	catch

instance	MonadCRandom	GenError	Handler	where

				getCRandom		=	wrap	crandom

				{-#	INLINE	getCRandom	#-}

				getBytes	i	=	wrap	(genBytes	i)

				{-#	INLINE	getBytes	#-}

				getBytesWithEntropy	i	e	=	wrap	(genBytesWithEntropy	i	e)

				{-#	INLINE	getBytesWithEntropy	#-}

				doReseed	bs	=	do

								genRef	<-	fmap	randGen	getYesod

								join	$	liftIO	$	atomicModifyIORef	genRef	$	\gen	->

												case	reseed	bs	gen	of

																Left	e	->	(gen,	throwM	e)

																Right	gen'	->	(gen',	return	())

				{-#	INLINE	doReseed	#-}

wrap	::	(SystemRandom	->	Either	GenError	(a,	SystemRandom))	->	Handler	a

wrap	f	=	do

				genRef	<-	fmap	randGen	getYesod

				join	$	liftIO	$	atomicModifyIORef	genRef	$	\gen	->

								case	f	gen	of

												Left	e	->	(gen,	throwM	e)

												Right	(x,	gen')	->	(gen',	return	x)

main	::	IO	()

main	=	do

				gen	<-	newGenIO

				genRef	<-	newIORef	gen

				warp	3000	App

								{	randGen	=	genRef

								}

This	really	comes	down	to	a	few	different	concepts:

1.	 We	modify	the	App	data	type	to	have	a	field	for	an	IORef	SystemRandom.

2.	 Similarly,	we	modify	the	main	function	to	generate	an	IORef	SystemRandom.

3.	 Our	getHomeR	function	has	become	a	lot	simpler:	we	can	now	simply	call	getBytes
without	playing	with	transformers.

4.	 However,	we	have	gained	some	complexity	in	needing	a	MonadCRandom	instance.
This	is	a	book	about	Yesod,	not	monadcryptorandom,	so	I’m	not	going	to	go	into
details	on	this	instance,	but	I	encourage	you	to	inspect	it	and,	if	you’re	interested,
compare	it	to	the	instance	for	CRandT.

Hopefully,	this	helps	get	across	an	important	point:	the	power	of	the	HandlerT
transformer.	As	it	provides	you	with	a	readable	environment,	you’re	able	to	re-create	a
StateT	transformer	by	relying	on	mutable	references.	In	fact,	if	you	rely	on	the	underlying
IO	monad	for	runtime	exceptions,	you	can	implement	most	cases	of	ReaderT,	WriterT,
StateT,	and	ErrorT	with	this	abstraction.

Summary
If	you	completely	ignore	this	chapter,	you’ll	still	be	able	to	use	Yesod	to	great	benefit.	The
advantage	of	understanding	how	Yesod’s	monads	interact	that	it	enables	you	to	produce
cleaner,	more	modular	code.	Being	able	to	perform	arbitrary	actions	in	a	Widget	can	be	a
powerful	tool,	and	understanding	how	Persistent	and	your	Handler	code	interact	can	help
you	make	more	informed	design	decisions	in	your	app.

Chapter	14.	Authentication	and
Authorization

Authentication	and	authorization	are	conceptually	related,	but	they	are	not	one	and	the
same.	The	former	deals	with	identifying	a	user,	whereas	the	latter	determines	what	a	user
is	allowed	to	do.	Unfortunately,	because	both	terms	are	frequently	abbreviated	as	“auth,”
the	concepts	are	often	conflated.

Yesod	provides	built-in	support	for	a	number	of	third-party	authentication	systems,	such
as	OpenID,	BrowserID,	and	OAuth.	These	are	systems	where	your	application	trusts	some
external	system	for	validating	a	user’s	credentials.	Additionally,	there	is	support	for	more
commonly	used	username/password	and	email/password	systems.	The	former	route
ensures	simplicity	for	users	(no	new	passwords	to	remember)	and	implementors	(no	need
to	deal	with	an	entire	security	architecture),	and	the	latter	gives	the	developer	more
control.

On	the	authorization	side,	we	are	able	to	take	advantage	of	REST	and	type-safe	URLs	to
create	simple,	declarative	systems.	Additionally,	because	all	authorization	code	is	written
in	Haskell,	you	have	the	full	flexibility	of	the	language	at	your	disposal.

This	chapter	will	cover	how	to	set	up	an	“auth”	solution	in	Yesod	and	discuss	some	trade-
offs	in	the	different	authentication	options.

Overview
The	yesod-auth	package	provides	a	unified	interface	for	a	number	of	different
authentication	plug-ins.	The	only	real	requirement	for	these	backends	is	that	they	identify
a	user	based	on	some	unique	string.	In	OpenID,	for	instance,	this	would	be	the	actual
OpenID	value.	In	BrowserID,	it’s	the	email	address.	For	HashDB	(which	uses	a	database
of	hashed	passwords),	it’s	the	username.

Each	authentication	plug-in	provides	its	own	system	for	logging	in,	whether	it	be	via
passing	tokens	with	an	external	site	or	a	email/password	form.	After	a	successful	login,
the	plug-in	sets	a	value	in	the	user’s	session	to	indicate	his	AuthId.	This	AuthId	is	usually
a	Persistent	ID	from	a	table	used	for	keeping	track	of	users.

There	are	a	few	functions	available	for	querying	a	user’s	AuthId	—	most	commonly
maybeAuthId,	requireAuthId,	maybeAuth,	and	requireAuth.	The	“require”	versions	will
redirect	to	a	login	page	if	the	user	is	not	logged	in,	while	the	second	set	of	functions	(the
ones	not	ending	in	Id)	give	both	the	table	ID	and	entity	value.

All	of	the	storage	of	AuthId	is	built	on	top	of	sessions,	so	the	same	rules	from	there	apply.
In	particular,	the	data	is	stored	in	an	encrypted,	HMACed	client	cookie,	which
automatically	times	out	after	a	certain	configurable	period	of	inactivity.	Additionally,
because	there	is	no	server-side	component	to	sessions,	logging	out	simply	deletes	the	data
from	the	session	cookie;	if	a	user	reuses	an	older	cookie	value,	the	session	will	still	be
valid.

NOTE
You	can	replace	the	default	client-side	sessions	with	server-side	sessions	to	provide	a	forced	logout
capability,	if	this	is	desired.

On	the	flip	side,	authorization	is	handled	by	a	few	methods	inside	the	Yesod	typeclass.	For
every	request,	these	methods	are	run	to	determine	if	access	should	be	allowed	or	denied,
or	if	the	user	needs	to	be	authenticated.	By	default,	these	methods	allow	access	for	every
request.	Alternatively,	you	can	implement	authorization	in	a	more	adhoc	way	by	adding
calls	to	requireAuth	and	the	like	within	individual	handler	functions,	though	this
undermines	many	of	the	benefits	of	a	declarative	authorization	system.

Authenticate	Me
Let’s	jump	right	in	with	an	example	of	authentication:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Data.Default																(def)

import											Data.Text																			(Text)

import											Network.HTTP.Client.Conduit	(Manager,	newManager)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.BrowserId

import											Yesod.Auth.GoogleEmail

data	App	=	App

				{	httpManager	::	Manager

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/auth	AuthR	Auth	getAuth

|]

instance	Yesod	App	where

				--	Note:	In	order	to	log	in	with	BrowserID,	you	must	correctly

				--	set	your	hostname	here.

				approot	=	ApprootStatic	"http://localhost:3000"

instance	YesodAuth	App	where

				type	AuthId	App	=	Text

				getAuthId	=	return	.	Just	.	credsIdent

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				authPlugins	_	=

								[authBrowserId	def

								,	authGoogleEmail

]

				authHttpManager	=	httpManager

				--	The	default	maybeAuthId	assumes	a	Persistent	database.	We're	going	for	a

				--	simpler	AuthId,	so	we'll	just	do	a	direct	lookup	in	the	session.

				maybeAuthId	=	lookupSession	"_ID"

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

getHomeR	::	Handler	Html

getHomeR	=	do

				maid	<-	maybeAuthId

				defaultLayout

								[whamlet|

												<p>Your	current	auth	ID:	#{show	maid}

												$maybe	_	<-	maid

																<p>

																				Logout

												$nothing

																<p>

																				Go	to	the	login	page

								|]

main	::	IO	()

main	=	do

				man	<-	newManager

				warp	3000	$	App	man

We’ll	start	with	the	route	declarations.	First	we	declare	our	standard	HomeR	route,	and	then
we	set	up	the	authentication	subsite.	Remember	that	a	subsite	needs	four	parameters:	the
path	to	the	subsite,	the	route	name,	the	subsite	name,	and	a	function	to	get	the	subsite
value.	In	other	words,	based	on	the	line:

/auth	AuthR	Auth	getAuth

we	need	to	have	getAuth	::	MyAuthSite	->	Auth.	Although	we	haven’t	written	that
function	ourselves,	yesod-auth	provides	it	automatically.	With	other	subsites	(like	static
files),	we	provide	configuration	settings	in	the	subsite	value,	and	therefore	need	to	specify
the	get	function.	In	the	auth	subsite,	we	specify	these	settings	in	a	separate	typeclass,
YesodAuth.

NOTE
Why	not	use	the	subsite	value?	There	are	a	number	of	settings	we	would	like	to	give	for	an	auth	subsite,
and	doing	so	from	a	record	type	would	be	inconvenient.	Also,	we	want	to	have	an	AuthId	associated	type,
so	a	typeclass	is	more	natural.	Why	not	use	a	typeclass	for	all	subsites?	It	comes	with	a	downside:	you	can
then	only	have	a	single	instance	per	site,	disallowing	serving	different	sets	of	static	files	from	different
routes.	Also,	the	subsite	value	works	better	when	we	want	to	load	data	at	app	initialization.

So	what	exactly	goes	in	this	YesodAuth	instance?	There	are	six	required	declarations:

AuthId	is	an	associated	type.	This	is	the	value	yesod-auth	will	give	you	when	you
ask	if	a	user	is	logged	in	(via	maybeAuthId	or	requireAuthId).	In	the	example,	we’ll
simply	use	Text	to	store	the	raw	identifier	(email	address,	in	this	case).

getAuthId	gets	the	actual	AuthId	from	the	Creds	(credentials)	data	type.	This	type
has	three	pieces	of	information:	the	authentication	backend	used	(BrowserID	or
Google	Email,	in	our	case),	the	actual	identifier,	and	an	associated	list	of	arbitrary
extra	information.	Each	backend	provides	different	extra	information;	see	their	docs
for	more	information.

loginDest	gives	the	route	to	redirect	to	after	a	successful	login.

Likewise,	logoutDest	gives	the	route	to	redirect	to	after	a	logout.

authPlugins	is	a	list	of	individual	authentication	backends	to	use.	In	our	example
we’re	using	BrowserID,	which	logs	in	via	Mozilla’s	BrowserID	system,	and	Google
Email,	which	authenticates	a	user’s	email	address	using	the	user’s	Google	account.
The	nice	thing	about	these	two	backends	is:

They	require	no	setup,	as	opposed	to	Facebook	or	OAuth,	which	require	setting
up	credentials.

They	use	email	addresses	as	identifiers,	which	people	are	comfortable	with,	as
opposed	to	OpenID,	which	uses	a	URL.

authHttpManager	gets	an	HTTP	connection	manager	from	the	foundation	type.	This

allow	authentication	backends	that	use	HTTP	connections	(i.e.,	almost	all	third-party
login	systems)	to	share	connections,	avoiding	the	cost	of	restarting	a	TCP	connection
for	each	request.

In	addition	to	these	six	methods,	there	are	other	methods	available	to	control	other
behavior	of	the	authentication	system,	such	as	what	the	login	page	looks	like.	For	more
information,	see	the	API	documentation.

In	our	HomeR	handler,	we	have	some	simple	links	to	the	login	and	logout	pages,	depending
on	whether	or	not	the	user	is	logged	in.	Notice	how	we	construct	these	subsite	links:	first
we	give	the	subsite	route	name	(AuthR),	followed	by	the	route	within	the	subsite	(LoginR
and	LogoutR).

Figures	14-1	through	14-3	show	what	the	login	process	looks	like	from	a	user’s
perspective.

Figure	14-1.	Initial	page	load

Figure	14-2.	BrowserID	login	screen

Figure	14-3.	Homepage	after	logging	in

Email
For	many	use	cases,	third-party	authentication	using	email	will	be	sufficient.	Occasionally,
however,	you’ll	want	users	to	create	passwords	on	your	site.	The	scaffolded	site	does	not
include	this	setup,	because:

In	order	to	securely	accept	passwords,	you	need	to	be	running	over	SSL.	Many	users
are	not	serving	their	sites	over	SSL.

Although	the	email	backend	properly	salts	and	hashes	passwords,	a	compromised
database	could	still	be	problematic.	Again,	we	make	no	assumptions	that	Yesod	users
are	following	secure	deployment	practices.

You	need	to	have	a	working	system	for	sending	email.	Many	web	servers	these	days
are	not	equipped	to	deal	with	all	of	the	spam	protection	measures	used	by	mail
servers.

NOTE
The	following	example	will	use	the	system’s	built-in	sendmail	executable.	If	you	would	like	to	avoid	the
hassle	of	dealing	with	an	email	server	yourself,	you	can	use	Amazon	SES.	There	is	a	package	called	mime-
mail-ses	that	provides	a	drop-in	replacement	for	the	sendmail	code,	which	we’ll	use.	This	is	the	approach	I
generally	recommend,	and	it’s	what	I	use	on	most	of	my	sites,	including	FP	Haskell	Center	and
haskellers.com.

But	assuming	you	are	able	to	meet	these	demands,	and	you	want	to	have	a	separate
password	login	specifically	for	your	site,	Yesod	offers	a	built-in	backend.	It	requires	quite
a	bit	of	code	to	set	up,	because	it	needs	to	store	passwords	securely	in	the	database	and
send	a	number	of	different	emails	to	users	(for	account	verification,	password	retrieval,
etc.).

Let’s	have	a	look	at	a	site	that	provides	email	authentication,	storing	passwords	in	a
Persistent	SQLite	database:

{-#	LANGUAGE	DeriveDataTypeable									#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

import											Control.Monad												(join)

import											Control.Monad.Logger	(runNoLoggingT)

import											Data.Maybe															(isJust)

import											Data.Text																(Text)

import	qualified	Data.Text.Lazy.Encoding

import											Data.Typeable												(Typeable)

import											Database.Persist.Sqlite

import											Database.Persist.TH

import											Network.Mail.Mime

import											Text.Blaze.Html.Renderer.Utf8	(renderHtml)

import											Text.Hamlet														(shamlet)

import											Text.Shakespeare.Text				(stext)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Email

share	[mkPersist	sqlSettings	{	mpsGeneric	=	False	},	mkMigrate	"migrateAll"]

				[persistLowerCase|

User

				email	Text

				password	Text	Maybe	--	Password	may	not	be	set	yet

				verkey	Text	Maybe	--	Used	for	resetting	passwords

				verified	Bool

				UniqueUser	email

				deriving	Typeable

|]

data	App	=	App	SqlBackend

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/auth	AuthR	Auth	getAuth

|]

instance	Yesod	App	where

				--	Emails	will	include	links,	so	be	sure	to	include	an	approot	so	that

				--	the	links	are	valid!

				approot	=	ApprootStatic	"http://localhost:3000"

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

--	Set	up	Persistent

instance	YesodPersist	App	where

				type	YesodPersistBackend	App	=	SqlBackend

				runDB	f	=	do

								App	conn	<-	getYesod

								runSqlConn	f	conn

instance	YesodAuth	App	where

				type	AuthId	App	=	UserId

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				authPlugins	_	=	[authEmail]

				--	Need	to	find	the	UserId	for	the	given	email	address.

				getAuthId	creds	=	runDB	$	do

								x	<-	insertBy	$	User	(credsIdent	creds)	Nothing	Nothing	False

								return	$	Just	$

												case	x	of

																Left	(Entity	userid	_)	->	userid	--	newly	added	user

																Right	userid	->	userid	--	existing	user

				authHttpManager	=	error	"Email	doesn't	need	an	HTTP	manager"

instance	YesodAuthPersist	App

--	Here's	all	of	the	email-specific	code

instance	YesodAuthEmail	App	where

				type	AuthEmailId	App	=	UserId

				afterPasswordRoute	_	=	HomeR

				addUnverified	email	verkey	=

								runDB	$	insert	$	User	email	Nothing	(Just	verkey)	False

				sendVerifyEmail	email	_	verurl	=

								liftIO	$	renderSendMail	(emptyMail	$	Address	Nothing	"noreply")

												{	mailTo	=	[Address	Nothing	email]

												,	mailHeaders	=

																[("Subject",	"Verify	your	email	address")

]

												,	mailParts	=	[[textPart,	htmlPart]]

												}

						where

								textPart	=	Part

												{	partType	=	"text/plain;	charset=utf-8"

												,	partEncoding	=	None

												,	partFilename	=	Nothing

												,	partContent	=	Data.Text.Lazy.Encoding.encodeUtf8

																[stext|

																				Please	confirm	your	email	address

																				by	clicking	on	the	link	below.

																				#{verurl}

																				Thank	you

																|]

												,	partHeaders	=	[]

												}

								htmlPart	=	Part

												{	partType	=	"text/html;	charset=utf-8"

												,	partEncoding	=	None

												,	partFilename	=	Nothing

												,	partContent	=	renderHtml

																[shamlet|

																				<p>Please	confirm	your	email	address

																							by	clicking	on	the	link	below.

																				<p>

																								#{verurl}

																				<p>Thank	you

																|]

												,	partHeaders	=	[]

												}

				getVerifyKey	=	runDB	.	fmap	(join	.	fmap	userVerkey)	.	get

				setVerifyKey	uid	key	=	runDB	$	update	uid	[UserVerkey	=.	Just	key]

				verifyAccount	uid	=	runDB	$	do

								mu	<-	get	uid

								case	mu	of

												Nothing	->	return	Nothing

												Just	u	->	do

																update	uid	[UserVerified	=.	True]

																return	$	Just	uid

				getPassword	=	runDB	.	fmap	(join	.	fmap	userPassword)	.	get

				setPassword	uid	pass	=	runDB	$	update	uid	[UserPassword	=.	Just	pass]

				getEmailCreds	email	=	runDB	$	do

								mu	<-	getBy	$	UniqueUser	email

								case	mu	of

												Nothing	->	return	Nothing

												Just	(Entity	uid	u)	->	return	$	Just	EmailCreds

																{	emailCredsId	=	uid

																,	emailCredsAuthId	=	Just	uid

																,	emailCredsStatus	=	isJust	$	userPassword	u

																,	emailCredsVerkey	=	userVerkey	u

																,	emailCredsEmail	=	email

																}

				getEmail	=	runDB	.	fmap	(fmap	userEmail)	.	get

getHomeR	::	Handler	Html

getHomeR	=	do

				maid	<-	maybeAuthId

				defaultLayout

								[whamlet|

												<p>Your	current	auth	ID:	#{show	maid}

												$maybe	_	<-	maid

																<p>

																				Logout

												$nothing

																<p>

																				Go	to	the	login	page

								|]

main	::	IO	()

main	=	runNoLoggingT	$	withSqliteConn	"email.db3"	$	\conn	->	liftIO	$	do

				runSqlConn	(runMigration	migrateAll)	conn

				warp	3000	$	App	conn

Authorization
Once	you	can	authenticate	your	users,	you	can	use	their	credentials	to	authorize	requests.
Authorization	in	Yesod	is	simple	and	declarative:	most	of	the	time,	you	just	need	to	add
the	authRoute	and	isAuthorized	methods	to	your	Yesod	typeclass	instance.	Let’s	look	at
an	example:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Data.Default									(def)

import											Data.Text												(Text)

import											Network.HTTP.Conduit	(Manager,	conduitManagerSettings,

																																							newManager)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Dummy	--	just	for	testing;	don't	use	in	real	life!

data	App	=	App

				{	httpManager	::	Manager

				}

mkYesod	"App"	[parseRoutes|

/						HomeR		GET	POST

/admin	AdminR	GET

/auth		AuthR		Auth	getAuth

|]

instance	Yesod	App	where

				authRoute	_	=	Just	$	AuthR	LoginR

				--	route	name,	then	a	Boolean	indicating	if	it's	a	write	request

				isAuthorized	HomeR	True	=	isAdmin

				isAuthorized	AdminR	_	=	isAdmin

				--	anyone	can	access	other	pages

				isAuthorized	_	_	=	return	Authorized

isAdmin	=	do

				mu	<-	maybeAuthId

				return	$	case	mu	of

								Nothing	->	AuthenticationRequired

								Just	"admin"	->	Authorized

								Just	_	->	Unauthorized	"You	must	be	an	admin"

instance	YesodAuth	App	where

				type	AuthId	App	=	Text

				getAuthId	=	return	.	Just	.	credsIdent

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				authPlugins	_	=	[authDummy]

				authHttpManager	=	httpManager

				maybeAuthId	=	lookupSession	"_ID"

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

getHomeR	::	Handler	Html

getHomeR	=	do

				maid	<-	maybeAuthId

				defaultLayout

								[whamlet|

												<p>Note:	Log	in	as	"admin"	to	be	an	administrator.

												<p>Your	current	auth	ID:	#{show	maid}

												$maybe	_	<-	maid

																<p>

																				Logout

												<p>

																Go	to	admin	page

												<form	method=post>

																Make	a	change	(admins	only)

																\	#

																<input	type=submit>

								|]

postHomeR	::	Handler	()

postHomeR	=	do

				setMessage	"You	made	some	change	to	the	page"

				redirect	HomeR

getAdminR	::	Handler	Html

getAdminR	=	defaultLayout

				[whamlet|

								<p>I	guess	you're	an	admin!

								<p>

												Return	to	homepage

				|]

main	::	IO	()

main	=	do

				manager	<-	newManager	conduitManagerSettings

				warp	3000	$	App	manager

authRoute	should	be	your	login	page,	almost	always	AuthR	LoginR.	isAuthorized	is	a
function	that	takes	two	parameters:	the	requested	route,	and	whether	or	not	the	request	was
a	“write”	request.	You	can	actually	change	the	meaning	of	what	a	write	request	is	using
the	isWriteRequest	method,	but	the	out-of-the-box	version	follows	RESTful	principles:
anything	but	a	GET,	HEAD,	OPTIONS,	or	TRACE	request	is	a	write	request.

What’s	convenient	about	the	body	of	isAuthorized	is	that	you	can	run	any	Handler	code
you	want	in	it.	This	means	you	can:

Access	the	filesystem	(normal	I/O).

Look	up	values	in	the	database.

Pull	any	session	or	request	values	you	want.

Using	these	techniques,	you	can	develop	as	sophisticated	an	authorization	system	as	you
like,	or	even	tie	into	existing	systems	used	by	your	organization.

Summary
This	chapter	covered	the	basics	of	setting	up	user	authentication,	as	well	as	how	the	built-
in	authorization	functions	provide	a	simple,	declarative	approach	for	users.	Although	these
are	complicated	concepts,	with	many	approaches,	Yesod	should	provide	you	with	the
building	blocks	you	need	to	create	your	own	customized	auth	solution.

Chapter	15.	Scaffolding	and	the	Site
Template

So	you’re	tired	of	running	small	examples,	and	ready	to	write	a	real	site?	Then	you’ve
arrived	at	the	right	chapter.	Even	with	the	entire	Yesod	library	at	your	fingertips,	there	are
still	a	lot	of	steps	you	need	to	go	through	to	get	a	production-quality	site	set	up.
Considerations	include:

Config	file	parsing

Signal	handling	(*nix)

More	efficient	static	file	serving

A	good	file	layout

The	scaffolded	site	is	a	combination	of	many	Yesoders’	best	practices,	rolled	into	a	ready-
to-use	skeleton	for	your	sites.	It	is	highly	recommended	for	all	sites.	This	chapter	will
explain	the	overall	structure	of	the	scaffolding,	how	to	use	it,	and	some	of	its	less-than-
obvious	features.

For	the	most	part,	this	chapter	will	not	contain	code	samples.	It	is	recommended	that	you
follow	along	with	an	actual	scaffolded	site.

NOTE
Due	to	the	nature	of	the	scaffolded	site,	it	is	the	most	fluid	component	of	Yesod,	and	can	change	from
version	to	version.	It	is	possible	that	the	information	in	this	chapter	will	be	slightly	outdated	by	the	time	you
are	reading	it.

How	to	Scaffold
The	yesod-bin	package	installs	an	executable	(conveniently	named	yesod	as	well).	This
executable	provides	a	few	commands	(run	yesod	by	itself	to	get	a	list).	In	order	to
generate	a	scaffolding,	the	command	is	yesod	init.	This	will	start	a	question-and-answer
process	where	you	get	to	provide	basic	details.	After	answering	the	questions,	you	will
have	a	site	template	in	a	subfolder	with	the	name	of	your	project.

The	most	important	of	these	questions	concerns	the	database	backend.	You	get	a	few
choices	here,	including	SQL	and	MongoDB	backends,	or	you	can	select	the	simple	option
and	skip	database	support.	This	last	option	also	turns	off	a	few	extra	dependencies,	giving
you	a	leaner	overall	site.	The	remainder	of	this	chapter	will	focus	on	the	scaffoldings	for
one	of	the	database	backends.	There	will	be	minor	differences	for	the	simple	backend.

After	creating	your	files,	the	scaffolder	will	print	a	message	about	getting	started.	You
should	follow	those	instructions	to	ensure	a	reliable	installation.	In	particular,	the
commands	provided	will	ensure	that	any	missing	dependencies	are	built	and	installed.
Even	if	you’ve	installed	the	yesod	package,	you	most	likely	do	not	yet	have	in	place	all
the	dependencies	needed	by	your	site.	For	example,	none	of	the	database	backends	(or	the
JavaScript	minifier,	hjsmin)	are	installed	when	installing	the	yesod	package.

Finally,	to	launch	your	development	site,	you’ll	use	yesod	devel.	This	site	will
automatically	be	rebuilt	and	reloaded	whenever	you	change	your	code.

File	Structure
The	scaffolded	site	is	built	as	a	fully	cabalized	Haskell	package.	In	addition	to	source	files,
config	files,	templates,	and	static	files	are	produced.

Cabal	File
Whether	directly	using	cabal	or	indirectly	using	yesod	devel,	building	your	code	will
always	go	through	the	cabal	file.	If	you	open	the	file,	you’ll	see	that	there	are	both	library
and	executable	blocks.	If	the	library-only	flag	is	turned	on,	then	the	executable	block	is
not	built.	This	is	how	yesod	devel	calls	your	app.	Otherwise,	the	executable	is	built.

The	library-only	flag	should	only	be	used	by	yesod	devel;	you	should	never	be
explicitly	passing	it	into	cabal.	There	is	an	additional	flag,	dev,	that	allows	Cabal	to	build
an	executable	but	turns	on	some	of	the	same	features	as	the	library-only	flag	—	i.e.,	no
optimizations	and	reload	versions	of	the	Shakespearean	template	functions.

In	general,	you	will	build	as	follows:

When	developing,	use	yesod	devel	exclusively.

When	building	a	production	build,	perform	cabal	clean	&&	cabal	configure	&&
cabal	build.	This	will	produce	an	optimized	executable	in	your	dist	folder.	(You	can
also	use	the	yesod	keter	command	for	this.)

You	might	be	surprised	to	see	the	NoImplicitPrelude	extension.	We	turn	this	on	because
the	site	includes	its	own	module,	Import,	with	a	few	changes	to	Prelude	that	make
working	with	Yesod	a	little	more	convenient.

The	last	thing	to	note	is	the	exported-modules	list.	If	you	add	any	modules	to	your
application,	you	must	update	this	list	to	get	yesod	devel	to	work	correctly.	Unfortunately,
neither	Cabal	nor	GHC	will	give	you	a	warning	if	you	forget	to	make	this	update,	and
instead	you’ll	get	a	very	scary-looking	error	message	from	yesod	devel.

Routes	and	Entities
Multiple	times	in	this	book,	you’ve	seen	comments	stating	that	while	we’re	declaring	our
routes/entities	with	quasiquotes	for	convenience,	“in	a	production	site,	you	should	use	an
external	file.”	The	scaffolding	uses	such	an	external	file.

Routes	are	defined	in	config/routes,	and	entities	in	config/models.	They	have	the	exact
same	syntax	as	the	quasiquoting	you’ve	seen	throughout	the	book,	and	yesod	devel
knows	to	automatically	recompile	the	appropriate	modules	when	these	files	change.

The	models	file	is	referenced	by	Model.hs.	You	are	free	to	declare	whatever	you	like	in
this	file,	but	here	are	some	guidelines:

Any	data	types	used	in	entities	must	be	imported/declared	in	Model.hs,	above	the
persistFile	call.

Helper	utilities	should	be	declared	either	in	Import.hs	or,	if	very	model-centric,	in	a
file	within	the	Model/	folder	and	imported	into	Import.hs.

Foundation	and	Application	Modules
The	mkYesod	function	that	we	have	used	throughout	the	book	declares	a	few	things:

Route	type

Route	render	function

Dispatch	function

The	dispatch	function	refers	to	all	of	the	handler	functions,	and	therefore	all	of	those	must
either	be	defined	in	the	same	file	as	the	dispatch	function,	or	be	imported	into	the	module
containing	the	dispatch	function.

Meanwhile,	the	handler	functions	will	almost	certainly	refer	to	the	route	type.	Therefore,
they	either	must	be	in	the	same	file	where	the	route	type	is	defined,	or	must	import	that
file.	If	you	follow	the	logic	here,	your	entire	application	must	essentially	live	in	a	single
file!

Clearly	this	isn’t	what	we	want.	So,	instead	of	using	mkYesod,	the	scaffolded	site	uses	a
decomposed	version	of	the	function.	Foundation	calls	mkYesodData,	which	declares	the
route	type	and	render	function.	It	does	not	declare	the	dispatch	function,	so	the	handler
functions	need	not	be	in	scope.	The	Import.hs	file	imports	Foundation.hs,	and	all	the
handler	modules	import	Import.hs.

In	Application.hs,	we	call	mkYesodDispatch,	which	creates	our	dispatch	function.	For	this
to	work,	all	handler	functions	must	be	in	scope,	so	be	sure	to	add	an	import	statement	for
any	new	handler	modules	you	create.

Other	than	that,	Application.hs	is	pretty	simple.	It	provides	two	primary	functions:
getApplicationDev	is	used	by	yesod	devel	to	launch	your	app,	and	makeApplication	is
used	by	the	executable	to	launch.

Foundation.hs	is	much	more	exciting	because	it	does	the	following:

It	declares	your	foundation	data	type	and	a	number	of	instances,	such	as	Yesod,
YesodAuth,	and	YesodPersist.

It	imports	the	message	files.	If	you	look	for	the	line	starting	with	mkMessage,	you	will
see	that	it	specifies	the	folder	containing	the	messages	(messages/)	and	the	default
language	(en,	for	English).

This	is	the	right	file	for	adding	extra	instances	for	your	foundation,	such	as
YesodAuthEmail	or	YesodBreadcrumbs.

We’ll	be	referring	back	to	this	file	later,	as	we	discuss	some	of	the	special	implementations
of	Yesod	typeclass	methods.

Import
The	Import	module	was	born	out	of	a	few	commonly	recurring	patterns:

I	want	to	define	some	helper	functions	(maybe	the	<>	=	mappend	operator)	to	be	used
by	all	handlers.

I’m	always	adding	the	same	five	import	statements	(e.g.,	Data.Text,
Control.Applicative,	etc.)	to	every	handler	module.

I	want	to	make	sure	I	never	use	some	evil	function	(head,	readFile,	etc.)	from
Prelude.

NOTE
Yes,	“evil”	is	hyperbole.	If	you’re	wondering	why	I	listed	those	functions	as	bad,	head	is	partial	and	throws
exceptions	on	an	empty	list,	and	readFile	uses	lazy	I/O,	which	doesn’t	close	file	handles	quickly	enough.
Also,	readFile	uses	String	instead	of	Text.

The	solution	is	to	turn	on	the	NoImplicitPrelude	language	extension,	re-export	the	parts
of	Prelude	we	want,	add	in	all	the	other	stuff	we	want,	define	our	own	functions	as	well,
and	then	import	this	file	in	all	handlers.

NOTE
It	is	likely	that,	at	some	point	after	publishing	this	chapter,	the	scaffolded	site	will	switch	to	an	alternative
prelude,	such	as	classy-prelude-yesod.	Don’t	be	surprised	if	Import	looks	quite	different	than	described
here.

Handler	Modules
Handler	modules	should	go	inside	the	Handler/	folder.	The	site	template	includes	one
module:	Handler/Home.hs.	How	you	split	up	your	handler	functions	into	individual
modules	is	your	decision,	but	a	good	rule	of	thumb	is:

Different	methods	for	the	same	route	should	go	in	the	same	file	(e.g.,	getBlogR	and
postBlogR).

Related	routes	should	also	go	in	the	same	file	(e.g.,	getPeopleR	and	getPersonR).

Of	course,	it’s	entirely	up	to	you.	When	you	add	a	new	handler	file,	make	sure	you	do	the
following:

1.	 Add	it	to	version	control	(you	are	using	version	control,	right?).

2.	 Add	it	to	the	cabal	file.

3.	 Add	it	to	the	Application.hs	file.

4.	 Put	a	module	statement	at	the	top,	and	an	import	Import	line	below	it.

You	can	use	the	yesod	add-handler	command	to	automate	the	last	three	steps.

widgetFile
It’s	very	common	to	want	to	include	CSS	and	JavaScript	specific	to	a	page.	You	don’t
want	to	have	to	include	those	Lucius	and	Julius	files	manually	every	time	you	refer	to	a
Hamlet	file.	For	this,	the	site	template	provides	the	widgetFile	function.

If	you	have	a	handler	function:

getHomeR	=	defaultLayout	$(widgetFile	"homepage")

Yesod	will	look	for	the	following	files:

templates/homepage.hamlet

templates/homepage.lucius

templates/homepage.cassius

templates/homepage.julius

If	any	of	those	files	are	present,	they	will	be	automatically	included	in	the	output.

NOTE
Due	to	the	nature	of	how	this	works,	if	you	launch	your	app	with	yesod	devel	and	then	create	a	new	file
(e.g.,	templates/homepage.julius),	the	contents	will	not	be	included	until	the	file	calling	widgetFile	is
recompiled.	In	such	a	case,	you	may	need	to	force	a	save	of	that	file	to	get	yesod	devel	to	recompile.

defaultLayout
One	of	the	first	things	you’ll	want	to	customize	is	the	look	of	your	site.	The	layout	is
actually	broken	up	into	two	files:

templates/default-layout-wrapper.hamlet

This	contains	just	the	basic	shell	of	a	page.	This	file	is	interpreted	as	plain	Hamlet,
not	as	a	Widget,	and	therefore	cannot	refer	to	other	widgets,	embed	i18n	strings,	or
add	extra	CSS/JS.

templates/default-layout.hamlet

This	is	where	you	would	put	the	bulk	of	your	page.	You	must	remember	to	include
the	widget	value	in	the	page,	as	that	contains	the	per-page	contents.	This	file	is
interpreted	as	a	Widget.

Also,	because	default-layout	is	included	via	the	widgetFile	function,	any	Lucius,	Cassius,
or	Julius	files	named	default-layout.*	will	automatically	be	included	as	well.

Static	Files
The	scaffolded	site	automatically	includes	the	static	file	subsite,	optimized	for	serving
files	that	will	not	change	over	the	lifetime	of	the	current	build.	What	this	means	is	that:

When	your	static	file	identifiers	are	generated	(e.g.,	static/mylogo.png	becomes
mylogo_png),	a	query	string	parameter	is	added	to	it	with	a	hash	of	the	contents	of
the	file.	All	of	this	happens	at	compile	time.

When	yesod-static	serves	your	static	files,	it	sets	expiration	headers	far	in	the
future	and	includes	an	etag	based	on	a	hash	of	your	content.

Whenever	you	embed	a	link	to	mylogo_png,	the	rendering	includes	the	query	string
parameter.	If	you	change	the	logo,	recompile,	and	launch	your	new	app,	the	query
string	will	have	changed,	causing	users	to	ignore	the	cached	copy	and	download	a
new	version.

Additionally,	you	can	set	a	specific	static	root	in	your	Settings.hs	file	to	serve	from	a
different	domain	name.	This	has	the	advantage	of	not	requiring	transmission	of	cookies	for
static	file	requests,	and	also	lets	you	offload	static	file	hosting	to	a	CDN	or	a	service	like
Amazon	S3.	See	the	comments	in	the	file	for	more	details.

Another	optimization	is	that	CSS	and	JavaScript	included	in	your	widgets	will	not	be
included	inside	your	HTML.	Instead,	their	contents	will	be	written	to	an	external	file,	and
a	link	given.	This	file	will	be	named	based	on	a	hash	of	the	contents	as	well,	meaning:

Caching	works	properly.

Yesod	can	avoid	an	expensive	disk	write	of	the	CSS/JavaScript	file	contents	if	a	file
with	the	same	hash	already	exists.

Finally,	all	of	your	JavaScript	is	automatically	minified	via	hjsmin.

Summary
The	purpose	of	this	chapter	was	not	to	explain	every	line	that	exists	in	the	scaffolded	site,
but	instead	to	give	a	general	overview	of	how	it	works.	The	best	way	to	become	more
familiar	with	it	is	to	jump	right	in	and	start	writing	a	Yesod	site	with	it.

Chapter	16.	Internationalization

Users	expect	our	software	to	speak	their	language.	Unfortunately	for	us,	there	will	likely
be	more	than	one	language	involved.	While	doing	simple	string	replacement	isn’t	too
involved,	correctly	dealing	with	all	the	grammar	issues	can	be	tricky.	After	all,	who	wants
to	see	“List	1	file(s)”	from	a	program	output?

But	a	real	i18n	solution	needs	to	do	more	than	just	provide	a	means	of	achieving	the
correct	output.	It	needs	to	make	this	process	relatively	error-proof,	and	easy	for	both	the
programmer	and	the	translator.	Yesod’s	answer	to	the	problem	gives	you:

Intelligent	guessing	of	the	user’s	desired	language	based	on	request	headers,	with	the
ability	to	override.

A	simple	syntax	for	giving	translations	that	requires	no	Haskell	knowledge.	(After
all,	most	translators	aren’t	programmers.)

The	ability	to	bring	in	the	full	power	of	Haskell	for	tricky	grammar	issues	as
necessary,	along	with	a	default	selection	of	helper	functions	to	cover	most	needs.

Absolutely	no	issues	at	all	with	word	order.

Synopsis
--	@messages/en.msg

Hello:	Hello

EnterItemCount:	I	would	like	to	buy:

Purchase:	Purchase

ItemCount	count@Int:	You	have	purchased	#{showInt	count}

																					#{plural	count	"item"	"items"}.

SwitchLanguage:	Switch	language	to:

Switch:	Switch

--	@messages/he.msg

Hello:	שלום

EnterItemCount:	לקנות	רוצה	אני:

Purchase:	קנה

ItemCount	count:	קנית	#{showInt	count}	#{plural	count	""דברים	דבר""}.

SwitchLanguage:	ל	שפה	החלף:

Switch:	החלף

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Yesod

data	App	=	App

mkMessage	"App"	"messages"	"en"

plural	::	Int	->	String	->	String	->	String

plural	1	x	_	=	x

plural	_	_	y	=	y

showInt	::	Int	->	String

showInt	=	show

instance	Yesod	App

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

mkYesod	"App"	[parseRoutes|

/					HomeR	GET

/buy		BuyR		GET

/lang	LangR	POST

|]

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<h1>_{MsgHello}

								<form	action=@{BuyR}>

												_{MsgEnterItemCount}

												<input	type=text	name=count>

												<input	type=submit	value=_{MsgPurchase}>

								<form	action=@{LangR}	method=post>

												_{MsgSwitchLanguage}

												<select	name=lang>

																<option	value=en>English

																<option	value=he>Hebrew

												<input	type=submit	value=_{MsgSwitch}>

				|]

getBuyR	::	Handler	Html

getBuyR	=	do

				count	<-	runInputGet	$	ireq	intField	"count"

				defaultLayout	[whamlet|<p>_{MsgItemCount	count}|]

postLangR	::	Handler	()

postLangR	=	do

				lang	<-	runInputPost	$	ireq	textField	"lang"

				setLanguage	lang

				redirect	HomeR

main	::	IO	()

main	=	warp	3000	App

Overview
Most	existing	i18n	solutions	out	there,	like	gettext	or	Java	message	bundles,	work	on	the
principle	of	string	lookups.	Usually	some	form	of	printf	interpolation	is	used	to
interpolate	variables	into	the	strings.	In	Yesod,	as	you	might	guess,	we	instead	rely	on
types.	This	gives	us	all	of	our	normal	advantages,	such	as	the	compiler	automatically
catching	mistakes.

Let’s	take	a	concrete	example.	Suppose	our	application	needs	to	accomplish	two	simple
tasks:	saying	“hello,”	and	stating	how	many	users	are	logged	into	the	system.	This	can	be
modeled	with	a	sum	type:

data	MyMessage	=	MsgHello	|	MsgUsersLoggedIn	Int

We	can	also	write	a	function	to	turn	this	data	type	into	an	English	representation:

toEnglish	::	MyMessage	->	String

toEnglish	MsgHello	=	"Hello	there!"

toEnglish	(MsgUsersLoggedIn	1)	=	"There	is	1	user	logged	in."

toEnglish	(MsgUsersLoggedIn	i)	=	"There	are	"	++	show	i	++	"	users	logged	in."

We	can	write	similar	functions	for	other	languages,	too.	The	advantage	to	this	inside-
Haskell	approach	is	that	we	have	the	full	power	of	Haskell	for	addressing	tricky	grammar
issues,	especially	pluralization.

The	downside,	however,	is	that	you	have	to	write	all	of	this	inside	of	Haskell,	which	won’t
be	very	translator-friendly.	To	solve	this	problem,	Yesod	introduces	the	concept	of
message	files.	We’ll	cover	those	in	the	next	section.

NOTE
You	may	think	pluralization	isn’t	so	complicated:	you	have	one	version	for	one	item,	and	another	for	any
other	count.	That	might	be	true	in	English,	but	it’s	not	true	for	every	language.	Russian,	for	example,	has
six	different	forms,	and	you	need	to	use	some	modulus	logic	to	determine	which	one	to	use.

Assuming	we	have	this	full	set	of	translation	functions,	how	do	we	go	about	using	them?
What	we	need	is	a	new	function	to	wrap	them	all	up	together,	and	then	choose	the
appropriate	translation	function	based	on	the	user’s	selected	language.	Once	we	have	that,
Yesod	can	automatically	choose	the	most	relevant	render	function	and	call	it	on	the	values
provided.

As	we’ll	see	shortly,	in	order	to	simplify	things	a	bit	Hamlet	has	a	special	interpolation
syntax,	_{…},	which	handles	all	the	calls	to	the	render	functions.	To	associate	a	render
function	with	your	application,	you	use	the	YesodMessage	typeclass.

Message	Files
The	simplest	approach	to	creating	translations	is	via	message	files.	The	setup	is	simple:
there	is	a	single	folder	containing	all	of	your	translation	files,	with	a	single	file	for	each
language.	Each	file	is	named	based	on	its	language	code	(e.g.,	en.msg),	and	each	line	in	a
file	handles	one	phrase,	which	correlates	to	a	single	constructor	in	your	message	data	type.

NOTE
The	scaffolded	site	already	includes	a	fully	configured	message	folder.

So	first,	a	word	about	language	codes.	There	are	really	two	choices	available:	using	a	two-
letter	language	code	or	a	language-LOCALE	code.	For	example,	when	I	load	up	a	page	in
my	web	browser,	it	sends	two	language	codes:	en-US	and	en.	What	my	browser	is	saying
is,	“If	you	have	American	English,	I	like	that	the	most.	If	you	have	English,	I’ll	take	that
instead.”

So	which	format	should	you	use	in	your	application?	Most	likely	two-letter	codes,	unless
you	are	actually	creating	separate	translations	by	locale.	This	ensures	that	someone	asking
for	Canadian	English	will	still	see	your	English.	Behind	the	scenes,	Yesod	will	add	the
two-letter	codes	where	relevant.	For	example,	suppose	a	user	has	the	following	language
list:

pt-BR,	es,	he

What	this	means	is	“I	like	Brazilian	Portuguese,	then	Spanish,	and	then	Hebrew.”	Suppose
your	application	provides	the	languages	pt	(general	Portuguese)	and	en	(English),	with
English	as	the	default.	Strictly	following	the	user’s	language	list	would	result	in	the	user
being	served	English.	Instead,	Yesod	translates	that	list	into:

pt-BR,	es,	he,	pt

In	other	words,	unless	you’re	giving	different	translations	based	on	locale,	just	stick	to	the
two-letter	language	codes.

Now	what	about	these	message	files?	The	syntax	should	be	very	familiar	after	your	work
with	Hamlet	and	Persistent.	The	line	starts	off	with	the	name	of	the	message.	Because	this
is	a	data	constructor,	it	must	start	with	a	capital	letter.	Next,	you	can	have	individual
parameters,	which	must	be	given	as	lowercase.	These	will	be	arguments	to	the	data
constructor.

The	argument	list	is	terminated	by	a	colon,	and	then	followed	by	the	translated	string,
which	allows	usage	of	our	typical	variable	interpolation	syntax	#{myVar}.	By	referring	to
the	parameters	defined	before	the	colon,	and	using	translation	helper	functions	to	deal
with	issues	like	pluralization,	you	can	create	all	the	translated	messages	you	need.

Specifying	Types
We	will	be	creating	a	data	type	out	of	our	message	specifications,	so	each	parameter	to	a
data	constructor	must	be	given	a	data	type.	We	use	@-syntax	for	this.	For	example,	to
create	the	data	type	data	MyMessage	=	MsgHello	|	MsgSayAge	Int,	we	would	write:

Hello:	Hi	there!

SayAge	age@Int:	Your	age	is:	#{show	age}

But	there	are	two	problems	with	this:

It’s	not	very	DRY	(Don’t	Repeat	Yourself)	to	specify	this	data	type	in	every	file.

Translators	will	be	confused	by	having	to	specify	these	data	types.

So	instead,	the	type	specification	is	only	required	in	the	main	language	file.	This	is
specified	as	the	third	argument	in	the	mkMessage	function.	This	also	specifies	what	the
backup	language	will	be,	to	be	used	when	none	of	the	languages	provided	by	your
application	match	the	user’s	language	list.

RenderMessage	typeclass
Your	call	to	mkMessage	creates	an	instance	of	the	RenderMessage	typeclass,	which	is	the
core	of	Yesod’s	i18n.	It	is	defined	as:

class	RenderMessage	master	message	where

				renderMessage	::	master

																		->	[Text]	--	^	languages

																		->	message

																		->	Text

Notice	that	there	are	two	parameters	to	the	RenderMessage	class:	the	master	site	and	the
message	type.	In	theory,	we	could	skip	the	master	type	here,	but	that	would	mean	that
every	site	would	need	to	have	the	same	set	of	translations	for	each	message	type.	When	it
comes	to	shared	libraries	like	forms,	that	would	not	be	a	workable	solution.

The	renderMessage	function	takes	a	parameter	for	each	of	the	class’s	type	parameters:
master	and	message.	The	extra	parameter	is	a	list	of	languages	the	user	will	accept,	in
descending	order	of	priority.	The	method	then	returns	a	user-ready	Text	that	can	be
displayed.

A	simple	instance	of	RenderMessage	may	involve	no	actual	translation	of	strings;	instead,
it	will	just	display	the	same	value	for	every	language.	For	example:

data	MyMessage	=	Hello	|	Greet	Text

instance	RenderMessage	MyApp	MyMessage	where

				renderMessage	_	_	Hello	=	"Hello"

				renderMessage	_	_	(Greet	name)	=	"Welcome,	"	<>	name	<>	"!"

Notice	how	we	ignore	the	first	two	parameters	to	renderMessage.	We	can	now	extend	this
to	support	multiple	languages:

renderEn	Hello	=	"Hello"

renderEn	(Greet	name)	=	"Welcome,	"	<>	name	<>	"!"

renderHe	Hello	=	"שלום"

renderHe	(Greet	name)	=	"הבאים	ברוכים,	"	<>	name	<>	"!"

instance	RenderMessage	MyApp	MyMessage	where

				renderMessage	_	("en":_)	=	renderEn

				renderMessage	_	("he":_)	=	renderHe

				renderMessage	master	(_:langs)	=	renderMessage	master	langs

				renderMessage	_	[]	=	renderEn

The	idea	here	is	fairly	straightforward:	we	define	helper	functions	to	support	each
language.	We	then	add	a	clause	to	catch	each	of	those	languages	in	the	renderMessage
definition.	We	then	have	two	final	cases:	if	no	languages	matched,	continue	checking	with
the	next	language	in	the	user’s	priority	list;	or,	if	we’ve	exhausted	all	languages	the	user
specified,	then	use	the	default	language	(in	our	case,	English).

Odds	are	that	you	will	never	need	to	worry	about	writing	this	stuff	manually,	as	the
message	file	interface	does	all	this	for	you.	But	it’s	always	a	good	idea	to	have	an

understanding	of	what’s	going	on	under	the	surface.

Interpolation
One	way	to	use	your	new	RenderMessage	instance	would	be	to	directly	call	the
renderMessage	function.	This	would	work,	but	it’s	a	bit	tedious:	you	need	to	pass	in	the
foundation	value	and	the	language	list	manually.	Instead,	Hamlet	provides	a	specialized
i18n	interpolation,	which	looks	like	_{…}.

NOTE
Why	the	underscore?	The	underscore	is	already	a	well-established	character	for	i18n,	as	it	is	used	in	the
gettext	library.

Hamlet	will	then	automatically	translate	that	to	a	call	to	renderMessage.	Once	Hamlet
gets	the	output	Text	value,	it	uses	the	toHtml	function	to	produce	an	Html	value,	meaning
that	any	special	characters	(e.g.,	<,	&,	>)	will	be	automatically	escaped.

Phrases,	Not	Words
As	a	final	note,	I’d	just	like	to	give	some	general	i18n	advice.	Let’s	say	you	have	an
application	for	selling	turtles.	You’re	going	to	use	the	word	“turtle”	in	multiple	places,	like
“You	have	added	4	turtles	to	your	cart.”	and	“You	have	purchased	4	turtles,
congratulations!”	As	a	programmer,	you’ll	immediately	notice	the	code	reuse	potential:
we	have	the	phrase	“4	turtles”	twice.	So,	you	might	structure	your	message	file	as:

AddStart:	You	have	added

AddEnd:	to	your	cart.

