

Praise for High Performance Drupal

“Tag1 has been my go-to partner for performance and scalability for the last decade. This
book, based on their experience scaling the largest (Drupal) sites on the Internet, is a must-

read for any Drupal developer or system administrator.”
— Michael Meyers

 Vice President, Large Scale Drupal at Acquia

“An exhaustive, baremetal-to-browser treatment of both the factors governing Drupal
performance, and the tools for working in each layer.”

— Sam Boyer
 Manager, Enterprise Architecture at NBCUniversal

“It’s been wonderful to work with the brilliant minds at Tag1 Consulting (Jeff, Narayan, Nat
and others) on a number of enterprise-class Drupal projects. I’m always blown away by the

depth of their knowledge and how they’re able to apply what they know to
troubleshoot performance bottlenecks.

This book is a wonderful window into this team’s collective experience and skills. Anyone
who’s serious about Drupal will have this book on their “must have”

list of Drupal references."
— Kevin Millecam

 Partner, WebWise Solutions

“Jeff and Narayan have always amazed me with their knowledge and experience with high
performance hosting, especially with regards to Drupal. From their experience at the OSU
Open Source Lab working on Drupal.org to working at Tag1 they are very much my go to

resource for high performance knowledge.”
— Lance Albertson

 Director, Oregon State University, Open Source Lab

“I first worked with the authors of this book in 2007 to dig Drupal.org out of its downtime
woes and, later, on some of Drupal’s largest commercial projects. Their prolific

contributions to infrastructure designs have shaped the industry standard.
Until today, I’ve declined to recommend any Drupal performance books that I’ve reviewed.
I’m proud to say this book has changed my mind. I’ll be ordering copies for my co-workers

and colleagues as soon as it’s released."
— David Strauss

 CTO and Cofounder, Pantheon Systems

“Narayan, Nat and Jeff bring together an understanding of Drupal that extends far inside
and outside of Drupal. High Performance Drupal provides concrete examples for

building highly scalable Drupal websites."
— Rudy Grigar

 Sr. Systems Architect, OSU Open Source Lab

“Does Drupal scale? This book answers that with a resounding yes!”
— Dave O’Donovan

 Director Technology at archetypes.com

“Authored by some of the Drupal community’s most knowledgeable experts, High
Performance Drupal is bound to become your most valued resource. With this book as a

guide, you’ll be able to create systems and processes that make running your site more
efficient and maximize your site’s potential.”

— Holly Ross
 Executive Director, Drupal Association

Jeff Sheltren, Narayan Newton,
and Nathaniel Catchpole

High Performance Drupal

High Performance Drupal
by Jeff Sheltren, Narayan Newton, and Nathaniel Catchpole

Copyright © 2014 Tag1 Consulting. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Christopher Hearse
Copyeditor: Rachel Head
Proofreader: Amanda Kersey

Indexer: WordCo Indexing Services, Inc.
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

October 2013: First Edition

Revision History for the First Edition:

2013-10-11: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449392611 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. High Performance Drupal, the image of a Red-shouldered Hawk, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-39261-1

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449392611

Table of Contents

Preface. xi

1. Beginning a Performance Project. 1
Getting Started with Performance Improvements 1
Establishing a Performance Baseline 3
Setting Goals for Website Performance 4
The Many Aspects of Drupal Performance 5
Creating a Prioritized List of Improvements 6

2. Frontend Performance. 9
Limiting HTTP Requests 9

Audits 10
Image Requests 12
Minification 13

Minification On the Fly 14
Preminification for Modules/Themes 14
Minifying During the Build Process 14

Compression 15
Cacheable Headers 15
CDNs 16
Keep Third-Party Libraries Up to Date 16

jQuery Update 16
External Scripts 17
Single Points of Failure (SPOFs) 17

3. Drupal Performance Out of the Box. 21
Page Caching 21
When Should You Use Page Caching? 22

Internal Page Caching 23

iii

Reverse Proxy Caching 24
CSS and JavaScript Aggregation 25
Logging 26
The Cache and Other Swappable Storage 26
Cron 27
Views 27

4. Drupal Coding for Optimal Performance. 29
Context Matters 29
False Optimizations 30
Listing Entities 32

entityQuery() 32
Multiple Entity Loading 32

Caching 34
Static Caching 34
Persistent Caching 37

Queues and Workers 43
Cache Stampedes and Race Conditions 44

5. Drupal Coding for Abysmal Performance. 47
variable_set() Abuse 47
External Requests 49
Sessions 50
Excessive Cache Granularity 51
PHP Errors 52
Debug Code in the Code Base 53
Development Settings 53

6. Verifying Changes. 55
Analyzing Frontend Performance 55

YSlow and Google PageSpeed 55
Waterfall Charts 56
Real User Monitoring 58

Analyzing Application Performance 59
The Devel Module 60
Xdebug 65
XHProf 66
strace 74

7. Infrastructure Design and Planning. 79
Horizontal and Vertical Scaling 79
Service Categorization 82

iv | Table of Contents

Working Well Together 83
Example Two-Layer Configuration 84
Example Larger-Scale Infrastructure 85
Development and Staging Environments 87
Internal Network Layout 88
Utility Servers 90
High Availability and Failover 91
Hosting Considerations 91
Summary 93

8. Service Monitoring. 95
The Importance of Monitoring Services 95
Monitoring Alerts with Icinga 96

What to Monitor 96
How to Tune Monitoring 97

Graphing Monitoring Data 98
Internal Versus Remote Monitoring 99

9. “DevOps”: Breaking Down Barriers Between Development and Operations. 101
Revision Control Systems 102

Locally Hosted or External Service 102
Not Just for Code 102

Configuration Management Systems 103
Which System to Use 103

Pulling It Together: In-Depth Example with Puppet and Git 103
Development Virtual Machines 106

How to Distribute Development VMs with Vagrant 107
Deployment Workflow 107

Example Workflow with Git 108
Deployment with Jenkins CI 110

10. File Storage for Multiple Web Servers. 113
rsync 113
GlusterFS 114

Example Configuration 115
Single NFS Server 115
HA NFS Cluster 116

Example Configuration 117
Setting Up DRBD 117
Setting Up Heartbeat 119
Setting Up NFS 119
Testing 119

Table of Contents | v

Storage Area Networks (SANs) 120

11. Drupal and Cloud Deployments. 121
What Is the Cloud? 121
Why Use the Cloud? 121
Infrastructure Overhead 122
Prepackaged Clouds 122
Common Issues with Cloud Deployments and Their Mitigations 123

12. Failover Configuration. 125
IP Failover Versus DNS Failover 126
Service-Level Issues 126
Heartbeat 127

Installation 127
Configuration 127
Usage 129

13. MySQL. 131
Drupal and MySQL Engines 131
Versions of MySQL 132

Oracle MySQL 132
MariaDB 132
Percona Server 133

General Configuration 133
Global Configuration 133
Per-Thread Configuration 134
Storage Engine Configuration 135

Replication 136
Virtualized Deployments 137

14. Tools for Managing and Monitoring MySQL. 139
Percona Toolkit 139
Openark Kit 140
mysqlreport 141
Percona Monitoring Plug-Ins 145

15. MySQL Query Optimization. 147
Index Basics 147
Base Tables and Join Order 148
Common Issues 149

The ORDER BY on an Unrelated Table 150
The Useless DISTINCT (“In Case of Accidents!”) 150

vi | Table of Contents

Starfish Syndrome (All LEFT JOINS) 151
Node Access 151

16. Alternative Storage and Cache Backends. 153
Cache, Lock, and Session Storage 154
Memcache In Depth 155

PHP Extensions for Memcache 155
Assigning Memcached Servers and Bins 156
Memcache Locking and Stampede Protection 157
What to Store in Memcache 158
Configuring the Memcache Daemon 158

How to Break Your Site with Memcache 159
Inconsistent Caching 159
Constant Evictions 160
Vanishing Sessions 160

Entity/Field Storage 161
EntityFieldQuery/EntityQuery 162
CRUD 162
MongoDB 162

17. Solr Search. 165
Performance and Scalability Considerations 165
Integrating Solr with Drupal 166
Solr Configuration 166
Indexing Content 167
Infrastructure Considerations 168
Solr Replication 168
Drupal Module Installation 169

18. PHP and httpd Configuration. 171
APC: PHP Opcode Cache 171
php.ini Settings 173
PHP Apache Module Versus CGI 174
Apache MPM Settings 175
Prefork Thread Settings 176
KeepAlive 178
Cache Headers 178
Logging 179
Server Signature 181
Administrative Directory or VirtualHost 181
Nginx 182

Table of Contents | vii

Why Not Use Nginx Everywhere? 183

19. Reverse Proxies and Content Delivery Networks. 185
Using a Reverse Proxy with Drupal 185
Understanding Varnish Configuration Language 187

Defining a Backend 188
Directors: Dealing with Multiple Backend Servers 189
Built-in VCL Subroutines 191
Customizing Subroutines 192

Cookies and Varnish 195
Caching for Authenticated Users 196
Edge-Side Includes 196
Serving Expired Content 197
Error Pages 198
Memory Allocation 199
Logging and Monitoring Varnish 199
Sample VCL for Drupal 200
Content Delivery Networks 204

Serving Static Content Through a CDN 204
When to Use a CDN 205
Choosing Between a CDN and a Reverse Proxy 205

20. Load Testing. 207
Different Types of Load Tests 207
Creating a Valid Test 208
When to Test 209

Continuous Integration (CI) 209
Periodic Testing 209
Manual Targeted Testing 209

Interpreting Test Results 209
Server Monitoring During Load Tests 210
Where to Test 211
Example Load Test Using JMeter 212

Global Test Settings 213
Thread Groups 216
Handling Cookies 217
Login Controller 218
Browse Controller 220
Output Configuration 221
Running a Test 222

viii | Table of Contents

Reading Test Results 222

21. Where to Next?. 225
Official Book Website 225
High Performance Drupal Group 225
Drupal Watchdog 225
Revision Control with Git 226
Varnish 226
Configuration Management 226
Vagrant 226
Jenkins 226
MySQL Performance 227
InnoDB Index Structures 227

Index. 229

Table of Contents | ix

Preface

Drupal has come a long way since becoming an open source project in 2001. What was
once a fairly limited content management system has become a very powerful frame‐
work that runs millions of websites. Everything from personal blogs and small neigh‐
borhood businesses to Internet startups, universities, governments, and global compa‐
nies are running Drupal. There are hundreds of Drupal-focused companies offering
development, hosting, and performance tuning services, and new Drupal sites, small
and large, are coming online everyday.

Does Drupal Scale?
The three of us authors all work at Tag1 Consulting, where we focus specifically on the
performance and scalability of Drupal websites. If there is one question we see asked
more than any other, it’s, “Does Drupal scale?” The question may be asked in many
different forms: “I want to do X (insert super dynamic, cool feature here), and it needs
to support millions of users”; “We’re thinking of using Drupal for this project, but we
hear that using Views is terribly slow”; or focusing on the infrastructure components,
“We’re confident in Drupal, but pretty sure that MySQL can’t keep up with our traffic.”
In the end, it all boils down to, “Can Drupal scale?” because when we say “Drupal” in
this context, we actually mean the entire stack of infrastructure and software that sup‐
ports a Drupal site. The short answer is, of course, “Yes,” but if it were that simple, this
book could start and end with this introduction. As you might expect, the actual answer
of how to achieve performance while scaling up a large Drupal site is much more com‐
plicated.

We deal with clients of all types and with many varying needs. We repeatedly see many
of the same issues arise: pages aren’t caching properly, servers are overloaded, database
queries are running too slowly. All of these issues contribute to the overall question of
whether and how Drupal can scale. While it would be impossible to cover all the possible
reasons for any potential problems in a single book, the best practices and guidance
provided here will cover the most common problems encountered while scaling Drupal

xi

websites. We provide a strong base of knowledge that can be used to plan for and over‐
come more difficult or unique performance issues.

Goals of This Book
The primary goal of this book is to help you solve Drupal performance and scalability
issues. Drupal makes creating websites incredibly easy; however, if you aren’t careful, it
can quickly turn into a performance nightmare. This book is full of information on best
practices for running a high performance Drupal site. This is not just limited to “enable
these performance settings in the Drupal configuration”; rather, we take a holistic ap‐
proach to website performance, covering Drupal internals, coding, and infrastructure
techniques that all come together to build a high-performing and scalable website.

This is a technical book providing in-depth explanations and examples of common
methods used to improve Drupal site performance. It is expected that readers of this
book have a basic understanding of Drupal and the LAMP stack and are familiar with
common hardware and infrastructure concepts. We’ve designed this book to be useful
to both developers and system administrators. A site cannot perform at a high level
unless attention is given to both code and infrastructure.

Supported Drupal Versions
The main focus of the book will be on Drupal versions 7 and 8, with Drupal 8 planned
for release shortly after this book goes to press. There are still many websites running
Drupal 6, and while our infrastructure advice and examples are still very relevant for
older versions of Drupal, be aware that the code examples and discussion of Drupal
internals have generally changed for the newer versions of Drupal.

How This Book Is Organized
We cover a wide range of topics within this book and have grouped them into the
following topical sections.

Performance Analysis
Chapter 1, Beginning a Performance Project, discusses the various aspects of a website
that all contribute to the big picture of website performance. Here, we also introduce a
process for analyzing websites and approaching performance improvement projects.

Application Performance
This section covers a wide variety of Drupal application performance issues, starting
with Chapter 2, Frontend Performance, where we describe best practices for frontend

xii | Preface

optimization, looking at network utilization, code optimization, and issues specific to
mobile performance.

Chapter 3, Drupal Performance Out of the Box, discusses Drupal configuration settings
that can improve performance. This includes an overview of the Drupal caching system,
CSS and JavaScript aggregation, and other configuration options related to Drupal core.

We go into more depth on code-level optimizations in Chapter 4, Drupal Coding for
Optimal Performance. This chapter covers important issues that should be addressed
when writing or extending custom code in Drupal, giving best practices for items such
as entities, the cache API, and the use of queues and workers. On the flip side, Chapter 5,
Drupal Coding for Abysmal Performance, talks about common pitfalls that should be
avoided, and explains why certain code can greatly reduce website performance.

Chapter 6, Verifying Changes, outlines the importance of tracking performance metrics
for a site and using that information to understand how changes to the site affect per‐
formance for better or worse.

Infrastructure
We begin the section on infrastructure issues with Chapter 7, Infrastructure Design and
Planning, which describes best practices for designing and infrastructure to host a Dru‐
pal website and related services. Early planning of infrastructure design will help a
website to easily scale as it grows.

Chapter 8, Service Monitoring, covers how to monitor services and infrastructure in
order to be alerted of potential issues before they affect a website and how to track
performance and usage baselines in order to better understand how services react under
load.

Chapter 9, “DevOps”: Breaking Down Barriers Between Development and Operations,
introduces many common infrastructure ideas and best practices to break down barriers
between development and operations. This chapter discusses revision control systems,
system configuration management, deployment workflow, and development virtual
machines.

Chapter 10, File Storage for Multiple Web Servers, analyzes the difficulties faced with
sharing a single Drupal files/ directory between multiple web servers and gives examples
of common file sharing options including NFS, rsync, and GlusterFS.

Chapter 11, Drupal and Cloud Deployments, introduces the idea of virtualized hosting
and cloud-based infrastructures. Here we discuss the performance and scalability ben‐
efits of using a virtualized infrastructure, as well as some of the trade-offs between using
virtual servers as opposed to physical servers.

Chapter 12, Failover Configuration, explains how to provide highly available services,
using technologies such as Heartbeat to handle failover when a service goes offline.

Preface | xiii

Databases
Chapters 13, 14, and 15 all cover MySQL database information related to Drupal.
Chapter 13, MySQL, provides an in-depth look at MySQL performance considerations
and general configuration settings. It also contains an introduction to MySQL storage
engines, with specific focus on InnoDB for performance and scalability. Chapter 14,
Tools for Managing and Monitoring MySQL, introduces a number of tools commonly
used for tuning, managing, and monitoring MySQL servers. Chapter 15, MySQL Query
Optimization, wraps up the MySQL discussion by focusing on methods for locating and
optimizing slow queries.

Chapter 16, Alternative Storage and Cache Backends, describes how alternative database
and data storage engines can be used with Drupal to improve performance. This chapter
includes examples on how to implement Memcache, Redis, and MongoDB backends
with Drupal.

Chapter 17, Solr Search, discusses using Solr as an alternative search option for Drupal.
We look at some of the benefits and added functionality that can be achieved by shifting
the search backend out of MySQL.

Web Servers and Reverse Proxies
For an optimally performing site, it’s important to have a properly tuned web server.
Chapter 18, PHP and httpd Configuration, discusses how to best configure the web
server and PHP for a Drupal website. httpd.conf is nothing to be scared of—we cover
thread settings, keepalive, logging, and other useful configuration options for Apache
httpd. This chapter also discusses PHP configurations and the importance of using an
opcode cache.

Chapter 19, Reverse Proxies and Content Delivery Networks, introduces the concept of
using a reverse proxy to cache website content. We give detailed examples of how to use
Varnish with Drupal, including specific Varnish Configuration Language (VCL) con‐
figurations that can dramatically increase website performance. This chapter also covers
content delivery networks (CDNs) and explains options for integrating Drupal with a
CDN.

Ongoing Testing
One important lesson in this book is that website performance is not a one-time task;
it’s something that needs to be done continually in order to have a website perform at
its best and be able to scale to meet increasing traffic needs. Chapter 20, Load Testing,
discusses load testing tools and the importance of ongoing testing in order to catch
performance issues before they become major problems.

xiv | Preface

Where to Next?
Wrapping up the book, Chapter 21, Where to Next?, provides some external resources
to extend upon ideas presented in the book.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, file and path names, and file exten‐
sions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords. Also used for commands and command-line options.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/tag1consulting/high-performance-drupal.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting

Preface | xv

https://github.com/tag1consulting/high-performance-drupal

example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “High Performance Drupal by Jeff Sheltren,
Narayan Newton, and Nathaniel Catchpole (O’Reilly). Copyright 2014 Tag1 Consulting,
978-1-449-39261-1.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/HP-Drupal.

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/HP-Drupal

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book has been quite an undertaking for all of us, and we couldn’t have done it
without the help and support of many people. First of all, thanks to all of the Drupal
contributors who have made Drupal into the amazing platform it is today. Specifically,
we would like to thank our wonderful technical editors for their thoughtful reviews and
ideas: Fabian Franz, Rudy Grigar, and Mark Sonnabaum.

We’d also like to give a special thanks to Jeremy Andrews for his endless hours spent
reviewing the book, for providing ideas for concepts to cover, and for constantly pushing
us to provide better explanations for things we may take for granted. His encouragement
and ongoing assistance with all aspects of the book were absolutely priceless. The book
would not be anywhere as good as it is without him.

We also need to thank Tag1 Consulting, our employer, for providing us the flexibility
to work on the book over such a long period of time. And thanks as well to Meghan
Blanchette, our O’Reilly editor, for pushing for us to write this book, and for putting up
with our seemingly endless delays.

From Jeff
First and foremost I need to thank my wife, Sara, for being so supportive and encour‐
aging throughout this process, and also for her understanding throughout all of the late
nights and weekends I spent cooped up in the office writing. Thanks also to all my family
and friends for your support and excitement about the book, in spite of the fact that it
does not involve a zombie apocalypse.

This book was a true collaborative effort, and I really appreciate the hard work done by
Narayan and Nat, who both brought their amazing expertise and insight. I can’t even
imagine how Nat was able to write so much content for the book even as he was in the
midst of the Drupal 8 release as the branch maintainer.

Preface | xvii

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

From Narayan
Firstly I need to thank Jeff, who was the major motivation for getting this book done
and the driving force to keep it moving forward. Secondly, I must thank my very tolerant
wife, Candice, who somehow didn’t get too upset at the concept of us doing just one
more thing. Lastly, we all very much thank Jeremy, Peta, and all of our coworkers at
Tag1 Consulting for creating the time for us to work on this.

From Nat
Massive thanks go to my wife Shoko and daughter Amile for putting up with yet another
Drupal project, Jeff for keeping the book on track, Tag1 Consulting for interesting con‐
sulting projects that allow me to spend more time on these issues than is probably
healthy, and all of the Drupal core and contributed module contributors for working
on the software that both runs into these issues and also attempts to solve them.

xviii | Preface

CHAPTER 1

Beginning a Performance Project

So you’re ready to jump in and start improving your website’s performance. This can
be a daunting task. There are so many services, underlying technologies, and possible
problems that it can be difficult to pick a starting point. It is easy to run around in circles,
checking and fixing many small issues but never addressing your major problems (or
even discovering what they are). Knowing where to start and which issues are of high
priority can be one of the most difficult parts of optimizing a site.

Due to these common issues of discovery and prioritization, good performance engi‐
neers and system administrators tend to do a lot more gathering of metrics and statistics
than most people think. A complete understanding of the problem points of a website
(problem pages, blocks, or views) and server metrics during average- and high-load
situations is a requirement for making good decisions. Whenever we approach a new
infrastructure or website project, the investigation and metrics collection period is often
the most important time and will determine how effective the entire optimization
project is.

Getting Started with Performance Improvements
We will discuss tools and methodologies for collecting performance information in later
chapters. For now, let us assume we have a spreadsheet of problem pages or requests
and some server information (CPU, load, I/O usage, etc.) during some peak load peri‐
ods. The next important step in optimizing a site is defining goals and usage patterns.
This is important for similar reasons to having accurate metrics: it prevents you from
endlessly fixing issues that may be legitimate, but are not the problems preventing the
site from meeting its goals. For example, if you have a site that needs to serve 10,000
pages a day to only anonymous users, you can review all of the Views for this site and
ensure they are all performing well, but it would be a waste of time when you could get
better performance faster by ensuring the page cache is working effectively.

1

Everything we have discussed so far is considered quite pedantic and seems to be little
more than bookkeeping. As technical people, we like to walk into a bad situation, im‐
mediately pinpoint the problem, and fix it in a few minutes. It’s nice when this works,
but often it fails or succeeds only partially, or worse, temporarily. The methodology we
are proposing of performing a robust discovery phase and having a lot of quality in‐
formation (metrics, expected site usage, and goals) for the site is much better for both
the long-term sustainability of the site and your own longer-term sanity. You cannot
always immediately pinpoint the problem, but a method based on information and
metrics is always going to be effective.

There are a number of approaches that can be used to collect this information and
develop a performance plan. However, we typically follow a straightforward approach
that attempts to focus on low-hanging fruit and the real site problems. We also tend to
focus on iteration, as often when you solve one large problem, it uncovers other issues
that used to be hidden.

Let’s outline the steps involved in this process—we will go into more detail on each step
later in this chapter:

1. Measure and record the current site performance. This is your “performance base‐
line,” which will be used to analyze potential performance improvements. Docu‐
ment any known issues with the site, such as individual or groups of pages that are
consistently slow, servers that are always under high load, or anything else that
might have an effect on performance or scaling. We will go into the tools and meth‐
ods for doing this in later chapters, as its a very broad topic and can be a somewhat
nebulous task.

2. Define goals and requirements for the site. For example, “The front page must load
in under two seconds for anonymous traffic,” and “A site search must not take more
than three seconds on average to return results.” The “must” and “should” wording
in these statements is important, as it separates requirements (“must”) and goals
(“should”)—more on this in the next section.

3. Actually perform your review. This often involves running a load test, reviewing
configuration files, profiling pages, and reviewing slow query logs. Many engineers
consider this the only step, but the problem with such an approach is that it lacks
baseline information and a structured list of goals, as defined in the previous two
steps. There will be many chapters in this book on the various topics that this step
encompasses.

4. Define a list of potential improvements based on the site goals and requirements,
using the information gathered in the performance baseline and your review. The
list should be prioritized based on a few factors:

• Does the item contribute to achieving a requirement or goal for the website?
• What is the expected benefit of the change?

2 | Chapter 1: Beginning a Performance Project

• What is the cost of the improvement, both in terms of staff time and any hardware
or software purchases that may be necessary for the change?

• Once an improvement has been made, what impact does it have?

If you are working for a client, step 4 is particularly important. However, even if you are
working for yourself or for your company, it’s incredibly important to develop a list of
potential improvements and ensure they are both prioritized and tracked for effective‐
ness. Returning to a site two or three weeks later without a good record of what was
done previously and the impact of those changes will make your job much more difficult.

As to the prioritization of fixes, there is no hard and fast rule, but a good approach is to
work on items that will give you the most bang for your buck—that is, those fixes that
either don’t take much effort compared to their impact or provide a vast improvement.

Establishing a Performance Baseline
Measuring current website performance will give you a baseline that you can compare
to the performance after making a change. Knowing how the site was performing ini‐
tially makes it easy to tell whether changes have had the expected effect, or when they
resulted in only a minor improvement—or worse, decreased performance! Depending
on your needs, determining the performance baseline could be as simple as tracking
full page load times for a selection of pages on your site, or as intricate as tracking
memory and CPU usage for key functions used to display one or more pages on your
site. What’s important here is that you decide what measurements are important to you.
If this is a first pass at improving the performance of a site, generally it will be sufficient
to choose one or two pages of each type that you have on your site (e.g. “article category
display,” “article,” “author bio,” “forum overview page,” “forum topic page”). For each of
those types, you’ll want to measure some predefined set of data—what data is tracked
will vary based on your needs, but if you’re looking simply to improve page load time,
there are a few data points that can be focused on to start:
Time to first byte

This is how long it takes your server to start to deliver data back to the client after
the client’s browser has requested the page from your site. It is at this point that the
user’s browser can begin displaying data on the screen and, more importantly, begin
fetching CSS and JavaScript files.

Time for a full page load
This is how long it takes for an entire page to be loaded in a user’s browser window.

Frontend display times
This includes the JavaScript completion time, DOM load time, etc. We won’t cover
this in much depth in this book, as an entire books have been written on this subject.

Establishing a Performance Baseline | 3

While frontend display times are very important for user interaction, a slow fron‐
tend usually won’t bring down a backend server.

Before fully understanding the performance implications, many people assume that the
full page load time will be the most important factor in the site feeling fast to a user. In
fact, the time to first byte can be much more important (there are exceptions, of course),
because it’s at that point that the user’s browser starts working on displaying the data
sent from your site. That’s not to say you should focus entirely on the time to first byte,
though it’s quite important to at the very least look at both of these measurements.

Setting Goals for Website Performance
Once you have a good understanding of the website’s baseline performance and have
started to track down some of the current bottlenecks, it will be possible to start setting
some well-defined and attainable performance goals for the site. Setting realistic goals
is important for a number of reasons:

• Performance improvements on a website are a continual process. Setting concrete
goals allows for work to be split up incrementally.

• Defining a set of goals with site developers can help prevent the addition of features
that may be “nice to have” but have a serious adverse affect on performance. If goals
have been well defined and have buy-in from all involved parties, they can be re‐
ferred to later as a reason why or why not to implement certain features and tech‐
nologies on the site.

• If goals are arbitrarily set without knowing the current performance of the site or
the actual near-term requirements, you may set yourself up to fail with goals that
are impossible to achieve with the resources you have at your disposal. Always focus
on reality, not what you would like reality to be.

Potential improvements could include (but are not limited to) the following:
Reducing average page load time

This could be set as an overall goal for the site, and also more specifically for certain
page types or common entry points into the site (the front page, marketing landing
pages, etc.). Example goals: “Decrease the average page load time for all pages across
the site from five seconds to three seconds. Average page load time for the front
page should be under two seconds.”

Decreasing maximum page load time
Again, this goal could be set overall for the site as well as for specific pages or page
types. Example goals: “The maximum page load time across the entire site should
always remain below eight seconds. Article pages should have a maximum page
load time of five seconds. The front page of the site should have a maximum page
load time of three seconds.”

4 | Chapter 1: Beginning a Performance Project

Improving page load times for first-time visitors
How long are your pages taking to load for visitors who do not have any of your
assets (think images, JavaScript, etc.) cached locally in their browsers? This can be
drastically different than page load times for visitors who have been to your site
recently and may have most of those items in a local browser cache. If first-time
visitors are important to you (and they likely are!), then it’s important to consider
page load performance specific to that group of users. Example goal: “The average
page load time for the front page of the site should be under three seconds for first-
time visitors and under two seconds for repeat visitors.”

Once you’ve created a list of performance goals for the site, you can start to look at
specific tasks that will help you to achieve those goals and problems with the current
site preventing you from reaching those goals. Much of the rest of this book is dedicated
to giving specific examples of common slow points on Drupal websites and ways to
improve performance for those specific issues. As you start to dive in to make adjust‐
ments to the site, always keep an eye on the goals and requirements that you have
developed. As you work, some of the goals may need to be adjusted because they were
either too optimistic or perhaps didn’t take into account certain aspects of your site or
infrastructure that you are unable to change.

The Many Aspects of Drupal Performance
Websites—especially Drupal websites—are built up of multiple components, each of
which could be suffering from a performance problem. Some of the major aspects that
should be examined are:

• Frontend performance: page rendering time in a site visitor’s browser
• PHP execution time on the web server
• Time spent for the web server to serve a request
• Time spent fetching and storing items in the cache
• Database query execution time
• Network traffic for each link along the path of a request: user→web server→cache

server→database server, etcetera
• External requests, either server-side or client-side—for example, code that calls an

external API (think Twitter, Facebook, etc.) or pulls in external files or images

All of these items contribute to the big picture of how a website performs. By breaking
down requests and analyzing the performance of each of these various pieces, we can
isolate the worst-performing parts of the site and focus our improvement efforts on
those in order to get the most benefit from our work. In addition, understanding where
the performance bottlenecks are can save you from blindly working on general perfor‐

The Many Aspects of Drupal Performance | 5

mance improvements that may not have much effect on the overall performance of the
site.

For example, consider a page that takes five seconds to deliver the first byte of data to
a client browser. Let’s say that one second of that is spent on the web server serving the
request and executing PHP, 3.75 seconds are spent on database queries for the page, and
0.25 seconds are spent pulling items from cache storage. Now, it’s pretty clear that there
is not much benefit to be had by working on the caching layer. The best place to start
performance work in this case would be to look at the queries that are being run on the
database to figure out which of them are slow—we may be able to improve the query
speed by changing the logic, or figure out a way to better cache the query results to avoid
running queries repeatedly. Had we not broken down the different components, we
could have wasted a lot of time trying to improve PHP execution time or trying to
increase the speed of cached requests when those are not likely to give us much overall
improvement in the performance of the page.

We’ll get into more specifics on how to measure and analyze performance for various
aspects of a site later. It is a complicated topic, and one that much of this book is devoted
to. For now, it’s just important to understand that there are multiple pieces contributing
to overall page load performance. Understanding where the bottlenecks are makes it
possible to focus performance improvements on areas that will have the greatest effect
on the overall page load time.

Creating a Prioritized List of Improvements
During a performance review or site analysis, it is important to either have very detailed
notes or to build your “prioritized list of improvements” during the review. As we have
already explained, a single page load is a complicated matter. We are all “standing on
the shoulders of giants” in the computer industry; those giants created the subsystems,
drivers, architectures, services, caching daemons, httpd daemons, and opcode caches
we rely on, and even Drupal itself. Although many were not particularly tall (Dries—
the founder of Drupal pictured in Figure 1-1—is a notable exception), they are not called
giants for nothing—each layer is immensely complex, some more so than others.

Due to this complexity, if you don’t consistently keep priority in mind and look for the
“low-hanging fruit”, it is very easy to lose your way or forget something you’ve found.
Perhaps while instrumenting the Apache process of your site, you noted that too many
directory lookups are happening. However, if you have SQL queries on your home page
that are taking five to six seconds to execute, are Apache’s foibles your highest priority?
For every performance engineer solving client-facing problems, there is at least one
other optimizing something entirely pointless.

6 | Chapter 1: Beginning a Performance Project

Figure 1-1. Dries Buytaert

Not only does keeping a priority list or priority-driven notes force you to focus on real
problems, but it also allows you to cross reference and remember what you’ve seen. The
issues you observe in different subsystems may be related, but it can be hard to draw
the correct correlations without the issues noted down. Not everyone can connect the
dots entirely in his head.

Creating a Prioritized List of Improvements | 7

Once you have your list of issues, you can review them and prioritize them based on
what you believe are the most important issues, or the ones that will be very easy to solve
relative to their impact. Because you started building them during the review, most of
the list items should be fairly detailed and actionable.

8 | Chapter 1: Beginning a Performance Project

CHAPTER 2

Frontend Performance

The principles of frontend performance apply regardless of the underlying application
used to create a website. The browser receives an HTML document and, based on its
contents, downloads CSS, JavaScript, fonts, and images; it then renders the page using
all of these. The 14 rules defined by Steve Souders’s High Performance Websites (O’Reilly)
remain a good reference point for examining the pages served by a site and identifying
areas for improvement (see this page for a refresher). Google’s PageSpeed and Yahoo!’s
YSlow will quickly grade a single page of your site and identify the highest-priority areas
for improvement. For this chapter we’re going to assume you have a working grasp of
the rules (cacheable headers, compression, minimizing HTTP requests, etc.) and, rather
than discussing them, we’ll look at the challenges specific to developing Drupal websites
when implementing those rules.

Limiting HTTP Requests
Drupal provides CSS and JavaScript aggregation via a configuration option. This allows
potentially dozens of individual requests for CSS and JavaScript files to be reduced to
just a few. While enabling this option in production should be one of the first steps you
take to optimize frontend performance, there are several other steps you can take to
minimize HTTP requests that require some more work on your part. Especially on
mobile devices, or slow Internet connections in general, the number of HTTP requests
can have the most serious negative impact, taking into account both back- and frontend
performance. HTTP request latency applies for every file required to build a page, and
can be hundreds of milliseconds multiplied by the number of files on the page. Assuming
your code and infrastructure can scale to handle the traffic that comes to the site, this
should be the very next thing you look at with regard to the overall user experience and
performance of the site.

9

http://shop.oreilly.com/product/9783897218505.do
http://stevesouders.com/hpws/rules.php
https://developers.google.com/speed/pagespeed/
http://developer.yahoo.com/yslow/

Audits
Many Drupal sites operate without any custom JavaScript and, if using a stock contrib‐
uted theme or base theme, may only have a small amount of custom CSS. This, however,
doesn’t mean that the site itself is running with a small amount of JavaScript or CSS, as
both core and contributed modules provide their own files. As with many other Drupal
performance issues, the most common cause of problems is particular combinations of
configuration and site structure and how these interact with modules that are unable
to know exactly how they’re used on every individual site.

When identifying bottlenecks, select two or three pages of different types to start with.
Ideally these will be the most popular types of page on the site—for example, article
pages or user profiles, as well as a landing page such as the front page.

What you audit depends on your priorities for optimization. When auditing, start by
disabling JavaScript and CSS aggregation, then view the pages as either an anonymous
user or an authenticated user. This allows you to see all the individual CSS and JavaScript
files being added to the page. Do not look for performance issues while logged in as an
administrator unless you’re specifically trying to find issues affecting administrators,
since toolbars, contextual links, and the like add a lot of page weight that will often show
up as frontend (and sometimes backend) performance issues, obscuring issues that
affect users without access to those features.

Once you’re ready, look at the CSS and JavaScript requests in a tool such as Firebug or
Chrome Developer Tools.

If there are no JavaScript-heavy features such as carousels or slideshows on these pages,
the first thing to check is whether any JavaScript is loaded at all. If it’s not necessary,
loading no JavaScript at all saves the most possible HTTP requests (no requests are
better than any nonzero number of requests), as well as other overhead such as initial‐
ization of jQuery.

Drupal 6 and Drupal 8 will not add any core JavaScript to the page if no modules or
themes add their own (this isn’t the case for Drupal 7 at the time of writing, but see
https://drupal.org/node/1279226 for a core bug report). However, it’s often the case that
contributed or custom themes will add small (or even large) JavaScript files to every
page for every user via the scripts[] property in .info files, or via hook_init().

In addition to serving pages without any JavaScript at all, Drupal 8 also makes it more
likely that pages can be served without jQuery. For basic event handling, DOM selection,
etc., native JavaScript functions are often perfectly adequate with modern browsers, and
core JavaScript is being refactored to take advantage of these where possible. Scripts that
require jQuery should explicitly declare it as a dependency, and if you have only a
handful of .js files on a page but jQuery is one of them, look at whether both the files
themselves and the jQuery dependencies within them are really necessary.

10 | Chapter 2: Frontend Performance

http://getfirebug.com/
https://developers.google.com/chrome-developer-tools/
https://drupal.org/node/1279226

If you’re not expecting to see any JavaScript on the page you’re looking at, take a note
of each filename, then grep the code base for where it’s added. Start with the files loaded
last, since the early files like jQuery and drupal.js may only be loaded due to depen‐
dencies. While all pages on Drupal sites will include CSS, a very similar approach can
be taken when trying to reduce the amount of CSS loaded overall.

There are several common reasons why files might be added to a page despite not being
actually needed:

• The file has been added via the scripts[] or styles[] .info property, despite not
being needed on every request. Try to find which markup the file actually affects,
then file a bug report for the module on Drupal.org to add it conditionally via
#attached instead. For example, if a JavaScript file is only used when nodes are
displayed in full view mode, it can be moved from .info to hook_node_view() as
follows.
Before:

example.info
name = Example
description = Example module
core = 7.x
scripts[] = js/example.js

After:

<?php
/**
 * Implements hook_node_view().
 */
function example_node_view($node, $view_mode, $langcode) {
 if ($view_mode == 'full') {
 $path = drupal_get_path('module', 'example’') . '/js/example.js';
 $node->content['foo']['#attached']['js'][$path] =
 array('every_page' => TRUE);
 }
}
?>

• The file is associated with a feature that is only available to users with a certain
permission but has been added to the page outside the permission check. File a bug
report for the module on Drupal.org to make including the file conditional on the
access check.

• Often CSS and JavaScript files apply to more than one feature. Following core
guidelines for CSS organization ensures that admin-only CSS is only served to
admins, and that files are easier to override for themes. Similarly, with JavaScript,
it’s worth evaluating if a file should be split up—aggregation puts it back together
when needed anyway.

Limiting HTTP Requests | 11

• Sometimes files are related to a specific feature but are still added site wide. This is
usually an error, but in some cases, there might be CSS that applies to a search box,
header menu, or similar feature that appears on every page, or a very high percent‐
age of pages. Having this CSS in the site-wide aggregate saves it being duplicated
in each per-page aggregate, reducing their size and increasing the effectiveness of
the browser cache. In general this makes more sense for CSS than JavaScript—all
pages need CSS, but some might render without any JavaScript at all.

After reviewing the site with aggregation disabled, reenable it and view the pages again.
This time it won’t be possible to see which individual files are being included, but instead
you can look at the resulting aggregates of the pages and their comparative sizes.

A common problem with both the Drupal 7.x/8.x and Drupal 6.x aggregation strategies
is that they’re fragile when files are added incorrectly—for example, if they’re added in
different orders by different modules, or if the every_page option is set for conditionally
added files. This can have the result that even if very similar JavaScript or CSS files
appear in two or more pages, different aggregate filenames get created, resulting in lower
cache hit rates, more bytes to download, and a greater workload server side generating
the aggregates.

To track down issues like this, first compare the list of aggregate filenames, locate any
filenames that are unique to any of the pages being compared, and then look at the size
and/or contents of those files to see if they’re actually different. On a live site that’s been
running for some time, checking the number and date of aggregates in the css and js
directories can also be an indicator of how many unique aggregates are being created.
One or two small aggregates differing between pages is expected if the JavaScript added
is genuinely different, but very minor changes between files or several files changing
may indicate an underlying issue.

A further option to reduce HTTP requests with JavaScript, assuming only minimal
JavaScript usage on a site (i.e., no jQuery dependency), is to add it inline rather than
using an external file. Drupal’s JavaScript API supports this via the inline option.

Image Requests
Images embedded in content via the tag are relatively hard to optimize in terms
of the number of requests. You can optimize images for bandwidth using image deriv‐
atives, which ensure the images are scaled or cropped to the size they will be served at.
Drupal 8 goes further by supporting responsive images via the Picture module (also
available in Drupal 7 as a contributed module), so that the correct image derivative—
and only that image derivative—is loaded based on breakpoints. For very image-heavy
pages, you may want to explore more advanced techniques like deferred image loading
via JavaScript.

12 | Chapter 2: Frontend Performance

https://drupal.org/project/picture

For images loaded via CSS, there are more options. Go back to Firebug or Chrome
DevTools to look for image requests; the paths will tell you whether they come from
core, contributed, or custom modules, or themes.

Most Drupal 8 modules do not provide much default styling, with the exception of
content forms, administrative features and user-facing menus which do have some
icons.

There are several approaches for reducing image requests:

• Image sprites combine several images into a single file, then use CSS to display only
the specific image needed. Creating and maintaining sprites can be quite time-
consuming, but tools like SASS allow for automation of this process.

• Images can be base64 encoded within CSS files using data-uri. This means they
are served as part of the CSS file itself rather than downloaded separately, saving an
HTTP request for each image that’s inlined. Remember that the larger your CSS file
is, the longer it takes before the browser can download and parse it and move on
to other things (like downloading images served via img tags), so this is a trade-off
that needs to be made carefully if at all. This is supported by a contributed module
for Drupal called CSS Embedded Images that automatically inlines images when
the CSS is preprocessed.

• Icon fonts allow for arbitrary images to be combined in a single font file. This has
the same advantages as a sprite in terms of reducing HTTP requests, but since fonts
use vector graphics, it also allows the icons to be scaled or presented in different
colors without any modification to the original image. Fonts can be embedded into
CSS using data-uri as well, saving a further HTTP request.

• Another approach is to use browser support for scalable vector graphics (SVG)
directly. As with fonts, this allows for scaling, recoloring, etc., without modification
of the original image. Since SVG files are XML, it’s also possible to style the SVG
itself with CSS. SVGs can be used via a URI, embedded into CSS via data-uri, or
embedded into HTML using either data-uri or the SVG format itself, which pro‐
vides a great deal of flexibility in terms of how they’re served.

Both icon fonts and SVG have significant advantages over the older techniques of sprites
and base64 encoding of binary images; however, some older browsers don’t support
them, so you may need to include a polyfill library if your site requires them.

Minification
Drupal provides very rudimentary on-the-fly CSS whitespace and comment stripping
as part of the core aggregation support. There is no core support for JavaScript minifi‐

Minification | 13

https://drupal.org/project/css_emimage

cation—files are concatenated together when aggregation is enabled, but the contents
are left unchanged.

This leaves three options for minifying/uglifying JavaScript files, as discussed in the
following sections.

Minification On the Fly
Drupal 8 has added the Assetic library, which amongst other things provides support
for minification of JavaScript and CSS via preprocessors. At the time of writing, the
work to replace core’s own file aggregate generation with Assetic has not been comple‐
ted; however, if this lands for Drupal 8, it will allow files served from Drupal to be
preprocessed via any of the pluggable backends that Assetic supports. It should be simple
to implement as a contributed project if support isn’t available in core. The main ad‐
vantage of Assetic over previous on-the-fly preprocessors from contributed modules is
that it supports native JavaScript backends such as uglify.js. While uglify.js (which re‐
quires Node.js) introduces an additional hosting requirement, the resulting minified
code is much more efficient than that produced by PHP preprocessors, which are not
well supported, use more server resources, and result in larger files.

Preminification for Modules/Themes
Drupal core ships with minified versions of jQuery and other external JavaScript libra‐
ries. Minification does not yet happen for JavaScript provided by Drupal core itself, nor
for many contributed modules and themes that provide dedicated JavaScript files. En‐
suring that external libraries are shipped as their minified versions (or both minified
and unminified) allows sites to serve these by default without taking any additional
steps, but it does introduce overhead for core or contrib developers whenever a file
changes, and thus far there is not a system in place to support this. The Speedy module
provides minified versions (via uglify.js) of core JavaScript files, which is a good one-
stop solution for core, even if it will leave contributed projects unminified until they’re
individually supported. Preminification also solves the problem of retaining license
information in minified files, which is a requirement for open source JavaScript libraries.

Minifying During the Build Process
If you have automated code deployment, minification could be added as a step in build‐
ing releases (this is also something that could be considered for Drupal.org project
packages). This is really a site-specific version of using/contributing to the Speedy
module and is only mentioned here for completeness.

14 | Chapter 2: Frontend Performance

https://drupal.org/project/assetic
http://drupal.org/project/speedy

Compression
Serving files with gzip compression and respecting Accept headers allows file size to be
reduced drastically. Drupal handles this via PHP for cached pages via a setting, and
via .htaccess rules for JavaScript/CSS aggregates (both gzipped and uncompressed files
are saved during the aggregation process, then the .htaccess rule rewrites them). Com‐
pression for uncached HTML pages is not supported by core so needs to be handled at
the server level via mod_deflate or equivalent, in which case the PHP gzip support for
cached pages should be disabled via configuration as well. You may want to disable PHP
gzipping of CSS and JavaScript files as well and handle this at the server level. This can
be done via settings.php or variable_set() in Drupal 7, or via the configuration API
in Drupal 8. You will also need to edit your .htaccess to comment out the rules for
rewriting filenames, since the Apache module will be handling serving the correct file
instead. Note that there’s no UI provided for this in the administration screens. To see
the configuration options in Drupal 8, either review the aggregation code itself, or look
at system.performance.yml:

cache:
 page:
 use_internal: '0'
 max_age: '0'
css:
 preprocess: '0'
 gzip: '1'
fast_404:
 enabled: '1'
 paths: '/\.(?:txt|png|gif|jpe?g|css|js|ico|swf|flv|cgi|bat|pl|dll|exe|asp)$/i'
 exclude_paths: '/\/(?:styles|imagecache)\//'
 html: '<!DOCTYPE html><html><head><title>404 Not Found</title></head>
 <body><h1>Not Found</h1><p>The requested URL "@path" was not found
 on this server.</p></body></html>'
js:
 preprocess: '0'
 gzip: '1'
response:
 gzip: '0'
stale_file_threshold: '2592000'

Cacheable Headers
Drupal sets cacheable headers for all CSS, JavaScript, and images, as well as for cached
HTML pages. The HTML max_age value of the Cache-Control header can be set via
admin/config/development/performance or the configuration API; assets are set to have
an Expires header of two weeks via .htaccess if mod_expires is enabled in Apache. For
sites that aren’t undergoing frequent releases, you may want to tweak this upward. If

Compression | 15

you’re not using Apache, you’ll need to ensure that you handle cacheable headers for
static assets in the web server you’re using.

CDNs
Content delivery networks have two primary goals. First, they allow files (and potentially
whole pages via custom configuration) to be served from a location as close as their
infrastructure allows to the visitor requesting a site. Therefore, a site hosted in the US
but visited by a user in France may have all JavaScript, CSS, and images served from
servers in France, dramatically reducing the latency of those requests. As a secondary
benefit, they reduce the number of requests to your own infrastructure, freeing up
bandwidth and server resources to serve only uncached requests that can’t be handled
by the CDN.

See Chapter 19 for more information on CDNs.

Keep Third-Party Libraries Up to Date
Drupal 6 and 7 have frozen versions of jQuery. This means that the latest stable Drupal
6 release ships with jQuery 1.2.6 (released in 2008) and the latest stable version of Drupal
7 ships with jQuery 1.4.4 (released in 2010). jQuery’s release schedule is considerably
faster than Drupal core’s for major releases, which means its developers often drop
support for the version of jQuery shipped with the latest stable version Drupal core
while the new Drupal release is still under development. To compensate for this, the
contributed jQuery Update project exists: it includes more recent versions of jQuery,
as well as replacing particular core JavaScript files dynamically if they’re incompatible
with the newer versions. While sites usually install jQuery Update due to a frontend
feature that specifies it as a dependency, the jQuery team is constantly adding opti‐
mizations to jQuery with each release. Simply installing jquery_update may result in
both a smaller file size and access to performance optimizations within jQuery itself,
such as faster selectors.

Drupal 8.x at the time of writing includes jQuery 2.0.0, and unlike Drupal 6 and 7, it’s
intended to update third-party JavaScript libraries as they become available with point
releases of Drupal 8, with an option for a site to pin/downgrade its jQuery version to
the older one if necessary. This will be a first for Drupal core but may mean that jQuery
Update is not necessary for Drupal 8 sites.

jQuery Update
jQuery Update also provides an option to serve the minified jQuery file via Google’s
CDN rather than from the module folder. If you’re not already using a CDN, this allows
quite a large file to be served via a CDN “for free.” There’s also the potential that site
visitors will have visited other sites that serve the same jQuery version prior to visiting

16 | Chapter 2: Frontend Performance

https://drupal.org/project/jquery_update

yours and already have it cached, although how likely this is depends on the traffic
patterns of your site’s visitors and overall adoption of the Google CDN. If you have a
family of sites all running Drupal with lots of traffic between them, the chances of this
happening might be increased.

However, this does mean an extra DNS request, a dependency on Google’s infrastruc‐
ture, and an extra HTTP request, since jQuery will no longer be included in aggregates,
so be aware that there are trade-offs in both directions.

External Scripts
Regardless of the quality and performance of Drupal core, contributed modules, and
your own custom module or themes, all of that optimization and thought can go to
waste—or at least be cancelled out—as soon as you add analytics, social widgets, ad‐
vertising, and similar external services to a site.

Services like these often drive either revenue or traffic (or both) to websites, and when
building commercial or community websites, there’s often a lot of pressure (from either
end users or business owners) to add as many as possible. This can result in many
different JavaScript snippets from different services being included, which in turn may
load other JavaScript files, CSS, and images.

All external services are different, but there are several rules of thumb that apply to most.
We’ll look at some of them in the next section.

Single Points of Failure (SPOFs)
When JavaScript is loaded synchronously, browsers block all rendering until the file has
finished downloading. If an external service is down or having performance trouble,
this may cause a script included on your page to take longer than usual to load, or fail
to load altogether.

Synchronous loading just means putting a normal JavaScript file in a normal script
tag:

<script>http://example.com/some/file.js</script>

If example.com is unable to serve the request in a timely manner, browsers will wait
until either it eventually serves the request, or the request times out before rendering
the full page. This can result in large blank sections below where the script is included
or even entirely blank pages, depending on the browser and the location of the script
tag, not to mention potential delays of 30 seconds or more. Most of the optimizations
in this chapter have focused on changes that are likely to save milliseconds, hundreds
of milliseconds, or perhaps a couple of seconds at most; yet a single external script can

External Scripts | 17

render a site unusable—potentially as unusable as an outage on your own infrastructure,
in terms of the end user experience.

The SPOF-O-Matic browser plug-in by Patrick Meenan both flags
likely single points of failure and can simulate complete failure for any
external script it finds on your pages. This allows SPOFs to be found
easily and provides an easy way to demo just how bad they are to
anyone who might question the importance of handling external
scripts carefully!

Many of the more popular services now provide asynchronous snippets that will not
block page rendering; this is usually achieved by providing inline JavaScript, which then
dynamically creates a script tag so that the JavaScript is loaded asynchronously.

Even scripts loaded asynchronously can block the browser onload event, on which real
user monitoring, analytics, and in some cases site functionality might rely. A further
optimization is executing the JavaScript within a dynamically created iframe so that it’s
isolated from the parent window’s onload event. Note that techniques in this area change
frequently; some services still support (and advertise in their documentation) snippets
they provided several years ago and that might be found on sites in the wild, and some
services have ignored these techniques and exclusively provide snippets that will cause
a SPOF.

To avoid this, ensure you audit sites for SPOFs; SPOF-O-Matic is great for this. When
adding scripts, avoid any temptation to embed markup or script tags directly into a
page.tpl.php, head.tpl.php, or any other template or custom block, and use Drupal APIs
such as #attached and drupal_add_html_head() instead. Better still, if a contributed
module supports the service, consider enabling the widget or analytics via that module
instead of custom code, as the contributed project has a better chance of keeping up
with newer versions of the snippet than you do.

As well as SPOFs, it’s also worth checking for cacheable headers on any assets that scripts
load themselves. Frontend audits of sites have often found CSS or secondary JavaScript
files from external services loaded without minification or compression, and without
cacheable HTTP headers—whoops!

