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Preface

We wrote this book for an introductory structural equation modeling (SEM) course similar to the ones we teach at Fordham 
University and California State University, Fullerton. Our goal is to present a conceptual and nonmathematical introduction to 
SEM methodology. The readership we have in mind consists mainly of graduate students or researchers from any discipline 
with limited or no previous exposure to SEM. When we examined other available books, we found that most of them had 
serious limitations that precluded their use in an introductory course. These books were either too technical for beginners, did 
not cover in sufficient breadth the basics of the methodology that we consider to be relevant for this type of course, or 
intermixed fairly advanced issues with basic ones. Our book is therefore an alternative attempt to provide a first course in SEM 
methodology at a coherent introductory level.



There are no special prerequisites for readers of this text beyond a course in basic statistics that included coverage of 
regression analysis. Because we frequently draw a parallel between aspects of SEM and their apparent analogs in regression, 
this prior knowledge is important. There are also only a few mathematical formulas used, which are either conceptual or 
illustrative rather than computational in nature. Although the basic ideas and methods for conducting SEM analyses presented 
in this book are independent of the particular computer programs used, for clarity the examples are illustrated using the two 
apparently most widely circulated programs, LISREL and EQS. As such, the book can also be used as a first guide for learning 
how to set up input files to fit several frequently used types of structural equation models with these programs.
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Due to the targeted audience of first-time SEM users, many important advanced topics could not be included in the book. 
Anyone interested in such topics can consult a plethora of more advanced SEM texts published throughout the last decade 
(http://www.erlbaum.com). Our book can be considered a helpful precursor to these advanced SEM texts.

Our efforts to produce this text would not have been successful without the continued support and encouragement provided by 
a number of scholars in the SEM area. We feel particularly indebted to Peter M. Bentler, Michael W. Browne, Karl G. 
Jöreskog, and Bengt O. Muthén for their important contributions to the methodology and their helpful discussions and 
instruction throughout the years. In many regards they have profoundly influenced our understanding of SEM and this is 
reflected in the book. We are grateful to Paul B. Baltes, Freyda Dittmann-Kohli, and Reinhold Kliegl for the permission to use 
data from their project on aging and plasticity in fluid intelligence of older adults for illustrative purposes. We would also like 
to thank numerous colleagues and students who provided comments on earlier drafts of the various chapters. Thanks are also 
due to all the wonderful people at Lawrence Erlbaum Associates for their assistance and support. Finally, and most 
importantly, we thank our families for their continued love and support despite the fact that we keep taking on new projects. 
Specifically, the first author wishes to thank Albena and Anna; and the second author wishes to thank Laura and Katerina.

TENKO RAYKOV 
GEORGE A. MARCOULIDES
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Chapter One 
Fundamentals of Structural Equation Modeling

What Is Structural Equation Modeling?

Structural equation modeling is a statistical methodology used by biologists, economists, educational researchers, marketing 
researchers, medical researchers, and a variety of social and behavioral scientists. One reason for its pervasive use in many 
scientific fields of study is that structural equation modeling provides researchers with a comprehensive method for the 
quantification and testing of theories. Other major characteristics of structural equation models are that they explicitly take into 
account the measurement error that is ubiquitous in most disciplines and contain latent variables.

Latent variables are theoretical or hypothetical constructs of major importance in many sciences. Typically, there is no direct 
operational method for measuring latent variables or a precise method for assessing their degree of presence. Nevertheless, 
manifestations of a construct can be observed by recording or measuring specific features of the behavior on some set of 
subjects in a particular environment. The recording or measurement of features of the behavior is typically obtained by using 
pertinent instrumentation (e.g., tests, scales, self-reports, inventories, or questionnaires). Once constructs have been assessed, 
structural equation modeling can be used to test the plausibility of hypothetical assertions about potential interrelationships 
among the constructs as well as their relationships to the indicators or measures assessing them. Due to the mathematical 
complexities of estimating and testing the proposed assertions, computer programs are a must in applications of structural 
equation mod-
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eling methodology. To date, numerous computer programs are available for conducting structural equation modeling analyses. 
Programs such as AMOS (Arbuckle, 1995), EQS (Bentler, 1995), LISREL (Jöreskog & Sörbom, 1993a, 1993b, 1993c, 1999), 
MPLUS (Muthén & Muthén, 1998), SAS-PROC CALIS (SAS Institute, 1989), SEPATH (Statistica, 1998), and RAMONA 
(Browne & Mels, 1994) are likely to contribute to a further increase in the coming years of the popularity of this relatively new 
methodology. Although all these programs have somewhat similar capabilities, LISREL and EQS have historically dominated 
the field (Marsh, Balla, & Hau, 1996). For this reason (and because it would be impossible to cover every program in detail in 
an introductory text), all the examples in this book are illustrated using only the LISREL and EQS programs.

The term structural equation modeling (SEM) is used throughout this book as a generic term to refer to various types of 
commonly encountered models. The following are some characteristics of SEM models.

1. The models are usually conceived in terms of not directly measurable, and possibly not (very) well-defined, theoretical or 
hypothetical constructs. For example, anxiety, attitudes, goals, intelligence, motivation, personality, and socioeconomic status 
are all representative of such constructs.

2. The models usually take into account potential errors of measurement in all variables. This is achieved by including an 
explicit error term for each fallible measure, whether it is an explanatory or predicted variable. The variances of the error terms 
are, in general, parameters that must be estimated when any model is fit to data. Tests of hypotheses about them can also be 
conducted when they represent substantively meaningful assertions about the error terms or their relationships to other 
parameters.

3. The models are usually fit to matrices of interrelationship indices (i.e., covariance or correlation matrices) between all pairs 
of observed variables, and sometimes to variable means.1

1 It can be shown that the fit function minimized in the maximum likelihood method, used in the majority of current 
applications of SEM, is based on the likelihood function of the raw data (see Bollen, 1989; see also the section Rules 
for Determining Model Parameters). Thus, with multinormality, a structural model can be considered indirectly 
fitted to the raw data as well, similar to models within the general linear modeling framework. Because this is an 
introductory book, however, we emphasize here the more direct process of fitting the model to the analyzed matrix 
of variable interrelationship indices, which is the underlying idea of the most general asymptotically distribution-free 
method of model fitting and testing. The maximization of the likelihood function of the raw data is equivalent 
alternatively to the minimization of the fit function of the maximum likelihood method, which measures the distance 
between that matrix and the one reproduced by the model (see the section Rules for Determining Model Parameters).
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This list of characteristics can also be used to differentiate structural equation models from classical general linear modeling 
approaches. The classical approaches encompass such methods as regression analysis, analysis of variance, analysis of 
covariance, and a large part of multivariate statistical methods (see Marcoulides & Hershberger, 1997). In the classical 
approaches, models are fit to raw data, and no error of measurement in the independent variables is assumed.

On the other hand, an important feature that many of the classical approaches share with SEM is that they are based on linear 
models. Thus, a frequent assumption when using SEM methodology is that the relationships between observed variables are 
linear (although modeling nonlinear relationships is gaining popularity in SEM; see Schumacker & Marcoulides, 1998). 
Another shared property between classical approaches and SEM is model comparison. For example, the F test for comparing a 
less restricted model to a more restricted model is used in regression analysis whenever a special case of a given model is 
tested. An example of such a case might be when a researcher is interested in testing whether to drop from a prediction model 
one or more predictors. As discussed later, the counterpart of this test in SEM is the difference in chi-square values test, or its 
asymptotic equivalents in the form of Lagrange multiplier or Wald tests (Bentler, 1995). Generally speaking, the chi-square 
test is used in SEM to examine the plausibility of model parameter restrictions such as equality of factor loadings, factor or 
error variances, or factor variances and covariances across groups.

Types of Structural Equation Models

The following types of commonly used structural equation models are considered in this book.



1. Path analysis models. Path analysis models are usually conceived only in terms of observed variables. For this reason, some 
researchers do not consider path analysis models to be typical SEM models. We believe that path analysis models are worthy 
of discussion within the general SEM framework because, although they only focus on observed variables, they are an 
important part of the historical development of SEM and use the same underlying idea of model fitting and testing as any other 
SEM model. Figure 1 presents an example of a path analysis model examining the effects of some variables on the number of 
hours people spend watching television (see the section Path Diagrams for a complete list and discussion of the symbols that 
are commonly used to graphically represent SEM models).
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Figure 1. 
Path analysis model examining the effects of some variables on television viewing. 

Education = Number of completed school years; Hours Working = Average 
weekly working hours; Income = Yearly gross income in dollars; Television 

Viewing = Average daily number of hours spent watching television.

2. Confirmatory factor analysis models. Confirmatory factor analysis models are commonly used to examine patterns of 
interrelationships among several constructs. Each construct included in the model is usually measured by its own set of 
observed indicators. Thus, in a confirmatory factor analysis model no specific directional relationships are assumed between 
the constructs, only that they are correlated with one another. Figure 2 presents an example of a confirmatory factor analysis 
model with



Figure 2. 
Confirmatory factor analysis model 

with two self-concept constructs. 
ASC=Academic self-concept; 

SSC=  Social self-concept.
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Figure 3. 
Structural regression model of variables influencing return to promotion. 
CNP = Characteristics of new positions; CPP = Characteristics of prior 

positions; ESR = Economic and social returns to promotion; 
IC = Individual characteristics.

two interrelated self-concept constructs (Marcoulides & Hershberger, 1997).

3. Structural regression models. Structural regression models resemble confirmatory factor analysis models, except that they 
also postulate specific explanatory relationships (latent regressions) among constructs. The models can be used to test or 
disconfirm proposed theories about explanatory relationships among various latent variables under investigation. Figure 3 
presents an example of a structural regression model of variables influencing returns of promotion for faculty in higher 
education (Heck & Johnsrud, 1994).

4. Latent change models. Latent change models represent a way to study change over time. The models focus primarily on 
patterns of growth, decline, or both in longitudinal data (e.g., on aspects such as initial status and rates of change over time) 
and enable researchers to examine both intra- and interindividual differences in patterns of change. The models can also be 
used to examine the relationships between patterns of change and other personal characteristics. Figure 4 presents an example 
of a simple two-factor growth model for two time points.
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Figure 4. 
A simple latent change model 

(error variances assumed equal).

When and How Are Structural Models Used?

Structural equation models can be used to represent knowledge about phenomena studied in particular substantive domains. 
The models are usually based on proposed theories that describe and explain the phenomena under investigation. With its 
unique feature of explicitly including measurement error, structural models provide an attractive means for achieving this goal. 
Once a theory has been developed about some phenomena of interest, it can be tested against empirical data. This process of 
testing is often called the confirmatory mode of SEM applications.

A related application of structural models is construct validation. In this application, a researcher is interested mainly in 
evaluating the extent to which a particular instrument actually measures the latent variable(s) it is supposed to measure. This 
type of application is most frequently used when studying the psychometric properties of a particular measurement device.

Structural models are also used for theory development. In theory development, the process often involves repeated 
applications of SEM on the same data set in order to explore potential relationships between latent variables of interest. In 
contrast to the confirmatory mode of SEM applications, theory development assumes that no prior theory existsor that one 
exists only in a rudimentary formabout the phenomena of interest. Because this application of SEM contributes both to the 
clarification and development of theories, it is commonly referred to as the exploratory mode of SEM applications. It is 
important to note that because theory development is generally carried out on a single data set (from one sample), results from 
such exploratory applications of SEM need to be interpreted with caution. Only when the results are replicated across other
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samples from the same population of interest can they be considered trustworthy. The reason for this concern stems mainly 
from the fact that the results obtained by repeated SEM applications may be capitalizing on chance factors within the analyzed 
sample, thereby limiting the generalizability of the model beyond that sample.

Why Are Structural Equation Models Used?

A main reason that structural equation models are widely used in many scientific fields of study is that they provide a 
mechanism for explicitly taking into account measurement error in the observed variables (both dependent and independent) 
considered in a model. In contrast, traditional regression analysis effectively ignores potential measurement error in all the 
explanatory (independent) variables included in a model. As a result, regression estimates can be misleading and potentially 
lead to incorrect substantive conclusions.

In addition to handling measurement error, SEM models also enable researchers to study both the direct and indirect effects of 
the various variables included in a model. Direct effects are the effects that go directly from one variable to a second variable. 
Indirect effects are the effects between two variables that are mediated by one or more intervening variables (often referred to 
as a mediating variable). The combination of direct and indirect effects make up the total effect of the explanatory variable on 
a dependent variable. Thus, if an indirect effect does not receive proper attention, the relationship between two variables of 
interest may not be fully considered. Although regression analysis can also be used to estimate indirect effects (e.g., by 
regressing the mediating variable on the explanatory variable, and then regressing the effect variable on the mediating variable 
and multiplying the regression weights) the approach is appropriate only when there are no measurement errors in the 
predictor variables. Such an. assumption, however, is unrealistic in practice. In addition, standard errors for the estimates are 
difficult to compute using the sequential application of regression analysis, but are quite straightforwardly obtained in SEM.

What Are the Key Elements of Structural Models?

The key elements of essentially all structural models used in research practice are their parameters (often referred to as model 
parameters or unknown parameters). Model parameters reflect those aspects of a model that are usually unknown to the 
researcher, at least at the beginning of the analysis, yet are necessary for testing the model. Parameter is a generic term 
referring to some characteristic of a whole population (such as a
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mean or a variance). Although the characteristic of the whole population is difficult to obtain, it is essential in order to 
understand the phenomenon under investigation. Sample statistics are a means of estimating the parameter(s). In structural 
equation modeling, the parameters are unknown aspects of the studied phenomenon that are related to the distribution of the 
variables considered in a model. They have to be estimated, most often from the sample covariance or correlation matrix using 
specialized computer programs.

The presence of parameters in structural equation models should not pose any new difficulties. Regression analysis models 
also contain parameters. For example, the standard error of estimate and the regression weights (slopes) are model parameters. 
Similarly, in a factorial analysis of variance the main effects and interaction effects are considered the model parameters. In 
general, parameters are essential elements for all statistical models applied in practice. The parameters reflect the unknown 
aspects of the underlying phenomenon in a study and are estimated by fitting the model to sampled data using specific 
optimality criteria, numeric routines, and specialized software. The topic of model parameters along with a complete 
description of the rules used in SEM are discussed extensively in the section Parameter Estimation.

Path Diagrams

One of the easiest ways to communicate a structural equation model is to draw a picture of it. Pictures of SEM models are 
called path diagrams and are drawn using special graphical notation. A path diagram is a sort of mathematical representation 
(but in graphical form) of a model under investigation. As it turns out, path diagrams not only enhance the understanding of 
structural models, but they substantially contribute to the creation of the correct input files necessary to fit and test each 
proposed model using a particular software package. Figure 5 presents the most commonly used graphical notation for the 
representation of SEM models (described in detail in this section).

Latent and Observed Variables



One of the most important issues in SEM is the distinction between observed variables and latent variables. Observed 
variables are the variables that are actually measured, such as manifested performance on a particular test or the answers to 
specific items or questions on an inventory or questionnaire. The term manifest variables is also often used for these to stress 
the fact that these are the variables that have actually been measured
  

page_8

Page 9

Figure 5. 
Commonly used symbols for SEM models in path diagrams.

by the researcher in the process of data collection. In contrast, latent variables are the hypothetically existing constructs of 
interest in a study. For example, intelligence, anxiety, locus of control, organizational culture, motivation, depression, social 
support, and socioeconomic status are all latent variables. The main characteristics of latent variables are that they cannot be 
measured directly (because they are typically unobservable directly) and, hence, only proxies for them can be obtained using 
specifically developed measuring instrumentstests, inventories, questionnaires, and so on. These proxies are the indicators of 
the latent constructs or, in simple terms, their measured aspects. For example, socioeconomic status may be measured in terms 
of income level, years of education, bank savings, type of occupation, and so on. Obviously, it is quite common for manifest 
variables to be fallible and unreliable indicators of the unobservable latent constructs. If a single observed variable is used as 
an indicator of a latent variable, it is most likely that the observed variable will contain quite unreliable information about the 
construct. This information can be considered to be one-sided because it reflects only one aspect of the measured construct 
(the side captured by the manifest variable used for measurement). It is therefore generally recommended that researchers use 
multiple indicators (preferably more than two) for each latent variable considered in order to obtain a much more complete and 
re-
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liable picture than that provided by a single indicator. Of course, there are instances in which a single observed variable can be 
a very good indicator of a latent variable; for example, if the construct of intelligence is included in the model and the total 
score on the StanfordBinet Intelligence Test is used as the indicator.

Squares and Rectangles, Circles, and Ellipses

Observed and latent variables are represented in path diagrams by two distinct graphical symbols. Squares or rectangles are 
used for observed variables and circles or ellipses are used for latent variables. Observed variables are usually labeled 
sequentially (e.g., X1, X2, X3) with the label centered in each square or rectangle. Latent variables can be abbreviated 
according to the construct represented (e.g., SES for socioeconomic status) or just labeled sequentially (e.g., F1, F2; F for 
factor) with the name or label centered in each circle or ellipse.

Paths and Two-Way Arrows

Latent and observed variables are connected in a structural equation model in order to reflect a set of theoretical propositions 
about a studied phenomenon. Typically, the interrelationships among both observed and latent variables are the main focus of 
study. These relationships are represented graphically in a path diagram by one-way and two-way arrows. The one-way 
arrows, also called paths, signal that a variable at the end of the arrow is explained in the model by the variable at the 
beginning of the arrow. One-way arrows are usually represented by straight lines, with arrowheads at the end of the straight 
lines. It is important to note that such paths are often interpreted as symbolizing causal relationshipsthe variable at the end of 
the arrow is assumed to be the effect and the one at the beginning is assumed to be the cause. We believe that such inferences 
should not be made from path diagrams without a strong rationale for doing so. For instance, latent variables are frequently 
considered to be causes for their indicators; that is, the measured or recorded performance is considered to be the effect of the 
presence of the corresponding latent variable. Apart from these situations, however, we abstain from making causal 
interpretations except possibly when the variable considered temporally precedes another one (in which case the former could 
be interpreted as the cause of the one occurring later; see Babbie, 1992, chap. 1; Bollen, 1989, chap. 3). Speculations about the 
nature of causality in SEM models abound in the literature. Bollen (1989) lists three conditions that should be used to establish 
a causal relation between variablesisolation, association, and direction of causality. While association and direction of
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causality may be fairly easy to examine, it is quite difficult to ensure that a cause and effect have been isolated from all other 
influences. For this reason, many researchers consider SEM models and the causal relations within the model as 
approximations to reality that can never really be proved. They can only be disproved or disconfirmed.

Two-way arrows (sometimes referred to as two-way paths) are used to represent covariation between two variables and signal 
that there is an association between the connected variables that is not assumed to be directional. Usually two-way arrows are 
graphically represented as curved lines with an arrowhead at each end. A straight line with arrowheads at each end is also 
sometimes used to represent a correlation between variables (usually because of a lack of space). Lack of space may also force 
researchers to even represent a one-way arrow by a curved rather than a straight line, with an arrowhead attached to the 
appropriate end (see Fig. 5). Therefore, when first looking at a path diagram it is essential to determine which of the straight or 
curved lines have two arrowheads and which only one.

Dependent and Independent Variables

In order to accurately convey information about the structure of a proposed model to SEM programs like LISREL or EQS, 
there is another distinction between variables in a model that is of great importancethe differentiation between dependent and 
independent variables. Dependent variables are variables that receive at least one path (one-way arrow) from another variable 
in the model. Independent variables are variables that emanate paths, but never receive them. Independent variables can be 
correlated among one another (i.e., connected in the path diagram by two-way arrows). It is important to note that a dependent 
variable may act as an independent variable with respect to one variable, but this does not change its dependent-variable status. 
As long as there is at least one path ending at the variable, it is considered to be a dependent variable, no matter how many 
other dependent variables in the model are explained by that variable.



In the econometric literature, the terms exogenous variables (for independent variables) and endogenous variables (for 
dependent variables) are also frequently used to make the same distinction between variables. (These terms are derived from 
the Greek words exo and endos, for being ''of external origin" to the system of variables under consideration and "of internal 
origin" to it.) Regardless of the terms one uses, an important implication of the distinction between dependent and independent 
variables is that there are no two-way arrows connecting any two dependent variables in a model path diagram. For
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reasons that will become much clearer later, the variances and covariances (correlations) between dependent variables are 
explained within the model in terms of the unknown parameters.

An Example Path Diagram

To clarify further the discussion of path diagrams, consider the factor analysis model displayed in Fig. 6, representing the 
relationships among Parental dominance, Child intelligence, and Achievement motivation.

As can be seen by examining Fig. 6, there are nine observed variables in this model. The observed variables represent nine 
scale scores that were obtained from a sample of 245 elementary school students. The variables are denoted by the labels V1 
through V9 (using V for observed Variable). The latent variables (or factors) are Parental dominance, Child intelligence, and 
Achievement motivation. As latent variables (or factors), they are denoted as F1, F2, and F3, respectively. The latent variables 
are each

Figure 6. 
Example factor analysis model. F1 = Parental dominance; 

F2 = Child intelligence; F3 = Achievement motivation.
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measured by three indicators with each path representing the factor loading of the observed variable on the latent variable.

The "curved" two-way arrows in Fig. 6 symbolize the correlations between the latent variables (i.e., the factor correlations) in 
the model. There is also a residual term attached to each manifest variable. The residuals are denoted by E (for Error), 
followed by the index of the variable to which they are attached. Each residual represents the amount of variation in the 
manifest variable that is due to measurement error or that remains unexplained by variation in the corresponding latent factor 
the variable loads on. The unexplained variance is the amount of indicator variance unshared with the other measures of the 
particular common factor.

As indicated previously, it is important to determine which are the dependent and which are the independent variables of the 
model. As can be seen in Fig. 6 (and using the definition of error), there are a total of 12 independent variables. These are the 
three latent variables and nine error terms. It is important to note that there are no direct paths going to these independent 
variables, but there are paths leaving each of them. In addition, there are three two-way arrows (representing the three 
correlations) connecting the latent variables. The dependent variables are the nine observed variables labeled V1 through V9. 
These dependent variables receive two paths going to themthe path from the latent variable it loads on (representing its factor 
loading) and the one from its residual term (representing the error term).

First write the model definition equations. These are the relationships between observed and unobserved variables that 
formally define the proposed model. Following Fig. 6, the equation for each of the dependent variables in the model is 
obtained by writing an equation for each observed variable in terms of how it is explained in the model (i.e., in terms of its 
latent variables and its corresponding error term). Based on this approach, the following system of nine equations is obtained 
(one for each dependent variable in the model):

where λ1 to λ9 denote the factor loadings that will be estimated based on the observed data.
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According to the factor analysis model under consideration, each of the nine Equations (1) represents the corresponding 
observed variable as the sum of the product of that variable's factor loading with its pertinent factor and a residual term. Note 
that on the left-hand side of each equation there is only one variable, the dependent variable, rather than a combination of 
variables, and that no independent variable appears there. It is also important to note that with this model the following 
assumptions are made: (a) that in the studied population the mean of each residual variable vanishes (i.e., is 0), and (b) that the 
residual terms are independent of the latent variables (i.e., errors are uncorrelated with the factors). Although these 
assumptions apply to any structural equation model, they are not unique to SEM. For example, they are also routinely made 
when conducting a regression analysisthe error in the regression equation is assumed to be uncorrelated with any predictor and 
has a mean of 0 in the population (Pedhazur & Smelkin, 1991).

Asterisks and Model Parameters

Another important feature of path diagrams, are the asterisks associated with one-way and two-way arrows (see Fig. 6). These 
asterisks are symbols of the unknown parameters and are very useful for properly running the model-fitting and estimation 
process of most SEM programs. It is therefore very important for researchers to be able to convey which are the unknown 
model parameters. If this is done incorrectly or arbitrarily, there is a danger of ending up with a model that is too restrictive or 
that has parameters that cannot be uniquely estimated. Such problematic parameter estimation is characteristic of models that 
are called unidentified (discussed in greater detail in a later section).

The requirement of explicitly stating the model parameters is quite unique to a SEM analysis. For example, in regression 
analysis with popular software one does not need to explicitly present the parameters of a fitted model. Suppose a researcher 
were interested in fitting the following regression model predicting levels of depression among college students:

where a is the intercept and bl, b2, and b3 are the partial regression weights (slopes). When this model is submitted to a major 
statistical package for analysis (e.g., SAS or SPSS), the researcher is not required to specifically define a, b1, b2, and b3 as the 
model parameters. This is due to the fact that, unlike SEM, a regression analysis can be conducted in only one way with regard 
to the set of parameters. When a regression analysis is car-
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ried out, a researcher only needs to provide the program with information about which variables are to be used as explanatory 
variables and which as the dependent variables. The program then automatically determines the model parameters, typically 
one slope per predictor (partial regression weight) plus an intercept for the fitted regression equation.

This automatic or default determination of model parameters does not work well in SEM applications. It is particularly 
important in SEM to explicitly state the parameters to understand and correctly set up the model one is interested in fitting. 
Therefore, we strongly recommend that users always first define the parameters of each model they consider. Using default 
settings in SEM programs will not absolve a researcher from having to think carefully about the details of the particular model 
being examined. It is the researcher who must decide exactly how the model is defined, not the default features of a computer 
program. For example, if a factor analytic model similar to the one presented in Fig. 6 is being considered in a study, one 
researcher may be interested in having all factor loadings as model parameters, whereas others may have only a few of them. 
Thus, unlike routine applications of regression analysis, there is no single way of assuming the appropriate parameters to be 
estimated without first considering the proposed model. Because the determination of model parameters is so important in 
setting up SEM models, it is discussed in detail next.

Rules for Determining Model Parameters

In order to correctly determine the parameters that can be uniquely estimated in a proposed SEM model, the following six 
rules will be used (cf. Bentler, 1995). It is important to note that when they are applied in practice, no distinction is made 
between the covariance and correlation of two (independent) variables (they are essentially considered equivalent in the sense 
of reflecting the degree of interrelationship between pairs of variables). The six rules are:



Rule 1. All variances of independent variables are model parameters. For example, in Fig. 6 most of the variances of 
independent variables are symbolized by asterisks associated with each error term. Error terms in a path diagram are 
generally attached to each dependent variable (e.g., E1 to E9). For the latent variables, the errors (or residuals) 
symbolize the structural regression disturbance terms. For example, the residual terms displayed in Fig. 3 (i.e., D1 to 
D3) encompass the effects on the corresponding dependent variable that are not accounted for by the influence of 
variables explicitly present in the model and impacting that dependent variable. It is important to note that all residual
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terms, whether attached to observed or latent variables, are unobserved entities because they cannot be measured and 
are independent variables by definition. Thus, by Rule 1, the variances of all residuals are, in general, model 
parameters. Of course, if there ever were a theory or hypothesis tested with a model that indicated that the variances 
of the independent variables (residual terms) were 0 or equal to a prespecified number, then Rule 1 would not apply.

Rule 2. All covariances between independent variables are model parameters (unless there is a theory or hypothesis 
being tested with the model that states that some of them are equal to 0 or equal to a given constant). In Fig. 6, the 
covariances between independent variables are the factor correlations symbolized by the two-way arrows connecting 
the three constructs. Note that this model does not hypothesize any correlation between observed variable 
residualsthere are no two-head arrows connecting any of the error termsbut other models may have one or more such 
correlations (e.g., see models presented in chap. 5).

Rule 3. All factor loadings connecting the latent variables with their indicators are model parameters (unless there is 
a theory or hypothesis tested with the model that states that some of them should be equal to 0 or equal to a given 
constant). In Fig. 6, these are the parameters denoted by the asterisks attached to the paths connecting each of the 
latent variables to its indicators.

Rule 4. All regression coefficients between observed or latent variables are model parameters (unless there is a 
theory or hypothesis tested with the model that states that some of them should be equal to 0 or equal to a given 
constant). For example, in Fig. 3 the regression coefficients are represented by the paths going from some latent 
variables and ending at other latent variables. It is important to note that Rule 3 can be considered a special case of 
Rule 4, after one observes that a factor loading can be conceived of as a regression coefficient (a slope) of the 
observed variable when regressed on the pertinent factor. However, in practice performing this particular regression 
is typically impossible because the factors are not observed variables to begin with and, hence, no individual 
measurements of them are available.

Rule 5. The variances and covariances between dependent variables and the covariances between dependent and 
independent variables are never model parameters. This is due to the fact that these variances and covariances are 
themselves explained in terms of the other model parameters. As can be seen in Fig. 6, there are no two-way arrows 
connecting dependent variables in the model or connecting dependent and independent variables.
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Rule 6. For each latent variable included in a model, the metric of its latent scale needs to be set. The reason for this 
is that, unlike the observed variables in a model, there is no natural metric underlying the latent variables. In fact, 
unless this metric is defined, the scale of the latent variables will remain indeterminate. Subsequently, this leads to 
model-estimation problems and unidentified parameters and models (discussed later in this chapter). For any 
independent latent variable included in a proposed model, the metric can be fixed in one of two essentially 
equivalent ways. Either its variance is set equal to a constant (usually 1) or a path leaving the latent variable is set to 
a constant (also usually 1). For dependent latent variables, the metric fixing is done by setting a path leaving the 
latent variable equal a constant (typically 1). (The latest versions of some SEM programs, particularly LISREL, offer 
the option of automatically fixing the scales for both dependent and independent latent variable).



The reason that Rule 6 is needed stems from the fact that an application of Rule 1 on independent latent variables can produce 
a few redundant (i.e., unidentified) model parameters. For example, the variance and one of the paths emanating from each 
latent independent variable are redundant model parameters. The program is not able to estimate two redundant parameters as 
part of the model. As a result, one of them will be associated with an arbitrarily determined (and hence useless) estimate. This 
is because both parameters reflect the same aspect of a model (although in a different form), but cannot be uniquely estimated 
from the sampled data (i.e., they are not identifiable). Thus, a potentially infinite number of values can be estimated (all 
equally consistent with the data). Although the notion of identification is discussed extensively later in the book, note here that 
unidentified parameters can be made identified if one of them is considered equal to a constant (usually 1). This is the essence 
of Rule 6.

A Summary of Model Parameters in Fig. 6

Using these six rules, one can easily summarize the model parameters considered in Fig. 6. Following Rule 1, there are nine 
error term parameters (i.e., the variances of E1 to E9), as well as three factor variances (but they will be set to 1 shortly to 
follow Rule 6). Based on Rule 2, there are three factor covariance parameters. According to Rule 3, the nine factor loadings 
are model parameters. Rule 4 cannot be strictly applied in this model (unless it is considered a special case of Rule 3) because 
no regression-type relationships are assumed between any latent or observed variables. Rule 5 says that the relationships 
between the observed variables, which are the dependent variables of the model, are not parameters be-
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cause they are supposed to be explained in terms of the actual model parameters. Similarly, the relationships between 
dependent and independent variables are not model parameters.

Rule 6 now implies that in order to fix the metric of the three latent variables one can set their variances to unity or fix (set to 
1) one path leaving each of them. If a particularly good (fairly reliable) indicator of each latent variable is available, it is 
usually better to fix the scales of each latent variable by setting the path leading to that indicator to 1. Otherwise, it may be 
better to fix the scale of the latent variables by setting their variances to 1. It is also important to note that the paths leading 
from the nine error terms to their corresponding observed variables are not considered to be parameters, but instead are 
assumed to be equal to 1. For the latent variables in Fig. 6, one simply sets their variances equal to 1 (because all their loadings 
on the pertinent observed variables are already assumed to be model parameters). This setting the latent variance to 1 overrides 
the asterisks that would otherwise have to be attached to each latent variable circle in Fig. 6. Thus, applying all six rules, the 
model displayed in Fig. 6 has, altogether, 21 parameters to be estimated (i.e., nine error variances, plus nine factor loadings, 
plus three factor covariances). It is important to emphasize that the testing of any specific hypotheses in a model (e.g., setting 
all the indicator loadings on the Child intelligence factor to be the same value) places additional parameter restrictions and 
inevitably decreases the number of parameters to be estimated (discussed further in the next subsection). For example, if one 
assumes that the three loadings on the Child intelligence factor in Fig. 6 are equal to one another, it follows that they can be 
represented by a single model parameter. In this case, imposing a restriction on the model parameters decreases the number of 
parameters to be estimated to 19 (i.e., the number of model parameters decreases by two because the three factor loadings 
involved are not represented by three parameters anymore, but just by one).

Free, Fixed, and Constrained Parameters

There are three types of model parameters that are important in conducting SEM analysesfree, fixed, and constrained. All 
parameters that are determined based on the six rules are commonly referred to as free model parameters (unless a researcher 
imposes additional constraints on some of them; see later) and must be estimated by the SEM program. For example, in Fig. 6 
asterisks were used to denote the free model parameters in the proposed factor analysis model. Fixed parameters have their 
value set to a given constant; such parameters are called fixed because they do not change value when the model is fit to the 
observed data. For example, in Fig. 6 the covariances (correlations) among the errors terms of the ob-
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served variables V1 to V9 are fixed parametersthe covariances are fixed to 0 in the proposed model. This is the reason there are 
no two-way arrows connecting any of the observed variable residuals. Moreover, following Rule 6 one may decide to set a 
factor loading or a latent variance equal to 1. In this case, the loading or variance also becomes a fixed parameter. 
Alternatively, a researcher may decide to fix other parameters that were initially conceived of as free parameters, which might 
represent substantively interesting hypotheses to be tested in a proposed model. Conversely, a researcher may decide to free 
some initially fixed parameters (after making sure, of course, that the model remains identified).

The other types of parameters are called constrained parameters (also sometimes referred to as restricted or restrained 
parameters). Models that include constrained parameters have parameters that are postulated to be equal to one another (but 
their value is not specified in advance as is that of the fixed parameters). Constrained parameters are typically included in a 
model if their restriction is derived from existing theory or represents a substantively interesting hypothesis tested in a 
proposed model. Thus, in a sense, constrained parameters can be considered to be somewhere between free and fixed 
parametersconstrained parameters are not completely free because they are set to follow some imposed restriction, yet their 
value can be anything as long as the restriction is preserved (but not locked at a particular constant as is a fixed parameter). It 
is for this reason that both free and constrained parameters are frequently referred to as model parameters.

For example, imagine a situation in which a researcher hypothesized that the factor loadings of the Parental dominance 
construct associated with the measures V1, V2, and V3 in Fig. 6 were equal (referred to in the psychometric literature as a 
model with three tau-equivalent measures; e.g., Jöreskog, 1971). This hypothesis amounts to the assumption that the indicators 
measure the same latent variable in the same units of measurement. Thus, by using constrained parameters, a researcher can 
test the plausibility of this hypothesis. Of course, if constrained parameters are included in a model, their restriction should be 
derived from existing theory or formulated as a way to test substantively interesting hypotheses. Further discussion concerning 
the testing aspects of theoretically motivated hypotheses is provided in a later section of the book.

Parameter Estimation

In any SEM model, parameters are estimated in such a way that the model becomes capable of "emulating" the analyzed 
sample covariance or correlation matrix (and as illustrated in chap. 6, in some circumstances the sam-
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ple means). In order to clarify this feature of the estimation process, look again at the path diagram presented in Fig. 6 and the 
associated model definition Equations 1 in the previous section. As indicated in earlier discussions, the model represented by 
the path diagram and equations make certain assumptions about the relationships between the involved variables and, hence, 
have specific implications for their variances and covariances. It turns out that these implications can be worked out using a 
few simple relations that govern the variances and covariances of linear combinations of variables. These relations are 
illustrated next as the four laws of variances and covariance, which follow straightforwardly from the formal definition of 
variances and covariances (e.g., Hays, 1994).

The Four Laws for Variances and Covariances

Denote variance by the label Var and covariance by Cov. For a random variable X (e.g., an intelligence test score), the first law 
is stated as follows:

Law 1.

Law 1 simply says that the covariance of a variable with itself is that variable's variance. This is an intuitively very 
clear result that is a direct consequence of the definition of variance and covariance. (It can be readily seen in action 
by looking at the formula for the estimation of variance and observing that it results from the formula for estimating 
covariance when the two variables involved coincide; e.g., Hays, 1994.)



The second law allows one to find the covariance of two linear combinations of variables. Assume that X, Y, Z, and U are four 
random variables (e.g., those denoting the scores on tests of depression, social support, intelligence, and a person's age; see 
Equation 2 in the section Rules for Determining Model Parameters). Suppose that a, b, c, and d are four constants. Then the 
following relationship holds:

Law 2.

This law is easy to remember because it is quite similar to the rule of disclosing brackets used in elementary algebra. 
Indeed, to apply Law 2 simply determine each resulting product of constants and attach the
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covariance of their pertinent variables. Note that the right-hand side of the law simplifies markedly if some of the 
variables are uncorrelated (i.e., one or more of the involved covariances is equal to 0).2

Using Laws 1 and 2 (and the knowledge that Cov(X,Y) = Cov(Y,X), recalling that covariance does not depend on the order of 
the variables), one obtains the next equation, which, due to its importance for the remainder of the book, is formulated as a 
separate law:

Law 3.

or simply

A special case of Law 3 that is used often in this book involves uncorrelated variables X and Y (i.e., Cov(X,Y) = 0), and, as 
such, it is formulated as a separate law:

Law 4. If X and Y are uncorrelated, then

It is important to note that there are no restrictions in Laws 2, 3, and 4 on the values of the constants a, b, c, and d (they can 
even take on the values 0 or 1). In addition, these laws generalize straightforwardly to the case of linear combinations with 
more than two variables.

2 Law 2 reveals the rationale behind the six rules (see the section Rules for Determining Model Parameters) for 
determining the parameters for any model once the definition equations are written down. Law 2 states that the 
covariance of any pair of observed measures (or any measure's variance) is a function of the covariances or variances 
of the variables or both, and the weights by which these variables are multipled and then summed up in the equations 
of these measures. The variables mentioned are the pertinent independent variables of the model (their analogs in 
Law 2 are X, Y, Z, and U). The weights mentioned are the pertinent factor loadings or regression coefficients in the 
model (their analogs in Law 2 are the constants a, b, c, and d. Therefore, the parameters of any SEM model are (a) 
the variances and covariances of the independent variables, and (b) the factor loadings or regression coefficients 
(unless there is a theory or hypothesis tested within the model that states that some of them are equal to constants, in 
which case the parameters are the remaining quantities in (a) and (b)).
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Model Implications and Reproduced Covariance Matrix

As mentioned earlier in this section, any proposed model has certain implications for the variances and covariances (and the 
means, if considered) of the involved observed variables. In order to see these implications, the four laws for variances and 
covariances must be used. For example, consider the first two manifest variables V1 and V2 presented in Equations 1 (see the 
section Rules for Determining Model Parameters and Fig. 6). Because both variables load on the same latent factor F1 we 
obtain the following equality directly from Law 2:

To obtain Equation 3, the following two facts (based on the proposed model in Fig. 6) are also used. First, the covariance of 
the residuals E1 and E2, and the covariance of each of them with the factor F1 are equal to 0 (i.e., in Fig. 6 there are no two-
headed arrows connecting the residuals or any of them with F1). Second, the variance of F1 has been set equal to 1 according 
to Rule 6 (i.e., Var(F1,F1) = 1).

Similarly, using Law 2, the covariance between the observed variables V1 and V4 (each loading on a different factor) is 
determined as follows:

where φ21 (Greek letter phi) is used to denote the covariance between the factors F1 and F2.

Finally, the variance of the observed variable V1 is determined, using Law 4 and the previously stated facts, as:
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where θ1 (Greek letter theta) is used to symbolize the variance of the residual E1.

If this process were continued for every combination of p observed variables (i.e., V1 to V9), the result would be the 
determination of every element of a variancecovariance matrix. This matrix can be denoted by Σ (the Greek letter sigma) and 
is generally referred to as the reproduced (or model-implied) covariance matrix. Because the Σ matrix is symmetric (the 
elements above the main diagonal are identical to the elements below the main diagonal), it has altogether p(p + 1)/2 = 9(10)/2 
= 45 nonredundant elements. Interestingly, the number of nonredundant elements will also be used later in this chapter to 
determine the degrees of freedom of a proposed model.

Thus, using Laws 1 through 4 for the proposed model in Fig. 6, the following reproduced covariance matrix Σ is determined 
(displaying only its diagonal and lower off-diagonal elements):

It is important to note that the elements of Σ are all functions of model parameters. In addition, each element of Σ has as a 
counterpart a corresponding numerical element (entry) in the observed sample covariance matrix obtained for the nine 
observed variables considered. Assuming that the observed covariance matrix (denoted by S) was as follows:

1.01

0.32 1.50

0.43 0.40 1.22

0.38 0.25 0.33 1.13

S= 0.30 0.20 0.30 0.70 1.06

0.33 0.22 0.38 0.72 0.69 1.12

0.20 0.08 0.07 0.20 0.27 0.20 1.30

0.33 0.19 0.22 0.09 0.22 0.12 0.69 1.07

0.52 0.27 0.36 0.33 0.37 0.29 0.50 0.62 1.16,
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then the top element value of S (i.e., 1.01) corresponds to  + θ1 in the reproduced matrix Σ. Similarly, the counterpart of the 
element in the sixth row and fourth column of S (i.e., 0.78) is λ4λ6 in the Σ matrix.

Now imagine setting the counterpart elements of S and Σ equal to one another, from the top-left corner of S to its bottom-right 

corner. That is, according to the proposed model displayed in Fig. 6, set 1.01 =  + θ1, then 0.32 = λ1λ2, and so on until for 

the last elements, 1.16 =  + θ9 is set. As a result of this equality setting, a system of 45 equations (i.e., the number of 
nonredundant elements) with as many unknowns as there are model parameters (i.e., 21 asterisks in Fig. 6) is generated. Thus, 
one can conceive of the process of fitting a structural equation model as a way of solving a system of equations. For each 
equation, its left-hand side is a subsequent numerical entry of the sample covariance matrix S, whereas its right-hand side is 
the corresponding expression of model parameters defined in the matrix Σ. Hence, fitting a structural equation model is 
conceptually equivalent to solving this system of equations obtained according to the proposed model in an optimal way 
(discussed in the next section).

The preceding discussion also demonstrates that the model presented in Fig. 6, as does any structural equation model, implies 
a specific structuring of the elements of the covariance matrix reproduced by the model in terms of specific expressions 
(functions) of unknown model parameters. Therefore, if certain values for the parameters were entered into these functions, 
one would obtain a covariance matrix that has numbers as elements. In fact, the process of fitting a model to data with SEM 
programs can be thought of as repeated insertion of appropriate values for the parameters in the matrix Σ until a certain 
optimality criterion (discussed in the next section), in terms of its proximity to the matrix S, is satisfied.

Every available SEM program has built into its memory the exact way in which these functions of model parameters in Σ can 
be obtained. Although for ease of computation most programs make use of matrix algebra, the programs in effect determine 
each of the expressions presented in these 45 equations (see Marcoulides & Hershberger, 1997 for further discussion). 
Fortunately, this occurs quite automatically once the user has communicated to the program the model parameters (and a few 
other related details discussed in the next chapter).

How Good Is the Proposed Model?

The previous subsection illustrated how a proposed SEM model leads to a reproduced covariance matrix Σ that is fit to the 
observed sample covariance matrix S. Now it would seem that the next logical question is, ''How can one measure or evaluate 
the extent to which the matrices S and Σ differ?" As it turns out, this question is a particularly important question
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in SEM because it actually permits one to evaluate the goodness of fit of the model. Indeed, if the difference between S and Σ 
is small, then one can conclude that the model represents the observed data reasonably well. On the other hand, if the 
difference is large, one can conclude that the proposed model is not consistent with the observed data. There are at least two 
reasons for such inconsistencies: (a) the proposed model may be deficient, in the sense that it is not capable of emulating the 
analyzed matrix even with most favorable parameter values or (b) the data may not be good. Thus, in order to proceed with 
assessing model fit a method is needed for evaluating the degree to which the reproduced matrix Σ differs from the sample 
covariance matrix S.

In order to clarify this method, a new concept is introduced, that of distance between matrices. Obviously, if the values to be 
compared were scalars (single numbers) a simple subtraction of one from the other (and possibly taking the absolute value of 
the resulting difference) would suffice to evaluate the distance between them. However, this cannot be done directly with the 
two matrices S and Σ. Subtracting the matrix S from the matrix Σ does not result in a single number; rather, a matrix of 
differences is obtained.



Fortunately, there are some meaningful ways to assess the distance between two matrices. And, interestingly, the resulting 
distance measure ends up being a single number that is easier to interpret. Perhaps the simplest way to obtain this single 
number involves taking the sum of the squares of the differences between the corresponding elements of the two matrices. 
Other more complicated ways involve the multiplication of these squares with some appropriately chosen weights and then 
taking their sum (discussed later). In either case, the single number represents a sort of generalized distance measure between 
the two matrices considered. The bigger the number, the more different the matrices are, and the smaller the number, the more 
similar the matrices. Because in SEM this number results after comparing the elements of S with those of the model-implied 
covariance matrix Σ, the generalized distance is a function of the model parameters as well as the elements of the observed 
variances and covariances. Therefore, it is customary to refer to the relationship between the matrix distance, on the one hand, 
and the model parameters and S, on the other hand, as a fit function, which is typically denoted by F. Because it equals the 
distance between two matrices, F is always equal to a positive value or 0. Whenever the value of F is 0, then the two matrices 
considered are identical.

It turns out that depending on how the relationship between matrix distances, model parameters, and the elements of S are 
defined, several fit functions may result. The corresponding fit functions, along with each characteristic method of parameter 
estimation, are discussed next.
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Methods of Parameter Estimation

There are four main estimation methods and types of fit functions that are used in most structural modeling programs: 
unweighted least squares, maximum likelihood, generalized least squares, and asymptotically distribution free (often called 
weighted least squares). The application of each estimation method is based on the minimization of a corresponding fit 
function.

