
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Praise for the First Edition of Dart for Hipsters

A fun and easy read for anyone wanting to understand what Dart is and how to
use it with current generation browsers. The commentary on features planned
for future releases of Dart is reason enough to buy this book.

➤ Matt Margolis

At first I was somewhat skeptical of Dart. This book made me understand its
promise, gave me a good idea of its current state, and will serve as a solid reference
for me to lean on.

➤ Juho Vepsäläinen

This is the first book on this exciting and promising programming language, a
clear and approachable text that engages the reader and that certainly will con-
tribute to Dart’s success. I particularly liked his treatment of the functional aspects
of the language and the discussion of isolates.

➤ Dr. Ivo Balbaert

www.it-ebooks.info

http://www.it-ebooks.info/

Dart 1 for Everyone
Fast, Flexible, Structured Code for the Modern Web

Chris Strom

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Liz Welch (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-25-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2014

www.it-ebooks.info

http://pragprog.com
rights@pragprog.com
http://www.it-ebooks.info/

Contents

Introduction ix

Part I — Getting Started

1. Project: Your First Dart Application 3
The Back End 3
HTML for Dart 4
Ajax in Dart 5
This App Won’t Run 10

2. Basic Types 11
Numbers 11
Strings 11
Booleans 13
Maps (aka Hashes, Associative Arrays) 13
Lists (aka Arrays) 15
Dates 17
Types 18

3. Functional Programming in Dart 21
Anonymous Functions 22
First-Order Functions 24
Optional Arguments 25

4. Manipulating the DOM 29
dart:html 29
Finding Things 29
Adding Things 30
Removing Things 32
Updating Elements 33

www.it-ebooks.info

http://www.it-ebooks.info/

Method Cascades 33
DOM Ready 34

5. Dart and JavaScript 35
Compiling to JavaScript with dart2js 36
Maintaining Dart and JavaScript Side by Side 38
Using JavaScript in Dart 40

Part II — Effective Coding Techniques

6. Project: MVC in Dart 45
MVC in Dart 45
Hipster Collections 46
Hipster Models 50
Hipster Views 52
Putting Models, Collections, and Views Together to Create New
Records 54

7. Classes and Objects 59
Class Is a First-Order Concept 59
Instance Variables 60
Methods 61
Static Methods (aka Class Methods) and Variables 66
Subclasses 67
Duck-Typing in Dart with implements 68
Mixins 69
Constructors 70

8. Events and Streams 77
Plain-Old Events 77
Making Custom Events with Streams 79

Part III — Code Organization

9. Project: Extracting Libraries 85
What to Extract and What to Leave 85
Real Libraries 89

Contents • vi

www.it-ebooks.info

http://www.it-ebooks.info/

10. Libraries 93
Parts 93
Libraries 95
Core Dart Libraries 97
Packaging with Dart Pub 97

Part IV — Maintainability

11. Project: Varying Behavior 103
Vary Class Behavior with noSuchMethod() 103
Sync Through Dependency Injection 106

12. Testing Dart 113
Obtaining the Test Harness 113
2 + 2 = 5 Should Be Red 113

Part V — The Next Level with Dart

13. Project: An End to Callback Hell 121
The Future 121
Handling Errors in the Future 124

14. Futures and Isolates 127
Completers and Futures 127
Isolates 128

15. HTML5 and Dart 133
Animation 133
Local Storage 134
WebSockets 136
Canvas 138
Wrapping Up 139

Index 141

Contents • vii

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Why Dart?

Looking back more than two years to the first edition of this book (really?
that long?), I realize that my answer to “why Dart?” has changed. A lot.

I am very much a language, library, and protocol hipster. I love learning new
stuff. The fun of learning is very much its own reward, but that is not the
main reason that I learn. It is always nice to add another tool to the developer’s
proverbial toolbox, but I have come to realize even that is not the main driving
force to learning.

The main reason that I learn new things like Dart is that I find it to be a most
effective way to understand problems from the perspective of others. The folks
who write libraries and languages are invariably smarter and/or know the
subject matter better than I do, so learning the solutions is a crash course
on understanding the problems that currently exist. Even if I cannot use a
shiny new tool right away, the challenges faced and overcome by tool authors
stick with me.

So, when I first approached Dart, it was very much in that spirit. And wow,
did it ever work! I learned a ton from the language and from interacting with
people on the mailing list and in blogs. It profoundly affected my way of
thinking—not only about languages like JavaScript (which I still love)—but
about programming for the Web in general.

That would have been my answer from two years ago. I learn Dart—and I
think others should learn it too—because it profoundly affects the way that
one thinks about programming for the Web.

But since then…

I have really come to appreciate the intrinsic beauty and value of Dart. More
and more, it is my “go to” tool to fulfill important needs. And I love using it.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Dart is not a JavaScript replacement. Let me repeat that: Dart is not meant
to replace JavaScript. It is much more. It took me a long while to understand
this, but Dart is not a competitor with JavaScript-the-language. It is a com-
petitor with the platform that supports developing JavaScript. And Dart is so
far ahead of JavaScript-the-platform that I would consider it a programming
mortal sin to use JavaScript when Dart is an option.

I do not hate JavaScript-the-language. Far from it, in fact. Since the first
edition of this book, I wrote a kids programming book that uses JavaScript
to introduce programming to kids. I am not even a closet JavaScript hater
who prefers to use “prettier” compile-to-JavaScript languages like CoffeeScript
or TypeScript. Even though each of those compile-to-JavaScript languages
offers some benefits over pure JavaScript, I like JavaScript enough to code
it by itself.

What I do not care for in JavaScript-land is…everything else. Manipulating
the DOM is a pain, so we must have a library for that. XMLHttpRequest is ugly,
so we need a library for that. Testing is not built in, so a library is needed for
that (and test runners and test assertions too!). And a library to manage large
codebases. And, of course, we need a library to manage all the libraries. And
(some of us) need a library to make JavaScript prettier. And don’t even get
me started on cross-browser testing, which never does seem to go as planned…

I dislike JavaScript-the-platform because I spend so much time building and
maintaining it that I do not focus on what is important: building insanely
great applications. With Dart, a consistently beautiful DOM library is built
in. HttpRequest, which comes standard with Dart, makes Ajax a breeze. Libraries
and packages are included from the outset. Testing is beautiful and easy.

Most importantly, Dart compiles to cross-browser JavaScript. Unlike every
other compile-to-JavaScript language out there, Dart does not generate
JavaScript and hope for the best. It targets a Dart-specific JavaScript compat-
ibility layer that ensures that your crazy animations, visualizations, and
effects work everywhere across the modern Web. (Note: The modern Web has
a specific meaning for Dart. It is the latest two versions of each of the major
browsers: Chrome, Firefox, Safari, Opera, and Internet Explorer. The main
reason—some would argue the only reason—not to use Dart is when support
for old versions of Internet Explorer—9 and lower—is a hard requirement.)

Oh, and did I mention that Dart is a pretty language? Well, it is and it lets
you write beautiful, maintainable code.

So my answer to “Why Dart?” has changed. Dart is the ideal language and
platform for development on the modern Web. It will still profoundly affect

Introduction • x

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

how you think. But today it is more. It is the best way to create and maintain
insanely great applications on the modern Web.

Who Should Read This Book (Besides Hipsters)?
This book is primarily intended for programmers eager to build rock-solid,
cross-browser web applications. JavaScript was originally meant to enhance
web pages. It is a testament to Brendan Eich, the inventor of JavaScript, and
the resourcefulness of those who followed that JavaScript means so much to
the Web. But JavaScript is not built to facilitate rock-solid web applications.
Dart has everything needed and more: real modules for organizing large
codebases, central package management to enable sharing, cross-browser
compatibility, and built-in beautiful testing.

I am also writing for any developer looking to keep their JavaScript skills as
fresh as possible. The best way to improve JavaScript skills is through practice
and reading other people’s code. But sometimes it can radically help to see
what the competition is up to. In this case, as we explore what Dart brings
to the table, we can better understand the gaps in an admittedly wonderful
language.

This book should be of interest to developers learning languages for the sake
of learning. I focus quite a bit on the Dart language, especially in those places
that it surprised and delighted me.

And of course, hipsters should read this book as well. Dart is just different
enough to make it intriguing to the typical language hipster and yet powerful
enough to make it worthwhile for the hipster who hopes to change the world.

How the Book Is Organized
I am trying something different with this book. Rather than introducing slices
of the language in each chapter, I bite off chunks. Each section starts with
an actual Dart project, including some commentary on the choices being
made. My goal in these sections is to leverage Dart’s avowed familiarity to
make significant headway in giving a real feel for what the language is. Since
these are real projects, they are great opportunities to point out Dart’s
strengths and, yes, some of its weaknesses.

Each of these project chapters is followed by smaller, topic-specific chapters
that go into a bit more depth about aspects of the language. I use these to
cover material that is too detailed for the project chapters and material that
cannot be found in current Dart reference material.

report erratum • discuss

Who Should Read This Book (Besides Hipsters)? • xi

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

So, if you want a quick introduction to the language, you can certainly start
by reading the project chapters alone. If you want a more traditional book,
then skip the project chapters and read just the topic chapters. Or read it
all—I will try to make it worth your time!

The first project is Chapter 1, Project: Your First Dart Application, on page 3.
Supplementing that project are Chapter 2, Basic Types, on page 11; Chapter
3, Functional Programming in Dart, on page 21; Chapter 4, Manipulating the
DOM, on page 29; and Chapter 5, Dart and JavaScript, on page 35.

The next project takes the simple Ajax application from Project: Your First
Dart Application and whips it into something familiar to JavaScript hipsters:
an MVC-like code structure. Looking at this in Chapter 6, Project: MVC in
Dart, on page 45 gives us the chance to really use Dart’s fabulous object-
oriented programming facilities and leads directly to a more detailed discussion
in Chapter 7, Classes and Objects, on page 59. And, since no MVC application
is complete without events, we talk about them in Chapter 8, Events and
Streams, on page 77.

If you want to put a language through its paces, extracting code out into a
library, especially an MVC library, is a great way to do it. We do just that in
Chapter 9, Project: Extracting Libraries, on page 85. Following up on the MVC
library, we get to talk about Dart’s amazing support for libraries and packages
in Chapter 10, Libraries, on page 93.

Next we’ll take a look at dependency injection in Dart with Chapter 11, Project:
Varying Behavior, on page 103. Unlike JavaScript, Dart is not primarily a
dynamic language, though as you’ll see in that chapter, it is still possible to
perform some tricks of traditional dynamic languages. The follow-up to that
project is an introduction to Dart testing, which might just be Dart’s killer
feature.

The last project chapter is Chapter 13, Project: An End to Callback Hell, on
page 121, in which we further explore Dart “futures” as a higher-order
replacement for traditional callback passing. This leads into a discussion of
code isolation and message passing in Chapter 14, Futures and Isolates, on
page 127.

Finally, we conclude the book with a brief exploration of various HTML5
technologies that are not covered elsewhere in the book.

Introduction • xii

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

What Is Not in This Book
We will not cover the Dart Editor. In some regards, this is something of a
loss—strongly typed languages like Dart lend themselves to code completion,
of which the Dart Editor takes advantage. Still, the focus of the book is meant
to be the language, not the tools built around it. Besides, some people (myself
included) will want to stick with their code editor of choice.

Although Dart boasts some pretty impressive server-side, Node.js-like features,
we will not cover them in this book. Many of the code samples that are
included use a web server, so peruse them if you are curious about how that
looks.

This book is not intended as a language reference. It has been hard enough
keeping even a book this size up-to-date as the language evolves! Still, the
hope is that, by being a useful and pragmatic introduction to the language,
it can serve as a strong supplement for the API documentation (which is very
nicely done).1

About the Future
Since Dart continues to evolve, so does this book. Once or twice a year,
depending on how quickly Dart changes, the content in this book is reviewed
and then revised, removed, or supplemented.

If you identify any mistakes or areas in need of improvement, please record
them in the errata: http://pragprog.com/titles/csdart/errata/add. Suggestions for new
topics to cover are also welcome!

Conventions
Class names are camel-cased (for example, HipsterModel). Classes have filenames
that are identical to the class names (for example, HipsterModel.dart). Variable
names are snake-cased (for example, background_color), while functions and
methods are lowercase camel-cased (for example, routeToRegExp()).

Let’s Get Started
With the preliminaries out of the way, let’s get started coding for the Web
without the legacy of the Web. Let’s code some Dart!

1. http://api.dartlang.org

report erratum • discuss

What Is Not in This Book • xiii

www.it-ebooks.info

http://pragprog.com/titles/csdart/errata/add
http://api.dartlang.org
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Part I

Getting Started

Dart has a lot going for it, but perhaps the most
impressive feature is how familiar it is to program-
mers with a little JavaScript experience. In these
first few chapters, with no previous experience,
you’ll write a Dart application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Project: Your First Dart Application
Most programming books start with a “Hello World!” sample. I say, screw
that—we’re all hipsters here. Let’s start coding!

Since Dart is written, above all else, to be familiar, you should not be too far
out of your depth diving right in. Let’s jump straight to something more fun:
an Ajax-powered website. Any true hipster has an extensive collection of
comic books (am I right? I’m not the only one, am I?), so let’s consider a
simple Dart application that manipulates the contents of that collection via
a REST-like interface.

At some point, this may prove too much of a whirlwind. Have no fear—we’ll
go into details in subsequent chapters.

The Back End
Sample code for this chapter can be found in the “your_first_dart_app” branch
of https://github.com/eee-c/dart-comics. The back end is written in Dart and requires
a few Dart packages to be installed with the Dart pub packagers. Instructions
are contained in the project’s README.

Being REST-like, the application should support the following:

• GET /comics (return a list of comic books)
• GET /comics/42 (return a single comic book)
• PUT /comics/42 (update a comic book entry)
• POST /comics (create a new comic book in the collection)
• DELETE /comics/42 (delete a comic book)

We won’t worry too much about the details of the back end beyond that.

report erratum • discusswww.it-ebooks.info

https://github.com/eee-c/dart-comics
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

HTML for Dart
Our entire application will follow the grand tradition of recent client-side MVC
frameworks. As such, we require only a single web page.

your_first_dart_app/web/index.html
<!DOCTYPE html>
<html>
<head>

<title>Dart Comics</title>
<link rel="stylesheet" href="/stylesheets/style.css">

<!-- The main application script -->
<script src="/scripts/comics.dart" type="application/dart"></script>

<!-- Force Dartium to start the script engine -->
<script>

navigator.webkitStartDart();
</script>

</head>

<body>
<h1>Dart Comics</h1>
<p>Welcome to Dart Comics</p>
<ul id="comics-list">
<p id="add-comic">

Add a sweet comic to the collection.
</p>

</body>
</html>

Most of that web page should be familiar; it will include simple HTML, links
for CSS, and scripts.

HTML Head
The only oddity to note is the first <script> tag, in which JavaScript starts the
Dart scripting engine.

<!-- Force Dartium to start the script engine -->
<script>

navigator.webkitStartDart();
</script>

Chapter 1. Project: Your First Dart Application • 4

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/web/index.html
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Important: As of this writing, it is necessary to kick-start the
Dart VM with navigator.webkitStartDart() on Dartium, the Dart-
enabled version of Chrome.1 As you’ll see later, there is a Dart
package that does this for you.

Tip

Next we load the contents of our actual code. The only change here is a differ-
ent type attribute in the <script> tag, indicating that this is Dart code.

<!-- The main application script -->
<script src="/scripts/comics.dart" type="application/dart"></script>

There is more to be said about loading libraries and including code with Dart
once we reach Chapter 10, Libraries, on page 93. For now, it is simply nice
to note that loading Dart works exactly as we might expect it to work.

HTML Body
As for the body of the HTML, there is nothing new there, but we ought to note
the IDs of two elements to which we will be attaching behaviors.

<h1>Dart Comics</h1>
<p>Welcome to Dart Comics</p>
<ul id="comics-list">
<p id="add-comic">

Add a sweet comic to the collection.
</p>

To the #comics-list UL element, we are going to attach the list of comic books
in the back-end data store. We will also attach a form handler to the #add-
comic paragraph tag. So, let’s get started.

Ajax in Dart
We start our Dart application by loading a couple of Dart libraries with a main()
function in scripts/comics.dart.

your_first_dart_app/web/scripts/skel.dart
import 'dart:html';
import 'dart:convert';
main() {

// Do stuff here
}

1. http://www.dartlang.org/dartium/

report erratum • discuss

Ajax in Dart • 5

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/web/scripts/skel.dart
http://www.dartlang.org/dartium/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

As you’ll see in Chapter 10, Libraries, on page 93, there is a lot of power in
those import statements. For now, we can simply think of them as a means for
pulling in functionality outside of the core Dart behavior.

All Dart applications use main() as the entry point for execution. Simply writing
code and expecting it to run, as we do in JavaScript, will not work here. It
might seem C-like at first, but does it honestly make sense that code lines
strewn across any number of source files and HTML will all start executing
immediately? The main() entry point is more than convention; it is a best
practice enforced by the language.

As for the contents of the main() function, we take it piece by piece. We are
retrieving a list of comic books in our collection and using that to populate
an element on our page.

We need to identify the DOM element to which the list will attach (#comics-list).
Next we need an Ajax call to fill in that DOM element. To accomplish both of
those things, our first bit of Dart code might look like the following:

your_first_dart_app/web/scripts/comics.dart
main() {

var list_el = document.query('#comics-list');
var req = new HttpRequest();

}

Aside from the obvious omission of the function keyword, this example might
be JavaScript code! We will cover more differences in Chapter 3, Functional
Programming in Dart, on page 21. Still in Dart are the semicolons and curly
braces that we know and love—the language designers have certainly made
the language at least superficially familiar.

Note: Unlike in JavaScript, semicolons are not optional in Dart.Tip

In addition to being familiar, this code is easy to read and understand at a
glance. There are no weird, legacy DOM methods. We use document.query() for
an element rather than document.findByElementId(). And we use the familiar CSS
selector of #comics-list, just as we have grown accustomed to in jQuery.

Also note that we are not creating an XMLHttpRequest object. In Dart, it is just
HttpRequest. This may seem a trivial change, but remember Dart is written for
today’s Web, not to support the legacy of the Web. And when was the last
time anyone sent XML over web services?

Chapter 1. Project: Your First Dart Application • 6

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/web/scripts/comics.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Note: Depending on the version of Dart, the code editor, or tools
that you are using, you may see warnings that query() is depre-
cated. It is not deprecated. Well, not really. The current version
is deprecated, but a new query() that behaves nearly identically
but tracks newer DOM standards will replace it as soon as the
current version is removed. This books opts to future-proof
itself by using the current query(), which will work just fine when
the new and improved version rolls along. If you really dislike
these warnings, feel free to replace instances of query() with
querySelector() and to replace queryAll() with querySelectorAll(). The
code examples will continue to work just fine.

Tip

So far we have the UL that we want to populate and an HttpRequest object to
do so. Let’s make the request and, after a successful response, populate that
UL. As in JavaScript, we open the request to the appropriate resource (/comics),
listen for an event that fires when the request loads, and finally send the
request.

main() {
var list_el = document.query('#comics-list');
var req = new HttpRequest();
req.open('get', '/comics');
req.onLoad.listen((req) {

var list = JSON.decode(req.target.responseText);
list_el.innerHtml = graphic_novels_template(list);

});
req.send();

}

Most of that code should be immediately familiar to anyone who has done
Ajax coding in the past. We open by creating an XHR object and close by
specifying the resource to be retrieved and actually sending the request.

It is when we add event handlers that we see a more fundamental departure
from the JavaScript way. The XHR object (er, HR object?) has an onLoad
property. The onLoad property is a stream. Streams are used everywhere in
Dart (server-side, client-side, everywhere) as a means of allowing code to
receive data without blocking any other code from executing. In this case,
the UI should remain responsive until the data from the HttpRequest is available,
at which point we do something with it.

In this case, we parse (well, “decode” in Dart) the supplied JSON into a list
of hashes, which might look like this:

report erratum • discuss

Ajax in Dart • 7

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

your_first_dart_app/comics.json
[

{"title":"Watchmen",
"author":"Alan Moore",
"id":1},

{"title":"V for Vendetta",
"author":"Alan Moore",
"id":2},

{"title":"Sandman",
"author":"Neil Gaiman",
"id":3}

]

With that, we hit the final piece of our simple Dart application—a template
for populating the list of comic books.

graphic_novels_template(list) {
var html = '';
list.forEach((graphic_novel) {

html += graphic_novel_template(graphic_novel);
});
return html;

}
graphic_novel_template(graphic_novel) {

return '''
<li id="${graphic_novel['id']}">

${graphic_novel['title']}
[delete]

''';
}

The first function simply iterates over our list of comic books (internally, we
hipsters think of them as graphic novels), building up an HTML string.

The second function demonstrates two other Dart features: multiline strings
and string interpolation. Multiline strings are identified by three quotes (single
or double). Inside the string, we can interpolate values (or even simple
expressions) with a dollar sign. For simple variable interpolation, curly braces
are optional: $name is the same as ${name}. For more complex interpolation,
such as hash lookup, the curly braces are required.

And that’s it! We have a fully functional, Ajax-powered web application ready
to roll. The assembled code is as follows:

import 'dart:html';
import 'dart:convert';

main() {
var list_el = document.query('#comics-list');
var req = new HttpRequest();

Chapter 1. Project: Your First Dart Application • 8

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/comics.json
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

req.open('get', '/comics');
req.onLoad.listen((req) {

var list = JSON.decode(req.target.responseText);
list_el.innerHtml = graphic_novels_template(list);

});
req.send();

}

graphic_novels_template(list) {
var html = '';
list.forEach((graphic_novel) {

html += graphic_novel_template(graphic_novel);
});
return html;

}
graphic_novel_template(graphic_novel) {

return '''
<li id="${graphic_novel['id']}">

${graphic_novel['title']}
[delete]

''';
}

And loading the page looks like this:

That is a darned nice start in our exploration of Dart. To be sure, we glossed
over a lot of what makes Dart a great language. But in doing so, we have
ourselves a very good start on an Ajax-powered web application. Best of all,
none of the code that we wrote seemed all that different from JavaScript.
Some of the syntax is a little cleaner than what we are used to in JavaScript
(no one is going to complain about cleaner code), and those strings are quite
nice. But, all in all, it is safe to say that we can be productive with Dart in
relatively short order.

report erratum • discuss

Ajax in Dart • 9

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

This App Won’t Run
As written, this application will not actually work anywhere…well, almost
anywhere.

Dart is not supported in any browser (not even Chrome). To run this web
application natively, we would need to install Dartium—a branch of Chrome
that embeds the Dart VM. Dartium is available from the Dart Lang site.2

Even after Dart makes it into Chrome proper, we would still be faced with
supporting only a subset of browsers on the market. That is just silly.

Fortunately, Dart can be compiled down to JavaScript, meaning that you can
have the power of Dart but still target all platforms. To accomplish that easily,
we add a small JavaScript library that, upon detecting a browser that does
not support Dart, will load the compiled JavaScript equivalent.

your_first_dart_app/web/index_with_js_fallback.html
<!-- Enable fallback to Javascript -->
<script src="/scripts/conditional-dart.js"></script>

We will discuss that helper file in detail in Chapter 5, Dart and JavaScript,
on page 35. For now, it is enough to note that our Dart code is not locked
into a single browser vendor’s world. We are very definitely not seeing The
Return of VBScript here.

What’s Next
Admittedly, this has been a whirlwind of an introduction to Dart. It is fantastic
to be able to get up and running this quickly. It is even better to feel as though
you can be productive at this point.

Still, you’re only getting started with Dart, and, make no mistake, your Dart
code can be improved. So, let’s use the next few chapters to get comfortable
with some important concepts in Dart. After that, you’ll be ready to convert
your Dart application into an MVC approach in Chapter 6, Project: MVC in
Dart, on page 45.

2. http://www.dartlang.org/dartium/

Chapter 1. Project: Your First Dart Application • 10

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/web/index_with_js_fallback.html
http://www.dartlang.org/dartium/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 2

Basic Types
A recurring theme in this book is that Dart aims to be familiar. If that holds
true, then a discourse on basic components of the language should be rela-
tively brief—and it will be. Even so, some introduction to core types can only
help. And, naturally, there are a few “gotchas” here and there.

Numbers
Integers and doubles are both number types, which means that both support
many of the same methods and operators. Dart numbers work pretty much
like they do in many other languages.

primitives/numbers.dart
2 + 2; // 4
2.2 + 2; // 4.2
2 + 2.2; // 4.2
2.2 + 2.2; // 4.4

As you can see, Dart numbers do “the right thing” when mixing them in operations.