18 | Chapter 2: Frontend Performance

https://chrome.google.com/webstore/detail/spof-o-matic/plikhggfbplemddobondkeogomgoodeg

For social widgets in particular, also consider their usage on the site itself. Most sites
present lists of content on a single page, and it’s quite possible to have several social
widgets enabled for each node teaser on such pages. For example, let’s take a page
showing 20 node teasers. If widgets make requests back to services to load information
such as Like/comment/+1 counts, that’s 20 times as many of those requests, as well as
the JavaScript itself being executed 20 times for each request. A poorly optimized widget
that appears once is bad enough, but when there are 20 of the same thing on a page, it
could go from a sluggish response to crashing a browser.

Single Points of Failure (SPOFs) | 19

CHAPTER 3

Drupal Performance Out of the Box

Drupal provides several features and configuration options both in the core install and
in contributed modules that can affect a site’s performance and scalability. Making use
of these can provide dramatic improvements in site performance compared to Drupal’s
default settings. While many of these settings are essential when running a large Drupal
website in production, they are not enabled by default on new installs and can easily be
forgotten when moving a site from development to production. It’s therefore quite
common to see newly launched sites with one or more configuration options disabled,
leading to performance and scalability issues that could have been avoided with, in many
cases, just a few minutes work.

In addition to modules and configuration options that provide quick wins for improving
performance, we’ll also discuss some common pitfalls.

Page Caching
The majority of requests served by a Drupal site will either be requests for full HTML
pages served to browsers or read-only requests for content in other formats, such as
RSS or JSON-LD. Serving a request from Drupal involves the following:

• Parsing the request
• Loading various necessary services and modules
• Locating the correct route controller and executing it
• Rendering in the desired format

The single biggest improvement to application performance that can be made is simply
to skip as many of these steps as possible via page caching. When a request comes in,
the URL itself (and other request context in Drupal 8) is used as a cache identifier. If

21

there’s a cache hit, the output is sent from the cache rather than built from scratch in
PHP.

While cached pages are served in a fraction of the time of a “normal” Drupal request,
how much benefit a particular site might get from page caching varies greatly based on
site usage. Understanding the strengths and limitations of page caching is important
when considering more advanced optimization techniques.

When Should You Use Page Caching?
As a general rule of thumb, page caching is effective as long as the time saved by cache
hits exceeds the overhead of having page caching enabled for cache misses.

Let’s take an example of a site with a very low cache hit rate—say, a 1:30 hit/miss ratio.
Note that all the numbers here are entirely for illustration purposes and don’t necessarily
reflect any real websites:

Time to serve a page without caching: 300ms
Overhead of page caching on cache misses: 2ms
Time to serve a page from cache: 5ms

The 30 cache misses add an additional 60 ms across all requests (time spent checking
and then writing back to the cache).

However, the single cache hit saves 295 ms compared to building the page from scratch,
meaning that there is a net gain of 235 ms across all requests even with such a low hit
rate.

The numbers will vary dramatically depending on the site, although 300 ms can be quite
conservative to generate a full page on a complex site.

There are various types of sites and traffic patterns that can lower hit rates or make page
caching unviable:
Authenticated traffic

Page caching does not work if a visitor has an authenticated PHP session. By default,
Drupal customizes pages for authenticated users, for example, displaying their
username or administrative links based on their roles. A site that has 100% au‐
thenticated traffic—for example, a private intranet or ticket tracker—will not get
any benefit from full page caching.

Breadth of content
If a site has a large number of articles or similar content and regularly gets traffic
to this content via search engine referrals, external links, crawlers, etc., page caching
can be of limited value. To show this contrast, consider that one page visited 1,000
times within the length of the cache TTL will give 999 cache hits, whereas 1,000
pages visited once each during the same period will give 0 cache hits. Many sites
will have traffic patterns that encompass both of these extremes. Due to the relatively

22 | Chapter 3: Drupal Performance Out of the Box

low cost of writing a page to cache versus building it each time, it’s usually worth
enabling page caching.

Frequent updates
By default the page cache is invalidated every time content is posted, deleted, or
updated on the site. This means you can enable page caching without being con‐
cerned that site visitors will see out-of-date content. However, it also means that a
site that is updated every minute will invalidate the entire page cache every minute,
vastly reducing the chance of a cache hit. On the other hand, if you have infrequently
posted content, flurries of activity with long pauses in between, or updates at par‐
ticular times of the day, page caching will be effective for the bulk of the time. This
situation may be improved for both cases in Drupal 8, which has introduced cache
tags for smarter cache invalidation. Cache tags allow cache entries to be associated
with the specific content entities that are rendered so that they can be invalidated
when those entities are updated or deleted; however, at the time of writing, this has
not been integrated with the page cache.

PHP sessions for anonymous users
The page cache is bypassed for any anonymous users with a PHP session. Since
Drupal 7, PHP sessions are initialized on demand when something is written to
$_SESSION, so whether a user has a session depends on enabled code and user
activity. Actions such as adding an item to a shopping cart often trigger a PHP
session, and this is something to be generally aware of when writing code for custom
or contributed modules.

Customized content based on request parameters
Some sites customize the user experience for anonymous users at the same path.
This may involve using browser settings for preferred language to determine which
translation of a text to show, showing region-specific content based on IP address,
changing rendered output based on a cookie, switching to a mobile-specific theme
based on user agent, or showing content in different formats based on Accept
headers. Since the path is used as the cache key, Drupal is only able to cache and
serve one copy of the content, meaning that users see incorrect content when such
a feature coexists with core page caching. Drupal 8 natively handles Content-Type
Accept headers as part of the page cache key, so that different versions of a page
will be saved for different content types, but it does not handle the other cases yet.

Internal Page Caching
Drupal core provides its own internal page cache. The configuration option is accessed
via admin/config/development/performance and allows the full rendered HTML output
to be stored using Drupal’s own cache API. When the option is enabled, Drupal loads
and executes the minimum possible PHP code to check the cache item and serve the

When Should You Use Page Caching? | 23

page request. This can require as little as one database lookup, meaning pages can be
served from PHP in a matter of a few milliseconds.

The configuration settings $conf['page_cache_invoke_hooks'] = TRUE and
$conf['page _cache_without_database'] = TRUE allow Drupal 7 to skip even more
of its usual bootstrap when serving cached pages, so that pages may be served without
any database or cache lookups except for the page cache item itself.

This can make the difference between a site being able to serve tens of requests per
second or hundreds, including in shared hosting environments.

Drupal also provides an option to compress cached pages. This makes use of gzip com‐
pression when the client supports it, which can dramatically reduce the payload of
HTML sent to the browser. If you have control over your server configuration, however,
you may want to enable compression within your web server or reverse proxy instead
of from within Drupal. Drupal’s own page compression only works for pages served
from the internal page cache, whereas mod_deflate and similar work for all requests to
the site, whether cached or not.

Reverse Proxy Caching
The “Expiration of cached pages” option is located at admin/config/development/perfor‐
mance. Setting this option affects the max_age value of the Cache-Control header sent
by Drupal, which allows reverse proxies to cache pages. The most common reverse
proxy used for Drupal sites is Varnish, so we’ll use that as the example here; however,
many of these assumptions also apply to other caching options such as serving pages
via a CDN, or Nginx proxy caching.

Using a reverse proxy such as Varnish to serve cached pages has advantages over the
internal page cache, since Varnish is able to serve the entire page request without having
to call back to Apache and PHP. This significantly reduces server load by completely
avoiding the web server, PHP, and the database. Note that Varnish is not typically avail‐
able in a shared hosting environment and may not be an option for everyone, although
many Drupal-specific hosting providers do offer it.

When serving cached pages, there is one limitation that Varnish has compared to Dru‐
pal’s internal page cache: Drupal, by default, can’t expire pages from Varnish when con‐
tent is updated.

There are two options for handling this:

1. Set up Drupal to purge Varnish entries via the command interface or a PURGE HTTP
request based on updates to the site. This requires a custom Varnish configuration,
so it may not be available to all site owners. Assuming you have this option, though,
contributed projects such as the Varnish HTTP Accelerator Integration module or
the Purge module make it easy to set up your Drupal site to purge items in Varnish,

24 | Chapter 3: Drupal Performance Out of the Box

http://drupal.org/project/varnish
http://drupal.org/project/purge

and more granular purging can be enabled via projects such as the Expire or Cache
Actions or CacheTags modules.

2. Set the max_age to a low value, such as five minutes, while keeping the internal page
cache enabled. This keeps pages fresh in Varnish at the cost of a lower cache hit
rate, while ensuring that Drupal only builds a full page from scratch when necessary.
However, it requires some additional storage since pages are cached in two loca‐
tions.

CSS and JavaScript Aggregation
Frontend performance best practices recommend combining page resources into as few
requests as possible, and Drupal core provides an option to do exactly this out of the
box. CSS and JavaScript may be added to pages by Drupal core; any enabled core, contrib,
and custom modules; and themes. By default, each file is added to the page individually
in the HTML markup, meaning potentially dozens of HTTP requests on each page as
each file is requested individually by the browser. Aggregation in Drupal has particular
challenges that make it more complex to get this right than it might be for a custom web
application. The assets added to the page depend on:

• Which modules are enabled
• Whether the enabled modules define global assets to be added to every page

and/or conditional assets added only on certain types of request
• Which theme is active for the request, and whether that theme defines global or

conditional assets

Therefore, when assets are added to the page, they’re added with particular metadata,
and with information about whether they’re part of the base application, from a module,
or from the theme. The aggregation logic in Drupal 7 breaks these into the following
groups:

• Assets from System module added on every page
• Assets from System module added conditionally
• Module assets added on every page
• Module assets added conditionally
• Theme assets added on every page
• Theme assets added conditionally

In Drupal 8 these are being consolidated into two groups, a change that may be back‐
ported to Drupal 7:

CSS and JavaScript Aggregation | 25

http://drupal.org/project/expire
http://drupal.org/project/cache_actions
http://drupal.org/project/cache_actions
http://drupal.org/project/cachetags

• Assets added on every page
• Assets added conditionally

Files will not be aggregated if they define custom attributes or a specific media type.

Separating files that are added to every page from those added conditionally reduces
the potential that users will download multiple large aggregates containing lots of du‐
plicate assets as they browse around different pages of the site. This was the case with
Drupal 6’s aggregation strategy, which relied on a single aggregate per page.

Two other behaviors are enabled when CSS and JavaScript aggregation are switched on.
First, Drupal will write gzipped versions of each file and try to serve them to clients that
accept gzipped content via default .htaccess rules. You may want to consider disabling
this behavior in .htaccess if already using mod_gzip/mod_deflate or equivalent.

Additionally, CSS files are stripped of whitespace and comments. No preprocessing is
done for JavaScript files, but several core JavaScript files are already minified, and the
Speedy module helps by replacing those that aren’t with minified versions.

Logging
Also provided by core but requiring a certain level of control over your hosting envi‐
ronment is the syslog module. Drupal enables the database logging (dblog) module by
default, which directs all watchdog() calls to the database. Modules that log verbosely
or that generate PHP notices and warnings can cause a large number of database writes.
Verbose logging and PHP errors should be fixed at source, by auditing the logs period‐
ically and fixing custom code or submitting patches to contributed code to avoid the
logging or errors. Switching to syslog allows any remaining or unexpected messages to
be logged by the operating system rather than the database, which can help to reduce
overall load on an overworked database server.

The Cache and Other Swappable Storage
Drupal’s cache API (used for internal page caching, as well as many other things needed
during the course of a request) uses the database storage implementation by default. As
with logging, simply setting up the cache to write to somewhere else will take some of
the load off the database server. Additionally, some cache backends have further benefits
over database caching, such as improved performance or the ability to scale horizontally.
Less frequently accessed but equally swappable are the queue and lock storage backends.

Core doesn’t provide a useful alternative storage implementation (except for a null im‐
plementation useful for development, or if you believe the YouTube video “MongoDB
Is Web Scale”), but contributed projects are available providing support for Memcache,
Redis, MongoDB, APC, and Files.

26 | Chapter 3: Drupal Performance Out of the Box

http://drupal.org/project/speedy
http://youtu.be/b2F-DItXtZs
http://youtu.be/b2F-DItXtZs

Cron
Drupal core and many contributed modules rely on hook_cron() for tasks such as
indexing or garbage collection. Up until Drupal 7, site administrators were required
either to set up a cron job to execute hook_cron() on their servers or to install the
Poormanscron module, which triggers the cron job automatically via PHP upon the
first request after a certain time limit. If neither of these was set up, garbage collection
didn’t run, which could lead to watchdog and cache tables growing indefinitely as ex‐
pired items were never cleared up.

From Drupal 7, the functionality of the Poormanscron module was moved into core
and is enabled by default. Drupal will execute these periodic cron jobs inline during a
page request every three hours, meaning the user that triggered the cron run may have
page serving delayed by seconds or minutes while the various jobs finish.

To avoid both of these scenarios, ensure that Drupal cron is configured to run frequently.
This can be done using a cron job or a more advanced job scheduler, such as Jenkins.
Cron also has high resource/memory requirements, so it should be run via drush to
avoid taking up a web server process and artificially inflating PHP memory limit re‐
quirements with mod_php.

Views
Views (both the Drupal 8.x core version and the Drupal 7 contributed module) ships
with a built-in time-based caching system, while additional modules can also provide
alternative caching implementations.

Caching settings are located under the advanced section in the Views UI. After enabling
caching, there are two settings available:
Query results

This caches only the results of the main listing query configured in the View, using
the query itself as the cache key. Views allows very complex queries to be created,
and caching the results is the quickest way to reduce the performance impact of the
queries on a site.

Rendered output
This caches the rendering of the items in the View, once the results have been
retrieved. This can also be expensive—it may involve loading entities, running ad‐
ditional queries for field values, as well as invoking the theme system. Since the
cache is time-based, an entity update such as changing a node title won’t be reflected
in the cache until the items have expired.

Cron | 27

https://drupal.org/project/poormanscron
http://jenkins-ci.org/
https://drupal.org/project/views

Where possible, both of these should be set to the maximum possible time. If you’re
concerned about cache coherency, setting a longer value for query caching and a shorter
value for rendered output is a good compromise.

Configuring caching for Views is often forgotten in the process of site building, and this
is one of the first simple changes to look at making (after page caching) when a site runs
into performance issues.

If you want to ensure that you never forget to enable caching for a
View, consider installing the Views Cache Bully module, which enfor‐
ces time-based caching on any View where it’s not configured.

28 | Chapter 3: Drupal Performance Out of the Box

https://drupal.org/project/views_cache_bully

CHAPTER 4

Drupal Coding for Optimal Performance

One of the great things about Drupal is the ease with which you can extend or override
core functionality in order to customize it for your specific needs. However, if you are
not careful with how you code, you may introduce a huge performance bottleneck into
your contributed or custom module. This chapter will give an overview of Drupal APIs
relevant to performance and scalability, common coding best practices, and pitfalls to
be aware of when trying to approach common tasks.

Context Matters
Before discussing the APIs and patterns that Drupal provides, it’s worth discussing
which types of issues are often introduced when writing Drupal code.

Performance and scalability issues in code can affect CPU, memory, filesystem, database,
and network usage, either individually or in combination. All code uses at least some
CPU and memory, and all sites will access the database and filesystem and potentially
make network requests. Whether any of these turns out to be a performance bottleneck
is always down to context.

There are no hard and fast rules about what makes code “fast” or “slow”—exactly the
same code could be acceptable in one situation but not in another, and performance
often needs to be balanced against other programming issues such as testability, read‐
ability, and maintainability.

When writing or reviewing code, it’s important to think of the context the code will be
executed in—both the immediate use case and whether it might also be applied to other
contexts. The following are some general questions to ask, before you start trying to
optimize at all:

• Does the code get executed on every request?

29

• Could it run more than once during a request? If so, a few times, or hundreds or
thousands?

• If the code runs less frequently, will it affect end user performance? And how critical
is end user performance in that case?

• Does the code have side effects that could affect the performance of other requests,
such as writing to the database or flushing caches?

• Is the code an isolated unit, or will it be affected by other code or the configuration
and state of the Drupal installation it runs on? For example, the amount of content,
users, themes, or modules installed can dramatically change the characteristics of
how code performs.

Only after considering these questions should you attempt to apply one or more of the
approaches outlined here.

False Optimizations
It’s entirely possible to make the performance of code worse by “optimizing” it. This
happens when additional code is added to avoid expensive processing, but the expensive
processing happens anyway. The result is that both the original expensive code and the
new code run, adding additional overhead to an already bad situation.

An example of this is the fairly common micro-optimization of replacing array_key_ex
ists() with isset(). (Please note that this is used only as an example, and we’re not
explicitly recommending doing so!):
isset()

This is a language construct that tells you whether a variable is set or not, and returns
false if that variable is explicitly set to NULL.

array_key_exists()

This is a function that tells you if an array key exists regardless of the value.

Function calls in PHP have more overhead than language constructs, so isset() takes
less time than a function call, and while the semantics are different, they can be used
interchangeably if you don’t need to explicitly check for array keys set to NULL. Hence,
a common micro-optimization is to use isset() unless it’s absolutely necessary to check
for NULL.

Let’s assume you had some code that definitely needed to use array_key_exists()
because of the NULL check, but you wanted to try to run the faster isset() first, to skip
the function call when it’s not needed. You might write code like this:

<?php
$array = array('foo' => NULL);

30 | Chapter 4: Drupal Coding for Optimal Performance

isset($array['foo']); // returns FALSE.

array_key_exists('foo', $array); // returns TRUE.

isset($array['foo']) || array_key_exists('foo', $array); // returns TRUE.
?>

The last example is semantically identical to just an array_key_exists() call, but in
the case that $array[‘foo’] is set to a non-NULL value, only the isset() check needs
to be made, avoiding the more expensive function call.

However, if $array[‘foo’] doesn’t exist or is set to NULL, then the code actually has to
do more work—checking isset() then the array_key_exists(), as well as the ||
operator—all of which is going to be slower than just running array_key_exists() in
the first place!

The only way to know the effect of this is to create a realistic scenario or test on a real
install, and see which code execution path is actually the most common. This comes
back to context—it’s not so much the content of the code itself that determines its per‐
formance, but how exactly it is executed.

Whether this kind of optimization is a problem depends on the relative performance
increase you hope to gain.

For example, when checking access rights, you may need to check an administrative
permission via user_access() as well as access permissions based on an entity ID,
which requires loading the entity via entity_load() first. Both checks are necessary
regardless, but the order is important.

While very few users might have the administrative permission, a call to user_ac
cess() takes a fraction of the resources that loading and access-checking an entity does
and won’t cause a measurable delay. It’s worth doing the cheaper check first even if the
second, more expensive check will run too.

This is the same with almost any pattern that attempts to circumvent code execution
rather than completely rewriting it. For example, adding persistent caching to a function
that is a cache miss in 99.9% of cases will mean extra time spent checking and writing
to the cache, as well as extra space being taken up in cache storage, on top of the original
code being executed. However, if the code being executed is very expensive, then the
overhead of cache misses may well be outweighed regardless.

With this in mind, we’ll first cover a common task for Drupal custom and contributed
modules, and look at ways to ensure that this task is executed as fast as possible. Then
we’ll move on to the APIs that Drupal provides specifically to aid with performance and
scaling.

False Optimizations | 31

Listing Entities
Whether it’s on the front page of a blog or in a gallery of images or a comment thread,
much of the work done on a Drupal site involves getting a list of entities and then
rendering them.

There are two APIs introduced in Drupal 7, and only slightly changed in Drupal 8, that
help with this: entityQuery() and entity_load_multiple().

entityQuery()
Rather than a direct database query to entity and field tables, EntityQuery() relies on
a storage controller to handle building and executing the query for the appropriate entity
storage backend. This has the advantage that any query run through entityQuery() is
storage agnostic, so if you’re writing a contributed module or working on a site where
it might be necessary to move to alternative entity storage in the future, all your queries
will transparently use the new storage backend without any refactoring. Entity
Query() can be used whether you’re writing queries by hand in custom code or via the
entityQuery() Views backend.

Multiple Entity Loading
Once you have some entities to list, you’ll need to load and then render them.

A common pattern would be to loop over each node and load them individually:

<?php
/**
 * Provide an array of rendered entities given the IDs.
 *
 * @param array $ids
 * The entity IDs to load
 *
 * @return $rendered_entities
 * The array of rendered entities.
function render_entities($ids) {
 $rendered_entities = array();
 foreach ($ids as $id) {
 $rendered_entities[$id] = entity_view(entity_load($id));
 }
 return $rendered_entities;
}
?>

Drupal 7 introduced multiple entity loading and rendering so that tasks such as fetching
field values from the database could be done once for all nodes with an IN() query rather
than executed individually:

32 | Chapter 4: Drupal Coding for Optimal Performance

<?php
function render_entities($ids) {
 $entities = entity_load_multiple($ids);
 return = entity_view_multiple($entities);
}
?>

By using the multiple load and view functions, assuming 10 nodes need to be loaded
and rendered, 10 similar queries to the same table can be reduced to just one. Since an
individual node load could require 10 or 20 database queries, this can result in dozens
or hundreds of database queries saved when loading and rendering multiple nodes at
the same time.

Note that this applies to hook implementations as well; for example, hook_enti
ty_load() acts on an array of entities.

One often overlooked hook is hook_entity_prepare_view(). Often, custom themes
will need to add fields from user accounts/profiles when rendering nodes or comments
—this could be the user’s full name, avatar, registration date, etc. A common pattern for
this is preprocess. Let’s take nodes as an example:

<?php
template_preprocess_node(&$variables) {
 $node = $variables['node'];
 $variables['account'] = user_load($node->uid);
 // Set up custom variables based on account here.
}
?>

When rendering several different nodes or comments by different authors, this pattern
can result in a lot of round trips to the database as each account is fetched individually.
The following example provides the same functionality while resolving the performance
issue:

<?php
hook_entity_prepare_view($entity_type, $entities) {
 if ($entity_type != 'node') {
 return;
 }
 $uids = array();
 foreach ($entities as $entity) {
 $uids[] = $entity->uid;
 }
 $accounts = user_load_multiple($uids);
 foreach ($entities as $entity) {
 $entity->account = $accounts[$entity->uid];
 }
}
?>

Then $entity->account is available in preprocess:

Listing Entities | 33

<?php
template_preprocess_node(&$variables) {
 $account = $variables['node']->account;
}
?>

Caching
Caching is often the quickest way to solve a performance issue. By adding caching in a
particular code path, you can ensure that it will only be executed on cache misses.

Before adding caching, though, there are a few things to consider:

• Is it possible to optimize the code so that it doesn’t need to be cached?
• Is there already caching of the code at a higher level, for example page caching, that

might affect the hit rate?
• Will the cached code path be considerably quicker than the current code path?
• Does the cache need to be cleared on particular events? Is it OK for it to be stale

sometimes?
• Is the code run multiple times with the same output during a single request?

Static Caching
When code is run multiple times per request, a common optimization is to add a static
cache around it. For example, you might rewrite the following code:

<?php
function my_function() {
 return something_expensive();
}

as

<?php
function my_function() {
 static $foo;
 if (!isset($foo)) {
 $foo = something_expensive();
 }
 return $foo;
}
?>

Because $foo is declared as static, it will be held in memory for the duration of the
request regardless of how many times the function gets called. This means once this
function has run once, it will run the isset() check and then immediately return.

34 | Chapter 4: Drupal Coding for Optimal Performance

While it only takes a couple of lines of code to add a static cache, doing so has impli‐
cations that aren’t always immediately obvious.

Let’s look at the code inside something_expensive():

<?php
function something_expensive() {
 return friends_count($GLOBALS['user']);
}
?>

Whoops. If $GLOBALS[‘user’] changes during the request, then something_expen
sive() will return different output. This often happens during automated tests using
Drupal’s simpletest adaption, or in a drush process that might be sending emails to
multiple different users.

It’s not impossible to fix this, of course. For example, we can key the cache based on the
global user’s ID:

<?php
function my_function() {
 static $foo;
 global $user;
 if (!isset($foo[$user->uid])) {
 $foo[$user->uid] = something_expensive();
 }
 return $foo[$user->uid];
}
?>

Now, regardless of how many times the global user object is swapped out during the
request, our function will return correctly, whilst still statically caching the results.

But the problems don’t end there. What if the number of friends the user has changes
during the request as well? This might well happen during a functional test or a long-
running drush job. Additionally, this is where memory usage starts to be a problem: a
drush job processing one million users could eventually end up with a million items in
this static cache.

Drupal core has a solution for this in the form of the drupal_static() function. This
operates similarly to static caching, except that the static cache can be accessed from
different functions, both for retrieval and for reset.

Now our function looks like this:

<?php
function my_function() {
 // Only this line changes.
 $foo = &drupal_static(__FUNCTION__);
 global $user;
 if (!isset($foo[$user->uid])) {

Caching | 35

 $foo[$user->uid] = something_expensive();
 }
 return $foo[$user->uid];
}
?>

Code in unit tests that updates the user’s friends count or needs to reclaim some PHP
memory can then call drupal_static_reset(‘my_function’) to empty the static
cache.

Since drupal_static() is a function call, it has a lot more overhead than declaring static
and including an isset() check. This can lead to a situation where static caching is
added to micro-optimize a function, then converted to drupal_static() for testing
purposes, which leads to the function being slower than when it had no caching at all.
If you absolutely need to use drupal_static() and your function is going to be called
dozens or hundreds of times during a request, there’s the drupal_static_fast pattern:

<?php
function my_function() {
 static $drupal_static_fast;
 if (!isset($drupal_static_fast)) {
 $drupal_static_fast['foo'] = &drupal_static(__FUNCTION__);
 }
 $foo = $drupal_static_fast['foo'];
 global $user;
 if (!isset($foo[$user->uid])) {
 $foo[$user->uid] = something_expensive();
 }
 return $foo[$user->uid];
}
?>

This adds testability and performance at the expense of quite a bit of complexity.

There are two issues with my_function() now. One is a development process issue, and
the other is architectural.

In terms of process, if we look back at the original function, we can see it’s only a wrapper
around something_expensive(). While a real example probably wouldn’t be a one-line
wrapper, if the only thing that needs caching is something_expensive(), this isn’t the
right place to add that caching. What we should have done was add the caching directly
to something_expensive(), which also knows about any global state it depends on and
any other factors that might influence the result (and, if you’re lucky, is in a contributed
module rather than your custom code).

When you add caching to a wrapper rather than to the function itself, the following bad
things happen:

36 | Chapter 4: Drupal Coding for Optimal Performance

• Any other code that calls the function (here, something_expensive()) does not get
the benefit of the static caching.

• If the function or another function that calls it adds static caching at a later point,
the same data will be added to the cache twice, leading to both higher memory usage
and potentially hard-to-find cache invalidation bugs.

From an architectural/readability perspective, we can see the gradual change from a
very simple function to one that is balancing various variables in global state. A major
change in Drupal 8 has been the migration from procedural APIs to object-oriented
code based on dependency injection. Most classes are loaded via a factory method or
plug-in manager, or accessed from the dependency injection container. When this is
the case, simply using class properties is sufficient for managing state between methods,
and no static caching is necessary at all.

Persistent Caching
Drupal core ships with a rich caching API, defaulting to database caching but with
contributed support for files, Memcache, Redis, MongoDB, APC, and other backends.

While static caching allows code to skip execution when called within a single PHP
request, persistent caching is shared between PHP processes and can retain data for
anything from a few seconds to several weeks.

The Cache interface is well documented on the Drupal API site, and there are numerous
examples of basic usage in core modules. Rather than duplicating that information here,
we’ll discuss some of the lesser known features and ones new to Drupal 8.

Cache chains
A new feature in Drupal 8 is the cache chain backend, a means of stringing together
different cache storage backends in a way that is transparent to the calling code. This
feature is primarily designed for combining two persistent storage backends together
—for example, APC and database caching—in order to get the best of both. With an
APC and database chain, the cache will check APC first and return immediately if an
item is found. If not, it will check the database and then write back to APC if the item
is found there; and on cache misses, it will write to both. It’s also possible to use the
memory backend shipped with Drupal core and any other persistent backend to emulate
the static + persistent caching pattern shown earlier, without the code complexity.

Cache bins
Drupal core defines several different cache bins, including “bootstrap” for information
required on every request, the default cache bin, and use-case-specific bins such as
“page” which is only used for cached HTML pages. The cache API not only allows for
storage to be swapped out but also allows it to be changed for each cache bin, via the

Caching | 37

https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Cache!CacheBackendInterface.php/interface/CacheBackendInterface/8

$conf[cache_backends] variable in Drupal 7 and the dependency injection container
in Drupal 8.

The bootstrap cache bin is designed for items needed for every request; it’s used pri‐
marily by low-level Drupal APIs such as the theme registry or hook system. The cache
items in this bin tend to be invalidated infrequently—often when a module is enabled
or disabled—and since they’re requested all the time will have an extremely high hit
rate.

On the other hand, the “block” cache bin is used to cache the output of Drupal’s blocks
system. Blocks may have different cache items per role, per user, and/or per page, which
can result in hundreds of thousands or more potential entries in the bin. The bin is also
cleared often on content updates, so it has a high insert/delete/update rate.

In most cases, sites will want to set up a single cache backend such as Memcache or
Redis to handle all cache bins, but the option is there to use different backends with
different bins if desired.

When using the cache API, you’ll likely use the default cache bin, or create a custom
bin. A custom bin should only be used if there’s going to be a very large amount of data
to cache.

getMultiple()/setMultiple()/deleteMultiple()
As with entity loading, the cache API allows for loading, setting, and deleting multiple
cache objects at once. Any situation where you know the cache IDs of multiple objects
in advance is a candidate for using these methods, and many different storage backends
natively support multiple get, allowing a single round trip to the cache storage and a
shorter code execution path.

Cache tags
A new feature of the core cache API in Drupal 8 is cache tags.

There is often confusion between cache tags as a concept and cache IDs, so let’s explain
cache IDs first.

When creating a cache ID in Drupal, the following conventions are important:

• Use the module name or another unique prefix at the start of the cache ID to avoid
naming conflicts with others.

• Where a cache ID depends on context, include enough information about this
context in the ID to ensure uniqueness. That is, for a cache item that varies per user,
you might use:

<?php $cid = 'my_module:' . $uid; ?>

If it varies by language as well, then use:

38 | Chapter 4: Drupal Coding for Optimal Performance

<?php $cid = 'my_module:' . $uid . ':' $langcode; ?>

In this case, the semantics of what makes up the cache ID aren’t important; all that
matters is that one user doesn’t get presented content that was cached for another user
or translated in a different language to the one they’re viewing the content in..

One exception to this is key-based invalidation—using the updated
timestamp of an entity as part of the cache key means that when the
entity is updated, so is the cache key, resulting in a cache miss and new
cache entry without having to explicitly clear the old key.

Cache tags, rather than guaranteeing the uniqueness of cache items, are intended for
cache invalidation.

A good example of this is entity rendering. Entities may be rendered on their own with
multiple view modes, as part of a listing of multiple entities via Views, as part of a block,
or embedded within the rendering of another entity via entity references.

A rendered node may include information from referenced entities, such as the name
of the user that authored the node and that user’s avatar. A Views listing might include
multiple nodes like this.

To maintain coherency when entities are updated, there are two common approaches:
Set long TTLs and clear all caches of rendered content

The cache will be completely emptied whenever a single item of content is updated,
even though the majority of the cache will be unaffected. On sites with frequent
content updates, this approach can lead to low hit rates and the potential for cache
stampedes. However, the cache will always be accurate.

Set short TTLs so that content is only stale for a few seconds or minutes
This results in lower hit rates regardless of the frequency of content updates. How‐
ever, not explicitly clearing the cache all at once when an item is updated means
there’s less likelihood of cache stampedes.

Cache tags allow for a “best of both worlds” scenario, where all cache items that include
an entity are tagged with that entity’s ID, and saving the entity invalidates those cache
items but no others. This allows for both cache coherency (assuming consistent tagging
in the first place) and longer TTLs.

CacheArray

CacheArray was originally added to Drupal 8 but has been backported to Drupal 7,
along with several patches integrating it with core subsystems. As a highly dynamic
system, and with so much functionality provided by modules, Drupal has evolved to
carry a lot of metadata about what functionality is provided from where. This includes

Caching | 39

the theme registry (a large array of all theme hooks, templates, and preprocessors), the
schema cache (which contains metadata about every database table defined by a module,
which often reaches 200 or so), and several other registries. On a default install of Drupal
core, these usually reach a few hundred kilobytes at most; however, many Drupal sites
end up with as many as a hundred or even several hundred contributed modules enabled,
each of which may be defining new database tables, theme templates, and the like.

Prior to Drupal 7.7, each subsystem would store these arrays in one large cache item.
This meant that for the theme registry, every theme function or template registered on
a particular site would be loaded on every page—including theme functions for specific
administrative tables that might not be used, or for functionality that might not be
exposed on the site itself due to configuration. For the schema cache, while the schema
metadata is only used for tables passed to drupal_write_record() or drupal_sche
ma_fields_sql()—often as few as 10–15 tables on most sites—metadata about every
database table on the site would nevertheless be loaded from the cache for every request.

CacheArray provides a mechanism to drastically reduce the size of these cache entries
by emulating a PHP array using ArrayAccess. When an array key is requested that hasn’t
already been cached, it’s treated as a cache miss and looked up, and then the array is
populated with the returned value. At the end of the request, any newly found array
keys and values get written back to the cache entry so that they’ll be a cache hit for the
next request. This allows the cache item to be built on demand, populated only with
data that is actually in use on the site and often excluding infrequently accessed items
such as those used for administrative pages that may not be visited during normal site
operation. Relatively few contributed modules need to maintain as much metadata as
some of these core subsystems, but CacheArray provides a solution to this problem
when you run into it.

CacheArray is in the process of being replaced by CacheCollector in
Drupal 8. CacheCollector has the same internal logic but uses pub‐
lic methods for get and set instead of ArrayAccess.

Render caching
Drupal’s render API takes a structured array of data and converts it to HTML, running
it through the theme system and collecting associated assets such as CSS and JavaScript.
One of the more powerful but underused features of the render system is its integrated
cache handling.

When writing code that generates HTML, there are two main phases that the content
goes through:

• Building the array of data (e.g., a list of nodes based on the results of a query)

40 | Chapter 4: Drupal Coding for Optimal Performance

http://api.drupal.org/api/drupal/core!lib!Drupal!Core!Utility!CacheArray.php/class/CacheArray/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Cache!CacheCollector.php/class/CacheCollector/8

• Rendering the array to HTML, which mainly involves running it through the theme
system

Render caching allows the majority of time spent in these operations to be skipped. We’ll
take the example of a custom block that shows the five most recently published article
titles, taking it from no caching at all to using the render cache as much as possible:

/**
 * Implements hook_block_info().
 */
function example_block_info() {
 $blocks['example_render_cache'] = array(
 'info' => t('Render caching example.'),
 'cache' => DRUPAL_CACHE_CUSTOM,
);
 return $blocks;
}

/**
 * Implements hook_block_view().
 */
function example_block_view($delta = '') {
 switch ($delta) {
 case 'example_render_cache':
 $query = new EntityFieldQuery();
 $query->entityCondition('entity_type', 'node')
 ->entityCondition('bundle', 'article')
 ->propertyCondition('status', 1)
 ->range(0, 5)
 ->propertyOrderBy('created', 'ASC');
 $result = $query->execute();
 $nids = array_keys($result['node']);
 $nodes = node_load_multiple($nids);
 $titles = array();
 foreach ($nodes as $node) {
 $titles[] = l($node->title, 'node/' . $node->nid);
 }
 $block['subject'] = t('Render caching example');
 $block['content'] = array(
 '#theme' => 'item_list',
 '#items' => $titles,
);
 break;
 }
 return $block;
}

When the block is rendered with each request, first the hook_block_view() imple‐
mentation is called. Then the resulting render array is run through drupal_render()
(the second phase).

Caching | 41

Just adding #cache to the render array would skip theming, but the entity query and
loading would continue to happen with every request without some reorganization.
Render caching allows us to skip that work as well, by moving that code to a #pre_ren
der callback. This is the most complicated aspect of using render caching, so rather than
adding the cache first, we’ll start by moving that code around.

hook_block_view() now looks like this:

/**
 * Implements hook_block_view().
 */
function example_block_view($delta = '') {
 switch ($delta) {
 case 'example_render_cache':
 $block['subject'] = t('Render caching example');
 $block['content'] = array(
 '#theme' => 'item_list',
 '#pre_render' => array('_example_render_cache_block_pre_render'),
);
 break;
 }
 return $block;
}

/**
 * Pre-render callback for example_render_cache block.
 */
function _example_render_cache_block_pre_render($element) {
 $query = new EntityFieldQuery();
 $query->entityCondition('entity_type', 'node')
 ->entityCondition('bundle', 'article')
 ->propertyCondition('status', 1)
 ->range(0, 5)
 ->propertyOrderBy('created', 'ASC');
 $result = $query->execute();
 $nids = array_keys($result['node']);
 $nodes = node_load_multiple($nids);
 $items = array();
 foreach ($nodes as $node) {
 $items[] = l($node->title, 'node/' . $node->nid);
 }
 $element['#items'] = $items;

 return $element;
}

hook_block_view() now returns only the minimum metadata needed; the bulk of the
work is transferred to the render callback, which will be called by drupal_render()
itself when the element is rendered.

Once this is done, adding caching requires only a small change to hook_block_view():

42 | Chapter 4: Drupal Coding for Optimal Performance

/**
 * Implements hook_block_view().
 */
function example_block_view($delta = '') {
 switch ($delta) {
 case 'example_render_cache':
 $block['subject'] = t('Render caching example');
 $block['content'] = array(
 '#theme' => 'item_list',
 '#pre_render' => array('_example_render_cache_block_pre_render'),
 '#cache' => array(
 'keys' => array('example_render_cache'),
),
);
 break;
 }
 return $block;
}

Adding #cache means that drupal_render() will check for a cache item before doing
any other processing of the render array, including the #pre_render callback. Profiling
a page with this block before and after should show that the EntityFieldQuery and
node loading has been removed on cache hits. See Chapter 6 for more information about
how to check this.

Queues and Workers
Drupal core ships with a robust queue API, defaulting to MySQL but with contributed
projects providing support for Redis, Beanstalkd, and others.

The queue API is most useful when you have expensive operations triggered by actions
on the site. For example, saving a node or comment may require updating the search
index, sending email notifications to multiple recipients, and clearing various caches.
Performing all of these actions directly in hook_node_update() will mean the request
that actually saves the node takes considerably longer, and introduces single points of
failure in the critical path of updating content. Depending on the implementation, fail‐
ures in search indexing or sending emails may show up as errors to the end user or
interrupt the content saving process altogether.

Instead of doing all this work inline, in your hook_node_update() implementation, you
can create a queue item for that node; then, in the worker callback, you can perform
whichever tasks on it are necessary.

This has the following advantages:

• Expensive processing is taken out of the critical path of saving nodes into a back‐
ground process. This allows the Apache process to be freed up quicker and pages
to be served more quickly to users.

Queues and Workers | 43

• The background process may be run by drush or a queue daemon. Any operations
that require high memory limits won’t bloat Apache, and they don’t necessarily need
to run on the main web server at all. If queues are processed by Jenkins, it’s also
possible to isolate reporting of failures for particular queues.

• Multiple queue workers may run at the same time, allowing infrastructure usage to
be maximized when there are lots of items in various queues. In contrast, Drupal’s
hook_cron() only allows one cron invocation to run at a time.

• Queue items are processed individually and can be returned to the queue if not
successful. For example, if a queue item needs to call an external service but the
API call fails with a 503 response, it can be returned to the queue to be retried later.

In sum, pages can be served to end users faster, you have more flexibility when scaling
up your infrastructure, and your application will be more robust against failures or
performance issues in external providers.

Cache Stampedes and Race Conditions
As sites reach large numbers of simultaneous processes, the potential for stampedes and
race conditions increases.

A stampede can happen when a cache item is empty or invalid and multiple processes
attempt to populate it at the same time. Here’s an example with Drupal 7’s variable cache:

• Process A requests the variable cache, but there is no valid entry, so it starts loading
the variables from the database and unserializing them.

• Process B then comes in; there is no cache entry yet, so it also queries the variables
from the database.

• Process C comes in and does the same thing.

• Process A finishes building the page and caches it.

• Process D requests the page and gets the cached item.

• Processes B and C finish and overwrite the cache item with their own identical
versions.

In this case, only one cache item was needed, but it was created three times.

If this is an expensive task, it can put the server under high load as multiple different
processes all do duplicate work.

There are two approaches to handling this scenario:

• When it’s OK for a few requests to be served an invalid cache item, it’s possible to
use the $allow_invalid parameter to $cache->get() so that invalidated but still
present cache items are returned by the API. The first request to get an invalid cache

44 | Chapter 4: Drupal Coding for Optimal Performance

item can acquire a lock using Drupal core’s lock API, then proceed to build the new
cache item and return it to the caller. Subsequent requests will fail to acquire the
lock and can immediately return the stale cache item; this will happen until the new
cache item is available.

• When the cache item must be up to date at all times, or if a cache item is completely
empty, it’s not possible to serve stale content. The first process to get a cache miss
will still acquire a lock and proceed to build the fresh cache item. If the item is very
expensive to build, then subsequent requests can be put into a holding pattern using
$lock->wait(). This will return as soon as the lock is released, after which the cache
should be available.

Using the locking system can have its own problems—when a cache stampede turns
into a lock stampede—and it would be remiss not to discuss these:

• By default, acquiring a lock requires a database write, and polling for locks queries
the database quite frequently. Locking to save one inexpensive database query can
be counterproductive in terms of performance since it may have as much overhead
as rebuilding the cache item. The lock API has pluggable storage, so this can be
improved by installing one of the alternative backends.

• Items that are cached per page are less likely to be requested simultaneously than
items cached once for the whole site. Where there is very little chance of a cache
stampede, the extra overhead of acquiring the lock is not worth it for these items.

• Items that are invalidated very frequently—say, every 10 seconds—will result in a
constant acquiring and freeing of locks. Since processes that don’t acquire locks
usually poll to see if the item is created, they may miss the window of the valid cache
item and continue to poll.

If you are running into issues with locking, consider whether the lock may be making
things worse rather than better. Alternatively, it may be necessary to rethink the func‐
tionality altogether; for example, refactoring a per-page element to work across all pages
on the site.

Cache Stampedes and Race Conditions | 45

CHAPTER 5

Drupal Coding for Abysmal Performance

Having looked at some Drupal best practices for performance, we’ll now take a look at
some worst practices and antipatterns. No one intentionally writes abysmally perform‐
ing code, but as with any system, misuse of Drupal APIs can lead to unexpected and
hard-to-predict performance issues that are often hidden in the implementation details
of a specific API.

It’s not possible to provide an exhaustive list of antipatterns in Drupal that are bad for
performance, but one API in particular gets abused very frequently and can cause quite
serious and hard-to-track-down performance issues on high-traffic sites with particular
configurations.

variable_set() Abuse
The variables system prior to Drupal 8 is one of the simplest, most central, and most
commonly used APIs, to the point where it’s very rare to find a module that doesn’t use
it. It’s also one of the most frequently abused APIs, including in Drupal core, so it pro‐
vides a good example of how a simple API can come to be misused over time as use
cases change. As you’ll see, this API no longer exists in Drupal 8.

We’ll start with a brief explanation of the API and its implementation in Drupal core.

Variables are stored in a single table with a name and a serialized value. Early in each
page request, every variable is loaded into the $conf global from the cache (or the cache
item is rebuilt if it’s missing). Individual variables are accessed, set, or deleted via the
variable_get(), variable_set(), and variable_del() functions. system_set
tings_form() provides a degree of automation between administrative configuration
pages and the variables they control.

Over the years, as well as storing configuration, the variables system has been used for
storing other things as well:

47

• Cache items that are updated infrequently and expensive to rebuild
• Site “state,” or metadata tracking the status of a specific site, which can’t be recreated

in the same way a cache entry should be (so can’t be deleted when all caches are
flushed), but is set dynamically by code rather than triggered by configuration UI
changes

Prior to Drupal 8, core did not provide a dedicated key/value store, so the variables
system was reused for this as the next closest thing.

Examples of where variables are used to store state in Drupal core include for tracking
whether outgoing HTTP requests are failing, the time of the last cron run, and the
filenames and file collections for generated CSS and JavaScript aggregates.

When a variable is set, three things can happen:

1. The database row is updated. Updating the database invalidates the MySQL query
cache and may cause issues with locking on high-traffic tables, but is usually a fast
operation with a well-indexed query affecting just one row.

2. The cache is cleared. Clearing a cache itself is very cheap.
3. The next request to the site discovers that there’s no cache entry for the variable

table, so it loads every variable (sometimes 2,000–3,000 of them on complex sites)
from the variables table, unserializes them, then writes the cache entry. This could
take anything from a few milliseconds to a couple of hundred milliseconds de‐
pending on the number of variables, site load, etc. No Drupal request can be served
without all variables being loaded, so if a previous request has cleared the variable
cache, the next request will try to rebuild it. If multiple requests hit the site before
the cache item has been set, one of the following occurs:

• (Drupal 6) All requests that get a cache miss will each rebuild the variables cache
entry and write it back to the cache table.

• (Drupal 7 and Drupal 6 Pressflow) The first request acquires a lock, rebuilds and
writes back the cache entry; other requests wait for the lock to be released, then
either build it if there’s still no cache entry, or read from the cache and continue.

If variable_set() ends up being called very frequently, this can result in either a cache
stampede, where dozens of requests are constantly updating the cache entry, or a lock
stampede, where processes are constantly waiting for a new variable cache entry that
may be invalidated again before they’re able to retrieve it from the cache.

What makes this problem worse is that it can be relatively hard to track down the cause,
for a few reasons:

48 | Chapter 5: Drupal Coding for Abysmal Performance

• When profiling a page, variable_set() won’t show up as one of the most expensive
operations—the set itself is fairly quick, so it could easily be skipped over.

• While generating the variables cache entry is quite expensive, there’s no way to tell
from these requirements why the variables cache was empty. It’s not possible to
know which variable was cleared without reviewing code or debugging, so even
profiling a page where the variables cache was previously invalidated doesn’t give
an indication of whether this was due to state tracking or via a configuration form
submission.

If you find a module doing this in Drupal 7, consider checking that the value of the
variable has changed before saving it, converting the code to use the cache system if
that’s feasible, saving the value in a dedicated table if it’s not requested frequently, or,
like drupal_http_request(), just logging the change via watchdog().

In Drupal 8, the variables system has been completely removed and replaced with three
distinct APIs:
Settings

Low-level configuration required before storage is available to the system as a whole;
settings can only be changed in settings.php.

Configuration
The majority of module configuration is stored as YAML, providing the ability to
stage configuration changes between sites.

State and key/value store
A new key/value store interface and implementation have been added, and a “state”
service is made available by default using this API. All the things that previously
would have been abusing the variables system to store state can now use the state
service. Since state is separated from overall site configuration, updating values in
the state system won’t invalidate the entire configuration cache.

External Requests
Increasingly, site development includes interacting with external APIs, whether for so‐
cial sharing, login, content sharing, or similar purposes. When making HTTP requests
from PHP code, it’s easy to introduce a single point of failure in your architecture, and
in the case of requests to an external API, it’s one that you will have no control over if
the service happens to be sluggish or go down due to network or infrastructure issues.

Examples of where this can go wrong include features such as allowing users to specify
an RSS feed in their profile pages and then displaying it in a block, or using the PHP
APIs for services such as Facebook and Twitter. If the request to the external service

External Requests | 49

takes several seconds, times out, or returns a bad status code, will your page still be
served in a timely manner, or at all?

External HTTP requests can also be a hidden cause of performance issues on a site,
since they may be intermittent and will not cause high CPU or disk load in the same
way poorly optimized PHP algorithms or slow database queries can.

There are several steps that can be taken to reduce the potential for catastrophic failure.
We’ll use a user-specific RSS feed displayed in a block on the user’s profile page as an
example:

1. Add caching. A call to an external API can easily take 200–300 ms. If that call is a
simple GET request for a list of posts or the like, it will be very straightforward to
cache the results using Drupal’s caching API. If the site has empty caches, this won’t
prevent downtime, so just adding caching won’t be sufficient, but it will mean that
sites with a warm cache entry won’t depend on the service being available.

2. Add a timeout. If an API can’t respond within a second or two, can you afford to
wait any longer before serving the page? If not, adding a timeout to the HTTP
request ensures that your code will continue.

3. Move the HTTP request out of the critical path. It may be possible to move the
HTTP request to hook_cron() (for example, precaching the RSS feeds for each user
once per hour instead of checking each time the block is viewed) or a queue. Al‐
ternatively, the block could be moved to an AJAX callback, with JavaScript on the
parent page requesting the block and inserting it into the DOM (known as a client-
side include). You can also use both methods: if the HTTP request fails, cron might
take a bit longer, or the AJAX request might not return, but the main request itself
will still be able to complete and be served.

Sessions
Since Drupal 7, sessions are only created for unauthenticated users once something is
actually put into $_SESSION. Once a user has a session, page caching is disabled to avoid
serving incorrect content based on the contents of the user’s session, such as the contents
of a shopping cart, or status messages. This happens when using both the internal page
cache and a reverse proxy, if using a standard configuration.

$_SESSION should therefore only be used for situations where storing the information
for the anonymous user should also prevent pages being cached for that user. An ex‐
ample would be a user’s shopping cart choices, where the shopping cart contents may
be displayed on each page, and the site may want to preserve the choices in the session
when the user logs in. While adding items to a shopping cart is a valid reason to disable
caching, attention should be paid if a user removes an item from the cart. A common

50 | Chapter 5: Drupal Coding for Abysmal Performance

mistake is to set $_SESSION['foo'] ='' or $_SESSION['foo'] = array() when emp‐
tying out a session variable; using anything other than unset($_SESSION['foo']) will
leave the session open.

Excessive Cache Granularity
When you’re working on a project, requests may come in to make particular content
user specific (per user, geolocated), or to vary things on every page—for example, ex‐
cluding the article in the main content area from a list of featured articles in the sidebar.
Often these requests are unavoidable, but the details of how this extra information is
added to or removed from pages can have profound effects on a site’s performance.

Let’s take for example a snippet that shows the latest three articles added to a site. A
simplified version of the block on a Drupal 7 site might look like:

<?php
 $nids = db_query_range('
 SELECT nid
 FROM {node}
 WHERE status = 1
 ORDER BY created DESC', 0, 3)->fetchCol();
 $nodes = node_load_multiple($nids);
 return node_view_multiple($nodes, 'block_listing');
?>

However, when you’re on the node/n page for one of the nodes in this block, you might
want to exclude it from the list and show the fourth-most-recent node instead:

<?php
 $current_node = menu_get_object();
 $nids = db_query_range('
 SELECT nid
 FROM {node}
 WHERE status = 1
 AND nid <> :nid
 ORDER BY created DESC', 0, 3, array(‘:nid’ => $current_node->nid))->fetchCol();
 $nodes = node_load_multiple($nids);
 return node_view_multiple($nodes, 'block_listing');
?>

Only one condition was added, but this fundamentally changes the performance of this
block. With the first version, despite potentially being displayed on tens of thousands
of node pages across the site, the query was always exactly the same. This allowed it to
be cached in a single cache entry, both by the MySQL query cache and in Drupal’s cache
API if desired. With the second version of the query, however, a different version will
be run on every node page. A million node pages might mean a million variations on
the query, vastly reducing the effectiveness of both the MySQL query cache and Drupal’s
own cache layer.

Excessive Cache Granularity | 51

Rather than excluding the current node ID in SQL, we could do it in PHP:

<?php
 $current_node = menu_get_object();
 // This time load four nodes.
 $nids = db_query_range('
 SELECT nid
 FROM {node}
 WHERE status = 1
 ORDER BY created DESC', 0, 4)->fetchCol();

 foreach ($nids as $key => $nid) {
 // If one of the nodes is the current one, remove it.
 if ($nid == $current_node->nid) {
 unset($nids[$key]);
 }
 }
 // Ensure only three nodes are loaded.
 array_splice($nids, 3);
 $nodes = node_load_multiple($nids);
 return node_view_multiple($nodes, 'block_listing');
?>

This allows the same query to be cached across the whole site again, but still the markup
will need to be cached per page. A further optimization in terms of cacheability would
be to render four nodes every time, then implement the same logic for removing either
the current node or the fourth-most-recent node in JavaScript, allowing the block to be
safely cached in a reverse proxy via edge-side or client-side includes. At this point, it’s
a trade-off between caching the rendered output and the additional JavaScript require‐
ment.