PurchaseStart:	You	have	purchased

PurchaseEnd:	,	congratulations!

Turtles	count@Int:	#{show	count}	#{plural	count	"turtle"	"turtles"}

Stop	right	there!	This	is	all	well	and	good	from	a	programming	perspective,	but
translations	are	not	programming.	There	are	a	many	things	that	could	go	wrong	with	this,
such	as:

Some	languages	might	put	“to	your	cart.”	before	“You	have	added”.

Maybe	“added”	will	be	constructed	differently	depending	on	whether	the	user	added
one	or	more	turtles.

There	are	a	bunch	of	whitespace	issues.

So	the	general	rule	is:	translate	entire	phrases,	not	just	words.

Chapter	17.	Creating	a	Subsite

How	many	sites	provide	authentication	systems?	Or	need	to	provide	create,	read,	update,
and	delete	(CRUD)	management	of	some	objects?	Or	a	blog?	Or	a	wiki?

The	theme	here	is	that	many	websites	include	common	components	that	can	be	reused
throughout	multiple	sites.	However,	it	is	often	quite	difficult	to	get	code	to	be	modular
enough	to	be	truly	plug	and	play:	a	component	will	require	hooks	into	the	routing	system,
usually	for	multiple	routes,	and	will	need	some	way	of	sharing	styling	information	with
the	master	site.

In	Yesod,	the	solution	is	subsites.	A	subsite	is	a	collection	of	routes	and	their	handlers	that
can	be	easily	inserted	into	a	master	site.The	use	of	typeclasses	makes	it	easy	to	ensure	that
the	master	site	provides	certain	capabilities,	and	to	access	the	default	site	layout.	And	with
type-safe	URLs,	it’s	easy	to	link	from	the	master	site	to	subsites.

Hello,	World
Perhaps	the	trickiest	part	of	writing	subsites	is	getting	started.	Let’s	dive	in	with	a	simple
Hello,	World	subsite.	We	need	to	create	one	module	to	contain	our	subsite’s	data	types,
another	for	the	subsite’s	dispatch	code,	and	then	a	final	module	for	an	application	that	uses
the	subsite.

NOTE
The	reason	for	the	breakdown	between	the	data	and	dispatch	code	is	due	to	the	GHC	stage	restriction.	This
requirement	makes	smaller	demos	a	bit	more	verbose,	but	in	practice,	this	splitting	up	into	multiple
modules	is	a	good	practice	to	adhere	to.

--	@HelloSub/Data.hs

{-#	LANGUAGE	QuasiQuotes					#-}

{-#	LANGUAGE	TemplateHaskell	#-}

{-#	LANGUAGE	TypeFamilies				#-}

module	HelloSub.Data	where

import											Yesod

--	Subsites	have	foundations	just	like	master	sites.

data	HelloSub	=	HelloSub

--	We	have	a	familiar	analogue	from	mkYesod,	with	just	one	extra	parameter.

--	We'll	discuss	that	later.

mkYesodSubData	"HelloSub"	[parseRoutes|

/	SubHomeR	GET

|]

--	@HelloSub.hs

{-#	LANGUAGE	FlexibleInstances					#-}

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

module	HelloSub

				(module	HelloSub.Data

				,	module	HelloSub

)	where

import											HelloSub.Data

import											Yesod

--	We'll	spell	out	the	handler	type	signature.

getSubHomeR	::	Yesod	master	=>	HandlerT	HelloSub	(HandlerT	master	IO)	Html

getSubHomeR	=	lift	$	defaultLayout	[whamlet|Welcome	to	the	subsite!|]

instance	Yesod	master	=>	YesodSubDispatch	HelloSub	(HandlerT	master	IO)	where

				yesodSubDispatch	=	$(mkYesodSubDispatch	resourcesHelloSub)

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											HelloSub

import											Yesod

--	And	let's	create	a	master	site	that	calls	it.

data	Master	=	Master

				{	getHelloSub	::	HelloSub

				}

mkYesod	"Master"	[parseRoutes|

/	HomeR	GET

/subsite	SubsiteR	HelloSub	getHelloSub

|]

instance	Yesod	Master

--	Spelling	out	type	signature	again.

getHomeR	::	HandlerT	Master	IO	Html

getHomeR	=	defaultLayout

				[whamlet|

								<h1>Welcome	to	the	homepage

								<p>

												Feel	free	to	visit	the	#

												subsite

												\	as	well.

				|]

main	=	warp	3000	$	Master	HelloSub

This	simple	example	actually	shows	most	of	the	complications	involved	in	creating	a
subsite.	Like	in	a	normal	Yesod	application,	everything	in	a	subsite	is	centered	around	a
foundation	data	type	(HelloSub,	in	our	case).	We	then	use	mkYesodSubData	to	generate
our	subsite	route	data	type	and	associated	parse	and	render	functions.

On	the	dispatch	side,	we	start	off	by	defining	our	handler	function	for	the	SubHomeR	route.
You	should	pay	special	attention	to	the	type	signature	on	this	function:

getSubHomeR	::	Yesod	master

												=>	HandlerT	HelloSub	(HandlerT	master	IO)	Html

This	is	the	heart	and	soul	of	what	a	subsite	is	all	about.	All	of	our	actions	live	in	this
layered	monad,	where	we	have	our	subsite	wrapping	around	our	main	site.	Given	this
monadic	layering,	it	should	come	as	no	surprise	that	we	end	up	calling	lift.	In	this	case,
our	subsite	is	using	the	master	site’s	defaultLayout	function	to	render	a	widget.

The	defaultLayout	function	is	part	of	the	Yesod	typeclass.	Therefore,	in	order	to	call	it,
the	master	type	argument	must	be	an	instance	of	Yesod.	The	advantage	of	this	approach	is
that	any	modifications	to	the	master	site’s	defaultLayout	method	will	automatically	be
reflected	in	subsites.

When	we	embed	a	subsite	in	our	master	site	route	definition,	we	need	to	specify	four
pieces	of	information:	the	route	to	use	as	the	base	of	the	subsite	(/subsite,	in	this	case),	the
constructor	for	the	subsite	routes	(SubsiteR),	the	subsite	foundation	data	type	(HelloSub),
and	a	function	that	takes	a	master	foundation	value	and	returns	a	subsite	foundation	value
(getHelloSub).

In	the	definition	of	getHomeR,	we	can	see	how	the	route	constructor	gets	used.	In	a	sense,
SubsiteR	promotes	any	subsite	route	to	a	master	site	route,	making	it	possible	to	safely
link	to	it	from	any	master	site	template.

Chapter	18.	Understanding	a	Request

You	can	oftentimes	get	away	with	using	Yesod	for	quite	a	while	without	needing	to
understand	its	internal	workings.	However,	developing	an	understanding	of	its	ins	and	outs
is	advantageous.	This	chapter	will	walk	you	through	the	request	handling	process	for	a
fairly	typical	Yesod	application.	Note	that	a	fair	amount	of	this	discussion	involves	code
changes	in	Yesod	1.2.	Most	of	the	concepts	are	the	same	in	previous	versions,	though	the
data	types	involved	were	a	bit	messier.

Yesod’s	usage	of	Template	Haskell	to	bypass	boilerplate	code	can	make	it	a	bit	difficult	to
understand	this	process	sometimes.	If	you	wish	to	go	beyond	the	information	in	this
chapter,	it	can	be	useful	to	view	GHC’s	generated	code	using	-ddump-splices.

NOTE
A	lot	of	this	information	was	originally	published	as	a	blog	series	on	the	1.2	release.	You	can	see	the	blog
posts	at:

Yesod	1.2’s	cleaner	internals

Big	Subsite	Rewrite

Yesod	dispatch,	version	1.2

Handlers
When	trying	to	understand	Yesod	request	handling,	we	need	to	look	at	two	components:
how	a	request	is	dispatched	to	the	appropriate	handler	code,	and	how	handler	functions	are
processed.	We’ll	start	off	with	the	latter,	and	then	circle	back	to	understanding	the	dispatch
process	itself.

Layers
Yesod	builds	itself	on	top	of	WAI,	which	provides	a	protocol	for	web	servers	(or,	more
generally,	handlers)	and	applications	to	communicate	with	each	other.	This	is	expressed
through	two	data	types:	Request	and	Response.	Then,	an	Application	is	defined	as:

type	Application	=	Request

																->	(Response	->	IO	ResponseReceived)

																->	IO	ResponseReceived

A	WAI	handler	will	take	an	application	and	run	it.

NOTE
The	structure	of	Application	looks	a	bit	complicated.	It	uses	continuation	passing	style	to	allow	an
application	to	safely	acquire	resources,	similar	to	the	bracket	function.	See	the	WAI	API	documentation
for	more	details.

Request	and	Response	are	both	very	low	level,	trying	to	represent	the	HTTP	protocol
without	too	much	embellishment.	This	keeps	WAI	as	a	generic	tool,	but	also	leaves	out	a
lot	of	the	information	we	need	in	order	to	implement	a	web	framework.	For	example,	WAI
will	provide	us	with	the	raw	data	for	all	request	headers.	But	Yesod	needs	to	parse	that	to
get	cookie	information,	and	then	parse	the	cookies	in	order	to	extract	session	information.

To	deal	with	this	dichotomy,	Yesod	introduces	two	new	data	types:	YesodRequest	and
YesodResponse.	YesodRequest	contains	a	WAI	Request,	and	also	adds	in	such	request
information	as	cookies	and	session	variables.	On	the	response	side	can	either	be	a	standard
WAI	Response	or	a	higher-level	representation	of	such	a	response	including	such	things	as
updated	session	information	and	extra	response	headers.	To	parallel	WAI’s	Application,
we	have:

type	YesodApp	=	YesodRequest	->	ResourceT	IO	YesodResponse

NOTE
Yesod	uses	ResourceT	for	exception	safety,	instead	of	continuation	passing	style.	This	makes	it	much	easier
to	write	exception-safe	code	in	Yesod.

But	as	a	Yesod	user,	you	never	really	see	YesodApp.	There’s	another	layer	on	top	of	that,
which	you	are	used	to	dealing	with:	HandlerT.	When	you	write	handler	functions,	you
need	to	have	access	to	three	different	things:

The	YesodRequest	value	for	the	current	request.

Some	basic	environment	information,	like	how	to	log	messages	or	handle	error
conditions.	This	is	provided	by	the	data	type	RunHandlerEnv.

A	mutable	variable	to	keep	track	of	updateable	information,	such	as	the	headers	to	be

returned	and	the	user	session	state.	This	is	called	GHState.	(I	know	that’s	not	a	great
name,	but	it’s	there	for	historical	reasons.)

So	when	you’re	writing	a	handler	function,	you’re	essentially	just	writing	a	ReaderT
transformer	that	has	access	to	all	of	this	information.	The	runHandler	function	will	turn	a
HandlerT	into	a	YesodApp.	yesodRunner	takes	this	a	step	further	and	converts	it	to	a	WAI
Application.

Content
The	preceding	example,	and	many	others	you’ve	already	seen,	gives	a	handler	with	a	type
of	Handler	Html.	We’ve	just	described	what	the	Handler	means,	but	how	does	Yesod
know	how	to	deal	with	Html?	The	answer	lies	in	the	ToTypedContent	typeclass.	The
relevant	bit	of	code	are:

data	Content	=	ContentBuilder	!BBuilder.Builder	!(Maybe	Int)

															--	^	The	content	and	optional	content	length.

													|	ContentSource	!(Source	(ResourceT	IO)	(Flush	BBuilder.Builder))

													|	ContentFile	!FilePath	!(Maybe	FilePart)

													|	ContentDontEvaluate	!Content

data	TypedContent	=	TypedContent	!ContentType	!Content

class	ToContent	a	where

				toContent	::	a	->	Content

class	ToContent	a	=>	ToTypedContent	a	where

				toTypedContent	::	a	->	TypedContent

The	Content	data	type	represents	the	different	ways	you	can	provide	a	response	body.	The
first	three	mirror	WAI’s	representation	directly.	The	fourth	option	(ContentDontEvaluate)
is	used	to	indicate	to	Yesod	whether	response	bodies	should	be	fully	evaluated	before
being	returned	to	users.	The	advantage	to	fully	evaluating	is	that	we	can	provide
meaningful	error	messages	if	an	exception	is	thrown	from	pure	code.	The	downside	is
possibly	increased	time	and	memory	usage.

In	any	event,	Yesod	knows	how	to	turn	a	Content	into	a	response	body.	The	ToContent
typeclass	provides	a	way	to	allow	many	different	data	types	to	be	converted	into	response
bodies.	Many	commonly	used	types	are	already	instances	of	ToContent,	including	strict
and	lazy	ByteString	and	Text,	and	of	course	Html.

TypedContent	adds	an	extra	piece	of	information:	the	content	type	of	the	value.	As	you
might	expect,	there	are	ToTypedContent	instances	for	a	number	of	common	data	types,
including	Html,	the	aeson	library’s	Value	(for	JSON),	and	Text	(treated	as	plain	text):

instance	ToTypedContent	J.Value	where

				toTypedContent	v	=	TypedContent	typeJson	(toContent	v)

instance	ToTypedContent	Html	where

				toTypedContent	h	=	TypedContent	typeHtml	(toContent	h)

instance	ToTypedContent	T.Text	where

				toTypedContent	t	=	TypedContent	typePlain	(toContent	t)

Putting	this	all	together,	a	Handler	is	able	to	return	any	value	that	is	an	instance	of
ToTypedContent,	and	Yesod	will	handle	turning	it	into	an	appropriate	representation	and
setting	the	Content-Type	response	header.

Short-Circuit	Responses
One	other	oddity	is	how	short-circuiting	works.	For	example,	you	can	call	redirect	in	the
middle	of	a	handler	function,	and	the	rest	of	the	function	will	not	be	called.	The
mechanism	we	use	is	standard	Haskell	exceptions.	Calling	redirect	just	throws	an
exception	of	type	HandlerContents.	The	runHandler	function	will	catch	any	exceptions
thrown	and	produce	an	appropriate	response.	For	HandlerContents,	each	constructor
gives	a	clear	action	to	perform,	be	it	redirecting	or	sending	a	file.	For	all	other	exception
types,	an	error	message	is	displayed	to	the	user.

Dispatch
Dispatch	is	the	act	of	taking	an	incoming	request	and	generating	an	appropriate	response.
We	have	a	few	different	constraints,	depending	on	how	we	want	to	handle	dispatch:

Dispatch	based	on	path	segments	(or	pieces).

Optionally	dispatch	on	request	method.

Support	subsites:	packaged	collections	of	functionality	providing	multiple	routes
under	a	specific	URL	prefix.

Support	using	WAI	Applications	as	subsites,	while	introducing	as	little	runtime
overhead	to	the	process	as	possible.	In	particular,	we	want	to	avoid	performing	any
unnecessary	parsing	to	generate	a	YesodRequest	if	it	won’t	be	used.

The	lowest	common	denominator	for	this	is	to	simply	use	a	WAI	Application.	However,
this	doesn’t	provide	quite	enough	information:	we	need	access	to	the	foundation	data	type,
and	the	logger,	and	for	subsites,	we	need	to	know	how	a	subsite	route	is	converted	to	a
parent	site	route.	To	address	this,	we	have	two	helper	data	types	—	YesodRunnerEnv	and
YesodSubRunnerEnv	—	providing	this	extra	information	for	normal	sites	and	subsites.

With	those	types,	dispatch	now	becomes	a	relatively	simple	matter:	give	me	an
environment	and	a	request,	and	I’ll	give	you	a	response.	This	is	represented	by	the
typeclasses	YesodDispatch	and	YesodSubDispatch:

class	Yesod	site	=>	YesodDispatch	site	where

				yesodDispatch	::	YesodRunnerEnv	site	->	W.Application

class	YesodSubDispatch	sub	m	where

				yesodSubDispatch	::	YesodSubRunnerEnv	sub	(HandlerSite	m)	m

																					->	W.Application

We’ll	see	a	bit	later	how	YesodSubDispatch	is	used.	Let’s	first	understand	how
YesodDispatch	comes	into	play.

toWaiApp,	toWaiAppPlain,	and	warp
Let’s	assume	for	the	moment	that	you	have	a	data	type	that	is	an	instance	of
YesodDispatch.	You’ll	want	to	now	actually	run	this	thing	somehow.	To	do	this,	you	need
to	convert	it	into	a	WAI	Application	and	pass	it	to	some	kind	of	WAI	handler/server.	To
start	this	journey,	we	use	toWaiAppPlain.	It	performs	any	app-wide	initialization
necessary.	At	the	time	of	writing,	this	means	allocating	a	logger	and	setting	up	the	session
backend,	but	more	functionality	may	be	added	in	the	future.	Using	this	data,	we	can	create
a	YesodRunnerEnv.	And	when	that	value	is	passed	to	yesodDispatch,	we	get	a	WAI
Application.

We’re	almost	done.	The	final	remaining	modification	is	path	segment	cleanup.	The	Yesod
typeclass	includes	a	member	function	named	cleanPath	that	can	be	used	to	create
canonical	URLs.	For	example,	the	default	implementation	would	remove	double	slashes
and	redirect	a	user	from	/foo//bar	to	/foo/bar.	toWaiAppPlain	adds	in	some	preprocessing
to	the	normal	WAI	request	by	analyzing	the	requested	path	and	performing
cleanup/redirects	as	necessary.

At	this	point,	we	have	a	fully	functional	WAI	Application.	There	are	two	other	helper
functions	included.	toWaiApp	wraps	toWaiAppPlain	and	additionally	includes	some
commonly	used	WAI	middlewares,	including	request	logging	and	gzip	compression	(see
the	Haddocks	for	an	up-to-date	list).	Finally,	we	have	the	warp	function,	which	as	you
might	guess,	runs	your	application	with	Warp.

NOTE
There’s	also	the	warpEnv	function,	which	reads	the	port	number	information	from	the	PORT	environment
variable.	This	is	used	for	interacting	with	certain	tools,	including	the	Keter	deployment	manager	and	FP
Haskell	Center.

Generated	Code
The	last	remaining	black	box	is	the	Template	Haskell	generated	code.	This	generated	code
is	responsible	for	handling	some	of	the	tedious,	error-prone	pieces	of	your	site.	If	you
want	to,	you	can	write	these	all	by	hand	instead.	We’ll	demonstrate	what	that	translation
would	look	like,	and	in	the	process	elucidate	how	YesodDispatch	and	YesodSubDispatch
work.	Let’s	start	with	a	fairly	typical	Yesod	application:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

{-#	LANGUAGE	ViewPatterns						#-}

import	qualified	Data.ByteString.Lazy.Char8	as	L8

import											Network.HTTP.Types									(status200)

import											Network.Wai																(pathInfo,	rawPathInfo,

																																													requestMethod,	responseLBS)

import											Yesod

data	App	=	App

mkYesod	"App"	[parseRoutes|

/only-get							OnlyGetR			GET

/any-method					AnyMethodR

/has-param/#Int	HasParamR		GET

/my-subsite					MySubsiteR	WaiSubsite	getMySubsite

|]

instance	Yesod	App

getOnlyGetR	::	Handler	Html

getOnlyGetR	=	defaultLayout

				[whamlet|

								<p>Accessed	via	GET	method

								<form	method=post	action=@{AnyMethodR}>

												<button>POST	to	/any-method

				|]

handleAnyMethodR	::	Handler	Html

handleAnyMethodR	=	do

				req	<-	waiRequest

				defaultLayout

								[whamlet|

												<p>In	any-method,	method	==	#{show	$	requestMethod	req}

								|]

getHasParamR	::	Int	->	Handler	String

getHasParamR	i	=	return	$	show	i

getMySubsite	::	App	->	WaiSubsite

getMySubsite	_	=

				WaiSubsite	app

		where

				app	req	sendResponse	=	sendResponse	$	responseLBS

								status200

								[("Content-Type",	"text/plain")]

								$	L8.pack	$	concat

												["pathInfo	==	"

												,	show	$	pathInfo	req

												,	",	rawPathInfo	==	"

												,	show	$	rawPathInfo	req

]

main	::	IO	()

main	=	warp	3000	App

For	completeness,	we’ve	provided	a	full	listing,	but	let’s	focus	on	just	the	Template
Haskell	portion:

mkYesod	"App"	[parseRoutes|

/only-get							OnlyGetR			GET

/any-method					AnyMethodR

/has-param/#Int	HasParamR		GET

/my-subsite					MySubsiteR	WaiSubsite	getMySubsite

|]

Although	this	generates	a	few	pieces	of	code,	we	only	need	to	replicate	three	components
to	make	our	site	work.	Let’s	start	with	the	simplest	—	the	Handler	type	synonym:

type	Handler	=	HandlerT	App	IO

Next	is	the	type-safe	URL	and	its	rendering	function.	The	rendering	function	is	allowed	to
generate	both	path	segments	and	query	string	parameters.	Standard	Yesod	sites	never
generate	query	string	parameters,	but	it	is	technically	possible.	And	in	the	case	of	subsites,
this	often	does	happen.	Notice	how	we	handle	the	qs	parameter	for	the	MySubsiteR	case:

instance	RenderRoute	App	where

				data	Route	App	=	OnlyGetR

																			|	AnyMethodR

																			|	HasParamR	Int

																			|	MySubsiteR	(Route	WaiSubsite)

								deriving	(Show,	Read,	Eq)

				renderRoute	OnlyGetR	=	(["only-get"],	[])

				renderRoute	AnyMethodR	=	(["any-method"],	[])

				renderRoute	(HasParamR	i)	=	(["has-param",	toPathPiece	i],	[])

				renderRoute	(MySubsiteR	subRoute)	=

								let	(ps,	qs)	=	renderRoute	subRoute

									in	("my-subsite"	:	ps,	qs)

You	can	see	that	there’s	a	fairly	simple	mapping	from	the	higher-level	route	syntax	and	the
RenderRoute	instance.	Each	route	becomes	a	constructor,	each	URL	parameter	becomes
an	argument	to	its	constructor,	we	embed	a	route	for	the	subsite,	and	we	use	toPathPiece
to	render	parameters	to	text.

The	final	component	is	the	YesodDispatch	instance.	Let’s	look	at	this	in	a	few	pieces:

instance	YesodDispatch	App	where

				yesodDispatch	env	req	=

								case	pathInfo	req	of

												["only-get"]	->

																case	requestMethod	req	of

																				"GET"	->	yesodRunner

																								getOnlyGetR

																								env

																								(Just	OnlyGetR)

																								req

																				_	->	yesodRunner

																								(badMethod	>>	return	())

																								env

																								(Just	OnlyGetR)

																								req

As	just	described,	yesodDispatch	is	handed	both	an	environment	and	a	WAI	Request

value.	We	can	now	perform	dispatch	based	on	the	requested	path,	or,	in	WAI	terms,	the
pathInfo.	Referring	back	to	our	original	high-level	route	syntax,	we	can	see	that	our	first
route	is	going	to	be	the	single	piece	only-get,	which	we	pattern	match	for.

Once	that	match	has	succeeded,	we	additionally	pattern	match	on	the	request	method.	If
it’s	GET,	we	use	the	handler	function	getOnlyGetR.	Otherwise,	we	want	to	return	a	405
Bad	Method	response,	and	therefore	use	the	badMethod	handler.	At	this	point,	we’ve	come
full	circle	to	our	original	handler	discussion.	You	can	see	that	we’re	using	yesodRunner	to
execute	our	handler	function.	As	a	reminder,	this	will	take	our	environment	and	WAI
Request,	convert	it	to	a	YesodRequest,	construct	a	RunHandlerEnv,	hand	that	to	the
handler	function,	and	then	convert	the	resulting	YesodResponse	into	a	WAI	Response.

Wonderful;	one	down,	three	to	go.	The	next	one	is	even	easier:

												["any-method"]	->

																yesodRunner	handleAnyMethodR	env	(Just	AnyMethodR)	req

Unlike	OnlyGetR,	AnyMethodR	will	work	for	any	request	method,	so	we	don’t	need	to
perform	any	further	pattern	matching:

												["has-param",	t]	|	Just	i	<-	fromPathPiece	t	->

																case	requestMethod	req	of

																				"GET"	->	yesodRunner

																								(getHasParamR	i)

																								env

																								(Just	$	HasParamR	i)

																								req

																				_	->	yesodRunner

																								(badMethod	>>	return	())

																								env

																								(Just	$	HasParamR	i)

																								req

We	add	in	one	extra	complication	here:	a	dynamic	parameter.	While	we	used	toPathPiece
to	render	to	a	textual	value	earlier,	we	now	use	fromPathPiece	to	perform	the	parsing.
Assuming	the	parse	succeeds,	we	then	follow	a	very	similar	dispatch	system	as	was	used
for	OnlyGetR.	The	prime	difference	is	that	our	parameter	needs	to	be	passed	to	both	the
handler	function	and	the	route	data	constructor.

Next,	we’ll	look	at	the	subsite,	which	is	quite	different:

												("my-subsite":rest)	->	yesodSubDispatch

																YesodSubRunnerEnv

																				{	ysreGetSub	=	getMySubsite

																				,	ysreParentRunner	=	yesodRunner

																				,	ysreToParentRoute	=	MySubsiteR

																				,	ysreParentEnv	=	env

																				}

																req	{	pathInfo	=	rest	}

Unlike	the	other	pattern	matches,	here	we	just	look	to	see	if	our	pattern	prefix	matches.
Any	route	beginning	with	/my-subsite	should	be	passed	off	to	the	subsite	for	processing.
This	is	where	we	finally	get	to	use	yesodSubDispatch.	This	function	closely	mirrors

yesodDispatch.	We	need	to	construct	a	new	environment	to	be	passed	to	it.	Let’s	discuss
the	four	fields:

ysreGetSub	demonstrates	how	to	get	the	subsite	foundation	type	from	the	master	site.
We	provide	getMySubsite,	which	is	the	function	we	provided	in	the	high-level	route
syntax.

ysreParentRunner	provides	a	means	of	running	a	handler	function.	It	may	seem	a	bit
boring	to	just	provide	yesodRunner,	but	by	having	a	separate	parameter	we	allow	the
construction	of	deeply	nested	subsites,	which	will	wrap	and	unwrap	many	layers	of
interleaving	subsites.	(This	is	a	more	advanced	concept,	and	we	won’t	be	covering	it
in	this	chapter.)

ysreToParentRoute	will	convert	a	route	for	the	subsite	into	a	route	for	the	parent
site.	This	is	the	purpose	of	the	MySubsiteR	constructor.	This	allows	subsites	to	use
functions	such	as	getRouteToParent.

ysreParentEnv	simply	passes	on	the	initial	environment,	which	contains	a	number	of
things	the	subsite	may	need	(such	as	the	logger).

The	other	interesting	thing	is	how	we	modify	the	pathInfo.	This	allows	subsites	to
continue	dispatching	from	where	the	parent	site	left	off.	Figure	18-1	shows	screenshots	of
a	few	requests.

Figure	18-1.	Path	info	in	subsite

And	finally,	not	all	requests	will	be	valid	routes.	For	those	cases,	we	just	want	to	respond
with	a	404	Not	Found:

												_	->	yesodRunner	(notFound	>>	return	())	env	Nothing	req

Complete	Code
Here	is	the	full	code	for	the	non-Template	Haskell	approach:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

{-#	LANGUAGE	ViewPatterns						#-}

import	qualified	Data.ByteString.Lazy.Char8	as	L8

import											Network.HTTP.Types									(status200)

import											Network.Wai																(pathInfo,	rawPathInfo,

																																													requestMethod,	responseLBS)

import											Yesod

import											Yesod.Core.Types											(YesodSubRunnerEnv	(..))

data	App	=	App

instance	RenderRoute	App	where

				data	Route	App	=	OnlyGetR

																			|	AnyMethodR

																			|	HasParamR	Int

																			|	MySubsiteR	(Route	WaiSubsite)

								deriving	(Show,	Read,	Eq)

				renderRoute	OnlyGetR	=	(["only-get"],	[])

				renderRoute	AnyMethodR	=	(["any-method"],	[])

				renderRoute	(HasParamR	i)	=	(["has-param",	toPathPiece	i],	[])

				renderRoute	(MySubsiteR	subRoute)	=

								let	(ps,	qs)	=	renderRoute	subRoute

									in	("my-subsite"	:	ps,	qs)

type	Handler	=	HandlerT	App	IO

instance	Yesod	App

instance	YesodDispatch	App	where

				yesodDispatch	env	req	=

								case	pathInfo	req	of

												["only-get"]	->

																case	requestMethod	req	of

																				"GET"	->	yesodRunner

																								getOnlyGetR

																								env

																								(Just	OnlyGetR)

																								req

																				_	->	yesodRunner

																								(badMethod	>>	return	())

																								env

																								(Just	OnlyGetR)

																								req

												["any-method"]	->

																yesodRunner	handleAnyMethodR	env	(Just	AnyMethodR)	req

												["has-param",	t]	|	Just	i	<-	fromPathPiece	t	->

																case	requestMethod	req	of

																				"GET"	->	yesodRunner

																								(getHasParamR	i)

																								env

																								(Just	$	HasParamR	i)

																								req

																				_	->	yesodRunner

																								(badMethod	>>	return	())

																								env

																								(Just	$	HasParamR	i)

																								req

												("my-subsite":rest)	->	yesodSubDispatch

																YesodSubRunnerEnv

																				{	ysreGetSub	=	getMySubsite

																				,	ysreParentRunner	=	yesodRunner

																				,	ysreToParentRoute	=	MySubsiteR

																				,	ysreParentEnv	=	env

																				}

																req	{	pathInfo	=	rest	}

												_	->	yesodRunner	(notFound	>>	return	())	env	Nothing	req

getOnlyGetR	::	Handler	Html

getOnlyGetR	=	defaultLayout

				[whamlet|

								<p>Accessed	via	GET	method

								<form	method=post	action=@{AnyMethodR}>

												<button>POST	to	/any-method

				|]

handleAnyMethodR	::	Handler	Html

handleAnyMethodR	=	do

				req	<-	waiRequest

				defaultLayout

								[whamlet|

												<p>In	any-method,	method	==	#{show	$	requestMethod	req}

								|]

getHasParamR	::	Int	->	Handler	String

getHasParamR	i	=	return	$	show	i

getMySubsite	::	App	->	WaiSubsite

getMySubsite	_	=

				WaiSubsite	app

		where

				app	req	sendResponse	=	sendResponse	$	responseLBS

								status200

								[("Content-Type",	"text/plain")]

								$	L8.pack	$	concat

												["pathInfo	==	"

												,	show	$	pathInfo	req

												,	",	rawPathInfo	==	"

												,	show	$	rawPathInfo	req

]

main	::	IO	()

main	=	warp	3000	App

Summary
Yesod	abstracts	away	quite	a	bit	of	the	plumbing	from	you	as	a	developer.	Most	of	this	is
boilerplate	code	that	you’ll	be	happy	to	ignore.	But	it	can	be	empowering	to	understand
exactly	what’s	going	on	under	the	surface.	At	this	point,	you	should	hopefully	be	able	—
with	help	from	the	Haddocks	—	to	write	a	site	without	any	of	the	autogenerated	Template
Haskell	code.	Not	that	I’d	recommend	it;	I	think	using	the	generated	code	is	easier	and
safer.

One	particular	advantage	of	understanding	this	material	is	seeing	where	Yesod	sits	in	the
world	of	WAI.	This	makes	it	easier	to	see	how	Yesod	will	interact	with	WAI	middleware,
or	how	to	include	code	from	other	WAI	frameworks	in	a	Yesod	application	(or	vice
versa!).

Chapter	19.	SQL	Joins

Persistent	touts	itself	as	a	database-agnostic	interface.	How,	then,	are	you	supposed	to	do
things	that	are	inherently	backend-specific?	This	most	often	comes	up	in	Yesod	when	you
want	to	join	two	tables	together.	There	are	some	pure-Haskell	solutions	that	are
completely	backend-agonistic,	but	there	are	also	more	efficient	methods	at	our	disposal.	In
this	chapter,	we’ll	introduce	a	common	problem	you	might	want	to	solve,	and	then	build
up	more	sophisticated	solutions.

Multiauthor	Blog
Blogs	are	a	well-understood	problem	domain,	so	let’s	use	that	for	our	problem	setup.
Consider	a	blog	engine	that	allows	for	multiple	authors	in	the	database,	but	supports	blog
posts	that	have	a	single	author.	In	Persistent,	we	may	model	this	as:

Author

				name	Text

Blog

				author	AuthorId

				title	Text

				content	Html

Let’s	set	up	our	initial	Yesod	application	to	show	a	blog	post	index	indicating	the	blog	title
and	the	author:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

{-#	LANGUAGE	ViewPatterns															#-}

import											Control.Monad.Logger

import											Data.Text															(Text)

import											Database.Persist.Sqlite

import											Yesod

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Author

				name	Text

Blog

				author	AuthorId

				title	Text

				content	Html

|]

data	App	=	App

				{	persistConfig	::	SqliteConf

				,	connPool						::	ConnectionPool

				}

instance	Yesod	App

instance	YesodPersist	App	where

				type	YesodPersistBackend	App	=	SqlBackend

				runDB	=	defaultRunDB	persistConfig	connPool

instance	YesodPersistRunner	App	where

				getDBRunner	=	defaultGetDBRunner	connPool

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/blog/#BlogId	BlogR	GET

|]

getHomeR	::	Handler	Html

getHomeR	=	do

				blogs	<-	runDB	$	selectList	[]	[]

				defaultLayout	$	do

								setTitle	"Blog	posts"

								[whamlet|

												

																$forall	Entity	blogid	blog	<-	blogs

																				

																								

																												#{blogTitle	blog}	by	#{show	$	blogAuthor	blog}

								|]

getBlogR	::	BlogId	->	Handler	Html

getBlogR	_	=	error	"Implementation	left	as	exercise	to	reader"

main	::	IO	()

main	=	do

				--	Use	an	in-memory	database	with	1	connection.	Terrible	for	production,

				--	but	useful	for	testing.

				let	conf	=	SqliteConf	":memory:"	1

				pool	<-	createPoolConfig	conf

				flip	runSqlPersistMPool	pool	$	do

								runMigration	migrateAll

								--	Fill	in	some	testing	data

								alice	<-	insert	$	Author	"Alice"

								bob			<-	insert	$	Author	"Bob"

								insert_	$	Blog	alice	"Alice's	first	post"	"Hello,	World!"

								insert_	$	Blog	bob	"Bob's	first	post"	"Hello,	World!!!"

								insert_	$	Blog	alice	"Alice's	second	post"	"Goodbye,	World!"

				warp	3000	App

								{	persistConfig	=	conf

								,	connPool						=	pool

								}

That’s	all	well	and	good,	but	let’s	look	at	the	output,	shown	in	Figure	19-1.

Figure	19-1.	Authors	appear	as	numeric	identifiers

All	we’re	doing	is	displaying	the	numeric	identifier	of	each	author,	instead	of	the	author’s
name.	In	order	to	fix	this,	we	need	to	pull	extra	information	from	the	Author	table	as	well.
Let’s	dive	into	getting	that	done.

Database	Queries	in	Widgets
I’ll	address	this	one	right	off	the	bat,	as	it	catches	many	users	by	surprise.	You	might	think
that	you	can	solve	the	problem	of	database	queries	in	the	Hamlet	template	itself.	For
example:

				$forall	Entity	blogid	blog	<-	blogs

								$with	author	<-	runDB	$	get404	$	blogAuthor

												

																

																				#{blogTitle	blog}	by	#{authorName	author}

However,	this	isn’t	allowed,	because	Hamlet	will	not	allow	you	to	run	database	actions
inside	of	it.	One	of	the	goals	of	Shakespearean	templates	is	to	help	you	keep	your	pure	and
impure	code	separated,	with	the	idea	being	that	all	impure	code	needs	to	stay	in	Haskell.

But	we	can	actually	tweak	the	preceding	code	to	work	in	Yesod.	The	idea	is	to	separate
out	the	code	for	each	blog	entry	into	a	Widget	function,	and	then	perform	the	database
action	in	the	Haskell	portion	of	the	function:

getHomeR	::	Handler	Html

getHomeR	=	do

				blogs	<-	runDB	$	selectList	[]	[]

				defaultLayout	$	do

								setTitle	"Blog	posts"

								[whamlet|

												

																$forall	blogEntity	<-	blogs

																				^{showBlogLink	blogEntity}

								|]

showBlogLink	::	Entity	Blog	->	Widget

showBlogLink	(Entity	blogid	blog)	=	do

				author	<-	handlerToWidget	$	runDB	$	get404	$	blogAuthor	blog

				[whamlet|

								

												

																#{blogTitle	blog}	by	#{authorName	author}

				|]

We	need	to	use	handlerToWidget	to	turn	our	Handler	action	into	a	Widget	action,	but
otherwise	the	code	is	straightforward.	And	furthermore,	we	now	get	exactly	the	output	we
wanted,	as	shown	in	Figure	19-2.

Figure	19-2.	Authors	appear	as	names

Joins
If	we	have	the	exact	result	we’re	looking	for,	why	isn’t	this	chapter	over?	The	problem	is
that	this	technique	is	highly	inefficient.	We’re	performing	one	database	query	to	load	up
all	of	the	blog	posts,	then	a	separate	query	for	each	blog	post	to	get	the	author	names.	This
is	far	less	efficient	than	simply	using	a	SQL	join.	The	question	is:	how	do	we	do	a	join	in
Persistent?	We’ll	start	off	by	writing	some	raw	SQL:

getHomeR	::	Handler	Html

getHomeR	=	do

				blogs	<-	runDB	$	rawSql

								"SELECT	??,	??	\

								\FROM	blog	INNER	JOIN	author	\

								\ON	blog.author=author.id"

								[]

				defaultLayout	$	do

								setTitle	"Blog	posts"

								[whamlet|

												

																$forall	(Entity	blogid	blog,	Entity	_	author)	<-	blogs

																				

																								

																												#{blogTitle	blog}	by	#{authorName	author}

								|]

We	pass	the	rawSql	function	two	parameters:	a	SQL	query,	and	a	list	of	additional
parameters	to	replace	placeholders	in	the	query.	That	list	is	empty,	because	we’re	not	using
any	placeholders.	However,	note	that	we’re	using	??	in	our	SELECT	statement.	This	is	a
form	of	type	inspection:	rawSql	will	detect	the	type	of	entities	being	demanded	and
automatically	fill	in	the	fields	that	are	necessary	to	make	the	query.

rawSql	is	certainly	powerful,	but	it’s	also	unsafe.	There’s	no	syntax	checking	on	your	SQL
query	string,	so	you	can	get	runtime	errors.	Also,	it’s	easy	to	end	up	querying	for	the
wrong	type,	resulting	in	some	very	confusing	runtime	error	messages.

Esqueleto
Persistent	has	a	companion	library	called	Esqueleto	that	provides	an	expressive,	type-safe
DSL	for	writing	SQL	queries.	It	takes	advantage	of	the	Persistent	types	to	ensure	it
generates	valid	SQL	queries	and	produces	the	results	requested	by	the	program.	In	order	to
use	Esqueleto,	we’re	going	to	add	some	imports:

import	qualified	Database.Esqueleto						as	E

import											Database.Esqueleto						((^.))

We	can	then	write	our	query	using	Esqueleto	as	follows:

getHomeR	::	Handler	Html

getHomeR	=	do

				blogs	<-	runDB

											$	E.select

											$	E.from	$	\(blog	`E.InnerJoin`	author)	->	do

																E.on	$	blog	^.	BlogAuthor	E.==.	author	^.	AuthorId

																return

																				(blog			^.	BlogId

																				,	blog			^.	BlogTitle

																				,	author	^.	AuthorName

)

				defaultLayout	$	do

								setTitle	"Blog	posts"

								[whamlet|

												

																$forall	(E.Value	blogid,	E.Value	title,	E.Value	name)	<-	blogs

																				

																								#{title}	by	#{name}

								|]

Notice	how	similar	the	query	looks	to	the	SQL	we	wrote	previously.	One	thing	of
particular	interest	is	the	\^.	operator,	which	is	a	projection.	blog	^.	BlogAuthor,	for
example,	means	“take	the	author	column	of	the	blog	table.”	And	thanks	to	the	type	safety
of	Esqueleto,	you	could	never	accidentally	project	AuthorName	from	blog:	the	type	system
will	stop	you!

In	addition	to	safety,	there’s	also	a	performance	advantage	to	Esqueleto.	Notice	the
returned	tuple;	it	explicitly	lists	the	three	columns	that	we	need	to	generate	our	listing.
This	can	provide	a	huge	performance	boost:	unlike	all	other	examples	we’ve	had,	this	one
does	not	require	transferring	the	(potentially	quite	large)	content	column	of	the	blog	post
to	generate	the	listing.

NOTE
For	the	record,	it’s	possible	to	achieve	this	with	rawSql	as	well	(it’s	just	a	bit	trickier).

Esqueleto	is	really	the	gold	standard	in	writing	SQL	queries	in	Persistent.	The	rule	of
thumb	should	be:	if	you’re	doing	something	that	fits	naturally	into	Persistent’s	query
syntax,	use	Persistent,	as	it’s	database-agnostic	and	a	bit	easier	to	use.	But	if	you’re	doing
something	that	would	be	more	efficient	with	a	SQL-specific	feature,	you	should	strongly

consider	Esqueleto.

Streaming
There’s	still	a	problem	with	our	Esqueleto	approach.	If	there	are	thousands	of	blog	posts,
then	the	workflow	will	be:

1.	 Read	thousands	of	blog	posts	into	memory	on	the	server.

2.	 Render	out	the	entire	HTML	page.

3.	 Send	the	HTML	page	to	the	client.

This	has	two	downsides:	it	uses	a	lot	of	memory,	and	it	results	in	high	latency	for	the	user.
If	this	is	a	bad	approach,	why	does	Yesod	gear	you	toward	it	out	of	the	box,	instead	of
following	a	streaming	approach?	Two	reasons:

Correctness

Imagine	if	there	was	an	error	reading	the	243rd	record	from	the	database.	By	sending
a	non-streaming	response,	Yesod	can	catch	the	exception	and	send	a	meaningful	500
error	response.	If	we	were	already	streaming,	the	streaming	body	would	simply	stop
in	the	middle	of	a	misleading	200	OK	response.

Ease	of	use

It’s	usually	easier	to	work	with	non-streaming	bodies.

The	standard	recommendation	I’d	give	someone	who	wants	to	generate	listings	that	may
be	large	is	to	use	pagination.	This	allows	you	to	do	less	work	on	the	server,	write	simple
code,	get	the	correctness	guarantees	Yesod	provides	out	of	the	box,	and	reduce	user
latency.	However,	there	are	times	when	you’ll	really	want	to	generate	a	streaming
response,	so	let’s	cover	that	here.

Switching	Esqueleto	to	a	streaming	response	is	easy:	replace	select	with	selectSource.
The	Esqueleto	query	itself	remains	unchanged.	Then	we’ll	use	the	respondSourceDB
function	to	generate	a	streaming	database	response,	and	manually	construct	our	HTML	to
wrap	up	the	listing:

getHomeR	::	Handler	TypedContent

getHomeR	=	do

				let	blogsSrc	=

													E.selectSource

											$	E.from	$	\(blog	`E.InnerJoin`	author)	->	do

																E.on	$	blog	^.	BlogAuthor	E.==.	author	^.	AuthorId

																return

																				(blog			^.	BlogId

																				,	blog			^.	BlogTitle

																				,	author	^.	AuthorName

)

				render	<-	getUrlRenderParams

				respondSourceDB	typeHtml	$	do

								sendChunkText	"<html><head><title>Blog	posts</title></head><body>"

								blogsSrc	$=	CL.map	(\(E.Value	blogid,	E.Value	title,	E.Value	name)	->

												toFlushBuilder	$

												[hamlet|

																

																				#{title}	by	#{name}

												|]	render

)

								sendChunkText	"</body></html>"

Notice	the	usage	of	sendChunkText,	which	sends	some	raw	Text	values	over	the	network.
We	then	take	each	of	our	blog	tuples	and	use	conduit’s	map	function	to	create	a	streaming
value.	We	use	hamlet	to	get	templating,	and	then	pass	in	our	render	function	to	convert
the	type-safe	URLs	into	their	textual	versions.	Finally,	toFlushBuilder	converts	our	Html
value	into	a	Flush	Builder	value,	as	needed	by	Yesod’s	streaming	framework.

Unfortunately,	we’re	no	longer	able	to	take	advantage	of	Hamlet	to	do	our	overall	page
layout,	as	we	need	to	explicitly	generate	start	and	end	tags	separately.	This	introduces
another	point	for	possible	bugs,	if	we	accidentally	create	unbalanced	tags.	We	also	lose	the
ability	to	use	defaultLayout,	for	exactly	the	same	reason.

Streaming	HTML	responses	are	a	powerful	tool,	and	are	sometimes	necessary.	But
generally	speaking,	I’d	recommend	sticking	to	safer	options.

Summary
This	chapter	covered	a	number	of	ways	of	doing	a	SQL	join:

Avoid	the	join	entirely,	and	manually	grab	the	associated	data	in	Haskell.	This	is	also
known	as	an	application-level	join.

Write	the	SQL	explicitly	with	rawSql.	This	is	somewhat	convenient,	but	it	loses	a	lot
of	Persistent’s	type	safety.

Use	Esqueleto’s	DSL	functionality	to	create	a	type-safe	SQL	query.

If	you	need	it,	you	can	even	generate	a	streaming	response	from	Esqueleto.	
For	completeness,	here’s	the	entire	body	of	the	final,	streaming	example:

{-#	LANGUAGE	EmptyDataDecls													#-}

{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

{-#	LANGUAGE	ViewPatterns															#-}

import											Control.Monad.Logger

import											Data.Text															(Text)

import	qualified	Database.Esqueleto						as	E

import											Database.Esqueleto						((^.))

import											Database.Persist.Sqlite

import											Yesod

import	qualified	Data.Conduit.List	as	CL

import	Data.Conduit	(($=))

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Author

				name	Text

Blog

				author	AuthorId

				title	Text

				content	Html

|]

data	App	=	App

				{	persistConfig	::	SqliteConf

				,	connPool						::	ConnectionPool

				}

instance	Yesod	App

instance	YesodPersist	App	where

				type	YesodPersistBackend	App	=	SqlBackend

				runDB	=	defaultRunDB	persistConfig	connPool

instance	YesodPersistRunner	App	where

				getDBRunner	=	defaultGetDBRunner	connPool

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/blog/#BlogId	BlogR	GET

|]

getHomeR	::	Handler	TypedContent

getHomeR	=	do

				let	blogsSrc	=

													E.selectSource

											$	E.from	$	\(blog	`E.InnerJoin`	author)	->	do

																E.on	$	blog	^.	BlogAuthor	E.==.	author	^.	AuthorId

																return

																				(blog			^.	BlogId

																				,	blog			^.	BlogTitle

																				,	author	^.	AuthorName

)

				render	<-	getUrlRenderParams

				respondSourceDB	typeHtml	$	do

								sendChunkText	"<html><head><title>Blog	posts</title></head><body>"

								blogsSrc	$=	CL.map	(\(E.Value	blogid,	E.Value	title,	E.Value	name)	->

												toFlushBuilder	$

												[hamlet|

																

																				#{title}	by	#{name}

												|]	render

)

								sendChunkText	"</body></html>"

getBlogR	::	BlogId	->	Handler	Html

getBlogR	_	=	error	"Implementation	left	as	exercise	to	reader"

main	::	IO	()

main	=	do

				--	Use	an	in-memory	database	with	1	connection.	Terrible	for	production,

				--	but	useful	for	testing.

				let	conf	=	SqliteConf	":memory:"	1

				pool	<-	createPoolConfig	conf

				flip	runSqlPersistMPool	pool	$	do

								runMigration	migrateAll

								--	Fill	in	some	testing	data

								alice	<-	insert	$	Author	"Alice"

								bob			<-	insert	$	Author	"Bob"

								insert_	$	Blog	alice	"Alice's	first	post"	"Hello,	World!"

								insert_	$	Blog	bob	"Bob's	first	post"	"Hello,	World!!!"

								insert_	$	Blog	alice	"Alice's	second	post"	"Goodbye,	World!"

				warp	3000	App

								{	persistConfig	=	conf

								,	connPool						=	pool

								}

Chapter	20.	Yesod	for	Haskellers

The	majority	of	this	book	is	built	around	giving	practical	information	on	how	to	get
common	tasks	done,	without	drilling	too	much	into	the	details	of	what’s	going	on	under
the	surface.	This	book	presumes	knowledge	of	Haskell,	but	it	does	not	follow	the	typical
style	of	many	introductions	to	Haskell	libraries.	Many	seasoned	Haskellers	may	be	put	off
by	this	hiding	of	implementation	details.	The	purpose	of	this	chapter	is	to	address	those
concerns.	We’ll	start	off	with	a	bare-minimum	web	application	and	build	up	to	more
complicated	examples,	explaining	the	components	and	their	types	along	the	way.

Hello,	Warp
Let’s	start	off	with	the	most	bare-minimum	application	I	can	think	of:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Network.HTTP.Types							(status200)

import											Network.Wai														(Application,	responseLBS)

import											Network.Wai.Handler.Warp	(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	sendResponse	$	responseLBS

				status200

				[("Content-Type",	"text/plain")]

				"Hello,	Warp!"

Wait	a	minute,	there’s	no	Yesod	in	there!	Don’t	worry,	we’ll	get	there.	Remember,	we’re
building	from	the	ground	up,	and	in	Yesod	the	ground	floor	is	WAI,	the	Web	Application
Interface.	WAI	sits	between	a	web	handler,	such	as	a	web	server	or	a	test	framework,	and
a	web	application.	In	our	case,	the	handler	is	Warp,	a	high-performance	web	server,	and
our	application	is	the	app	function.

What’s	this	mysterious	Application	type?	It’s	a	type	synonym	defined	as:

type	Application	=	Request

																->	(Response	->	IO	ResponseReceived)

																->	IO	ResponseReceived

The	Request	value	contains	information	such	as	the	requested	path,	query	string,	request
headers,	request	body,	and	the	IP	address	of	the	client.	The	second	argument	is	the	“send
response”	function.	Instead	of	simply	having	the	application	return	an	IO	Response,	WAI
uses	continuation	passing	style	(CPS)	to	allow	for	full	exception	safety,	similar	to	how	the
bracket	function	works.