Strings
Strings are immutable, which is a fancy way of saying that string operations
create new strings instead of modifying existing strings. Strings (like numbers)
are hashable, meaning that unique objects have unique hash codes to tell them
apart. If we assign a variable to a variable holding a string, both will have the
hash code because they are the same object.

primitives/strings.dart
var str1 = "foo",

str2 = str1;
str1.hashCode; // 596015325
str2.hashCode; // 596015325

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/numbers.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

But if we modify the first string, the result will be an entirely new object while
the copy continues to point to the original string.

primitives/string_concat.dart
str1 = str1 + "bar";

str1.hashCode; // 961740263
str2.hashCode; // 596015325

Dart goes out of its way to make working with strings easy. It is possible to
create multiline strings by enclosing them in triple quotes.

primitives/strings_triple.dart
"""Line #1
Line #2
Line #3""";

In addition to the + string concatenation operator, Dart considers adjacent
strings to be concatenated.

primitives/strings_adjacent.dart
'foo' ' ' 'bar'; // 'foo bar'

This adjacent string convenience even extends to multiline strings.

primitives/strings_adjacent.dart
'foo'
' '
'bar'; // 'foo bar'

Another convenience of Dart strings is the ability to interpolate variables and
expressions into them. Dart uses $ to denote variables to be interpolated.

primitives/strings_interpolation.dart
var name = "Bob";

"Howdy, $name"; // "Howdy, Bob"

If there is potential for confusion over where the variable expression ends and
the string begins, curly braces can be used with $.

primitives/strings_interpolation.dart
var comic_book = new ComicBook("Sandman");

"The very excellent ${comic_book.title}!";
// "The very excellent Sandman!"

Multiline strings and built-in expression interpolation are a huge win for the
beleaguered JavaScripter. This effectively eliminates the need for a separate
templating library. Templating is built in!

Chapter 2. Basic Types • 12

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/string_concat.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings_triple.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings_adjacent.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings_adjacent.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings_interpolation.dart
http://media.pragprog.com/titles/csdart1/code/primitives/strings_interpolation.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Booleans
The values true and false are the only allowed Boolean (bool) type in Dart. The
notion of “truthiness” does not get simpler than it is in Dart: if it’s not true,
then it’s false. Consider the following:

primitives/booleans.dart
var name, greeting;
greeting = name ? "Howdy $name" : "Howdy";
// "Howdy"

/*** Name is still not true ***/
name = "Bob";
greeting = name ? "Howdy $name" : "Howdy";
// "Howdy"

greeting = (name != null) ? "Howdy $name" : "Howdy";
// "Howdy Bob"

If you are coming from many other languages, then it will not be a surprise
that null, "", and 0 evaluate to false in a Boolean context. It may take some
getting used to that "Bob" and 42 evaluate to false as well.

The semantics for truthiness vary slightly in “type-checked” mode (described
in Types, on page 18), but it is best not to rely on such minor variations. If
we always assume that the previous will hold, then we will not get burned.

In Chapter 7, Classes and Objects, on page 59, we will explore operator defi-
nitions, which allows class-specific definitions of equals / ==. This gives Dart
a certain amount of flexibility with regard to Booleans.

Maps (aka Hashes, Associative Arrays)
Key-value pairs are implemented in Dart by Map objects. Defining an options
hash creates a Map.1

primitives/hash_map.dart
var options = {

'color': 'red',
'number': 2

};

As you’d expect, retrieving values from a Map is done with square brackets.

options['number']; // 2

1. Technically a LinkedHashMap, which is a subclass of Map

report erratum • discuss

Booleans • 13

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/booleans.dart
http://media.pragprog.com/titles/csdart1/code/primitives/hash_map.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Map objects support the usual methods. This includes retrieving keys (the keys
getter method) and values (the values getter) and iterating over the entire object
with forEach().

var options = {
'color': 'red',
'number': 2

};

options.forEach((k, v) {
print("$k: $v");

});
// number: 2
// color: red

The order of key-value pairs is not guaranteed in most classes
that implement the Map interface (like Map). Dart includes a
LinkedHashMap implementation (in the dart:collection library) that
does guarantee iteration in the same order in which key-value
pairs are inserted.

Tip

One extremely useful feature of Map is the putIfAbsent() method. Let’s consider
optionally adding someone’s age to the options Map. To prevent replacing the
age if it is already present, we might try something like the following.

primitives/hash_put_if_absent.dart
if (!options.containsKey('age')) {

var dob = DateTime.parse('2000-01-01'),
now = new DateTime.now();

options['age'] = now.year - dob.year;
}

Hipsters hate conditionals. They are ugly and obscure the intent of our code.
What is going on inside the if statement? What is the condition in the if
statement? There is no easy way to answer either of those questions without
reading the code in detail.

We might try factoring the age calculation out into a separate method to make
intent a little clearer. Even that still suffers due to the noise of the conditional.

findAge() {
var dob = DateTime.parse('2000-01-01'),

now = new DateTime.now();
return now.year - dob.year;

};

Chapter 2. Basic Types • 14

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/hash_put_if_absent.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

// weak
if (!options.containsKey('age')) {

options['age'] = findAge();
}

This is where the putIfAbsent() method shines. The following is functionally
equivalent to the weaker conditional:

findAge() {
var dob = DateTime.parse('2000-01-01'),

now = new DateTime.now();
return now.year - dob.year;

};

// confident
options.putIfAbsent('age', findAge);

That is some clean, hip code. And more important than its inherent hipness
is the readability. It makes no difference how long we are away from that
code, it will still be patently obvious what it does. putIfAbsent()—learn it, love
it. It’ll save your life (well, probably not, but it’ll make life and code that much
sweeter).

Lists (aka Arrays)
Lists of things are a requirement of any language. Easing developers into the
language, Dart sticks close to the expected with lists.

primitives/lists.dart
var muppets = ['The Count', 'Bert', 'Ernie', 'Snuffleupagus'];
var primes = [1, 2, 3, 5, 7, 11];
// Indexed from zero
muppets[0]; // 'The Count'
primes.length; // 6

Dart does provide some nice, consistent methods for manipulating lists.

var muppets = ['The Count', 'Bert', 'Ernie', 'Snuffleupagus'];

muppets.setRange(1, 3, ['Kermit', 'Oscar']);
// muppets => ['The Count', 'Kermit', 'Oscar', 'Snuffleupagus']

muppets.removeRange(1, 3);
// muppets => ['The Count', 'Snuffleupagus'];

muppets.addAll(['Elmo', 'Cookie Monster']);
// muppets => ['The Count', 'Snuffleupagus', 'Elmo', 'Cookie Monster']

There are a number of iterating methods built in as well.

report erratum • discuss

Lists (aka Arrays) • 15

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/lists.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

primitives/list_iterators.dart
var muppets = ['The Count', 'Bert', 'Ernie', 'Snuffleupagus'];

muppets.forEach((muppet) {
print("$muppet is a muppet.");

});
// =>
// The Count is a muppet.
// Bert is a muppet.
// Ernie is a muppet.
// Snuffleupagus is a muppet.

muppets.any((muppet) {
return muppet.startsWith('S');

});
// true

muppets.every((muppet) {
return muppet.startsWith('S');

});
// false

muppets.where((muppet) {
return muppet.startsWith('S');

});
// ['Snuffleupagus']

Even fold() comes built into Dart. We can use it to count all the letters and
spaces that make up the names of our list of muppets.

muppets.fold(0, (memo, muppet) {
return memo + muppet.length;

});
// 31

Thankfully, there is not much that needs to be introduced for Dart lists and
arrays. They are one of many things in Dart that “just work.”

Collections
The iterating methods supported by the List class are defined by Iterable. Any
Dart class that behaves this way implements the interface defined by the
Iterable class. That consistency throughout the language is extraordinarily
liberating—if you know Iterable, you know how to manipulate maps, lists, DOM
nodelists, event streams, I/O streams, and more.

There are many members of the Iterable family in Dart. Let’s take a quick look
at two of them: Set and Queue.

Chapter 2. Basic Types • 16

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/list_iterators.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The Set class is an Iterable in which the elements are always unique and that
exposes some set operations.

primitives/set.dart
var sesame = new Set.from(['Kermit', 'Bert', 'Ernie']);
var muppets = new Set.from(['Piggy', 'Kermit']);
// No effect b/c Ernie is already in the Set
sesame.add('Ernie'); // => ['Kermit', 'Bert', 'Ernie']
sesame.intersection(muppets); // => ['Kermit']
sesame.containsAll(muppets); // => false

The Queue, which is in dart:collection instead of core, is an Iterable that can be
manipulated at the beginning.

primitives/queue.dart
var muppets = new Queue.from(['Piggy', 'Rolf']);
muppets.addFirst('Kermit');
// muppets => ['Kermit', 'Piggy', 'Rolf']

muppets.removeFirst();
muppets.removeLast();
// muppets => ['Piggy']

The corollary to the existence of Queue is that regular lists cannot be manipulated
at the beginning. That is, there is no shift or unshift method for List. (Technically List
has insert() and remove(), which take index parameters, making it possible, but ugly,
to manipulate the beginning of a list.)

Dates
Dart brings some much needed sanity to dates and times in the browser. The
answer to the question that is burning in many a JavaScript refugee’s heart is
“yes”—the first month is, in fact, 1. Let the rejoicing commence.

The niceties of Dart dates do not end there. For instance, there are a number of
ways to create dates.

primitives/dates.dart
var mar = DateTime.parse('2013-03-01 14:31:12');
// 2013-03-01 14:31:12.000
var now = new DateTime.now();
// 2012-12-31 23:59:59.149
var apr = new DateTime(2013, 4, 1);
// 2013-04-01 00:00:00.000
var may = new DateTime(2013, 5, 1, 18, 18, 18);
// 2013-05-01 18:18:18.000

Even better, manipulating dates is not only possible but quite nice.

var jun = new DateTime(2013, 6, 1, 0, 0, 0, 0);
var jul = new DateTime(2013, 7, 1, 0, 0, 0, 0);

report erratum • discuss

Dates • 17

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/set.dart
http://media.pragprog.com/titles/csdart1/code/primitives/queue.dart
http://media.pragprog.com/titles/csdart1/code/primitives/dates.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

var diff = jul.difference(jun);
diff.inDays; // => 30

jul.add(new Duration(days: 15)); // => 2013-07-16

The difference() method in DateTime returns a Duration object that encapsulates a
period of time. A Duration can be queried in any number of time units—from
days all the way down to milliseconds. As you can see with our add() example,
Durations also come in handy when adding or removing time from a particular
date.

Working with dates in Dart is not a thing to dread. As you can already see,
they are downright pleasant.

Types
If you had heard that Dart was a statically typed language, you might be very
confused at this point. None of the code that we have written so far declares
a single type. Thanks to copious use of the var keyword, our code is blissfully
type-free. So what’s the deal?

Dart is not, in reality, statically typed. It is sneakily typed. To understand
what that means, consider the following code.

primitives/types.dart
var muppet = 'Piggy';

// Dart, like JavaScript, allows this, but come on!
muppet = 42;

We can infer that var indicates a variable type. In other words, not only are
we not specifying a type, but we are telling the interpreter that the type can
change. So what happens when we declare muppet to have String type?

String muppet = 'Piggy';
muppet = 42;
/* What happens now????! */

Well, it turns out that nothing happens. The String variable is now assigned a
number. We can merrily perform math with that variable and all is well:

muppet + 17;
// 59

If you are coming from a statically typed language such as Java, you are
likely appalled that this works. If you hail from a dynamically typed language
such as JavaScript, you might feel right at home. Even the most ardent
dynamic typing supporter has to admit that it is almost certainly a bug to

Chapter 2. Basic Types • 18

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/primitives/types.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

treat a variable declared as a String as if it were a number. And Dart is quite
adept at catching typing bugs like this.

The dartanalyzer tool from the SDK will point out the problem right away:

[warning] A value of type 'int' cannot be assigned to a variable of type 'String'
(/code/primitives/types.dart, line 34, col 16)

Better still, if you are using the Dart Editor, problem files are immediately
flagged in the sidebar.

Problems are also flagged in the code itself.

And we can mouse over the warning icon to find out exactly what the problem
is.

Dart is capable of tracing this type of information through multiple levels of
function calls. Over the long term, these kinds of small wins add up a lot for
keeping code robust. This is why Dart’s typing is sneaky. We do not need to
use it, but life is that much better if we do.

Important: When run normally by the SDK or the browser (for
example, Dartium), type checking is disabled. Dart’s type
checking is implemented as runtime assertions. Were those
checks enabled in “production” mode, performance of the
application would degrade. It is still possible to catch typing
errors with proper use of the Dart Editor and dartanalyzer. It is
even possible to run Dartium with type checking enabled. To
do so, start Dartium from the command line with DART_FLAGS='-
-enable_type_checks --enable_asserts' /path/to/dartium.

Tip

Although the var keyword is acceptable, it is generally considered good manners
to declare types.

int i = 0;
bool is_done = false;
String muppet = 'Piggy';
DateTime now = new DateTime.now();

report erratum • discuss

Types • 19

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

For types that contain other types, it is possible to declare both the container
type and the containee type.

HashMap<String,bool> is_awesome = {
'Scooter': false,
'Bert': true,
'Ernie': false

};

List<int> primes = [1,2,3,5,7,11];

It could be argued that too much type information makes the code harder to
read—there are definitely more characters used in the above examples than
a simple var. That said, the intent of the code is clearer.

Ultimately Dart’s sneaky typing allows us to use type information as appro-
priate. When first prototyping applications, type information may very well
be more trouble than it is worth. In small functions, type information can
also get in the way. But when our applications are ready for prime time or
our libraries are ready to be used by the world, type information is invaluable.

What’s Next
There was a lot jammed into this chapter. Much of Dart should still feel
familiar at this point, with some key but (I hope) welcome differences.

Before getting back to building our web application, let’s take a quick look at
functions and functional programming in Dart. At first glance, they look very
much like their counterparts in JavaScript. But as you will see, there is some
impressive syntactic sugar in them that is sure to increase developer joy.

Chapter 2. Basic Types • 20

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 3

Functional Programming in Dart
Some of what makes JavaScript special is its support for functional program-
ming. Since Dart aims to be familiar, let’s examine what it is like to program
functionally in Dart.

We begin with the old standby, the Fibonacci sequence. In JavaScript, this
might be written like so:

function fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

The Fibonacci sequence is a wonderful example for exploring the functional
programming nature of a language since it, er, is a function but also because
it demonstrates how to invoke a function because of its recursive nature.

I won’t bother describing recursion or the particulars of this function.1 Instead,
let’s focus on how to use the function in JavaScript.

fib(1) // => 1
fib(3) // => 2
fib(10) // => 55

So, JavaScript functions are simple enough. They are introduced with the
function keyword, followed by the name of the function, the list of supported
arguments in parentheses, and the block that describes the body of the
function.

So, what would the equivalent Dart version look like?

1. The Fibonacci sequence is well documented elsewhere if you need a refresher:
http://en.wikipedia.org/wiki/Fibonacci_number.

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Fibonacci_number
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

functional_programming/fib.dart
// Dart
fib(i) {

if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

Wait, how is that different from the JavaScript version?

function fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

Astute readers will note that the Dart version lacks the function keyword. Aside
from that, the two function definitions are identical, as is invoking the two.

fib(1); // => 1

fib(5); // => 5

fib(10); // => 55

If nothing else, we can see that the designers of the Dart language have cer-
tainly succeeded in producing something familiar.

Anonymous Functions
The experienced JavaScript programmer is well versed in using anonymous
functions. Since functions in JavaScript are a first-order concept, functions
are passed around in JavaScript with abandon. Some even lament the callback
hell of certain frameworks, but aesthetics aside, there can be no denying that
anonymous functions are an important thing in JavaScript. So, the same
must surely be true in Dart, right?

In JavaScript, an anonymous function omits the function name, using only
the function keyword.

function(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

We have already seen that the only difference between JavaScript and Dart
functions is that the latter do not have the function keyword. It turns out this
is also the only difference between JavaScript and Dart anonymous functions.

functional_programming/fib.dart
(i) {

if (i < 2) return i;

Chapter 3. Functional Programming in Dart • 22

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/functional_programming/fib.dart
http://media.pragprog.com/titles/csdart1/code/functional_programming/fib.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

return fib(i-2) + fib(i-1);
}

At first glance, that looks quite odd—almost naked. But that is just our
JavaScript eye. Ruby has lambdas and procs that look very similar.

{ |i| $stderr.puts i }

Given enough consideration, what purpose does the function keyword in Java-
Script really serve? The knee-jerk reaction is that it helps to identify the
anonymous function, but in practice, it is just noise.

Consider this Fibonacci printer:

var list = [1, 5, 8, 10];
list.forEach(function(i) {fib_printer(i)});

function fib_printer(i) {
console.log("Fib(" + i + "): " + fib(i));

}

function fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

Does the function keyword help or hinder readability of the code? Clearly, it
makes the situation worse, especially inside the forEach() call.

Let’s consider the equivalent Dart code.

var list = [1, 5, 8, 10];
list.forEach((i) {fib_printer(i);});

fib_printer(i) {
print("Fib($i): ${fib(i)}");

}

fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

Note: We are using the string interpolation trick first noted in
Chapter 1, Project: Your First Dart Application, on page 3 to
insert the value of the counter i into "Fib($i)".

Tip

All that we did was remove the function keyword, and yet the intent of the code
is much clearer. Multiply that effect across an entire project, and the long-
term health of a codebase goes up dramatically.

report erratum • discuss

Anonymous Functions • 23

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Speaking of clarity, if curly braces make you cringe, there is a hash rocket
syntax that can be used for simple functions. Instead of writing our anonymous
iterator as (i) { fib_printer(i) }, we can write (i) => fib_printer(i). Thus, our code
becomes as follows:

var list = [1, 5, 8, 10];
list.forEach((i) => fib_printer(i));

fib_printer(i) {
print("Fib($i): ${fib(i)}");

}

fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

The argument (i) is repeated both in the definition of the anonymous function
and in the call to fib_printer(i). In JavaScript, there is nothing to be done to clean
that up. In Dart, however, the function (i) => fib_printer(i) can be further simplified
as simply fib_printer.

var list = [1, 5, 8, 10];
list.forEach(fib_printer);

fib_printer(i) {
print("Fib($i): ${fib(i)}");

}

fib(i) {
if (i < 2) return i;
return fib(i-2) + fib(i-1);

}

That is a fantastic little shortcut to use with abandon in our Dart code.

First-Order Functions
Passing an anonymous function into an iterator like forEach() already demon-
strates some nice support for first-class objects—the ability to treat functions
as variables that can be assigned and passed around.

Dart’s functional programming capabilities are strong enough to support
things like partial function application. The classic example of partial appli-
cation is converting an add() function that returns the sum of three numbers
into another function that fixes one of those numbers.

Chapter 3. Functional Programming in Dart • 24

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

functional_programming/first_order.dart
add(x, y, z) {

return x + y + z;
}
makeAdder2(fn, arg1) {

return (y, z) {
return fn(arg1, y, z);

};
}
var add10 = makeAdder2(add, 10);

The name partial application comes from returning a function with one argu-
ment already applied. In this case, the makeAdder2 function returns another
function taking two arguments. The result of calling this new function is the
same as calling the original function with the first argument fixed to arg1.

At this point, the add10() function takes two numbers, sums them, and ups
the total by 10.

add10(1,1); // => 12

In addition to partial application, it is also possible, though still a little awk-
ward, to use other functional programming techniques like combinators and
dynamic currying. For the interested, an example of this would be the curry
package: http://pub.dartlang.org/packages/curry.

Optional Arguments
One of the more tedious chores in most languages is extracting optional
arguments. Dart’s take on the matter is an altogether pleasant built-in syntax.

Let’s say that we want a function named good_day() to print a pleasant greeting,
with an optional flag to indicate a follow-up message. Calling such a function
in Dart looks like the following.

functional_programming/optional.dart
good_day("Bob");
// Good day, Bob.
good_day("Bob", emphatic: true);
// Good day, Bob.
// I said good day!

In the second call, we supply the optional emphatic: true option to get the extra
message. At first glance, this might look like a HashMap. Closer inspection
reveals that there are no curly braces around it. This is not a HashMap, though
the similarity is intentional. Rather this is Dart’s built-in syntax to supply an
optional parameter.

report erratum • discuss

Optional Arguments • 25

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/functional_programming/first_order.dart
http://pub.dartlang.org/packages/curry
http://media.pragprog.com/titles/csdart1/code/functional_programming/optional.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

To declare a parameter as optional in a function definition, wrap it inside
curly braces. The good_day() function, with a required name parameter and an
optional emphatic parameter, can be defined as:

good_day(name, {emphatic}) {
print("Good day, ${name}.");
if (emphatic) {

print("I said good day!");
}

}

This is a wonderful syntax. At the same time, it is easy to understand what
is intended and there is very little clutter. Even if you are new to Dart, the
curly braces evoke a sense of named parameters by virtue of their resemblance
to JSON object literals. With this, the body of the function can focus on its
inherent purpose—no options parsing to obscure intent.

Named optional parameters support more than one value by separating them
with commas. It is even possible to supply default values by including a colon
after the parameter name.

Consider the following profile(), which prints out a name and, optionally, a
personal hero and favorite color. Since Weird Al Yankovic is the personal hero
to a majority of hipsters, we can supply him as the default value as follows:

profile(name, {hero:"Weird Al", favorite_color}) {
print("Name: ${name}");
print(" personal hero: ${hero}");
if (favorite_color != null) {

print(" favorite color: ${favorite_color}");
}

}

With that, if we profile Bob, we find:

profile("Bob");
// Name: Bob
// personal hero: Weird Al

Should Bob prove fickle and change his personal hero and decide upon a
favorite color, a subsequent call to profile() might result in:

profile("Bob", favorite_color: 'Purple', hero: 'Frank Drebin');
// Name: Bob
// personal hero: Frank Drebin
// favorite color: Purple

Named, optional parameters are an exceptional aid for writing clean code,
but Dart does not stop there. Dart also supports positional parameters. That

Chapter 3. Functional Programming in Dart • 26

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

is, if we want the first parameter to a function to be required but the next
two to be optional, then Dart has us covered.

Since named, optional parameters adopt a HashMap feel, it should not be a
surprise that positional, optional parameters adopt a List feel. So, instead of
curly braces, we use square brackets in the function definition:

movie(title, [starring="Leslie Nielson", co_starring]) {
print("Great movie: ${title}");
print(" Starring: ${starring}");
if (co_starring != null) {

print(" Co-starring: ${co_starring}");
}

}

As you can see, positional parameters also support default values—though
an equals sign is used instead of a colon. Calling this function is a simple
matter of invoking it with just the required value or one or more of the
optional values.

movie("The Naked Gun");
// Great movie: The Naked Gun
// Starring: Leslie Nielson
movie("Airplane!", "Robert Hays", "Leslie Nielson");
// Great movie: The Naked Gun
// Starring: Robert Hays
// Co-starring: Leslie Nielson

This certainly beats rooting through object literals. Optional arguments are
even more powerful inside class and instance methods, as you’ll see in
Chapter 7, Classes and Objects, on page 59.

Note: this make sense in Dart. One of the ways in which Dart
departs from JavaScript is in the use of the this keyword. Dart’s
stance on the matter is that this has absolutely nothing to do
with the current function. Instead, this is reserved for objects
and always refers to the current object. There is no binding of
this, applying this, or calling this in Dart. In other words, this has
nothing to do with functions. We’ll discuss this again in Classes
and Objects, but only briefly because this is so dang simple in
Dart!

Tip

report erratum • discuss

Optional Arguments • 27

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

What’s Next
In many ways, this chapter is a work very much in progress. Dart lacks quite
a lot of the power that is currently available to the JavaScript programmer:
there is no reflection, and there is no arguments property available inside
functions.

You can already see that, even lacking these, Dart is extremely powerful in
what it does allow you to do. We’ll return to this topic again in Chapter 11,
Project: Varying Behavior, on page 103.

Chapter 3. Functional Programming in Dart • 28

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 4

Manipulating the DOM
We can’t write web applications without accessing and manipulating the
DOM.1 Sadly, Dart can’t do away entirely with established and often madden-
ing aspects of the DOM API. Happily, Dart does provide a compatibility library
that reestablishes some sanity when manipulating web pages.

dart:html
The library that we will use to interact and manipulate objects in a web page
is dart:html. We will talk more about libraries in Chapter 10, Libraries, on page
93. For now, just think of them like libraries from any other language (except
JavaScript, of course)—a mechanism for encapsulating logically and physically
separate functionality.

The dart:html library is not your grandmother’s DOM API. The dart:html core
library is Dart’s take on what DOM programming should have been like from
the beginning.

Finding Things
The primary entry points into DOM are document.query() and document.queryAll().
Both take a CSS selector as the argument. The former returns a single
matching element; the latter returns a list of all matching elements. Here are
some simple examples:

dom/finding.dart
document.query('h1'); // => First <h1> in the document
document.query('#people-list'); // => Element with id of 'people-list'
document.query('.active'); // => First element with 'active' class
document.queryAll('h2'); // => All <h2> elements

1. Document Object Model: http://en.wikipedia.org/wiki/Document_Object_Model

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/dom/finding.dart
http://en.wikipedia.org/wiki/Document_Object_Model
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The query() and queryAll() methods are actually methods of the Element class.
Document, like every other class representing a bit of the DOM, subclasses
Element. In practice, this means we can limit queries to a specific element by
first finding the element and then querying from it.

var list = document.query('ul#people-list');
var last_person = list.query(':last-child');
last_person.innerHtml;
// => 'Lucy'

Or we can chain it:

document.
query('ul#people-list').
query(':last-child').
innerHtml;

// => 'Lucy'

This Is Not jQuery

Chaining query() methods like this might suggest a jQuery-like composability, but
these are not wrapped sets. Consider trying to highlight the name of people in an
unordered list. In jQuery, we might write something like this:

$('li', 'ul#people-list).
attr('class', 'highlight');

In Dart, we have to manually iterate over each element:

document.
query('ul#people-list').
queryAll('li').
forEach((li) {
li.classes.add('highlight');

});

Although Dart makes working with the DOM easier than working with pure JavaScript,
there are still some things that jQuery does a little better.