The unweighted least squares (ULS) method uses as a fit function (denoted by Fuls), the simple unweighted sum of squared 
differences between the corresponding elements of S and the model reproduced covariance matrix Σ. Accordingly, estimates 
are chosen for the model parameters when Fuls attains its smallest value. The ULS method is usually used in practice when 
similar scales of measurement underlie the analyzed variables.

The other three estimation methods are based on the same sum of squares, but after specific weights have been used to 
multiply each of the squares. The maximum likelihood (ML) and the generalized least squares (GLS) methods are used when 
the observed data are normally distributed. The assumption of normality is quite frequently made in multivariate analyses. The 
assumption of normality can be examined using any general-purpose statistical package (e.g., SAS or SPSS) or even using 
EQS and PRELIS (a subprogram in the LISREL program, labeled the precursor of LISREL; Jöreskog & Sörbom, 1993c). The 
simplest way to examine univariate normality is to consider skewness and kurtosis, but statistical tests are also available for 
this purpose. Skewness is an index that reflects the symmetry of a univariate distribution. Kurtosis has to do with the shape of 
the distribution in terms of its peakedness. Under normality, the univariate skewness and kurtosis coefficients should be 0. 
There is also a measure of multivariate kurtosis called Mardia's multivariate kurtosis coefficient and its normalized estimate 
(Bentler, 1995). Mardia's multivariate kurtosis coefficient measures the extent to which the multivariate distribution of all 
observed variables has tails that differ from the ones characteristic of the normal distribution (with the same component means, 
variances, and covariances). If the distribution deviates only marginally from the normal, Mardia's coefficient will be close to 
0 and its normalized estimate probably nonsignificant.

Although it may be quite likely that the assumption of multivariate normality is met if all observed variables are individually 
normally distributed, it is preferable to also examine bivariate normality. If the observations are from a multivariate normal 
distribution, each bivariate distribution should also be normal. One method for examining normality involves looking at the 
scatter plots between all pairs of analyzed variables to ensure that they
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have (at least approximately) cigar-shaped forms (e.g., Tabachnik & Fidell, 1999). A somewhat more formal method for 
judging bivariate normality is based on a plot of the chi-square percentiles and the mean distance measure of individual 
observations. If the distribution is normal, the plot of the chi-square percentiles and the mean distance measure should 
resemble a straight line (for complete details on assessing multivariate normality see Marcoulides & Hershberger, 1997, pp. 
4852).

In recent years, research has shown that the maximum likelihood (ML) method can also be employed with minor deviations 
from normality (e.g., Bollen, 1989; Jöreskog & Sörbom, 1993b; see also Raykov & Widaman, 1995). For this reason (as well 
as the fact that this is an introductory book) only the ML method is presented in this book. Broadly speaking, the ML method 
determines estimates for the model parameters that maximize the likelihood of observing the available data if one were to 
collect data from the same population again. This maximization is achieved by selecting (using a numerical search procedure 
across the space of all possible parameter values) the model parameters in such a way that they minimize the fit function 
described earlier (denoted as FML).

With more serious deviations from normality, the asymptotically distribution free (or weighted least squares) method can be 
used as long as the size of the analyzed sample is large. There is no doubt that sample size plays an important role in almost 
every statistical technique applied in practice. Although there is universal agreement among researchers that the larger the 
sample the more stable the parameter estimates, there is no agreement as to what constitutes large. This topic has received a 
considerable amount of attention in the literature, but no easily applicable and clear-cut general rules of thumb have been 
proposed. To give only an idea of the issue involved, a cautious attempt at a rule of thumb suggests that the sample size should 
always be more than 10 times the number of free model parameters (cf. Bentler, 1995; Hu, Bentler, & Kano, 1992). Otherwise, 
the results from the asymptotically distribution free (ADF) method should generally not be trusted. If the sample size is 
smaller, researchers are encouraged to use the SatorraBentler robust method of parameter estimation (a special type of ADF 
method), which is available in the EQS program.

Another alternative to dealing with nonnormal data is to make the data more normal looking by introducing some normalizing 
transformation on the raw data. Once the data have been transformed, normal theory analysis can be carried out. In general, 
transformations are simply a reexpression of the data in different units of magnitude. Numerous transformation methods have 
been proposed in the literature. The most popular transformations included in most general-purpose statistical packages are 
power transformations (e.g., squaring each data point), square root transforma-
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tions, reciprocal transformations, and logarithmic transformations. Finally, one may also want to consider data on other 
measures of the constructs involved in the proposed model if such are readily available.

With data stemming from designs with only a few possible response categories, the asymptotically distribution free method is 
usually used with polychoric or polyserial correlations. For example, suppose a questionnaire includes the item, "How satisfied 
are you with your recent car purchase?" with response categories labeled, "Very satisfied," "Somewhat satisfied," and "Not 
satisfied.'' A considerable amount of research has shown that ignoring the categorical attributes of data obtained from items 
like these can lead to biased SEM results. For this reason, researchers suggest using the polychoric-correlation coefficient (for 
assessing the degree of association between ordinal variables) and the polyserial-correlation coefficient (for assessing the 
degree of association between an ordinal variable and a continuous variable). Fortunately, some research has shown that when 
there are five or more response categories (and the distribution of data looks normal) the problems from disregarding the 
categorical nature of responses are likely to be minimized (Rigdon, 1998). Thus, once again, examining the distributions of the 
data becomes essential.

From a statistical perspective, all four parameter estimation methods lead to consistent estimates. Consistency is a desirable 
feature that insures that with increasing sample size the estimates converge to the true population parameter values. With large 
samples, the estimates obtained from the maximum likelihood, generalized least squares, or asymptotically distribution free 
methods also possess the additional important property of being normally distributed around their population counterparts. 
Moreover, with large samples these three methods yield efficient estimates (i.e., having the smallest possible variances), hence 
representing the most precise (least unstable) estimates of the parameters of interest.

Iterative Estimation of Model Parameters



The final question now is, "Using any estimation method, how does one actually estimate the parameter values for the 
proposed model in order to render the covariance matrix Σ as close as possible to the observed covariance matrix S?" It turns 
out that in order to answer this question one must resort to the numerical routines implemented in available SEM programs. 
The goal of the numerical routines is basically to minimize the corresponding fit function. These numerical routines proceed in 
a consecutive (iterative) manner selecting values for model parameters in such a way that at each step the distance between Σ 
and S is reduced until no further improvement in the fit function can be achieved (i.e., there is no further decrease in the 
generalized distance between Σ and S).
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The iterative process described earlier starts with initial estimates of the parameters. Fortunately, the initial estimates are 
automatically calculated by the SEM programs (although users can provide their own initial estimates if they so choose). The 
iteration process terminates (or converges) if at some step the fit function F does not change by more than a very small amount 
(in most cases .000001, although even this value can be changed by the program user). Thus, the iterative process of parameter 
estimation converges when there is practically no further improvement in the distance between the two matrices Σ and S. The 
numerical values for the parameters obtained at the final iteration step are considered the final solution values and represent 
the required estimates of the model parameters. It is important to note that in order for a set of parameter estimates to be 
meaningful, it is necessary that the iterative process converge (terminate) to a final solution. If convergence does not occur, a 
warning sign is issued by SEM programs (which is easily spotted in the output), and the results are meaningless (beyond being 
useful for tracking down the problem of the lack of convergence).

All converged solutions also provide a measure of the sampling variability for each obtained parameter estimate, called the 
standard error. The magnitude of the standard errors indicates how stable the parameter estimate is if repeated sampling were 
carried out from the population of interest. With plausible models (see further discussion later), the standard errors are used to 
compute t values, which provide information about the statistical significance of the parameter estimate. The t values are 
computed as the ratio of the parameter estimate to its standard error. If for a free parameter, its t value is greater than +2 or less 
than 2, the parameter is referred to as significant and can be considered distinct from 0 in the population. Conversely, if its t 
value is between ±2, the parameter is nonsignificant and can be considered 0 in the population. Furthermore, based on the 
large-sample normality feature, adding twice the standard error to and subtracting twice the standard error from the parameter 
estimate yields a confidence interval (at the 95% confidence level) for that parameter. This confidence interval represents a 
range of plausible values for the parameter in the population and can be conventionally used to test hypotheses about a 
prespecified value of the parameter in the population. In particular, if the computed interval covers the prespecified value, the 
hypothesis is retained (at significance level .05); otherwise, it is rejected. Moreover, the width of the interval permits one to 
assess the precision of estimation of the parameter. Wider confidence intervals are associated with lower precision (and larger 
standard errors), and narrower confidence intervals with higher precision of estimation (and smaller standard errors). In fact, 
these features of the standard errors as measures of sampling variability of the parameter estimates make them quite useful 
(along
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with a number of model goodness-of-fit indices discussed in the next section) for assessing the goodness of fit of the model.

It is also important to note that another reason that the numerical fit-function minimization procedure may not converge could 
be that the proposed model may simply be inadequate for the analyzed data, or may contain one or more unidentified 
parameters. Unidentified parameters do not posses unique estimatesunlike identified parameterseven if one has gathered data 
on the analyzed variables from the whole population and calculated their population covariance matrix to which the model is 
subsequently fitted. It is therefore of utmost importance to deal only with identifiable parameters, and thus have an identified 
model. Due to its great importance in conducting SEM analyses, the issue of parameter and model identification is discussed 
next.

Parameter and Model Identification



A model parameter is unidentified if there is not enough empirical information to allow its unique estimation. As such, any 
estimate of an unidentified parameter computed by a SEM program is arbitrary and should not be relied on. A model 
containing at least one unidentified parameter cannot generally be relied on either, even though some parts of it may represent 
a useful approximation to the studied phenomenon. Because an unidentified model is generally useless in practice (even 
though it may be useful in some theoretical discussions), one must ensure the identification of a model by following some 
general guidelines.

What Does It Mean to Have an Unidentified Parameter?

In simple terms, having an unidentified parameter implies that it is impossible to compute a reasonable estimate of it. For 
example, suppose one is considering the equation a + b = 10, and is faced with the task of finding unique values for two 
unknown constants a and b in order to satisfy the equation. One solution could be a = 5, b = 5, and another could be a = 1, b = 
9. Obviously, there is no way in which one can determine unique values for a and b because it involves a single equation with 
two unknowns. As such, there are an infinite number of solutions to the equation because there are more unknown values (two 
parameters) than known values (one equation). Thus, the model represented by this equation is considered underidentified (or 
unidentified), and any estimates obtained are meaningless. As will become clear later, the most desirable condition to 
encounter in SEM is to have more equations than are needed to obtain
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unique solutions for the estimates. This condition is called overidentification.

A similar identification problem occurs when the only information available is that the product of two unknown constants x 
and y is equal to 55. Knowing only that xy = 55 does not provide sufficient information to come up with unique estimates of 
either x or y. Of course, one could choose a value of x in a completely arbitrary manner (except, of course, 0) and then take y = 
55/x to provide one solution. Because there are an infinite number of solutions for x and y, neither can be identified until some 
further information is provided (e.g., a preselected value for one of them). As it turns out, this product example is relevant in 
the context of the discussion of Rule 6 for determining model parameters. If neither the variance of a latent variable nor a path 
going from it are fixed to a constant, then this example demonstrates how the variance and any factor loading become 
entangled in their product and hence are unidentified.

Although the two numerical examples presented were deliberately rather simple, they nonetheless illustrate how similar 
problems can occur in the context of SEM models. Recall from earlier sections that SEM can be thought of as an approach to 
solving, in an optimal way, a system of equationsthose relating the elements of the sample covariance matrix S with their 
counterparts in the model reproduced covariance matrix Σ. It is possible then, depending on the model, that for some of its 
parameters the system may have infinitely many solutions. Clearly, such a situation is not desirable given the fact that SEM 
models attempt to determine what the parameter values look like in the population. Only identified models and parameter 
estimates can provide this information. A straightforward way to determine if a model is unidentified is presented in the next 
section.

A Necessary Condition for Model Identification

The parallel between SEM and solving a system of equations is also useful for remembering a simple but necessary condition 
of model identification. Specifically, if the system of equations relating the elements of the sample covariance matrix S with 
their counterparts in the model-reproduced covariance matrix Σ has more unknowns than equations, then the model will 
definitely be unidentified. This is because the system of equations contains more parameters than could possibly be uniquely 
solved. Although this condition is easy to check, it should be noted that it is only a necessary condition for model 
identification; it is not a sufficient condition. In other words, having less unknown parameters than equations in that system 
does not guarantee that a model is identified. However, if a model is identified, the condition must hold (i.e., there will be 
fewer parameters than nonredundant elements of the covariance matrix S).
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To check this necessary condition, one simply counts the number of parameters in the model (i.e., the number of asterisks 
included in the proposed model path diagram), and subtracts the value from the number of nonredundant elements in the 
sample covariance matrix S (i.e.,p(p + 1)/2, where p is the number of observed variables). The resulting difference,

is referred to as the degrees of freedom of the proposed model and usually denoted as df (some researchers also refer to this 
check as the t rule). If the difference is positive, the necessary condition for model identification is fulfilled. If Equation 6 is 0, 
then the degrees of freedom are 0 and the model is called saturated or just-identified. Saturated models have as many 
parameters as there are nonredundant elements in the covariance matrix. As it turns out, there is no way one can really test or 
confirm the plausibility of a saturated (just-identified) model. This is because saturated models will always fit the data 
perfectly. Because one of the primary reasons for conducting a SEM analysis is to test the fit of a proposed model, at a 
minimum, this requires positive degrees of freedom (i.e., more unique elements in the data covariance matrix than parameters 
that need to be estimated). Thus, if Equation 6 is negative, the model is definitely unidentified (and some SEM programs may 
alert the user of an identification problem by generating a statement that the degrees of freedom in the model are negative). As 
indicated, having positive degrees of freedom in a proposed model is a necessary but not a sufficient condition for 
identification. There are situations in which the degrees of freedom for a proposed model are quite high and yet some of the 
parameters remain underidentified. Model identification is an enormously complex issue that requires careful consideration 
and handling.

How to Deal with Unidentified Parameters in Practice

If a proposed model is carefully conceptualized, the likelihood of unidentified parameters will usually be minimized. In 
particular, using Rules 1 to 6 will most likely ensure that the proposed model is identified. However, if a model is found to be 
unidentified, a first step toward identification is to see if all its parameters have been correctly determined or whether all the 
latent variables have their scales fixed. In many instances, a SEM program will signal an identification problem with an error 
message and even correctly point to the unidentified parameter. Unfortunately, in some instances it may point to the wrong 
parameter. Hence, the best strategy is for the researcher to accurately locate the unidentified parameters in a
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model before trying to correct the problem. One possible way of dealing with unidentified parameters is to impose appropriate, 
substantively plausible constraints on them or on some functions of them (and possibly on other parameters). Of course, 
because this way of attempting model identification may not always work, often either a completely new model may have to 
be contemplated (one that does not contain this parameter), or a new study and data-collection process may have to be 
designed.

Model-Testing and -Fit Evaluation

SEM methodology offers researchers a method for the quantification and testing of theories. The theories are represented in 
models that describe and explain the phenomena under investigation. As described previously, an essential requirement for all 
such models is that they be identified. Another requirement (perhaps of equal importance) is that researchers consider for study 
only those models that are attached to some substantive considerations and represent plausible means of data description and 
explanation.

SEM methodology offers a number of inferential and descriptive indices that reflect the extent to which a model can be 
considered an acceptable means of data representation. Using them together with substantive considerations allows one to 
make a decision if a given model should reasonably be rejected as a means of data explanation or should be relied on (to some 
extent). The topic of model-fit evaluation (the evaluation of the extent to which a model fits an analyzed data set) in SEM is 
very broad and complex. Due to the introductory nature of this book, this section provides a relatively brief discussion of the 
topic, which can be considered a minimalist's scheme for carrying out model evaluation. For further elaboration on these 
issues, we refer the reader to Bentler (1995), Bollen (1989), Byrne (1998), Jöreskog and Sörbom (1993a, 1993b), Marcoulides 
and Hershberger (1997), Marcoulides and Schumacker (1996), or Schumacker and Lomax (1996).



Substantive Considerations

A major aspect of model-fit evaluation involves the issue of the substantive considerations of a. model. Specifically, all models 
considered in research should be conceptualized according to the latest knowledge about the phenomenon under consideration. 
This knowledge is usually obtained after an extensive study of the pertinent literature. As such, all proposed models should try 
to embody in appropriate ways the results available from previous studies. Of course, if a researcher wishes to study a model
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that contradicts past theories, then alternative models with various new restrictions or relationships between involved variables 
can also be tested. But the initial conceptualization of any proposed model can only come after an informed study of the 
phenomenon under consideration.

Regardless of whether a researcher proposes a model that supports or contradicts past knowledge, the advantages of SEM 
methodology can only be used with variables that have been validly and reliably assessed. Even the most intricate and 
sophisticated models are of no use if the variables included in the model are poorly assessed. A model cannot do more than 
what is contained in the data themselves. If the data are poor, in the sense of reflecting substantial unreliability in the analyzed 
data, the results will be poor, regardless of the quality of the model.

Providing an extensive discussion of the various ways of ensuring the measurement properties of variables included in 
proposed models is beyond the scope of this introductory book. These issues are usually addressed at length in books dealing 
specifically with psychometrics and measurement theory (e.g., Allen & Yen, 1979; Crocker & Algina, 1986; Suen, 1990). The 
present book assumes that the researcher has sufficient knowledge of how to organize a reliable and valid assessment of the 
variables included in a proposed model.

Model Evaluation and the True Model

Before particular measures of model fit are discussed, a word of warning is in order. Even if all possible fit indices point to an 
acceptable model, one can never claim to have found the true model that has generated the analyzed data (of course, the cases 
in which data is simulated according to a preset known model are excluded from consideration). This fact is rooted in another 
specificity of the SEM methodology that is different from classical modeling approaches. Whereas classical methodology is 
typically interested in rejecting null hypotheses (because the substantive conjecture is usually reflected in the alternative 
hypotheses of difference or change), SEM is most concerned with finding a model that does not contradict the data. That is, in 
an empirical session of SEM, one is typically interested in retaining the proposed model whose validity is the essence of the 
null hypothesis. In other words, statistically speaking, when using SEM methodology one is usually interested in not rejecting 
the null hypothesis.

However, recall from introductory statistics that not rejecting a null hypothesis does not mean that it is true. Similarly, because 
model testing in SEM involves testing the null hypothesis that the model is capable of perfectly reproducing (with certain 
values of its unknown parameters) the analyzed matrix of observed variable interrelationship indices, not rejecting a fitted 
model does not imply that it is the true model. In fact, it may well
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be that the model is not correctly specified (i.e., wrong), yet due to sampling errors (that are in effect when gathering the data) 
it appears plausible. Similarly, just because a model fits a data set well does not mean that it is the only model that fits the data 
well. There can be a plethora of other models that fit the data equally well or even better. In fact, there can be a number 
(possibly very many; see Raykov & Marcoulides, in press) of equivalent models that fit the data just as well as a model under 
consideration. Unfortunately, at present there is no statistical means for discriminating among these equivalent 
modelsespecially when the issue is choosing one (or more) of them for further consideration or interpretation. Which one of 
these models is better and which one is wrong can only be decided on the basis of a sound body of knowledge about the 
studied phenomenon. This is partly the reason that substantive considerations are important in model-fit evaluation. In 
addition, one can also evaluate the validity of a proposed model by conducting replication studies. The value of a proposed 
model is greatly enhanced if the same model can be replicated in new samples from the same population.

Parameter Estimate Signs, Magnitude, and Standard Errors

It is worth reiterating at this point that one cannot interpret a model solution provided by a structural modeling program if the 
numerical minimization routine does not converge (i.e., has not ended after a finite number of iterations). If the routine does 
not terminate, one cannot trust the output of any program for purposes of solution interpretation (although the solution may 
provide information for tracking down the reasons for the lack of convergence).

For a model to be considered further for fit evaluation, the parameter estimates in the final solution of the minimization 
procedure should have the right sign and magnitude as predicted or expected by theory. In addition, the standard errors 
associated with each of the parameter estimates should not be excessively large. If a standard error of a parameter estimate is 
large (especially when compared to other parameter standard errors), the model does not provide reliable information and 
should be interpreted with great caution (and, if possible, the reasons for this finding clarified).

Goodness-of-Fit Indices

Chi-Square Value

Evaluation of model fit is typically carried out on the basis of an inferential goodness-of-fit index as well as a number of other 
descriptive indices. The inferential index is called a chi-square value. It rep-
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resents a test statistic of the goodness of fit of the model, and it is used when testing the null hypothesis that the model fits the 
analyzed covariance matrix perfectly. This test statistic is defined as

where N is the sample size and Fmin is the computed minimal value of the fit function for the parameter estimation method 
used (e.g., ML, GLS, or ADF).

The name chi-square value derives from the fact that with large samples the distribution of T approaches a (central) chi-square 
distribution, if the model is correct and fitted to the covariance matrix S. The degrees of freedom of this distribution are equal 
to those of the model. As mentioned previously, the degrees of freedom are determined by using the formula df = (p(p+ 1)/2) 
q, where p is the number of observed variables of the model and q is the number of model parameters (see Equation 6 in the 
section Parameter and Model Identification).

When the proposed model is fit to the data using a SEM program, the program will judge the obtained chi-square value T in 
relation to the model's degrees of freedom, and output its associated p value. The p value can be examined and compared with 
a preset significance level (often .05) in order to test the hypothesis that the model is capable of (exactly) reproducing the 
analyzed matrix of variable relationship indices. Hence, following the statistical hypothesis-testing tradition, one may consider 
the rejection of a model when its p value is smaller than the preset significance value (e.g., .05), and the retention of the model 
if this value is higher than the preset significance.



Although this way of looking at statistical inference in SEM may appear to be the reverse of the one used in the framework of 
traditional hypothesis testing, it turns out that, at least from a philosophy-of-science perspective, the two are compatible. 
Indeed, following Popperian logic (Popper, 1962), one's interest lies in rejecting models rather than confirming them because 
there is no scientific way of proving the validity of a proposed model. That is, in practice no SEM model can be proved to be 
the true model (see discussion in previous section).

In this context, it is also important to note that, in general, there is a preference for dealing with models that have a large 
number of degrees of freedom. This is because an intuitive meaning of the notion of degree of freedom is a dimension along 
which the model can be rejected. Thus, the more degrees of freedom, the more dimensions there are along which one can 
reject the model, and hence the higher the likelihood of rejecting it when it is tested against the data. This is a desirable feature 
of the testing process because, according to Popperian logic, empirical science can only
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disconfirm not confirm models. This view also entails that, if one has two models that are plausible descriptions of a studied 
phenomenon, the one with more degrees of freedom is a stronger candidate for consideration as a means of data description 
and explanation. This is because with more degrees of freedom the model has withstood a greater chance of being rejected; if 
the model was not rejected, the results are more trustworthy. This is essentially the conceptual basis of the parsimony principle 
widely discussed in the SEM literature (e.g., Raykov & Marcoulides, 1999, and references therein). Hence, Popperian logic, 
which maintains that a goal of empirical science is to formulate theories that can be falsified, is facilitated by an application of 
the parsimony principle. If a more parsimonious model is found to be acceptable, then one may also place more trust in it 
because it has withstood a higher chance of rejection than a less parsimonious model. Of course, researchers are cautioned that 
rigid and routine applications of the parsimony principle can lead to conclusions favoring an incorrect model and implications 
that are incompatible with those of the correct model (for further discussion see Raykov & Marcoulides, 1999).

The chi-square value T has received a lengthy discussion in this section for two reasons. First, historically and traditionally, it 
has been the index that has attracted the most attention over the past 30 years or so. In fact, most of the fit indices devised 
more recently in the SEM literature are in some form functions of the chi-square value. Second, the chi-square value has the 
important feature of being an inferential fit index. That is to say, by using it one is in a position to make a generalization about 
the fit of the model in the studied population. The reason for this is that the large-sample distribution of T in the population is 
known (namely central chi-square, with a correct model fitted to the covariance matrix), and ap value can be attached to each 
particular sample's value of T. This feature is not shared by many of the other fit indices used in SEM.

However, this statistical evaluation of the plausibility of a model using the chi-square value T cannot always be strictly 
followed. This is due to the fact that with very large samples T cannot be really relied on. The reason is readily seen from its 
definition in Equation 7. Because the value of T is obtained by multiplying N 1 (the sample size less 1) by the minimum of the 
fit function, increasing the sample size generally leads to an increase in T as well. And yet, the model's degrees of freedom 
remain the same (because the proposed model hasn't changed) and, hence, so does the reference chi-square distribution against 
which T is judged for significance. Consequently, with very large samples there is a spurious tendency to obtain large values 
of T, which tend to be associated with small p values. Hence, if one were to use only the chi-square value's p value as an index 
of model fit, there will be an artificial tendency with very large samples to reject the model even if it were only marginally 
inconsistent with the data.
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Alternatively, there is another spurious tendency with very small samples for T to remain small and to be associated with 
larger p values (suggesting the model as a plausible data-description means). Thus, the chi-square value and its p value alone 
cannot be fully trusted in the general case of model evaluation. Other fit indices must also be examined in order to obtain a 
better picture of model fit.

Descriptive-Fit Indices

The limitations of the chi-square value indicate the importance of alternative fit indices to aid in the process of model 
evaluation. The descriptive-fit indices provide an alternative family of indices that assess the goodness-of-fit of the proposed 
model based on the particular sample at hand.

The first descriptive-fit index ever proposed is called the goodness-offit index (GFI). This index can be loosely considered to 
be a measure of the proportion of variance and covariance that the proposed model is able to explain (similar to R2 in a 
regression analysis). If the number of parameters is also taken into account in computing this measure, the resulting index is 
called the adjusted goodness-of-fit index (AGFI) (similar to the adjusted R2 used in a regression analysis). The GFI and the 
AGFI descriptive indices range between 0 and 1, and are usually fairly close to 1 for well-fitting models. Unfortunately, as 
with many other descriptive indices currently used, there are no strict norms for the GFI and AGFI below which a model 
cannot be considered a plausible description of the analyzed data and above which one can rest assured that the model 
approximates the data reasonably well. As a rough guide, it is currently viewed that models with a GFI and AGFI in the 
mid-.90s or above may well represent a reasonably good approximation of the data (Hu & Bentler, 1999).

There are two other descriptive indices that are also very useful for model-fit evaluation. These are the normed fit index (NFI) 
and the nonnormed fit index (NNFI) (Bentler & Bonnet, 1980). The NFI and NNFI are based on the idea of comparing the 
proposed model to a model in which absolutely no interrelationships are assumed among any of the variables. This model with 
no relationships is referred to as the independence model or the null model. The name independence or null derives from the 
fact that the model assumes the variables only have some variances, but that there are no relationships among them. Thus, the 
null model represents the extreme case of no relationships and the interest lies in comparing the proposed model to the null 
model. If the chi-square value of the null model is compared to that of the proposed model, one should get an idea of how 
much better the proposed model fits the data relative to how bad it could possibly be (i.e., relative to the null model). This is 
the basic idea that underlies the NFI and NNFI descriptive-fit indices.
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The NFI is computed by relating the difference of the chi-square value for the proposed model to the chi-square value for the 
independence or null model. The NNFI is a simple variant of the NFI that takes into account the degrees of freedom of the 
proposed model. This is done in order to take into account model complexity, as reflected in the degrees of freedom of the 
proposed model. This is because more complex models have more parameters and hence fewer degrees of freedom, whereas 
less complex models have less parameters and thus more degrees of freedom. For this reason, one can consider the degrees of 
freedom as indicators of the complexity of a model.

Similar to the GFI and AGFI, models with NFI and NNFI close to 1 are considered to be more plausible means of describing 
the data than models for which these indices are further away from 1. Unfortunately, once again, there are no strict norms 
above which one can consider the indices as supporting model plausibility or below which one can safely reject the model as a 
means of data description. As a rough guide, models with NNFI and NFI in the mid-.90s or higher are viewed likely to 
represent a reasonably good approximation of the data (Hu & Bentler, 1999).

In addition to the GFI, AGFI, NNFI, and NFI, there are more than a dozen other descriptive-fit indices that have been 
proposed in the SEM literature over the past 20 years or so. Despite this plethora of descriptive-fit indices, it turns out that 
most of them are directly related to the chi-square value T and simply represent reexpressions of it or its relationships to other 
models' chi-square values and related quantities. The interested reader may refer to more advanced SEM books that provide 
mathematical definitions of each (e.g., Bollen, 1989; Marcoulides & Hershberger, 1997; Marcoulides & Schumacker, 1996), 
as well as the program manuals for EQS and LISREL (Bentler, 1995; Jöreskog & Sörbom, 1993a).

Alternative-Fit Indices



Alternative-fit indices are based on an altogether different conceptual approach to the process of hypothesis testing in SEM, 
which is referred to as an alternative approach to model assessment. Alternative-fit indices have been developed over the past 
20 years and largely originate from an insightful paper by Steiger and Lind (1980). The basis for alternative-fit indices is the 
noncentrality parameter (NCP), denoted δ. The NCP basically reflects the extent to which a proposed model does not fit the 
data. For example, if a proposed model is correct and the sample is large, the test statistic T presented in Equation 7 follows a 
(central) chi-square distribution, but if the model is not correct (i.e., is misspecified) then T follows a noncentral chi-square 
distribution. As an approximation, a noncentral chi-square distribution can be thought of as resulting when the central chi-
square distribution is shifted to the right by δ units. In this way, the NCP can be viewed as an index reflecting the de-
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gree to which the model fails to fit the data. Thus, the larger the NCP, the worse the model and the smaller the NCP, the better 
the model. It can be shown that with not-too-misspecified models, normal data, and large samples, δ approximately equals (N 
1)FML,0, where FML,0 is the value of the fit function based on the maximum likelihood method of estimation. In practice, δ 

is estimated by  where d is equal to the model degrees of freedom, and n = N 1 is the sample size less 1, or is 
estimated by 0 if T < d.

Within the alternative approach to model testing, the conventional null hypothesis that a proposed model perfectly fits the 
covariance matrix is relaxed. This is explained by the observation that in practice every model is wrong even before it is fitted 
to the data. Indeed, the reason why a model is used when studying a phenomenon of interest is that the model should represent 
a useful simplification and approximation of reality rather then a precise replica of it. That is, by its very nature, a model 
cannot be correct because then it would have to be an exact copy of reality and therefore be useless. As such, in the alternative 
approach to model testing, the conventional null hypothesis of perfect model fit (traditionally tested in SEM by examining the 
chi-square index and its p value) is really of no interest. Instead, one is primarily concerned with evaluating the extent to which 
the model fails to fit the data. Consequently, for the reasonableness of a model as a means of data description, one should 
impose weaker requirements for degree of fit.

This is the logic of model testing that is followed by the root mean square error of approximation (RMSEA) index that has 
recently become quite a popular index of model fit. The RMSEA is defined as

when T ≥ d, or as 0 if T < d. The RMSEA, similar to other fit indices, also takes into account model complexity, as reflected in 
the degrees of freedom. Some researchers have suggested that a value of the RMSEA of less than .05 is indicative of the model 
being a reasonable approximation to the data (Browne & Cudeck, 1993). Some researchers have also argued that, because in 
Equation 8 a division by sample size occurs, the RMSEA is not sample-dependent (unlike the chi-square value). In fact, it is 
believed that this feature of the RMSEA sets it apart from many other fit indices that are sample-dependent or have 
characteristics of their distribution (such as the mean) that depend on sample size (Marsh et al., 1996).

The RMSEA is not the only index that can be obtained as a direct function of the noncentrality parameter. The comparative-fit 
index (CFI) also follows the logic of comparing a proposed model with the null model as-
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suming no relationships between the measures (Bentler, 1990). The CFI is defined as the ratio of improvement in noncentrality 
(moving from the null to the proposed model) to the noncentrality of the null model. Typically, the null model has 
considerably higher noncentrality than a proposed model because it is expected to fit the data poorly. Thus, values of CFI close 
to 1 are considered likely to be indicative of a reasonably well fitting model. Again, there are no norms about how high the 
CFI should be in order to safely retain or reject a proposed model. In general, a CFI in the mid-.90s or above is usually 
associated with models that are plausible approximations of the data.

The expected cross-validation index (ECVI) was also introduced as a function of the noncentrality parameter (Browne & 
Cudeck, 1993). It represents a measure of the degree to which one would expect a proposed model to replicate in another 
sample from the same population. In a set of several proposed models of the same phenomenon, a model is preferred if it 
minimizes the value of ECVI relative to other models. The ECVI was developed partly as a reaction to the fact that because 
the RMSEA presumably does not depend on sample size, it cannot account for the fact that with small samples it would be 
unwise to fit a very complex model (i.e., with many parameters). The ECVI accounts for this possibility, and when the 
maximum likelihood method of estimation is used it will be closely related to the Akaike information criterion (AIC). The AIC 
is a special kind of fit index that takes into account both the measure of fit and model complexity (Akaike, 1987). Generally, 
proposed models with lower values of ECVI and AIC are more likely to be better means of data description than models with 
higher ECVI and AIC indices. The ECVI and AIC have become quite popular in SEM applications, particularly for the 
purposes of examining competing models (i.e., when a researcher is considering several models and wishes to select from 
them the one with the best fit).

Another important feature of this alternative approach to model assessment involves the routine use of confidence intervals. 
Recall from basic statistics that a confidence interval provides a range of plausible values for the population parameter being 
estimated at a given confidence level. The width of the interval is also indicative of the precision of estimation of the 
parameter. Of special interest to the alternative approach to model testing is the left endpoint of the 90% confidence interval of 
the RMSEA index. Specifically, if this limit of the RMSEA is considerably smaller than .05 and the interval not too wide, it 
can be argued that the model is a plausible means of describing the analyzed data. Thus, if the RMSEA is smaller than .05 or 
the left endpoint of its confidence interval markedly smaller than .05 (with this interval not excessively wide), the model can 
be considered a reasonable approximation of the data.
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In concluding this section on model testing and fit evaluation, it must be emphasized that no decision should be based on a 
single index, no matter how favorable for the model the index may appear. As indicated earlier, every index represents a 
certain aspect of the fit of a proposed model, and in this sense is a source of limited information as to how good the model is or 
how well it can be expected to perform in the future. Therefore, a decision to reject or retain a model should always be based 
on multiple goodness-of-fit indices (and if possible on the results of replication studies). In addition, as indicated in the next 
section, important insights regarding model fit can sometimes be obtained by also conducting an analysis of residuals.

Analysis of Residuals

All fit indices considered in the previous section should be considered overall measures of model fit. In other words, they are 
all summary measures of fit and none of them provide information about the fit of individual parts of the model. As a 
consequence, it is possible for a proposed model to be seriously misspecified in some parts (i.e., incorrect with regard to some 
of the variables and their relationships), but be very well fitting in other parts, and for an evaluation of the previously discussed 
fit criteria to suggest that the model is plausible.

For example, consider a model that is substantially off the mark with respect to including the presence of a relationship 
between two particular variables (i.e., the model does actually exclude this relationship). In such a case, the difference between 
the sample covariance and the covariance reproduced by the model at the final solutioncalled residual for that pair of 
variablesmay be substantial. This result would suggest that the model cannot be considered a plausible means of data 
description. However, at the same time, the model may do an excellent job of explaining all of the remaining covariances and 
variances in the sample covariance matrix S and result in a nonsignificant chi-square value and favorable other fit indices. 
Such an apparent paradox may emerge because the chi-square value T (or any of the other fit indices discussed) is a measure 
of overall fit. Thus, all that is provided by overall measures of model fit is a summary picture of how well the proposed model 
fits the whole analyzed matrix, but no information is provided about how well the model reproduces the individual elements of 
that matrix.



To counteract this possibility, two types of residuals can be examined in most SEM models. The unstandardized residuals 
index the amount of unexplained covariance and variance in terms of the original metric of the raw data. However, if the 
original metric of the raw data is quite different across measured variables, it is impossible to examine residuals and deter-
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mine which are large and which are small. A standardization of the residuals to a common metric, as reflected in the 
standardized residuals, makes the comparison much easier.

A standardized residual close to or above +3 indicates that the model considerably underexplains a particular relationship 
between two variables. Conversely, a standardized residual close to or below 3 indicates that the model markedly overexplains 
the relationship between the two variables. Using this residual information, a researcher may decide to either add or remove 
some substantively meaningful paths or covariances, which could contribute to a smaller residual associated with the involved 
two variables and hence a better-fitting model with regard to their relationship.

Overall, good-fitting models will typically exhibit a stem-and-leaf plot of standardized residuals that closely resembles a 
symmetric distribution. In addition, examining a Q plot of the standardized residuals is a useful means of checking the 
plausibility of a proposed model. The Q plot graphs the standardized residuals against their expectations should the model be a 
good means of data description. With good-fitting models, a dotted line through the marks of the residuals on that plot will be 
close to vertical (Jöreskog & Sörbom, 1993c). Any serious departures from a straight line indicate either serious model 
misspecifications or violations of the normality assumption (e.g., nonlinear trends in the relationships between some observed 
variables; see Raykov, in press).

An important current limitation in SEM is the infrequent evaluation of estimated individual-case residuals. Individual-case 
residuals are routinely used in applications of regression analysis because they help researchers with model evaluation and 
modification. In regression analysis, residuals are defined as the differences between individual raw data and their model-
based predictions. Unfortunately, SEM developers have only recently begun to investigate more formally ways in which 
individual-case residuals can be defined within this framework. The development of ways for defining individual-case 
residuals is also hampered by the fact that most structural models are based on latent variables, which cannot be directly 
observed or precisely measured. Therefore, very important pieces of information that are needed in order to arrive at 
individual-case residuals similar to those used in regression analysis are often missing.

Modification Indices

A researcher usually conducts a SEM analysis by fitting a proposed model to the available data. If the specified model does 
not fit, one may accept this fact and leave it at that or may consider the question, ''How should the specified model be modified 
to improve the fit?" In the SEM literature, the
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modification of a specified model in order to improve fit has been termed a specification search (Long, 1983). Accordingly, a 
specification search is conducted with the intent to detect and correct the specification error between a proposed model and the 
true model characterizing the population and variables in the study. Although in theory researchers should fully specify and 
deductively hypothesize a model prior to data collection and model testing, in practice this is often simply not possible, either 
because a theory is poorly formulated or because it is altogether nonexistent. As a consequence, specification searches have 
become a common practice in SEM applications. In fact, most currently available SEM program provide researchers with 
options to conduct specification searches to improve model fit, and some new search procedures have also been developed to 
automate this process (see Marcoulides, Drezner, & Schumacker, 1998; Scheines, Spirtes, & Glymour, in press; Scheines, 
Spirtes, Glymour, Meek, & Richardson, 1998; Spirtes, Scheines, & Glymour, 1990).



Specification searches are clearly helpful for improving a model that is not fundamentally misspecified, but is incorrect only to 
the extent that it has some missing paths or some of its parameters are involved in unnecessarily restrictive constraints. With 
such models, it can be hypothesized that the unsatisfactory fit stems from overly strong restriction(s) on its parameters, that 
they are either fixed to 0 or set equal to other parameter(s) (or included in a more complex relationship). Of course, the 
application of any means of model improvement is only appropriate when the model modification suggested is theoretically 
sound and does not contradict the results of previous research in the particular substantive domain. Alternatively, the results of 
any specification search that do not agree with past research should be subjected to an analysis based on new data before any 
real validity can be claimed.

The indices that can be used as diagnostic statistics about which parameters should be changed in a model are called 
modification indices (a term used in the LISREL program) or Lagrange multiplier statistics (a term used in the EQS program). 
The value of a modification index (the term is used generically) indicates how much a proposed model's chi-square would 
decrease if a particular parameter were freely estimated or freed from a constraint in the preceding model run. There is also 
another modification index, called the Wald index, which takes a slightly different approach to the problem. The value of the 
Wald index indicates how much a proposed model's chi-square would increase if a particular parameter were fixed to 0 (i.e., if 
the parameter were deleted from the proposed model).

The modification indices address the question of how to improve an initially specified model that does not fit satisfactorily the 
data. Although no strict rules-of-thumb exist concerning how large the indices must be to warrant a meaningful model 
modification, based on purely statistical con-
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siderations one might simply consider making changes to parameters associated with the highest modification indices. If there 
are several parameters with high modification indices, one should consider freeing them one at a time, beginning with the 
largest, because it is well known that a single change in a model can affect other parts of the solution (Jöreskog & Sörbom, 
1990; Marcoulides et al., 1998). When LISREL is used, modification indices larger than 5 generally merit close consideration. 
Similarly, when EQS is used, parameters associated with significant Lagrange-multiplier or Wald-index statistics also deserve 
close consideration.

It must be emphasized, however, that any model modification first must be justified on theoretical grounds and be consistent 
with already available theories or results from previous research in the substantive domain, and only second must be in 
agreement with statistical optimality criteria such as those mentioned. Blind use of modification indices can turn out to be a 
road to such models that lead researchers astray from their original substantive goals. It is therefore imperative to consider 
changing only those parameters that have a clear substantive interpretation. As discussed in later chapters, additional statistics, 
in the form of the estimated change for each parameter, can also be taken into account before one reaches a final decision 
regarding model modification.

In conclusion, it is important to emphasize that results obtained from any model-improvement specification search may be 
unique to the particular data set and that capitalization on chance can occur during the search. Consequently, once a 
specification search is conducted, a researcher is entering a more exploratory phase of analysis. This has also purely statistical 
implications in terms of not keeping the overall significance level at the initially prescribed nominal value (the preset 
significance, usually .05). Hence, the possibility exists of arriving at such statistically significant results regarding aspects of 
the model due only to chance fluctuations. Thus, the likelihood of falsely declaring at least one of the conducted statistical 
tests of the model to be significant is increased rather than being the same as that of any single test. For this reason, any 
models that result from specification searches must be cross-validated before any real validity can be claimed.
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Chapter Two 
Getting to Know the EQS and LISREL Programs

In chapter 1, the basic concepts of structural equation modeling methodology were introduced. In this chapter, the essential 
elements of the notation and syntax used in the EQS and LISREL programs are introduced. The chapter begins by presenting 
an easy-to-follow flow chart that depicts the general principle behind constructing input files for each program (although this 
flow chart can actually be applied with any SEM program language). This material is followed by a discussion of the most 
important elements of the EQS and LISREL program languages. The EQS program is presented first because the preceding 
chapter has already familiarized the reader with a number of important concepts that substantially facilitate an introduction to 
it. The LISREL program, with its slightly different structure, is dealt with second. For more extensive discussions and 
information, the reader is referred to the latest versions of the program manuals (Bentler, 2000; Jöreskog & Sörbom, 1999).

Structure of Input Files for SEM Programs

Each SEM program can essentially be considered a new language with special syntax and rules that must be precisely 
followed. The special syntax is used to tell the program all the details about the observed data and the proposed models. The 
details about the data and models are communicated to the program as input commands. The results of the program acting on 
these commands are then presented in the output.

Obviously, the most essential piece of information that must be provided to the program is how the proposed model looks. 
Conveying infor-
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mation about the model begins with a listing of each observed and unobserved variable as well as the way they relate to one 
another. It is just as important that the program be informed about the parameters of the model. As discussed in the previous 
chapter, each program has in its memory the formal way the model reproduced matrix Σ can be obtained, once it is informed 
about the model and its parameters. Thus, as illustrated in chapter 1, one must first draw the path diagram of the model and 
then define all the necessary parameters using Rules 1 to 6 before proceeding with the computer analysis.

In addition to this, one must also communicate to the program a few details about the data on which the proposed model will 
be fit. In particular, information concerning the location of the data, the name of the file, and the format of the data must be 
provided. For example, with respect to the format of the data, it must be specified whether the data is in raw form, in the form 
of a covariance matrix (and means, if needed; see chap. 6), or in the form of a correlation matrix (and variable standard 
deviations). It is also important to explicitly state the number of variables in the data set and provide information about the 
observed sample size. Fortunately, most SEM programs will echo in their output the structure of the input file (in terms of the 
number of variables, observations, etc.) and also display the data to be analyzed in the form of either a covariance or a 
correlation matrix. Thus, a user can quickly check the output to ensure that the program has indeed correctly read the data to 
be analyzed.

Finally, one must communicate to a SEM program which type of analysis is desired. For example, particulars about the 
estimation-fitting process (e.g., maximum likelihood or weighted least squares), the number of iterations to be conducted, or 
the specific measures of model fit to be considered must be provided. Although many of the details can be implemented 
automatically or handled by using a program's default settings, in order to have some sense of control over a program, it is 
always better for a user to specify the particulars of a proposed model.

In simple terms, the flow chart here represents the backbone of any input file of a model to be fitted with a SEM program.

Location and form of data to be analyzed 
↓ 

Description of proposed model to be fitted 
↓ 

User-specified information about the final solution



The next two sections follow this flow chart for setting up input files in EQS and LISREL. Although this is done first using 
only the most necessary information, it will prove sufficient for fitting most of the models used in the book. The discussion is 
extended when more complicated models are
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discussed in later chapters (such as when dealing with multisample or mean structure analyses).

Introduction to the EQS Notation and Syntax

The discussion in chapter 1 has already laid the foundation for introducing the specific elements needed to set up input files 
using the EQS syntax and notation. An input file in EQS is made up of various command lines. The beginning of each 
command line is signaled by a forward slash (/), and its end is signaled by a semicolon (;). To begin the introduction to EQS, a 
list of the individual commands that are most often used in practice when conducting SEM analyses are presented next (for 
further details see Bentler, 1995 or 2000). Each command is illustrated using the data and proposed factor analysis model 
originally displayed in Fig. 6 in chapter 1. For ease of presentation, the same figure is displayed again in Fig. 7. In addition, 
and to keep all program input files visually separate from the regular text, all command lines are capitalized throughout the 
book.