We	can	use	this	to	do	some	simple	dispatching:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Network.HTTP.Types							(status200)

import											Network.Wai														(Application,	pathInfo,	responseLBS)

import											Network.Wai.Handler.Warp	(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	req	sendResponse	=

				case	pathInfo	req	of

								["foo",	"bar"]	->	sendResponse	$	responseLBS

												status200

												[("Content-Type",	"text/plain")]

												"You	requested	/foo/bar"

								_	->	sendResponse	$	responseLBS

												status200

												[("Content-Type",	"text/plain")]

												"You	requested	something	else"

WAI	mandates	that	the	path	be	split	into	individual	fragments	(the	stuff	between	forward
slashes)	and	converted	into	text.	This	allows	for	easy	pattern	matching.	If	you	need	the
original,	unmodified	ByteString,	you	can	use	rawPathInfo.	For	more	information	on	the
available	fields,	see	the	WAI	Haddocks.

That	addresses	the	request	side;	what	about	responses?	We’ve	already	seen	responseLBS,
which	is	a	convenient	way	of	creating	a	response	from	a	lazy	ByteString.	That	function
takes	three	arguments:	the	status	code,	a	list	of	response	headers	(as	key/value	pairs),	and
the	body	itself.	But	responseLBS	is	just	a	convenience	wrapper.	Under	the	surface,	WAI
uses	blaze-builder’s	Builder	data	type	to	represent	the	raw	bytes.	Let’s	dig	down
another	level	and	use	that	directly:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Blaze.ByteString.Builder	(Builder,	fromByteString)

import											Network.HTTP.Types							(status200)

import											Network.Wai														(Application,	responseBuilder)

import											Network.Wai.Handler.Warp	(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	sendResponse	$	responseBuilder

				status200

				[("Content-Type",	"text/plain")]

				(fromByteString	"Hello	from	blaze-builder!"	::	Builder)

This	opens	up	some	nice	opportunities	for	efficiently	building	up	response	bodies,	as
Builder	allows	for	O(1)	append	operations.	We’re	also	able	to	take	advantage	of	blaze-
html,	which	sits	on	top	of	blaze-builder.	Let’s	take	a	look	at	our	first	HTML	application:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Network.HTTP.Types												(status200)

import											Network.Wai																			(Application,	responseBuilder)

import											Network.Wai.Handler.Warp						(run)

import											Text.Blaze.Html.Renderer.Utf8	(renderHtmlBuilder)

import											Text.Blaze.Html5														(Html,	docTypeHtml)

import	qualified	Text.Blaze.Html5														as	H

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	sendResponse	$	responseBuilder

				status200

				[("Content-Type",	"text/html")]	--	yay!

				(renderHtmlBuilder	myPage)

myPage	::	Html

myPage	=	docTypeHtml	$	do

				H.head	$	do

								H.title	"Hello	from	blaze-html	and	Warp"

				H.body	$	do

								H.h1	"Hello	from	blaze-html	and	Warp"

There’s	a	limitation	with	using	a	pure	Builder	value:	we	need	to	create	the	entire	response
body	before	returning	the	Response	value.	With	lazy	evaluation,	that’s	not	as	bad	as	it
sounds,	because	not	all	of	the	body	will	live	in	memory	at	once.	However,	if	we	need	to
perform	some	I/O	to	generate	our	response	body	(such	as	reading	data	from	a	database),

we’ll	be	in	trouble.

To	deal	with	that	situation,	WAI	provides	a	means	for	generating	streaming	response
bodies.	It	also	allows	explicit	control	of	flushing	the	stream.	Let’s	see	how	this	works:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Blaze.ByteString.Builder											(Builder,	fromByteString)

import											Blaze.ByteString.Builder.Char.Utf8	(fromShow)

import											Control.Concurrent																	(threadDelay)

import											Control.Monad																						(forM_)

import											Control.Monad.Trans.Class										(lift)

import											Data.Monoid																								((<>))

import											Network.HTTP.Types																	(status200)

import											Network.Wai																								(Application,

																																																					responseStream)

import											Network.Wai.Handler.Warp											(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	sendResponse	$	responseStream

				status200

				[("Content-Type",	"text/plain")]

				myStream

myStream	::	(Builder	->	IO	())	->	IO	()	->	IO	()

myStream	send	flush	=	do

				send	$	fromByteString	"Starting	streaming	response.\n"

				send	$	fromByteString	"Performing	some	I/O.\n"

				flush

				--	pretend	we're	performing	some	I/O

				threadDelay	1000000

				send	$	fromByteString	"I/O	performed,	here	are	some	results.\n"

				forM_	[1..50	::	Int]	$	\i	->	do

								send	$	fromByteString	"Got	the	value:	"	<>

															fromShow	i	<>

															fromByteString	"\n"

NOTE
WAI	previously	relied	on	the	conduit	library	for	its	streaming	data	abstraction,	but	has	since	gotten	rid	of
that	dependency.	However,	conduit	is	still	well	supported	in	the	WAI	ecosystem,	via	the	wai-conduit
helper	package.

Another	common	requirement	when	dealing	with	a	streaming	response	is	safely	allocating
a	scarce	resource,	such	as	a	file	handle.	By	safely,	I	mean	ensuring	that	the	response	will
be	released,	even	in	the	case	of	some	exception.	This	is	where	the	continuation	passing
style	mentioned	earlier	comes	into	play:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Blaze.ByteString.Builder	(fromByteString)

import	qualified	Data.ByteString										as	S

import											Data.Conduit													(Flush	(Chunk),	($=))

import											Data.Conduit.Binary						(sourceHandle)

import	qualified	Data.Conduit.List								as	CL

import											Network.HTTP.Types							(status200)

import											Network.Wai														(Application,	responseStream)

import											Network.Wai.Handler.Warp	(run)

import											System.IO																(IOMode	(ReadMode),	withFile)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	withFile	"index.html"	ReadMode	$	\handle	->

				sendResponse	$	responseStream

								status200

								[("Content-Type",	"text/html")]

								$	\send	_flush	->

												let	loop	=	do

																				bs	<-	S.hGet	handle	4096

																				if	S.null	bs

																								then	return	()

																								else	send	(fromByteString	bs)	>>	loop

													in	loop

Notice	how	we’re	able	to	take	advantage	of	existing	exception-safe	functions	like
withFile	to	deal	with	exceptions	properly.

But	in	the	case	of	serving	files,	it’s	more	efficient	to	use	responseFile,	which	can	use	the
sendfile	system	call	to	avoid	unnecessary	buffer	copies:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Network.HTTP.Types							(status200)

import											Network.Wai														(Application,	responseFile)

import											Network.Wai.Handler.Warp	(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	_req	sendResponse	=	sendResponse	$	responseFile

				status200

				[("Content-Type",	"text/html")]

				"index.html"

				Nothing	--	means	"serve	whole	file"

												--	you	can	also	serve	specific	ranges	in	the	file

There	are	many	aspects	of	WAI	we	haven’t	covered	here.	One	important	topic	is	WAI
middlewares.	We	also	haven’t	inspected	request	bodies	at	all.	But	for	the	purposes	of
understanding	Yesod,	we’ve	covered	enough	for	the	moment.

What	About	Yesod?
In	all	our	excitement	about	WAI	and	Warp,	we	still	haven’t	seen	anything	about	Yesod!
We	just	learned	all	about	WAI,	so	our	first	question	should	be:	how	does	Yesod	interact
with	WAI?	The	answer	to	that	is	one	very	important	function:

toWaiApp	::	YesodDispatch	site	=>	site	->	IO	Application

NOTE
There’s	an	even	more	basic	function	in	Yesod,	called	toWaiAppPlain.	The	distinction	is	that
toWaiAppPlain	doesn’t	install	any	additional	WAI	middlewares,	while	toWaiApp	provides	commonly	used
middlewares	for	logging,	gzip	compression,	HEAD	request	method	handling,	etc.

This	function	takes	some	site	value,	which	must	be	an	instance	of	YesodDispatch,	and
creates	an	Application.	The	function	lives	in	the	IO	monad,	because	it	will	likely	perform
actions	like	allocating	a	shared	logging	buffer.	The	more	interesting	question	is	what	this
site	value	is	all	about.

Yesod	has	a	concept	of	a	foundation	data	type.	This	is	a	data	type	at	the	core	of	each
application,	and	is	used	in	three	important	ways:

It	can	hold	onto	values	that	are	initialized	and	shared	amongst	all	aspects	of	your
application,	such	as	an	HTTP	connection	manager,	a	database	connection	pool,
settings	loaded	from	a	file,	or	some	shared	mutable	state	like	a	counter	or	cache.

Typeclass	instances	provide	even	more	information	about	your	application.	The
Yesod	typeclass	has	various	settings,	such	as	what	the	default	template	of	your	app
should	be,	or	the	maximum	allowed	request	body	size.	The	YesodDispatch	class
indicates	how	incoming	requests	should	be	dispatched	to	handler	functions.	And
there	are	a	number	of	typeclasses	commonly	used	in	Yesod	helper	libraries,	such	as
RenderMessage	for	i18n	support	or	YesodJquery	for	providing	the	shared	location	of
the	jQuery	JavaScript	library.

Associated	types	(i.e.,	type	families)	are	used	to	create	a	related	route	data	type	for
each	application.	This	is	a	simple	algebraic	data	type	that	represents	all	legal	routes	in
your	application.	By	using	this	intermediate	data	type	instead	of	dealing	directly	with
strings,	Yesod	applications	can	take	advantage	of	the	compiler	to	prevent	creating
invalid	links.	This	feature	is	known	as	type-safe	URLs.

In	keeping	with	the	spirit	of	this	chapter,	we’re	going	to	create	our	first	Yesod	application
the	hard	way,	by	writing	everything	manually.	We’ll	progressively	add	more	convenience
helpers	on	top	as	we	go	along:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Network.HTTP.Types												(status200)

import											Network.Wai																			(responseBuilder)

import											Network.Wai.Handler.Warp						(run)

import											Text.Blaze.Html.Renderer.Utf8	(renderHtmlBuilder)

import	qualified	Text.Blaze.Html5														as	H

import											Yesod.Core																				(Html,	RenderRoute	(..),	Yesod,

																																																YesodDispatch	(..),	toWaiApp)

import											Yesod.Core.Types														(YesodRunnerEnv	(..))

--	|	Our	foundation	data	type

data	App	=	App

				{	welcomeMessage	::	!Html

				}

instance	Yesod	App

instance	RenderRoute	App	where

				data	Route	App	=	HomeR	--	just	one	accepted	URL

								deriving	(Show,	Read,	Eq,	Ord)

				renderRoute	HomeR	=	([]	--	empty	path	info,	means	"/"

																								,	[]	--	empty	query	string

)

instance	YesodDispatch	App	where

				yesodDispatch

						(YesodRunnerEnv	_logger	site	_sessionBackend	_)

						_req

						sendResponse	=

								sendResponse	$	responseBuilder

												status200

												[("Content-Type",	"text/html")]

												(renderHtmlBuilder	$	welcomeMessage	site)

main	::	IO	()

main	=	do

				--	We	could	get	this	message	from	a	file	instead	if	we	wanted.

				let	welcome	=	H.p	"Welcome	to	Yesod!"

				waiApp	<-	toWaiApp	App

								{	welcomeMessage	=	welcome

								}

				run	3000	waiApp

OK,	we’ve	added	quite	a	few	new	pieces	here,	so	let’s	attack	them	one	at	a	time.	First	we
created	a	new	data	type,	App.	This	is	commonly	used	as	the	foundation	data	type	name	for
each	application,	though	you’re	free	to	use	whatever	name	you	want.	We’ve	added	one
field	to	this	data	type,	welcomeMessage,	which	will	hold	the	content	for	our	homepage.

Next,	we	declare	our	Yesod	instance.	We	just	use	the	default	values	for	all	of	the	methods
for	this	example.	More	interesting	is	the	RenderRoute	typeclass.	This	is	the	heart	of	type-
safe	URLs.	We	create	an	associated	data	type	for	App	that	lists	all	of	our	app’s	accepted
routes.	In	this	case,	we	have	just	one:	the	homepage,	which	we	call	HomeR.	It’s	yet	another
Yesod	naming	convention	to	append	R	to	all	of	the	route	data	constructors.

We	also	need	to	create	a	renderRoute	method,	which	converts	each	type-safe	route	value
into	a	tuple	of	path	pieces	and	query	string	parameters.	We’ll	get	to	more	interesting
examples	later,	but	for	now,	our	homepage	has	an	empty	list	for	both	of	those.

YesodDispatch	determines	how	our	application	behaves.	It	has	one	method,
yesodDispatch,	of	type:

yesodDispatch	::	YesodRunnerEnv	site	->	Application

YesodRunnerEnv	provides	three	values:	a	Logger	value	for	outputting	log	messages,	the
foundation	data	type	value	itself,	and	a	session	backend	used	for	storing	and	retrieving
information	for	the	user’s	active	session.	In	real	Yesod	applications,	as	you’ll	see	shortly,
you	don’t	need	to	interact	with	these	values	directly,	but	it’s	informative	to	understand
what’s	under	the	surface.

The	return	type	of	yesodDispatch	is	Application	from	WAI.	But	as	we	saw	earlier,
Application	is	simply	a	CPSed	function	from	Request	to	Response.	So,	our
implementation	of	yesodDispatch	is	able	to	use	everything	we’ve	learned	about	WAI.
Notice	also	how	we	accessed	the	welcomeMessage	from	our	foundation	data	type.

Finally,	we	have	the	main	function.	The	App	value	is	easy	to	create,	and	as	you	can	see,
you	could	just	as	easily	have	performed	some	I/O	to	acquire	the	welcome	message.	We
use	toWaiApp	to	obtain	a	WAI	application	and	then	pass	off	our	application	to	Warp,	just
like	we	did	in	the	past.

Congratulations!	You’ve	now	seen	your	first	Yesod	application	(or	at	least,	your	first
Yesod	application	in	this	chapter).

The	HandlerT	Monad	Transformer
The	preceding	example	was	technically	using	Yesod,	but	it	wasn’t	incredibly	inspiring.	In
fact,	Yesod	did	nothing	more	than	get	in	our	way	relative	to	WAI.	And	that’s	because	we
haven’t	started	taking	advantage	of	any	of	Yesod’s	features.	Let’s	address	that,	starting
with	the	HandlerT	monad	transformer.

There	are	many	common	things	you’ll	want	to	do	when	handling	a	single	request,
including	the	following:

Return	some	HTML.

Redirect	to	a	different	URL.

Return	a	404	Not	Found	response.

Do	some	logging.

To	encapsulate	all	of	this	common	functionality,	Yesod	provides	a	HandlerT	monad
transformer.	The	vast	majority	of	the	code	you	write	in	Yesod	will	live	in	this	transformer,
so	you	should	get	acquainted	with	it.	Let’s	start	off	by	replacing	our	previous
YesodDispatch	instance	with	a	new	one	that	takes	advantage	of	HandlerT:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Network.Wai														(pathInfo)

import											Network.Wai.Handler.Warp	(run)

import	qualified	Text.Blaze.Html5									as	H

import											Yesod.Core															(HandlerT,	Html,	RenderRoute	(..),

																																											Yesod,	YesodDispatch	(..),	getYesod,

																																											notFound,	toWaiApp,	yesodRunner)

--	|	Our	foundation	data	type

data	App	=	App

				{	welcomeMessage	::	!Html

				}

instance	Yesod	App

instance	RenderRoute	App	where

				data	Route	App	=	HomeR	--	just	one	accepted	URL

								deriving	(Show,	Read,	Eq,	Ord)

				renderRoute	HomeR	=	([]	--	empty	path	info,	means	"/"

																								,	[]	--	empty	query	string

)

getHomeR	::	HandlerT	App	IO	Html

getHomeR	=	do

				site	<-	getYesod

				return	$	welcomeMessage	site

instance	YesodDispatch	App	where

				yesodDispatch	yesodRunnerEnv	req	sendResponse	=

								let	maybeRoute	=

																case	pathInfo	req	of

																				[]	->	Just	HomeR

																				_		->	Nothing

												handler	=

																case	maybeRoute	of

																				Nothing	->	notFound

																				Just	HomeR	->	getHomeR

									in	yesodRunner	handler	yesodRunnerEnv	maybeRoute	req	sendResponse

main	::	IO	()

main	=	do

				--	We	could	get	this	message	from	a	file	instead	if	we	wanted.

				let	welcome	=	H.p	"Welcome	to	Yesod!"

				waiApp	<-	toWaiApp	App

								{	welcomeMessage	=	welcome

								}

				run	3000	waiApp

getHomeR	is	our	first	handler	function.	(That	name	is	yet	another	naming	convention	in	the
Yesod	world:	the	lowercase	HTTP	request	method,	followed	by	the	route	constructor
name.)	Notice	its	signature:	HandlerT	App	IO	Html.	It’s	so	common	to	have	the	monad
stack	HandlerT	App	IO	that	most	applications	have	a	type	synonym	for	it,	type	Handler
=	HandlerT	App	IO.	The	function	is	returning	some	Html.	You	might	be	wondering	if
Yesod	is	hardcoded	to	only	work	with	Html	values.	I’ll	explain	that	detail	in	a	moment.

Our	function	body	is	short.	We	use	the	getYesod	function	to	get	the	foundation	data	type
value,	and	then	return	the	welcomeMessage	field.	We’ll	build	up	more	interesting	handlers
as	we	continue.

The	implementation	of	yesodDispatch	is	now	quite	different.	The	key	to	it	is	the
yesodRunner	function,	which	is	a	low-level	function	for	converting	HandlerT	stacks	into
WAI	Applications.	Let’s	look	at	its	type	signature:

yesodRunner	::	(ToTypedContent	res,	Yesod	site)

												=>	HandlerT	site	IO	res

												->	YesodRunnerEnv	site

												->	Maybe	(Route	site)

												->	Application

We’re	already	familiar	with	YesodRunnerEnv	from	our	previous	example.	As	you	can	see
in	our	call	to	yesodRunner,	we	pass	that	value	in	unchanged.	The	Maybe	(Route	site)	is
a	bit	interesting,	and	gives	us	more	insight	into	how	type-safe	URLs	work.	Until	now,
we’ve	only	seen	the	rendering	side	of	these	URLs.	But	just	as	important	is	the	parsing
side:	converting	a	requested	path	into	a	route	value.	In	our	example,	this	code	is	just	a	few
lines,	and	we	store	the	result	in	maybeRoute.

NOTE
It’s	true	that	our	current	parse	function	is	small,	but	in	a	larger	application	it	would	need	to	be	more
complex,	also	dealing	with	issues	like	dynamic	parameters.	At	that	point,	it	becomes	a	non-trivial	endeavor
to	ensure	that	our	parsing	and	rendering	functions	remain	in	proper	alignment.	We’ll	discuss	how	Yesod
deals	with	that	later.

Coming	back	to	the	parameters	to	yesodRunner:	we’ve	now	addressed	the	Maybe	(Route
site)	and	YesodRunerEnv	site.	To	get	our	HandlerT	site	IO	res	value,	we	pattern
match	on	maybeRoute.	If	it’s	Just	HomeR,	we	use	getHomeR.	Otherwise,	we	use	the
notFound	function,	which	is	a	built-in	function	that	returns	a	404	Not	Found	response,

using	your	default	site	template.	That	template	can	be	overridden	in	the	Yesod	typeclass;
out	of	the	box,	it’s	just	a	boring	HTML	page.

This	almost	all	makes	sense,	except	for	one	issue:	what’s	that	ToTypedContent	typeclass,
and	what	does	it	have	to	do	with	our	Html	response?	Let’s	start	by	answering	that	earlier
question:	no,	Yesod	does	not	in	any	way	hardcode	support	for	Html.	A	handler	function
can	return	any	value	that	has	an	instance	of	ToTypedContent.	This	typeclass	(which	we
will	examine	in	a	moment)	provides	both	a	MIME	type	and	a	representation	of	the	data
that	WAI	can	consume.	yesodRunner	then	converts	that	into	a	WAI	response,	setting	the
Content-Type	response	header	to	the	MIME	type,	using	a	200	OK	status	code,	and
sending	the	response	body.

(To)Content,	(To)TypedContent
At	the	very	core	of	Yesod’s	content	system	are	the	following	types:

data	Content	=	ContentBuilder	!Builder	!(Maybe	Int)

															--	^	The	content	and	optional	content	length.

													|	ContentSource	!(Source	(ResourceT	IO)	(Flush	Builder))

													|	ContentFile	!FilePath	!(Maybe	FilePart)

													|	ContentDontEvaluate	!Content

type	ContentType	=	ByteString

data	TypedContent	=	TypedContent	!ContentType	!Content

Content	should	remind	you	a	bit	of	the	WAI	response	types.	ContentBuilder	is	similar	to
responseBuilder,	ContentSource	is	like	responseStream	but	specialized	to	conduit,
and	ContentFile	is	like	responseFile.	Unlike	their	WAI	counterparts,	none	of	these
constructors	contain	information	on	the	status	code	or	response	headers;	that’s	handled
orthogonally	in	Yesod.

The	one	completely	new	constructor	is	ContentDontEvaluate.	By	default,	when	you
create	a	response	body	in	Yesod,	Yesod	fully	evaluates	the	body	before	generating	the
response.	The	reason	for	this	is	to	ensure	that	there	are	no	impure	exceptions	in	your
value.	Yesod	wants	to	make	sure	to	catch	any	such	exceptions	before	starting	to	send	your
response	so	that,	if	there	is	an	exception,	it	can	generate	a	proper	500	Internal	Server	Error
response	instead	of	simply	dying	in	the	middle	of	sending	a	non-error	response.	However,
performing	this	evaluation	can	cause	more	memory	usage.	Therefore,	Yesod	provides	a
means	of	opting	out	of	this	protection.

TypedContent	is	then	a	minor	addition	to	Content:	it	includes	the	ContentType	as	well.
Together	with	a	convention	that	an	application	returns	a	200	OK	status	unless	otherwise
specified,	we	have	everything	we	need	from	the	TypedContent	type	to	create	a	response.

Although	Yesod	could	have	required	users	to	always	return	TypedContent	from	a	handler
function,	that	approach	would	have	required	manually	converting	to	that	type.	Instead,
Yesod	uses	a	pair	of	typeclasses	for	this,	appropriately	named	ToContent	and
ToTypedContent.	They	have	exactly	the	definitions	you’d	expect:

class	ToContent	a	where

				toContent	::	a	->	Content

class	ToContent	a	=>	ToTypedContent	a	where

				toTypedContent	::	a	->	TypedContent

And	Yesod	provides	instances	for	many	common	data	types,	including	Text,	Html,	and	the
aeson	library’s	Value	type	(containing	JSON	data).	That’s	how	the	getHomeR	function	was
able	to	return	Html:	Yesod	knows	how	to	convert	it	to	TypedContent,	and	from	there	it	can
be	converted	into	a	WAI	response.

HasContentType	and	Representations
This	typeclass	approach	allows	for	one	other	nice	abstraction.	For	many	types,	the	type
system	itself	lets	us	know	what	the	content	type	for	the	content	should	be.	For	example,
Html	will	always	be	served	with	a	text/html	content	type.

NOTE
This	isn’t	true	for	all	instance	of	ToTypedContent.	For	a	counterexample,	consider	the	ToTypedContent
TypedContent	instance.

Some	requests	to	a	web	application	can	be	displayed	with	various	representations.	For
example,	a	request	for	tabular	data	could	be	served	with:

An	HTML	table

A	CSV	file

XML

JSON	data	to	be	consumed	by	some	client-side	JavaScript

The	HTTP	spec	allows	a	client	to	specify	its	preference	of	representation	via	the	Accept
request	header.	And	Yesod	allows	a	handler	function	to	use	the	selectRep/provideRep
function	combo	to	provide	multiple	representations,	and	have	the	framework
automatically	choose	the	appropriate	one	based	on	the	client	headers.

The	last	missing	piece	to	make	this	all	work	is	the	HasContentType	typeclass:

class	ToTypedContent	a	=>	HasContentType	a	where

				getContentType	::	Monad	m	=>	m	a	->	ContentType

The	parameter	m	a	is	just	a	poor	man’s	Proxy	type.	And,	in	hindsight,	we	should	have
used	Proxy,	but	that	would	now	be	a	breaking	change.	There	are	instances	for	this
typeclass	for	most	data	types	supported	by	ToTypedContent.	Here	is	our	previous
example,	tweaked	just	a	bit	to	provide	multiple	representations	of	the	data:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text																(Text)

import											Network.Wai														(pathInfo)

import											Network.Wai.Handler.Warp	(run)

import	qualified	Text.Blaze.Html5									as	H

import											Yesod.Core															(HandlerT,	Html,	RenderRoute	(..),

																																											TypedContent,	Value,	Yesod,

																																											YesodDispatch	(..),	getYesod,

																																											notFound,	object,	provideRep,

																																											selectRep,	toWaiApp,	yesodRunner,

																																											(.=))

--	|	Our	foundation	data	type

data	App	=	App

				{	welcomeMessageHtml	::	!Html

				,	welcomeMessageText	::	!Text

				,	welcomeMessageJson	::	!Value

				}

instance	Yesod	App

instance	RenderRoute	App	where

				data	Route	App	=	HomeR	--	just	one	accepted	URL

								deriving	(Show,	Read,	Eq,	Ord)

				renderRoute	HomeR	=	([]	--	empty	path	info,	means	"/"

																								,	[]	--	empty	query	string

)

getHomeR	::	HandlerT	App	IO	TypedContent

getHomeR	=	do

				site	<-	getYesod

				selectRep	$	do

								provideRep	$	return	$	welcomeMessageHtml	site

								provideRep	$	return	$	welcomeMessageText	site

								provideRep	$	return	$	welcomeMessageJson	site

instance	YesodDispatch	App	where

				yesodDispatch	yesodRunnerEnv	req	sendResponse	=

								let	maybeRoute	=

																case	pathInfo	req	of

																				[]	->	Just	HomeR

																				_		->	Nothing

												handler	=

																case	maybeRoute	of

																				Nothing	->	notFound

																				Just	HomeR	->	getHomeR

									in	yesodRunner	handler	yesodRunnerEnv	maybeRoute	req	sendResponse

main	::	IO	()

main	=	do

				waiApp	<-	toWaiApp	App

								{	welcomeMessageHtml	=	H.p	"Welcome	to	Yesod!"

								,	welcomeMessageText	=	"Welcome	to	Yesod!"

								,	welcomeMessageJson	=	object	["msg"	.=	("Welcome	to	Yesod!"	::	Text)]

								}

				run	3000	waiApp

Convenience	warp	Function
One	minor	convenience	you’ll	see	quite	a	bit	in	the	Yesod	world:	it’s	very	common	to	call
toWaiApp	to	create	a	WAI	Application	and	then	pass	that	to	Warp’s	run	function,	so
Yesod	provides	a	convenience	warp	wrapper	function.	We	can	therefore	replace	our
previous	main	function	with	the	following:

main	::	IO	()

main	=

				warp	3000	App

								{	welcomeMessageHtml	=	H.p	"Welcome	to	Yesod!"

								,	welcomeMessageText	=	"Welcome	to	Yesod!"

								,	welcomeMessageJson	=	object	["msg"	.=	("Welcome	to	Yesod!"	::	Text)]

								}

There’s	also	a	warpEnv	function	that	reads	the	port	number	from	the	PORT	environment
variable,	which	is	useful	for	working	with	platforms	such	as	FP	Haskell	Center	or
deployment	tools	like	Keter.

Writing	Handlers
The	vast	majority	of	your	application	will	end	up	living	in	the	HandlerT	monad
transformer,	so	it’s	not	surprising	that	there	are	quite	a	few	functions	that	work	in	that
context.	HandlerT	is	an	instance	of	many	common	typeclasses,	including	MonadIO,
MonadTrans,	MonadBaseControl,	MonadLogger,	and	MonadResource,	and	so	can
automatically	take	advantage	of	those	functionalities.

In	addition	to	that	standard	functionality,	the	following	are	some	common	categories	of
functions.	The	only	requirement	Yesod	places	on	your	handler	functions	is	that,	ultimately,
they	return	a	type	that	is	an	instance	of	ToTypedContent.

This	section	is	just	a	short	overview	of	functionality.	For	more	information,	you	should
either	look	through	the	Haddocks	or	read	the	rest	of	this	book.

Getting	Request	Parameters
There	are	a	few	pieces	of	information	provided	by	the	client	in	a	request:

The	requested	path.	This	is	usually	handled	by	Yesod’s	routing	framework,	and	is	not
directly	queried	in	a	handler	function.

Query	string	parameters.	These	can	be	queried	using	lookupGetParam.

Request	bodies.	In	the	case	of	URL-encoded	and	multipart	bodies,	you	can	use
lookupPostParam	to	get	the	request	parameter.	For	multipart	bodies,	there’s	also
lookupFile	for	file	parameters.

Request	headers	can	be	queried	via	lookupHeader.	(And	response	headers	can	be	set
with	addHeader.)

Yesod	parses	cookies	for	you	automatically,	and	they	can	be	queried	using
lookupCookie.	(Cookies	can	be	set	via	the	setCookie	function.)

Finally,	Yesod	provides	a	user	session	framework,	where	data	can	be	set	in	a
cryptographically	secure	session	and	associated	with	each	user.	This	can	be	queried
and	set	using	the	functions	lookupSession,	setSession,	and	deleteSession.

Although	you	can	use	these	functions	directly	for	such	purposes	as	processing	forms,	you
usually	will	want	to	use	the	yesod-form	library,	which	provides	a	higher-level	form
abstraction	based	on	applicative	functors.

Short-Circuiting
In	some	cases,	you’ll	want	to	short-circuit	the	handling	of	a	request.	Reasons	for	doing
this	would	be:

Sending	an	HTTP	redirect	via	the	redirect	function.	This	will	default	to	using	the
303	status	code.	You	can	use	redirectWith	to	get	more	control	over	this.

Returning	a	404	Not	Found	with	notFound,	or	a	405	Bad	Method	via	badMethod.

Indicating	some	error	in	the	request	via	notAuthenticated,	permissionDenied,	or
invalidArgs.

Sending	a	special	response,	such	as	with	sendFile	or	sendResponseStatus	(to
override	the	status	200	response	code)

Using	sendWaiResponse	to	drop	down	a	level	of	abstraction,	bypass	some	Yesod
abstractions,	and	use	WAI	itself.

Streaming
So	far,	the	examples	of	ToTypedContent	instances	we’ve	seen	have	all	involved	non-
streaming	responses.	Html,	Text,	and	Value	all	get	converted	into	a	ContentBuilder
constructor.	As	such,	they	cannot	interleave	I/O	with	sending	data	to	the	user.	What
happens	if	we	want	to	perform	such	interleaving?

When	we	encountered	this	issue	in	WAI,	we	introduced	the	responseSource	method	of
constructing	a	response.	Using	sendWaiResponse,	we	could	reuse	that	same	method	for
creating	a	streaming	response	in	Yesod.	But	there’s	also	a	simpler	API	for	doing	this:
respondSource.	The	respondSource	API	takes	two	parameters:	the	content	type	of	the
response,	and	a	Source	of	Flush	Builder.	Yesod	also	provides	a	number	of	convenience
functions	for	creating	that	Source,	such	as	sendChunk,	sendChunkBS,	and	sendChunkText.

Here’s	an	example,	which	just	converts	our	initial	responseSource	example	from	WAI	to
Yesod:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Blaze.ByteString.Builder											(fromByteString)

import											Blaze.ByteString.Builder.Char.Utf8	(fromShow)

import											Control.Concurrent																	(threadDelay)

import											Control.Monad																						(forM_)

import											Data.Monoid																								((<>))

import											Network.Wai																								(pathInfo)

import											Yesod.Core																									(HandlerT,	RenderRoute	(..),

																																																					TypedContent,	Yesod,

																																																					YesodDispatch	(..),	liftIO,

																																																					notFound,	respondSource,

																																																					sendChunk,	sendChunkBS,

																																																					sendChunkText,	sendFlush,

																																																					warp,	yesodRunner)

--	|	Our	foundation	data	type

data	App	=	App

instance	Yesod	App

instance	RenderRoute	App	where

				data	Route	App	=	HomeR	--	just	one	accepted	URL

								deriving	(Show,	Read,	Eq,	Ord)

				renderRoute	HomeR	=	([]	--	empty	path	info,	means	"/"

																								,	[]	--	empty	query	string

)

getHomeR	::	HandlerT	App	IO	TypedContent

getHomeR	=	respondSource	"text/plain"	$	do

				sendChunkBS	"Starting	streaming	response.\n"

				sendChunkText	"Performing	some	I/O.\n"

				sendFlush

				--	pretend	we're	performing	some	I/O

				liftIO	$	threadDelay	1000000

				sendChunkBS	"I/O	performed,	here	are	some	results.\n"

				forM_	[1..50	::	Int]	$	\i	->	do

								sendChunk	$	fromByteString	"Got	the	value:	"	<>

																				fromShow	i	<>

																				fromByteString	"\n"

instance	YesodDispatch	App	where

				yesodDispatch	yesodRunnerEnv	req	sendResponse	=

								let	maybeRoute	=

																case	pathInfo	req	of

																				[]	->	Just	HomeR

																				_		->	Nothing

												handler	=

																case	maybeRoute	of

																				Nothing	->	notFound

																				Just	HomeR	->	getHomeR

									in	yesodRunner	handler	yesodRunnerEnv	maybeRoute	req	sendResponse

main	::	IO	()

main	=	warp	3000	App

Dynamic	Parameters
Now	that	we’ve	finished	our	detour	into	the	details	of	the	HandlerT	transformer,	let’s	get
back	to	higher-level	Yesod	request	processing.	So	far,	all	of	our	examples	have	dealt	with
a	single	supported	request	route.	Let’s	make	this	more	interesting.	We	now	want	to	have
an	application	that	serves	Fibonacci	numbers.	If	you	make	a	request	to	/fib/5,	it	will	return
the	fifth	Fibonacci	number.	And	if	you	visit	/,	it	will	automatically	redirect	you	to	/fib/1.

In	the	Yesod	world,	the	first	question	to	ask	is:	how	do	we	model	our	route	data	type?	This
is	pretty	straightforward:	data	Route	App	=	HomeR	|	FibR	Int.	The	next	question	is,
how	do	we	want	to	define	our	RenderRoute	instance?	We	need	to	convert	the	Int	to	a
Text.	What	function	should	we	use?

Before	you	answer	that,	realize	that	we’ll	also	need	to	be	able	to	parse	a	Text	back	into	an
Int	for	dispatch	purposes.	So	we	need	to	make	sure	that	we	have	a	pair	of	functions	with
the	property	fromText	.	toText	==	Just.	Show/Read	could	be	a	candidate	for	this,
except	that:

We’d	be	required	to	convert	through	String.

The	Show/Read	instances	for	Text	and	String	both	involve	extra	escaping,	which	we
don’t	want	to	incur.

Instead,	the	approach	taken	by	Yesod	is	to	use	the	path-pieces	package,	and	in	particular
the	PathPiece	typeclass,	defined	as:

class	PathPiece	s	where

				fromPathPiece	::	Text	->	Maybe	s

				toPathPiece			::	s				->	Text

Using	this	typeclass,	we	can	write	parse	and	render	functions	for	our	route	data	type:

instance	RenderRoute	App	where

				data	Route	App	=	HomeR	|	FibR	Int

								deriving	(Show,	Read,	Eq,	Ord)

				renderRoute	HomeR	=	([],	[])

				renderRoute	(FibR	i)	=	(["fib",	toPathPiece	i],	[])

parseRoute'	[]	=	Just	HomeR

parseRoute'	["fib",	i]	=	FibR	<$>	fromPathPiece	i

parseRoute'	_	=	Nothing

And	then	we	can	write	our	YesodDispatch	typeclass	instance:

instance	YesodDispatch	App	where

				yesodDispatch	yesodRunnerEnv	req	sendResponse	=

								let	maybeRoute	=	parseRoute'	(pathInfo	req)

												handler	=

																case	maybeRoute	of

																				Nothing	->	notFound

																				Just	HomeR	->	getHomeR

																				Just	(FibR	i)	->	getFibR	i

									in	yesodRunner	handler	yesodRunnerEnv	maybeRoute	req	sendResponse

getHomeR	=	redirect	(FibR	1)

fibs	::	[Int]

fibs	=	0	:	scanl	(+)	1	fibs

getFibR	i	=	return	$	show	$	fibs	!!	i

Notice	our	call	to	redirect	in	getHomeR.	We’re	able	to	use	the	route	data	type	as	the
parameter	to	redirect,	and	Yesod	takes	advantage	of	our	renderRoute	function	to	create
a	textual	link.

Routing	with	Template	Haskell
Now	let’s	suppose	we	want	to	add	a	new	route	to	our	previous	application.	We’d	have	to
make	the	following	changes:

1.	 Modify	the	route	data	type	itself.

2.	 Add	a	clause	to	renderRoute.

3.	 Add	a	clause	to	parseRoute,	and	make	sure	it	corresponds	correctly	to	renderRoute.

4.	 Add	a	clause	to	the	case	statement	in	yesodDispatch	to	call	our	handler	function.

5.	 Write	our	handler	function.

That’s	a	lot	of	changes!	And	lots	of	manual,	boilerplate	changes	means	lots	of	potential	for
mistakes.	Some	of	the	mistakes	can	be	caught	by	the	compiler	if	you	turn	on	warnings
(forgetting	to	add	a	clause	in	renderRoute	or	a	match	in	yesodDispatch’s	case
statement),	but	others	cannot	(ensuring	that	renderRoute	and	parseRoute	have	the	same
logic,	or	adding	the	parseRoute	clause).

This	is	where	Template	Haskell	comes	into	the	Yesod	world.	Instead	of	dealing	with	all	of
these	changes	manually,	Yesod	declares	a	high-level	routing	syntax.	This	syntax	lets	you
specify	your	route	syntax,	dynamic	parameters,	constructor	names,	and	accepted	request
methods,	and	automatically	generates	parse,	render,	and	dispatch	functions.

To	get	an	idea	of	how	much	manual	coding	this	saves,	have	a	look	at	our	previous
example	converted	to	the	Template	Haskell	version:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

{-#	LANGUAGE	ViewPatterns						#-}

import											Yesod.Core	(RenderRoute	(..),	Yesod,	mkYesod,	parseRoutes,

																													redirect,	warp)

--	|	Our	foundation	data	type

data	App	=	App

instance	Yesod	App

mkYesod	"App"	[parseRoutes|

/									HomeR	GET

/fib/#Int	FibR		GET

|]

getHomeR	::	Handler	()

getHomeR	=	redirect	(FibR	1)

fibs	::	[Int]

fibs	=	0	:	scanl	(+)	1	fibs

getFibR	::	Int	->	Handler	String

getFibR	i	=	return	$	show	$	fibs	!!	i

main	::	IO	()

main	=	warp	3000	App

What’s	wonderful	about	this	is	that,	as	the	developer,	you	can	now	focus	on	the	important
part	of	your	application	and	not	get	involved	in	the	details	of	writing	parsers	and
renderers.	But	there	are	of	course	some	downsides	to	the	usage	of	Template	Haskell:

Compile	times	are	a	bit	slower.

The	details	of	what’s	going	on	behind	the	scenes	aren’t	easily	apparent.	(Though	you
can	use	cabal	haddock	to	see	what	identifiers	have	been	generated	for	you.)

You	don’t	have	as	much	fine-grained	control.	For	example,	in	the	Yesod	route	syntax,
each	dynamic	parameter	has	to	be	a	separate	field	in	the	route	constructor,	as	opposed
to	bundling	fields	together.	This	is	a	conscious	trade-off	in	Yesod	between	flexibility
and	complexity.

This	usage	of	Template	Haskell	is	likely	the	most	controversial	decision	in	Yesod.	I
personally	think	the	benefits	definitely	justify	its	usage,	but	if	you’d	rather	avoid	Template
Haskell,	you’re	free	to	do	so.	Every	example	so	far	in	this	chapter	has	done	so,	and	you
can	follow	those	techniques.	We	also	have	another,	simpler	approach	in	the	Yesod	world:
LiteApp.

LiteApp
LiteApp	allows	you	to	throw	away	type-safe	URLs	and	Template	Haskell.	It	uses	a	simple
routing	DSL	in	pure	Haskell.	Once	again,	as	a	simple	comparison,	let’s	rewrite	our
Fibonacci	example	to	use	it:

import											Data.Text		(pack)

import											Yesod.Core	(LiteHandler,	dispatchTo,	dispatchTo,	liteApp,

																													onStatic,	redirect,	warp,	withDynamic)

getHomeR	::	LiteHandler	()

getHomeR	=	redirect	"/fib/1"

fibs	::	[Int]

fibs	=	0	:	scanl	(+)	1	fibs

getFibR	::	Int	->	LiteHandler	String

getFibR	i	=	return	$	show	$	fibs	!!	i

main	::	IO	()

main	=	warp	3000	$	liteApp	$	do

				dispatchTo	getHomeR

				onStatic	(pack	"fib")	$	withDynamic	$	\i	->	dispatchTo	(getFibR	i)

There	you	go:	a	simple	Yesod	app	without	any	language	extensions	at	all!	However,	even
this	application	still	demonstrates	some	type	safety.	Yesod	will	use	fromPathPiece	to
convert	the	parameter	for	getFibR	from	Text	to	an	Int,	so	any	invalid	parameter	will	be
caught	by	Yesod	itself.	It’s	just	one	less	piece	of	checking	that	you	have	to	perform.

Shakespeare
Generating	plain	text	pages	can	be	fun,	but	it’s	hardly	what	one	normally	expects	from	a
web	framework.	As	you’d	hope,	Yesod	comes	with	built-in	support	for	generating	HTML,
CSS,	and	JavaScript	as	well.

Before	we	get	into	templating	languages,	let’s	do	it	the	raw,	low-level	way,	and	then	build
up	to	something	a	bit	more	pleasant:

import											Data.Text		(pack)

import											Yesod.Core

getHomeR	::	LiteHandler	TypedContent

getHomeR	=	return	$	TypedContent	typeHtml	$	toContent

				"<html><head><title>Hi	There!</title>\

				\<link	rel='stylesheet'	href='/style.css'>\

				\<script	src='/script.js'></script></head>\

				\<body><h1>Hello,	World!</h1></body></html>"

getStyleR	::	LiteHandler	TypedContent

getStyleR	=	return	$	TypedContent	typeCss	$	toContent

				"h1	{	color:	red	}"

getScriptR	::	LiteHandler	TypedContent

getScriptR	=	return	$	TypedContent	typeJavascript	$	toContent

				"alert('Yay,	Javascript	works	too!');"

main	::	IO	()

main	=	warp	3000	$	liteApp	$	do

				dispatchTo	getHomeR

				onStatic	(pack	"style.css")	$	dispatchTo	getStyleR

				onStatic	(pack	"script.js")	$	dispatchTo	getScriptR

We’re	just	reusing	all	of	the	TypedContent	stuff	we’ve	already	learned.	We	now	have
three	separate	routes,	providing	HTML,	CSS,	and	JavaScript.	We	write	our	content	as
Strings,	convert	them	to	Content	using	toContent,	and	then	wrap	them	with	a
TypedContent	constructor	to	give	them	the	appropriate	content	type	headers.

But	as	usual,	we	can	do	better.	Dealing	with	Strings	is	not	very	efficient,	and	it’s	tedious
to	have	to	manually	put	in	the	content	type	all	the	time.	We	already	know	the	solution	to
those	problems:	use	the	Html	data	type	from	blaze-html.	Let’s	convert	our	getHomeR
function	to	use	it:

import											Data.Text																			(pack)

import											Text.Blaze.Html5												(toValue,	(!))

import	qualified	Text.Blaze.Html5												as	H

import	qualified	Text.Blaze.Html5.Attributes	as	A

import											Yesod.Core

getHomeR	::	LiteHandler	Html

getHomeR	=	return	$	H.docTypeHtml	$	do

				H.head	$	do

								H.title	$	toHtml	"Hi	There!"

								H.link	!	A.rel	(toValue	"stylesheet")	!	A.href	(toValue	"/style.css")

								H.script	!	A.src	(toValue	"/script.js")	$	return	()

				H.body	$	do

								H.h1	$	toHtml	"Hello,	World!"

getStyleR	::	LiteHandler	TypedContent

getStyleR	=	return	$	TypedContent	typeCss	$	toContent

				"h1	{	color:	red	}"

getScriptR	::	LiteHandler	TypedContent

getScriptR	=	return	$	TypedContent	typeJavascript	$	toContent

				"alert('Yay,	Javascript	works	too!');"

main	::	IO	()

main	=	warp	3000	$	liteApp	$	do

				dispatchTo	getHomeR

				onStatic	(pack	"style.css")	$	dispatchTo	getStyleR

				onStatic	(pack	"script.js")	$	dispatchTo	getScriptR

Ahh,	far	nicer.	blaze-html	provides	a	convenient	combinator	library,	and	will	execute	far
faster	in	most	cases	than	whatever	String	concatenation	you	might	attempt.

If	you’re	happy	with	blaze-html	combinators,	by	all	means	use	them.	However,	many
people	like	to	use	a	more	specialized	templating	language.	Yesod’s	standard	providers	for
this	are	the	Shakespearean	languages:	Hamlet,	Lucius,	and	Julius.	You	are	by	all	means
welcome	to	use	a	different	system	if	so	desired;	the	only	requirement	is	that	you	can
produce	a	Content	value	from	the	template.

Because	Shakespearean	templates	are	compile-time–checked,	their	usage	requires	either
quasiquotation	or	Template	Haskell.	We’ll	use	the	former	approach	here	(see	Chapter	4	for
more	information):

{-#	LANGUAGE	QuasiQuotes	#-}

import											Data.Text			(Text,	pack)

import											Text.Julius	(Javascript)

import											Text.Lucius	(Css)

import											Yesod.Core

getHomeR	::	LiteHandler	Html

getHomeR	=	withUrlRenderer	$

				[hamlet|

								$doctype	5

								<html>

												<head>

																<title>Hi	There!

																<link	rel=stylesheet	href=/style.css>

																<script	src=/script.js>

												<body>

																<h1>Hello,	World!

				|]

getStyleR	::	LiteHandler	Css

getStyleR	=	withUrlRenderer	[lucius|h1	{	color:	red	}|]

getScriptR	::	LiteHandler	Javascript

getScriptR	=	withUrlRenderer	[julius|alert('Yay,	Javascript	works	too!');|]

main	::	IO	()

main	=	warp	3000	$	liteApp	$	do

				dispatchTo	getHomeR

				onStatic	(pack	"style.css")	$	dispatchTo	getStyleR

				onStatic	(pack	"script.js")	$	dispatchTo	getScriptR

The	URL	Rendering	Function
Likely	the	most	confusing	part	of	this	is	the	withUrlRenderer	calls.	This	gets	into	one	of
the	most	powerful	features	of	Yesod:	type-safe	URLs.	If	you	notice	in	our	HTML,	we’re
providing	links	to	the	CSS	and	JavaScript	URLs	via	strings.	This	leads	to	a	duplication	of
that	information,	as	in	our	main	function	we	have	to	provide	those	strings	a	second	time.
This	is	very	fragile:	our	codebase	is	one	refactor	away	from	having	broken	links.

The	recommended	approach	would	be	to	use	our	type-safe	URL	data	type	in	our	template
instead	of	including	explicit	strings.	As	mentioned	earlier,	LiteApp	doesn’t	provide	any
meaningful	type-safe	URLs,	so	we	don’t	have	that	option	here.	But	if	you	use	the
Template	Haskell	generators,	you	get	type-safe	URLs	for	free.

In	any	event,	the	Shakespearean	templates	all	expect	to	receive	a	function	to	handle	the
rendering	of	type-safe	URLs.	Because	we	don’t	actually	use	any	type-safe	URLs,	just
about	any	function	would	work	here	(the	function	will	be	ignored	entirely),	but
withUrlRenderer	is	a	convenient	option.

As	we’ll	see	next,	withUrlRenderer	isn’t	really	needed	most	of	the	time,	as	widgets	end
up	providing	the	render	function	for	us	automatically.

Widgets
Dealing	with	HTML,	CSS,	and	JavaScript	as	individual	components	can	be	nice	in	many
cases.	However,	when	you	want	to	build	up	reusable	components	for	a	page,	it	can	get	in
the	way	of	composability.	If	you	want	more	motivation	for	why	widgets	are	useful,	see
Chapter	5.	For	now,	let’s	just	dig	into	using	them:

{-#	LANGUAGE	QuasiQuotes	#-}

import											Yesod.Core

getHomeR	::	LiteHandler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	$	toHtml	"Hi	There!"

				[whamlet|<h1>Hello,	World!|]

				toWidget	[lucius|h1	{	color:	red	}|]

				toWidget	[julius|alert('Yay,	Javascript	works	too!');|]

main	::	IO	()

main	=	warp	3000	$	liteApp	$	dispatchTo	getHomeR

This	is	the	same	example	as	earlier,	but	we’ve	now	condensed	it	into	a	single	handler.
Yesod	will	automatically	handle	providing	the	CSS	and	JavaScript	to	the	HTML.	By
default,	it	will	place	them	in	<style>	and	<script>	tags	in	the	<head>	and	<body>	of	the
page,	respectively,	but	Yesod	provides	many	customization	settings	to	do	other	things
(such	as	automatically	creating	temporary	static	files	and	linking	to	them).

Widgets	also	have	another	advantage.	The	defaultLayout	function	is	a	member	of	the
Yesod	typeclass,	and	can	be	modified	to	provide	a	customized	look	and	feel	for	your
website.	Many	built-in	pieces	of	Yesod,	such	as	error	messages,	take	advantage	of	the
widget	system,	so	by	using	widgets	you	get	a	consistent	feel	throughout	your	site.

Details	We	Won’t	Cover
Hopefully	this	chapter	has	pulled	back	enough	of	the	“magic”	in	Yesod	to	let	you
understand	what’s	going	on	under	the	surface.	We	could	of	course	continue	using	this
approach	for	analyzing	the	rest	of	the	Yesod	ecosystem,	but	that	would	be	mostly
redundant	with	the	rest	of	this	book.	Hopefully	you	can	now	feel	more	informed	as	you
read	chapters	on	using	Persistent,	forms,	subsites,	and	sessions.