The bottom line with finding elements on a page in Dart is that query() and
queryAll() do pretty much what you expect, making it easy to query the DOM.

Adding Things
Although Dart supports the usual Element and Node classes for manipulating
the DOM, Dart goes out of its way to allow us to stick to just an Element class.
For just about any HTML element, Dart defines a convenience constructor.
To create a <div>, for instance, there is the DivElement constructor. Coupled
with text and innerHtml properties, it’s easy to get started with DOM elements.

Chapter 4. Manipulating the DOM • 30

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

dom/adding.dart
var gallery = new DivElement();
gallery.text = 'Welcome to the Gallery';

For a more general purpose way to create a new element in Dart, we can use
the handy html named constructor for Element.

var gallery = new Element.html('<div id="gallery">');

The Element.html() named constructor does not restrict us to creating a single
element. We can create more complex HTML to be inserted into the page.

var gallery = new Element.html("""
<div id="gallery">

<!-- ... -->

</div>""");

Dart’s string interpolation is especially handy when building larger HTML
fragments. The result can be almost template-like.

gallery(title, photographer) {
return new Element.html("""

<div id="gallery">
<h2>${title}</h2>

<!-- ... -->

<h3 class="footer">

Photos by: ${photographer}
</h3>

</div>""");
}

To insert an element into the document, use the append() method exposed by
Element.

var gallery = new Element.html('<div id="gallery">');
document.

query('#content').
append(gallery);

report erratum • discuss

Adding Things • 31

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/dom/adding.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

When more sophisticated element insertion is needed, Dart supports the
standard insertAdjacentHTML() method.2 This is far more verbose than the jQuery
prepend(), append(), before(), and after() Element methods. Even the somewhat
shorter insertAdjacentElement() suffers by comparison to the jQuery equivalent.

var gallery = new Element.html('<div id="gallery">');
document.

query('#content').
insertAdjacentElement('afterBegin', gallery);

The previous code would insert the gallery element at the beginning of the
content <div>’s nodes (equivalent to jQuery’s prepend()).

Creating elements in Dart is quite nice. Appending them to the document or
a list of elements is also pretty easy. Dart still leaves something to be desired
when we need to perform more sophisticated insertion of elements. Hopefully,
this will improve as Dart evolves.

Removing Things
Removing an element from the document is quite Darty.

dom/removing.dart
document.

query('#content').
query('#gallery').
remove();

This would find the element with the ID of "content"; then, inside that, it would
find the "gallery" element and remove it from the page. If the page began:

<body>
<div id="content">

<div id="gallery"/>
<p class="instructions">...</p>

</div>
</body>

then the result of the previous remove() would be as follows:

<body>
<div id="content">

<p class="instructions">...</p>
</div>
</body>

Not being required to walk up to an element’s parent to remove the element,
as we have to do in JavaScript, is a nice win.

2. https://developer.mozilla.org/en/DOM/Element.insertAdjacentHTML

Chapter 4. Manipulating the DOM • 32

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/dom/removing.dart
https://developer.mozilla.org/en/DOM/Element.insertAdjacentHTML
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Updating Elements
We have already discussed adding and removing elements from a parent ele-
ment. Aside from those actions, the most common manipulation is adding
and removing CSS classes on an element. The following would remove the
subdued class from the <blockquote> tag and add the highlighted class to it:

dom/updating.dart
document.

query('blockquote').
classes.
remove('subdued');

document.
query('blockquote').
classes.
add('highlighted');

Here, we again see the difference between Dart’s set-based approach to
classes and jQuery’s chainable approach. In jQuery, removing and adding
classes could be accomplished in a single statement with several chains. In
Dart (for now) we are forced to use two separate statements. Actually, that is
not 100 percent true, but we’ll come back to that in a bit.

In addition to manipulating classes, the Element class allows for the familiar
innerHTML change—except that in Dart, it is innerHtml.

document.
query('blockquote').
innerHtml = 'Four score and <u>seven</u> years ago...';

The reason that it is innerHtml in Dart is that all methods are camel-cased in
Dart. Rather than sticking slavishly to obscure names, Dart makes life easier
for us by opting for a sane convention.

Manipulating classes and updating innerHtml covers the most common cases
of changing an element directly. If more is needed, then the Element class3 is
the place to start looking.

Method Cascades
In the previous section, you found that Dart’s lack of built-in jQuery-like
wrapped sets forces you to add and remove classes in two separate steps.
Although Dart’s Element class does not support wrapped sets, Dart’s object
system does support something very similar—method cascades.

3. http://api.dartlang.org/html/Element.html

report erratum • discuss

Updating Elements • 33

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/dom/updating.dart
http://api.dartlang.org/html/Element.html
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Method cascades let us call several methods on the same objects. A method
cascade is invoked with two dots (..) instead of the one dot that calls a method.
Here’s the cascaded version of the code that added and removed classes.

document.
query('blockquote').
classes

..remove('subdued')

..add('highlighted');

That is much more compact and, surprisingly, more readable. It is obvious
at a glance that we are performing two operations on the classes property. Best
of all, we can use cascades on any Dart object—not just Element operations.

Methods cascades are very powerful—you will definitely see them again.

DOM Ready
There is no need for an on-DOM-ready handler in Dart. Dart makes the sane
decision of deferring evaluation until the DOM is ready for processing.

Actually, Dart takes this a step further. Dart allows one <script> tag of type
application/dart with one main() entry point. This one entry point is what is invoked
when the DOM is ready.

Folks coming from the craziness of JavaScript with an infinite number of
<script> tags and execution contexts may be feeling a desperate sense of con-
striction at this point. But after a deep breath or two, cooler heads should be
able to admit that an infinite number of scripts all running at essentially the
same time usually wind up causing more trouble than they are worth. Besides,
Dart does allow for multiple, isolated execution environments, as you’ll see
in Chapter 14, Futures and Isolates, on page 127.

Be wary of compiling Dart to JavaScript and then expecting <script> tags that
point to this compiled JavaScript to work. We will talk about how Dart’s
JavaScript compiler maintains this single, main entry point in the next
chapter, Dart and JavaScript.

What’s Next
The Dart HTML library exposes a familiar yet powerfully different means for
manipulating web pages. It is not a complete, high-level solution like jQuery,
but it provides a much nicer foundation on which to build higher-level
libraries. In the next chapter, let’s build on what we have so far and see how
Dart supports the modern Web by compiling Dart into cross-browser Java-
Script applications.

Chapter 4. Manipulating the DOM • 34

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 5

Dart and JavaScript
When Dart first came out, every major browser vendor, as well as the WebKit
project, announced that they had absolutely no intention of embedding the
Dart VM in their browsers. Many bristled at the very suggestion that a non-
standard language1 be supported even obliquely. How another language was
supposed to become a standard seemed a tricky question. Fortunately, Google
had a plan.

In the grand tradition of CoffeeScript,2 the Dart project includes a compiler
capable of compiling Dart into JavaScript. The goal is that, even if Dart does
not become an overnight standard, web developers tired of the quirks of
JavaScript have a choice. We can now code in a modern language for the Web
but still support the wide variety of browsers on the market.

The JavaScript generated by the Dart compiler includes shim code for the
various Dart libraries. There is generated JavaScript that translates Dart
DOM calls into JavaScript. There is generated JavaScript that supports Dart
Ajax. For just about every feature of Dart, there is a corresponding chunk of
JavaScript that gets included in the compiled output.

If that sounds large, well, it is. When first released, the compiler generated
tens of thousands of lines of JavaScript!

Of course, the compiler continues to improve. It now supports compres-
sion/optimization and is producing JavaScript libraries in the range of
thousands of lines of code instead of tens of thousands. Considering that
Dart does a good chunk of the work of many JavaScript libraries like jQuery,
this is already a good start. And it is only going to get better.

1. Dart is now a standard supported by the same ECMA organization that is responsible
for the JavaScript standard: http://www.ecma-international.org/publications/standards/Ecma-408.htm.

2. http://coffeescript.org/

report erratum • discusswww.it-ebooks.info

http://www.ecma-international.org/publications/standards/Ecma-408.htm
http://coffeescript.org/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Compiling to JavaScript with dart2js
The tool provided to compile Dart down into JavaScript is dart2js. The dart2js
compiler can be found among the Dart software development kit builds.3 The
SDK are the ones with “sdk” in the filename (as opposed to the “editor” builds
that include the editor in addition to the SDK).

We see that, once unzipped, the SDK contains the entire Dart library (core,
html, io, json).

+-- bin
+-- dart
+-- dart2js
+-- dartanalyzer
+-- dartdoc
+-- pub

+-- include
+-- lib
| +-- async
| +-- chrome
| +-- collection
| +-- convert
| +-- core
| +-- html
| +-- indexed_db
| +-- io
| +-- isolate
| +-- js
| +-- json
| +-- math
| +-- mirrors
| +-- svg
| +-- typed_data
| +-- utf
| +-- web_audio
| +-- web_gl
| +-- web_sql
+-- util

In addition to the core Dart libraries, the SDK contains library code to support
documentation (dartdoc) and compiling to JavaScript (dart2js).

Using dart2js could not be more basic. It takes a single command-line argu-
ment—the Dart filename. There is also a single command-line option that
can be used to set the filename of the resulting JavaScript (out.js by default):

$ dart2js -omain.dart.js main.dart

3. https://www.dartlang.org/tools/sdk/

Chapter 5. Dart and JavaScript • 36

report erratum • discusswww.it-ebooks.info

https://www.dartlang.org/tools/sdk/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

There is no output from the compiler indicating success, but we now have a
nice little JavaScript version of our script.

$ ls -lh
-rw-r--r-- 1 chris chris 33 Feb 17 12:47 main.dart
-rw-r--r-- 1 chris chris 7.2K Feb 17 12:47 main.dart.js

Well, maybe it’s not “little.”

If there are errors in the Dart code being compiled, dart2js does a very nice job
of letting us know where the errors occur.

$ dart2js main.dart
main.dart:5:3: Warning: Cannot resolve "document".

document.query('#foo');
^^^^^^^^

One thing to bear in mind when compiling JavaScript is that dart2js works
only at the application level, not the class level. Consider the situation in
which we are converting our comic book collection application to follow a hip
MVC pattern.

comics.dart
Collection.Comics.dart
HipsterModel.dart
Models.ComicBook.dart
Views.AddComic.dart
Views.AddComicForm.dart
Views.ComicsCollection.dart

There is no way to compile individual classes into usable JavaScript.

$ dart2js Models.ComicBook.dart
Models.ComicBook.dart:1:1: Error: Could not find "main".
library models_comic_book;

Error: Compilation failed.

If the script containing the main() entry point references the other libraries or
if those libraries reference other libraries, then everything will be slurped into
the resulting JavaScript. The three libraries referenced in the following import
statements will be pulled into the compiled JavaScript:

javascript/web/scripts/comics.dart
import 'Collections.Comics.dart' as Collections;
import 'Views.Comics.dart' as Views;

main() {
// ...

}

report erratum • discuss

Compiling to JavaScript with dart2js • 37

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/javascript/web/scripts/comics.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Similarly, the ComicBook model will also be included in the dart2js-generated
JavaScript by virtue of being referenced in the collection class.

javascript/web/scripts/Collections.Comics.dart
library comics_collection;

import 'HipsterCollection.dart';
import 'Models.ComicBook.dart';

class Comics extends HipsterCollection {
// ...

}

At some point, it might be nice to write classes in Dart and compile them into
usable JavaScript. For now, however, we are relegated to compiling entire
applications, not pieces.

Maintaining Dart and JavaScript Side by Side
As Dart and dart2js evolve, the performance of the generated JavaScript will
improve. At this early stage, Dart code compiled to JavaScript rivals and
sometimes surpasses code a typical JavaScripter might write.4 But as fast as
the compiled JavaScript gets, it will never be as fast as running Dart natively.

The question then becomes, how can we send Dart code to Dart-enabled
browsers and send the compiled JavaScript to other browsers?

The answer is relatively simple: include a small JavaScript snippet that detects
the absence of Dart and loads the corresponding JavaScript. As you saw in
the previous section, if we compile a main.dart script, then dart2js will produce
a corresponding main.dart.js JavaScript version.

The following JavaScript snippet will do the trick (placed after the closing
</body> tag):

if (!/Dart/.test(navigator.userAgent)) {
loadJsEquivalentScripts();

}

function loadJsEquivalentScripts() {
var scripts = document.getElementsByTagName('script');
for (var i=0; i<scripts.length; i++) {

loadJsEquivalent(scripts[i]);
}

}

4. See the Dart performance page for details on how that is determined: https://www.dart-
lang.org/performance/.

Chapter 5. Dart and JavaScript • 38

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/javascript/web/scripts/Collections.Comics.dart
https://www.dartlang.org/performance/
https://www.dartlang.org/performance/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

function loadJsEquivalent(script) {
if (!script.hasAttribute('src')) return;
if (!script.hasAttribute('type')) return;
if (script.getAttribute('type') != 'application/dart') return;

var js_script = document.createElement('script');
js_script.setAttribute('src', script.getAttribute('src') + '.js');
document.body.appendChild(js_script);

}

There is a similar script in Dart core.5 In most cases, that script should be
preferred over ours because it does other things (such as start the Dart
engine).

The check for an available Dart engine is a simple matter of checking the user
agent string. If it contains the word “Dart,” then it is Dart-enabled.

if (!/Dart/.test(navigator.userAgent))

That may come in handy elsewhere in our Dart adventures.

The remainder of the JavaScript is fairly simple. The loadJsEquivalentScripts()
function invokes loadJsEquivalent() for every <script> tag in the DOM. This method
has a few guard clauses to ensure that a Dart script is in play. It then appends
a new .js <script> to the DOM to trigger the equivalent JavaScript load.

To use that JavaScript detection script, we save it as dart.js and add it to the
web page containing the Dart <script> tag.

<script src="/scripts/dart.js"></script>

<script src="/scripts/main.dart"
type="application/dart"></script>

A Dart-enabled browser will evaluate and execute main.dart directly. Other
browsers will ignore the unknown "application/dart" type and instead execute the
code in dart.js, creating new <script> tags that source the main.dart.js file that we
compiled with dart2js.

In the end, we have superfast code for browsers that support Dart. For both
Dart and non-Dart browsers, we have elegant, structured, modern code. Even
this early in Dart’s evolution, we get the best of both worlds.

5. It is part of the browser Pub package available at: http://pub.dartlang.org/packages/browser.
We will talk more about Pub and library packages in Chapter 10, Libraries, on page
93.

report erratum • discuss

Maintaining Dart and JavaScript Side by Side • 39

www.it-ebooks.info

http://pub.dartlang.org/packages/browser
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Using JavaScript in Dart
Programmers new to Dart often look for a jQuery-like library or a way to call
jQuery directly from Dart. As you have already seen, Dart’s built-in DOM
support obviates the need for jQuery, but there are still times when it is
useful to call JavaScript from Dart. Happily, Dart makes this easy with the
dart:js package.

We will talk more about libraries and packages in Chapter 10, Libraries, on
page 93. For now it is enough to know that we need to import the dart:js
package to interact with JavaScript:

javascript/test/calling_javascript_test.dart
import 'dart:js';

Since JavaScript throws everything into a top-level namespace, dart:js makes
this available through its context property. This property provides access to
top-level JavaScript variables, classes, and functions.

Let’s first try to call a JavaScript function from Dart. Consider a simple add()
function that adds two numbers in JavaScript:

javascript/lib/add.js
function add(num1, num2) {

return num1 + num2;
}

Calling this from Dart is a simple matter of importing dart:js and using the
callMethod() method on the top-level JavaScript context object. In the case of the
add() method, we want to call it by name, supplying it with two arguments:

javascript/test/calling_javascript_test.dart
import 'dart:js';

// ...

var answer = context.callMethod('add', [19, 23]);

After executing this line, answer will be the integer 42. What is especially nice
here is that the JavaScript compatibility library takes care of assigning the
proper type to the value back in Dart.

The top-level JavaScript context variable is a JavaScript proxy object. It should
come as no surprise that Dart facilitates creating our own JavaScript object
proxies. Consider a simple Person in JavaScript:

Chapter 5. Dart and JavaScript • 40

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/javascript/test/calling_javascript_test.dart
http://media.pragprog.com/titles/csdart1/code/javascript/lib/add.js
http://media.pragprog.com/titles/csdart1/code/javascript/test/calling_javascript_test.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

javascript/lib/person.js
function Person(name) {

this.name = name;
this.greet = function() {

return 'Howdy, ' + this.name + '!';
};

}

We can instantiate—with constructor arguments—a JavaScript proxy in Dart
with dart:js’s JsObject wrapper:

var person = new JsObject(context['Person'], ['Bob']);

To invoke the JavaScript greet() method, we again use callMethod(), this time on
the Person wrapper instead of context:

person.callMethod('greet', []);
// => 'Howdy, Bob!'

Setting properties on JavaScript objects is even easier. We simply use the
square bracket operator to look up and assign JavaScript properties:

person['name'] = 'Fred';

person.callMethod('greet', []);
// => 'Howdy, Fred!'

Lest we Dart programmers forget, JavaScript is the land of callback hell. So,
from time to time it will be necessary for a JavaScript function or method to
invoke a callback function. In most cases, dart:js lets us supply a Dart function
to serve as a callback.

Examining the following simple JavaScript multiply(), we see that it takes two
arguments, a numeric multiplier and a callback function:

javascript/lib/add.js
function multiply(multiplier, cb) {

return multiplier * cb();
}

The result of this function is the multiplication product of multiplier and the
result of the callback function cb().

Given a very simple Dart function that computes 84 divided by 4, we can call
the callback-laden multiply() function from Dart as:

var answer = context.callMethod('multiply', [2, ()=> 84/4]);

Yet again, the answer in Dart will be 42.

report erratum • discuss

Using JavaScript in Dart • 41

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/javascript/lib/person.js
http://media.pragprog.com/titles/csdart1/code/javascript/lib/add.js
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Dart’s JavaScript compatibility library is surprisingly easy. There are some
limitations, however, mostly the kinds of values that can be sent back and
forth. But even these limitations are not as restrictive as might be expected.
Basic types (numbers, Booleans, and strings) can be sent to and from Java-
Script. It is also possible to send DOM elements and collections, which comes
in extremely handy when working with JavaScript browser libraries. It is even
possible to send events, blobs, image data, and more!

More often than not, Dart and JavaScript interoperability just works as
expected. Even though we might prefer writing Dart, we do not want to rewrite
the wheel if someone else has already done it for us in JavaScript.

What’s Next
The ability to compile Dart into JavaScript means that we do not have to wait
for a tipping point of browser support before enjoying the power of Dart.
Today, we can start writing web applications in Dart and expect that they will
work for everyone. Plus, we can leverage existing codebases in JavaScript
with ease. JavaScript compatibility is a good thing because, in the next
chapters, we will be taking our simple Dart application to the next level and
we wouldn’t want to leave our nonhipster friends too far behind.

Chapter 5. Dart and JavaScript • 42

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Part II

Effective Coding Techniques

With the basics of Dart out of the way, we’ll explore
what makes Dart unique. We’ll begin by converting
the simple application from Chapter 1 into a full-
blown MVC client library. Happily, this is quite easy
to do in Dart.

With the MVC library started, it’s high time we
discuss some of Dart’s most exciting features: the
excellent object-oriented programming support and
a customizable events system.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Project: MVC in Dart
In this chapter, you’ll get your first real feel for what it means to write Dart
code. Until now, our discussion has not strayed far from the familiar—or at
least from what is similar to JavaScript.

We’ll take the very simple comic book collection application from Chapter 1,
Project: Your First Dart Application, on page 3 and convert it to an MVC design
pattern. Since this will be client based, it won’t be Model-View-Controller.
Rather, it will be Model-Collection-View, plus a Router, similar to Backbone.js.

We’ll start by implementing collections of objects in Dart and then describe
the objects themselves. Once we have the foundation in place, we’ll take a
look at views and templates.

This is another “project” chapter, so we’ll gloss over some Dart details to focus
on writing code.

MVC in Dart
The foundation of our Hipster MVC library (of course
that’s the name) will be collections of objects, not the
objects themselves. The collection maps nicely onto
REST-like web services, resulting in a clean API for
adding, deleting, and updating records.

Hearkening back to the first chapter, our comics col-
lection can be retrieved via an HTTP GET of /comics.
In Hipster MVC parlance, we will call that a fetch().

With REST-like resources, we can also refer to /comics as the URL root because
it serves as the root for all operations on the collection of individual records.
This is shown in the following sketches.

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Lastly, to remove a
record from the collec-

To update a comic book
with new information,

Adding a new comic to
the collection is an HTTP

tion, we use the destroy()we use HTTP’s PUT,POST operation on
method. This will resultsupplying the ID in the/comics. And, in hipster-

ese, that is an add(). in an HTTP DELETE.subpath of the URL:
Again we use the collec-PUT /comics/42. From
tion URL including the
ID.

Hipster MVC’s perspec-
tive, we retrieve the
record, update it, and
save it with save().

Let’s get started writing that code.

Hipster Collections
Recall from Project: Your First Dart Application that our comics.dart looks
something like this:

your_first_dart_app/web/scripts/skel.dart
import 'dart:html';
import 'dart:convert';
main() {

// Do stuff here
}

We replaced the // Do stuff here comment with code that retrieves the comic book
collection from /comics and displays it on the web page. In MVC, the collection
object retrieves the records, and a view object displays the contents of the
collection.

mvc/web/scripts/comics.dart
import 'dart:html';
import 'dart:convert';
import 'dart:collection';
main() {

var comics_view, comics_collection;

Chapter 6. Project: MVC in Dart • 46

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/your_first_dart_app/web/scripts/skel.dart
http://media.pragprog.com/titles/csdart1/code/mvc/web/scripts/comics.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

comics_collection = new ComicsCollection(
onChange: ()=> comics_view.render()

);
comics_view = new ComicsView(

el: document.query('#comics-list'),
collection: comics_collection

);
comics_collection.fetch();

}

This is a first pass at MVC, not a final product. Already, it is quite promising.
The ComicsCollection class needs very little construction—just a callback that
re-renders the collection view when the collection changes. Similarly, ComicsView
needs only an element on the page to which it can attach itself and, of course,
a reference to the collection that it will display.

With both the collection and view constructed, we fetch the collection from
the REST-like back-end server. Once the response comes back, the collection
will be populated, resulting in a change. This change will invoke our callback,
which will update the view. That is fairly tidy, which is the benefit of using
an MVC pattern, after all.

Note: We are exploiting Dart’s lazy evaluation of functions in
the onChange constructor option for ComicsCollection. When
comics_collection is constructed, comics_view is null, which certainly
does not have a render() method. By supplying a function that
calls comics_view.render(), we do not have to worry about acciden-
tally calling render() before comics_view is defined.

Tip

Observant readers may have noticed that we have a new import: dart:collection.
As the name suggests, this library adds lots of nifty collection-related code.
Since we are writing an MVC collection, that will come in quite handy, starting
with the class definition:

class ComicsCollection extends IterableBase {

List models = [];
Iterator get iterator => models.iterator;

// ...
}

report erratum • discuss

Hipster Collections • 47

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Note: When writing scripts or initial implementations of libraries,
we can easily forgo typing information. When writing libraries
that we hope others will use, it is a must. To be clear, it is
possible to write reusable code without the type information,
but it is tantamount to being a bad Dart citizen.

Tip

Extending IterableBase and defining iterator are a cheap way to get collection-like
behavior in a class. We will discuss Dart’s object-oriented approach in
Chapter 7, Classes and Objects, on page 59, but the intent of this class is
already fairly self-evident. Our ComicsCollection is going to extend another class
that knows different ways to iterate over a collection of things. In this case,
IterableBase can iterate with methods like forEach(), map(), reduce(), and many
others. All that IterableBase needs is an iterator, which our list of models provides
via the List class.

“Getter” methods like iterator are methods that are invoked without the trailing
parentheses. Instead of invoking it as collection.iterator(), it would be simply col-
lection.iterator. Getters, and their counterpart setters, can be quite useful as
you’ll see later.

Our ComicsCollection knows how to collect model objects, but we are still missing
two requirements for an MVC collection. The first is the ability to communicate
when changes occur (the views need a way to know when to update). Also,
this would not be a REST-like collection without some create, read, update,
and delete (CRUD) methods.

At this stage in our MVC solution, our collection will communicate change
via a simple callback method. Have no fear, we will lose the callbacks in
Chapter 8, Events and Streams, on page 77. But, for now, our class’s construc-
tor will accept a callback function, assigning it to the local onChange variable:

class ComicsCollection extends IterableBase {
// ...

var onChange = (){};

// Constructor method
ComicsCollection({this.onChange});

// ...
}

Here, we already see a glimpse of the extraordinary power of Dart constructors
in the ComicsCollection() constructor methods. First, constructors are easy—they
are a method with the same name as the class. Second, they do not require

Chapter 6. Project: MVC in Dart • 48

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

a method body. Lastly, they take the optional arguments from Chapter 3,
Functional Programming in Dart, on page 21 a step further—prefixed with this,
optional arguments are assigned directly to object instance variables.