Title Command

One of the first things needed to create an EQS input file is a title command line. This line simply describes in plain English 
the type of model examined (e.g., a confirmatory factor analysis model or a path analytic model) and perhaps some of its 
specifics (e.g., a study of college students or middle managers). The title command line is created by the keyword /TITLE. On 
the line immediately following, and for as many lines as needed, an explanatory title is provided. For example, suppose that 
the model being studied is the factor analysis model displayed in Fig. 7. The title command line could then be listed as

/TITLE 
FACTOR ANALYSIS MODEL OF THREE INTERRELATED CONSTRUCTS 
EACH MEASURED BY THREE INDICATORS;

It is important to emphasize that although the description in a title command line can be kept to a single line, the more details 
that are provided the better one will recall the purpose of the study, especially when revisiting input files months (or even 
years) later.

Data Command

The data command line provides details about the data to be analyzed. This is done by using the keyword/SPECIFICATIONS. 
On the next line, the exact number of variables in the data set are provided using the key-
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Figure 7. 
Example factor analysis model. F1 = Parental dominance; 

F2 = Child intelligence; F3 = Achievement motivation.

word VARIABLES= , followed by the number. Then information about the number of observations in the data set is provided 
using the keyword CASES= , followed by the sample size. The data to be used in the study may be placed directly in the input 
file or in a separate data file. If the data are available as a covariance matrix, the keyword MATRIX=COV can be used 
(although it is the default option in EQS). If the data to be examined are in raw form (e.g., one column per variable), then the 
keyword MATRIX=RAW is used and the name of the file enclosed in apostrophes (and its location) are provided with the 
keyword DATA_FILE= (e.g., DATA_FILE='C:/DATA/DATAFILE'). If the data to be examined in the form of a covariance 
matrix are placed directly in the input file (e.g., the covariance matrix S presented in chap. 1), the keyword /MATRIX is used 
followed by the matrix itself. Although the covariance matrix will eventually appear at the very end of the input file (see final 
program), for clarity it is discussed now in the beginning part of the file. If a matrix of variable interrelationships other than the 
covariance matrix is to be analyzed, this in-
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formation can be provided using the keyword ANALYSIS= , followed by MOMENTS if the covariance or mean structure is 
analyzed (i.e., the means of the variables along with their sample covariance matrix S), or by CORRELATION if the 
correlation matrix is analyzed (in EQS6).

The default method of estimation in EQS is maximum likelihood (ML). If a method other than ML is to be used for estimation, 
it is stated using the keyword METHOD = , followed by the abbreviation of the method recognizable by the program (e.g., 
GLS or LS). Although EQS provides the option of selecting from among several estimation procedures, as indicated in chapter 
1, only output from the maximum likelihood method will be provided in this book. Using the proposed factor analysis model 
in Fig. 7 as an illustration, the data command line can then be listed as

/SPECIFICATIONS 
VARIABLES = 9; 
CASES = 245; 
METHOD = ML; 
MATRIX = COV; 
ANALYSIS = COV; 
/MATRIX 
1.01 
.32 1.50 
.43 .40 1.22 
.38 .25 .33 1.13 
.30 .20 .30 .7 1.06  
.33 .22 .38 .72 .69 1.12 
.20 .08 .07 .20 .27 .20 1.30 
.33 .19 .22 .09 .22 .12 .69 1.07 
.52 .27 .36 .33 .37 .29 .50 .62 1.16

It should be noted that because each of the command lines ends in a semicolon, they can also be specified on a single line. The 
only command line in which no semicolon is needed to mark the end of the line is the /MATRIX command.

Model-Definition Commands

The next command lines needed in the EQS input file (following the flow chart presented earlier) have to do with model 
description. To accomplish this one must take a close look at the path diagram of the proposed model and provide the 
information about the specified parameters in the model. In summary, setting up the model definition commands involves the 
following three activities: (a) writing out the equations relating each dependent variable to its explanatory variables, (b) 
determining the status of all
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variances of independent variables (whether free or fixed, and at what values), and (c) determining the status of the 
covariances for all independent variables. These three activities are accomplished by using the keywords /EQUATIONS, /
VARIANCES, and /COVARIANCES.

Each free parameter in the model is denoted in the program language by an asterisk (any not mentioned are automatically 
assumed to be 0). Following closely the model path diagram in Fig. 7 should result in 21 asterisks appearing in the model-
definition command lines. Thus, the /EQUATIONS command is



/EQUATIONS  
V1 = *F1 + E1; 
V2 = *F1 + E2; 
V3 = *F1 + E3; 
V4 = *F2 + E4; 
V5 = *F2 + E5; 
V6 = *F2 + E6; 
V7 = *F3 + E7; 
V8 = *F3 + E8; 
V9 = *F3 + E9;

It is important to note that the model parameters (i.e., the nine λ's in Equation 1 in chap. 1) have simply been changed to 
asterisks. In addition, if needed, one can also assign a special start value to any of the model parameters by writing that value 
immediately before the asterisk in the equation (e.g., V9 = .9*F3 + E9).

The keyword /VARIANCES is used to inform the program about the status of the 12 independent variable variances (recall 
Rule 1 in chap. 1). According to Fig. 7, there are nine residual variances and three factor variances (which, following Rule 6, 
will be fixed to 1 in order to insure that their metric is set). Thus, the following command line is used

/VARIANCES  
F1 TO F3 = 1; E1 TO E9 = *;

Note that one can use the TO convention in order to save tedious writing of all independent variables in the model.

Finally, information about the three factor covariances (correlations) included in the model must be communicated. This is 
provided as

/COVARIANCES  
F2,F1=*; F3,F1=*; F3,F2=*;

Once the model-definition command lines have been completed, it is important to ensure that Rules 5 and 6 have not been 
contradicted in the
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input file. Thus, a final check ensures that each of the three factor variances is fixed at 1 (Rule 6), and that no variance or 
covariance of a dependent variable and no covariance of a dependent and an independent variable have been declared model 
parameters (Rule 5). Counting the number of asterisks in the model-definition command lines, one finds 21 model parameters 
appearing in the input filejust as many as in the path diagram of the model in Fig. 7. Obviously, if the two numbers differ, 
some parameter has either been left out or incorrectly declared.

Complete EQS Input File for the Model in Fig. 7

Based on the command lines, the following complete EQS input file emerges. The use of the keyword /END signals the end of 
the EQS input file.



/TITLE 
FACTOR ANALYSIS MODEL OF THREE INTERRELATED CONSTRUCTS 
EACH MEASURED BY THREE INDICATORS; 
/SPECIFICATIONS 
VARIABLES=9; CASES=245; METHOD=ML; MATRIX=COV; 
ANALYSIS = COV; 
/EQUATIONS 
V1 = *F1 + E1; 
V2 = *F1 + E2; 
V3 = *F1 + E3; 
V4 = *F2 + E4; 
V5 = *F2 + E5; 
V6 = *F2 + E6; 
V7 = *F3 + E7; 
V8 = *F3 + E8; 
V9 = *F3 + E9; 
/VARIANCES 
F1 TO F3 = 1; E1 TO E9 = *; 
/COVARIANCES 
F1,F2=*; F1,F3=*; F2,F3=*; 
/MATRIX 
1.01 
.32 1.50 
.43 .40 1.22 
.38 .25 .33 1.13 
.30 .20 .30 .7 1.06 
.33 .22 .38 .72 .69 1.12 
.20 .08 .07 .20 .27 .20 1.30 
.33 .19 .22 .09 .22 .12 .69 1.07 
.52 .27 .36 .33 .37 .29 .50 .62 1.16 
/END;
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A Useful Abbreviation

Each of the command lines in this EQS input file can also be abbreviated, usually to the first three letters of the keyword. This 
often saves a considerable amount of time for the researcher setting up numerous input files. Therefore, the following EQS 
input file can also be used:

/TIT  
FACTOR ANALYSIS MODEL OF THREE INTERRELATED 
CONSTRUCTS  
EACH MEASURED BY THREE INDICATORS;  
/SPE  
VAR=9; CAS=245; MET=ML; MAT=COV; ANA=COV;  
/EQU  
V1 = *F1 + E1;  
V2 = *F1 + E2;  
V3 = *F1 + E3;  
V4 = *F2 + E4;  
V5 = *F2 + E5;  
V6 = *F2 + E6;  
V7 = *F3 + E7;  
V8 = *F3 + E8;  
V9 = *F3 + E9;  
/VAR  
F1 TO F3 = 1; E1 TO E9 = *;  
/COV  
F1,F2=*; F1,F3=*; F2,F3=*;  



/MAT  
1.01  
.32 1.50  
.43 .40 1.22  
.38 .25 .33 1.13  
.30 .20 .30 .7 1.06  
.33 .22 .38 .72 .69 1.12  
.20 .08 .07 .20 .27 .20 1.30  
.33 .19 .22 .09 .22 .12 .69 1.07  
.52 .27 .36 .33 .37 .29 .50 .62 1.16  
/END;

Imposing Parameter Restrictions

The example here does not include any user-specified information about generating a final solution (i.e., the last part of the 
simple flowchart, regarding special output) because no output information beyond that provided by EQS by default was 
needed. However, later in this book such specifications, which either relate to the execution of the iteration process or ask the
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program to list information that it otherwise does not provide automatically, are included. For example, suppose that one is 
interested in testing the plausibility of the hypothesis that the first three observed variablesthe indicators of the Parental 
domination factorall have equal factor loadings (in the psychometric literature, this would be referred to as a triplet of tau-
equivalent tests). Such an assumption is tantamount to the three measures assessing the construct in the same units of 
measurement. In order to introduce this constraint to the EQS program, a new command-line section dealing specifically with 
parameter restrictions is included in the input file. The command line uses the keyword /CONSTRAINTS and contains the 
following specification of the imposed parameter equalities:

/CONSTRAINTS 
(V1,F1) = (V2,F1) = (V3,F1);

For consistency, it is suggested that all constraints imposed on the model be included immediately after the /COVARIANCE 
command line, which usually ends the model-definition part of an EQS input file.

Introduction to the LISREL Notation and Syntax

This section deals with the notation and syntax used in the general LISREL model (the submodel 3B in the LISREL manual; 
Jöreskog & Sörbom, 1993b). In order to keep things simple, the same factor analysis model examined in the previous section 
is considered when introducing the various LISREL command lines. Although the particular notation and syntax of the 
LISREL command lines are quite different to those of EQS, the specific elements needed to set up the input files are very 
similar.

The general LISREL model assumes that a set of observed variables (denoted as Y) is used to measure a set of latent variables 
(denoted as ηthe lowercase Greek letter eta). The relationships between the observed and latent variables are represented by a 
factor analysis model (also referred to as a measurement model), whose residual terms are denoted by ε (the lowercase Greek 
letter epsilon).1 The explanatory relationships among the

1 In LISREL, the observed variables can actually be denoted either by Y or X, the latent variables either by η or ξ 
(the lowercase Greek letter eta or ksi), and the residual terms either by ε or δ (the lowercase Greek letter epsilon or 
delta). For ease of presentation, however, only Y, η, and ε are used herethe notation used in the submodel 3B in the 
LISREL manual. Of course, as one becomes more familiar with the LISREL program, selecting which notation to 
use for representing a measurement SEM model will become simply a matter of taste. Either one can be used 
interchangeably. However, when the SEM model includes both a measurement part and a structural part, X is usually 
used to denote the observed variables of the predictor latent variables and Y is used for the observed variables of the 
outcome latent variables.
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latent variables constitute the structural model. To avoid any confusion, however, throughout this book these two models are 
referred to as the measurement and structural parts of a structural equation model.

Measurement Part Notation

Consider the factor analysis example displayed in Fig. 7. The measurement part of this factor analysis model can be written 
using the following notation (note the slight deviation in notation from Equation 1 in chap. 1):

To facilitate the discussion, the model displayed in Fig. 7 is reproduced again in Fig. 8 using the new notation. It is important 
to note that this is the same model, only the notation differs.

Note that Equations 9 are formally derived from Equations 1 presented in chapter 1 after several simple modifications. First, 
change the symbols of the observed variables from V1 through V9 to Y1 through Y9, respectively. Then change the symbols of 
the factors from F1 through F3 to η1 through η3, respectively. Next, change the symbols of the residual terms from E1 
through E9 to ε1 through ε9, respectively. Finally, add a second subscript to the factor loadings, which is identical to the factor 
on which the manifest variable loads.

The last step (changing to the double-index notation) represents a rather useful notation used in developing LISREL input 
files. Each factor loading or regression coefficient in a proposed model is numbered using two subscripts. The first 
corresponds to the number (index) of the dependent variable, and the second corresponds to the number of the independent 
variable in the pertinent equation. For example, in the fifth equation of Equations 9, Y5 = λ52η2 + ε5, the factor loading λ has 
two subscripts; the first corresponds to the dependent variable (Y5), and second is the index of the latent variable (η2). 
Independent variable variances and covariances have as subscripts the indices of the variables they are related to. Therefore, 
every variance has the index of the variable it belongs to as
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Figure 8. 
Example factor analysis model using LISREL notation. η1 = Paren- 

tal dominance; η2 = Child intelligence; η3 = Achievement motivation.

subscripts twice, whereas a covariance has the indices of the variables it relates as subscripts.

Structural Part Notation

In the example model displayed in Fig. 8, there is no structural part because no explanatory relationships are assumed among 
any of the constructs. If one assumed, however, that the latent variable η2 was regressed on η1 and that η3 was regressed on 
η2, then the structural part for the model would be
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In Equation 10 the structural slopes of the two regressions are denoted by β (the Greek letter beta), whereas the corresponding 
residual terms are symbolized by ζ (the Greek letter zeta). Note again the double indexing of the β, in which, as mentioned 
earlier, the first index denotes the dependent variable and the second denotes the independent variables in the pertinent 
equation. The indices of the ζ are identical to those of the latent dependent variables to which they belong as residual terms.

Two-Letter Abbreviations

A characteristic feature of the LISREL notation and syntax is the use of abbreviations based on the first two letters of 
keywords or parameter names. For example, within the general LISREL model, a factor loading can be referred to using the 
notation LY, followed by its indices. Similarly, a structural regression slope is referred to using BE (for beta), followed by its 
indices. Thus, using the indexing principle, the loading of the fifth manifest variable on the second factor is denoted by LY
(5,2). Similarly, the slope of the third factor when regressed on the second factor is denoted by BE(3,2) (although the brackets 
and delimiting comma are not required, they make the presentation easier to follow).

Variances and covariances between (independent) latent variables are denoted in the general LISREL model by PS (the Greek 
letter psi, Ψ), followed by the indices of the constructs involved. For example, the covariance between the first two factors in 
Fig. 8 is denoted by PS(2,1), whereas the variance of the third factor is PS(3,3). Finally, variances and covariances for residual 
terms are denoted by TE (the Greek letters theta and epsilon, θε). For instance, the variance of the seventh residual term ε7 is 
symbolized by TE(7,7), whereas the covariance (assuming such a covariance exists) between the first and fourth error terms 
would be denoted by TE(4,1).

Thus, the general LISREL model parameters needed to examine a structural equation model are (a) factor loadings as LY's, (b) 
structural regression coefficients as BE's, (c) latent-variable variances and covariances as PS's, and (d) residual variances and 
covariances as TE's.

Matrices of ParametersA Helpful Notation Tool

The representation of the indices of model parameters as numbers delineated by a comma and placed in brackets strongly 
resembles that of matrix elements. Indeed, in LISREL notation, parameters can be thought of as being conveniently collected 
into matrices. For example, the factor loading λ42, denoted in LISREL notation as LY(4,2), can be thought of as the second 
element (from left to right) in the fourth row (from top to bottom) of the matrix denoted LY. Similarly, the structural 
regression slope of η3 on
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η1, β31, denoted in LISREL notation as BE(3,1), is the first element in the third row of the matrix BE. The covariance 
between the third and fifth factors, Ψ53, is the third element in the fifth row of the matrix PS, PS(5,3), whereas θ21 is the first 
element in the second row of the matrix TE, TE(2,1) or simply TE 2 1. The matrices can be rectangular or square, be 
symmetric or nonsymmetric (commonly referred to as full matrices), have only 0 elements, or be diagonal.

In the general LISREL model notation, all factor loadings are considered elements of a matrix called LY, which is usually a 
rectangle (rather than square) matrix because in practice there are frequently more observed variables than factors. 
Furthermore, the structural regression coefficients (the regression coefficients when predicting a latent variable in terms of 
other ones) are elements of a matrix called BE. The BE matrix is square because it represents the explanatory relationships 
among the set of latent variables. Finally, the factor variances and covariances are entries of a (symmetric) square matrix PS, 
whereas the error variances and covariances are the elements of a (symmetric) square matrix TE. Of course, unless one has 
strong theoretical justification for considering the presence of covariances among errors, the matrix is usually assumed to be 
diagonal (i.e., to only include the error variances of the observed variables in the model). Thus, in order to use the general 
LISREL model one must consider the four matricesLY, BE, PS, and TE. Describing the model parameters residing in them 
constitutes a major part of constructing the LISREL input file.

Setting up a LISREL Input File

Now the process of constructing the input for a LISREL model can be discussed in detail. As outlined in the flow chart 
presented in the section Structure of Input Files for SEM Programs, there are three main parts to an input filedata description, 
model description, and user-specified output.



Every LISREL input file should begin with a title line. For example, using the factor analysis model displayed in Fig. 8, the 
title line could be

FACTOR ANALYSIS MODEL OF THREE INTERRELATED 
CONSTRUCTS  
EACH MEASURED BY THREE INDICATORS

It is important to note that unlike EQS, the LISREL syntax line does not end with a semicolon.

Next, the data to be analyzed are described in what is referred to as a data-definition line. The data-definition line includes 
information about the number of variables in the data file, the sample size, and the type of data to be analyzed (e.g., covariance 
or correlation). (When models are fit
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to data from more than one group, the number of groups must also be provided in this line; see chap. 6.) Thus, the factor 
analysis model in Fig. 8 is defined as (using just the first two letters of any keyword):

DA NI=9 NO=245

where DA is the abbreviation for ''DAta definition line," NI for "Number of Input variables," and NO for "Number of 
Observations."

Immediately following this line is the command CM (for Covariance Matrix), followed by the actual covariance matrix to be 
analyzed.

CM  
1.01  
.32 1.50  
.43 .40 1.22  
.38 .25 .33 1.13  
.30 .20 .30 .7 1.06  
.33 .22 .38 .72 .69 1.12  
.20 .08 .07 .20 .27 .20 1.30  
.33 .19 .22 .09 .22 .12 .69 1.07  
.52 .27 .36 .33 .37 .29 .50 .62 1.16

Of course, if the data are available as raw data in a separate file, one can refer to the raw data file by just stating RA= followed 
by the name of the file (e.g., RA=C:\DATA\DATAFILE). Alternatively, if one has already computed the sample covariance 
matrix and saved it in a separate file, CM= followed by the name of the file can also be used. This completes the first part of 
the LISREL input file, pertaining to description of the data to be analyzed.

Next come the details concerning the proposed model. This is commonly referred to as the model-definition line. The model-
definition line contains information about the number of observed variables (Y) and the number of latent variables (η) in the 
model. For example, because there are nine observed and three latent variables in Fig. 8, the beginning of the line should read

MO NY=9 NE=3

where MO stands for "MOdel definition line," NY for "Number of Y variables," and NE for "Number of Eta variables." 
However, this is only the start of the model-description information. As was done in creating the EQS program input file, one 
must communicate to LISREL information about the model parameters. As it turns out, in order to communicate this 
information, one must define the status of the four matrices in the general LISREL model (i.e., the matrices LY, BE, PS, and 
TE; and the information
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about the nine factor loadings, nine residual variances, and three factor correlations). Of course, in order to describe the 
confirmatory factor analysis model displayed in Fig. 8, only the matrices LY, PS, and TE are needed because there are no 
explanatory relationships assumed among the latent variables (i.e., BE is equal to 0).

Based on our experience with the LISREL language, the following status definition of these matrices resembles most cases 
encountered in practice and permits a full description of models with relatively minimal additional effort. Accordingly, LY is 
initially defined as a rectangular (full) matrix with fixed elements, and subsequently the model parameters are freed; this 
definition is accomplished by stating LY=FU,FI, where FU stands for "FUll" and FI for "Flxed" (although this is the default 
option in LISREL, it is mentioned explicitly to emphasize defining the free factor loadings in the subsequent line). Because 
there are no explanatory relationships among latent variables, the matrix BE is equal to 0 (i.e., consists only of 0 elements), 
and because this is also the default option in LISREL, matrix BE is not mentioned in the model statement. Hence, the 
following model-definition line is used:

MO NY=9 NE=3 LY=FU,FI PS=SY,FR TE=DI,FR

As previously indicated, the factor loading matrix LY is defined as full and fixed (keeping in mind that some of its elements 
will be freed next). These elements are the factor loadings of the model, which according to Rule 3 are the model parameters. 
The matrix PS is defined as symmetric and consisting of free parameters (as defined by PS=SY,FR). These parameters are the 
variances and covariances of the latent variables, which by Rules 1 and 2 are model parameters (some of them will 
subsequently be fixed, following Rule 6, to set the latent variable metrics). The error covariance matrix TE contains as 
diagonal elements the remaining model parameters (i.e., the error variances) and is defined as TE=DI,FR (this definition of TE 
is also a default option in LISREL, but it is included here to emphasize its effect of declaring the error variances to be model 
parameters.)

With respect to the factor loading parameters, the model definition line has only prepared the grounds for their definition. The 
complete definition also includes a line that specifically declares the pertinent factor loadings to be free parameters:

FR LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 2) LY(5, 2) LY(6, 2) 
FR LY(7, 3) LY(8, 3) LY(9, 3)

or simply
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FR LY 1 1 LY 2 1 LY 3 1 LY 4 2 LY 5 2 LY 6 2 
FR LY 7 3 LY 8 3 LY 9 3

This definition line starts with FR for "FRee," followed by the notation of the factor loadings in the proposed model declared 
as free parameters. It is very important to use the previously mentioned double-indexing principle correctly-first state the 
number of the dependent variable (observed variable in this example), and then the number of the independent variable (latent 
variable in this example). Because there are nine observed variables and three latent variables, there are potentially, altogether, 
27 factor loadings to deal with. However, based on Fig. 8, most of them are 0 because not all variables load on every factor. 
Instead, every observed variable loads only on its pertinent factor. Declaring the corresponding matrix LY as full and fixed in 
the model-definition line and then the parameter-freeing line is a quick way to specify the correct factor-loading model 
parameters.

Up until this point, the factor loadings, independent variable variances and covariances, and error variances have been 
communicated to LISREL as parameters. That is, all the rules outlined in chapter 1 have been applied, with the exception of 
Rule 6. According to Rule 6, the metric of each latent variable included in the model must be set. As with EQS, the easiest 
option is to fix their variances to a value of 1. This metric setting can be achieved by first declaring the factor variances to be 
fixed parameters (because they were defined in the model-definition line as free), and then assigning the value of 1 to each of 
them. These two steps are accomplished with the following two input lines:

FI PS(1, 1) PS(2, 2) PS(3, 3) 
VA 1 PS(1, 1) PS(2, 2) PS(3, 3)



Thus, one must first FIx the three factor variances, and then assign on the next line the VAlue of 1 to each of them. This 
finalizes the second part of the LISREL input file and completes the definition of all features of the proposed model.

The final section of the input file is minimal and refers to the kind of output information requested from the LISREL program. 
There is a simple way of asking for all possible output information from the LISREL program (although with the more 
complex models, such a request can often lead to an enormous amount of output), and for now this option is used. Thus,

OU ALL

is the final line of a LISREL input file.
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The Complete LISREL Input File

The following LISREL input file can be used to examine the proposed model in Fig. 8:

FACTOR ANALYSIS MODEL OF THREE INTERRELATED 
CONSTRUCTS  
EACH MEASURED BY THREE INDICATORS  
DA NI=9 NO=245  
CM  
1.01  
.32 1.50  
.43 .40 1.22  
.38 .25 .33 1.13  
.30 .20 .30 .7 1.06  
.33 .22 .38 .72 .69 1.12  
.20 .08 .07 .20 .27 .20 1.30  
.33 .19 .22 .09 .22 .12 .69 1.07  
.52 .27 .36 .33 .37 .29 .50 .62 1.16  
MO NY=9 NE=3 LY=FU,FI PS=SY,FR TE=DI,FR  
FR LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 2) LY(5, 2) LY(6, 2)  
FR LY(7, 3) LY(8, 3) LY(9, 3)  
FI PS(1, 1) PS(2, 2) PS(3, 3)  
VA 1 PS(1, 1) PS(2, 2) PS(3, 3)  
OU ALL
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Chapter Three 
Path Analysis

What Is Path Analysis?

Path analysis is an approach to modeling explanatory relationships between observed variables. The explanatory variables are 
usually assumed to have no measurement error or error that is negligible. The dependent variables may contain errors of 
measurement, but they are assumed to be present only in the residual terms of the model equations (i.e., that left unexplained 
by the explanatory variables). A special characteristic of path analysis models is that they do not contain latent variables.



Path analysis has a relatively long history. The term was first used in the early 1900s by the English biometrician Sewell 
Wright (Wright, 1920, 1921). Wright's approach was developed within a framework that is conceptually similar to the one 
underlying SEM discussed in chapter 1. The basic idea of path analysis is similar to solving a system of equations resulting 
when the elements of the sample covariance matrix S are set equal to their counterpart elements of the model reproduced 
covariance matrix Σ. Wright first demonstrated the application of path analysis to biology by developing models for predicting 
the birth weight of guinea pigs, examining the relative importance of hereditary influence and environment, and studying 
human intelligence (Wolfle, 1999). Wright (1921, 1934) provided a useful summary of the approach, complete with methods 
of calculations and a demonstration of the basic theorem of path analysis by which variable correlations in models can be 
reproduced by connecting chains of paths. Specifically, Wright's path analysis approach included the following steps. First, 
write out the model equations relating measured vari-
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ables. Second, work out the correlations among them in terms of the unknown model parameters. Finally, try to solve the 
resulting system of equations one at a time, in which the correlations are replaced by the sample correlations, in terms of the 
parameters.

Using the SEM framework, one can easily fit models conceptualized within the path analysis tradition. This is because path 
analysis models can be viewed as special cases of structural equation models. Indeed, one can consider any path analysis 
models as resulting from a corresponding structural model that assumes explanatory relationships between some of its latent 
variables measured by single indicators with unitary loadings on them, and in which the independent variables involved in 
those relationships have no residual terms (i.e., no error terms). Hence, to fit a path analysis model one can use a SEM 
program like EQS or LISREL. Although the application capitalizes on the original idea of fitting models to matrices of 
interrelationship indices (as developed by Wright, 1934), the actual model-fitting procedure is slightly modified. In particular, 
even though the independent variables are still considered to be measured without error (as one would do when using the 
original path analysis approach), the SEM approach considers all model equations simultaneously.

Example Path Analysis Model

To demonstrate a path analysis model, consider the following example study (Finn, 1974; see also Jöreskog & Sörbom, 1993b, 
sec. 4.1.4). The study examined the effects of several variables on university freshmen's academic performance. Five 
educational measures were collected from a sample of N = 150 university freshmen. The following observed variables were 
used in the study:

1. Grade point average obtained in required courses (AV_REQRD).

2. Grade point average obtained in elective courses (AV_ELECT).

3. High school general knowledge score (SAT).

4. Intelligence score obtained in the last year of high school (IQ).

5. Educational motivation score obtained the last year of high school (ED_MOTIV).

The example path analysis model is presented in Fig. 9. The model is initially presented in EQS notation using V1 to V5 for the 
observed variables, and E1 and E2 for the error terms associated with the two dependent variables (i.e., AV_REQRD and 
AV_ELECT).
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Figure 9. 
Example path analysis model.

In Fig. 9, there are three two-headed "curved arrows" connecting all the independent variables and representing the 
interrelationships among the high school general knowledge score (SAT), intelligence score (IQ), and motivation score 
(ED_MOTIV). Note that there are no residuals or measurement errors associated with any of the independent variables. The 
dependent variables, however, are associated with residual terms. They contain both measurement and prediction error. The 
curved two-headed arrow connecting the error terms E1 and E2 represents their possible interrelation that has been included in 
the model (it is important to note that including correlated error terms in the path model differs somewhat from the original 
path analysis method).

The purpose of this path analysis study is to examine the predictive power of several variables on university freshmen's 
academic performance. In terms of a path analysis, one's interest lies in regressing simultaneously the two dependent variables 
(V1 and V2) on three independent variables (V3, V4, and V5). Note that regressing the two dependent variables is not the same 
as is traditionally done in a multiple regression analysis, in which a single dependent variable is consideredhere the model is a 
multivariate multiple regression. Thus, in terms of equations, the following relationships are postulated:

where γ13 to γ25 are the six parameters of interestthe partial regression coefficients, also called path coefficients. These path 
coefficients reflect the predictive strength, in the particular metric used, of SAT, IQ, and ED_MOTIV on the two 
corresponding dependent variables. Furthermore,
  

page_65



Page 66

in Equations 11 the variables E1 and E2 represent the residual terms of the model equations, which reflect not only 
measurement error but also all additional influences on the pertinent dependent variables, beyond the ones captured by the 
linear combination of their presumed predictors.

To determine the parameters of the model presented in Fig. 9, one must follow the six rules outlined in chapter 1. Of course, 
because the model does not deal with latent variables, Rule 6 is not applicable to this model. Using the remaining rules, the 
parameters are (a) the regression coefficients (i.e., all six γ's in Equations 11), which represent the paths connecting each of the 
dependent variables (V1 and V2) to the predictors (V3, V4, and V5), and (b) the variances and covariances of the independent 
variables (i.e., the variances and covariances of V3, V4, and V5, as well as the variances and covariance of the equations 
residual terms E1 and E2).

Thus, the model in Fig. 9 has 15 parameters altogethersix path coefficients denoted by γ in Equations 11, six variances and 
covariances of independent variables, and three variances and covariance of the error terms. Observe that there are no model 
implications for the variances and covariances of the predictors V3 through V5. This is because none of them is a dependent 
variable. As a result, their variances and covariances are not structured in terms of model parameters. Hence, the covariance 
matrix of the predictors SAT, IQ, and ED_MOTIV is not restricted, in the sense that the model does not have any 
consequences with regard to its elements. Therefore, the estimates of these six parameters (three variances and three 
covariances) will be based entirely on the values in the sample covariance matrix S.

EQS and LISREL Input Files

EQS Input File

The EQS input file is constructed following the principles outlined in chapter 2. Accordingly, the file begins with a title 
command line:

/TITLE 
PATH ANALYSIS MODEL;

Next, the number of variables in the model, sample size, and method of estimation are specified:

/SPECIFICATIONS 
VARIABLES=5; CASES=150;
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To facilitate interpretation of the outputs, labels are provided for all variables. Using the command line /LABELS, the 
following names are assigned to each variable in the model (note that variable labels in both EQS and LISREL should not be 
longer than eight letters).

/LABELS 
V1=AV_REQRD; V2=AV_ELECT; V3=SAT; V4=IQ; V5=ED_MOTIV;

Next the two model-definition equations are provided:

/EQUATIONS 
V1 = *V3 + *V4 + *V5 + El; 
V2 = *V3 + *V4 + *V5 + E2;

followed by the remaining model parameters in the variance and covariance command lines:

/VARIANCES 
V3 TO V5 = *; E1 TO E2 = *; 
/COVARIANCES 
V3 TO V5 = *; E1 TO E2 = *;



Finally, the data are provided along with the end-of-input file command:

/MATRIX 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.100 10.267 
.500 .722 6.394 .525 2.675 
/END;

The complete EQS input file is as follows (using the appropriate abbreviations):

/TIT 
PATH ANALYSIS MODEL; 
/SPE 
VAR=5; CAS=150; 
/LAB 
V1=AV_REQRD; V2=AV_ELECT; V3=SAT; V4=IQ; V5=ED_MOTIV; 
/EQU 
V1 = *V3 + *V4 + *V5 + E1;
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V2 = *V3 + *V4 + *V5 + E2; 
/VAR 
V3 TO V5 = *; E1 TO E2 = *; 
/COV 
V3 TO V5 = *; 
/MAT 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.100 10.267 
.500 .722 6.394 .525 2.675 
/END;

LISREL Input File

The corresponding LISREL input file is presented next. The program outputs are provided in a separate section.

The LISREL input file requires a slight extension of the general LISREL model notation presented in chapter 2. The 
discussion is facilitated by the particular symbols used for the path coefficients (partial-regression coefficients) in Equations 
11. Accordingly, observed predictor variables are denoted using X, whereas dependent variables remain as Y. That is, V1 and 
V2 now become Y1 and Y2 in the LISREL notation, and V3, V4, and V5 become X1, X2, and X3, respectively. The covariance 
matrix of the predictor variables is referred to as Φ (the Greek letter phi), denoted PH in the syntax, and the same principles 
discussed in chapter 2 apply when referring to its elements. The six regression coefficients in Equations 11 are collected in a 
matrix Γ (the Greek letter gamma), denoted GA in the syntax. The columns of the matrix Γ correspond to the predictors (X1 to 
X3) and its rows are associated with the dependent variables (Y1 and Y2). Each entry of the matrix Γ represents a coefficient 
for the regression of a dependent (Y) on an independent (X) variable. Thus, the elements of the matrix Γ in this example are GA
(1,1), GA(1,2), GA(1,3), GA(2,1), GA(2,2), and GA(2,3).

The following LISREL input file is constructed following the principles outlined in chapter 2. The input file also includes 
some variable labels using the command line LAbels.



PATH ANALYSIS MODEL 
DA NI=5 NO=150 
CM 
.594 
.483 .754 
3.993 3.626 47.457
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.426 1.757 4.100 10.267 

.500 .722 6.394 .525 2.675 
LA 
AV_REQRD AV_ELECT SAT IQ ED_MOTIV 
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR 
OU

Using the same title, the data-definition line declares that the model will be fit to data on five variables collected from 150 
subjects. The sample covariance matrix signaled by CM is provided next, along with the variable labels. In the model 
command line, the notation NX denotes the ''Number of X variables." The matrix GA is, accordingly, declared to be full of 
free model parametersthese are the six γ's in Equations 11. The (symmetric) covariance matrix of the predictors (i.e., PH) is 
defined as containing model free parameters (as was done when creating the EQS input file). The elements of the PH matrix 
correspond to the variances and covariances of SAT, IQ, and ED_MOTIV variables. Finally, the covariance matrix of the 
residual terms of the dependent variables Y1 and Y2 (i.e., the matrix PS) is also defined as being symmetric and containing free 
model parameters. The elements of the PS matrix correspond to the variances and covariance of the two equations' error terms.

Modeling Results

EQS Program Results

The output produced by the EQS input file created in the previous section is presented next. We introduce at this point the 
convention of displaying the output results in a different and proportionate font, so that they stand out from the main text in the 
book. In addition, at appropriate places comments are inserted clarifying portions of the output (usually approximately at the 
end of each page of the output) and occasionally annotate the output.

The EQS output begins with

PROGRAM CONTROL INFORMATION 
 
 1 /TITLE 
 2 PATH ANALYSIS MODEL; 
 3 /SPECIFICATIONS 
 4 VARIABLES=5; CASES=150; METHOD=ML; 
 5 /LABELS 
 6 V1=AV_REQRD; V2=AV_ELECT; V3=SAT; V4=IQ; V5=ED_MOTIV; 
 7 /EQUATIONS
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 8  V1 = *V3 + *V4 + *V5 + El; 
 9  V2 = *V3 + *V4 + *V5 + E2; 
10  /VARIANCES 
11  V3 TO V5 = *; E1 TO E2 = *; 
12  /COVARIANCES 
13  V3 TO V5 = *; E1 TO E2 =*; 
14  /MATRIX 
15  .594 
16  .483  .754 
17  3.993 3.626  47.457 
18  .426  1.757  4.100  10.267 
19  .500  .722   6.394  .525    2.675 
20  /END; 
 
    20 RECORDS OF INPUT MODEL FILE WERE READ

This part of the output merely echoes the input file submitted to EQS and any mistakes made while creating the input can be 
easily spotted. It is quite important, therefore, that this first section of the output always be carefully examined before looking 
at the other output sections.

  COVARIANCE MATRIX TO BE ANALYZED: 5 VARIABLES (SELECTED FROM 5 VARIABLES) 
  BASED ON 150 CASES 
 
               AV_REQRD  AV_ELECT    SAT     IQ     ED_MOTIV 
                 V  1      V  2     V   3   V   4     V  5 
AV_REQRD   V  1  0.594 
AV_ELECT   V  2  0.483     0.754 
  SAT      V  3  3.993     3.626    47.457 
  IQ       V  4  0.426     1.757     4.100  10.267 
  ED_MOTIV V  5  0.500     0.722     6.394   0.525    2.675 
 
   BENTLER-WEEKS STRUCTURAL REPRESENTATION: 
 
        NUMBER OF DEPENDENT VARIABLES =  2 
            DEPENDENT V'S:  1    2 
 
        NUMBER OF INDEPENDENT VARIABLES = 5 
            INDEPENDENT V'S:      3    4   5 
            INDEPENDENT E'S:      1    2 
 
   3RD STAGE OF COMPUTATION REQUIRED    1410 WORDS OF MEMORY. 
   PROGRAM ALLOCATE     50000 WORDS 
 
   DETERMINANT OF INPUT MATRIX IS     0.26607E+02

In the second section of the output EQS provides information about the details of the model (i.e., about the number of 
independent and dependent variables, and the covariance matrix actually analyzed), as well as details relating to the internal 
organization of the memory to accomplish
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the computational routine. The bottom of this second output page also contains a message that can be particularly important 
for detecting numerical difficulties. The message has to do with the DETERMINANT OF THE INPUT MATRIX, which is, in 
very simple terms, a number that reflects the generalized variance of the 5 variables. If the determinant (variance) is 0, matrix 
computations cannot be conducted (i.e., in matrix-algebra terminology, the covariance matrix is singular). In cases where the 
determinant is very close to 0, matrix computations can be unreliable and any obtained numerical solutions are quite unstable. 
In common statistical terminology, the presence of a determinant close to 0 is a clue that there is a problem of a nearly perfect 
linear dependency (i.e., multicollinearity) among the observed variables analyzed. For example, in a regression analysis the 
presence of multicollinearity implies that one is using redundant information in the regression model, which can easily lead to 
an artificial inflation of the prediction model because, in a sense, this redundant information is used more than once. Of course, 
a simple solution may be to just drop an offending variable that is linearly related to the other variables and respecify the 
model. Thus, examining the determinant of the matrix in the EQS output section provides important clues about the accuracy 
of the data analysis.

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
 
PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION

This is also a very important message. It indicates that the program has not encountered problems stemming from lack of 
model identification. Otherwise, this is the place where one would see a warning message entitled CONDITION CODE that 
would indicate which parameters are possibly unidentified. For this model, the NO SPECIAL PROBLEMS message is a 
reassurance that the model is technically sound and identified.

RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
                AV_REQRD  AV_ELECT     SAT        IQ     ED_MOTIV 
                  V  1      V  2      V   3      V  4      V  5 
AV_REQRD  V  1    0.000 
AV_ELECT  V  2    0.000     0.000 
  SAT     V  3    0.000     0.000     0.000 
  IQ      V  4    0.000     0.000     0.000      0.000 
ED_MOTIV  V  5    0.000     0.000     0.000      0.000      0.000 
 
                  AVERAGE ABSOLUTE COVARIANCE RESIDUALS    =     0.0000 
     AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS    =     0.0000
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STANDARDIZED RESIDUAL MATRIX: 
 
                    AV_REQRD  AV_ELECT    SAT       IQ     ED_MOTIV 
                      V  1      V  2      V  3     V  4      V  5 
   AV_REQRD V  1      0.000 
   AV_ELECT V  2      0.000     0.000 
     SAT    V  3      0.000     0.000     0.000 
     IQ     V  4      0.000     0.000     0.000    0.000 
   ED_MOTIV V  5      0.000     0.000     0.000    0.000     0.000 
 
                  AVERAGE ABSOLUTE STANDARDIZED RESIDUALS    =    0.0000 
     AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS    =    0.0000



The RESIDUAL COVARIANCE MATRIX contains the computed variabl variance and covariance residuals. As discussed in 
chapter 1, these are the differences between the counterpart elements of the empirical covariance matrix S (given in the last 
input section /MATRIX) and the one reproduced by the model at the final solution (i.e., Σ). Thus, the values in the residual 
covariance matrix correspond to the differences between the two matrices (i.e., S Σ). In this sense, the residual matrix is a 
complex measure of model fit for the variances and covariances, as opposed to a single number provided by most fit indices. 
Large standardized residuals are indicative of possibly serious deficiencies of the model in that particular part (i.e., with regard 
to the specific variable variance or covariance).

In the present example, there are no non-0 residuals. On the contrary, in this study there is a perfect fit of the model to the 
datathe model perfectly reproduces the analyzed covariance matrix because all residuals are 0. As it turns out, the reason for 
this finding is that we are dealing with a saturated or just-identified model (i.e., one that has as many parameters as there are 
nonredundant elements of the covariance matrix). Recall that the model has 15 parameters and, with five observed variables, 
there are p(p + 1)/2 = 5(5 + 1)/2 = 15 nonredundant elements in the analyzed covariance matrix. Thus, the model examined in 
this study has as many parameters as there are nonredundant elements in the covariance matrix. Because saturated models like 
this one will always fit the data perfectly, there is no way one can really test or confirm the plausibility of the model (see chap. 
1 for a complete discussion).

LARGEST STANDARDIZED RESIDUALS: 
 
    V  2,V  1     V  4,V  2   V  5,V  2   V  3,V  2   V  1,V  1 
      0.000         0.000       0.000       0.000       0.000 
    V  3,V  3     V  4,V  1   V  2,V  2   V  4,V  3   V  4,V  4 
      0.000         0.000       0.000       0.000       0.000 
    V  5,V  1     V  3,V  1   V  5,V  3   V  5,V  4   V  5,V  5 
      0.000         0.000       0.000       0.000       0.000
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*DISTRIBUTION OF STANDARDIZED RESIDUALS 
      - - - - - - - - - - - - - - - - - 
     !                                 ! 
  20-                                  ! 
     !                                 ! 
     !                                 ! 
     !                                 ! 
     !                                 !          RANGE     FREQ  PERCENT 
  15-                                  - 
     !             *                   !   1  -0.5  -  --      0    0.00% 
     !             *                   !   2  -0.4  -  -0.5    0    0.00% 
     !             *                   !   3  -0.3  -  -0.4    0    0.00% 
     !             *                   !   4  -0.2  -  -0.3    0    0.00% 
  10-              *                   -   5  -0.1  -  -0.2    0    0.00% 
     !             *                   !   6   0.0  -  -0.1   14   93.33% 
     !             *                   !   7   0.1  -   0.0    1    6.67% 
     !             *                   !   8   0.2  -   0.1    0    0.00% 
     !             *                   !   9   0.3  -   0.2    0    0.00% 
   5-              *                   -   A   0.4  -   0.3    0    0.00% 
     !             *                   !   B   0.5  -   0.4    0    0.00% 
     !             *                   !   C    ++  -   0.5    0    0.00% 
     !             *                   !   - - - - - - - - - - - - - - - 
     !             *  *                !          TOTAL       15  100.00% 
      - - - - - - - - - - - - - - - - - 
 
      1  2  3  4  5  6  7  8  9  A  B  C   EACH "*" REPRESENTS 1 RESIDUALS



This section of the output provides only rearranged information about the fit of the model. Of course, in the case of a less-than-
perfect fit, a fair amount of information about the model can be obtained from this section. For example, the upper part of the 
output section provides a convenient summary of where to find the largest residuals (i.e., the largest deviations of the model 
from the data). The lower part of the output section provides information about the distribution of the residuals. In this 
example, due to the numerical estimation involved in fitting the model, the obtained residuals are not perfectly equal to 0 out 
to all the decimal places used by the program. This is the reason there is a spike in the center of the distribution and that one 
residual happens to fall off. With well-fitting models one should expect all residuals to be small and concentrated in the central 
part of the distribution of asterisks symbolizing the standardized residuals, and the distribution to be in general symmetric.

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
 
GOODNESS OF FIT SUMMARY 
 
INDEPENDENCE MODEL CHI-SQUARE =        460.156 ON      10 DEGREES OF FREEDOM 
INDEPENDENCE AIC =   440.15574   INDEPENDENCE CAIC =     400.04938 
       MODEL AIC =     0.00002          MODEL CAIC =       0.00002
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CHI-SQUARE =        0.000 BASED ON     0 DEGREES OF FREEDOM 
NONPOSITIVE DEGREES OF FREEDOM. PROBABILITY COMPUTATIONS ARE UNDEFINED. 
 
BENTLER-BONETT NORMED    FIT INDEX=       1.000 
 
NON-NORMED FIT INDEX WILL NOT BE COMPUTED BECAUSE A DEGREES OF FREEDOM IS 
ZERO.

