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Foreword

In the transmission of information over a wireless channel, the channel is modeled 
classically as a linear system black box with an input and output, that is, a single 
input and a single output (SISO). The input is the connection point from the power 
amplifier of the transmitter to the transmitting antenna terminal and the output is 
the connection point from the receiving antenna terminal to the radio frequency 
(RF) front-end filter of the receiver. The antennas are modeled as a structure that 
radiates EM waves that propagate through space. The simplest such antenna struc-
ture is a radiating electric dipole element. With the presence of multipath propaga-
tion in the channel, it becomes evident that the electric field at the receiver location 
undergoes variations in amplitude over distances in space of the order of a wave-
length. As a result, variations of the classical wireless channel were employed, where 
multiple receiving antenna elements were introduced, or in other words, antenna 
structures with multiple interconnection points to the receiver. These antennas were 
designed to achieve so-called receiver diversity. The channel could then be modeled 
as having a single input and multiple outputs, or in the current terminology SIMO 
(single input multiple output). Classical receiver techniques to process the multiple 
outputs were referred to as combining techniques. The three classical combining 
techniques are selection, equal gain, and maximal ratio combining.

Alternative processing approaches of the signals at the multiple outputs taking 
the phase of the received signal into account (or taking the timing of the received 
signal into account) result in the receiver antenna structure behaving as a direc-
tional antenna, where the antenna gain is dependent on the direction of arrival—
the technique is referred to as beamforming, or antenna array, or phased array, and 
works well when the timing of the received signals at the antenna elements is on the 
order of a carrier period; that is, elements are spaced on the order of a wavelength. 
Such a technique can also be employed with multiple antenna elements at the trans-
mitter and a single element at the receiver. This results in the system being modeled 
as a SISO system with directivity. In either the case of transmitter or receiver beam-
forming, the system may be modeled as a SISO system with directivity.

Over the past 30 years of wireless research, another variation was introduced, 
where multiple transmitting antenna elements are introduced, and where an 
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information signal is fed into the different elements with various delays. The rela-
tive delays between the signals are much larger than the carrier period and on the 
order of the transmission symbol period. This technique became known as delay 
transmission diversity and in effect simulated a channel with multipath propa-
gation. Such a channel exhibits what is referred to as frequency diversity in that 
the frequency response has a variation over the frequency band of the transmit-
ted signal. The variation with frequency is measured by the coherence bandwidth 
parameter and is inversely related to the relative delay of the signals being fed into 
the transmitting antenna elements. A SISO channel with the channel multipath 
having a small delay spread exhibits what we call frequency flat fading, with its 
effect being uncorrectable with any signal processing techniques at the receiver. 
The introduction of relative delays at the different transmitting antenna elements 
basically transforms the channel into a frequency-selective fading channel, where 
appropriate signal processing techniques can then be introduced at the receiver to 
correct the effect of fading. Such a receiver utilizes an equalizer and the resulting 
signal is insensitive to the precise location of the receiving antenna over several 
wavelengths. One form of this scheme, for wideband signals, is a spread spectrum 
system (e.g., CDMA*) with a Rake receiver.

The next development in antenna schemes came with the introduction of a 
multiplicity of antenna elements at the transmitter but with different information 
signals being fed into the different antenna elements. This work was first reported 
by DaSilva and Sousa in the mid-1980s as a way to solve the flat fading problem 
with narrowband systems, such as those with 30 kHz RF channels (1G in North 
America). The flat fading problem of narrowband cellular systems is a result of 
 narrow RF bandwidth together with a small portable receiver terminal which is not 
conducive to receiver antenna diversity. The idea was to find a transmitter diversity 
technique that requires a relatively simple receiver. To motivate the idea we imag-
ine such a SISO system with a multipath where, at the receiver, there are a series 
of nulls and peaks in the signal strength over distances of the order of half of a 
wavelength. If the single antenna at the receiver is located at a null, then we have a 
very weak signal. To attempt to mitigate the flat fading, conceptually we imagine 
the transmitting antenna being placed in a motor and move it so that the nulls at 
the receiver also move and we get diversity. However, we wish to implement such 
a system without moving parts, hence we can propose what is called switching 
diversity, where the signal at the transmitter is periodically switched between two 
antenna elements. Such switching may have undesirable effects in broadening the 
spectrum. We therefore considered that switching between two antennas is a form 
of transmitting two orthogonal signals in the two antenna elements and, in this 
way, we were led to a scheme where a signaling constellation of two dimensions is 
created where each dimension is associated with a transmitting antenna element. 
In the basic scheme we have the constellation points: (−1, −1), (−1, 1), (1, −1), and 