In other words, instantiating the object as new ComicsCollection(onChange: (){
print('Awesome sauce here!) }); will print “Awesome sauce here!” to the console
whenever changes are made to the collection. That is an amazing lines-of-
code savings over not only JavaScript, but also over most established lan-
guages. It gets even better, but we’ll leave that for Classes and Objects. For
now, let’s get back to building our ComicsCollection.

Now that we have our collection behaving like a collection and capable of
communicating change, let’s make it behave like an Ajax-backed object. For
discussion purposes, we will not go into complete CRUD but will focus on
fetching the objects from the back-end data store, creating new objects in the
data store and deleting them.

We already know from Project: Your First Dart Application how to fetch data
over Ajax in Dart. In this case, when the data has loaded, we call the private
_handleOnLoad() method.

void fetch() {
var req = new HttpRequest();
req.onLoad.listen((event) {

var list = JSON.decode(req.responseText);
_handleOnLoad(list);

});
req.open('get', url);
req.send();

}

Instead of populating a UI element as we did in our first application, we need
to behave in a more frameworky fashion. That is, we build the internal collec-
tion and notify interested parties when changes to the collection occur.

_handleOnLoad(list) {
list.forEach((attrs) {

var new_model = new ComicBook(attrs, collection: this);
models.add(new_model);
onChange();

});
}

For each set of model attributes, we create a new model object, set the model’s
collection property to our current collection, and add the model to the collection’s
models list. Once that’s complete, we invoke the onChange() callback method,
telling interested parties that a change has occurred.

report erratum • discuss

Hipster Collections • 49

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The model does not strictly need to know about the collection (in fact, it should
not communicate directly with the collection). We assign it here so that the
model can reuse the collection’s URL for finding, creating, and updating back-
end objects. The model will communicate with the collection via callbacks
just as we have done with onChange() here.

We still need the ability to create new comic books in our collection. Most of the
heavy lifting will be done by the ComicBook model. In the collection we create a new
model and tell it to save itself. Upon successful save, we add it to the internal list
of comic books and notify interested parties via onChange().

class ComicsCollection extends IterableBase {
// ...
create(attrs) {

var new_model = new ComicBook(attrs, collection: this);
new_model.save((event) {
models.add(new_model);
onChange();

});
}
// ...

}

Of course, we have not even introduced the model base class yet, so let’s get
that out of the way next.

Hipster Models
Where the collection had a models property to store its data, the model will
have the attributes property. Recall that the collection will pass the model a
reference to itself, giving the model quick access to the collection’s properties
(for example, url). Thus, we can begin defining the model class as follows:

class ComicBook {
Map attributes;
ComicsCollection collection;

ComicBook(this.attributes, {this.collection});
}

The declaration of the attributes and collection properties in this class should be
familiar now. Each results in a setter/getter for ComicBook instances (for
example, comic_book.collection = my_comics and comic_book.attributes['title']).

We previously saw Dart’s class constructor in ComicsCollection. The constructor
definition for ComicBook is very similar. There is no need for a constructor
body—we assign instance variables directly in the declaration thanks to the

Chapter 6. Project: MVC in Dart • 50

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

this prefix on the variables. In this constructor declaration, the attributes are
required and the collection is optional.

Since the model is Map-like, we use the [] operator to retrieve attribute values.

class ComicBook {
Map attributes;
ComicsCollection collection;

ComicBook(this.attributes, {this.collection});

operator [](attr) => attributes[attr];

}

We will talk more about operators in Classes and Objects, but the intent of
that method is crystal clear. When we look up an attribute directly on the
model (for example, comic_book['title']), the value in the attributes HashMap is
returned. The hash-rocket shortcut for function bodies is extremely handy
at times.

The URL for ComicBook is complicated only by the question of whether the
model has an ID attribute. If it does have an ID, then we assume that the
model has been previously saved in the back end. In this case, updates will
be PUT against the resource root plus an ID (for example, /comics/42). Otherwise,
this is a new model that will need to be POSTed to the resource root (for
example, /comics). Recall also that if the model has a collection, then the URL
root can come from the collection.

get id => attributes['id'];
String get url => isSaved ?

"$urlRoot/$id" : urlRoot;

String get urlRoot => (collection == null) ?
"" : collection.url;

bool get isSaved => id != null;

With that, we can now define the save() method. Saving a client-side model
involves the following:

• An HttpRequest object, over which the model data will be sent to the back-
end datastore

• JSON functions to encode the data before transport and to decode the
response

• A listener for the HttpRequest object’s onLoad (in other words, on success) event

report erratum • discuss

Hipster Models • 51

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

• Replacing the model’s attributes property with data returned from the
server

• Invoking an optional callback so that the object that called save() can
respond appropriately

Whoa! There is a lot going on with a simple save, and the code reflects it.

save([callback]) {
var req = new HttpRequest(),

method = isSaved ? 'PUT' : 'POST',
json = JSON.encode(attributes);

req.onLoad.listen((load_event) {
var request = load_event.target;
attributes = JSON.decode(request.responseText);
if (callback != null) callback(this);

});
req.open(method, url);
req.setRequestHeader('Content-type', 'application/json');
req.send(json);

}

This should start to look quite familiar now. We create an HttpRequest object,
open it to POST to the model’s url, set the HTTP header as JSON, and send
the serialized model attributes. We also establish a request listener that, when
it sees a successful load event, will update the model’s attributes and invoke
the callback, if supplied.

Lastly, we define a very familiar-looking delete() method.

delete([callback]) {
var req = new HttpRequest();
req.onLoad.listen((load_event) {

var request = load_event.target;
if (callback != null) callback(this);

});
req.open('delete', url);
req.send();

}

As with Backbone.js, the main means of communication between different
parts of the MVC stack are callbacks (or events). Happily, Dart makes callbacks
easy, but events even easier—as you’ll see when we refactor this in Events
and Streams. For now, let’s move on to building our MVC views!

Hipster Views
Of the three parts to our minimalist MVC library, the view is easily the most
lightweight. Sitting atop the MVC stack, it is allowed to communicate directly

Chapter 6. Project: MVC in Dart • 52

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

with either a model or a collection (both at the same time would be frowned
upon). Different views will need to list a collection of models, details of indi-
vidual models, and update models in response to user input. Thus, the view
needs to expose both a collection property and a model property. Since it is a
view, it also needs an HTML element to which it can attach itself.

The constructor for such a beast looks like the following.

class ComicsView {
var el, model, collection;
ComicsView({this.el, this.model, this.collection});

}

Each of these properties is optional in a view—it will be a collection view
subclass’s responsibility to know that it is a collection view and, as such, that
it needs to access the collection property. Thus, we again make use of Dart’s
very excellent optional named constructor parameters.

Our view object does not yet fulfill its purpose: rendering to the UI. To actually
render the view, a render() method can assign the innerHtml of the view’s Element el
to the result of applying the template to the collection. In this case, the tem-
plate does no more than iterate over the entire collection, applying a single
comic book template to each model.

// ...
render() { el.innerHtml = template(); }

template() =>
collection.map(_singleComicBookTemplate).join();

_singleComicBookTemplate(comic) => """
<li id="${comic['id']}">

${comic['title']}
(${comic['author']})
[delete]

""";
}

The template() method is a thing of beauty. We took great pains to make our
collection List-like. Those efforts are rewarded here with the map() method,
which takes a single argument—a function that is applied to each member
of our collection. In this case, we apply the _singleComicBookTemplate() function
to each comic book in the collection. Lastly, we join the results of that mapping
and we have the template.

report erratum • discuss

Hipster Views • 53

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Not to be outdone, the _singleComicBookTemplate() private method is an interesting
little method. It uses Dart’s multiline strings and interpolation to produce a
close facsimile of a traditional template.

Surprisingly, that’s all that’s needed to render the template. Our main() entry
point creates a collection object, gives it to the view, and then performs a
fetch().

main() {
var comics_view, comics_collection;

comics_collection = new ComicsCollection(
onChange: ()=> comics_view.render()

);
comics_view = new ComicsView(

el: document.query('#comics-list'),
collection: comics_collection

);
comics_collection.fetch();

}

When fetch() completes, it invokes the supplied callback, at which point the
view renders itself.

At this point, we have entirely replicated our original application into an MVC
approach. Unlike the original implementation, this approach is aware of how
to add and remove items from the back end. Let’s add the ability to add a
comic book from the collection.

Putting Models, Collections, and Views Together to Create
New Records
A true single-page application needs to do more than display a static list of
the records in the back end. It should be able to perform all of the usual
CRUD operations at a minimum. Let’s walk through creating records in the
UI to get a feel for how this might work in a Dart MVC-like approach.

Rather than attempt to make our existing ComicsView try to do too much, let’s
create a new view class for the logic responsible for creating comic book
records. In the main() entry point, the new view class can be created after
everything else is built.

Chapter 6. Project: MVC in Dart • 54

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

main() {
var comics_view, comics_collection;

comics_collection = new ComicsCollection(
onChange: ()=> comics_view.render()

);
comics_view = new ComicsView(

el: document.query('#comics-list'),
collection: comics_collection

);
comics_collection.fetch();

new CreateComicView(
el: document.query('#add-comic'),
collection: comics_collection

);
}

Given the similarity between the ComicsView and CreateComicView constructors,
there is a natural temptation to generalize a single view solution that works
for both. We resist this for now, though we give into temptation in Chapter
9, Project: Extracting Libraries, on page 85.

Our CreateComicView class needs to attach a click handler for the #add-comic ele-
ment. When clicked, it should toggle the new comic book form. Our constructor
also needs to build that form.

class CreateComicView {
var el, model, collection;
Element form;

CreateComicView({this.el, this.model, this.collection}) {
el.onClick.listen((event) => toggleForm());
attachForm();

}
}

The Element form is different than in the ComicsView, but we have seen all of this
before. Again, the el, model, and collection instance variables are declared as
fields in our view. We will also have a form element in this view, which will
hold the form. The constructor is defined as always, with the same name as
the class. The el, model, and collection instance variables can be optionally set
in the constructor.

Different here is that our constructor actually has a body. In addition to
simple instance variable assignment, we need to listen for click events to
toggle the visibility of the form and to attach the form to the page’s DOM.

report erratum • discuss

Putting Models, Collections, and Views Together to Create New Records • 55

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Toggling the display of the form should look familiar to web programmers.
We switch between 'block' and 'none' values for the form’s display style.

toggleForm() {
if (form.style.display == 'none') {

form.style.display = 'block';
}
else {

form.style.display = 'none';
}

}

The real action takes place in the attachForm() method. It creates and adds the
form element to the web page, and then adds two event handlers.

attachForm() {
form = new Element.html("<div>${template}</div>");
form.style.display = 'none';
el.parent.children.add(form);
InputElement titleInput = form.query('input[name=title]'),

authorInput = form.query('input[name=author]');
// handle create form submission
form.query('form').onSubmit.listen((event) {

collection.create({
'title': titleInput.value,
'author': authorInput.value

});
form.
queryAll('input[type=text]').
forEach((InputElement input) => input.value = '');

toggleForm();
event.preventDefault();

});

// handle clicks on the Cancel link
form.query('a').onClick.listen((event) {

toggleForm();
event.preventDefault();

});
}

The first event handler handles form submission. It extracts the author and
title from the form, using them to create a new comic book in the collection.
Thanks to all of our previous work, collection.create() not only creates a record
in the back end, but it also generates an add event in our MVC stack that
ultimately triggers the ComicsView object to add the new record on the web page.
The remainder of the form submission handler cleans up and hides the form.

Chapter 6. Project: MVC in Dart • 56

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The second handler simply toggles the form when the Cancel link is clicked.
Both handlers prevent default actions (form submission, link following) from
occurring—our handlers have sufficiently handled the events.

What’s Next
Phew! We really put Dart through its paces in this chapter. We took our very
first Dart application and converted it to a very functional MVC class approach.
We also caught a few glimpses of both object-oriented and event-based pro-
gramming. At times we glossed over the details of Dart’s support for those
two programming paradigms, so we will take the next two chapters to explore
them in more detail.

When we pick up our project again in Project: Extracting Libraries, you’ll see
one of Dart’s absolute coolest early features: real libraries.

report erratum • discuss

What’s Next • 57

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 7

Classes and Objects
Chapter 6, Project: MVC in Dart, on page 45 made extensive use of classes
and objects to build up an MVC library. From this, you can take two lessons:
first, it is hard to do significant work in Dart without some object-oriented
programming, and second, it is pretty easy to do object-oriented programming
in Dart. In this chapter, we will formalize how Dart treats its classes and
objects.

Class Is a First-Order Concept
Dart’s classical approach to object-oriented programming is a significant, and
welcome, departure from JavaScript’s prototype-based approach. Prototype-
based languages certainly offer some benefits, but ease of approach is not
one of them.

As you have seen, Dart classes are introduced with the class keyword.

classes/basics.dart
class ComicsCollection {

// describe class operations here...
}

That’s all we need in order to define a class in Dart—no fancy constructor
functions, no heavy libraries to provide classical classes, just class followed
by a class name.

Although a class is a first-order concept in Dart, it is not a first-
order object. As you saw in Project: MVC in Dart, it is not possible
to pass a class name as a variable as we might do in other
languages.

Tip

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/basics.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Instance Variables
Instance variables are nothing more than variables declared inside a class.

class ComicsView {
ComicsCollection collection;
ComicModel model;
Element el;
// ...

}

In this case, we have declared three instance variables of different types. We
could have declared all three as having a variable type (var collection, model, el;),
but we are being good library maintainers by being explicit about the types.

Instance variables are accessible throughout the class with just their
name—there is no need to prepend this. to a variable unless it would help to
disambiguate an instance variable from a local variable.

By default, instance variables are public, which means they are accessible
by subclasses and outside the class. For any public instance variable, Dart
automatically creates an external getter and setter with the same name as
the instance variable. For example, to access the comic book view’s collection,
we can do this:

comics_view.collection;
// => instance of ComicsCollection

To switch the view to a new collection, we can do this:

comics_view.collection = new_collection;

Public instance variables are a nice convenience but should be used with
caution if access control is needed.

Private Instance Variables
In some cases, public instance variables are a scary proposition. If a library
does not want to expose an instance variable directly to its consuming context,
then it can declare private variables. Private variables in Dart are simply
variables that start with an underscore (for example, _models).

If, for example, we did not want to allow the collection to be changed, we could
declare the collection as a private instance variable but still expose a public
“getter.”

Chapter 7. Classes and Objects • 60

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

classes/private.dart
class ComicsView {

// Private because it starts with underscore
ComicsCollection _collection;
ComicsCollection get collection {

// possibly restrict access here...
return _collection;

}
}

Important: Private variables are only available in the library in
which they are defined. If a subclass is defined in a separate
library from its base class, then it cannot access instance vari-
ables in the superclass. Similarly, the superclass would not see
private instance variables assigned in a subclass. This brings
us to a very important rule: never access private instance vari-
ables between superclass and subclass. It may work when both
are in the same library, but if they ever get refactored into sep-
arate libraries, bad things will happen. So don’t do it. We will
run headlong into this restriction in Chapter 11, Project: Varying
Behavior, on page 103.

Tip

Methods
Methods are simply named functions inside a class. The following is a method
that renders the current view by assigning the el instance variable’s innerHTML
to the result of a template.

classes/methods.dart
class ComicsView {

// ...
render() {

el.innerHtml = template(collection);
}

}

Inside the class, methods may be invoked by calling the method directly
—prepending the method with this. is not required like it is in JavaScript
(though it would still work). In the previous example, template() is an instance
method that is invoked with the view’s collection property.

In Dart, it is generally considered good practice to prepend the return type
of a method or prepend void if the method does not return anything.

report erratum • discuss

Methods • 61

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/private.dart
http://media.pragprog.com/titles/csdart1/code/classes/methods.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

classes/method_with_type.dart
class ComicsView {

void render() {
el.innerHtml = template(collection);

}
}

In addition to “normal” methods, Dart supports specialized setter and getter
methods as well as operator methods.

Getters and Setters
Getter methods are those that take no arguments and are declared with the
keyword get after the type and before the name of the method. They also lack
the parentheses of normal methods.

classes/getter_method.dart
class ComicsCollection {

String get url => '/comics';
}

Getters get their name from how they are used, which greatly resembles getting
an object’s property in other languages.

// No parens required!
comics_collection.url; // => '/comics'

Dart also supports setters, which are functions that assign new values. These
are declared with the set keyword and take the new value as a parameter.

classes/setter_method.dart
class ComicsCollection {

String _url;
void set url(new_url) {

_url = new_url;
}
String get url => _url;

}

Setters are of interest primarily because they override the assignment operator.
To set the new URL in the Comics class, we would not pass it as the argument
to the url() method. Rather, we assign it.

comics_collection.url = shiny_new_url;

Dart recognizes assignment as a special setter operation and looks in the
class definition for the set keyword to decide how to proceed.

Setters and getters beat the pants off of languages that force us to choose
from any number of poor conventions to indicate intent.

Chapter 7. Classes and Objects • 62

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/method_with_type.dart
http://media.pragprog.com/titles/csdart1/code/classes/getter_method.dart
http://media.pragprog.com/titles/csdart1/code/classes/setter_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Operators
In fact, there are a number of operator-like methods that can be described
by a Dart class. The remaining operators are declared with the same keyword:
operator.

We saw operator in the ComicModel class as a way to access attributes of the
model.

classes/operators.dart
class ComicModel {

Map attributes;
operator [](attr) => attributes[attr];

}

With that, we can then look up the title of a Comic object with the following:

comic['title'] // => "V for Vendetta"

The square bracket lookup is by far the most common operator in Dart, but
a myriad are supported: ==, <, >, <=, >=, -, +, /, ~/, *, %, |, ^, &, <<, >>, []=, [],
and ~. Dart’s support for operators make it ideal for building math or logic-
based libraries or even more fanciful libraries that want to use these operators
in their own, unique ways.

The Special, Non-Operator, Non-Getter/Setter, call() Method
There is also a special call() method that lets us describe what should happen
when an object is applied. For instance, if we want calling a model (for
example, comic()) to be an alias for saving it, we could declare it as follows:

classes/call_method.dart
class ComicModel {

call() {
save();

}
save() {

// do save things here...
}

}

Then, saving could be accomplished with the following:

comic();

Between operator methods and the call() method, Dart already supports a very
expressive syntax. And it still has more surprises in store for us.

report erratum • discuss

Methods • 63

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/operators.dart
http://media.pragprog.com/titles/csdart1/code/classes/call_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Metaprogramming with noSuchMethod()
In its early days, Dart provides for limited metaprogramming facilities. One
vehicle for dynamically changing behavior at runtime is the special method
noSuchMethod(). When Dart attempts to locate a method being called, it first
looks in the current class for the explicit definition. If the method is not
located, the superclass and all ancestor classes are checked. Failing that,
Dart then invokes noSuchMethod()—if it has been declared—in the current class.

When invoked, noSuchMethod() is supplied with an object that mirrors the method
call—an “invocation mirror.” This invocation mirror object includes the
member (that is, the method) invoked, the list of positional arguments, the
list of named arguments, and more.

classes/no_such_method.dart
class ComicModel {

// ...
noSuchMethod(args) {

if (args.memberName != new Symbol('save')) {
throw new NoSuchMethodError(

this,
args.memberName,
args.positionalArguments,
args.namedArguments

);
}
// Do save operations here...

}
}

We will look into noSuchMethod() in more detail in Project: Varying Behavior.

Why Dart Will Not Rush to Become More Dynamic

Dart will likely add more dynamism as it evolves, but it is not a priority for two reasons.

1. It adversely affects code completion.

2. It is a common source of bugs that the compiler cannot identify.

For those of us who are not fans of code completion, #1 is not a strong argument.
Ruby and JavaScript programmers might argue with #2—the idea that dynamic lan-
guage features are a common source of bugs. Even so, they certainly prevent the
compiler from catching potential issues.

Regardless, Dart is not opposed to becoming more dynamic in the future; it is just
not an immediate priority.

Chapter 7. Classes and Objects • 64

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/no_such_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Method Cascades
We already touched on method cascades in Chapter 4, Manipulating the DOM,
on page 29, but they are worth mentioning again. Cascades are introduced
with the double dot operator instead of the usual single dot operator for
ordinary methods. Thanks to cascades, we are not stuck adding elements to
a list one at a time.

classes/cascades.dart
var list1 = [];
list1.add(17);
list1.add(42);

Instead, we can add them in a single statement.

var list2 = [];
list2

..add(17)

..add(42);

The cascade syntax is meant to evoke the idea of working in Unix directories,
where one dot represents the current directory and two dots points to the parent
directory. In cascades, two dots refer to the original object receiving the method,
not the result of the previous method. This makes for nice, jQuery-like chained
code, but for all methods, not just those that operated on jQuery wrapped sets.

A surprising feature of cascades is the support for cascading setters. Setters are,
after all, methods in Dart. This allows us, for example, to rewrite a laundry list
of style settings.

el.style.opacity = '0';
el.style.position = 'absolute';
el.style.top = '80px';
el.style.left = '0px';
el.style.zIndex = '1001';
el.style.transition = 'opacity 1s ease-in-out';
el.style.opacity = '1';

That might not look too bad, especially if you are used to performing CSS
updates in JavaScript. Compare that to the same functionality, but written
in cascades:

el.style
..opacity = '0'
..position = 'absolute'
..top = '80px'
..left = '0px'
..zIndex = '1001'
..transition = 'opacity 1s ease-in-out'
..opacity = '1';

report erratum • discuss

Methods • 65

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/cascades.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The intent of the code is so much clearer with cascades. It is immediately
evident that all of the setters apply to the element’s style whereas the old-
fashioned way of doing it requires a non-trivial scanning before we can con-
vince ourselves that all setters operate on the same property. Multiply that
kind of readability times a hundred or a thousand over a codebase’s lifetime,
and you will realize some hefty time savings.

Static Methods (aka Class Methods) and Variables
Dart includes the concept of class variables and methods, though it takes a
dim view of them. It regards them as a necessary evil, which, of course, they
are. These are introduced with the static keyword.

classes/static_methods.dart
class Planet {

static List rocky_planets = const [
'Mercury', 'Venus', 'Earth', 'Mars'

];
static List gas_giants = const [

'Jupiter', 'Saturn', 'Uranus', 'Neptune'
];
static List get known {

var all = [];
all.addAll(rocky_planets);
all.addAll(gas_giants);
return all;

}
}

Invoking a static method is just like invoking an instance method, except the
class itself is the receiver.

Planet.known
// => ['Mercury', 'Venus', 'Earth', 'Mars',
// 'Jupiter', 'Saturn', 'Uranus', 'Neptune']

Interestingly, instance methods can treat static methods as if they are other
instance methods.

classes/mix_static_and_instance_methods.dart
class Planet {

// ...
static List get known { ... }
String name;
Planet(this.name);
bool get isRealPlanet =>

known.any((p) => p == this.name);
}

Chapter 7. Classes and Objects • 66

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/static_methods.dart
http://media.pragprog.com/titles/csdart1/code/classes/mix_static_and_instance_methods.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

In the previous code, the instance method isRealPlanet invokes the static method
known just like it would any instance method. In this way, we can find that
Neptune is a real planet but Pluto is not.

var neptune = new Planet('Neptune');
var pluto = new Planet('Pluto');

neptune.isRealPlanet // => true

pluto.isRealPlanet // => false

Warning: Because Dart treats static methods as instance
methods in this fashion, it is illegal to have an instance method
with the same name as a class method.

Tip

Subclasses
In Dart, we say that a subclass extends its superclass with new functionality.
As you will see in Chapter 9, Project: Extracting Libraries, on page 85, most
of a collection’s functionality can be factored out into a HipsterCollection super-
class. The Comics subclass then needs to extend HipsterCollection with only a few
methods.

classes/subclasses.dart
class Comics extends HipsterCollection {

String get url => '/comics';
HipsterModel modelMaker(attrs) => new ComicBook(attrs);

}

The extends keyword has the obvious benefit of reading nicely, which increases
a codebase’s overall maintainability.

Abstract Methods
In the previous code example, both url and modelMaker are abstract methods in
the base class. Abstract methods are just methods without bodies, which
should exist only inside explicitly declared abstract classes.

abstract class HipsterCollection {
String get url;
HipsterModel modelMaker(attrs);

}

This indicates that HipsterCollection is an abstract class (that it will not work
without a subclass) and is one that ideally overrides these methods. If a
subclass does not implement these methods, the code will not throw a compile-
time error. However, a not-implemented exception is sure to follow.

report erratum • discuss

Subclasses • 67

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/subclasses.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Duck-Typing in Dart with implements
Interfaces are programming language constructs that describe at a high level
how classes will behave. That is, if a class implements an interface, it must
define the methods and instance variables that are declared in the interface.

In Dart, everything is an interface, which is another way of saying that there
are no explicit interfaces. Any class in Dart—abstract or concrete—is a
potential interface. Our ComicsCollection class could implement the built-in Iterable
abstract class.

classes/implements.dart
class ComicsCollection implements Iterable {

void forEach(fn) {
models.forEach(fn);

}

int get length => models.length;
// ...