In this next output section, several goodness-of-fit indices are presented. The first feature to note concerns the 0 degrees of 
freedom for the model. As discussed previously, this is a consequence of the fact that the model has as many parameters as 
there are nonredundant elements in the observed covariance matrix. The chi-square value is also 0, indicating, again, perfect 
fit. This result is not surprising because the model fits the covariance matrix perfectly. In contrast, the chi-square value of the 
independence model is quite large. This result is also expected because this model assumes no relationships between the 
variables, and hence represents in general a poor means of describing the analyzed data. In fact, large chi-square values for the 
independence model are quite frequent in practiceparticularly when the variables of interest exhibit some interrelationship. The 
Akaike information criterion (AIC) and its consistent-estimator version (CAIC) are practically 0 for the fitted model, and 
much smaller than those of the independence model. This finding is also explained by the fact that the independence model is 
a poor means of describing the analyzed data, whereas the one we fitted is far better. Finally, because a saturated model was fit 
in this example, which by necessity has both a 0 chi-square value and 0 degrees of freedom, the BentlerBonett nonnormed fit 
index cannot be computed. The reason is that, by definition, the BentlerBonett index involves division by the degrees of 
freedom of the proposed model (which here are 0). In contrast, the Bentler-Bonett normed fit index is 1, which is its maximum 
possible value typically associated with a perfect fit.

                ITERATIVE SUMMARY 
 
              PARAMETER 
ITERATION     ABS CHANGE      ALPHA       FUNCTION 
    1         14.688357      1.00000      5.14968 
    2         14.360452      1.00000      0.00000 
    3          0.000000      1.00000      0.00000

The iterative summary provides an account of the numerical routine performed by EQS to minimize the maximum likelihood 
fit function (matrix distance) used in accordance with the multinormality of the data. It took the program three iterations to 
find the final solution. This was achieved after the fit function quickly diminished to 0. Because this is a
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saturated model with perfect fit, the absolute minimum of 0 is achieved by the fit function, which is not generally the case with 
nonsaturated models, as is demonstrated in later examples.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
 AV_REQRD=V1  =    .086*V3    +   .008*V4   + -.021*V5    + 1.000 E1 
                   .007           .013         .031 
                 11.642           .616        -.676 
 
 AV_ELECT=V2  =    .046*V3    +   .146*V4   +  .131*V5    + 1.000 E2 
                   .007           .013         .030 
                  6.501         11.560        4.434

This is the final solution, presented in nearly the same form as the model equations provided to EQS in the input file. 
However, in this output the asterisks are preceded by the computed parameter estimates. (It is important to emphasize that the 
asterisks are used throughout EQS input and output to denote estimated parameters, and do not have any relation to 
significance.) Immediately beneath each parameter estimate is its standard error. The standard errors are measures of estimate 
stability (i.e., precision of estimation). Dividing each parameter estimate by its standard error yields what is referred to as a t 
value and this information is provided beneath the standard error. As mentioned in chapter 1, if the t value is outside the (2; + 
2) range one can suggest that the pertinent parameter is likely to be non-0 in the population; otherwise, it can be treated as 0 in 
the population. The t value, therefore, represents a simple test statistic of the null hypotheses that the corresponding model 
parameter is 0 in the population.

As can be seen in the output section, the t values indicate that all path coefficients are significant, except the impacts of IQ and 
ED_MOTIV on AV_REQRD, which are associated with nonsignificant t values (inside the 2; +2 interval). Thus, IQ and 
ED_MOTIV seem to be unimportant variables in the population. That is, there appears to be only weak evidence that IQ and 
ED_MOTIV might matter for student performance in required courses (AV_REQRD) once the impact of SAT is accounted for 
(this example is reconsidered later in the chapter with more precise statements).

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
                      V                            F 
                     ---                          --- 
V3 - SAT                       47.457*I                        I 
                                5.498 I                        I 
                                8.631 I                        I 
                                      I                        I 
V4 - IQ                        10.267*I                        I 
                                1.190 I                        I 
                                8.631 I                        I 
                                      I                        I
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V5 -ED_MOTIV                    2.675*I                        I 
                                 .310 I                        I 
                                8.631 I                        I 
                                      I                        I

These are the estimated variances of independent manifest variables along with their standard errors and t values (i.e., for SAT, 
IQ, and ED_MOTIV).

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
 
                      E                            D 
                     ---                          --- 
E1 -AV_REQRD                      .257*I                        I 
                                  .030 I                        I 
                                 8.631 I                        I 
                                       I                        I 
E2 -AV_ELECT                      .236*I                        I 
                                  .027 I                        I 
                                 8.631 I                        I 
                                       I                        I

These are the variances of the residual terms along with their standard errors and t values. As are the variances of the predictor 
variables, they are all significant.

COVARIANCES AMONG  INDEPENDENT VARIABLES 
---------------------------------------- 
 
                     V                             F 
                    ---                           --- 
V4 - IQ                         4.100*I                       I 
V3 - SAT                        1.839 I                       I 
                                2.229 I                       I 
                                      I                       I 
V5 -ED_MOTIV                    6.394*I                       I 
V3 - SAT                        1.061 I                       I 
                                6.025 I                       I 
                                      I                       I 
V5 -ED_MOTIV                     .525*I                       I 
V4 - IQ                          .431 I                       I 
                                1.217 I                       I 
                                      I                       I 
 
COVARIANCES AMONG INDEPENDENT VARIABLES 
--------------------------------------- 
 
                     E                             D 
                    ---                           --- 
E2 -AV_ELECT                    .171*I                        I 
E1 -AV_REQRD                    .025 I                        I 
                               6.971 I                        I 
                                     I                        I
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These are the covariances among the predictor variables along with their standard errors and t values.

STANDARDIZED SOLUTION: 
 
 AV_REQRD=V1   =   .771*V3   + .034*V4   + -.044*V5   + .657 E1 
 AV_ELECT=V2   =   .366*V3   + .539*V4   +   .247*V5  + .559 E2

The STANDARDIZED SOLUTION output results from standardizing all variables in the model. The standardized solution 
uses a metric that is uniform across all measures and, hence, makes possible some assessment of the relative importance of the 
predictors. Another way to use this information involves squaring the coefficients associated with the error terms. The 
resulting values provide information about the percentage of unexplained variance in the dependent variables. In a sense, these 
squared values are analogs to 1R2 indices corresponding to regression models for each equation. As can be seen in this 
example, some 43% (= 0.6572 in percentage) of individual differences in AV_REQRD could not be predicted by SAT, IQ, and 
ED_MOTIV. Similarly, some 31% of individual differences in AV_ELECT were not explained by SAT, IQ, and ED_MOTIV.

CORRELATIONS AMONG INDEPENDENT VARIABLES 
---------------------------------------- 
 
                      v                            F 
                     ---                          --- 
V4  -IQ                           .186*I                       I 
V3  - SAT                              I                       I 
                                       I                       I 
V5  -ED_MOTIV                     .567*I                       I 
V3  - SAT                              I                       I 
                                       I                       I 
V5  -ED_MOTIV                     .100*I                       I 
V4  -IQ                                I                       I 
                                       I                       I 
 
CORRELATIONS AMONG INDEPENDENT VARIABLES 
---------------------------------------- 
 
                      E                            D 
                     ---                          --- 
E2  -AV_ELECT                     .696*I                       I 
El  -AV_REQRD                          I                       I 
                                       I                       I 
---------------------------------------------------------------- 
                        E N D    O F   M E T H O D 
----------------------------------------------------------------

Finally, at the end of the EQS output, the correlations of all the independent model variables are presented. These values are 
simply reexpres-
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sions of earlier parts of the output dealing with estimated independent variances and covariances. The magnitude of the 
correlation between the two equations' error terms suggests that the unexplained portions of individual differences in 
AV_ELECT and AV_REQRD are quite high. One may suspect that this may be a consequence of common omitted variables. 
This possibility can be addressed by a subsequent and more comprehensive study that includes as predictors variables in 
addition to the SAT, IQ, and ED_MOTIV used in this example.

LISREL Program Results

The LISREL input described previously produces the following results rounded off to two decimals, which is the default 
option in LISREL (unlike EQS, in which the default is three). Once again, in presenting the output sections of the LISREL 
program, the font is changed, comments are inserted at appropriate places, and the logo of the program and its recurring first 
title line are dispensed with in order to save space.

The following lines were read from file PA.LSR: 
 
PATH ANALYSIS MODEL 
DA NI=5 NO=150 
CM 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.1 10.267 
.500 .722 6.394 .525 2.675 
LA 
AV_REQRD AV_ELECT SAT IQ ED_MOTIV 
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR 
OU

As in EQS, the LISREL output first echoes the input file. This is very useful for checking whether the model actually fitted is 
indeed the one intended to be analyzed by the researcher.

NUMBER OF INPUT VARIABLES      5 
NUMBER OF Y - VARIABLES        2 
NUMBER OF X - VARIABLES        3 
NUMBER OF ETA - VARIABLES      2 
NUMBER OF KSI - VARIABLES      3 
NUMBER OF OBSERVATIONS       150

Next, a summary of the variables in the model is given, in terms of observed, unobserved variables, and sample size. This 
section is also quite useful for checking whether the number of variables in the model have been correctly specified. Although 
in this example, the number of ETA and
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KSI variables are irrelevant, they will prove to be quite important later when dealing with the full LISREL model (see chap. 5).

COVARIANCE MATRIX TO BE ANALYZED 
 
            AV_REQRD    AV_ELECT        SAT         IQ     ED_MOTIV 
            --------    --------     ------    -------    --------- 
AV_REQRD         .59 
AV_ELECT         .48         .75 
     SAT        3.99        3.63      47.46 
      IQ         .43        1.76       4.10      10.27 
ED_MOTIV         .50         .72       6.39        .53         2.68

The covariance matrix provided in the LISREL input file is also echoed in the output and should be examined for potential 
errors.

PARAMETER SPECIFICATIONS 
 
        GAMMA 
                 SAT         IQ    ED_MOTIV 
            --------     ------    -------- 
AV_REQRD           1          2           3 
AV_ELECT           4          5           6 
 
        PHI 
                 SAT         IQ    ED_MOTIV 
             -------    -------    -------- 
      SAT          7 
       IQ          8          9 
 ED_MOTIV         10         11          12 
 
        PSI 
            AV_REQRD   AV_ELECT 
           --------    -------- 
 AV_REQRD         13 
 AV_ELECT         14         15

This is a very important section that identifies the model parameters as declared in the input file, and then numbers them 
consecutively. Each free model parameter is assigned a separate number. It is important to note that all parameters that are 
constrained to be equal to one another are given the same number, whereas parameters that are fixed are not numbered (i.e., 
they are assigned 0; see discussion in next section). According to this section output, LISREL understood that the model has 
15 parameters altogether (see Fig. 9). These include the six regression (path) coefficients in the GAMMA matrix that relate 
each of the predictors to the dependent variables (with predictor variables listed as columns and dependent variables as rows of 
the matrix); the PHI matrix, containing all six variances and covariances of the predictors as parameters; and the PSI matrix, 
containing the variances and covariances of the residual terms of
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the dependent variables (because both the PHI and PSI matrices are symmetric, only the elements along the diagonal and 
beneath it are nonredundant, and hence only they are assigned consecutive numbers).

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
        GAMMA 
                 SAT            IQ     ED_MOTIV 
              ------        ------    --------- 
AV_REQRD         .09           .01         -.02 
               (.01)         (.01)        (.03) 
               11.52           .61         -.67 
 
AV_ELECT         .05           .15          .13 
               (.01)         (.01)        (.03) 
                6.44         11.44         4.39 
 
        COVARIANCE MATRIX OF Y AND X 
 
            AV_REQRD      AV_ELECT            SAT         IQ    ED_MOTIV 
           ---------      --------           ----       -----   -------- 
AV_REQRD         .59 
AV_ELECT         .48           .75 
     SAT        3.99          3.63          47.46 
      IQ         .43          1.76           4.10       10.27 
ED_MOTIV         .50           .72           6.39         .53       2.68 
 
        PHI 
                 SAT            IQ     ED_MOTIV 
              ------       -------    --------- 
     SAT       47.46 
      IQ        4.10         10.27 
ED_MOTIV        6.39           .53          2.68 
 
        PSI 
            AV_REQRD      AV_ELECT 
           ---------      --------- 
AV_REQRD         .26 
               (.03) 
                8.54 
 
AV_ELECT         .17           .24 
               (.02)         (.03) 
                6.90          8.54 
 
        SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL EQUATIONS 
 
            AV_REQRD      AV_ELECT 
           ---------     --------- 
                 .57           .69

This is the final output solution provided by LISREL. In a way similar to the EQS program output, LISREL presents the 
parameter estimates along with their standard errors and t values in a column format. Note that the matrix presented in this 
section under the title COVARIANCE MATRIX OF
  

page_80



Page 81

Y AND X is actually the final model reproduced covariance matrix Σ. As can be seen, in this case Σ is identical to the sample 
covariance matrix S because the model is saturated and hence fits or reproduces it perfectly. Note also that the entries in the 
covariance matrix PHI of the independent variables are not associated with standard errors, unlike the other parameter 
estimates. This is to emphasize that they are identical to the corresponding elements of the sample covariance matrix (see 
lower-right corner of the empirical covariance matrix in the input file). The reason is that the model does not have any 
implications for the variances and covariances for the three predictor variables SAT, IQ, and ED_MOTIV. As a result, they are 
directly estimated at the corresponding empirical values of the sample covariance matrix S.

The section ends by providing the squared multiple correlations for the two structural equations of the model, one per 
dependent variable. The squared multiple correlations provide information about the percentage of explained variance in the 
dependent variables. Thus, in a sense they are analogs to the R2 indices corresponding to regression models for each equation 
(and are the same up to rounding-off error as those obtained using the EQS output).

                       GOODNESS OF FIT STATISTICS 
          CHI-SQUARE WITH 0 DEGREE OF FREEDOM = 0.00 (P = 1.00) 
              The Model is Saturated, the Fit is Perfect !

The goodness-of-fit statistics output is yet another indication of the perfect fit of the model (i.e., due to the fact that the model 
is saturated). It is important to note that with most models examined in practice (which are nonsaturated models), a researcher 
should first inspect the goodness-of-fit statistics provided in this section of the output before interpreting any parameter 
estimates. Using this strategy ensures that a researcher's interpretation of parameter estimates is carried out only for models 
that are reasonable approximations of the analyzed data. For models that are rejected as means of data representation, 
interpretations of parameter estimates should not be generally carried out because they can yield substantively misleading 
results.

MODIFICATION INDICES AND EXPECTED CHANGE 
NO NON-ZERO MODIFICATION INDICES FOR GAMMA 
NO NON-ZERO MODIFICATION INDICES FOR PSI

Finally, the reported lack of non-0 modification indices is another indication that there is no way to improve the model (i.e., 
because the model already fits the analyzed data perfectly). As it turns out, however, there will be situations in practice when 
model modifications must be made in order to achieve a better model fit or to address further substantively meaning-
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ful questions. The technical aspects of considering such models are discussed in detail in the next section.

Testing Model Restrictions in SEM

The model examined in the previous section was a very special oneit was a saturated or just-identified model. As a result, the 
model fit the data perfectly (something that one cannot expect to see with most models considered in practice). Because the 
model was saturated, it had 0 degrees of freedom and could not really be tested. This is because models with 0 degrees of 
freedom can never be disproved when tested against observed data, regardless of their theoretical implications or how that data 
looks. As a consequence, saturated models are generally not very interesting in substantive research. However, a saturated 
model can provide a very useful baseline against which other models with positive degrees of freedom can be tested. This is 
the reason why a saturated model was examined first.

Issues of Fit with Nested Models

The saturated model presented in the previous section and displayed in Fig. 9 also facilitates the introduction of a very 
important topic in SEM testingthat of a nested model. A model M is said to be nested in another model M' if M can be 
obtained from M' by fixing one or more of its parameters to 0 or some other constant(s), or to fulfil a particular relationship (e.
g., a linear combination of them to equal 0 or another constant). Actually, there also seems to be an informal tendency in the 
literature to refer to such pairs of models as nested models. In fact, there is potentially no limit to the number of nested models 
in a considered sequence, or to the number of parameters that are fixed or constrained in one of them in order to obtain the 
more restricted model(s).



Another interesting aspect about a nested model is that it will always have a greater number of degrees of freedom than the 
model in which it is nested (recall that the nested model M is obtained from M' by constraining one or more parameters to 0 or 
other constant(s), or to fulfil a particular relationship). As it turns out, the difference between the chi-squares of the two 
models, based on their degrees of freedom, can be used as a test if this restriction imposed on one or more parameters resulted 
in a significant decrement in fit. The test is generally referred to as a chi-square difference test and is based on a chi-square 
distribution with degrees of freedom equal to the difference between the degrees of freedom of the models compared.
  

page_82

Page 83

In practice, researchers typically consider only those nested models that impose substantively interesting restrictions on 
parameters. Thus, by comparing the fit of models and taking into account the difference in the number of their parameters, 
researchers examine the plausibility of the imposed restrictions. In general, the more restricted model (being a constrained 
version of another model) will typically be associated with a higher chi-square value because it imposes more restrictions on 
the model parameters. These restrictions, in effect, make the model less able to emulate the analyzed covariance matrix, and 
hence the resulting difference in the chi-square values will be positive. Similarly, the difference in degrees of freedom 
obtained when the degrees of freedom of the more general model are subtracted from those of the more restricted one is also 
positive because the more restricted model has fewer parameters and hence more degrees of freedom.

It can be shown that with large samples, the difference in chi-square values of nested models follows approximately a chi-
square distribution with degrees of freedom equal to the difference in their degrees of freedom. For simplicity, the difference 
in chi-square values is denoted by ∆T, and the difference between the degrees of freedom by ∆df. If the ∆T is significant when 
assessed against the chi-square distribution with ∆df degrees of freedom, it is an indication that the imposed restrictions in the 
more constrained model resulted in a significant decrement in model fit. Conversely, if the ∆T is nonsignificant, one can retain 
the hypothesis concerning the plausibility of the imposed constraints. It is important to note that model comparison can also 
proceed in the other directionmodels can have parameters sequentially freed, and the successive models can be compared to 
assess whether freeing a particular parameter resulted in a significant increment in model fit. Thus, in general terms the chi-
square difference test can be considered analogous to the test of change in R2 when adding predictors to (or removing them 
from) a set of explanatory variables in regression analysis, or equivalently to the F test for considering dropping predictors in a 
regression equation.

Testing Restrictive Hypotheses in the Example

Returning to the specific model presented in Fig. 9, the hypothesis can be examined that intelligence (IQ) and motivation 
(ED_MOTIV) have the same impact on grade point average obtained in elective subjects (AV_ELECT). To accomplish this, 
the equality restriction on the paths leaving IQ and ED_MOTIV and ending at AV_ELECT is introduced. This restriction can 
be included in the EQS input file by adding a /CONSTRAINT section, and in the LISREL file by adding an input line that 
imposes the particular parameters' identity. The necessary changes in the EQS file are
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as follows (note the extended title, indicating the additional restriction feature of this model):



/TITLE 
PATH ANALYSIS MODEL WITH IMPOSED CONSTRAINTS; 
/SPECIFICATIONS 
VARIABLES=5; CASES=150; 
/LABELS 
V1=AV_REQRD; V2=AV_ELECT; V3=SAT; V4=IQ; V5=ED_MOTIV; 
/EQUATIONS 
V1 = *V3 + *V4 + *V5 + E1; 
V2 = *V3 + *V4 + *V5 + E2; 
/VARIANCES 
V3 TO V5 = *; E1 TO E2 = *; 
/COVARIANCES 
V3 TO V5 = *; 
/CONSTRAINT 
(V2,V4) = (V2,V5); ! THIS IS THE NECESSARY RESTRICTION; 
/MATRIX 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.100 10.267 
.500 .722 6.394 .525 2.675 
/END;

As indicated by the added comment in the constraint input line, the restriction under consideration is imposed by requiring the 
identity of the path coefficients of the involved variables.

In the corresponding LISREL input file the parameter restriction is indicated by using an EQuality statement that sets the two 
involved parameters equal to one another as follows:

PATH ANALYSIS MODEL WITH IMPOSED CONSTRAINTS 
DA NI=5 NO=150 
CM 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.100 10.267 
.500 .722 6.394 .525 2.675 
LA 
AV_REQRD AV_ELECT SAT IQ ED_MOTIV
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MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR 
EQ GA(2, 2) GA(2, 3) ! THIS IS THE NECESSARY RESTRICTION 
OU

Thus, the EQuality line sets the two considered path coefficients equal in the restricted model.

Because the results of the two programs are identical, only the EQS output file is discussed here (interested readers may verify 
this by running the corresponding LISREL input file). In addition, the first two pages of the EQS output, which are identical to 
those of the model without the constraint are not presented.

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
 
PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 
ALL EQUALITY CONSTRAINTS WERE CORRECTLY IMPOSED



As indicated before, this message provided by the EQS program is important because it indicates that the program has not 
encountered any problems stemming from lack of model identification and that the model constraints were correctly 
introduced.

RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
                  AV_REQRD     AV_ELECT       SAT        IQ       ED_MOTIV 
                    V  1         V  2        V  3       V  4        V  5 
AV_REQRD V  1       0.000 
AV_ELECT V  2       0.000        0.000 
  SAT    V  3       0.000        0.000       0.000 
  IQ     V  4       3.017        0.023       0.000      0.000 
ED_MOTIV V  5      -0.017       -0.023       0.000      0.000       0.000 
 
                   AVERAGE ABSOLUTE COVARIANCE RESIDUALS     =           0.0054 
      AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS     =           0.0080 
 
STANDARDIZED RESIDUAL MATRIX: 
 
                  AV_REQRD     AV_ELECT       SAT        IQ       ED_MOTIV 
                    V  1         V  2        V  3       V  4        V  5 
AV_REQRD V  1       0.001 
AV_ELECT V  2       0.000        0.000 
  SAT    V  3       0.000        0.000       0.000 
  Q      V  4       0.007        0.008       0.000      0.000 
ED_MOTIV V  5      -0.013       -0.016       0.000      0.000       0.000 
 
                AVERAGE ABSOLUTE STANDARDIZED RESIDUALS      =           0.0031 
 AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZEDCO RESIDUALS      =           0.0045
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LARGEST STANDARDIZED RESIDUALS: 
 
  V  5,V  2   V  5,V  1   V  4,V  2   V  4,V  1   V  1,V  1 
    -0.016      -0.013      0.008      0.007      0.001 
 
  V  2,V  1   V  5,V  5   V  5,V  4   V  2,V  2   V  5,V  3 
    0.000       0.000       0.000       0.000       0.000 
 
  V  4,V  4   V  4,V  3   V  3,V  2   V  3,V  1   V  3,V  3 
    0.000       0.000       0.000       0.000       0.000 
 
DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
     - - - - - - - - - - - - - - - - - - 
    !                                   ! 
  20-                                   - 
    !                                   ! 
    !                                   ! 
    !                                   ! 
    !                                   ! 
    !                                   !                 RANGE     FREQ  PERCENT 
  15-                                   - 
    !                                   !          1  -0.5  -  --      0    0.00% 
    !                                   !          2  -0.4  -  -0.5    0    0.00% 
    !                                   !          3  -0.3  -  -0.4    0    0.00% 
    !                                   !          4  -0.2  -  -0.3    0    0.00% 
  10-                                   -          5  -0.1  -  -0.2    0    0.00% 
    !                                   !          6   0.0  -  -0.1    7   46.67% 



    !                  *                !          7   0.1  -   0.0    8   53.33% 
    !              *   *                !          8   0.2  -   0.1    0    0.00% 
    !              *   *                !          9   0.3  -   0.2    0    0.00% 
   5-              *   *                -          A   0.4  -   0.3    0    0.00% 
    !              *   *                !          B   0.5  -   0.4    0    0.00% 
    !              *   *                !          C    ++  -   0.5    0    0.00% 
    !              *   *                !           - - - - - - - - - - - - - - - 
    !              *   *                !                 TOTAL       15  100.00% 
     - - - - - - - - - - - - - - - - - - 
 
      1  2  3  4  5  6  7  8  9  A  B  C          EACH "*" REPRESENTS  1 RESIDUALS

As expected, the constrained model does not perfectly reproduce the observed covariance matrix (as was the case with the 
saturated model). This is because most models fit in research are not perfect representations of the analyzed data and therefore 
do not completely reproduce the analyzed matrices of variable interrelationships. In the particular case under consideration, the 
largest standardized residuals are, however, fairly small (note also their symmetric distribution around 0 in the latter part of the 
output portion). This result suggests that the model fits all elements of the sample covariance matrix well.

GOODNESS OF FIT SUMMARY 
 
INDEPENDENCE MODEL CHI-SQUARE =  460.156 ON  10 DEGREES OF FREEDOM

  
page_86

Page 87

   INDEPENDENCE AIC =  440.15574   INDEPENDENCE CAIC   =    400.04938 
          MODEL AIC =   -1.77898          MODEL CAIC   =     -5.78961 
 
   CHI-SQUARE  =        0.221 BASED ON     1 DEGREES OF FREEDOM 
   PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS   0.63826 
   THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS      0.221. 
 
   BENTLER-BONETT NORMED    FIT INDEX=      1.000 
   BENTLER-BONETT NONNORMED FIT INDEX=      1.000 
   COMPARATIVE FIT INDEX             =      1.000 
 
                        ITERATIVE SUMMARY\ 
 
                    PARAMETER 
ITERATION           ABS CHANGE         ALPHA            FUNCTION 
    1               14.687761          1.00000          5.15066 
    2               14.361547          1.00000          0.00170 
    3                0.000366          1.00000          0.00148

A saturated model provides a highly useful benchmark against which the fit of any nonsaturated model can be tested. Consider 
the fact that the model examined here is nested in the saturated model presented in Fig. 9. In fact, the current model differs 
only in one aspect from the saturated model (i.e., in the imposed restriction of equality on the two path coefficients that pertain 
to the substantive query), and therefore can be examined by using the chi-square difference test. Subtracting the values of the 
two chi-squares (i.e., 0.221 0 = 0.221) and subtracting the degrees of freedom of the two models (i.e., 1 0 = 1) provide a 
nonsignificant result when judged against the chi-square distribution with 1 degree of freedom. This is because the cut-off 
value for the chi-square distribution with 1 degree of freedom is 3.84 at a significance level .05 (and obviously higher for any 
smaller level), as can be found in any table of chi-square critical values. Thus, the conclusion is that there is no evidence in the 
data to warrant rejection of the introduced restriction. That is, the hypothesis of equality of the impacts of IQ and ED_MOTIV 
on AV_ELECT can be retained.



MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
AV_REQRD=V1   =   .085*V3    +    .006*V4   + -.012*V5    + 1.000 E1 
                  .007            .013         .024 
                12.109            .508        -.488 
 
AV_ELECT=V2   =   .045*V3    +    .144*V4   +  .144*V5    + 1.000 E2 
                  .006            .012         .012 
                 7.057          12.337       12.337

As requested in the input file, the solution equalizes the impact of IQ (V4) and ED_MOTIV (V5) on AV_ELECT (V2). 
Indeed, both pertinent path coefficients are estimated at .144 and are significant. Note that all other
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path coefficients are significant except the ones relating IQ and ED_MOTIV to AV_REQRD (V1). This issue is considered 
further at the end of the discussion of the output.

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
 
                      V                          F 
                     ---                        --- 
V3 - SAT                         47.457*I                  I 
                                  5.498 I                  I 
                                  8.631 I                  I 
                                        I                  I 
V4 - IQ                          10.267*I                  I 
                                  1.190 I                  I 
                                  8.631 I                  I 
                                        I                  I 
V5 -ED_MOTIV                      2.675*I                  I 
                                   .310 I                  I 
                                  8.631 I                  I 
                                        I                  I 
 
VARIANCES OF  INDEPENDENT VARIABLES 
------------------------------------ 
 
                      E                          D 
                     ---                        --- 
El -AV_REQRD                       .257*I                  I 
                                   .030 I                  I 
                                  8.631 I                  I 
                                        I                  I 
E2 -AV_ELECT                       .236*I                  I 
                                   .027 I                  I 
                                  8.631 I                  I 
                                        I                  I 
 
COVARIANCES  AMONG  INDEPENDENT  VARIABLES 
------------------------------------------ 
 
                      V                          F 
                     ---                        --- 
V4 - IQ                           4.100*I                  I 
V3 - SAT                          1.839 I                  I 
                                  2.229 I                  I 
                                        I                  I 
V5 -ED_MOTIV                      6.394*I                  I 



V3 - SAT                          1.061 I                  I 
                                  6.025 I                  I 
                                        I                  I 
V5 -ED_MOTIV                       .525*I                  I 
V4 - IQ                            .431 I                  I 
                                  1.217 I                  I 
                                        I                  I
  

page_88

Page 89

COVARIANCES AMONG INDEPENDENT VARIABLES 
--------------------------------------- 
                      E                          D 
                     ---                        --- 
E2 -AV_ELECT                       .171*I                  I 
El -AV_REQRD                       .025 I                  I 
                                  6.974 I                  I 
                                        I                  I

As can also be seen from the model in the preceding section, the covariance between IQ and ED_MOTIV is not significant. 
This suggests that there is weak evidence in the analyzed data set for a (linear) relationship between these two high school 
variables.

STANDARDIZED SOLUTION: 
 
 AV_REQRD=V1    =    .761*V3  +  .027*V4    + -.025*V5   +  .658 E1 
 AV_ELECT=V2    =    .354*V3  +  .530*V4    +  .271*V5   +  .559 E2

It is important to note that the standardized solution has not upheld the introduced restriction. Indeed, the standardized path 
coefficients of V4 and V5 on V2 are not equal here, unlike in the (immediately preceding) unstandardized solution, which 
fulfilled this restriction. This violation of constraints in the standardized solution is a common finding with restricted models 
partly because typically the constraints are imposed on parameters that do not have identical units of measurement to begin 
with. Thus, standardization of the variable metrics, which underlies the standardized solution, destroys the restrictions because 
it affects differentially the original units of assessment in various variables. Nonetheless, the restriction imposed in the model 
fitted in this section has an effect and leads to a standardized solution distinct from the one for the unrestricted model 
presented earlier, as shown in this output portion. The reason for this is that the standardization is carried out on the solution 
obtained with the constrained model, by subsequently modifying its parameter estimates appropriately.

CORRELATIONS AMONG INDEPENDENT VARIABLES 
----------------------------------------- 
                     V                           F 
                    ---                         --- 
V4 - IQ                       .186*I                             I 
V3 - SAT                           I                             I 
                                   I                             I 
V5 -ED_MOTIV                  .567*I                             I 
V3 - SAT                           I                             I 
                                   I                             I 
V5 -ED_MOTIV                  .100*I                             I 
V4 - IQ                            I                             I 
                                   I                             I
  

page_89



Page 90

CORRELATIONS AMONG INDEPENDENT VARIABLES 
 
                     E                           D 
                    ---                         --- 
E2 -AV_ELECT                  .696*I                            I 
El -AV_REQRD                       I                            I 
                                   I                            I 
--------------------------------------------------------------------------- 
                   E N D    O F    M E T H O D 
---------------------------------------------------------------------------

As with the model presented in Fig. 9, the last output portion shows that there is a substantial degree of interrelationship 
between the error terms. That is, those parts of AV_REQRD and AV_ELECT that are unexplained (linearly) by the common 
set of predictors used are markedly related. This finding again provides some hint concerning the possibility of common 
omitted variables, as mentioned at the end of the discussion of the unconstrained model results.

Model Modifications

The restricted model examined in the previous section indicated that the path coefficients relating IQ and ED_MOTIV to 
AV_REQRD were nonsignificant. An interesting question to consider is whether one or both of these paths can be excluded in 
a modified model and a good model fit can still be obtained for the data description. As indicated in chapter 1, the 
modification of a specified model has been termed a specification search (Long, 1983). As such, a specification search is 
conducted with the intent to detect and correct specification errors between a proposed model and the true model 
characterizing the population and variables in the study. Although some new search procedures have been developed to 
automate the process of model modification using computer algorithms, in this introductory book only user-specified model 
modifications are discussed (for more extensive discussions, see Marcoulides et al., 1998; Marcoulides & Drezner, in press; 
Scheines, Spirtes, & Glymour, in press; Scheines, Spirtes, Glymour, Meek, & Richardson, 1998).

Consider a modification of the model in which the path coefficients relating IQ and ED_MOTIV to AV_REQRD were found 
to be nonsignificant. Because it is well known that a single change in a model can affect other parts of the solution, only one 
change at a time is made in the model. By proceeding step by step (i.e., by setting one parameter to 0 at a time) the possibility 
of missing a tenable restrictive model or misspecifying a model, which might occur if all the nonsignificant parameters were 
fixed to 0 at once, are excluded. In a sense, this strategy is analogous to backward selection in regression analysis, particularly 
the rule not to drop from the equation more than a single predictor during a step (although automated
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model-selection search procedures have also recently been developed for regression analyses; see Drezner, Marcoulides, & 
Salhi, 1999; Marcoulides & Drezner, 1999).

With user-specified (nonautomated) model specification searches there are no rules concerning which nonsignificant 
parameters to fix to 0 first. One strategy might be to consider setting to 0 the parameter with the smallest t value taken as an 
absolute value, which in a sense might appear most nonsignificant. In the example, this is the path coefficient of ED_MOTIV 
on AV_REQRD. Fixing this path coefficient to 0 yields a nested model because the resulting model is obtained from that in 
Fig. 9 after introducing a parameter restriction. The fixing is achieved by simply not mentioning the constrained parameter as 
free when defining the model or, alternatively, by fixing it after the MOdel definition line. Provided here is the LISREL input 
file for this model with the restricted parameter between ED_MOTIV and AV_REQRD, GA (1, 3).



PATH ANALYSIS MODEL FOR RESTRICTED MODEL WITH THE PATH 
OF ED_MOTIV TO AV_REQRD FIXED AT ZERO 
DA NI=5 NO=150 
CM 
.594 
.483 .754 
3.993 3.626 47.457 
.426 1.757 4.100 10.267 
.500 .722 6.394 .525 2.675 
LA 
AV_REQRD AV_ELECT SAT IQ ED_MOTIV 
MO NY=2 NX=3 GA=FU,FR PH=SY,FR PS=SY,FR 
EQ GA(2, 2) GA(2, 3) 
FI GA(1, 3) ! ADDED LINE IN ORDER TO FIX THE PARAMETER γ13 
OU

(From here onward, to save space, we adopt the practice of reporting only those parts of the output, or fit indices if pertinent, 
that are relevant for answering the substantive query that has led to the fitted model.)

The model for the LISREL input file just presented yields a chi-square value T = 0.46 for 2 degrees of freedom. Thus, the 
difference in chi-square values between this model and the immediately preceding one with only the constraint of two equal 
path coefficients, is ∆T = 0.24 for ∆df = 1. Because this difference is nonsignificant (when compared to the cutoff of 3,84 for 
the chi-square distribution with 1 degree of freedom), one can conclude that there is no evidence in our data concerning the 
influence of ED_MOTIV on AV_REQRD, after accounting for the impact of SAT and IQ
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(note that these two predictors are still present in the equation for this dependent variable).

Because the imposed restriction was found to be plausible, it is retained in the model and the next nonsignificant path (i.e., the 
one between IQ and AV_REQRD) is considered. Fixing this path coeffient to 0 (by including the statement FI GA(1, 2) in the 
LISREL input file) provides a resulting chi-square value of T = 0.87, for df = 3. Thus, the increase in chi-square is ∆T = 0.41 
for ∆df = 1 and is similarly nonsignificant. One can therefore conclude that there is no evidence in the data concerning the 
impact of IQ on AV_REQRD, once that of SAT is accounted for.

Following these modifications, the model does not have any more nonsignificant parameters and represents the most 
restrictive, yet tenable model examined in this chapter. The results following this specification search are presented here (with 
some redundant sections eliminated):

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
          GAMMA 
                    SAT              IQ        ED_MOTIV 
               --------        --------        -------- 
AV_REQRD            .08 
                  (.01) 
                  13.79 
AV_ELECT            .05             .14             .14 
                  (.01)           (.01)           (.01) 
                   7.37           16.72           16.72 
 
          COVARIANCE MATRIX OF Y AND X 
 
               AV_REQRD        AV_ELECT             SAT      IQ    ED_MOTIV 
               --------       ---------         -------    ----    -------- 
AV_REQRD            .59 
AV_ELECT            .48             .75 
     SAT           3.99            3.63           47.46 
      IQ            .34            1.71            4.10   10.27 



ED_MOTIV            .54             .74            6.39     .53        2.68 
 
        PHI 
                    SAT              IQ        ED_MOTIV 
                -------        ---------       -------- 
     SAT          47.46 
      IQ           4.10           10.27 
ED_MOTIV           6.39             .53            2.68 
 
        PSI 
               AV_REQRD        AV_ELECT 
              ---------        -------- 
AV_REQRD            .26 
                  (.03) 
                   8.54 
AV_ELECT            .17             .24 
                  (.02)           (.03) 
                   6.90            8.54
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SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL EQUATIONS 
 
               AV_REQRD        AV_ELECT 
               --------        -------- 
                    .57             .68

Although this final model does not perfectly reproduce the analyzed covariance matrix (indeed, in its section entitled 
COVARIANCE MATRIX OF Y AND X quite a few of its entries marginally deviate from their counterparts in the sample 
covariance matrix), the fit criteria indicate that it is a plausible model. Despite these good fit criteria, it is important to note that 
results obtained from any model specification search may be unique to the particular data set and that chance elements may 
affect the search. In fact, once a specification search is conducted, a researcher is actually entering a more exploratory phase of 
analysis. Hence, the possibility exists that the results regarding aspects of the model are due only to chance fluctuations. For 
this reason, any models that result from specification searches should always be cross-validated before any real validity can be 
claimed.
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Chapter Four 
Confirmatory Factor Analysis

What Is Factor Analysis?

Factor analysis is an approach that was first developed by psychologists as a way to represent latent (hypothetically existing) 
variables. Although the latent variables could not be directly measured, psychologists still wanted to handle them as if they 
were measurable. For example, socioeconomic status is commonly discussed as if it is a real measured variable. Nevertheless, 
it is a latent variable that is generally regarded as a way to describe an individual's condition of wealth using indicators such as 
occupation, type of car owned, and place of residence.



Factor analysis has a relatively long history. The idea goes back to the early 1900s and it is generally acknowledged that the 
Englishman Charles Spearman first applied the approach to study the structure of human abilities. Spearman proposed that an 
individual's ability scores were simply manifestations of some general ability (called general intelligence, or just g) and other 
specific abilities (such as verbal or numerical abilities). The general and specific factors combined to produce the ability 
performance. This idea was labeled the two-factor theory of human abilities. However, as more researchers became interested 
in this approach (e.g., Thurstone, 1935), the theory was extended to models with more factors and was referred to as the 
common-factor theory or just factor analysis.

In general terms, factor analysis is an approach for expressing in the language of mathematics hypothetical constructs by using 
a variety of observable indicators that can be directly measured. The analysis is considered exploratory when the concern is 
with determining how many con-
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structs (factors) are needed to explain the relationships among the observed indicators and confirmatory when a preexisting 
model of the relationship among the indicators directs the search. As such, confirmatory factor analysis (CFA) is not 
concerned with discovering a factor structure, but with confirming the existence of a specific factor structure. Of course, in 
order to confirm the existence of a specific factor structure one must have some initial idea about the composition of the 
structure. In this respect, confirmatory factor analysis is considered to be a general modeling approach that is designed to test 
hypotheses about a factor structure whose number and interpretation are given in advance. Hence, in confirmatory factor 
analysis (a) the theory comes first, (b) the model is then derived from it, and finally (c) the model is tested for consistency with 
the observed data using a SEM-type approach. Therefore, as discussed at length in chapter 1, the unknown model parameters 
are chosen so that, in general, the model-reproduced Σ matrix comes as close as possible to the sample matrix S (thus, in a 
sense, the model is given the best chance to emulate S). If the proposed model emulates S to a sufficient extent (as measured 
by the goodness-of-fit indices), it can be treated as a plausible description of the phenomenon under investigation and the 
theory from which the model has been derived is supported. Otherwise, the model is rejected and the theoryas embodied in the 
modelis disconfirmed. It is important to note that this testing rationale is valid for all applications of the SEM methodology, 
not only those within the framework of confirmatory factor analysis, but its origins are firmly rooted in the factor analytic 
approach.

This discussion of confirmatory factor analysis (CFA) suggests an important limitation concerning its use. The starting point 
of CFA is a very demanding one, requiring that the complete details of a proposed model be specified before being fitted to the 
data. Unfortunately, in many substantive areas this may be too strong a requirement because theories are often poorly 
developed or even nonexistent. Because of these potential limitations, Jöreskog & Sörbom (1993a) distinguished three 
situations concerning model fitting and testing: (a) the strictly confirmatory situation in which a single formulated model is 
either accepted or rejected, (b) the alternative-models or competing-models situation in which several models are formulated 
and one of them is selected, and (c) the modelgenerating situation in which an initial model is specified and, if it does not fit 
the data, is modified and repeatedly tested until some fit is obtained.

It should be obvious that the strictly confirmatory situation is rare in practice because most researchers are simply not willing 
to reject a proposed model without at least suggesting some alternative model. The alternative- or competing-model situation 
is also not very common because researchers usually prefer not to specify alternative models beforehand.
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Thus, model generating is the most common situation encountered in practice (Jöreskog & Sörbom, 1993a; Marcoulides, 
1989). As a consequence, many applications of CFA actually bear some characteristic features of both explanatory and 
confirmatory approaches. As such, it is not very frequent that researchers are dealing with purely exploratory or purely 
confirmatory analyses. It is for this reason that the results of any repeated analyses of models on the same data set should be 
treated with a great deal of caution and be considered tentative until a replication study can provide further information on the 
performance of the generated models.

An Example Confirmatory Factor Analysis Model

To demonstrate a confirmatory factor analysis model, consider the following example model with three latent variables: 
ability, achievement motivation, and aspiration. The model proposes that three variables are indicators of ability, three 
variables are indicators of achievement motivation, and two variables are indicators of aspiration. Here the primary interest is 
in estimating the relationships among ability, motivation, and aspiration. For the purposes of this study, data were collected 
from a sample of N = 250 second-year college students. The following observed variables were used in the study:

1. A general ability score (ABILITY1).

2. Grade point average obtained in last year of high school (ABILITY2).

3. Grade point average obtained in first year of college (ABILITY3).

4. Achievement motivation score 1 (MOTIVN1).

5. Achievement motivation score 2 (MOTIVN2).

6. Achievement motivation score 3 (MOTIVN3).

7. A general educational aspiration score (ASPIRN1).

8. A general vocational aspiration score (ASPIRN2).

The example confirmatory factor analysis model is presented in Fig. 10 and the observed covariance matrix is presented in 
Table 1. The model is initially presented in EQS notation using V1 to V8 for the observed variables, E1 to E8 for the error 
terms associated with the observed variables, and F1 to F3 for the latent variables.

To determine the parameters of the model presented in Fig. 10 (designated by asterisks), one must follow the six rules outlined 
in chapter 1. According to Rule 1, all eight error-term variances are model parameters
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Figure 10. 
Example confirmatory factor analysis model using EQS notation.

TABLE 1 
Covariance Matrix for Confirmatory Factor Analysis 

Example of Ability, Motivation, and Aspiration

Variable AB1 AB2 AB3 MOT1 MOT2 MOT3 ASP1 ASP2

AB1 .45

AB2 .32 .56

AB3 .27 .32 .45

MOT1 .17 .20 .19 .55

MOT2 .20 .21 .18 .30 .66

MOT3 .19 .25 .20 .30 .36 .61

ASP1 .08 .12 .09 .23 .27 .22 .58

ASP2 .11 .10 .07 .21 .25 .27 .39 .62

Notes. AB denotes ability; MOT, motivation; ASP, aspiration. Sample size = 250.
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and, according to Rule 3, the eight factor loadings are also model parameters. In addition, the three construct variances are 
tentatively designated model parameters (but see the use of Rule 6 later in the paragraph). Following Rule 2, the three 
covariances between latent variables are also model parameters. Rule 4 is not applicable to this model because no explanatory 
relationships are assumed among any of the latent variables. For Rule 5, observe that there are no two-way arrows connecting 
dependent variables, or a dependent and independent variable in Fig. 10. Finally, Rule 6 requires that the scale of each latent 
variable be fixed. Because this study's primary interest is in estimating the correlations between ability and motivation (which 
are identical to their covariances if the variances of the latent variables are set equal to 1), the variances of the latent variables 
are simply fixed to unity. This decision makes the construct variances fixed parameters rather than free model parameters (as 
originally designated). Thus, the model in Fig. 10 has, altogether, 19 parameters (8 + 3 + 8 = 19), symbolized by asterisks.

EQS and LISREL Input Files

EQS Input File

The EQS input file is constructed following the principles outlined in chapter 2. Accordingly, the file begins with a title 
command line followed by a specification line providing the number of variables in the model and sample size.

/TITLE 
EXAMPLE CONFIRMATORY FACTOR ANALYSIS; 
/SPECIFICATIONS 
CASES=250; VARIABLES=8;

To facilitate interpretation of the output, labels are provided for all variables included in the model using the command line /
LABELS.

/LABELS 
V1=ABILITY1; V2=ABILITY2; V3=ABILITY3; V4=MOTIVN1; 
V5=MOTIVN2; V6=MOTIVN3; V7=ASPIRN1; V8=ASPIRN2; 
F1=ABILITY; F2=MOTIVATN; F3=ASPIRATN;

Next the model definition equations are provided followed by the remaining model parameters in the variance and covariance 
command lines.
  

page_98

Page 99

/EQUATIONS 
V1=*F1+E1; 
V2=*F1+E2; 
V3=*F1+E3; 
V4=*F2+E4; 
V5=*F2+E5; 
V6=*F2+E6; 
V7=*F3+E7; 
V8=*F3+E8; 
/VARIANCES 
F1 TO F3=1; E1 TO E8=*; 
/COVARIANCES 
F1 TO F3=*;

Finally, the data are provided along with the end of the input file command line.