* Code division multiple access.
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(1,1). We then realized that if we introduce a rotation of this constellation in the 
plane we obtain in effect a modulation scheme that, in a sense, has fading resistant 
properties.

A variation of the above technique of transmitter diversity was introduced after-
ward by Alamouti where, instead of associating the signals transmitted on the dif-
ferent antennas with a 4-point constellation, a scheme is devised where two symbols 
s1 and s2 are transmitted over two successive time slots as follows: At time slot 1 
we send s1 on antenna 1 and s2 on antenna 2, and in time slot 2 we send −s2

*  on 
antenna 1 and s1*  on antenna 2. This scheme was later coined as space–time coding, 
although some coding theorists would argue that this is a misnomer as there is no 
coding theory involved in the classical sense of coding theory.

The next major development, by Foschini and others, occurred with consider-
ation of enhanced receiver antenna structures where it is possible to install a mul-
tiplicity of antenna elements and achieve some degree of decorrelation between the 
signals in the different receiver antenna elements. We consider a system with m 
receiving antenna elements and n transmitting antenna elements; that is, a system 
with multiple inputs and multiple outputs (MIMO). The channel can then be mod-
eled by a channel gain matrix h = (hi,j), where hi,j is the path gain between the ith 
transmitting antenna element and the jth receiving antenna element. We model 
the inputs to the different antenna elements by the vector x, where the component 
xi is fed into the ith antenna element and where the vector y models the outputs 
at the receiver antenna. Thus, we have y = hx. We observe that if the channel has 
no multipath components, then we have hi,j = 1 for all i,j, and use of the multiple 
antennas has no benefit in the sense that we cannot separate the signals from the 
different transmitter elements to, in effect, recover all the data. In fact, the signals at 
each receiver antenna element are all equal to the sum of the inputs to the different 
transmitter elements. However, in the case that m = n, and if the matrix h is invert-
ible, we can easily compute x = h−1y. Hence, we can recover x from y; that is, we 
can decouple the channel and make it behave as if there are n parallel noninteract-
ing paths. The next observation is that the behavior of this scheme is very much 
dependent on the eigenvalues of the matrix h, because in a sense they determine 
the signal strength in each of the decoupled paths and eventually the performance 
in the presence of noise in each path. The scheme works well if the environment 
contains many multipath components. 

The analysis of this scheme is usually presented by diagonalizing the matrix h 
as follows: h = MΛM*, where Λ is the diagonal matrix of eigenvalues of h and M 
is the matrix whose column vectors are the associated eigenvectors. In this form we 
can view the effect of h on the channel input signal as three transformations. First, 
the multiplication by M* is a form of pre-coding of the channel input vector x, or 
changing of coordinate system to make it simple to apply the channel transforma-
tion. Then, the multiplication by Λ, in effect, models the different independent 
paths of the channel and, finally, the effect of multiplication by M converts back 
into a coordinate system that corresponds to the system under which the real signal 
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observations are made. In the case that the matrix h is not a square, then a similar 
decomposition can be achieved using the well-known singular-value decomposi-
tion (SVD): h = uΛv*, where u is an m × m real or complex unitary matrix; Λ is 
an m × n rectangular diagonal matrix; and v* is the conjugate transpose of v, 
which is an n × n real or complex unitary matrix. We may view the matrix h as 
providing the transformation between the input signal x and the output signal y, 
hence we have y = hx = uΛv*x. 