A similar issue exists with per-user markup. Drupal traditionally adds per-user markup
to many site elements: for example, “new” or “updated” markers on nodes and com‐
ments based on the last time the user visited a node, or quick administration links such
as contextual links. Drupal 8 will continue to add user-specific markup in these places,
but it does so via JavaScript replacement so that the markup generated for the blocks
themselves is the same regardless of the user. For examples of this implementation, see
the Comment and History modules in Drupal 8.

PHP Errors
While Drupal core complies with E_STRICT by default and has fairly comprehensive test
coverage, it is common when reviewing a live site to find PHP notices and warnings
logged on every request (in some cases, tens per request). When using Drupal’s default
database logging (dblog) module for logging, this means potentially hundreds of addi‐
tional database writes per second on a high-traffic site. Even if using syslog or another
alternative log implementation, PHP error handling is expensive and should be avoided.

52 | Chapter 5: Drupal Coding for Abysmal Performance

PHP errors and notices may well be a sign of underlying functional bugs, but even if
they’re not, there’s no excuse for writing and deploying code that’s not E_ALL compliant.

Debug Code in the Code Base
Code review as part of the development process should prevent this, but “emergency”
fixes can result in debug code being committed to the live code base. This could include
things like clearing the entity cache before loading entities, disabling the theme registry
or locale caching, excessive logging, and various other operations that are both expen‐
sive and unnecessary on a production site.

Development Settings
While not strictly a “coding” matter, a common issue on live websites is leaving one of
the many debug features provided by modules and themes enabled, such as rebuilding
the theme registry on every request. Settings like this should never, ever be enabled in
the user interface, but rather overwritten by settings.local.php in $conf, which can
be different for development, staging, and live environments (see Chapter 9). Similarly,
development modules should be enabled locally by developers after each database re‐
fresh and never enabled on a live environment. While this may be standard practice for
some readers, others may recognize the frustration of discovering that a downtime issue
was due to a forgotten development setting that was never switched off.

Debug Code in the Code Base | 53

CHAPTER 6

Verifying Changes

When optimizing a site that’s under development or in production, the most important
step before any other is to gather data on what the performance and scalability bottle‐
necks are. Without data, a lot of effort can be expended on optimizing code that’s actually
performing OK, and conversely, poorly performing code might be overlooked. Without
being able to identify and quantify specific performance issues, it’s not possible to verify
that improvements have been made. A site might seem “faster” after a change was rolled
out to production, but you’ll never know whether this was because of the change itself,
or perhaps because crawler traffic or even a distributed denial-of-service (DDoS) attack
subsided at the same time.

Analyzing Frontend Performance
Frontend performance monitoring falls into roughly four categories:

• Getting a summary of a page’s performance based on rules for high-performance
websites

• Waterfall and timeline charts for individual pages
• Real user monitoring
• Profiling of CSS and JavaScript

YSlow and Google PageSpeed
Often the first step toward analyzing a site’s frontend performance is looking at the
summary report produced by a tool such as YSlow and PageSpeed. Given a URL, or via
a browser plug-in, they’ll analyze a request to an individual web page and give you scores
for specific areas such as number of HTTP requests, cacheable headers, etc. Drilling
down on these items will show specific recommendations. Both of these tools are very

55

http://developer.yahoo.com/yslow/
https://developers.google.com/speed/pagespeed/

easy to use and have great documentation, so doing a walkthrough here would be re‐
dundant. However, the reports they generate are only useful if you have an understand‐
ing of the underlying principles of frontend performance and the effort it’s likely to take
to fix the issues that are identified. Chapter 2 goes into detail about Drupal-specific
advice on how to deal with many of these issues, based loosely on the categories that
are highlighted by these reports.

While generating a summary report from YSlow or PageSpeed is a very quick task, this
is commonly treated as a manual step to be taken by an individual developer and so can
often be overlooked during the development process, or done much less frequently than
changes are made that impact the frontend performance of the site. However good your
intentions may be, automating frontend performance testing as part of your continuous
integration process helps to ensure that your site is regularly put through its paces and
helps you discover changes that may negatively impact performance before they’re de‐
ployed.

PhantomJS is a headless WebKit implementation including a Java‐
Script API for which there is a YSlow plug-in. This allows you to trigger
a YSlow report from the command line and write the output in a
structured format such as JUnit.

Once you have a summary of a page’s performance, it’s often necessary to drill down to
individual requests to see what’s going on.

Waterfall Charts
Waterfall charts show the sequential process of loading a web page. Primarily this shows
page resources as they’re requested and downloaded by the browser, as well as timings
for “start render” and “document complete” events, represented by the green and blue
vertical bars on the chart. See Figure 6-1 for an example waterfall chart, created for a
load of http://drupal.org.

Each horizontal bar on the waterfall chart represents a separate request. Each request
is further broken down into the following components:
DNS lookup

The address lookup for each domain that resources are served from. This occurs
once per domain/subdomain rather than once per resource on the page, and may
be skipped if the browser implements DNS caching and has a warm cache for the
domains on the page.

56 | Chapter 6: Verifying Changes

http://drupal.org

Figure 6-1. Waterfall chart for the Drupal home page

Initial connection
The upstream connection to request the resource from the server. This is con‐
strained by upstream bandwidth, so tends to be worst for mobile connections. It’s
also affected by the number/size of cookies that the browser needs to send with each
request—these are sent upstream for every request the browser makes that it has
cookies set for.

SSL negotiation
The process of checking SSL certificates (only for SSL requests, of course).

Time to first byte
The time until the browser downloads the very first part of the resource. This de‐
pends on the speed of response of the server (is it under load, and was the file served
by Varnish from memory or by Apache from disk, or even generated by PHP dy‐
namically?).

Content download
This depends mainly on file size—whether the file is optimized to the correct size,
gzipped, etc.

Analyzing Frontend Performance | 57

Drupal.org is quite well optimized at 23 requests on the front page, but looking closely
at the waterfall chart, it’s still possible to see room for improvement. For example, btn-
search.png is a single-use image for the search button, which could be consolidated into
one of the existing sprites since the same styling is used for other buttons on the page.
Any request for an image that’s not associated with content should be treated with sus‐
picion! Even when images are consolidated into sprites, consider whether it might be
possible to replace them with typographic or CSS features instead.

Follow along with the issue we filed for this while writing this chapter.

While webpagetest was used for generating this example, you’ll normally get richer
information from local browsers using tools such as Firebug for Firefox, Chrome De‐
veloper Tools or Safari Developer Tools. These provide the ability to view all the HTTP
headers for a request, as well as a timeline of the browser rendering layer itself, which
can help to identify issues such as how many reflows and repaints happen on the page
(i.e., due to images included in the page without dimensions).

Real User Monitoring
When testing frontend performance, a key point to bear in mind is that as a developer
(or Jenkins job) running synthetic tests on a site that you’re working on, you represent
absolute best-case conditions for frontend performance in nearly all cases. Developers
are most likely to be:

• On fast Internet connections
• Running powerful hardware
• Using recent operating system and browser versions
• From a location geographically close to the origin server

Whereas visitors to a site could be from multiple continents, running old hardware with
out-of-date browser versions over public WiFi or 3G networks.

While an improvement made for the best-case scenario is usually an improvement for
the worst-case scenario, too, particularly in the case of network latency and browser
rendering speeds, differences in visitors’ connections and hardware can mean extreme
variation in results for the same page. A visitor with a slow 3G connection is likely to
spend a much greater proportion of the page load time making upstream requests to
the server (so watch those cookies!). A visitor with an older smartphone is much more
likely to experience sluggish rendering performance due to poorly optimized markup,

58 | Chapter 6: Verifying Changes

https://drupal.org/node/2031259

CSS, and JavaScript, because that device will have significantly less CPU available than
the average laptop.

In response to this, there is increased reliance on real user monitoring (RUM) to collect
performance metrics from actual visits to sites in addition to “clean” tests.

RUM tends to be dominated by commercial Software as a Service (SaaS) solutions, since
it requires capturing, storing, and presenting large volumes of information that many
organizations do not have the ability to maintain in-house. However, there are open
source alternatives, such as Jiffy (open sourced by Netflix) and Steve Souders’ Web
Episodes, and free commercial alternatives such as the page timing feature of Google
Analytics. There’s also a Drupal contributed module for the navigation timing API that
can be used to directly collect information from requests to the site within Drupal,
although this is not suitable for production sites.

Regardless of the mechanism used, the end result is collecting real requests to the site
by visitors, including timings such as time to first byte and page complete, via a snippet
of JavaScript included in the web page. By recording this data for all requests made to
a site, it’s possible to generate reports that show overall trends for end user performance
on the site—which pages are slow, whether particular browsers have a particularly
slower experience than others, which countries are getting the best and worst response
times, etc.

Depending on the tool used, it may be possible to collect diagnostic information as well.
However, more often this information can be used to feed back into synthetic tests to
make them better reflect reality, or to target them on specific areas of the site that need
improvement or that experience the most traffic.

Analyzing Application Performance
Application performance is often the black sheep of site optimization, with efforts fo‐
cused primarily on frontend performance and infrastructure. In our case, application
performance means… Drupal! More specifically, we want to look at the PHP code and
database queries that Drupal needs to run to serve a request. Application performance
is not the same as the performance of your site overall. If 90% of requests are served
from Varnish, then Drupal is only involved in the other 10%—but these 10% will be the
slowest, and they may come all at once if the Varnish cache is cleared.

Measuring and understanding application performance is not at all the same thing as
load testing. While load testing frameworks often include performance measurements,
this is measuring the end-to-end performance, including infrastructure and network
layers. Load tests are likely to only find the most glaring application performance issues,
since there can be a high variation in response times between tests. See Chapter 20 for
more discussion on how to run load tests and what to look for.

Analyzing Application Performance | 59

http://bit.ly/18PMYZS
http://bit.ly/18PMYZS
https://drupal.org/project/navigation_timing

By contrast, understanding application performance means examining how the code
that runs your application performs, more or less in isolation from external factors. This
is done by profiling the code.

The Devel Module
The Devel module provides a number of debugging tools for developers. Amongst these
are tools for monitoring page timing, memory consumption, and the query log, and for
XHProf profiling. Most of the features discussed here apply across the Drupal 6, 7, and
8 versions of the module.

Page timing

Devel’s own page timing uses microtime to measure the time from drupal_boot
strap_configuration() to PHP shutdown and requires no PHP extensions to be en‐
abled: just check the box on admin/config/development/devel. Microtime across a full
page request can be extremely variable, so to ensure a like for like comparison, refresh
the pages several times to ensure all application caches (as well as the opcode cache,
MySQL query cache, etc.) have been primed, or expect very different results each time.
There is one exception to this: when timing cache misses, you should ensure that all
caches really are empty. The page timer can be used for a quick sanity check as to whether
a page is taking dozens, hundreds, or thousands of milliseconds to load and is useful in
situations where there is no opportunity to install lower-level tools, but usually it’s better
to go straight to one of the other techniques for measuring page execution time discussed
in the following sections.

Memory usage

Memory usage in the Devel module is measured using memory_get_usage() and memo
ry_get_peak_usage() during shutdown. As with page timings, no PHP extension is
required, and the option can be enabled at admin/config/development/devel. Since this
information is taken from PHP itself, it can be relied upon more than the page timings,
but there are still some caveats. If you’re trying to find out how much memory a page
is going to use, ensure that other debugging tools like Xdebug, XHProf, and the query
log are disabled, since these will increase memory usage. Also ensure that any opcode
caches are enabled (unless specifically testing memory usage without an opcode cache),
since these can impact memory usage by several megabytes. Finally, bear in mind that
Drupal’s memory usage varies widely depending on whether caches are primed or not.
Often for memory usage, the worst case should be measured as opposed to the best case
—an Apache process will always have a memory footprint of the worst PHP page it
served from memory, not the best.

60 | Chapter 6: Verifying Changes

http://drupal.org/project/devel

Query log

Devel’s query log measures database queries from devel_boot() until PHP shutdown.
Since it uses the APIs within Drupal’s own database layer, it’s able to present the exact
queries that were triggered on the page in question. This makes it a very useful alter‐
native to mytop.

Drupal may execute some database queries before hook_boot() runs,
depending on whether the database cache backend is used and which
Drupal version is being tested.

Like the options for measuring page timing and memory usage, the query log option
can be enabled at admin/config/development/devel. There are two options that allow
customization of the query log display:
Sort Query Log

The query log is sorted “by source” by default, showing the queries in the order they
were executed. Changing this to “by duration” shows the queries in the order of
execution time, slowest first. This is useful to quickly identify slow queries on the
page, but bear in mind that query timings may change on each request due to the
influence of the MySQL query cache, server load, or just margin of error, and this
can make it difficult to identify the same query across different page requests since
it may change position each time.

Slow Query Highlighting
This defaults to 5 ms, and any query taking longer will be highlighted in red in the
query log. Five milliseconds is not particularly slow, but most queries executed by
Drupal should be well indexed, may be in the query cache, and are likely to have
small result sets, so they should execute in well under 1 ms in most cases. Therefore
even leaving this option at the default setting should not result in any highlighted
queries on a stock install.

While not specific to the query log, there’s one other Devel setting that affects the query
log and other performance measurements taken by Devel: “Display redirection page.”
Drupal form submissions make a $_POST request to the same page as the form. Once
the form has been processed, the page gets redirected. Since the query log only collects
queries during the request, the redirect prevents the log from ever being rendered.
“Display redirection page” provides an intermediary page that allows the output to be
printed, along with a link to the page that was going to be redirected to. This is an
invaluable option when trying to examine queries executed after submitted content or
searches, which would otherwise be invisible except at the MySQL level.

Analyzing Application Performance | 61

Apart from these settings, note that the query log will only be displayed to users with
the “Access developer information” permission. On a development site it should be fine
to enable this for anonymous or authenticated users. The Devel module should never
be enabled on a production site.

Once the option is enabled and permission granted, visiting any page will result in the
queries being shown at the bottom. Figure 6-2 shows an example from the front page
of a stock Drupal 7 install with no caches primed.

Figure 6-2. Devel query log with an empty cache

Figure 6-3 shows the same page load, now with a warm cache.

62 | Chapter 6: Verifying Changes

Figure 6-3. Devel query log with a warm cache

At the top of the first query log is the summary:

Executed 91 queries in 29.05 ms. Queries exceeding 5 ms are highlighted.

And the second query log has the summary:

Executed 33 queries in 10.27ms. Queries exceeding 5 ms are highlighted.

While brief, this summary provides two fundamental pieces of information that indicate
what problems might be present on the page:
Total time

This is the combined time taken for all queries on the page. In this example, the
time is approximately 10 ms with a warm cache, which is likely to be a relatively
small percentage of the overall time taken for the page request. An unindexed query

Analyzing Application Performance | 63

with filesorts and table scans on a large data set could take hundreds of milliseconds
or several seconds, so a high number here should be an immediate red flag.

Number of queries
Depending on the contributed and custom modules installed on a site, and the
complexity of the page being rendered, the number of database queries executed
on a Drupal page can vary from under 10 to several hundred or even thousands. A
slow query taking seconds is more likely to be making a website hard to scale, but
having to make hundreds of round trips to the database is likely to be a major
contributor to slow page-building performance and will increase the overall load
on the database server.

By dividing the number of queries by the total time spent executing queries on these
pages, we can see that each query took approximately 0.3 ms on average. This kind of
performance is expected with a stock core install and a very small data set.

After the summary, each query is listed in a table with the following columns:
ms

The number of milliseconds taken to execute the query.

#
The number of times the query was executed during the request. Note that from
Drupal 7, the Devel module ignores placeholder values when counting queries, so
two queries with different placeholder values are treated as the same query. There‐
fore, this may not show actual duplicates, but it will indicate when lots of queries
are running that are very similar.

where
The caller that executed the query. This links to api.drupal.org by default but can
be set up to link to a custom API site if desired.

ops and query
Added in Drupal 7, the ops column provides three ways to view the query itself,
shown in the neighboring (query) column. The default is P, meaning PHP Data
Object (PDO) placeholders (for example, :cids) are displayed:

SELECT cid, data, created, expire, serialized FROM cache WHERE cid IN (:cids_0)

A query run via db_query() will have named placeholders as written
in the code calling db_query(). When queries are run via db_se
lect(), Drupal’s query builder generates the placeholders dynamical‐
ly, so they end up being called db_condition_placeholder.

64 | Chapter 6: Verifying Changes

http://api.drupal.org

Selecting the A link
Shows the actual query executed, with placeholders replaced. This is ideal for copy‐
ing and pasting into a MySQL client to check the result set or to try different var‐
iations:

SELECT cid, data, created, expire, serialized FROM cache_bootstrap WHERE cid IN
('foo')

Selecting the E link
Shows an EXPLAIN for the query, saving you the step of copying and pasting the
query into a MySQL client in order to get this information. EXPLAIN shows the steps
that MySQL goes through to solve a given query and can be very useful to track
down why a query may suffer from performance issues. Table 6-1 shows Devel’s
EXPLAIN output for a query.

Table 6-1. Devel module query EXPLAIN
id select_type table type possible_keys key key_len ref rows Extra

1 SIMPLE cache_bootstrap const PRIMARY PRIMARY 767 const 1

Target
This is the database target for the query, which could either be the primary database
or a separate database being accessed via the database API.

Xdebug
Xdebug is a PHP profiling and debugging extension authored by Derick Rethans. It’s
very stable and as a debugger is more or less required for developing in PHP. Xdebug
profiling generates cachegrind files, which can then be viewed in an interface such as
KCacheGrind, which is available for most operating systems; or webgrind, which is
written in PHP and has a web interface, as the name suggests.

Enabling profiling with Xdebug is done via one of two methods. This enables profiling
for every request:

xdebug.profiler_enable =1

This allows profiling to be triggered via an XDEBUG_PROFILE cookie or a $_GET or $_POST
parameter:

xdebug.profiler_enable_trigger =1

Xdebug will then write cachegrind files to xdebug.profiler_output_dir.

There are two more php.ini settings to be aware of:
xdebug.profiler_output_name

configures the filename to be written to. By default this is the process ID, which
means a single Apache process will write to the same filename with every request.

Analyzing Application Performance | 65

xdebug.profiler_append

configures whether cachegrind files written to the same location will be appended
to the existing content or overwrite it.

The combination of these two configuration options is very important to bear in mind
the first time you try profiling. Since the default configuration is to write with the process
ID and overwrite files each time, visiting a Drupal page that triggers an AJAX request
(which several Drupal core modules do) is likely to result in the cachegrind file holding
the profile of the AJAX request rather than the initial one you intended to profile. In‐
cluding %r (random string) as part of xdebug.profile_output_name guarantees a
unique file each time, and %R ($_SERVER['request_uri']) means that page requests
can easily be associated to the profile output. See this page for more filename options.

Profiling with Xdebug carries a lot of overhead, so it’s important to only leave it enabled
when profiling. Also, just having the Xdebug extension enabled (without profiling) has
a performance impact, so ensure you disable it entirely before doing other kinds of
performance testing.

XHProf
XHProf isa profiler for PHP, developed and open sourced by Facebook. XHProf does
not contain a debugger and exists solely as a profiler. As a profiler, XHProf has several
advantages over Xdebug and is our preferred profiling tool for Drupal. These include:

• The ability to collect data on memory usage as well as CPU usage and wall time
while profiling. Xdebug has the capability to collect memory usage data via function
traces, but this is less convenient since it’s a separate mechanism to collecting ca‐
chegrind, and there is not the range of UIs available for examining the output.

• Less overhead from being enabled. Unlike Xdebug, XHProf does not add significant
overhead simply by being enabled, allowing it to be installed on production web
servers.

• Considerably less overhead when profiling. In addition, xhprof_enable() has
XHPROF_FLAGS_CPU and XHPROF_FLAGS_MEMORY options that determine whether
CPU and memory usage data will be collected, allowing a custom balance between
the amount of data collected and performance overhead. While profiling does have
a measurable overhead, this is low enough that XHProf can be considered for
profiling a sample of requests on production sites if desired.

XHProf is available via PECL, so assuming you have PECL available already, it can be
installed with:

$ sudo pecl install xhprof

66 | Chapter 6: Verifying Changes

http://xdebug.org/docs/all_settings#trace_output_name

Or, if you have PECL set to stable releases only:

$ sudo pecl install channel://pecl.php.net/xhprof-0.9.3

Many resources on the Internet recommend compiling XHProf from
source because the previous 0.9.2 release would not install from PECL
successfully. However, this was fixed with version 0.9.3, released in May
2013, so compiling manually is no longer necessary.

You may also need to enable the xhprof extension yourself in php.ini:
extension=xhprof.so

XHProf ships with a web interface built in PHP. This is found in the xhprof_html folder
(usually found in /usr/share or /usr/local/share). To use this, set up a virtual host
and /etc/hosts entry so that it’s available at http://xhprof.localhost or similar. There are
also third-party user interfaces available, but we’ll focus on the default interface for the
purposes of this discussion.

XHProf profiling is enabled via the xhprof_enable() and xhprof_disable() func‐
tions. This allows profiling to be conditionally enabled or disabled in runtime code—
for example, if you were trying to sample requests in a QA or production environment,
profiling could be restricted to a particular Drupal user or path, or to a 1/1,000 sample.
This also allows profiling to be restricted to a particular section of code if desired.

Most commonly, however, when profiling a website, you’ll want to profile the entire
request each time, in order to put the numbers in context. There are several ways to do
this:

• The Devel module provides an xhprof setting at admin/config/development/devel.
Enabling XHProf profiling, adding the path to xhprof_lib, and adding the URL
to the web interface is all that’s necessary to begin profiling requests. The Devel
module uses hook_boot(), so it will not profile code that runs prior to that. Once
profiling is enabled, all pages will have a link to “XHProf Output” at the bottom.

• The XHProf module is similar to Devel in that it allows XHProf profiling to be
enabled via configuration; however, it also provides a Drupal interface for exam‐
ining the output.

• auto_prepend_file and auto_append_file allow arbitrary PHP files to be in‐
cluded at the beginning and end of each request via .htaccess when using mod_php.
This allows the entire Drupal request to be profiled, since XHProf is enabled before
any Drupal code runs.

Analyzing Application Performance | 67

http://xhprof.localhost
https://drupal.org/project/xhprof

The last method requires some manual steps compared to use of the Devel and XHProf
modules, so we’ll detail those here. Two files are required:

<?php
 include '/path/to/xhprof/xhprof_lib/utils/xhprof_lib.php';
 include '/path/to/xhprof/xhprof_lib/utils/xhprof_runs.php';
 xhprof_enable(XHPROF_FLAGS_CPU + XHPROF_FLAGS_MEMORY);
?>

<?php
 $host = $_SERVER['HTTP_HOST'];
 $xhprof_data = xhprof_disable();
 $xhprof_runs = new XHProfRuns_Default();
 $run_id = $xhprof_runs->save_run($xhprof_data, $host);
 $source = urlencode($host);
 $url = "http://xhprof.localhost/index.php?run=$run_id&source=$source";
 echo 'Profiler output';
?>

Then, in the .htaccess file at the root of your Drupal install, add these two lines:

php_value auto_prepend_file 'var/www/xhprof/header.php'
php_value auto_append_file '/var/www/xhprof/footer.php'

When you request a page in your Drupal installation, you should now see the text
“Profiler output” at the bottom of the page.

Now that XHProf is up and running, you can profile a request, look for issues, then
evaluate a way to fix them.

Starting with an 8.x install, with the standard profile, create a single node, then visit
node/1 as an anonymous user. Drupal has several caches to build on that page, so ensure
you visit it two to three times before looking at the profiler output (unless you’re ex‐
plicitly looking to see what happens on a cache miss).

When viewing the default XHProf UI, the first thing you’ll see is a summary like the
one in Table 6-2.

Table 6-2. XHProf overall summary
Total Incl. Wall Time (microsec): 257,290 microsecs

Total Incl. CPU (microsecs): 233,884 microsecs

Total Incl. MemUse (bytes): 19,927,040 bytes

Total Incl. PeakMemUse (bytes): 20,004,696 bytes

Number of Function Calls: 51,151

68 | Chapter 6: Verifying Changes

Each category is worth looking at:
Total Incl. Wall Time

This is the actual elapsed time (i.e., time on the clock, which might be on the wall).

Total Incl. CPU
This represents time spent by the CPU. Time not spent by the CPU would include
network round trips—external requests, database and cache queries, etc.

Total Incl. MemUse
This is the total memory used by the script by the time XHProf profiling ends. It
includes the impact of loading files as well as any objects, static caches, etc. created
during the request.

Total Incl. PeakMemUse
Roughly equivalent to memory_get_peak_usage(); this is the peak memory allo‐
cated at any time during the request.

Number of Function Calls
The total number of function and method calls recorded by XHProf.

Just the summary gives us quite a bit of information to work with. Total wall time is 257
ms, and total CPU time is 233 ms. That shows us that the vast majority of time is spent
executing PHP. The remaining time is likely to be spent in the database, in the cache
system, or on HTTP requests, since those external calls are not counted as PHP execu‐
tion. Since this site is using the database cache layer, that only leaves two options.

To verify this, we can jump ahead a bit to check an individual function. Searching the
page for “PDO” finds PDOStatement::execute(), the lowest-level function in Drupal
8 that executes database queries. Table 6-3 shows a truncated version of the results
displayed on the metrics page.

Table 6-3. XHProf results for the PDOStatement::execute() method
Function Name Calls Calls% Incl. Wall Time

(microsec)
IWall% Incl. CPU

(microsecs)
ICpu% Incl.MemUse

(bytes)
IMemUse%

PDOState
ment::execute

119 94.4% 29,269 11.4% 6,400 2.7% 728,144 3.7%

As you can see, 29 ms was spent overall, of which 6 ms was CPU time, leaving approx‐
imately 23 ms remaining. This confirms that the 23 ms of “missing” time was actually
spent on the round trip to the MySQL server, which XHProf doesn’t count as CPU time.

Analyzing Application Performance | 69

Note that these numbers are quite optimistic for the database, be‐
cause the database server is local and is not under load. Longer net‐
work round trip times or a server under load could dramatically in‐
crease the impact of those database queries, as well as larger table sizes
once the site has some content, due to slower queries. Also remem‐
ber that while it’s easy to add additional web servers, scaling MySQL
is considerably more complicated, so the sheer number of queries
executed per second could end up being an issue on a high-traffic site.

However, in terms of performance, more than 90% of the time spent serving this request
was in PHP, so we need to keep looking to find the main source of slowness.

The default XHProf ordering by inclusive wall time shows which functions take the
most time. XHProf and Xdebug both make a distinction between inclusive time (time
spent in the function and any functions it calls) and exclusive time (time spent only in
the function itself). A function that has a high inclusive wall time may not do anything
particularly expensive, but may just call functions that do. However, once you’re familiar
with Drupal’s bootstrap and rendering process, it gets easier to spot anomalies.

Let’s look at the top few functions for inclusive wall time for this request. Table 6-4 shows
what the table on the metrics page looks like, again truncated to fit the width of the page.

Table 6-4. Functions with the highest inclusive wall time for our request
Function Name Calls Calls

%
Incl. Wall
Time
(microsec)

IWall% Incl. CPU
(microsecs)

ICpu
%

Incl.MemUse
(bytes)

IMemUse
%

main() 1 0.0% 257,290 100.0% 105 0.0% 233,884 100.0%

drupal_handle_request 1 0.0% 257,012 99.9% 67 0.0% 233,605 99.9%

Drupal\Core\DrupalKernel::han
dle

1 0.0% 219,670 85.4% 17 0.0% 201,148 86.0%

Drupal\Core\HttpKernel::handle 1 0.0% 218,776 85.0% 32 0.0% 200,254 85.6%

Symfony\Component\HttpKernel
\HttpKernel::handle

1 0.0% 218,640 85.0% 6 0.0% 200,118 85.6%

Symfony\Component\HttpKernel
\HttpKernel::handleRaw

1 0.0% 218,634 85.0% 131 0.1% 200,111 85.6%

Symfony\Component\EventDis
patcher\ContainerAwareEventDis
patcher::dispatch

34 0.1% 193,842 75.3% 230 0.1% 176,492 75.5%

call_user_func 46 0.1% 181,808 70.7% 241 0.1% 163,983 70.1%

Symfony\Component\EventDis
patcher\EventDispatcher::dis
patch

34 0.1% 178,259 69.3% 360 0.1% 161,182 68.9%

70 | Chapter 6: Verifying Changes

Function Name Calls Calls
%

Incl. Wall
Time
(microsec)

IWall% Incl. CPU
(microsecs)

ICpu
%

Incl.MemUse
(bytes)

IMemUse
%

Symfony\Component\EventDis
patcher\EventDispatcher::doDis
patch

19 0.0% 177,054 68.8% 238 0.1% 159,968 68.4%

Drupal\Core\EventSubscriber
\ViewSubscriber::onView

1 0.0% 133,762 52.0% 30 0.0% 124,379 53.2%

Drupal\Core\EventSubscriber
\ViewSubscriber::onHtml

1 0.0% 133,667 52.0% 21 0.0% 124,283 53.1%

drupal_render_page 1 0.0% 133,135 51.7% 130 0.1% 123,751 52.9%

call_user_func_array 81 0.2% 72,108 28.0% 406 0.2% 65,780 28.1%

drupal_render 2 0.0% 67,728 26.3% 55 0.0% 62,663 26.8%

theme 4 0.0% 67,318 26.2% 332 0.1% 62,258 26.6%

block_page_build 1 0.0% 64,377 25.0% 63 0.0% 59,428 25.4%

block_get_blocks_by_region 17 0.0% 63,782 24.8% 56 0.0% 58,844 25.2%

Symfony\Component\ClassLoader
\ClassLoader::loadClass

242 0.5% 59,264 23.0% 2,878 1.1% 59,593 25.5%

_block_get_renderable_region 4 0.0% 51,872 20.2% 190 0.1% 48,477 20.7%

entity_view 6 0.0% 47,140 18.3% 80 0.0% 43,696 18.7%

This profiling was done with a Drupal 8.x alpha relese; exact profil‐
ing results will differ for later releases.

Looking down the list, we can see that most of the functions are called only one or two
times. While no guarantee, this usually suggests that they’re high-level functions that
have a deep call stack, and may not be easy to optimize or may need caching added.
However, also in the list is Symfony\Component\ClassLoader\ClassLoader::load
Class, called 242 times and taking 59 ms. Clicking on the function name will show all
the parent functions/callers of this function, as well as all the child functions/callees.

Drupal 8 (as of Alpha 2) provides two options for class loading: Symfony\Component
\ClassLoader\ClassLoader and Symfony\Component\ClassLoader\ApcClassLoad
er.

Let’s see what happens when we swap in ApcClassLoader and compare the results. Open
up setting.php and uncomment the following line:

<?php
$settings['class_loader'] = 'apc';
?>

Analyzing Application Performance | 71

Then visit node/1 again (twice, to allow the APC cache to be populated).

Searching the page for “loadClass” reveals that it’s dropped down nearly to the bottom
of the top 100 functions, nested between node_access() and _menu_translate(), and
has taken only 21 ms this time (as illustrated in Table 6-5). That’s nearly a two-thirds
reduction in the time spent on this function.

Table 6-5. Results for the loadClass() method with the APC class loader enabled
Function Name Calls Calls% Incl. Wall

Time
(microsec)

IWall% Incl. CPU
(microsecs)

ICpu% Incl.MemUse
(bytes)

IMemUse%

node_access 7 0.0% 21,506 10.0% 107 0.0% 20,736 10.9%

Symfony\Component
\ClassLoader\ApcClas
sLoader::loadClass

242 0.6% 21,443 9.9% 2,957 1.4% 21,845 11.4%

_menu_translate 6 0.0% 21,318 9.9% 218 0.1% 18,549 9.7%

To see where the remaining time is spent, click on loadClass and scroll down to the
“Child functions” section. Table 6-6 shows the top few.

Table 6-6. loadClass() child functions
Function Name Calls Calls% Incl. Wall

Time
(microsec)

IWall% Incl. CPU
(microsecs)

ICpu% Incl.
MemUse
(bytes)

IMemUse%

Symfony\Component\Class
Loader\ApcClassLoader::find
File

242 33.8% 2,026 9.4% 2,253 10.3% 54,312 0.7%

run_init::Entity/Role.php 1 0.1% 562 2.6% 563 2.6% 263,016 3.5%

run_init::mysql/Select.php 1 0.1% 411 1.9% 412 1.9% 193,624 2.6%

run_init::Entity/EntityDis
play.php

1 0.1% 337 1.6% 339 1.6% 176,624 2.4%

run_init::Entity/Node.php 1 0.1% 317 1.5% 320 1.5% 185,192 2.5%

run_init::Field/Field.php 1 0.1% 250 1.2% 251 1.1% 90,368 1.2%

run_init::user/RoleStorage
Controller.php

1 0.1% 242 1.1% 243 1.1% 97,360 1.3%

run_init::formatter/TextDe
faultFormatter.php

1 0.1% 229 1.1% 231 1.1% 72,272 1.0%

run_init::Entity/EntityManag
er.php

1 0.1% 222 1.0% 223 1.0% 51,416 0.7%

The top function is findFile(), also with 242 calls and taking 2 ms. findFile() looks
like this in the code base:

72 | Chapter 6: Verifying Changes

<?php
 /**
 * Finds a file by class name while caching lookups to APC.
 *
 * @param string $class A class name to resolve to file
 *
 * @return string|null
 */
 public function findFile($class)
 {
 if (false === $file = apc_fetch($this->prefix.$class)) {
 apc_store($this->prefix.$class,
 $file = $this->decorated->findFile($class));
 }

 return $file;
 }
?>

Clicking on findFile() confirms that it only calls apc_fetch(). Comparing before/
after, in Table 6-7 we can see that there were 429 calls to file_exists(), 12,164 to
strpos(), 838 to str_replace(), 834 to substr(), and 428 to strrpos() using Class
Loader, all of which have been replaced with 428 calls to apc_fetch() with the Apc
ClassLoader, with a reduction of 41 ms down to 3 ms (see Table 6-8).

Table 6-7. findFile() details with ClassLoader
Function Name Calls Calls% Incl. Wall Time

(microsec)
IWall% Incl. CPU

(microsecs)
ICpu% Incl.

MemUse
(bytes)

IMemUse%

Symfony\Component
\ClassLoader\ClassLoad
er::findFile

428 2.8% 41,274 16.0% 41,662 17.8% 108,000 0.5%

Exclusive Metrics for Cur
rent Function

35,456 85.9% 22,436 53.9% -83,256 -77.1%

Child functions

file_exists 429 2.9% 2,571 6.2% 2,918 7.0% 1,128 1.0%

strpos 12,164 82.9% 1,448 3.5% 13,131 31.5% 1,120 1.0%

str_replace 838 5.7% 918 2.2% 1,378 3.3% 126,648 117.3%

substr 820 5.6% 506 1.2% 1,162 2.8% 61,240 56.7%

strrpos 428 2.9% 375 0.9% 637 1.5% 1,120 1.0%

Analyzing Application Performance | 73

Table 6-8. findFile() details with ApcClassLoader
Function Name Calls Calls% Incl. Wall

Time
(microsec)

IWall% Incl. CPU
(microsecs)

ICpu% Incl.
MemUse
(bytes)

IMemUse%

Symfony\Component\Class
Loader\ApcClassLoad
er::findFile

428 49.6% 3,164 1.5% 3,572 1.9% 100,936 0.5%

Exclusive Metrics for Cur
rent Function

1,908 60.3% 1,965 55.0% 41,776 41.4%

Child function

apc_fetch 428 100.0% 1,256 39.7% 1,607 45.0% 59,160 58.6%

The remaining records are all for file execution (run_init), which can’t be optimized
within the application itself.

strace
Sometimes it’s necessary to go to the system level to understand what’s happening with
your application. This is particularly true for system calls made by PHP, which won’t
show up in Xdebug or XHProf at all. strace is a great tool for looking at what happens
here, and we’ll use it as an example to examine how Drupal includes module files.

In Drupal 7, file existence is checked before the module is loaded in
drupal_load(), via a file_exists() check in drupal_get_file
name(). This avoids errors being thrown when a module is moved in
the filesystem without the module list being updated in the database.
Drupal 8’s \Drupal\Core\Extension\ModuleHandlerInter

face::load() assumes that the module list is correct, and attempts to
load the file with include_once() regardless (a PHP warning will be
triggered if the file doesn’t exist, but this is an error condition so is
considered valid).

PHP’s documentation states that file_exists() is cached when the file is present on
the file system, but not cached when it’s missing. A file_exists() will show up in
XHProf whether it caches internally or not, so strace is an ideal tool to test the behavior
at a lower level.

First, we need to attach strace to Apache. strace can be attached to an individual process
ID or to Apache itself when it’s started. On a local machine the only traffic should be
your own testing, and restarting Apache isn’t going to cause a site outage, so this is the
simplest mechanism to get strace output:

74 | Chapter 6: Verifying Changes

http://php.net/file_exists

$ sudo /etc/init.d/apache2 stop
$ sudo strace -f -o /tmp/strace.txt /etc/init.d/apache2 start

Creating the following test file in the root of a Drupal 8 directory covers the three
variations:

<?php
define('DRUPAL_ROOT', getcwd());

// Just include_once
include_once DRUPAL_ROOT . '/core/modules/system/system.module';

// A file_exists() where the file is present on the file system:
if (file_exists(DRUPAL_ROOT . '/core/modules/tracker/tracker.module')) {
 include_once DRUPAL_ROOT . '/core/modules/tracker/tracker.module';
}

// A file exists where the file is not present on the file system:
file_exists(DRUPAL_ROOT . '/core/modules/foo/foo.module');
?>

Once Apache is restarted, visiting the page in the browser should lead to some strace
output in /tmp/strace.txt, which you can then open up in your browser.

Let’s first of all focus on the request to system.module via include_once(), with no
file_exists() check. Since this is the first request to Apache after a restart, the realpath
cache is empty, meaning there are some additional lstat calls to be made:

26378 lstat("/var/www/8/core/modules/system/system.module",
 {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26378 lstat("/var/www/8/core/modules/system",
 {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
26378 lstat("/var/www/8/core/modules",
 {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0
26378 open("/var/www/8/core/modules/system/system.module", O_RDONLY) = 12
26378 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26378 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26378 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26378 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26378 mmap(NULL, 12685, PROT_READ, MAP_SHARED, 12, 0) = 0x7f31caf9e000
26378 stat("/var/www/8/core/modules/system/system.module",
 {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0

Hitting the page again, those lstat calls disappear:

26606 open("/var/www/8/core/modules/system/system.module", O_RDONLY) = 12
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 mmap(NULL, 12685, PROT_READ, MAP_SHARED, 12, 0) = 0x7fc6b917d000
26606 stat("/var/www/8/core/modules/system/system.module",
 {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0

Analyzing Application Performance | 75

With the realpath cache warmed, let’s take a look at the existing tracker.module file
wrapped in a file_exists():

26606 access("/var/www/8/core/modules/tracker/tracker.module", F_OK) = 0
26606 open("/var/www/8/core/modules/tracker/tracker.module", O_RDONLY) = 12
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 mmap(NULL, 12685, PROT_READ, MAP_SHARED, 12, 0) = 0x7fc6b917d000
26606 stat("/var/www/8/core/modules/tracker/tracker.module",
 {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0

The file_exists() is represented by this line:

26606 access("/var/www/8/core/modules/tracker/tracker.module", F_OK) = 0

Remember, the PHP documentation for file_exists() states that the results of
file_exists() are cached in the stat cache when the file is present on the file system.
What it doesn’t mention is that the stat cache is per-request, meaning each request to
Drupal starts with an empty cache. This differs from the realpath cache, which is per-
process.

When the file_exists() fails, no inclusion happens, so the only line in the strace
output is the access call. Note that the return value changes from 0 to -1 ENOENT (No
such file or directory):

26378 access("/var/www/8/core/modules/foo/foo.module", F_OK) =
 -1 ENOENT (No such file or directory)

As a further example, enable apc.stat = 0 in php.ini, then test the include_once()
again.

Without apc.stat = 0, notice the stat call at the end:

26606 open("/var/www/8/core/modules/system/system.module", O_RDONLY) = 12
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 mmap(NULL, 12685, PROT_READ, MAP_SHARED, 12, 0) = 0x7fc6b917d000
26606 stat("/var/www/8/core/modules/system/system.module",
 {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0

With apc.stat = 0, that stat call disappears, as you’d expect:

26606 open("/var/www/8/core/modules/system/system.module", O_RDONLY) = 12
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 fstat(12, {st_mode=S_IFREG|0664, st_size=12685, ...}) = 0
26606 mmap(NULL, 12685, PROT_READ, MAP_SHARED, 12, 0) = 0x7fc6b917d000

76 | Chapter 6: Verifying Changes

Note that apc.stat has some administrative overhead—you’ll need to be able to clear
the APC cache when code is deployed, for example. See Chapter 18 for more information
on opcode caches.

Use of the tools in this chapter allows you to see exactly what’s happening when code is
executed, and therefore to verify accurately whether changes made for performance
purposes are successfully reducing the amount of work being done at different levels of
the application. While we cover load testing in Chapter 20, load testing tools should
almost never be used for before/after performance testing of specific changes, since
they’re unable to provide the accuracy, detail, or introspection necessary to verify the
impact of what are often quite small individual changes.

Analyzing Application Performance | 77

CHAPTER 7

Infrastructure Design and Planning

Whether you are beginning to plan for the launch of a large website or managing the
growing pains of an existing site, you will quickly come to the point where one server
is not enough to handle the traffic to your site, or you need more reliability than a single
server can provide. However, the leap from a single server to a multiserver infrastructure
is a large one. There are a number of ways to architect your environment to ensure fast
response times to your visitors and allow you the potential to further scale in the future.

Your infrastructure design will vary greatly based on your website’s requirements. What
kind of high availability do you require? What response times will your users or your
management consider acceptable? Does your site require any “extra” services or appli‐
cations, outside of a standard LAMP stack? All of these considerations and (of course,
expected traffic to the site) will need to be taken into account when designing, building,
and maintaining a multiserver hosting environment. There is no silver bullet solution
for everyone, but we can provide some guidelines that should make it easy to find the
right solution for your particular needs.

Horizontal and Vertical Scaling
There are two approaches to scaling out an infrastructure to add additional resources:
horizontal scaling (“scaling out”) and vertical scaling (“scaling up”). Horizontal scaling
involves adding additional servers while vertical scaling involves adding more resources
to existing servers. A good infrastructure plan will take both of these scaling approaches
into account, as there are times when one may be more appropriate than the other.
Initially, this consideration may be used to consider when to migrate from one server
to multiple servers. For larger infrastructures, the same logic can be applied at a larger
scale. As an example, let’s consider a single-server infrastructure like that shown in
Figure 7-1.

79

Figure 7-1. Single server running web and database services

Not all site admins have the resources to launch a site with multiple servers. This is not
necessarily a bad thing—many sites can get away with using only one server, which gives
a cost savings over hosting multiple servers as well as keeping system administration
overhead to a minimum. With today’s multicore CPUs and inexpensive RAM, it’s easy
and relatively cheap to host your site on a machine with enough power to run all the
required services. But how do you know when one server is no longer enough?

There are a number of factors to consider when trying to answer the question of whether
it’s time to add another server:
Resources

As your resource usage increases due to additional site features or an increase in
traffic to the site, you may start to see resource contention on the server. For ex‐
ample, two processes both needing a lot of disk I/O can dramatically slow each other
down. Can your current server be allocated more resources (RAM, CPU, etc.)? This
is generally easier to do for virtual machines than for physical servers. For example,
you may be able to solve an issue by adding more RAM to a server. However, it is
also important to consider if adding more RAM to a server might mean that you
are now limited by CPU, network, or I/O resources on the server—and you may
not have the ability to increase those resources quite as easily.

Costs
This doesn’t just mean additional hosting costs, but may also mean more systems
management overhead. As your infrastructure grows to include multiple servers,
adding one more server should not mean a huge increase in systems management
overhead (read up on configuration management in Chapter 9); however, making
the initial jump from one server to multiple servers likely means you will need to
step back and reanalyze your management plan, potentially starting to use a con‐
figuration management system for the first time.

80 | Chapter 7: Infrastructure Design and Planning

High availability (HA)
If your entire site is hosted on a single server, it just takes that one server going
offline for your site to go down. If this situation is unacceptable to clients or business
owners, you will likely need multiple servers to offer better reliability. In essence,
services will be offered by several servers, and any data will be synchronized across
them.

Generally, outside of HA considerations, it’s fairly common to scale vertically to the
extent that is cost effective to do so—once you reach the point that scaling vertically is
going to be more expensive than scaling horizontally, it is time to start adding more
servers. However, this doesn’t always hold true in practice, for a couple of reasons:

1. Adding resources to a server can be more difficult and time-consuming than simply
adding an additional server to your infrastructure. It also can involve bringing the
server offline, which is not ideal.

2. As sites grow to the point where they need additional resources, usually by that
point there are business requirements in place that necessitate some form of high
availability.

3. As a single server becomes larger and more important, the ability to take it down
for security and feature updates starts to disappear. Eventually you end up with a
single outdated and complex server, which is very problematic from a systems per‐
spective.

Therefore, most infrastructure managers figure out a general server specification that
will work for them and provide some room for growth—usually this server specification
will differ between different services (e.g., one spec for web servers, one spec for DB
servers). When a new server is needed, it is deployed with those predetermined speci‐
fications. This may be a more powerful server than is necessary for the short term, but
it will give the service room for growth and ensures you have some standardization in
servers (making them easier to manage).

Many times, knowing when to scale horizontally is more difficult than knowing how to
scale horizontally. The world is filled with infrastructures where there are many web
servers, all bottlenecking on a shared Memcache instance. To this end, we will now
discuss methodologies for categorizing services and knowing when (and where) to add
more servers.

Horizontal and Vertical Scaling | 81

Service Categorization
A basic Drupal site can be separated into two distinct services: web frontend, and da‐
tabase backend. The web service is responsible for handling incoming requests, pro‐
cessing Drupal’s PHP code, and returning the results back to the requesting client. The
database back end is queried during Drupal’s PHP execution in order to pull out settings
and data for the site. Every Drupal website will need infrastructure to support at least
these two services. However, there are many more services that are often required to
add features or enhance performance and scalability. These services can be grouped
roughly into the following categories (starting with the web and database services we
already mentioned):
Web

Apache, Nginx, or another web server of your choice, plus PHP

Database
Most commonly MySQL, though Drupal core supports many other databases to a
lesser degree, including PostgreSQL, Microsoft SQL Server, Oracle, and SQLite

Frontend proxies
Varnish, CDN, Nginx, or other proxy caches

Other caches and data stores
Memcache, Redis, MongoDB, etc.

Search backends
Apache Solr, Elasticsearch, Sphinx, etc.

Load balancers
HAProxy, Nginx, IPVS, etc.

This generally categorizes most services that would be run as part of a Drupal website.
The next step, once you’ve categorized your services, is to figure out which services may
require their own server (or servers), and which services can safely coexist on the same
server. Separating services into the different categories will give you the opportunity to
scale out each service as it becomes a bottleneck for your site. As a visualization tool,
we can represent each service category as a layer of the overall infrastructure, as illus‐
trated in Figure 7-2—each layer can be expanded out horizontally by adding additional
servers.

82 | Chapter 7: Infrastructure Design and Planning

Figure 7-2. Infrastructure layers

Working Well Together
It’s important to analyze your services to figure out which may or may not work well
together on a server. Some services require substantial memory, CPU, or disk I/O re‐
sources. Those may run fine on a server with another service that requires minimal
resources, but you most likely won’t want to combine two I/O-intensive services on the
same server, since they would be competing for resources. As services are split onto
separate servers, network traffic also becomes a significant factor. Let’s take a look at a
few common services and what their typical resource consumption is like. The following
examples are intended to give a general idea of resource requirements, but your re‐
quirements may be very different depending on your site’s specifics:
Web services

Web services will consume a moderate amount of CPU for PHP processing. You
will also need enough RAM to support large numbers of web server processes as
your traffic spikes. While this is a general rule for any website, Drupal in particular
and many PHP CMSs in general have fairly high I/O latency requirements due to
how many PHP files are loaded to serve each request. While opcode caches such
as APC can help with this, you don’t necessarily want to put an I/O-bound service
on your web nodes since performance will deteriorate as it competes with the Dru‐
pal PHP processes.

Database
Databases typically will consume large amounts of RAM and can require moderate
CPU resources. A well-tuned database will not touch the system disk often, except
if it is write-heavy. However, you want the disk I/O to be as fast as possible when it
is required. Because databases can require so many resources and for optimal per‐
formance may need to “hog” disk or CPU resources in spikes, the database is gen‐

Working Well Together | 83

erally the first thing to be separated onto its own server, where it can be finely tuned
and guaranteed its own resources.

Reverse proxy
Varnish is a common example of a reverse proxy used as a frontend cache sitting
in front of your web server. While Varnish should be allocated a moderate amount
of RAM, its CPU and disk usage are fairly minimal.

Alternate Drupal cache
Memcache, often used as an alternative cache for Drupal, can be used to offload
cache queries from your database server. Much like Varnish, Memcached (the
Memcache daemon) will require RAM—a small to moderate amount depending
on your site’s needs—but will not consume a lot of CPU or disk resources.

Additional services
Of course, additional services will vary greatly in their resource utilization, so you
will need to analyze each service independently. Solr, for example, can be memory-
and I/O-heavy, depending on its usage.

Once you understand the resource requirements for the services you will be using, it
will be easier to see which services can coexist on the same server without competing
for resources.

Example Two-Layer Configuration
As mentioned previously, one of the most common ways to split services for a Drupal
site is to use two servers, with the first server dedicated to web services and the second
dedicated to the database. If high availability is a requirement for your site, then this
would become four servers: two web nodes and two database servers, all with some form
of load balancing and/or failover mechanisms. For the sake of a simple example, we’ll
assume no HA requirements in this setup and start with only two servers.

Let’s assume that we want to run Varnish as a reverse proxy and Memcache as an alter‐
nate Drupal cache (these configurations are covered in depth in Chapters 19 and 16,
respectively). Considering that we are working with two servers, it makes the most sense
to run those services on the web server, along with Apache, httpd, Nginx, or whichever
web server you have selected.

In most environments, we will isolate the database service on its own server if at all
possible. As we went over earlier, this is so that it can be guaranteed resources and won’t
impact other services with its I/O and memory demands. Both Varnish and Memcache
are able to run on the web node without stealing too much CPU time away from httpd
—they will both have a memory limit, so that httpd is sure to have enough to deal with
traffic spikes when it may need to spin up a lot of processes. Figure 7-3 shows which
services are running on which server in this setup.

84 | Chapter 7: Infrastructure Design and Planning

Figure 7-3. Two server configuration

As your site grows in complexity and traffic, you are likely to see performance bottle‐
necks in either the web layer or the database layer, or sometimes both. An example
bottleneck in the web layer would be if you are consistently serving a high number of
clients and the web node is not able to handle them all. An example bottleneck in the
database layer would be if you have a large number of queries or a few large queries that
are slowing down the database response time.

In order to deal with the increased demands of the site, you can scale each of the layers
horizontally by adding more servers. Most services are pretty trivial to scale in this
manner, and growing the infrastructure in this way allows you to specifically scale up
each service layer as it becomes a priority. (The database layer requires a bit more
thought and strategy to scale beyond one server; we’ll go into more detail in Chap‐
ter 13 on scaling strategies specific to the database layer.)