Part	III.	Examples

Chapter	21.	Initializing	Data	in	the
Foundation	Data	Type

This	chapter	demonstrates	a	relatively	simple	concept:	performing	some	initialization	of
data	to	be	kept	in	the	foundation	data	type.	There	are	various	reasons	to	do	this,	though	the
two	most	important	are:

Efficiency

By	initializing	data	once,	at	process	startup,	you	can	avoid	having	to	recompute	the
same	value	in	each	request.

Persistence

We	want	to	store	some	information	in	a	mutable	location	that	will	be	persisted
between	individual	requests.	This	is	frequently	done	via	an	external	database,	but	it
can	also	be	done	via	an	in-memory	mutable	variable.

NOTE
Mutable	variables	can	be	a	convenient	storage	mechanism,	but	remember	that	they	have	some	downsides.	If
your	process	dies,	you	lose	your	data.	Also,	if	you	scale	horizontally	to	more	than	one	process,	you’ll	need
some	way	to	synchronize	the	data	between	processes.	We’ll	punt	on	both	of	those	issues	here,	but	the
problems	are	real.	This	is	one	of	the	reasons	Yesod	puts	such	a	strong	emphasis	on	using	an	external
database	for	persistence.

To	demonstrate,	we’ll	implement	a	very	simple	website.	It	will	contain	a	single	route	and
will	serve	content	stored	in	a	Markdown	file.	In	addition	to	serving	that	content,	we’ll	also
display	an	old-school	visitor	counter	indicating	how	many	visitors	have	been	to	the	site.

Step	1:	Define	Your	Foundation
We’ve	identified	two	pieces	of	information	to	be	initialized:	the	Markdown	content	to	be
display	on	the	homepage,	and	a	mutable	variable	holding	the	visitor	count.	Remember	that
our	goal	is	to	perform	as	much	of	the	work	in	the	initialization	phase	as	possible	and
thereby	avoid	performing	the	same	work	in	the	handlers	themselves.	Therefore,	we	want
to	preprocess	the	Markdown	content	into	HTML.	As	for	the	visitor	count,	a	simple	IORef
should	be	sufficient.	So,	our	foundation	data	type	is:

data	App	=	App

				{	homepageContent	::	Html

				,	visitorCount				::	IORef	Int

				}

Step	2:	Use	the	Foundation
For	this	trivial	example,	we	only	have	one	route:	the	homepage.	All	we	need	to	do	is:

1.	 Increment	the	visitor	count.

2.	 Get	the	new	visitor	count.

3.	 Display	the	Markdown	content	together	with	the	visitor	count.

One	trick	we’ll	use	to	make	the	code	a	bit	shorter	is	to	utilize	record	wildcard	syntax:	App
{..}.	This	is	convenient	when	we	want	to	deal	with	a	number	of	different	fields	in	a	data
type:

getHomeR	::	Handler	Html

getHomeR	=	do

				App	{..}	<-	getYesod

				currentCount	<-	liftIO	$	atomicModifyIORef	visitorCount

								$	\i	->	(i	+	1,	i	+	1)

				defaultLayout	$	do

								setTitle	"Homepage"

								[whamlet|

												<article>#{homepageContent}

												<p>You	are	visitor	number:	#{currentCount}.

								|]

Step	3:	Create	the	Foundation	Value
When	we	initialize	our	application,	we’ll	now	need	to	provide	values	for	the	two	fields	we
described	previously.	This	is	normal	IO	code	and	can	perform	any	arbitrary	actions
needed.	In	our	case,	we	need	to:

1.	 Read	the	Markdown	from	the	file.

2.	 Convert	that	Markdown	to	HTML.

3.	 Create	the	visitor	counter	variable.

The	code	ends	up	being	just	as	simple	as	those	steps	imply:

go	::	IO	()

go	=	do

				rawMarkdown	<-	TLIO.readFile	"homepage.md"

				countRef	<-	newIORef	0

				warp	3000	App

								{	homepageContent	=	markdown	def	rawMarkdown

								,	visitorCount				=	countRef

								}

Summary
There’s	no	rocket	science	involved	in	this	example	—	just	very	straightforward
programming.	The	purpose	of	this	chapter	is	to	demonstrate	the	commonly	used	best
practice,	for	achieving	these	often-needed	objectives.	In	your	own	applications,	the
initialization	steps	will	likely	be	much	more	complicated:	setting	up	database	connection
pools,	starting	background	jobs	to	batch-process	large	data,	or	anything	else.	After	reading
this	chapter,	you	should	now	have	a	good	idea	of	where	to	place	your	application-specific
initialization	code.

Here	is	the	full	source	code	for	the	example:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	RecordWildCards			#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.IORef

import	qualified	Data.Text.Lazy.IO	as	TLIO

import											Text.Markdown

import											Yesod

data	App	=	App

				{	homepageContent	::	Html

				,	visitorCount				::	IORef	Int

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Html

getHomeR	=	do

				App	{..}	<-	getYesod

				currentCount	<-	liftIO	$	atomicModifyIORef	visitorCount

								$	\i	->	(i	+	1,	i	+	1)

				defaultLayout	$	do

								setTitle	"Homepage"

								[whamlet|

												<article>#{homepageContent}

												<p>You	are	visitor	number:	#{currentCount}.

								|]

main	::	IO	()

main	=	do

				rawMarkdown	<-	TLIO.readFile	"homepage.md"

				countRef	<-	newIORef	0

				warp	3000	App

								{	homepageContent	=	markdown	def	rawMarkdown

								,	visitorCount				=	countRef

								}

Chapter	22.	Blog:	i18n,	Authentication,
Authorization,	and	Database

This	chapter	presents	a	simple	blog	app.	It	allows	an	admin	to	add	blog	posts	via	a	rich
text	editor	(nicedit),	allows	logged-in	users	to	comment,	and	has	full	i18n	support.	It	is
also	a	good	example	of	using	a	Persistent	database,	leveraging	Yesod’s	authorization
system,	and	using	templates.

It	is	generally	recommended	to	place	templates,	Persist	entity	definitions,	and	routing	in
separate	files,	but	we’ll	keep	it	all	in	one	file	here	for	convenience.	The	one	exception
you’ll	see	will	be	i18n	messages.

We’ll	start	off	with	our	language	extensions.	In	scaffolded	code,	the	language	extensions
are	specified	in	the	cabal	file,	so	you	won’t	need	to	put	this	in	your	individual	Haskell
files:

{-#	LANGUAGE	OverloadedStrings,	TypeFamilies,	QuasiQuotes,

													TemplateHaskell,	GADTs,	FlexibleContexts,

													MultiParamTypeClasses,	DeriveDataTypeable,

													GeneralizedNewtypeDeriving,	ViewPatterns	#-}

Now	our	imports:

import	Yesod

import	Yesod.Auth

import	Yesod.Form.Nic	(YesodNic,	nicHtmlField)

import	Yesod.Auth.BrowserId	(authBrowserId,	def)

import	Data.Text	(Text)

import	Network.HTTP.Client.TLS	(tlsManagerSettings)

import	Network.HTTP.Conduit	(Manager,	newManager)

import	Database.Persist.Sqlite

				(ConnectionPool,	SqlBackend,	runSqlPool,	runMigration

				,	createSqlitePool,	runSqlPersistMPool

)

import	Data.Time	(UTCTime,	getCurrentTime)

import	Control.Applicative	((<$>),	(<*>),	pure)

import	Data.Typeable	(Typeable)

import	Control.Monad.Logger	(runStdoutLoggingT)

First,	we’ll	set	up	our	Persistent	entities.	We’re	going	to	create	our	data	types	(via
mkPersist)	and	a	migration	function,	which	will	automatically	create	and	update	our	SQL
schema	(if	we	were	using	the	MongoDB	backend,	migration	would	not	be	needed):

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

The	following	keeps	track	of	users	(in	a	more	robust	application,	we	would	also	keep	the
account	creation	date,	display	name,	etc.):

User

			email	Text

			UniqueUser	email

In	order	to	work	with	yesod-auth’s	caching,	our	User	type	must	be	an	instance	of
Typeable:

			deriving	Typeable

An	individual	blog	entry	has	this	format	(I’ve	avoided	using	the	word	“post”	due	to	the
confusion	with	the	request	method	POST):

Entry

			title	Text

			posted	UTCTime

			content	Html

And	a	comment	on	the	blog	post	looks	like	this:

Comment

			entry	EntryId

			posted	UTCTime

			user	UserId

			name	Text

			text	Textarea

|]

Every	site	has	a	foundation	data	type.	This	value	is	initialized	before	launching	your
application,	and	is	available	throughout.	We’ll	store	a	database	connection	pool	and	HTTP
connection	manager	in	ours.	See	the	very	end	of	the	file	for	how	those	are	initialized:

data	Blog	=	Blog

			{	connPool				::	ConnectionPool

			,	httpManager	::	Manager

			}

To	make	i18n	easy	and	translator-friendly,	we	have	a	special	file	format	for	translated
messages.	There	is	a	single	file	for	each	language,	and	each	file	is	named	based	on	the
language	code	(e.g.,	en,	es,	de-DE)	and	placed	in	that	folder.	We	also	specify	the	main
language	file	(here,	“en“)	as	a	default	language:

mkMessage	"Blog"	"blog-messages"	"en"

Our	blog-messages/en.msg	file	contains	the	following	content:

--	@blog-messages/en.msg

NotAnAdmin:	You	must	be	an	administrator	to	access	this	page.

WelcomeHomepage:	Welcome	to	the	homepage

SeeArchive:	See	the	archive

NoEntries:	There	are	no	entries	in	the	blog

LoginToPost:	Admins	can	login	to	post

NewEntry:	Post	to	blog

NewEntryTitle:	Title

NewEntryContent:	Content

PleaseCorrectEntry:	Your	submitted	entry	had	some	errors,

																				please	correct	and	try	again.

EntryCreated	title@Text:	Your	new	blog	post,	#{title},	has	been	created

EntryTitle	title@Text:	Blog	post:	#{title}

CommentsHeading:	Comments

NoComments:	There	are	no	comments

AddCommentHeading:	Add	a	Comment

LoginToComment:	You	must	be	logged	in	to	comment

AddCommentButton:	Add	comment

CommentName:	Your	display	name

CommentText:	Comment

CommentAdded:	Your	comment	has	been	added

PleaseCorrectComment:	Your	submitted	comment	had	some	errors,

																						please	correct	and	try	again.

HomepageTitle:	Yesod	Blog	Demo

BlogArchiveTitle:	Blog	Archive

Now	we’re	going	to	set	up	our	routing	table.	We	have	four	entries:	a	homepage,	an	entry
list	page	(BlogR),	an	individual	entry	page	(EntryR),	and	our	authentication	subsite.	Note
that	BlogR	and	EntryR	both	accept	GET	and	POST	methods.	The	POST	methods	are	for
adding	a	new	blog	post	and	adding	a	new	comment,	respectively:

mkYesod	"Blog"	[parseRoutes|

/														HomeR		GET

/blog										BlogR		GET	POST

/blog/#EntryId	EntryR	GET	POST

/auth										AuthR		Auth	getAuth

|]

Every	foundation	needs	to	be	an	instance	of	the	Yesod	typeclass.	This	is	where	we
configure	various	settings:

instance	Yesod	Blog	where

This	is	the	base	of	our	application	(note	that	in	order	to	make	BrowserID	work	properly,	a
valid	URL	must	be	used):

				approot	=	ApprootStatic	"http://localhost:3000"

For	our	authorization	scheme,	we	want	to	have	the	following	rules:

Only	admins	can	add	a	new	entry.

Only	logged-in	users	can	add	a	new	comment.

All	other	pages	can	be	accessed	by	anyone.

We	set	up	our	routes	in	a	RESTful	way,	where	the	actions	that	could	make	changes	are
always	using	a	POST	method.	As	a	result,	we	can	simply	check	for	whether	a	request	is	a
write	request,	given	by	the	True	in	the	second	field.

First,	we’ll	authorize	requests	to	add	a	new	entry:

				isAuthorized	BlogR	True	=	do

								mauth	<-	maybeAuth

								case	mauth	of

												Nothing	->	return	AuthenticationRequired

												Just	(Entity	_	user)

																|	isAdmin	user	->	return	Authorized

																|	otherwise				->	unauthorizedI	MsgNotAnAdmin

Now	we’ll	authorize	requests	to	add	a	new	comment:

				isAuthorized	(EntryR	_)	True	=	do

								mauth	<-	maybeAuth

								case	mauth	of

												Nothing	->	return	AuthenticationRequired

												Just	_		->	return	Authorized

And	for	all	other	requests,	the	result	is	always	authorized:

				isAuthorized	_	_	=	return	Authorized

We’ll	also	specify	where	users	should	be	redirected	to	if	they	get	an
AuthenticationRequired:

				authRoute	_	=	Just	(AuthR	LoginR)

Next	is	where	we	define	our	site’s	look	and	feel.	The	function	is	given	the	content	for	the
individual	page,	and	wraps	it	up	with	a	standard	template:

				defaultLayout	inside	=	do

Yesod	encourages	the	get-following-post	pattern,	where	after	a	POST,	the	user	is	redirected
to	another	page.	In	order	to	allow	the	POST	page	to	give	the	user	some	kind	of	feedback,
we	have	the	getMessage	and	setMessage	functions.	It’s	a	good	idea	to	always	check	for
pending	messages	in	your	defaultLayout	function:

								mmsg	<-	getMessage

We	use	widgets	to	compose	HTML,	CSS,	and	JavaScript	resources.	At	the	end	of	the	day,
we	need	to	unwrap	all	of	that	into	simple	HTML.	That’s	what	the	widgetToPageContent
function	is	for.	We’re	going	to	give	it	a	widget	consisting	of	the	content	we	received	from
the	individual	page	(inside),	plus	a	standard	CSS	stylesheet	for	all	pages.	We’ll	use	the
Lucius	template	language	to	create	the	latter:

								pc	<-	widgetToPageContent	$	do

												toWidget	[lucius|

body	{

				width:	760px;

				margin:	1em	auto;

				font-family:	sans-serif;

}

textarea	{

				width:	400px;

				height:	200px;

}

#message	{

		color:	#900;

}

|]

												inside

And	finally,	we’ll	use	a	new	Hamlet	template	to	wrap	up	the	individual	components	(title,
head	data,	and	body	data)	into	the	final	output:

								withUrlRenderer	[hamlet|

$doctype	5

<html>

				<head>

								<title>#{pageTitle	pc}

								^{pageHead	pc}

				<body>

								$maybe	msg	<-	mmsg

												<div	#message>#{msg}

								^{pageBody	pc}

|]

This	is	a	simple	function	to	check	if	a	user	is	the	admin.	In	a	real	application,	we	would
likely	store	the	admin	bit	in	the	database	itself,	or	check	with	some	external	system.	For
now,	I’ve	just	hardcoded	my	own	email	address:

isAdmin	::	User	->	Bool

isAdmin	user	=	userEmail	user	==	"michael@snoyman.com"

In	order	to	access	the	database	we	need	to	create	a	YesodPersist	instance,	which	says
which	backend	we’re	using	and	how	to	run	an	action:

instance	YesodPersist	Blog	where

			type	YesodPersistBackend	Blog	=	SqlBackend

			runDB	f	=	do

							master	<-	getYesod

							let	pool	=	connPool	master

							runSqlPool	f	pool

This	is	a	convenience	synonym.	It	is	defined	automatically	for	you	in	the	scaffolding:

type	Form	x	=	Html	->	MForm	Handler	(FormResult	x,	Widget)

In	order	to	use	yesod-form	and	yesod-auth,	we	need	an	instance	of	RenderMessage	for
FormMessage.	This	allows	us	to	control	the	i18n	of	individual	form	messages:

instance	RenderMessage	Blog	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

In	order	to	use	the	built-in	Nic	HTML	editor,	we	need	this	instance.	We	just	take	the
default	values,	which	use	a	CDN-hosted	version	of	Nic:

instance	YesodNic	Blog

In	order	to	use	yesod-auth,	we	need	a	YesodAuth	instance:

instance	YesodAuth	Blog	where

				type	AuthId	Blog	=	UserId

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				authHttpManager	=	httpManager

We’ll	use	BrowserID	(a.k.a.,	Mozilla	Persona),	which	is	a	third-party	system	using	email
addresses	as	identifiers.	This	makes	it	easy	to	switch	to	other	systems	in	the	future,	such	as
locally	authenticated	email	addresses	(also	included	with	yesod-auth):

				authPlugins	_	=	[authBrowserId	def]

This	function	takes	someone’s	login	credentials	(i.e.,	email	address)	and	gives	back	a
UserId:

				getAuthId	creds	=	do

								let	email	=	credsIdent	creds

												user	=	User	email

								res	<-	runDB	$	insertBy	user

								return	$	Just	$	either	entityKey	id	res

We	also	need	to	provide	a	YesodAuthPersist	instance	to	work	with	Persistent:

instance	YesodAuthPersist	Blog

The	one	important	detail	in	the	homepage	handler	is	our	usage	of	setTitleI,	which	allows
us	to	use	i18n	messages	for	the	title.	We	also	use	this	message	with	a	_{Msg…}
interpolation	in	Hamlet:

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitleI	MsgHomepageTitle

				[whamlet|

<p>_{MsgWelcomeHomepage}

<p>

			_{MsgSeeArchive}

|]

Next,	we	define	a	form	for	adding	new	entries.	We	want	the	user	to	provide	the	title	and
content,	and	then	we	fill	in	the	post	date	automatically	via	getCurrentTime.

Note	that	slightly	strange	lift	(liftIO	getCurrentTime)	manner	of	running	an	IO
action.	The	reason	is	that	applicative	forms	are	not	monads,	and	therefore	cannot	be
instances	of	MonadIO.	Instead,	we	use	lift	to	run	the	action	in	the	underlying	Handler
monad,	and	liftIO	to	convert	the	IO	action	into	a	Handler	action:

entryForm	::	Form	Entry

entryForm	=	renderDivs	$	Entry

				<$>	areq	textField	(fieldSettingsLabel	MsgNewEntryTitle)	Nothing

				<*>	lift	(liftIO	getCurrentTime)

				<*>	areq	nicHtmlField	(fieldSettingsLabel	MsgNewEntryContent)	Nothing

Here	we	get	the	list	of	all	blog	entries,	and	present	an	admin	with	a	form	to	create	a	new

entry:

getBlogR	::	Handler	Html

getBlogR	=	do

				muser	<-	maybeAuth

				entries	<-	runDB	$	selectList	[]	[Desc	EntryPosted]

				(entryWidget,	enctype)	<-	generateFormPost	entryForm

				defaultLayout	$	do

								setTitleI	MsgBlogArchiveTitle

								[whamlet|

$if	null	entries

				<p>_{MsgNoEntries}

$else

				

								$forall	Entity	entryId	entry	<-	entries

												

																#{entryTitle	entry}

We	have	three	possibilities:	the	user	is	logged	in	as	an	admin,	the	user	is	logged	in	and	is
not	an	admin,	and	the	user	is	not	logged	in.	In	the	first	case,	we	should	display	the	entry
form.	In	the	second,	we’ll	do	nothing.	In	the	third,	we’ll	provide	a	login	link:

$maybe	Entity	_	user	<-	muser

				$if	isAdmin	user

								<form	method=post	enctype=#{enctype}>

												^{entryWidget}

												<div>

																<input	type=submit	value=_{MsgNewEntry}>

$nothing

				<p>

								_{MsgLoginToPost}

|]

Next,	we	need	to	process	an	incoming	entry	addition.	We	don’t	do	any	permissions
checking,	because	isAuthorized	handles	it	for	us.	If	the	form	submission	was	valid,	we
add	the	entry	to	the	database	and	redirect	to	the	new	entry.	Otherwise,	we	ask	the	user	to
try	again:

postBlogR	::	Handler	Html

postBlogR	=	do

				((res,	entryWidget),	enctype)	<-	runFormPost	entryForm

				case	res	of

								FormSuccess	entry	->	do

												entryId	<-	runDB	$	insert	entry

												setMessageI	$	MsgEntryCreated	$	entryTitle	entry

												redirect	$	EntryR	entryId

								_	->	defaultLayout	$	do

												setTitleI	MsgPleaseCorrectEntry

												[whamlet|

<form	method=post	enctype=#{enctype}>

				^{entryWidget}

				<div>

								<input	type=submit	value=_{MsgNewEntry}>

|]

Next	up	is	a	form	for	comments,	very	similar	to	our	entryForm.	It	takes	the	EntryId	of	the
entry	the	comment	is	attached	to.	By	using	pure,	we	embed	this	value	in	the	resulting
Comment	output,	without	having	it	appear	in	the	generated	HTML:

commentForm	::	EntryId	->	Form	Comment

commentForm	entryId	=	renderDivs	$	Comment

				<$>	pure	entryId

				<*>	lift	(liftIO	getCurrentTime)

				<*>	lift	requireAuthId

				<*>	areq	textField	(fieldSettingsLabel	MsgCommentName)	Nothing

				<*>	areq	textareaField	(fieldSettingsLabel	MsgCommentText)	Nothing

We	show	an	individual	entry,	comments,	and	an	add	comment	form	if	the	user	is	logged
in:

getEntryR	::	EntryId	->	Handler	Html

getEntryR	entryId	=	do

				(entry,	comments)	<-	runDB	$	do

								entry	<-	get404	entryId

								comments	<-	selectList	[CommentEntry	==.	entryId]	[Asc	CommentPosted]

								return	(entry,	map	entityVal	comments)

				muser	<-	maybeAuth

				(commentWidget,	enctype)	<-

								generateFormPost	(commentForm	entryId)

				defaultLayout	$	do

								setTitleI	$	MsgEntryTitle	$	entryTitle	entry

								[whamlet|

<h1>#{entryTitle	entry}

<article>#{entryContent	entry}

				<section	.comments>

								<h1>_{MsgCommentsHeading}

								$if	null	comments

												<p>_{MsgNoComments}

								$else

												$forall	Comment	_entry	posted	_user	name	text	<-	comments

																<div	.comment>

																				#{name}

																				#{show	posted}

																				<div	.content>#{text}

								<section>

												<h1>_{MsgAddCommentHeading}

												$maybe	_	<-	muser

																<form	method=post	enctype=#{enctype}>

																				^{commentWidget}

																				<div>

																								<input	type=submit	value=_{MsgAddCommentButton}>

												$nothing

																<p>

																				_{MsgLoginToComment}

|]

Here’s	how	we	receive	an	incoming	comment	submission:

postEntryR	::	EntryId	->	Handler	Html

postEntryR	entryId	=	do

				((res,	commentWidget),	enctype)	<-

								runFormPost	(commentForm	entryId)

				case	res	of

								FormSuccess	comment	->	do

												_	<-	runDB	$	insert	comment

												setMessageI	MsgCommentAdded

												redirect	$	EntryR	entryId

								_	->	defaultLayout	$	do

												setTitleI	MsgPleaseCorrectComment

												[whamlet|

<form	method=post	enctype=#{enctype}>

				^{commentWidget}

				<div>

								<input	type=submit	value=_{MsgAddCommentButton}>

|]

Finally,	our	main	function:

main	::	IO	()

main	=	do

				pool	<-	runStdoutLoggingT	$	createSqlitePool	"blog.db3"	10

				--	create	a	new	pool

				--	perform	any	necessary	migration

				runSqlPersistMPool	(runMigration	migrateAll)	pool

				manager	<-	newManager	tlsManagerSettings	--	create	a	new	HTTP	manager

				warp	3000	$	Blog	pool	manager	--	start	our	server

Chapter	23.	Wiki:	Markdown,	Chat
Subsite,	Event	Source

This	chapter	ties	together	a	few	different	ideas.	We’ll	start	with	a	chat	subsite,	which
allows	us	to	embed	a	chat	widget	on	any	page.	We’ll	use	the	HTML5	event	source	API	to
handle	sending	events	from	the	server	to	the	client.	You	can	view	the	entire	project	on	FP
Haskell	Center.

Subsite:	Data
In	order	to	define	a	subsite,	we	first	need	to	create	a	foundation	type	for	the	subsite,	the
same	as	we	would	do	for	a	normal	Yesod	application.	In	our	case,	we	want	to	keep	a
channel	of	all	the	events	to	be	sent	to	the	individual	participants	of	a	chat.	This	ends	up
looking	like:

--	@Chat/Data.hs

{-#	LANGUAGE	FlexibleContexts						#-}

{-#	LANGUAGE	FlexibleInstances					#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	RankNTypes												#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

module	Chat.Data	where

import											Blaze.ByteString.Builder.Char.Utf8		(fromText)

import											Control.Concurrent.Chan

import											Data.Monoid																									((<>))

import											Data.Text																											(Text)

import											Network.Wai.EventSource

import											Network.Wai.EventSource.EventStream

import											Yesod

--	|	Our	subsite	foundation.	We	keep	a	channel	of	events	that	all	connections

--	will	share.

data	Chat	=	Chat	(Chan	ServerEvent)

We	also	need	to	define	our	subsite	routes	in	the	same	module.	We	need	to	have	two
commands	—	one	to	send	a	new	message	to	all	users,	and	another	to	receive	the	stream	of
messages:

--	@Chat/Data.hs

mkYesodSubData	"Chat"	[parseRoutes|

/send	SendR	POST

/recv	ReceiveR	GET

|]

Subsite:	Handlers
Now	that	we’ve	defined	our	foundation	and	routes,	we	need	to	create	a	separate	module
for	providing	the	subsite	dispatch	functionality.	We’ll	call	this	module	Chat,	and	it’s	where
we’ll	start	to	see	how	a	subsite	functions.

A	subsite	always	sits	as	a	layer	on	top	of	some	master	site,	which	will	be	provided	by	the
user.	In	many	cases,	a	subsite	will	require	specific	functionality	to	be	present	in	the	master
site.	In	the	case	of	our	chat	subsite,	we	want	user	authentication	to	be	provided	by	the
master	site.	The	subsite	needs	to	be	able	to	query	whether	the	current	user	is	logged	into
the	site,	and	to	get	the	user’s	name.

The	way	we	represent	this	concept	is	by	defining	a	typeclass	that	encapsulates	the
necessary	functionality.	Let’s	have	a	look	at	our	YesodChat	typeclass:

--	@Chat/Data.hs

class	(Yesod	master,	RenderMessage	master	FormMessage)

								=>	YesodChat	master	where

				getUserName	::	HandlerT	master	IO	Text

				isLoggedIn	::	HandlerT	master	IO	Bool

Any	master	site	that	wants	to	use	the	chat	subsite	will	need	to	provide	a	YesodChat
instance.	(We’ll	see	in	a	bit	how	this	requirement	is	enforced.)

There	are	a	few	interesting	things	to	note:

We	can	put	further	constraints	on	the	master	site,	such	as	providing	a	Yesod	instance
and	allowing	rendering	of	form	messages.	The	former	allows	us	to	use
defaultLayout,	while	the	latter	allows	us	to	use	standard	form	widgets.

Previously	in	the	book,	we’ve	used	the	Handler	monad	quite	a	bit.	Remember	that
Handler	is	just	an	application-specific	type	synonym	for	HandlerT.	This	code	is
intended	to	work	with	many	different	applications,	so	we	use	the	full	HandlerT	form
of	the	transformer.

Speaking	of	the	Handler	type	synonym,	we’re	going	to	want	to	have	something	similar	for
our	subsite.	The	question	is:	what	does	this	monad	look	like?	In	a	subsite	situation,	we	end
up	with	two	layers	of	HandlerT	transformers:	one	for	the	subsite,	and	one	for	the	master
site.	We	want	to	have	a	synonym	that	works	for	any	master	site	that	is	an	instance	of
YesodChat,	so	we	end	up	with:

--	@Chat/Data.hs

type	ChatHandler	a	=

				forall	master.	YesodChat	master	=>

				HandlerT	Chat	(HandlerT	master	IO)	a

Now	that	we	have	our	machinery	out	of	the	way,	it’s	time	to	write	our	subsite	handler
functions.	We	had	two	routes:	one	for	sending	messages,	and	one	for	receiving	messages.

Let’s	start	with	sending.	We	need	to:

1.	 Get	the	username	for	the	person	sending	the	message.

2.	 Parse	the	message	from	the	incoming	parameters.	(Note	that	we’re	going	to	use	GET
parameters	for	simplicity	of	the	client-side	Ajax	code.)

3.	 Write	the	message	to	the	Chan.

The	trickiest	bit	of	all	this	code	is	knowing	when	to	use	lift.	Let’s	look	at	the
implementation,	and	then	discuss	those	lift	usages:

--	@Chat/Data.hs

postSendR	::	ChatHandler	()

postSendR	=	do

				from	<-	lift	getUserName

				body	<-	lift	$	runInputGet	$	ireq	textField	"message"

				Chat	chan	<-	getYesod

				liftIO	$	writeChan	chan	$	ServerEvent	Nothing	Nothing	$	return	$

								fromText	from	<>	fromText	":	"	<>	fromText	body

getUserName	is	the	function	we	defined	in	our	YesodChat	typeclass	earlier.	If	we	look	at
that	type	signature,	we	see	that	it	lives	in	the	master	site’s	Handler	monad.	Therefore,	we
need	to	lift	that	call	out	of	the	subsite.

The	call	to	runInputGet	is	a	little	more	subtle.	Theoretically,	we	could	run	this	in	either
the	subsite	or	the	master	site.	However,	we	use	lift	here	as	well,	for	one	specific	reason:
message	translations.	By	using	the	master	site,	we	can	take	advantage	of	whatever
RenderMessage	instance	the	master	site	defines.	This	also	explains	why	we	have	a
RenderMessage	constraint	on	the	YesodChat	typeclass.

The	next	call	to	getYesod	is	not	lifted.	The	reasoning	here	is	simple:	we	want	to	get	the
subsite’s	foundation	type	in	order	to	access	the	message	channel.	If	we	instead	lifted	that
call,	we’d	get	the	master	site’s	foundation	type	instead,	which	is	not	what	we	want	in	this
case.

The	final	line	puts	the	new	message	into	the	channel.	Because	this	is	an	IO	action,	we	use
liftIO.	ServerEvent	is	part	of	the	wai-eventsource	package	and	is	the	means	by	which
we’re	providing	server-sent	events	in	this	example.

The	receiving	side	is	similarly	simple:

--	@Chat/Data.hs

getReceiveR	::	ChatHandler	()

getReceiveR	=	do

				Chat	chan0	<-	getYesod

				chan	<-	liftIO	$	dupChan	chan0

				sendWaiApplication	$	eventSourceAppChan	chan

We	use	dupChan	so	that	each	new	connection	receives	its	own	copy	of	newly	generated
messages.	This	is	a	standard	method	in	concurrent	Haskell	of	creating	broadcast	channels.

The	last	line	in	our	function	exposes	the	underlying	wai-eventsource	application	as	a
Yesod	handler,	using	the	sendWaiApplication	function	to	promote	a	WAI	application	to	a
Yesod	handler.

Now	that	we’ve	defined	our	handler	functions,	we	can	set	up	our	dispatch.	In	a	normal
application,	dispatching	is	handled	by	calling	mkYesod,	which	creates	the	appropriate
YesodDispatch	instance.	In	subsites,	things	are	a	little	bit	more	complicated,	because
you’ll	often	want	to	place	constraints	on	the	master	site.	The	formula	we	use	is	the
following:

--	@Chat.hs

{-#	LANGUAGE	FlexibleContexts						#-}

{-#	LANGUAGE	FlexibleInstances					#-}

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	RankNTypes												#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

module	Chat	where

import											Chat.Data

import											Yesod

instance	YesodChat	master	=>	YesodSubDispatch	Chat	(HandlerT	master	IO)	where

				yesodSubDispatch	=	$(mkYesodSubDispatch	resourcesChat)

We’re	stating	that	our	chat	subsite	can	live	on	top	of	any	master	site	that	is	an	instance	of
YesodChat.	We	then	use	the	mkYesodSubDispatch	Template	Haskell	function	to	generate
all	of	our	dispatching	logic.	This	is	a	bit	more	difficult	to	write	than	mkYesod,	but	it
provides	the	necessary	flexibility	and	is	mostly	identical	for	any	subsite	you’ll	write.

Subsite:	Widget
We	now	have	a	fully	working	subsite.	The	final	component	we	want	as	part	of	our	chat
library	is	a	widget	to	be	embedded	inside	a	page	that	will	provide	chat	functionality.	By
creating	this	as	a	widget,	we	can	include	all	of	our	HTML,	CSS,	and	Javascript	as	a
reusable	component.

Our	widget	will	need	to	take	in	one	argument:	a	function	to	convert	a	chat	subsite	URL
into	a	master	site	URL.	The	reasoning	here	is	that	an	application	developer	could	place	the
chat	subsite	anywhere	in	the	URL	structure,	and	this	widget	needs	to	be	able	to	generate
Javascript	that	will	point	at	the	correct	URLs.	Let’s	start	off	our	widget:

--	@Chat.hs

chatWidget	::	YesodChat	master

											=>	(Route	Chat	->	Route	master)

											->	WidgetT	master	IO	()

chatWidget	toMaster	=	do

Next,	we’re	going	to	generate	some	identifiers	to	be	used	by	our	widget.	It’s	always	good
practice	to	let	Yesod	generate	unique	identifiers	for	you	instead	of	creating	them	manually,
to	avoid	name	collisions:

--	@Chat.hs

				chat	<-	newIdent			--	the	containing	div

				output	<-	newIdent	--	the	box	containing	the	messages

				input	<-	newIdent		--	input	field	from	the	user

And	next,	we	need	to	check	if	the	user	is	logged	in,	using	the	isLoggedIn	function	in	our
YesodChat	typeclass.	We’re	in	a	Widget	and	that	function	lives	in	the	Handler	monad,	so
we	need	to	use	handlerToWidget:

--	@Chat.hs

				ili	<-	handlerToWidget	isLoggedIn		--	check	if	we're	already	logged	in

If	the	user	is	logged	in,	we	want	to	display	the	chat	box,	style	it	with	some	CSS,	and	then
make	it	interactive	using	some	Javascript.	This	is	mostly	client-side	code	wrapped	in	a
Widget:

--	@Chat.hs

				if	ili

								then	do

												--	Logged	in:	show	the	widget

												[whamlet|

																<div	##{chat}>

																				<h2>Chat

																				<div	##{output}>

																				<input	##{input}	type=text	placeholder="Enter	Message">

												|]

												--	Just	some	CSS

												toWidget	[lucius|

																##{chat}	{

																				position:	absolute;

																				top:	2em;

																				right:	2em;

																}

																##{output}	{

																				width:	200px;

																				height:	300px;

																				border:	1px	solid	#999;

																				overflow:	auto;

																}

												|]

												--	And	now	that	Javascript

												toWidgetBody	[julius|

																//	Set	up	the	receiving	end

																var	output	=	document.getElementById(#{toJSON	output});

																var	src	=	new	EventSource("@{toMaster	ReceiveR}");

																src.onmessage	=	function(msg)	{

																				//	This	function	will	be	called	for	each	new	message.

																				var	p	=	document.createElement("p");

																				p.appendChild(document.createTextNode(msg.data));

																				output.appendChild(p);

																				//	And	now	scroll	down	within	the	output	div

																							so	the	most	recent	message

																				//	is	displayed.

																				output.scrollTop	=	output.scrollHeight;

																};

																//	Set	up	the	sending	end:	send	a	message	via	Ajax

																			whenever	the	user	hits	Enter.

																var	input	=	document.getElementById(#{toJSON	input});

																input.onkeyup	=	function(event)	{

																				var	keycode	=	(event.keyCode	?	event.keyCode	:	event.which);

																				if	(keycode	==	'13')	{

																								var	xhr	=	new	XMLHttpRequest();

																								var	val	=	input.value;

																								input.value	=	"";

																								var	params	=	"?message="	+	encodeURI(val);

																								xhr.open("POST",	"@{toMaster	SendR}"	+	params);

																								xhr.send(null);

																				}

																}

												|]

And	finally,	if	the	user	isn’t	logged	in,	we’ll	ask	her	to	log	in	to	use	the	chat	app:

--	@Chat.hs

								else	do

												--	User	isn't	logged	in,	give	a	not-logged-in	message.

												master	<-	getYesod

												[whamlet|

																<p>

																				You	must	be	#

																				$maybe	ar	<-	authRoute	master

																								logged	in

																				$nothing

																								logged	in

																				\	to	chat.

												|]

Master	Site:	Data
Now	we	can	proceed	with	writing	our	main	application.	This	application	will	include	the
chat	subsite	and	a	wiki.	The	first	thing	we	need	to	consider	is	how	to	store	the	wiki
contents.	Normally,	we’d	want	to	put	this	in	some	kind	of	a	Persistent	database.	For
simplicity,	we’ll	just	use	an	in-memory	representation.	Each	wiki	page	is	indicated	by	a
list	of	names,	and	the	content	of	each	page	is	going	to	be	a	piece	of	Text.	So,	our	full
foundation	data	type	is:

--	@ChatMain.hs

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

{-#	LANGUAGE	ViewPatterns										#-}

module	ChatMain	where

import											Chat

import											Chat.Data

import											Control.Concurrent.Chan	(newChan)

import											Data.IORef

import											Data.Map																(Map)

import	qualified	Data.Map																as	Map

import											Data.Text															(Text)

import	qualified	Data.Text.Lazy										as	TL

import											Text.Markdown

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Dummy

data	App	=	App

				{	getChat					::	Chat

				,	wikiContent	::	IORef	(Map	[Text]	Text)

				}

Next,	we	want	to	set	up	our	routes:

--	@ChatMain.hs

mkYesod	"App"	[parseRoutes|

/												HomeR	GET						--	the	homepage

/wiki/*Texts	WikiR	GET	POST	--	note	the	multipiece	for	the	wiki	hierarchy

/chat								ChatR	Chat	getChat				--	the	chat	subsite

/auth								AuthR	Auth	getAuth				--	the	auth	subsite

|]

Master	Site:	Instances
We	need	to	make	two	modifications	to	the	default	Yesod	instance.	First,	we	want	to
provide	an	implementation	of	authRoute,	so	that	our	chat	subsite	widget	can	provide	a
proper	link	to	a	login	page.	Second,	we’ll	provide	an	override	to	the	defaultLayout.
Besides	providing	login/logout	links,	this	function	will	add	in	the	chat	widget	on	every
page:

--	@ChatMain.hs

instance	Yesod	App	where

				authRoute	_	=	Just	$	AuthR	LoginR	--	get	a	working	login	link

				--	Our	custom	defaultLayout	will	add	the	chat	widget	to	every	page.

				--	We'll	also	add	login	and	logout	links	to	the	top.

				defaultLayout	widget	=	do

								pc	<-	widgetToPageContent	$	do

												widget

												chatWidget	ChatR

								mmsg	<-	getMessage

								withUrlRenderer

												[hamlet|

																$doctype	5

																<html>

																				<head>

																								<title>#{pageTitle	pc}

																								^{pageHead	pc}

																				<body>

																								$maybe	msg	<-	mmsg

																												<div	.message>#{msg}

																								<nav>

																												Login

																												\	|	#

																												Logout

																								^{pageBody	pc}

												|]

Because	we’re	using	the	chat	subsite,	we	have	to	provide	an	instance	of	YesodChat:

--	@ChatMain.hs

instance	YesodChat	App	where

				getUserName	=	do

								muid	<-	maybeAuthId

								case	muid	of

												Nothing	->	do

																setMessage	"Not	logged	in"

																redirect	$	AuthR	LoginR

												Just	uid	->	return	uid

				isLoggedIn	=	do

								ma	<-	maybeAuthId

								return	$	maybe	False	(const	True)	ma

Our	YesodAuth	and	RenderMessage	instances,	as	well	as	the	homepage	handler,	are	rather
bland:

--	@ChatMain.hs

--	Fairly	standard	YesodAuth	instance.	We'll	use	the	dummy	plug-in	so	that	you

--	can	create	any	name	you	want,	and	store	the	login	name	as	the	AuthId.

instance	YesodAuth	App	where

				type	AuthId	App	=	Text

				authPlugins	_	=	[authDummy]

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				getAuthId	=	return	.	Just	.	credsIdent

				authHttpManager	=	error	"authHttpManager"	--	not	used	by	authDummy

				maybeAuthId	=	lookupSession	"_ID"

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

--	Nothing	special	here,	just	giving	a	link	to	the	root	of	the	wiki.

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout

				[whamlet|

								<p>Welcome	to	the	Wiki!

								<p>

												Wiki	root

				|]

		where

				wikiRoot	=	WikiR	[]

Master	Site:	Wiki	Handlers
Now	it’s	time	to	write	our	wiki	handlers:	a	GET	for	displaying	a	page,	and	a	POST	for
updating	a	page.	We’ll	also	define	a	wikiForm	function	to	be	used	on	both	handlers:

--	@ChatMain.hs

--	A	form	for	getting	wiki	content

wikiForm	::	Maybe	Textarea	->	Html	->	MForm	Handler	(FormResult	Textarea,	Widget)

wikiForm	mtext	=	renderDivs	$	areq	textareaField	"Page	body"	mtext

--	Show	a	wiki	page	and	an	edit	form

getWikiR	::	[Text]	->	Handler	Html

getWikiR	page	=	do

				--	Get	the	reference	to	the	contents	map

				icontent	<-	fmap	wikiContent	getYesod

				--	And	read	the	map	from	inside	the	reference

				content	<-	liftIO	$	readIORef	icontent

				--	Look	up	the	contents	of	the	current	page,	if	available

				let	mtext	=	Map.lookup	page	content

				--	Generate	a	form	with	the	current	contents	as	the	default	value.

				--	Note	that	we	use	the	Textarea	wrapper	to	get	a	<textarea>.

				(form,	_)	<-	generateFormPost	$	wikiForm	$	fmap	Textarea	mtext

				defaultLayout	$	do

								case	mtext	of

												--	We're	treating	the	input	as	markdown.	The	markdown	package

												--	automatically	handles	XSS	protection	for	us.

												Just	text	->	toWidget	$	markdown	def	$	TL.fromStrict	text

												Nothing	->	[whamlet|<p>Page	does	not	yet	exist|]

								[whamlet|

												<h2>Edit	page

												<form	method=post>

																^{form}

																<div>

																				<input	type=submit>

								|]

--	Get	a	submitted	wiki	page	and	update	the	contents.

postWikiR	::	[Text]	->	Handler	Html

postWikiR	page	=	do

				icontent	<-	fmap	wikiContent	getYesod

				content	<-	liftIO	$	readIORef	icontent

				let	mtext	=	Map.lookup	page	content

				((res,	form),	_)	<-	runFormPost	$	wikiForm	$	fmap	Textarea	mtext

				case	res	of

								FormSuccess	(Textarea	t)	->	do

												liftIO	$	atomicModifyIORef	icontent	$

																\m	->	(Map.insert	page	t	m,	())

												setMessage	"Page	updated"

												redirect	$	WikiR	page

								_	->	defaultLayout

																[whamlet|

																				<form	method=post>

																								^{form}

																								<div>

																												<input	type=submit>

																|]

Master	Site:	Running
Finally,	we’re	ready	to	run	our	application.	Unlike	many	of	the	previous	examples	in	this
book,	we	need	to	perform	some	real	initialization	in	the	main	function.	The	chat	subsite
requires	an	empty	Chan	to	be	created,	and	we	need	to	create	a	mutable	variable	to	hold	the
wiki	contents.	Once	we	have	those	values,	we	can	create	an	App	value	and	pass	it	to	the
warp	function:

--	@ChatMain.hs

main	::	IO	()

main	=	do

				--	Create	our	server	event	channel

				chan	<-	newChan

				--	Initially	have	a	blank	database	of	wiki	pages

				icontent	<-	newIORef	Map.empty

				--	Run	our	app

				warpEnv	App

								{	getChat	=	Chat	chan

								,	wikiContent	=	icontent

								}

Summary
This	chapter	demonstrated	the	creation	of	a	nontrivial	subsite.	Some	important	points	to
notice	include	the	usage	of	typeclasses	to	express	constraints	on	the	master	site,	how	data
initialization	was	performed	in	the	main	function,	and	how	lifting	allowed	us	to	operate
in	either	the	subsite	or	master	site	context.

If	you’re	looking	for	a	way	to	test	out	your	subsite	skills,	I’d	recommend	modifying	this
example	so	that	the	wiki	code	also	lives	in	its	own	subsite.

Chapter	24.	JSON	Web	Service

Let’s	create	a	very	simple	web	service:	it	takes	a	JSON	request	and	returns	a	JSON
response.	We’re	going	to	write	the	server	in	WAI/Warp	and	the	client	in	http-conduit.
We’ll	be	using	aeson	for	JSON	parsing	and	rendering.	We	could	also	write	the	server	in
Yesod	itself,	but	for	such	a	simple	example,	the	extra	features	of	Yesod	don’t	add	much.

Server
WAI	uses	the	conduit	package	to	handle	streaming	request	bodies	and	efficiently
generates	responses	using	blaze-builder.	aeson	uses	attoparsec	for	parsing;	by	using
attoparsec-conduit	we	get	easy	interoperability	with	WAI.	This	plays	out	as:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Control.Exception								(SomeException)

import											Control.Exception.Lifted	(handle)

import											Control.Monad.IO.Class			(liftIO)

import											Data.Aeson															(Value,	encode,	object,	(.=))

import											Data.Aeson.Parser								(json)

import											Data.ByteString										(ByteString)

import											Data.Conduit													(($$))

import											Data.Conduit.Attoparsec		(sinkParser)

import											Network.HTTP.Types							(status200,	status400)

import											Network.Wai														(Application,	Response,	responseLBS)

import											Network.Wai.Conduit						(sourceRequestBody)

import											Network.Wai.Handler.Warp	(run)

main	::	IO	()

main	=	run	3000	app

app	::	Application

app	req	sendResponse	=	handle	(sendResponse	.	invalidJson)	$	do

				value	<-	sourceRequestBody	req	$$	sinkParser	json

				newValue	<-	liftIO	$	modValue	value

				sendResponse	$	responseLBS

								status200

								[("Content-Type",	"application/json")]

								$	encode	newValue

invalidJson	::	SomeException	->	Response

invalidJson	ex	=	responseLBS

				status400

				[("Content-Type",	"application/json")]

				$	encode	$	object

								[("message"	.=	show	ex)

]

--	Application-specific	logic	would	go	here.

modValue	::	Value	->	IO	Value

modValue	=	return

Client
http-conduit	was	written	as	a	companion	to	WAI.	It	too	uses	conduit	and	blaze-
builder	pervasively,	meaning	we	once	again	get	easy	interop	with	aeson.	A	few	extra
comments	for	those	not	familiar	with	http-conduit:

A	Manager	is	present	to	keep	track	of	open	connections,	so	that	multiple	requests	to
the	same	server	use	the	same	connection.	You	usually	want	to	use	the	withManager
function	to	create	and	clean	up	this	Manager,	as	it	is	exception-safe.

We	need	to	know	the	size	of	our	request	body,	which	can’t	be	determined	directly
from	a	Builder.	Instead,	we	convert	the	Builder	into	a	lazy	ByteString	and	take	the
size	from	there.

There	are	a	number	of	different	functions	for	initiating	a	request.	We	use	http,	which
allows	us	to	directly	access	the	data	stream.	There	are	other	higher-level	functions
(such	as	httpLbs)	that	let	you	ignore	the	issue	of	sources	and	get	the	entire	body
directly.

{-#	LANGUAGE	OverloadedStrings	#-}

import											Control.Monad.IO.Class		(liftIO)

import											Data.Aeson														(Value	(Object,	String))

import											Data.Aeson														(encode,	object,	(.=))

import											Data.Aeson.Parser							(json)

import											Data.Conduit												(($$+-))

import											Data.Conduit.Attoparsec	(sinkParser)

import											Network.HTTP.Conduit				(RequestBody	(RequestBodyLBS),

																																										Response	(..),	http,	method,	parseUrl,

																																										requestBody,	withManager)

main	::	IO	()

main	=	withManager	$	\manager	->	do

				value	<-	liftIO	makeValue

				--	We	need	to	know	the	size	of	the	request	body,	so	we	convert	to	a

				--	ByteString

				let	valueBS	=	encode	value

				req'	<-	liftIO	$	parseUrl	"http://localhost:3000/"

				let	req	=	req'	{	method	=	"POST",	requestBody	=	RequestBodyLBS	valueBS	}

				res	<-	http	req	manager

				resValue	<-	responseBody	res	$$+-	sinkParser	json

				liftIO	$	handleResponse	resValue

--	Application-specific	function	to	make	the	request	value

makeValue	::	IO	Value

makeValue	=	return	$	object

				[("foo"	.=	("bar"	::	String))

]

--	Application-specific	function	to	handle	the	response	from	the	server

handleResponse	::	Value	->	IO	()

handleResponse	=	print

Chapter	25.	Case	Study:	Sphinx-Based
Search

Sphinx	is	a	search	server,	and	it	powers	the	search	feature	on	many	sites.	The	actual	code
necessary	to	integrate	Yesod	with	Sphinx	is	relatively	short,	but	it	touches	on	a	number	of
complicated	topics	and	is	therefore	a	great	case	study	on	how	to	play	with	some	of	the
under-the-surface	details	of	Yesod.

There	are	essentially	three	different	pieces	at	play	here:

Storing	the	content	we	wish	to	search

This	is	fairly	straightforward	Persistent	code,	and	we	won’t	dwell	on	it	much	in	this
chapter.

Accessing	Sphinx	search	results	from	inside	Yesod

Thanks	to	the	Sphinx	package,	this	is	actually	very	easy.

Providing	the	document	content	to	Sphinx

This	is	where	the	interesting	stuff	happens.	We’ll	show	how	to	deal	with	streaming
content	from	a	database	to	XML,	which	then	gets	sent	directly	over	the	wire	to	the
client.

The	full	code	for	this	example	can	be	found	on	FP	Haskell	Center.

Sphinx	Setup
Unlike	in	many	of	our	other	examples,	to	start	with	here	we’ll	need	to	actually	configure
and	run	our	external	Sphinx	server.	I’m	not	going	to	go	into	all	the	details	of	Sphinx,
partly	because	it’s	not	relevant	to	our	point	here,	but	mostly	because	I’m	not	an	expert	on
Sphinx.

Sphinx	provides	three	main	command-line	utilities:	searchd	is	the	actual	search	daemon
that	receives	requests	from	the	client	(in	this	case,	our	web	app)	and	returns	the	search
results;	indexer	parses	the	set	of	documents	and	creates	the	search	index;	and	search	is	a
debugging	utility	that	will	run	simple	queries	against	Sphinx.