}

What this tells other Dart classes is that there is a reasonable expectation
that this class supports Iterable methods like forEach and length. If a class does
not implement every method in its interface, Dart will not complain—either
at compile-time or runtime. Still, it is bad form and analysis tools like dartan-
alyzer and the Dart Editor will give you grief.

Dynamic language adherents fancy duck typing, which is the equivalent of
asking “Who cares what the type is as long as the object supports forEach?” In
fact, Dart will let you get away with this kind of behavior if you like. That
said, you are a better Dart citizen if you use an interface to declare why you
support particular methods.

If you need to support multiple interfaces, simply separate them with commas
in the class declaration.

classes/implements_multiple.dart
class ComicsCollection implements Iterable, EventTarget {

// Iterable methods
void forEach(fn) { /* ... */ }
int get length { /* ... */ }
// EventTarget
Events get on => _on;
// ...

}

To be clear, none of this is necessary in Dart, but judicious use of interfaces
goes a long way toward improving the readability of code.

Chapter 7. Classes and Objects • 68

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/implements.dart
http://media.pragprog.com/titles/csdart1/code/classes/implements_multiple.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Mixins
On occasion, the usual subclass and interface approach to classes is not
quite right. One such case occurs so often that Dart supports it directly in
the language: mixins. The purpose of mixins is to augment subclassing with
additional behavior. This additional behavior is typically something that we
will want to reuse in other classes as well.

Consider two simple classes, Person and Animal:

classes/mixins.dart
class Person {

String name;
Person(this.name);

}

class Animal {
String name;
Animal(this.name);

}

These two classes are unrelated to each other, though they do share a common
name property.

During the course of working with these classes, we decide that we need
subclasses of both. The Friend class will extend Person to represent a person
with a more intimate relationship. Similarly, the Pet class will extend Animal to
encapsulate an animal to which a person might have a special bond.

In both cases, the intimate nature of an implied relationship suggests that
we want to be able to warmly greet a Friend or Pet. The greeting will be identical
except for the name (“Howdy Alice!” “Howdy Snoopy!”). So the question
becomes how do we add this common functionality without duplicating code?

The answer, of course, is with mixins. A mixin is declared as an abstract
class. The class is abstract because the class into which it gets mixed will
supply some vital information or behavior. In the case of our friends and pets,
the corresponding classes will supply the name.

abstract class Greeting {
String get name;
greet() => "Howdy $name!";

}

Our greet() method is fully defined, but the name getter method is left abstract
by virtue of being declared without a method body. Both Person and Animal

report erratum • discuss

Mixins • 69

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/mixins.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

already define this getter by way of a name instance variable. In other words,
Greeting is ready to mix in with both classes.

The syntax for mixins works with the extends keyword. In Dart, we say that a
class extends another with a mixin. So Friend extends Person with Greeting. Pet
extends Animal with the same Greeting mixin.

class Friend extends Person with Greeting {
Friend(name): super(name);

}

class Pet extends Animal with Greeting {
Pet(name): super(name);

}

That’s all there is to it. Both the Friend and Pet classes now have Greeting’s greet()
method available for use:

var say_hi = new Friend('Alice').greet();
// => 'Howdy Alice!'

var say_hi = new Pet('Snoopy').greet();
// => 'Howdy Snoopy!'

Dart expects mixins to work with subclasses. It is possible to mix in traits to
top-level classes. In such cases, we would have to extend Object with the mixin.
If that seems a little awkward, this is Dart’s way of telling us that we might
be better off using a subclass in such cases.

Constructors
Dart gets a surprising amount of mileage out of its constructors. It does so
through a combination of two types of constructors: generative and factory.
The difference between the two has to do with how they create new objects.
Generative constructors take care of blessing new objects for us, leaving us
the task of initializing the internal state. In a factory constructor, we are
responsible for building and returning new objects ourselves. As you will see,
there is power in both the simplicity of generative constructors and the flexi-
bility of factory constructors.

Generative constructors are the more common of the two, so we will talk
about them first.

Simple Generative Constructors
Borrowing from Project: MVC in Dart, the simplest form of a constructor looks
a lot like a method with the same name as the class.

Chapter 7. Classes and Objects • 70

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

classes/generative_constructor.dart
class ComicsCollection {

List<ComicModel> models;
// Our constructor
ComicsCollection() {

models = [];
}

}

The constructor for this class accepts no arguments and sets an instance
variable to a default value. There is no return from a generative constructor—we
affect only the internal state of an object.

If we only need to set initial values, Dart provides a nice little shorthand.
Instead of assigning the initial values in the body of the generative constructor,
we can assign them when they are declared.

classes/lazy_instance_variable.dart
class ComicsCollection {

List<ComicModel> models = [];
}

Instance variables declared like this are lazily evaluated. That is, they are not
actually assigned until an instance of the class is created with the new keyword.

Named Constructors
JavaScript is able to accomplish a lot with the arguments object/array.
Accomplishing a lot is another way of saying overloading, which is not con-
ducive to maintainability. Dart takes a more explicit approach to constructor
arguments. In addition to optional parameters, which you met in Chapter 3,
Functional Programming in Dart, on page 21, Dart boasts a neat feature, named
constructors, which let you create specialized constructors. For instance, if
we wanted to be able to create a ComicsCollection from a list of attributes, we
could declare a ComicsCollection.fromCollection constructor.

classes/named_constructor.dart
class ComicsCollection {

List<ComicModel> models = [];
ComicsCollection() {

// "Normal" constructor here
}

ComicsCollection.fromCollection(collection) {
models = collection.map(
(attr) => new ComicModel(attr)

);
}

}

report erratum • discuss

Constructors • 71

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/generative_constructor.dart
http://media.pragprog.com/titles/csdart1/code/classes/lazy_instance_variable.dart
http://media.pragprog.com/titles/csdart1/code/classes/named_constructor.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

This lets us instantiate a collection object like this:

var comics = new ComicsCollection.fromCollection([
{'id': 1, 'title': 'V for Vendetta', /* ... */ },
{'id': 2, 'title': 'Superman', /* ... */ },
{'id': 3, 'title': 'Sandman', /* ... */ }

]);

Just like “normal” generative constructors, named constructors begin with
the name of the class. The named constructor is denoted with a dot and then
the name (for example, .fromCollection). And, just as with other generative con-
structors, named constructors do not return anything; they merely change
the internal state of an object.

Classes can have any number of named constructors in addition to the normal
constructor. This allows us to specialize object instantiation through a series
of well-named constructors that do one thing. It effectively eliminates the
complex conditionals that can plague object initialization in JavaScript.

Named constructors are a huge win for readable, maintainable code.

Redirecting Constructors
Once we start making effective use of Dart’s multiple constructors, we
quickly get into a situation in which we are repeating logic. For instance, two
different constructors for the model base class might need to initialize the
same attributes instance variable.

classes/ry_constructors.dart
class ComicBook {

Map attributes;
ComicBook(attrs) {

this.attributes = attrs;
}
ComicBook.named(name) {

this.attributes = {'title': name};
}

}

To avoid repeating ourselves, we use redirection constructors.

classes/dry_constructors.dart
class ComicBook {

Map attributes;
ComicBook(attrs) {

this.attributes = attrs;
}
// Redirect from the `named` constructor to the all-purpose constructor
ComicBook.named(name): this({'title': name});

}

Chapter 7. Classes and Objects • 72

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/ry_constructors.dart
http://media.pragprog.com/titles/csdart1/code/classes/dry_constructors.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Now, the attributes instance variable is assigned in only one place—the default
new ComicBook() constructor. That’s a nice little maintainability win.

Redirection is introduced with the colon. The target of the redirection follows
the colon; in this case, we specify the default constructor with this(). Redirection
can point to other named constructors: this.withTitle(title). It can also point to
the superclass constructor or named superclass constructors. For instance,
the ComicBook model might need to define constructors for more prolific authors.

class AwesomeComicBook extends ComicBook {
AwesomeComicBook(attrs): super(attrs);
AwesomeComicBook.byNeilGaiman(): this({'author': 'Neil Gaiman'});
AwesomeComicBook.byAlanMoore(): this({'author': 'Alan Moore'});

}

Important: If no constructors are defined, Dart adopts an
implicit this(): super() redirection constructor. As soon as we define
any kind of constructor in the subclass—the .byNeilGaiman() con-
structor in this case—then there is no implied constructor, and
we are forced to make the implicit constructor explicit.

Tip

Constructor Arguments
You have already seen an example of supplying arguments to named construc-
tors. Regular constructors are no different.

classes/constructor_simple_parameter.dart
class ComicBook {

Map attributes;
ComicBook(attributes) {

this.attributes = attributes;
}

}

Dart provides a nice convention for assigning instance variables. Instead of
assigning this.attributes in the constructor block as shown earlier, we can declare
the parameter as this.attributes.

classes/constructor_this_parameter.dart
class ComicBook {

Map attributes;
ComicBook(this.attributes);

}

This goes a long way toward clearing up intent. Rather than muddying up
the assignment of the attributes instance variable alongside other constructor
initialization and assignment, the intent is made quite clear in the parameter

report erratum • discuss

Constructors • 73

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/constructor_simple_parameter.dart
http://media.pragprog.com/titles/csdart1/code/classes/constructor_this_parameter.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

list. The body of the constructor can then concern itself solely with doing
what it needs to in order to create an instance of the class—or can be elimi-
nated entirely as we have done here.

This convention of declaring instance variables in the parameters list even
works with optional parameters.

classes/constructor_optional_this.dart
class ComicsView {

ComicsCollection collection;
ComicModel model;
Element el;

ComicsView({this.el, this.model, this.collection}) {
if (this.el == null) {

this.el = new DivElement();
}

}
}

In this case, the constructor has a bit of “real” work to do (building an element
if one is not supplied). By declaring this.model and this.collection as optional
parameters, the intent of assigning them is clear—without adding clutter to
the constructor body.

Optional assignment parameters are passed with the name of the instance
variable being assigned.

var view = new ComicsView(model: comic_book);

Like named constructors, Dart’s parameter assignment goes out of its way
to help keep your code clean.

Factory Constructors
Dart defines a special class of constructors for returning specialized object
instances. The constructors that you have seen so far all manipulate the
internal state of the newly created object but leave the blessing of the object
and the return value to Dart.

class ComicModel {
ComicModel() {

attributes = {};
}

// ...
}

Chapter 7. Classes and Objects • 74

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/constructor_optional_this.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

If we instantiate an object via new ComicModel(), then we are returned an object
of ComicModel with on and attributes instance variables started in their pristine
states. This covers 90 percent of object-oriented programming, but there are
times when we might want more.

For instance, what if we do not want to create a new object? What if our class
should return a cached copy of a previously assembled object? What if we
need our class to always return the same instance? What if we need the
constructor to return a different object entirely? Dart defines factory construc-
tors to answer all of those questions. The two syntactic differences between
factory and normal constructors are the factory keyword and the return value
of the constructor. Consider the factory constructor for the Highlander class.

classes/singleton.dart
class Highlander {

static Highlander the_one;
String name;

factory Highlander(name) {
if (the_one == null) {
the_one = new Highlander._internal(name);

}

return the_one;
}

// private, named constructor
Highlander._internal(this.name);

}

The Highlander’s factory constructor checks to see whether the class variable
the_one has already been defined. If not, it assigns it to a new instance via a
private, named constructor and returns the_one. If the_one has already been
defined, then no new instance is created, and the previously defined the_one
is returned. Thus, we have created a singleton class.

var highlander = new Highlander('Connor MacLeod');
var another = new Highlander('Kurgan');
highlander.name;
// => 'Connor MacLeod'
// Nice try Kurgan...
another.name;
// => 'Connor MacLeod'

Used wisely, there is much power in these beasties.

report erratum • discuss

Constructors • 75

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/classes/singleton.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

What’s Next
Dart provides some very nice object-oriented programming features. Most of
the emphasis from the language seems to be geared toward making the
resulting code cleaner and the intent clearer. Although it supports the this
keyword, representing the current object, its use is far less prevalent than in
JavaScript, and the rules surrounding it far less arcane. Effective use of
generative, factory, and redirecting constructors goes a long way toward
making our Dart code as clean as possible.

We will revisit classes in Project: Varying Behavior. More specifically, there
are implications for some of what we discussed that are better brought up in
the context of real-world use.

Chapter 7. Classes and Objects • 76

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 8

Events and Streams
Regardless of the language, browser events are captured and received and
bubble the same way. So, it makes sense that events in Dart behave in a
fashion similar to JavaScript…with one very Darty twist.

Plain-Old Events
Consider, for instance, a click handler that colors the border of the clicked
element a brilliant orange.

events/simple.dart
var el = document.query('#clicky-box');
el.onClick.listen((event) {

el.style.border = "5px solid orange";
});

Here, we define an anonymous function to be invoked when a click event
occurs. This is slightly more compact than the equivalent JavaScript code:
el.addEventListener('click', callback_fn). But there is a subtle difference in Dart’s syntax:
the lack of the word “add.”

In Dart, the onClick property (like all “on” properties) is a stream. That is, the
onClick property represents a stream of click events. Every time a DOM element
is clicked, the corresponding event is added to the onClick stream and any lis-
teners that are subscribed to receive those events will be invoked.

The difference between a list of callbacks and a stream may seem minor (and
really there is not that much of a difference). The power of streams comes
from their ubiquity in Dart. Anytime there is an event or asynchronous action
in Dart, you can find a stream of events or data. There is no need to remember
how asynchronous actions behave in the DOM versus how they behave when
reading a file—they are the same thing.

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/events/simple.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

In fact, we saw an example of event streams back in Chapter 1, Project: Your
First Dart Application, on page 3. The onLoad Ajax stream looks like this:

events/http_request.dart
req.onLoad.listen((event) {

var list = JSON.decode(req.responseText);
container.innerHtml = graphicNovelsTemplate(list);

});

It is this kind of organization and consistency that puts the “structured” in
Dart’s structured code for the modern Web.

In Design Pattern parlance, streams implement a Publish/Subscribe, or
pubsub, pattern. The various “on” properties on DOM elements (or anything
that describes a stream in Dart) publishes a stream of events. Anything can
subscribe to the published stream, via listen(), to get notifications of asyn-
chronous events.

Streams in Dart are almost always read-only. That is, they implement the
pubsub pattern and nothing else. Events and data are added to streams by
stream controllers such as DOM elements. When it makes sense to allow
programmatic generation of stream events, Dart supports helper methods.
In the case of DOM elements, for instance, the usual dispatchEvent() DOM method
is supported:

el.dispatchEvent(new Event('click'));

Or, even better, use the built-in click() in Element:

el.click();

Since streams are pubsub patterns by another name, the listen() method gen-
erates a subscription. To unsubscribe from a stream, call the cancel() method
on the subscription:

var subscription = el.onClick.listen((event) {
el.style.border = "50px dotted purple";

});
// Do some stuff, then...
subscription.cancel();

Subscriptions are also a place to add error handling with onError():

var subscription = el.onClick.listen((event) {
// Normal click handling here...

});
subscription.onError((error) {

// Add the error to the list of errors...
errors.add(error);

});

Chapter 8. Events and Streams • 78

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/events/http_request.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

One of the cooler features of Dart streams is that they are iterable. This means
that they implement Iterable methods like distinct(), takeWhile(), and even where():

// Only count clicks where the Control key is also held down:
el.onClick.

where((e)=> e.ctrlKey).
listen((event) {

clicked++;
});

There is a lot of power in Dart streams, so let’s spend some time in the next
section to build our own.

Making Custom Events with Streams
Dart includes dozens of event streams in the dart:html library alone. In addition
to the MouseEvent stream that we have already explored, Dart has streams for
everything from Ajax events to application cache events. But sometimes that
is not enough.

As mentioned in the previous section, Dart streams do not expose a way to
add events or data. It might seem as though streams are useless should we
want a stream on which other code can listen for our custom events. Well,
streams are far from useless. In this case we need a StreamController.

Revisiting the ComicsCollection class, we have already briefly seen custom “on”
properties like onLoad and onAdd.

events/collection_events.dart
class ComicsCollection extends IterableBase {

StreamController _onLoad = new StreamController.broadcast(),
_onAdd = new StreamController.broadcast();

List models = [];
// ...

}

The _onLoad and _onAdd stream controllers allow us to dispatch events to the
underlying streams. The stream controllers are constructed as broadcast
streams because streams are “shy” by default. Unless we explicitly tell our
stream controllers that they are broadcast, then the pubsub is a single sub-
scription only.

With broadcast streams, we can listen with as many callbacks as we desire.

hipster_collection.onAdd
..listen((model) { /* listener #1 */ })
..listen((model) { /* listener #2 */ })
..listen((model) { /* listener #3 */ });

report erratum • discuss

Making Custom Events with Streams • 79

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/events/collection_events.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Let’s take a look at the actual “event” being generated on our streams. This
turns out to be as simple as can be: anything can be placed on a stream.
Nothing really stops us from adding strings, integers, and dates onto the same
stream controller:

stream_controller.add('Hi Bob!');
stream_controller.add(42);
stream_controller.add(new DateTime.now());

Typically streams only support one kind of object. In other words, we deal
with a stream of strings, a stream of integers, or a stream of browser events.
To advertise what gets published on a particular stream, streams can be
defined with a specialized type declaration called “generics.” To declare that
a Stream will only contain comic book model classes, declare the normal Stream
type followed immediately by the contained type in angle brackets:

Stream<ComicModel> get onLoad => _onLoad.stream;
Stream<ComicModel> get onAdd => _onAdd.stream;

As with any other type definition in Dart, that will not catch runtime errors.
It does provide some very clear documentation for others to follow. Plus, the
dartanalyzer or Dart Editor will warn you if you ever try to treat objects in those
streams as anything other than a ComicModel.

The ComicsCollection base class publishes its events on these streams by adding
them to the stream controller. For instance, when a new model is added to
the collection, we add it to the list of models and to the _onAdd stream controller.

class ComicsCollection extends IterableBase {
// ...
add(model) {

models.add(model);
_onAdd.add(model);

}
}

To react to collection events, the Comics view collection need only listen to the
stream in exactly the same way that any stream anywhere in Dart is listening.

class ComicsView {
// called by the constructor
_subscribeEvents() {

if (collection == null) return;
collection.onLoad.listen((event)=> render());
collection.onAdd.listen((event)=> render());

}
}

Chapter 8. Events and Streams • 80

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Just like that, the view renders itself when the collection is loaded from the
back-end data store or whenever a new item is added to the collection.

The main benefit of evented approaches like this is an elegant separation of
concerns. The collection doesn’t need to know anything of the view. The col-
lection merely dispatches its events during the normal course of its
work—blissfully unaware that the view is desperate for its notifications so
that it can redraw itself immediately.

Best of all, we are using streams to accomplish this. No matter what kind of
Dart code there is, it will be using streams, so there is no need to learn
something new for server-side Dart or HTTP request Dart. It is all streams!

What’s Next
Dart exposes a rich eventing system that runs the gamut of developer needs.
There are UIEvent, HTTP ProgressEvent, FileSystemEvent, and many more classes.
Because they sport a familiar API, they’re easy to use and intuitive. And, when
these simpler mechanisms aren’t enough, Dart makes it easy to define your
own event systems.

In Chapter 14, Futures and Isolates, on page 127, we will discuss another
means for separate chunks of code to communicate. In both cases, a little
ceremony goes a long way toward keeping code well factored and maintainable.

report erratum • discuss

What’s Next • 81

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Part III

Code Organization

Now that you’ve had your first taste of Dart’s
power, we’ll check out something truly unique to
Dart: the library system. Previously, we treated the
MVC library that we’re building as if we were still
limited to JavaScript. That is, we put everything
into one large file. Dart comes with a sophisticated
built-in library system. As you’ll see, this means
that writing large libraries is not only possible but
easy.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Project: Extracting Libraries
Back in Chapter 6, Project: MVC in Dart, on page 45, we rewrote our simple
Dart application in an MVC style similar to the venerable Backbone.js. As is,
there is little possibility for reuse of this code—either in our own codebase or
shared with others.

In this chapter, we will factor those MVC classes into reusable libraries. This
involves two separate activities: putting our newfound object-oriented Dart
skills to use and making use of Dart’s excellent library system. The end results
will facilitate both code reuse as well as better code maintainability.

Also in this chapter, you’ll run into something that you won’t find in most
language books: some actual limitations of the language being discussed.

What to Extract and What to Leave
For each of the collection, model, and view classes from Project: MVC in Dart,
we are now faced with the question of what to extract.

Collections: Everything but the Hard Stuff
As we did in Project: MVC in Dart, we start with the core of the client-side MVC
library: the collection. Since collections are loose code mappings to a REST-
like back end, we ought to be able to extract much of ComicsCollection into a
HipsterCollection superclass. Anything that is specific to comics books, such as
the /comics URL, can stay in ComicsCollection. The rest (ideally) can move out
to be reused with other REST-like back ends.

With everything else in HipsterCollection, ComicsCollection can be expressed as
follows:

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

class ComicsCollection extends HipsterCollection {
// url => the url root of the collection
// other comics book specific methods, if any

}

If we move everything in HipsterCollection, our starting point looks like this:

mvc_library/test/collection_skel.dart
class HipsterCollection extends IterableBase {

// Lazily evaluated instance variables
StreamController _onLoad, _onAdd;
var models = [];

// MVC
fetch() { /* ... */ }
create(attrs) { /* ... */ }
add(model) { /* ... */ }

// Iterable
Iterator get iterator => models.iterator;

}

Aside from renaming the constructor to HipsterCollection(), very little else needs
to change. In fact, the only changes that are required involve the URL, which
we planned for, and the create() method, which can no longer hard-code new
ComicsBook() in order to generate models.

To indicate that an instance variable like url should be defined in a Dart sub-
class, we declare the getter and setter as abstract. That is, we define them
without method bodies inside of an abstract class.

mvc_library/test/superclass_access_to_subclass_ivar.dart
abstract class HipsterCollection extends IterableBase {

void set url(v);
String get url;

fetch() {
// HTTP Request url from subclass

}

// ...
}

This tells Dart’s typing system that any concrete subclass must define the url
instance variable.

class ComicsCollection extends HipsterCollection {
var url = '/comics';

}

Chapter 9. Project: Extracting Libraries • 86

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/test/collection_skel.dart
http://media.pragprog.com/titles/csdart1/code/mvc_library/test/superclass_access_to_subclass_ivar.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

With that, the fetch() method in the HipsterCollection base class will be able to
determine which URL it needs to request.

With the URL out of the way, let’s see how the concrete class tells the super-
class how to build models. This turns out to be trickier than the url() getter.

In Backbone.js, for instance, the class that creates models is conveyed by a
property.

mvc_library/old/backbone_sub_class.js
var Comics = Backbone.Collection.extend({

model: ComicBook
});

This will not work in Dart because classes are not first-order objects. That
is, there is no way to assign a class name to a variable or use one as the value
of a Hash/Map. So, we have to settle for a factory method that, given model
attributes, will return a new instance of the model that we desire. That is, we
add a modelMaker() method.

mvc_library/test/model_maker_method.dart
class ComicsCollection extends HipsterCollection {

var url = '/comics';
modelMaker(attrs) => new ComicBook(attrs);

}

Back in the HipsterCollection superclass, we declare modelMaker() as abstract (by
omitting the method body) and update create() to use this method.

abstract class HipsterCollection extends IterableBase {
HipsterModel modelMaker(Map attrs);
// ...
create(attrs) {

var new_model = modelMaker(attrs);
new_model.save(callback:(event) {

this.add(new_model);
});

}
// ...

}

That is a bit of a hassle compared to the Backbone.js pass-a-class approach.
Still, it is not too bad.

The limitation is a simple question of priorities. The Dart designers favored
defining a well-structured, classical, object-oriented paradigm over treating
classes as first-order objects. They favored strongly encapsulated instance
variables over shared definitions between classes. And their choices seem to
be well supported given that our “workaround” is a one-liner.

report erratum • discuss

What to Extract and What to Leave • 87

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/old/backbone_sub_class.js
http://media.pragprog.com/titles/csdart1/code/mvc_library/test/model_maker_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The Model: Nothing to See Here
The implementation of the HipsterModel class is even simpler—everything goes
there, leaving a subclass to do nothing other than redirecting the constructor.

mvc_library/test/model.dart
class ComicBook extends HipsterModel {

ComicBook(attributes) : super(attributes);
get urlRoot => '/comics';

}

We have the bother of explicitly passing the subclass constructor arguments
to the superclass. Aside from that, the HipsterModel base class takes care of
everything (recall that the url comes from the collection).

If instances of HipsterModel are ever used directly, then our subclass would need
to override the urlRoot getter as we have done here.

This is not to suggest that HipsterModel is simple. It is still responsible for
updating and deleting records, as well as generating events for which collec-
tions and views can listen. Still, there are no surprises or complications when
we extract the code out of ComicBook and put it in HipsterModel.

Views and Post-initialization
One of the shortcomings of the optional constructor syntax is that we need
to explicitly delegate it in subclasses.

mvc_library/test/view.dart
class ComicBookView extends HipsterView {

ComicBookView({el, model, collection}):
super(el:el, model:model, collection:collection);

}

Okay, it is not that much of a bother, but it would be nice if future versions
of Dart could shrink that to a single line.