This “two-layer” approach can work for some time, though eventually you may want to
reassess your layer definitions and potentially separate things even further. For example,
if you want to add Solr search to your site, that may not fit well on your current web
nodes, and it’s not typically something that you would want to run on the database
servers due to I/O and RAM contention. Thus, we often add an additional layer for the
Solr service. Another example would be if Varnish needs more RAM than is available
for it on the web servers: in that case, you could separate it into its own layer of servers
that sit in front of the web nodes. The benefit here is that you can then scale out either
the frontend caching layer or the web layer separately, as needed. Our next example will
show a larger infrastructure with such a setup.

Example Larger-Scale Infrastructure
The majority of websites will get along quite well following the preceding example of a
two-layer setup separating web services (and some additional caching services) into one

Example Larger-Scale Infrastructure | 85

layer of servers and databases into a second layer. But for larger sites, or those that have
specific HA, security, or performance requirements, it may be necessary to implement
an infrastructure with more than two layers. As in the previous example, in this case,
we will strive to separate services out into their own layers so that they can be managed
and scaled separately.

As soon as your infrastructure includes more than one web server, you
will need to configure some sort of shared or synced file system for the
Drupal files/ directory. We cover a number of options for sharing files
between servers in Chapter 10.

For this example, we’ll assume that the requirements for a frontend cache (we’ll use
Varnish in this example) are large enough that it warrants having its own dedicated layer
of servers. We’ll also assume that the site will use Solr heavily enough that the Solr service
should be separated off into its own layer. Add to that the web and database layers, and
we end up with the service layers shown in Figure 7-4.

Figure 7-4. Example multilayer configuration

One benefit of separating Varnish onto its own servers is that it can then provide load
balancing and fault tolerance for your web nodes. Given a pool of web servers, Varnish
can distribute the load between them during normal service, and if one of the web
servers goes offline, Varnish will notice the failing server and stop using it for backend
web requests. While some larger infrastructures will have their own dedicated load

86 | Chapter 7: Infrastructure Design and Planning

balancing devices, for many people, using Varnish to provide basic load balancing works
well and is cost-effective.

Going into such an infrastructure design, it’s likely that you will want some form of high
availability for the site, so we’ll assume you’re starting with at least two servers per layer
in order to avoid a single point of failure.

Each service layer here starts with two servers, and the servers within a layer have rep‐
lication or shared data between them such that if one server in a layer goes away, the
other server is able to serve requests in its place. During times that all servers are online,
load is shared between all servers in a layer in order to improve performance. Refer to
Chapter 19 (Varnish), Chapter 18 (httpd), Chapter 13 (MySQL), and Chapter 17 (Solr)
for specific setup and configuration settings for a similar infrastructure design.

Development and Staging Environments
Once you have designed your production infrastructure, an important next step is to
allocate resources for development and staging environments. As the complexity and
availability requirements of your site grow, it becomes even more critical to have a
separate staging environment to test out code changes, module updates, and configu‐
ration changes.

For a staging environment to provide the most benefit, it should mimic the production
environment as closely as possible, complete with load balancers, database replication,
and any other configuration found in the production environment. Obviously this can
become quite expensive if you are literally doubling your infrastructure to provide a
staging environment. There are a number of ways to cut costs for the staging environ‐
ment, but it’s important to keep in mind the trade-offs you are making when you don’t
have an exact replica of the production environment. Some frequently used methods
for cutting costs when setting up a staging environment include:
Reducing the number of redundant servers

For example, the production environment may have five or six different web servers.
For staging, you could likely get by with only two servers set up in a similar fashion.
While this doesn’t mimic production 100%, the configuration should be close
enough to catch most bugs triggered by having multiple web nodes.

Virtualizing resources
Even if your production environment is mostly or entirely run on physical servers,
it’s possible that you could run a staging environment using some or all virtual
servers. It’s important to remember, though that this—like any difference between
the two environments—means that you may run into bugs in production that you
don’t hit in the staging (or vice versa).

Development and Staging Environments | 87

Using lower-end servers
It is possible to use less expensive servers to host your staging environment. How‐
ever, this can lead to a couple of issues. First of all, as with the previous examples,
this can lead to bugs or performance issues in the production environment that are
not repeatable in the staging environment. Secondly, if the staging servers are so
underpowered that they don’t perform well at all, it could lead to developers totally
ignoring the staging environment because “it’s too much of a pain,” which in turn
could lead to untested or poorly tested code making its way to production.

The staging environment should be used not only to test code and database updates,
but also to test software and OS updates. Because these servers closely mimic your
production servers, testing software updates on staging servers can help prevent down‐
time in the production environment when an update has unexpected consequences.

Providing a stable environment for your developers is another important consideration
when designing an infrastructure. As mentioned previously, one way to implement a
development environment is to share the staging server resources—for example, setting
up separate development virtual hosts and databases on the same servers used for stag‐
ing. Another option would be to use virtualized resources (or a lower-cost virtualized
server if your other servers are already virtualized). In order to cut costs, sites with lower
development activity could get away with only spinning up the development virtualized
environment occasionally, when needed, instead of leaving it running all the time. A
third option is to distribute the development environment so that it can be run locally
by your developers on their workstations or laptops. Most developers can’t or won’t want
to deal with setting up the system-level applications such as httpd or mysqld; however,
by providing a virtual machine image (or using a tool such as Vagrant to build one on
the fly using Puppet or Chef configuration management scripts), developers can pretty
easily run a virtual machine that pretty closely mimics the production and staging con‐
figuration. We cover Vagrant in more depth in Chapter 9.

Internal Network Layout
If you are in a hosted environment, you may not have much choice about how the
network is configured. However, if possible, it’s preferable to set up a separate backend
network for your devices to communicate on instead of using their public network
interfaces. It’s best that most servers not even be accessible on a public IP address —
only those with user-facing services need to have a public IP.

Setting up a backend network not only can improve performance, but also can increase
security. In almost every case, there is no reason for your database servers or other not-
public-facing services to be open to the Internet. In order to access the servers, you can
connect through one of your public-facing services or, even better, create a dedicated
“jump host” that is accessible to the outside world and is used specifically to access your
internal hosts (see Figure 7-5). Don’t overlook the importance of securing your jump

88 | Chapter 7: Infrastructure Design and Planning

host; it does no good to segregate your hosts onto a separate network if it’s easy for an
attacker to gain access through your jump host.

When your frontend web nodes are experiencing high traffic, if they also had to com‐
municate with the database over the same network interface you would start to see
slower database response times as well. Using a separate network for backend requests
such as database traffic, as shown in Figure 7-6, means that you won’t be competing
with network traffic from external sources when trying to communicate with your in‐
ternal hosts. By offloading this traffic onto its own internal network, you can also avoid
potential traffic charges with your hosting company and avoid possibly congesting the
public-facing firewall or router with additional traffic.

Figure 7-5. Jump host

Figure 7-6. Backend network traffic

Internal Network Layout | 89

Be sure to ask your provider about the availability of its “backend
network.” While providers spend a lot of money on redundant net‐
working equipment for the public network, the backend network
sometimes doesn’t get as much attention. If a backend switch going
down can take down your website, it doesn’t matter how many redun‐
dant switches are on the public network.

Utility Servers
As your site and infrastructure grow, you may end up with a number of services that
don’t directly power your website, but are used to manage the servers, monitor services,
or host code repositories. In many situations, infrastructures are deployed without a
utility server and all of these “side” services end up littered across various servers without
much thought being given to where they should reside. This is not a very good solution
and can lead to problems as you scale. As you are planning your infrastructure, you may
want to consider a utility server that is built specifically for these sorts of supporting
services, or a VM host to create dedicated VMs for “one-off ” services.

Here are some common uses for a utility server:
Continuous integration

Depending on your workflow, you may be using a continuous integration server
such as Jenkins in order to test and deploy code between environments.

Code revision control
The utility server provides a place to host your revision control system, such as Git
or Subversion.

Monitoring
As discussed earlier in this book, it’s important to monitor servers and services for
performance and stability. A utility server is potentially a good place to run such
monitoring services.

Periodic jobs
A utility server can provide a place to run all the “odds and ends” scripts that do
something against either the website or the database—for example, Drupal cron
and queue workers that need to run perodically and may require more resources
than a typical web request.

Configuration management
As the number of servers you are managing increases, you’ll benefit immensely by
using a configuration management system (popular options include Puppet, Chef,
and CFEngine). The utility server would be an ideal choice to run as the central
configuration management server.

90 | Chapter 7: Infrastructure Design and Planning

There are, of course, other things that you could run on a utility server; the main idea
is to have a secure, internal server that can be used to run jobs and services that may
require trusted access to other servers. In general, this should not include any services
that are publicly accessible from the Internet, because this host typically ends up being
trusted to some degree on all of your other hosts—and that makes it an ideal target for
attackers.

High Availability and Failover
For many sites, being offline for any significant amount of time is unacceptable. For
those situations, it is necessary to set up redundant servers and a method for detecting
failures and automatically switching over to the secondary server.

At the very least, for a Drupal site to remain online during downtime for a server, you
will need to plan failover for web and database services. If you have additional services
that are used by your Drupal site, you may consider it acceptable for those to be offline
for some period of time as long as the core website is functioning.

There are different ways to approach high availability, and your approach may depend
on a number of factors:

• Business requirements set for acceptable downtime
• Whether or not failover needs to be completely automated
• Whether certain failures could put the site in a “read-only” mode (for database

access and/or file uploads)
• Whether you have a budget for hardware and staff time to implement high availa‐

bility

In subsequent chapters, we cover specific configurations to accomplish high availability
with various services. At this point, it’s important to figure out if HA is something you
require (or may require in the future) for your website, and to look at the various serv‐
ices, servers, and network equipment you will be hosting to get an idea of all the single
points of failure you may have in your infrastructure.

Hosting Considerations
Some websites end up being hosted internally if there are sufficient hosting resources;
other situations call for paying for an external server (or service) host. If you are looking
for an external hosting provider, there are many important aspects to consider, includ‐
ing:

High Availability and Failover | 91

Cost
Analyze the cost for hosting your planned infrastructure. Include additional band‐
width costs that you may incur. Also, look at how cost will increase should you need
to grow your infrastructure by adding additional servers or dealing with increased
bandwidth requirements.

Uptime
What kind of uptime does the host guarantee, and what is its average uptime for
services, etc.? Consider reading through public customer forums or hosting “status”
sites, if it has such a thing. What kind of redundancy does it have in place for power,
network, and cooling?

Support
What type of support is offered, and how does this correspond to your support
needs? For example, do you want a host who will support only its own equipment,
leaving you to handle all OS and application support? Or would you rather have a
host who manages the servers for you, so you only have to deal with Drupal specif‐
ically? Does support cost extra, or is it included with your hosting plan (and to what
extent)?

Backups
Are servers backed up, and if so, on what schedule? Is backup size limited? How
long are backups kept? Does the backup service cost extra? Where are the backups
stored, and are they mirrored to another location?

Security
What kind of physical and network/server-based security is provided?

Failover and geographic distribution
Does the host offer servers at different geographic locations that could be used for
failover in the event of a disaster at one data center?

Virtualized Versus physical servers
Are you looking to host physical servers (owned by you, or rented from the host),
or virtualized resources? How will this decision affect your ability to scale in the
future and to deal with estimated traffic loads now? Does the host offer the ability
to mix physical hosts and virtualized hosts as part of the same hosting plan?

We’ll cover specific details about virtualized and cloud hosting in
Chapter 11.

With the sheer number of hosting providers out there, it’s often very easy to find one
that appears to fit all of your needs, but it can be very difficult to find one that actually

92 | Chapter 7: Infrastructure Design and Planning

delivers. Be sure to ask around and do some due diligence research before committing
to any hosting provider. If possible, don’t jump into a long-term contract before you’re
able to test out its service and support for at least a couple of months to be sure you are
happy.

Summary
Scaling an infrastructure can be difficult, but when you take the time to plan out your
infrastructure design in advance, it becomes a lot easier. Your infrastructure plan doesn’t
need to be set in stone, but it should be clear and forward-thinking enough to be used
as your infrastructure grows and changes during the lifetime of your site. Going through
the process of categorizing potential service layers and plans for horizontal and vertical
growth will ensure that you are much better equipped to deal with any infrastructure
change requirements you may be presented with in the future—either growth due to
performance requirements, or coping with adding or removing services to support your
site.

It’s important to plan not only for a production infrastructure to directly support your
site, but also for dedicated development and staging environments (some sites also add
a separate QA or demo environment). In addition, it’s best to have at least one dedicated
utility server to host your central and supporting services that help the site and infra‐
structure run, but don’t directly power the site itself.

Decide whether or not you need high availability for your site, and plan your infra‐
structure resources accordingly. Supporting high availability for services generally
means you are doubling the number of server resources in your infrastructure and
increasing your management overhead.

There are a number of things to consider when selecting a provider to host your website.
Be sure to consider your options carefully and select a host that meets all of your needs
—hopefully without breaking the bank.

Summary | 93

CHAPTER 8

Service Monitoring

Running a website without service monitoring is an exercise in flying blind. Nobody
cares about monitoring when everything is going well, but as soon as something goes
wrong, the additional information and warnings provided can be instrumental in
quickly and correctly diagnosing the problem.

There are different types of service monitoring. Tools like Icinga and Nagios are de‐
signed to watch hosts and services, sending alerts when a service check falls outside an
acceptable range. Other tools, such as Cacti and Munin, provide a graphical look at
server and service information in order to give historical context to performance and
usage statistics. Still other applications, such as Zabbix, aim to combine these two types
of monitoring. Throughout this chapter, we’ll take a look at the various types of mon‐
itoring systems and give examples of how they can be used to ensure your site is stable
and performing optimally.

The Importance of Monitoring Services
Imagine a situation where you are using an alternate cache backend for Drupal, such
as Memcache—we’ll provide details on how to implement this in Chapter 16. Your cache
items are now only accessible if the Memcached service is running. Imagine if the service
stopped responding, unexpectedly causing your entire Drupal cache to disappear. This
would force a great deal more load on your database server. Without service monitoring
in place, it may take some time to figure out what the problem is; all you know for sure
is that the site feels slower than normal. You might not realize what’s wrong until you
start going through recent Drupal log entries.

If you had a monitoring server that was configured to run periodic tests to ensure the
Memcached service was responding as expected, you would receive an email or text
message alerting you as soon as the service failed to respond. You would know exactly
what was happening before you even logged into the server. Being able to respond to

95

issues immediately, or even be warned as services start to deteriorate, is extremely im‐
portant—especially if things can be fixed before users realize something is wrong.

Another important aspect of monitoring is collecting data over time. Having a strong
grasp of the baseline usage of your servers and services makes it easy to see when some‐
thing out of the ordinary is occurring. One example is tracking general things such as
server load going up during times of increased traffic on the site. Going beyond that,
monitoring could be used to track specific service information, like if and when your
APC opcode cache (see Chapter 18) fills up. By setting up a thorough and reliable mon‐
itoring system, you will be able to stay ahead of problems with your site as well as
providing yourself with an indispensable troubleshooting tool.

Monitoring Alerts with Icinga
Nagios is a very popular open source monitoring system that was initially released in
1999. It gained popularity in the following years, though there were complaints in the
development community about bugs going unfixed and general lack of transparency
within the core of Nagios. In 2009 this led to a core group of Nagios developers (who
felt that their efforts to contribute to Nagios core were being ignored) to fork off a new
project, which they named Icinga.

Since forking, the Icinga project has grown substantially in both developers and users;
it includes many bug fixes and feature improvements that are not found in Nagios while
remaining compatible with all external plug-ins. One of these improvements is a new
web interface that was designed to be more modern and configurable than that provided
by Nagios. If you don’t have much of a preference of which system to use, then our
opinion is that the new web interface alone should be enough to encourage you to adopt
Icinga over Nagios, unless you are paying for the Enterprise version of Nagios.

There are other open source and commercial monitoring options as well: these in‐
clude OpenNMS, Sensu, Zabbix, and ZenOSS, to name just a few open source options.
However, our past experiences have kept us coming back to Icinga when we need to set
up a monitoring system. For that reason, we will be using Icinga-specific examples here,
but we encourage you to review other options and pick the one that works best for you.

What to Monitor
Deciding what to monitor and with what failure conditions should be viewed as an
iterative task, where you continually improve the monitoring configuration in response
to false positives, or lack of alerts when expected. On the one hand, you want to monitor
as many different aspects of your infrastructure as possible; but on the other hand, if
too many alerts are being generated (or worse, false positives), they will be ignored and
important alerts may go unseen. We recommend striving for the middle ground—

96 | Chapter 8: Service Monitoring

http://www.nagios.org/
https://www.icinga.org
https://wiki.icinga.org/display/Dev/Bug+and+Feature+Comparison
https://www.icinga.org/nagios/feature-comparison

monitoring as much as possible without becoming the monitoring system that cries
wolf.

There are actually two things to consider when choosing what to monitor: first is which
services and information to monitor, and second is how to set your thresholds. We’ll
start with “what to monitor,” and then discuss how to select and refine threshold values.

It’s obvious that you would want to monitor all of your core servers and services. This
generally means starting with simple checks such as ping or ssh checks against servers,
and overall health checks against services—for example, checking that your website
returns a 200 OK status code, or that the MySQL server accepts connections. Beyond
those simple checks, there is a virtually unlimited number of things that you can monitor
within each server or service. For example, server monitoring might include:

• RAM and swap usage
• Disk usage
• CPU usage
• Network connection count

And service monitoring might include things like web server response time to serve a
request or a whole wealth of MySQL information, such as:

• MySQL thread and connection counts
• MySQL replication status
• MySQL query activity
• InnoDB buffer usage

It’s advisable to start with at least a set of “simple” checks for the various server resources
(RAM, CPU, disk, network). Service-specific checks are more subjective and depend
on what is important in your environment. You’ll definitely want some simple up/down
checks for services such as web and MySQL services (plus any others running in your
environment). Beyond that, review some of the common checks for MySQL to see what
you feel is important. For example, if you know your InnoDB buffer pool is relatively
full, it would be prudent to monitor its usage in order to have a warning before it com‐
pletely fills up.

How to Tune Monitoring
Most prepackaged and third-party checks for Icinga will come with suggested threshold
values when needed for warnings and errors. If you are creating your own checks, you
will need to set those thresholds yourself. In that case, it’s important to set them low
enough that you are sure they will trigger before or during a problem. A monitoring
check does no good if it is configured to such a high value that the site can become

Monitoring Alerts with Icinga | 97

unusably slow or go offline completely without the alert actually catching anything. For
new sites and infrastructures, this can be a bit of a guessing game until you have estab‐
lished some baseline data. Remember, you can always increase the alert thresholds if
you are receiving too many false positives.

All plug-ins include options for setting warning and critical thresholds. When defining
a check in Icinga, these command-line flags are passed either in the service or the
command configuration file as part of the check_command option. Icinga will automat‐
ically configure the hostname for the check command based on the host_name value
set in the service configuration file.

A service definition for checking the HTTP response time of your website might look
something like the following to warn if the page takes longer than three seconds to
respond, or send a critical alert if the HTTP response time is longer than five seconds:

 define service{
 host_name www1
 service_description WEB_RESPONSE_TIME
 check_command check_http!3!5
 }

Graphing Monitoring Data
In addition to setting up an active monitoring system to send alerts, it’s also very useful
to be able to view historic data for your servers and services. Building on the preceding
example, it’s great to receive an alert when the website begins to load slowly, but in order
to troubleshoot what might be causing the slowdown, it would be ideal to be able to
view information like the number of Apache processes over the last hour, how loaded
the database has been over the last day, etc. By implementing a monitoring tool to track
resources over time, you can have this and other important graphs at your fingertips,
whether for urgently debugging a problem or just for a periodic review of how services
are performing.

Two systems that we use the most for this capability are Cacti and Munin. Both are very
capable applications, and the choice between them (or one of the many other options)
can often boil down to personal preference. In the case of Munin and Cacti, both use
RRDTool to graph their data and make it available from a web interface, and both have
a plug-in system for monitoring various applications and server resources (generally,
people find Munin plug-ins easier to implement). Figure 8-1 shows a sample Munin
load graph.

98 | Chapter 8: Service Monitoring

http://www.cacti.net/
http://munin-monitoring.org/
http://oss.oetiker.ch/rrdtool/

Figure 8-1. Munin load graph

There are many plug-ins available for Munin, Cacti, and other monitoring systems. We
generally try to graph as much data as possible, because even if something isn’t a problem
today, it might end up being important at some point in the future. When considering
what to monitor, we recommend looking through the default and popular plug-ins for
whatever system you select. However, here is a list of things that we generally monitor:
System data

This includes disk I/O, disk usage, network traffic and errors for all network inter‐
faces, network connections, email activity/queues, CPU load, memory usage, total
swap usage, and swap activity.

Web server data
This can include the number of Apache processes; APC memory usage and evic‐
tions; Varnish requests, hit rates, and evictions; Memcache (or other external cache)
memory usage, hit rates, and evictions.

Database data
MySQL has a ton of data, most of which is worth tracking: this includes slave lag;
command types and counts; connections; InnoDB information such as buffer pool
size, activity, and I/O; query cache information such as memory usage and hits/
inserts/prunes; slow query counts; table locks; and temp table types and counts.

Internal Versus Remote Monitoring
The location—internal or external to the rest of your server and network infrastructure
—of your monitoring server(s) is very important. There is a case to be made for either
location, and generally those that want to be very thorough in their monitoring will end
up with both an internal and an external monitoring system in order to benefit from
each. In fact, the services can and should be set up to complement each other instead
of duplicating all monitoring in both locations.

Internal Versus Remote Monitoring | 99

The use of an external (hosted on a separate network, and generally geographically
dispersed) monitoring system is important for the ability to monitor externally facing
services. The reason for externally monitoring those services is quite easy to understand:
you want to see the same thing your users are seeing. For example, testing a web page
load over a local network won’t see any delays introduced on your outbound network
(or worse, if that network goes down). If you are testing from a separate network, how‐
ever, the monitoring system will see those faults and delays. For this reason, we generally
recommend setting up an external monitoring server to do at least basic ping and web
page load checks.

An internal monitoring system is much better suited to monitoring backend services
(MySQL, Memcached, Solr, etc.) and server resources. Keeping that monitoring internal
means you don’t need to worry about external network bandwidth or the security im‐
plications of allowing an external host to connect to your internal services. As you add
more servers and service checks to your monitoring system, having it on a low-latency
local connection can help improve monitoring performance.

100 | Chapter 8: Service Monitoring

CHAPTER 9

“DevOps”: Breaking Down Barriers
Between Development and Operations

Historically, there has been a strict separation between development and infrastructure.
In recent years, the “DevOps” methodology has become very popular, stressing the
integration of development and infrastructure operations in order to improve the code
deployment process. There are many aspects to DevOps, including close collaboration
between development and infrastructure teams, easing the deployment process with
automation, and standardizing development and QA environments. This methodology
becomes even more important as infrastructure demands increase with new technolo‐
gies, as development teams move toward rapid-release models (agile/iterative develop‐
ment), and when dealing with distributed teams.

While you may not feel that you need to fully embrace DevOps for your environment,
there are still many ideas that stem from DevOps culture that can prove beneficial. For
example, ideas that are commonly used in DevOps environments that can help simplify
deployments and reduce the chances of regressions when deploying to the production
environment include having the ability to track changes to both code and infrastructure
and roll back should something not work; maintaining separate (but nearly identical)
environments for development, testing, and staging for code and infrastructure changes;
and the use of revision control systems and continuous integration systems for code
deployment.

This chapter shouldn’t be considered a set of instructions on “how to do DevOps”;
instead, it will focus on some of the underlying ideas and technologies that we hit on
throughout the rest of the book.

101

Revision Control Systems
Revision control systems have a bit of an upfront learning curve, but once you get over
that, you will never go back to not using one. Generally these days, the argument is not
over whether or not to use a revision control system for your code, but which revision
control system to use. We’ll stay out of the “which revision control system is best” holy
war here, and just stick with Git for our examples since Git is used for Drupal.org and
all projects hosted there. If you’re not already sold on a particular revision control sys‐
tem, here are some of the features you should consider when selecting one:
Distributed system versus central system

Distributed systems have become much more popular of late, and with good reason
—every copy of the repository stores all files and history locally, which not only
speeds up many commands, but allows developers to work offline.

Branching model
Depending on your development workflow and team size, having a revision control
system with a powerful branching model can be very useful (even mandatory). This
makes collaboration and testing changes very easy.

Performance
Is the system you’ve chosen fast enough for your common tasks?

That said, it’s not especially important which revision control system you use, just that
you use one at all! While the trend has been toward distributed systems recently, and
those do provide some definite benefits, what’s important is that you choose something
that fits in with your workflow and the technical skill level of your team.

Locally Hosted or External Service
One of the first decisions you’ll need to make when implementing a revision control
system is whether to host it on a local server or to use an external service (potentially a
paid service). There are many services, such as BitBucket and GitHub, that provide
hosting for code repositories. Some people prefer to use these services, not only for the
ease of use (and setup) they offer, but for the additional features, such as user manage‐
ment and, in the case of GitHub, the easy forking and pull request model, which makes
it simple for developers to review and discuss proposed changes. That said, any modern
revision control system can be set up locally with just a few commands, so if you don’t
want or need the additional features offered by the hosted services, it’s cheap and rela‐
tively easy to host yourself.

Not Just for Code
Generally, your actual website code will be the first thing you think about when imple‐
menting a revision control system. However, it’s also very useful for other things, such

102 | Chapter 9: “DevOps”: Breaking Down Barriers Between Development and Operations

as keeping your system configuration management scripts in a code repository. By
storing configuration management or other scripts in a revision control system, you get
an automatic log of system changes, the ability to easily collaborate with other developers
and/or system administrators, and an easy way to roll back changes.

Configuration Management Systems
Like revision control systems, configuration management systems are something that
people generally are reluctant to use at first, but once they get comfortable with them,
there is no turning back (in a good way). Configuration management systems allow you
to write code (in various languages, depending on the underlying system) to define how
a system is configured. This has many benefits; for example, it provides a sort of “live
documentation” for your servers, and it means you won’t have 50 manually copied
configuration files on a server (httpd.conf.bak, httpd.conf.old, httpd.conf.not.working…
don’t pretend you’ve never seen something like that before!). An example of what you
can do with a configuration management system is store your custom PHP and Apache
configuration files on a web server, and ensure that Apache is running and configured
to start on boot. While this may seem like a very simple example, think of what happens
when you have multiple servers and you suddenly need to make a configuration change
or bring up a new service. What if there are some special commands you use when
deploying something manually? It is much better to keep those commands in a config‐
uration management system so that they are documented and not forgotten. Likewise,
what happens if one of your servers crashes and needs to be rebuilt? With a configuration
management system that becomes a simple task, and you can ensure that everything
will be configured as it was before.

Which System to Use
There are many popular configuration management systems. The most widely used
are CFEngine, Chef, and Puppet. A relative newcomer is Ansible, which aims to keep
configuration management as simple as possible. While these all have the common goal
of allowing you to write configuration to define a system, they go about it in slightly
different ways, using different languages for their configuration and different underly‐
ing programming languages. All of these systems have active communities and devel‐
opment and are fairly well supported by most Linux distributions. We suggest trying
them each out and selecting the system that you are most comfortable with.

Pulling It Together: In-Depth Example with Puppet and
Git
We mentioned the usefulness of keeping your configuration management scripts in
revision control, but what does that look like exactly? For this example, we’ll use Puppet

Configuration Management Systems | 103

http://www.ansibleworks.com/

and Git, though it is just as applicable to other configuration management and revision
control systems. There are a few pieces involved:

1. A master repository to which changes will be pushed.
2. A mechanism to update the scripts on the master server (puppetmasterd) when

changes are pushed to the master repository. This could be a post-receive Git hook,
or something external such as a Jenkins job.

3. Local clones of the repository where each developer/administrator can do work
and then push it back to the master repository for review and/or implemenation.

For this example, let’s assume we have a utility server that will serve as both the Puppet
master server and the host of the master Git repository.

First, we’ll set up a Git repository. This could be at any path you choose, but we’ll go
with something under /srv:

mkdir -p /srv/git/infrastructure.git
cd /srv/git/infrastructure.git
git --bare init

The git init command creates an empty Git repository for us. In this case, the --
bare flag is used in order to skip creating a working directory; since this is on a server,
that’s exactly what we want.

That’s all that’s needed to start an empty Git repository, but we’ll also run a couple of
commands to configure the git repository for a shared environment (multiple people
contributing to the same repository). Here we assume that you’ve set up an “infrastruc‐
ture” Linux group—anyone with membership in that group will have read and write
access to the repository:

git config core.sharedrepository 1
git config receive.denyNonFastforwards true
chgrp -R infrastructure .
find . -type d -exec chmod 2770 {} \;

The find/chmod command will set the sgid bit on directories in order to retain group
ownership on new files created there—this will help keep permissions correct as people
push to the repository.

The Git repo can now be cloned by any user with SSH access to that machine who
belongs to the infrastructure group:

$ git clone util.example.com:/srv/git/infrastructure.git

Now that you have a local clone of the repository, you can add some files and push them
back to the central repository. For this example we’ll assume we have a Puppet directory
tree something like that in Figure 9-1.

104 | Chapter 9: “DevOps”: Breaking Down Barriers Between Development and Operations

Figure 9-1. Puppet directory structure

When setting up the Pupppet master server, we will use a Git clone of this repository
to populate the Puppet manifests/ and modules/ directories. In this case, we’ll configure
Puppet to look in /srv/puppet for those files:

mkdir /srv/puppet
git clone /srv/git/infrastructure.git /srv/puppet

You’ll need to edit your puppet.conf to point to that directory.

Next, for the automation bit. You don’t want to have to log in to the server, change
directories, and do a git pull every time you push changes to the configuration man‐
agement scripts! Instead, we’ll use a hook in order to update the Puppet master scripts
each time new changes are pushed to the repository.

Most revision control systems have the idea of hooks. A hook in this
case is a script that gets run before or after a specified action (e.g.,
before a code push is accepted, or after a code push). Each revision
control system has slightly different hooks and names, but the basic
idea is the same across them all.

In this case we’ll use the git post-receive hook, which is run after new code is pushed
into the repository. To implement this, we need to create the post-receive script in the
hooks/ directory inside the git repository (on the server). The file we’ll put there needs
to be named post-receive and be an executable script. We’ll use the following script:

#!/bin/sh
cd /srv/puppet
/bin/echo "`/usr/bin/whoami` is updating puppet master config @ `/bin/pwd`"
/usr/bin/git pull

Simply name that file post-receive, copy it into /srv/git/infrastructure.git/hooks/, and
ensure that it has executable permissions. Of course, the destination directory needs to
have permissions set such that anyone pushing to the git repository can update files

Pulling It Together: In-Depth Example with Puppet and Git | 105

there. Following the same permissions as used for the git repository in /srv/git would
work well.

To test the new hook, commit some changes to your local Git clone and then push it
back to the central repository. You should see the script output informing you that the
directory is being updated.

Development Virtual Machines
It can be difficult for developers if they are working in a development environment
(think a local laptop) that is set up completely differently than the staging and produc‐
tion environments. There are various ways to work around this—some people choose
to set up a development server with Apache virtual hosts for each developer and let
them develop on that server directly. However, this has the downside that developers
aren’t able to test certain (infrastructure) changes without affecting other developers.
What if it were possible to give each developer a local (virtual) environment that closely
matched production, and gave the developers the power to test any code and/or infra‐
structure changes locally? There are a number of ways to do this, but if you already have
a configuration management system in place, a tool called Vagrant will provide a very
easy solution for creating just such a virtual machine (VM) environment.

Vagrant provides an easy way to create development VMs. It ships with
support for VirtualBox, but also has a plug-in system that allows you
to use Vagrant with other virtualization providers, such as VMware or
AWS. More documentation is available at the official project website.

Typical Vagrant usage is to start with a bare-bones “base box,” which is a virtual machine
image with minimal packages and services installed. Vagrant provides support for mul‐
tiple provisioners, which are the scripts run against the base box in order to configure
it to meet your needs. In the most simple form, you could use a set of shell scripts to do
the provisioning; however, Vagrant really shines when used with a configuration man‐
agement system (currently support is provided for Ansible, Chef, and Puppet). If you
are already using a configuration management system with your production infra‐
structure, it is very easy to integrate it into Vagrant in order to create an easily repro‐
ducible development environment that closely matches the production server config‐
uration.

Distributing a small base box image and then doing all configuration with a configu‐
ration management system provides a few benefits:

• Initial download of the VM image is faster, since it isn’t very large.

106 | Chapter 9: “DevOps”: Breaking Down Barriers Between Development and Operations

http://www.vagrantup.com

• Although the initial provisioning step may take a while (and transfer many packages
from the Internet), future changes to the VM can be made by updating the config‐
uration management scripts instead of having developers download a full VM im‐
age simply to make a few small changes.

• Infrastructure and configuration management changes can be easily tested on a
local Vagrant VM in order to give some assurance that things will work similarly
in other (test, staging, production) environments.

How to Distribute Development VMs with Vagrant
Generally, you will want to start with a small base box image, and it should match the
operating system you are using on your production infrastructure. You can either create
your own (instructions are provided in the Vagrant documentation), or use one of the
many base boxes that are publicly available on sites such as http://vagrantbox.es. One
important thing to look out for is that you use a base box that includes support for
whichever configuration management provider you will use. This simply means that,
for example, Puppet is installed on the VM image if you are going to be using Puppet
for provisioning.

Once you’ve settled on a base box, you can start integrating your existing configuration
management system. Most things will just work if you’ve done a good job of writing
your configuration management scripts; however, since the Vagrant image is starting
out mostly unconfigured, it’s very important that your dependency order is set correctly
for everything so that all services will work correctly after one run of the provisioning
scripts. Depending on how you are doing code and database deployments in your pro‐
duction environment, you may need to create additional scripts for deploying the site
code onto the VM—for example, a “sitedeploy” Puppet module that gets a copy of the
site code from your configuration management system, imports initial data into the
database, and ensures that the Drupal database user is granted correct permissions.

Now, distributing the system to all developers and admins becomes a matter of distrib‐
uting a copy of your Vagrantfile (Vagrant configuration directives) and the configura‐
tion management scripts. The Vagrantfile can automate the downloading of a standard
base box image. Generally we keep all the configuration in a revision control system so
that it’s easy to make updates and everyone can pick them up with a git pull or similar.

Deployment Workflow
Now that your developers can quickly provision local virtual machines that closely
match the production configuration, it’s time to take advantage of them to test changes
to Drupal. We’ve mentioned the importance of a revision control system for managing
your site’s code, but it doesn’t stop there. Once you have a revision control system in

Deployment Workflow | 107

http://vagrantbox.es

place, you will also need a well-defined workflow in place for your developers, as well
as for code deployments to individual environments. A well-defined workflow will im‐
prove site stability (you are testing code first and not editing directly on your production
site) and should allow developers to easily collaborate on changes for upcoming releases,
while still giving the ability to make quick “hotfixes” when a bug is found that requires
immediate attention. There are a number of widely used and accepted workflows, and
generally there is no wrong way as long as you find something that works for you and
everyone on your team agrees to stick to it.

Example Workflow with Git
As we mentioned, there are almost endless options for how to approach your develop‐
ment and deployment workflow. We’ll give an example consisting of three environ‐
ments: development, staging, and production. This is a standard setup that we strongly
recommend. The Git branching model described here is based on a workflow initially
written about by Vincent Driessen and referred to as “Git Flow,” which is also the name
of the set of optional Git plug-ins used to easily work in the model. For the sake of
simplicity, we won’t use so-called release branches; however, some people will find those
very useful and should read Vincent’s full article for more information.

There are a couple of things to consider here: the Git branching workflow, and the
deployment workflow. The deployment workflow is easy to understand from a high
level—we want new code to start in the development environment, then be pushed to
staging for testing before finally being pushed to production when it’s deemed ready.
Figure 9-2 illustrates this workflow.

Figure 9-2. Code deployment workflow

We’ll get more in depth into the code deployment process in the next section. For now,
it’s only important to understand that code changes flow in only one direction, except
in the case of hotfixes, and that code is never edited directly on the servers, but is instead
always pushed through the revision control system (although some sites make an ex‐
ception for this rule when working in the development environment, with the caveat
that developers clean up after themselves so that the automated deployment tools con‐
tinue to work as expected).

There are a number rules and guidelines that shape the development workflow and Git
branching model:

108 | Chapter 9: “DevOps”: Breaking Down Barriers Between Development and Operations

http://nvie.com/posts/a-successful-git-branching-model/

• Production is run from the master branch (specifically, from a Git tag pointing to
a commit on the master branch).

• Staging is run from tags created from the develop branch.
• Development is run from the HEAD of the develop branch.
• Developers create branches off of the develop branch to do their work, and those

are merged back into develop once they’ve been reviewed.
• If a hotfix is ever needed, a hotfix branch is created off of master and then merged

into develop for testing (and inclusion in the next full release). After testing, it is
merged back into master for deployment to production.

This gives us three distinct environments, with active development happening in the
development environment, testing and QA happening in the staging environment, and
code being pushed to the production environment once QA is complete in the staging
environment.

To see exactly how this all works together, we can look at a specific developer branch as
it makes its way through the workflow and eventually is deployed to the production
environment:

1. The developer creates a branch (we’ll call the branch “feature-go-faster”) off of the
current develop branch.

2. Code is committed to the developer’s branch, feature-go-faster, and the branch is
pushed to the central repository for review.

3. The feature-go-faster branch is reviewed, and once it passes review it is merged into
the main develop branch.

4. Code on the development web server is updated with the latest code in the devel‐
op branch. This may also involve syncing the current database and files from staging
or production back into the development environment.

5. Basic (or extensive, if that’s your thing) testing is performed in the development
environment. At some schedule—which could be weekly, biweekly, monthly, or just
“when there are enough changes to warrant a new release”—a release tag is created
pointing to the current state of the develop branch.

6. The new release tag is deployed to the staging environment. In many cases, this also
involves syncing the current database and files from the production environment
into the staging environment.

7. Testing is performed in the staging environment.
8. Once testing is complete, the code from that tag is merged into the master branch

and a new release tag is generated.

Deployment Workflow | 109

9. The new release tag is deployed to the production environment and any final QA
testing is performed there.

This design can be considered a starting point that can be adapted to fit your specific
needs. Smaller sites may choose to combine the development and staging environments
since they have fewer developers and changes, or potentially fewer testing requirements.
Other sites may add additional testing or maintenance environments.

Deployment with Jenkins CI
As demonstrated in the preceding workflow example, there are a few interactions be‐
tween the various environments that need to happen during deployment. This includes
the actual code deployment (usually some sort of git pull or git checkout command);
syncing files and the database back from production or staging; and potentially some
additional tasks such as running database updates, clearing the cache, taking a database
snapshot, or even rebuilding Solr search indexes. There are many ways that these tasks
can be run, but one popular option is to use Jenkins, which can connect over SSH (or
with Jenkins “slaves”) to the various server environments and run shell scripts, drush
commands, etc. on each server as needed. Using a continuous integration (CI) server
such as Jenkins provides a number of benefits, such as job health and history tracking,
job scheduling (time- or event-based), a fine-grained permissions system, and a web
user interface for those that aren’t comfortable running scripts from the command line.

Other popular deployment options include Capistrano or, if using
Chef, the built-in Chef deploy resource.

It’s advisable to run Jenkins from an internal utility server if you have one. It’s important
that access to Jenkins is limited as much as possible because once it’s configured, it will
have access to make changes to all of your site environments, including the production
site. Access can be restricted with the Jenkins users/permissions system; in addition,
access can be controlled with a firewall, or Jenkins can be configured to listen only on
the local interface, requiring users to use SSH port forwarding in order to connect to
the Jenkins web interface.

SSH port forwarding is a useful trick for connecting to Jenkins, as well
as other services that may be protected behind a firewall. Forwarding
ports over SSH can be done with the -L flag. For example, if Jenkins is
listening on port 8080 only on the local interface on the server, you
could use ssh -L 8080:localhost:8080 servername.com and then
access Jenkins by pointing your browser to http://localhost:8080.

110 | Chapter 9: “DevOps”: Breaking Down Barriers Between Development and Operations

http://localhost:8080

In a simple setup, the jenkins user on the server running the Jenkins service can be given
an SSH key pair. Then, on each server that Jenkins needs to access (generally this would
be limited to only your web servers, but it depends on exactly what you are configuring
Jenkins to do), a local user can be created granting login access with the jenkins user’s
public key. In this manner, jobs can be configured to use drush (with a properly con‐
figured drush aliases file), or by calling SSH directly:

'ssh deploy@webhost /usr/local/bin/deploy_script.sh'

The deploy user on the web servers can be given any username you like. In some cases,
the account may need access to run scripts as another user—for example, running a
cache clear as the apache (or www-data) user so that it has access to remove files from
the Drupal files/ directory. Those commands should be configured in sudo as needed.
The following is an example file that can be placed in /etc/sudoers.d/deploy:

Defaults:deploy !requiretty
Defaults:deploy !env_reset
deploy ALL=(apache) NOPASSWD: /usr/local/bin/site_cache_clear.sh

Note that the requiretty option must be disabled for the user that Jenkins is connecting
as, since it will not be running from a valid terminal.

There are a number of different types of scripts that are typically run from Jenkins:
Code deployment

These are scripts that connect to a revision control system to update/deploy code
onto the web servers.

Deployment helpers
These scripts are for handling tasks related to a deployment—for example, taking
a database snapshot before an update, putting the site into maintenance mode,
performing a cache clear, performing database updates, etc.

Environment synchronization
These scripts are for syncing the Drupal files/ directory and the database between
environments. While code is deployed from development to staging to production,
database and files/ sync happens in reverse: the production database and files/ are
synchronized to staging, and then from there to development.

Site management
These are periodic scripts that support the site—for example, running Drupal cron,
daily database backups, etc.

Deployment with Jenkins CI | 111

CHAPTER 10

File Storage for Multiple Web Servers

In this chapter, we will discuss the options for file storage in infrastructures with multiple
web nodes. Ensuring your file storage is coherent and synchronized between your web
nodes is often the redheaded stepchild of infrastructure design—most everyone is aware
that you need all your web nodes to agree on database information, and quite a few
know that your object cache needs to be coherent. However, the complication of en‐
suring your static files are synchronized between web nodes is often overlooked.

Why is this important? Imagine that a user goes to your site and uploads an avatar. That
user’s avatar is written to disk on webnode1. If there is a delay in that file becoming
available on webnode2—or worse, if its not synchronized at all—users will start seeing
broken image links for that file. Even if your site doesn’t accept user uploads, Drupal
creates its own JS/CSS aggregate files on disk, and if those don’t exist on both web nodes,
you will quickly hit issues on the web node without them. Keep this in mind while
debugging “strange issues” that may come up on your infrastructure (certain users not
seeing CSS correctly, 404s on only certain web nodes, etc.). It is easy to forget how
important coherent file storage is to a functional website.

Now that we understand why this is important, we can cover a few different methods
of maintaining this consistency when using multiple web nodes. In this chapter, we will
discuss some of the more popular methods for Drupal deployments and their various
advantages and disadvantages.

rsync
The first option we should consider is, at first glance, the simplest. In this configuration,
you would simply set up rsync processes between your web nodes to ensure that every
file on webnode1 is also on webnode2, webnode3, and so on. This setup has a few prob‐
lems, though. First, there will always be some sort of delay in file syncing. It must be
acceptable to have broken links on pages during this sync delay. Additionally, this con‐

113

http://rsync.samba.org/

figuration virtually requires session affinity. Having a missing user avatar during the
sync delay for some users is a problem, but having the user who uploaded that avatar
not able to see it on his own profile page is a critical problem. Because of this, session
affinity is usually a requirement as it “resolves” the issue by ensuring that a user who
uploads an avatar remains on the webnode he uploaded it on.

Even if you are entirely fine with having session affinity enabled and with the synchro‐
nization delay, there are other complications. For example, there is no clear method for
removing files from web nodes where the file removal did not originally take place.
During an rsync from point A to point B, how do you differentiate between a file having
not yet been synced and a file having been deleted? Issues like this are why “just using
rsync” is becoming less of an answer to this problem.

GlusterFS
Gluster is one of the most popular options for file storage, and in particular file storage
in cloud deployments (discussed in the next chapter). It is popular for good reason—
Gluster is simple to set up, does not create a single point of failure, and works extremely
well for many types of deployments. It is in essence a clustering filesystem, but one
designed for standard deployments and not necessarily an enterprise configuration
(meaning it doesn’t assume you have access to high-quality disk backends, etc.).

GlusterFS works as follows. First, you define storage “bricks,” the servers and mount
points where the actual data will be stored. Note that these can be the web nodes them‐
selves; all that matters is that they exist, are relatively stable, and have a low-latency
network connection. You then can “combine” these bricks together using GlusterFS
“translators.” This sounds complicated, but the default configuration is fairly good and
largely just creates a redundant array of these bricks with locking, caching, prefetching,
and other performance and feature translators layered on top. You can then mount the
Gluster volume on each web node, and the Gluster translators will do the work of en‐
suring both that files are kept in sync and that there are replicas of the files across the
brick cluster. Figure 10-1 illustrates a Gluster mount across two servers and the under‐
lying Gluster brick on each server.

There are multiple ways to mount the Gluster volume: you can mount it via Gluster’s
native protocol, using the FUSE (File Systems in User Space) driver, or you can mount
the volume over NFS (Gluster has an NFS emulation layer). There are mixed reports as
to which is better, with many people agreeing that NFS is somewhat less stable, but better
for high concurrency. Most people tend to use the native FUSE driver.

114 | Chapter 10: File Storage for Multiple Web Servers

http://www.gluster.org/

Figure 10-1. GlusterFS overview

Example Configuration
Recent versions of Gluster have made it quite easy to get up and running with a simple
setup. Assuming you have at least two servers with available disk space for the bricks
and Gluster is installed on all of the servers, you can get started by typing something
like the following in the terminal (let’s assume you have two servers, serverA and serv‐
erB, and that on each server you’re going to store data in /var/gluster/data):

(On serverA): gluster peer probe serverB
(On serverA): gluster volume create testVolume replica 2 \
 serverA:/var/gluster/data serverB:/var/gluster/data
(On serverA): gluster volume start testVolume

You can now check on the status of your volume with:

(On serverA or serverB): gluster volume info

And you can now mount your new volume by executing the following on any server
you want it mounted on:

mount -t glusterfs serverA:/testVolume /mnt/gluster_volume

The hostname used in the mount command could be either of the glusterfs hosts (that
is, serverA could be replaced with serverB to access the same volume, only mounted
directly from serverB). Thus, if you had two web nodes, you could have a brick on each
and then mount from the local server on each. This is often the easiest way to get a
replicated files directory between web nodes, without inserting a single point of failure.

Single NFS Server
A decreasingly common practice is to set up an NFS share somewhere on your cluster
and just hope for the best. The advantage of this practice is simplicity. The disadvantage
is that if that one NFS server goes down, needs a reboot for updates, or has a hardware
failure, the entire site will go down. You should really only use this method (illustrated
in Figure 10-2) if you have single points of failure everywhere else in your infrastructure
as well and one more won’t bother you.

Single NFS Server | 115

Figure 10-2. Single NFS server

HA NFS Cluster
While a single NFS server is usually a poor idea, there are other configurations that are
quite useful and still use NFS as the protocol of choice. One such setup is to use DRBD
(a kernel-level distributed remote block device) to replicate the actual block device NFS
is hosted on. This allows you (with some significant configuration) to successfully fail
over an NFS mount without having stale file handles on the client side. This configu‐
ration (shown in Figure 10-3) is somewhat difficult to get correct, but is one of the few
ways to have truly highly available NFS.

Figure 10-3. HA NFS cluster

116 | Chapter 10: File Storage for Multiple Web Servers

Example Configuration
The configuration of HA-NFS actually has very little to do with NFS and more to do
with having a truly (and absolutely) replicated block device. NFSv3 has no concept of
failover, so when you do actually failover between two servers, the challenge is con‐
vincing it to “look over there” during the failover and then pretend like nothing hap‐
pened. Heartbeat and DRBD are surprisingly good at this.

This whole system depends on two things. Firstly, NFS file handles on the client side
not only depend on the IP address and NFS statd hostname, but also on the inode on
the server itself. DRBD allows you to have these inodes be the same between two servers,
which is a core requirement, since if all the inodes suddenly changed, everything would
break. Secondly, NFS has a directory where it stores state information, and DRBD is
accurate enough that you can synchronize this directory between the two servers, as
well as the data itself. Once you have the data and this state information perfectly re‐
plicated between the two servers, failover becomes much more possible, as the event
itself looks like just a momentary network failure to the NFS clients.

Setting Up DRBD
The first step in setting up DRBD is to create two identical partitions on two servers.
They must literally be exactly the same size. You must then install DRBD—this will
include the userland utilities and a kernel module. Start the DRBD service and you can
begin with the standard setup procedure.

We assume DRBD version 8.4 in the following discussion, if you are
using 8.3, we recommend following the instructions on the DRBD
website (http://www.drbd.org).

Edit /etc/drbd.conf (or global.conf and r0.res in /etc/drbd.d, depending on your distri‐
bution). There are two sections in the drbd.conf file: the global/common section and
the resource section. (These two sections map to the two different files in some distri‐
butions.) The global/common section is very simple and should contain something like
this:

global {
 usage-count yes;
}
common {
 net {
 protocol C;
 }
}

HA NFS Cluster | 117

http://www.drbd.org

The resource section is where you define your volume and should have something like
this in it:

resource resourceName {
 on server1 {
 device /dev/drbd0;
 disk /dev/sdb1;
 address 192.168.1.2:7789;
 meta-disk internal;
 }
 on server2 {
 device /dev/drbd0;
 disk /dev/sdb1;
 address 192.168.1.3:7789;
 meta-disk internal;
 }
}

Once you have this file in place and exactly the same on both servers, start the DRBD
service and proceed to set up the volume. The following commands will need to be run
on both servers:

drbdadm create-md resourceName
drbdadm up resourceName

At this point, you should be able to run cat /proc/drbd and see the state of the volume.
It should list the two servers as both up, in the “Secondary/Secondary” state, and “In‐
consistent.” This means that the two physical devices are not synchronized and that
neither server considers itself the “primary” (the server receiving reads/writes with the
volume mounted). Now let’s perform our first synchronization. Run the following com‐
mand on the server you want to be the primary:

drbdadm primary --force resourceName

Note that this will copy every bit of data on the physical device on this server to the
secondary server. This is important if there is actual “legitimate” data on one of these
devices—in that case, you would run this command on the server with legitimate data.
This is an important consideration when resynchronizing a cluster or replacing a DRBD
node.

You can monitor the process of the synchronization via cat /proc/drbd. Once the sync
is complete, you can format and mount this new DRBD resource on your primary server.
The device name will be /dev/drbd0, and it can be treated exactly like a new partition
(i.e., you format and mount it the same way).

This is a very general description of how to set up DRBD; you really should go to the
DRBD website and read the detailed documentation there before ever attempting to use
it in production. It is a complicated system, but exceptionally useful in many situations.

118 | Chapter 10: File Storage for Multiple Web Servers

Setting Up Heartbeat
The part of this configuration that actually detects failure and then takes action on that
failure is Heartbeat. This software is packaged in most distributions and should be easy
to install. There are two ways to configure Heartbeat: the “v1” way and the “pacemaker”
way. We recommend the v1 method for most people as it’s quite simple, and for a NFS-
DRBD cluster, you don’t need anything more complicated. Heartbeat is used repeatedly
in many sections of this book (and many infrastructures), and most of Chapter 12 is
dedicated to it.

Setting Up NFS
The NFS setup is mostly normal, with a few exceptions (they are weird exceptions,
though!):

1. Stop nfs.
2. Set the statd hostname to the same thing on both servers. On Red Hat-based sys‐

tems, this is located in /etc/sysconfig/nfs.
3. Unmount rpc_pipefs. This may be difficult, and you may have to force the umount.

This is a virtual file system used for NFS4, and it’s mounted into the NFS state
directory. We want to move this directory, so we need to unmount it.

4. Copy /var/lib/nfs to the DRBD mount and then delete the original /var/lib/nfs and
symlink the directory from the DRBD mount back to /var/lib/nfs.