There	are	two	important	settings:	the	source	and	the	index.	The	source	tells	Sphinx	where
to	read	document	information	from.	It	has	direct	support	for	MySQL	and	PostgreSQL,	as
well	as	a	more	general	XML	format	known	as	xmlpipe2.	We’re	going	to	use	the	last	one.
This	not	only	will	give	us	more	flexibility	with	choosing	Persistent	backends,	but	will	also
demonstrate	some	more	powerful	Yesod	concepts.

The	second	setting	is	the	index.	Sphinx	can	handle	multiple	indices	simultaneously,	which
allows	it	to	provide	search	functionality	for	multiple	services	at	once.	Each	index	will
have	a	source	it	pulls	from.

In	our	case,	we’re	going	to	provide	a	URL	from	our	application	(/search/xmlpipe)	that
provides	the	XML	file	required	by	Sphinx,	and	then	pipe	that	through	to	the	indexer.	So,
we’ll	add	the	following	to	our	Sphinx	config	file:

source	searcher_src

{

	 type	=	xmlpipe2

	 xmlpipe_command	=	curl	http://localhost:3000/search/xmlpipe

}

index	searcher

{

	 source	=	searcher_src

	 path	=	/var/data/searcher

	 docinfo	=	extern

	 charset_type	=	utf-8

}

searchd

{

	 listen	 	 	 =	9312

	 pid_file	 	 =	/var/run/sphinxsearch/searchd.pid

}

In	order	to	build	your	search	index,	you	would	run	indexer	searcher.	Obviously,	this
won’t	work	until	you	have	your	web	app	running.	For	a	production	site,	it	would	make
sense	to	run	this	command	via	a	cron	job	so	the	index	is	regularly	updated.

Basic	Yesod	Setup
Let’s	get	our	basic	Yesod	setup	going.	We’re	going	to	have	a	single	table	in	the	database
for	holding	documents,	which	each	consist	of	a	title	and	content.	We’ll	store	this	in	a
SQLite	database	and	provide	routes	for	searching,	adding	documents,	viewing	documents,
and	providing	the	xmlpipe	file	to	Sphinx:

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Doc

				title	Text

				content	Textarea

|]

data	Searcher	=	Searcher

				{	connPool	::	ConnectionPool

				}

mkYesod	"Searcher"	[parseRoutes|

/	HomeR	GET

/doc/#DocId	DocR	GET

/add-doc	AddDocR	POST

/search	SearchR	GET

/search/xmlpipe	XmlpipeR	GET

|]

instance	Yesod	Searcher

instance	YesodPersist	Searcher	where

				type	YesodPersistBackend	Searcher	=	SqlBackend

				runDB	action	=	do

								Searcher	pool	<-	getYesod

								runSqlPool	action	pool

instance	YesodPersistRunner	Searcher	where	--	see	below

				getDBRunner	=	defaultGetDBRunner	connPool

instance	RenderMessage	Searcher	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

Hopefully	all	of	this	looks	pretty	familiar	by	now.	The	one	new	thing	we’ve	defined	here
is	an	instance	of	YesodPersistRunner.	This	is	a	typeclass	necessary	for	creating
streaming	database	responses.	The	default	implementation	(defaultGetDBRunner)	is
almost	always	appropriate.

Next,	we’ll	define	some	forms	—	one	for	creating	documents,	and	one	for	searching:

addDocForm	::	Html	->	MForm	Handler	(FormResult	Doc,	Widget)

addDocForm	=	renderTable	$	Doc

				<$>	areq	textField	"Title"	Nothing

				<*>	areq	textareaField	"Contents"	Nothing

searchForm	::	Html	->	MForm	Handler	(FormResult	Text,	Widget)

searchForm	=	renderDivs	$	areq	(searchField	True)	"Query"	Nothing

The	True	parameter	to	searchField	makes	the	field	autofocus	on	page	load.	Finally,	we
have	some	standard	handlers	for	the	homepage	(shows	the	add	document	form	and	the
search	form),	the	document	display,	and	adding	a	document:

getHomeR	::	Handler	Html

getHomeR	=	do

				docCount	<-	runDB	$	count	([]	::	[Filter	Doc])

				((_,	docWidget),	_)	<-	runFormPost	addDocForm

				((_,	searchWidget),	_)	<-	runFormGet	searchForm

				let	docs	=	if	docCount	==	1

																then	"There	is	currently	1	document."

																else	"There	are	currently	"	++	show	docCount	++	"	documents."

				defaultLayout

								[whamlet|

												<p>Welcome	to	the	search	application.	#{docs}

												<form	method=post	action=@{AddDocR}>

																<table>

																				^{docWidget}

																				<tr>

																								<td	colspan=3>

																												<input	type=submit	value="Add	document">

												<form	method=get	action=@{SearchR}>

																^{searchWidget}

																<input	type=submit	value=Search>

								|]

postAddDocR	::	Handler	Html

postAddDocR	=	do

				((res,	docWidget),	_)	<-	runFormPost	addDocForm

				case	res	of

								FormSuccess	doc	->	do

												docid	<-	runDB	$	insert	doc

												setMessage	"Document	added"

												redirect	$	DocR	docid

								_	->	defaultLayout

												[whamlet|

																<form	method=post	action=@{AddDocR}>

																				<table>

																								^{docWidget}

																								<tr>

																												<td	colspan=3>

																																<input	type=submit	value="Add	document">

												|]

getDocR	::	DocId	->	Handler	Html

getDocR	docid	=	do

				doc	<-	runDB	$	get404	docid

				defaultLayout

								[whamlet|

												<h1>#{docTitle	doc}

												<div	.content>#{docContent	doc}

								|]

Searching
Now	that	we’ve	got	the	boring	stuff	out	of	the	way,	let’s	jump	into	the	actual	searching.
We’re	going	to	need	three	pieces	of	information	for	displaying	a	result:	the	ID	of	the
document	it	comes	from,	the	title	of	that	document,	and	the	excerpts.	Excerpts	are	the
highlighted	portions	of	the	document	that	contain	the	search	term	(see	Figure	25-1).

Figure	25-1.	Search	result

So,	let’s	start	off	by	defining	a	Result	data	type:

data	Result	=	Result

				{	resultId						::	DocId

				,	resultTitle			::	Text

				,	resultExcerpt	::	Html

				}

Next,	we’ll	look	at	the	search	handler:

getSearchR	::	Handler	Html

getSearchR	=	do

				((formRes,	searchWidget),	_)	<-	runFormGet	searchForm

				searchResults	<-

								case	formRes	of

												FormSuccess	qstring	->	getResults	qstring

												_	->	return	[]

				defaultLayout	$	do

								toWidget

												[lucius|

																.excerpt	{

																				color:	green;	font-style:	italic

																}

																.match	{

																				background-color:	yellow;

																}

												|]

								[whamlet|

												<form	method=get	action=@{SearchR}>

																^{searchWidget}

																<input	type=submit	value=Search>

												$if	not	$	null	searchResults

																<h1>Results

																$forall	result	<-	searchResults

																				<div	.result>

																								#{resultTitle	result}

																								<div	.excerpt>#{resultExcerpt	result}

								|]

Nothing	magical	here;	we’re	just	relying	on	the	searchForm	defined	earlier	and	the
getResults	function,	which	hasn’t	been	defined	yet.	This	function	just	takes	a	search
string	and	returns	a	list	of	results.	This	is	where	we	first	interact	with	the	Sphinx	API.
We’ll	be	using	two	functions:	query	will	return	a	list	of	matches,	and	buildExcerpts	will
return	the	highlighted	excerpts.	Let’s	first	look	at	getResults:

getResults	::	Text	->	Handler	[Result]

getResults	qstring	=	do

				sphinxRes'	<-	liftIO	$	S.query	config	"searcher"	qstring

				case	sphinxRes'	of

								ST.Ok	sphinxRes	->	do

												let	docids	=	map	(toSqlKey	.	ST.documentId)	$	ST.matches	sphinxRes

												fmap	catMaybes	$	runDB	$	forM	docids	$	\docid	->	do

																mdoc	<-	get	docid

																case	mdoc	of

																				Nothing	->	return	Nothing

																				Just	doc	->	liftIO	$	Just	<$>	getResult	docid	doc	qstring

								_	->	error	$	show	sphinxRes'

		where

				config	=	S.defaultConfig

								{	S.port	=	9312

								,	S.mode	=	ST.Any

								}

query	takes	three	parameters:	the	configuration	options,	the	index	to	search	against
(searcher	in	this	case),	and	the	search	string.	It	returns	a	list	of	document	IDs	that	contain
the	search	string.	The	tricky	bit	here	is	that	those	documents	are	returned	as	Int64	values,
whereas	we	need	DocIds.	Fortunately,	for	the	SQL	Persistent	backends,	we	can	just	use	the
toSqlKey	function	to	perform	the	conversion.

NOTE
If	you’re	dealing	with	a	backend	that	has	nonnumeric	IDs,	like	MongoDB,	you’ll	need	to	work	out
something	a	bit	cleverer	than	this.

We	then	loop	over	the	resulting	IDs	to	get	a	[Maybe	Result]	value,	and	use	catMaybes	to
turn	it	into	a	[Result].	In	the	where	clause,	we	define	our	local	settings,	which	override
the	default	port	and	set	up	the	search	to	work	when	any	term	matches	the	document.

Let’s	finally	look	at	the	getResult	function:

getResult	::	DocId	->	Doc	->	Text	->	IO	Result

getResult	docid	doc	qstring	=	do

				excerpt'	<-	S.buildExcerpts

								excerptConfig

								[escape	$	docContent	doc]

								"searcher"

								qstring

				let	excerpt	=

												case	excerpt'	of

																ST.Ok	texts	->	preEscapedToHtml	$	mconcat	texts

																_	->	""

				return	Result

								{	resultId	=	docid

								,	resultTitle	=	docTitle	doc

								,	resultExcerpt	=	excerpt

								}

		where

				excerptConfig	=	E.altConfig	{	E.port	=	9312	}

escape	::	Textarea	->	Text

escape	=

				T.concatMap	escapeChar	.	unTextarea

		where

				escapeChar	'<'	=	"<"

				escapeChar	'>'	=	">"

				escapeChar	'&'	=	"&"

				escapeChar	c			=	T.singleton	c

buildExcerpts	takes	four	parameters:	the	configuration	options,	the	textual	contents	of
the	document,	the	search	index,	and	the	search	term.	The	interesting	bit	is	that	we	entity-
escape	the	text	content.	Sphinx	won’t	automatically	escape	these	for	us,	so	we	must	do	it
explicitly.

Similarly,	the	result	from	Sphinx	is	a	list	of	Texts.	But	of	course,	we’d	rather	have	HTML,
so	we	concat	that	list	into	a	single	Text	and	use	preEscapedToHtml	to	make	sure	that	the
tags	inserted	for	matches	are	not	escaped.	Here’s	a	sample	of	this	HTML:

…	Departments.		The	President	shall	have	Power

to	fill	up	all	Vacancies

…		people.	Amendment	11	The	Judicial	power

of	the	United	States	shall

…	jurisdiction.	2.	Congress	shall	have	power

to	enforce	this	article	by

…	5.	The	Congress	shall	have	power

to	enforce,	by	appropriate	legislation

…

Streaming	xmlpipe	Output
I’ve	saved	the	best	for	last.	For	the	majority	of	Yesod	handlers,	the	recommended
approach	is	to	load	up	the	database	results	into	memory	and	then	produce	the	output
document	based	on	that.	It’s	simpler	to	work	with,	but	more	importantly	it’s	more	resilient
to	exceptions.	If	there’s	a	problem	loading	the	data	from	the	database,	the	user	will	get	a
proper	500	response	code.

NOTE
What	do	I	mean	by	“proper	500	response	code?”	If	you	start	streaming	a	response	to	a	client	and	encounter
an	exception	halfway	through,	there’s	no	way	to	change	the	status	code;	the	user	will	see	a	200	response
that	simply	stops	in	the	middle.	Not	only	can	this	partial	content	be	confusing,	but	it’s	an	invalid	usage	of
the	HTTP	spec.

However,	generating	the	xmlpipe	output	is	a	perfect	example	of	the	alternative.	There	are
potentially	a	huge	number	of	documents,	and	documents	could	easily	be	several	hundred
kilobytes	each.	If	we	take	a	non-streaming	approach,	this	can	lead	to	huge	memory	usage
and	slow	response	times.

So	how	exactly	do	we	create	a	streaming	response?	Yesod	provides	a	helper	function	for
this	case:	responseSourceDB.	This	function	takes	two	arguments:	a	content	type,	and	a
conduit	Source	providing	a	stream	of	blaze-builder	Builders.	Yesod	then	handles	all
of	the	issues	of	grabbing	a	database	connection	from	the	connection	pool,	starting	a
transaction,	and	streaming	the	response	to	the	user.

Now	we	know	we	want	to	create	a	stream	of	Builders	from	some	XML	content.
Fortunately,	the	xml-conduit	package	provides	this	interface	directly.	xml-conduit
provides	some	high-level	interfaces	for	dealing	with	documents	as	a	whole,	but	in	our
case,	we’re	going	to	need	to	use	the	low-level	Event	interface	to	ensure	minimal	memory
impact.	So,	the	function	we’re	interested	in	is:

renderBuilder	::	Monad	m	=>	RenderSettings	->	Conduit	Event	m	Builder

In	plain	English,	that	means	renderBuilder	takes	some	settings	(we’ll	just	use	the
defaults),	and	will	then	convert	a	stream	of	Events	to	a	stream	of	Builders.	This	is
looking	pretty	good;	all	we	need	now	is	a	stream	of	Events.

Speaking	of	which,	what	should	our	XML	document	actually	look	like?	It’s	pretty	simple:
we	have	a	<sphinx:docset>	root	element,	a	<sphinx:schema>	element	containing	a	single
<sphinx:field>	(which	defines	the	content	field),	and	then	a	<sphinx:document>	for
each	document	in	our	database.	That	last	element	will	have	an	id	attribute	and	a	child
content	element.	Here	is	an	example	of	such	a	document:

<sphinx:docset	xmlns:sphinx="http://sphinxsearch.com/">

				<sphinx:schema>

								<sphinx:field	name="content"/>

				</sphinx:schema>

				<sphinx:document	id="1">

								<content>bar</content>

				</sphinx:document>

				<sphinx:document	id="2">

								<content>foo	bar	baz</content>

				</sphinx:document>

</sphinx:docset>

NOTE
If	you’re	not	familiar	with	XML	namespaces,	the	xmlns:	syntax	and	sphinx:	prefixes	may	look	pretty
weird.	I	don’t	want	to	get	into	an	XML	tutorial	in	this	chapter,	so	I’ll	avoid	an	explanation.	If	you’re
curious,	feel	free	to	look	up	the	XML	namespace	specification.

Every	document	is	going	to	start	off	with	the	same	events	(start	the	docset,	start	the
schema,	etc.)	and	end	with	the	same	event	(end	the	docset).	We’ll	start	off	by	defining
those:

toName	::	Text	->	X.Name

toName	x	=	X.Name	x	(Just	"http://sphinxsearch.com/")	(Just	"sphinx")

docset,	schema,	field,	document,	content	::	X.Name

docset	=	toName	"docset"

schema	=	toName	"schema"

field	=	toName	"field"

document	=	toName	"document"

content	=	"content"	--	no	prefix

startEvents,	endEvents	::	[X.Event]

startEvents	=

				[X.EventBeginDocument

				,	X.EventBeginElement	docset	[]

				,	X.EventBeginElement	schema	[]

				,	X.EventBeginElement	field	[("name",	[X.ContentText	"content"])]

				,	X.EventEndElement	field

				,	X.EventEndElement	schema

]

endEvents	=

				[X.EventEndElement	docset

]

Now	that	we	have	the	shell	of	our	document,	we	need	to	get	the	Events	for	each	individual
document.	This	is	actually	a	fairly	simple	function:

entityToEvents	::	Entity	Doc	->	[X.Event]

entityToEvents	(Entity	docid	doc)	=

				[X.EventBeginElement	document	[("id",	[X.ContentText	$	toPathPiece	docid])]

				,	X.EventBeginElement	content	[]

				,	X.EventContent	$	X.ContentText	$	unTextarea	$	docContent	doc

				,	X.EventEndElement	content

				,	X.EventEndElement	document

]

We	start	the	document	element	with	an	id	attribute,	start	the	content,	insert	the	content,
and	then	close	both	elements.	We	use	toPathPiece	to	convert	a	DocId	into	a	Text	value.
Next,	we	need	to	be	able	to	convert	a	stream	of	these	entities	into	a	stream	of	events.	For
this,	we	can	use	the	built-in	concatMap	function	from	Data.Conduit.List:	CL.concatMap
entityToEvents.

But	what	we	really	want	is	to	stream	those	events	directly	from	the	database.	For	most	of
this	book,	we’ve	used	the	selectList	function,	but	Persistent	also	provides	the	(more
powerful)	selectSource	function.	So	we	end	up	with	the	function:

docSource	::	Source	(YesodDB	Searcher)	X.Event

docSource	=	selectSource	[]	[]	$=	CL.concatMap	entityToEvents

The	$=	operator	joins	together	a	source	and	a	conduit	into	a	new	source.	Now	that	we	have
our	Event	source,	all	we	need	to	do	is	surround	it	with	the	document	start	and	end	events.
With	Source’s	Monad	instance,	this	is	a	piece	of	cake:

fullDocSource	::	Source	(YesodDB	Searcher)	X.Event

fullDocSource	=	do

				mapM_	yield	startEvents

				docSource

				mapM_	yield	endEvents

Now	we	need	to	tie	it	together	in	getXmlpipeR.	We	can	do	so	by	using	the
respondSourceDB	function	mentioned	earlier.	The	last	trick	we	need	to	do	is	convert	our
stream	of	Events	into	a	stream	of	Chunk	Builders.	Converting	to	a	stream	of	Builders	is
achieved	with	renderBuilder,	and	finally	we’ll	just	wrap	each	Builder	in	its	own	Chunk:

getXmlpipeR	::	Handler	TypedContent

getXmlpipeR	=

				respondSourceDB	"text/xml"

	$		fullDocSource

	$=	renderBuilder	def

	$=	CL.map	Chunk

Full	Code
{-#	LANGUAGE	FlexibleContexts											#-}

{-#	LANGUAGE	GADTs																						#-}

{-#	LANGUAGE	GeneralizedNewtypeDeriving	#-}

{-#	LANGUAGE	MultiParamTypeClasses						#-}

{-#	LANGUAGE	OverloadedStrings										#-}

{-#	LANGUAGE	QuasiQuotes																#-}

{-#	LANGUAGE	TemplateHaskell												#-}

{-#	LANGUAGE	TypeFamilies															#-}

{-#	LANGUAGE	ViewPatterns															#-}

import											Control.Applicative																					((<$>),	(<*>))

import											Control.Monad																											(forM)

import											Control.Monad.Logger																				(runStdoutLoggingT)

import											Data.Conduit

import	qualified	Data.Conduit.List																							as	CL

import											Data.Maybe																														(catMaybes)

import											Data.Monoid																													(mconcat)

import											Data.Text																															(Text)

import	qualified	Data.Text																															as	T

import											Data.Text.Lazy.Encoding																	(decodeUtf8)

import	qualified	Data.XML.Types																										as	X

import											Database.Persist.Sqlite

import											Text.Blaze.Html																									(preEscapedToHtml)

import	qualified	Text.Search.Sphinx																						as	S

import	qualified	Text.Search.Sphinx.ExcerptConfiguration	as	E

import	qualified	Text.Search.Sphinx.Types																as	ST

import											Text.XML.Stream.Render																		(def,	renderBuilder)

import											Yesod

share	[mkPersist	sqlSettings,	mkMigrate	"migrateAll"]	[persistLowerCase|

Doc

				title	Text

				content	Textarea

|]

data	Searcher	=	Searcher

				{	connPool	::	ConnectionPool

				}

mkYesod	"Searcher"	[parseRoutes|

/	HomeR	GET

/doc/#DocId	DocR	GET

/add-doc	AddDocR	POST

/search	SearchR	GET

/search/xmlpipe	XmlpipeR	GET

|]

instance	Yesod	Searcher

instance	YesodPersist	Searcher	where

				type	YesodPersistBackend	Searcher	=	SqlBackend

				runDB	action	=	do

								Searcher	pool	<-	getYesod

								runSqlPool	action	pool

instance	YesodPersistRunner	Searcher	where

				getDBRunner	=	defaultGetDBRunner	connPool

instance	RenderMessage	Searcher	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

addDocForm	::	Html	->	MForm	Handler	(FormResult	Doc,	Widget)

addDocForm	=	renderTable	$	Doc

				<$>	areq	textField	"Title"	Nothing

				<*>	areq	textareaField	"Contents"	Nothing

searchForm	::	Html	->	MForm	Handler	(FormResult	Text,	Widget)

searchForm	=	renderDivs	$	areq	(searchField	True)	"Query"	Nothing

getHomeR	::	Handler	Html

getHomeR	=	do

				docCount	<-	runDB	$	count	([]	::	[Filter	Doc])

				((_,	docWidget),	_)	<-	runFormPost	addDocForm

				((_,	searchWidget),	_)	<-	runFormGet	searchForm

				let	docs	=	if	docCount	==	1

																then	"There	is	currently	1	document."

																else	"There	are	currently	"	++	show	docCount	++	"	documents."

				defaultLayout

								[whamlet|

												<p>Welcome	to	the	search	application.	#{docs}

												<form	method=post	action=@{AddDocR}>

																<table>

																				^{docWidget}

																				<tr>

																								<td	colspan=3>

																												<input	type=submit	value="Add	document">

												<form	method=get	action=@{SearchR}>

																^{searchWidget}

																<input	type=submit	value=Search>

								|]

postAddDocR	::	Handler	Html

postAddDocR	=	do

				((res,	docWidget),	_)	<-	runFormPost	addDocForm

				case	res	of

								FormSuccess	doc	->	do

												docid	<-	runDB	$	insert	doc

												setMessage	"Document	added"

												redirect	$	DocR	docid

								_	->	defaultLayout

												[whamlet|

																<form	method=post	action=@{AddDocR}>

																				<table>

																								^{docWidget}

																								<tr>

																												<td	colspan=3>

																																<input	type=submit	value="Add	document">

												|]

getDocR	::	DocId	->	Handler	Html

getDocR	docid	=	do

				doc	<-	runDB	$	get404	docid

				defaultLayout

								[whamlet|

												<h1>#{docTitle	doc}

												<div	.content>#{docContent	doc}

								|]

data	Result	=	Result

				{	resultId						::	DocId

				,	resultTitle			::	Text

				,	resultExcerpt	::	Html

				}

getResult	::	DocId	->	Doc	->	Text	->	IO	Result

getResult	docid	doc	qstring	=	do

				excerpt'	<-	S.buildExcerpts

								excerptConfig

								[escape	$	docContent	doc]

								"searcher"

								qstring

				let	excerpt	=

												case	excerpt'	of

																ST.Ok	texts	->	preEscapedToHtml	$	mconcat	texts

																_	->	""

				return	Result

								{	resultId	=	docid

								,	resultTitle	=	docTitle	doc

								,	resultExcerpt	=	excerpt

								}

		where

				excerptConfig	=	E.altConfig	{	E.port	=	9312	}

escape	::	Textarea	->	Text

escape	=

				T.concatMap	escapeChar	.	unTextarea

		where

				escapeChar	'<'	=	"<"

				escapeChar	'>'	=	">"

				escapeChar	'&'	=	"&"

				escapeChar	c			=	T.singleton	c

getResults	::	Text	->	Handler	[Result]

getResults	qstring	=	do

				sphinxRes'	<-	liftIO	$	S.query	config	"searcher"	qstring

				case	sphinxRes'	of

								ST.Ok	sphinxRes	->	do

												let	docids	=	map	(toSqlKey	.	ST.documentId)	$	ST.matches	sphinxRes

												fmap	catMaybes	$	runDB	$	forM	docids	$	\docid	->	do

																mdoc	<-	get	docid

																case	mdoc	of

																				Nothing	->	return	Nothing

																				Just	doc	->	liftIO	$	Just	<$>	getResult	docid	doc	qstring

								_	->	error	$	show	sphinxRes'

		where

				config	=	S.defaultConfig

								{	S.port	=	9312

								,	S.mode	=	ST.Any

								}

getSearchR	::	Handler	Html

getSearchR	=	do

				((formRes,	searchWidget),	_)	<-	runFormGet	searchForm

				searchResults	<-

								case	formRes	of

												FormSuccess	qstring	->	getResults	qstring

												_	->	return	[]

				defaultLayout	$	do

								toWidget

												[lucius|

																.excerpt	{

																				color:	green;	font-style:	italic

																}

																.match	{

																				background-color:	yellow;

																}

												|]

								[whamlet|

												<form	method=get	action=@{SearchR}>

																^{searchWidget}

																<input	type=submit	value=Search>

												$if	not	$	null	searchResults

																<h1>Results

																$forall	result	<-	searchResults

																				<div	.result>

																								#{resultTitle	result}

																								<div	.excerpt>#{resultExcerpt	result}

								|]

getXmlpipeR	::	Handler	TypedContent

getXmlpipeR	=

				respondSourceDB	"text/xml"

	$		fullDocSource

	$=	renderBuilder	def

	$=	CL.map	Chunk

entityToEvents	::	(Entity	Doc)	->	[X.Event]

entityToEvents	(Entity	docid	doc)	=

				[X.EventBeginElement	document	[("id",	[X.ContentText	$	toPathPiece	docid])]

				,	X.EventBeginElement	content	[]

				,	X.EventContent	$	X.ContentText	$	unTextarea	$	docContent	doc

				,	X.EventEndElement	content

				,	X.EventEndElement	document

]

fullDocSource	::	Source	(YesodDB	Searcher)	X.Event

fullDocSource	=	do

				mapM_	yield	startEvents

				docSource

				mapM_	yield	endEvents

docSource	::	Source	(YesodDB	Searcher)	X.Event

docSource	=	selectSource	[]	[]	$=	CL.concatMap	entityToEvents

toName	::	Text	->	X.Name

toName	x	=	X.Name	x	(Just	"http://sphinxsearch.com/")	(Just	"sphinx")

docset,	schema,	field,	document,	content	::	X.Name

docset	=	toName	"docset"

schema	=	toName	"schema"

field	=	toName	"field"

document	=	toName	"document"

content	=	"content"	--	no	prefix

startEvents,	endEvents	::	[X.Event]

startEvents	=

				[X.EventBeginDocument

				,	X.EventBeginElement	docset	[]

				,	X.EventBeginElement	schema	[]

				,	X.EventBeginElement	field	[("name",	[X.ContentText	"content"])]

				,	X.EventEndElement	field

				,	X.EventEndElement	schema

]

endEvents	=

				[X.EventEndElement	docset

]

main	::	IO	()

main	=	runStdoutLoggingT	$	withSqlitePool	"searcher.db3"	10	$

	\pool	->	liftIO	$	do

				runSqlPool	(runMigration	migrateAll)	pool

				warp	3000	$	Searcher	pool

Chapter	26.	Visitor	Counter

Remember	back	in	the	good	ol’	days	of	the	Internet,	when	no	website	was	complete
without	a	little	“you	are	visitor	number	32”	thingy?	Ahh,	those	were	the	good	times!	Let’s
re-create	that	wonderful	experience	in	Yesod!

Now,	if	we	wanted	to	do	this	properly,	we’d	store	this	information	in	some	kind	of
persistent	storage	layer,	like	a	database,	so	that	the	information	could	be	shared	across
multiple	horizontally	scaled	web	servers	and	would	survive	an	app	restart.

But	our	goal	here	isn’t	to	demonstrate	good	practice	(after	all,	if	it	was	about	good
practice,	I	wouldn’t	be	demonstrating	a	visitor	counter,	right?).	Instead,	this	is	meant	to
provide	a	simple	example	of	sharing	some	state	among	multiple	handlers.	A	real-world
use	case	would	be	caching	information	across	requests.	Just	remember	that	when	you	use
the	technique	shown	here,	you	need	to	be	careful	about	multiple	app	servers	and	app
restarts.

The	technique	is	simple:	we	create	a	new	field	in	the	foundation	data	type	for	a	mutable
reference	to	some	data,	and	then	access	it	in	each	handler.	The	technique	is	so	simple,	it’s
worth	just	diving	into	the	code:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.IORef

import											Yesod

data	App	=	App

				{	visitors	::	IORef	Int

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Html

getHomeR	=	do

				visitorsRef	<-	fmap	visitors	getYesod

				visitors	<-

								liftIO	$	atomicModifyIORef	visitorsRef	$	\i	->

								(i	+	1,	i	+	1)

				defaultLayout

								[whamlet|

												<p>Welcome,	you	are	visitor	number	#{visitors}.

								|]

main	::	IO	()

main	=	do

				visitorsRef	<-	newIORef	0

				warp	3000	App

								{	visitors	=	visitorsRef

								}

I	used	IORef	here,	because	we	didn’t	need	anything	more	than	it	provided,	but	you’re	free
to	use	MVars	or	TVars	as	well.	In	fact,	a	good	exercise	for	the	reader	is	to	modify	this
program	to	store	the	visitor	count	in	a	TVar	instead.

Chapter	27.	Single-Process	Pub/Sub

The	example	in	the	previous	chapter	was	admittedly	quite	simple.	Let’s	build	on	that
foundation	(pun	intended)	to	do	something	a	bit	more	interesting.	Suppose	we	have	a
workflow	on	our	site	like	the	following:

1.	 Enter	some	information	on	page	X,	and	submit.

2.	 Submission	starts	a	background	job,	and	the	user	is	redirected	to	a	page	to	view	the
status	of	that	job.

3.	 That	second	page	will	subscribe	to	updates	from	the	background	job	and	display
them	to	the	user.

The	core	principle	here	is	the	ability	to	let	one	thread	publish	updates,	and	have	another
thread	subscribe	to	receive	those	updates.	This	is	known	generally	as	pub/sub,	and
fortunately	is	very	easy	to	achieve	in	Haskell	via	STM	(the	Software	Transactional	Memory
library).

Like	in	the	previous	chapter,	let	me	start	off	with	the	following	caveat:	this	technique	only
works	properly	if	you	have	a	single	web	application	process.	If	you	have	two	different
servers	and	a	load	balancer,	you’ll	either	need	sticky	sessions	or	some	other	solution	to
make	sure	that	the	requests	from	a	single	user	are	going	to	the	same	machine.	In	those
situations,	you	may	want	to	consider	using	an	external	pub/sub	solution,	such	as	Redis.

With	that	caveat	out	of	the	way,	let’s	get	started.

Foundation	Data	Type
We’ll	need	two	different	mutable	references	in	our	foundation.	The	first	will	keep	track	of
the	next	“job	ID”	we’ll	hand	out.	Each	of	these	background	jobs	will	be	represented	by	a
unique	identifier	that	will	be	used	in	our	URLs.	The	second	piece	of	data	will	be	a	map
from	the	job	ID	to	the	broadcast	channel	used	for	publishing	updates.	In	code:

data	App	=	App

				{	jobs				::	TVar	(IntMap	(TChan	(Maybe	Text)))

				,	nextJob	::	TVar	Int

				}

Notice	that	our	TChan	contains	Maybe	Text	values.	The	reason	for	the	Maybe	wrapper	is	so
that	we	can	indicate	that	the	channel	is	complete,	by	providing	a	Nothing	value.

Allocate	a	Job
In	order	to	allocate	a	job,	we	need	to:

1.	 Get	a	job	ID.

2.	 Create	a	new	broadcast	channel.

3.	 Add	the	channel	to	the	channel	map.

Due	to	the	beauty	of	STM,	this	is	pretty	easy:

(jobId,	chan)	<-	liftIO	$	atomically	$	do

				jobId	<-	readTVar	nextJob

				writeTVar	nextJob	$!	jobId	+	1

				chan	<-	newBroadcastTChan

				m	<-	readTVar	jobs

				writeTVar	jobs	$	IntMap.insert	jobId	chan	m

				return	(jobId,	chan)

Fork	Our	Background	Job
There	are	many	different	ways	we	could	go	about	this,	and	they	depend	entirely	on	what
the	background	job	is	going	to	be.	Here’s	a	minimal	example	of	a	background	job	that
prints	out	a	few	messages,	with	a	one-second	delay	between	each	message.	Note	how	after
our	final	message,	we	broadcast	a	Nothing	value	and	remove	our	channel	from	the	map	of
channels:

liftIO	$	forkIO	$	do

				threadDelay	1000000

				atomically	$	writeTChan	chan	$	Just	"Did	something\n"

				threadDelay	1000000

				atomically	$	writeTChan	chan	$	Just	"Did	something	else\n"

				threadDelay	1000000

				atomically	$	do

								writeTChan	chan	$	Just	"All	done\n"

								writeTChan	chan	Nothing

								m	<-	readTVar	jobs

								writeTVar	jobs	$	IntMap.delete	jobId	m

View	Progress
For	this	demonstration,	I’ve	elected	for	a	very	simple	progress	viewing:	a	plain	text	page
with	a	streaming	response.	There	are	a	few	other	possibilities	here:	an	HTML	page	that
autorefreshes	every	X	seconds,	or	using	EventSource	or	WebSockets.	I	encourage	you	to
give	those	a	shot	also,	but	here’s	the	simplest	implementation	I	can	think	of:

getViewProgressR	jobId	=	do

				App	{..}	<-	getYesod

				mchan	<-	liftIO	$	atomically	$	do

								m	<-	readTVar	jobs

								case	IntMap.lookup	jobId	m	of

												Nothing	->	return	Nothing

												Just	chan	->	fmap	Just	$	dupTChan	chan

				case	mchan	of

								Nothing	->	notFound

								Just	chan	->	respondSource	typePlain	$	do

												let	loop	=	do

																				mtext	<-	liftIO	$	atomically	$	readTChan	chan

																				case	mtext	of

																								Nothing	->	return	()

																								Just	text	->	do

																												sendChunkText	text

																												sendFlush

																												loop

												loop

We	start	off	by	looking	up	the	channel	in	the	map.	If	we	can’t	find	it,	it	means	the	job
either	never	existed,	or	has	already	been	completed.	In	either	event,	we	return	a	404.
(Another	possible	enhancement	would	be	to	store	some	information	on	all	previously
completed	jobs	and	let	the	user	know	if	the	job	is	done.)

Assuming	the	channel	exists,	we	use	respondSource	to	start	a	streaming	response.	We
then	repeatedly	call	readTChan	until	we	get	a	Nothing	value,	at	which	point	we	exit	(via
return	()).	Notice	that	on	each	iteration,	we	call	both	sendChunkText	and	sendFlush.
Without	that	second	call,	the	user	won’t	receive	any	updates	until	the	output	buffer
completely	fills	up,	which	is	not	acceptable	for	a	real-time	update	system.

Complete	Application
For	completeness,	here’s	the	full	source	code	for	this	application:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	RecordWildCards			#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

{-#	LANGUAGE	ViewPatterns						#-}

import											Control.Concurrent					(forkIO,	threadDelay)

import											Control.Concurrent.STM

import											Data.IntMap												(IntMap)

import	qualified	Data.IntMap												as	IntMap

import											Data.Text														(Text)

import											Yesod

data	App	=	App

				{	jobs				::	TVar	(IntMap	(TChan	(Maybe	Text)))

				,	nextJob	::	TVar	Int

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET	POST

/view-progress/#Int	ViewProgressR	GET

|]

instance	Yesod	App

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	"PubSub	example"

				[whamlet|

								<form	method=post>

												<button>Start	new	background	job

				|]

postHomeR	::	Handler	()

postHomeR	=	do

				App	{..}	<-	getYesod

				(jobId,	chan)	<-	liftIO	$	atomically	$	do

								jobId	<-	readTVar	nextJob

								writeTVar	nextJob	$!	jobId	+	1

								chan	<-	newBroadcastTChan

								m	<-	readTVar	jobs

								writeTVar	jobs	$	IntMap.insert	jobId	chan	m

								return	(jobId,	chan)

				liftIO	$	forkIO	$	do

								threadDelay	1000000

								atomically	$	writeTChan	chan	$	Just	"Did	something\n"

								threadDelay	1000000

								atomically	$	writeTChan	chan	$	Just	"Did	something	else\n"

								threadDelay	1000000

								atomically	$	do

												writeTChan	chan	$	Just	"All	done\n"

												writeTChan	chan	Nothing

												m	<-	readTVar	jobs

												writeTVar	jobs	$	IntMap.delete	jobId	m

				redirect	$	ViewProgressR	jobId

getViewProgressR	::	Int	->	Handler	TypedContent

getViewProgressR	jobId	=	do

				App	{..}	<-	getYesod

				mchan	<-	liftIO	$	atomically	$	do

								m	<-	readTVar	jobs

								case	IntMap.lookup	jobId	m	of

												Nothing	->	return	Nothing

												Just	chan	->	fmap	Just	$	dupTChan	chan

				case	mchan	of

								Nothing	->	notFound

								Just	chan	->	respondSource	typePlain	$	do

												let	loop	=	do

																				mtext	<-	liftIO	$	atomically	$	readTChan	chan

																				case	mtext	of

																								Nothing	->	return	()

																								Just	text	->	do

																												sendChunkText	text

																												sendFlush

																												loop

												loop

main	::	IO	()

main	=	do

				jobs	<-	newTVarIO	IntMap.empty

				nextJob	<-	newTVarIO	1

				warp	3000	App	{..}

Chapter	28.	Environment	Variables	for
Configuration

There’s	a	recent	move,	perhaps	most	prominently	advocated	by	the	twelve-factor	app,	to
store	all	app	configuration	in	environment	variables	instead	of	using	config	files	or
hardcoding	them	into	the	application	source	code	(you	don’t	do	that,	right?).

Yesod’s	scaffolding	comes	built	in	with	some	support	for	this	—	most	specifically,	for
respecting	the	APPROOT	environment	variable	to	indicate	how	URLs	should	be	generated,
the	PORT	environment	variable	for	which	port	to	listen	for	requests	on,	and	database
connection	settings.	(Incidentally,	this	ties	in	nicely	with	the	Keter	deployment	manager.)

The	technique	for	doing	this	is	quite	easy:	just	do	the	environment	variable	lookup	in	your
main	function.	The	following	example	demonstrates	this	technique,	along	with	the	slightly
special	handling	necessary	for	setting	the	application	root:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

{-#	LANGUAGE	RecordWildCards			#-}

{-#	LANGUAGE	TemplateHaskell			#-}

{-#	LANGUAGE	TypeFamilies						#-}

import											Data.Text										(Text,	pack)

import											System.Environment

import											Yesod

data	App	=	App

				{	myApproot						::	Text

				,	welcomeMessage	::	Text

				}

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

|]

instance	Yesod	App	where

				approot	=	ApprootMaster	myApproot

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				App	{..}	<-	getYesod

				setTitle	"Environment	variables"

				[whamlet|

								<p>Here's	the	welcome	message:	#{welcomeMessage}

								<p>

												And	a	link	to:	@{HomeR}

				|]

main	::	IO	()

main	=	do

				myApproot	<-	fmap	pack	$	getEnv	"APPROOT"

				welcomeMessage	<-	fmap	pack	$	getEnv	"WELCOME_MESSAGE"

				warp	3000	App	{..}

The	only	tricky	things	here	are:

You	need	to	convert	the	String	value	returned	by	getEnv	into	a	Text	by	using	pack.

We	use	the	ApprootMaster	constructor	for	approot,	which	says	“Apply	this	function
to	the	foundation	data	type	to	get	the	actual	application	root.”

Chapter	29.	Route	Attributes

Route	attributes	allow	you	to	set	some	metadata	on	each	of	your	routes,	in	the	route
description	itself.	The	syntax	is	trivial:	just	an	exclamation	point	followed	by	a	value.
Using	it	is	also	trivial:	just	use	the	routeAttrs	function.

It’s	easiest	to	understand	how	all	this	fits	together,	and	when	you	might	want	to	use	it,
with	a	motivating	example.	The	case	I	personally	most	use	this	for	is	annotating
administrative	routes.	Imagine	having	a	website	with	about	12	different	admin	actions.
You	could	manually	add	a	call	to	requireAdmin	or	some	such	at	the	beginning	of	each
action,	but:

It’s	tedious.

It’s	error	prone:	you	could	easily	forget	one.

Worse	yet,	it’s	not	easy	to	notice	that	you’ve	missed	one.

Modifying	your	isAuthorized	method	with	an	explicit	list	of	administrative	routes	is	a	bit
better,	but	it’s	still	difficult	to	see	at	a	glance	when	you’ve	missed	one.

This	is	why	I	like	to	use	route	attributes	for	this:	you	add	a	single	word	to	each	relevant
part	of	the	route	definition,	and	then	you	just	check	for	that	attribute	in	isAuthorized.
Let’s	see	the	code!

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Data.Set									(member)

import											Data.Text								(Text)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Dummy

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/unprotected	UnprotectedR	GET

/admin1	Admin1R	GET	!admin

/admin2	Admin2R	GET	!admin

/admin3	Admin3R	GET

/auth	AuthR	Auth	getAuth

|]

instance	Yesod	App	where

				authRoute	_	=	Just	$	AuthR	LoginR

				isAuthorized	route	_writable

								|	"admin"	`member`	routeAttrs	route	=	do

												muser	<-	maybeAuthId

												case	muser	of

																Nothing	->	return	AuthenticationRequired

																Just	ident

																				--	Just	a	hack	because	we're	using	the	dummy	module

																				|	ident	==	"admin"	->	return	Authorized

																				|	otherwise	->	return	$	Unauthorized	"Admin	access	only"

								|	otherwise	=	return	Authorized

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

--	Hacky	YesodAuth	instance	for	just	the	dummy	auth	plug-in

instance	YesodAuth	App	where

				type	AuthId	App	=	Text

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				getAuthId	=	return	.	Just	.	credsIdent

				authPlugins	_	=	[authDummy]

				maybeAuthId	=	lookupSession	credsKey

				authHttpManager	=	error	"no	http	manager	provided"

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	"Route	attr	homepage"

				[whamlet|

								<p>

												Unprotected

								<p>

												Admin	1

								<p>

												Admin	2

								<p>

												Admin	3

				|]

getUnprotectedR,	getAdmin1R,	getAdmin2R,	getAdmin3R	::	Handler	Html

getUnprotectedR	=	defaultLayout	[whamlet|Unprotected|]

getAdmin1R	=	defaultLayout	[whamlet|Admin1|]

getAdmin2R	=	defaultLayout	[whamlet|Admin2|]

getAdmin3R	=	defaultLayout	[whamlet|Admin3|]

main	::	IO	()

main	=	warp	3000	App

And	it	was	so	glaring,	I	bet	you	even	caught	the	security	hole	about	Admin3R.

Alternative	Approach:	Hierarchical	Routes
Another	approach	that	can	be	used	in	some	cases	is	hierarchical	routes.	This	allows	you	to
group	a	number	of	related	routes	under	a	single	parent.	If	you	want	to	keep	all	of	your
admin	routes	under	a	single	URL	structure	(e.g.,	/admin),	this	can	be	a	good	solution.
Using	hierarchical	routes	is	fairly	simple.	You	need	to	add	a	line	to	your	routes	declaration
with	a	path,	a	name,	and	a	colon:

/admin	AdminR:

Then,	you	place	all	child	routes	beneath	that	line,	indented	at	least	one	space:

				/1	Admin1R	GET

				/2	Admin2R	GET

				/3	Admin3R	GET

To	refer	to	these	routes	using	type-safe	URLs,	you	simply	wrap	them	with	the	AdminR
constructor	(e.g.,	AdminR	Admin1R).	Here	is	the	previous	route	attribute	example	rewritten
to	use	hierarchical	routes:

{-#	LANGUAGE	MultiParamTypeClasses	#-}

{-#	LANGUAGE	OverloadedStrings					#-}

{-#	LANGUAGE	QuasiQuotes											#-}

{-#	LANGUAGE	TemplateHaskell							#-}

{-#	LANGUAGE	TypeFamilies										#-}

import											Data.Set									(member)

import											Data.Text								(Text)

import											Yesod

import											Yesod.Auth

import											Yesod.Auth.Dummy

data	App	=	App

mkYesod	"App"	[parseRoutes|

/	HomeR	GET

/unprotected	UnprotectedR	GET

/admin	AdminR:

				/1	Admin1R	GET

				/2	Admin2R	GET

				/3	Admin3R	GET

/auth	AuthR	Auth	getAuth

|]

instance	Yesod	App	where

				authRoute	_	=	Just	$	AuthR	LoginR

				isAuthorized	(AdminR	_)	_writable	=	do

								muser	<-	maybeAuthId

								case	muser	of

												Nothing	->	return	AuthenticationRequired

												Just	ident

																--	Just	a	hack	because	we're	using	the	dummy	module

																|	ident	==	"admin"	->	return	Authorized

																|	otherwise	->	return	$	Unauthorized	"Admin	access	only"

				isAuthorized	_route	_writable	=	return	Authorized

instance	RenderMessage	App	FormMessage	where

				renderMessage	_	_	=	defaultFormMessage

--	Hacky	YesodAuth	instance	for	just	the	dummy	auth	plug-in

instance	YesodAuth	App	where

				type	AuthId	App	=	Text

				loginDest	_	=	HomeR

				logoutDest	_	=	HomeR

				getAuthId	=	return	.	Just	.	credsIdent

				authPlugins	_	=	[authDummy]

				maybeAuthId	=	lookupSession	credsKey

				authHttpManager	=	error	"no	http	manager	provided"

getHomeR	::	Handler	Html

getHomeR	=	defaultLayout	$	do

				setTitle	"Route	attr	homepage"

				[whamlet|

								<p>

												Unprotected

								<p>

												Admin	1

								<p>

												Admin	2

								<p>

												Admin	3

				|]

getUnprotectedR,	getAdmin1R,	getAdmin2R,	getAdmin3R	::	Handler	Html

getUnprotectedR	=	defaultLayout	[whamlet|Unprotected|]

getAdmin1R	=	defaultLayout	[whamlet|Admin1|]

getAdmin2R	=	defaultLayout	[whamlet|Admin2|]

getAdmin3R	=	defaultLayout	[whamlet|Admin3|]

main	::	IO	()

main	=	warp	3000	App

Part	IV.	Appendices

Appendix	A.	monad-control

monad-control	is	used	in	a	few	places	within	Yesod,	most	notably	to	ensure	proper
exception	handling	within	Persistent.	It	is	a	general-purpose	package	to	extend	standard
functionality	in	monad	transformers.

Overview
One	of	the	powerful,	and	sometimes	confusing,	features	in	Haskell	is	monad	transformers.
They	allow	you	to	take	different	pieces	of	functionality	—	such	as	mutable	state,	error
handling,	or	logging	—	and	compose	them	easily.	Though	I	swore	I’d	never	write	a	monad
tutorial,	I’m	going	to	employ	a	painful	analogy	here:	monads	are	like	onions.	(Monads	are
not	like	cakes.)	By	that,	I	mean	layers.

We	have	the	core	monad,	also	known	as	the	innermost	or	bottom	monad.	On	top	of	this
core,	we	add	layers,	each	adding	a	new	feature	and	spreading	outward/upward.	As	a
motivating	example,	let’s	consider	an	ErrorT	transformer	stacked	on	top	of	the	IO	monad:

newtype	ErrorT	e	m	a	=	ErrorT	{	runErrorT	::	m	(Either	e	a)	}

type	MyStack	=	ErrorT	MyError	IO

Now	pay	close	attention	here:	ErrorT	is	just	a	simple	newtype	around	an	Either	wrapped
in	a	monad.	Getting	rid	of	the	newtype,	we	have:

type	ErrorTUnwrapped	e	m	a	=	m	(Either	e	a)

At	some	point,	we’ll	need	to	actually	perform	some	I/O	inside	our	MyStack.	If	we	went
with	the	unwrapped	approach,	it	would	be	trivial,	as	there	would	be	no	ErrorT	constructor
in	the	way.	However,	we	need	that	newtype	wrapper	for	a	whole	bunch	of	type	reasons	I
won’t	go	into	here	(this	isn’t	a	monad	transformer	tutorial,	after	all).	So	the	solution	is	the
MonadTrans	typeclass:

class	MonadTrans	t	where

				lift	::	Monad	m	=>	m	a	->	t	m	a

I’ll	admit,	the	first	time	I	saw	that	type	signature	my	response	was	stunned	confusion,	and
incredulity	that	it	actually	meant	anything.	But	looking	at	an	instance	helps	a	bit:

instance	(Error	e)	=>	MonadTrans	(ErrorT	e)	where

				lift	m	=	ErrorT	$	do

								a	<-	m

								return	(Right	a)

All	we’re	doing	is	wrapping	the	inside	of	the	IO	with	a	Right	value,	and	then	applying	our
newtype	wrapper.	This	allows	us	to	take	an	action	that	lives	in	IO	and	“lift”	it	to	the
outer/upper	monad.

But	now	to	the	point	at	hand.	This	works	very	well	for	simple	functions.	For	example:

sayHi	::	IO	()

sayHi	=	putStrLn	"Hello"

sayHiError	::	ErrorT	MyError	IO	()

sayHiError	=	lift	$	putStrLn	"Hello"

But	let’s	take	something	slightly	more	complicated,	like	a	callback:

withMyFile	::	(Handle	->	IO	a)	->	IO	a

withMyFile	=	withFile	"test.txt"	WriteMode

sayHi	::	Handle	->	IO	()

sayHi	handle	=	hPutStrLn	handle	"Hi	there"

useMyFile	::	IO	()

useMyFile	=	withMyFile	sayHi

So	far	so	good,	right?	Now	let’s	say	that	we	need	a	version	of	sayHi	that	has	access	to	the
Error	monad:

sayHiError	::	Handle	->	ErrorT	MyError	IO	()

sayHiError	handle	=	do

				lift	$	hPutStrLn	handle	"Hi	there,	error!"

				throwError	MyError

We	would	like	to	write	a	function	that	combines	withMyFile	and	sayHiError.
Unfortunately,	GHC	doesn’t	like	this	very	much:

useMyFileErrorBad	::	ErrorT	MyError	IO	()

useMyFileErrorBad	=	withMyFile	sayHiError

				Couldn't	match	expected	type	`ErrorT	MyError	IO	()'

																with	actual	type	`IO	()'

Why	does	this	happen,	and	how	can	we	work	around	it?