Considering the input to the channel as a vector of information symbols, the 
“signals” in this linear system are finite dimensional vectors. These transformations 
become very familiar if we draw a comparison with the area of linear time invariant 
(LTI) systems with which we are familiar in an introduction to linear systems. In 
those systems, the familiar concepts are time domain, frequency domain, convo-
lution, and transfer function. The direct method of computation of the output is 
based on a convolution and is done in one step. The indirect method based on the 
frequency domain uses three steps. In a sense performing the multiplication y = hx 
is analogous to convolution. Now, using the SVD decomposition of h, we first 
compute v*x (analogous to converting the input into the “frequency domain”). 
Then, multiplication by the diagonal matrix Λ (simple) is like multiplying by the 
transfer function. Finally, multiplication by the matrix u corresponds to convert-
ing back into the analogue of the time domain. In the design of linear systems, we 
prefer the frequency domain because it simplifies our understanding of the system 
and, in a sense, the above SVD form is preferable to understanding the behavior of 
the multipath channel.

Now, MIMO is a technology that has been widely adopted in state-of-the-art 
cellular systems such as LTE and systems such as WiFi and WiMax, where con-
figurations up to 4 × 4 (4 transmitting elements and 4 receiving elements) have 
been adopted. For instance, bit-rate capacities per link are often quoted in bps/
Hz where the ITU* specifies the target of 15 bps/Hz in the downlink for the LTE† 
advanced system. Nevertheless, to achieve these targets, a radio environment with 
rich multipath propagation is required. However, when a network assessment is 
made, the benefits of MIMO are reduced. To achieve a high degree of multipath, 
we need to consider multipath over a wide range of angles of arrival, but in a net-
working context we also have the option of beamforming at the transmitter in order 
to reduce interference. Using a narrow beam at the transmitter greatly reduces the 
interference on neighboring terminals. However, this beamforming then reduces 
the multipath that is required by a MIMO link and the effectiveness of MIMO 
then decreases. Ultimately, a MIMO system utilizes propagation modes (or paths), 
which have a wide range of angles of departure from the transmitter and angles 
of arrival at the receiver. However, these propagation modes, in a sense, cause the 

* International telecommunications union.
† Long-term evolution.



Foreword ◾ ix

occupation of more space by extra signal components, which degrade the network 
where a number of links are designed to operate simultaneously.

The standard MIMO technique assumes a number of antenna elements that are 
relatively close together. The goal is to achieve uncorrelated signals at the different 
antenna elements, where the correlation decreases with increased distance between 
elements, but at the same time have all the elements as close to one another so that 
the overall antenna occupies less space. This is an important issue, especially for 
portable terminals and the result is that the form factor of the terminal puts a limit 
on the number of elements that we may have at the terminal. Nevertheless, there is 
another approach where we may place the antenna elements at significant distances 
from each other, especially on the infrastructure side of the link where each element 
is connected to a controller using various approaches such as optical links—often 
referred to as front-haul. This approach is referred to as virtual MIMO and it is one 
of the approaches currently being considered in cellular systems employing the so-
called remote RF in highly dense cell environments. In other words, a base station 
feeds a number of remote RF units where the signals from/to these units are jointly 
processed at the base station.

As we look into the future, there are a number of possibilities to generalize 
MIMO techniques. Currently, most of the systems consider that each input and 
output corresponds to an antenna radiating element as in an antenna array. The set 
of elements may be replaced by a generalized radiating antenna structure that has a 
number of ports to input and output signals. Such a structure may be quite differ-
ent from a set of discrete elements as in the current configurations. One could also 
imagine applications and scenarios where the wireless channels and the propaga-
tion modes or paths are under the control of the system designer.