5. Remount rpc_pipefs.
6. Finally, on the other server, ensure that the statd hostname is changed, unmount

rpc_pipefs, and symlink /var/lib/nfs to the path where the NFS state directory would
be if the DRBD volume was mounted. (The same symlink command you ran on
the primary server will work here. This directory will only actually exist on this
server when the DRBD volume is failed over. This is important, as this state direc‐
tory must be synchronized between the two machines.)

Testing
We recommend starting Heartbeat (drbd, nfs, etc.) on the primary, mounting NFS on
another server, and either attempting a failover via the Heartbeat utilities or just shutting
down the server you’re testing. For example (given heartbeat/drbd/nfs running on serv‐
erA and serverB):

(on serverA): cat /proc/drbd
verify that you are master
(on serverA): /etc/init.d/heartbeat stop
(on serverA): tail -f /var/log/messages
watch it failing over and ensure there are no errors

HA NFS Cluster | 119

(on serverB): cat /proc/drbd
#verify that it is master
(on serverA): /etc/init.d/heartbeat start
(on serverA): tail -f /var/log/messages
watch it failing back and ensure there are no errors
(on serverA): cat /proc/drbd
ensure that serverA is now master--there may be a resync period shown

During all of the above, your test website should never go down. (There may be brief
stalls in service, but it shouldn’t go down completely.) If your website does become
unavailable for a few minutes at a time around a failover event, consider mounting the
NFS volume over UDP and not TCP. Some additional information and tips on this
method of HA-NFS is available here.

Storage Area Networks (SANs)
It is difficult to really discuss a SAN device (an enterprise appliance specifically designed
to provide highly available shared storage) while comparing it to these other options.
Very few people have the money or inclination to buy a SAN device for a single website.
If you do have both the money and the inclination, you also probably have a very large
site (or, more likely, several). The summary here is that every option presented so far
in this chapter is designed to get you partially to the feature set and reliability of a real
SAN device. If a SAN is an option for you, then it is the obvious choice. However, it is
a rarity that it is a realistic option.

If you rent space on a SAN from a provider, get details on exactly what
type of SAN it is (i.e., what brand it is) and how much it is provi‐
sioned (how saturated it is). Providers have a tendency to oversatu‐
rate SANs or call a regular file server a “SAN.”

120 | Chapter 10: File Storage for Multiple Web Servers

http://wiki.linux-ha.org/HaNFS

CHAPTER 11

Drupal and Cloud Deployments

You’ve probably heard one of two things about “the Cloud”:

1. Cloud deployments are the future and the present; the be all and end all of flexible,
dynamic, enterprise-grade, and agile infrastructure design.

2. Cloud deployments are entirely a marketing innovation and are championed by
people who probably should be in the PR department, but somehow wandered into
the wrong meetings too many times and are now on the technical staff.

You can easily hear both of these arguments at any major conference (usually in the
same conversation and at high volume). You might say there is some disagreement in
the community on the merits of the cloud. We will try to clear up some of the confusion
in this chapter.

What Is the Cloud?
That this question must be asked is one reason some people find the concept of “the
cloud” annoying. The term is used so often that it now means basically nothing (a
phenomenon now known as “cloud washing”). For our purposes, we will be defining
the cloud as a virtualized hosting solution, where VMs can be created and destroyed on
demand via an API with no human interaction. This is a very common definition and
fits clouds such as Amazon EC2 and Rackspace Cloud. Just to be absolutely clear, by
“API” we mean a client-visible API that allows you to script automatic growth and
shrinking of an array of servers.

Why Use the Cloud?
The major advantage of a cloud deployment is flexibility. If you need 10 web nodes
today, 30 tomorrow, and 5 the next day, that’s something the cloud can give you that a

121

http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/

typical hosting environment struggles with. This makes cloud deployments incredibly
good for startups and any venture where traffic varies greatly. They can also be excellent
for testing, as you often only need a VM for a matter of hours.

This flexibility is definitely revolutionary and is why the cloud is such a big deal right
now. The ability to design a system that actively scales itself up (i.e., increases VM counts)
as load increases allows for infrastructures that used to be impossible without a huge
investment. Some clouds even allow you to integrate into an existing hardware infra‐
structure; for example, having a web node array to supplement your hardware web nodes
during times of high load.

This ability to dynamically adjust your infrastructure, and to treat hardware as a service,
opens up huge possibilities and is very exciting.

Infrastructure Overhead
One of the reasons that, despite all of these exciting aspects, some people are still an‐
noyed with “the cloud” is that there is a significant cost to building up the automation
required for using it well. This cost (technical overhead) is glossed over by many, and
as a result, people end up with virtualized infrastructures that are not doing them any
good (and may in fact be doing them significant damage). Let’s discuss an example.

Suppose you are currently testing your site with two web nodes and a database server,
and you decide to move to a cloud deployment. You start the two web nodes and DB
server on this cloud deployment. You don’t have any automation, so you must configure
each of the web nodes by hand (at least partially—let’s say you have part of your web
stack automated, but not all of it). What are you gaining at this point? Your new VMs
are likely less powerful than the hardware you had before and they are certainly less
reliable—remember that these clouds are designed for automation, and a VM “disap‐
pearing” is not unexpected. At least you can scale automatically though, right? No.
Unless your automation is complete (meaning able to go from an “empty” VM or a saved
image to a working web node without interaction), your response to a load increase will
be very limited. You can manually start and set up new VMs, but that’s not going to be
exceptionally effective. This is the big issue: to leverage the cloud, you must have fully
working automation. There is a very real cost for this, and it’s a cost that is often ignored.

Prepackaged Clouds
There are other options besides trying to build this automation entirely yourself. There
are providers that have built “managed clouds,” allowing you you to input your code
and database on one side and have your site hosted on their reliable, autoscaling infra‐
structure on the other. The tools you are given are somewhat more detailed than this,
but the idea of a black box for the infrastructure component is valid. Acquia Cloud and
Pantheon are examples of providers offering prepackaged cloud services for Drupal.

122 | Chapter 11: Drupal and Cloud Deployments

http://www.acquia.com/products-services/acquia-cloud
https://www.getpantheon.com/

The advantages to this are: you get some of the autoscaling benefits of cloud deploy‐
ments, without the large investment in infrastructure building. The disadvantage here
is flexibility. If your site doesn’t fit the provider’s expectations for build or usage, you
will not have a good experience.

There is also a middle ground where you get to manage your own infrastructure, but
many tools and scripts are provided to help you automate it. An example of this is
RightScale. There is still a lot of infrastructure investment required for this option, but
less than if you were to start from scratch, and they give you a significant amount of
documentation.

Common Issues with Cloud Deployments and Their
Mitigations
Obviously this isn’t a book on virtualization, and your issues with cloud deployments
will vary widely by what type of site you are hosting, its usage, and what technologies
you are using. However, we can go over some common issues and how to mitigate them:
Slow IO

This varies by provider, depending on what type of IO backend they use. Many
cloud hosting providers have very slow IO backends when compared to a typical
hardware-based RAID host. This often impacts database servers the most, but it
can also slow down web requests depending on how many PHP files are touched
during Drupal’s bootstrap. Mitigating this concern involves ensuring that you tune
the real-path cache, possibly turning off apc.stat, and ensuring that your DB server
has enough memory and is configured to fully cache your data. These topics are
covered in Chapters 13 and 18.

Disappearing or failing VMs
Virtual machines on most cloud providers are treated as a variable resource. This
isn’t a failure of clouds at all; it’s by design. Hardware as a service cuts both ways.
When designing your infrastructure, you need to be able to both take advantage of
this (increase resources when needed, reduce when not) and prevent the negative
aspects from taking your site down. Test your high availability plan to ensure that
it will really work, as it will eventually need to be used.

Limited IP failover
A common method of building high availability into a system is to have a floating
IP address that moves between two servers in the event of a failure. This method is
not supported (or not supported well) by most clouds—for example, some clouds
have the ability to fail over IPs, but with a variable delay to the failover. Thus, al‐
ternate solutions are often required. Many providers have these solutions built into
their clouds; if not, you may need application layer failover or DNS failover. We
discuss this to some degree in Chapter 12.

Common Issues with Cloud Deployments and Their Mitigations | 123

http://www.rightscale.com/

In summary, there are very real advantages to cloud hosting and hardware as a service.
It is very exciting to be able to handle load and build infrastructures that would never
have been possible for smaller companies before. However, the hype around cloud
hosting needs to be managed carefully. There should be a real reason for you to use
cloud hosting, and you must actually plan for its use and the automation it requires.

124 | Chapter 11: Drupal and Cloud Deployments

CHAPTER 12

Failover Configuration

A few chapters earlier in this book, we mentioned that we would cover how to actually
direct traffic in a failover situation in a later chapter. Congratulations, this is that chapter!
Your patience has paid off. Sadly, the wait may not be entirely worth it. Being able to
consistently direct traffic between two servers, depending on which one is marked “ac‐
tive,” is tremendously important for high availability in general and many services that
back Drupal sites specifically. Having an HA MySQL cluster, NFS cluster, Solr cluster,
and load balancing cluster all depend on this. However, it’s not the most exciting thing
in the world. The general concept is very simple: you run a daemon on two servers, and
those two daemons ping each other fairly constantly. When serverA’s daemon doesn’t
get a response from serverB’s daemon within a certain failure criterion, serverB is marked
down and traffic is directed to serverA. The interesting issues with failover configura‐
tions are:

• What are the failure conditions?
• Can we insert other conditions besides just a full host down? Service-level failure

conditions, perhaps?
• How do you direct traffic consistently?
• How do you deal with split-brain?
• Wait, what is split-brain?
• It is not a problem with my brain specifically, is it?
• This seems scary; can’t we just take a downtime?

We will cover some of these issues here, starting with traffic direction.

125

In most cases, we are assuming that whatever service you are failing
over is already prepared for failover (i.e., set up to be synchronized
between the two servers in question).

IP Failover Versus DNS Failover
There are two types of failover that are commonly deployed: IP-based failover and DNS-
based failover. In essence, these two methodologies only differ in what “resource” is
changed in order to direct traffic. IP-based failover, not surprisingly, directs traffic via
moving an IP between two machines. Its major advantages are simplicity and very “im‐
mediate” results. However, it is problematic to use in most cloud environments (usually
you cannot get an extra IP assigned for the failover IP, also called the virtual IP or VIP)
and can be somewhat difficult to manage for those not used to it. This is as compared
to DNS failover, which involves changing a DNS record to point to the “new” server in
order to direct traffic.

DNS failover is a fairly common method of implementing HA in cloud environments
and can be easier to set up, especially with some specific DNS services designed for it.
However, the failover is definitely not as immediate or dependable as IP-based methods.
DNS names have some implied caching in many cases, and services such as the Name
Service Cache Daemon (NSCD) can cause issues with failover lag. Due to this, you must
plan for the possibility of a “slow” failover, where some traffic continues to hit the “old
master” before the “new master” fully takes over.

In most cases, this decision will be heavily influenced, if not entirely decided, by how
open your provider is to IP failover/moving IP addresses between your servers. Some
providers won’t allow you to have an additional IP address assigned to your server to
use for failover, and others are nervous about IP failover confusing their switches.
However, these issues are fairly rare for dedicated server providers.

Service-Level Issues
One might note that much of our discussion so far has centered on host-level issues.
We have discussed directing network traffic between two full hosts and checking wheth‐
er hosts are up from a network and OS perspective. This is nice, but it is fairly rare (or
at least it should be) for an entire host to fail. More commonly a service will fail or start
responding slowly. In cases like this, an HA cluster must detect this and start a failover.
Likewise, simply moving traffic from serverA to serverB sometimes isn’t enough to ac‐
tually failover a service. Many times there are other actions that need to be taken, such
as setting read_only to false on a MySQL slave.

The failover system we introduce here doesn’t really handle service-level detection and
failover in and of itself, but instead uses external services and scripts. For example, to

126 | Chapter 12: Failover Configuration

failover a MySQL service using Heartbeat, you could write a “mysql resource” script.
This script would perform the failover and would be triggered in the event of a MySQL
failover scenario. As far as monitoring is concerned, the system we will cover here can
easily be triggered by an external source (i.e., it can be told to “failover this host”). Thus,
you can use another monitoring system for services and have it trigger failovers. A
common choice for this is Mon (not to be confused with Monit), a very simple frame‐
work that can check for service health and then trigger Heartbeat upon a detected failure.

Heartbeat
Heartbeat has been the de facto Linux failover tool for a very long time. It is quite stable,
very well supported, and decently documented. However, it comes in two “versions,”
and the difference between the two can be quite confusing. Heartbeat by itself (some‐
times called Heartbeat v1) is a simple failover tool that moves resources and IP addresses
between two services. It only supports two servers and is quite simple to set up and use.
Heartbeat+Pacemaker (formerly called Heartbeat v2 or Heartbeat+CRM) is a full clus‐
tering suite that is quite complicated to set up and use but supports complex configu‐
rations and more than two servers. This level of complication is simply not needed for
the services that back most Drupal deployments. Because of this, we will only be cov‐
ering Heartbeat v1 (henceforth just called Heartbeat).

Discussion of v1 versus v2 doesn’t imply actual software changes, but
just different types of configuration. The Heartbeat package and ac‐
tual software are the same in both versions.

Installation
Most Linux distributions and *BSDs will have a Heartbeat package. It may also install
Pacemaker, but you can mostly just ignore that unless you really need advanced clus‐
tering. Thus, to install Heartbeat you can just use one of the following commands:

yum install heartbeat
apt-get install heartbeat

Configuration
There are three important configuration files for Heartbeat:
authkeys

This sets the type of authentication for the cluster and the hash to use for authen‐
tication.

Heartbeat | 127

http://sourceforge.net/projects/mon/
http://mmonit.com/monit/

ha.cf
This is the general configuration file, defining the two nodes of the cluster, failure
timeouts, failback settings, and other major configuration options.

haresources
This defines the resources Heartbeat will be controlling. Usually this means IP re‐
sources and various services to be started/stopped during resource acquisition and
failover.

We’ll look at some examples of these files next. In these examples, we have two servers
that are load balancing MySQL, named node1 and node2.

The authkeys file needs to be the same on both servers—they both need
to have the same key to successfully be a cluster. Likewise, this file needs
to be secured (not group or “other” readable/writeable).

Here’s an example authkeys configuration:

auth 1
 1 sha1 your_secret_key_here

You can generate a secret key like this: dd if=/dev/urandom count=4
2>/dev/null | md5sum | cut -c1-32.

And here’s an example ha.cf configuration:

ucast eth1 _<the IP of the other node>_
node node1
node node2
auto_failback on

The ha.cf file can become very complicated, but for some situations, it is as simple as
this. There are a few very important lines here. First, the ucast line is telling Heartbeat
the IP address of the other node and the interface on which to ping that node. This file
differs on each node (as the IP listed in each case will be the IP of the “other” one). If
this IP is incorrect, the interface is incorrect, or there is a firewall preventing this ping,
Heartbeat will not work correctly (both nodes will believe themselves to be the master
as they cannot communicate, this is often called split-brain). Equally importantly, the
node lines identifying the members of the cluster must contain hostnames that actually
match the return of “hostname” on each node.

128 | Chapter 12: Failover Configuration

The auto_failback line is actually quite important, too. If you set this
to on, resources will be failed back to their “home” node whenever that
node comes back from a failure. If it is set to off, you will have to fail
them back manually. Having this option off is generally safer, as you
can decide when you are ready to fail back to the “home” node and
you avoid the possibility of resources “ping-ponging” back and forth
between nodes.

Finally, here’s an example haresources configuration:

node1 192.168.1.3/32/eth1 httpd mysqld _<resource4> <resource5>_

This file is very simple: you just list the resources that Heartbeat will be managing and
which node each resource “belongs” to by default. A “resource” is either a Heartbeat-
specific resource, such as IPaddr or Filesystem (file system mounts), or just an init script.
So, you can manage system-level resources such as IPs and mounts, as well as services
such as apache, mysql, and memcache (via their init scripts).

So what IPs might you put in haresources for failover? You should never put the main
IP address for a server in this file and have it managed for failover. This would render
the server unreachable upon failover. Instead, you should always assign an extra IP
(often called the virtual IP or VIP) to be managed by Heartbeat. This IP will then be the
one used by whatever service you want to failover. For example, if you were trying to
failover HTTP traffic between two servers, you’d request an extra IP from your provider,
set up Heartbeat with it managed between the two servers, and then use that IP in your
DNS records. When it was failed over, traffic would then move transparently.

Usage
Once configured, using Heartbeat is quite easy. You start it via the init script (/etc/init.d/
heartbeat in many cases) and can watch its progress in the system log. Once it’s fully
started, you can failover resources by either fully shutting down Heartbeat on one of
the nodes or using hb_takeover or hb_standby, two small tools that either set resources
into standby mode (i.e., fail them over to the other server) or take over resources from
the other server. These utilities have three main options:
all

Failover all resources.

foreign

Failover just those resources not “owned” by the current node (this goes back to the
haresources file).

local

Failover only those resources “owned” by the current node.

Heartbeat | 129

These small utilities are also how you integrate Heartbeat with an external monitoring
system—you have it call them when a failure is detected.

130 | Chapter 12: Failover Configuration

CHAPTER 13

MySQL

One could easily write an entire book on MySQL configuration, monitoring, and query
optimization. Actually, many people have, and getting one of these books would be an
excellent idea. We will cover some facets of configuration and optimization here (those
that directly relate to Drupal). This is a very large subject, and one any Drupal developer
should be well versed in. Any content management system is in essence a very advanced
database frontend, and not knowing the underlying technology of your site and/or
business is asking for trouble.

Drupal and MySQL Engines
MySQL includes support for pluggable storage backends, putting data storage and re‐
trieval entirely in their hands. There is even a CSV storage engine that literally stores
tables as comma-separated values (CSV) files. While pluggable engines is an interesting
feature and makes it possible for MySQL to be surprisingly flexible, in practice, InnoDB
and MyISAM are the only engines you are likely to use.

MyISAM is an older-style engine with very limited data durability, simplistic caching,
and very few advanced features of any kind. It excels in low-memory situations and on
some very poorly optimized queries. These days it is considered dangerous to actually
use MyISAM for production data, due to it not being crash safe and it lacking row-level
locking. However, it is important to keep in mind that MyISAM is used for temporary
tables written to disk. So, while it shouldn’t be used for actually storing data, it is still
going to be used during query execution.

InnoDB is the flagship MySQL storage engine. It has been around for a long time, but
has recently seen a lot of advancement. It is very stable, and is now scaling across mul‐
ticore CPUs considerably better than it has in the past. Some versions of InnoDB even
support tuning parameters to make it use the full IO capacity of solid-state drives. As

131

of Drupal 7, InnoDB is the default for new installations. If there is one thing to take
away from this chapter, it is this: use InnoDB.

There are other engines that could be worth looking at that specialize in integrating
other technologies or in data archiving. If you have a very specialized task, some of these
can be useful; however, they are beyond the scope of this book and most Drupal de‐
ployments.

Versions of MySQL
It has been an exciting few years for MySQL. While you could argue that development
had been stagnating, the purchase of MySQL AB and the immediate forks thereafter
have really accelerated development across the board. While many were concerned
about the MySQL ecosystem around the time of these forks, they have turned out to be
very positive for users. The one downside is that it’s now quite difficult to figure out
which version of MySQL to use. To be clear, we will not be recommending one here.
However, we will be covering the differences and pointing out that in most cases, what‐
ever version “fits” best in your infrastructure (i.e., is easiest to install/update) is likely
going to be fine for you.

Oracle MySQL
Oracle’s MySQL is what everyone thinks of as “MySQL.” There was definitely a period
where this fork was significantly lagging in scalability features, but that time is long past.
If you have a recent version of Oracle’s MySQL and don’t need a specialized feature in
another distribution, you are likely to be fine with this version.

MariaDB
MariaDB is a fork of MySQL by one of the project’s founder, Monty Widenus. The
original goal of this project was to create a better version of MyISAM, but the project
quickly grew into a fork of the entire server as more developers joined the project.
MariaDB has gotten a lot of traction recently, including being integrated into Fedora
and RHEL7 instead of Oracle’s MySQL. Some of the highlights that you may notice are:
Aria storage engine

This is the result of the original goal of the project, creating a crash-safe version of
MyISAM. While it’s still not something you should use for your main database, it
definitely is more generally usable and has some decent advantages for temporary
tables (e.g., better buffering of data).

XtraDB
XtraDB is a fork of InnoDB that includes some advanced instrumentation, hooks
for online binary backups, and many scalability changes. This version of InnoDB

132 | Chapter 13: MySQL

is the default in MariaDB. You can optionally enable the mainline InnoDB, but most
people using MariaDB enjoy the “Xtra” features of XtraDB.

“Enterprise” features
There are some features, such as threading changes, that Oracle’s MySQL doesn’t
include in the community (free) version. MariaDB ships with these in all versions.

If you look at the feature comparison charts available online, you can see many other
differences; however, concurrent development happens fast enough that many of these
lists quickly become outdated or are somewhat debatable. We are fans of MariaDB in
general, but it’s fairly rare that you see a Drupal site that really needs any of these features.

Percona Server
Percona Server is a fork of MySQL that is developed by one of the leading MySQL
performance firms. In general, if you need one of the specific features in this version,
you are going to be well aware of that fact. It is somewhat of a niche MySQL distribution
for those with extensive scalability requirements. However, many of the features devel‐
oped by Percona in this MySQL distribution make it into other versions—XtraDB is an
example of this.

General Configuration
There are many books on MySQL configuration and many sources for template con‐
figuration files. Due to this, we are not going to cover every configuration option, but
instead will focus on those that are most important for Drupal.

MySQL configuration can generally be split into global configuration, per-thread con‐
figuration, and storage engine configuration. Let’s take a look at some of the important
settings for each.

Global Configuration
Drupal doesn’t require tuning of many nonstandard global options. Those you may
want to consider include:
max_connections

This configuration option is pretty self-explanatory, but it’s often set far too high.
This is because when max_connection errors are seen on the frontend, the problem
is often assumed to be that max_connections is set too low. Usually, however, the
problem actually is that there are a massive number of slow queries running. In
many cases, increasing max_connections only allows a server to thrash itself to
death more effectively. This limit should be seen as a safety maximum and should
be adjusted based on the amount of memory available. You can calculate memory

General Configuration | 133

usage with a formula like the following to get something that is “close enough to
accurate”:

(global buffers) + ((per-thread buffers + tmp_table_size) * max_connections)

key_buffer

This is a very important buffer for MyISAM, which you should keep in mind is still
being used for temporary tables. Any sane default is likely fine (30–50 MB for a
dedicated server is not a bad starting point), but if you use a statistics script such
as mysqlreport and the buffer is constantly full, make sure you increase it.

query_cache_size

It is remarkably easy to talk about the MySQL query cache for a long, long time. It
is both a really effective cache that can increase performance dramatically and a
terrible global lock that can destroy performance completely. For most Drupal sites,
it is definitely worth enabling, but it’s best to not set this above 100 MB, and we tend
to set it at 60 MB as a default.

Per-Thread Configuration
Per-thread options are generally related to either temporary tables or the various buffers
used in the execution of a single query. Many of the quality configuration templates,
such as those from the IUS RHEL/CentOS repositories or Percona Tools for MySQL
have good defaults for these values. You can spend a lot of time tweaking and testing
the various buffers to very slightly increase performance for your specific query load.
However, the benefit is often fairly negligible. In almost every case, the defaults are fine,
and that time is better spent on query optimization. The only per-thread settings we
often recommend tweaking for a Drupal website are those affecting temporary tables:
tmp_table_size/max_heap_table_size

These two variables control the maximum size of in-memory temporary tables.
When a temp table exceeds this limit (or if a table contains TEXT/BLOB columns),
it is copied to disk. In general you want to avoid this, while not increasing these
settings to a size that is not sustainable for your server. Finding what is sustainable
is the issue. In general, you could just take your maximum temporary table size and
multiply it by max_connections to ensure you have enough memory to support
every connection with a temporary table. However, this isn’t a perfect method, as
many people do intentionally run with temporary table sizes that are “too large” for
their server. These people tend to have historical knowledge of their database serv‐
er’s usage to allow them to feel comfortable running “overcommitted” from a mem‐
ory perspective.

134 | Chapter 13: MySQL

http://iuscommunity.org/
https://tools.percona.com/wizard

These variables should be set to the same value, and both need to be
set or the smallest value will be used.

Storage Engine Configuration
Unlike most of the per-thread configuration, correctly configuring InnoDB is extremely
important. In particular, the InnoDB buffer size and transaction flush method are pos‐
sibly the most important tunables for a Drupal installation. MyISAM has few important
tunables for a Drupal installation other than the generic key_buffer, so we will focus
on InnoDB here:
innodb_buffer_size

This configuration option defines the size of the global InnoDB buffer. It’s difficult
to overstate how important this buffer is. The InnoDB buffer holds data cached
here for reading, the insert buffer, as well as any hash indexes the engine builds for
optimization. Not only do you want a large enough buffer to hold your entire da‐
taset, but you want it large enough to have free space for the insert buffer and hash
indexes. The usual recommendation is to set this to two-thirds of your memory
space, but we tend to start at around half and then monitor it from there. Drupal
sites specifically tend to have some fairly high tmp_table requirements, and that
can eat into your available memory.

innodb_flush_log_at_trx_commit

This option defines exactly how careful InnoDB is with your data. Possible settings
are:

 0

Write out and flush the log to disk every second, no matter when a COMMIT is trig‐
gered.

 1

Write out and flush the log to disk at every COMMIT.

 2

Write out the log at every COMMIT, but only flush every second.

InnoDB defaults to 1, which is fully durable and in theory will lead to no data loss even
on full power loss (this is very dependent on the backend IO device). This setting is
exceptionally slow for Drupal, though, as it COMMITs quite a lot. Most people end up
setting this to either 0 or 2, as the risk is the possibility of losing up to one second of
data. In most infrastructures, not only is that not a huge issue, but there are more likely
ways to lose one second of data.

General Configuration | 135

While losing one second of data isn’t that scary, what is sometimes an
issue is the InnoDB transactional state getting out of sync with the
binary log. There are deployments where this is a significant prob‐
lem, either because it’s difficult to resync the slave or because the slaves
are very important to the correct operation of the site. In cases like
this, you will have to run InnoDB with more data protection and likely
should ensure that you have a new enough version of MySQL with
group commit (this combines COMMIT operations, reducing disk flush‐
es).

innodb_log_file_size/innodb_log_files
These settings can be important if you have a very frequently updated site. If you
have a lot of updates, it’s quite possible to fill up your log file space, which will force
InnoDB to process its log files immediately and can cause both IO spikes and queries
stacking up. The default log file size for InnoDB is actually quite low. Increasing
this to something like 256 MB is usually not a bad idea, but be aware it will increase
the time it takes InnoDB to recover from a crash (more logs to traverse).

The InnoDB log file size is one of the few settings that not only re‐
quires a restart to load in, but also requires some work to move the old
log files away. When you change the log file size, InnoDB will see the
old logs and then throw an error because they are the wrong size. It
will simply refuse to start. Because of this, you must fully shut down
MySQL and move the ib_logfile files out of the way before starting
MySQL with the new setting. It is extremely important that InnoDB
shuts down fully and purges out the log files before you move them
out of the way. Because of this, you must ensure that in

nodb_fast_shutdown is not set to 2. Having it set to 1 is fine, but 2 will
not perform a clean shutdown.

Replication
Most every production deployment will need a replicated slave, at the very least for
failover during crashes and/or updates. Again, there are many books and tutorials on
setting up replication, and thus we are not going to cover this topic in detail. However,
there are some Drupal-specific considerations:
Replication type

There are three types of replication: statement, row, and mixed. Statement replica‐
tion simply sends the SQL statements themselves to the slave, which then runs them.
It is the oldest style of replication in MySQL. Row-level replication replicates the
actual binary delta and applies it to the tables on the slave. Mixed replication is, not
shockingly, a mix of these two modes. Where Drupal comes into this is for contrib

136 | Chapter 13: MySQL

modules, which can have some poorly written SQL queries that don’t always comply
with the requirements for statement-level replication. When a query like this is run
on a recent version of MySQL that has statement-level logging enabled, a warning
will be put in the error log. You should watch for these warnings and consider row-
level or mixed replication if it becomes a problem for you.

There are quite a few exceptions to the rules for which queries can be
perfectly replicated with statement replication and which cannot. In
general, the issues center around repeatability. For example, UPDATE
statements with a LIMIT clause tend to be the biggest offenders for
statement replication.

Slave lag
MySQL replication is currently single threaded. This can be a problem, because
Drupal has historically had a habit of running some longish DELETE queries to
maintain its various logging and metrics tables. Contrib modules are also guilty of
this. Most of these issues have been fixed in core and many of the popular contrib
modules, but if you ever use your MySQL slave for read queries, this is something
you need to actively monitor. Your slave server falling several minutes behind dur‐
ing cron runs can lead to some very difficult-to-debug issues if you are not moni‐
toring slave lag actively.

Read-only queries
Pressflow 6, Drupal 7, and Drupal 8 have the ability to register a slave server and
mark certain read-only queries to be sent to the slave. Pager queries (queries that
show listings of information across several pages), for example, are often slave-safe.

There are modules that automate the splitting of queries between the
master and the slave, but they are not 100% accurate and we do not
recommend them. It is usually safer to manage this yourself via the
slave options to Drupal Views or the _slave versions of Drupal’s
db_query routines.

Virtualized Deployments
Configuring MySQL for virtualized deployments usually involves making absolutely
sure your dataset fits in RAM and then configuring InnoDB to be a bit less durable
(using the flush_log_at_trx_commit configuration option described earlier). This is
due to most cloud systems having really below average IO throughput, which is some‐
thing that is very important to most database systems and thus is an issue that must be
mitigated.

Virtualized Deployments | 137

Some other options for increasing IO throughput are:

• Configure a shared memory (SHM) mount/ramdisk and point the tmpdir config‐
uration directive at it. This will write all temp tables to the memory mount and
remove that IO from the disk backend.

This reduces the data durability of temp tables, and if your memory
mount fills up, queries will start failing.

• Use striped volumes (RAID-0). This is mainly useful for Amazon EC2, and some
templated server configuration packages, such as RightScale, even offer an auto‐
mated way to stripe EBS volumes for use as MySQL volumes. These volume stripes
tend to increase performance somewhat, but are more useful in evening out per‐
formance. EBS volumes tend to have very volatile IO throughput, and striping them
together helps to alleviate this volatility.

138 | Chapter 13: MySQL

CHAPTER 14

Tools for Managing and Monitoring MySQL

The last few years have been tremendously exciting when it comes to third-party tools
for MySQL. We have gone from a few little tools here and there to professionally main‐
tained packages of tools, with many of the utilities in these packages solving issues that
have been problematic for MySQL DBAs for a very long time. We will be covering a few
of our favorite packages in this chapter. We will not be covering any commercial (for-
pay) utilities. There are many great ones, of course, but we will limit this chapter to
either open source or “free as in beer” utilities.

Percona Toolkit
The Percona Toolkit actually used to be called Maatkit, before its adventures in re‐
branding. It was a must-have toolkit before the rename and has only gotten more so
since. It contains over 30 tools, varying from hugely complicated and impactful utilities
to glorified output reformatters. Some of the most important tools include:
pt-query-digest

There once was a tool called mysqlsla, which basically everyone used to read the
MySQL slow query log and output reports showing the top slow queries in the log.
This was very useful, but mysqlsla didn’t really progress much. pt-query-digest is a
replacement that allows for running EXPLAINs automatically, monitoring process
lists, and even generating ASCII graphs. Is it an overengineered tool for its purpose?
Probably. Is it awesome enough that we don’t care about that? Absolutely.

pt-table-checksum
We recommend this tool for every replication cluster that uses statement-based or
mixed binary logging (It is somewhat less needed for, and more importantly not
supported with, row-based replication). pt-table-checksum allows you to run a re‐
plicated checksum across your cluster to ensure that the two (or more) servers are
actually consistent. MySQL itself doesn’t have checksums or validation built into

139

http://www.percona.com/software/percona-toolkit

the replication engine, and this tool fills a critical gap. (Note that some MySQL forks,
such as MariaDB, are now integrating checksums into the binary log.)

pt-online-schema-change
This tool is very dangerous to use, but quite cool to think about using. This script
automates the somewhat common practice of ALTERing a large table by creating a
new table with a new table definition and then filling that table from the old table,
while triggers are inserted to update the new table in real time while the fill is
executed. At the end of all of this, you switch the two tables. It’s a complicated
procedure that is fully automated by pt-online-schema-change.

pt-index-usage
This tool can take a slow log (or general log), EXPLAIN the queries, and generate
reports on index usage. It is a useful companion to pt-query-digest, more specific
to index usage.

There are many more tools in this package, and we recommend taking a look at all of
them. They generally make your life far easier when managing a DB server and exam‐
ining query performance.

Openark Kit
The openark kit gets less attention than Percona Toolkit, but it has some equally useful
tools. While Percona Toolkit tends to be slightly more focused on performance opti‐
mization and replication, openark is more focused on operational tools. These are a few
of the tools we have found most useful:
oak-chunk-update

This tool takes a large UPDATE/DELETE statement and automatically splits it into
chunks to prevent it from locking a large segment of an often-used table.

oak-kill-slow-queries
In a perfect world, this script wouldn’t need to exist. However, perfection is sadly
lacking in most database clusters. For those times when perfection is escaping you,
we have this script. It connects to your DB and kills queries that take longer than a
configurable time period. This is useful when you have a site with a known “bad”
query that hasn’t been fixed yet and could possibly harm your database server’s
performance if left unchecked (for example, a query that only causes problem when
run many times concurrently).

oak-purge-master-logs
This script can connect to your entire replication chain and then purge the master
logs on a server (leaving a configurable number of logs). What is useful about this
is that it will check every slave server and won’t purge a log that a slave still needs.
Thus, it is a safe way to purge master logs.

140 | Chapter 14: Tools for Managing and Monitoring MySQL

http://code.openark.org/forge/openark-kit

oak-security-audit
This tool runs a quick audit of some standard security settings, accounts, and priv‐
ileges.

oak-show-limits
This script is really only useful for large installations, but it’s very useful for those
—it shows the “space” you have left in AUTO_INCREMENT columns. This doesn’t sound
critical, right up until it’s incredibly critical.

mysqlreport
mysqlreport has been the standard in “general MySQL statistics” for as long as we can
remember. It should be run on every MySQL server at least once. This utility will print
out current usage information for the query cache, key buffer, and InnoDB buffer pool,
as well as detailed InnoDB statistics and much more. If you only install one of these
utilities, this should be the one. A guide for understanding its output is available here.
We mentioned a few variables that are important to tune correctly for a Drupal/InnoDB
MySQL instance in the previous chapter—this tool is how you would track those vari‐
ables and validate your configuration. Let’s look at some example output, with com‐
ments describing each section.

The first section of mysqlreport’s output describes the MyISAM key buffer cache: for
most deployments, you are mainly interested in whether it’s 100% used or not. If it is
100% used, it should likely be increased in size (note that even with an InnoDB server,
the key buffer will be used for temporary and internal tables):

__ Key ___
Buffer used 14.00k of 30.00M %Used: 0.05
 Current 5.50M %Usage: 18.33
Write hit 0.00%
Read hit 70.21%

The next section describes the breakdown by query type: in most cases, you will have
far more SELECTs than the volatile UPDATE/INSERT/DELETE/REPLACE options, but if that’s
ever not true, this will allow you to discover that and track it. If you suddenly see a huge
spike in volatile statements, you may need to investigate why that is (a cache table being
refreshed repeatedly, a spam network registering new users, etc.) and take action:

__ Questions ___
Total 1.81G 2.3k/s
 QC Hits 920.26M 1.2k/s %Total: 50.78
 DMS 831.76M 1.0k/s 45.90
 Com_ 39.21M 49.5/s 2.16
 COM_QUIT 21.09M 26.6/s 1.16
 -Unknown 91.11k 0.1/s 0.01
Slow 2 s 68.31k 0.1/s 0.00 %DMS: 0.01 Log: ON
DMS 831.76M 1.0k/s 45.90

mysqlreport | 141

http://hackmysql.com/mysqlreport
http://hackmysql.com/mysqlreportguide

 SELECT 809.20M 1.0k/s 44.65 97.29
 INSERT 11.49M 14.5/s 0.63 1.38
 UPDATE 9.07M 11.4/s 0.50 1.09
 DELETE 1.24M 1.6/s 0.07 0.15
 REPLACE 769.68k 1.0/s 0.04 0.09
Com_ 39.21M 49.5/s 2.16
 set_option 29.66M 37.4/s 1.64
 show_tables 9.49M 12.0/s 0.52
 begin 29.75k 0.0/s 0.00

The following section gives a breakdown of the types of sorts, scans, and joins you’re
performing. This section is usually a lot more useful when you have a huge amount of
query control. Drupal deployments (especially multisite deployments), are not always
a great fit for making this section useful. However, you should always monitor this for
large changes and trends:

__ SELECT and Sort ___
Scan 15.80M 19.9/s %SELECT: 1.95
Range 234.83M 296.3/s 29.02
Full join 12.67k 0.0/s 0.00
Range check 0 0/s 0.00
Full rng join 201.66k 0.3/s 0.02
Sort scan 121.17M 152.9/s
Sort range 26.33M 33.2/s
Sort mrg pass 3.26M 4.1/s

The Query Cache section describes the query cache fill percentage and its usage: There
are two important aspects to this part of the report. First, it allows you to monitor the
hit to insert ratio and the prune ratio. The hit to insert ratio in particular is very im‐
portant, as you’re really looking for a case where this ratio is quite hit-heavy. This rep‐
resents a stable query cache that is very effective. However, if this ratio is close to 1:1,
the cache is not being very effective and may not be worth the extra locking. Secondly,
this section allows you to monitor how full the query cache is and whether there are
excessive amounts of prunes. Assuming your cache is effective, it being full and being
pruned often could mean it needs to be bigger:

__ Query Cache ___
Memory usage 26.57M of 50.00M %Used: 53.15
Block Fragmnt 16.39%
Hits 920.26M 1.2k/s
Inserts 807.94M 1.0k/s
Insrt:Prune 1.24:1 196.1/s
Hit:Insert 1.14:1

The next section is pretty simple: it just describes table locks. If you have a lot of waited
table locks, you may have a MyISAM table that you need to convert to InnoDB:

__ Table Locks ___
Waited 0 0/s %Total: 0.00
Immediate 1.21G 1.5k/s

142 | Chapter 14: Tools for Managing and Monitoring MySQL

The Tables section describes the table cache. The major concern here is whether it is
100% full or not. In this example, the table cache should likely be increased as it is full:

__ Tables __
Open 1000 of 1000 %Cache: 100.00
Opened 1.55k 0.0/s

The next section allows you to monitor your peak connection count:

__ Connections ___
Max used 289 of 300 %Max: 96.33
Total 21.09M 26.6/s

The following section is largely useful for figuring out how many of your temporary
tables are hitting disk and finding temporary table spikes. If you have a huge spike after
a deployment, for example, there is likely an ill-behaved query in that code push and it
should either be reverted or hot-fixed:

__ Created Temp __
Disk table 4.59M 5.8/s
Table 129.73M 163.7/s Size: 200.0M
File 859.24k 1.1/s

The Threads section of the report shows what proportion of your threads are coming
off the thread cache (ideally, most of them). As you can see in this example, this server
isn’t doing well in this regard and should have the thread cache settings checked:

__ Threads ___
Running 4 of 19
Cached 0 of 0 %Hit: 0
Created 21.09M 26.6/s
Slow 0 0/s

The next section is often not a focus, but if you see large spikes in aborted clients and
connections, it can indicate network issues:

__ Aborted ___
Clients 50 0.0/s
Connects 31.32k 0.0/s

The Bytes section gives a simple data transfer report:

__ Bytes ___
Sent 1.65T 2.1M/s
Received 240.05G 302.9k/s

The next section of the report covers the InnoDB buffer pool usage and fill rate; it is
likely the most important section of the report for an InnoDB server. In this example,
you can see that the buffer pool is 100% full and should be increased in size. However,
it’s not the end of the world, as the read hit rate is still quite high, if not 100%. This part
of the report also includes information on the pages in the buffer pool, the number of
pages free, the number of data pages, etc., and it covers the IO InnoDB is performing

mysqlreport | 143

(pages read and written and flushes to disk performed). In general, you are reading this
section to ensure that your buffer pool has a 100% read hit rate and has free pages:

__ InnoDB Buffer Pool __
Usage 15.00G of 15.00G %Used: 100.00
Read hit 99.97%
Pages
 Free 0 %Total: 0.00
 Data 828.94k 84.32 %Drty: 3.37
 Misc 154101 15.68
 Latched 0.00
Reads 411.66G 519.5k/s
 From file 129.71M 163.7/s 0.03
 Ahead Rnd 0 0/s
 Ahead Sql 0/s
Writes 350.34M 442.1/s
Flushes 18.50M 23.3/s
Wait Free 222 0.0/s

The following section gives some introspection on InnoDB locking. The biggest things
to watch for here are excessive waits (if it can actually compute a per-second value for
this, it is a bad sign) and your average time for acquiring a lock. As you can see in this
example, we actually have some slight locking issues on this server. At this point, we
would want to review the slow log to look for queries with high lock times (note that
only recent MySQL versions support InnoDB lock times in the slow log):

__ InnoDB Lock ___
Waits 16218 0.0/s
Current 0
Time acquiring
 Total 4370595 ms
 Average 269 ms
 Max 19367 ms

Finally, the last section describes InnoDB data and IO usage in detail. Unless you are
doing fairly advanced tuning and configuration related to IO throughput, this section
is likely not a focus for you:

__ InnoDB Data, Pages, Rows __
Data
 Reads 130.65M 164.9/s
 Writes 15.47M 19.5/s
 fsync 2.09M 2.6/s
 Pending
 Reads 1
 Writes 0
 fsync 0

Pages
 Created 686.23k 0.9/s
 Read 140.26M 177.0/s
 Written 18.50M 23.3/s

144 | Chapter 14: Tools for Managing and Monitoring MySQL

Rows
 Deleted 12.93M 16.3/s
 Inserted 14.48M 18.3/s
 Read 178.26G 224.9k/s
 Updated 8.96M 11.3/s

Percona Monitoring Plug-Ins
Percona Monitoring Plug-Ins is a set of extensions for Nagios/Icinga and Cacti that
make them far more useful for MySQL administrators. They are a very useful addition
to most Nagios or Cacti installations.

Percona Monitoring Plug-Ins | 145

http://www.percona.com/software/percona-monitoring-plugins

CHAPTER 15

MySQL Query Optimization

We noted in a previous chapter the importance of MySQL query optimization in relation
to MySQL configuration tuning. While tuning is important, it often has nowhere near
the impact of actually fixing a poorly performing query. Fixing queries is also a lot more
fun. As in the other MySQL chapters, we need to note that this subject is massive and
we cannot possibly cover it fully here. It is highly recommended that you get a book on
this subject, as it is a very deep one and is well worth learning for any Drupal developer.
As a web developer using a CMS, you are only slightly removed from the SQL layer. Not
deeply knowing how to use this layer and how to optimize it is very limiting. To get you
started, this chapter will cover some very basic optimization, index usage, and join
optimization techniques.

Index Basics
Indexes are very important for database performance. But even though they have this
level of importance, they are not completely understood by many developers. This often
leads to problems that could easily have been avoided. The biggest issue is a belief that
indexes are kind of magical and that the MySQL optimizer should be able to run a query
quickly if an index even touches the columns in question. Sadly, indexes are not magic.

It is best to think of an index as a tree, largely because they are trees in most DB systems
(B+Trees, specifically; there is a link to an excellent article on B+Trees and how InnoDB
uses them at the end of Chapter 21). Thus, if you have an example index test that covers
(columnA, columnB), you literally have a tree of columnA values, with columnB values
in the leaves. If you have a query that has a WHERE condition on these two columns,
MySQL will go through this tree looking for the correct columnA value first, and then
go into the leaves of that object and find the correct columnB value.

Due to this tree organization, there are some limitations. For example, if you have a
query with a WHERE condition on columnB and not columnA, it can’t use the index on

147

(columnA, columnB). Thinking about this, it makes a lot of sense. How would you get to
the columnB values in this index? You must have a way to traverse the columnA branches
to get to the columnB values. This leads to some interesting decisions. For example, if
you have five queries that run against a table and three of them have WHERE conditions
on columnB alone, that column should come first in the index so that it can be used.

Range queries are a special case. A range query is one that is going to
return a range of values in an index. A good example is a datetime
query, such as SELECT * FROM table WHERE date > "SOMEDATE";.
Sometimes you may want to put a particular column at the begin‐
ning of an index (henceforth called the prefix of the index), but if that
column’s condition is a range, you have to reconsider. MySQL can‐
not use any column of an index after a range query. So, if your index
is (columnA, columnB) and your query is SELECT * FROM table
WHERE columnA > 5 AND columnB = 2; you will not be using the index
to satisfy the second condition (columnB = 2). In this situation, you
must have columnB in the prefix of the index for it to be used.

Base Tables and Join Order
Now that you have a basic understanding of how indexes work, you need an equally
basic understanding of joins. In keeping with our nature theme, we are going to visualize
indexes as trees and tables as pools of water—specifically, you can think of a table as a
large pool of water at the top of a hill, with smaller pools of water under it as you progress
down the hill. Each pool has a little waterfall that flows from it into the pool below. The
largest pool at the top of the hill is the base table for the join. The goal is to limit the size
of the waterfalls and ensure that the resulting pool doesn’t need water treatment (tem‐
porary tables used to service a GROUP BY, ORDER BY, or DISTINCT).

Let’s consider an example. Our biggest pool is the Drupal node table. We then join against
a taxonomy table (pool) and filter on a taxonomy type. So, we have no real filter on the
node table, and our only real filter (the one that defines our dataset) is on the taxono
my table. How do we limit the water flowing from the node pool into the taxonomy pool?
We don’t. This is going to be a big waterfall. The node table being the base table and all
the filtering/conditions being on subtables is a very common problem in Drupal. The
issue here is conceptually somewhat simple: to fulfill this query, we need to join every
node against every taxonomy term, whereas in reality, it would be far better to start with
the taxonomy table and only join the filtered rows that match our condition. You al‐
ways want to have your major conditions (the ones that limit your returned data the
most) in the base table. Drupal, in particular Views, makes this very difficult sometimes.

148 | Chapter 15: MySQL Query Optimization

Let’s consider another example. Again, we have node as our base pool, and we are going
to join against taxonomy. This time our only filter is on node, so that’s good, but then
we are going to GROUP BY a column in taxonomy. Unfortunately, we have a problem. We
can’t execute this GROUP BY via an index when it’s not in the base pool, and thus the
resulting pool after the join will need some water treatment (a temporary table sort).
Again, this is a very common problem with Drupal Views queries. It all goes back to
ensuring that you actually have the right table as the base for your query.

The question now is, how do you determine the base table for a join? For Drupal, the
answer usually comes down to making sure your relationships in Drupal Views are set
correctly. It is quite easy to have a Views query with all LEFT JOINs. A query like this
forces MySQL to treat the node table as the base table, which is almost always a problem.
Other than this issue, you often have to just run EXPLAIN on the query in question
and figure out why the base table is what it is, then edit your View or Views handlers to
swap the tables or set the conditions differently. We will go over some common examples
of issues with Drupal Views next.

Common Issues
We are now going to cover some examples of common problems that arise with Drupal
Views, indexing, and joins.

First, let’s discuss the debugging options available to you with Views. In the Views set‐
tings, there are a few very important options for tracking Views and Views performance:
“Show the SQL query” (live preview section)

This allows you to see the SQL query Views is building for execution. Obviously,
this is quite important.

“Show performance statistics” (live preview section)
This allows you to easily track build and execution time.

“Show other queries run during render during live preview” (live preview section).
It is quite possible that other queries are being called during the processing of a
View, besides the main view query. This is a common point of confusion and this
debug setting will help immensely.

“Add Views signature to all SQL queries” (advanced tab)
This is arguably the most important option on this page, as it allows you to actually
tell where a query is coming from. Back in “olden times” / “the good old days,” you
could just search for a query in an application to find it. These days, with the advent
of Views and other dynamic query builders, this is basically impossible. Having the
Views signature built into the query is hugely valuable.

Now that you have Views set up to assist you, or at least to not insist on making your
job impossible, it’s time to look at some common issues.

Common Issues | 149

The ORDER BY on an Unrelated Table
This truly is a classic for Drupal Views. Because so much of the data in Drupal is heavily
normalized (split into different tables), it’s quite common to have your dataset defined
by tableA (i.e., all your WHERE conditions are on this table) and then ORDER BY your data
on a column in a totally different table. This is a problem, as the ORDER BY will have to
be serviced by a temp table or filesort. The tracker query that ships with Views is a great
example of this:

SELECT node.type AS node_type, node.title AS node_title, node.nid AS nid,
users_node.name AS users_node_name, users_node.uid AS users_node_uid,
node_comment_statistics.comment_count AS node_comment_statistics_comment_count,
node_comment_statistics.last_comment_timestamp AS
node_comment_statistics_last_comment_timestamp, history.timestamp AS
history_timestamp, node.created AS node_created, node.changed AS node_changed,
'tracker:default' AS view_name
FROM
{node} node
LEFT JOIN {users} users_node ON node.uid = users_node.uid
INNER JOIN {node_comment_statistics} node_comment_statistics ON
node.nid = node_comment_statistics.nid
LEFT JOIN {history} history ON node.nid = history.nid AND history.uid = '1'
WHERE (((node.status = '1')))
ORDER BY node_comment_statistics_last_comment_timestamp DESC
LIMIT 25 OFFSET 0

This query has a single filter on node.status, and then ORDER BYs on node_com
ment_statistics. However, this query is better than most because at least node_com
ment_statistics is a required relationship in this View, which means it’s an INNER
JOIN and not a LEFT JOIN. This means that if the optimizer decides that node.status
as a filter is not very useful (i.e., all your nodes have the same status), it can “flip the
join” and start with node_comment_statistics, making it possible to use an index for
the ORDER BY. (You can only use an index for this when the table containing the column
or columns in question is the base table.)

The Useless DISTINCT (“In Case of Accidents!”)
Views allows you to just “throw in” a DISTINCT in the Query Settings of the View. The
ease with which you can add a DISTINCT to a query to ensure it doesn’t start returning
duplicates is a big problem, much more so than you might think. Many times perfor‐
mance can be hugely improved by just removing these safety-net DISTINCTs. However,
it takes a lot of work to differentiate between a useless DISTINCT and one that is actually
needed. It’s better to think about this from the beginning.

150 | Chapter 15: MySQL Query Optimization

It is a good idea to always EXPLAIN a query after you add a DIS
TINCT. It’s good to know if you should be thinking about structuring a
query a different way or if the DISTINCT is fine when you are still in
the development stage. Restructuring a query is far more difficult to
do in the testing stage.

Starfish Syndrome (All LEFT JOINS)
When you create a query, Drupal Views has you define relationships between the data.
When a relationship is not required, it’s translated into a LEFT JOIN in most cases.
However, when it is required, it’s just an INNER JOIN. The problem with this is the
amount of importance placed on a somewhat poorly worded checkbox. Quite often,
this checkbox is left unchecked even when a relationship is required.

For example, if you have a user table and another table that holds email addresses for
those users, there will always be at least one row per user, and this is a required rela‐
tionship. However, it’s tempting to not check that box, because it doesn’t really impact
functionality and it seems more complicated. The impact of this decision will be to
greatly limit MySQL’s optimizer, as it will only ever be able to use the user table as the
base table for the query.

We call this starfish syndrome, because if you diagram queries like this, you have the
base table in the center and all the joined tables around it (like the legs of a starfish).
The optimizer has no choice in JOINs. This is almost always bad for Views queries in
particular, because often the default base table is node. Not only is this a huge table in
most installations, but it often doesn’t define the returned data very well (it doesn’t
contain columns that define custom data).

Going back to our waterfall metaphor, you could think of this as a big
pool in the middle with all the smaller pools flowing into it. The
amount of water never gets smaller; the middle pool just gets bigger
and bigger.