Intuition
Let’s	try	and	develop	an	external	intuition	of	what’s	happening	here.	The	ErrorT	monad
transformer	adds	extra	functionality	to	the	IO	monad.	We’ve	defined	a	way	to	“tack	on”
that	extra	functionality	to	normal	IO	actions:	we	add	that	Right	constructor	and	wrap	it	all
in	ErrorT.	Wrapping	in	Right	is	our	way	of	saying	“it	went	OK”;	i.e.,	there	wasn’t
anything	wrong	with	this	action.

Now	this	intuitively	makes	sense:	because	the	IO	monad	doesn’t	have	the	concept	of
returning	a	MyError	when	something	goes	wrong,	it	will	always	succeed	in	the	lifting
phase.	(Note:	This	has	nothing	to	do	with	runtime	exceptions,	so	don’t	even	think	about
them.)	What	we	have	is	a	guaranteed	one-directional	translation	up	the	monad	stack.

Let’s	take	another	example:	the	Reader	monad.	A	Reader	has	access	to	some	extra	piece
of	data	that’s	floating	around.	Whatever	is	running	in	the	inner	monad	doesn’t	know	about
that	extra	piece	of	information.	So	how	would	you	do	a	lift?	You	just	ignore	that	extra
information.	The	Writer	monad?	Don’t	write	anything.	State?	Don’t	change	anything.
I’m	seeing	a	pattern	here.

But	now	let’s	try	and	go	in	the	opposite	direction:	I	have	something	in	a	Reader,	and	I’d
like	to	run	it	in	the	base	monad	(e.g.,	IO).	Well…	that’s	not	going	to	work,	is	it?	I	need	that
extra	piece	of	information;	I’m	relying	on	it,	and	it’s	not	there.	There’s	simply	no	way	to
go	in	the	opposite	direction	without	providing	that	extra	value.

Or	is	there?	If	you	remember,	we	pointed	out	earlier	that	ErrorT	is	just	a	simple	wrapper
around	the	inner	monad.	In	other	words,	if	I	have	errorValue	::	ErrorT	MyError	IO
MyValue,	I	can	apply	runErrorT	and	get	a	value	of	type	IO	(Either	MyError	MyValue).
The	looks	quite	a	bit	like	bidirectional	translation,	doesn’t	it?

Well,	not	exactly.	We	originally	had	an	ErrorT	MyError	IO	monad,	with	a	value	of	type
MyValue.	Now	we	have	a	monad	of	type	IO	with	a	value	of	type	Either	MyError
MyValue.	So,	this	process	has	in	fact	changed	the	value,	while	the	lifting	process	leaves	it
the	same.

But	still,	with	a	little	fancy	footwork	we	can	unwrap	the	ErrorT,	do	some	processing,	and
then	wrap	it	back	up	again:

useMyFileError1	::	ErrorT	MyError	IO	()

useMyFileError1	=

				let	unwrapped	::	Handle	->	IO	(Either	MyError	())

								unwrapped	handle	=	runErrorT	$	sayHiError	handle

								applied	::	IO	(Either	MyError	())

								applied	=	withMyFile	unwrapped

								rewrapped	::	ErrorT	MyError	IO	()

								rewrapped	=	ErrorT	applied

					in	rewrapped

This	is	the	crucial	point	of	this	whole	discussion,	so	look	closely.	We	first	unwrap	our
monad.	This	means	that,	to	the	outside	world,	it’s	now	just	a	plain	old	IO	value.	Internally,
we’ve	stored	all	the	information	from	our	ErrorT	transformer.	Now	that	we	have	a	plain
old	IO,	we	can	easily	pass	it	off	to	withMyFile.	withMyFile	takes	in	the	internal	state	and
passes	it	back	out	unchanged.	Finally,	we	wrap	everything	back	up	into	our	original
ErrorT.

This	is	the	entire	pattern	of	monad-control.	We	embed	the	extra	features	of	our	monad
transformer	inside	the	value.	Once	in	the	value,	the	type	system	ignores	it	and	focuses	on
the	inner	monad.	When	we’re	done	playing	around	with	that	inner	monad,	we	can	pull	our
state	back	out	and	reconstruct	our	original	monad	stack.

Types
I	purposely	started	with	the	ErrorT	transformer,	as	it	is	one	of	the	simplest	for	this
inversion	mechanism.	Unfortunately,	others	are	a	bit	more	complicated.	Take,	for	instance,
ReaderT.	It	is	defined	as	newtype	ReaderT	r	m	a	=	ReaderT	{	runReaderT	::	r	->	m
a	}.	If	we	apply	runReaderT	to	it,	we	get	a	function	that	returns	a	monadic	value.	We’re
going	to	need	some	extra	machinery	to	deal	with	all	that	stuff.	And	this	is	when	we	leave
Kansas	behind.

There	are	a	few	approaches	to	solving	these	problems.	In	the	past,	I	implemented	a
solution	using	type	families	in	the	neither	package.	Anders	Kaseorg	implemented	a	much
more	straightforward	solution	in	monad-peel.	And	for	efficiency,	in	monad-control,	Bas
van	Dijk	uses	CPS	(continuation	passing	style)	and	existential	types.

NOTE
The	code	taken	from	monad-control	actually	applies	to	version	0.2.	0.3	changed	things	just	a	bit,	by
making	the	state	explicit	with	an	associated	type	and	generalizing	MonadControlIO	to	MonadBaseControl,
but	the	concepts	are	still	the	same.

The	first	type	we’re	going	to	look	at	is	the	following:

type	Run	t	=	forall	n	o	b.	(Monad	n,	Monad	o,	Monad	(t	o))	=>	t	n	b	->	n	(t	o	b)

That’s	incredibly	dense,	so	let’s	talk	it	out.	The	only	“input”	data	type	to	this	thing	is	t,	a
monad	transformer.	A	Run	is	a	function	that	will	then	work	with	any	combination	of	types
n,	o,	and	b	(that’s	what	the	forall	means).	n	and	o	are	both	monads,	while	b	is	a	simple
value	contained	by	them.

The	lefthand	side	of	the	Run	function,	t	n	b,	is	our	monad	transformer	wrapped	around
the	n	monad	and	holding	a	b	value.	So,	for	example,	that	could	be	a	MyTrans	FirstMonad
MyValue.	It	then	returns	a	value	with	the	transformer	“popped”	inside,	with	a	brand	new
monad	at	its	core.	In	other	words,	FirstMonad	(MyTrans	NewMonad	MyValue).

That	might	sound	pretty	scary	at	first,	but	it	actually	isn’t	as	foreign	as	you’d	think:	this	is
essentially	what	we	did	with	ErrorT.	We	started	with	ErrorT	on	the	outside,	wrapping
around	IO,	and	ended	up	with	an	IO	by	itself	containing	an	Either.	Well	guess	what:
another	way	to	represent	an	Either	is	ErrorT	MyError	Identity.	So	essentially,	we
pulled	the	IO	to	the	outside	and	plunked	an	Identity	in	its	place.	We’re	doing	the	same
thing	in	a	Run	—	pulling	the	FirstMonad	outside	and	replacing	it	with	a	NewMonad:

errorRun	::	Run	(ErrorT	MyError)

errorRun	=	undefined

useMyFileError2	::	IO	(ErrorT	MyError	Identity	())

useMyFileError2	=

				let	afterRun	::	Handle	->	IO	(ErrorT	MyError	Identity	())

								afterRun	handle	=	errorRun	$	sayHiError	handle

								applied	::	IO	(ErrorT	MyError	Identity	())

								applied	=	withMyFile	afterRun

					in	applied

This	looks	eerily	similar	to	our	previous	example.	In	fact,	errorRun	is	acting	almost
identically	to	runErrorT.	However,	we’re	still	left	with	two	problems:	we	don’t	know
where	to	get	that	errorRun	value	from,	and	we	still	need	to	restructure	the	original	ErrorT
after	we’re	done.

MonadTransControl
Obviously,	in	the	specific	case	we	have	before	us	we	could	use	our	knowledge	of	the
ErrorT	transformer	to	beat	the	types	into	submission	and	create	our	Run	function
manually.	But	what	we	really	want	is	a	general	solution	for	many	transformers.	At	this
point,	you	know	we	need	a	typeclass.

So	let’s	review	what	we	need:	access	to	a	Run	function,	and	some	way	to	restructure	our
original	transformer	after	the	fact.	And	thus	was	born	MonadTransControl,	with	its	single
method	liftControl:

class	MonadTrans	t	=>	MonadTransControl	t	where

				liftControl	::	Monad	m	=>	(Run	t	->	m	a)	->	t	m	a

Let’s	look	at	this	closely.	liftControl	takes	a	function	(the	one	we’ll	be	writing).	That
function	is	provided	with	a	Run	function,	and	must	return	a	value	in	some	monad	(m).
liftControl	will	then	take	the	result	of	that	function	and	reinstate	the	original
transformer	on	top	of	everything:

useMyFileError3	::	Monad	m	=>	ErrorT	MyError	IO	(ErrorT	MyError	m	())

useMyFileError3	=

				liftControl	inside

		where

				inside	::	Monad	m	=>	Run	(ErrorT	MyError)	->	IO	(ErrorT	MyError	m	())

				inside	run	=	withMyFile	$	helper	run

				helper	::	Monad	m

											=>	Run	(ErrorT	MyError)	->	Handle	->	IO	(ErrorT	MyError	m	())

				helper	run	handle	=	run	(sayHiError	handle	::	ErrorT	MyError	IO	())

Close,	but	not	exactly	what	I	had	in	mind.	What’s	up	with	the	double	monads?	Well,	let’s
start	at	the	end.	The	sayHiError	handle	returns	a	value	of	type	ErrorT	MyError	IO	().
This	we	knew	already;	no	surprises.	What	might	be	a	little	surprising	(it	got	me,	at	least)	is
the	next	two	steps.

First,	we	apply	run	to	that	value.	Like	we	discussed	before,	the	result	is	that	the	IO	inner
monad	is	popped	to	the	outside,	to	be	replaced	by	some	arbitrary	monad	(represented	by	m
here).	So	we	end	up	with	an	IO	(ErrorT	MyError	m	()).	OK…	we	then	get	the	same
result	after	applying	withMyFile.	Not	surprising.

The	last	step	took	me	a	long	time	to	understand	correctly.	Remember	how	we	said	that	we
reconstruct	the	original	transformer?	Well,	so	we	do:	by	plopping	it	right	on	top	of
everything	else	we	have.	So	our	end	result	is	the	previous	type	—	IO	(ErrorT	MyError	m
())	—	with	an	ErrorT	MyError	stuck	on	the	front.

That	seems	just	about	utterly	worthless,	right?	Well,	almost.	But	don’t	forget,	that	m	can	be
any	monad,	including	IO.	If	we	treat	it	that	way,	we	get	ErrorT	MyError	IO	(ErrorT
MyError	IO	()).	That	looks	a	lot	like	m	(m	a),	and	we	want	just	plain	old	m	a.

Fortunately,	now	we’re	in	luck:

useMyFileError4	::	ErrorT	MyError	IO	()

useMyFileError4	=	join	useMyFileError3

And	it	turns	out	that	this	usage	is	so	common,	that	Bas	had	mercy	on	us	and	defined	a
helper	function:

control	::	(Monad	m,	Monad	(t	m),	MonadTransControl	t)

								=>	(Run	t	->	m	(t	m	a))	->	t	m	a

control	=	join	.	liftControl

So	all	we	need	to	write	is	the	following:

useMyFileError5	::	ErrorT	MyError	IO	()

useMyFileError5	=

				control	inside

		where

				inside	::	Monad	m	=>	Run	(ErrorT	MyError)	->	IO	(ErrorT	MyError	m	())

				inside	run	=	withMyFile	$	helper	run

				helper	::	Monad	m

											=>	Run	(ErrorT	MyError)	->	Handle	->	IO	(ErrorT	MyError	m	())

				helper	run	handle	=	run	(sayHiError	handle	::	ErrorT	MyError	IO	())

And	just	to	make	it	a	little	shorter:

useMyFileError6	::	ErrorT	MyError	IO	()

useMyFileError6	=	control	$	\run	->	withMyFile	$	run	.	sayHiError

MonadControlIO
The	MonadTrans	class	provides	the	lift	method,	which	allows	us	to	lift	an	action	one
level	in	the	stack.	There	is	also	the	MonadIO	class:	this	provides	liftIO,	which	lifts	an	IO
action	as	far	in	the	stack	as	desired.	We	have	the	same	breakdown	in	monad-control.	But
first,	we	need	a	corollary	to	Run:

type	RunInBase	m	base	=	forall	b.	m	b	->	base	(m	b)

Instead	of	dealing	with	a	transformer,	we’re	dealing	with	two	monads.	base	is	the
underlying	monad,	and	m	is	a	stack	built	on	top	of	it.	RunInBase	is	a	function	that	takes	the
entire	stack	as	a	value,	pops	out	that	base,	and	puts	in	on	the	outside.	Unlike	in	the	Run
type,	we	don’t	replace	it	with	an	arbitrary	monad,	but	with	the	original	one.	To	use	some
more	concrete	types:

RunInBase	(ErrorT	MyError	IO)	IO	=	forall	b.	ErrorT	MyError	IO	b

																																->	IO	(ErrorT	MyError	IO	b)

This	should	look	fairly	similar	to	what	we’ve	been	looking	at	so	far;	the	only	difference	is
that	we	want	to	deal	with	a	specific	inner	monad.	Our	MonadControlIO	class	is	really	just
an	extension	of	MonadControlTrans	using	this	RunInBase:

class	MonadIO	m	=>	MonadControlIO	m	where

				liftControlIO	::	(RunInBase	m	IO	->	IO	a)	->	m	a

Simply	put,	liftControlIO	takes	a	function	that	receives	a	RunInBase.	That	RunInBase
can	be	used	to	strip	down	our	monad	to	just	an	IO,	and	then	liftControlIO	builds
everything	back	up	again.	And	like	MonadControlTrans,	it	comes	with	a	helper	function:

controlIO	::	MonadControlIO	m	=>	(RunInBase	m	IO	->	IO	(m	a))	->	m	a

controlIO	=	join	.	liftControlIO

We	can	easily	rewrite	our	previous	example	with	it:

useMyFileError7	::	ErrorT	MyError	IO	()

useMyFileError7	=	controlIO	$	\run	->	withMyFile	$	run	.	sayHiError

And	as	an	advantage,	it	easily	scales	to	multiple	transformers:

sayHiCrazy	::	Handle	->	ReaderT	Int	(StateT	Double	(ErrorT	MyError	IO))	()

sayHiCrazy	handle	=	liftIO	$	hPutStrLn	handle	"Madness!"

useMyFileCrazy	::	ReaderT	Int	(StateT	Double	(ErrorT	MyError	IO))	()

useMyFileCrazy	=	controlIO	$	\run	->	withMyFile	$	run	.	sayHiCrazy

Real-Life	Examples
Let’s	solve	some	real-life	problems	with	this	code.	Probably	the	biggest	motivating	use
case	is	exception	handling	in	a	transformer	stack.	For	example,	let’s	say	that	we	want	to
automatically	run	some	cleanup	code	when	an	exception	is	thrown.	If	this	were	normal	IO
code,	we’d	use:

onException	::	IO	a	->	IO	b	->	IO	a

But	if	we’re	in	the	ErrorT	monad,	we	can’t	pass	in	either	the	action	or	the	cleanup.	In
comes	controlIO	to	the	rescue:

onExceptionError	::	ErrorT	MyError	IO	a

																	->	ErrorT	MyError	IO	b

																	->	ErrorT	MyError	IO	a

onExceptionError	action	after	=	controlIO	$	\run	->

				run	action	`onException`	run	after

Let’s	say	we	need	to	allocate	some	memory	to	store	a	Double	in.	In	the	IO	monad,	we
could	just	use	the	alloca	function.	Once	again,	our	solution	is	simple:

allocaError	::	(Ptr	Double	->	ErrorT	MyError	IO	b)

												->	ErrorT	MyError	IO	b

allocaError	f	=	controlIO	$	\run	->	alloca	$	run	.	f

Lost	State
Let’s	rewind	a	bit	to	our	onExceptionError.	It	uses	onException	under	the	surface,	which
has	a	type	signature	of	IO	a	->	IO	b	->	IO	a.	Let	me	ask	you	something:	what
happened	to	the	b	in	the	output?	Well,	it	was	thoroughly	ignored.	But	that	seems	to	cause
us	a	bit	of	a	problem.	After	all,	we	store	our	transformer	state	information	in	the	value	of
the	inner	monad.	If	we	ignore	it,	we’re	essentially	ignoring	the	monadic	side	effects	as
well!

And	yes,	this	does	happen	with	monad-control.	Certain	functions	will	drop	some	of	the
monadic	side	effects.	This	is	put	best	by	Bas,	in	the	comments	on	the	relevant	functions:

Note,	any	monadic	side	effects	in	m	of	the	“release”	computation	will	be	discarded;	it	is
run	only	for	its	side	effects	in	IO.

In	practice,	monad-control	will	usually	be	doing	the	right	thing	for	you,	but	you	need	to
be	aware	that	some	side	effects	may	disappear.

More	Complicated	Cases
In	order	to	make	our	tricks	work	so	far,	we’ve	needed	to	have	functions	that	give	us	full
access	to	play	around	with	their	values.	Sometimes,	this	isn’t	the	case.	Take,	for	instance:

addMVarFinalizer	::	MVar	a	->	IO	()	->	IO	()

In	this	case,	we	are	required	to	have	no	value	inside	our	finalizer	function.	Intuitively,	the
first	thing	we	should	notice	is	that	there	will	be	no	way	to	capture	our	monadic	side
effects.	So	how	do	we	get	something	like	this	to	compile?	Well,	we	need	to	explicitly	tell
it	to	drop	all	of	its	state-holding	information:

addMVarFinalizerError	::	MVar	a	->	ErrorT	MyError	IO	()	->	ErrorT	MyError	IO	()

addMVarFinalizerError	mvar	f	=	controlIO	$	\run	->

				return	$	liftIO	$	addMVarFinalizer	mvar	(run	f	>>	return	())

Another	case	from	the	same	module	is:

modifyMVar	::	MVar	a	->	(a	->	IO	(a,	b))	->	IO	b

Here,	we	have	a	restriction	on	the	return	type	in	the	second	argument:	it	must	be	a	tuple	of
the	value	passed	to	that	function	and	the	final	return	value.	Unfortunately,	I	can’t	see	a
way	of	writing	a	little	wrapper	around	modifyMVar	to	make	it	work	for	ErrorT.	Instead,	in
this	case,	I	copied	the	definition	of	modifyMVar	and	modified	it:

modifyMVar	::	MVar	a

											->	(a	->	ErrorT	MyError	IO	(a,	b))

											->	ErrorT	MyError	IO	b

modifyMVar	m	io	=

		Control.Exception.Control.mask	$	\restore	->	do

				a						<-	liftIO	$	takeMVar	m

				(a',b)	<-	restore	(io	a)	`onExceptionError`	liftIO	(putMVar	m	a)

				liftIO	$	putMVar	m	a'

				return	b

Appendix	B.	Web	Application	Interface

It	is	a	problem	almost	every	language	used	for	web	development	has	dealt	with:	the	low-
level	interface	between	the	web	server	and	the	application.	The	earliest	example	of	a
solution	is	the	venerable	and	battle-worn	Common	Gateway	Interface	(CGI),	providing	a
language-agnostic	interface	using	only	standard	input,	standard	output,	and	environment
variables.

NOTE
This	chapter	covers	WAI	version	3.0,	which	has	a	number	of	changes	from	previous	versions.

Back	when	Perl	was	becoming	the	de	facto	web	programming	language,	a	major
shortcoming	of	CGI	became	apparent:	the	process	needed	to	be	started	anew	for	each
request.	When	dealing	with	an	interpreted	language	and	an	application	requiring	a
database	connection,	this	overhead	became	unbearable.	FastCGI	(and	later	SCGI)	arose	as
a	successor	to	CGI,	but	it	seems	that	much	of	the	programming	world	went	in	a	different
direction.

Each	language	began	creating	its	own	standard	for	interfacing	with	servers:	mod_perl,
mod_python,	mod_php,	mod_ruby.	Within	the	same	language,	multiple	interfaces	arose.
In	some	cases,	we	even	had	interfaces	on	top	of	interfaces.	And	all	of	this	led	to	much
duplicated	effort:	a	Python	application	designed	to	work	with	FastCGI	wouldn’t	work	with
mod_python;	mod_python	only	exists	for	certain	web	servers;	and	these	programming
language-specific	web	server	extensions	need	to	be	written	for	each	programming
language.

Haskell	has	its	own	history.	We	originally	had	the	cgi	package,	which	provided	a	monadic
interface.	The	fastcgi	package	then	provided	the	same	interface.	Meanwhile,	it	seemed
that	the	majority	of	Haskell	web	development	focused	on	the	standalone	server.	The
problem	here	is	that	each	server	comes	with	its	own	interface,	meaning	that	you	need	to
target	a	specific	backend.	This	means	that	it	is	impossible	to	share	common	features,	like
gzip	encoding,	development	servers,	and	testing	frameworks.

WAI	attempts	to	solve	this,	by	providing	a	generic	and	efficient	interface	between	web
servers	and	applications.	Any	handler	supporting	the	interface	can	serve	any	WAI
application,	while	any	application	using	the	interface	can	run	on	any	handler.

At	the	time	of	writing,	there	are	various	backends,	including	Warp,	FastCGI,	and	the
development	server.	There	are	even	more	esoteric	backends,	like	wai-handler-webkit	for
creating	desktop	apps.	wai-extra	provides	many	common	middleware	components	like
gzip,	JSON-P,	and	virtual	hosting.	wai-test	makes	it	easy	to	write	unit	tests,	and	wai-
handler-devel	lets	you	develop	your	applications	without	worrying	about	stopping	to

compile.	Yesod	targets	WAI,	as	well	as	other	Haskell	web	frameworks	such	as	Scotty	and
MFlow.	It’s	also	used	by	some	applications	that	skip	the	framework	entirely,	including
Hoogle.

NOTE
Yesod	provides	an	alternative	approach	for	a	devel	server,	known	as	yesod	devel.	The	difference	from
wai-handler-devel	is	that	yesod	devel	actually	compiles	your	code	each	time,	respecting	all	settings	in
your	cabal	file.	This	is	the	recommended	approach	for	general	Yesod	development.

The	Interface
The	interface	itself	is	very	straightforward:	an	application	takes	a	request	and	returns	a
response.	A	response	consists	of	an	HTTP	status,	a	list	of	headers,	and	a	response	body.	A
request	contains	various	information:	the	requested	path,	query	string,	request	body,	HTTP
version,	and	so	on.

In	order	to	handle	resource	management	in	an	exception-safe	manner,	we	use	continuation
passing	style	for	returning	the	response,	similar	to	how	the	bracket	function	works.	This
makes	our	definition	of	an	application	look	like:

type	Application	=

				Request	->

				(Response	->	IO	ResponseReceived)	->

				IO	ResponseReceived

The	first	argument	is	a	Request,	which	shouldn’t	be	too	surprising.	The	second	argument
is	the	continuation,	or	what	we	should	do	with	a	Response.	Generally	speaking,	this	will
just	be	sending	it	to	the	client.	We	use	the	special	ResponseReceived	type	to	ensure	that
the	application	does	in	fact	call	the	continuation.

This	may	seem	a	little	strange,	but	usage	is	pretty	straightforward,	as	we’ll	demonstrate
next.

Response	Body
Haskell	has	a	data	type	known	as	a	“lazy”	ByteString.	By	utilizing	laziness,	you	can
create	large	values	without	exhausting	memory.	Using	lazy	I/O,	you	can	do	such	tricks	as
having	a	value	that	represents	the	entire	contents	of	a	file,	yet	only	occupies	a	small
memory	footprint.	In	theory,	a	lazy	ByteString	is	the	only	representation	necessary	for	a
response	body.

In	practice,	while	lazy	ByteStrings	are	wonderful	for	generating	“pure”	values,	the	lazy
I/O	necessary	to	read	a	file	introduces	some	nondeterminism	into	our	programs.	When
serving	thousands	of	small	files	a	second,	the	limiting	factor	is	not	memory,	but	file
handles.	Using	lazy	I/O,	file	handles	may	not	be	freed	immediately,	leading	to	resource
exhaustion.	To	deal	with	this,	WAI	provides	its	own	streaming	data	interface.

The	core	of	this	streaming	interface	is	the	Builder.	A	Builder	represents	an	action	to	fill
up	a	buffer	with	bytes	of	data.	This	is	more	efficient	than	simply	passing	ByteStrings
around,	as	it	can	avoid	multiple	copies	of	data.	In	many	cases,	an	application	needs	to
provide	only	a	single	Builder	value.	For	that	simple	case,	we	have	the	ResponseBuilder
constructor.

However,	there	are	times	when	an	application	will	need	to	interleave	IO	actions	with
yielding	of	data	to	the	client.	For	that	case,	we	have	ResponseStream.	With
ResponseStream,	you	provide	a	function.	This	function	in	turn	takes	two	actions:	a	“yield
more	data”	action,	and	a	“flush	the	buffer”	action.	This	allows	you	to	yield	data,	perform
IO	actions,	and	flush,	as	many	times	as	you	need,	and	with	any	interleaving	desired.

There	is	one	further	optimization:	many	operating	systems	provide	a	sendfile	system
call,	which	sends	a	file	directly	to	a	socket,	bypassing	a	lot	of	the	memory	copying
inherent	in	more	general	I/O	system	calls.	For	that	case,	we	have	ResponseFile.

Finally,	there	are	some	cases	where	we	need	to	break	out	of	the	HTTP	mode	entirely.	Two
examples	are	WebSockets,	where	we	need	to	upgrade	a	half-duplex	HTTP	connection	to	a
full-duplex	connection	and	HTTPS	proxying,	which	requires	our	proxy	server	to	establish
a	connection,	and	then	become	a	dumb	data	transport	agent.	For	these	cases,	we	have	the
ResponseRaw	constructor.	Note	that	not	all	WAI	handlers	can	in	fact	support	ResponseRaw,
though	the	most	commonly	used	handler,	Warp,	does	provide	this	support.

Request	Body
Like	with	response	bodies,	we	could	theoretically	use	a	lazy	ByteString	for	request
bodies,	but	in	practice	we	want	to	avoid	lazy	I/O.	Instead,	the	request	body	is	represented
with	an	IO	ByteString	action	(ByteString	here	being	a	strict	ByteString).	Note	that	this
does	not	return	the	entire	request	body,	but	rather	just	the	next	chunk	of	data.	Once	you’ve
consumed	the	entire	request	body,	further	calls	to	this	action	will	return	an	empty
ByteString.

Note	that,	unlike	with	response	bodies,	we	have	no	need	for	using	Builders	on	the	request
side,	as	our	purpose	is	purely	for	reading.

The	request	body	could	in	theory	contain	any	type	of	data,	but	the	most	common	are	URL-
encoded	and	multipart	form	data.	The	wai-extra	package	contains	built-in	support	for
parsing	these	in	a	memory-efficient	manner.

Hello,	World
To	demonstrate	the	simplicity	of	WAI,	let’s	look	at	a	Hello,	World	example.	In	this
example,	we’re	going	to	use	the	OverloadedStrings	language	extension	to	avoid
explicitly	packing	string	values	into	ByteStrings:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Network.Wai

import	Network.HTTP.Types	(status200)

import	Network.Wai.Handler.Warp	(run)

application	_	respond	=	respond	$

		responseLBS	status200	[("Content-Type",	"text/plain")]	"Hello,	World"

main	=	run	3000	application

Lines	2	through	4	perform	our	imports.	Warp	is	provided	by	the	warp	package,	and	is	the
premier	WAI	backend.	WAI	is	also	built	on	top	of	the	http-types	package,	which
provides	a	number	of	data	types	and	convenience	values,	including	status200.

First,	we	define	our	application.	Because	we	don’t	care	about	the	specific	request
parameters,	we	ignore	the	first	argument	to	the	function,	which	contains	the	request	value.
The	second	argument	is	our	“send	a	response”	function,	which	we	immediately	use.	The
response	value	we	send	is	built	from	a	lazy	ByteString	(thus	responseLBS),	with	status
code	of	200	OK,	a	text/plain	content	type,	and	a	body	containing	the	words	“Hello,
World”.	Pretty	straightforward.

Resource	Allocation
Let’s	make	this	a	little	more	interesting,	and	try	to	allocate	a	resource	for	our	response.
We’ll	create	an	MVar	in	our	main	function	to	track	the	number	of	requests,	and	then	hold
that	MVar	while	sending	each	response:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Blaze.ByteString.Builder											(fromByteString)

import											Blaze.ByteString.Builder.Char.Utf8	(fromShow)

import											Control.Concurrent.MVar

import											Data.Monoid																								((<>))

import											Network.HTTP.Types																	(status200)

import											Network.Wai

import											Network.Wai.Handler.Warp											(run)

application	countRef	_	respond	=	do

				modifyMVar	countRef	$	\count	->	do

								let	count'	=	count	+	1

												msg	=	fromByteString	"You	are	visitor	number:	"	<>

																		fromShow	count'

								responseReceived	<-	respond	$	responseBuilder

												status200

												[("Content-Type",	"text/plain")]

												msg

								return	(count',	responseReceived)

main	=	do

				visitorCount	<-	newMVar	0

				run	3000	$	application	visitorCount

This	is	where	WAI’s	continuation	interface	shines.	We	can	use	the	standard	modifyMVar
function	to	acquire	the	MVar	lock	and	send	our	response.	Note	how	we	thread	the
responseReceived	value	through,	though	we	never	actually	use	the	value	for	anything.	It
is	merely	witness	to	the	fact	that	we	have,	in	fact,	sent	a	response.

Notice	also	how	we	take	advantage	of	Builders	in	constructing	our	msg	value.	Instead	of
concatenating	two	ByteStrings	together	directly,	we	monoidally	append	two	different
Builder	values.	The	advantage	to	this	is	that	the	results	will	end	up	being	copied	directly
into	the	final	output	buffer,	instead	of	first	being	copied	into	a	temporary	ByteString
buffer	to	only	later	be	copied	into	the	final	buffer.

Streaming	Response
Let’s	give	our	streaming	interface	a	test	as	well:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Blaze.ByteString.Builder	(fromByteString)

import											Control.Concurrent							(threadDelay)

import											Network.HTTP.Types							(status200)

import											Network.Wai

import											Network.Wai.Handler.Warp	(run)

application	_	respond	=	respond	$	responseStream	status200

				[("Content-Type",	"text/plain")]

				$	\send	flush	->	do

								send	$	fromByteString	"Starting	the	response…\n"

								flush

								threadDelay	1000000

								send	$	fromByteString	"All	done!\n"

main	=	run	3000	application

We	use	responseStream,	and	our	third	argument	is	a	function	that	takes	our	“send	a
builder”	and	“flush	the	buffer”	functions.	Notice	how	we	flush	after	our	first	chunk	of
data,	to	make	sure	the	client	sees	the	data	immediately.	However,	there’s	no	need	to	flush
at	the	end	of	a	response.	WAI	requires	that	the	handler	automatically	flush	at	the	end	of	a
stream.

Middleware
In	addition	to	allowing	our	applications	to	run	on	multiple	backends	without	code
changes,	WAI	allows	us	another	benefit:	middleware.	Middleware	is	essentially	an
application	transformer,	taking	one	application	and	returning	another	one.

Middleware	components	can	be	used	to	provide	lots	of	services:	cleaning	up	URLs,
authentication,	caching,	JSON-P	requests.	But	perhaps	the	most	useful	and	most	intuitive
middleware	is	the	one	for	gzip	compression.	This	middleware	works	very	simply:	it	parses
the	request	headers	to	determine	if	a	client	supports	compression,	and	if	so,	it	compresses
the	response	body	and	adds	the	appropriate	response	header.

The	great	thing	about	middleware	is	that	it	is	unobtrusive.	Let’s	see	how	we	would	apply
the	gzip	middleware	to	our	Hello,	World	application:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Network.Wai

import	Network.Wai.Handler.Warp	(run)

import	Network.Wai.Middleware.Gzip	(gzip,	def)

import	Network.HTTP.Types	(status200)

application	_	respond	=	respond	$	responseLBS	status200

																							[("Content-Type",	"text/plain")]

																							"Hello,	World"

main	=	run	3000	$	gzip	def	application

We	added	an	import	line	to	actually	have	access	to	the	middleware,	and	then	simply
applied	gzip	to	our	application.	You	can	also	chain	together	multiple	middleware
components:	a	line	such	as	gzip	False	$	jsonp	$	othermiddleware	$	myapplication
is	perfectly	valid.	One	word	of	warning:	the	order	the	middleware	is	applied	in	can	be
important.	For	example,	jsonp	needs	to	work	on	uncompressed	data,	so	if	you	apply	it
after	you	apply	gzip,	you’ll	have	trouble.

Appendix	C.	Settings	Types

Let’s	say	you’re	writing	a	web	server.	You	want	the	server	to	take	a	port	to	listen	on,	and
an	application	to	run.	So	you	create	the	following	function:

run	::	Int	->	Application	->	IO	()

But	suddenly	you	realize	that	some	people	will	want	to	customize	their	timeout	durations.
So	you	modify	your	API:

run	::	Int	->	Int	->	Application	->	IO	()

So,	which	Int	is	the	timeout,	and	which	is	the	port?	Well,	you	could	create	some	type
aliases,	or	comment	your	code.	But	there’s	another	problem	creeping	into	the	code:	this
run	function	is	getting	unmanageable.	Soon	you’ll	need	to	take	an	extra	parameter	to
indicate	how	exceptions	should	be	handled,	and	then	another	one	to	control	which	host	to
bind	to,	and	so	on.

A	more	extensible	solution	is	to	introduce	a	settings	data	type:

data	Settings	=	Settings

				{	settingsPort	::	Int

				,	settingsHost	::	String

				,	settingsTimeout	::	Int

				}

And	this	makes	the	calling	code	almost	self-documenting:

run	Settings

				{	settingsPort	=	8080

				,	settingsHost	=	"127.0.0.1"

				,	settingsTimeout	=	30

				}	myApp

Great	—	couldn’t	be	clearer,	right?	True,	but	what	happens	when	you	have	50	settings	to
your	web	server?	Do	you	really	want	to	have	to	specify	all	of	those	each	time?	Of	course
not.	So	instead,	the	web	server	should	provide	a	set	of	defaults:

defaultSettings	=	Settings	3000	"127.0.0.1"	30

And	now,	instead	of	needing	to	write	that	long	bit	of	code,	you	can	get	away	with:

run	defaultSettings	{	settingsPort	=	8080	}	myApp	--	(1)

This	is	great,	except	for	one	minor	hitch.	Let’s	say	you	now	decide	to	add	an	extra	record
to	Settings.	Any	code	out	in	the	wild	looking	like	this:

run	(Settings	8080	"127.0.0.1"	30)	myApp	--	(2)

will	be	broken,	because	the	Settings	constructor	now	takes	four	arguments.	The	proper
thing	to	do	would	be	to	bump	the	major	version	number	so	that	dependent	packages	don’t
get	broken.	But	having	to	change	major	versions	for	every	minor	setting	you	add	is	a
nuisance.	The	solution?	Don’t	export	the	Settings	constructor:

module	MyServer

				(Settings

				,	settingsPort

				,	settingsHost

				,	settingsTimeout

				,	run

				,	defaultSettings

)	where

With	this	approach,	no	one	can	write	code	like	(2),	so	you	can	freely	add	new	records
without	any	fear	of	code	breaking.

The	one	downside	of	this	approach	is	that	it’s	not	immediately	obvious	from	the	Haddocks
that	you	can	actually	change	the	settings	via	record	syntax.	That’s	the	point	of	this	chapter:
to	clarify	what’s	going	on	in	the	libraries	that	use	this	technique.

I	personally	use	this	technique	in	a	few	places	—	feel	free	to	have	a	look	at	the	Haddocks
to	see	what	I	mean:

Warp:	Settings

http-conduit:	Request	and	ManagerSettings

xml-conduit

Parsing:	ParseSettings

Rendering:	RenderSettings

As	a	tangential	issue,	http-conduit	and	xml-conduit	actually	create	instances	of	the
Default	typeclass	instead	of	declaring	brand	new	identifiers.	This	means	you	can	just	type
def	instead	of	defaultParserSettings.

Appendix	D.	http-conduit

Most	of	Yesod	is	about	serving	content	over	HTTP.	But	that’s	only	half	the	story:	someone
has	to	receive	it.	And	even	when	you’re	writing	a	web	app,	sometimes	that	someone	will
be	you.	If	you	want	to	consume	content	from	other	services	or	interact	with	RESTful
APIs,	you’ll	need	to	write	client	code.	And	the	recommended	approach	for	that	is	http-
conduit.

NOTE
This	chapter	is	not	directly	connected	to	Yesod,	and	will	be	generally	useful	for	anyone	wanting	to	make
HTTP	requests.

Synopsis
{-#	LANGUAGE	OverloadedStrings	#-}

import	Network.HTTP.Conduit	--	the	main	module

--	The	streaming	interface	uses	conduits

import	Data.Conduit

import	Data.Conduit.Binary	(sinkFile)

import	qualified	Data.ByteString.Lazy	as	L

import	Control.Monad.IO.Class	(liftIO)

import	Control.Monad.Trans.Resource	(runResourceT)

main	::	IO	()

main	=	do

				--	Simplest	query:	just	download	the	information	from	the	given	URL	as	a

				--	lazy	ByteString.

				simpleHttp	"http://www.example.com/foo.txt"	>>=	L.writeFile	"foo.txt"

				--	Use	the	streaming	interface	instead.	We	need	to	run	all	of	this	inside	a

				--	ResourceT,	to	ensure	that	all	our	connections	get	properly	cleaned	up	in

				--	the	case	of	an	exception.

				runResourceT	$	do

								--	We	need	a	Manager,	which	keeps	track	of	open	connections.	simpleHttp

								--	creates	a	new	manager	on	each	run	(i.e.,	it	never	reuses

								--	connections).

								manager	<-	liftIO	$	newManager	conduitManagerSettings

								--	A	more	efficient	version	of	the	simpleHttp	query	above.	First	we

								--	parse	the	URL	to	a	request.

								req	<-	liftIO	$	parseUrl	"http://www.example.com/foo.txt"

								--	Now	get	the	response

								res	<-	http	req	manager

								--	And	finally	stream	the	value	to	a	file

								responseBody	res	$$+-	sinkFile	"foo.txt"

								--	Make	it	a	POST	request,	don't	follow	redirects,	and	accept	any

								--	status	code

								let	req2	=	req

																{	method	=	"POST"

																,	redirectCount	=	0

																,	checkStatus	=	_	_	_	->	Nothing

																}

								res2	<-	http	req2	manager

								responseBody	res2	$$+-	sinkFile	"post-foo.txt"

Concepts
The	simplest	way	to	make	a	request	in	http-conduit	is	with	the	simpleHttp	function.
This	function	takes	a	String	giving	a	URL	and	returns	a	ByteString	with	the	contents	of
that	URL.	But	under	the	surface,	there	are	a	few	more	steps:

A	new	connection	Manager	is	allocated.

The	URL	is	parsed	to	a	Request.	If	the	URL	is	invalid,	then	an	exception	is	thrown.

The	HTTP	request	is	made,	following	any	redirects	from	the	server.

If	the	response	has	a	status	code	outside	the	200	range,	an	exception	is	thrown.

The	response	body	is	read	into	memory	and	returned.

runResourceT	is	called,	which	will	free	up	any	resources	(e.g.,	the	open	socket	to	the
server).

If	you	want	more	control	over	what’s	going	on,	you	can	configure	any	of	these	steps	(plus
a	few	more)	by	explicitly	creating	a	Request	value,	allocating	your	Manager	manually,	and
using	the	http	and	httpLbs	functions.

Request
The	easiest	way	to	create	a	Request	is	with	the	parseUrl	function.	This	function	will
return	a	value	in	any	Failure	monad,	such	as	Maybe	or	IO.	The	last	of	those	is	the	most
commonly	used,	and	results	in	a	runtime	exception	whenever	an	invalid	URL	is	provided.
However,	you	can	use	a	different	monad	if,	for	example,	you	want	to	validate	user	input:

import	Network.HTTP.Conduit

import	System.Environment	(getArgs)

import	qualified	Data.ByteString.Lazy	as	L

import	Control.Monad.IO.Class	(liftIO)

main	::	IO	()

main	=	do

				args	<-	getArgs

				case	args	of

								[urlString]	->

												case	parseUrl	urlString	of

																Nothing	->	putStrLn	"Sorry,	invalid	URL"

																Just	req	->	withManager	$	\manager	->	do

																				res	<-	httpLbs	req	manager

																				liftIO	$	L.putStr	$	responseBody	res

								_	->	putStrLn	"Sorry,	please	provide	exactly	one	URL"

The	Request	type	is	abstract,	so	that	http-conduit	can	add	new	settings	in	the	future
without	breaking	the	API	(see	Appendix	C	for	more	information).	In	order	to	make
changes	to	individual	records,	you	use	record	notation.	For	example,	a	modification	to	our
program	that	issues	HEAD	requests	and	prints	the	response	headers	would	be:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Network.HTTP.Conduit

import	System.Environment	(getArgs)

import	qualified	Data.ByteString.Lazy	as	L

import	Control.Monad.IO.Class	(liftIO)

main	::	IO	()

main	=	do

				args	<-	getArgs

				case	args	of

								[urlString]	->

												case	parseUrl	urlString	of

																Nothing	->	putStrLn	"Sorry,	invalid	URL"

																Just	req	->	withManager	$	\manager	->	do

																				let	reqHead	=	req	{	method	=	"HEAD"	}

																				res	<-	http	reqHead	manager

																				liftIO	$	do

																								print	$	responseStatus	res

																								mapM_	print	$	responseHeaders	res

								_	->	putStrLn	"Sorry,	please	provide	example	one	URL"

There	are	a	number	of	different	configuration	settings	in	the	API;	some	noteworthy	ones
are:
proxy

Allows	you	to	pass	the	request	through	the	given	proxy	server.
redirectCount

Indicates	how	many	redirects	to	follow.	The	default	is	10.

checkStatus

Checks	the	status	code	of	the	return	value.	By	default,	gives	an	exception	for	any
non-2XX	response.

requestBody

Specifies	the	request	body	to	be	sent.	Be	sure	to	also	update	the	method.	For	the
common	case	of	URL-encoded	data,	you	can	use	the	urlEncodedBody	function.

Manager
The	connection	manager	allows	you	to	reuse	connections.	When	making	multiple	queries
to	a	single	server	(e.g.,	accessing	Amazon	S3),	this	can	be	critical	for	creating	efficient
code.	A	manager	will	keep	track	of	multiple	connections	to	a	given	server	(taking	into
account	ports	and	SSL	as	well),	automatically	reaping	unused	connections	as	needed.
When	you	make	a	request,	http-conduit	first	tries	to	check	out	an	existing	connection.
When	you’re	finished	with	the	connection	(if	the	server	allows	keep-alive),	the	connection
is	returned	to	the	manager.	If	anything	goes	wrong,	the	connection	is	closed.

To	keep	our	code	exception-safe,	we	use	the	ResourceT	monad	transformer.	All	this
means	for	you	is	that	your	code	needs	to	be	wrapped	inside	a	call	to	runResourceT,	either
implicitly	or	explicitly,	and	that	code	inside	that	block	will	need	to	use	liftIO	to	perform
normal	IO	actions.

There	are	two	ways	you	can	get	ahold	of	a	manager.	newManager	will	return	a	manager
that	will	not	be	automatically	closed	(you	can	use	closeManager	to	do	so	manually),	while
withManager	will	start	a	new	ResourceT	block,	allow	you	to	use	the	manager,	and	then
automatically	close	the	ResourceT	when	you’re	done.	If	you	want	to	use	a	ResourceT	for
an	entire	application,	and	have	no	need	to	close	it,	you	should	probably	use	newManager.

One	other	thing	to	point	out:	you	obviously	don’t	want	to	create	a	new	manager	for	each
and	every	request;	that	would	defeat	the	whole	purpose.	You	should	create	your	Manager
early	and	then	share	it.

Response
The	Response	data	type	contains	three	pieces	of	information:	the	status	code,	the	response
headers,	and	the	response	body.	The	first	two	are	straightforward;	let’s	discuss	the	body.

The	Response	type	has	a	type	variable	to	allow	the	response	body	to	be	of	multiple	types.
If	you	want	to	use	http-conduit’s	streaming	interface,	you	want	this	to	be	a	Source.	For
the	simple	interface,	it	will	be	a	lazy	ByteString.	One	thing	to	note	is	that,	even	though
we	use	a	lazy	ByteString,	the	entire	response	is	held	in	memory.	In	other	words,	we
perform	no	lazy	I/O	in	this	package.

NOTE
The	conduit	package	does	provide	a	lazy	module	that	will	allow	you	to	read	this	value	in	lazily,	but	like
any	lazy	I/O,	it’s	a	bit	unsafe,	and	definitely	nondeterministic.	If	you	need	it,	though,	you	can	use	it.

http	and	httpLbs
So	let’s	tie	it	together.	The	http	function	gives	you	access	to	the	streaming	interface	(i.e.,
it	returns	a	Response	using	a	ResumableSource),	while	httpLbs	returns	a	lazy
ByteString.	Both	of	these	return	values	in	the	ResourceT	transformer	so	that	they	can
access	the	Manager	and	have	connections	handled	properly	in	the	case	of	exceptions.

NOTE
If	you	want	to	ignore	the	remainder	of	a	large	response	body,	you	can	connect	to	the	sinkNull	sink.	The
underlying	connection	will	automatically	be	closed,	preventing	you	from	having	to	read	a	large	response
body	over	the	network.

Appendix	E.	xml-conduit

Many	developers	cringe	at	the	thought	of	dealing	with	XML	files.	XML	has	the	reputation
of	having	a	complicated	data	model,	with	obfuscated	libraries	and	huge	layers	of
complexity	sitting	between	you	and	your	goal.	I’d	like	to	posit	that	a	lot	of	that	pain	is
actually	a	language	and	library	issue,	not	inherent	to	XML.

Once	again,	Haskell’s	type	system	allows	us	to	easily	break	down	the	problem	to	its	most
basic	form.	The	xml-types	package	neatly	deconstructs	the	XML	data	model	(both	a
streaming	and	a	DOM-based	approach)	into	some	simple	algebraic	data	types.	Haskell’s
standard	immutable	data	structures	make	it	easier	to	apply	transforms	to	documents,	and	a
simple	set	of	functions	makes	parsing	and	rendering	a	breeze.

We’re	going	to	be	covering	the	xml-conduit	package.	Under	the	surface,	this	package
uses	a	lot	of	the	approaches	Yesod	in	general	does	for	high	performance:	blaze-builder,
text,	conduit,	and	attoparsec.	But	from	a	user	perspective,	it	provides	everything	from
the	simplest	APIs	(readFile/writeFile)	through	full	control	of	XML	event	streams.

In	addition	to	xml-conduit,	there	are	a	few	related	packages	that	come	into	play,	like	xml-
hamlet	and	xml2html.	We’ll	cover	both	how	to	use	all	these	packages,	and	when	they
should	be	used.

Synopsis
<!--	Input	XML	file	-->

<document	title="My	Title">

				<para>This	is	a	paragraph.	It	has	emphasized

										and	strong	words.</para>

				<image	href="myimage.png"/>

</document>

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

import	qualified	Data.Map								as	M

import											Prelude									hiding	(readFile,	writeFile)

import											Text.Hamlet.XML

import											Text.XML

main	::	IO	()

main	=	do

				--	readFile	will	throw	any	parse	errors	as	runtime	exceptions.

				--	def	uses	the	default	settings.

				Document	prologue	root	epilogue	<-	readFile	def	"input.xml"

				--	root	is	the	root	element	of	the	document;	let's	modify	it

				let	root'	=	transform	root

				--	And	now	we	write	out.	Let's	indent	our	output.

				writeFile	def

								{	rsPretty	=	True

								}	"output.html"	$	Document	prologue	root'	epilogue

--	We'll	turn	our	<document>	into	an	XHTML	document

transform	::	Element	->	Element

transform	(Element	_name	attrs	children)	=	Element	"html"	M.empty

				[xml|

								<head>

												<title>

																$maybe	title	<-	M.lookup	"title"	attrs

																				\#{title}

																$nothing

																				Untitled	Document

								<body>

												$forall	child	<-	children

																^{goNode	child}

				|]

goNode	::	Node	->	[Node]

goNode	(NodeElement	e)	=	[NodeElement	$	goElem	e]

goNode	(NodeContent	t)	=	[NodeContent	t]

goNode	(NodeComment	_)	=	[]	--	hide	comments

goNode	(NodeInstruction	_)	=	[]	--	and	hide	processing	instructions	too

--	convert	each	source	element	to	its	XHTML	equivalent

goElem	::	Element	->	Element

goElem	(Element	"para"	attrs	children)	=

				Element	"p"	attrs	$	concatMap	goNode	children

goElem	(Element	"em"	attrs	children)	=

				Element	"i"	attrs	$	concatMap	goNode	children

goElem	(Element	"strong"	attrs	children)	=

				Element	"b"	attrs	$	concatMap	goNode	children

goElem	(Element	"image"	attrs	_children)	=

				Element	"img"	(fixAttr	attrs)	[]	--	images	can't	have	children

		where

				fixAttr	mattrs

								|	"href"	`M.member`	mattrs		=

										M.delete	"href"	$	M.insert	"src"	(mattrs	M.!	"href")	mattrs

								|	otherwise																	=	mattrs

goElem	(Element	name	attrs	children)	=

				--	don't	know	what	to	do,	just	pass	it	through…

				Element	name	attrs	$	concatMap	goNode	children

<?xml	version="1.0"	encoding="UTF-8"?>

<!--	Output	XHTML	-->

<html>

				<head>

								<title>

												My	Title

								</title>

				</head>

				<body>

								<p>

												This	is	a	paragraph.	It	has

												<i>

																emphasized

												</i>

												and

												

																strong

												

												words.

								</p>

								

				</body>

</html>

Types
Let’s	take	a	bottom-up	approach	to	analyzing	types.	This	section	will	also	serve	as	a
primer	on	the	XML	data	model	itself,	so	don’t	worry	if	you’re	not	completely	familiar
with	it.