The base class remains blessedly simple, declaring instance variables and a
constructor that optionally sets them.

class HipsterView {
var el, model, collection;
HipsterView({this.el, this.model, this.collection});

}

Views need to be able to listen for model and collection events, but this is a
very subclass-dependent definition. To accommodate this, we can attach
handlers and subscribe to events in the subclass’s constructor, after setting
the appropriate instance variables in the superclass first.

Chapter 9. Project: Extracting Libraries • 88

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/test/model.dart
http://media.pragprog.com/titles/csdart1/code/mvc_library/test/view.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

class ComicsListing extends HipsterView {
ComicsListing({el, model, collection}):

super(el:el, model:model, collection:collection) {
_attachUiHandlers();
_subscribeEvents();

}
}

The private _subscribeEvents() and _attachUiHandlers() methods are the same from
Project: MVC in Dart; they are event handlers that render the comic book col-
lection on the screen and delegate UI event handlers for deleting comic books
from the collection. In both cases, they are specific to our Dart Comics
application, not the Hipster MVC library.

Real Libraries
Our main.dart is getting awfully crowded at this point. We have the main() entry
point, HipsterCollection, HipsterModel, HipsterView, and the various concrete classes.
It’s too large to maintain easily and too entwined to let us reuse code.

To solve both problems, we move classes out into separate files. We will use
Dart’s built-in library support to make this transition both smooth and well
positioned for future reuse and maintainability.

Beginning with HipsterCollection, let’s create HipsterCollection.dart. To make this a
proper Dart library, we need to start with the library directive. We also need to
import the necessary core packages explicitly required by HipsterCollection.

mvc_library/public/scripts/HipsterCollection.dart
library hipster_collection;
import 'dart:html';
import 'dart:async';
import 'dart:collection';
import 'dart:convert';
import 'HipsterModel.dart';

abstract class HipsterCollection extends IterableBase {
StreamController _onLoad = new StreamController.broadcast(),

_onAdd = new StreamController.broadcast();

List models = [];
HipsterModel modelMaker(attrs);
String get url;
// Other hip collection stuff goes here...

}

When we pull the ComicsCollection class out into its own ComicsCollection.dart file,
it too needs an opening library statement. It also needs to pull in HipsterCollection

report erratum • discuss

Real Libraries • 89

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/public/scripts/HipsterCollection.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

so that it can subclass it. Defining a subclass of the HipsterCollection base class
is a matter of extending HipsterCollection and defining those two abstract methods.
It should look something like this:

mvc_library/public/scripts/Collections.Comics.dart
library comics_collection;
import 'HipsterCollection.dart';
import 'Models.ComicBook.dart';
class Comics extends HipsterCollection {

get url => '/comics';
modelMaker(attrs) => new ComicBook(attrs);

}

I find it best to use a bit of Hungarian notation in my MVC
filenames (for example, Models.ComicBook.dart and Collections.Comic-
Book.dart), but not in the class names themselves because that
can make code very noisy.

Tip

We defer the details of the library directive until the next chapter. It is
extremely powerful. Our last word on the matter in this chapter will be to
look at what happens to the main.dart entry point after everything else is pulled
out into separate library files.

mvc_library/public/scripts/comics.dart
import 'Collections.Comics.dart' as Collections;
import 'Views.Comics.dart' as Views;
main() {

var my_comics_collection = new Collections.Comics(),
comics_view = new Views.Comics(

el: '#comics-list',
collection: my_comics_collection

);
my_comics_collection.fetch();

}

We instantiate a comics collection and pass that and the DOM ID of the
unordered list to the view constructor. Finally, we fetch the collection and
allow the various events to trigger the view to render itself when appropriate.

Note the as option on the import statements. To keep the code as clean as
possible, both the Comics view collection and the Comics collection proper were
defined with a class name of Comics.

// Collections.Comics.dart
class Comics extends HipsterCollection { /* ... */}

// Views.Comics.dart
class Comics extends HipsterView { /* ... */ }

Chapter 9. Project: Extracting Libraries • 90

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/public/scripts/Collections.Comics.dart
http://media.pragprog.com/titles/csdart1/code/mvc_library/public/scripts/comics.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

It would seem overly wordy to declare the view, for instance, as ComicsView
extends HipsterView. But when both are used in the same context, there’s the
very real problem of colliding class definitions. This is where Dart’s as option
for import is extremely handy.

By importing Collections.Comics.dart with the Collections prefix, all top-level class
definitions are now referenced with the Collections.* prefix. That is, to instantiate
a collection object, we use new Collections.Comics(). That’s a huge help with code
organization, especially when working with applications that define numerous
libraries (as is typical in MVC applications).

For the curious, the final version of our Hipster MVC library is
located at https://github.com/eee-c/hipster-mvc/.Tip

What’s Next
We put our object-oriented knowledge from Chapter 7, Classes and Objects,
on page 59 to some good use here. Along the way, we exposed a few of Dart’s
warts. It is not possible, for instance, to pass class names as we would vari-
ables. It is not possible to define an instance variable in a subclass so that
the superclass can see it. It is not possible for a superclass to access private
methods of a subclass. Even though some of these realities may fly in the
face of what we might expect in object-oriented code, Dart has some good
reasons for this, as we will explore in upcoming chapters.

Regardless of the restrictions, we also found some fairly unobtrusive
workarounds. And by workarounds, I mean “The Dart Way.” Better still, our
object-oriented refactoring put us in a good position to make use of Dart’s
very cool library system.

Code reuse and maintainability are seemingly impossible challenges to master
in the browser, and yet Dart handles libraries with ease. By factoring our
MVC library and classes out into their own files, we make it easy to find and
maintain specific aspects of our codebase. At the same time, we have sacrificed
none of the ease of working with the code; aside from the introduction of a
few import and library statements, our code is unchanged from when it was all
in one big file.

In the next chapter, we will take a look at libraries in a little more depth and
then discuss part, the cousin to import. When we pick back up with our project
in Chapter 11, Project: Varying Behavior, on page 103, we will adapt it for use
with local storage.

report erratum • discuss

What’s Next • 91

www.it-ebooks.info

https://github.com/eee-c/hipster-mvc/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 10

Libraries
JavaScript has been around for 18 years. In all that time, it still lacks a simple
library loading mechanism. This is not for lack of need. There are many
independent solutions and even several attempts at standards (commonjs,
AMD, and ECMAscript harmony modules).1,2,3 As these standards have lan-
guished in various states of usefulness and adoption, the community has
generated more loader plugins than can be counted.

Despite all of these efforts, the surest way to load additional JavaScript
libraries is via a combination of additional <script> tags and compressing
multiple files into a single compressed JavaScript script. Neither solution is
without problems (such as load order and deployment complexity).

Mercifully, Dart has the concept of libraries built in. Better yet, they are very
easy to work with. Dart currently supports two different vehicles for importing
functionality into Dart code: part and import.

Parts
The part directive is used to include arbitrary chunks of Dart code into the
current context. Consider, for instance, a library that has clearly grown too
big for its britches, the simple_multiples library.

libraries/simple_multiples.dart
library simple_multiples;
quadruple_triple_double(x) => 4 * triple_double(x);
triple_double(x) => 3 * double(x);
double(x) => 2 * x;

1. http://wiki.commonjs.org/
2. https://github.com/amdjs/amdjs-api/wiki/AMD
3. http://wiki.ecmascript.org/doku.php?id=harmony:modules

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/libraries/simple_multiples.dart
http://wiki.commonjs.org/
https://github.com/amdjs/amdjs-api/wiki/AMD
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Okay. No one in their right mind would want to split such a simple library
into parts, but hipsters aren’t necessarily in their right mind. So let’s pull
this library apart just to see how we might do it.

To really explore parts, we leave the double() method in the current library and
move the other two methods out into their own files. Our simple_multiples.dart
would now look like the following:

libraries/sum_of_parts.dart
library simple_multiples;
part 'quadruple_triple_double.dart';
part 'triple_double.dart';
double(x) => 2 * x;

If this looks like an exact copy of the original library, that’s by design. The
part directives insert the contents of the referenced files directly into this library
as if they never left.

The parts themselves do require a bit more ceremony than just straight code
extraction. The parts must be declared as part of a library. This is done with
the part of directive.

libraries/triple_double.dart
part of simple_multiples;
triple_double(x) => 3 * double(x);

Here, we have declared that this “part” will be used as part of the simple_multiples
library—and only the simple_multiples library.

The quadruple_triple_double.dart part is then declared in the same format.

libraries/quadruple_triple_double.dart
part of simple_multiples;
quadruple_triple_double(x) => 4 * triple_double(x);

In order for the quadruple_triple_double() method to work, it needs access to the
triple_double() method, which is defined in a separate part. And the triple_double()
method is dependent on the double() method, which is defined in the main
library. It should be clear that, for this to work, all parts are considered to be
part of the library’s namespace and runtime. Any of the parts has access to
all other parts and the main library as if they were all designed in the same
file.

In Dart, we will not normally factor out functions as we have done here. The
real power of parts is the ability to split classes out into separate files. There
is no need to define HipsterCollection, CollectionEvents, CollectionEventList, and so forth
in the same file. Each can go in separate part files. This is a huge win for code
organization and maintainability.

Chapter 10. Libraries • 94

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/libraries/sum_of_parts.dart
http://media.pragprog.com/titles/csdart1/code/libraries/triple_double.dart
http://media.pragprog.com/titles/csdart1/code/libraries/quadruple_triple_double.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Libraries
Of more interest is the import statement, which allows us to import classes for
use in our code. From the start, Dart supports this feature that comes stan-
dard in all server-side languages. Better still, it works transparently in the
browser.

As with the part statement, the source file that is being imported requires the
library statement at the top of the file. In both cases, the library statement
introduces an isolated scope for the code defined within. Consider, for
example, a pretty-printing stopwatch class that might be used to time code.

libraries/pretty_stop_watch.dart
library pretty_stop_watch;

class PrettyStopwatch {
Stopwatch timer = new Stopwatch();

PrettyStopwatch.running() {
timer = new Stopwatch()..start();

}
start() {

timer.start();
}
stop() {

timer.stop();
print("Elapsed time: ${timer.elapsedMilliseconds} ms");

}
}

The name in the library statement is used in the output of the dartdoc documen-
tation and in the comments of compiled JavaScript. It also serves as a nice
form of documentation.

If we wanted to time how long it took to count to 10 million, we would use
our pretty stopwatch like this:

libraries/time_counting.dart
import 'pretty_stop_watch.dart';

main() {
var timer = new PrettyStopwatch.running();
for(var i=0; i<10000000; i++) {

// just counting
}
timer.stop();

}

report erratum • discuss

Libraries • 95

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/libraries/pretty_stop_watch.dart
http://media.pragprog.com/titles/csdart1/code/libraries/time_counting.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

As nice as the part statement is, the import statement has much more potential
for helping to organize our code. Not only is Dart strongly object-oriented,
but it makes it dirt easy to share and reuse class libraries, even in the
browser.

Note: Chrome, or rather Dartium, is smart enough to load part
and import files only once, no matter how many different places
they might be referenced.

Tip

Prefixing Imports
The import statement allows us to namespace imported classes. Even though
we typically import only the classes that we need directly in Dart code, there
is still the very real possibility for name collision.

Consider, for example, the case in which our MVC application needs the Comics
collection as well as the Comics view. Both would be declared as class Comics
(although they would extend HipsterCollection and HipsterView). If we attempt to
import them directly, Dart’s compiler throws an already-defined exception.

To get around this potential limitation, we prefix the imports.

libraries/prefixed_imports.dart
library prefixed_imports;

import 'collections/Comics.dart' as Collections;
import 'views/Comics.dart' as Views;
import 'views/AddComic.dart' as Views;

With that, we no longer reference the Comics view class or the Comics collection
class. Instead, we use Views.Comics and Collections.Comics.

main() {
var my_comics_collection = new Collections.Comics(),

comics_view = new Views.Comics(
el:document.query('#comics-list'),
collection: my_comics_collection

);
}

The implication of prefixes is that there is no global object namespace in Dart.
The main() entry point has its own isolated workspace, with its own classes
and objects. The various libraries that are imported all have their own object
namespace. This cuts down on much of the ceremony involved with code
organizing and is another way that Dart encourages us to write clean code.

Chapter 10. Libraries • 96

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/libraries/prefixed_imports.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Core Dart Libraries
Dart defines a set of core libraries, the documentation for which is always
publicly available at http://api.dartlang.org. At the time of this writing, many of
the libraries are still undergoing active development. The important ones are:

dart:core
Contains core data types (no need to import this library, it is automatically
imported into all Dart applications).

dart:html
For use in browser applications. Includes things like Element and HttpRequest.

dart:io
For use in server-side applications. Includes things like File and Server.

dart:async
Useful when writing applications that need custom streams and futures.

dart:convert
For use when converting between JSON and native types as well as
character encoding.

And that’s just scratching the surface. There are libraries for WebGL, cryptog-
raphy, collections, logging, code mirroring, and isolates. Each library defines
a number of common classes that we might want to make use of in our
applications.

To use one of these core libraries, we use the import statement just like we
would do for our own defined libraries.

import 'dart:html';
import 'dart:convert';

Packaging with Dart Pub
The Dart SDK already includes the nifty little package management tool named
pub, which is capable of resolving and installing dependencies. The Dart pub
command can install packages from a central repository, publicly available
Git repositories, or even your local filesystem.

The most common pub action is installing an application’s dependencies. The
pub get command will do this, but it needs a YAML configuration file first.

If we are so set in our JavaScript ways, we might want JSON.stringify() and
JSON.parse() instead of the encode/decode methods that are built into the
internal dart:convert library. The json package, which is available on the central

report erratum • discuss

Core Dart Libraries • 97

www.it-ebooks.info

http://api.dartlang.org
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

pub.dartlang.org repository, does just that. The pubspec.yaml configuration for an
old-timey JSON application might look something like this:

libraries/pub/pubspec.yaml
name: old_timey_json
description: In my day JSON stringified!
dependencies:

json: any

Only the name is required (a description is always nice), but there is not much
point to a pubspec.yaml without package dependencies. The any property for the
json package means that we will accept any version of the library, which
defaults to the most recent.

With just that, it is possible to retrieve the json package for use in your appli-
cation with pub get.

$ pub get
Resolving dependencies......
Downloading json 0.8.7 from hosted...
Got dependencies!

If you suspect that your dependencies have gotten out of date, the pub upgrade
will check for the latest versions of your dependencies and install them for
you. The Dart Editor, of course, has menu options for pub dependency
retrieval.

Are you ready for maybe the coolest thing about Dart? Trust me, this is
amazing. To use your newly installed packages in code, you import them like
this:

import 'package:json/json.dart';

What’s so cool about that? It works on the server-side and in the browser.
No hoops to jump through. No nested functions that obscure application code
with dependencies. Just install your dependencies and import them. And it
just works. Was I right?

There are two ways to lock dependencies with pub. The first is to do nothing.
The pub get command writes a pubspec.lock with the version number of all
packages installed. Future uses of pub get will use the same versions. This is
the preferred option for applications. The more explicit approach is to replace
any with a specific version number in pubspec.yaml. That’s the preferred option
if you are publishing your library for others to use.

Speaking of publishing your libraries, it is quite easy. Your pubspec.yaml will
need a few more properties (like author and version). It will also need to follow

Chapter 10. Libraries • 98

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/libraries/pub/pubspec.yaml
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

a package convention (for starters, your tests go in the test subdirectory and
your code goes in the lib subdirectory). The http://pub.dartlang.org site contains
lots of good information. Best of all, you can always pub lish (pub…lish, get it?)
and, before asking you to authenticate via OAuth, pub will give you some
helpful hints about where you might better follow the conventions.

All of this adds up to something very special. It is a reach to call this revolu-
tionary since programmers have had access to modules, libraries, and pack-
ages management for almost as long as long as we have had programming.
Even JavaScript has various partial solutions (Browserify, RequireJS, Bower).
But the ability to do all of this cleanly in the browser, where it has not been
possible for the nearly 20 years of browser programming…that very much
has the feel of a revolutionary feature.

What’s Next
The built-in ability to organize code is a significant win for Dart. The light-
weight syntax that Dart employs ensures that we no longer have an excuse
for messy client-side application codebases. Let’s take a look next at some
other Dart features that are ideal for maintaining large applications.

report erratum • discuss

What’s Next • 99

www.it-ebooks.info

http://pub.dartlang.org
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Part IV

Maintainability

Hot on the heels of learning how to organize Dart
code, you’ll next explore strategies for keeping code
maintainable. First, we’ll update the Hipster MVC
library to accommodate multiple methods of syncing
data with a remote (or even local) back end. Then,
we’ll look at one of Dart’s newer features: testing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Project: Varying Behavior
Those of us coming from a dynamic language background expect to be able
to perform all manner of crazy hackery at runtime. Not satisfied with changing
a response based on state, we like to change implementation.

In JavaScript, for instance, it is possible to replace the method on an object’s
prototype at any time. In Ruby, we can replace a function with a lambda. We
revel in metaprogramming and cry foul when newbies look at it as magic.

In Dart, there are far fewer opportunities for magic. But it is still possible. To
explore this topic, we again return to our comic book catalog application. This
time, we will replace the Ajax back-end calls with in-browser storage.

Vary Class Behavior with noSuchMethod()
We first met noSuchMethod() in Chapter 7, Classes and Objects, on page 59. Let’s
try to put it to use as a means for switching the behavior of the save() method
in the Hipster MVC library. We already have it saving to a REST-like back
end. Let’s get it saving to either REST-like storage or localStorage.

Recall that when HipsterModel invokes save(), it sends a JSON representation of
its attributes to the REST-like data store and establishes handlers for suc-
cessful updates.

mvc_library/public/scripts/HipsterModel.dart
class HipsterModel {

// ...
save({callback}) {

var req = new HttpRequest();
req.onLoad.listen((event) {
attributes = JSON.decode(req.responseText);
_onSave.add(this);
if (callback != null) callback(this);

});

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/mvc_library/public/scripts/HipsterModel.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

req.open('post', urlRoot);
req.setRequestHeader('Content-type', 'application/json');
req.send(json);

}
String get json => JSON.encode(attributes);

}

To successfully replace this with a local storage implementation, we need to
save locally and ensure that the same callbacks are called and that the same
events are dispatched. To save a model in localStorage, we might create a sub-
class that overwrites an in-memory copy of the database with the new or
updated model and saves the entire database.

varying_the_behavior/public/scripts/Models.LocalComic.dart
class LocalComic extends HipsterModel {

LocalComic(attributes) : super(attributes);

save({callback}) {
var id = (attributes['id'] != null) ?
attributes['id'] : hashCode.toString();

var json = window.localStorage[urlRoot],
data = (json != null) ? JSON.decode(json) : {};

attributes['id'] = id;
data[id] = attributes;

window.localStorage[urlRoot] = JSON.encode(data);

if (callback != null) callback(data);
}

//...
}

We’ll worry about the details of localStorage later.

So far, we have replaced the Ajax implementation with a localStorage version of
save in a single subclass. What happens when we need to do the same for
another model? What about deletes?

Recall from Classes and Objects that noSuchMethod() is a last resort for Dart if
it is unable to locate an invoked method anywhere. Instead of the pain of
creating a series of subclasses, we can use noSuchMethod() in the HipsterModel
base class.

Chapter 11. Project: Varying Behavior • 104

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/public/scripts/Models.LocalComic.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Dart invokes noSuchMethod() with an object that describes the method called
and the parameters supplied. The first thing that any noSuchMethod() implemen-
tation should do is guard for the known methods that it is capable of handling.

varying_the_behavior/test/no_such_method_guard.dart
class HipsterModel {

// ...
noSuchMethod(args) {

if (args.memberName != #save) {
return super.noSuchMethod(args);

}
// ...

}
}

If anything other than the save() method has been invoked, we let the super-
class handle things, possibly throwing an exception if no superclasses support
the method. The memberName that describes the method being invoked is a
Dart symbol. The pound sign is syntactic sugar for const Symbol('save'). Both
describe a constant that is guaranteed to be identical to any other use of the
same value, making them ideal for use as identifiers. In this case, the symbol
identifies the method name being called.

Note: It is a bit of a pain to work up the class ancestry chain
with noSuchMethod(). If the ComicBook model uses noSuchMethod() to
perform a bit of unrelated metaprogramming but wants to allow
the noSuchMethod() in the HipsterModel base class to handle saves,
the subclass has a bit of manual work to do. Specifically, it
must manually return the result of invoking super.noSuch-
Method(args), where args is the object supplied to noSuchMethod().

Tip

With the guard in place, we are ready to invoke either the local storage save
or the Ajax save. The naïve approach would be to pass the arguments
directly to the two private methods that hold this behavior.

varying_the_behavior/test/calling_methods_from_no_such_method.dart
class HipsterModel {

bool useLocal;
// ...
noSuchMethod(args) {

// Guard clauses here ...

if (useLocal) {
// THIS WON'T WORK
_localSave(args);

}
else {

report erratum • discuss

Vary Class Behavior with noSuchMethod() • 105

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/test/no_such_method_guard.dart
http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/test/calling_methods_from_no_such_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

// THIS WON'T WORK
_ajaxSave(args);

}
}
_localSave({callback}) { /* ... */ }
_ajaxSave({callback}) { /* ... */ }

}

This fails, however, because _localSave() and _ajaxSave() expect only optional,
named parameters. Here, we are passing our args object, which is an Invocation-
Mirror. Our only resort is to manually extract the arguments and place them
in the appropriate parameter position.

varying_the_behavior/test/ugly_no_such_method.dart
class HipsterModel {

bool useLocal;
final CB = const Symbol('callback');
// ...
noSuchMethod(args) {

// Guard clauses here...
if (useLocal) {
_localSave(callback: args.namedArguments[CB]);

}

else {
_ajaxSave(callback: args.namedArguments[CB]);

}
}
_localSave({callback}) { /* ... */ }
_ajaxSave({callback}) {

// Save over HTTP, then invoke callback...
if (callback != null) callback(new Event('Save'));

}
}

Thanks to the ability to extract named (and positional) parameters from args,
it is possible to achieve a certain amount of flexibility in noSuchMethod().
Ultimately, this will prove to be a poor approach for our MVC library due to
the number of places that would require such conditionals. We would need
to account for CRUD operations in both model and collection. Let’s take a
look at a better approach next.

Sync Through Dependency Injection
We need a mechanism to inject a syncing behavior that can be shared between
model and collection. Let’s create a HipsterSync class that holds our data syncing
behavior. Ultimately, the various libraries that rely on HipsterSync will invoke

Chapter 11. Project: Varying Behavior • 106

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/test/ugly_no_such_method.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

a static method HipsterSync.send() to dispatch the CRUD operation. Before looking
at that, however, we need a default behavior that can perform Ajax requests.

varying_the_behavior/public/scripts/HipsterSync.dart
library hipster_sync;
import 'dart:html';
import 'dart:convert';

class HipsterSync {
static _defaultSync(method, model, {options}) {

var req = new HttpRequest();
_attachCallbacks(req, options);

req.open(method, model.url);

// POST and PUT HTTP request bodies if necessary
if (method == 'post' || method == 'put') {
req.setRequestHeader('Content-type', 'application/json');
req.send(JSON.encode(model.attributes));

}
else {
req.send();

}
}

}

That all looks fairly normal now that we have taken the initial Ajax-based app
and converted it to an MVC framework. We create an HttpRequest object, open
it, and then send the request. New here is the need to support passing request
bodies with POST and PUT requests, but a simple conditional suffices to
cover this behavior.

All of the classes that will use this sync need to be able to dispatch events
upon successful load of the HttpRequest object. The _attachCallbacks() static method
takes care of this for us.

class HipsterSync {
static _defaultSync(method, model, {options}) {

var req = new HttpRequest();
_attachCallbacks(req, options);

// ...
}

static _attachCallbacks(request, options) {
if (options == null) return;
if (options.containsKey('onLoad')) {
request.onLoad.listen((event) {

var req = event.target,
json = JSON.decode(req.responseText);

report erratum • discuss

Sync Through Dependency Injection • 107

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/public/scripts/HipsterSync.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

options['onLoad'](json);
});

}
}

}

This _attachCallbacks() method lets us rewrite HipsterModel#save() with an onLoad
callback passed via options.

varying_the_behavior/public/scripts/HipsterModel.dart
library hipster_model;
import 'HipsterSync.dart';

class HipsterModel {

// ...
save({callback}) {

HipsterSync.send('post', this, options: {
'onLoad': (attrs) {

attributes = attrs;
if (callback != null) callback(this);

}
});

}
}

With that, we have delegated data syncing to HipsterSync—the model no longer
knows anything about HTTP. The first two arguments to HipsterSync.send()
instruct the sync that it should POST when syncing and that the current
model should be used to obtain the serialized data to be sent to the back-end
store.

At this point, we’re finally ready to look at HipsterSync.send(). As we’d expect, if
no alternative sync strategy has been supplied, it invokes a _defaultSync().

class HipsterSync {
// ...
static send(method, model, {options}) {

if (_injected_sync == null) {
return _defaultSync(method, model, options:options);

}
else {

return _injected_sync(method, model, options:options);
}

}
}

The interesting behavior is that _injected_sync beastie. It may look like another
static method, but it is, in fact, a class variable. User libraries can inject
behavior into this library via a sync= setter, which expects a function.