Node Access
Node access is a problem. Having fine-grained permissions on a per-node basis is a nice
idea. However, it is terrible from a query performance perspective. It adds a set of filters
that are totally separate from anything defining the dataset for your query and that use
tables that have nothing to do with your dataset. While it is possible if you work really
hard to make this work quickly and have good queries, in general you can either have
node access or have good queries. It’s an OR, not an AND, question.

Common Issues | 151

There is work underway on refactoring node_access to work in a
different way with better performance on new versions of MySQL.
Hopefully this work will resolve this long-standing issue.

152 | Chapter 15: MySQL Query Optimization

CHAPTER 16

Alternative Storage and Cache Backends

Drupal uses MySQL as the default storage backend for all data on a site. This includes
low-level APIs such as caching and queues, as well as site content.

MySQL provides a great database backend for Drupal, but there are certain issues that
arise, especially as Drupal sites get larger. Drupal is very modular and flexible in terms
of how data can be defined. Entity types such as nodes, users, and comments can be
extended with configurable fields, and then the Views module allows those to be queried
and presented—all without leaving the user interface. This is a very powerful set of
features, but it can make getting great performance out of a traditional relational data‐
base quite difficult. The entity/field storage provided by core provides one or two tables
for each core entity, then two tables for each individual field (one for the current or
“live” revision and one for older revisions). Queries with a condition on one field that
sort on another then have to join across multiple tables, which is very hard to optimize
with a relational database.

Another common performance bottleneck that particularly affects higher-traffic Dru‐
pal sites is that cache and session data are stored in MySQL tables by default. While this
is generally fine for smaller sites, as the number of cache and session objects grows,
frequent actions such as cache invalidation put a high demand on the database layer.
This can cause increased network traffic and ultimately increase the load on the database
servers. There are multiple Drupal contributed projects that provide a way to pull cache
entries out of MySQL and store them in an alternative storage backend, such as Memc‐
ached or Redis. Not only can these backends help to offload queries from MySQL, but
they can be easily scaled out horizontally as your site grows.

Drupal’s default MySQL-based search can also be replaced with alter‐
native backend solutions. This is covered in Chapter 17.

153

Cache, Lock, and Session Storage
As introduced in Chapter 3, Drupal’s cache API stores data in MySQL by default, but it
can be easily integrated with other technologies. Swapping out the cache backend can
help improve both performance and scalability; however, we should look closely at
exactly what changes when the cache storage is replaced. One incorrect assumption that
many people make is that replacing the cache backend will automatically make each
individual cache request faster. For cache gets, this is often not the case—a well-tuned
MySQL server can perform as well as or better than Memcache in some cases, although
Memcache should almost always outperform MySQL for cache sets.

The true benefit becomes clearer as traffic to the site increases. Key/value stores such
as Memcached and Redis are great at dealing with large amounts of data, and Memc‐
ached in particular can be scaled horizontally simply by adding more servers. MySQL,
on the other hand, is far more difficult to scale horizontally and is likely to also be being
used as your primary data source. Having your caching layer impacting the speed of
your primary data store is not really acceptable. By swapping out cache backends, we
achieve two things:

1. Offloading queries from MySQL, allowing the server to perform better for other
queries

2. Placing data into a key/value store, which will maintain performance as the data
size increases to multiple gigabytes and allows for easy horizontal scaling

This is why even though replacing the cache backend may not improve speed for an
individual request, it can actually make a dramatic difference for large or heavily loaded
sites.

So far we have concentrated on two alternatives: Redis and Memcached. There are other
cache storage options, such as the APC user cache (this allows you to use the APC cache
for objects other than PHP opcode); however, Redis and Memcache are by far the most
widely used options for large Drupal sites, as they perform well and are generally much
easier to scale. APC in particular is unable to share its cache across multiple servers,
which makes it unusable as a data cache for any site that uses more than one web server,
and even on a single server the user cache suffers from fragmentation and does not
implement the least recently used (LRU) eviction. (APC is obviously still very usable as
an opcode cache, even when you have multiple servers.)

Redis and Memcached both provide a similar service: an in-memory key/value store.
They are both designed to provide O(1) performance for all GET and SET operations.
What this means in practice is that GET and SET calls maintain a constant speed as your
cache size grows (this is a very good thing!). While both are strictly in-memory caches
for all queries, Redis also adds the option for on-disk persistence using one of two
options: using periodic flushes to disk or an append-only file to store all commands.

154 | Chapter 16: Alternative Storage and Cache Backends

The benefit to persistence in this situation is that if your caching servers are restarted
or go offline for any reason, the cache will be prewarmed when the servers come back
online—meaning a smaller dip in performance while the caches are rebuilt.

As far as the Drupal modules for Memcached and Redis are concerned, Memcache has
been around a lot longer and is more mature, with a wider user base. That said, the Redis
module is quickly gaining popularity now that Redis technology has matured. For new
sites, either option works; we suggest testing out both and seeing which you are more
comfortable with. Both modules include their own lock implementations, and Redis
can also be leveraged for a queue implementation (using the Redis Queue module).
While not specifically related to caching, this can be useful in situations where you
require a job queue.

Memcache In Depth
With the Drupal Memcache module being a bit more mature and better tested, we’ll
focus on it for a more in-depth exploration. First, it’s important to understand how
things differ between Memcache and the default MySQL-backed cache API:

1. All data that was being stored in the cache* tables in MySQL will instead be stored
in Memcached. There is a way to override this for individual caches, covered in the
next section.

2. Clearing Drupal caches does not explicitly delete things out of Memcached. Instead,
the time of the last cache clear is tracked and retrieved items are compared to that
timestamp (along with any item-specific expiry time) to see if they are still valid.

3. Since the maximum amount of memory the Memcached daemon can allocate is
defined at startup, it’s possible to fill up available memory, at which time Memcached
will evict least-recently-used items—meaning you can lose your items out of the
cache if it isn’t large enough. Don’t worry, we’ll explain how to monitor and avoid
this.

PHP Extensions for Memcache
In order to use the Memcache module, you’ll need to add Memcache support to PHP.
There are currently two PHP Memcache extensions available in PECL: Memcache and
Memcached. The older and more stable of the two is Memcache (no d). Later, the
Memcached extension was created as a rewrite and to leverage libmemcached, a light‐
weight library shared by several client implementations. Both are considered stable, and
either will work with the Drupal Memcache module. In general, we recommend the
Memcache extension, as it’s consistently proven to be more stable. Though the Memc‐
ached extension enjoyed a surge of popularity, it’s been linked to a number of bugs that
have proven difficult to solve. All modern Memcache features are provided by both

Memcache In Depth | 155

https://drupal.org/project/memcache
https://drupal.org/project/redis
https://drupal.org/project/redis_queue

PECL extensions, though as of this writing, you will need to use a Beta 3.x version of
the Memcache extension to access some newer features (this has been in Beta since 2008
and is widely considered stable). The Memcache PECL extension has been more heavily
tested by the Drupal module’s authors. That said, either one should work fine for most
situations, and both are packaged on the majority of Linux distributions.

The PHP Memcache extensions use different hashing algorithms,
which will lead to cache inconsistencies if you have multiple web
servers using different Memcache extensions. Be sure that whichever
extension you choose is used by all of your servers.

Assigning Memcached Servers and Bins
The Memcache module supports splitting a single cache storage bin across multiple
Memcached instances. The Memcached instances could be distributed across different
servers, or multiple instances on the same server (or some combination). There are a
lot of references online that suggest splitting up the various Drupal cache tables so that
each has its own Memcached instance. This was required at one point due to the lack
of wildcard flushes in the Memcache module. However, now that wildcard flushes are
supported, there is generally no reason to split the caches into individual Memcached
instances (sessions being a notable exception, as covered in the section “What to Store
in Memcache” on page 158). The settings for this would look something like the following
configuration, but for the latest documentation on how to configure the Memcache
module, please see the module’s README.txt file:

$conf['memcache_servers'] = array(
 '172.16.1.5:11211' => 'default',
 '172.16.1.6:11211' => 'default',
 '172.16.1.6:11212' => 'default'
);

If you are connecting to a Memcached instance on a local server, it’s
also possible (and potentially better performing) to connect over a
Unix socket. Simply use the syntax unix:///path/to/socket for the serv‐
er definition in your $conf[memcache_servers] array.

It is useful and recommended to run multiple Memcached instances across servers for
all cache bins. By splitting the cache across multiple servers, you ensure that if one of
the servers goes offline, only that portion of your cache is lost. On the other hand, if
you only have one Memcached instance, you will be left without any cache entries if
that Memcached instance goes offline. In many cases, we find that creating a Memcached
instance on each of the web servers is a good setup. Another alternative, if your web
servers don’t have memory to spare, is to create a group of servers specifically for

156 | Chapter 16: Alternative Storage and Cache Backends

Memcached. Whatever you decide, be sure that the Memcached port is not open to
external traffic—this is covered below in the section “Configuring the Memcache Dae‐
mon” on page 158.

When using multiple Memcached instances for a single cache bin, the PHP Memc‐
ache(d) extension uses a hashing algorithm to create a key hash for each item, and then
uses that hash to decide which Memcached instance to store/fetch the item on. If you
are using multiple Memcached instances, it is important to use the consistent hashing
algorithm, since it will minimize cache item reassignments if your Memcached instances
ever change—for example, when adding or removing a server. The two PHP extensions
have different settings for this value, and different packages or Linux distributions may
override the default, so you should always verify that this is set correctly.

To enable consistent hashing in the PHP Memcache extension, use:

memcache.hash_strategy consistent

To enable consistent hashing in the PHP Memcached extension, use:

memcached.sess_consistent_hash 1

The default behavior of the PHP Memcache(d) extensions is to only store values in a
single Memcached instance. Adding additional Memcached servers and grouping them
into a single bin in your Drupal settings does not get you high availability for your cache
data. Both of the extensions provide a configuration option that enables them to write
items to multiple servers at the same time. However, this can lead to invalid cache items
being served should a server go offline for a time and then come back. Generally, it’s
better to have a few cache misses if a server goes down instead of worrying about high
availability for your cache data and then having to deal with potential cache corruption.

Memcache Locking and Stampede Protection
The Drupal Memcache module provides stampede protection, which helps minimize
the overhead of rebuilding cache items during a cache rebuild. For example, if the cached
version of a popular article on your website was invalidated by a visitor posting a com‐
ment, and then several other visitors requested that page at the same time, each Drupal
process accessing the article would typically go through the following steps (unaware
that other processors were doing the same thing):

1. Check for the item in Memcache.
2. See that the item is invalid/expired.
3. Regenerate the item (this step can involve many SQL queries, PHP processing, etc.).
4. Push the data into a cache item in Memcache.

This can be particularly problematic if step 3 is a large operation that could put heavy
load onto your database. Enabling stampede protection, ensures that the module will

Memcache In Depth | 157

create a lock for the cache item so that only one process will attempt to update it in
Memcache. Other requests that come along while the lock is in place will serve stale
content out of Memcache (or simply wait for a valid cache entry if the existing item is
missing or invalid as opposed to expired) to prevent overloading of the database while
the cache is being rebuilt.

As stampede protection relies on Drupal’s locking layer, it’s critical that you also move
locks out of MySQL and into Memcache. If you enable stampede protection without
also moving locks into Memcache, you can experience severe performance degradation.
Enabling stampede protection and the Memcache lock implementation is done with the
following settings in settings.php:

$conf['memcache_stampede_protection'] = TRUE;
$conf['lock_inc'] = 'sites/all/modules/memcache/memcache-lock.inc';

What to Store in Memcache
When you enable the Drupal Memcache module, by default, all cache tables will be
stored in Memcache. In Drupal 8, form state information has been moved into a key/
value store, but in previous versions, it was stored in a cache table (though not strictly
a cache). For Drupal 7 sites using Memcache, it is important to keep the cache_form
table in MySQL to ensure form data isn’t lost if Memcached goes offline. If the form IDs
are lost, then any form submissions will fail, and since Memcached is not persistent,
there is the potential that this could happen. So, be sure to follow the instructions and
always keep the cache_form table in MySQL. This override is done for Drupal 7 with
the following setting in settings.php:

$conf['cache_class_cache_form'] = 'DrupalDatabaseCache';

The Memcache module also gives the option to store Drupal sessions in Memcached
instead of MySQL. As of this writing, though the 6.x implementation is considered
stable, the 7.x version has known bugs (tracked in https://drupal.org/node/656838).
Some people see session storage in Memcache as a great feature, while others see it as a
disaster waiting to happen. The nice part about moving sessions out of MySQL is it
means a lot less read and write activity on the database. The downside is the potential
to lose the session information out of Memcache in the event of a Memcached server
going offline or because of an eviction should the Memcache bin fill up. We recommend
doing two things to reduce the risk of sessions being evicted from Memcache: create a
new bin dedicated to sessions with ample space so other caches can’t cause session
evictions, and spread the sessions bin across multiple servers so a failing Memcached
server only invalidates a portion of live sessions.

Configuring the Memcache Daemon
As mentioned earlier in this chapter, it’s very important to allocate enough space in
Memcached that you aren’t constantly running out of memory for cache storage and

158 | Chapter 16: Alternative Storage and Cache Backends

https://drupal.org/node/656838

forcing Memcache to evict valid cache items in order to store new items. Most Linux
distributions ship Memcached packages with a default bin size of 32–64 MB. Generally,
this is way too small for Drupal sites, as many sites can end up with multiple gigabytes
of cached content. When first setting up Memcached, you can guess your size require‐
ments by looking at the size of your cache tables in MySQL—while this won’t be an exact
representation of the size required to store your cache items in Memcache, it can provide
at least a ballpark figure to get you started. From there, you can watch the Memcache
usage using the built-in stats command or the statistics section provided by the
Memcache_admin module, or track it with something like Munin or Cacti. If you start
to see space near full or a large number of evictions, then you should increase the mem‐
ory allocation for Memcached.

It’s possible that you’ll start to see evictions happen before the Memcached instance is
using 100% of its allocated memory. This is because Memcached allocates space in var‐
ious slabs, where each slab is used to store items of a certain size range—for example,
one slab will store items that need 1,000–2,000 bytes, another slab will store items that
need 2,001–4,000 bytes, etc. So, if you have a lot of items with a similar size, then it’s
possible to fill up a slab while the overall Memcached instance still has free space in
other slabs. While you can adjust the slab allocation size increments, it is generally not
a good practice; except in very special cases, you’re generally better off to simply allocate
more memory to Memcached overall.

Beyond the memory allocation, you shouldn’t need to customize much in the Memc‐
ached configuration. One important point, however, is to ensure that Memcached is
locked down to prevent remote access. This can be done either with iptables, by hiding
the Memcached server(s) behind a network address translated network, by using the -
l flag to Memcached to specify which port to listen on, or using some combination of
those options.

How to Break Your Site with Memcache
Although the Memcache module is in very wide use, its usage seems to be a source of
confusion for many. There are a number of common problems we’ve come across related
to Drupal Memcache configuration that we’ll share here, in the hope that it will help
others to implement Memcache correctly.

Inconsistent Caching
In infrastructures with multiple web nodes, it’s important that the Drupal Memcache
server and bin configuration is the same across all servers. The three most popular ways
to break this rule are to:

How to Break Your Site with Memcache | 159

• Configure one web server to list more or different Memcache bins than other
servers. This will cause the hashing algorithm on each web server to assign different
servers for the same cache item, leading to an inconsistent cache.

• Configure each web server to only connect to Memcached on localhost. A common
variation of the previous example, this causes each web server to have its own sep‐
arate cache, meaning you may see changes in content based on which web server
the load balancer directs you to. Also, depending how your cache clears are done,
you may only ever be clearing out the cache from one of the Memcached instances.

• Forget to enable consistent hashing in the PHP Memcache extension configuration.
This causes the PHP extension to use the standard hashing strategy, which inva‐
lidates your entire cache on all servers any time a server is brought online or offline
for any reason. You should be sure to always set this explicitly in your PHP con‐
figuration, because different packages on different Linux distributions will have
different defaults for this setting.

Constant Evictions
As described previously, it’s important to allocate enough memory to Memcached so
that it can fit all of your active cache items. Failing to do this, or failure to watch the
usage as your site grows, can cause it to run out of space and be forced to evict cache
items before they expire. Avoid this by closely monitoring memory usage and evictions.
You should keep in mind that some evictions in the statistics are not bad. Because
Memcache uses an LRU algorithm and the Drupal Memcache module, by design, doesn’t
actually flush out data, some evictions are to be expected. What you don’t want to have
is a constant level of evictions, as that likely means you don’t have enough memory to
fit your full data set.

Vanishing Sessions
If you are storing Drupal sessions in Memcache, it’s important to ensure two things:

• Your Memcached servers and your network connections between them and your
web nodes are stable. If you lose even one of your Memcached servers, even for a
small duration of time, you will lose session data for some number of active users.

• Sessions are being stored in a bin where they will not be evicted. Generally this
means creating a separate bin exclusively to hold sessions, and ensuring that it has
more than enough space for your active traffic.

Sessions are an area where Redis has an advantage over memcache: items are persisted
to disk, and it’s possible to have an instance with LRU disabled specifically for session
storage, ensuring that sessions won’t be evicted until they’ve expired.

160 | Chapter 16: Alternative Storage and Cache Backends

Entity/Field Storage
Drupal 7 introduced the field API to Drupal core, providing functionality previously
provided by the Content Construction Kit, or CCK. It’s this API that allows for entity
types such as nodes, users, and comments to be extended with configurable fields. Since
fields may be added to or removed from entities at any time, each field is stored in its
own set of database tables. One table stores the values for the current revision, and
another stores the values for any historical revisions of the entity. Both are written to
when entities are saved, but only one is queried at any one time.

Loading of field values happens via a single query, and the values are cached via Drupal’s
cache API, so in itself is not a significant performance issue, and the Entity Cache
contributed module allows for caching of the entire entity object, including data from
base tables and hook implementations. However, in certain cases, saving entities can
require dozens or hundreds of writes to the various field tables. Where performance
issues usually arise first are with queries generating lists of entities: a condition on one
field and a sort on the other requires a JOIN, making it impossible for MySQL to effec‐
tively use indexes for those queries.

The vast majority of sites are able to deal with these issues by caching the results of
listing queries (either using Drupal’s cache API directly, or by enabling caching in the
Views module) and using pregeneration or custom denormalization in SQL for partic‐
ularly bad queries.

However, with large data sets and a highly dynamic site with lots of pages, cache hit
rates may be too low, or queries may be unacceptably slow on a cache miss.

To allow sites to optimize for these cases, the field API also has the concept of pluggable
storage. This allows the field_sql_storage module to be replaced entirely. Drupal 7
does not, however, allow the entity base tables to be replaced, so data is still written to
those and core queries them directly. In practice, it was found that field storage imple‐
mentations needed to store the entity base table information as well, requiring dupli‐
cation between the hardcoded entity storage and the field storage.

As a result, Drupal 8 has the same default MySQL implementation, but storage is con‐
trolled at the entity level rather than for individual fields, allowing the base tables to be
replaced as well as the field storage.

While entity/field storage is pluggable, changing the storage layer is unfortunately not
as transparent (especially in Drupal 7) as it is with the cache or sessions. Many con‐
tributed modules query entity tables directly, and poorly written custom modules may
directly query field tables. If considering using pluggable storage, there are several best
practices to keep in mind in order to ensure the smoothest possible transition. If you
have an existing site and are considering changing the entity storage, enforcing these
best practices at the application level early on is a prerequisite to making the switch, and

Entity/Field Storage | 161

https://drupal.org/project/entitycache

you should also be prepared to audit contributed modules as well as your own custom
code.

EntityFieldQuery/EntityQuery
When querying entities, using EntityQuery as opposed to db_select() or db_query()
on the tables directly ensures that the query will work regardless of the storage used.

When using Views, the EntityFieldQuery Views Backend module replaces Views’s SQL
query builder with an EntityFieldQuery builder, providing the same interoperability
for exported views.

CRUD
Contributed and custom modules often attempt to avoid loading or saving full entities,
opting instead to query individual values or to update via db_update(), especially when
multiple entities are being loaded or updated. Bypassing the API like this can lead to
inconsistent results due to caches not being invalidated correctly, alter hooks not firing
on load, etc. It also makes it impossible to use those modules with an alternative storage
backend, since the database table being queried directly may not even exist. And when
loading, querying the table bypasses both static and persistent caches, so it’s often slower
anyway. Always use the proper CRUD (create, read, update, and delete) functions
whenever dealing with entities.

MongoDB
While there are theoretically many potential options for entity storage, currently the
only viable option is MongoDB. MongoDB is an open source document database that
has so far proved extremely promising in solving many of the performance issues that
affect Drupal’s entity storage. Integration is provided via Prod: change text to the Mon‐
goDB module. MongoDB allows considerable improvements in both the performance
and the scalability of sites with very large data sets, but it’s still a relatively new technology
both in terms of general adoption and Drupal specifically. You should carefully consider
whether your project requires MongoDB entity/field storage before making the change,
since it imposes development constraints (albeit good ones) as well as introducing an
additional system to administer—one that holds all of your site’s most important data!
You’ll need to set up replication and backups for MongoDB in addition to MySQL. Also
ensure you’re comfortable maintaining MongoDB long-term. Entity data cannot be
regenerated in the same way as a cache entry if it gets lost, and migration from MySQL
to MongoDB and back again is a manual process at the time of writing, so while it is
possible, changing entity storage on a live site is a very complex process.

The main feature of MongoDB as a document database is that each entity is stored as a
single record. MongoDB stores documents in BSON format (a variant of JSON), so the

162 | Chapter 16: Alternative Storage and Cache Backends

https://drupal.org/project/efq_views
http://drupal.org/project/mongodb
http://drupal.org/project/mongodb

resulting entity storage is very similar to what you’d see running json_encode(enti
ty_load(1));. It should look quite familiar to any Drupal developer who’s ever looked
at an entity structure with var_export() or via a web service. Queries against MongoDB
are written in JSON syntax; while this is useful on the command line, at the Drupal level,
you should only ever use EntityFieldQuery to avoid being locked into MongoDB at
the application layer (much as using db_query() and db_select() enforces MySQL
storage).

As opposed to potentially dozens of individual database tables, a single record is created
with both the properties and configurable fields of the entity all in the same place. Since
configurable fields can have multiple values, this is impossible to achieve in SQL in terms
of a single database table with a column for each field. This allows complex entity queries,
which might JOIN across 20 or more tables with the default MySQL field storage, to be
executed against a single collection.

MongoDB is schemaless, in that it’s not necessary to define the structure of a collection
up front before documents can be saved. Therefore, adding new fields or field values
does not require any Data Definition Language (DDL) operations on the storage. How‐
ever, being schemaless doesn’t mean no schema as such; it just means it’s entirely up to
the application to enforce it.

Indexes can be applied to collections in a similar way to how MySQL indexes are applied
to tables. There is currently no automated way for the MongoDB module to create
indexes for EntityFieldQuery, so sites planning to use the MongoDB module in pro‐
duction should expect to audit queries and add their own indexes.

One of the main limitations of MongoDB is the inability to join between collections.
The MongoDB module stores entities in their own collections, meaning that it’s not
possible to query specific groups of nodes as easily as it would be with MySQL—for
example, nodes created by users who live in Australia. There are workarounds for this
—for example, adding an “author country” field to nodes and copying over the value
from the user would allow that query to be run—but as with denormalization in MySQL,
this requires maintaining both sets of data should the user record be updated.

Entity/Field Storage | 163

CHAPTER 17

Solr Search

Drupal’s default search backend uses MySQL to implement some fairly advanced search
capabilities. While this is fine for small sites and kind of impressive in its own right, it
can prove quite a performance bottleneck for larger sites that contain many nodes and
where the database may already be under moderate to heavy load. Luckily, Drupal’s core
search system can be enhanced or completely replaced by contrib modules. Not only
does this provide a way to offload search queries from MySQL, but it can also bring
additional features that aren’t part of the traditional Drupal search. For example, search‐
ing with Solr provides faceted search functionality—a way to filter search results based
on categories or groupings—and spellcheck, two widely used search features.

There are a number of popular open source search technologies, such as Elasticsearch,
Solr, Sphinx, and Xapian. While all of these have Drupal modules, Solr is by far the most
actively developed and widely used module, so we will focus exclusively on integrating
Solr throughout this chapter. That is not to say that other search technologies aren’t as
good as Solr; they simply haven’t been as well integrated into Drupal as Solr.

Performance and Scalability Considerations
On smaller Drupal sites, the search queries done by the default search module may not
be particularly “heavy” SQL queries, but they do contribute to the overall load on the
database server. On sites with a large enough data set, the queries can be downright
performance killers. For this reason, Drupal’s built-in search should not be used on
anything but the smallest of sites; it does not scale well enough for large sites. Search is
one place where we can not only offload a task from the database server, but improve
performance and scalability at the same time.

As discussed in Chapter 7 and the chapters on MySQL, MySQL is not something that
can easily be scaled horizontally simply by adding more servers. On the other hand,
pretty much every search-specific application has been designed to be able to scale

165

horizontally. While most sites won’t have enough search traffic to necessitate a large
search cluster, there certainly are sites that benefit from increased performance and
easily scalable search.

Integrating Solr with Drupal
There are at least two modules that tie into Solr for search: apachesolr and search_api.
They provide a similar set of features, either directly or by tying into other modules.
Some of the most commonly used Solr features are:
Spellcheck

Solr can provide search results for words spelled similarly to those in the initial
query.

More like this
This feature allows you to find similar content to a particular result; this can be
useful for displaying a block on a page to link to other similar pieces of content.

Faceted search
This provides users with a way to filter search results—for example, limiting results
to content updated within a certain time frame, or only by a particular author.

The main difference between the two modules is that search_api relies on the Drupal
entity API, actually doing a full entity load for each result returned, whereas the apa‐
chesolr module retrieves more data from the index when doing a search, meaning that
it can provide at least a title and teaser text without having to pull anything in from the
database. There are some other small differences, but in general, the options are pretty
similar. For our examples in this chapter, we’ll be using the apachesolr module, but the
majority of the Solr setup remains exactly the same for either module.

Solr Configuration
Solr has a number of configuration files, many of which define settings that both the
server and the client need to be aware of. For that reason, both the apachesolr and
search_api modules include a set of configuration files that need to be used on the Solr
server. The configuration files included in the module may vary over time, but the most
important files included there are:
solrconfig.xml

This file includes Solr-specific configuration settings. You may need to tweak some
of these values, but the provided config works well for the general case.

166 | Chapter 17: Solr Search

https://drupal.org/project/apachesolr
https://drupal.org/project/search_api

schema.xml
This file defines the schema used when storing documents. Since this defines which
fields will be used for searching and storing, it’s important that whatever is used on
your server matches what the module expects.

protwords.txt
This file is a sort of “blacklist” for words and stops them from being “stemmed.” In
Solr parlance, this means that any word listed here won’t be considered part of a
larger word. For example, by default “test” would normally be stemmed into other
words such as “tester,” “testing,” and “tested,” but if it were listed here, that behavior
would stop. The apachesolr module includes some HTML entities here in order to
keep those from being stemmed.

Indexing Content
Solr contains its own search index that is totally separate from your site’s main content
stored in MySQL. This means that an indexing job is required in order to load content
out of the database and push it into the Solr search index. The apachesolr module tracks
information on which content needs to be indexed in its own SQL table, and by default
it will index a small number (currently the default is 50) of those items each time that
the site cron job runs. There are also admin options and drush commands used to run
the indexing job outside of the main cron run, to mark content for reindexing, and even
to fully delete the Solr index.

Be aware that if you have a large amount of content on your site, it can take a long time
(from a few up to even dozens of hours) to index it all the first time. Once content is
indexed initially, only new and updated content will be indexed, so it happens much
faster. The bottleneck here is generally not Solr, but the fact that the apachesolr module
needs to do a full node_load() on content in order to pull out the information needed
for the index.

Most sites can support indexing of many more than the default 50 items at a time, and
you can usually improve the indexing time by increasing $conf[apachesolr_cron_lim‐
it] to something higher. Depending on the database and network infrastructure
specifics, we’ve found the sweet spot for this setting to be somewhere from 100 to 1,000
items. Try a few different values in that range and see which performs best in your
environment.

Solr indexing can be very resource intensive for a web node. Verify
that your PHP memory limit and maximum execution time are high
enough to avoid errors when indexing.

Indexing Content | 167

Infrastructure Considerations
Solr, as of version 1.4, has built-in replication that makes setting up multiple slave servers
very easy. Because of that, there’s really no excuse not to run at least two Solr servers in
a master/slave setup. Since most sites don’t need full high availability for Solr writes,
usually they are fine with failing over to read-only on the slave as needed. Full HA with
write failover is a bit harder to configure, though Solr 4.x attempts to address some of
those shortcomings (leveraging Zookeeper).

Currently, Solr versions 3.x and 4.x are supported by the Apache Lucene project (and
either will work with Drupal). A lot of sites are currently using 3.x versions because they
don’t need the new features from 4.x, and the 4.x releases are young enough that some
bugs are still being worked out.

When you download Solr, it includes a “built-in” Jetty server (a Java servlet engine with
a built-in web server). This works fine for testing, but it’s not designed to be used in a
production environment. The most popular options for a production-ready servlet en‐
gine are either using the full Jetty distribution, or using Tomcat. Either of those options
will work fine with Solr, so it’s really just a matter of preference which you choose.

Solr Replication
We recommend starting with at least two Solr servers set up as master/slave. This will
allow you to support at least read-only failover in the case that the master goes offline.
The reason for having two servers is more about providing a failover than it is about
having the option to load balance search queries — however, there’s no reason you can’t
benefit from each. There are various choices for a failover mechanism; often we use IP
failover controlled with Heartbeat, and if you set up Varnish on the Solr servers to direct
traffic, it can easily be configured to filter out “write” queries to only go to the master
server:

sub vcl_recv {
 if (req.url ~ "^/solr/[^/]+/(select|admin/ping)") {
 set req.backend = solr_server_pool;
 } else {
 set req.backend = solr_master;
 if (req.request == "POST") {
 return(pipe);
 }
 return (pass);
 }

 // rest of vcl_recv...

In this example, we send Solr select queries and requests for admin/ping to a Varnish
director containing a pool of all Solr servers. All other traffic is forced to go to the Solr

168 | Chapter 17: Solr Search

master server only. In the case of POST requests (index updates), we use a pipe in order
to avoid timeouts should the update queries take a long time.

Enabling the built-in replication in Solr is fairly straightforward. If you set a few variables
in the file solrconfig.properties located within a Solr core’s conf/ directory, they can then
be referenced in solrconfig.xml within each Solr core configuration. Handling the con‐
figuration with variables and conditionals makes it possible for both master and slave
to share the same solrconfig.xml file.

The following replication snippet from solrcore.properties shows the settings for the
master server:

solr.replication.master=true
solr.replication.slave=false
solr.replication.pollInterval=00:00:60
solr.replication.masterUrl=http://solr-master-hostname:8112/solr

For the slave, simply swap the true/false values for the master and slave settings. The
replication interval can be adjusted if you need to ensure that the slave receives updates
faster than once per minute.

With those settings in place, the default solrconfig.xml that ships with the apachesolr
module will handle replication for you, using the solr.replication.master and
solr.replication.slave variables to conditionally enable master or slave behavior on
each of the servers.

Drupal Module Installation
Download and install the apachesolr module. There are some additional modules listed
there that may be desired for extra features. There’s no need to enable the module just
yet, since we need to get Solr set up first.

Inside the module, you’ll find a directory, solr-conf/ that contains Solr configuration
files for different versions of Solr: 1.4, 3.x, and 4.x. Any new installation should use 3.x
or 4.x as 1.4 is already quite dated. Depending on which Solr version you decide to use,
copy the configuration files from the corresponding directory here to your Solr server.
They should be placed in /<path_to_solr>/<corename>/conf/.

Once you’ve copied those in place, you’ll need to (re)start your Solr service (e.g., Jetty
or Tomcat) in order to recognize the configuration changes. Once that is running, you
should be able to enable the apachesolr module and update its settings to point to your
Solr URL. It will report if it’s able to successfully connect to the Solr server, and from
that point, you can start indexing your content in Solr.

With the Solr server successfully up and running, the remaining module setup and
configuration is fairly easy. Instead of covering it here, where it may quickly go out of

Drupal Module Installation | 169

https://drupal.org/project/apachesolr

date, we recommend reading through the apachesolr module’s project page and docu‐
mentation, as well as the README.txt file that ships with the module.

170 | Chapter 17: Solr Search

CHAPTER 18

PHP and httpd Configuration

Web server (httpd) and PHP configurations are often overlooked or trivialized. Many
Drupal deployments make only small changes to the httpd or PHP configuration (raise
your hand if your biggest change to php.ini has been to increase PHP’s memory limit),
and otherwise blindly accept most default configuration values. This is sometimes with
good reason: using a default httpd.conf file will work fine in some cases, and generally
sites can perform pretty well with little to no tweaking of the httpd configuration. On
the flip side, it is very possible for a default httpd configuration to grind your server to
a halt should you experience a large traffic spike. Not only that, but there are configu‐
ration options that can help improve performance, sometimes drastically.

This chapter will focus mainly on changes that can be made to improve performance
in PHP and Apache’s httpd daemon. We give Apache 2.2 more attention than other web
servers because it is the most widely used web server; however, the chapter also contains
a section on alternative web servers and PHP configurations (e.g., CGI versus running
as an Apache module).

APC: PHP Opcode Cache
To understand what an opcode cache is and why it’s important, you first need to un‐
derstand how PHP works server-side. When a PHP script is run on your web server,
the PHP source file is read and then compiled into byte code before being executed. If
you add an opcode cache, the intermediary executable code gets compiled on the first
access of a script but then is stored in the cache and used for subsequent requests of the
same script. This saves a lot of overhead, which is especially noticeable on a busy server.

Although there are a number of PHP opcode caches available, we’ll focus on APC, as it
is the most widely used. However, with the release of PHP 5.5, the core PHP distribution
now includes Zend Optimizer+, which after being open sourced has become the default
opcode cache in PHP moving forward. PHP is now referring to Zend Optimizer+ as

“OPcache.” APC currently ships as a PECL extension, meaning it can be installed via
the PECL install tool, though most Linux distributions and add-on software repositories
have prebuilt packages available. OPcache is built into PHP versions 5.5.0+ and is avail‐
able as a PECL extension for versions 5.2, 5.3, and 5.4. An alternative to APC is most
welcome, and we imagine most sites will soon migrate from APC to OPcache. In the
meantime, however, the vast majority of sites are running on APC, so we will focus on
APC throughout this chapter.

Once installed, the APC extension needs to be enabled either in php.ini or in its own
apc.ini file. For servers hosting a single Drupal site, most of the default settings for APC
will work fine; however, it is very important to set an appropriate memory size. For most
sites, using a single shared memory segment with a size of 128 MB is a good starting
point. Once set, restart Apache to pick up the change, then load your website and re‐
peatedly load a few different pages. Then visit apc.php (a monitoring script included in
most APC packages that can be moved to your webroot, but should not be left there
after use) in your browser to see the current statistics. What you want to see is little to
no fragmentation of the cache, and there should be some amount (at least 16–32 MB)
of free space available. At this point, you should also see hit rates at or close to 100%. If
your cache is totally full or showing high fragmentation, or if the full count is more than
0, you should increase the amount of memory allocated to APC. Continue increasing
the memory allocation until the cache is left with free space; once the site has run for a
few days without filling up the cache, you’re in good shape. It’s important to check on
this periodically to be sure that the cache isn’t filling up or becoming fragmented.

Once your APC memory allocation has been set properly, there are many other con‐
figuration settings that allow some fine-tuning of how APC runs. As mentioned previ‐
ously, these typically don’t need to change for most sites (especially if you are only
running one Drupal web root on a server). The full list of APC runtime settings is
available at http://www.php.net/manual/en/apc.configuration.php. A few of the most
commonly customized are:
apc._num_files_hint

This setting tells APC how many files you expect to be cached. It uses this infor‐
mation when allocating cache storage space. The default is 1000, which is a pretty
good rough estimate for a single Drupal site. However, if you are running multiple
sites or a site with a lot of modules, increasing this could help reduce fragmentation.

apc.stat

This setting controls whether or not APC will “stat” (check) a file to be sure it hasn’t
been updated since the cache entry was created. The default is 1, meaning that APC
will perform this check. If set to 0, APC will not recheck files once they have been
pulled into the cache. This means that if you change a file, you need to reload Apache
in order for APC to read in that change. Obviously this is not ideal for development
environments, but it can lead to performance improvements in infrastructures with

172 | Chapter 18: PHP and httpd Configuration

172

http://www.php.net/manual/en/apc.configuration.php

high I/O latency. This setting needs to be approached carefully, as there are quite a
few other stats in the process of serving a request and they must all be disabled for
you to see much improvement.

So far, our description of APC has been entirely as an opcode cache.
However, APC also supports “user” caches, meaning that you could
use APC to store Drupal cache data. We discussed that possibility in
Chapter 16.

Again, it’s important to monitor APC status to ensure the cache does not fill or become
too fragmented (usually fragmentation is caused by the cache being at or close to full).
There are, for example, Munin scripts that scrape the APC stats from a local PHP script
(a great candidate to live in an adminscripts directory!) and graph them over time. If
you notice the usage approaching full on the APC cache, it’s likely that you’ll want to
increase the cache size.

php.ini Settings
There are a few settings in php.ini that are important to consider when bringing up a
site. The most important of these settings is memory_limit, which controls how much
memory a single PHP process is allowed to consume. It is important to gauge this setting
correctly because if a process consumes more than this amount of memory, it will error
out at the point where it attempts to allocate more memory, and the entire page load
will fail. For many Drupal sites, the maximum memory usage is somewhere around the
128 MB range. While it’s not uncommon for this to be set at 512 MB or 768 MB on
larger websites, if you are using that much RAM in PHP, you may have a problem in
your code that needs attention. The downside to setting this to a very large value is that
a memory leak or “runaway” process can end up consuming quite a bit of system mem‐
ory, potentially causing the server to run out of memory.

Watch the memory use of your PHP processes (or httpd processes if you’re running
PHP as a module) to see how much they are using on average by running top and sorting
by memory usage (type O to see sort options, then n to sort by resident memory). How‐
ever, that just tells you what the current processes are doing and doesn’t tell you what
the maximum usage may be. For a more precise view of PHP memory usage, consider
enabling XHProf, described in Chapter 6, and use it to profile the different page types
on your site. With this setting, it’s best to err on the large side because setting it too low
will cause some user-visible errors with the site should you ever hit the limit.

The display_errors setting controls whether or not PHP errors will be shown on the
output of the page where an error occurs. This is clearly something you want to disable

php.ini Settings | 173

on your production servers, but it can be very useful to enable on your development
servers.

While you shouldn’t display errors to users on a production site, you likely want to keep
track of errors if they do happen. For this reason there is a log_errors setting that
controls whether or not errors are logged. If you are running PHP as an Apache module,
setting this to On will log PHP errors to Apache’s error log.

Both display_errors and log_errors are selective about what types of errors they
show. Both of them are affected by the error_reporting setting, which lets you define
which types of errors to show/log and which to ignore. Settings here are applied bit‐
wise, meaning you can combine different message types with “and,” “or,” and “not” in
order to achieve the type of error reporting you desire. Generally on production servers,
you would only care about actual errors and not about warnings, notices, or language
deprecation messages. On development servers, it’s more useful to track everything so
that you can see things like PHP notices when variables are used before being set, etc.
php.ini files ship with a large section of comments explaining the various message types
along with suggested settings for production versus development.

It’s also important to set the time zone in php.ini (or in your .htaccess file). As of PHP
5.3, a warning message will be sent when the date.timezone setting is unset—and
importantly, it defaults to unset. Valid time zone values are listed here.

PHP Apache Module Versus CGI
PHP is most commonly run as an Apache module called mod_php. This is the easiest
way to run PHP, as it can be installed as a package that includes a very minimal Apache
configuration to enable the module for PHP scripts. There are two main issues to un‐
derstand when running mod_php:

1. The PHP module will be loaded into each httpd process, increasing resource usage
and making the processes heavier. This means that every access to httpd, even for
a static (non-PHP) file, will have the overhead of the PHP module residing in the
httpd process.

2. PHP scripts will all be run as the same user, generally apache or www-data, that the
httpd processes are run by. This is generally fine when you only host a single site
on a server, but it’s not secure for multisite environments, where it is best to keep
the sites separated as much as possible. One way to work around this issue is to run
multiple instances of Apache, each with a different user. This is easily accomplished
with the default configuration in Debian-based distributions, though it is not as
easy with Red Hat-based-distributions.

It is possible to run PHP as an “external CGI,” which just boils down to having some
way for httpd to call an external PHP process when it needs to execute PHP code. In

174 | Chapter 18: PHP and httpd Configuration

http://www.php.net/manual/en/timezones.php

order for this to work in production environments, you need to run a CGI manager
such as mod_fastcgi to manage the PHP processes. This requires a bit of extra config‐
uration over the built-in module, but you gain flexibility. For alternative web servers
such as Nginx, you must run PHP as a CGI—more on this at the end of this chapter.

PHP now includes the FastCGI Process Manager, or FPM, also referred to as PHP-
FPM. Prior to PHP-FPM, it was difficult to ensure PHP CGI processes shared an opcode
cache, which was not great for performance. The addition of PHP-FPM allows its PHP
processes to share a central APC cache, making it a stronger option for those who are
looking for an alternative to running mod_php.

Many sites choose to skip the extra configuration needed to run PHP as a CGI binary,
and instead stick with the default mod_php. mod_php can scale well and has the perfor‐
mance advantage of being in the same process space as Apache. However, it does add
additional memory overhead in the httpd processes, and it’s not quite as tune-able as
having PHP completely separated as a CGI. For example, in a PHP-FPM setup, you can
limit the amount of memory and/or threads each FPM pool has available to it. If you
need this extra configurability, are hosting multiple sites that need to run as different
users, or cannot offload static file serving (such as by using Varnish or a CDN), FastCGI
and PHP-FPM are options worth considering. For our purposes, we will continue to
assume the use of mod_php since it is the most popular method to run PHP.

Apache MPM Settings
Apache is one of the most configurable and flexible HTTP servers in existence. It is in
fact so configurable that you can even change its process model via your choice of
multiprocessing module (MPM). The two major core MPMs are Prefork and Worker:

• Apache Prefork can be considered the “classic” multiprocessing module. It works
by having a single parent httpd process managing a pool of child processes. Each
request that comes into the server is “assigned” to a child process, which then takes
over communication with the client and fulfillment of the request. If more processes
are needed, the parent process will create them and will clean up old processes.

• Apache Worker is a newer multiprocessing module that relies on threads instead
of processes. It works in much the same way as the Prefork module, except that
instead of maintaining processes, it maintains threads. The advantage to this is that
its lighter weight. The disadvantage is that you must ensure your code is entirely
thread-safe.

In most cases, the choice between these two modules is made for you. If you are using
mod_php, you should use the Prefork module. There are many non-thread-safe PHP
modules, and some are required by many Drupal installations. On the other hand, if
you are running PHP as a CGI, you have the option of using Apache Worker and making

Apache MPM Settings | 175

Apache a bit more lightweight. The remainder of this chapter will assume the use of the
Apache Prefork module using mod_php.

Prefork Thread Settings
The Prefork module has a number of settings that control its behavior. Generally, the
defaults for the settings controlling the number of spare servers to start and leave idle
work fine for most sites. However, it’s important to focus on the settings that control
the number of processes and how often they are cycled, as these are the settings that
have the potential to bring your server crashing down if not configured correctly. They
are:
StartServers

This setting defines how many processes will be started when the httpd service
starts. For Prefork, this defaults to 5. For most sites this is fine, since httpd will
spawn new processes as needed. In cases where you know your server will always
be serving more than five clients at once, you might want to increase this so that
there isn’t a wait involved when spinning up additional processes.

MinSpareServers and MaxSpareServers
These settings control how many idle (not actively serving requests) httpd processes
will be kept around. They default to 5 and 10, respectively, meaning that if there are
less than five idle httpd processes, new processes will be spawned (at a maximum
rate of one per second) until there are five idle. Contrarily, if there are more than
10 idle httpd processes, the additional processes will get killed off by the parent
httpd process. Again, for most sites these defaults work fine, although on some sites
it may be worthwhile to increase these settings somewhat so that you can better
deal with traffic spikes. Setting these values very high means that you will have a
lot of processes on the system using up RAM even when traffic is rather low.

MaxClients
Defines the maximum number of httpd processes that can be running. It can “make
or break” your site, in that if it is set too low, the server will queue incoming HTTP
connections (eventually dropping them once a threshold is hit), and if it’s set too
high, the server may swap itself to death during periods of high traffic. The default
value for MaxClients for Prefork is 256. For static websites or very minimal PHP
scripts, 256 processes may be fine, but for most Drupal sites, this is way too high.
The reason that this value is too high is because when using mod_php memory is
allocated inside of each httpd process, and for larger Drupal sites, it’s not unusual
to see httpd processes using somewhere from 64–150 MB (or more!) each. If your
httpd processes are each averaging 150 MB of RAM, then at 256 processes, that’s
nearly 38 GB of RAM. Some of us are lucky to have servers that large, but it’s not
common, or inexpensive. Also, that doesn’t take into account memory usage by

176 | Chapter 18: PHP and httpd Configuration

other processes on the system. The trick to setting MaxClients appropriately is to
first figure out how large your httpd processes are. You can get a general number
for this by running top and looking at the RES (resident memory) column. Once
you know how large your httpd processes are, you can use the following formula
to see how many httpd processes you can support:

((System RAM) – (RAM used by other processes)) /
 (httpd process size) = MaxClients

“RAM used by other processes” would take into account any other major services run‐
ning on the web server, plus some amount for basic OS-level processes. Generally we
use 512 MB as a rough estimate for OS resource needs, and then add any additional
service requirements to that. This 512 MB estimate is intended to cover resources used
by the kernel as well as periodic processes that may be run on the server. Long-running
services should be analyzed separately.

As an example, suppose your web server is running Varnish, httpd, and no other major
services. The server has 8 GB of RAM. Varnish is allocated 2 GB of memory. Your average
httpd process is around 85 MB. To provide some safety in our estimate, we’ll round that
up to 100 MB. In this case, we would calculate MaxClients as follows:

((8 GB System RAM) – (512 MB OS resources + 2 GB Varnish)) /
 (100 MB httpd process)
= 5632 MB / 100 MB
= 56.32

You should always round down at the end for safety, so you would end up with 56 as
your MaxClients setting.
ServerLimit

This setting defines the maximum value that you can set MaxClients to during the
life of the parent httpd process. In most cases, if you have calculated MaxClients as
shown above, you can set this to the same number. If you want to give yourself some
wiggle room in order to potentially increase MaxClients without having to fully
restart Apache, you could set this to be the maximum that you would increase
MaxClients to. In either case, MaxClients must be less than or equal to ServerLi
mit.

MaxRequestsPerChild
This setting controls how many requests a child httpd process will serve before it
is killed. The Apache default is 10000, although many distributions ship with other
values in httpd.conf. Both 4000 and 0 (disabled) are used by common distributions.
When this is set to 0, httpd child processes are never killed (except as part of
MaxSpareServers, as described above). As with most Apache settings, there is a
trade-off involved when setting this. Setting this value on the high side can cause
your httpd processes to consume more RAM over time due to memory leaks in

Prefork Thread Settings | 177

PHP or other scripts, or due to a process that loads different code bases over its
lifetime. On the other hand, setting this value too low will lead to a lot of overhead
on the server caused by killing and respawning httpd processes. Generally, we would
consider somewhere in the 1000–4000 range to be a safe value for this setting, based
on the traffic your site experiences. 2000 is a good middle-of-the-road value that is
high enough that you won’t see process thrashing in most cases, but low enough
that httpd processes won’t stick around forever eating up a lot of memory.

KeepAlive
KeepAlive allows a client to reuse the same connection with the server multiple times
instead of having to open up a new connection for each request. For example, if you
had a web page with a number of images and CSS files all served locally, the client would
download the web page and then reuse the same connection to download the images
and CSS. This saves time and resources on both ends of the connection. However, there
is a downside to using KeepAlive, which is that the server needs to keep connections
open for a certain amount of time (defined by KeepAliveTimeout). This can lead to a
lot of open connections sitting around waiting and not actually serving any content.
For this same reason, KeepAlive can make it easier for someone to launch a denial of
service (DoS) attack against your site—once there are enough connections open waiting
for clients, no other requests to the site can be served.

To be clear, KeepAlive is very beneficial for client-side performance. However, it can
bring down sites if misconfigured, or if enabled at all during large traffic spikes. This is
one of the benefits of having a caching reverse proxy, such as Varnish, as it is far more
capable of handling KeepAlive connections to clients without adversely impacting
Apache stability.

If you choose to use KeepAlive, be sure to also look at the KeepAliveTimeout setting,
which defines how long a process will wait for an idle client to send another request.
The default KeepAliveTimeout is five seconds, which in most cases is rather high. Ide‐
ally, set this as low as possible without having it force new connections on existing clients.
One or two seconds can work generally, but it’s worth a bit of trial and error to figure
out the correct setting for your site and the majority of your visitors. Also, we highly
recommend providing KeepAlive to clients through a proxy and not directly with
Apache.

Cache Headers
There are a number of headers that are used to inform client browsers and intermediate
caches whether or not to cache content, and if so, for how long. Configuring these
headers properly can make a difference in user-visible performance on your site. The
headers you will want to keep an eye on when setting up a production site are ETags,

178 | Chapter 18: PHP and httpd Configuration

Expires, Cache-Control, Last-Modified, and Vary. These headers work together to
determine just how aggressively a client can cache a page or static file. We will discuss
each of these headers individually:
Last-Modified

This header is used exactly as you might expect, to check whether a page has been
modified since it was last fetched. By default, Drupal adds this header to pages with
a timestamp generated during the Drupal bootstrap process when serving a page.

ETag

The ETag, or entity tag, is meant to uniquely identify a single version of a page.
When the ETag matches on two versions of a document, they are assumed to be the
same. This tag can be as simple as an MD5 hash of the document or as complicated
as hashes of various aspects of the request. What it should not be is the default
Apache ETag, which includes server-specific information. If you use Apache’s de‐
fault ETag, if you have four web nodes the ETags generated on each node will be
different, and reverse proxy caching will be significantly worse.

Expires

This header indicates when the page will expire from any cache it is in. In Pressflow
and Drupal 7 or later, you can set this date by configuring the page cache maximum
age. This is a legacy header, and if Cache-Control (which we will discuss next)
exists, this header is ignored by newer browsers and proxies.

Cache-Control

This header controls caching options and is set by Pressflow and Drupal 7 later
when they are configured to use an external page cache. The name is not as creative
as one might have hoped. The header contains keywords and settings that impact
caching, for example:

max-age=N

This informs downstream proxies of the maximum number of seconds this page
can stay in its cache.

no-cache

This completely disables caching.

private

This allows for browser caching, but not intermediate proxy caching.

Logging
Apache allows you to set multiple log outputs for different types of information, though
the majority of sites are configured only with a general access log and an error log. Most
often, in the case of multiple sites on a single server, logs are defined per-virtual host so
that it’s easy to track information for each individual site.

Logging | 179

The format of the log files can be defined using the ErrorLogFormat and LogFormat
directives. Generally, the default ErrorLogFormat is fine for most sites, and for the access
log, most sites use one of the log formats that comes predefined in default Apache
configuration files—either “common” or “combined.” The combined log format adds
header information for Referer and User-Agent. If you decide to use your own custom
log format, you can define the format and give it a name using the LogFormat directive,
and then refer to that name in a CustomLog directive:

LogFormat "%h \"%r\"" hostandrequest
CustomLog logs/request.log hostandrequest

This example defines a hostandrequest log format that includes only the remote host
and the requested URL, and then uses that format to log to the file logs/request.log.

Log destinations are defined relative to the ServerRoot unless the path
begins with a slash. ServerRoot defaults to /etc/httpd on Red Hat-
based distributions or /etc/apache2 on Debian-based distributions.
Red Hat includes a symlink from /etc/httpd/logs to /var/log/httpd in
order to ensure logs end up in the standard location on the system.