We have discussed MIMO from the standpoint of the transfer of signals from 
a transmitter to a receiver, where the essence of the scheme has been the increase 
in the dimensionality of the signal space available for the transmission of informa-
tion signals. There is also the important aspect of mapping or coding of general-
ized information signals to the input ports of a MIMO link, and the associated 
processing of the signals at the output ports in order to extract the information at 
the receiver. A vast amount of research has been performed in the areas of chan-
nel modeling, channel sounding, detection, modulation, coded modulation, and 
adaptation to the three major wireless standards of today. A great deal of this work 
is documented in the following chapters of this book. Looking into the future, we 
can expect this research to continue, especially targeting new antenna structures 
where the system permits a larger form factor (more antenna elements), and also the 
targeting of various cooperative approaches including hybrids of standard MIMO 
and cooperative MIMO. A key issue will be the design of schemes with improved 
channel sounding techniques over the current standards, where the overhead for 
channel sounding quickly grows with the rank of the MIMO scheme (number of 
antennas). The network of the future may very well be a two-tier network, where 
each transmission from network infrastructure to mobile hand-held terminal 
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occurs over two hops. The first hop would heavily employ MIMO techniques 
between the base stations and a relay station (i.e., not hand held), and can utilize 
MIMO with a high rank. The second hop would be between the relay station and 
the terminal. Many different scenarios in building the base station to relay station 
infrastructure, depending on the nature of traffic demand, are possible, and differ-
ent MIMO structures will be required to be employed in each scenario.

Elvino sousa
University of Toronto
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Preface

This book presents a detailed and comprehensive summary of the most important 
enhancements in multiple-input multiple-output (MIMO) systems for 4G, includ-
ing their evolution and future trends. Moreover, this book includes descriptions of 
the fundamentals of MIMO techniques, associated signal processing, and receiver 
design.

The previous books in this series, titled Transmission Techniques for Emergent 
Multicast and Broadcast Systems (CRC Press) and Transmission Techniques for 4G 
Systems (CRC Press), focused on the transition from 3G to LTE and on the trans-
mission techniques to be employed in future 4G cellular systems, respectively. 
Therefore, these books covered wide areas.

The purpose of this book is to concentrate in a single place several important 
ongoing research and development (R&D) activities in the field of MIMO systems 
and their associated signal processing that are expected to be employed in 4G and 
5G systems. This is a hot and important topic which allows achieving the increased 
throughputs demanded by emergent services. Moreover, this book also aims to pro-
vide a comprehensive description of MIMO fundamentals and theory, with special 
interest for those needing to improve their skills in the subject, such as corporate/
industrial employees or graduate students. Therefore, this book aims to serve a wide 
range of potential readers. It can be used by an engineer with a BSc to learn about 
the latest R&D on MIMO systems, for the purpose of an MSc or a PhD program, 
or for business activities; it can also be used by academic, institutional, or industrial 
researchers in order to support the planning, design and development of prototypes 
and systems. It is worth noting that the contributing authors have been working on 
many international R&D projects related to the subject of the book, and are highly 
cited in the MIMO field, which represents an added value.

MIMO systems were initially introduced in IEEE 802.11n (commonly referred 
to as Wi-Fi) and in Release 7 of the universal mobile telecommunication system 
(UMTS) by the Third Generation Partnership Project (3GPP). These systems were 
intended to efficiently use network and radio resources by transmitting multiple 
data streams over a common radio channel. This is achieved by using multiple 
antennas at the transmitter and at the receiver sides.
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This book is divided into chapters written by different invited authors, leading 
researchers in MIMO, covering the various topics associated with MIMO systems 
and MIMO processing, starting from the fundamental concepts and conventional 
receiver design, up to the most advanced and recently proposed processing techniques.