Chapter 11. Project: Varying Behavior • 108

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/public/scripts/HipsterModel.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

varying_the_behavior/old/hipster_sync_injected.dart
class HipsterSync {

static var _injected_sync;
static set sync(fn) {

_injected_sync = fn;
}
static send(method, model, [options]) {

if (_injected_sync == null) {
return _defaultSync(method, model, options:options);

}
else {

return _injected_sync(method, model, options:options);
}

}
// ...

}

The injected function will need to accept the same arguments that _defaultSync()
does.

Warning: It would make more sense to have a sync setter and
a sync class method. Unfortunately, Dart will throw an “already
defined” internal error if a method is declared with the same
name as a setter. Hence, we need to declare a sync= setter and
a send static method.

Tip

With all of this in place, let’s switch our HipsterSync strategy to localStorage. This
can be done back in the main() entry point for the application. For now, we
restrict ourselves to supporting only the GET operations.

varying_the_behavior/old/main_with_local_sync.dart
import 'HipsterSync.dart';
main() {

HipsterSync.sync = localSync;
// Setup collections and views ...

}
localSync(method, model, [options]) {

if (method == 'get') {
var json = window.localStorage[model.url],

data = (json == null) ? {} : JSON.decode(json);
if (options is Map && options.containsKey('onLoad')) {
options['onLoad'](data.getValues());

}
}

}

That is pretty nifty. With a single line, it is possible to inject completely differ-
ent data syncing behavior for the entire framework.

report erratum • discuss

Sync Through Dependency Injection • 109

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/old/hipster_sync_injected.dart
http://media.pragprog.com/titles/csdart1/code/varying_the_behavior/old/main_with_local_sync.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

It is worth pointing out that, because of how Dart manages libraries, setting
HipsterSync.sync in one location will change it everywhere. In this case, we set
it in our main.dart.

// main.dart
import 'HipsterSync.dart';

main() {
HipsterSync.sync = localSync;
//

}

This will affect the _injected_sync HipsterSync class variable that is seen by Hipster-
Model.

// HipsterModel.dart
library hipster_model;

import 'HipsterSync.dart';

class HipsterModel {
// I see HipsterSync._injected_sync from main.dart

}

And the same goes, of course, for HipsterCollection.

// HipsterCollection.dart
library hipster_collection;
import 'HipsterSync.dart';
class HipsterCollection {

// I see HipsterSync._injected_sync from main.dart
}

Each of these files, main.dart, HipsterModel.dart, HipsterCollection.dart, and HipsterSync.dart,
are separate files. And yet Dart ensures that the HipsterSync class defined in
one is the same that is seen by all. The only equivalent in JavaScript is what
Backbone.js does to define its Backbone.sync. Backbone declares a global variable
(for example, Backbone) and instructs developers that it needs to be included
via <script> tags before all other code. Using something like require.js will get
you close to Dart’s behavior, but it is very nice to have this working at the
outset of the language rather than attempting to tack it on 18 years after the
fact.

What’s Next
As mentioned in Classes and Objects, Dart frowns on dynamic language
features that are necessary for metaprogramming. Even so, it is quite possible
to achieve some pretty nifty dynamic language features in Dart. The noSuch-

Chapter 11. Project: Varying Behavior • 110

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Method() method is certainly an easy one to hook into for a significant portion
of metaprogramming. It is limited to instance methods, but this ought to
cover 80 percent of a developer’s dynamic programming needs. When that
fails, there are still ways to exploit Dart’s functional nature to achieve
broader dynamic language features. And we have not even mentioned Dart’s
reflection capabilities, which are already used heavily in projects like
Angular.dart.

With a pretty intense code organization project under our collective belt, let’s
take a look next at something near and dear to anyone who has maintained
a large application: testing. If metaprogramming in Dart blew your mind
because of the sheer craziness of the topic, testing is going to blow your mind
simply by virtue of how great it is.

report erratum • discuss

What’s Next • 111

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 12

Testing Dart
As web applications grow in complexity, you can’t rely on just type checking
to catch bugs. In this chapter, we’ll explore testing the Hipster MVC library,
which has definitely grown to the too-complex-for-type-checking point.

Obtaining the Test Harness
The unittest library is maintained by the core Dart team, but it is not part of
the Dart SDK. Instead, it is hosted on the Dart Pub—the package repository
for Dart. The easiest way to install this is to create a pubspec.yaml in the appli-
cation root directory with contents like the following:

testing/pubspec.yaml
name: Dart Comics
dev_dependencies:

unittest: any

The “any” in there refers to any version of the unittest library, which will default
to the most recent version. Since unit testing is not needed for the code to
run, it is entered as a dev_dependency instead of a regular dependency.

To install package dependencies, run the pub install command from the com-
mand line or from the Tools menu of the Dart Editor. By convention, our tests
will reside in the test subdirectory of our application.

2 + 2 = 5 Should Be Red
Client-side Dart code must be tested in a running Dart-enabled browser or
headless context. A simple web page is required to host the test output. Any
old HTML will suffice as long as it does the following:

• Pulls in the Dart tests
• Starts the Dart engine

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/testing/pubspec.yaml
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The dummy test page for testing the HipsterCollection class will be as follows:

testing/test/01.html
<html>
<head>

<title>Hipster Test Suite</title>
<script type="application/dart"

src="HipsterCollectionTest.dart"></script>
<script type="text/javascript">

navigator.webkitStartDart(); // start Dart
</script>

</head>

<body>
<h1>Test!</h1>

</body>
</html>

We rely on HipsterCollectionTest.dart to import two required testing libraries as
well as our own source code. It also needs to declare the main() entry point
since we have not declared it elsewhere.

testing/test/HipsterCollectionTest.dart
import 'package:unittest/unittest.dart';
import 'package:unittest/html_enhanced_config.dart';
import "../web/scripts/HipsterCollection.dart" ;
main() {

useHtmlEnhancedConfiguration();
// Tests go here!

}

In addition to the imports, we invoke useHtmlEnhancedConfiguration(). This will
make pretty test results in the browser instead of only printing them in the
Dart console. Nothing will happen without a test, however, so let’s write one.
And in the grand tradition of behavior-driven development, let’s start with a
failing test.

testing/test/02test.dart
import 'package:unittest/unittest.dart';
import 'package:unittest/html_enhanced_config.dart';
import "../web/scripts/HipsterCollection.dart";
main() {

useHtmlEnhancedConfiguration();

group('basic', (){
test('arithmetic', (){
expect(2 + 2, 5);

});
});

}

Chapter 12. Testing Dart • 114

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/testing/test/01.html
http://media.pragprog.com/titles/csdart1/code/testing/test/HipsterCollectionTest.dart
http://media.pragprog.com/titles/csdart1/code/testing/test/02test.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Strictly speaking, a group() method is not required around tests—it just helps
organize the output. To try it out, load the HTML in the browser:

Yay! A failing test! To get the test to pass, we simply need to fix our math.

testing/test/03test.dart
group('basic', (){

test('arithmetic', (){
expect(2 + 3, 5);

});
});

Reloading the pages produces a green test suite.

Now that you have a basic idea of how to write tests, let’s replace our silly
arithmetic test with a real test of the HipsterCollection class.

testing/test/04test.dart
test('HipsterCollection has multiple models', (){

HipsterCollection it = new HipsterCollection();
it.models = [{'id': 17}, {'id': 42}];
expect(it.length, equals(2));

});

This is a simple test of the length getter in our HipsterCollection class. The test()
function takes two arguments: a string describing the test and an anonymous
function that includes at least one expectation. After a bit of setup, the
expectation is checked using Dart’s built-in equals() test.

In addition to checking basic equality with the equals test, Dart supports
numerous matchers ranging from approximation (closeTo) to basic type checks
(isNull, isFalse, isMap). It even supports checking for exceptions. For instance, we
can verify that HipsterCollection#fetch() fails without a URL.

report erratum • discuss

2 + 2 = 5 Should Be Red • 115

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/testing/test/03test.dart
http://media.pragprog.com/titles/csdart1/code/testing/test/04test.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

testing/test/HipsterCollectionFetch.dart
test('HipsterCollection fetch() fails without a url', () {

var it = new HipsterCollection();
expect(()=> it.fetch(), throws);

});

That is some pretty test code! Inside the test, we create an instance of Hipster-
Collection, then use the expect() method to set our expectation—invoking the
function that fetches from the collection will throw an error. As new as Dart
is, test matchers like throw make it surprisingly powerful and expressive.

We can see some of these testing matchers when we group additional tests
that describe aspects of HipsterCollection lookup.

group('HipsterCollection lookup', () {
var model1 = {'id': 17},

model2 = {'id': 42};

HipsterCollection it = new HipsterCollection();
it.models = [model1, model2];

test('works by ID', () {
expect(it[17], isNotNull);
expect(it[17], isMap);
expect(it[17].values, [17]);
expect(it[17].keys, equals(['id']));
expect(it[17], equals(model1));

});

test('is null when it does not hold ID', () {
expect(it[1], isNull);

});
});

Just like that, we have a test suite with three passing tests.

Asynchronous Testing
Dart, like JavaScript, is a functional language. Functional languages present
unique challenges to testing. Dart is quite up to that challenge.

Chapter 12. Testing Dart • 116

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/testing/test/HipsterCollectionFetch.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Consider, for instance, adding a new element to a HipsterCollection. The expecta-
tion in this case is that any listeners for the onAdd events will be invoked with
a single argument—the model that was added. The expectation that an
asynchronous call will occur is codified in Dart’s testing library as expectAsync().
This method takes a function as a parameter—the number of arguments
supported by that function describes the arity of expected callback.

To see this in action, we write an asynchronous test that listens for an add
event on a HipsterCollection. Instead of a normal event listener, we supply a
expectAsync() call. For good measure, we set a separate expectation inside our
expectAsync()—that the supplied event is not null.

group('Async', (){
test('HipsterCollection add dispatches insert events', (){

HipsterCollection it = new HipsterCollection();
it.onAdd.listen(expectAsync((model) {
expect(model, isNotNull);

}));

it.add({'id': 42});
});

});

Care must be taken with asynchronous tests in Dart. Had we omitted the
expectAsync() wrapper, this test would still pass—even without adding a new
record. The reason for this is that all tests pass unless an expectation does
not match. Without the expectAsync() wrapper, this test would pass even if the
expect() statement is not executed. The expectAsync() wrapper ensures that the
test suite will wait—perhaps indefinitely—until that callback is executed.

With that, we have four reasonably useful tests in place to help catch
regressions in our HipsterCollection class.

What’s Next
Although still quite new (which is saying something for a language as new as
Dart), the unittest library is amazingly powerful. Not only does it support a
wealth of testing primitives, but it also supports the sometimes difficult task
of callback testing. Although we did not touch on it here, Dart already makes
command-line testing easy—meaning simple regression builds. The combina-
tion of static type checking and a powerful unit testing library allows the
discerning Dart developer to achieve the goal of robust, accurate, maintainable
code.

Bearing that in mind, let’s spend our last few chapters looking at some of
Dart’s cooler features.

report erratum • discuss

What’s Next • 117

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Part V

The Next Level with Dart

At this point, you have a strong understanding of
the power of Dart under your belt. With that, it’s
time to begin discussing what comes next as Dart
evolves. First, we’ll remove the last vestiges of
JavaScript thinking from Hipster MVC by removing
callbacks. Callbacks—long the bane of many a
JavaScripter—are replaced with completers,
futures, and isolates that promise a simpler way
to describe what happens later. Last, we talk about
Dart’s support for HTML5 and where Dart goes
from here.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Project: An End to Callback Hell
One of the knocks on many large JavaScript codebases is the inevitable tangle
of callbacks scattered throughout. There is definite power in keeping execution
frames small. We need look no further than the rise of Node.js for evidence
to support this. But even the most experienced JavaScripters can be confused
by the interplay of a myriad of callbacks and events.

So far, our Hipster MVC library exhibits many of the same characteristics of
the JavaScript approach—and we have yet to even attempt error handling!
As you saw in Chapter 8, Events and Streams, on page 77, the syntax for Dart
events is different from that of JavaScript, but the approach is very much the
same. This is not the case with callbacks. Let’s take a look at how the Future
class can significantly improve the long-term maintainability of Dart applica-
tions.

The Future
When last we saw our HipsterModel, we had replaced direct Ajax calls with a
data synchronization layer that was cleverly named HipsterSync. In the save()
method, it looks like this:

class HipsterModel {

// ...
save({callback}) {

HipsterSync.send('post', this, options: {
'onLoad': (attrs) {

attributes = attrs;
if (callback != null) callback(this);

}
});

}
}

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

There are at least three issues with this approach. First, we are invoking send()
with too many arguments—we need to indicate that this is a “post,” and this
is necessary so that HipsterSync knows what to sync—but the options parameter
describes only a side effect and is not needed in order to perform the main
execution thread. Second, the readability of the onLoad callback is less than
ideal, buried inside the options parameter. Third, it is weak programming
practice to null check for the presence of a callback each time we attempt to
invoke the callback.

Instead of the callback approach, let’s switch to Future objects. In fact, Futures
are little more than objects that formalize callbacks. If we switch HipsterSync.send()
to return a Future, then we can inject a callback via the then() method.

class HipsterModel {
// ...
save([callback]) {

HipsterSync.
send('post', this).
then((attrs) {

attributes = attrs;
if (callback != null) callback(this);

});
// ...

}

With that small change, the intention of HipsterSync.send() is much clearer; it
does nothing more than POST this (the model) to the back-end data store.
Once that is complete, then we grab the attributes returned from the data
store to do the following:

• Update the model’s attributes
• Invoke the callback if it is present

We are in better shape, but there is still the matter of the null check. There
are times that a conditional like the one in the then() statement is necessary.
More often than not, a null check is our code begging for a better abstraction.
This is one of those times.

Instead of an optional callback, we can convert save() to return a Future. The
easiest way to generate a Future is by instantiating a new Completer, which has
a future getter that can be returned.

Future<HipsterModel> save() {
Completer completer = new Completer();
// ...
return completer.future;

}

Chapter 13. Project: An End to Callback Hell • 122

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Here, we explicitly state that our Future will return a value of HipsterModel by
declaring the return type of save() to be Future<HipsterModel>. That is, upon suc-
cessful save, save() will send a copy of the current model back to the then()
function. For instance, if we wanted to log the ID of a newly created model,
we could use the then() function like this:

var comic_book = new ComicBook({'title': 'Batman'});
comic_book.

save().
then((new_comic) {

print("I got assigned an ID of ${new_comic['id']}");
});

We still need to tell save() how to actually notify the then() statement in the
calling context that anything happened. This is done with the same Completer
object that produced the Future. To notify the Future that the Completer has
completed, we invoke complete() with the value to be sent to then.

class HipsterModel {
// ...
Future<HipsterModel> save() {

Completer completer = new Completer();
HipsterSync.
send('post', this).
then((attrs) {

this.attributes = attrs;
completer.complete(this);

});
return completer.future;

}
// ...

}

When HipsterSync.send() successfully completes, then we update the model’s
attributes and mark save() as complete. By completing the Completer, code that
calls save() can then() do what it needs to do. This almost begins to read like
English, which is nice.

More importantly, we have significantly improved the readability, and hence
the maintainability, of the save() method. We no longer have to worry about
an optional callback parameter to save(). Now, invoking send() on HipsterSync
involves only the two things needed to effect the requested change (the action
to take and the model). There is no more options Map to clutter things. Lastly,
by converting this method to a Future itself, we have eliminated a conditional,
and in doing so, we have improved life for the caller.

report erratum • discuss

The Future • 123

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Handling Errors in the Future
Until now, we have conveniently ignored the question of how to handle
exceptions. What happens if our POST to the back end results in a 400-class
error? How can we design Hipster MVC so that developers can handle
exceptions appropriately?

Had we stuck with options, the answer would have been to add yet another
callback inside the Map of options. Luckily for us, Completer and Future have a
formal mechanism for dealing with just such a situation. A Completer invokes
completeError() to signal a problem and Future deals with problems with
handleException() to do something with that exception.

The default data sync behavior in HipsterSync would signal an exceptional
condition to the future by calling completeError() when the request status is not
okay (for example, greater than 299).

class HipsterSync {
// ...
static Future _defaultSync(method, model) {

var request = new HttpRequest(),
completer = new Completer();

request.
onLoad.
listen((event) {

var req = event.target;
if (req.status > 299) {

completer.
completeError("That ain't gonna work: ${req.status}");

}

else {
var json = JSON.decode(req.responseText);
completer.complete(json);

}
});

// Open and send the request
return completer.future;

}
}

The value in completeError does not have to be a subclass of Exception—any old
object will do. In this case, we supply a simple string.

if (req.status > 299) {
completer.

completeError("That ain't gonna work: ${req.status}");
}

Chapter 13. Project: An End to Callback Hell • 124

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Back in the model class, we need to handle this exceptional case. The then()
method returns void, so it is not chainable. This requires us to store the after-
send Future back in HipsterModel.save() in a local variable. We can then inject a
happy-path then() behavior into the Future along with handleException() behavior.

class HipsterModel {
// ...
Future<HipsterModel> save() {

Completer completer = new Completer();
Future after_send = HipsterSync.send('post', this);

after_send.
then((attrs) { /* ... */ });

after_send.
handleException((e) { /* ... */ });

return completer.future;
}

}

Since HipsterModel#save() is itself a Future, it should handle exceptions with a
completeError() of its own.

after_send.
handleException((e) {

completer.completeError(e);
return true;

});

What’s Next
As you’ll see in the next chapter, Futures come in handy in other places. It is
easy to see why. Through a very basic application in the Hipster MVC library,
we have significantly improved the maintainability of the library as well as
made it easier for developers to use the library.

Having built-in objects codifying this behavior is a big win for Dart. It is not
hard to build something similar in JavaScript. Even so, built-in Futures allow
us to focus on writing beautiful code, not on writing code that allows us to
write beautiful code.

report erratum • discuss

What’s Next • 125

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 14

Futures and Isolates
In addition to the familiar syntax and concepts that Dart supports, there are
a number of higher-level functional programming features that include the
likes of completers, futures, and isolates. We have already seen futures a bit
in the context of streams, but they are worth touching on by themselves.
Futures play a big role in isolates, which use them to facilitate communication
between currently executing functions.

Completers and Futures
Completers are objects that encapsulate the idea of finishing a task at some
later point. Rather than passing a callback to be invoked along with a future
value, Dart allows us to define the entire thing in a completer object.

Since completers trigger an action in the future, completers are intimately
tied to Futures. The single most defining characteristic of a Future is a callback
function, which is supplied via a Future object’s then() method.

In its simplest form, we can create a Completer object and grab the future prop-
erty from the completer so that we can specify what happens when the
completer finishes. Finally, some time later, we tell the completer that it is
finished with an optional message.

isolates/simple_completer.dart
main() {

var completer = new Completer();
var future = completer.future;
future.then((message) {

print("Future completed with message: $message");
});
completer.complete("foo");

}

This prints: Future completed with message: foo

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/isolates/simple_completer.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

On their own, Futures provide an important but narrow functionality. They do
one thing but do it well.

Completers can be completed only once. Trying it twice will throw an error.
Here’s an example:

isolates/test/completer.dart
completer.complete("once");
completer.complete("twice");

This will produce the following:

Future completed with message: foo
Unhandled exception:
Exception: future already completed

In addition to sending successful messages from the future, it is possible to
signal errors. To support error handling, the Future needs to define a catchError()
callback.

isolates/exceptional_completer.dart
main() {

var completer = new Completer();
completer.

future.
catchError((e) {
print("Handled: $e");
return true;

});
var exception = new Exception("Too awesome");
completer.completeError(exception);

}

When the completer completes with an exception, the result is as follows:

Handled: Exception: Too awesome

Isolates
As the name implies, Dart isolates are used to isolate long-running functions
from the main thread of execution. Dart isolates do not share any memory
so they rely on message passing for communication, making for very elegant
concurrent programming solutions. Message passing is achieved through
port objects and uses Futures to signal when isolates and messages are ready.

Isolates are imported from the dart:isolate library. The easiest way to use them
is with the Isolate.spawnUri() method.

Chapter 14. Futures and Isolates • 128

report erratum • discusswww.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/isolates/test/completer.dart
http://media.pragprog.com/titles/csdart1/code/isolates/exceptional_completer.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

isolates/test/isolates.dart
import 'dart:isolate';

var res = new ReceivePort();
var sender = Isolate.spawnUri(

Uri.parse('isolates/main.dart'),
['2014'],
res.sendPort

);
sender.

then((_)=> res.first).
then((message) {

print('Doom in 2014 falls on a ${message}.');
});

We will take a look at the main.dart isolate code in a bit. For now, note that the
spawnUri() call needs a ReceivePort, which can be passed to the isolate for com-
munication back to the calling context.

Sticking with the calling context, the Isolate.spawnUri() returns a Future, which
will complete when the isolate’s environment has been constructed. At that
point communication between the calling context and the isolate is ready.

To handle the response back from the isolate, we take advantage of a very
nice feature of futures in Dart. A then() call that itself returns a Future will
complete with the returned future’s completion value. Here, we return the
first response back on the ReceivePort. It could take several seconds for this
long-running calculation to determine the day of doom, so res.first is a future
that completes when the first message is sent back. By returning res.first with
Dart’s hash-rocket return, we pass the response to the next future. In other
words, this is a nice way to chain futures.

The semantics end up reading nicely. We spawn an isolate. When the isolate
is ready, then we wait for the first response. When the first response comes
back, then we print out a nice little message that includes the response.

As for the isolate code itself, it is mercifully free of isolate-related code. It
needs a SendPort on which to send its responses, but that is the only suggestion
that it is an isolate rather than plain old Dart. Recall that the Isolate.spawnUri()
took two parameters besides the location of the script. The first was the list
of arguments passed to the isolate. In our case, it was the current year. The
second parameter is the first message that we send into the isolate. Our first
message was the SendPort property of the ReceivePort that enables the isolate to
communicate.

The list of arguments and the “reply to” SendPort become the parameters in the
main() entry point of main.dart:

report erratum • discuss

Isolates • 129

www.it-ebooks.info

http://media.pragprog.com/titles/csdart1/code/isolates/test/isolates.dart
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

main(List<String> args, SendPort replyTo) {
var year = int.parse(args[0]);
var doomsday = dayOfDoom(year);
replyTo.send(doomsday);

}

For compatibility, the argument list should be a list of strings, which means
that we need to parse the first entry in the list to get the year. After making
a call to the super-long-running dayOfDoom() method, we send the response
back to the replyTo SendPort.

And that’s all there is to the isolate code. There is no need for complex setup
or infrastructure to get the benefit of isolated, concurrent programming.

In truth, the doomsday algorithm used in findDoom() is rather simple. It finds
the day of the week for the last day in February. With simple mnemonics, we
can use that to figure out the day of the week for any day in the year.1 It
makes for a small algorithm that is useful for illustration.

final List<String> dayNames = [
'Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'

];

dayOfDoom(year) {
var march1 = new DateTime(year, 3, 1, 0, 0, 0, 0),

oneDay = new Duration(days:1),
date = march1.subtract(oneDay);

return dayNames[date.weekday - 1];
}

Tracing the messages all the way through, the first message is sent from the
main context into the spawned isolate via Isolate.spawnUri(). It is the send port
through which the isolate can communicate back to the main context. The
list of arguments that are sent at the same time can also be considered a
message but are typically intended to serve as initialization. Since the isolate
does not send back a SendPort of its own, this is the end of communication
from the main context into the isolate.

Inside the isolate, the doomsday message is sent back to the calling context
on the supplied SendPort. Once that is sent back, the sharing of information
between the two contexts is done.

1. http://en.wikipedia.org/wiki/Doomsday_rule

Chapter 14. Futures and Isolates • 130

report erratum • discusswww.it-ebooks.info

http://en.wikipedia.org/wiki/Doomsday_rule
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The result of calling our doomsday isolate in the following code:

var res = new ReceivePort();
var sender = Isolate.spawnUri(

Uri.parse('isolates/main.dart'),
['2014'],
res.sendPort

);
sender.

then((_)=> res.first).
then((message) {

print('Doom in 2014 falls on a ${message}.');
});

is that 2014’s doomsday is a Friday.

Doom in 2014 is on a Fri.

Beware the Friday.

What’s Next
Completers and futures are everywhere in Dart, mostly thanks to streams.
They also help out wonderfully when our asynchronous needs grow to the
point that separate isolates of code are needed. It is wonderful to know that
we do not have to reinvent them or choose the best library available when we
need them.

Recent versions of JavaScript include the concept of web workers, but if we
need to support older browsers, we are left to our own devices. Early versions
of Node.js supported promises, which are quite similar to Futures in Dart. In
the end, they were removed from Node.js, leaving the poor hipster to reinvent
promises each time the need arises.

Thankfully, in Dart, web workers and promises are supported from the outset
in the form of isolates.

Up next, we finish our tour of Dart with a brief look at how the language
handles some of the new hotness that browsers have started to support in
the last couple of years.

report erratum • discuss

What’s Next • 131

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

CHAPTER 15

HTML5 and Dart
Back in Chapter 4, Manipulating the DOM, on page 29, you saw many examples
of how easy Dart makes it to interact and manipulate the DOM and styles.
This chapter builds upon basic DOM manipulation to present a guide to
adding a little life to web pages through animations, WebSockets, and other
sundry techniques that fall under the HTML5 umbrella.