I	think	the	first	place	where	Haskell	really	shows	its	strength	is	with	the	Name	data	type.
Many	languages	(like	Java)	struggle	with	properly	expressing	names.	The	issue	is	that
there	are,	in	fact,	three	components	to	a	name:	its	local	name,	its	namespace	(optional),
and	its	prefix	(also	optional).	Let’s	look	at	some	XML	to	explain:

<no-namespace/>

<no-prefix	xmlns="first-namespace"	first-attr="value1"/>

<foo:with-prefix	xmlns:foo="second-namespace"	foo:second-attr="value2"/>

The	first	tag	has	a	local	name	of	no-namespace,	and	no	namespace	or	prefix.	The	second
tag	(local	name:	no-prefix)	also	has	no	prefix,	but	it	does	have	a	namespace	(first-
namespace).	first-attr,	however,	does	not	inherit	that	namespace:	attribute	namespaces
must	always	be	explicitly	set	with	a	prefix.

NOTE
Namespaces	are	almost	always	URIs	of	some	sort,	though	there	is	nothing	in	any	specification	requiring
that	it	be	so.

The	third	tag	has	a	local	name	of	with-prefix,	a	prefix	of	foo,	and	a	namespace	of
second-namespace.	Its	attribute	has	a	second-attr	local	name	and	the	same	prefix	and
namespace.	The	xmlns	and	xmlns:foo	attributes	are	part	of	the	namespace	specification,
and	are	not	considered	attributes	of	their	respective	elements.

So	let’s	review	what	we	need	from	a	name:	every	name	has	a	local	name,	and	it	can
optionally	have	a	prefix	and	namespace.	Seems	like	a	simple	fit	for	a	record	type:

data	Name	=	Name

				{	nameLocalName	::	Text

				,	nameNamespace	::	Maybe	Text

				,	namePrefix				::	Maybe	Text

				}

According	to	the	XML	namespace	standard,	two	names	are	considered	equivalent	if	they
have	the	same	local	name	and	namespace.	In	other	words,	the	prefix	is	not	important.
Therefore,	xml-types	defines	Eq	and	Ord	instances	that	ignore	the	prefix.

The	last	class	instance	worth	mentioning	is	IsString.	It	would	be	very	tedious	to	have	to
manually	type	out	Name	"p"	Nothing	Nothing	every	time	we	want	a	paragraph.	If	you
turn	on	OverloadedStrings,	"p"	will	resolve	to	that	all	by	itself!	In	addition,	the
IsString	instance	recognizes	something	called	Clark	notation,	which	allows	you	to	prefix

the	namespace	surrounded	in	curly	brackets.	In	other	words:

"{namespace}element"	==	Name	"element"	(Just	"namespace")	Nothing

"element"	==	Name	"element"	Nothing	Nothing

The	Four	Types	of	Nodes
An	XML	document	is	a	tree	of	nested	nodes.	There	are	in	fact	four	different	types	of
nodes	allowed:	elements,	content	(i.e.,	text),	comments,	and	processing	instructions.

NOTE
You	may	not	be	familiar	with	that	last	one,	as	it’s	less	commonly	used.	It	is	marked	up	as:

<?target	data?>

There	are	two	surprising	facts	about	processing	instructions	(PIs):

PIs	don’t	have	attributes.	Although	you’ll	often	see	processing	instructions	that	appear	to	have
attributes,	there	are	in	fact	no	rules	about	that	data	of	an	instruction.

The	<?xml	…?>	stuff	at	the	beginning	of	a	document	is	not	a	processing	instruction.	It	is	simply	the
beginning	of	the	document	(known	as	the	XML	declaration),	and	happens	to	look	an	awful	lot	like	a
PI.	The	difference	is	that	the	<?xml	…?>	line	will	not	appear	in	your	parsed	content.

Processing	instructions	have	two	pieces	of	text	associated	with	them	(the	target	and	the
data),	so	we	have	a	simple	data	type:

data	Instruction	=	Instruction

				{	instructionTarget	::	Text

				,	instructionData	::	Text

				}

Comments	have	no	special	data	type,	because	they	are	just	text.	But	content	is	an
interesting	one:	it	can	contain	either	plain	text	or	unresolved	entities	(e.g.,	©right-
statement;).	xml-types	keeps	those	unresolved	entities	in	all	the	data	types	in	order	to
completely	match	the	spec.	However,	in	practice,	it	can	be	very	tedious	to	program	against
those	data	types.	And	in	most	use	cases,	an	unresolved	entity	is	going	to	end	up	as	an	error
anyway.

Therefore,	the	Text.XML	module	defines	its	own	set	of	data	types	for	nodes,	elements,	and
documents	that	remove	all	unresolved	entities.	If	you	need	to	deal	with	unresolved	entities
instead,	you	should	use	the	Text.XML.Unresolved	module.	From	now	on,	we’ll	be
focusing	only	on	the	Text.XML	data	types,	though	they	are	almost	identical	to	the	xml-
types	versions.

Anyway,	after	that	detour:	content	is	just	a	piece	of	text,	and	therefore	it	too	does	not	have
a	special	data	type.	The	last	node	type	is	an	element,	which	contains	three	pieces	of
information:	a	name,	a	map	of	attribute	name/value	pairs,	and	a	list	of	child	nodes.	(In
xml-types,	this	value	could	contain	unresolved	entities	as	well.)	So	our	Element	is
defined	as:

data	Element	=	Element

				{	elementName	::	Name

				,	elementAttributes	::	Map	Name	Text

				,	elementNodes	::	[Node]

				}

Which	of	course	begs	the	question:	what	does	a	Node	look	like?	This	is	where	Haskell
really	shines	—	its	sum	types	model	the	XML	data	model	perfectly:

data	Node

				=	NodeElement	Element

				|	NodeInstruction	Instruction

				|	NodeContent	Text

				|	NodeComment	Text

Documents
So	now	we	have	elements	and	nodes,	but	what	about	an	entire	document?	Let’s	just	lay
out	the	data	types:

data	Document	=	Document

				{	documentPrologue	::	Prologue

				,	documentRoot	::	Element

				,	documentEpilogue	::	[Miscellaneous]

				}

data	Prologue	=	Prologue

				{	prologueBefore	::	[Miscellaneous]

				,	prologueDoctype	::	Maybe	Doctype

				,	prologueAfter	::	[Miscellaneous]

				}

data	Miscellaneous

				=	MiscInstruction	Instruction

				|	MiscComment	Text

data	Doctype	=	Doctype

				{	doctypeName	::	Text

				,	doctypeID	::	Maybe	ExternalID

				}

data	ExternalID

				=	SystemID	Text

				|	PublicID	Text	Text

The	XML	spec	says	that	a	document	has	a	single	root	element	(documentRoot).	It	also	has
an	optional	DOCTYPE	statement.	Before	and	after	both	the	DOCTYPE	and	the	root	element,
you	are	allowed	to	have	comments	and	processing	instructions.	(You	can	also	have
whitespace,	but	that	is	ignored	in	the	parsing.)

So	what’s	up	with	the	DOCTYPE?	Well,	it	specifies	the	root	element	of	the	document,	and
then	optional	public	and	system	identifiers.	These	are	used	to	refer	to	document	type
definition	(DTD)	files,	which	give	more	information	about	the	file	(e.g.,	validation	rules,
default	attributes,	entity	resolution).	Let’s	take	a	look	at	some	examples:

<!--	no	external	identifier	-->

<!DOCTYPE	root>

<!--	a	system	identifier	-->

<!DOCTYPE	root	SYSTEM	"root.dtd">

<!--	public	identifiers	have	a	system	ID	as	well	-->

<!DOCTYPE	root	PUBLIC	"My	Root	Public	Identifier"	"root.dtd">

And	that,	my	friends,	is	the	entire	XML	data	model.	For	many	parsing	purposes,	you’ll	be
able	to	simply	ignore	the	entire	Document	data	type	and	go	immediately	to	the
documentRoot.

Events
In	addition	to	the	document	API,	xml-types	defines	an	Event	data	type.	This	can	be	used
for	constructing	streaming	tools,	which	can	be	much	more	memory-efficient	for	certain
kinds	of	processing	(e.g.,	adding	an	extra	attribute	to	all	elements).	We	will	not	be
covering	the	streaming	API	here,	though	it	should	look	very	familiar	after	analyzing	the
document	API.

NOTE
You	can	see	an	example	of	the	streaming	API	in	the	Sphinx	case	study	(Chapter	25).

Text.XML
The	recommended	entry	point	to	xml-conduit	is	the	Text.XML	module.	This	module
exports	all	of	the	data	types	you’ll	need	to	manipulate	XML	in	a	DOM	fashion,	as	well	as
a	number	of	different	approaches	for	parsing	and	rendering	XML	content.	Let’s	start	with
the	simple	ones:

readFile		::	ParseSettings		->	FilePath	->	IO	Document

writeFile	::	RenderSettings	->	FilePath	->	Document	->	IO	()

This	introduces	the	ParseSettings	and	RenderSettings	data	types.	You	can	use	these	to
modify	the	behavior	of	the	parser	and	renderer,	such	as	adding	character	entities	and
turning	on	pretty	(i.e.,	indented)	output.	Both	these	types	are	instances	of	the	Default
typeclass,	so	you	can	simply	use	def	when	these	need	to	be	supplied.	That	is	how	we	will
supply	these	values	throughout	the	rest	of	this	appendix;	see	the	API	docs	for	more
information.

It’s	worth	pointing	out	that	in	addition	to	the	file-based	API,	there	is	also	a	Text-	and
ByteString-based	API.	The	BytesString-powered	functions	all	perform	intelligent
encoding	detections	and	support	UTF-8,	UTF-16,	and	UTF-32,	in	either	big-	or	little-
endian	format,	with	and	without	a	byte-order	marker	(BOM).	All	output	is	generated	in
UTF-8.

For	complex	data	lookups,	we	recommend	using	the	higher-level	cursor	API.	The	standard
Text.XML	API	not	only	forms	the	basis	for	that	higher	level,	but	is	also	a	great	API	for
simple	XML	transformations	and	for	XML	generation.	See	the	synopsis	for	an	example.

A	Note	About	File	Paths
In	the	type	signature,	we	have	a	type	called	FilePath.	However,	this	isn’t
Prelude.FilePath.	The	standard	Prelude	defines	a	type	synonym	type	FilePath	=
[Char].	Unfortunately,	there	are	many	limitations	to	using	such	an	approach,	including
confusion	of	filename	character	encodings	and	differences	in	path	separators.

Instead,	xml-conduit	uses	the	system-filepath	package,	which	defines	an	abstract
FilePath	type.	I’ve	personally	found	this	to	be	a	much	nicer	approach	to	work	with.	The
package	is	fairly	easy	to	follow,	so	I	won’t	go	into	details	here,	but	I	do	want	to	give	a	few
quick	explanations	of	how	to	use	it:

Because	a	FilePath	is	an	instance	of	IsString,	you	can	type	in	regular	strings	and
they	will	be	treated	properly,	as	long	as	the	OverloadedStrings	extension	is	enabled.
(I	highly	recommend	enabling	it	anyway,	as	it	makes	dealing	with	Text	values	much
more	pleasant.)

If	you	need	to	explicitly	convert	to	or	from	Prelude’s	FilePath,	you	should	use
encodeString	and	decodeString,	respectively.	This	takes	into	account	file	path
encodings.

Instead	of	manually	splicing	together	directory	names	and	filenames	with	extensions,
use	the	operators	in	the	Filesystem.Path.CurrentOS	module	—	for	example,
myfolder	</>	filename	<.>	extension.

Cursor
Suppose	you	want	to	pull	the	title	out	of	an	XHTML	document.	You	could	do	so	with	the
Text.XML	interface	we	just	described,	using	standard	pattern	matching	on	the	children	of
elements.	But	that	would	get	very	tedious,	very	quickly.	Probably	the	gold	standard	for
these	kinds	of	lookups	is	XPath,	where	you	would	be	able	to	write	/html/head/title.
And	that’s	exactly	what	inspired	the	design	of	the	Text.XML.Cursor	combinators.

A	cursor	is	an	XML	node	that	knows	its	location	in	the	tree;	it’s	able	to	traverse	up,	down,
and	side-to-side	(under	the	surface,	this	is	achieved	by	tying	the	knot).	There	are	two
functions	available	for	creating	cursors	from	Text.XML	types:	fromDocument	and
fromNode.

We	also	have	the	concept	of	an	axis,	defined	as	type	Axis	=	Cursor	->	[Cursor].	It’s
easiest	to	get	started	by	looking	at	example	axes:	child	returns	zero	or	more	cursors	that
are	the	child	of	the	current	one,	parent	returns	the	single	parent	cursor	of	the	input	(or	an
empty	list	if	the	input	is	the	root	element),	and	so	on.

In	addition,	there	are	some	axes	that	take	predicates.	element	is	a	commonly	used	function
that	filters	down	to	only	elements	that	match	the	given	name.	For	example,	element
"title"	will	return	the	input	element	if	its	name	is	“title”,	or	an	empty	list	otherwise.

Another	common	function	that	isn’t	quite	an	axis	is	content	::	Cursor	->	[Text].	For
all	content	nodes,	it	returns	the	contained	text;	otherwise,	it	returns	an	empty	list.

And	thanks	to	the	monad	instance	for	lists,	it’s	easy	to	string	all	of	these	together.	For
example,	to	do	our	title	lookup,	we	would	write	the	following	program:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Prelude	hiding	(readFile)

import	Text.XML

import	Text.XML.Cursor

import	qualified	Data.Text	as	T

main	::	IO	()

main	=	do

				doc	<-	readFile	def	"test.xml"

				let	cursor	=	fromDocument	doc

				print	$	T.concat	$

												child	cursor	>>=	element	"head"	>>=	child

																									>>=	element	"title"	>>=	descendant	>>=	content

What	this	says	is:

1.	 Get	me	all	the	child	nodes	of	the	root	element.

2.	 Filter	down	to	only	the	elements	named	“head”.

3.	 Get	all	the	children	of	all	those	head	elements.

4.	 Filter	down	to	only	the	elements	named	“title”.

5.	 Get	all	the	descendants	of	all	those	title	elements.	(A	descendant	is	a	child,	or	a
descendant	of	a	child.	Yes,	that	was	a	recursive	definition.)

6.	 Get	only	the	text	nodes.

So	for	the	input	document:

<html>

				<head>

								<title>My	Title</title>

				</head>

				<body>

								<p>Foo	bar	baz</p>

				</body>

</html>

we	end	up	with	the	output	My	Title.	This	is	all	well	and	good,	but	it’s	much	more	verbose
than	the	XPath	solution.	To	combat	this	verbosity,	Aristid	Breitkreuz	added	a	set	of
operators	to	the	Cursor	module	to	handle	many	common	cases.	So,	we	can	rewrite	our
example	as:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Prelude	hiding	(readFile)

import	Text.XML

import	Text.XML.Cursor

import	qualified	Data.Text	as	T

main	::	IO	()

main	=	do

				doc	<-	readFile	def	"test.xml"

				let	cursor	=	fromDocument	doc

				print	$	T.concat	$

								cursor	$/	element	"head"	&/	element	"title"	&//	content

$/	says	to	apply	the	axis	on	the	right	to	the	children	of	the	cursor	on	the	left.	&/	is	almost
identical,	but	is	instead	used	to	combine	two	axes	together.	This	is	a	general	rule	in
Text.XML.Cursor:	operators	beginning	with	$	directly	apply	an	axis,	while	&	will	combine
two	together.	&//	is	used	for	applying	an	axis	to	all	descendants.

Let’s	go	for	a	more	complex,	if	more	contrived,	example.	We	have	a	document	that	looks
like:

<html>

				<head>

								<title>Headings</title>

				</head>

				<body>

								<hgroup>

												<h1>Heading	1	foo</h1>

												<h2	class="foo">Heading	2	foo</h2>

								</hgroup>

								<hgroup>

												<h1>Heading	1	bar</h1>

												<h2	class="bar">Heading	2	bar</h2>

								</hgroup>

				</body>

</html>

We	want	to	get	the	content	of	all	the	<h1>	tags	that	precede	an	<h2>	tag	with	a	class
attribute	of	"bar".	To	perform	this	convoluted	lookup,	we	can	write:

{-#	LANGUAGE	OverloadedStrings	#-}

import	Prelude	hiding	(readFile)

import	Text.XML

import	Text.XML.Cursor

import	qualified	Data.Text	as	T

main	::	IO	()

main	=	do

				doc	<-	readFile	def	"test2.xml"

				let	cursor	=	fromDocument	doc

				print	$	T.concat	$

								cursor	$//	element	"h2"

															>=>	attributeIs	"class"	"bar"

															>=>	precedingSibling

															>=>	element	"h1"

															&//	content

Let’s	step	through	that.	First	we	get	all	<h2>	elements	in	the	document.	($//	gets	all
descendants	of	the	root	element.)	Then	we	filter	out	only	those	with	class=bar.	That	>=>
operator	is	actually	the	standard	operator	from	Control.Monad;	yet	another	advantage	of
the	monad	instance	of	lists.	precedingSibling	finds	all	nodes	that	come	before	our	node
and	share	the	same	parent.	(There	is	also	a	preceding	axis,	which	takes	all	elements
earlier	in	the	tree.)	We	then	take	just	the	<h1>	elements,	and	grab	their	content.

NOTE
The	equivalent	XPath,	for	comparison,	would	be	//h2[@class	=	'bar’]/preceding-
sibling::h1//text().

While	the	cursor	API	isn’t	quite	as	succinct	as	XPath,	it	has	the	advantages	of	being
standard	Haskell	code	and	of	type	safety.

xml-hamlet
Thanks	to	the	simplicity	of	Haskell’s	data	type	system,	creating	XML	content	with	the
Text.XML	API	is	easy,	if	a	bit	verbose.	The	following	code:

{-#	LANGUAGE	OverloadedStrings	#-}

import											Data.Map	(empty)

import											Prelude		hiding	(writeFile)

import											Text.XML

main	::	IO	()

main	=

				writeFile	def	"test3.xml"	$	Document	(Prologue	[]	Nothing	[])	root	[]

		where

				root	=	Element	"html"	empty

								[NodeElement	$	Element	"head"	empty

												[NodeElement	$	Element	"title"	empty

																[NodeContent	"My	"

																,	NodeElement	$	Element	"b"	empty

																				[NodeContent	"Title"

]

]

]

								,	NodeElement	$	Element	"body"	empty

												[NodeElement	$	Element	"p"	empty

																[NodeContent	"foo	bar	baz"

]

]

]

produces:

<?xml	version="1.0"	encoding="UTF-8"?>

<html><head><title>My	Title</title></head>

<body><p>foo	bar	baz</p></body></html>

This	is	leaps	and	bounds	easier	than	having	to	deal	with	an	imperative,	mutable-value-
based	API	(cough,	Java,	cough),	but	it’s	far	from	pleasant	and	obscures	what	we’re	really
trying	to	achieve.	To	simplify	things,	we	have	the	xml-hamlet	package,	which	uses
quasiquotation	to	allow	you	to	type	in	your	XML	in	a	natural	syntax.	For	example,	the
preceding	code	could	be	rewritten	as:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

import											Data.Map								(empty)

import											Prelude									hiding	(writeFile)

import											Text.Hamlet.XML

import											Text.XML

main	::	IO	()

main	=

				writeFile	def	"test3.xml"	$	Document	(Prologue	[]	Nothing	[])	root	[]

		where

				root	=	Element	"html"	empty	[xml|

<head>

				<title>

								My	#

								Title

<body>

				<p>foo	bar	baz

|]

There	are	a	few	points	to	keep	in	mind:

The	syntax	is	almost	identical	to	normal	Hamlet,	except	URL	interpolation	(@{…})	has
been	removed.	As	such:

There	are	no	close	tags.

It’s	whitespace-sensitive.

If	you	want	to	have	whitespace	at	the	end	of	a	line,	use	a	#	at	the	end.	At	the
beginning,	use	a	backslash.

An	xml	interpolation	will	return	a	list	of	Nodes,	so	you	still	need	to	wrap	up	the	output
in	all	the	normal	Document	and	root	Element	constructs.

There	is	no	support	for	the	special	.class	and	#id	attribute	forms.

Like	in	normal	Hamlet,	you	can	use	variable	interpolation	and	control	structures.	So,	a
slightly	more	complex	example	would	be:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes	#-}

import	Text.XML

import	Text.Hamlet.XML

import	Prelude	hiding	(writeFile)

import	Data.Text	(Text,	pack)

import	Data.Map	(empty)

data	Person	=	Person

				{	personName	::	Text

				,	personAge	::	Int

				}

people	::	[Person]

people	=

				[Person	"Michael"	26

				,	Person	"Miriam"	25

				,	Person	"Eliezer"	3

				,	Person	"Gavriella"	1

]

main	::	IO	()

main	=

				writeFile	def	"people.xml"	$	Document	(Prologue	[]	Nothing	[])	root	[]

		where

				root	=	Element	"html"	empty	[xml|

<head>

				<title>Some	People

<body>

				<h1>Some	People

				$if	null	people

								<p>There	are	no	people.

				$else

								<dl>

												$forall	person	<-	people

																^{personNodes	person}

|]

personNodes	::	Person	->	[Node]

personNodes	person	=	[xml|

<dt>#{personName	person}

<dd>#{pack	$	show	$	personAge	person}

|]

A	few	more	notes:

The	caret	interpolation	(^{…})	takes	a	list	of	nodes,	so	it	can	easily	embed	other	xml
quotations.

Unlike	in	Hamlet,	hash	interpolations	(#{…})	are	not	polymorphic	and	can	only
accept	Text	values.

xml2html
The	preceding	examples	have	revolved	around	XHTML.	I’ve	done	that	so	far	simply
because	it	is	likely	to	be	the	most	familiar	form	of	XML	for	most	readers.	But	there’s	an
ugly	side	to	all	this	that	we	must	acknowledge:	not	all	XHTML	will	be	correct	HTML.
The	following	discrepancies	exist:

There	are	some	void	tags	(e.g.,	,	
)	in	HTML	that	do	not	need	to	have	close
tags,	and	in	fact	are	not	allowed	to.

HTML	does	not	understand	self-closing	tags,	so	<script></script>	and	<script/>
mean	very	different	things.

Combining	the	previous	two	points:	you	are	free	to	self-close	void	tags,	though	to	a
browser	it	won’t	mean	anything.

In	order	to	avoid	quirks	mode,	you	should	start	your	HTML	documents	with	a
DOCTYPE	statement.

We	do	not	want	the	XML	declaration	<?xml	…?>	at	the	top	of	an	HTML	page.

We	do	not	want	any	namespaces	used	in	HTML,	while	XHTML	is	fully	namespaced.

The	contents	of	<style>	and	<script>	tags	should	not	be	escaped.

Fortunately,	xml-conduit	provides	ToHtml	instances	for	Nodes,	Documents,	and	Elements
that	respect	these	discrepancies.	So	by	just	using	toHtml,	we	can	get	the	correct	output:

{-#	LANGUAGE	OverloadedStrings	#-}

{-#	LANGUAGE	QuasiQuotes							#-}

import											Data.Map																								(empty)

import											Text.Blaze.Html																	(toHtml)

import											Text.Blaze.Html.Renderer.String	(renderHtml)

import											Text.Hamlet.XML

import											Text.XML

main	::	IO	()

main	=	putStr	$	renderHtml	$	toHtml	$	Document	(Prologue	[]	Nothing	[])	root	[]

root	::	Element

root	=	Element	"html"	empty	[xml|

<head>

				<title>Test

				<script>if	(5	<	6	||	8	>	9)	alert("Hello,	World!");

				<style>body	>	h1	{	color:	red	}

<body>

				<h1>Hello	World!

|]

Here	is	the	output	(with	whitespace	added):

<!DOCTYPE	HTML>

<html>

				<head>

								<title>Test</title>

								<script>if	(5	<	6	||	8	>	9)	alert("Hello,	World!");</script>

								<style>body	>	h1	{	color:	red	}</style>

				</head>

				<body>

								<h1>Hello,	World!</h1>

				</body>

</html>

Index

Symbols

!	(exclamation	point)

!!!	for	doctype	statement,	doctype

!=	(not	equal)	operator,	Select	Functions

turning	off	overlap	checking	for	routes,	Overlap	checking

#	(hash)

beginning	dynamic	single	pieces	of	paths,	Types	of	pieces

using	for	id	attributes	in	Hamlet,	Attributes

$	(dollar	sign)

$(),	Template	Haskell

$=	operator,	Streaming	xmlpipe	Output

&&&	(fan-out)	operator,	More	Sophisticated	Fields

()	(parentheses),	representing	an	empty	response,	Html

*	(asterisk),	beginning	dynamic	multi	pieces,	Types	of	pieces

+	(plus	sign),	indicating	dynamic	multi	pieces,	Types	of	pieces

.	(period),	using	for	class	attributes	in	Hamlet,	Attributes

/<-.	(is	not	member)	operator,	Select	Functions

/=.	(divide	and	set)	operator,	Select	Functions

:	(colon),	using	to	add	attributes	in	Hamlet,	Attributes

<$>	operator,	Creating	AForms

<*>	operator,	Creating	AForms

<-.	(is	member)	operator,	Select	Functions

=	(equals	sign),	in	attributes	in	Hamlet,	Attributes

@	(at	sign)

@?{…},	using	to	embed	query	string	parameters,	Interpolation

interpolation	(@{…}),	Resources	and	Type-Safe	URLs,	Interpolation

^.	(projection)	operator,	Esqueleto

_	(underscore)

interpolation	with,	Alternative	Hamlet	Types

_{Msg…}	interpolation	in	Hamlet,	Blog:	i18n,	Authentication,
Authorization,	and	Database

_{…}	i18n	interpolation,	Interpolation

{…},	variable	interpolation	in	Shakespeare,	Types

||	(OR)	operator,	Select	Functions

ʌ	(caret)

embedding	templates	in	Hamlet,	Interpolation

using	for	embedding	in	simplified	Hamlet,	Alternative	Hamlet	Types

using	for	interpolation	in	Lucius,	Lucius	Syntax

A

absolute	URLs,	Rendering	and	Parsing	URLs

Accept	header,	Representations,	HasContentType	and	Representations

Accept-Encoding	header,	Other	Request	Headers

Accept-Language	header,	Other	Request	Headers

addStaticContent	function,	External	CSS	and	JavaScript

on	scaffold	site,	capabilities	of,	External	CSS	and	JavaScript

aeson	package,	Non-HTML	Responses,	JSON	Conveniences,	JSON	Web	Service

documentation,	JSON	Conveniences

AForms,	Types

creating,	Creating	AForms

optional	fields,	Optional	Fields

features,	Types

alreadyExpired	function,	Response	Headers

ALTER	TABLE	command,	Migrations

Amazon	SES,	Email

AND	operator,	Select	Functions

AnyMethodR,	Generated	Code

aopt	function,	Optional	Fields

Apache	web	server,	CGI	on,	CGI	on	Apache

API	documentation,	Haskell,	API	Documentation

App	type,	What	About	Yesod?

App	{..},	Step	2:	Use	the	Foundation

Application	class,	Layers,	Hello,	Warp

converting	HandlerT	stacks	to	Applications,	The	HandlerT	Monad
Transformer

converting	instance	of	YesodDispatch	to,	toWaiApp,	toWaiAppPlain,	and
warp

return	type	for	yesodDispatch,	What	About	Yesod?

Application	module,	Foundation	and	Application	Modules

application/json	mime	type,	Representations

applicative	forms,	Kinds	of	Forms,	Types,	Blog:	i18n,	Authentication,
Authorization,	and	Database

(see	also	AForms)

monadic	forms	and,	Monadic	Forms

APPROOT	environment	variable,	Rendering	and	Parsing	URLs

approot,	value	of,	Rendering	and	Parsing	URLs

ApprootMaster	typeclass,	Rendering	and	Parsing	URLs

ApprootRelative	typeclass,	Rendering	and	Parsing	URLs

ApprootRequest	typeclass,	Rendering	and	Parsing	URLs

AprootStatic	typeclass,	Rendering	and	Parsing	URLs

areq	function,	Creating	AForms

associated	types,	What	About	Yesod?

at-sign	interpolation	(@{…}),	Resources	and	Type-Safe	URLs,	Interpolation

attoparsec,	Server

attributes

HTML	attributes,	in	Hamlet,	Attributes

in	Persistent,	Attributes-Attributes

authentication	and	authorization,	Authentication	and	Authorization-Summary

auhorization,	Authorization

authentication	example,	Authenticate	Me

blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

defined,	Authentication	and	Authorization

email	authentication,	Email-Authorization

overview,	Overview

with	Yesod	typeclass,	Authentication/Authorization

authHttpManager,	Authenticate	Me

AuthId	type,	Overview,	Authenticate	Me

authPlugins,	Authenticate	Me

authRoute	function,	Authentication/Authorization,	Authorization

axes,	Cursor

B

badMethod	function,	Generated	Code

blaze-builder	package,	Hello,	Warp,	Server

blaze-html	packages,	Types,	Hello,	Warp,	Shakespeare

combinators,	Shakespeare

blog	application,	Blog:	i18n,	Authentication,	Authorization,	and	Database-Blog:
i18n,	Authentication,	Authorization,	and	Database

authentication,	Blog:	i18n,	Authentication,	Authorization,	and	Database

authorization,	Blog:	i18n,	Authentication,	Authorization,	and	Database

comment	on	blog	post,	Blog:	i18n,	Authentication,	Authorization,	and
Database

database,	Blog:	i18n,	Authentication,	Authorization,	and	Database

imports,	Blog:	i18n,	Authentication,	Authorization,	and	Database

individual	blog	entry,	Blog:	i18n,	Authentication,	Authorization,	and
Database

internationalization	(i18n),	Blog:	i18n,	Authentication,	Authorization,
and	Database

language	extensions	in	cabal	file,	Blog:	i18n,	Authentication,

Authorization,	and	Database

routing	table,	setting	up,	Blog:	i18n,	Authentication,	Authorization,	and
Database

setting	up	Persistent	entities,	Blog:	i18n,	Authentication,	Authorization,
and	Database

users,	tracking,	Blog:	i18n,	Authentication,	Authorization,	and	Database

widget,	Blog:	i18n,	Authentication,	Authorization,	and	Database

blog	post,	form	for,	Values	That	Don’t	Come	from	the	User

blogs,	multiauthor,	Multiauthor	Blog

boundary	issue,	Introduction

between	application	and	storage	layer,	Persistent

solving	with	Persistent,	Solving	the	Boundary	Issue

Bounded	type,	More	Sophisticated	Fields

bracket	function,	Hello,	Warp

broadcast	channels

creating,	Subsite:	Handlers

for	publishing	updates,	Foundation	Data	Type

readTChannel	function,	View	Progress

BrowserID,	Authentication	and	Authorization,	Blog:	i18n,	Authentication,
Authorization,	and	Database

build	tools

Cabal,	Tools

for	JavaScript	tools,	Tools

Builder	type,	Hello,	Warp,	Client,	Response	Body

creating	stream	of	Builders	from	XML	content,	Streaming	xmlpipe

Output

buildExcerpts	function,	Searching,	Searching

C

C	preprocessors,	Tools

Cabal,	Tools

cabal	file,	Cabal	File

command	to	install	necessary	libraries,	Tools

installation,	common	pitfalls,	Tools

language	pragmas	in	cabal	file,	Language	Pragmas

cabal	clean	command,	Compiling

cabal	install	—only-dependencies	command,	The	Scaffolded	Site

cacheSeconds	function,	Response	Headers

callbacks,	Overview

canonical	URLs,	Pieces

case	statement,	case

Cassius,	Handler	Function,	Synopsis

example	of	use,	Cassius	(CSS)

syntax,	Cassius	Syntax

using	to	construct	widgets,	Widgets

CGI,	Warp,	Web	Application	Interface

on	Apache,	CGI	on	Apache

on	lighttpd,	CGI	on	lighttpd

chat	subsite	(example),	Subsite:	Data-Master	Site:	Data

defining	routes,	Subsite:	Data

foundation	data	type,	Subsite:	Data

handler	functions,	Subsite:	Handlers

widget,	Subsite:	Widget

check	function,	Validation

checkBool	function,	Validation

checkM	function,	Validation

cleanPath	function,	cleanPath,	cleanPath,	toWaiApp,	toWaiAppPlain,	and	warp

clearUltDest	function,	Ultimate	Destination

client-session-key.aes,	Controlling	Sessions

client-side	session	cookies,	server-side	encryption	for,	Files	to	Deploy

clientsession,	clientsession

code	generation

in	Yesod,	Concise	Code

with	Template	Haskell	(TH),	Template	Haskell

combinators	(blaze-html),	Shakespeare

comment	nodes	(XML),	The	Four	Types	of	Nodes

Common	Gateway	Interface	(see	CGI)

compiled	languages	versus	interpreted	languages,	Development	Server

compiling	web	applications,	Compiling

concatMap	function,	Streaming	xmlpipe	Output

conditionals	in	Hamlet,	Conditionals

conduit	library,	Hello,	Warp,	Server,	Response

configuration,	environment	variables	for,	Environment	Variables	for
Configuration-Environment	Variables	for	Configuration

content	nodes	(XML),	The	Four	Types	of	Nodes

content	system	(Yesod),	types,	(To)Content,	(To)TypedContent

Content	type,	Content,	(To)Content,	(To)TypedContent

content	types,	Html

ContentBuilder	typeclass,	(To)Content,	(To)TypedContent

ContentDontEvaluate,	(To)Content,	(To)TypedContent

ContentFile	typeclass,	(To)Content,	(To)TypedContent

ContentSource	typeclass,	(To)Content,	(To)TypedContent

continuation	passing	style,	Hello,	Warp,	Hello,	Warp,	Types

cookies,	Getting	Request	Parameters

handler	functions	for,	Response	Headers

session	information	in,	clientsession

counters	(see	visitor	counter)

CRandT	monad	transformer,	Adding	a	New	Monad	Transformer

cross-site	request	forgery	(CSRF)	attacks,	Running	Forms

CSS

Cassius	and	Lucius	templating	languages	for,	Synopsis

Cassius	templating	language,	Cassius	Syntax

coordination	with	HTML	and	JavaScript,	Widgets

Css	type	and	ToCSS	typeclass,	Types

for	widgets	in	static	files,	Static	Files

helper	data	types	for	colors	and	units,	Types

in	external	files,	External	CSS	and	JavaScript

Lucius	templating	language,	Lucius	Syntax

producing	using	Cassius	and	Lucius	(example),	Cassius	(CSS)

curl	commands,	Representations

CURRENT_TIME	function,	Attributes

Cursor	module,	Cursor

cursors	(XML),	Cursor

D

data	constructors,	Terminology

data	declarations,	Terminology

data	types	(see	types)

database	migrations,	Migrations

database-driven	navbar	(example),	Example:	Database-Driven	Navbar

databases

backend,	selecting,	How	to	Scaffold

blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

data	sent	to	and	from,	types	representing,	Types

database	queries	in	widgets,	Database	Queries	in	Widgets

manipulating	data	in,	Manipulation

SQLite,	for	Sphinx-based	search,	Basic	Yesod	Setup

storing	information	in	SQL	database,	Solving	the	Boundary	Issue

supported	by	Persistent,	Persistent

-ddump-splices	GHC	option,	Template	Haskell

debugging,	using	MonadIO	and	MonadLogger	for,	I/O	and	Debugging

declarations,	generated	by	Template	Haskell	code,	Template	Haskell

default	attribute,	Attributes

defaultClientSessionBackend	function,	Controlling	Sessions

defaultErrorHandler	function,	Custom	Error	Pages

defaultGetDBRunner,	Basic	Yesod	Setup

defaultLayout	function,	Handler	Function

for	scaffolded	site,	defaultLayout

getMessage	in,	Messages

overriding,	defaultLayout

wiki	master	site	(example),	Master	Site:	Instances

use	by	subsite,	Hello,	World

using	for	widgets,	Using	Widgets,	Widgets

delete	function,	Delete

DELETE	method,	Request	Methods

deleteBy	function,	Delete

deleteCookie	function,	Response	Headers

deleteWhere	function,	Delete

dependencies,	scaffolded	site,	How	to	Scaffold

deploying	web	applications,	Deploying	Your	Web	App-CGI	on	lighttpd

CGI	on	Apache,	CGI	on	Apache

CGI	on	lighttpd,	CGI	on	lighttpd

compiling,	Compiling

desktop,	Desktop

FastCGI	on	lighttpd,	FastCGI	on	lighttpd

files	to	deploy,	Files	to	Deploy

Keter,	Keter

Nginx	and	FastCGI,	Nginx	+	FastCGI

SSL	and	static	files,	SSL	and	Static	Files

Warp,	Warp

Nginx	configuration,	Nginx	Configuration

server	process,	Server	Process

derivePersistentField	function,	Custom	Fields

development	servers,	Development	Server,	Warp,	Web	Application	Interface

dispatch,	Dispatch

arguments	for	handler	function,	Arguments

complete	code	for	non–Template	Haskell	approach,	Complete	Code

dispatch	function,	Foundation	and	Application	Modules

handling	for	requests,	Dispatch

module	for	subsite	dispatch	code,	Hello,	World

return	type	for	handler	functions,	Return	Type

Handler	monad,	Handler	monad

Html,	Html

setting	up	for	chat	subsite	(example),	Subsite:	Handlers

Template	Haskell	generated	code,	Generated	Code

toWaiApp,	toWaiAppPlain,	and	warp,	toWaiApp,	toWaiAppPlain,	and
warp

using	continuation	passing	style,	Hello,	Warp

do	notation,	using	to	construct	widget	pieces,	Combining	Widgets

doctype	statement,	doctype

drop-down	lists,	More	Sophisticated	Fields

dynamic	multi	pieces,	Types	of	pieces

dynamic	parameters,	Dynamic	Parameters

dynamic	single	piece,	Types	of	pieces

E

Either,	Overview

element	nodes	(XML),	The	Four	Types	of	Nodes

else	statement,	Conditionals

elseif	statement,	Conditionals

email,	authentication	with,	Email-Authorization

encryption

server-side,	for	client-side	session	cookies,	Files	to	Deploy

session	information,	Controlling	Sessions

Enctype,	Types,	Running	Forms

for	form	fields,	Custom	Fields

English,	language	codes	for,	Message	Files

entities

defining	in	Persistent,	Attributes

defining	routes	for	scaffolded	site,	Routes	and	Entities

entity	encodings,	Types

Entity	typeclass,	Fetching	by	Unique	Constraint

Enum	tye,	More	Sophisticated	Fields

environment	information,	Layers

environment	variables	for	configuration,	Environment	Variables	for
Configuration-Environment	Variables	for	Configuration

error	messages,	monad	transformers	and,	Performance	and	Error	Messages

Error	monad,	Monad	Transformers,	Overview

error	pages,	custom,	Custom	Error	Pages

errorHandler	function,	Custom	Error	Pages

errorMessage	function,	Validation

ErrorT	monad	transformer,	Adding	a	New	Monad	Transformer,	Overview,
Intuition

escapes	(in	Hamlet),	Tags

Esqueleto,	Persistent,	More	Complex	SQL

switching	to	streaming	response,	Streaming

type-safe	DSL	for	writing	SQL	queries,	Esqueleto

Event	interface,	Streaming	xmlpipe	Output

events

server-sent,	for	chat	subsite	(example),	Subsite:	Handlers

stream	of,	Streaming	xmlpipe	Output

XML,	Events

exceptions,	Short-Circuit	Responses

running	clean-up	code	when	exception	is	thrown,	Real-Life	Examples

streamed	responses	and,	Hello,	Warp,	Streaming	xmlpipe	Output

existingLinks	function,	Example:	Database-Driven	Navbar

Expires	header,	Response	Headers

expiresAt	function,	Response	Headers

extensions	(Haskell),	Language	Pragmas

external	files,	calling	Shakespeare	from	in	Haskell	code,	Calling	Shakespeare

F

fan-out	operator	(&&&),	More	Sophisticated	Fields

FastCGI,	Warp,	Web	Application	Interface

Nginx	and,	Nginx	+	FastCGI

specifying	FastCGI	variables,	Nginx	+	FastCGI

on	lighttpd,	FastCGI	on	lighttpd

Field	type,	Types,	Creating	AForms,	Custom	Fields

fieldEnctype	function,	Custom	Fields

FieldSettings	type,	Types,	Creating	AForms,	Monadic	Forms

fieldView	function,	Custom	Fields

FieldView	type,	Monadic	Forms

file	descriptors,	Nginx	+	FastCGI

FilePath	type,	A	Note	About	File	Paths

files,	serving,	Hello,	Warp

Filesystem.Path.CurrentOS	module,	A	Note	About	File	Paths

fileUpload	function,	Some	Simple	Settings

Filter	typeclass,	Select	Functions

filtering

Persistent	operators	for,	Select	Functions

using	in	deleteWhere	function,	Delete

using	with	selectList	function,	Select	Functions

Flush	Builder	values,	Streaming

forall	statement,	forall

FormInput,	Types

features,	Types

FormMessage	type,	Types,	i18n,	Blog:	i18n,	Authentication,	Authorization,	and
Database

FormResult	type,	Types,	Running	Forms

forms,	Forms-Summary,	Getting	Request	Parameters

categories	of,	Kinds	of	Forms

converting	between	kinds	of,	Converting

creating	AForms,	Creating	AForms

custom	fields,	Custom	Fields

for	blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

input,	Input	Forms

internationalization	(i18n),	i18n

monadic,	Monadic	Forms

more	sophisticated	fields,	More	Sophisticated	Fields

naming	conventions	for	form	types,	Kinds	of	Forms

running,	Running	Forms

Sphinx-based	search	(example),	Basic	Yesod	Setup

types,	Types

validation,	Validation

values	not	coming	from	the	user,	Values	That	Don’t	Come	from	the	User

foundation	data	type,	The	Foundation,	Foundation	and	Application	Modules

blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

creating	for	chat	subsite	(example),	Subsite:	Data

creating	for	single	process	pub-sub	(example),	Foundation	Data	Type

creating	for	visitor	counter	(example),	Visitor	Counter

for	wiki	master	site	(example),	Master	Site:	Data

HelloSub	(example),	Hello,	World

initializing	data	in,	Initializing	Data	in	the	Foundation	Data	Type-
Summary

creating	foundation	value,	Step	3:	Create	the	Foundation	Value

defining	foundation	type,	Step	1:	Define	Your	Foundation

example,	complete	soure	code,	Summary

using	foundation	type,	Step	2:	Use	the	Foundation

uses	of,	What	About	Yesod?

Foundation	module,	Foundation	and	Application	Modules

fragments,	adding	hash	fragments	to	URLs,	Query	String	and	Hash	Fragments

FromJSON	typeclass,	JSON	Conveniences

fromPathPiece	function,	Types	of	pieces,	Generated	Code

functions

for	creating	widgets,	Constructing	Widgets

naming	scheme	for	Shakespeare	functions	in	Haskell	code,	Calling
Shakespeare

Template	Haskell	(TH),	Template	Haskell

G

GADT	(generalized	algebraic	data	type),	Code	Generation

GCC	preprocessor,	Tools

generateFormGet	function,	Running	Forms

generateFormPost	function,	Running	Forms

generic	types,	More	Complicated,	More	Generic

get	function,	Code	Generation

GET	requests,	RESTful	Content

for	forms,	Running	Forms,	Monadic	Forms

handler	code	for,	Values	That	Don’t	Come	from	the	User

handler	function	for,	Generated	Code

information	about,	Request	Information

information	on,	getting	inside	a	Widget,	Example:	Request	Information

responses	to,	Handler	Function

get404	function,	Integration	with	Yesod

getApplicationDev	function,	Foundation	and	Application	Modules

getAuthId	function,	Authenticate	Me

getBy	function,	Fetching	by	Unique	Constraint

getContentType	function,	New	Data	Types

getHomeR	function,	New	Data	Types

getMessage	function,	getMessage,	Messages,	Blog:	i18n,	Authentication,
Authorization,	and	Database

getOnlyGetR	function,	Generated	Code

getRequest	function,	Request	Information

getResults	function,	Searching

getSession	function,	Session	Operations

getUrlRender	function,	Application	Information

getUrlRenderParams	function,	Application	Information

getXmlpipeR	function,	Streaming	xmlpipe	Output

getYesod	function,	Application	Information

GHState	typeclass,	Layers

Glasgow	Haskell	Compiler	(GHC),	Performance,	Tools

-ddump-splices	option,	Template	Haskell

installation,	common	pitfalls,	Tools

language	pragmas	on	the	command	line,	Language	Pragmas

viewing	generated	code	with	-ddump-splices,	Understanding	a	Request

gzip,	Middleware

H

Hackage,	API	Documentation

Haddock,	API	Documentation

documentation,	Types

Hamlet,	Handler	Function,	Synopsis

blaze-html	packages,	Types

converting	a	template	to	an	Html	value,	defaultLayout

database	actions	and,	Database	Queries	in	Widgets

i18n	interpolation	(_{…}),	Interpolation

internationalization	in,	Alternative	Hamlet	Types

syntax,	Hamlet	Syntax-Lucius	Syntax

attributes,	Attributes

case	statement,	case

conditionals,	Conditionals

doctype	statement,	doctype

forall	statement,	forall

interpolation,	Interpolation

maybe,	maybe

tags,	Tags

with	statement,	with

types,	alternatives	to	HtmlUrl,	Alternative	Hamlet	Types

using	to	construct	widgets,	Widgets

whamlet,	whamlet

variable	interpolation	in,	Types

hamlet	(quasi-quoter),	QuasiQuotes

handler	functions,	Routing,	Layers

arguments,	Arguments

dealing	with	content,	Content

defining	for	subsite	route	type,	Hello,	World

dispatch	function	and	route	type,	Foundation	and	Application	Modules

for	chat	subsite	(example),	Subsite:	Handlers

Handler	modules	for,	Handler	Modules

in	Handler	monad,	The	Handler	Functions-Response	Headers

application	information	from,	Application	Information

generating	response	headers,	Response	Headers

getting	request	information,	Request	Information

short	circuiting,	Short-Circuiting

information	needed	for,	Layers

naming	conventions,	Handler	Function

return	type,	Return	Type

HandlerT	monad,	Handler	monad

Html,	Html

search	handler,	Sphinx-based	search,	Searching

short	circuiting,	Short-Circuiting

short-circuit	responses,	Short-Circuit	Responses

specifying	for	resources,	Handler	Specification

streaming	responses,	Streaming

using	in	widgets,	Using	Handler	Functions

writing,	Writing	Handlers-Dynamic	Parameters

getting	request	parameters,	Getting	Request	Parameters

return	type,	ToTypedContext,	Writing	Handlers

wiki	master	site	(example),	Master	Site:	Wiki	Handlers

Handler	monad,	Yesod’s	Monads

checkM	function	in,	Validation

converting	IO	action	to	Handler	action,	Blog:	i18n,	Authentication,
Authorization,	and	Database

isAuthorized	method	and,	Authorization

HandlerContents	typeclass,	Short-Circuit	Responses

HandlerData	typeclass,	Performance	and	Error	Messages

HandlerT	monad	transformer,	Handler	monad,	The	Three	Transformers,
Performance	and	Error	Messages,	The	HandlerT	Monad	Transformer-
Convenience	warp	Function

(To)Content	and	(To)TypedContent,	(To)Content,	(To)TypedContent

HandlerT	App	IO	monad	stack,	The	HandlerT	Monad	Transformer

HasContentType	and	representations,	HasContentType	and
Representations

layering	CRandT	on	top	of,	Adding	a	New	Monad	Transformer

power	of,	Adding	a	New	Monad	Transformer

warp	function,	Convenience	warp	Function

handlerToWidget	.	runDB,	Example:	Database-Driven	Navbar

handlerToWidget	function,	Using	Handler	Functions,	The	Three	Transformers,
Database	Queries	in	Widgets

using	in	Chat	widget	(example),	Subsite:	Widget

wrapping	call	to	runInputGet,	Example:	Request	Information

HasContentType	typeclass,	New	Data	Types,	HasContentType	and
Representations

hash	fragments,	Query	String	and	Hash	Fragments

HashDB,	Overview

Haskell,	Preface

API	documentation,	API	Documentation

calling	Shakespeare	from,	Calling	Shakespeare

language	pragmas,	Language	Pragmas

learning,	resources	for,	Haskell

overloaded	strings,	Overloaded	Strings

packages	and	libraries	available	in,	A	Solid	Foundation

QuasiQuotes	(QQ),	QuasiQuotes

Template	Haskell	(TH),	Template	Haskell

terminology,	Terminology

tools,	Glasgow	Haskell	Compiler	(GHC)	and	Cabal,	Tools

type	families,	Type	Families

Haskell	Platform,	Tools

Haskell.org	Hoogle	instance,	API	Documentation

head	tags,	external	CSS	and	JavaScript	in,	External	CSS	and	JavaScript

headers

Content-Type,	Shakespeare

request,	Other	Request	Headers

request	and	response,	Getting	Request	Parameters

Hello,	World	application,	Hello,	World,	Hello,	World

subsite,	Hello,	World

hierarchical	routes,	Alternative	Approach:	Hierarchical	Routes

Hoogle,	API	Documentation

Host	header,	Other	Request	Headers

HTML

coordination	with	CSS	and	JavaScript,	Widgets

generation	of,	superficial	approach	to,	What’s	in	a	Widget?

Hamlet	templating	engine	for,	Handler	Function,	Synopsis

how	Hamlet	produces	HTML,	Type-Safe	URLs

handlers	dealing	with,	Content

Html	response,	The	HandlerT	Monad	Transformer

in	widgets,	What’s	in	a	Widget?