/MATRIX 
.45 
.32 .56 
.27 .32 .45 
.17 .20 .19 .55 
.20 .21 .18 .30 .66 
.19 .25 .20 .30 .36 .61 
.08 .12 .09 .23 .27 .22 .58 
.11 .10 .07 .21 .25 .27 .39 .62 
/END;

The complete EQS input file is as follows (using the appropriate abbreviations):

/TIT 
EXAMPLE CONFIRMATORY FACTOR ANALYSIS; 
/SPE 
CAS=250; VAR=8; 
/LAB 
V1=ABILITY1; V2=ABILITY2; V3=ABILITY3; V4=MOTIVN1; 
V5=MOTIVN2; V6=MOTIVN3; V7=ASPIRN1; V8=ASPIRN2; 
F1=ABILITY; F2=MOTIVATN; F3=ASPIRATN; 
/EQU 
V1=*F1+E1; 
V2=*F1+E2; 
V3=*F1+E3; 
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V4=*F2+E4; 
V5=*F2+E5; 
V6=*F2+E6; 
V7=*F3+E7; 
V8=*F3+E8; 
/VAR 
Fl TO F3=1; E1 TO E8=*; 
/COV 
F1 TO F3=*; 
/MAT 
.45 
.32 .56 
.27 .32 .45 
.17 .20 .19 .55 
.20 .21 .18 .30 .66 
.19 .25 .20 .30 .36 .61 
.08 .12 .09 .23 .27 .22 .58 
.11 .10 .07 .21 .25 .27 .39 .62 
/END;

LISREL Input File

The corresponding LISREL input file is presented next. The results for both formats are provided in a separate section. The 
LISREL input file is constructed using the principles outlined in chapter 2.



EXAMPLE CONFIRMATORY FACTOR ANALYSIS 
DA NI=8 NO=250 
CM 
.45 
.32 .56 
.27 .32 .45 
.17 .20 .19 .55 
.20 .21 .18 .30 .66 
.19 .25 .20 .30 .36 .61 
.08 .12 .09 .23 .27 .22 .58 
.11 .10 .07 .21 .25 .27 .39 .62 
LA 
ABILITY1 ABILITY2 ABILITY3 MOTIVN1 MOTIVN2 MOTIVN3 C 
ASPIRN1 ASPIRN2 
MO NY=8 NE=3 PS=SY,FR TE=DI,FR LY=FU,FI 
LE 
ABILITY MOTIVATN ASPIRATN
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FR LY(1, 1) LY(2, 1) LY(3, 1) 
FR LY(4, 2) LY(5, 2) LY(6, 2) 
FR LY(7, 3) LY(8, 3) 
FI PS(1, 1) PS(2, 2) PS(3, 3) 
VA 1 PS(1, 1) PS(2, 2) PS(3, 3) 
OU

Using the same title, the data definition line declares that the model will be fit to data on eight variables collected from 250 
subjects. The sample covariance matrix CM is provided next, along with the variable labels (note the use of C, for Continue, to 
wrap over to the second label line). The latent variables are also provided with labels by using the notation LE (for Labels for 
Etas; following the notation of the general LISREL model in which the Greek letter eta represents a latent variable). Finally, in 
the model command line, the three matrices PS, TE, and LY are declared. The latent variances and covariance matrix PS is 
initially declared to be symmetric and free (i.e., all its elements are declared to be free parameters), which defines all factor 
variances and covariances as model parameters. Subsequently, for the reasons discussed in the previous section, the variances 
in the matrix PS are fixed to a value of 1. The error covariance matrix TE is defined as diagonal (i.e., no error covariances are 
introduced) and thus only has as model parameters all the error variances along its main diagonal. Defining, then, the matrix of 
factor loadings LY as a fixed and full (rectangular) matrix relating the eight manifest variables to the three latent variables 
permits those loadings that relate the corresponding indicators to their factors to be declared freed in the next lines.

Modeling Results

EQS Program Results

The EQS input described in the previous section produces the following results. In presenting the output section of the EQS 
program, comments are inserted at appropriate places. The pages echoing the input and the recurring page titles are omitted in 
order to save space.

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
 
PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION.

This message indicates that the program has not encountered problems stemming from lack of model identification or other 
numerical difficulties and is a reassuring message that the model is technically sound.
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RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
                   ABILITY1    ABILITY2    ABILITY3    MOTIVTN1    MOTIVN2 
                     V  1        V  2        V  3        V  4        V  5 
ABILITY1  V  1       0.000 
ABILITY2  V  2       0.001       0.000 
ABILITY3  V  3      -0.001      -0.001       0.000 
MOTIVTN1  V  4       0.001       0.000       0.020       0.000 
MOTIVN2   V  5       0.004      -0.022      -0.017      -0.004       0.000 
MOTIVN3   V  6      -0.007       0.017       0.002      -0.004       0.007 
ASPIRTN1  V  7      -0.008       0.016       0.001       0.016       0.022 
ASPIRTN2  V  8       0.019      -0.008      -0.022      -0.011      -0.007 
 
                   MOTIVN3     ASPIRTN1    ASPIRTN2 
                     V  6        V  7       V  8 
MOTIVN3  V  6        0.000 
ASPIRTN1 V  7       -0.029       0.000 
ASPIRTN2 V  8        0.013       0.000      0.000 
 
                  AVERAGE ABSOLUTE COVARIANCE RESIDUALS      =            0.0077 
     AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS      =            0.0099 
 
STANDARDIZED RESIDUAL MATRIX: 
 
                   ABILITY1    ABILITY2    ABILITY3    MOTIVTN1    MOTIVN2 
                     V  1        V  2        V  3        V  4        V  5 
ABILITY1 V  1        0.000 
ABILITY2 V  2        0.002       0.000 
ABILITY3 V  3       -0.001      -0.001       0.000 
MOTIVTN1 V  4        0.002       0.000       0.041       0.000 
MOTIVN2  V  5        0.007      -0.037      -0.031      -0.006       0.000 
MOTIVN3  V  6       -0.012       0.029       0.005      -0.008       0.011 
ASPIRTN1 V  7       -0.016       0.027       0.003       0.028       0.035 
ASPIRTN2 V  8        0.036      -0.013      -0.041      -0.019      -0.010 
 
                   MOTIVN3     ASPIRTN1     ASPIRTN2 
                     V  6        V  7        V  8 
MOTIVN3  V  6        0.000 
ASPIRTN1 V  7       -0.049       0.000 
ASPIRTN2 V  8        0.021       0.000       0.000 
 
                  AVERAGE ABSOLUTE STANDARDIZED RESIDUALS    =            0.0137 
     AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS    =            0.0176 
 
LARGEST STANDARDIZED RESIDUALS: 
 
  V  7,V  6    V  8,V  3    V  4,V  3    V  5,V  2    V  8,V  1 
    -0.049      -0.041        0.041        -0.037       0.036 
 
  V  7,V  5    V  5,V  3    V  6,V  2    V  7,V  4    V  7,V  2 
    0.035       -0.031        0.029        0.028        0.027
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  V  8,V  6    V  8,V  4    V  7,V  1    V  8,V  2    V  6,V  1 
    0.021       -0.019        -0.016       -0.013       -0.012 
 
  V  6,V  5    V  8,V  5    V  6,V  4    V  5,V  1    V  5,V  4 
    0.011       -0.010        -0.008       0.007        -0.006 
 
DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
     - - - - - - - - - - - - - - - - - - 
    !                                  ! 
  40-                                  - 
    !                                  ! 
    !                                  ! 
    !                                  ! 
    !                                  !          RANGE     FREQ   PERCENT 
  30-                                  - 
    !                                  !   1  -0.5  -  --      0     0.00% 
    !                                  !   2  -0.4  -  -0.5    0     0.00% 
    !                                  !   3  -0.3  -  -0.4    0     0.00% 
    !                                  !   4  -0.2  -  -0.3    0     0.00% 
  20-            *                     -   5  -0.1  -  -0.2    0     0.00% 
    !            *                     !   6   0.0  -  -0.1   22    61.11% 
    !            *                     !   7   0.1  -   0.0   14    38.89% 
    !            *                     !   8   0.2  -   0.1    0     0.00% 
    !            *    *                !   9   0.3  -   0.2    0     0.00% 
  10-            *    *                -   A   0.4  -   0.3    0     0.00% 
    !            *    *                !   B   0.5  -   0.4    0     0.00% 
    !            *    *                !   C    ++  -   0.5    0     0.00% 
    !            *    *                !   - - - - - - - - - - - - - - - - 
    !            *    *                !          TOTAL       36   100.00% 
    !            *    *                ! 
     - - - - - - - - - - - - - - - - - - 
                                           EACH "*" REPRESENTS  2 RESIDUALS

None of the residuals presented in this section of the output are a cause for concern. This is typically the case for well-fitting 
models with regard to all variable variances and covariances. Note the effectively symmetric shape of their distribution 
(observe the range of variability of their magnitude on the right-hand side of this output portion).

GOODNESS OF FIT SUMMARY 
INDEPENDENCE MODEL CHI-SQUARE =       801.059  ON        28 DEGREES OF FREEDOM 
INDEPENDENCE AIC =   745.05881   INDEPENDENCE CAIC =    618.45790 
       MODEL AIC =   -13.41865          MODEL CAIC =    -90.28349 
 
CHI-SQUARE =       20.581 BASED ON    17 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS     0.24558 
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS              18.891. 
 
BENTLER-BONETT NORMED    FIT INDEX=       0.974 
BENTLER-BONETT NONNORMED FIT INDEX=       0.992 
COMPARATIVE FIT INDEX             =       0.995
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                 ITERATIVE SUMMARY 
 
             PARAMETER 
ITERATION    ABS CHANGE      ALPHA       FUNCTION 
    1         0.308231      1.00000      0.54912 
    2         0.141164      1.00000      0.24514 
    3         0.061476      1.00000      0.10978 
    4         0.013836      1.00000      0.08281 
    5         0.001599      1.00000      0.08266 
    6         0.000328      1.00000      0.08266

The goodness-of-fit indices are satisfactory and identical (within roundoff error) to those provided by LISREL later. Note in 
particular that the BentlerBonett indices, as well as the comparative fit index, are all in the high .90s and suggest a fairly good 
model fit. The ITERATIVE SUMMARY, which provides an account of the numerical routine performed by EQS to minimize 
the maximum-likelihood fit function, also indicates a quick and trouble-free convergence to the final solution reported next.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
ABILITY1=V1   =    .519*F1    + 1.000 E1 
                   .039 
                 13.372 
 
ABILITY2=V2   =    .615*F1    + 1.000 E2 
                   .043 
                 14.465 
 
ABILITY3=V3   =    .521*F1    + 1.000 E3 
                   .039 
                 13.461 
 
MOTIVTN1=V4   =    .511*F2    + 1.000 E4 
                   .045 
                 11.338 
 
MOTIVN2 =V5   =    .594*F2    + 1.000 E5 
                   .049 
                 12.208 
 
MOTIVN3 =V6   =    .595*F2    + 1.000 E6 
                   .046 
                 12.882 
 
ASPIRTN1=V7   =    .614*F3    + 1.000 E7 
                   .049 
                 12.551 
 
ASPIRTN2=V8   =    .635*F3    + 1.000 E8 
                   .051 
                 12.547
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This is the final model solution presented in nearly the same form as the model equations provided to EQS in the input file 
(recall that in EQS, asterisks denote the estimated parameters). Immediately beneath each parameter estimate its standard error 
appears and below the standard errors the t values. As can also be observed in the LISREL output presented later, the 
equations generated by EQS suggest that some of the indicators load to a very similar degree on their factors (this issue is 
revisited in a later section of the chapter when some restricted hypotheses are tested).

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
 
                  V                                  F 
                 ---                                --- 
                          I F1      -ABILITY                  1.000 I 
                          I                                         I 
                          I                                         I 
                          I                                         I 
                          I F2     -MOTIVATN                  1.000 I 
                          I                                         I 
                          I                                         I 
                          I                                         I 
                          I F3     -ASPIRATN                  1.000 I 
                          I                                         I 
                          I                                         I 
                          I                                         I

These are the variances of the latent variables set to a value of 1.

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
                  E                         D 
                 ---                       --- 
El -ABILITY1                 .181*I                 I 
                             .023 I                 I 
                            7.936 I                 I 
                                  I                 I 
E2 -ABILITY2                 .182*I                 I 
                             .027 I                 I 
                            6.673 I                 I 
                                  I                 I 
E3 -ABILITY3                 .178*I                 I 
                             .023 I                 I 
                            7.846 I                 I 
                                  I                 I 
E4 -MOTIVTN1                 .288*I                 I 
                             .032 I                 I 
                            8.965 I                 I 
                                  I                 I
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E5 -MOTIVN2                  .308*I                 I 
                             .037 I                 I 
                            8.362 I                 I 
                                  I                 I 
E6 -MOTIVN3                  .256*I                 I 
                             .033 I                 I 
                            7.760 I                 I 
                                  I                 I 
E7 -ASPIRTN1                 .203*I                 I 
                             .040 I                 I 
                            5.109 I                 I 
                                  I                 I 
E8 -ASPIRTN2                 .217*I                 I 
                             .042 I                 I 
                            5.118 I                 I 
                                  I                 I

These are the variances of the residual terms along with their standard errors and t values.

COVARIANCES AMONG INDEPENDENT VARIABLES 
--------------------------------------- 
                   V                                  F 
                  ---                                --- 
                            I F2      -MOTIVATN                .636*I 
                            I F1      -ABILITY                 .055 I 
                            I                                11.678 I 
                            I                                       I 
                            I F3      -ASPIRATN                .276*I 
                            I F1      -ABILITY                 .073 I 
                            I                                 3.764 I 
                            I                                       I 
                            I F3      -ASPIRATN                .681*I 
                            I F2      -MOTIVATN                .054 I 
                            I                                12.579 I

These are the intercorrelations among the latent variables along with their standard errors and t values (note that within 
rounding-off errors they are essentially identical to the ones obtained with LISREL later).

STANDARDIZED SOLUTION: 
 
ABILITY1=V1   =   .773*F1    + .634 E1 
ABILITY2=V2   =   .822*F1    + .570 E2 
ABILITY3=V3   =   .777*F1    + .629 E3 
MOTIVTN1=V4   =   .690*F2    + .724 E4 
MOTIVN2=V5    =   .731*F2    + .683 E5 
MOTIVN3=V6    =   .762*F2    + .648 E6 
ASPIRTN1=V7   =   .807*F3    + .591 E7 
ASPIRTN2=V8   =   .806*F3    + .592 E8
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As discussed in chapter 3, this STANDARDIZED SOLUTION output results from standardizing all the variables in the model. 
Because the standardized solution uses a metric that is uniform across all measures, it is possible to address the issue of the 
relative importance of the manifest variables in assessing the underlying constructs by comparing their loadings.

CORRELATIONS AMONG INDEPENDENT VARIABLES 
---------------------------------------- 
                 V                                  F 
                ---                                --- 
                         I F2      -MOTIVATN                .636*I 
                         I F1      -ABILITY                      I 
                         I                                       I 
                         I F3      -ASPIRATN                .276*I 
                         I F1      -ABILITY                      I 
                         I                                       I 
                         I F3      -ASPIRATN                .681*I 
                         I F2      -MOTIVATN                     I 
                         I                                       I

These are the correlations among the latent variables included in the confirmatory factor analysis model. The output section 
leads one to infer that there are significant and medium-size relationships between ability and motivation (estimated at .64), as 
well as between motivation and aspiration (estimated at .68). In contrast, the correlation between ability and aspiration appears 
to be much weaker (estimated at .28).

LISREL Program Results

The output produced by the LISREL input file created in the previous section is presented next. Comments are inserted at 
appropriate places to clarify portions of the output and, for brevity, the echoed input file, the analyzed covariance matrix, and 
the recurring first title line are not presented.

PARAMETER SPECIFICATIONS 
 
         LAMBDA-Y 
 
          ABILITY   MOTIVATN   ASPIRATN 
          -------   --------   -------- 
ABILITY1        1          0           0 
ABILITY2        2          0           0 
ABILITY3        3          0           0 
MOTIVTN1        C          4           0 
MOTIVTN2        0          5           0 
MOTIVTN3        0          6           0 
ASPIRTN1        0          0           7 
ASPIRATN        0          0           8
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        PSI 
 
           ABILITY   MOTIVATN   ASPIRATN 
           -------   --------   -------- 
 ABILITY         0 
MOTIVATN         9          0 
ASPIRATN        10         11          0 
 
        THETA-EPS 
 
          ABILITY1   ABILITY2   ABILITY3   MOTIVTN1   MOTIVTN2   MOTIVTN3 
          --------   --------   --------   --------   --------   -------- 
                12         13         14         15         16         17 
 
        THETA-EPS 
 
          ASPIRTN1   ASPIRATN 
          --------   -------- 
                18         19

Observe from this section that the input file has correctly communicated to the LISREL program the number and exact 
location of the 19 model parameterseight factor loadings, three factor variances, and eight error variances.

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
         LAMBDA-Y 
             ABILITY    MOTIVATN   ASPIRATN 
           ---------    --------   -------- 
ABILITY1         .52                    - - 
               (.04)         - - 
               13.37         - - 
ABILITY2         .61         - -        - - 
               (.04)         - - 
               14.46         - - 
ABILITY3         .52         - -        - - 
               (.04)         - - 
               13.46         - -        - - 
MOTIVTN1         - -         .51        - - 
                           (.05) 
                           11.34 
MOTIVTN2         - -         .59        - - 
                            .05) 
                           12.21 
MOTIVTN3         - -         .60        - - 
                           (.05) 
                           12.89 
ASPIRTN1         - -                    .61 
                                      (.05) 
                                      12.55
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ASPIRATN         - -         - -        .63 
                                      (.05) 
                                      12.55

This section of the output presents the factor loading estimates of the LY matrix along with their standard errors and t values in 
a column format (note that within rounding-off errors they are essentially identical to those obtained with EQS). It is important 
to note that the estimates of the loadings for each indicator appear quite similar within a factor (as in the EQS output). This 
will, have a bearing on the subsequent formal tests of the tau-equivalence hypotheses (i.e., an assumption that the indicators 
measure the same latent variable in the same units of measurement) concerning the indicators of ability, motivation, and 
aspiration.

         COVARIANCE MATRIX OF ETA 
 
            ABILITY   MOTIVATN   ASPIRATN 
            -------   --------   -------- 
 ABILITY       1.00 
MOTIVATN        .64       1.00 
ASPIRATN        .28        .68       1.00 
 
         PSI 
 
            ABILITY   MOTIVATN   ASPIRATN 
            -------   --------   -------- 
 ABILITY       1.00 
 
MOTIVATN        .64       1.00 
              (.05) 
              11.68 
 
ASPIRATN        .28        .68       1.00 
              (.07)      (.05) 
               3.76      12.58

Based on this output section, it can be inferred that there are significant and medium-size relationships between ability and 
motivation (estimated at .64), as well as between motivation and aspiration (estimated at .68). It is important to note that 
because the latent variances were fixed to 1, the COVARIANCE MATRIX OF ETA is identical to the PSI matrix. 
Nevertheless, differences between the two matrices will emerge in chapter 5, where there will be explanatory relationships 
postulated between some of the constructs. Using the confidence intervals (CI) of latent correlations (obtained by adding twice 
the standard errors to and subtracting twice the standard errors from their parameters), it can be shown that these two 
correlations are practically indistinguishable in the population. Indeed, their approximate 95% CIs are 
(.64 ± 2 × .05) = (.54; .74) and (.68 ± 2 ×
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.05) = (.58; .78), and overlap to a substantial degree, suggesting this conclusion. In contrast, the correlation between ability and 
aspiration appears much weaker, although significant; its t value is 3.76, which is well outside the nonsignificance interval (2; 
+2). Indeed, this estimated correlation of only .28 explains less than 9% of their interrelationship in the sample.

THETA-EPS 
 
      ABILITY1    ABILITY2    ABILITY3    MOTIVTN1    MOTIVTN2    MOTIVTN3 
      --------    --------    --------    --------    --------    -------- 
           .18         .18         .18         .29         .31         .26 
         (.02)       (.03)       (.02)       (.03)       (.04)       (.03) 
          7.94        6.67        7.85        8.97        8.36        7.76 
 
THETA-EPS 
 
      ASPIRTN1    ASPIRATN 
      --------    -------- 
           .20         .22 
         (.04)       (.04) 
          5.11        5.12 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
      ABILITY1    ABILITY2    ABILITY3    MOTIVTN1    MOTIVTN2    MOTIVTN3 
      --------    --------    --------    --------    --------    -------- 
           .60         .67         .60         .48         .53         .58 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
      ASPIRTN1    ASPIRATN 
      --------    -------- 
           .65         .65

Based on this output section, it appears that, apart from the first indicator of motivation (i.e., MOTIVTN1), more than half of 
the variance in any of the remaining seven measures is explained in terms of latent individual differences on the corresponding 
factor.

                       GOODNESS OF FIT STATISTICS 
 
       CHI-SQUARE WITH 17 DEGREES OF FREEDOM = 20.58 (P = 0.25) 
           ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 3.58 
        90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 19.24) 
 
                    MINIMUM FIT FUNCTION VALUE = 0.083 
            POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.014 
           90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.077) 
          ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.029 
          90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.067) 
            P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.78
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              EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.24 
          90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.22 ; 0.30) 
                     ECVI FOR SATURATED MODEL = 0.29 
                   ECVI FOR INDEPENDENCE MODEL = 3.28 
 
   CHI-SQUARE FOR INDEPENDENCE MODEL WITH 28 DEGREES OF FREEDOM = 801.06 
                        INDEPENDENCE AIC = 817.06 
                           MODEL AIC = 58.58 
                          SATURATED AIC = 72.00 
                       INDEPENDENCE CAIC = 853.23 
                          MODEL CAIC = 144.49 
                         SATURATED CAIC = 234.77 
 
                 ROOT MEAN SQUARE RESIDUAL (RMR) = 0.011 
                        STANDARDIZED RMR = 0.020 
                   GOODNESS OF FIT INDEX (GFI) = 0.98 
               ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.96 
              PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.46 
 
                      NORMED FIT INDEX (NFI) = 0.97 
                   NON-NORMED FIT INDEX (NNFI) = 0.99 
                 PARSIMONY NORMED FIT INDEX (PNFI) = 0.59 
                    COMPARATIVE FIT INDEX (CFI) = 1.00 
                    INCREMENTAL FIT INDEX (IFI) = 1.00 
                     RELATIVE FIT INDEX (RFI) = 0.96 
 
                        CRITICAL N (CN) = 405.22

All of the goodness-of-fit indices indicate an acceptable model. Note in particular the root mean square error of approximation 
(RMSEA), which is well under the proposed threshold of .05 (see Jöreskog & Sörbom, 1993b; Marcoulides & Hershberger, 
1997). Moreover, the left endpoint of its confidence interval, as well as those of the noncentrality parameter and the minimal 
fit function value in the population, are 0their best valuewhich is another sign of a satisfactory model fit.

SUMMARY STATISTICS FOR FITTED RESIDUALS 
SMALLEST FITTED RESIDUAL  =      -.03 
  MEDIAN FITTED RESIDUAL  =       .00 
 LARGEST FITTED RESIDUAL  =       .02 
 
STEMLEAF PLOT 
- 2|921 
- 1|71 
- 0|887743110000000000 
  0|111247 
  1|36679 
  2|02 
 
SUMMARY STATISTICS FOR STANDARDIZED RESIDUALS 
SMALLEST STANDARDIZED RESIDUAL =   -2.04
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  MEDIAN STANDARDIZED RESIDUAL =     .00 
 LARGEST STANDARDIZED RESIDUAL =    1.30 
 
STEMLEAF PLOT 
- 2|0 
- 1| 
- 1|11 
- 0|96 
- 0|444443110000000000 
  0|11123 
  0|78999 
  1|013

None of the standardized residuals is very large, suggesting that the model is not only a reasonably good overall means of data 
description, but also locally performs quite wellno part of the model seems to suffer marked misfit.

MODIFICATION INDICES AND EXPECTED CHANGE 
 
          MODIFICATION INDICES FOR LAMBDA-Y 
 
            ABILITY   MOTIVATN   ASPIRATN 
           --------   --------   -------- 
ABILITY1        - -        .00        .09 
ABILITY2        - -        .00        .07 
ABILITY3        - -        .01        .32 
MOTIVTN1        .24        - -        .02 
MOTIVTN2        .96        - -        .39 
MOTIVTN3        .25        - -        .52 
ASPIRTN1        .11        .11        - - 
ASPIRATN        .11        .11        - - 
 
          EXPECTED CHANGE FOR LAMBDA-Y 
 
            ABILITY   MOTIVATN   ASPIRATN 
            -------   --------   -------- 
ABILITY1        - -        .00        .01 
ABILITY2        - -        .00        .01 
ABILITY3        - -       -.01       -.02 
MOTIVTN1        .03        - -        .01 
MOTIVTN2       -.07        - -        .05 
MOTIVTN3        .03        - -       -.06 
ASPIRTN1        .02        .05        - - 
ASPIRATN       -.02       -.06        - - 
 
NO NON-ZERO MODIFICATION INDICES FOR PSI 
 
         MODIFICATION INDICES FOR THETA-EPS 
 
           ABILITY1   ABILITY2   ABILITY3   MOTIVTN1   MOTIVTN2   MOTIVTN3 
           --------   --------   --------   --------   --------   -------- 
ABILITY1        - - 
ABILITY2        .07        - - 
ABILITY3        .01        .02        - -
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MOTIVTN1        .11        .30       2.09        - - 
MOTIVTN2       1.19       1.28        .40        .08        - - 
MOTIVTN3       1.13       1.66        .00        .18        .49        - - 
ASPIRTN1       2.81       1.47        .39       1.80       2.09       7.48 
ASPIRATN       4.30        .79       1.88       1.13       1.23       4.67 
 
         MODIFICATION INDICES FOR THETA-EPS 
 
           ASPIRTN1   ASPIRATN 
           --------   -------- 
ASPIRTN1        - - 
ASPIRATN        - -        - - 
 
         EXPECTED CHANGE FOR THETA-EPS 
 
           ABILITY1   ABILITY2   ABILITY3   MOTIVTN1   MOTIVTN2   MOTIVTN3 
           --------   --------   --------   --------   --------   -------- 
ABILITY1        - - 
ABILITY2        .01        - - 
ABILITY3        .00        .00        - - 
MOTIVTN1       -.01       -.01        .03 
MOTIVTN2        .02       -.02       -.01       -.01        - - 
MOTIVTN3       -.02        .03        .00       -.01        .02       - - 
ASPIRTN1       -.03        .02        .01        .03        .04      -.06 
ASPIRATN        .04       -.02       -.02       -.02       -.03       .05 
 
         EXPECTED CHANGE FOR THETA-EPS 
 
           ASPIRTN1   ASPIRATN 
           --------   -------- 
ASPIRTN1        - - 
ASPIRATN        - -        - - 
MAXIMUM MODIFICATION INDEX IS    7.48 FOR ELEMENT ( 7, 6) OF THETA-EPS

In chapter 1, the topic of modification indices is discussed and it is suggested that all indices found to be larger than 5 should 
merit closer inspection. It is also indicated that any model changes based on modification indices should be justified on 
theoretical grounds and be consistent with available theories. Although there is a modification index larger than 5 in this 
outputthe element (7,6) of the TE matrixadding this parameter to the proposed model cannot be theoretically justified (i.e., 
there does not appear to be a substantive reason for the error terms of ASPIRTN1 and MOTINTN3 to correlate). In addition, 
because the model fit is already acceptable no change should be made to the proposed model. The model is therefore 
considered to be an acceptable means of data description.

Testing Model Restrictions: 
Tau-Equivalence

The model examined in the previous section focuses on estimating the degree of interrelationship among ability, motivation, 
and aspiration. In examining the results, however, it appears that many of the loadings on each
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factor also are quite similar. Imagine now that a researcher hypothesizes that the factor loadings of the ability construct 
associated with the measures ABILITY1, ABILITY2, and ABILITY3 are indeed equal. Such a model is referred to in the 
psychometric literature as a model with tau-equivalent measures. A tau-equivalent indicator model amounts to the assumption 
that the indicators used in a study measure the same latent variable in the same units of measurement. As it turns out, all three 
latent variables included in this study (i.e., ability, motivation, and aspiration) can be tested for tau-equivalence by simply 
imposing the appropriate model restrictions on the indicators one at a time. Thus, to test for tau-equivalence of measures for 
each latent variable, the pertinent model restrictions are introduced and the resulting difference in chi-square values for the 
imposed model constraints are evaluated (for a complete discussion of the chi-square difference test, see chap. 3).

Begin by imposing equality constraints on the factor loadings of the ability construct. This restriction can be included in the 
EQS input file by simply adding a /CONSTRAINT section, and in the LISREL input file by adding an EQuality line as 
follows:

/CONSTRAINT 
(V1,F1) = (V2,F1) = (V3,F1);

and

EQ LY(1, 1) LY(2, 1) LY(3, 1)

The result of introducing this restriction is an increase in the chi-square value up to T = 25.74 with df = 19 (recall that the 
model tested without the tau-equivalence resulted in a chi-square value of T = 20.58 with df = 17). The difference in the chi-
square values between this model and the one originally proposed (displayed in Fig. 10) is therefore ∆T = 5.16 for ∆df = 2, and 
is nonsignificant. (The critical value of the chi-square distribution with 2 degrees of freedom is 5.99 at the .05 significance 
level, and higher for any lower level.) One can therefore conclude that the imposed factor loading identity is plausible, and 
hence that the ability measures are tau-equivalent. Because the restriction is found to be acceptable, it is retained in the model.

Next, test whether the motivation indicators are also tau-equivalent by imposing the identity restriction on their factor 
loadings. This is achieved by including the line

(V4,F2) = (V5,F2) = (V6,
F2); 
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as a second line of the /CONSTRAINTS section in the EQS input, or by adding the line

EQ LY(4, 2) LY(5, 2) LY(6, 2)

as a second EQuality line in the LISREL input. The newly restricted model is now associated with a chi-square value of T = 
28.56 with df = 21. The difference in chi-square values compared to the preceding model is now ∆T = 2.82, with the difference 
in degrees of freedom being ∆df = 2, and is hence nonsignificant. Once again, these results lead to the conclusion that there is 
not enough evidence in the data to warrant the rejection of the restriction of identical factor loadings for the motivation 
construct, and therefore one can consider the latter to be tau-equivalent measures of motivation. Thus, due to this 
nonsignificant finding, this factor loading equality is also retained in the model.

Finally, impose the restriction of tau-equivalence on the aspiration indicators. This is accomplished by adding the following 
line in the /CONSTRAINTS section of the EQS input file:

(V7,F3) = (V8,F3);

and the following EQuality constraint in the LISREL input file:

EQ LY(7, 3) LY(8, 3)



The result of the last imposed restriction brings about only a slight increase in the chi-square value to T = 28.60 with df = 22. 
Thus, the change in chi-square is only ∆T = 0.04, for a difference in degrees of freedom of ∆df = 1, and is nonsignificant. 
(Recall that the critical value of the chi-square distribution with 1 degree of freedom is 3.84 at the .05 significance level, and 
higher for any lower level.) Based on these results, one can conclude that there is not enough evidence in the data to warrant 
rejection of the restriction of identical factor loadings for the aspiration construct, and hence one can consider these indicators 
to be tau-equivalent measures of aspiration.

Thus, the above results indicate that there is not sufficient evidence in the data to disconfirm the tau-equivalence hypothesis 
for any of the sets of measures assessing the ability, motivation, and aspiration construct. One can conclude that the indicators 
of ability, motivation, and aspiration assess their underlying latent variables in the same units of measurement.

Only the EQS output file for the most restricted model is presented next, with comments inserted at appropriate places and 
with repetitive material omitted (interested readers can easily verify that the results of the
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LISREL and EQS programs are identical by running the appropriate LISREL input file).

PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 
 
ALL EQUALITY CONSTRAINTS WERE CORRECTLY IMPOSED

As indicated earlier, this is an important message provided by EQS because it indicates that the program has not encountered 
any problems in terms of model identification and that the model constraints were correctly introduced.

RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
              ABILITY1      ABILITY2      ABILITY3       MOTIVTN1      MOTIVN2 
                V  1          V  2          V  3           V  4          V  5 
ABILITY1 V  1  -0.022 
ABILITY2 V  2   0.021         0.049 
ABILITY3 V  3  -0.029         0.021        -0.018 
MOTIVTN1 V  4  -0.028         0.002        -0.008         -0.043 
MOTIVN2  V  5   0.002         0.012        -0.018         -0.019        0.024 
MOTIVN3  V  6  -0.008         0.052         0.002         -0.019        0.041 
ASPIRTN1 V  7  -0.014         0.026        -0.004         -0.011        0.029 
ASPIRTN2 V  8   0.016         0.006        -0.024         -0.031        0.009 
 
               MOTIVN3      ASPIRTN1      ASPIRTN2 
                V  6          V  7          V  8 
MOTIVN3  V  6   0.021 
ASPIRTN1 V  7  -0.021        -0.003 
ASPIRTN2 V  8   0.029         0.000         0.003 
 
              AVERAGE ABSOLUTE COVARIANCE RESIDUALS      =               0.0191 
 AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS      =               0.0179 
 
STANDARDIZED RESIDUAL MATRIX: 
 
              ABILITY1      ABILITY2      ABILITY3       MOTIVTN1      MOTIVN2 
                V  1          V  2          V  3           V  4          V  5 
ABILITY1  V  1 -0.048 
ABILITY2  V  2  0.041         0.088 
ABILITY3  V  3 -0.066         0.041        -0.041 
MOTIVTN1  V  4 -0.056         0.004        -0.015         -0.078 
MOTIVN2   V  5  0.004         0.020        -0.032         -0.031        0.036 
MOTIVN3   V  6 -0.015         0.090         0.004         -0.033        0.065 
ASPIRTN1  V  7 -0.028         0.046        -0.008         -0.019        0.047 
ASPIRTN2  V  8  0.030         0.010        -0.046         -0.053        0.015 



 
               MOTIVN3      ASPIRTN1      ASPIRTN2 
                V  6          V  7          V  8 
MOTIVN3  V  6   0.035 
ASPIRTN1 V  7  -0.035        -0.005 
ASPIRTN2 V  8   0.048         0.000         0.005
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              AVERAGE ABSOLUTE STANDARDIZED RESIDUALS    =     0.0344 
 AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS    =     0.0321 
 
LARGEST STANDARDIZED RESIDUALS: 
 
  V  6,V  2    V  2,V  2     V  4,V  4    V  3,V  1     V  6,V  5 
    0.090       0.088          -0.078       -0.066        0.065 
 
  V  4,V  1    V  8,V  4     V  1,V  1    V  8,V  6     V  7,V  5 
   -0.056       -0.053        -0.048        0.048         0.047 
 
  V  8,V  3    V  7,V  2     V  3,V  3    V  2,V  1     V  3,V  2 
   -0.046        0.046        -0.041        0.041         0.041 
 
  V  5,V  5    V  6,V  6     V  7,V  6    V  6,V  4     V  5,V  3 
    0.036        0.035        -0.035       -0.033         -0.032 
 
DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
      - - - - - - - - - - - - - - - - - - 
     !                                   ! 
   20-                                   - 
     !                  *                ! 
     !                  *                ! 
     !              *   *                ! 
     !              *   *                !           RANGE      FREQ  PERCENT 
   15-              *   *                - 
     !              *   *                !   1  -0.5  -   --       0    0.00% 
     !              *   *                !   2  -0.4  -  -0.5      0    0.00% 
     !              *   *                !   3  -0.3  -  -0.4      0    0.00% 
     !              *   *                !   4  -0.2  -  -0.3      0    0.00% 
   10-              *   *                -   5  -0.1  -  -0.2      0    0.00% 
     !              *   *                !   6   0.0  -  -0.1     17   47.22% 
     !              *   *                !   7   0.1  -   0.0     19   52.78% 
     !              *   *                !   8   0.2  -   0.1      0    0.00% 
     !              *   *                !   9   0.3  -   0.2      0    0.00% 
    5-              *   *                !   A   0.4  -   0.3      0    0.00% 
     !              *   *                !   B   0.5  -   0.4      0    0.00% 
     !              *   *                !   C    ++  -   0.5      0    0.00% 
     !              *   *                !   - - - - - - - - - - - - - - - - - 
     !              *   *                !          TOTAL         36  100.00% 
      - - - - - - - - - - - - - - - - - - 
 
       1  2  3  4  5  6  7  8  9  A  B  C    EACH "*"  REPRESENTS  1 RESIDUALS

Once again, even with the imposed restrictions there are no outstanding residuals, and hence no signs that the model does not 
fit well.



GOODNESS OF FIT SUMMARY 
INDEPENDENCE MODEL CHI-SQUARE =        801.059 ON     28 DEGREES OF FREEDOM 
INDEPENDENCE AIC =   745.05881   INDEPENDENCE CAIC =    618.45790 
       MODEL AIC =   -15.40191          MODEL CAIC =   -114.87405
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CHI-SQUARE =       28.598 BASED ON    22 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS     0.15670 
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS           26.952. 
 
BENTLER-BONETT NORMED    FIT INDEX=      0.964 
BENTLER-BONETT NONNORMED FIT INDEX=      0.989 
COMPARATIVE FIT INDEX             =      0.991

All the goodness-of-fit indices suggest that the model fits the data well and hence that interpretations of its parameter estimates 
can be trusted.

                   ITERATIVE SUMMARY 
 
               PARAMETER 
ITERATION      ABS CHANGE      ALPHA       FUNCTION 
    1           0.308560      1.00000      0.56251 
    2           0.078387      1.00000      0.15343 
    3           0.017454      1.00000      0.11493 
    4           0.000874      1.00000      0.11485

This is, again, a clear sign of a quick and clean convergence to the final solution.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
ABILITY1=V1    =      .547*F1      + 1.000 E1 
                      .030 
                    18.419 
 
ABILITY2=V2    =      .547*F1      + 1.000 E2 
                      .030 
                    18.419 
 
ABILITY3=V3    =      .547*F1      + 1.000 E3 
                      .030 
                    18.419 
 
MOTIVTN1=V4    =      .565*F2      + 1.000 E4 
                      .033 
                    16.962 
 
MOTIVN2 =V5    =      .565*F2      + 1.000 E5 
                      .033 
                    16.962 
 
MOTIVN3 =V6    =      .565*F2      + 1.000 E6 
                      .033 
                    16.962 
 
ASPIRTN1=V7    =      .624*F3      + 1.000 E7 
                      .036 
                    17.208 
 
ASPIRTN2=V8    =      .624*F3      + 1.000 E8 



                      .036 
                    17.208
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In this model, all sets of indicators are constrained for tau-equivalence (i.e., there is factor-loading identity within each set of 
indicators), thereby leading to identical standard errors and t values within sets.

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
              V                                              F 
             ---                                            --- 
                                      I F1 -ABILITY                    1.000 I 
                                      I                                      I 
                                      I                                      I 
                                      I                                      I 
                                      I F2 -MOTIVATN                   1.000 I 
                                      I                                      I 
                                      I                                      I 
                                      I                                      I 
                                      I F3 -ASPIRATN                   1.000 I 
                                      I                                      I 
                                      I                                      I 
                                      I                                      I 
 
VARIANCES  OF  INDEPENDENT  VARIABLES 
------------------------------------- 
 
                     E                            D 
                    ---                          --- 
El -ABILITY1                     .172*I                                      I 
                                 .022 I                                      I 
                                7.974 I                                      I 
                                      I                                      I 
E2 -ABILITY2                     .211*I                                      I 
                                 .025 I                                      I 
                                8.577 I                                      I 
                                      I                                      I 
E3 -ABILITY3                     .169*I                                      I 
                                 .021 I                                      I 
                                7.914 I                                      I 
                                      I                                      I 
E4 -MOTIVTN1                     .274*I                                      I 
                                 .031 I                                      I 
                                8.735 I                                      I 
                                      I                                      I 
E5 -MOTIVN2                      .317*I                                      I 
                                 .035 I                                      I 
                                9.087 I                                      I 
                                      I                                      I 
E6 -MOTIVN3                      .270*I                                      I 
                                 .031 I                                      I 
                                8.695 I                                      I 
                                      I                                      I 
E7 -ASPIRTN1                     .193*I                                      I 
                                 .030 I                                      I 
                                6.458 I                                      I 
                                      I                                      I
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E8 -ASPIRTN2                     .227*I                                      I 
                                 .032 I                                      I 
                                7.146 I                                      I 
                                      I                                      I 
 
COVARIANCES AMONG  INDEPENDENT VARIABLES 
---------------------------------------- 
 
                        V                                F 
                       ---                              --- 
                                      I  F2 -MOTIVATN                    640*I 
                                      I  F1 -ABILITY                    .055 I 
                                      I                               11.687 I 
                                      I                                      I 
                                      I  F3 -ASPIRATN                   .275*I 
                                      I  F1 -ABILITY                    .074 I 
                                      I                                3.738 I 
                                      I                                      I 
                                      I  F3 -ASPIRATN                   .683*I 
                                      I  F2 -MOTIVATN                   .054 I 
                                      I                               12.590 I

These are the factor correlation estimates along with their standard errors and t values. The estimates suggest the same 
conclusions that were obtained for the unconstrained model concerning the interrelationships between the latent variables in 
the population. (Recall, however, that, in general, conclusions based on more restrictive tenable models are more precise, as 
elaborated on in earlier sections of the book.) Thus, the presence of tau-equivalence in the proposed model does not lead to 
different substantive conclusions.
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Chapter Five 
Structural Regression Models

What Is a Structural Regression Model?

In chapter 4 the confirmatory factor analysis model was presented as a method for examining the patterns of interrelationships 
among several constructs. No specific directional relationships were assumed among the constructs, only that they were 
correlated with one another. And yet, in many scientific fields of study, models that postulate specific explanatory 
relationships (regressions) among constructs are often proposed. To set these models apart from other models discussed in this 
book, we will refer to them in this chapter as structural regression models.

Although structural regression models resemble confirmatory factor analysis models, they possess the noteworthy 
characteristic that some of their latent variables (i.e., elements of the structure of the phenomenon under investigation) are 
regressed on others. Thus, once the constructs have been assessed, structural regression models can be used to test the 
plausibility of hypothetical assertions about their explanatory relationships. In terms of their path diagrams, structural 
regression models will always have at least one path (one-way arrow) leaving a putative explanatory latent variable and ending 
at another construct. Thus, in a way, structural regression models can be viewed as extensions of path analysis models 
(discussed in chap. 3) except that, instead of being conceived in terms of only observed variables, the models also include 
latent variables.

Example Structural Regression Model



To demonstrate a structural regression model, consider the following example concerning mental ability. General mental 
ability is one of the most
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extensively studied constructs in the behavioral sciences. According to one popular theory (e.g., Horn, 1982), human 
intellectual capabilities can be roughly classified into two main clusters, fluid and crystallized intelligence. Fluid intelligence 
is the component of general intelligence that reflects people's ability to quickly process a potentially large amount of 
information in order to solve content-free tasks based on contexts that they are not familiar with from their education or prior 
socialization process. Metaphorically, fluid intelligence can be thought of as resembling a human brain's hardware, or the 
mechanics of a brain. Fluid intelligence does not include people's abilities to retrieve knowledge obtained earlier in life 
through systems of culture or education, but instead refers to their ability to create knowledge when solving unfamiliar 
problems. Crystallized intelligence, on the other hand, is people's ability to retrieve knowledge probably obtained earlier in life 
through systems of culture and education. In pragmatic terms, tests of fluid intelligence frequently contain series of context-
free symbols that are arranged following a special rule that must be discovered by subjects and subsequently used by them in 
order to arrive at a correct solution. Alternatively, measures of crystallized intelligence typically contain items that assess 
subjects' levels of knowledge in certain areas.

The example structural regression model considered here focuses on two particular fluid-intelligence components, induction 
and figural relations. Induction relates to people's ability to reason using analogies and rules of induction to more general 
contexts. Figural relations pertains to people's ability to see patterns of relationships between parts of figures, mentally rotate 
them, and also use forms of inductive reasoning with figural elements. A total of nine measures were collected from a sample 
of N = 220 high school students. The following observed variables were used in the study:

1. Induction score 1 obtained in junior year (IND1).

2. Induction score 2 obtained in junior year (IND2).

3. Induction score 3 obtained in junior year (IND3).

4. Figural relations score 1 obtained in junior year (FR11).

5. Figural relations score 2 obtained in junior year (FR12).

6. Figural relations score 3 obtained in junior year (FR13).

7. Figural relations score 1 obtained in senior year (FR21).

8. Figural relations score 2 obtained in senior year (FR22).

9. Figural relations score 3 obtained in senior year (FR23).

The example structural regression model is presented in Fig. 11 and the observed covariance matrix is presented in Table 2. 
The model is initially formulated in LISREL notation using Y1 to Y9 for the observed variables, ε1
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Figure 11. 
Example structural regression model using LISREL notation.

to ε9 for the error terms associated with the observed variables, and η1 to η3 for the latent variables. The proposed model 
assumes that the Induction construct (measured during the junior year of high school) plays an explanatory role for the Figural 
relations construct (measured during both the junior and senior years of high school). In addition, the model posits that a 
student's junior-year Figural relations affects his or her senior-year Figural relations.