While the built-in Apache logging works great for many sites, it’s not quite as flexible
as some sites require. For these situations, Apache supports using external logging
tools. Cronolog is one example of an external logging application used in conjunction
with Apache. It has some nice features, such as dynamic log file naming using date fields,
making it possible to output to a log file with the current date in its filename. When the
date changes, Cronolog will automatically start writing to a new file, meaning you get
“built-in” log rotation as well as having log files nicely organized by date. Because new
log files are written to every day, there’s no need to reload httpd to perform log rotation.
You most likely will want to add your own scripts to compress these log files, and even‐
tually to remove/archive them. The following is an example Apache configuration to
use Cronolog:

ErrorLog "|/usr/sbin/cronolog /var/log/httpd/error/%Y%m%d-error.log"
CustomLog "|/usr/sbin/cronolog /var/log/httpd/access/%Y%m%d-access.log" common

You can add the following script to cron.daily on the server to compress old log files:

#!/bin/bash
export PATH="/usr/bin:/bin"

if [-d /var/log/httpd]; then
 find /var/log/httpd -name "*.log" -mtime +1 -exec gzip -9 "{}" ";"
fi

and this one to eventually remove them:

180 | Chapter 18: PHP and httpd Configuration

http://cronolog.org/

#!/bin/bash
export PATH="/usr/bin:/bin"

if [-d /var/log/httpd]; then
 find /var/log/httpd -name "*.log.gz" -mtime +60 -exec rm "{}" ";"
fi

Server Signature
There are a couple of places where Apache may output information about its version,
and potentially version information for modules such as PHP. One of these is the “server
signature” line that optionally shows up at the bottom of Apache-generated pages (e.g.,
503 errors or directory listing pages); the other is the Server HTTP response header
that gets sent by the server. Some people may consider this a security risk in that it makes
it easy for potential attackers to know what software versions you are running and target
you with specific attacks. Others would say that security through obscurity is not security
at all, and if someone is dedicated enough, hiding information like this is only going to
make it take a few minutes longer for them to figure out an attack. Whatever your view
is, you may want to hide this information either for security reasons or just because you
don’t like the way it looks to potential visitors.

The Server header and server signature lines are controlled by two different settings:
ServerSignature

This is an on/off setting that controls whether or not to show the server signature
line on Apache-generated pages. Setting this to Off means that the server signature
will not be shown on those pages.

ServerTokens

This is the setting that controls what information is shown in the server signature
line and placed in the Server HTTP response header. The default setting for Serv
erTokens is Full, which will show Apache version information as well as module
and version information for running modules (e.g., PHP). While you can’t set this
to be empty without modifying the source code, you can limit the information sent
to be only the “Product” string, “Apache,” by setting ServerTokens to Prod. Re‐
member that changing this not only changes the server signature on documents,
but also controls the text used in the Server HTTP header.

Administrative Directory or VirtualHost
Often times, you’ll need to store various web-accessible scripts on a server used for
monitoring or management. For example, it can be useful to have access to apc.php to
review APC settings and statistics, but you typically don’t want to leave that in your
publicly accessible web root. There are a couple of easy solutions for how to securely
store those scripts: you can either use a locked-down directory or a separate virtualhost

Server Signature | 181

to store the scripts. In either case, securing the scripts directory using a list of authorized
IPs and/or an htaccess username and password is critical.

Some sites go so far as to only allow access from localhost, meaning
you need to do something like proxy your traffic through SSH in order
to load the administrative scripts. If you do lock down a directory to
only localhost, ensure that you’re factoring any reverse proxies you may
be running into your thinking. These will make many connections
appear to be coming from localhost.

Storing these types of scripts in their own separate directory has a couple of great ben‐
efits. First, you don’t need to temporarily copy files into your production web root and
remove them when you’re done. (How many times have you copied a phpinfo() script
or similar into the web root and then forgotten to remove it?) Secondly, keeping them
in their own virtualhost or directory means they are easily accessible by authorized users
(or monitoring scripts) at a permanent URL that you can use across all of your web
servers.

An example administrative scripts directory configuration looks like this:

Alias /adminscripts /var/www/adminscripts
<Directory "/var/www/adminscripts">
 Options -Indexes
 AllowOverride None
 # Control who can get stuff from this directory.
 Order Allow,Deny
 Allow from 127.0.0.1
</Directory>

Nginx
Apache’s web server, httpd, is the most popular web server in use today, and has been
for many years. Recently, however, some other open source web servers have gained
some traction. Nginx is one alternative to Apache’s httpd that has become very popular.

There are a number of reasons why you might consider using Nginx for your site instead
of Apache. Nginx is newer, and there is a lot of discussion around the Internet suggesting
that Nginx is generally faster and lighter, especially for serving static files. While some
tests may back this up, it’s by no means conclusively faster for all requests. One thing
that may make Nginx faster than Apache for serving static files in our default setup
(using mod_php) is that with mod_php Apache would have a full PHP process in memory
for each httpd process. Nginx doesn’t have to worry about this, because it relies on an
external PHP setup. This is one reason we recommend offloading static file serving if
you are using Apache and mod_php.

182 | Chapter 18: PHP and httpd Configuration

http://nginx.org/en/

One of the main differences in Nginx is its event-based model for dealing with new
connections. Instead of dedicating a process or thread to each request, this process
model only services a request when an event triggers (data read from disk, etc.), and
then moves on to another request. This model has become very popular recently, due
to how efficient it can be when executed well. Apache 2.4 now includes the event MPM,
which works somewhat similarly to Nginx.

The most common Nginx setup for Drupal involves using PHP-FPM (see “PHP Apache
Module Versus CGI” on page 174), which provides a pool of PHP processes that Nginx
connects to over a Unix or TCP socket. This architecture provides a method to scale
and tune Nginx separately from the PHP processes, keeping the Nginx processes very
lightweight and able to quickly serve static requests.

mod_php won’t work with Nginx. You must use PHP as a CGI when
running Nginx.

Why Not Use Nginx Everywhere?
Nginx and PHP-FPM can provide a performance enhancement and a reduction of re‐
sources as compared to the most common Apache configuration, so it may seem like
there is no reason to ever use Apache. This may be true in certain cases, but there are
indeed reasons why many people still prefer Apache. One major reason is that when
you start caching static items in a reverse proxy and/or CDN—more on this in the next
chapter—the web server is being hit much less often for those types of requests, and the
performance difference for static files is only noticeable when first loading an item into
the external cache. This leaves Apache and mod_php to be just an application server,
which limits the advantages of Nginx as a static file server. Another major reason for
people to use Apache is if they require htaccess files in their setup, as these are not
supported by Nginx. At the end of the day, the question of which httpd server to use is
usually decided by team familiarity and other requirements.

Nginx | 183

CHAPTER 19

Reverse Proxies and Content Delivery
Networks

We’ve discussed a number of ways to speed up Drupal sites by improving code, opti‐
mizing infrastructure, and speeding up database queries. These changes can make a
huge difference in website performance, but they can only go so far. Site performance
can be improved even further by caching content before requests even reach Apache
(and Drupal, PHP, or MySQL). Reverse proxies provide a way to do just that—cache
static items such as images, JavaScript, and CSS, and potentially even full pages—and
serve those items in a fraction of the time it would take if the request had go into Apache,
PHP, and MySQL. This chapter focuses on reverse proxies with built-in caches, also
referred to as web accelerators.

Content delivery networks (CDNs) take the idea of a reverse proxy a step further by
moving cached content physically closer to website visitors. In addition to offloading
network traffic from your infrastructure, this also makes your site seem much faster to
visitors by reducing their network latency.

Using a Reverse Proxy with Drupal
When implementing a reverse proxy cache in front of your web servers, there are many
options to consider. First up is which reverse proxy to use. Varnish has become very
popular in recent years and its configuration language is extremely powerful, allowing
for very specific caching configurations. Varnish has generally become accepted by the
Drupal community as the reverse proxy of choice, so we’ll concentrate solely on Varnish

185

https://www.varnish-cache.org/

here. The overall ideas apply to any reverse proxy, but the specific configuration exam‐
ples will apply to Varnish only.

Other Popular Reverse Proxy Caches
Of course, Varnish isn’t the only option out there. Other popular reverse proxy caches
include the following:
Nginx

In addition to functioning as a web server in place of Apache, Nginx is also fre‐
quently used as a standalone reverse proxy.

Squid
Squid is one of the oldest reverse proxies still available today, though its use has
declined in favor of Varnish in recent years.

Apache Traffic Server
Originally developed at Yahoo!, Traffic Server was donated to the Apache Software
Foundation and is now fully open source.

Secondly, you need to decide how much you want to cache and how integrated the proxy
will be with your website. For example, caching static content items like images and
JavaScript is relatively easy and can be done “out of the box” with minimal configuration,
using pretty much any reverse proxy. If you want to take things a step further and start
caching full pages served by Drupal, that requires a bit more configuration. Going even
further, you can closely integrate Varnish and Drupal such that when an object is edited,
Drupal can immediately purge pages containing that object out of Varnish’s cache to
prevent stale content from being served. While the more advanced actions may take a
bit more configuration, it’s not terribly difficult once you get comfortable with the con‐
figuration language—and there are a number of contributed Drupal modules that will
help ease the process as well.

Let’s look at an example of using Varnish to cache. Figure 19-1 shows Varnish handling
incoming HTTP requests for the site. When Varnish has a valid item in its cache, it will
serve that item from the cache immediately with no backend request to the web server.
When Varnish does not have an item cached, or has an out-of-date item cached, it will
make a request to the web server for the item, store it in the local Varnish cache if it’s
cacheable, and then return it to the client.

186 | Chapter 19: Reverse Proxies and Content Delivery Networks

http://nginx.org/en/
http://www.squid-cache.org/
http://trafficserver.apache.org/

Figure 19-1. Varnish reverse proxy

Understanding Varnish Configuration Language
Varnish Configuration Language (VCL) is used to define how Varnish will handle re‐
quests, cache items, and connect to one or more backends (web servers). You don’t need
to be an expert in VCL in order to use Varnish, but understanding at least the default
subroutines and their behavior will make it much easier to customize a VCL file for your
specific needs. VCL was designed to be similar to C and Perl, and therefore is easy to
pick up for most developers and system administrators.

Changes to the VCL file used by Varnish do not take effect immedi‐
ately; they must first be compiled and then loaded into Varnish. This
can be done with commands through the Varnish admin interface, or
happens automatically when the Varnish daemon is restarted.

Loading VCL Changes
In order to pull in changes to your VCL file, you will need to compile it in Varnish.
Compiling the VCL in Varnish is preferred over fully restarting the Varnish daemon for
a couple of reasons. First, you won’t interrupt existing connections. Second, if you restart
Varnish and the new VCL file has an error, Varnish will refuse to start; however, if you
manually compile a new VCL file with an error, Varnish will report the error but continue
to run with the old, working configuration.

To compile a VCL file, you need to connect to the Varnish administrative interface. This
can be done either with telnet or with the varnishadm utility. Here’s an example using
varnishadm to connect to the Vanrish admin port to compile and then load the updated
VCL file /etc/varnish/example.vcl. newconfig is a name to reference the configuration
and can be whatever name you want to use:

$ varnishadm
200

Varnish Cache CLI 1.0

Understanding Varnish Configuration Language | 187

Linux,3.9.10-100.fc17.x86_64,x86_64,-sfile,-smalloc,-hcritbit

Type 'help' for command list.
Type 'quit' to close CLI session.

> vcl.load newconfig /etc/varnish/example.vcl
200 13
VCL compiled.
> vcl.use newconfig
200 0

Defining a Backend
The first step when setting up Varnish is to configure it with your backend information.
The backend declaration supplies Varnish with information on how to connect to your
backend web server(s). The declaration can be as simple as providing a hostname and
port, but it also allows you to configure additional options such as connection timeouts,
max connections, and probe checks, which are used to check whether the backend is
healthy or not. An example backend server declaration looks like this:

backend default {
 .host = "10.0.1.15";
 .port = "80";
 .connect_timeout = 20s;
 .first_byte_timeout = 20s;
 .between_bytes_timeout = 10s;
 .max_connections = 120;
 .probe = {
 .request =
 "GET healthcheck.php HTTP/1.1"
 "Host: www.example.com"
 "Connection: close"
 "Accept-Encoding: gzip" ;
 .interval = 5s;
 .timeout = 3s;
 .window = 5;
 .threshold = 3;
 }
}

This example defines a backend named default, which will connect to port 80 on host
10.0.1.15. Varnish will throw an error if any of the timeouts are hit while making a
request to the backend. The max_connections setting allows a way to limit the number
of connections that Varnish will make to the backend—this should not be more than
your Apache MaxClients setting on the web server, discussed in the previous chapter.

188 | Chapter 19: Reverse Proxies and Content Delivery Networks

When running a single server with both Apache and Varnish, you will
need to have Varnish listen on port 80 and move Apache to listen on
an alternate port (via the Listen setting in httpd.conf). Also be sure to
set the correct Apache port in your VCL backend settings.

The probe section is optional; it defines a periodic health check for the backend. Using
a probe gives you a proactive way to check the status of a backend—otherwise, the status
will only be updated if it hits a timeout when making a backend request for a client.
Obviously, that particular client request will be served a Varnish error. It’s best to define
a probe, especially if you have multiple backends, so sick backends are automatically
avoided with the use of a director. Once a probe detects that the backend has returned
to a healthy state, the backend will be made active again in the director.

Inside of the probe definition, you are able to specify a URL to request, along with any
other headers that should be used for the request. In addition, you define how often to
run the check, what its timeout is, and window and threshold values. In order to declare
a backend as healthy, Varnish will look the past X probe responses, where X is your
window value: at least threshold of them must be successful. In our example, Varnish
will look at the previous five probe requests, and if three or more of them were successful,
the backend will be marked as healthy. If two or fewer probe requests were successful,
the backend will be marked as sick.

Your probe should use a simple page as a check. You don’t want to use
a page that will put a large load on your web server or take a long time
to respond, though it’s best to choose a page that verifies the full stack
is working. For example, use a simple Drupal page instead of using a
static HTML page, which might succeed even if there were problems
with Drupal, PHP, and/or the database.

Directors: Dealing with Multiple Backend Servers
If you have more than one web server, you can define each in its own backend decla‐
ration, but then you’ll need a way to group them together and tell Varnish how to direct
traffic between them; that’s where directors come in. In Varnish, a director is a logical
grouping of backend servers. There are a number of different director types that use
different algorithms to decide which backend to use for a given request. To declare a

Understanding Varnish Configuration Language | 189

director, you need to give it a name, tell it which director type to use, and then define
which backend servers to include.

Varnish Director Types
The types of director available in Varnish include:
Random

Picks a backend at random, though weights can be used to adjust the chance of
using a particular backend.

Client
Uses the client’s identity to choose a backend.

Hash
Chooses a backend based on the request URL hash. This is useful if you have one
Varnish instance load balancing in front of multiple Varnish servers and want to
split the cache among them; it prevents cache duplication between the servers.

Round-robin
Cycles through a list of backends, directing one request to each, then moving on to
the next.

DNS
Allows you to specify a list of IPs or a netblock to use for backend servers. This
backend makes it easy to define a large number of backend servers with minimal
configuration in the VCL.

Fallback
Provided with a list of backends, this director will start at the top of the list and use
the first one that is considered healthy.

The following example shows how to define a round-robin director, which will simply
loop over all the backends listed, directing a single request to one backend and then
moving to the next backend for the next request. Assume we’ve already defined two
backends, web1 and web2:

director main round-robin {
 {
 .backend = web1;
 }
 {
 .backend = web2;
 }
}

This defines a director named main, which will direct traffic evenly between both of the
backends. Another commonly used director is the random director, which will ran‐

190 | Chapter 19: Reverse Proxies and Content Delivery Networks

domly select a backend from a list, though you can also weight the backend servers in
order to send more or less traffic to them. This can be useful if your web servers are not
uniform and one has more processing power than another. An example definition looks
like this:

director loadbalance random {
 {
 .backend = web1;
 .weight = 3;
 }
 {
 .backend = web2;
 .weight = 1;
 }
 {
 .backend = web3;
 .weight = 1;
 }
}

This example declares a director named loadbalance that randomly selects a backend
server from those listed, but will give the web1 backend a weight such that it will be
selected roughly three times as often as either of the other two backend servers.

Once you define a director, Varnish needs to be told when to use that director. This is
configured within the vcl_recv subroutine, described in more depth in the next section.
At its simplest, all you need to do is set the req.backend variable to the backend or
director you want to use. The setting used is the same whether you are setting it to a
single backend or to a director:

sub vcl_recv {
 set req.backend = loadbalance;
}

This example sets the default backend to the loadbalance director we defined in the
previous example.

Built-in VCL Subroutines
There are a number of subroutines used by Varnish to handle requests. You can override
or “prepend” any of these subroutines with your own definitions. Most of the time, only
one or two of these subroutines needs to be modified in order to work well with your
site. However, some sites need a bit more customization and end up overriding most
or all of the built-in subroutines. It’s important to know that if you don’t define one of
the built-in subroutines in your VCL file, that subroutine will still exist in its default
configuration. Here is a quick overview of some of the predefined subroutines used in
the VCL file that are commonly modified with site-specific configurations:

Understanding Varnish Configuration Language | 191

vcl_recv

This subroutine is called to deal with an incoming request. It contains the logic to
tell Varnish if and how to serve the request—for example, whether it should return
a cached item or bypass the cache and fetch an object from a backend server in
order to fulfill the request. vcl_recv is also where you declare which backend (or
director) to use for a given request.

vcl_fetch

This subroutine is called after an item has been fetched from a backend. Generally,
things to check for here include if a cookie is being set, or some other response that
indicates the item should not be cached.

vcl_error

This subroutine is called when an error is hit either within Varnish or with the
backend response. Here you have the option of calling a restart on the request to
try again, in the hopes of not getting an error the second time. This subroutine is
also used to customize the Varnish error output and to deal with custom error codes
that may have been set elsewhere in the VCL.

vcl_hash

This subroutine creates a hash for the cached item. The cache is used internally by
Varnish for future lookups and by default includes the URL and either the HTTP
host or IP address. If you are doing some custom caching (e.g., splitting the cache)
based on a cookie or a certain header in the request, then you would likely do so
by including that item in your hash calculation. This is useful, for example, if you
want to cache mobile requests separately from regular “desktop” requests based on
a device type cookie or header.

For Varnish 3.0, the VCL reference located here gives an overview of
all VCL subroutines and shows the default configuration for each. The
default VCL example here provides a flowchart showing how a re‐
quest flows through the various VCL subroutines.

Customizing Subroutines
When you add code for any of the built-in subroutines in your VCL configuration, by
default you will only prepend the default for that subroutine. If your custom code ter‐
minates with an action (e.g., some sort of return statement), then the default won’t be
run for that subroutine. Sometimes there are reasons you want to bypass the default
routines, though generally it is best to only prepend them by not including a return
statement at the end of your code.

192 | Chapter 19: Reverse Proxies and Content Delivery Networks

https://www.varnish-cache.org/docs/3.0/reference/vcl.html
https://www.varnish-cache.org/trac/wiki/VCLExampleDefault

As an example, let’s write a few custom vcl_recv subroutines with one difference: one
will return at the end of the subroutine (bypassing the default vcl_recv stub), and one
will not return by default, meaning the default stub will get executed. For starters, here
is the default vcl_recv stub:

/*
 * Copyright (c) 2006 Verdens Gang AS
 * Copyright (c) 2006-2011 Varnish Software AS
 * All rights reserved.
 *
 * Author: Poul-Henning Kamp <phk@phk.freebsd.dk>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

sub vcl_recv {
 if (req.restarts == 0) {
 if (req.http.x-forwarded-for) {
 set req.http.X-Forwarded-For =
 req.http.X-Forwarded-For + ", " + client.ip;
 } else {
 set req.http.X-Forwarded-For = client.ip;
 }
 }
 if (req.request != "GET" &&
 req.request != "HEAD" &&
 req.request != "PUT" &&
 req.request != "POST" &&
 req.request != "TRACE" &&
 req.request != "OPTIONS" &&
 req.request != "DELETE") {
 /* Non-RFC2616 or CONNECT which is weird. */
 return (pipe);

Understanding Varnish Configuration Language | 193

 }
 if (req.request != "GET" && req.request != "HEAD") {
 /* We only deal with GET and HEAD by default */
 return (pass);
 }
 if (req.http.Authorization || req.http.Cookie) {
 /* Not cacheable by default */
 return (pass);
 }
 return (lookup);
}

Let’s walk through what the default code does. First, it appends to the X-Forwarded-
For header if that is set. Next, it checks for nonstandard request types; if it encounters
something unexpected, it will return pipe, meaning that the request will be piped di‐
rectly to the backend instead of going through the normal request flow in Varnish. After
that, if the request type is anything except GET or HEAD, Varnish will pass it through
without caching (you wouldn’t want to cache a POST request, for example). In the final
check, Varnish checks if there is an Authorization header or if a cookie is set. If either
of those are in place, the request is returned with pass, meaning it won’t be cached.
Finally, after going through all that, the subroutine returns lookup, meaning it will
forward the request to the backend and attempt to cache the result.

For the sake of this example, let’s assume that you want to add one additional check to
vcl_recv. Specifically, there is a URL, /update.php, which you want to tell Varnish never
to cache. Seems reasonable enough. Let’s see how that would be handled in vcl_recv:

sub vcl_recv {
 if (req.url ~ "^/update.php$") {
 return(pass);
 }
}

Once you’ve loaded that code into Varnish, your custom vcl_recv will be run for in‐
coming requests. In this case, if a request comes in for /update.php Varnish will return
pass, meaning that it will bypass its cache for the request. Requests for any other URL
on the site will fall through your subroutine and, because you did not include a re
turn at the end of the subroutine, the default stub shown earlier will be executed as well.
Compare that to the following:

sub vcl_recv {
 if (req.url ~ "^/update.php$") {
 return(pass);
 }
 return(lookup);
}

The code in this version includes return(lookup) in the subroutine. In this case, re‐
quests for URLs other than /update.php will be cached in Varnish and delivered to

194 | Chapter 19: Reverse Proxies and Content Delivery Networks

clients. The problem is that because the default stub is not run, it’s possible that you are
caching an item even in cases where you probably shouldn’t (for example, if the request
contains a session cookie).

The difference may seem minimal, but it can have quite an impact. It’s not “wrong” to
override/bypass the default subroutines, but you should be aware when doing so, and
be sure you understand the consequences. Some sites copy and paste the defaults below
their custom code as a way to better visualize the code path (and not forget what the
default stub is doing, even though it may be hidden behind the scenes).

Cookies and Varnish
In its default configuration, Varnish will not cache any request that has a cookie set.
This means any logged-in user traffic will not be cached in Varnish, but it also means
that any custom or contrib modules that set any type of cookie (session or otherwise)
may cause Varnish cache misses. One common example of this is Google Analytics,
which sets a tracking cookie for every visitor. With a default Varnish configuration,
enabling Google Analytics would cause all page visits to miss the Varnish cache because
of the cookie. That’s obviously not ideal behavior, so let’s take a look at how to modify
the Varnish configuration to ignore certain cookies when deciding whether or not to
serve a cached item.

The way to do this is to do a regular expression replacement (this is one of the few built-
in functions available in Varnish) on the request cookie in order to strip out cookies
that we know should be ignored as far as caching is concerned. Stripping out certain
cookies should be dealt with in the vcl_recv subroutine, as that is where Varnish makes
the request cookie object available. Consider this example:

sub vcl_recv {
 # Remove Google Analytics cookie.
 # These are all of the form "__utm[a-z]=<value>".
 set req.http.cookie = regsuball(req.http.cookie,
 "(^|;\s*)__utm[a-z]=[^;]*", "");
 # Remove a ";" prefix, if present.
 set req.http.cookie = regsub(req.http.cookie, "^;\s*", "");
 # Remove the cookie if it is now empty or contains only spaces.
 if (req.http.cookie ~ "^\s*$") {
 unset req.http.cookie;
 }
}

The preceding code will allow Varnish to cache pages even if a Google Analytics cookie
is present. If you have multiple cookies you want to remove, simply add additional calls
to regsuball to strip out known cookies that don’t affect caching.

Cookies and Varnish | 195

Caching for Authenticated Users
We mentioned in the previous section that by default, requests from logged-in users
will not be cached by Varnish. For many cases, that’s actually the preferred behavior.
For example, you wouldn’t want to cache per-user or per-role page customizations and
then serve those cached items to an anonymous user. However, there are some files that
remain static for all requests, such as image, JavaScript, and CSS files. There is no reason
not to cache those in Varnish and serve them for any request, regardless of whether or
not the user is logged in.

There are a couple of different approaches to solve this particular issue. One option is
to create a list of file extensions that should always be cached. The second option makes
the assumption that any files served out of the sites/ subdirectory can be cached re‐
gardless of whether the user is logged in. Either way, the implementation is very similar:
add a check in vcl_recv, and if the check is met, unset any cookies that might be present
and return a lookup. return(lookup) will return an item from the cache or, if it’s not
present, fetch it from the backend and store it in the cache for future requets. Here’s a
VCL example for serving cached items for common “static” file extensions:

sub vcl_recv {
 if (req.url ~ "\.(js|css|jpg|jpeg|png|gif|gz|tgz|bz2|tbz|mp3|ogg|swf)$") {
 unset req.http.Cookie;
 return (lookup);
 }
}

Edge-Side Includes
There are many cases where it would be possible (and ideal!) to cache a page in Varnish
for authenticated users, but where there is some small amount of personalized content
in that page that can’t be shared between users. Edge-side includes (ESI) provides a way
to work around this problem by referencing the personalized data in a separate ESI tag.
The full page without the personalized content can then be cached in Varnish, and that
content can be pulled in separately and integrated with the cached content.

Imagine the simple case of a logged-in user block that displays the user’s name. This is
something you wouldn’t want to cache and serve to other users, for obvious reasons.
However, if the rest of the page contents are not user-specific, then Varnish could cache
the entire page and dynamically pull in an ESI block containing the user-specific block
content.

ESI is a very powerful tool that can greatly increase your cache hit rate by allowing much
more of the site to be cached for authenticated users. However, misused or misconfig‐
ured, ESI could have the opposite effect and greatly reduce your site’s client-side per‐
formance, so be sure to thoroughly test any deployment. We could easily span an entire

196 | Chapter 19: Reverse Proxies and Content Delivery Networks

chapter (or book!) discussing ESI, but because of space constraints, we won’t go into it
in more depth here.

The Drupal ESI module provides example documentation for how to
integrate Drupal ESI into Varnish.

Serving Expired Content
Sometimes it makes sense to serve cache content that has already expired. This isn’t
quite as bad as it sounds; cached content is not like expired milk, and certainly smells
better. Actually, there are a couple of good reasons that you might want to serve expired
content:

• The backend server is down or unreachable.
• Varnish has sent a request to the backend for an object, but that request is slow to

process on the backend. Meanwhile, Varnish could serve an old version of that same
object to any incoming requests for the same object.

Both of these situations are handled by setting a grace period for requests to live in
Varnish after they have expired. This can be set using the req.grace variable in
vcl_recv. You’ll also need to set beresp.grace in vcl_fetch. req.grace controls the
grace period for an object. beresp.grace affects the maximum grace time allowed for
an object, controlling when the object will be purged from the cache. Consider the
following VCL snippet:

sub vcl_recv {
 if (req.backend.healthy) {
 set req.grace = 20s;
 } else {
 set req.grace = 30m;
 }
}

sub vcl_fetch {
 set beresp.grace = 30m;
}

In vcl_recv, we check if the backend is healthy (health is based on backend probes or
recent failed backend requests). If the backend is healthy, a grace period of 20 seconds
is used for requests — this applies to cases where a cache item has expired and a new
request has been sent to the backend for the updated object. In this case, any subsequent
requests for the item will be served the expired content while the backend request is
waiting to complete. On the other hand, if the backend is considered sick, the grace time

Serving Expired Content | 197

http://drupal.org/project/esi

is increased to 30 minutes. This allows Varnish to serve content up to 30 minutes past
its expiration time, allowing time for the backend server to recover without taking the
website entirely offline. After the grace period has run out, Varnish will return to the
default behavior of fetching from the backend—in the case of a backend server down‐
time, this likely means Varnish will start returning errors after the grace period has
expired.

The beresp.grace setting in vcl_fetch should simply reflect the maximum time that
you use for req.grace, which is 30 minutes in this case.

Error Pages
More likely than not, you’ve seen a default Varnish error page. It probably was pretty
ugly and would seem quite confusing to regular users of your website. Thankfully, the
default error pages are quite easy to customize within the vcl_error function. All you
need to do is use the synthetic keyword to define an HTML document to output for
errors, and then have Varnish deliver that document. Here’s how this is achieved in the
default VCL:

sub vcl_error {
 set obj.http.Content-Type = "text/html; charset=utf-8";
 set obj.http.Retry-After = "5";
 synthetic {"
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <head>
 <title>"} + obj.status + " " + obj.response + {"</title>
 </head>
 <body>
 <h1>Error "} + obj.status + " " + obj.response + {"</h1>
 <p>"} + obj.response + {"</p>
 <h3>Guru Meditation:</h3>
 <p>XID: "} + req.xid + {"</p>
 <hr>
 <p>Varnish cache server</p>
 </body>
</html>
"};
 return (deliver);
}

Notice how the synthetic keyword is simply passed a long string containing HTML
output. This can be easily overridden with your own HTML, but ideally this would not
include external CSS or images since your backend may be down when this error page
is served. Be sure to add the return (deliver) at the end of your custom vcl_error
so that the default vcl_error isn’t used.

198 | Chapter 19: Reverse Proxies and Content Delivery Networks

Memory Allocation
Varnish provides two stable methods for memory allocation: file-backed, or completely
in-memory. With file-backed memory allocation, Varnish depends on the OS memory
caching/paging system to keep recently used items in RAM; with in-memory allocation
(“malloc”), Varnish claims a dedicated chunk of RAM and stores all cache items there.
There are trade-offs to either option. Using a file-based backend means you can gen‐
erally have a much larger cache, but certain cache items may be slower than others if
they end up getting paged out to disk by the operating system. In the case of malloc,
cached items are guaranteed to be in RAM, but if you are caching a lot of items, you
may need more space than you have available RAM.

You will nearly always get better performance when using malloc. For that reason, we
recommend using malloc except in the cases where you need to cache more than you
have space for in RAM (and are unable to add more RAM). That said, Varnish is actually
very smart about how it caches to disk: it relies on the operating system’s file cache, and
frequently used cache items end up in the FS cache under optimal circumstances.

In order to figure out how much RAM is required for your website, it’s easiest to simply
allocate something like 512 MB or 1 GB, and then let Varnish run for a while. Monitor
the memory usage using top and varnishstat, specifically looking at the SMA bytes al
located output of varnishstat. If you see that the cache has filled up or are seeing many
nuked objects, then you should increase the memory allocation.

Varnish will use a bit more memory (or file system space) than allo‐
cated, due to internal overhead. When setting the amount of memo‐
ry to use, you are only limiting the size of the cache; the overhead size
is not configurable.

Logging and Monitoring Varnish
Once you have Varnish in place, there are a number of tools you can use to log requests
and monitor hit rates, usage, and other information:
varnishncsa

Many administrators like to have a simple request log (much like Apache’s access
log) for tracking all requests handled by Varnish. Varnish ships with the varnish‐
ncsa daemon, which provides just that. Simply start the varnishncsa service
(command-line options include a file to output to), and it will start logging.

varnishstat
Run without any options, varnishstat will provide a continuously updated snapshot
of statistics. This will give you an idea of your current cache hit rate, cache usage,

Memory Allocation | 199

and other request and backend statistics. If you run varnishstat with the -1 flag, it
will output all statistics once and exit; this is useful for capturing the output to a
file.

varnishhist
This will provide you with a visual representation of how long requests take to be
served. Items graphed toward the left side are served faster than those on the right
side. This can help give you an idea of your cache hit rate and help you spot any
outliers that take an unusual amount of time.

varnishlog
varnishlog reads out of Varnish’s shared memory and outputs information about
each request handled. You have the option of filtering out certain requests based
on things like the request URL, which is almost always how this utility is used
because otherwise it just gives way too much information.

All of these tools are very useful for tracking how well Varnish is working to cache your
site’s content, and especially useful when you are making changes to your VCL file and
want to see the effects. Using varnishstat to watch cache hits and misses and then track‐
ing down misses using varnishlog or watching the request/response headers in your
browser can be very useful when troubleshooting VCL issues.

Sample VCL for Drupal
To wrap up our discussion of Varnish, let’s take a look at a sample VCL file that can be
used on a Drupal site with just a few configuration changes—you will need to adjust
the backend declaration to point to your web server, and add additional backend defi‐
nitions and a director if you have more than one backend server.

There are a few things included in this VCL file that weren’t covered in this chapter:

1. In vcl_deliver, we add response headers to track whether or not the item returned
was cached. In the case of a cache hit, we also add a header with the number of
cache hits for that particular item. This is very useful for tracking your hits and
misses, especially when first setting up Varnish in a new environment.

2. There is a list of file extensions in vcl_recv that we always want to cache, so we
unset any cookies for these requests. This same list is duplicated in vcl_fetch so
that if the backend attempts to set a new cookie with the response, that Set-
Cookie will be caught and dropped by Varnish ensuring that the item will be cached.
The important thing to note here is that if you edit the list in vcl_recv, you should
update the list in vcl_fetch to match.

3. vcl_fetch includes a check for a few different error codes (404, 301, 500), which
correspond to page not found, moved permanently, and internal server error. By

200 | Chapter 19: Reverse Proxies and Content Delivery Networks

default, the backend will return these with a TTL of 0 so they won’t be cached by
Varnish. But because these requests can actually cause a full Drupal bootstrap and
database queries, it’s actually beneficial to cache the responses for some amount of
time. In this example, we set the TTL to 10 minutes so that Varnish will maintain
the responses in the cache.

Our sample Drupal VCL file looks like this:

Sample VCL based on VCL created by Four Kitchens, available at
https://fourkitchens.atlassian.net/wiki/display
/TECH/Configure+Varnish+3+for+Drupal+7
/*
 * Copyright (c) 2013 Four Kitchens
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

Default backend definition. Set this to point to your content server.
backend default {
 .host = "127.0.0.1";
 .port = "81";
}

sub vcl_recv {
 # Use anonymous, cached pages if all backends are down.
 if (!req.backend.healthy) {
 unset req.http.Cookie;
 }

 # Allow the backend to serve up stale content if it is responding slowly.
 set req.grace = 6h;

Sample VCL for Drupal | 201

 # Do not cache these paths.
 if (req.url ~ "^/status\.php$" ||
 req.url ~ "^/update\.php$" ||
 req.url ~ "^/admin$" ||
 req.url ~ "^/admin/.*$" ||
 req.url ~ "^/flag/.*$" ||
 req.url ~ "^.*/ajax/.*$" ||
 req.url ~ "^.*/ahah/.*$") {
 return (pass);
 }

 # Always cache the following file types for all users. This list of extensions
 # appears twice, once here and again in vcl_fetch, so make sure you edit both
 # and keep them equal.
 if (req.url ~
 "(?i)\.(pdf|txt|doc|xls|ppt|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") {
 unset req.http.Cookie;
 }

 # Remove all cookies that Drupal doesn't need to know about. We explicitly
 # list the ones that Drupal does need, the SESS and NO_CACHE cookies. If after
 # running this code we find that either of these two cookies remains, we
 # will pass as the page shouldn't be cached.
 if (req.http.Cookie) {
 # Append a semicolon to the front of the cookie string.
 set req.http.Cookie = ";" + req.http.Cookie;

 # Remove all spaces that appear after semicolons.
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");

 # Match the cookies we want to keep, adding back the space we removed
 # previously. "\1" is first matching group in the regular expression match.
 set req.http.Cookie = regsuball(req.http.Cookie,
 ";(SESS[a-z0-9]+|SSESS[a-z0-9]+|NO_CACHE)=", "; \1=");

 # Remove all other cookies, identifying them by the fact that they have
 # no space after the preceding semicolon.
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");

 # Remove all spaces and semicolons from the beginning and end of the
 # cookie string.
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 # If there are no remaining cookies, remove the cookie header
 # so that Varnish will cache the request.
 unset req.http.Cookie;
 }
 else {
 # If there are any cookies left (a session or NO_CACHE cookie), do not
 # cache the page. Pass it on to the backend directly.

202 | Chapter 19: Reverse Proxies and Content Delivery Networks

 return (pass);
 }
 }
}

sub vcl_deliver {
 # Set a header to track if this was a cache hit or miss.
 # Include hit count for cache hits.
 if (obj.hits > 0) {
 set resp.http.X-Varnish-Cache = "HIT";
 set resp.http.X-Varnish-Hits = obj.hits;
 }
 else {
 set resp.http.X-Varnish-Cache = "MISS";
 }
}

sub vcl_fetch {
 # Items returned with these status values wouldn't be cached by default,
 # but by doing so we can save some Drupal overhead.
 if (beresp.status == 404 || beresp.status == 301 || beresp.status == 500) {
 set beresp.ttl = 10m;
 }

 # Don't allow static files to set cookies.
 # This list of extensions appears twice, once here and again in vcl_recv, so
 # make sure you edit both and keep them equal.
 if (req.url ~
 "(?i)\.(pdf|txt|doc|xls|ppt|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") {
 unset beresp.http.set-cookie;
 }

 # Allow items to be stale if needed, in case of problems with the backend.
 set beresp.grace = 6h;
}

sub vcl_error {
 # In the event of an error, show friendlier messages.
 set obj.http.Content-Type = "text/html; charset=utf-8";
 synthetic {"
<html>
<head>
 <title>Page Unavailable</title>
 <style>
 body { background: #303030; text-align: center; color: white; }
 .error { color: #222; }
 </style>
</head>
<body>
 <div id="page">
 <h1 class="title">Page Unavailable</h1>
 <p>The page you requested is temporarily unavailable.</p>

Sample VCL for Drupal | 203

 <p>Please try again later.</p>
 <div class="error">(Error "} + obj.status + " " + obj.response + {")</div>
 </div>
</body>
</html>
"};
 return (deliver);
}

Content Delivery Networks
CDNs can be used either in place of or in addition to a reverse proxy. As we mentioned
in the introduction to this chapter, a CDN can dramatically increase the speed of your
website, not only by caching your content, but also by dispersing that content geo‐
graphically and making it available on a fast network link in order to optimize perfor‐
mance for visitors from all over the world.

In the most simple configuration, a CDN can be set up to serve all static content from
your site. However, CDNs are capable of doing much more: for example, they can handle
all traffic to your website (imagine pointing your website’s domain to a CDN server
instead of it pointing to your web server) and even potentially handle SSL requests,
which is something that Varnish can’t do.

Serving Static Content Through a CDN
The easiest (and cheapest!) way to integrate a CDN with your site is to use the CDN as
a static cache store. Generally this means storing images, JavaScript, and CSS on the
CDN, but serving all page requests from your own servers. When a request comes in
for a page on your site, the request is handled by your web server, but all static content
is referenced with a URL that points to the CDN server so clients will fetch all of that
content from the CDN server(s) directly. When missing or expired content is requested
on the CDN, it makes requests directly to the backend server(s) to update its cache. The
CDN Drupal module makes this configuration very easy by automatically rewriting
URLs for you.

In the case of a CDN set up to pull content, rewriting the URLs is all that is needed
because the CDN will automatically request items from your web server if it doesn’t
have them in its cache. Another type of CDN is a push CDN, where you must manually
upload content to the CDN servers before it will be served. The Drupal CDN module
also handles such CDNs (with additional configuration), though pull-based CDNs are
much more common.

204 | Chapter 19: Reverse Proxies and Content Delivery Networks

https://drupal.org/project/CDN

When to Use a CDN
CDNs can provide an amazing performance boost to your site with very little config‐
uration overhead. Cached items are served faster to visitors, and load is reduced on your
servers as more requests are dealt with by the CDN. In general, if you can afford the
cost of a CDN, then there is no reason not to use one. While the cost for larger sites and
those needing special features can grow quite large, there are many affordable CDN
providers for small- to medium-sized sites.

Choosing Between a CDN and a Reverse Proxy
There is actually no reason that this needs to be an either/or decision. If you have a
reverse proxy in place, you will still see benefits from adding a CDN. The caches can
layer well, and any special request handling that needs to happen can easily be configured
with some custom headers passed on by the CDN and handled in the reverse proxy (or
vice versa).

Content Delivery Networks | 205

CHAPTER 20

Load Testing

We mentioned in Chapter 1 that performance improvements are not a one-time task,
but are something that should be revisited in iterations throughout the lifetime of a
website. Load testing is an important aspect of any project: it provides insight into how
your site and infrastructure will react under load. While critical to the launch process
of any project, load testing is also useful to integrate into your standard testing proce‐
dure. It can help you locate bottlenecks and generic performance regressions introduced
in the evolution of a site after launch (due to code and infrastructure changes).

There are many different methodologies and applications for performing load tests, but
generally this testing involves accessing various pages on the site with enough traffic to
start causing degradation. From there, work can be done to isolate bottlenecks in order
to improve performance. If you perform periodic load tests, you are much more likely
to catch something while it’s still a minor performance issue, not after it becomes a major
problem.

Different Types of Load Tests
There are a number of different load testing configurations (sometimes referred to as
test plans) that can be used individually or in conjunction to provide insight into site
performance. Generally, we end up running three different types of tests:
Baseline tests

These tests are run with a relatively low amount of traffic in order to obtain some
baseline information about site performance. These are useful for tracking general
user-facing performance (time to first byte, time for a full page load) and for com‐
paring against a higher-traffic load test result, as well as for tracking regressions in
the standard case.

207

High traffic tests
Tests with relatively higher traffic are run in order to see when site performance
begins to degrade as traffic increases. These tests can give you an idea of how many
requests a site can handle before performance deteriorates to an unacceptable de‐
gree. At the same time, these types of tests are very good for uncovering bottlenecks
in a site; many times issues with underlying services or service integration require
a higher load in order to trigger. Generally speaking, this type of load test is the one
that is run most frequently.

Targeted tests
Most tests are designed to cover all different request types and page types for a site.
Targeted tests take a different approach; they are designed to test one or several
specific features or user paths. For example, if you are working to improve the
performance of a certain page type on your site, you could run a load test that only
focuses on that particular area.

Depending on the load testing tool in use, these tests could all be based on the same test
plan by tweaking the amount of traffic generated and/or by enabling or disabling certain
parts of the test plan in order to focus testing on only a subset of the site.

Creating a Valid Test
One of the most difficult aspects of load testing is creating a test that represents real site
traffic. If the test diverges greatly from real traffic patterns, the performance results and
bottlenecks found during the test may not help you improve real-world performance
in a meaningful way. By starting with a test that as closely as possible matches real-world
traffic (or expected traffic, if you are looking at a new/growing site), you’ll more reliably
uncover performance issues on your site. Fine-tuning a load test can happen over time
in order to keep it in line with shifting traffic patterns and new features added to a site.
Things to take into consideration when creating and reviewing a load test plan include:
User browsing patterns

What pages are visited most often? How long do users spend on different page
types? What are the most common entry points into the site?

Logged-in traffic
What percentage of traffic is logged in versus anonymous users? Do logged-in users
visit different pages than anonymous users?

Amount of content
When creating a new site, do you have enough content on the site to perform a valid
test? If not, then consider creating content programmatically before running a test.
The Devel module is great for this purpose (among other things).

208 | Chapter 20: Load Testing

https://drupal.org/project/devel

When to Test
There are many ways to approach load testing for a given website and infrastructure.
How frequently tests are run is entirely up to you. Some sites may run a load test man‐
ually once per month, while others may run tests multiple times per day. Whatever you
decide, it’s important to run a baseline test occasionally to understand what “normal”
performance looks like. Only once you have baseline numbers for user-facing and
server-side performance during a load test can you define what is “good” or “bad” in a
particular test result.

Continuous Integration (CI)
Testing can be tied into your development process using a tool such as Jenkins (described
in more depth in Chapter 9). Tests could be set up to run each time a new release is
pushed to the staging environment, or if you have sufficient resources, tests could even
be run each time new code is pushed to the site’s code repository.

Periodic Testing
For those who don’t want to deal with the overhead of testing for each new code push,
an alternative approach is to test on some predetermined schedule. This could be daily,
weekly, or even monthly. The more frequently tests are run, the easier it will be to directly
link a change in performance to a specific change on the site. If you go too long between
tests, it can become much harder to pinpoint the cause of a performance problem.

Manual Targeted Testing
In addition to the previously described approaches, it can be useful to run manual tests
occasionally, especially if you are trying to test a specific aspect of the site with a targeted
test plan. For example, if you are planning a media event that will drive a lot of new
users to your site, it might be beneficial to run targeted tests against the main site entry
points and features that may receive higher than normal traffic, such as user registration.

Interpreting Test Results
One problem that many people encounter with load testing is that they are bombarded
with too much data in the results, and it’s not always clear what information is important.
In most situations, you will at least want to examine:
Time to first byte

Also referred to as latency in some load testing applications. This is quite important
as it usually represents the actual Drupal execution time (or caching time), whereas
other data points are less focused.

When to Test | 209

Full page load time
Also referred to as response time in some applications. The difference between time
to first byte and this is mainly due to the size of the page, the network path, and
other issues.

Requests per second
The number of page requests per second is an important statistic to look at when
planning for traffic loads and infrastructure scaling.

Error responses
These are another very important data point, and also the most likely to be ignored.
A failing site will often load test very well; however, those results are obviously not
providing very useful information and misrepresent the actual site performance.
Paying attention to the error responses can give you an idea of where problems may
be occurring. For example, Apache may have timeouts waiting on backend requests
such as connecting to MySQL when the DB server is overloaded, and in those cases
may return a 503 error.

Depending on what the goals are for your load test, you may also be looking at additional
information such as bytes transferred or throughput for a particular page.

No matter what data you choose to track, it becomes even more valuable if you are able
to track it over time. By comparing multiple test results, you’ll get a much better idea
of your site’s performance as well as gaining the ability to see trends in the performance
data. It can be very useful to observe things like page load time to see how it varies over
time, or how it might increase or decrease in response to a specific code or infrastructure
change.

Another important consideration is to understand how requests from load testing soft‐
ware differ from requests made by a user using a standard web browser. For example,
JMeter, which we cover later in this chapter, does not execute JavaScript, and by default
it will not download linked assets on a page (more on this in “Example Load Test Using
JMeter” on page 212). In general, those differences are acceptable as long as they are
understood. However, it can be worthwhile to perform some sort of additional testing
with a tool that more accurately represents a browser. These tools are not always capable
of high-traffic load tests, but they can at least be used to establish a baseline.

Server Monitoring During Load Tests
When you run a load test, you’ll be presented with a list of results that focus entirely on
client-side performance, since that is all that the load testing application can see. It’s
important to monitor servers and services during load test runs in order to get the most
from your tests and to be able to track down infrastructure bottlenecks. Of course, this
sort of monitoring could be left to the automated systems you set up while reading
Chapter 8, but it can also be useful to manually watch the servers during test runs to see

210 | Chapter 20: Load Testing

how things are affected and adjust what you are monitoring. Different sites will suffer
from completely different infrastructure bottlenecks, so it’s best to keep an eye on as
much data as possible, but for starters we recommend:
Web servers

Watch overall system load, memory usage, swap usage, network traffic, and disk I/
O. Also keep track of things like the Apache process count to see if you are ap‐
proaching (or hitting!) the MaxClients setting. As always, don’t forget to watch logs
for Apache to see if any errors are being reported.

Reverse proxies and other caches, such as memcached
Watch load, network traffic, and caching statistics. Is your cache hit rate higher or
lower than normal? Try to understand why that might be (e.g., a test plan that only
hits a very small subset of the site’s pages would likely cause higher cache hit rates).
Watch memory usage and evictions to be sure that the cache isn’t becoming overly
full and forced to delete items before they’ve expired.

Database servers
Watch the server load and connection count, and watch the MySQL error log for
any unusual errors. Ensure that the MySQL slow query log is enabled, and watch it
for potential query improvements that can be made (see e.g. pt-query-digest in the
Percona Toolkit). You can also watch MySQL statistics directly or with tools such
as mysqlreport to monitor things like InnoDB buffer usage, lock wait times, and
query cache usage. Watch the MySQL process list to see if there are certain queries
running frequently or causing waits for other queries.

Where to Test
There are a number of options to determine which environment to run load tests against:
development, staging, production, or potentially some environment dedicated to load
testing. In an ideal world, tests should always be run against the production environment
to obtain the most valid data possible. However, site users (not to mention investors)
tend to dislike the website becoming unusably slow due to a load test. While some people
may be able to run tests against production, even if it means scheduling the test for 3
a.m. or some other low-traffic time, others won’t have that option. Our advice is to take
into account what the goals and requirements are for your load testing and, based on
that, run the tests against an appropriate environment.

One other consideration when planning which environment to run a
load test against is whether or not the test will be creating and/or
deleting data on the site. In general, testing things like user com‐
ments against a production site can be very difficult to do in a way that
doesn’t interfere with your users.

Where to Test | 211

As we mentioned in Chapter 7, the more closely your staging environment mimics
production, the more useful it will be. In the case of load testing, staging can be a very
fitting place to run load tests. While your staging servers may not be as numerous and
high-powered as those in the production environment, you can still easily track down
many performance issues and infrastructure bottlenecks by running tests against the
staging environment if it is similar to your production environment.

Another option is to run tests against a development environment. This is especially
valid for tests integrated with CI. While the performance numbers here will, expectedly,
differ from in production, it’s still a great way to test for performance changes when
code changes occur.

When running tests against an environment that is not your produc‐
tion environment, be aware that any user-facing performance num‐
bers should be taken with a grain of salt. That is, performance will
likely be slower than in your production environment, but the num‐
bers can still be useful when comparing test results over time.

In cases where test or staging environments are under heavy use, it may not be possible
to run load tests against those environments. For those situations, usually the only al‐
ternative is to have a dedicated “load testing” environment used specifically for load
tests—or potentially also for other automated tests, such as acceptance testing). As al‐
ways, the more closely this environment can mimic production, the more valid your
test results will be. For those infrastructures that run mostly in the cloud, this environ‐
ment might be spun up on demand when tests need to be run, but otherwise left offline.

Some sites might insist on running load tests against production in order to have “real”
numbers. While this can make sense in certain situations, it’s rare that a dedicated staging
environment won’t be sufficient to get the data required. Generally, our recommenda‐
tion would be to only run low-traffic tests against production in order to obtain user-
facing performance information. If you are trying to put the site under a heavy load in
order to catch performance bottlenecks, then doing so in a staging environment should
yield useful results.

Example Load Test Using JMeter
While there are many load testing applications and services available, JMeter is one open
source option that we have used extensively. JMeter tests are fairly flexible, and the ability
to run tests either from a GUI or directly from command line makes it convenient for
running tests remotely. As an example, we’ll configure a simple load test plan with
JMeter that logs into a Drupal site, visits a few pages, and then logs out. Once this is
complete, you can configure how many concurrent threads you would like to run and

212 | Chapter 20: Load Testing

http://jmeter.apache.org

for what duration, and you should have a good understanding of how it might be adapted
to run against your own site.

JMeter has some downsides: it doesn’t execute JavaScript, nor does it
render the HTML for pages it retrieves. You can still get useful per‐
formance information from JMeter tests, but be aware of those limi‐
tations and plan for another way to test JavaScript and rendering times
if needed. There are multiple options for this type of testing, includ‐
ing Selenium and PhantomJS.

First, we need to understand the structure of the site we’ll be testing. Our example is a
standard Drupal 7 site with some “static” node pages, a forum section, and a front page
that dynamically displays custom content to logged-in users, or a list of featured articles
for anonymous users. For our load test, we’ll want to test each of these different page
types—plus, it’s always important to focus attention on the front page, both for anony‐
mous and logged-in users. You don’t want people leaving your site because the front
page took too long to load!

Global Test Settings
When you first launch JMeter, you will be presented with an empty test plan. We’ll start
by naming the test plan something original, like Drupal, by editing the Name field. Next,
we’ll start adding some global settings that we’ll refer to in other parts of our test. Settings
are stored in objects that JMeter refers to as Config Elements, and in this case, we’re
going to add one of the type User Defined Variables. To add this to the test, right-click
on the test plan icon in the left toolbar and select Add→Config Element→User Defined
Variables. The new element should appear as a child under the test plan.