Nic	editor,	Blog:	i18n,	Authentication,	Authorization,	and	Database

representations	of	data,	Representations

result	from	Sphinx-based	search,	Searching

xmltohtml,	xml2html

Html	type,	Types,	Shakespeare

as	return	type	for	handler	functions,	Html

HtmlUrl	type,	Alternative	Hamlet	Types

HTTP

Accept	request	header,	HasContentType	and	Representations

connection	manager,	Authenticate	Me

methods,	Request	Methods

Request	and	Response	classes	representing,	Layers

statelessness	of,	Sessions

http	function,	Client,	http	and	httpLbs

http-conduit	package,	Client,	http-conduit-http	and	httpLbs

http	and	httpLbs	functions,	http	and	httpLbs

Manager,	Manager

Request,	Request

Response,	Response

httpLbs	function,	Client,	http	and	httpLbs

HTTPS,	SSL	and	Static	Files

I

i18n	(see	internationalization)

identifiers

email	addresses	as,	Authenticate	Me,	Blog:	i18n,	Authentication,
Authorization,	and	Database

generating	for	Chat	widget	(example),	Subsite:	Widget

IDs

AuthId,	Overview

database	queries	fetching	by,	Fetching	by	ID

document	IDs	containing	search	string,	Searching

generating	for	widgets,	Generating	IDs

insert	function	and,	Insert

UserId	for	blog	application,	Blog:	i18n,	Authentication,	Authorization,
and	Database

if	statement,	Conditionals

Import	module,	Import

Import.hs	file,	Routes	and	Entities

index	setting	(Sphinx),	Sphinx	Setup

indexer,	Sphinx	Setup

indexer	searcher	command,	Sphinx	Setup

input	forms,	Kinds	of	Forms,	Input	Forms

differences	from	applicative	and	monadic	forms,	Input	Forms

FormInput,	Types

insert	function,	Code	Generation,	Insert

internationalization	(i18n),	Internationalization-Phrases,	Not	Words

blog	application	(example)

setting	title	messages,	Blog:	i18n,	Authentication,	Authorization,
and	Database

error	messages,	Validation

form	messages	in	blog	application	(example),	Blog:	i18n,	Authentication,
Authorization,	and	Database

in	blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

in	forms,	i18n

in	Hamlet,	Alternative	Hamlet	Types

interpolation,	Interpolation

message	files,	Message	Files

specifying	types,	Specifying	Types

overview,	Overview

RenderMessage	typeclass,	RenderMessage	typeclass

translating	phrases,	not	words,	Phrases,	Not	Words

interpolation,	Interpolation

(see	also	variable	interpolation)

i18n	(_{…}),	Interpolation

in	Julius,	Julius	Syntax

in	Lucius,	Lucius	Syntax

in	whamlet,	whamlet

URL,	Interpolation

using	a	ʌ	(caret),	Interpolation

variable,	Interpolation

_	(underscore),	using,	Alternative	Hamlet	Types

interpreted	languages	versus	compiled	languages,	Development	Server

invalidArgs	function,	Short-Circuiting

IO	base	monad,	Types,	Validation,	Monad	Transformers

ErrorT	transformer	stacked	on,	Overview

IO	Response,	Hello,	Warp

iopt	function,	Input	Forms

IORef	typeclass,	Performance	and	Error	Messages,	Step	1:	Define	Your
Foundation,	Visitor	Counter

ireq	function,	Input	Forms

is	member	operator	(<-.),	Select	Functions

is	not	member	operator	(/<-.),	Select	Functions

isAuthorized	function,	Authentication/Authorization,	Authorization,	Route
Attributes

isLoggedIn	function,	Subsite:	Widget

IsString	type,	Overloaded	Strings,	Creating	AForms,	Types

drawback	to,	Overloaded	Strings

isWriteRequest	function,	Authentication/Authorization

J

JavaScript

coordination	with	HTML	and	CSS,	Widgets

for	form	controls,	Summary

for	widgets	in	static	files,	Static	Files

in	external	files,	External	CSS	and	JavaScript

Javascript	type	and	ToJavascript	typeclass,	Types

Julius	templating	language	for,	Synopsis

syntax,	Julius	Syntax

minification,	with	hjsmin	package,	Julius	Syntax

joinPath	function,	joinPath,	cleanPath

JSON

helper	functions	for,	JSON	Conveniences

representations	of	data,	Representations

responses,	Non-HTML	Responses

JSON	web	service,	creating,	JSON	Web	Service-Client

client,	Client

server,	Server

Julius,	Handler	Function,	Synopsis

example	of	use,	Types

syntax,	Julius	Syntax

using	to	construct	widgets,	Widgets

K

Keter,	Keter

deploying	web	applications,	Keter

L

language	pragmas,	Language	Pragmas

languages

Accept-Language	header,	Other	Request	Headers

language	codes,	Message	Files

languages	function,	Response	Headers

lazy	bytestrings,	Response	Body

lift

functions	autolifted	with	MonadHandler,	Example:	Request	Information

in	chat	subsite	handlers	(example),	Subsite:	Handlers

lifting	a	call	to	next	monad	up,	Monad	Transformers

lifting	IO	action	to	upper	monad,	Overview

liftIO,	I/O	and	Debugging

liftIO	getCurrentTime,	Blog:	i18n,	Authentication,	Authorization,	and
Database

running	Handler	actions	in	applicative	form,	Values	That	Don’t	Come
from	the	User

using	in	subsite	to	get	master	site	defaultLayout,	Hello,	World

liftControl	function,	MonadTransControl

liftIO	function,	MonadControlIO

lighttpd

CGI	on,	CGI	on	lighttpd

FastCGI	on,	FastCGI	on	lighttpd

LIKE	operator	(SQL),	Persistent:	Raw	SQL

limits	and	offsets,	SelectOpt,	Select	Functions

Linux,	GHC	and	Haskell	Platform	packages	on,	Tools

LiteApp,	LiteApp

logging

MonadLogger	typeclass,	I/O	and	Debugging

shouldLog	function,	Some	Simple	Settings

loginDest,	Authenticate	Me

logoutDest,	Authenticate	Me

lookupCookie	function,	Response	Headers

lookupGetParam	function,	Using	Handler	Functions

lookupSession	function,	Session	Operations

Lucius,	Handler	Function,	Synopsis

example	of	use,	Cassius	(CSS)

syntax,	Lucius	Syntax-Cassius	Syntax

using	to	construct	widgets,	Widgets

M

Mac	OS	X,	installing	GHC	and	Cabal,	Tools

main	function,	What	About	Yesod?

environment	variable	lookup	in,	Environment	Variables	for
Configuration

for	wiki	master	site	(example),	Master	Site:	Running

replacing	with	warp	function,	Convenience	warp	Function

makeApplication	function,	Foundation	and	Application	Modules

makeSessionBackend	function,	Controlling	Sessions

Manager	type,	Client,	Manager

many-to-many	relationships,	Relations

maximumContentLength	function,	Some	Simple	Settings

maybe

database	query	results,	Queries

in	Hamlet,	maybe

in	SQL,	Attributes

optional	default	value	in	AForm,	Creating	AForms

optional	fields	in	AForm,	Optional	Fields

maybeRoute,	The	HandlerT	Monad	Transformer

message	files,	Foundation	and	Application	Modules,	Message	Files

blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

specifying	types,	Specifying	Types

messages

in	blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

session,	Messages

using	i18n	messages	for	title	in	blog	application,	Blog:	i18n,
Authentication,	Authorization,	and	Database

meta	tags,	Constructing	Widgets

MForms,	Types,	Monadic	Forms

migrate	function,	Migrations

migrations	(see	database	migrations)

mime	types,	Representations

discovering	for	a	possible	representation,	New	Data	Types

mime-mail-ses	package,	Email

mixins	(in	Lucius),	Lucius	Syntax

mkMessage	function,	Specifying	Types

mkMessages	function,	Foundation	and	Application	Modules

mkMigrate	function,	Migrations

mkPersist	function,	Code	Generation

mkYesod	TH	function,	Routing,	Foundation	and	Application	Modules

mkYesodData	function,	Foundation	and	Application	Modules

mkYesodDispatch	function,	Foundation	and	Application	Modules

mkYesodSubData	function,	Hello,	World

mkYesodSubDispatch	function,	Subsite:	Handlers

MMVars,	Visitor	Counter

Model.hs	file,	Routes	and	Entities

modularity	(Yesod),	Modularity

modules	for	a	subsite,	Hello,	World

Monad	instance	(of	Widget),	Combining	Widgets

monad	transformers,	Types,	Overview

monad-control,	monad-control-More	Complicated	Cases

lost	state,	Lost	State

more	complicated	cases,	More	Complicated	Cases

overview,	Overview

real-life	examples,	Real-Life	Examples

types,	Types

MonadControlIO,	MonadControlIO

MonadTransControl,	MonadTransControl

MonadBaseControl	typeclass,	Writing	Handlers

MonadControlIO	typeclass,	MonadControlIO

MonadCRandom	typeclass,	Adding	a	New	Monad	Transformer

monadcryptorandom	package,	Adding	a	New	Monad	Transformer

MonadHandler	typeclass,	Using	Handler	Functions,	Handler	monad,	Example:
Request	Information

monadic	forms,	Kinds	of	Forms,	Types,	Monadic	Forms

(see	also	MForms)

MonadIO	typeclass,	I/O	and	Debugging,	The	Three	Transformers,	Writing
Handlers,	MonadControlIO

MonadLogger	typeclass,	I/O	and	Debugging,	Writing	Handlers

MonadResource	typeclass,	Performance	and	Error	Messages,	Writing	Handlers

monads,	Yesod’s	Monads-Summary

adding	a	new	monad	transformer,	Adding	a	New	Monad	Transformer-
Adding	a	New	Monad	Transformer

database-driven	navbar	(example),	Example:	Database-Driven	Navbar

HandlerT	App	IO	monad	stack,	The	HandlerT	Monad	Transformer

monad	transformers,	Monad	Transformers

performance	and	error	messages,	Performance	and	Error	Messages

request	information	(example),	Example:	Request	Information

MonadTrans	typeclass,	Writing	Handlers,	Overview,	MonadControlIO

MonadTransControl	typeclass,	MonadTransControl

MongoDB,	PersistStore

ByteStrings,	use	for	IDs,	A	Closer	Look	at	Types

mongoSettings,	More	Complicated,	More	Generic

uniqueness	constraints	and,	Uniqueness

mopt	function,	Monadic	Forms

mpsGeneric,	More	Complicated,	More	Generic

mreq	function,	Monadic	Forms

N

Name	type,	Types

namespaces	(XML),	Streaming	xmlpipe	Output,	Types

neverExpires	function,	Response	Headers

newIdent	function,	Generating	IDs

newtype	declarations,	Terminology

Nginx,	Warp

and	FastCGI,	Nginx	+	FastCGI

specifying	FastCGI	variables,	Nginx	+	FastCGI

server	process,	Server	Process

Nic	HTML	editor,	Blog:	i18n,	Authentication,	Authorization,	and	Database

NoImplicitPrelude	extension,	Import

notFound	function,	Short-Circuiting

Nothing,	NULL	versus,	Uniqueness

NULL	values,	uniqueness	and,	Uniqueness

O

OAuth,	Authentication	and	Authorization

one-to-many	relationships,	Relations

OpenID,	Authentication	and	Authorization

optionsEnum	function,	More	Sophisticated	Fields

OR	operator,	Select	Functions

overlapping	in	routes,	Overlap	checking

OverloadedStrings	type,	Overloaded	Strings,	Validation,	Hello,	World

P

pagination,	Streaming

ParseRoute	class	and	parseRoute	function,	Routing

parsing	routes,	The	HandlerT	Monad	Transformer

paseUrl	function,	Request

path	pieces,	Pieces

beginning	with	exclamation	point	(!),	Overlap	checking

types	of,	Types	of	pieces

pathInfo,	Generated	Code

in	a	subsite,	Generated	Code

PathMultiPiece	typeclass,	Types	of	pieces

defining	an	instance,	Types	of	pieces

PathPiece	typeclass,	Types	of	pieces,	Dynamic	Parameters

paths

converting	requested	path	into	route	value,	The	HandlerT	Monad

Transformer

in	WAI,	Hello,	Warp

performance

advantage	of	using	Esqueleto,	Esqueleto

advantages	of	Yesod	and	Haskell,	Performance

monad	transformer	levels	and,	Performance	and	Error	Messages

permissionDenied	function,	Short-Circuiting

persistence,	Initializing	Data	in	the	Foundation	Data	Type

Persistent,	Persistent-Summary

attributes,	Attributes-Attributes

custom	fields,	Custom	Fields

database	migrations,	Migrations

cases	not	handled	by	Persistent,	Migrations

rules	about,	Migrations

features,	Persistent

filtering	operators,	Select	Functions

integration	with	Yesod,	Integration	with	Yesod

joins	in,	Joins

manipulating	database	data,	Manipulation

deleting	data,	Delete

insert	function,	Insert

update	function,	Update

monad	transformers,	The	Three	Transformers

PostgreSQL,	working	with,	Something	Besides	SQLite

queries,	Queries

fetching	by	ID,	Fetching	by	ID

fetching	by	unique	constraint,	Fetching	by	Unique	Constraint

using	select	functions,	Select	Functions

raw	SQL,	Persistent:	Raw	SQL

relationships	in	data,	Relations

setting	up	entities	for	blog	application,	Blog:	i18n,	Authentication,
Authorization,	and	Database

solving	the	boundary	issue,	Solving	the	Boundary	Issue

code	generation,	Code	Generation

PersistStore,	PersistStore

types,	Types

types,	closer	examination	of,	A	Closer	Look	at	Types

uniqueness	constraints,	Uniqueness

writing	SQL	queries	in,	using	Esqueleto,	Esqueleto

PersistEntity	typeclass,	Types,	A	Closer	Look	at	Types

generating	instance	for	each	data	type	defined,	Code	Generation

PersistField	typeclass,	Types

persistFileWith	function,	Code	Generation

persistLowerCase	quasi-quoter,	Code	Generation

PersistStore	typeclass,	PersistStore,	The	Three	Transformers

PersistValue	typeclass,	Types,	A	Closer	Look	at	Types

pluralization,	Overview

PORT	environment	variable,	toWaiApp,	toWaiAppPlain,	and	warp

POST	requests,	Request	Methods

for	forms,	Running	Forms,	Monadic	Forms

handler	code	for,	Values	That	Don’t	Come	from	the	User

information	about,	Request	Information

Post/Redirect/Get,	getMessage,	Messages,	Blog:	i18n,	Authentication,
Authorization,	and	Database

PostgreSQL,	Solving	the	Boundary	Issue,	PersistStore

working	with,	Something	Besides	SQLite

preEscapedToHtml,	Searching

Prelude,	Import,	A	Note	About	File	Paths

printMigration	function,	Migrations

processing	instructions	(PIs),	The	Four	Types	of	Nodes

progress,	viewing	(publish/subscribe	example),	View	Progress

projections,	Esqueleto

provideJson	function,	JSON	Conveniences

provideRep	function,	Representations,	HasContentType	and	Representations

provideRepType	function,	New	Data	Types

publish/subscribe,	single	process,	Single-Process	Pub/Sub-Complete	Application

allocating	a	job,	Allocate	a	Job

complete	source	code,	Complete	Application-Complete	Application

forking	the	background	job,	Fork	Our	Background	Job

foundation	data	type,	Foundation	Data	Type

viewing	progress,	View	Progress

PUT	method,	Request	Methods

Q

QtWebkit,	Desktop

QuasiQuotes	(QQ),	QuasiQuotes,	Handler	Function

persistLowerCase,	Code	Generation

using	to	embed	Shakespeare	in	Haskell	code,	Calling	Shakespeare

correct	language	extensions	and	syntax,	Calling	Shakespeare

queries,	database,	Queries

fetching	by	ID,	Fetching	by	ID

fetching	by	unique	constraint,	Fetching	by	Unique	Constraint

in	widgets,	Database	Queries	in	Widgets

using	select	functions,	Select	Functions

writing	SQL	queries	with	Esqueleto,	Esqueleto

query	function,	Searching

query	strings,	Query	String	and	Hash	Fragments

embedding	query	string	parameters	in	Hamlet,	Interpolation

generating	parameters	for,	Generated	Code

handling	by	URL	rendering	functions,	Type-Safe	URLs

parameters	produced	by	renderRoute	function,	joinPath

quotation	marks,	Hamlet	attributes,	Attributes

R

R	suffix	on	resource	names,	Routing

race	conditions,	Update

radio	buttons,	More	Sophisticated	Fields

rapid	prototyping,	Development	Server

rawSql	function,	Joins

Reader	monad,	Monad	Transformers,	Intuition

ReaderT	monad	transformer,	Monad	Transformers,	Performance	and	Error
Messages,	Adding	a	New	Monad	Transformer,	Layers,	Types

readTChannel	function,	View	Progress

record	wildcard	syntax,	Step	2:	Use	the	Foundation

redirect	function,	Short-Circuiting,	Dynamic	Parameters

calling	during	handler	function	execution,	Short-Circuit	Responses

redirects,	indicated	by	cleanPath	function,	cleanPath

RedirectUrl	typeclass,	Query	String	and	Hash	Fragments

redirectUrlDest	function,	Ultimate	Destination

redirectWith	function,	Short-Circuiting

relationships	in	database	data,	Relations,	More	Complicated,	More	Generic

reload	mode,	calling	Shakespeare	from	Haskell	code,	Calling	Shakespeare

renderBuilder	function,	Streaming	xmlpipe	Output,	Streaming	xmlpipe	Output

rendering	functions	(URL),	Type-Safe	URLs

renderMessage	function,	RenderMessage	typeclass

RenderMessage	typeclass,	i18n,	RenderMessage	typeclass

creating	instance	for	blog	application	(example),	Blog:	i18n,
Authentication,	Authorization,	and	Database

creating	instance	for	wiki	master	site	(example),	Master	Site:	Instances

RenderRoute	class,	Routing

renderRoute	function,	Routing,	joinPath,	What	About	Yesod?

RenderRoute	typeclass,	joinPath,	What	About	Yesod?

replace	function,	Update

representations,	HasContentType	and	Representations

Request	class,	Layers,	Hello,	Warp,	The	Interface,	Request

request	headers,	Other	Request	Headers

request	methods,	Handler	Specification,	Request	Methods

requests,	Understanding	a	Request-Summary

auhorization	in	blog	application	(example),	Blog:	i18n,	Authentication,
Authorization,	and	Database

code	changes	in	Yesod	1.2,	Understanding	a	Request

dispatch,	Dispatch

complete	code	for	non-Template	Haskell	approach,	Complete
Code

generated	code,	Generated	Code

toWaiApp,	toWaiAppPlain,	and	warp,	toWaiApp,	toWaiAppPlain,
and	warp

getting	request	parameters,	Getting	Request	Parameters

handlers,	Handlers

content,	Content

layers,	Layers

short-circuit	responsed,	Short-Circuit	Responses

handling,	The	HandlerT	Monad	Transformer

representations	of	data,	HasContentType	and	Representations

request	body	(WAI),	Request	Body

resources,	Resources	and	Type-Safe	URLs

handler	functions,	specifying,	Handler	Specification

HomeR	route	(example),	Routing

names	of,	Resource	Name

resource	allocation	in	WAI,	Resource	Allocation

single	URL	for	each	resource,	Representations

writing,	patterns	for,	Types	of	pieces

ResourceT	monad	transformer,	Performance	and	Error	Messages,	Layers,
Manager

respondSource	API,	Streaming

respondSource	function,	View	Progress

respondSourceDB	function,	Streaming

Response	class,	Layers,	The	Interface,	Response

response	headers,	handler	functions	generating,	Response	Headers

responseFile	function,	Hello,	Warp

responseLBS	function,	Hello,	Warp

responses,	Hello,	Warp

generating	streaming	response	bodies,	Hello,	Warp

non-HTML,	Non-HTML	Responses

response	body	(WAI),	Response	Body

streaming	response	in	WAI,	Streaming	Response

responseSource	function,	converting	from	WAI	to	Yesod,	Streaming

responseSourceDB	function,	Streaming	xmlpipe	Output

RESTful	features	in	Yesod,	RESTful	Content-Summary

representations	of	data,	Representations

JSON,	conveniences	for,	JSON	Conveniences

new	data	types,	New	Data	Types

request	headers,	Other	Request	Headers

request	methods,	Request	Methods

Result	type,	Searching

returnJson	function,	JSON	Conveniences

reverse	proxy,	running	Warp	via,	Warp

route	attributes,	Route	Attributes-Alternative	Approach:	Hierarchical	Routes

alternative	to,	hierarchical	routes,	Alternative	Approach:	Hierarchical
Routes

routeAttrs	function,	Route	Attributes

routing,	Routing,	Resources	and	Type-Safe	URLs,	Routing	and	Handlers-
Handler	Specification

blog	application	(example),	Blog:	i18n,	Authentication,	Authorization,
and	Database

converting	requested	path	into	route	value,	The	HandlerT	Monad
Transformer

defining	routes	for	chat	subsite	(example),	Subsite:	Data

defining	routes	for	scaffolded	site,	Routes	and	Entities

generating	routes	for	subsites,	Generated	Code

generating	subsite	route	data	type	and	parse	and	render	functions,	Hello,
World

handler	functions	for	routes,	Handler	Modules

handler	specification	for	requests,	Handler	Specification

links	and,	Type-Safe	URLs

mkYesod	TH	function,	Routing

modeling	route	data	type,	Dynamic	Parameters

overlap	checking	for	routes,	Overlap	checking

resource	names,	Resource	Name

route	data	type,	What	About	Yesod?

route	syntax,	Route	Syntax

splitting	requested	path	into	pieces,	Pieces

route	type	and	route	render	function,	Foundation	and	Application
Modules

setting	up	routes	for	wiki	master	site	(example),	Master	Site:	Data

subsite	embedded	in	master	site	route	definition,	Hello,	World

using	LiteApp,	LiteApp

using	Template	Haskell,	Routing	with	Template	Haskell

runDB	function,	Integration	with	Yesod,	The	Three	Transformers

runErrorT	function,	Intuition

runFormGet	function,	Running	Forms

runFormPost	function,	Running	Forms

runFormPostNoToken	function,	Running	Forms

runHandler	function,	Short-Circuit	Responses

RunHandlerEnv	typeclass,	Layers

RunInBase	function,	MonadControlIO

runInputGet	function,	Input	Forms,	Subsite:	Handlers

runInputPost	function,	Input	Forms

runMigration	function,	Migrations

printing	of	migrations	on	stderr,	Migrations

runMigrationSilent	function,	Migrations

running	applications,	Running

runSqlite	function,	PersistStore

S

scaffold	sites,	The	Scaffolded	Site

scaffolded	site

defaultLayout	function,	defaultLayout

file	structure,	File	Structure

cabal	file,	Cabal	File

Foundation	and	Application	modules,	Foundation	and
Application	Modules

Handler	modules,	Handler	Modules

Import	module,	Import

routes	and	entities,	Routes	and	Entities

static	files,	Static	Files

widgetFile	function,	widgetFile

scaffolding,	Scaffolding	and	the	Site	Template

SCGI,	Warp,	Web	Application	Interface

script	tags

external	JavaScript	in,	External	CSS	and	JavaScript

fine-grained	control	over	insertion	of,	Constructing	Widgets

search	(debugging	utility),	Sphinx	Setup

search,	Sphinx-based	(see	Sphinx-based	search)

searchd,	Sphinx	Setup

select	functions,	Select	Functions

select,	replacing	with	selectSource,	Streaming

selectList,	Select	Functions

selectSource,	Streaming	xmlpipe	Output

SELECT	statement,	Joins

SelectOpt	typeclass,	Select	Functions

constructors	setting	options,	SelectOpt

selectRep	function,	Representations,	HasContentType	and	Representations

sendChunkText	function,	View	Progress

sendFile	function,	Short-Circuiting

sendfile	system	call,	Hello,	Warp

sendFlush	function,	View	Progress

sendmail	executable,	Email

sendResponse	function,	Short-Circuiting

sendWaiApplication	function,	Subsite:	Handlers

sendwaiResponse	function,	Short-Circuiting

sessions,	Sessions-Summary

AuthId	and,	Overview

clientsession,	clientsession

controlling,	Controlling	Sessions

messages,	Messages

operations,	Session	Operations

server-side,	Overview

session	state,	GHState	typeclass,	Layers

ultimate	destination,	Ultimate	Destination

Yesod	user	session	framework,	Getting	Request	Parameters

setCookie	function,	Response	Headers

setHeader	function,	Response	Headers

setLanguage	function,	Response	Headers

setMessage	function,	getMessage,	Messages,	Blog:	i18n,	Authentication,
Authorization,	and	Database

setSession	function,	Session	Operations

Settings	types,	Settings	Types-Settings	Types

Settings.staticRoot	function,	Nginx	Configuration

setTitleI	function,	Blog:	i18n,	Authentication,	Authorization,	and	Database

setUltDest	function,	Ultimate	Destination

setUltDestCurrent	function,	Ultimate	Destination

setUltDestReferer	function,	Ultimate	Destination

Shakespearean	family	of	template	languages,	Shakespearean	Templates,
Shakespeare

calling	Shakespeare	from	Haskell	code,	Calling	Shakespeare

getting	the	most	from,	guidelines	for,	General	Recommendations

in	widgets,	Widgets

other	Shakespeare	languages,	Other	Shakespeare

synopsis	of,	Synopsis

syntax,	Syntax

Hamlet,	Hamlet	Syntax-Lucius	Syntax

Lucius,	Lucius	Syntax

type-safe	URLs,	Type-Safe	URLs

types,	Types

URL	rendering	function,	The	URL	Rendering	Function

shamlet	(quasiquoter),	Alternative	Hamlet	Types

Html	value	produced	by,	Representations

shamletFile	function,	Alternative	Hamlet	Types

share	function,	Migrations

short	circuiting	handler	functions,	Short-Circuiting,	Short-Circuiting

short-circuit	responses,	Short-Circuit	Responses

shouldLog	function,	Some	Simple	Settings

simpleHttp	function,	Concepts

single	process	pub-sub	(see	publish/subscribe,	single	process)

sinkNull	sink,	http	and	httpLbs

site	template,	How	to	Scaffold

source	setting	(Sphinx),	Sphinx	Setup

Source	type,	Streaming

Source	typeclass,	Select	Functions

spawn-fcgi	program,	Nginx	+	FastCGI

Sphinx	package,	Case	Study:	Sphinx-Based	Search

Sphinx-based	search	(case	study),	Case	Study:	Sphinx-Based	Search-Full	Code

basic	Yesod	setup,	Basic	Yesod	Setup

complete	code,	Streaming	xmlpipe	Output-Full	Code

searching,	Searching

setting	up	Sphinx,	Sphinx	Setup

streaming	xmlpipe	output,	Streaming	xmlpipe	Output

SQL

more	complex,	in	Esqueleto	library,	More	Complex	SQL

raw	SQL	in	Persistent,	Persistent:	Raw	SQL

uniqueness,	NULL	values	and,	Uniqueness

SQL	joins,	SQL	Joins-Summary

database	queries	in	widgets,	Database	Queries	in	Widgets

multiauthor	blogs,	Multiauthor	Blog

streaming,	Streaming

using	Esqueleto,	Esqueleto

writing	joins,	Joins

SqlBackend	typeclass,	PersistStore,	More	Complicated,	More	Generic,	The
Three	Transformers

Persistent	and,	More	Complicated,	More	Generic

SQLite,	PersistStore

Sphinx-based	search	database,	Basic	Yesod	Setup

sqlSettings	function,	More	Complicated,	More	Generic

SSL,	Email

SSL	certificates,	SSL	and	Static	Files

Stackage,	Tools

stage	restriction,	Template	Haskell

statelessness	of	HTTP,	Sessions

StateT	monad	transformer,	Adding	a	New	Monad	Transformer

static	files

in	scaffolded	site,	Static	Files

serving	from	a	separate	domain	name,	Nginx	Configuration

serving	from	a	subsite,	Handler	Specification

serving	over	HTTPS,	SSL	and	Static	Files

smarter,	Smarter	Static	Files

static	pieces,	Types	of	pieces

static	root	in	Settings.hs	file,	Static	Files

streaming,	Streaming

complete	code	for	streaming	HTML	response,	Summary

database	responses,	Basic	Yesod	Setup

generating	streaming	response	bodies,	Hello,	Warp

streaming	response	in	WAI,	Streaming	Response

xmlpipe	output	from	Sphinx-based	search,	Streaming	xmlpipe	Output

strings

interpolated,	creating	with	shakespeare-text,	Other	Shakespeare

overloaded	Strings,	Overloaded	Strings

String	type,	converting	to	raw	content,	New	Data	Types

style	tags,	external	CSS	in,	External	CSS	and	JavaScript

subsites,	Creating	a	Subsite-Hello,	World

creating,	Hello,	World	(example),	Hello,	World

for	authentication,	Authenticate	Me

generated	code	for	dispatch	of	responses,	Generated	Code

generating	query	string	parameters	for,	Generated	Code

static,	Handler	Specification

support	for,	in	dispatch,	Dispatch

system	libraries	for	GHC	and	Haskell	Platform,	Tools

system-filepath	package,	A	Note	About	File	Paths

T

tags	(HTML),	Tags

closing	tags	furnished	by	Hamlet,	Tags

Template	Haskell	(TH),	Template	Haskell

functions	inserting	source	code	location	into	log	messages,	I/O	and
Debugging

generated	code	for	dispatch	of	responses,	Generated	Code

parsing	and	rendering	of	routes,	Routing

routing	with,	Routing	with	Template	Haskell

templates,	Performance

text

creating	interpolated	strings	in	shakespeare-text,	Other	Shakespeare

RenderMessage	instance	for	Text,	i18n

Text.XML	module,	The	Four	Types	of	Nodes,	Text.XML

Text.XML.Cursor	module,	Cursor

text/html	mime	type,	Representations

TH	(see	Template	Haskell)

timeouts	(session),	Controlling	Sessions

toContent	function,	New	Data	Types

ToContent	typeclass,	New	Data	Types,	Content,	(To)Content,	(To)TypedContent

ToCss	typeclass,	Types

toHtml	function,	Types

ToJavascript	typeclass,	Types

ToJSON	typeclass,	JSON	Conveniences

ToMarkup	typeclass,	Types

toPathPiece	function,	Types	of	pieces,	Generated	Code,	Streaming	xmlpipe
Output

toSqlKey	function,	Searching

ToTypedContent	typeclass,	New	Data	Types,	Content,	(To)Content,
(To)TypedContent

return	type	for	handler	functions,	Writing	Handlers

toWaiApp	function,	toWaiApp,	toWaiAppPlain,	and	warp,	What	About	Yesod?

toWaiAppPlain	function,	toWaiApp,	toWaiAppPlain,	and	warp,	What	About
Yesod?

toWidget	method,	Constructing	Widgets

ToWidget	typeclass,	Constructing	Widgets

ToWidgetBody	typeclass,	Constructing	Widgets

ToWidgetHead	typeclass,	Constructing	Widgets

transactions,	PersistStore

translations

message	files,	Message	Files

messages	for	chat	subsite	(example),	Subsite:	Handlers

translating	phrases,	not	words,	Phrases,	Not	Words

TVars,	Visitor	Counter

type	constructors,	Terminology

type	safety,	Introduction

type	variables,	Terminology

type-safe	URLs,	Resources	and	Type-Safe	URLs,	Type-Safe	URLs,	What	About
Yesod?

syntax,	Interpolation

Typeable	type,	Blog:	i18n,	Authentication,	Authorization,	and	Database

typeclasses,	What	About	Yesod?

advantages	over	record	type,	The	Yesod	Typeclass

TypedContent	typeclass,	Html,	Representations,	New	Data	Types,	(To)Content,
(To)TypedContent

types

associated,	What	About	Yesod?

data	sent	to	and	from	a	database,	Types

foundation	data	type	in	Yesod,	What	About	Yesod?

in	Haskell,	Terminology

and	data	constructors,	names	of,	Terminology

in	Persistent,	A	Closer	Look	at	Types

more	complicated,	more	generic,	More	Complicated,	More
Generic

in	Shakespearean	templates,	Types

in	whamlet,	Types

module	for	subsite	data	types,	Hello,	World

monad-control,	Types

new	data	types	representing	data,	New	Data	Types

Settings,	Settings	Types-Settings	Types

specifying	for	messages,	Specifying	Types

textual	data	types	in	shakespeare-text	example,	Other	Shakespeare

type	declarations	in	Haskell,	Terminology

type	families,	Type	Families

U

ultimate	destination,	Ultimate	Destination

unique	identifiers,	Subsite:	Widget

Unique	typeclass,	Uniqueness

uniqueness	constraints,	Uniqueness

database	queries	on,	Fetching	by	Unique	Constraint

update	function,	Update

Update	typeclass,	Update

updateWhere	function,	Update

urlEncodeBody	function,	Request

urlRenderOverride	function,	Smarter	Static	Files,	Nginx	Configuration

URLs

adding	information	to,	with	RedirectUrl	and	Fragment,	Query	String
and	Hash	Fragments

interpolation

simplified	Hamlet	and,	Alternative	Hamlet	Types

pieces,	splitting	requested	path	into,	Pieces

types	of	pieces,	Types	of	pieces

rendering	and	parsing	with	Yesod	typeclass,	Rendering	and	Parsing
URLs

using	cleanPath,	cleanPath

using	joinPath,	joinPath

rendering	functions,	Type-Safe	URLs,	The	URL	Rendering	Function

type-safe,	Resources	and	Type-Safe	URLs,	Type-Safe	URLs

used	in	linking,	types	of,	Type-Safe	URLs

V

validation	(forms),	Validation

variable	interpolation,	Types

in	Hamlet,	Types,	Interpolation

variables	(in	Lucius),	Lucius	Syntax

visitor	counter	(example),	Visitor	Counter-Visitor	Counter

W

WAI	(Web	Application	Interface),	Running,	Yesod	for	Haskellers-Hello,	Warp,
Hello,	Warp,	Web	Application	Interface-Middleware

handlers,	Layers

Hello,	World	application	(example),	Hello,	World

interface,	The	Interface

request	body,	Request	Body

response	body,	Response	Body

interoperability	with,	JSON	web	service	server	(example),	Server

middleware,	Middleware

pathInfo,	Generated	Code

promoting	WAI	applicaion	to	a	Yesod	handler,	Subsite:	Handlers

resource	allocation,	Resource	Allocation

sending	raw	WAI	response,	Short-Circuiting

streaming	response,	Streaming	Response

support	for	using	WAI	applications	as	subsites,	Dispatch

version	3.0,	Web	Application	Interface

Yesod	interaction	with,	What	About	Yesod?-What	About	Yesod?

WAI	backends,	Warp

wai-conduit	helper	package,	Hello,	Warp

wai-eventsource	package,	Subsite:	Handlers

wai-handler-launch,	Desktop

wai-handler-webkit,	Desktop

waiRequest	function,	Request	Information

warp	function,	toWaiApp,	toWaiAppPlain,	and	warp,	Convenience	warp
Function,	Master	Site:	Running

Warp	web	server,	Performance,	Running,	Warp

advantages	of	using,	Warp

Nginx	configuration,	Nginx	Configuration

server	process,	Server	Process

warp	function,	Development	Server

warpEnv	function,	toWaiApp,	toWaiAppPlain,	and	warp,	Convenience	warp
Function

Web	Application	Interface	(see	WAI)

web	development

challenge	of	coordinating	HTML,	CSS,	and	JavaScript,	Widgets

type	safety	and,	Introduction

Yesod	and	Haskell,	Introduction

WebKit,	Warp

wai-handler-webkit,	Desktop

whamlet,	whamlet

types,	Types

whitespace

escape	rules	in	Hamlet,	Tags

in	Hamlet	and	Cassius,	Synopsis

Widget	monad,	Yesod’s	Monads

getting	request	information	in	(example),	Example:	Request	Information

Widget	type	synonyms,	Types

widgetFile	function,	widgetFile

widgets,	Handler	Function,	Widgets-Summary,	Widgets

capabilities	of	Widget	and	Handler,	The	Three	Transformers

combining,	Combining	Widgets

components	of,	What’s	in	a	Widget?

constructing,	Constructing	Widgets

functions	for,	Constructing	Widgets

database	queries	in,	Database	Queries	in	Widgets

for	chat	subsite	(example),	Subsite:	Widget

generating	ids	for,	Generating	IDs

using,	Using	Widgets

using	handler	fuctions	in,	Using	Handler	Functions

using	whamlet,	whamlet

types,	Types

Widget	type,	returned	from	running	forms,	Running	Forms

WidgetT	monad	transformer,	Handler	monad,	The	Three	Transformers,
Performance	and	Error	Messages

widgetToPageContent	function,	defaultLayout,	Blog:	i18n,	Authentication,
Authorization,	and	Database

wihUrlRenderer	function,	The	URL	Rendering	Function

wiki	(example),	Wiki:	Markdown,	Chat	Subsite,	Event	Source-Summary

chat	subsite,	Wiki:	Markdown,	Chat	Subsite,	Event	Source-Master	Site:
Data

handlers	for	master	site,	writing,	Master	Site:	Wiki	Handlers

master	site	data,	Master	Site:	Data

master	site	instances,	Master	Site:	Instances

running	the	master	site,	Master	Site:	Running

Windows	systems,	installing	GHC	and	Cabal,	Tools

with	statement,	with

withManager	function,	Client

withUrlRenderer	function,	defaultLayout,	Blog:	i18n,	Authentication,
Authorization,	and	Database

write	requests,	Authorization,	Blog:	i18n,	Authentication,	Authorization,	and
Database

Writer	monad,	Intuition

WriterT	monad	transformer,	Adding	a	New	Monad	Transformer

X

XML

representations	of	data,	Representations

Sphinx	search	results	document,	Streaming	xmlpipe	Output

streaming	database	content	to,	Case	Study:	Sphinx-Based	Search

xml-conduit	package,	Streaming	xmlpipe	Output,	xml-conduit-xml2html

cursor,	Cursor

documents,	Documents

file	paths,	A	Note	About	File	Paths

Text.XML	module,	Text.XML

types,	Types

events,	Events

nodes,	types	of,	The	Four	Types	of	Nodes

xml-hamlet	package,	xml-hamlet-xml-hamlet

xml-types	package,	xml-conduit

xml2html,	xml2html

xmlpipe2,	Sphinx	Setup

streaming	output,	Streaming	xmlpipe	Output

XPath,	Cursor

Y

Yesod,	Preface,	Yesod	for	Haskellers-Details	We	Won’t	Cover

1.2	release,	Understanding	a	Request

code	generation,	Concise	Code

concise	code	for	web	applications,	Concise	Code

dynamic	parameters,	Dynamic	Parameters

handler	functions,	writing,	Writing	Handlers-Dynamic	Parameters

HandlerT	monad	transformer,	The	HandlerT	Monad	Transformer-
Convenience	warp	Function

Hello,	Warp	application	(example),	Hello,	Warp

interaction	with	WAI,	What	About	Yesod?-What	About	Yesod?

Yesod	application	(example),	What	About	Yesod?

language	pragmas,	handling	of,	Language	Pragmas

modularity,	Modularity

MonadHandler	typeclass,	Using	Handler	Functions

monads	(see	monads)

performance	advantages	of,	Performance

powerful	ecosystem	available	with,	A	Solid	Foundation

quick	start	guide	for	GHC	and	Cabal,	Tools

scaffold	site,	The	Scaffolded	Site

Shakespeare,	Shakespeare

widgets,	Widgets

yesod	add-handler	command,	Handler	Modules

yesod	devel	command,	The	Scaffolded	Site,	How	to	Scaffold,	Web	Application
Interface

library-only	and	dev	flags,	Cabal	File

yesod	executable,	How	to	Scaffold

yesod	init	command,	The	Scaffolded	Site,	How	to	Scaffold

Yesod	typeclass,	The	Yesod	Typeclass-Summary,	What	About	Yesod?

advantages	of	typeclass	over	record	type,	The	Yesod	Typeclass

authentication/authorization,	Authentication/Authorization

cleanPath	member	function,	toWaiApp,	toWaiAppPlain,	and	warp

creating	instance	for	wiki	master	site	(example),	Master	Site:	Instances

custom	error	pages,	Custom	Error	Pages

defaultLayout	function,	defaultLayout

documentation,	Some	Simple	Settings

external	CSS	and	JavaScript,	External	CSS	and	JavaScript

methods	handling	authorization,	Overview

rendering	and	parsing	URLs,	Rendering	and	Parsing	URLs

using	cleanPath,	cleanPath

using	joinPath,	joinPath

simple	settings,	methods	for,	Some	Simple	Settings

smarter	static	files,	Smarter	Static	Files

yesod-auth	package,	Authentication/Authorization,	Overview

yesod-form	package,	Forms

yesod-static	command,	Static	Files

Yesod.Core,	documentation,	Controlling	Sessions

Yesod.Core.Types,	Performance	and	Error	Messages

YesodApp	typeclass,	Layers

YesodAuth	typeclass,	Authenticate	Me

creating	instance	for	blog	application	(example),	Blog:	i18n,
Authentication,	Authorization,	and	Database

creating	instance	for	wiki	master	site	(example),	Master	Site:	Instances

required	declarations	in	an	instance,	Authenticate	Me

YesodAuthPersist	typeclass,	Blog:	i18n,	Authentication,	Authorization,	and
Database

YesodDB	monad,	Yesod’s	Monads,	The	Three	Transformers

yesodDispatch	function,	What	About	Yesod?

YesodDispatch	typeclass,	Routing,	Dispatch,	What	About	Yesod?,	What	About
Yesod?

instance	of,	Generated	Code

writing	an	instance,	Dynamic	Parameters

YesodMessage	typeclass,	Overview

YesodPersist	typeclass,	Integration	with	Yesod

creating	instance	for	blog	application	(example),	Blog:	i18n,
Authentication,	Authorization,	and	Database

YesodPersistentBackend	typeclass,	The	Three	Transformers

YesodPersistRunner	typeclass,	Basic	Yesod	Setup

YesodRequest	data	type,	Request	Information,	Layers

YesodResponse	data	type,	Layers

yesodRunner	function,	Generated	Code,	The	HandlerT	Monad	Transformer

YesodRunnerEnv	typeclass,	Dispatch,	What	About	Yesod?,	The	HandlerT
Monad	Transformer

yesodSubDispatch	function,	Generated	Code

YesodSubDispatch	typeclass,	Dispatch

YesodSubRunnerEnv	typeclass,	Dispatch

About	the	Author

Michael	Snoyman,	creator	of	Yesod,	has	been	programming	for	about	15	years,	using
Haskell	for	the	past	five.	He	has	ten	years	of	web	development	experience	in	a	wide
variety	of	environments	as	well	as	time	spent	creating	documentation.

Colophon

The	animals	on	the	cover	of	Developing	Web	Apps	with	Haskell	and	Yesod,	Second
Edition	are	a	common	rhinoceros	beetle	(Xylotrupes	ulysses)	and	an	Apollo	butterfly
(Parnassius	apollo).

Common	rhinoceros	beetles	are	famous	for	their	size	and	unique	head	shape	—	the	males
possess	a	set	of	large	horns,	one	pointing	from	the	top	of	the	head	and	another	from	the
center	of	the	thorax.	These	horns	are	used	to	fight	other	males	for	mating	rights,	and	also
to	dig	in	search	of	food.	The	size	of	the	horn	relative	to	the	body	is	a	good	indication	of
physical	health	and	nutrition.

Male	rhinoceros	beetles	can	reach	up	to	six	inches	in	length,	and	this	large	size	provides
protection	from	most	predators.	However,	these	beetles	cannot	bite	or	sting,	which	makes
them	popular	pets	in	some	Asian	countries.	Their	violent	bids	for	female	attention	also
make	them	widely	used	for	gambling	fights.

The	Apollo	butterfly	is	a	beautiful	white	butterfly	with	black	spots	on	the	forewings	and
red	eyespots	on	the	hindwings.	The	size,	placement,	and	shade	of	these	spots	can	vary
depending	on	the	region	the	butterfly	is	from.	This	makes	them	a	very	attractive	species	to
collectors,	who	endeavor	to	capture	one	of	each	variant.

These	butterflies	are	native	to	Europe,	and	can	be	found	as	far	east	as	central	Asia.	They
prefer	a	habitat	of	mountain	meadows	that	contain	many	nectar-providing	flowers	and
rocky	outcroppings	for	cocoon	formation.

Due	in	part	to	over-collecting,	but	mostly	to	habitat	loss,	these	butterflies	are	listed	as
“vulnerable”	on	the	IUCN	Red	List.	There	are	laws	in	place	to	restrict	trade	of	individual
Apollo	butterflies,	but	more	conservation	needs	to	be	done	to	prevent	further	loss	of
habitat.	Climate	change,	acid	rain,	and	urbanization	are	all	contributing	factors	to	the
displacement	of	this	species,	but	thankfully	countries	like	Poland	and	Germany	have	small
groups	of	conservationists	working	to	protect	their	local	populations.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	fonts	are	URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion
Pro;	the	heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s
Ubuntu	Mono.

Preface
Who	This	Book	Is	For

Conventions	Used	in	This	Book

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

I.	Basics

1.	Introduction
Type	Safety

Concise	Code

Performance

Modularity

A	Solid	Foundation

2.	Haskell
Terminology

Tools

Language	Pragmas

Overloaded	Strings

Type	Families

Template	Haskell

QuasiQuotes

API	Documentation

Summary

3.	Basics
Hello,	World

Routing

Handler	Function

The	Foundation

Running

Resources	and	Type-Safe	URLs

Non-HTML	Responses

The	Scaffolded	Site

Development	Server

Summary

4.	Shakespearean	Templates
Synopsis

Hamlet	(HTML)

Lucius	(CSS)

Cassius	(CSS)

Julius	(JavaScript)

Types
Type-Safe	URLs

Syntax
Hamlet	Syntax

Lucius	Syntax

Cassius	Syntax

Julius	Syntax

Calling	Shakespeare
Alternative	Hamlet	Types

Other	Shakespeare

General	Recommendations

5.	Widgets
Synopsis

What’s	in	a	Widget?

Constructing	Widgets

Combining	Widgets

Generating	IDs

whamlet
Types

Using	Widgets

Using	Handler	Functions

Summary

6.	The	Yesod	Typeclass
Rendering	and	Parsing	URLs

joinPath

cleanPath

defaultLayout
getMessage

Custom	Error	Pages

External	CSS	and	JavaScript

Smarter	Static	Files

Authentication/Authorization

Some	Simple	Settings

Summary

7.	Routing	and	Handlers
Route	Syntax

Pieces

Resource	Name

Handler	Specification

Dispatch
Return	Type

Arguments

The	Handler	Functions
Application	Information

Request	Information

Short-Circuiting

Response	Headers

I/O	and	Debugging

Query	String	and	Hash	Fragments

Summary

8.	Forms
Synopsis

Kinds	of	Forms

Types

Converting

Creating	AForms
Optional	Fields

Validation

More	Sophisticated	Fields

Running	Forms

i18n

Monadic	Forms

Input	Forms

Custom	Fields

Values	That	Don’t	Come	from	the	User

Summary

9.	Sessions
clientsession

Controlling	Sessions

Session	Operations

Messages

Ultimate	Destination

Summary

10.	Persistent
Synopsis

Solving	the	Boundary	Issue
Types

Code	Generation

PersistStore

Migrations

Uniqueness

Queries
Fetching	by	ID

Fetching	by	Unique	Constraint

Select	Functions

Manipulation
Insert

Update

Delete

Attributes

Relations

A	Closer	Look	at	Types
More	Complicated,	More	Generic

Custom	Fields

Persistent:	Raw	SQL

Integration	with	Yesod

More	Complex	SQL

Something	Besides	SQLite

Summary

11.	Deploying	Your	Web	App
Keter

Compiling

Files	to	Deploy

SSL	and	Static	Files

Warp
Nginx	Configuration

Server	Process

Nginx	+	FastCGI

Desktop

CGI	on	Apache

FastCGI	on	lighttpd

CGI	on	lighttpd

II.	Advanced

12.	RESTful	Content
Request	Methods

Representations

JSON	Conveniences

New	Data	Types

Other	Request	Headers

Summary

13.	Yesod’s	Monads
Monad	Transformers

The	Three	Transformers

Example:	Database-Driven	Navbar

Example:	Request	Information

Performance	and	Error	Messages

Adding	a	New	Monad	Transformer

Summary

14.	Authentication	and	Authorization
Overview

Authenticate	Me

Email

Authorization

Summary

15.	Scaffolding	and	the	Site	Template
How	to	Scaffold

File	Structure
Cabal	File

Routes	and	Entities

Foundation	and	Application	Modules

Import

Handler	Modules

widgetFile

defaultLayout

Static	Files

Summary

16.	Internationalization
Synopsis

Overview

Message	Files
Specifying	Types

RenderMessage	typeclass

Interpolation

Phrases,	Not	Words

17.	Creating	a	Subsite
Hello,	World

18.	Understanding	a	Request
Handlers

Layers

Content

Short-Circuit	Responses

Dispatch
toWaiApp,	toWaiAppPlain,	and	warp

Generated	Code

Complete	Code

Summary

19.	SQL	Joins
Multiauthor	Blog

Database	Queries	in	Widgets

Joins

Esqueleto

Streaming

Summary

20.	Yesod	for	Haskellers
Hello,	Warp

What	About	Yesod?

The	HandlerT	Monad	Transformer
(To)Content,	(To)TypedContent

HasContentType	and	Representations

Convenience	warp	Function

Writing	Handlers
Getting	Request	Parameters

Short-Circuiting

Streaming

Dynamic	Parameters

Routing	with	Template	Haskell
LiteApp

Shakespeare
The	URL	Rendering	Function

Widgets

Details	We	Won’t	Cover

III.	Examples

21.	Initializing	Data	in	the	Foundation	Data	Type
Step	1:	Define	Your	Foundation

Step	2:	Use	the	Foundation

Step	3:	Create	the	Foundation	Value

Summary

22.	Blog:	i18n,	Authentication,	Authorization,	and	Database

23.	Wiki:	Markdown,	Chat	Subsite,	Event	Source
Subsite:	Data

Subsite:	Handlers

Subsite:	Widget

Master	Site:	Data

Master	Site:	Instances

Master	Site:	Wiki	Handlers

Master	Site:	Running

Summary

24.	JSON	Web	Service
Server

Client

25.	Case	Study:	Sphinx-Based	Search
Sphinx	Setup

Basic	Yesod	Setup

Searching

Streaming	xmlpipe	Output

Full	Code

26.	Visitor	Counter

27.	Single-Process	Pub/Sub
Foundation	Data	Type

Allocate	a	Job

Fork	Our	Background	Job

View	Progress

Complete	Application

28.	Environment	Variables	for	Configuration

29.	Route	Attributes
Alternative	Approach:	Hierarchical	Routes

IV.	Appendices

A.	monad-control
Overview

Intuition

Types
MonadTransControl

MonadControlIO

Real-Life	Examples

Lost	State

More	Complicated	Cases

B.	Web	Application	Interface
The	Interface

Response	Body

Request	Body

Hello,	World

Resource	Allocation

Streaming	Response

Middleware

C.	Settings	Types

D.	http-conduit
Synopsis

Concepts

Request

Manager

Response

http	and	httpLbs

E.	xml-conduit
Synopsis

Types
The	Four	Types	of	Nodes

Documents

Events

Text.XML
A	Note	About	File	Paths

Cursor

xml-hamlet

xml2html

Index