Most of this chapter discusses features that can be accomplished already in
JavaScript. What Dart brings to the table is a familiar, simple syntax and
cross-platform compatibility (no need for @-webkit and @-moz duplication).

Animation
If you’re making interactive, modern websites in 2014 and beyond, a little
animation can go a long way. The transition CSS property is one of those small,
seemingly innocuous additions that in reality packs in quite a bit of functionality.
Consider, for example, the form view from our comic book application. When it’s
rendered, it might be nice to fade in.

import 'dart:html';
import 'dart:async';
import 'HipsterView.dart';
class AddComicForm extends HipsterView {

// ...
render() {

el.style.opacity = '0';
el.innerHtml = template();
Timer.run(() {
el.style

..transition = '1s ease-in-out'

..opacity = '1';
}, 1);

}
}

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

The transition property is the same one from CSS3.1 It is a space-separated
string of individual transition properties describing the following:

• To which styles the transition applies (all, opacity, and so on). In our
example, this is not included, so it defaults to all.

• Duration of the animation. Our animation lasts for one second.

• The animation function. There are several available, including ease, ease-
in, ease-out, and linear. The ease-in-out function that we use starts slow,
accelerates, and then eases into a slow finish.

• The delay before the animation begins. Since we did not include this, the
default of no delay (0s) is used.

Note: When specifying an initial style, a transition, and a fin-
ished state, Dart has the habit of “optimizing” away the transi-
tion. As a workaround, we place the transition and final state
inside a Timer.run() from dart:async. This effectively takes the ani-
mation out of the normal synchronous workflow just enough
to allow the animation to kick in.

Tip

Local Storage
Dart’s support for client-side storage is still somewhat unsettled, but as you
saw in Chapter 11, Project: Varying Behavior, on page 103, it is far enough
along that we can already perform localStorage. Although it is synchronous and
can be slow, localStorage is the most widely supported client-side storage solu-
tion—and the only one currently supported by Dart.

Because it’s synchronous (that is, its operations block other activity in client-
side applications), it is not well suited for large stores of data. Still, it’s quite
handy for smaller datasets and prototyping. There is a benefit to its
synchronous nature: far less ceremony is involved in using it.

The API for working with localStorage is similar to the traditional JavaScript
API—although Dart uses getters and setters instead of the ugly getItem() and
setItem() from JavaScript. In both, it is inefficient to store individual objects of
a collection separately. Instead, we store serialized JSON representations of
Lists or Maps.

var json = window.localStorage['Comic Books'],
comics = (json != null) ? JSON.decode(json) : [];

1. https://developer.mozilla.org/en/CSS/-moz-transition

Chapter 15. HTML5 and Dart • 134

report erratum • discusswww.it-ebooks.info

https://developer.mozilla.org/en/CSS/-moz-transition
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Adding a record to localStorage is a simple matter of updating the deserialized
data, reserializing it, and storing the whole thing back in the database.

// Oops. We'll fix the spelling in a bit...
comics.push({'id':42, 'title':'Sandmn'});
window.localStorage['Comic Books'] = JSON.encode(comics);

This will replace the data that was previously stored in the Comic Books
localStorage item.

Updating data in the local store then consists of nothing more than updating
the item in the local representation and serializing that back into the data
store as JSON.

var json = window.localStorage['Comic Books'],
comics = (json != null) ? JSON.decode(json) : [];

comics.forEach((comic_book) {
if (comic_book['title'] == 'Sandmn') {

comic_book['title'] = 'Sandman';
}

});
window.localStorage['Comic Books'] = JSON.encode(comics);

Similarly, deleting is accomplished by removing from the local copy and
serializing that back into the localStorage item.

var json = window.localStorage['Comic Books'],
comics = (json != null) ? JSON.decode(json) : [];

awesome_comics.filter((comic_book) {
return (comic_book['id'] >= 42);

});
window.localStorage['Comic Books'] = JSON.encode(comics);

It doesn’t get much easier than localStorage. Unfortunately, each of those
operations blocks the browser from doing anything else. So, if our application
has too much data on the browser, then it’s time to consider something with
a little more power.

Important: At the time of this writing, the APIs for both
IndexedDB and Web SQL were not ready for regular usage.
Ideally, this will change in time for a future edition of this book.

Tip

report erratum • discuss

Local Storage • 135

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

WebSockets
WebSockets is a wonderful new technology that allows for truly asynchronous
communication between the browser and the server. No longer are web
developers relegated to awkward hacks like comet or Ajax long-polling. The
browser can now open a websocket to the server and push data over that
open connection on demand. Better still, when the server has new information
available, it can push it immediately to the user over that same websocket.

Dart’s support for WebSockets is quite nice. This makes it nearly trivial to,
for example, swap out the data syncing layer in our comic book app to use
WebSockets instead of Ajax.

import 'dart:html';
import 'HipsterSync.dart';
// Library scope so that both main() and wsSync()
// have access to the same websocket
WebSocket ws;
main() {

HipsterSync.sync = wsSync;
ws = new WebSocket("ws://localhost:3000/");

// Don't fetch until the websocket is open so
// that wsSync can talk over an active
// websocket
ws.

onOpen.
listen((_) {

var my_comics_collection = new Collections.Comics()
my_comics_collection.fetch();
// other initialization...

});
}

We create websocket objects by instantiating the WebSocket constructor with
a proper ws:// websocket URL. Websockets are completely asynchronous, which
includes opening the connection. Therefore, we add a listener for the websock-
et’s open event. When the connection is open, we can start performing data
synchronization operations such as fetching the data over the websocket.

Note: As of this writing, Dart does not support declaring subpro-
tocols for websockets.Tip

Sending messages over websockets is trivial—we need only invoke
ws.send(message). Recall that the data sync method in HipsterSync needs to accept
two arguments: the CRUD method and the model (or collection) being synced.

Chapter 15. HTML5 and Dart • 136

report erratum • discusswww.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Using that information, we can craft a message to be sent over a websocket
to the back end.

wsSync(method, model) {
String message = "$method: ${model.url}";
if (method == 'delete')

message = "$method: ${model.id}";
if (method == 'create')

message = "$method: ${JSON.encode(model.attributes)}";
ws.send(message);

}

That will send the message, but we need to handle a response from the server
and, in turn, inform the rest of the stack of the response. As you saw in
Chapter 13, Project: An End to Callback Hell, on page 121, informing the Hipster-
Sync class is done with a Future. So, our wsSync layer needs its own Completer
object, and it needs to complete once the response has been received from
the server.

wsSync(method, model) {
final completer = new Completer();
String message = /* determine the message */
ws.send(message);
ws.

onMessage.
listen(_wsHandler(event) {
completer.

complete(JSON.decode(event.data));
event.target.on.message.remove(_wsHandler);

});
return completer.future;

}

The return value of our sync function is a Future. HipsterSync expects this and,
in turn, has a corresponding then() clause to propagate this information
throughout the Hipster MVC stack once the completer has been marked as
finished. Upon receipt of the server response inside the message handler, we
complete the Future with the message from the server, which is available in
the message event’s data attribute.

In this case, we want to listen only for a single response from the server, so
we remove the handler after the completer is finished. If this message handler
had been left in place, it would continue to receive messages upon the second
response from the server (for example, in response to a user-initiated create).
Since the completer referenced inside this sync closure has already been
terminated, the application would generate all sorts of messages about already
completed completers.

report erratum • discuss

WebSockets • 137

www.it-ebooks.info

http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Websockets in Dart are really no more difficult or easier than their counterpart
in JavaScript. Still, there is a uniquely Darty take on it, which makes them
a pleasure to use.

Canvas
Dart lacks something like Raphaël.js2 that eases some of the pain associated
with working with the <canvas> element. Even so, it brings its own Darty take
on the staple of HTML5 games everywhere.

As with traditional canvas, Dart still requires a <canvas> element and a corre-
sponding drawing context. If the page already has a <canvas> element, we
obtain a drawing context with the getContext() method.

CanvasElement canvas = document.query('canvas');
CanvasRenderingContext2D context = canvas.getContext('2d');

Given the context, we can draw all sorts of wonderful things. For example,
we can draw an empty, white rectangle on the entire canvas as a backdrop.

int width = context.canvas.width, height = context.canvas.height;
// start drawing
context.beginPath();
// clear drawing area
context.clearRect(0,0,width,height);
context.fillStyle = 'white';
context.fillRect(0,0,width,height);
// done drawing
context.closePath();

A plain white background is not terribly interesting. To spice it up a little, we
can add a simple red square that will represent our current location in a game
room. If our current location is encapsulated by a Player object that has an x
and a y position, then our initial placement might look something like this:

// start drawing
context.beginPath();
// clear drawing area
// ...
// draw me
context.rect(me.x, me.y, 20, 20);
context.fillStyle = 'red';
context.fill();
context.strokeStyle = 'black';
context.stroke();
// done drawing
context.closePath();

2. http://raphaeljs.com/

Chapter 15. HTML5 and Dart • 138

report erratum • discusswww.it-ebooks.info

http://raphaeljs.com/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

That draws a 20 pixel square representing me, filled with red and with a black
border. Now all that’s needed is a document listener to handle arrow key
presses. When an arrow key is pressed, the event moves the player by calling
move() in the appropriate direction and then redrawing the entire canvas.

document.
on.
keyDown.
add((event) {

String direction;

// Listen for arrow keys
if (event.keyCode == 37) direction = 'left';
if (event.keyCode == 38) direction = 'up';
if (event.keyCode == 39) direction = 'right';
if (event.keyCode == 40) direction = 'down';
if (direction != null) {
event.preventDefault();
me.move(direction);
draw(me, context);

}
});

Here, the draw() function performs the same context manipulation that we did
previously, only with an updated position for me.

As Dart evolves, no doubt there will be more improvements to the API to make
it a little easier to work with. More importantly, there ought to be many
libraries built on top of it. Already there is an early port of the Box2D library
into Dart that can draw simple physics. Aptly named DartBox2D,3 it is well
worth checking out.

Wrapping Up
This was rather a grab bag of various tools currently available to the Dart
developer. But really, that’s what HTML5 is—a grab bag of techniques available
in newer browsers. They are techniques handled with aplomb by Dart. Perhaps
by the time that the 2.0 edition of this book is ready, each of these sections
can be broken out into their own chapters. As good as it is now, it is only
going to improve as Dart itself continues to evolve.

And Dart is going to evolve. Dramatically. Nearly 100 people are dedicated
full-time to improving the language. More importantly, the community that
has sprung up around Dart is extremely active. So, please, join us at
https://groups.google.com/a/dartlang.org/group/misc/topics, and add your voice!

3. http://code.google.com/p/dartbox2d/

report erratum • discuss

Wrapping Up • 139

www.it-ebooks.info

https://groups.google.com/a/dartlang.org/group/misc/topics
http://code.google.com/p/dartbox2d/
http://pragprog.com/titles/csdart1/errata/add
http://forums.pragprog.com/forums/csdart1
http://www.it-ebooks.info/

Index
SYMBOLS
: (colon), for redirection, 73

{} (curly braces)
in function definitions, 6,

24
for optional parameters,

26
in string interpolation, 8,

12

$ (dollar sign), for interpola-
tion, 8, 12

. (dot), in named construc-
tors, 72

.. (dots, double), for method
cascades, 34

=> (hash rocket syntax), in
function definitions, 24

+ (plus sign), for string con-
catenation, 12

""" """ (quotes, triple), enclos-
ing multiline strings, 12

; (semicolon), in function defi-
nitions, 6

[] (square brackets)
for Map values, 13
for model attributes, 51
for optional parameters,

27
for property values, 41,

63

_ (underscore), preceding pri-
vate variables, 60

A
abstract methods, 67

add() method
collection, 46

Element, 33
Set, 17

addAll() method, list, 15

addFirst() method, Set, 17

Ajax
data syncing with, 106–

110
fetching data, 5–9

animation, 133–134

anonymous functions, 22–24

any() method, list, 15

append() method, Element, 31

arguments for constructors,
71–74

arrays, see lists

as option, import statement, 90

associative arrays, see Map
class

asynchronous communica-
tion, see WebSocket class

asynchronous testing, 116

B
Booleans, 13

browsers, see also Dartium
checking for support of,

38–39
compatibility with, x

C
call() method, 63

callMethod() method, context,
40–41

callback functions
Completer and Future objects

for, 121–123, 127
supplying in Dart, 41, 48

cancel() method, stream, 78

<canvas> element, 138–139

case conventions, xiii

chaining methods, 30

Chrome browser, Dart-en-
abled, see Dartium

class keyword, 59

class methods, see static
methods

class variables, see static
variables

classes, see also specific
classes

defining, 59
implementing other

classes, 68
instance variables in, 60–

61
naming conventions for,

xiii
subclasses, 67

client-side storage, see local
storage

code reuse, see libraries

collections, 16–17, 46–50, 85–
87

colon (:), for redirection, 73

comics application
adding new records, 54–

57
animation in, 133–134
callback functions, 121–

123
collections, 46–50, 85–87
data retrieval with Ajax,

5–9
data retrieval with WebSock-
et class, 136–138

data syncing with Ajax,
106–110

www.it-ebooks.info

http://www.it-ebooks.info/

error handling, 124–125
extracting code to li-

braries, 85–91
local storage for, 103–

106, 134–135
models, 49–52, 88
MVC design pattern for,

45–46
REST-like interface for, 3
source code for, 3, 91
views, 47, 52–57, 88–89

completeError() method, 124–125

Completer class
callback functions with,

122–123, 127
error handling with, 124–

125, 128

concatenation of strings, 12

concurrency, see isolates

constructors, 48, 50, 70–75
arguments for, 71–74
factory constructors, 74–

75
implicit constructors, 73
named constructors, 71–

72
redirection constructors,

72–73
setting initial values in,

71
simple generative con-

structors, 70

containsAll() method, Set, 17

cross-browser JavaScript, x

CRUD (create, read, update,
delete) operations, 3, 48–
50, 54–57, 107, 136

curly braces ({})
in function definitions, 6,

24
for optional parameters,

26
in string interpolation, 8,

12

D
Dart

Ajax with, 5–9, 106–110
browser compatibility, x
callback functions, 121–

123, 127
calling JavaScript from,

40–42
checking for browser

support of, 38–39
compared to JavaScript,

x

compiling to JavaScript,
10, 35–38

core libraries, 97
DOM (Document Object

Model), 29–34
dynamic features of, 64
error handling, 124–125,

128
events, 77–81
HTML for, 4–5
isolates, 128–131
local storage, 103–106,

134–135
mixins, 69–70
reasons to learn, ix–xi
standardization of, 35
streams, 7, 77–79
testing, 113–117
types, 11–20
WebSocket class, 136–138

Dart Editor, xiii
interface methods check-

ing, 68
pub dependency retrieval,

98
stream object checking,

80
type checking, 19

dart2js tool, 36–38

dart:async library, 97

dart:collection library, 47

dart:convert library, 97

dart:core library, 97

dart:html library, 29, 97

dart:io library, 97

dart:isolate library, 128

dart:js package, 40

dartanalyzer tool
interface methods check-

ing, 68
stream object checking,

80
type checking, 19

Dartium, 10
loading libraries, 96
starting script engine, 4–

5

data syncing, 106–110

dates, 17–18

DateTime class, 17–18

delete() method, model, 52

dependency injection, 106–
110

destroy() method, collection, 46

difference() method, DateTime,
18

Document class, 30

dollar sign ($), for interpola-
tion, 8, 12

DOM (Document Object Mod-
el)

adding and removing
classes, 33

adding elements, 30–32
deferred evaluation of, 34
library for, 29
populating elements, 6–7
querying elements, 29–30
removing elements, 32
single, main entry point

for, 34
updating elements, 33

dot (.), in named construc-
tors, 72

dots, double (..), for method
cascades, 34

doubles, 11

duck typing, 68

Duration class, 18

E
Element class, 30

error handling, 124–125, 128

events
custom, 79–81
using, 77–79

every() method, list, 15

example application,
see comics application

expect() method, 116

expectAsync() method, 117

expressions, interpolating, 8,
12

extends keyword, 67, 70

F
factory constructors, 74–75

factory keyword, 75

fetch() method, collection, 45,
49, 54

Fibonacci sequence example,
21–22

filenames, naming conven-
tions for, 90

first-order concepts
classes as, 59
functions as, 22, 24–25

Index • 142

www.it-ebooks.info

http://www.it-ebooks.info/

first-order objects, classes not
as, 59

fold() method, list, 16

forEach() method
list, 8, 15
Map, 14

function keyword, 21–23

functions
anonymous, 22–24
callback functions, 41,

48, 121–123, 127
calling, 21–22
defining, 21–22
lazy evaluation of, 47
naming conventions for,

xiii
optional parameters for,

25–27
partial function applica-

tion, 24–25
positional parameters for,

26–27

Future class
callback functions with,

121–123, 127
error handling with, 124–

125, 128
with WebSocket class, 137

G
get keyword, 62

getContext() method, canvas,
138

getters, 48, 62, 134

group() method, 115

H
hash rocket syntax (=>), in

function definitions, 24

hashes, see Map class

HTML, Dart scripts in, 4–5,
see also DOM

html() method, Element, 31

HTTP DELETE request, 46,
52

HTTP GET request, 7, 45, 49

HTTP POST request, 46, 52

HTTP PUT request, 46, 52

HttpRequest class, 6, 49, 52

Hungarian notation, 90

I
id attribute, attaching behav-

iors using, 5

implements keyword, 68

implicit constructors, 73

import statement, 5–6, 90, 95–
97

in-browser storage, see local
storage

IndexedDB, 135

innerHtml() method, Element,
33

insertAdjacentElement() method,
Element, 32

insertAdjacentHTML() method, Ele-
ment, 32

instance methods, 66–67

instance variables, 60–61

integers, 11

interfaces, 68

interpolation, 8, 12

intersection() method, Set, 17

isolates, 128–131

Iterable class, 16–17

IterableBase class, 48

J
JavaScript

calling from Dart, 40–42
compared to Dart, x
compiling Dart to, 10,

35–38
cross-browser, x
loading if Dart not sup-

ported, 38–39

JsObject class, 41

K
keys() method, Map, 14

with keyword, 70

L
lazy evaluation of functions,

47

libraries, see also specific li-
braries

core Dart libraries, 97
creating, 89–91
extracting code to, 85–91
importing, 5–6, 90, 95–96
prefixing imports, 96
publishing, 98–99
splitting into parts, 93–94

library statement, 89, 95

LinkedHashMap class, 14

listen() method, stream, 78

lists, 15–17
counting characters in,

16
iterating over, 8, 15
populating, 6–7, 15

local storage, 103–106, 134–
135

localStorage property, Window,
134

M
main() function, 5–6

Map class, 13–15

metaprogramming, 64

methods, see also construc-
tors; specific methods

abstract methods, 67
call() method, 63
calling, 61
cascading, 33, 65–66
getters, 48, 62, 134
instance methods, 66–67
naming conventions for,

xiii
noSuchMethod() method, 64,

103–106
operators, 63
return type of, 61
setters, 62, 65–66, 108,

134
static methods, 66–67

mixins, 69–70

models, 49–52, 88

modern Web, x

multiline strings, 8, 12

MVC design pattern, 45–46
adding new records, 54–

57
collections, 46–50, 85–87
models, 49–52, 88
views, 47, 52–57, 88–89

N
named constructors, 71–72

naming conventions, xiii, 90

navigator.webkitStartDart() method,
5

noSuchMethod() method, 64,
103–106

now() method, DateTime, 17

numbers, 11

Index • 143

www.it-ebooks.info

http://www.it-ebooks.info/

O
onLoad property, HttpRequest,

7

operator keyword, 63

operators, 63

optional parameters, 25–27

P
package management tool,

97–99

parse() method, DateTime, 17

part directive, 93

part of directive, 94

partial function application,
24–25

parts, 93–94

plus sign (+), for string con-
catenation, 12

positional parameters, 26–27

private instance variables,
60–61

pub tool, 97–99

public instance variables, 60

Publish/Subscribe design
pattern, 78

putIfAbsent() method, Map, 14–
15

Q
query() method, Document, 6,

29–30

queryAll() method, Document,
7, 29–30

querySelector() method, Docu-
ment, 7

querySelectorAll() method, Docu-
ment, 7

Queue class, 17

quotes, triple (""" """), enclos-
ing multiline strings, 12

R
redirection constructors, 72–

73

remove() method, Element, 32–
33

removeFirst() method, Set, 17

removeLast() method, Set, 17

removeRange() method, list, 15

REST-like interface, 3

return keyword, 75

reusability, see libraries

S
save() method

collection, 46
model, 51–52

<script> tag, 4–5

scripts
including in HTML, 5
starting script engine for,

4–5

semicolon (;), in function defi-
nitions, 6

Set class, 17

set keyword, 62

setRange() method, list, 15

setters, 62, 65–66, 108, 134

simple generative construc-
tors, 70

spawnUri() method, isolates,
128–131

square brackets ([])
for Map values, 13
for model attributes, 51
for optional parameters,

27
for property values, 41,

63

static methods, 66–67

static variables, 66–67

Stream class, 80

StreamController class, 79

streams, 7, 77–79

strings, 11–12
concatenating, 12
interpolation in, 8, 12
multiline, 8, 12

subclasses
abstract classes requir-

ing, 67
defining, 67
mixins used with, 69–70

T
testing, 113–117

then() method, 122, 129, 137

this keyword, 27, 60–61

transition CSS property, 133–
134

triple quotes (""" """), enclos-
ing multiline strings, 12

types
as “sneaky”, not static,

18–20
Booleans, 13
checking, 19
collections, 16–17
dates, 17–18
declaring, 19–20, 48
duck typing, 68
library for, 97
lists, 6–7, 15–17
Map class, 13–15
numbers, 11
strings, 8, 11–12

U
underscore (_), preceding pri-

vate variables, 60

unittest library, 113

useHtmlEnhancedConfiguration()
method, 114

V
values() method, Map, 14

var keyword, 18–19

variables
instance variables, 60–61
interpolating, 8, 12
naming conventions for,

xiii
static variables, 66–67

views, 47, 52–57, 88–89

void keyword, 61

W
Web browsers, see browsers

web pages, see DOM; HTML

Web SQL, 135

Web, modern, x

WebSocket class, 136–138

where() method, list, 15

Index • 144

www.it-ebooks.info

http://www.it-ebooks.info/

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(300 pages) ISBN: 9781937785598. $38
http://pragprog.com/book/bhh52e

Async JavaScript
With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you’ll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
http://pragprog.com/book/tbajs

www.it-ebooks.info

http://pragprog.com/book/bhh52e
http://pragprog.com/book/tbajs
http://www.it-ebooks.info/

Seven in Seven
From Web Frameworks to Concurrency Models, see what the rest of the world is doing with
this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
http://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
http://pragprog.com/book/pb7con

www.it-ebooks.info

http://pragprog.com/book/7web
http://pragprog.com/book/pb7con
http://www.it-ebooks.info/

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)
A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

www.it-ebooks.info

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/csdart1
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: http://pragprog.com/book/csdart1

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

www.it-ebooks.info

http://pragprog.com/book/csdart1
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/csdart1
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Introduction
	Who Should Read This Book (Besides Hipsters)?
	How the Book Is Organized
	What Is Not in This Book
	About the Future
	Conventions
	Let's Get Started

	Part I—Getting Started
	1. Project: Your First Dart Application
	The Back End
	HTML for Dart
	Ajax in Dart
	This App Won't Run

	2. Basic Types
	Numbers
	Strings
	Booleans
	Maps (aka Hashes, Associative Arrays)
	Lists (aka Arrays)
	Dates
	Types

	3. Functional Programming in Dart
	Anonymous Functions
	First-Order Functions
	Optional Arguments

	4. Manipulating the DOM
	dart:html
	Finding Things
	Adding Things
	Removing Things
	Updating Elements
	Method Cascades
	DOM Ready

	5. Dart and JavaScript
	Compiling to JavaScript with dart2js
	Maintaining Dart and JavaScript Side by Side
	Using JavaScript in Dart

	Part II—Effective Coding Techniques
	6. Project: MVC in Dart
	MVC in Dart
	Hipster Collections
	Hipster Models
	Hipster Views
	Putting Models, Collections, and Views Together to Create New Records

	7. Classes and Objects
	Class Is a First-Order Concept
	Instance Variables
	Methods
	Static Methods (aka Class Methods) and Variables
	Subclasses
	Duck-Typing in Dart with implements
	Mixins
	Constructors

	8. Events and Streams
	Plain-Old Events
	Making Custom Events with Streams

	Part III—Code Organization
	9. Project: Extracting Libraries
	What to Extract and What to Leave
	Real Libraries

	10. Libraries
	Parts
	Libraries
	Core Dart Libraries
	Packaging with Dart Pub

	Part IV—Maintainability
	11. Project: Varying Behavior
	Vary Class Behavior with noSuchMethod()
	Sync Through Dependency Injection

	12. Testing Dart
	Obtaining the Test Harness
	2 + 2 = 5 Should Be Red

	Part V—The Next Level with Dart
	13. Project: An End to Callback Hell
	The Future
	Handling Errors in the Future

	14. Futures and Isolates
	Completers and Futures
	Isolates

	15. HTML5 and Dart
	Animation
	Local Storage
	WebSockets
	Canvas
	Wrapping Up

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