To determine the parameters of the model presented in Fig. 11 (designated by asterisks), one must again follow the six rules 
outlined in chapter

TABLE 2 
Covariance Matrix for the Structural Regression Model Example

Variable IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23

IND1 56.21

IND2 31.55 75.55

IND3 23.27 28.30 44.45

FR11 24.48 32.24 22.56 84.64

FR12 22.51 29.54 20.61 57.61 78.93

FR13 22.65 27.56 15.33 53.57 49.27 73.76

FR21 33.24 46.49 31.44 67.81 54.76 54.58 141.77

FR22 32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33

FR23 30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35

Notes. INDi = ith INDuction indicator at first assessment; FR1i = ith Figural Relations indicator at first assessment, and FR2i 
= ith Figural Relations indicator at second assessment (i = 1, 2, 3).
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1. According to Rule 1, all nine error term variances are model parameters and, according to Rule 3, the nine factor loadings 
are also model parameters. In addition, the variances of the structural regression disturbance terms ζ2 and ζ3 are also model 
parameters. These disturbances pertain to the latent variables η2 and η3, respectively (i.e., the junior- and senior-year Figural 
relations). Thereby, ζ2 represents the part of junior-year Figural relations that is not accounted for in terms of its postulated 
(linear) explanatory relationship to Induction. Similarly, ζ3 stands for the part of senior-year Figural relations that is not 
explained in terms of its assumed (linear) relationships to Induction and junior-year Figural relations. Note that Rule 2 is not 
applicable in this model because it does not have any proposed latent covariances. Indeed, those between Induction and both 
Figural relation constructs are explained in terms of their structural regression coefficients, which, following Rule 4, are found 
to be model parameters. Following the LISREL notation discussed in chapter 2, they can be denoted as β21, β31 and β32. 
These parameters therefore relate Induction (η1) to junior-year Figural relations (η2) and senior-year Figural relations (η3), 
and junior-year Figural relations (η2) to senior-year Figural relations (η3). Finally, Rule 6 requires that the scale of each latent 
variable be fixed. Because this study is focused on determining the explanatory role of the Induction and junior-year Figural 
relations constructs, it is easier to achieve the latent scale fixing by simply setting the loading of the first indicator on each 
latent variable to 1. Using this approach ensures that the Figural relations construct is assessed in the same metric on both 
occasions. Thus, the model in Fig. 11 has, altogether, 21 parameters symbolized by asterisks.

LISREL and EQS Input Files

EQS Input File

The EQS input file shown next includes two new definitions. The first definition deals with the specification of the equations 
that relate the latent variables in the model to one another. Because the model presented in Fig. 11 includes structural 
regressions, the following two equations must be included in the input file: (a) F2 = *F1 + D2, and (b) F3 = *F1 + *F2 + D3. 
The second definition concerns the two structural-disturbance terms included in the model (i.e., the D2 and D3 in the 
equations; these terms correspond to the residual variables ζ2 and ζ3 in the LISREL input file presented later). Because D2 
and D3 are independent variables, their variances are model parameters as indicated in the /VARIANCE section. Thus, the 
following EQS input file is created:
  

page_124

Page 125

/TITLE 
EXAMPLE STRUCTURAL REGRESSION MODEL; 
/SPECIFICATIONS 
CASES=220; VARIABLES=9; 
/LABELS 
V1=IND1; V2=IND2; V3=IND3; V4=FR11; V5=FR12; V6=FR13; 
V7=FR21; V8= FR22; V9=FR23; 
F1=INDUCTN; F2=FIGREL1; F3=FIGREL2; 
/EQU 
V1= F1+E1; 
V2=*F1+E2; 
V3=*F1+E3; 
V4= F2+E4; 
V5=*F2+E5; 
V6=*F2+E6; 
V7= F3+E7; 
V8=*F3+E8; 
V9=*F3+E9; 
F2=*F1+D2; 
F3=*F1+*F2+D3; 
/VAR 
F1=*; D2 TO D3=*; E1 TO E9=*; 
/MATRIX 
56.21 
31.55 75.55 
23.27 28.30 44.45 



24.48 32.24 22.56 84.64 
22.51 29.54 20.61 57.61 78.93 
22.65 27.56 15.33 53.57 49.27 73.76 
33.24 46.49 31.44 67.81 54.76 54.58 141.77 
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33 
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35 
/END;

LISREL Input File

The LISREL input file is constructed following the principles outlined in chapter 2. The file begins with a title command line 
followed by information about the number of analyzed variables, sample size and covariance matrix, and observed variable 
labels. Finally, in the model command line, the matrices PS, TE, LY, and BE are declared. Thus, the following LISREL input 
file is created:
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EXAMPLE STRUCTURAL REGRESSION MODEL 
DA NI=9 NO=220 
CM 
56.21 
31.55 75.55 
23.27 28.30 44.45 
24.48 32.24 22.56 84.64 
22.51 29.54 20.61 57.61 78.93 
22.65 27.56 15.33 53.57 49.27 73.76 
33.24 46.49 31.44 67.81 54.76 54.58 141.77 
32.56 40.37 25.58 55.82 52.33 47.74 98.62 117.33 
30.32 40.44 27.69 54.78 53.44 59.52 96.95 84.87 106.35 
LA 
IND1 IND2 IND3 FR11 FR12 FR13 FR21 FR22 FR23 
MO NY=9 NE=3 PS=SY,FI TE=DI,FR LY=FU,FI BE=FU,FI 
LE 
INDUCTN FIGREL1 FIGREL2 
FR LY(2, 1) LY(3, 1) 
FR LY(5, 2) LY(6, 2) 
FR LY(8, 3) LY(9, 3) 
VA 1 LY(1, 1) LY(4, 2) LY(7, 3) 
FR BE(2, 1) BE(3, 1) BE(3, 2) 
FR PS(1, 1) PS(2, 2) PS(3, 3) 
OU

As can be seen, the covariance matrix of the Induction construct and the two structural disturbances associated with Figural 
relations are initially declared to be fixed (in order to fix their covariances), but are freed in the two lines right before the 
OUtput command. The structural regression matrix is also declared to be fixed and only those elements of interest according to 
the proposed model (i.e., β21, β31, and β32) are defined as free. This strategy of fixing everything first to 0 and then freeing 
those elements of interest is a more economical way of setting up the input file. Similarly, the factor loading matrix LY is 
declared to be fixed and in the next three lines only those of its elements that pertain to the six factor loadings to be estimated 
are defined as free. Subsequently, in the following line, the latent variable scales are fixed by setting the first indicator loading 
to a value of 1. Finally, by declaring the error covariance matrix (TE) to be diagonal and free in the model definition line, all 
its nine elements along the main diagonal are effectively defined as parameters (i.e., the nine error-term variances).
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Modeling Results

EQS Program Results

The output produced by the EQS input file created in the previous section is presented next (interested readers can easily 
verify that the results of the LISREL and EQS programs are identical by running the appropriate LISREL input file). As 
before, comments are inserted at appropriate places to clarify portions of the output. In addition, the echoed input file, the 
analyzed covariance matrix, and the recurring title line are omitted.

PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION

As indicated in previous chapters, this message is a reassurance that the program has not encountered problems stemming from 
lack of identification or other numerical difficulties and that the model is technically sound.

RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
                  IND1          IND2       IND3        FR11        FR12 
                  V  1          V  2       V  3        V  4        V  5 
IND1  V  1        0.000 
IND2  V  2       -0.552         0.000 
IND3  V  3        0.790        -0.210      0.000 
FR11  V  4       -0.227         0.905      0.617       0.000 
FR12  V  5       -0.165         0.783      0.472       0.882       0.000 
FR13  V  6        1.007         0.111     -3.891      -0.576      -0.423 
FR21  V  7       -2.149         1.609      0.011       2.579      -5.106 
FR22  V  8        1.487         0.962     -2.016      -1.457      -0.236 
FR23  V  9       -0.889         0.859     -0.027      -2.748       0.644 
 
                  FR13          FR21       FR22        FR23 
                  V  6          V  7       V  8        V  9 
FR13  V  6        0.000 
FR21  V  7       -2.562         0.000 
FR22  V  8       -2.434         1.631      0.000 
FR23  V  9        9.127        -0.464     -0.665       0.000 
 
                  AVERAGE ABSOLUTE COVARIANCE RESIDUALS     =          1.1394 
     AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS     =          1.4242 
STANDARDIZED RESIDUAL MATRIX: 
 
                  IND1          IND2       IND3        FR11        FR12 
                  V  1          V  2       V  3        V  4        V  5 
IND1  V  1        0.000 
IND2  V  2       -0.008         0.000 
IND3  V  3        0.016        -0.004      0.000
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FR11  V  4       -0.003         0.011      0.010       0.000 
FR12  V  5       -0.002         0.010      0.008       0.011       0.000 
FR13  V  6        0.016         0.001     -0.068      -0.007      -0.006 
FR21  V  7       -0.024         0.016      0.000       0.024      -0.048 
FR22  V  8        0.018         0.010     -0.028      -0.015      -0.002 
FR23  V  9       -0.012         0.010      0.000      -0.029       0.007 
 
                  FR13          FR21       FR22        FR23 
                  V  6          V  7       V  8        V  9 
FR13  V  6        0.000 
FR21  V  7       -0.025         0.000 
FR22  V  8       -0.026         0.013      0.000 
FR23  V  9        0.103        -0.004     -0.006       0.000 
 
                 AVERAGE ABSOLUTE STANDARDIZED RESIDUALS      =        0.0134 
    AVERAGE OFF-DIAGONAL ABSOLUTE STNADARDIZED RESIDUALS      =        0.0167 
 
LARGEST STANDARDIZED RESIDUALS: 
 
   V  9,V  6    V  6,V  3    V  7,V  5    V  9,V  4    V  8,V  3 
     0.103       -0.068       -0.048       -0.029       -0.028 
 
   V  8,V  6    V  7,V  6    V  7,V  1    V  7,V  4    V  8,V  1 
    -0.026        -0.025       -0.024        0.024        0.018 
 
   V  3,V  1    V  6,V  1    V  7,V  2    V  8,V  4    V  8,V  7 
     0.016         0.016        0.016       -0.015        0.013 
 
   V  9,V  1    V  4,V  2    V  5,V  4    V  8,V  2    V  5,V  2 
    -0.012        0.011        0.011        0.010        0.010 
 
DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
      - - - - - - - - - - - - - - - - - - 
     !                                  ! 
   40-                                  - 
     !                                  ! 
     !                                  ! 
     !                                  ! 
     !                                  !          RANGE      FREQ  PERCENT 
   30-                                  - 
     !                                  !   1  -0.5  -  - -      0    0.00% 
     !                                  !   2  -0.4  -  -0.5     0    0.00% 
     !               *                  !   3  -0.3  -  -0.4     0    0.00% 
     !               *    *             !   4  -0.2  -  -0.3     0    0.00% 
   20-               *    *             !   5  -0.1  -  -0.2     0    0.00% 
     !               *    *             !   6   0.0  -  -0.1    23   51.11% 
     !               *    *             !   7   0.1  -   0.0    21   46.67% 
     !               *    *             !   8   0.2  -   0.1     1    2.22% 
     !               *    *             !   9   0.3  -   0.2     0    0.00% 
   10-               *    *             -   A   0.4  -   0.3     0    0.00% 
     !               *    *             !   B   0.5  -   0.4     0    0.00% 
     !               *    *             !   C    ++  -   0.5     0    0.00% 
     !               *    *             !    - - - - - - - - - - - - - - - 
     !               *    *   *         !          TOTAL        45  100.00% 
      - - - - - - - - - - - ------------- 
       1  2  3  4  5  6  7  8  9  A  B  C   EACH "*" REPRESENTS  2 RESIDUALS
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Based on this section of the output, it appears that there is a residual indicating a potentially important misfit of the model. It is 
first stated in the section LARGEST STANDARDIZED RESIDUALS and also appears to the right of the remaining residuals 
in the graphical distribution of standardized residuals. This large residual is associated with the last indicator of Figural 
relations (i.e., the third measure of Figural relations taken during the junior and senior high school years). In fact, this residual 
is nearly two times larger than the next one, whereas the residuals following gradually trail off to 0. Now scrutinize the model 
fit indices to see if this apparent deficiency may have also contributed to a lack of overall model fit.

GOODNESS OF FIT SUMMARY 
INDEPENDENCE MODEL CHI-SQUARE =       1177.363 ON      36 DEGREES OF FREEDOM 
 
INDEPENDENCE AIC =      1105.36282   INDEPENDENCE CAIC =      947.19223 
       MODEL AIC =         4.09682          MODEL CAIC =     -101.35024 
 
CHI-SQUARE =       52.097 BASED ON      24 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS LESS THAN 0.001 
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS          48.276. 
 
BENTLER-BONETT NDRMED    FIT INDEX=       0.956 
BENTLER-BONETT NONNORMED FIT INDEX=       0.963 
COMPARATIVE FIT INDEX             =       0.975

The goodness-of-fit indices are not satisfactory and suggest that this is not a well-fitting model. For example, the chi-square 
value and its p value are quite unsatisfactory. Based on this, one can conclude that there is evidence in the data that the fitted 
model is not a reasonably good representation, neither overall nor locally at the level of variances and covariances. One 
therefore should not fully trust the remaining results. The rest of the output is presented next only for reasons of completeness.

                   ITERATIVE SUMMARY 
 
               PARAMETER 
ITERATION      ABS CHANGE      ALPHA       FUNCTION 
     1         23.169935      1.00000      16.31806 
     2         14.960183      1.00000      10.47132 
     3          3.720057      1.00000       7.35567 
     4          4.876157      1.00000      11.22322 
     5         22.961660      0.50000       6.80336 
     6         58.645729      0.12500       7.55145 
     7         47.166233      0.25000       7.11284 
     8          9.357183      1.00000       6.04928 
     9         10.148293      1.00000       4.57749 
    10          3.072371      1.00000       3.25892
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    11          1.838869      1.00000       1.95995 
    12          3.086363      1.00000       0.78450 
    13          3.693515      1.00000       0.28511 
    14          1.354367      1.00000       0.23848 
    15          0.154908      1.00000       0.23789 
    16          0.019709      1.00000       0.23789 
    17          0.004465      1.00000       0.23789 
    18          0.001110      1.00000       0.23788 
    19          0.000270      1.00000       0.23789

After an initial search in the wrong direction, the program finds a path leading to the final reported solution.



MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
   IND1  =V1  =  1.000 F1    + 1.000 E1 
 
   IND2  =V2  =  1.268*F1    + 1.000 E2 
                  .157 
                 8.084 
 
   IND3  =V3  =   .888*F1    + 1.000 E3 
                  .115 
                 7.701 
 
   FRll  =V4  =  1.000 F2    + 1.000 E4 
 
   FR12  =V5  =   .918*F2    + 1.000 E5 
                  .067 
                13.762 
 
   FR13  =V6  =   .876*F2    + 1.000 E6 
                  .065 
                13.540 
 
   FR21  =V7  =  1.000 F3    + 1.000 E7 
 
   FR22  =V8  =   .878*F3    + 1.000 E8 
                  .052 
                16.790 
 
   FR23  =V9  =   .882*F3    + 1.000 E9 
                  .048 
                18.393 
 
 CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
FIGREL1 =F2  =   .976*F1     + 1.000 D2 
                 .147 
                6.642 
FIGREL2 =F3  =   .814*F2     +  .603*F1   + 1.000 D3 
                 .110           .177 
                7.397          3.405
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VARIANCES  OF  INDEPENDENT  VARIABLES 
------------------------------------- 
 
            V                              F 
           ---                            --- 
                     I F1  -INDUCTN                25.312*I 
                     I                              5.144 I 
                     I                              4.921 I 
                     I                                    I 
           E                               D 
          ---                             --- 
El - IND1     30.898*I D2  -FIGREL1                37.695*I 
               3.878 I                              6.101 I 
               7.968 I                              6.179 I 
                     I                                    I 
E2 - IND2     34.837*I D3  -FIGREL2        35.998*I 
               5.058 I                              5.923 I 



               6.887 I                              6.078 I 
                     I                                    I 
E3 - IND3     24.486*I                                    I 
               3.068 I                                    I 
               7.980 I                                    I 
                     I                                    I 
E4 - FR11     22.828*I                                    I 
               3.423 I                                    I 
               6.670 I                                    I 
                     I                                    I 
E5 - FR12     26.868*I                                    I 
               3.468 I                                    I 
               7.747 I                                    I 
                     I                                    I 
E6 - FR13     26.329*I                                    I 
               3.313 I                                    I 
               7.947 I                                    I 
                     I                                    I 
E7 - FR21     31.311*I                                    I 
               4.400 I                                    I 
               7.116 I                                    I 
                     I                                    I 
E8 - FR22     32.168*I                                    I 
               4.025 I                                    I 
               7.993 I                                    I 
                     I                                    I 
E9 - FR23     20.441*I                                    I 
               3.145 I                                    I 
               6.499 I                                    I 
                     I                                    I 
 
STANDARDIZED SOLUTION: 
 
 IND1 =V1 =  .671 F1 +  .741 E1 
 IND2 =V2 =  .734*F1 +  .679 E2 
 IND3 =V3 =  .670*F1 +  .742 E3 
 FRll =V4 =  .855 F2 +  .519 E4
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  FR12  =V5   =   .812*F2   +  .583 E5 
  FR13  =V6   =   .802*F2   +  .597 E6 
  FR21  =V7   =   .883 F3   +  .470 E7 
  FR22  =V8   =   .852*F3   +  .524 E8 
  FR23  =V9   =   .899*F3   +  .438 E9 
FIGREL1 =F2   =   .625*F1   +  .781 D2 
FIGREL2 =F3   =   .609*F2   +  .289*F1   +  .571 D3

This is the final model solution presented in nearly the same form as the model equations provided to EQS in the input file. 
However, because the model was found not to be a good means of data description, one should not attempt any interpretation 
of the parameter estimates. Instead, one should be more concerned with finding a way to improve the model fit. Because a 
large positive standardized residual corresponding to a particular part of the model has been found, perhaps the model can be 
improved by making some modifications. In particular, the large positive standardized residual suggests that the model 
underpredicts the relationship between the repeated assessments with the third Figural relation measure. With multiple 
measurements involving the same set of indicators, it is possible that the error terms associated with the measures contain 
some specific variance that is not explained by the latent variables. This seems to be the most likely scenario in the present 
case with regard to the last indicator within the fluid measures used. Note that in the previous chapter the issue of trying to 
make only modifications to models that can be theoretically justified was discussed. Here there does appear to be a good 
substantive reason for the error terms of the Figural relations measures FR13 and FR23 to correlate. Therefore this particular 
covariance between the error terms in the next model version is freed and added to the EQS input file as



/COVARIANCE 
E9,E6=*;

The pertinent parts of the resulting output are presented next.

PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 
 
RESIDUAL COVARIANCE MATRIX (S-SIGMA): 
 
                 IND1       IND2       IND3       FR11       FR12 
                 V  1       V  2       V  3       V  4       V  5 
IND1   V  1      0.000 
IND2   V  2     -0.429      0.000 
IND3   V  3      0.764     -0.300      0.000 
FR11   V  4     -0.649      0.308      0.087      0.000
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FR12   V  5      0.199      1.188      0.656     -0.078      0.000 
FR13   V  6      1.710      0.950     -3.397     -0.573      1.197 
FR21   V  7     -2.459      1.126     -0.486      2.300     -3.406 
FR22   V  8      1.332      0.686     -2.348     -1.487      1.448 
FR23   V  9     -0.516      1.255      0.113     -1.807      3.197 
 
                 FR13       FR21       FR22       FR23 
                 V  6       V  7       V  8       V  9 
FR13   V  6      0.101 
FR21   V  7     -0.011      0.000 
FR22   V  8     -0.015      0.322      0.000 
FR23   V  9      0.101     -0.113     -0.038      0.007 
 
                 AVERAGE ABSOLUTE COVARIANCE RESIDUALS   =   0.8257 
    AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS   =   1.0292 
 
STANDARDIZED RESIDUAL MATRIX: 
                 IND1       IND2       IND3      FR11        FR12 
                 V  1       V  2       V  3      V  4        V  5 
IND1   V  1      0.000 
IND2   V  2     -0.007      0.000 
IND3   V  3      0.015     -0.005      0.000 
FR11   V  4     -0.009      0.004      0.001     0.000 
FR12   V  5      0.003      0.015      0.011    -0.001       0.000 
FR13   V  6      0.027      0.013     -0.059    -0.007       0.016 
FR21   V  7     -0.028      0.011     -0.006     0.021      -0.032 
FR22   V  8      0.016      0.007     -0.033    -0.015       0.015 
FR23   V  9     -0.007      0.014      0.002    -0.019       0.035 
 
                 FR13       FR21       FR22      FR23 
                 V  6       V  7       V  8      V  9 
FR13   V  6      0.001 
FR21   V  7      0.000      0.000 
FR22   V  8      0.000      0.002      0.000 
FR23   V  9      0.001     -0.001      0.000     0.000 
 
                 AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =    0.0102 
    AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =    0.0127 
 
LARGEST STANDARDIZED RESIDUALS: 



 
  V  6,V  3      V  9,V  5    V  8,V  3    V  7,V  5      V  7,V  1 
   -0.059          0.035       -0.033       -0.032         -0.028 
 
  V  6,V  1      V  7,V  4    V  9,V  4    V  8,V  1      V  6,V  5 
    0.027          0.021       -0.019        0.016          0.016 
 
  V  5,V  2      V  3,V  1    V  8,V  5    V  8,V  4      V  9,V  2 
    0.015          0.015        0.015       -0.015          0.014 
 
  V  6,V  2      V  5,V  3    V  7,V  2    V  4,V  1      V  8,V  2 
    0.013          0.011        0.011       -0.009          0.007
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DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
     - - - - - - - - - - - - - - - - - - 
     !                                   ! 
   40-                                   - 
     !                                   ! 
     !                                   ! 
     !                                   ! 
     !                                   !            RANGE      FREQ  PERCENT 
   30-                                   - 
     !                                   !     1  -0.5  -  --       0    0.00% 
     !                                   !     2  -0.4  -  -0.5     0    0.00% 
     !                   *               !     3  -0.3  -  -0.4     0    0.00% 
     !               *   *               !     4  -0.2  -  -0.3     0    0.00% 
   20-               *   *               -     5  -0.1  -  -0.2     0    0.00% 
     !               *   *               !     6   0.0  -  -0.1    21   46.67% 
     !               *   *               !     7   0.1  -   0.0    24   53.33% 
     !               *   *               !     8   0.2  -   0.1     0    0.00% 
     !               *   *               !     9   0.3  -   0.2     0    0.00% 
   10-               *   *               -     A   0.4  -   0.3     0    0.00% 
     !               *   *               !     B   0.5  -   0.4     0    0.00% 
     !               *   *               !     C    ++  -   0.5     0    0.00% 
     !               *   *               !      - - - - - - - - - - - - - - - 
     !               *   *               !             TOTAL       45  100.00% 
     - - - - - - - - - - - - - - - - - - 
       1  2  3  4  5  6  7  8  9  A  B  C      EACH "*" REPRESENTS  2 RESIDUALS

None of the residuals presented in this section of the output are a cause for concern. As indicated previously, this is typically 
the case for well-fitting models with regard to all variable variances and covariances. The residuals listed in the LARGEST 
STANDARDIZED RESIDUALS section are much more uniform and smaller in magnitude than in the first model tested, and 
the distribution of standardized residuals is symmetric. The overall-model-fit indices are presented next.



GOODNESS OF FIT SUMMARY 
 
INDEPENDENCE MODEL CHI-SQUARE =       1177.363 ON   36 DEGREES OF FREEDOM 
 
INDEPENDENCE AIC =  1105.36282   INDEPENDENCE CAIC =   947.19223 
       MODEL AIC =   -25.44765          MODEL CAIC =  -126.50108 
 
CHI-SQUARE =      20.552 BASED ON    23 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS    0.60840 
THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS         20.011. 
 
BENTLER-BONETT NORMED    FIT INDEX=       0.983 
BENTLER-BONETT NONNORMED FIT INDEX=       1.003 
COMPARATIVE FIT INDEX             =       1.000
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The goodness-of-fit indices are now quite satisfactory. Note in particular that the chi-square value is comparable to its degrees 
of freedom and the associated p value is well in excess of any reasonable significance level. In addition, the normed and 
nonnormed fit indices, and comparative fit indices are all close to 1the NNFI is actually slightly above 1, which sometimes 
happens with well-fitting models. This model is therefore a reasonably good means of data description.

                        ITERATIVE SUMMARY 
 
                   PARAMETER 
ITERATION          ABS CHANGE            ALPHA       FUNCTION 
    1              22.842024            1.00000      16.63225 
    2              17.548189            1.00000      10.42740 
    3               3.001143            1.00000       7.31791 
    4               4.892436            1.00000      11.32526 
    5              27.355335            0.50000       8.74595 
    6              39.696941            1.00000       8.46845 
    7              16.204002            1.00000       7.42914 
    8              41.607319            1.00000       5.72652 
    9              11.167980            1.00000       3.35232 
   10               0.927136            1.00000       2.01023 
   11               2.364902            1.00000       0.87052 
   12               4.226802            1.00000       0.18126 
   13               1.303813            1.00000       0.09465 
   14               0.105986            1.00000       0.09385 
   15               0.011150            1.00000       0.09385 
   16               0.001340            1.00000       0.09385 
   17               0.000186            1.00000       0.09385 
 
MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
   IND1  =V1  =      1.000 F1      + 1.000 E1 
 
   IND2  =V2  =      1.271*F1      + 1.000 E2 
                      .157 
                     8.073 
 
   IND3  =V3  =       .894*F1      + 1.000 E3 
                      .116 
                     7.713 
 
   FR11  =V4  =      1.000 F2      + 1.000 E4 
 
   FR12  =V5  =      .888*F2       + 1.000 E5 
                      .064 



                    13.885 
 
   FR13  =V6  =      .833*F2       + 1.000 E6 
                      .062 
                    13.465
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   FR21  =V7  =    1.000 F3        + 1.000 E7 
 
   FR22  =V8  =     .875*F3        + 1.000 E8 
                    .051 
                  17.202 
 
   FR23  =V9  =    .864*F3         + 1.000 E9 
                   .047 
                 18.391 
 
  CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
 FIGREL1 =F2  =    .999*F1         + 1.000 D2 
                   .150 
                  6.676 
 
 FIGREL2 =F3  =    .749*F2         +  .671*F1    + 1.000 D3 
                   .105               .180 
                  7.103              3.736

This is the final solution for the modified structural regression model. Note that all structural regression coefficients postulated 
by the model are significanttheir t values are all well outside the nonsignificance region (i.e., 2; +2). These results indicate that 
there are marked relationships between the Induction and Figural relations latent variables in both the junior and senior years. 
That is, the Induction latent variable (F1) has marked explanatory power for individual differences in Figural relations at both 
assessment points (i.e., F2 and F3) because its regression coefficients, .999 and .671, are significant. As such, the relationship 
between junior- and senior-year Figural relations cannot be explained without considering the impact of their common 
predictor, Induction. It is clear, therefore, that in the presence of the Induction latent variable, Figural relations during the 
junior year is important for predicting individual differences in senior-year figural ability.

VARIANCES OF  INDEPENDENT VARIABLES 
----------------------------------- 
                 V                                   F 
                ---                                 --- 
                                 I  F1 -INDUCTN               25.165*I 
                                 I                             5.129 I 
                                 I                             4.907 I 
                                 I                                   I 
 
                 E                                   D 
                ---                                 --- 
E1 - IND1                 31.045*I  D2 -FIGREL1               39.881*I 
                           3.880 I                             6.264 I 
                           8.002 I                             6.366 I 
                                 I                                   I
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E2 - IND2                 34.912*I  D3 -FIGREL2               39.366*I 
                           5.052 I                             6.050 I 
                           6.911 I                             6.506 I 
                                 I                                   I 
E3 - IND3                 24.322*I                                   I 
                           3.060 I                                   I 
                           7.948 I 
                                 I                                   I 
E4 - FR11                 19.667*I                                   I 
                           3.352 I                                   I 
                           5.868 I                                   I 
                                 I                                   I 
E5 - FR12                 27.709*I                                   I 
                           3.533 I                                   I 
                           7.842 I                                   I 
                                 I                                   I 
E6 - FR13                 28.541*I                                   I 
                           3.463 I                                   I 
                           8.242 I                                   I 
                                 I                                   I 
E7 - FR21                 29.401*I                                   I 
                           4.279 I                                   I 
                           6.871 I                                   I 
                                 I                                   I 
E8 - FR22                 31.342*I                                   I 
                           3.952 I                                   I 
                           7.930 I                                   I 
                                 I                                   I 
E9 - FR23                 22.501*I                                   I 
                           3.280 I                                   I 
                           6.860 I                                   I 
                                 I                                   I 
 
COVARIANCES  AMONG  INDEPENDENT  VARIABLES 
------------------------------------------ 
 
                  E                                  D 
                 ---                                --- 
E9 - FR23                 12.264*I                                   I 
E6 - FR13                  2.460 I                                   I 
                           4.985 I                                   I 
                                 I                                   I

This output represents the variance of the Induction latent variable and the variances of the disturbance terms (D2 and D3) for 
the Figural relations latent variable. The covariance between the error terms of the fluid measures FR13 and FR23 are also 
reported in the section entitled COVARIANCES AMONG INDEPENDENT VARIABLES and, as expected, this value is 
found to be significant (see further discussion following).
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COVARIANCES AMONG INDEPENDENT VARIABLES 
--------------------------------------- 
 
                  E                                  D 
                 ---                                --- 
E9 - FR23                   .484*I                                   I 
E6 - FR13                        I                                   I 
                                 I                                   I

The covariance between the error terms of the Figural relations measures (FR13 and FR23) is also provided as a correlation 
coefficient. As shown, despite the fact the correlation is only moderate in magnitude, it contributes to a substantial 
improvement in model. In fact, the improvement in fit can be easily judged by comparing the chi-square values for the two 
proposed models (i.e., the model with the correlated error terms versus the model without the correlated error terms). The 
difference in chi-square values of the two proposed models is found to be ∆T = 52.097 20.552 = 31.545, with the difference in 
degrees of freedom, ∆df = 24 23 = 1, and hence significant (cut-off value of the chi-square distribution with 1 df is 3.84 at 
significance level .05). Thus, it is evident that including the correlated error term leads to a considerable improvement in 
model fit.

Testing Factorial Invariance Across Time

An important question frequently considered in studies that involve repeated measurements of latent variables concerns the 
invariance of the indicators used across time. A test of invariance addresses the basic question about the comparability of the 
measurement across time periods (in the example study it would be from the junior to senior years of high school). Thus, 
testing for invariance effectively focuses on whether the construct measured at repeated assessment occasions remains the 
same or whether it changes its structure. Because a necessary condition for measuring the same constructs across time is the 
identity of the factorial structure (i.e., the identity of the factor loadings), the term factorial invariance is commonly used. As it 
turns out, an examination of factorial invariance is possible by simply imposing an equality constraint on the factor structure 
and testing the resulting difference in the chi-square values for the two tested models for significance.

A test of factorial invariance in the example concerning mental ability involves examining whether the construct Figural 
relations retains its structure from the junior to senior high school year. This test can be accomplished by introducing an 
equality restriction on the factor loadings of
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the figural indicators across both assessment points. The equality restriction can be included in the EQS input file by adding a /
CONSTRAINT section, and in the LISREL input file by adding EQuality lines as follows (recalling that the loading of the first 
indicator of the construct is already set equal to 1 for both assessment times):

/CONSTRAINTS 
(V5,F2) = (V8,F3); 
(V6,F2) = (V9,F3);

and

EQ LY(5, 2) LY(8, 3) 
EQ LY(6, 2) LY(9,3)

The result of introducing this restriction leads to a chi-square value of T = 20.937, with df = 25 (recall that the model tested 
without the equality restriction resulted in a chi-square value of T = 20.552, with df = 23). The difference in chi-square values 
between the restricted model and the previous one is ∆T = 20.937 - 20.552 = 0.385, with ∆df = 2, and hence nonsignificant 
(the cut-off value of the chi-square distribution at significance level .05 is 5.99). This result indicates that the time-invariance 
restrictions imposed on the loadings of the Figural relations indicators are plausible. Because the restriction is found to be 
acceptable, it is retained in the model.



Next the LISREL output file only for the restricted model is presented and discussed. Comments are inserted at appropriate 
places and repetitive material is omitted (interested readers can easily very that the results of the LISREL and EQS programs 
are essentially the same by running the appropriate EQS input file).

PARAMETER SPECIFICATIONS 
 
        LAMBDA-Y 
 
              INDUCTN   FIGREL1   FIGREL2 
              -------   -------   ------- 
    IND1            0         0         0 
    IND2            1         0         0 
    IND3            2         0         0 
    FR11            0         0         0 
    FR12            0         3         0 
    FR13            0         4         0 
    FR21            0         0         0 
    FR22            0         0         3 
    FR23            0         0         4
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As shown, all parameters constrained to be equal to one another are given the same number, whereas parameters that are fixed 
are not numbered. According to this section output, LISREL understood that this is a model with only four factor loading 
parameters to be estimated. The remaining parameters (including the correlated error term) are presented below for a total of 
20 model parameters.

       BETA 
 
          INDUCTN  FIGREL1  FIGREL2 
          -------  -------  ------- 
INDUCTN         0        0        0 
FIGREL1         5        0        0 
FIGREL2         6        7        0 
 
       PSI 
 
          INDUCTN  FIGREL1  FIGREL2 
          -------  -------  ------- 
                8        9        0 
 
       THETA-EPS 
 
             IND1    IND2    IND3   FR11  FR12  FR13 
             ----    ----    ----   ----  ----  ---- 
  IND1         11 
  IND2          0      12 
  IND3          0       0      13 
  FR11          0       0       0     14 
  FR12          0       0       0      0    15 
  FR13          0       0       0      0     0    16 
  FR21          0       0       0      0     0     0 
  FR22          0       0       0      0     0     0 
  FR23          0       0       0      0     0    19 
 
       THETA-EPS 
 
             FR21    FR22    FR23 
             ----    ----    ---- 
  FR21         17 



  FR22          0      18 
  FR23          0       0       2

Next are the LISREL parameter estimates. Note in particular the restrained factor loadings that have identical estimates, 
standard errors, and t values.

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
        LAMBDA-Y 
 
           INDUCTN   FIGREL1    FIGREL2 
          --------   -------    ------- 
   IND1      1.000       - -        - -
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   IND2      1.271       - -        - - 
            (.157) 
             8.074 
 
   IND3       .894       - -        - - 
            (.116) 
             7.711 
 
   FR11        - -     1.000        - - 
 
   FR12        - -      .879        - - 
                      (.040) 
                      22.130 
 
   FR13        - -      .855        - - 
                      (.041) 
                      20.678 
 
   FR21        - -       - -       1.000 
 
   FR22        - -       - -        .879 
                                  (.040) 
                                  22.130 
 
   FR23        - -       - -        .855 
                                  (.041) 
                                  20.678 
 
       BETA 
 
           INDUCTN   FIGREL1   FIGREL2 
           -------   -------   ------- 
INDUCTN        - -       - -       - - 
 
FIGREL1       .992       - -       - - 
            (.146) 
             6.776 
 
FIGREL2       .674      .758       - - 
            (.180)    (.100) 
             3.747     7.617

As can be seen, although the parameter estimates have changed slightly due to the imposed restrictions, the same substantive 
conclusions are warranted with respect to the structural regression coefficients examined in the earlier unconstrained model.



        COVARIANCE MATRIX OF ETA 
 
           INDUCTN   FIGREL1   FIGREL2 
           -------   -------   ------- 
INDUCTN     25.179 
FIGREL1     24.965    64.179 
FIGREL2     35.891    65.484   113.456
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        PSI 
 
           INDUCTN   FIGREL1   FIGREL2 
           -------   -------   ------- 
            25.179    39.426    39.625 
           (5.130)   (5.806)   (5.927) 
             4.908     6.790     6.686

In the LISREL output presented in chapter 4 (for a confirmatory factor analysis model), the values in the COVARIANCE 
MATRIX OF ETA and those in the PSI matrix were identical. The results here, however, present very different values for the 
COVARIANCE MATRIX OF ETA and the PSI matrix. The reason that these values are different is that in this model 
explanatory relationships are assumed between the latent variables. As a result, the PSI matrix now contains both the variance 
of the first latent variable (INDUCTN) and the residual variances of the other two latent variables (FIGREL1 and FIGREL2). 
Thus, only the first element on its diagonal is identical to that of the COVARIANCE MATRIX OF ETAthe first latent factor is 
the common predictor for the other two and not regressed on any construct. Note that the structural residual variances are both 
significant (see the second and third diagonal elements of the matrix PSI), which reflects the fact that the latent relationship 
assumed in the model is not able to explain all individual variability in junior- and senior-year Figural relations.

SQUARED MULTIPLE CORRELATIONS FOR STRUCTURAL EQUATIONS 
 
            INDUCTN  FIGREL1  FIGREL2 
            -------  -------  ------- 
                - -     .386     .651

Based on these results, it appears that the model is the least successful in predicting junior-year Figural relations. Perhaps, a 
follow-up study should also consider other variables (beyond the Induction construct) that may contribute to a better 
explanation of individual differences in the Figural relations ability construct during junior high school year.

                           GOODNESS OF FIT STATISTICS 
 
         CHI-SQUARE WITH 25 DEGREES OF FREEDOM = 20.937 (P = 0.696) 
              ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 0.0 
          90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 10.044) 
 
                    MINIMUM FIT FUNCTION VALUE = 0.0956 
             POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.0 
        90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.0459) 
        ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.0 
      90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.0428) 
         P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.977
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                EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.278 
           90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.297 ; 0.343) 
                        ECVI FOR SATURATED MODEL = 0.411 
                       ECVI FOR INDEPENDENCE MODEL = 5.458 
 
    CHI-SQUARE FOR INDEPENDENCE MODEL WITH 36 DEGREES OF FREEDOM = 1177.363 
                          INDEPENDENCE AIC = 1195.363 
                              MODEL AIC = 60.937 
                            SATURATED AIC = 90.000 
                         INDEPENDENCE CAIC = 1234.905 
                             MODEL CAIC = 148.809 
                           SATURATED CAIC = 287.713 
 
                    ROOT MEAN SQUARE RESIDUAL (RMR) = 1.462 
                           STANDARDIZED RMR = 0.0182 
                      GOODNESS OF FIT INDEX (GFI) = 0.980 
                 ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.964 
                PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.544 
 
                        NORMED FIT INDEX (NFI) = 0.982 
                     NON-NORMED FIT INDEX (NNFI) = 1.005 
                  PARSIMONY NORMED FIT INDEX (PNFI) = 0.682 
                     COMPARATIVE FIT INDEX (CFI) = 1.000 
                     INCREMENTAL FIT INDEX (IFI) = 1.004 
                       RELATIVE FIT INDEX (RFI) = 0.974 
 
                          CRITICAL N (CN) = 464.534

The goodness-of-fit indices all point to the model as a reasonable approximation of the data. In particular, note the low 
magnitude of the RMSEA index (well below the proposed threshold of .05). Moreover, the left endpoints of the confidence 
interval of the RMSEA index and that of the noncentrality parameter are 0, which is another sign of a satisfactory model fit.

SUMMARY STATISTICS FOR FITTED RESIDUALS 
 SMALLEST FITTED RESIDUAL =  -3.756 
  MEDIAN FITTED RESIDUAL =    .000 
 LARGEST FITTED RESIDUAL =   4.197 
 
 STEMLEAF PLOT 
 - 3|8 
 - 2|876 
 - 1|75544321 
 - 0|966544431000 
   0|2334566689 
   1|000233477  
   2|3 
   3| 
   4|2
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SUMMARY STATISTICS FOR STANDARDIZED RESIDUALS 
SMALLEST STANDARDIZED RESIDUAL =  -1.556 
  MEDIAN STANDARDIZED RESIDUAL =    .000 
 LARGEST STANDARDIZED RESIDUAL =   1.344 
 
STEMLEAF PLOT 
- 1|6 
- 1|0 
- 0|97755 
- 0|44444332222221000 
  0|1111222333344 
  0|556667 
  1|03

None of the standardized residuals is very large, which is another indication that the model also fits well locally (i.e., beyond 
being a good overall means of data description).

MODIFICATION INDICES AND EXPECTED CHANGE 
 
         MODIFICATION INDICES FOR LAMBDA-Y 
 
           INDUCTN   FIGREL1   FIGREL2 
           -------   -------   ---------- 
   IND1        - -      .010      .206 
   IND2        - -      .241      .374 
   IND3        - -      .366      .027 
   FR11       .011      .060      .002 
   FR12       .415      .181      .268 
   FR13       .479      .360      .259 
   FR21       .203      .035      .060 
   FR22       .131      .180      .181 
   FR23       .559      .299      .360 
 
       EXPECTED CHANGE FOR LAMBDA-Y 
 
           INDUCTN   FIGREL1   FIGREL2 
           -------   -------   ---------- 
   IND1        - -      .009     -.036 
   IND2        - -      .057      .060 
   IND3        - -     -.051     -.012 
   FR11       .011      .018      .002 
   FR12       .067      .019      .024 
   FR13      -.063     -.026     -.021 
   FR21      -.058     -.015     -.018 
   FR22      -.045     -.032     -.012 
   FR23       .079      .035      .010 
 
NO NON-ZERO MODIFICATION INDICES FOR BETA 
 
NO NON-ZERO MODIFICATION INDICES FOR PSI
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        MODIFICATION INDICES FOR THETA-EPS 
 
               IND1    IND2    IND3    FR11    FR12    FR13 
               ----    ----    ----    ----    ----    ---- 
   IND1          -- 
   IND2        .143     - - 
   IND3        .440    .081     - - 
   FR11        .368    .050    .818     - - 
   FR12        .049    .001    .480    .044     - - 
   FR13       1.644    .128   4.902    .025    .127     - - 
   FR21        .799    .106    .001   6.350   7.813    .006 
   FR22       1.635    .001   1.863    .806    .583    .009 
   FR23        .440    .003   1.681   3.262   4.695     - - 
 
         MODIFICATION INDICES FOR THETA-EPS 
 
               FR21    FR22    FR23 
               ----    ----    ---- 
   FR21         - - 
   FR22        .016     - - 
   FR23        .001    .008     - - 
 
         EXPECTED CHANGE FOR THETA-EPS 
 
               IND1    IND2    IND3    FR11    FR12    FR13 
               ----    ----    ----    ----    ----    ---- 
   IND1         - - 
   IND2      -1.605     - - 
   IND3       1.976  -1.080     - - 
   FR11      -1.429   -.592   1.891     - - 
   FR12       -.548    .106   1.520    .680     - - 
   FR13       2.882    .900  -4.418    .466   -.931     - - 
   FR21      -2.424    .987    .079   6.580  -7.397   -.208 
   FR22       3.371   -.104  -3.194  -2.213   1.970    .234 
   FR23      -1.438   -.143   2.496  -3.973   4.685     - - 
 
         EXPECTED CHANGE FOR THETA-EPS 
 
               FR21    FR22    FR23 
               ----    ----    ---- 
 
   FR21         - - 
   FR22        .529     - - 
   FR23       -.097   -.308     - - 
MAXIMUM MODIFICATION INDEX IS  7.81 FOR ELEMENT (7, 5) OF THETA-EPS

Although there is a modification index that is larger than 5 in this outputsee element (7,5) of the TE matrixadding this 
parameter to the proposed model cannot be theoretically justified because there does not
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appear to be a good substantive reason for the two error terms to be correlated. In addition, because the model fit is already 
acceptable, no further change need be made to the proposed model. One can therefore consider the model with the factorial 
invariance across time to be an acceptable means of data description.
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Chapter Six 
Latent Change Analysis

What Is Latent Change Analysis?

Repeated measurements are used quite often in research studies to examine changing processes in individuals or groups. One 
reason for their popularity is that repeated measurements allow researchers to investigate individual (intraindividual) 
development across time as well as between-individual (interindividual) differences and similarities in change patterns. For 
example, educational researchers may be interested in examining particular patterns of growth (or decline) in ability exhibited 
by a group of subjects in repeatedly administered measures following some treatment program. The researchers may also be 
interested in comparing the rates of change in these variables across several student populations. Finally, the researchers may 
be interested in studying the correlates and predictors of growth (or decline) in ability over time in an effort to determine 
which students exhibited the fastest improvement in ability.

A powerful methodology for addressing these kinds of questions exists within the traditional analysis of variance (ANOVA) 
and analysis of covariance (ANCOVA) frameworks. Unfortunately, some of the assumptions needed to use this methodology 
can often be untenable. In particular, assumptions concerning the homogeneity of the variancecovariance matrix across the 
levels of the between-subjects factors, or the assumption of sphericity (implying the same patterns of correlation for repeated 
assessments) can be problematic (e.g., Marcoulides & Hershberger, 1997; Tabachnick & Fidell, 1999). Similarly, when 
studying correlates and predictors of growth or decline via ANCOVA, assumptions concerning the use of
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perfectly measured covariate(s) and regression homogeneity may also be questionable (Huitema, 1980). As it turns out, the 
SEM methodology offers a useful alternative framework, latent change analysis (LCA). LCA has been developed over the past 
few decades and popularized in the social and behavioral sciences as a general means for studying latent growth or decline, as 
well as their correlates and predictors. In many ways, the traditional repeated measures analysis of variance models can be 
considered to be special cases of a more general LCA model (Meredith and Tisak, 1990). However, the LCA model provides 
more flexibility in the measurement of change than those traditional analysis of variance models. The LCA model also 
resembles the confirmatory factor analysis model discussed in chapter 4 with one exception. Because the LCA model uses data 
obtained from repeated measurements, the latent variables are interpreted as chronometric variables representing individual 
differences over time.