Select the new object, and change the name to something useful like Global Settings.
Next, we’re going to add the variables listed in Table 20-1.

Table 20-1. JMeter global settings
Name Value

site.hostname d7.example.com

site.port 80

testlength 300

drupal.user testuser

drupal.pass verysecurepassword

Of course, you’ll want to set the hostname to your site’s real hostname, and set the user
account and password to some existing (nonadmin) account. We will use that account
for the test threads to log into the site. The testlength variable will be used to control

Example Load Test Using JMeter | 213

how long the test runs (in seconds). Once complete, the settings should look something
like Figure 20-1.

We are using only a single account in this test in order to keep the
example as simple as possible. You should consider using many (doz‐
ens, or hundreds, depending on your site’s user base) user accounts to
more accurately reflect real-world traffic.

Figure 20-1. JMeter global settings

Next, we’ll create an HTTP Request Defaults Config Element in order to store default
values for all of the HTTP requests we’ll make later in the test. This saves us having to
enter things like the server hostname in every single request, since if it’s not specified,
it will fall back to these default values. Right-click on the test plan and go to Add→Config
Element→HTTP Request Defaults. In the HTTP Request Defaults configuration, set
Server Name or IP to our global variable, ${site.hostname}, set Port Number to the vari‐
able ${site.port}, and then set Implementation to HttpClient4, Protocol to http, and

214 | Chapter 20: Load Testing

Content encoding to utf-8. Once complete, your settings should look like those in
Figure 20-2.

Figure 20-2. HTTP Request Defaults

As mentioned previously, JMeter will not download linked assets by
default. This includes CSS, images, applets, and iframes. This differs
greatly from what happens when an actual user accesses your site, since
the user’s browser will download all of those assets. The setting for
controlling this behavior in JMeter is Retrieve All Embedded Resour‐
ces from HTML Files, located in the Optional Tasks section of HTTP
Request Defaults or any individual HTTP Request. Many sites leave
this setting disabled since most slowdowns and infrastructure bottle‐
necks are caused by serving the page itself, not the linked assets. This
is especially true when you have incorporated a reverse proxy or a CDN
to cache static assets. That said, if you choose to leave this option
disabled for standard test runs, we advise running periodic tests with
it enabled to ensure that asset delivery is happening as fast as expected.

Example Load Test Using JMeter | 215

Thread Groups
JMeter has the concept of thread groups, which is a way to group together a set of threads
that will perform certain requests (anything defined as a child of the thread group)
against the site. This can be useful for splitting up the test into different sections—e.g.,
tests for things like authenticated users versus anonymous users. Because thread groups
each have configurable settings for timing and number of threads, it’s also possible to
use them to put different traffic loads on different parts of the site. In our case, we’re
going to define a single thread group for authenticated traffic, though it will also include
an anonymous visit to the site’s front page. For a more complete test plan, it would be
useful to also add at least one more thread group to handle anonymous traffic, but we
leave that as an exercise for the reader.

JMeter threads are not the same as real users on your site. While a
single thread may seem like it closely represents a user, remember that
JMeter is not rendering pages or reading content once it’s displayed —
it’s just loading pages as fast as possible and then going on to load the
next page in the test plan. This can give you an idea of how many
requests per second your site can handle, but it does not directly
translate into the number of users your site can handle.

To add a thread group, right-click on the test plan icon in the lefthand toolbar and go
to Add→Threads (Users)→Thread Group. The new thread group should appear below
your global settings in the left toolbar, as shown in Figure 20-3. Name it Authenticated
Users so that you know what type of testing it will be handling. Now we’ll want to
configure the number of threads—let’s go with 10 for now, as that’s a relatively small
amount of traffic but should still give us a good baseline on performance. The Ramp-
Up Period is how long JMeter takes to create all of the threads. Let’s set that to 20 seconds,
meaning JMeter will create a new thread every two seconds until it hits the 10 total
threads we’ve configured.

There are a couple of options for how to control the test duration. First, you could set
a loop count on the thread group. This controls how many times each thread loops over
the test plan within the thread group. In our case, we’ll set this to ‘Forever', and instead
we’ll set a limit on the time duration of the test. To do this, click the ‘Forever’ checkbox
next to ‘Loop Count', and then click the ‘Scheduler’ checkbox to enable the scheduler.
It will fill in ‘Start Time’ and ‘End Time’ with the current date and time; that can be
ignored. In the ‘Duration’ setting, add the value ${testlength} which will use the tes‐
tlength variable that we defined in our global settings. Once complete, the test plan order
and thread group settings should look like Figure 20-3.

216 | Chapter 20: Load Testing

Figure 20-3. JMeter thread group[]

Handling Cookies
This thread group is intended to simulate authenticated traffic, which means that we’ll
need to handle the session cookies used by Drupal. In JMeter, this can easily be accom‐
plished by using an HTTP Cookie Manager. This is a configuration element similar to
the User Defined Variables element we are using to store global variables. In this case,
however, we’ll keep the HTTP Cookie Manager as a child of the Authenticated Users
Thread Group instead of using it globally, since it is private to this thread group.

In order to add an HTTP Cookie Manager, right-click on the thread group and go to
Add→Config Element→HTTP Cookie Manager. It should show up indented to repre‐
sent that it is a child of the Thread Group element—if it doesn’t show up in the correct
location, you can drag and drop it within the left toolbar to add it as a child of the thread
group.

Configuration of the HTTP Cookie Manager is very simple. The only setting that we
need to change from the defaults is to select Clear cookies each iteration. That will remove
any cookies from a thread after it’s gone through one loop of the thread group tests,

Example Load Test Using JMeter | 217

meaning that each thread starts fresh (similar to a new user) each time it loops through
the thread group.

Login Controller
Although it’s not too complicated, performing the Drupal login is probably the most
difficult part of this particular load test plan. The login itself is quite simple: we just need
to POST the username and password to the /user/login form page. What makes this more
difficult is that the form also contains a hidden form_build_id input containing a ran‐
dom hash, which we’ll need to POST with the form in order for Drupal to accept the
submission. To accomplish this, we’ll need to first load the form (located at /user), and
then use a Regular Expression Extractor to pull the form_build_id string out of the page
source. This same technique will work for any Drupal form. Do you feel like a spammer
yet?

Let’s start by adding a Simple Controller under the thread group. We’ll use this to group
together all of the login logic to keep it self-contained. It doesn’t matter to JMeter if we
do this or not, but it makes the test plan more readable, and it also makes it easy to
duplicate the form handling logic should we ever need it elsewhere on the site. Right-
click on the thread group and go to Add→Logic Controller→Simple Controller; it
should appear underneath the HTTP Cookie Manager, also as a child of the thread
group. The Simple Controller has no options aside from its name; we’ll name this one
Login.

Now we can add the request elements needed in order to fetch and submit the login
form. The process consists of requesting the /user page, pulling out the form_build_id
string from the response data, and then submitting the form with a POST request to /
user/login. We’ll start by creating an HTTP Request element to request the /user page.
Right-click on the new Login controller we just created and go to Add→Sam‐
pler→HTTP Request. Change the name to User Form. Since we have a global HTTP
Request Defaults object set up, there’s no need to fill in most of the request fields. The
only thing we need to set is the Path, which needs to be set to /user.

In order to get the form_build_id, we’ll need to create a Regular Expression Extractor as
a child of the User Form request. Right-click on the User Form request and go to
Add→Post Processors→Regular Expression Extractor. It should show up as a child of
the User Form request, but drag it there if not. Name the extractor Drupal form build
id. We’ll keep the defaults for the other settings, and then we just need to create a regular
expression to extract the form_build_id string. The string appears in the page source
like this:

<input type="hidden" name="form_build_id"
 value="form-P6bhzmdBofDC_AZ-yjHn6ZB-R35b5ljF1hmTEwXbDF0" />

218 | Chapter 20: Load Testing

Everything after form- in the value string is a random hash specific to that particular
form, but we’ll want to grab the whole string including the “form-” at the beginning. To
do this, we can use the following regular expression:

name="form_build_id" value="(.*?)"

For the Reference Name, enter form_build_id — this is the variable name we’ll be able
to use later to refer to this value. Next, for Regular Expression, enter the regular ex‐
pression just shown. For Template, enter 1 — this tells JMeter to assign whatever is
in the first reference (in between the parentheses in the regular expression) to the vari‐
able we’re creating. Finally, for Match Number, enter 1 — this tells JMeter to apply this
regular expression to the first match it comes across. Note that if you have multiple
forms showing up on the login form (such as a search box in the header), you may need
to adjust this.

Now we’ll create a second request for submitting the form. Right-click on the Login
Controller and go to Add→Sampler→HTTP Request. If needed, drag it so that it appears
underneath the User Form request, but still as a child to the Login Controller. Name
this request Submit User Form, change the Method setting to POST since we’re submit‐
ting a form, and then set the Path to /user/login. Next, we’ll need to add a list of param‐
eters to send with the request. These can be added by clicking the Add button below
the parameters list. Add the parameters shown in Table 20-2.

Table 20-2. User login parameters
Name Value Encode Include Equals

name ${drupal.user} No Yes

pass ${drupal.pass} No Yes

form_build_id ${form_build_id} No Yes

form_id user_login No Yes

op Log in Yes Yes

For name and pass, we are referring to the variables we set in the global settings earlier.
form_build_id uses the results from our regular expression extractor to submit the
appropriate form_build_id. form_id is another hidden field that we need to submit, and
op is the name of the submit button for the form. The top portion of the Submit User
Form request should look like Figure 20-4—nothing needs to be changed below the
parameters list.

Example Load Test Using JMeter | 219

Figure 20-4. Submit user form

Browse Controller
Now that we have the ability to log into the site, we’ll create a list of a few pages that we
want to test. Start by creating another Simple Controller as a child of the Authenticated
Users thread group, and name it Browse — this will be used as a container for our au‐
thenticated user page browsing requests. Be sure that this controller is below the Login
Controller, but as a direct child of Authenticated Users, not as a child of the Login
Controller. Next, we’ll create individual HTTP Request elements for each page that we
want to test.

Another approach to this is to create a CSV file listing URLs to visit.
This can be easier to maintain for a large number of paths. We won’t
describe this approach in detail, but it can be done by using a CSV
Data Set Config element to read the CSV file into a list of variables.

For each page we’re going to test, we’ll create an HTTP Sampler by right-clicking on the
Browse controller and going to Add→Sampler→HTTP Request. Since we’re using the
HTTP request defaults, the only settings that need to be changed for each request are
the name and path. In the case of our example site, we’ll want to test the front page, the
forum index, a forum post, and a couple of article pages. We’ll do this by adding request
elements for the name/path combinations listed in Table 20-3.

220 | Chapter 20: Load Testing

Table 20-3. Page requests
Name Path

Front Page /

Article 1 /somearticle

Article 2 /anotherarticle

Forum Index /forum-index

Forum Post 1 /forum/post-1

These are actual paths on our test site, but you’ll obviously want to adjust these to fit
your site, being sure to cover all the various page types you have in place.

We’re now testing a full set of pages as an authenticated user. However, it would also be
useful to test at least the front page as a nonauthenticated (anonymous) user, since many
people will visit the front page directly before logging in. To simulate this, create a
duplicate of the Front Page request element, rename it Front Page (Anon), and drag it
just above the Login Controller. This way, each thread will request the front page before
logging in and proceeding to visit the other pages. Once we’ve done this, our test plan
looks like Figure 20-5.

Figure 20-5. Test plan

Output Configuration
Now that our test plan is complete with a set of page requests, the only piece missing is
to save the request results. This is done by creating a Simple Data Writer element within
the test plan. The data writer could be created at the global level in order to save all
requests from a test, or it could be placed within a thread group in order to save results
only from that set of requests. This is useful if you have multiple thread groups (e.g.,

Example Load Test Using JMeter | 221

Authenticated Users and Anonymous Users) and want to write out to different data files
for each of them. You can have data writers at as many levels of the test as you like. In
our case, we’ll add one global data writer to catch all requests. To do this, right-click on
the test plan and go to Add→Listener→Simple Data Writer. Name it Full Test Output,
and enter a filename for it to save to, such as /path/to/jmeter-test/full-output.jtl.

Data writers have many options regarding which data to save in the file. Note that if you
are saving the full responses, the file can get large rather quickly if you’re doing a large
number of requests. In general, settings such as those shown in Figure 20-6 will be
sufficient; however, if you are debugging issues with requests or responses, it can be
useful to save the request and/or response headers and the full response data. We’ll
describe how to view the output data momentarily, in the section “Reading Test Results.”

Figure 20-6. Data writer configuration

Running a Test
Tests can be run either by opening the test in the JMeter GUI and clicking on the Play
button in the toolbar, or from the command line. If you’re running the test from a remote
server, simply run the following:

$ /path/to/jmeter/bin/jmeter -n -t /path/to/test/loadtest.jmx

In this command, -n tells JMeter to run in non-GUI mode, and -t tells it the path to
the test plan file you want to execute.

Reading Test Results
Now for the fun part, reading the test results to see how our site performed! There are
a number of reports available for reading results, though for an overall picture, the best
choice is to use the Summary Report. Add one of these to JMeter by right-clicking on
Workbench and then going to Add→Listener→Summary Report. Once that is created,

222 | Chapter 20: Load Testing

click on the Browse button next to the Filename input, and select the output from your
test run. JMeter will load that data and display a summary report, as seen in Figure 20-7.

Figure 20-7. JMeter summary report

In our case (this was run over a LAN), we can see very fast page load times for all pages
on the site. The forum index and forum post are by far the slowest pages, so if we were
looking to make improvements, that would be the place to start; however, they are by
no means slow at an average load time of around 700 ms.

If you want to dig down into individual requests, you can use the listeners View Results
in Tree or View Results in Table, which allow you to click on each individual request to
see the details. As we mentioned earlier, this can be a good way to troubleshoot errors
with the test—for example, if your login isn’t working properly, you could use these
listeners to track the headers sent and received in order to debug what might be going
wrong.

In addition to the built-in listeners, there are some great third-party plug-ins that pro‐
vide a nice set of graphs for viewing things such as latency (time to first byte) and full
page load time within your results. We highly recommend using jmeter-plugins—
specifically, the graphs for Response Latencies over Time and Response Times over
Time are very useful for visualizing how the page load times vary for different pages
throughout the test. Figure 20-8 shows an example of the response times graph for our
test—here, it’s easy to see the performance difference between the forum pages and the
rest of the site.

Example Load Test Using JMeter | 223

http://jmeter-plugins.org/wiki/Start/

Figure 20-8. Response times graph

224 | Chapter 20: Load Testing

CHAPTER 21

Where to Next?

We hope that this book has given you an actionable approach to improving the perfor‐
mance of your Drupal website. Website performance is a very broad topic, and while
we hope we have given enough information about common performance issues, it’s just
not possible to cover everything in detail. Here, we present a number of resources for
additional reading on many of the topics we’ve covered in the book, as well as general
resources for Drupal performance and scalability.

Official Book Website
This book has an official website that links to code snippets and configuration files
discussed in the book.

High Performance Drupal Group
There is a Drupal Group focused on high-performance Drupal issues. This is a good
place to see what other people are doing and to ask performance- and scalability-related
questions.

Drupal Watchdog
Drupal Watchdog is the only print magazine specific to Drupal. The magazine includes
articles from many well-known Drupal contributors focusing on many different topics,
including Drupal performance. Articles are made freely available online sometime after
each issue is released in print.

225

http://shop.oreilly.com/product/0636920012269.do
https://groups.drupal.org/high-performance
http://drupalwatchdog.com

Revision Control with Git
The Pro Git book is available here. The Git Flow extensions that are built around the
branching model mentioned in Chapter 9 are available at here. A general comparison
of Git and Subversion can be found here.

Varnish
The Varnish Reference Manual is the authoritative source for configuring Varnish and
writing VCL. There are a number of Varnish Modules and Extensions (VMODs) located
at https://www.varnish-cache.org/vmods that can help you easily extend the function‐
ality of your VCL files.

Configuration Management
One advantage of using modularized configuration management systems is that it is
easy to share and reuse code. The Chef community is perhaps one of the best at this,
with its vast collection of cookbooks. Puppet also has a growing list of community
modules.

Vagrant
There are a number of prebuilt Vagrant virtual machine “boxes” available online. Va‐
grantbox.es provides links to many of them, including “official” boxes provided by
PuppetLabs, Opscode (Chef), and Ubuntu.

Jenkins
Jenkins has a number of plug-ins that make it even more useful. Some of the ones we
use most frequently include:

• The GitHub plug-in, which lets you tie into GitHub repos and kick off jobs based
on activity there

• The Build Keeper plug-in, which allows you to configure rules to keep or discard
builds

• The Performance plug-in, which ties into JMeter or JUnit test runs in order to
display test data and can trigger a build error condition based on errors during the
test run

226 | Chapter 21: Where to Next?

http://git-scm.com/book
https://github.com/nvie/gitflow
https://git.wiki.kernel.org/index.php/GitSvnComparison
https://www.varnish-cache.org/docs/3.0/reference/index.html
https://www.varnish-cache.org/vmods
http://community.opscode.com/cookbooks
http://forge.puppetlabs.com
http://www.vagrantbox.es
http://www.vagrantbox.es
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/GitHub+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Build+Keeper+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Performance+Plugin

MySQL Performance
The MySQL Performance Blog is an excellent source for tips, tools, and some very
interesting benchmarks and test cases.

InnoDB Index Structures
To extend on the index structure overview that was given in Chapter 15, check out
Jeremy Cole’s blog post “B+Tree index structures in InnoDB”.

MySQL Performance | 227

http://www.mysqlperformanceblog.com
http://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
A link, 65
Acquia Cloud, 122
adding caching, 34
adding files to a page, 11
administrative directories, 181
advantages of queues, 43
aggregation logic, 25
AJAX

callbacks, 50
requests, 66

Amazon EC2, 138
analyzing site performance, 6
anonymous users, 23
Ansible, Vagrant and, 106
Apache, 82, 82, 171–183

administrative directories, 181
attaching strace to, 74
cache headers, 178
custom configuration files, storing, 103
KeepAlive, 178
logging, 179
MPM settings, 175
Nginx vs., 182
PHP module for, 174
Prefork module, 176
server signatures, 181
Varnish, running with, 189
virtual hosts on development server, 106

VirtualHost and, 181
Apache Software Foundation, 186
Apache Traffic Server, 186
apachesolr module (Solr), 166, 167
APC, 171–173
APC user cache, 154
apc.stat runtime setting (APC), 172
apc._num_files_hint runtime setting (APC), 172
application performance, 59–77

Devel module, 60–65
strace, 74–77
Xdebug, 65
XHProf, 66–74

Aria storage engine, 132
Assetic library, 14
authenticated traffic, 22
authkeys configuration file (Heartbeat), 127
automation required for cloud infrastructure,

122

B
backend networks, 88
backups, as hosting consideration, 92
base tables (MySQL), 148
base64 encoding, 13
baseline load tests, 207
benefit of change, 2
BitBucket, 102

229

bottlenecks, 10
identifying, 10

branching model, of revision control systems,
102

bricks (GlusterFS), 114
browse controller (JMeter), 220
BSD, Heartbeat and, 127
BSON format, 162
Build Keeper plug-in (Jenkins), 226
bytes, time to, 3, 57

C
cache

bins, 37
chains, 37
Drupal API, 26
fetching items from, 5
granularity, 51
headers, 178
resource requirements for, 84
stampedes, 44
storage backends for, 154
storing items in, 5
tags, 38

Cache Actions, 25
cache chain backend, 37
Cache-Control cache header, 179
cacheable headers, 15
CacheArray, 39
cachegrind files, 65
caches, 82
CacheTags, 25
caching, 34–43

adding, 34
Drupal and, 21–25
expired content, serving, 197
for authenticated rulers, 196
inconsistent, 159
persistent, 37–43
render, 40–43
static, 34–37
wrappers and, 36

Cacti, 95, 98, 145
plug-ins for, 99

CFEngine, 103
check_command option (Icinga), 98
Chef, 103, 226

Vagrant and, 106
Chrome Developer Tools, 10, 13, 58

cloud deployments, 121–124
advantages of, 121
infrastructure overhead of, 122
issues, 123
prepackaged, 122

cloud washing, 121
clouds, managed, 122
clusters, file syncing across, 113–120

GlusterFS, 114
NFS server clusters, 116–120
rsync and, 113
single NFS server, 115
storage area networks (SANs), 120

code revision control, utility servers and, 90
Cole, Jeremy, 227
collecting information, 1

approaches for, 2
comma-separated values storage engines for

MySQL, 131
compression, 15
Config Elements (JMeter), 213
configuration API, 49
configuration management systems, 103

scripts, in revision control systems, 102
utility servers and, 90
Vagrant and, 106
with Puppet/Git, 103–106
workflow and, 107–110

Content Construction Kit (CCK) API, 161
content delivery networks, 82

Nginx and, 183
push vs. pull, 204

content delivery networks (CDNs), 204–205
frontend performance and, 16
goals of, 16
Google, 16
reverse proxies vs., 205
serving static content through, 204

content download, 57
Contextual modules, 52
continuous integration (CI), 209

utility servers and, 90
cookies

handling with thread groups, 217
VCL and, 195

costs, 3
as hosting consideration, 92
of infrastructure, 80

230 | Index

CPU, 69
performance issues and, 29
scalability issues and, 29
usage, monitoring, 97

Cron, 27
Cronolog, 180
CRUD, 162
CSS

aggregation, 9
caching, 196
Drupal and, 25

CSS Embedded Images, 13
CSV storage engines for MySQL, 131
custom JavaScript, 10
customizing content, 23

query log display, 61

D
Data Definition Language (DDL), 163
database logging, 26, 99

monitoring, 211
databases, 82

queries, time for, 5
resource requirements for, 83

dblog module, 26, 52
DDoS attacks, 55
Debian, log destinations on, 180
debugging, 53

in Views, 149
deleteMultiple() API, 38
deployment workflow, 107–110

DevOps, 107–110
with Git, 108
with Jenkins CI, 110

Devel module, 60–65
memory usage and, 60
page timing, 60
query log, 61–65

develop branch (Git), 109
development environments, 87

cost cutting for, 87
providing, 88
virtual hosts on, 106

development settings, 53
DevOps, 101–111

configuration management systems, 103
deployment workflow, 107–110
Git and, 103–106
Jenkins CI and, 110

Puppet and, 103–106
revision control systems, 102
virtual machines, development on, 106

directors (VCL), 189–191
types of, 190

disk usage, monitoring, 97
display redirection pages, 61
display time, frontend, 3
display_errors setting (php.ini), 173
DISTINCT (MySQL), 150
DNS lookup, 56
DNS vs. IP failover, 126
document complete events, 56
DOM selection, 10, 50
DRBD, setting up, 117–118
Driessen, Vincent, 108
Drupal, 21–28

cache API for, 26
Cron and, 27
CSS and, 25
ESI module, 197
JavaScript aggregation and, 25
logging and, 26
MySQL and, 131
optimizing, 29–45
page caching with, 21–25
read-only queries and, 137
reverse proxies with, 185
Solr, integrating with, 166
swappable storage for, 26
Views and, 27

Drupal API website, 37
Drupal Watchdog (website), 225
drush, 27, 35, 44

E
E link, 65
edge-side includes (ESIs), 196
Edit modules, 52
Elasticsearch, 82, 165
emergency fixes, 53
entity cache, 161
entity storage

CRUD, 162
EntityFieldQuery, 162
EntityQuery, 162
MongoDB, 162

EntityFieldQuery, 162
MongoDB and, 163

Index | 231

EntityQuery, 162
EntityQuery() API, 32
error responses, tracking, 210
ETag cache header, 179
event handling, 10
evictions, 160

least recently used (LRU), 154
Expire, 25
Expires cache header, 179
external requests, 5, 49
external scripts, 17

F
Facebook, 5, 49, 66
failover configuration, 125–130

for cloud deployments, 123
Heartbeat, 127
IP vs. DNS, 126
service-level issues and, 126

failover infrastructure, 91
failover, as hosting consideration, 92
false optimizations, 30
FastCGI Process Manager (FPM), 175
field API, 161
field storage

CRUD, 162
EntityFieldQuery, 162
EntityQuery, 162
MongoDB, 162

field_sql_storage module, 161
File Systems in User Space (FUSE), 114
file-backed memory allocation, 199
files, adding to pages, 11
Firebug, 10, 13, 58
Firefox, 58
first-time visitors, 5
frontend performance, 5, 9–19, 25

audits of, 10–12
cacheable headers, 15
CDNs and, 16
compression, 15
display times, 3
external scripts and, 17
HTTP requests, limiting, 9–12
image requests and, 12
jQuery and, 16
minification, 13
PageSpeed (Google), 55
real user monitoring, 58

SPOFs and, 17–19
third party libraries and, 16
verifying changes in, 55–59
waterfall charts, 56
YSlow, 55

frontend proxies, 82
full page loads, 3
function calls, 69

G
geographic distribution, as hosting considera‐

tion, 92
getMultiple() API, 38
Git, 103–106

repository, setting up, 104
Subversion vs., 226
workflow with, example, 108

Git Flow extensions, 226
Git Hub plug-in (Jenkins), 226
GitHub, 102
GlusterFS, 114

configuring, 115
goals, 2

realistic, 4
setting, 4

Google, 9
CDN, 16

Google Analytics, 59, 195
grace period for expired content, 197
gzip compression, 15

H
HA NFS clusters, 116–120

configuration for, 117
DRBD, setting up, 117–118
Heartbeat, 119
NFS, setting up, 119
testing, 119

ha.cf configuration file (Heartbeat), 128
HAProxy, 82
haresources configuration file (Heartbeat), 128
hb_standby tool (Heartbeat), 129
hb_takeover tool (Heartbeat), 129
Heartbeat, 119

configuration, 127–129
failover configuration with, 127
installation, 127
tools/options for, 129

232 | Index

Heartbeat+CRM, 127
Heartbeat+Pacemaker, 127
high availability infrastructure, 81, 91
High Performance Drupal Group, 225
high traffic load tests, 208
historic data, graphing, 98
horizontal scaling, 79–81
hosted environments, network layout control

on, 88
hosting considerations, 91
hotfixes, with Git, 109
HTTP requests

limiting, 9–12
minimizing, 9
reducing with JavaScript, 12

HTTP Sampler (JMeter), 220

I
Icinga, 95, 96–98, 145

check_command option, 98
icon fonts, 13
identifying bottlenecks, 10
image requests

frontend performance and, 12
vis CSS, 13

images
sprites, 13

images,caching, 196
improving page load time, 3
improving website performance, 1

potential improvements, 2
in-memory allocation, 199
indexes, 147

as trees, 147
improving build time for, 167

infrastructure, 79–93
bottlenecks in, 210
development environments, 87
failover, 91
for Solr, 168
high availability, 91
horizontal scaling, 79–81
hosting considerations, 91
internal network layout, 88
large-scale, 85
overhead for cloud deployments, 122
resource requirements and, 83
service categorization, 82
staging environments, 87

two-layer configuration, 84–85
utility servers, 90
vertical scaling, 79–81

initial connection, 57
inline option, 12
InnoDB storage engine, 131

index structures, 227
log file size, 136

innodb_buffer_size configuration option (In‐
noDB), 135

innodb_flush_log_at_trx_commit configuration
option (InnoDB), 135

innodb_log_files configuration option (In‐
noDB), 136

innodb_log_file_size configuration option (In‐
noDB), 136

internal vs. remote monitoring, 99
IP addresses, 117

failover vs. DNS, 126
virtual, 129

IPVS, 82
IUS RHEL/CentOS repository (website), 134

J
JavaScript

aggregation, 9, 25
caching, 196
custom, 10
JMeter and, 210
native functions, 10
nodes in, 52
reducing HTTP requests, 12

Jenkins CI, 27, 110
plug-ins for, 226

Jetty servers, 168
Jiffy, 59
JMeter, 212–223

browse controller, 220
cookie handling, 217
downloading linked assets with, 215
global settings for, 213
JavaScript and, 210
login controller, 218–219
output configuration, 221
test results, reading, 222
tests, running, 222
thread groups, 216

jmeter-plugins third party listener, 223
join order (MySQL), 148

Index | 233

jQuery, 10, 14, 16
frontend performance and, 16
update, 16

K
KCacheGrind, 65
KeepAlive (Apache), 178
KeepAliveTimeout (Apache), 178
key-based invalidation, 39
key/value store API, 49
key_buffer global option (MySQL), 134

L
Last-Modified cache header, 179
latency, testing, 209
least recently used (LRU) evictions, 154
Linux

Heartbeat and, 127
Memcache in, 159

load balancers, 82
load test plans, 208
load testing, 207–223

browse controller, 220
continuous integration (CI), 209
creating, 208
environments for, 211
global settings for, 213
interpreting results of, 209
login controller, 218–219
manual targeted, 209
output configuration, 221
periodic testing, 209
running, 222
server monitoring during, 210
test results, reading, 222
thread groups in JMeter, 216
types of, 207
with JMeter, 212–223

lock storage backends, 154
logging, 179

Drupal and, 26
for Varnish, 199

login controller, 218–219
logs

destination files for, 180
file format for, 180

log_errors setting (php.ini), 174
long TTLs, 39

Lucene project (Apache), 168

M
maintain coherency, 39
malloc, Varnish memory allocation and, 199
managed clouds, 122
manual targeted testing, 209
MariaDB, 132
master branch (Git), 109
max-age=N cache header, 179
MaxClinets setting (Prefork), 176
MaxRequestsPerChild setting (Prefork), 177
MaxSpareServers setting (Prefork), 176
max_connections global option (MySQL), 133
max_heap_table_size variable (MySQL), 134
measuring site performance, 2, 6
Meenan, Patrick, 18
Memcache(d), 82, 155–159

caching, inconsistent, 159
consistent hashing and, 157
daemon, configuring, 158
evictions, 160
monitoring, 211
PHP extensions for, 155
resource requirements for, 84
servers and bins for, 156
usage, 158
vanishing sessions, 160

memory allocation, 199
memory use, 69
memory_limit setting (php.ini), 173
Microsoft SQL Server, 82
minification, 13

during the build process, 14
on the fly, 14
pre-, for modules/themes, 14

minimizing HTTP requests, 9
MinSpareServers setting (Prefork), 176
mixed replication, 136
modules, 21
mod_php module (Apache), 174

Nginx and, 183
Mon, 127
MongoDB, 82, 162
Monit, 127
monitoring

synchronization process, 118
utility servers and, 90
Varnish, 199

234 | Index

Monty Widenus, 132
multiple entity loading, 32
multiprocessing module (MPM), 175
Munin, 95, 98

plug-ins for, 99
MyISAM storage engine, 131
MySQL, 82, 131–138, 139–145

configurations, global, 133
configuring, 133–136
default data relationships in, 151
DISTINCT, 150
Drupal and, 131
larger sites and, 153
MariaDB, 132
monitoring, 97, 99
mysqlreport, 141–145
openark kit, 140
optimizing, 147–152
Oracle MySQL, 132
per-thread configuration, 134
Percona Server, 133
Percona Toolkit, 139
queries, 147–152
replication, 136
starfish syndrome, 151
storage engine configuration, 135
virtualized deployment, 137

MySQL Performance Blog, 227
MySQL queries

base tables, 148
indexes, 147
join order, 148
node access and, 151
ORDER BY, 150
troubleshooting, 149
unrelated tables, 150

MySQL query cache, 48, 51
mysqlreport, 141–145

guide to, 141
mysqlsla tool (Percona), 139
mytop, 61

N
Nagios, 95, 145
Name Service Cache Daemon (NSCD), 126
Netflix, 59
network connection count, monitoring, 97
network layouts, 88
network traffic direction, 126

networks, backend, 88
NFS servers, 115

clustering, 116–120
Nginx, 82, 182, 186
no-cache cache header, 179
nodes in JavaScript, 52
number of queries, 64

O
oak-chunk-update tool (Openark), 140
oak-kill-slow-queries tool (Openark), 140
oak-purge-master-logs tool (Openark), 140
oak-security-audit tool (Openark), 141
oak-show-limits tool (Openark), 141
OPcache, 171
opcode cache, 171–173
openark kit, 140
OpenNMS, 96
optimizing Drupal, 29–45, 47–53

cache granularity, 51
cache stampedes, 44
caching, 34–43
context and, 29
debugging, 53
development settings and, 53
EntityQuery() API, 32
external requests and, 49
false, 30
listing entities and, 32–34
multiple entity loading and, 32
PHP errors and, 52
queues and, 43
race conditions, 44
sessions, 50
variable_set() and, 47–49
workers, 43

Oracle, 82
Oracle MySQL, 132
ORDER BY (MySQL), 150

P
page assets, 25
page caching, 21–25, 60

internal, 23
reverse proxy, 24
usage, 22

page load time, 3
decreasing maximum, 4

Index | 235

full page load, 3
improving, 3
improving for first-time visitors, 5
reducing average, 4

page requests per second, testing, 210
PageSpeed (Google), 9, 55

summary reports from, 56
Pantheon, 122
parsing requests, 21
PDO, 69
peak memory use, 69
Percona Server, 133
Percona Toolkit, 139

monitoring plug-ins for, 145
Percona Tools (website), 134
performance issues, 29

as site grows, 85
cache backends and, 154
with cloud deployments, 123

performance of revision control systems, 102
Performance plug-in (Jenkins), 226
performance projects, 1–8

baselines, establishing, 3
collecting information for, 1
Drupal for, 5
goals, setting for, 4
improvements, prioritizing, 6
improving, 1–3

periodic jobs, utility servers and, 90
periodic testing, 209
persistent caching, 37–43

cache bins, 37
cache chains, 37
cache tags, 38
CacheArray, 39
deleteMultiple() API, 38
getMultiple() API, 38
render caching, 40–43
setMultiple() API, 38

PhantomJS, 56
PHP, 171–183

Apache module vs. CGI, 174
cache headers, 178
custom configuration files, storing, 103
errors, and optimizing Drupal code, 52
execution time, 5
for anonymous users, 23
gzip support, 15
Memcache, extensions for, 155

memory usage, 173
opcode cache, 171–173
php.ini settings, 173
preprocessors, 14
strace, 74–77
Xdebug and, 65

Picture module, 12
ping checks against servers, 97
Poormanscron module, 27
PostgreSQL, 82
Prefork module (Apache), 175, 176
Pressflow 6, 137
private cache header, 179
Pro Git, 226
probe section (VCL file), 189
protwords.txt configuration file (Solr), 167
proxy caches, 82
pt-index-usage tool (Percona), 140
pt-online-schema-change tool (Percona), 140
pt-query-digest tool (Percona), 139
pt-table-checksum tool (Percona), 139
Puppet, 103–106

master server, setting up, 105
Vagrant and, 106

Q
query log display, customizing, 61
query results, 27
Query Settings (Views), 150
query_cache_size global option (MySQL), 134
queue daemons, 44
queues

advantages of, 43

R
race conditions, 44
RAM usage, monitoring, 97
range queries, 148
read-only queries (MySQL), 137
real users

monitoring, 58, 59
thread groups vs., 216

realistic goals, 4
recording site performance, 2
Red Hat

log destinations on, 180
NFS and, 119

236 | Index

Redis, 82, 153–155
Memcache session storage vs., 160

reducing page load time, 4
redundancy, 91
Regular Expression Extractor (JMeter), 218
remote vs. internal monitoring, 99
render caching, 40–43
rendered output, 27
replication

MySQL, 136
Solr, 168

request serve time, 5
requirements, 2
resource usage, 80
response time, testing, 210
responsive images, 12
reverse proxies, 185–204

caching for authenticated rulers, 196
content delivery network vs., 205
edge-side includes, 196
error pages, 198
expired content, serving, 197
logging for, 199
memory allocation, 199
monitoring, 199, 211
Nginx and, 183
resource requirements for, 84
Varnish Configuration Language (VCL),

187–204
with Drupal, 185

reviews, 2
revision control systems, 102

features of, 102
local or external, 102
system changes and, 102
with Puppet/Git, 103–106

RightScale, 123, 138
row replication, 136
RRDTool, 98
rsync, 113

S
SaaS solutions, 59
SASS, 13
scalability, 29

cache backends and, 154
Scalable Vector Graphics (SVG), 13
scaling out, 79
scaling up, 79

schema.xml configuration file (Solr), 167
script tags, 18
search backends, 82
search_api module (Solr), 166
security

as hosting consideration, 92
monitoring scripts and, 181

Sensu, 96
Server header, 181
server signatures, 181
ServerLimit setting (Prefork), 177
servers

multiple, Solr and, 168
virtual vs. physical, as hosting consideration,

92
ServerSignature setting (Apache), 181
ServerTokens setting (Apache), 181
service categorization, 82
service monitoring, 95–100

commercial software for, 96
graphing data from, 98
importance of, 95
internal vs. remote, 99
selecting services for, 96
tuning, 97
with Icinga, 96–98

services, 21
session storage backends, 154

Memcache(d) as, 158
sessions, 50

vanishing, 160
setMultiple() API, 38
setting TTLs, 39
setting variables, 48
settings API, 49
shared memory (SHM) mount, 138
short TTLs, 39
Simple Data Writer (JMeter), 221
simpletest adaption, 35
single points of failure (SPOFs), 17–19
site performance

analyzing, 6
measuring, 2, 6
recording, 2

slave lag (MySQL), 137
Slow Query Highlighting, 61
social widgets, 19
Solr, 82, 165–170

configuring, 166

Index | 237

features of, 166
indexing content, 167
infrastructure for, 168
installation, 169
performance and, 165
replication, 168
scalability and, 165

solrconfig.xml configuration file, 166
Sort Query Log, 61
Souder, Steve, 59
Speedy module, 14, 26
Sphinx, 82, 165
SPOF-O-Matic plug-in, 18
SQLite, 82
Squid, 186
ssh

checks against servers, 97
Jenkins and, 110

SSL negotiation, 57
SSL requests, handling with CDNs, 204
staging environments, 87
starfish syndrome, 151
start render events, 56
StartServers setting (Prefork), 176
statd hostname (NFS), 117
state API, 49
statement replication, 136
static caching, 34–37
stats command (Memcache), 159
storage area networks (SANs), 120
storage backends, 153–163

cache, 154
caching, inconsistent, 159
entity, 161–163
evictions, 160
field, 161–163
lock, 154
Memcache, 155–159
MongoDB, 162
session, 154

storing, 47
strace, 74–77

Apache and, 74
striped volumes (RAID-0), 138
Subversion vs. Git, 226
Summary Report (JMeter), 222
summary reports, 56
support, as hosting consideration, 92
swap usage, monitoring, 97

swappable storage, 26
synchronization process, 118
syslog module, 26, 52
system data, monitoring, 99
system log, 129

T
targeted load tests, 208
third party libraries

frontend performance and, 16
thread groups (JMeter), 216

cookies, handling with, 217
real users vs., 216

time problems, 63
time to bytes, 3, 57
tmp_table_size variable (MySQL), 134
Tomcat servers, 168
traffic patterns, 22

anonymous users, 23
authenticated, 22
content, 22
customized content, 23
frequent updates, 23

translators (GlusterFS), 114
Twitter, 5, 49
two-layer configuration, 84–85

U
updates, 23
uptime, as hosting consideration, 92
utility servers, 90

Jenkins and, 110

V
Vagrant, 106

distributing VMs with, 107
pre-built virtual machines, 226
virtual machines and, 106

variable_set(), 47–49
storing with, 47

Varnish, 24, 82, 185
Apache, running with, 189
error pages, 198
separating to dedicated servers, 86

Varnish Configuration Language (VCL), 187–
204
backends, defining, 188

238 | Index

caching for authenticated rulers, 196
changes to files, loading, 187
cookies and, 195
directors, 189–191
edge-side includes, 196
logging for, 199
memory allocation, 199
monitoring, 199
subroutines, built-in, 191
subroutines, customizing, 192–195

Varnish Reference Manual (website), 226
varnishcsa daemon (Varnish), 199
varnishhist logging tool (Varnish), 200
varnishlog logging tool (Varnish), 200
varnishstat logging tool (Varnish), 199
VCL file, sample, 200–204
vcl_error subroutine (VCL), 192, 198
vcl_fetch subroutine (VCL), 192
vcl_hash subroutine (VCL), 192
vcl_recv subroutine (VCL), 192
verifying changes, 55–77

in frontend performance, 55–59
to application performance, 59–77

vertical scaling, 79–81
Views

data relationships in, 149
default data relationships in, 151
Drupal and, 27
EntityFieldQuery builder, 162

Views Cache Bully, 28
virtual IP, 129
virtual machines

deployment workflow, 107–110
development on, 106
disappearing/failing, with cloud deploy‐

ments, 123
distributing with Vagrant, 107
pre-built, 226
Vagrant, setting up with, 106

VirtualHost, 181
virtualized deployment of MySQL, 137

W
wall time, 69

waterfall charts, 56
Web Episodes, 59
web server data, monitoring, 99, 211
web services, 82

resource requirements for, 83
WebKit implementation, 56
webpagetest, 58
website

goals, 2
performance, improving, 1
requirements, 2

widgets, social, 19
Worker module (Apache), 175
workflows, deployment, 107–110
wrappers, adding caching to, 36

X
Xapian, 165
Xdebug, 60, 66

PHP and, 65
XHProf vs., 66

XHProf, 60, 66–74
extension, 67
Xdebug vs., 66

XtraDB storage engine, 132

Y
Yahoo!, 9, 186
YouTube, 26
YSlow, 9, 55

summary reports from, 56

Z
Zabbix, 95, 96
Zend Optimizer+, 171
ZenOSS, 96
Zookeeper, 168

Index | 239

About the Authors
Jeff Sheltren has been involved with open source since 2001. He started using Linux
professionally at the University of California at Santa Barbara, where he was a senior
systems administrator and programmer for the computer science department. His pre‐
vious position at the Oregon State University Open Source Lab (OSU OSL) was as the
operations manager, providing technical and organizational leadership to the OSU OSL
while working closely with the many open source projects hosted there, including Dru‐
pal.org, the Linux Foundation, and the Apache Software Foundation. Currently, Jeff
works as a performance engineer at Tag1 Consulting.

Jeff has extensive infrastructure experience, gained over the years. As the operations
manager at OSU OSL—the largest open source hosting infrastructure of its kind—he
led the infrastructure and development teams; he is deeply involved in the CentOS Linux
build and release process as a member of the QA team, and he works as a volunteer for
the Drupal.org Infrastructure Team. Jeff currently maintains a number of packages for
the Fedora Project and Fedora’s Extra Packages for Enterprise Linux (EPEL), and he
serves as the lead systems engineer for multiple Tag1 clients. He lives in Vancouver,
Washington.

Narayan Newton is a co-owner of Tag1 Consulting who joined the team in 2008. He
was introduced to Drupal during his tenure at the Oregon State University Open Source
Lab, where he was the co-lead system administrator—and served as the database ad‐
ministrator of over 180 MySQL databases; he has also held the positions of freenode
server administrator and Drupal.org server administrator. Narayan is a permanent
member of the Drupal Association as their systems coordinator, and is the lead systems
administrator for the Drupal.org Infrastructure Team. He is also a co-maintainer of the
Pressflow high-performance Drupal distribution.

Outside of Drupal, Narayan has been deeply involved in the FreeBSD, Gentoo, and
Slackware communities. More recently, he acted as infrastructure lead for the Examin‐
er.com 2.0 relaunch, infrastructure lead for the Drupal.org redesign launch, and infra‐
structure lead/performance lead for Drupal.org Git migration. Narayan is currently
chief technology officer at Tag1 Consulting and resides in Portland, Oregon.

Nathaniel Catchpole has been using Drupal since version 4.5 and has been a regular
contributor to Drupal core since 2006; along with extensive code profiling, he has con‐
tributed over 400 patches to the Drupal 7 release. Nathaniel also maintains the core
entity, cache, and taxonomy subsystems, as well as the Memcache and Entity Cache
contributed projects. In September 2011, Nathaniel became branch baintainer and re‐
lease manager for the Drupal 8 release cycle.

Nathaniel has been with Tag1 Consulting since September 2010. Prior to that, he worked
on the Examiner.com Drupal migration and launch and as a consultant for CivicActions,
with clients such as Sony BMG and Amnesty International.

Colophon
The animal on the cover of High Performance Drupal is the Red-shouldered Hawk
(Buteo lineatus). The Red-shouldered Hawk can be found in North America, specifically
in eastern North America, the coast of California, and northern Mexico. They live in
wooded areas and stay within a confined range within those areas.

Adult male Red-shouldered Hawks are 15 to 23 inches in length and tend to weigh 550
grams. Females, on the other hand, are a bit longer than males by just a few inches, and
weigh 700 grams. The wingspan of the adult Red-shouldered Hawk ranges from 35 to
50 inches. They have brown heads, red chests, red bars along their bellies, and white
bars along their tails. Like many hawks, they have great vision and will swoop down on
their prey. They eat rodents, squirrels, rabbits, amphibians, small birds, and large insects.

The Red-shouldered Hawk is a monogamous bird. A breeding pair will typically build
a stick nest and will use the same nest every year. The female Red-shouldered Hawk
typically gives birth to three to four eggs and after being born the young are dependent
on their parents for up to 19 weeks.

The cover image is from Johnson’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Does Drupal Scale?
	Goals of This Book
	Supported Drupal Versions
	How This Book Is Organized
	Performance Analysis
	Application Performance
	Infrastructure
	Databases
	Web Servers and Reverse Proxies
	Ongoing Testing
	Where to Next?

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	From Jeff
	From Narayan
	From Nat

	Chapter 1. Beginning a Performance Project
	Getting Started with Performance Improvements
	Establishing a Performance Baseline
	Setting Goals for Website Performance
	The Many Aspects of Drupal Performance
	Creating a Prioritized List of Improvements

	Chapter 2. Frontend Performance
	Limiting HTTP Requests
	Audits

	Image Requests
	Minification
	Minification On the Fly
	Preminification for Modules/Themes
	Minifying During the Build Process

	Compression
	Cacheable Headers
	CDNs
	Keep Third-Party Libraries Up to Date
	jQuery Update

	External Scripts
	Single Points of Failure (SPOFs)

	Chapter 3. Drupal Performance Out of the Box
	Page Caching
	When Should You Use Page Caching?
	Internal Page Caching
	Reverse Proxy Caching

	CSS and JavaScript Aggregation
	Logging
	The Cache and Other Swappable Storage
	Cron
	Views

	Chapter 4. Drupal Coding for Optimal Performance
	Context Matters
	False Optimizations
	Listing Entities
	entityQuery()
	Multiple Entity Loading

	Caching
	Static Caching
	Persistent Caching

	Queues and Workers
	Cache Stampedes and Race Conditions

	Chapter 5. Drupal Coding for Abysmal Performance
	variable_set() Abuse
	External Requests
	Sessions
	Excessive Cache Granularity
	PHP Errors
	Debug Code in the Code Base
	Development Settings

	Chapter 6. Verifying Changes
	Analyzing Frontend Performance
	YSlow and Google PageSpeed
	Waterfall Charts
	Real User Monitoring

	Analyzing Application Performance
	The Devel Module
	Xdebug
	XHProf
	strace

	Chapter 7. Infrastructure Design and Planning
	Horizontal and Vertical Scaling
	Service Categorization
	Working Well Together
	Example Two-Layer Configuration
	Example Larger-Scale Infrastructure
	Development and Staging Environments
	Internal Network Layout
	Utility Servers
	High Availability and Failover
	Hosting Considerations
	Summary

	Chapter 8. Service Monitoring
	The Importance of Monitoring Services
	Monitoring Alerts with Icinga
	What to Monitor
	How to Tune Monitoring

	Graphing Monitoring Data
	Internal Versus Remote Monitoring

	Chapter 9. “DevOps”: Breaking Down Barriers Between Development and Operations
	Revision Control Systems
	Locally Hosted or External Service
	Not Just for Code

	Configuration Management Systems
	Which System to Use

	Pulling It Together: In-Depth Example with Puppet and Git
	Development Virtual Machines
	How to Distribute Development VMs with Vagrant

	Deployment Workflow
	Example Workflow with Git

	Deployment with Jenkins CI

	Chapter 10. File Storage for Multiple Web Servers
	rsync
	GlusterFS
	Example Configuration

	Single NFS Server
	HA NFS Cluster
	Example Configuration
	Setting Up DRBD
	Setting Up Heartbeat
	Setting Up NFS
	Testing

	Storage Area Networks (SANs)

	Chapter 11. Drupal and Cloud Deployments
	What Is the Cloud?
	Why Use the Cloud?
	Infrastructure Overhead
	Prepackaged Clouds
	Common Issues with Cloud Deployments and Their Mitigations

	Chapter 12. Failover Configuration
	IP Failover Versus DNS Failover
	Service-Level Issues
	Heartbeat
	Installation
	Configuration
	Usage

	Chapter 13. MySQL
	Drupal and MySQL Engines
	Versions of MySQL
	Oracle MySQL
	MariaDB
	Percona Server

	General Configuration
	Global Configuration
	Per-Thread Configuration
	Storage Engine Configuration

	Replication
	Virtualized Deployments

	Chapter 14. Tools for Managing and Monitoring MySQL
	Percona Toolkit
	Openark Kit
	mysqlreport
	Percona Monitoring Plug-Ins

	Chapter 15. MySQL Query Optimization
	Index Basics
	Base Tables and Join Order
	Common Issues
	The ORDER BY on an Unrelated Table
	The Useless DISTINCT (“In Case of Accidents!”)
	Starfish Syndrome (All LEFT JOINS)
	Node Access

	Chapter 16. Alternative Storage and Cache Backends
	Cache, Lock, and Session Storage
	Memcache In Depth
	PHP Extensions for Memcache
	Assigning Memcached Servers and Bins
	Memcache Locking and Stampede Protection
	What to Store in Memcache
	Configuring the Memcache Daemon

	How to Break Your Site with Memcache
	Inconsistent Caching
	Constant Evictions
	Vanishing Sessions

	Entity/Field Storage
	EntityFieldQuery/EntityQuery
	CRUD
	MongoDB

	Chapter 17. Solr Search
	Performance and Scalability Considerations
	Integrating Solr with Drupal
	Solr Configuration
	Indexing Content
	Infrastructure Considerations
	Solr Replication
	Drupal Module Installation

	Chapter 18. PHP and httpd Configuration
	APC: PHP Opcode Cache
	php.ini Settings
	PHP Apache Module Versus CGI
	Apache MPM Settings
	Prefork Thread Settings
	KeepAlive
	Cache Headers
	Logging
	Server Signature
	Administrative Directory or VirtualHost
	Nginx
	Why Not Use Nginx Everywhere?

	Chapter 19. Reverse Proxies and Content Delivery Networks
	Using a Reverse Proxy with Drupal
	Understanding Varnish Configuration Language
	Defining a Backend
	Directors: Dealing with Multiple Backend Servers
	Built-in VCL Subroutines
	Customizing Subroutines

	Cookies and Varnish
	Caching for Authenticated Users
	Edge-Side Includes
	Serving Expired Content
	Error Pages
	Memory Allocation
	Logging and Monitoring Varnish
	Sample VCL for Drupal
	Content Delivery Networks
	Serving Static Content Through a CDN
	When to Use a CDN
	Choosing Between a CDN and a Reverse Proxy

	Chapter 20. Load Testing
	Different Types of Load Tests
	Creating a Valid Test
	When to Test
	Continuous Integration (CI)
	Periodic Testing
	Manual Targeted Testing

	Interpreting Test Results
	Server Monitoring During Load Tests
	Where to Test
	Example Load Test Using JMeter
	Global Test Settings
	Thread Groups
	Handling Cookies
	Login Controller
	Browse Controller
	Output Configuration
	Running a Test
	Reading Test Results

	Chapter 21. Where to Next?
	Official Book Website
	High Performance Drupal Group
	Drupal Watchdog
	Revision Control with Git
	Varnish
	Configuration Management
	Vagrant
	Jenkins
	MySQL Performance
	InnoDB Index Structures

	Index
	About the Authors