The term latent change analysis (LCA) is used in this book as a general category for a large number of possible models that 
can be used in repeated-assessment research studies. Many of these models have been referred to in the literature under various 
related names, such as latent growth curve models, latent curve analysis models, or just growth curve models. We prefer to 
refer to the models as latent change analysis models to emphasize that the models are equally applicable to all cases in which 
one is interested in studying growth or decline, even those with a more complex pattern of change such as growth followed by 
decline or vice versa. Due to the introductory nature of this book, only two LCA models are introduced: (a) the one-factor 
model and (b) the two-factor (or LS) model. For more extensive and advanced treatments of the subject, several excellent 
sources are available (e.g., Duncan, Duncan, Strycker, Li, and Alpert, 1999; McArdle, 1998; Meredith & Tisak, 1990; Willett 
& Sayer, 1996).

Simple One-Factor Latent Change Analysis Model

To introduce the reader to latent change modeling, the discussion of LCA begins with a simple one-factor model. In this 
simple model, it is assumed that a set of k = 4 repeated measurements of cognitive ability give rise to a covariance matrix and 
means that can be explained in terms of a single latent variable (see Fig. 12 and details in the following). McArdle (1988) has 
termed the one-factor LCA model a curve model because the latent variable can be interpreted as a time factor that governs the 
intraindividual latent change curves (see also McArdle & Epstein, 1987). Alternatively, the time factor can be interpreted as an 
initial true status of the underlying ability that is being repeatedly measured. As indicated later, the loadings
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Figure 12. 
Example one-factor LCA model.

of the repeated measures on this factor can be interpreted as rates of mean change in the studied ability. Meredith and Tisak 
(1990) chose to term this model a monotonic stability model because they felt that, although significant changes in mean levels 
may occur in the studied ability, the rank order of the observations stays the same over repeated measures (Duncan et al., 
1999).

Analysis of Mean Structures

One important aspect in which the LCA models differ from all the preceding ones discussed in this book is that the variable 
means and their development over time are taken into account. This is achieved by what is referred to as mean structure 
analysis (MSA). A MSA includes in the analysis not only the covariance matrix of the repeated measures, but also the 
observed variable means. In order to achieve this, a model must be fitted to the covariancemean matrix, rather than only to the 
covariance matrix that has been discussed up to this point. The covariancemean matrix results after the observed variable 
means are added as a last row and column to the covariance matrix (i.e., the covariancemean matrix is the covariance matrix 
augmented by the observed variable means).

Why Is It Necessary to Include Variable Means into an Analysis of Change?

The inclusion of observed variable means into the analysis complies with the conceptual notions of the classical approaches to 
studying change. According to these notions, development in the means of the
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observed variables under investigation is of special importance. Indeed, one cannot imagine repeated measures ANOVA that 
would exclude the information about temporal change contained in the means. Because the use of LCA has the same goal of 
studying development over time, it seems only natural to include the variable means in the analysis. If the model were fitted 
only to the covariance matrix, however, one would omit the observed variable means from the analysis. The reason is that any 
covariance coefficient is defined in terms of the sum of cross-products around the means (e.g., Hays, 1994). That is, any 
covariance (as well as correlation) disregards the means of the two involved variables, and as a result the observed means and 
their development over time are inconsequential for the covariance matrix. Hence, different patterns of change over time (e.g., 
increase over time; decline; or growth followed by decline, or vice versa) can be equally consistent with a given covariance 
matrix resulting in a repeated measure context. It follows, therefore, that to fit a model only to the covariance matrix is 
tantamount to being wasteful with information about the development of the studied phenomenon over time, which is 
contained in the observed variable means. Therefore, in analyses of change the observed variable means are always included 
because, without them, one cannot achieve the goal of examining growth or decline.

As a result of this inclusion, more data points are obtained to which the model is fitted. Therefore, in addition to the elements 
of the covariance matrix, there are also as many means to count as there are observed variables. Thus, with k = 4 repeated 
measurements assessments, there are k(k + 1)/2 = 4(5)/2 = 10 nonredundant elements of the covariance matrix plus k = 4 
observed means that the model must also emulate. Hence, in a mean structure analysis of k = 4 variables there are, altogether, 
q = k(k + 1)/2 + k = 4(5)/2 + 4 = 14 pieces of empirical information to which the model must be fit. Of course, from this 
number q it is still necessary to subtract the number of model parameters in order to obtain the model degrees of freedom. As 
shown later, conducting a MSA makes necessary the introduction of additional model parameters concerning the structure of 
the variable means. This issue will be discussed further after details concerning LCA models are presented.

How Is a Model Fitted to the CovarianceMean Matrix?

SEM accomplishes the inclusion of observed variable means in the analysis (i.e., achieves fitting a model to the sample 
covariancemean matrix), by extending the fit function with a special term (see discussion of the fit function in chap. 1). The 
special term represents a weighted sum of the squared differences between the observed means and those reproduced by the 
model, with the weights being the corresponding elements of the
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model-reproduced covariance matrix Σ (for the maximum likelihood method used throughout this book). Just as the model has 
certain implications for the variances and covariances of the analyzed variables, it also has consequences for the variable 
means. These consequences can easily be worked out by noting that the mean of any linear combination of variableswhether 
observed or latentis simply the same linear combination of their means. In order to understand and conceptualize the LCA 
model implications and the reproduced covariancemean matrix, a fifth rule is now added to those presented earlier in chapter 1.

Law 5 of Variable Means

The relationship between means of linear combination of variables and means of its constituents is formulated as a specific law 
as follows (and added to the four laws of variable variances and covariances discussed in chapter 1):

Law 5. For any two variables X and Y and any given constants a and b,

where M(·) denotes the mean. It is important to note that the validity of this law follows directly from the additive 
property of the mean (e.g., see Hays, 1994.). Of course, Law 5 can obviously be generalized to any number of 
variablesthe mean of a linear combination of variables is the same linear combination of their means.

Once advised to perform a mean structure analysis, most structural equation modeling programs will automatically augment 
the fit function by this special term, evaluating model fit with regard to means. A minimization of the augmented fit function 
thus implies that when fitting a model to the mean structure one is seeking estimates of its parameters that render the 
reproduced covariancemean matrix as close as possible to the observed covariancemean matrix. Therefore, at the final 
computed solution, the observed variances, covariances, and means are emulated as well as possible by the fitted model.



The One-Factor Latent Change Analysis Model

Returning to the specific one-factor model presented in Fig. 12, note that the model path diagram is presented in LISREL 
notation and includes the four observed variables (Y's), each indexed according to the measurement occasion. The model also 
proposes that each observed variable Y loads on a single latent construct η1, which represents the time factor un-
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derlying their change as indicated previously, and involves k = 4 successive measurements.

To determine the parameters of the model presented in Fig. 12 (designated by asterisks), one must follow the six rules outlined 
in chapter 1. According to Rule 1, all error-term variances and the variance of the factor η1 are parameters, and, according to 
Rule 3, all factor loadings are parameters. Rule 2 is not applicable to this model because there are no variable covariances (i.e., 
there are no two-way arrows in Fig. 12). Rule 6 requires that the scale of the latent variable be fixed, which can be 
accomplished by fixing either the variance of η1 or one of the factor loadings to a value of 1. Here, fix the scale of the latent 
variable by fixing the first measurement loading to a value of 1 (i.e., set the loading of Y1 equal to 1). Using this approach 
effectively sets the metric of the first measurement as a baseline against which the subsequent change in the repeated 
assessments is estimated. This facilitates parameterizing the rates of change in means over time into the factor loadings (see 
the following discussion).

Now to demonstrate an analysis on the basis of this proposed model, consider the following data based partly on a study of 
cognitive intervention by Baltes, Dittmann-Kohli, and Kliegl (1986). The goal of the original study was to examine the extent 
of reserve capacity of older adults in test performance on repeatedly presented fluid-intelligence measures. As part of the 
study, N = 161 older adults were administered tutor-guided training in test-relevant skills that focused in part on a specific 
component of fluid intelligence, namely Induction (a discussion concerning the construct of fluid intelligence can be found in 
chap. 5). Four repeated assessments were carried out using Thurstone's Standard Induction test: (a) before the training program 
was administered (Y1), and then (b) 1 week after (Y2), (c) 1 month after (Y3), and (d) 6 months after completion of training 
(Y4). The covariance matrix and the observed variable means for this example one-factor model are provided in Table 3. The 
means of the four repeated assessments are presented in the last column of Table 3 to em-

TABLE 3 
Covariance Matrix and Means of the Four Consecutive 
Administrations of Thurstone's Standard Induction Test

THU_IND1 THU_IND2 THU_IND3 THU_IND4 Means

THU_IND1 307.46 37.48

THU_IND2 296.52 377.21 53.30

THU_IND3 295.02 365.10 392.47 54.82

THU_IND4 291.02 355.88 358.25 376.84 52.63

Note. THU_INDi = Thurstone's Standard Induction test at ith assessment (i = 1, 2, 3, 4).
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phasize that they are essential for achieving the goals of latent change analysis.

LISREL and EQS Input Files

The input files for the LISREL and EQS programs must indicate that the model should be fitted to both the covariance matrix 
and the means. Accomplishing this necessitates a slight modification of the input files that are used when fitting a model only 
to the covariance matrix. The modification actually follows from an observation about model-reproduced means discussed in 
the previous section: Just as there is a model-reproduced covariance matrix Σ, so are there also model-reproduced means that 
are obtained by applying Law 5 to the model-definition equations. For example, consider the following equation for Y2 in Fig. 
12:

where λ2 is its factor loading on η1 and ε2 is the corresponding error term. Applying Law 5 to Equation 12, the following 
mean value for Y2 is obtained:

but because M(ε2) = 0 (for further discussion, see the discussion of error means in a structural model in chap. 1), the equation 
becomes

In other words, the one-factor model under consideration reproduces the mean of Y2 as the product of the latent variable mean 
and the measure's factor loading. The same relationship applies to the means of all observed variables (keeping in mind that λ1 
= 1 due to the earlier decision to set the latent metric by fixing that loading).

Hence, in order to analyze latent change, one must analyze the mean structure of the observed variables (i.e., fit the model to 
the covariancemean matrix), and it is meaningful to also introduce the latent variable mean M(η1) as a parameter. Otherwise, 
if no latent variable mean is introduced one is assuming that its value is effectively equal to zero. Obviously, this would lead to 
all the observed variable means being reproduced as zero, as implied from Equations 12 and 14, and almost certainly would 
lead to a misfit of the proposed model. Thus, in the model under consid-
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eration one needs to include (at least) the latent mean as a separate parameter in order to ensure that the model is given a 
chance to fit the data as well as it possibly can.1

Continuing with the earlier discussion of parameters, the model under consideration in Fig. 12 will now have a total of nine 
parameters (i.e., four error variances, three factor loadings, one latent variance, and the latent variable mean). Because this is a 
LCA model, it is fit to the covariancemean matrix as discussed previously. Therefore, with four repeated assessments 
(corresponding to the observed variables), it is fit to a total of 4(5)/2 + 4 = 14 data points (i.e., the 10 nonredundant elements of 
the covariance matrix plus the four manifest means). The model thus has 14 9 = 5 degrees of freedom.

Equation 14 also permits a direct interpretation of the factor loadings as rates of mean change. For example, if Law 5 is 
applied to the equation for the first occasion of measurement, Y1 = η1 + ε1, this yields the mean value, M(Y1) = M(η1). If one 
inserts the value M(Y1) for M(η1) in Equation 14 and expresses the equation in terms of λ2, one obtains λ2 = M(Y2)/M(Y1). 
This result implies that the value of the factor loading λ2, under the considered model, corresponds to the ratio of the means 
for that measurement occasion and the first assessment (used to fix the scale of the latent variable). It turns out that this idea 
can actually be generalized to all the remaining factor loadings. Thus, the value of any factor loading included in the model is 
obtained as a ratio of two means (for that measurement occasion and the first assessment).



LISREL Input File

The LISREL input file for conducting a LCA requires that the latent variable mean be introduced. Accordingly, latent variable 
means are referred to as part of an A matrix (the Greek letter alpha), denoted as AL in the LISREL syntax, and the same 
principles discussed in chapter 2 apply when referring to its elements. It is important to note that A is actually a row vectora 
special matrix that has only one row, but as many columns as there are latent variables in the model. Thus, the elements of the 
ALpha matrix in this example are AL(1), or simply AL(1, 1)recall that there is only one latent variable mean. The default 
setting for the ALpha matrix in LISREL is that it is fixed (i.e., it consists only of elements fixed at 0), unless the program is 
advised otherwise. Thus, once ALpha is mentioned in the model-definition line, LISREL is prepared for any instructions 
concerning latent means.

1 There is a more general treatment of mean structure analysis models with additional mean structure parameters, the 
mean intercepts, which we will not present in this text. We refer the reader to Jöreskog & Sörbom (1993b, 1999) or 
Bentler (1995, 2000).
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The LISREL input file here is constructed following the principles outlined in chapter 2 and includes the definition of the 
ALpha matrix.

ONE-FACTOR LATENT CHANGE MODEL 
DA NI=4 NO=161 
CM 
307.46 
296.52 377.21 
295.02 365.10 392.47 
291.02 355.88 358.25 376.84 
ME 
37.48 53.30 54.82 52.63 
LA 
THU_IND1 THU_IND2 THU_IND3 THU_IND4 
MO NY=4 NE=1 AL=FR LY=FU, FR 
LE 
TIME_FAC 
FI LY(1, 1) 
VA 1 LY(1, 1) 
OU

There are several items in the LISREL input file that should be mentioned. First, there is a new line immediately following the 
covariance matrix that corresponds to the four means of the observed variables. This is the reason the command line uses the 
keyword ME (for MEans). The observed variables are subsequently labeled according to the four consecutive assessments 
using Thurstone's Induction test (i.e., THU_IND1 to THU_IND4). The MOdel definition line also includes the new command, 
AL=FR. This command tells the LISREL program that the latent means are to be considered free model parameters by 
effectively freeing all elements of ALpha. Of course, because the model being fitted contains only one factor, ALpha has only 
one element, and hence this latent mean is hereby declared a free parameter. Then, for simplicity, the matrix LY is declared to 
be full of free parameters. Because LY has here only one column containing all four factor loadings (as this model has just one 
latent variable), this in effect says that all of them are free model parameters (of course, the first loading is later fixed to 1 to 
set the scale metric). Note that the PS matrix, here consisting of only one latent variance, has not been mentioned. This is 
because PS=DI, FR (i.e., PS having free elements along its diagonal) is the default option for it, which is exactly what the 
proposed model entails. Similarly, the TE matrix containing all error variances has not been mentioned, because TE=DI, FR is 
also the default and just what is needed to specify it in this example. Finally, below the MOdel definition line, a la-
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bel TIME_FAC (for TIME FACtor) is provided for the single latent variable in the model.

EQS Input File

The EQS input file for conducting a LCA requires that the latent variable mean be introduced using a special auxiliary 
variable. The name of the variable is V999. According to Bentler (1995), the variable designation V999 was chosen so that it 
''will always be in the same position, the last, relative to the measured variables in the input file" (p. 166). V999 can be thought 
of as a dummy variable with two features: (a) it takes on the value of 1 for all subjects in the sample, and (b) it is added 
internally by the program once it is designated in the input file. Subsequently, by regressing the latent variable on this dummy 
variable, one obtains in the resulting slope estimate the value of the latent mean. Indeed, this is equivalent to using a simple 
regression model in which the latent variable is the dependent variable, V999 is the single predictor, and no intercept term is 
included; then the estimate of the slope of V999 will obviously be the latent mean. This is, alternatively, equivalent to using a 
simple regression model with an intercept only, which will then evidently be estimated at the mean of the dependent variablein 
this case the latent variable mean. Of course, regressing the latent variable on the variable V999 implies that a residual term is 
to be associated with the factor. Recall the discussion in chapter 1 in which it was emphasized that in general any dependent 
variable should be associated with a residual (disturbance) term (which in EQS is denoted by D). This requirement leads to an 
additional model equation for the latent mean in the model (i.e., an added equation for the single factor in the model in Fig. 
12). Thus, the equation F1 = *V999 + D1 is used in the EQS input file to regress the factor on the dummy variable V999, and 
as a result the residual term D1 receives the variance of the latent variable as a model parameter. This is due to two reasons: (a) 
D1 is formally an independent variable of the model and hence its variance is a model parameter, and (b) applying Law 4 for 
variances on the equation (see chap. 1), one can see that its variance equals that of the latent factor. In actuality, reason b 
follows from the fact that D1 is assumed to be unrelated to F1 and the fact that V999 has no variance because it is a dummy 
constant variable.

Because the input file being created is for the analysis of a LCA model, the EQS program must also be provided with data to 
fit the model to a covariancemean matrix. In order to add the means of the observed variables to the input file, the command 
line /MEANS below the covariance matrix command line must be used (and in the same variable order as the covariance 
matrix). Once this is done, an analysis of the mean structure in
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the EQS program is invoked by using the keyword ANALYSIS=MOMENTS in the specification section (see also the 
discussion in chap. 2). The use of the keyword ANALYSIS=MOMENTS signals to the EQS program that both the first-order 
and second-order moments of the observed variables are to be analyzed (recall from introductory statistics that means are first-
order moments, and their variances and covariances are second-order moments). Thus, the following EQS input file is created:

/TITLE 
ONE-FACTOR LATENT CHANGE ANALYSIS MODEL; 
/SPECIFICATIONS 
VARIABLES=4; CASES=161; ANALYSIS=MOMENTS; 
/LABELS 
V1=THU_IND1; V2=THU_IND2; V3=THU_IND3; V4=THU_IND4; 
F1=TIME_FAC; 
/EQUATIONS 
V1= F1+E1; 
V2=*F1+E2; 
V3=*F1+E3; 
V4=*F1+E4; 
F1=*V999+D1; 
/VARIANCES 
D1=*; E1 TO E4=*; 
/MATRIX 
307.46 
296.52 377.21 
295.02 365.10 392.47 
291.02 355.88 358.25 376.84 
/MEANS 
37.48 53.30 54.82 52.63 



/END;

Modeling Results

LISREL Program Results

The output produced by the LISREL input file created in the previous section is presented here. As before, comments are 
inserted at appropriate places to clarify portions of the output and redundant or irrelevant sections and repetitive page titles are 
omitted. The information on the goodness of fit of the model is presented before that on estimates, so that an interpretation of 
the estimates is only rendered after model tenability is ensured.
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PARAMETER SPECIFICATIONS 
 
  LAMBDA-Y 
 
     TIME_FAC 
    --------- 
THU_IND1    0 
THU_IND2    1 
THU_IND3    2 
THU_IND4    3 
 
  PSI 
 
     TIME_FAC 
     -------- 
       4 
 
  THETA-EPS 
 
     THU_IND1   THU_IND2  THU_IND3  THU_IND4 
    ---------   --------  --------  -------- 
            5          6         7         8 
  ALPHA 
     TIME_FAC 
    --------- 
            9

From this section, it is assured that the number and exact location of the nine model parametersincluding the latent mean 
parameter in the matrix ALphahave been communicated to the LISREL program.

                         GOODNESS OF FIT STATISTICS 
 
          CHI-SQUARE WITH 5 DEGREES OF FREEDOM = 10.86 (P = 0.054) 
              ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 5.86 
           90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0; 19.46) 
 
                     MINIMUM FIT FUNCTION VALUE = 0.068 
             POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.037 
            90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0; 0.12) 
           ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.086 
           90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.16) 
             P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.17 
 
               EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.18 
          90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.12 ; 0.24) 
                      ECVI FOR SATURATED MODEL = 0.13 



                     ECVI FOR INDEPENDENCE MODEL = 6.17 
 
    CHI-SQUARE FOR INDEPENDENCE MODEL WITH 6 DEGREES OF FREEDOM = 979.11 
                         INDEPENDENCE AIC = 987.11 
                             MODEL AIC = 28.86 
                           SATURATED AIC = 20.00
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                        INDEPENDENCE CAIC = 1003.43 
                            MODEL CAIC = 65.59 
                          SATURATED CAIC = 60.81 
 
                  ROOT MEAN SQUARE RESIDUAL (RMR) = 25.07 
                         STANDARDIZED RMR = 0.086 
                    GOODNESS OF FIT INDEX (GFI) = 0.97 
                ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.94 
               PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.49 
 
                       NORMED FIT INDEX (NFI) = 0.99 
                    NON-NORMED FIT INDEX (NNFI) = 0.99 
                 PARSIMONY NORMED FIT INDEX (PNFI) = 0.82 
                    COMPARATIVE FIT INDEX (CFI) = 0.99 
                    INCREMENTAL FIT INDEX (IFI) = 0.99 
                      RELATIVE FIT INDEX (RFI) = 0.99 
 
                          CRITICAL N (CN) = 223.29

Although not spectacular, all of the goodness-of-fit indices indicate an acceptable fit of the model for purposes of further 
discussion. And, although not displayed, the model residuals also do not leave a very different impression concerning model 
fit. One can therefore consider this model to be a reasonable approximation to the analyzed data and continue the discussion of 
the output, focusing on its parameter estimates. Note that the degrees of freedom for this model are 5 because this LCA model 
is fitted to the covariancemean matrix rather than only to the covariance matrix.

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
         LAMBDA-Y 
 
            TIME_FAC 
            -------- 
THU_IND1   1.00 
 
THU_IND2   1.40 
          (.02) 
          57.51 
 
THU_IND3   1.43 
          (.03) 
          55.68 
 
THU_IND4   1.38 
          (.03) 
          55.04
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COVARIANCE MATRIX OF ETA 
 
   TIME_FAC 
   -------- 
     185.75 
 
PSI 
 
   TIME_FAC 
   -------- 
     185.75 
    (21.98) 
       8.45 
 
THETA-EPS 
 
   THU_IND1   THU_IND2   THU_IND3   THU_IND4 
   --------   --------   --------   -------- 
      71.99      13.96      25.56      27.43 
     (8.44)     (3.07)     (4.05)     (4.08) 
       8.53       4.55       6.32       6.72 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
   THU_IND1   THU_IND2   THU_IND3   THU_IND4 
   --------   --------   --------   -------- 
        .72        .96        .94        .93 
 
ALPHA 
 
   TIME_FAC 
   -------- 
      38.14 
     (1.25) 
      30.50

Based on an evaluation of the factor loading estimates of the LY matrix, there seems to be evidence of mean growth along the 
studied dimension at all the posttests (Y2 to Y4) compared to the pretest (Y1). For example, this can be seen by comparing the 
confidence intervals (CI) of each posttest factor loading with that of the pretest (i.e., the factor loading fixed at 1). Adding 
twice the standard errors to and subtracting twice the standard errors from each of the posttest loadings results in the 95% CI: 
(1.36; 1.44), (1.37; 1.49), and (1.32; 1.44). Because none of these includes the value of the factor loading at pretest (i.e., the 
value 1), it is suggested that each of the posttest loadings is markedly higher than the pretest loading. Given the interpretation 
that factor loadings are ratios of mean values (see the discussion in the previous section), it appears that at each posttest there 
is considerable growth in performance compared to the pretest. Take special note, however, that using this confidence-interval 
approach is not equivalent to formal hypothesis testing. Specifically, it is possible that conclusions arrived at with this method 
may not be confirmed by a formal hypothesis test, especially when more than two parameters are si-
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multaneously compared. It is therefore recommended that this confidence-interval approach be used only as a rough 
explorative method to examine parameter relationships informally.

The three CIs considered here also overlap to a considerable degree, suggesting that the posttest factor loadings may be fairly 
similar in magnitude. To examine this suggestion formally via a statistical test, one can impose a restriction on the proposed 
LCA model and add the following LISREL EQuality command line:

EQ LY(2, 1) LY(3, 1) LY(4, 1)

As it turns out, this equality constraint leads to a substantial decrement in model fit and is associated with a chi-square value of 
T = 25.68 with df = 7. The difference in chi-square values compared to the originally proposed model is ∆T = 15.822 with ∆df 
= 2, and hence significant (the cut-off value for the pertinent chi-square distribution with 2 degrees of freedom is 5.99 at 
significance level .05). This finding indicates that the rate of change in means is not the same over all the posttests when 
compared to the pretest.

Because in the preceding model the factor loading for the third assessment occasion was highest and given the lack of equality 
for factor loadings observed previously, it seems reasonable to test if an identity exists only between the other two posttest 
occasions (i.e., between the second and fourth assessment occasions). Introducing this restriction, by deleting LY(3, 1) in the 
EQuality command line, leads to a chi-square value of T = 13.00 with df = 6. This value is somewhat better than that of the last 
restricted model; the chi-square difference is ∆T = 25.68 - 13.00 = 12.65 with ∆df = 7 6 = 1, but it is still significant (using the 
chi-square distribution cut-off value of 3.84 at the .05 level of significance). The finding indicates that the second posttest 
loading is not identical to that of the first and last posttest occasions. On the other hand, because this model is nested in the 
first model that was tested (i.e., the model with no restrictions at all on the factor loadings), one can also examine their chi-
square differences. Now the difference in their chi-square values is equal to ∆T = 13.00 10.86 = 2.14 with ∆df = 6 5 = 1 and is 
nonsignificant. This result indicates that the factor loadings for the second and fourth assessment occasions are equal to one 
another, and the factor loading of the third assessment occasion is the highest of all four loadings. In other words, it has been 
determined that the mean performance at the third assessment occasion is the highest, that the mean performance at the second 
and four assessment occasions are similar to one another, and that all posttest means are markedly higher than that observed at 
the pretest. All these results suggest that there has indeed been growth in test perfor-
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mance as a result of the cognitive intervention. At any subsequent assessment, subjects performed, on average, markedly better 
than they did at baseline measurement (pretest) before receiving the training program.

EQS Program Results

Only the EQS output for the last fitted model, in which the factor loadings of the second and fourth assessment occasion were 
set equal, are presented here. (Interested readers can easily verify that the results of the LISREL and EQS programs are 
identical by running the appropriate LISREL input file.)

PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 
 
ALL EQUALITY CONSTRAINTS WERE CORRECTLY IMPOSED

As indicated in previous chapters, this message is a reassurance that the program has not encountered problems stemming from 
lack of identification or other numerical difficulties and that the model is technically sound.



RESIDUAL COVARIANCE/MEAN MATRIX (S-SIGMA): 
 
                THU_IND1   THU_IND2   THU_IND3   THU_IND4    V999 
                  V  1       V  2       V  3       V  4     V999 
THU_IND1 V  1    49.773 
THU_IND2 V  2    38.180      3.408 
THU_IND3 V  3    28.761     -5.330    -14.699 
THU_IND4 V  4    32.680     -3.532    -12.180    -10.083 
   V999 V999     -0.658      0.241      0.134     -0.429    0.000 
 
                AVERAGE ABSOLUTE COVARIANCE RESIDUALS  =        13.3391 
   AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS  =        12.2124 
 
STANDARDIZED RESIDUAL MATRIX: 
 
                THU_IND1   THU_IND2   THU_IND3   THU_IND4    V999 
                  V  1       V  2       V  3       V  4     V999 
THU_IND1 V  1     0.162 
THU_IND2 V  2     0.112      0.009 
THU_IND3 V  3     0.083     -0.014     -0.037 
THU_IND4 V  4     0.096     -0.009     -0.032     -0.027 
   V999  V999    -0.038      0.012      0.007     -0.022    0.000 
 
                AVERAGE ABSOLUTE STANDARDIZED RESIDUALS   =      0.0440 
   AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS   =      0.0425
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LARGEST STANDARDIZED RESIDUALS: 
 
  V  1,V  1   V  2,V  1   V  4,V  1   V  3,V  1   V999,V  1 
    0.162       0.112       0.096       0.083      -0.038 
 
  V  3,V  3   V  4,V  3   V  4,V  4   V999,V  4   V  3,V  2 
   -0.037      -0.032      -0.027      -0.022      -0.014 
 
  V999,V  2   V  4,V  2   V  2,V  2   V999,V  3   V999,V999 
    0.012      -0.009       0.009       0.007       0.000 
 
DISTRIBUTION OF STANDARDIZED RESIDUALS 
 
      - - - - - - - - - - - - - - - - - - 
     !                                   ! 
   20-                                   - 
     !                                   ! 
     !                                   ! 
     !                                   ! 
     !                                   !         RANGE      FREQ  PERCENT 
   15-                                   - 
     !                                   !  1  -0.5  -  --       0    0.00% 
     !                                   !  2  -0.4  -  -0.5     0    0.00% 
     !                                   !  3  -0.3  -  -0.4     0    0.00% 
     !                                   !  4  -0.2  -  -0.3     0    0.00% 
   10-                                   -  5  -0.1  -  -0.2     0    0.00% 
     !                                   !  6   0.0  -  -0.1     8   53.33% 
     !               *                   !  7   0.1  -   0.0     5   33.33% 
     !               *                   !  8   0.2  -   0.1     2   13.33% 
     !               *                   !  9   0.3  -   0.2     0    0.00% 
    5-               *  *                !  A   0.4  -   0.3     0    0.00% 
     !               *  *                !  B   0.5  -   0.4     0    0.00% 



     !               *  *                !  C    ++  -   0.5     0    0.00% 
     !               *  *  *             !  --------------------------------- 
     !               *  *  *             !         TOTAL        15  100.00% 
      - - - - - - - - - - - - - - - - - - 
 
       1  2  3  4  5  6  7  8  9  A  B  C   EACH "*" REPRESENTS  1 RESIDUALS 
 
  GOODNESS OF FIT SUMMARY 
  INDEPENDENCE MODEL CHI-SQUARE =          978.875 ON   6 DEGREES OF FREEDOM 
  INDEPENDENCE AIC = 966.87451       INDEPENDENCE CAIC = 942.38608 
         MODEL AIC =   1.03236              MODEL CAIC = -23.45607 
 
  CHI-SQUARE =       13.032 BASED ON       6 DEGREES OF FREEDOM 
  PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS       0.04252 
  THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS         12.945. 
 
  BENTLER-BONETT NORMED    FIT INDEX=       0.987 
  BENTLER-BONETT NONNORMED FIT INDEX=       0.993 
  COMPARATIVE FIT INDEX             =       0.993

As discussed earlier, the chi-square value is equal to T = 13.032 with df = 6 (note that there is a slight difference in the chi-
square value from the
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one provided by LISREL, due to rounding errors and nonidentical implementations of numerical minimization algorithms for 
the fit function).

                      ITERATIVE SUMMARY 
 
                 PARAMETER 
ITERATION        ABS CHANGE        ALPHA        FUNCTION 
  1             1293.185180       1.00000     1903.47144 
  2             1069.007570       0.50000       15.59979 
  3              506.857086       1.00000        9.38928 
  4              118.013252       1.00000        7.51161 
  5                6.900131       1.00000        5.85625 
  6               57.521423       0.50000        4.72170 
  7               89.982933       0.50000        3.49870 
  8               98.234856       1.00000        2.13066 
  9               76.633858       1.00000        0.61933 
 10               22.431816       1.00000        0.08780 
 11                1.521491       1.00000        0.08147 
 12                0.070871       1.00000        0.08145 
 13                0.005703       1.00000        0.08145 
 14                0.000591       1.00000        0.08145

After an initially fairly large fit-function value, a subsequent clean convergence to the final solution is observed, which is what 
eventually matters for this example.



MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
THU_IND1=V1   =   1.000 F1    + 1.000 E1 
 
THU_IND2=V2   =   1.391*F1    + 1.000 E2 
                   .024 
                 58.355 
 
THU_IND3=V3   =   1.434*F1    + 1.000 E3 
                   .026 
                 55.712 
 
THU_IND4=V4   =   1.391*F1    + 1.000 E4 
                   .024 
                 58.355 
 
CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
TIME_FAC=F1   =  38.138*V999  + 1.000 D1 
                  1.250 
                 30.507

The latent mean is estimated at 38.138. As discussed earlier for the EQS input file, this is the estimated slope of the regression 
of the latent factor
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on the dummy variable V999 (i.e., the value of the only element of the ALPHA matrix in the LISREL output). Next comes the 
final model output part that includes information about the variances of the independent variables and the standardized 
solution.

VARIANCES OF INDEPENDENT VARIABLES 
---------------------------------- 
                  E                                D 
                 ---                              --- 
El -THU_IND1             71.996*I  D1 -TIME_FAC           185.691*I 
                          8.440 I                         21.974 I 
                          8.530 I                          8.450 I 
                                I                                I 
 
E2 -THU_IND2             14.390*I                                I 
                          3.078 I                                I 
                          4.674 I                                I 
                                I                                I 
 
E3 -THU_IND3             25.384*I                                I 
                          4.040 I                                I 
                          6.284 I                                I 
                                I                                I 
 
E4 -THU_IND4             27.511*I                                I 
                          4.118 I                                I 
                          6.680 I                                I 
                                I                                I 
 
STANDARDIZED SOLUTION: 
 
THU_IND1=V1  =      .849 F1      +     .529 E1 
THU_IND2=V2  =      .981*F1      +     .196 E2 
THU_IND3=V3  =      .968*F1      +     .250 E3 



THU_IND4=V4  =      .964*F1      +     .267 E4 
TIME_FAC=F1  =      .000*V999    +    1.000 D1

Level and Shape Model

The one-factor LCA model presented in the previous sections is a rather restricted model because only one factor is postulated 
to account for change over time. The level and shape (LS) model was first described in the late 1980s and popularized by 
McArdle and colleagues as a very useful two-factor LCA model in longitudinal research (McArdle, 1988; McArdle & 
Anderson, 1990). The LS model was specifically developed to study two important aspects of the process of latent change: (a) 
initial ability status at the beginning of a study (i.e., the Level factor), and (b) the change (in-
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crease or decrease) in ability status at the end of a study (i.e., the Shape factor). An example path diagram of a LS model with 
four successive measurement occasions (Y's) is presented in Fig. 13 using LISREL notation.

As can be seen by examining the model presented in Fig. 13, each observed variable Y loads on two factors, the Level and 
Shape factors (i.e., ηl = Initial status factor, and η2 = Change factor). Fitting the LS model to data and interpreting the Level 
and Shape factors are accomplished by fixing the majority of the factor loadings to a value of 1, as indicated in Fig. 13 by the 
1s attached to most of the paths. Fixing the loadings of the four assessment occasions on the level factor to 1 ensures that it is 
interpreted as an initial ability status factor (i.e., as a baseline level of the developmental process under investigation). Fixing 
the loading of the last assessment occasion on the Shape factor to 1 as well and that of the first assessment occasion on it to 0, 
ensures that this factor is interpreted as an overall ability change factor (i.e., shape of the change process). Freeing the loadings 
of the second and third assessment occasions on the Shape factor implies that they denote the part of overall ability change that 
occurs between the first and each of these later two measurement occasions (McArdle & Anderson, 1990). Finally, the Level 
and Shape factors are assumed to be correlated, although this need not always be the case.

Using this approach, the LS model achieves something that the simple one-factor model presented earlier cannotthe modeling 
of individual differences in change over the repeated assessment occasions, which are reflected in its Shape factor. The reason 
for this limitation in the

Figure 13. 
Example two-factor LCA model.
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one-factor model is that it cannot effectively separate the initial status from change in the studied construct. This limitation 
becomes particularly important when one is interested in studying correlates and predictors of growth or decline. In such 
instances, as shown in a later section, the LS model amplifies its advantages further.

Now to demonstrate an analysis based on the LS model, consider the data from the cognitive intervention study used for the 
one-factor model. Recall that four repeated assessments on N = 161 older adults were carried out using Thurstone's Standard 
Induction test (a) before the administration of the training program (Y1), and then (b) 1 week after (Y2), (c) 1 month after (Y3), 
and (d) 6 months after (Y4) completion of training. To determine the parameters of the model presented in Fig. 13, one must 
again follow the six rules outlined in chapter 1. Rules 1 and 2 imply that all error variances and latent variances and 
covariances are parameters. Rule 3 suggests that all factor loadings are parameters (except of course those that are already 
specified as fixed). Rule 4 is not applicable in this model because there are no explanatory relationships among the latent 
variables. Rule 6 is also not applicable in this model because, by fixing most of the factor loadings to 1, the metric of each 
latent variable is already set.

LISREL and EQS Input Files

The input files for both the LISREL and EQS programs are constructed by a simple modification of the input files for the one-
factor LCA model presented earlier. Only two changes are needed, adding information about the presence of a second factor in 
the model and then fixing the appropriate factor loadings. Making these changes provides the following LISREL and EQS 
input files. Note that in order to keep the error impacts on test performance equal across time and at the same time arrive at a 
more parsimonious model, the error variances are set to EQual one another in LISREL, and that /CONSTRAINTS command is 
introduced in EQS.

LISREL Input File

LEVEL AND SHAPE MODEL 
DA NI=4 NO=161 
CM 
307.46 
296.52 377.21 
295.02 365.10 392.47
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291.02 355.88 358.25 376.84 
ME 
37.48 53.30 54.82 52.63 
LA 
THU_IND1 THU_IND2 THU_IND3 THU_IND4 
MO NY=4 NE=2 AL=FR PS=SY,FR 
LE 
LEVEL SHAPE 
VA 1 LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 1) 
VA 1 LY(4, 2) 
FR LY(2, 2) LY(3, 2) 
EQ TE(1)-TE(4) 
OU

EQS Input File



/TITLE 
LEVEL AND SHAPE MODEL; 
/SPECIFICATIONS 
VARIABLES=4; CASES=161; 
/LABELS 
LA 
VI=THU_IND1; V2=THU_IND2; V3=THU_IND3; V4=THU_IND4; 
F1=LEVEL; F2=SHAPE; 
/EQUATIONS 
VI=F1+E1; 
V2=F1+*F2+E2; 
V3=F1+*F2+E3; 
V4=F1+F2+E4; 
Fl=*V999+D1; 
F2=*V999+D2; 
/VARIANCES 
D1 TO D2=*; E1 TO E4=*; 
/COVARIANCES 
D1,D2=*; 
/CONSTRAINTS 
(E1,E1)=(E2,E2)=(E3,E3)=(E4,E4); 
/MATRIX 
307.46 
296.52 377.21 
295.02 365.10 392.47 
291.02 355.88 358.25 376.84
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/MEANS 
37.48 53.30 54.82 52.63 
/END;

Modeling Results

LISREL Program Results

The output produced by the LISREL input file in the previous section is presented next. (As before, comments are inserted at 
appropriate places to clarify portions of the output and some sections have been omitted.)

PARAMETER SPECIFICATIONS 
 
          LAMBDA-Y 
 
              LEVEL      SHAPE 
              -----      ----- 
 THU_IND1         0          0 
 THU_IND2         0          1 
 THU_IND3         0          2 
 THU_IND4         0          0 
 
          PSI 
 
              LEVEL      SHAPE 
              -----      ----- 
    LEVEL         3 
    SHAPE         4          5 
 
          THETA-EPS 



 
           THU_IND1     THU_IND2     THU_IND3     THU_IND4 
           --------     --------     --------     -------- 
                  6            6            6            6 
 
          ALPHA 
 
              LEVEL        SHAPE 
              -----        ----- 
                  7            8

Observe from this section that the number and location of the parameters have been correctly communicated to the LISREL 
program.

                           GOODNESS OF FIT STATISTICS 
 
              CHI-SQUARE WITH 6 DEGREES OF FREEDOM = 6.79 (P = 0.34) 
                 ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 0.79 
              90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 11.53)
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                       MINIMUM FIT FUNCTION VALUE = 0.042 
             POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.0049 
            90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.072) 
           ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.029 
           90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.11) 
             P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.57 
 
                EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.14 
            90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.11 ; 0.18) 
                        ECVI FOR SATURATED MODEL = 0.13 
                      ECVI FOR INDEPENDENCE MODEL = 6.17 
 
   CHI-SQUARE FOR INDEPENDENCE MODEL WITH 6 DEGREES OF FREEDOM = 978.84 
                        INDEPENDENCE AIC = 986.84 
                            MODEL AIC = 22.79 
                          SATURATED AIC = 20.00 
                       INDEPENDENCE CAIC = 1003.17 
                            MODEL CAIC = 55.44 
                          SATURATED CAIC = 60.81 
 
                  ROOT MEAN SQUARE RESIDUAL (RMR) = 1.80 
                        STANDARDIZED RMR = 0.0050 
                    GOODNESS OF FIT INDEX (GFI) = 0.98 
                ADJUSTED GOODNESS OF FIT INDEX (AGFI) = 0.97 
                PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 0.59 
 
                     NORMED FIT INDEX (NFI) = 0.99 
                   NON-NORMED FIT INDEX (NNFI) = 1.00 
                PARSIMONY NORMED FIT INDEX (PNFI) = 0.99 
                   COMPARATIVE FIT INDEX (CFI) = 1.00 
                   INCREMENTAL FIT INDEX (IFI) = 1.00 
                     RELATIVE FIT INDEX (RFI) = 0.99 
 
                         CRITICAL N (CN) = 397.43



All of the goodness-of-fit indices support an acceptable model fit (and although they are not presented, the model residuals 
support the same conclusion). Note in particular the relatively low chi-square value (observe its degrees of freedom and p 
value), as well as the fairly low RMSEA. In addition, note that the left endpoint of its confidence interval as well as those of 
the noncentrality parameter and population fit function minimum are 0.

It is important to note that the LS model has a much better fit than the one-factor LCA model that is fitted to this data in the 
preceding section. The reason is that the LS model uses two factors to account for change and, as a consequence, uses two 
factor means that specifically account for
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the growth in the variable means beyond factor loadings explaining the structure of their covariance matrix.

LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
          LAMBDA-Y 
 
               LEVEL   SHAPE 
               -----   ----- 
THU_IND1        1.00     - - 
 
THU_IND2        1.00    1.03 
                       (.03) 
                       31.41 
 
THU_IND3        1.00    1.14 
                       (.03) 
                       32.70 
 
THU_IND4        1.00    1.00

Using again the CI approach presented in the discussion of the one-factor model, note that there is some indication of a marked 
ability change from the first assessment to the second assessment occasion (subtract twice the standard error from and add 
twice the standard error to parameter estimate to obtain the pertinent CI). Indeed, at the second assessment occasion, the CI of 
the loading on the Shape factor is (.97; 1.09), whereas the loading on the first assessment occasion is the constant 0 (and hence 
completely to the left of this CI). The same result holds for the remaining assessment occasionsability at any of them is 
markedly higher than that at the first assessment occasion. In fact, ability growth seems highest at the third assessment 
occasionthe CI of its loading on the Shape factor is (1.08; 1.20) and only marginally overlaps with the CI of its loading on the 
Shape factor at the second assessment occasion. Also, because the Shape factor loading for the fourth assessment occasion is 
set equal to 1 (and thus completely to the left of the CI), one can conclude that a considerable decline in test performance 
occurred from the third to the fourth assessment occasion. Interestingly, this finding was also observed with the single-factor 
model in Fig. 12, perhaps reflecting a wearing off of the cognitive intervention effect.

COVARIANCE MATRIX OF ETA 
 
             LEVEL     SHAPE 
             -----     ----- 
 LEVEL      285.00 
 SHAPE        8.74     50.39
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           PSI 
 
             LEVEL     SHAPE 
             -----     ----- 
 LEVEL      285.00 
           (34.38) 
              8.29 
 
 SHAPE        8.74     50.39 
           (12.28)    (9.06) 
               .71      5.56

Note that the covariance between the Level and Shape factors is nonsignificant. Such a finding is possible in empirical 
research. Substantively, it indicates that the starting position on the Induction construct is not necessarily always predictive of 
the amount of growth along this dimension. Of course, one should interpret this finding with some caution, especially because 
the sample size used in the study is only 161 and cannot really be considered large (and is used here only for illustrative 
purposes).

THETA-EPS 
 
THU_IND1   THU_IND2   THU_IND3   THU_IND4 
--------   --------   --------   -------- 
   22.29      22.29      22.29      22.29 
  (1.76)     (1.76)     (1.76)     (1.76) 
   12.65      12.65      12.65      12.65 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
THU_IND1   THU_IND2   THU_IND3   THU_IND4 
--------   --------   --------   -------- 
     .93        .94        .94        .94 
 
ALPHA 
 
   LEVEL      SHAPE 
   -----      ----- 
   37.48      15.24 
  (1.39)      (.76) 
   27.04      20.03

The ALPHA estimates provided here represent the mean initial ability status and mean overall ability change across the four 
assessment occasions of the study. The results indicate that the average subject performance is substantially higher at the end 
of the study, and hence the cognitive training had a lasting effect.
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EQS Program Results

The EQS input file described in the previous section produces the following results for the LS model examined.

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
 
PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 
 
ALL EQUALITY CONSTRAINTS WERE CORRECTLY IMPOSED

As usual, this portion of the output is inspected in order to ensure that there are no problems with the implementation of the 
model, it is technically sound, and its coding into the EQS notation is correct.

RESIDUAL COVARIANCE/MEAN MATRIX  (S-SIGMA): 
 
                THU_IND1   THU_IND2   THU_IND3   THU_IND4     V999 
                  V  1       V  2       V  3       V  4      V999 
THU_IND1 V  1     0.172 
THU_IND2 V  2     2.487     -1.968 
THU_IND3 V  3     0.078      1.879      0.091 
THU_IND4 V  4    -2.719      1.031     -2.750      1.693 
   V999  V999     0.004      0.073      0.008     -0.085     0.000 
 
               AVERAGE ABSOLUTE COVARIANCE RESIDUALS    =        1.0026 
  AVERAGE OFF-DIAGONAL ABSOLUTE COVARIANCE RESIDUALS    =        1.1114 
 
STANDARDIZED RESIDUAL MATRIX: 
 
                THU_IND1   THU_IND2   THU_IND3   THU_IND4     V999 
                  V    1     V  2       V  3       V  4      V999 
THU_IND1 V  1     0.001 
THU_IND2 V  2     0.007     -0.005 
THU_IND3 V  3     0.000      0.005      0.000 
THU_IND4 V  4    -0.008      0.003     -0.007      0.004 
 V999V999         0.000      0.004      0.000     -0.004     0.000 
 
               AVERAGE ABSOLUTE STANDARDIZED RESIDUALS    =       0.0033 
  AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS    =       0.0039 
 
LARGEST STANDARDIZED RESIDUALS: 
 
   V  4,V  1    V  2,V  1    V  4,V  3   V  2,V  2   V  3,V  2 
    -0.008        0.007        -0.007     -0.005       0.005 
 
   V  4,V  4    V999,V  4    V999,V  2   V  4,V  2   V  1,V  1 
     0.004       -0.004        0.004       0.003       0.001 
 
   V999,V  3    V  3,V  3    V  3,V  1   V999,V  1   V999,V999 
     0.000        0.000        0.000       0.000       0.000
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DISTRIBUTION  OF  STANDARDIZED  RESIDUALS 
 
     - - - - - - - - - - - - - - - - - - - - 
     !                                     ! 
   20-                                     - 
     !                                     ! 
     !                                     ! 
     !                                     ! 
     !                                     !           RANGE      FREQ  PERCENT 
   15-                                     - 
     !                                     !    1  -0.5  -  --       0    0.00% 
     !                                     !    2  -0.4  -  -0.5     0    0.00% 
     !                                     !    3  -0.3  -  -0.4     0    0.00% 
     !                                     !    4  -0.2  -  -0.3     0    0.00% 
   10-                  *                  -    5  -0.1  -  -0.2     0    0.00% 
     !                  *                  !    6   0.0  -  -0.1     5   33.33% 
     !                  *                  !    7   0.1  -   0.0    10   66.67% 
     !                  *                  !    8   0.2  -   0.1     0    0.00% 
     !                  *                  !    9   0.3  -   0.2     0    0.00% 
    5-                  *  *               !    A   0.4  -   0.3     0    0.00% 
     !                  *  *               !    B   0.5  -   0.4     0    0.00% 
     !                  *  *               !    C    ++  -   0.5     0    0.00% 
     !                  *  *               !     - - - - - - - - - - - - - - - 
     !                  *  *               !           TOTAL        15  100.00% 
     - - - - - - - - - - - - - - - - - - - - 
 
       1  2  3  4  5  6  7  8  9  A  B  C       EACH "*" REPRESENTS  1 RESIDUALS

Based on this (and as concluded for the LISREL output), none of the standardized residuals is large (i.e., the LS model 
accounts quite well for all variable variances and covariances).

GOODNESS  OF  FIT  SUMMARY 
 
INDEPENDENCE  MODEL  CHI-SQUARE =       978.875 ON      6 DEGREES  OF  FREEDOM 
 
INDEPENDENCE  AIC =    966.87451  INDEPENDENCE  CAIC =   942.38608 
       MODEL  AIC =     -5.20723         MODEL  CAIC =   -29.69566 
 
CHI-SQUARE =          6.793 BASED ON    6 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS      0.34044 
HE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS                 6.630. 
 
BENTLER-BONETT NORMED    FIT  INDEX=     0.993 
BENTLER-BONETT NONNORMED FIT  INDEX=     0.999 
COMPARATIVE FIT INDEX              =     0.999

Once again, all goodness-of-fit indices support a well-fitting model whose normed, nonnormed, and comparative fit indices are 
all very close to 1.
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                     ITERATIVE SUMMARY 
 
                 PARAMETER 
ITERATION        ABS CHANGE           ALPHA          FUNCTION 
    1            1262.579590         1.00000          7.83688 
    2             201.485840         1.00000          3.73936 
    3              14.295440         1.00000          2.21572 
    4               8.654326         1.00000          0.67292 
    5              13.698804         1.00000          0.05055 
    6               1.476818         1.00000          0.04246 
    7               0.005894         1.00000          0.04245 
    8               0.001118         1.00000          0.04246 
    9               0.000006         1.00000          0.04245

Observe that a direct convergence to the final solution was reached within fewer than 10 iterations.

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
THU_IND1=V1  =   1.000 F1    + 1.000 E1 
 
THU_IND2=V2  =   1.000 F1    + 1.034*F2   + 1.000 E2 
                                .033 
                              31.413 
 
THU_IND3=V3  =   1.000 Fl    + 1.138*F2   + 1.000 E3 
                                .035 
                              32.703 
 
THU_IND4=V4  =   1.000 F1    + 1.000 F2   + 1.000 E4 
 
CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
 
LEVEL =F1    =  37.476*V999  + 1.000 D1 
                 1.386 
                27.044 
 
SHAPE =F2    =  15.238*V999  + 1.000 D2 
                 .761 
               20.028 
 
VARIANCES OF INDEPENDENT VARIABLES 
----------------------------------- 
                 E                            D 
                ---                          --- 
E1 -THU_IND1           22.285*I D1 -LEVEL           285.003*I 
                        1.762 I                      34.378 I 
                       12.649 I                       8.290 I 
                              I                             I 
E2 -THU_IND2           22.285*I D2 -SHAPE            50.386*I 
                        1.762 I                       9.062 I 
                       12.649 I                       5.560 I 
                              I                             I
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E3 -THU_IND3           22.285*I                             I 
                        1.762 I                             I 
                       12.649 I                             I 
                              I                             I 
E4 -THU_IND4           22.285*I                             I 
                        1.762 I                             I 
                       12.649 I                             I 
                              I                             I 
 
COVARIANCES AMONG INDEPENDENT VARIABLES 
--------------------------------------- 
 
                 E                            D 
                ---                          --- 
                              I D2 -SHAPE             8.736*I 
                              I D1 -LEVEL            12.278 I 
                              I                        .712 I 
                              I                             I 
 
CORRELATIONS AMONG INDEPENDENT VARIABLES 
---------------------------------------- 
 
                 E                            D 
                ---                          --- 
                              I D2 -SHAPE              .073*I 
                              I D1 -LEVEL                   I 
                              I                             I

Note again the nonsignificant covariance between the Level and Shape factors (and recall the earlier discussion of this result). 
A nice feature of the EQS program is that it also presents this estimated value as a correlation coefficient between independent 
variables (although rather weak at .073). (It is important to recall that the asterisk attached to this correlation estimate denotes 
only that the pertinent covariance has been estimated by the program as a model parameter, not that it is significant.)

Studying Correlates and Predictors of Latent Change

The LS model is also very useful for examining correlates and predictors of change. Such concerns arise frequently in practice 
when a researcher is interested in determining the specific behavioral or social characteristics of individuals that are related to 
the observed patterns of change. For example, in the cognitive intervention study of older adults presented earlier, there may 
be an interest in finding out which kinds of individuals exhibit the most salient improvement or least pronounced decline along 
the dimensions studied. The special property of the LS model that makes it such a useful means for addressing these types of 
queries is the fact that it parameterizes overall ability change in one of its latent variables, viz. the Shape factor.
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To permit the study of correlates and predictors of change, the LS model is extended to include covariates and relate them to 
the Level and Shape factors. Specifically, by focusing on the correlations of the Shape factor with putative predictors, one 
obtains estimates of the degrees of interrelationship between the latter and overall latent change. For example, if these 
correlations are notable and positive, individuals with high values on the correlates tend to be among those who improve most, 
and individuals with low values tend to improve the least. Conversely, if the correlations are negative, individuals with high 
correlate values tend to be among those who improve least, and individuals with low correlate values tend to improve the 
most. Alternatively, when studying correlates of decline, if these correlations are marked and positive, then individuals with 
high correlate values tend to be among those who decline least, and individuals with low covariate values tend to decline the 
most. If the correlations are negative, individuals with high correlate values tend to be among those who decline the most, and 
individuals with low correlate values tend to decline the least.

This extension to the LS model is displayed graphically in Fig. 14 for the case of a latent covariate (η3) with two indicators 
(Y5 and Y6) using the cognitive intervention study on older adults presented earlier, which is examined further in the next 
section. It is important to note that the only difference between the LS model presented in Fig. 14 and the LS model in Fig. 13 
is the added latent covariate. It must be emphasized that for the purposes of studying predictors of change one can include any 
number of covariates in an appropriately extended LS model. In fact, the covariates may be (a) manifest or latent, (b) perfectly 
measured or fallible, or (c) once or repeatedly assessed. In the case of (c), one may also consider modeling the repeated 
assessments of the covariates themselves in terms of a pertinent LS model (e.g., Raykov, 1995).

Before proceeding to the analyses of the cognitive intervention data (discussed in the sections on the one-factor LCA model) 
based on the LS model in Fig. 14, a useful generalization of the modeling approach, for studying multiple groups called a 
multisample analysis, is introduced.

Multisample Analysis

Many studies, especially in the behavioral and social sciences, examine differences or similarities between two or more groups 
in the structure of a phenomenon under investigation. For example, groups may differ from one another in terms of age, 
educational level, nationality, ethnicity, religious affiliation, or political affiliation. When the same phenomenon is studied in 
all of them, it is important to have a methodological means that allows researchers to compare the groups along special 
dimensions of interest as well as to pinpoint their similarities or lack thereof. SEM offers a
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Figure 14. 
Example latent covariate LCA model.

method for conducting these types of comparisons using a modification of its general model-fitting approach. This extension 
accounts for the fact that group comparisons necessitate the simultaneous estimation of models in all the samples involved. To 
this end, the model(s) of interest are postulated within each of the groups and then their simultaneous estimation is carried out. 
This is accomplished by minimizing a compound fit function that results by adding the fit functions across the groups, thereby 
weighting them proportionately to the sizes of the available samples. This permits the simultaneous estimation of all 
parameters of the models in all groups. At the minimum of that fit function, a test of the overall model is possible, just as in the 
case of a single population (see chap. 1). It is also
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possible to impose restrictions on model parameters within as well as across groups, and to estimate and test the overall model 
subject to these constraints. This is achieved in a way that is very similar to fitting a model to a single group, and accounts for 
the fact that one is dealing with an extended simultaneous model across all groups in which the (cross-group) restricted 
parameters satisfy the imposed constraint(s).

Correlates of Change in the Cognitive Intervention Study

In this section the multisample approach is demonstrated for the extended LS model for studying the correlates of change 
presented in Fig. 14. It is applied to data based partly on the Baltes et al. (1986) study, which was originally conceptualized 
and conducted as a two-group investigation. In the previous sections, only the data from the experimental group (N = 161) was 
analyzed. There was also a no-contact control group with N = 87 older adults, who did not receive any cognitive training. All 
members of the control group were administered the same test battery at the same assessment points as the experimental 
group. Now a two-group comparison can be conducted to determine whether the Figural relations construct can be considered 
to be a covariate of performance improvement. Two measures are used as indicators of the Figural relations construct, a figural 
relations test, and a culture-fair test. By conducting the multisample analysis, one is able to do the following: (a) ascertain if 
there is improvement in performance in the control and experimental groups, (b) examine group similarities and differences in 
the pattern of change across the 6 months of the study, (c) see if pretest Figural relations is predictive of subsequent 
improvement in Induction test performance, and (d) explore whether the two groups differ with respect to point c.

Input File, Multisample Analysis

The LISREL program must be advised that a multisample analysis is needed. In order to convey this information, a number of 
new commands lines are introduced in the following input file.

STUDYING COVARIATES AND PREDICTORS OF CHANGE * EXP. GR. 
DA NI=6 NO=161 NG=2 
CM 
307.46 
296.52 377.21 
295.02 365.10 392.47 
291.02 355.88 358.25 376.84 
203.47 229.25 221.49 229.92 260.76 
169.40 180.76 185.95 181.70 155.22 159.38
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ME 
37.48 53.30 54.82 52.63 49.48 48.39 
LA 
THU_IND1 THU_IND2 THU_IND3 THU_IND4 FR11 FR12 
MO NY=6 NE=3 AL=FR PS=SY,FR 
LE 
LEVEL SHAPE FIG_REL1 
VA 1 LY(1, 1) LY(2, 1) LY(3, 1) LY(4, 1) 
VA 1 LY(4, 2) 
FR LY(2, 2) LY(3, 2) 
VA 1 LY(5, 3) 
FR LY(6, 3) 
EQ TE(1)-TE(4) 
ST .1 ALL 
ST 100 PS(1, 1) PS(2, 2) PS(3, 3) TE(1)-TE(6) 
OU NS 
* CONTROL GROUP 
DA NI=35 NO=87 
CM 
319.22 
326.42 410.25 
318.80 378.98 409.07 



333.06 388.68 390.59 432.70 
171.01 209.41 215.96 213.76 262.79 
149.82 192.75 193.69 200.82 148.86 161.98 
ME 
38.62 44.96 47.88 48.01 51.97 49.81 
LA 
THU_IND1 THU_IND2 THU_IND3 THU_IND4 FR11 FR12 
MO LY=PS PS=PS TE=PS AL=PS 
LE 
LEVEL SHAPE FIG_REL1 
OU

The LISREL input file has two main parts that pertain to the model specification for each of the two groups under 
consideration. Note that in the title line (which will recur as a page title throughout the output for the first group) there is an 
indication that the first portion of the input contains the information for the experimental group. The keyword NG=2 advises 
the program of the fact that a two-group analysis is to be performed (NG for Number of Groups). Also note that the number of 
analyzed variables is now six because the earlier LS model has been extended to include the two indicators of the covariate 
factor, as presented in Fig. 14. The remaining portion of the first part of the input file is largely the same
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as that for the single-group LS model presented in the previous section; this is because the portion defines exactly the same 
model for the experimental group. The only difference is that here there are three latent variablesin addition to the Level and 
Shape factors, Figural relations is also included in the model.

The three latent means are next declared to be model parameters by the keyword AL=FR. Then the latent covariance matrix is 
defined as having all its elements as parameters by the keyword PS=SY,FR (i.e., as being symmetric and consisting of free 
parameters only). The remaining three matrices (LY, BE, and TE) are not mentioned in this line because they should be at 
their defaults. (At the default settings, LY is full and fixed; BE is a zero matrix, i.e., there are no latent explanatory 
relationships; and TE is diagonal and free, i.e., having model parameters along its diagonal that are all error variances and 
parameters.) The free factor loadings are then declared: one for a Figural relations indicator, using the keyword FR LY(5, 3); 
and two pertaining to the repeated assessments with the Induction test. Next the scale of the Figural relations construct is set 
by fixing its other factor loading to 1.

After imposing the constraint on the corresponding four error variances, one provides start values for all the model parameters. 
This activity is sometimes needed in practice because structural modeling programs are not always able to come up with their 
own good start values. Thus they need an initial jump start to find the road toward the final solution. To achieve this, first start 
all parameters at a value of 0.1 and then, with the next line, override this choice only for the variances by starting them at a 
value of 100. This choice of large start values for all variance parameters (pertaining to both latent and observed variables) and 
small values for all the other model parameters (including factor loadings and independent variable covariances) is in general a 
good way of providing initial values for model parameters. It actually contributes to the stability of the numerical subroutine 
during the fit-function minimization process. The last line pertaining to the experimental group signals the end of the input by 
the keyword OU, and asks the program to use the specifically supplied start values instead of computing its own, as it would 
otherwise. This activity is achieved by the added keyword NS (for No Start values), which indicates that the program should 
not use its computed start values, but rather those provided by the user.

The next input line provides a title for the output portions pertaining to the results for the second group (i.e., the control 
group). This title line will also appear at the beginning of any output page that presents results of analyses for the control 
group. Thus, it is advisable to always have a title line to label each group in a multisample analysis. The next data line advises 
the program of the number of variables underlying the following covariance matrix and means row, as well as sample size in 
the control
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group. The model line then notifies the program that in this group a model is being defined in which all matrices have the same 
pattern and parameters as those of the preceding group (i.e., the experimental group). This is achieved by stating each matrix 
name followed by the keyword PS (for same Pattern and same Start values; unmentioned matrices are assumed to be invariant 
across groups). The effect of this is that exactly the same model is defined in the control group as in the experimental one, and 
its parameters are assigned the same initial values as in that group. The last line OU signals the end of the input file for the 
current group, and hence for the whole model because it is being fitted to two groups.

Modeling Results, Multisample Analysis

The LISREL input file generates the following output (again, omitting irrelevant or redundant sections and inserting comments 
where appropriate).

EXPERIMENTAL GROUP 
 
PARAMETER SPECIFICATIONS 
 
         LAMBDA-Y 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
THU_IND1           0          0          0 
THU_IND2           0          1          0 
THU_IND3           0          2          0 
THU_IND4           0          0          0 
    FR11           0          0          0 
    FR12           0          0          3 
 
        PSI 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
   LEVEL           4 
   SHAPE           5          6 
FIG_REL1           7          8          9 
 
        THETA-EPS 
 
            THU_IND1   THU_IND2   THU_IND3   THU_IND4   FRll   FR12 
            --------   --------   --------   --------   ----   ---- 
                  10         10         10         10     11     12 
 
        ALPHA 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
                  13         14         15
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* CONTROL GROUP 
 
PARAMETER SPECIFICATIONS 
 
         LAMBDA-Y 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
THU_IND1           0          0          0 
THU_IND2           0         16          0 
THU IND3           0         17          0 
THU_IND4           0          0          0 
    FR11           0          0          0 
    FR12           0          0         18 
 
        PSI 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
   LEVEL          19 
   SHAPE          20         21 
FIG_REL1          22         23         24 
 
        THETA-EPS 
 
            THU_IND1   THU_IND2   THU_IND3   THU_IND4   FR11   FR12 
            --------   --------   --------   --------   ----   ---- 
                  25         25         25         25     26     27 
 
        ALPHA 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
                  28         29         30

First, make sure that the numbering and positions of the model parameters are correct for both groups. Note that the numbering 
of model parameters begins in the experimental groups and continues in the control group, rather than starting anew. This is 
due to the fact that LISREL has been programmed to perform a simultaneous analysis rather than two separate analyses. This 
feature will become especially important in the next fitted model, when cross-group parameter constraints are introduced.

Before beginning the parameter estimate interpretation, inspect the goodness-of-fit section of the output.

                       GOODNESS OF FIT STATISTICS 
 
        CHI-SQUARE WITH 24 DEGREES OF FREEDOM = 27.33 (P = 0.29) 
 
                    CONTRIBUTION TO CHI-SQUARE = 4.91 
             PERCENTAGE CONTRIBUTION TO CHI-SQUARE = 17.98 
            ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 3.33 
         90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 20.46)

  
page_183



Page 184

                    MINIMUM FIT FUNCTION VALUE = 0.11 
            POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.014 
           90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.083) 
          ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.024 
          90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.059) 
             P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.87 
 
               EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.36 
          90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.21 ; 0.29) 
                      ECVI FOR SATURATED MODEL = 0.17 
                    ECVI FOR INDEPENDENCE MODEL = 8.07 
 
 CHI-SQUARE FOR INDEPENDENCE MODEL WITH 30 DEGREES OF FREEDOM = 1972.71 
                       INDEPENDENCE AIC = 1996.71 
                            MODEL AIC = 87.33 
                          SATURATED AIC = 84.00 
                       INDEPENDENCE CAIC = 2050.88 
                           MODEL CAIC = 222.73 
                         SATURATED CAIC = 273.56 
 
                  ROOT MEAN SQUARE RESIDUAL (RMR) = 8.43 
                        STANDARDIZED RMR = 0.024 
                    GOODNESS OF FIT INDEX (GFI) = 0.98 
               PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 1.12 
 
                       NORMED FIT INDEX (NFI) = 0.99 
                     NON-NORMED FIT INDEX (NNFI) = 1.00 
                  PARSIMONY NORMED FIT INDEX (PNFI) = 0.79 
                    COMPARATIVE FIT INDEX (CFI) = 1.00 
                    INCREMENTAL FIT INDEX (IFI) = 1.00 
                      RELATIVE FIT INDEX (RFI) = 0.98 
                         CRITICAL N (CN) = 387.84

All indices point to an acceptable fit of the overall two-group model. Note the low magnitude of the chi-square value 
compared to the model degrees of freedom (observe its p value), as well as the RMSEA index, which is well below the 
proposed threshold level of .05. Furthermore, the left endpoints of the confidence intervals for RMSEA, the noncentrality 
parameter, and the population minimal fit-function value are all at their best value of 0. It is important to note that the degrees 
of freedom are twice those for the extended LS model when it is fitted to only a single group. The same holds true for the 
model parameterstheir number is twice that of the extended LS model when fitted to only one group. This result will always be 
true whenever the same model is postulated in two distinct groups and no cross-group parameter constraints are imposedboth 
the degrees of freedom and number of parameters in the overall two-group model are exactly two times those if the model 
were fitted to either of the groups separately.
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Given the satisfactory fit indices of the overall two-group model, one can now continue with parameter interpretation.

EXPERIMENTAL GROUP 
 
LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
         LAMBDA-Y 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
THU_IND1        1.00        - -        - - 
 
THU IND2        1.00       1.03        - - 
                         (0.03) 
                          31.43 
 
THU_IND3        1.00       1.14        - - 
                         (0.03) 
                          32.72 
 
THU_IND4        1.00       1.00        - - 
 
    FR11         - -        - -       1.00 
 
    FR12         - -        - -       0.97 
                                    (0.02) 
                                     61.34

The first four lines of the factor loading matrix contain the same results as those in the preceding section in which the 
experimental group data was analyzed with the LS model, and hence warrant the same interpretations. The last two lines of the 
matrix pertain to the added covariate indicators and it is clear that they load quite similarly on the Figural relations 
factorobserve the standard error of the free factor loading and its directly obtained confidence interval (0.93; 1.01), which 
includes 1, the factor loading of the other latent covariate indicator.

COVARIANCE MATRIX OF ETA 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
   LEVEL      285.00 
   SHAPE        8.74      50.32 
FIG_REL1      182.51      15.44     150.63 
 
        PSI 
 
               LEVEL      SHAPE   FIG_REL1 
               -----      -----   -------- 
   LEVEL      285.00 
             (34.38) 
                8.29 
 
   SHAPE        8.74      50.32 
             (12.27)     (9.05) 
                0.71       5.56
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FIG_REL1      182.51      15.44     150.63 
             (23.32)     (9.17)    (19.92) 
                7.83       1.68       7.56

From the last set of lines in the PSI matrix one can infer that there is a weak (linear) relationship between Figural relations as a 
putative correlate of change along the Induction dimension. The covariance between the shape factor and initial Figural 
relations falls short of statistical significance: estimate = 15.44, standard error = 9.17, and t value = 1.68. Although this result 
may be a consequence of the limited sample size (as mentioned before), it appears that even though the Figural relations 
construct represents a correlate of the initial status in inductive-reasoning ability, it has a limited capability for predicting the 
amount of improvement along the Induction dimension.

THETA-EPS 
 
             THU_IND1   THU_IND2   THU_IND3   THU_IND4   FR11      FR12 
             --------   --------   --------   --------   -------   ------- 
                22.29      22.29      22.29      22.29     80.44     28.08 
               (1.76)     (1.76)     (1.76)     (1.76)   (10.98)    (6.71) 
                12.65      12.65      12.65      12.65      7.32      4.18 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
             THU_IND1   THU_IND2   THU_IND3   THU_IND4   FR11      FR12 
             --------   --------   --------   --------   -------   ------- 
                  .93        .94        .94        .94       .65       .83 
 
ALPHA 
 
                LEVEL      SHAPE   FIG_REL1 
                -----   --------   -------- 
                37.48      15.23      49.78 
               (1.39)      (.76)     (1.19) 
                27.05      20.02      41.66 
 
                         GOODNESS OF FIT STATISTICS 
 
                     CONTRIBUTION TO CHI-SQUARE = 22.42 
               PERCENTAGE CONTRIBUTION TO CHI-SQUARE = 82.02

The goodness-of-fit statistics represent the chi-square contribution by the experimental group to the overall fit of the model. 
Although it is rather difficult to judge this contribution quantity in a simultaneous modeling analysis, one can always relate it 
to the degrees of freedom for a model involving no group constraints. In this case, the degrees of freedom are 12 (half these of 
the overall model) and so this chi-square value does not seem excessively large. Thus, informally, in the experimental group 
there is no indication of serious model misfit.
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CONTROL GROUP 
 
LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
LAMBDA-Y 
 
            ETA 1       ETA 2       ETA 3 
         --------    --------    -------- 
VAR 1        1.00         - -         - - 
 
VAR 2        1.00        0.70         - - 
                       (0.07) 
                         9.56 
 
VAR 3        1.00        0.98         - - 
           (0.08) 
            12.03 
 
VAR 4        1.00        1.00         - - 
 
VAR 5         - -         - -        1.00 
 
VAR 6         - -         - -        0.96 
                                   (0.02) 
                                    43.40

Although the results for the control group share some similarities with those observed in the experimental group (i.e., the 
loadings of the covariates on the Figural relations construct are quite similar to one another), there are some differences. 
Despite the fact that there is also growth in mean performance for the control group (i.e., the Shape factor loadings are 
significant), looking closely at the confidence intervals for THU_IND3 (0.82; 1.14), reveals that performance at THU_IND3 is 
the same as that at final assessment (i.e., THU_IND4). This is an aspect in which the two groups differ. Although in the 
experimental group there is a drop at the last assessment occasion, in the control group there is an indication of steady mean 
performance at the last two assessment occasions.

COVARIANCE MATRIX OF ETA 
 
                 LEVEL     SHAPE   FIG_REL1 
               -------   -------   -------- 
LEVEL           293.33 
SHAPE            38.71     27.51 
FIGREL1         161.28     49.40     153.54 
 
       PSI 
 
                 LEVEL     SHAPE   FIG_REL1 
                 -----   -------   -------- 
LEVEL           293.33 
               (49.23) 
                  5.96
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SHAPE            38.71     27.51 
               (17.13)   (12.61) 
                  2.26      2.18 
 
FIG_REL1        161.28     49.40     153.54 
               (31.00)   (13.53)    (27.76) 
                  5.20      3.65       5.53

Unlike the experimental group, in the control group there is a significant (linear) relationship between Figural relations as a 
correlate of change along the Induction dimension. The covariance between the shape factor and initial Figural relations is 
significant: parameter estimate = 49.40, standard error = 13.53, and t value = 3.65. This group difference may be explained 
again by the fact that there was no training in the control group, whereas in the experimental group its effect may have 
capitalized on the particular modules of Induction-related tutor-guided instructions.

THETA-EPS 
 
    THU_IND1   THU_IND2   THU_IND3   THU_IND4   FR11      FR12 
    --------   --------   --------   --------   -------   ------ 
       30.72      30.72      30.72      30.72    104.14    22.36 
      (3.31)     (3.31)     (3.31)     (3.31)   (18.69)   (9.66) 
        9.27       9.27       9.27       9.27      5.57     2.32 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
    THU_IND1   THU_IND2   THU_IND3   THU_IND4   FR11      FR12 
    --------   --------   --------   --------   -------   ------ 
         .91        .92        .93        .93       .60      .86 
 
ALPHA 
 
       LEVEL      SHAPE   FIG_REL1 
       -----      -----   -------- 
       38.56       9.40      52.02 
      (1.94)     (1.00)     (1.72) 
       19.88       9.37      30.24

As in the experimental group, overall mean performance improvement is significant in the control group. This is reflected in 
the mean of the Shape factor: estimate = 9.40, standard error = 1.00, and a significant t value = 9.37. This is perhaps a 
reflection of the practice effects at work in both groups, due to the repeated assessment with the same instruments. 
Nevertheless, it is interesting to compare the mean overall growth across groups, to find out if there is significant training gain 
in the experimental group over and above these practice effects. As shown in the next subsection, this comparison can be 
accomplished by examining restricted versions of the model. Another interesting comparison involves the Shape mean across 
the control and experimental groups. Because the two groups
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were randomly formed at pretest, their means were comparable then. Thus, by looking at the shape mean group differences 
(control = 9.40 and experimental = 15.23) one can examine if the overall change was higher in the experimental group. As it 
turns out, this is actually the case in this study; the 95% CI for the Shape mean in the control group is (7.40; 11.40) and 
completely to the left of that in the experimental group, (13.71; 16.76).

Studying Plausibility of Group Restrictions

As discussed in chapter 1, in general one can make more precise statements about parameter comparability across and within 
groups with more restrictive versions of any proposed model (as long as the model is found tenable as a means of data 
description).This is due to the fact that parameter estimates in a more restrictive model are generally associated with smaller 
standard errors and hence shorter confidence intervals (i.e., lead to more accurate statements). This is part of the reason for 
looking for more parsimonious models that in addition have higher degrees of freedom and hence are associated with more 
dimensions along which they can be disconfirmed.

In the two-group analyses of the cognitive intervention data, one can further gain in model parsimony by observing that the 
groups were randomly formed in this empirical study after the pretest was conducted. Thus, no differences are expected across 
groups in any of the variable characteristics at pretest. That is, one would expect that, due to this reason, if group equality 
restrictions were imposed on variances, covariances, means, and covariate factor loadings at pretest, the fit of the model would 
not deteriorate markedly. This is precisely what the nested two-group model fitted next will do. In this constrained model all 
details pertaining to the pretests of Induction and Figural relations will be fixed for equality across groupsthe factor loadings of 
the two covariate indicators, the variances and covariance of their construct and the level factor, as well as their two means. 
This is accomplished by adding the following LISREL command lines (one per constrained parameter) immediately before the 
last line of the whole input.

EQ PS(1, 1, 1) PS(1, 1) 
EQ PS(1, 3, 3) PS(3, 3) 
EQ PS(1, 3, 1) PS(3, 1) 
EQ LY(1, 6, 3) LY(6, 3) 
EQ AL(1, 1) AL(1) 
EQ AL(1, 3) AL(3)
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In each of these new command lines, a parameter from Group 1 (the experimental group) is fixed to equal the same parameter 
in Group 2 (the control group). In LISREL notation, this is accomplished by having three indices, where the first one always 
refers to the group number and the other two refer to the parameter location. Thus, PS(1, 1, 1) refers to the Group 1 element 
1,1 of the PSI matrix. As such, the equality constraint EQ PS(1, 1, 1) PS(1, 1) sets the parameter of the current (control) group 
equal to that of the experimental group (i.e., Group 1). Using this notation, the first two command lines fix for group equality 
the variances of the Level and Figural relations factors (the first and third factors in the input), the third line fixes their 
covariance, and the fourth line fixes the factor loading of the second indicator of Figural relations. Finally, the means of the 
first and third factors (i.e., the Level and Figural relations factors) are set for group identity. (Note the reference by only two 
indices because the pertinent matrix ALpha is actually only a row and hence one needs to refer just to the position of the 
parameter of interest within it.) Each of the six parameters fixed in this way pertains to a characteristic of a variable assessed at 
pretest. Because the groups were randomly formed after the pretest, it seems reasonable to assume that these characteristics are 
identical across groups; this is being examined by testing these six restrictions.

This constrained model is associated with a chi-square value T = 33.05 with df = 30, p = .32, and an RMSEA = .020 with a 
90% confidence interval (0; .054). All these indices suggest an acceptable model fit. For future reference, call this model M1 
and the one fitted immediately before it M0. M1 is nested in M0 because it can be obtained from the first model by imposing 
the proposed six parameter restrictions. Thus, M1 has six more degrees of freedom because it has six fewer parameters than 
M0.

The difference in chi-squares between the two nested models M1 and M0 is ∆T = 33.05 27.33 = 5.72 with ∆df = 6. Because 
the cut-off of the pertinent chi-square distribution with 6 degrees of freedom is 12.59 (at significance level .05, and obviously 
higher for any smaller level), this difference is determined to be nonsignificant. This implies that the imposed constraints are 
plausible, and can be retained in the ensuing analyses.



Now also examine evidence in this data favoring group invariance of the relationships among the three latent variables. To 
obtain the input for this model nested in M1 (and thus in M0 as well), one only needs to change the keyword PS=PS to PS=IN 
(for group INvariant) in the second-group model command line of the input. This constraint yields an increase in the chi-
square value up to T = 44.54 with df = 33. Thus, the resulting difference in chi-squares is ∆T = 44.54  33.05 = 11.49 with 
∆df = 3, and is significant (even at a conservative significance level .01, which one may want to adopt for protection in this 
multiple testing procedure with an unknown overall significance level). Hence, one can conclude that it is not
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likely that the same latent correlation matrix applies for both groups in the population. That is, the correlation structure among 
the Level, Shape, and Figural relation factors is not group invariant. Interestingly, even adding the constraint of identical latent 
means (instead of the incorrect group restrictions on all latent covariances and variances), accomplished by changing the 
keyword AL=PS to AL=IN in the control group, yields the same outcome. The chi-square value once again goes up to 
T = 62.02 with df = 31, and the chi-square difference test yields ∆T = 62.02 33.05 = 28.97 with ∆df = 1, which is also 
significant. One can therefore conclude that the latent mean of the Shape factor is not the same across groups (because this is 
the only latent mean not already set as group invariant in model M1). Finally, restraining instead the factor loadings of the 
Shape factor across the groups (by changing the keyword LY=PS to LY=IN in the control group) yields 
∆T = 46.71  33.05 = 13.66 with ∆df = 2, which is similarly significant, indicating that these loadings are not group invariant. 
Thus, the two groups differ also in the proportion of overall ability change that occurred from the pretest to first and second 
posttest assessment occasions.

Here the output of model M1, the most restrictive and tenable of the proposed models, is presented (again, comments are 
inserted at appropriate places and repetitive material presented earlier in this section is omitted).

EXPERIMENTAL GROUP 
 
PARAMETER SPECIFICATIONS 
 
LAMBDA-Y 
 
               LEVEL     SHAPE   FIG_REL1 
            --------   -------   -------- 
THU_IND1           0         0          0 
THU_IND2           0         1          0 
THU_IND3           0         2          0 
THU_IND4           0         0          0 
    FRll           0         0          0 
    FR12           0         0          3 
 
       PSI 
 
               LEVEL     SHAPE   FIG_REL1 
             -------   -------   -------- 
   LEVEL           4 
   SHAPE           5         6 
FIG_REL1           7         8          9 
 
       THETA-EPS 
 
           THU_IND1   THU_IND2   THU_IND3   THU_IND4      FRll      FR12 
           --------   --------   --------   --------   -------   ------- 
                 10         10         10         10        11        12
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       ALPHA 
 
              LEVEL     SHAPE   FIG_REL1 
            -------   -------   -------- 
                 13        14         15 
 
CONTROL GROUP 
 
PARAMETER SPECIFICATIONS 
 
       LAMBDA-Y 
 
              LEVEL     SHAPE   FIG_REL1 
            -------   -------   -------- 
THU_IND1          0         0          0 
THU_IND2          0        16          0 
THU_IND3          0        17          0 
THU_IND4          0         0          0 
    FRll          0         0          0 
    FR12          0         0          3 
 
       PSI 
 
              LEVEL     SHAPE   FIG_REL1 
            -------   -------   -------- 
   LEVEL          4 
   SHAPE         18        19 
 FIG_REL         17        20          9 
 
       THETA-EPS 
 
           THU_IND1   THU_IND2   THU_IND3   THU_IND4   FRll   FR12 
           --------   --------   --------   --------   ----   ---- 
                 21         21         21         21     22     23 
 
       ALPHA 
 
              LEVEL      SHAPE   FIG_REL1 
            -------    -------   -------- 
                 13         24         15

Note the identical numbers attached to the parameters constrained for equality across the two groups. Thus, model M1 has, 
altogether, 24 parameters in both groups, six of which are set to be identical in the experimental and control groups.

EXPERIMENTAL GROUP 
 
LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
LAMBDA-Y 
 
              LEVEL      SHAPE   FIG_REL1 
            -------    -------   -------- 
THU_IND1       1.00        - -        - -
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THU_IND2       1.00       1.03        - - 
                        (0.03) 
                         31.84 
 
THU_IND3       1.00       1.14        - - 
                        (0.03) 
                         33.15 
 
THU_IND4       1.00       1.00        - - 
 
    FR11        - -        - -       1.00 
 
    FR12        - -        - -       0.97 
                                   (0.01) 
                                    75.07

These parameters and standard errors are essentially the same as those discussed before for model M0 and hence lead to the 
same interpretations. Only the standard error of the second Figural relations indicator loading is slightly smaller, but this is a 
finding of marginal relevance in these analyses, which are primarily concerned with studying change over time and the 
relationships among latent variables.

COVARIANCE MATRIX OF ETA 
 
               LEVEL     SHAPE   FIG_REL1 
             -------   -------   -------- 
   LEVEL      287.41 
   SHAPE        5.70     51.73 
FIG_REL1      175.72     16.45     151.08 
 
       PSI 
 
               LEVEL     SHAPE   FIG_REL1 
            --------  --------   -------- 
   LEVEL      287.41 
             (28.16) 
               10.21 
 
   SHAPE        5.70     51.73 
             (12.15)    (9.16) 
                0.47      5.65 
 
FIG_REL1      175.72     16.45     151.08 
             (18.64)    (9.04)    (16.16) 
                9.43      1.82       9.35

Note again that in the experimental group there does not seem to be a (linear) relationship between the Level and Shape 
factorsthe estimate of their covariance is 5.70, with a standard error = 12.16 and a t value = 0.47, which is nonsignificant. That 
is, for experimental subjects the starting position on Induction is not predictive of the amount of change along
  

page_193



Page 194

that dimension. Similarly, there is a weak evidence of relatedness between the Shape and Figural relations factorstheir 
covariance is estimated at 16.46, with a standard error = 9.04 and a t value = 1.82, which is not significant. Thus, in the 
experimental group there is a weak (linear) relationship between starting position on Figural relations and change along the 
Induction dimension. As mentioned before, this may, of course, have been an effect of the specific modules of the cognitive 
training. Nevertheless, in this model the statements are more precise due to the model's having more degrees of freedom than 
M0. Specifically, the standard errors of all covariance estimates are on average markedly lower in M0 than in M1, which 
generally allows more accurate conclusions.

THETA-EPS 
 
            THU_IND1   THU_IND2   THU_IND3   THU_IND4      FR11      FR12 
            --------   --------   --------   --------   -------   ------- 
               22.08      22.08      22.08      22.08     81.18     24.77 
              (1.74)     (1.74)     (1.74)     (1.74)   (11.19)    (6.51) 
               12.68      12.68      12.68      12.68      7.25      3.81 
 
SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
            THU_IND1   THU_IND2   THU_IND3   THU_IND4      FR11      FR12 
            --------   --------   --------   --------   -------   ------- 
                0.93       0.94       0.94       0.94      0.65      0.85 
 
* CONTROL GROUP 
 
LISREL ESTIMATES (MAXIMUM LIKELIHOOD) 
 
LAMBDA-Y 
 
               LEVEL      SHAPE   FIG_REL1 
            --------   --------   -------- 
THU_IND1        1.00        - -        - - 
 
THU_IND2        1.00       0.69        - - 
                         (0.08) 
                           9.02 
 
THU_IND3        1.00       0.98        - - 
                         (0.09) 
                          11.36 
 
THU_IND4        1.00       1.00        - - 
 
    FRll         - -        - -       1.00 
 
    FR12         - -        - -       0.97 
                                    (0.01) 
                                     75.07

As can be seen in the control group output, the findings are essentially the same as the ones with model M0 discussed 
previously.
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COVARIANCE MATRIX OF ETA 
 
                 LEVEL      SHAPE   FIG_REL1 
              --------   --------   -------- 
      LEVEL     287.41 
      SHAPE      48.14      23.82 
   FIG_REL1     175.72      47.44     151.08 
 
           PSI 
 
                 LEVEL      SHAPE   FIG_REL1 
              --------   --------   -------- 
      LEVEL     287.41 
               (28.16) 
                 10.21 
 
      SHAPE      48.14      23.82 
               (15.17)    (12.05) 
                  3.17       1.98 
 
   FIG_REL1     175.72      47.44     151.08 
               (18.64)    (11.71)    (16.16) 
                  9.43       4.05       9.35 
 
           THETA-EEPS 
 
              THU_IND1   THU_IND2   THU_IND3   THU_IND4      FR11      FR12 
              --------   --------   --------   --------   -------   ------- 
                 31.46      31.46      31.46      31.46    105.00     29.34 
                (3.37)     (3.37)     (3.37)     (3.37)   (18.61)    (9.17) 
                  9.34       9.34       9.34       9.34      5.64      3.20 
 
           SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES 
 
              THU_IND1   THU_IND2   THU_IND3   THU_IND4      FRll      FR12 
              --------   --------   --------   --------   -------   ------- 
                  0.90       0.92       0.93       0.93      0.59      0.83 
 
           ALPHA 
 
                 LEVEL      SHAPE   FIG_REL1 
              --------   --------   -------- 
                 37.87       9.02      50.52 
                (1.13)     (0.91)     (0.98) 
                 33.60       9.90      51.50

Unlike the experimental group, in the control group one again finds evidence of a significant relationship between the Level 
and Shape factorstheir covariance is estimated at 48.14, with a standard error = 15.17 and a t value = 3.17, which is significant. 
The correlation of the two factors using the values of the variance and covariance estimates in the PSI matrix is computed to 
be equal to .58, indicating a moderately strong (linear) relationship. This suggests that in the control group (in which subjects 
did not receive any information about how well they were doing) individuals starting high on Induction tended to be among 
those exhibiting
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the most improvement along this dimension. Furthermore, the relationship between initial Figural relations and change along 
the Induction dimension is also significant in the control group (i.e., the covariance is estimated at 47.45, with a standard error 
= 11.72 and t value = 4.05, which is significant). This leads to a correlation that is equal to .79, indicating a strong relationship. 
Thus, individuals in the control group that start high on Figural relations tend to be among those improving most along the 
Induction dimension.

Finally, the fit indices of model Ml are all satisfactory and hence, as illustrated previously, one can proceed with a discussion 
of parameter interpretation.

                          GOODNESS OF FIT STATISTICS 
 
           CHI-SQUARE WITH 30 DEGREES OF FREEDOM = 33.05 (P = 0.32) 
                       CONTRIBUTION TO CHI-SQUARE = 8.63 
                PERCENTAGE CONTRIBUTION TO CHI-SQUARE = 26.13 
               ESTIMATED NON-CENTRALITY PARAMETER (NCP) = 3.05 
            90 PERCENT CONFIDENCE INTERVAL FOR NCP = (0.0 ; 21.29) 
 
                      MINIMUM FIT FUNCTION VALUE = 0.13 
              POPULATION DISCREPANCY FUNCTION VALUE (F0) = 0.012 
             90 PERCENT CONFIDENCE INTERVAL FOR F0 = (0.0 ; 0.087) 
            ROOT MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = 0.020 
            90 PERCENT CONFIDENCE INTERVAL FOR RMSEA = (0.0 ; 0.054) 
              P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0.05) = 0.92 
 
                 EXPECTED CROSS-VALIDATION INDEX (ECVI) = 0.33 
            90 PERCENT CONFIDENCE INTERVAL FOR ECVI = (0.18 ; 0.27) 
                        ECVI FOR SATURATED MODEL = 0.17 
                      ECVI FOR INDEPENDENCE MODEL = 8.09 
 
    CHI-SQUARE FOR INDEPENDENCE MODEL WITH 30 DEGREES OF FREEDOM = 1978.73 
                          INDEPENDENCE AIC = 2002.73 
                               MODEL AIC = 81.05 
                             SATURATED AIC = 84.00 
                          INDEPENDENCE CAIC = 2056.89 
                              MODEL CAIC = 189.37 
                            SATURATED CAIC = 273.56 
 
                    ROOT MEAN SQUARE RESIDUAL (RMR) = 11.16 
                           STANDARDIZED RMR = 0.036 
                      GOODNESS OF FIT INDEX (GFI) = 0.97 
                 PARSIMONY GOODNESS OF FIT INDEX (PGFI) = 1.39 
 
                         NORMED FIT INDEX (NFI) = 0.98 
                       NON-NORMED FIT INDEX (NNFI) = 1.00 
                    PARSIMONY NORMED FIT INDEX (PNFI) = 0.98 
                       COMPARATIVE FIT INDEX (CFI) = 1.00 
                       INCREMENTAL FIT INDEX (IFI) = 1.00 
                        RELATIVE FIT INDEX (RFI) = 0.98 
                           CRITICAL N (CN) = 379.82
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EQS, see Computer programs
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least squares, 2627
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Evaluation of fit, 3345
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Akaike's information criterion, 41, 74
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GFI, 39
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nonnormed fit index, 3839

normed fit index, 3839
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Exogenous variables, 11

Exploratory factor analysis, see Factor analysis

F

Factor analysis, 94120

Factorial invariance, 138146

Fit function, 25

Fit indices, see Evaluation of fit

Fixed parameters, see Model parameters

Free parameters, see Model parameters

G

Gamma matrix, 68

Generalized least squares, see Estimators

Goodness of fit, see Evaluation of fit

Group restrictions, see Multisample analysis

Growth curve modeling, see Latent change analysis



Growth modeling, see Latent change analysis

H

Heuristic search, see Specification search

I

Identification, 3033

Identified models, see Interaction
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Interaction and nonlinear effects, 3

Interaction models, 3

Iterative estimation, 2830
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Just identified models, see Identification
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KSI matrix, 7980
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Lagrange multiplier, 44

Latent change analysis, see Latent change models

Latent change models, 5, 810, 147196

Latent variables, 1

Laws for variances and covariances, see Parameter estimation

LCA, see Latent change models

Least squares estimation, see Estimators

Levels and shape model, see Latent change analysis

LISREL, see Computer programs

LS, see Latent change analysis

M



Mardia's coefficient, 26

Maximum likelihood, see Estimators

Mean structure, 149157

Measurement model, 5556

Model definition equations, 1314

Model fitting, see Estimators

Model identification, see Identification

Model implications, See Parameter estimation

Model modification, 9093
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