The use of multiple antennas at both the transmitter and receiver aims to improve 
performance or increase the symbol rate of the systems, without an increase of the 
spectrum bandwidth, but it usually requires higher implementation complexity. In 
the case of a frequency selective fading channel, the different transmitted symbols 
will be affected by interference coming from other symbols, and this effect is usu-
ally known as intersymbol interference (ISI). This effect tends to increase with the 
used bandwidth. By exploiting diversity, multi-antenna systems can be employed 
to mitigate the negative effects of both fading and ISI. Space–time coding, such as 
the pioneering scheme proposed by Alamouti, is an example of a scheme that can 
be applied to improve the performance by exploiting diversity.

MIMO systems may also target high bit-rate services over a common channel, 
as proposed by Foschini. One of the most important properties of MIMO systems 
is resource sharing among many user equipment (UE). MIMO based on spatial 
multiplexing (multilayer transmission) aims to achieve higher data rates in a given 
bandwidth. This rate increase corresponds to the number of transmitter antennas. 
In the case of spatial multiplexing using the conventional postprocessing approach, 
the number of receiver antennas must be equal to or higher than the number of 
transmitter antennas (although there is active research for underdetermined sys-
tems where that restriction is removed).

MIMO processing can be split into two different categories: postprocessing 
and preprocessing. Single-user MIMO (SU-MIMO) considers data being trans-
mitted from a single user to another individual user, and corresponds to having 
postprocessing only or a combination of both, if channel state information (CSI) is 
available at the transmitter side. With a sufficient number of receiver antennas, it is 
possible to resolve all data streams, as long as the antennas are sufficiently spaced to 
minimize the correlation between them. Another type of preprocessing for MIMO 
is commonly referred to as multiuser MIMO (MU-MIMO).* The approach behind 
MU-MIMO is similar to spatial multiplexing typically employed in the uplink.† 
Nevertheless, MU-MIMO is normally implemented in the downlink. This allows 
sending different data streams to different UEs. Using the preprocessing approach, 
the traditional constraint on spatial multiplexing (where the number of receiver 
antennas must be equal to or higher than the number of transmitter antennas) can 
be reversed. Therefore, the spatial multiplexing concept can be employed in the 
downlink, where the transmitter (BS) accommodates a high number of transmit-
ter antennas and the receiver (UEs) can only accommodate a single or a reduced 

* Also referred to as MIMO broadcast.
† Because the base station (BS) typically has the ability to accommodate a higher number of 

receiver antennas to perform the nulling algorithm.
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number of antennas. With this approach, multiple data streams may be sent to 
multiple users at the same time, all in the same frequency bands. Alternatively, 
instead of implementing the spatial multiplexing principle described above, the 
MU-MIMO can also be performed using a beamforming algorithm. One should 
emphasize that most of the MU-MIMO systems require accurate downlink CSI at 
the transmitter side.

Chapter 1 of this book starts by exposing the different wireless communica-
tion standards that make use of MIMO systems, followed by a description of the 
various MIMO techniques, whether SU-MIMO or MU-MIMO, including space–
time coding, spatial multiplexing, and beamforming. Finally, Chapter 1 ends with 
a description of advanced MIMO applications, such as base station cooperation, 
multihop relay, and multiresolution transmission schemes.

Chapter 2 focuses on receiver processing associated with MIMO signal detec-
tion, and clarifies how spatial multiplexing is achieved via an insightful geomet-
ric interpretation of the MIMO detection problem based on lattice theory. The 
chapter covers the most important detection algorithms and lays the bases for the 
reader to better understand subsequent chapters on precoding (Chapter 3), on 
OFDM detection (Chapter 4), and detection in systems with large antenna arrays 
(Chapter 10).

Chapter 3 tells us that, when CSI is available at the transmitter side, the tradi-
tional singular value decomposition combined with water-filling power allocation 
among the channel’s singular values, applied to spatial multiplexing MIMO, is not 
optimal. Also capitalizing on a lattice interpretation of the precoding problem, the 
optimal precoders are derived. The preprocessing associated to MU-MIMO is also 
described under the same framework in Chapter 3, as the only difference is that the 
receiver antennas are not co-located. This latter concept comprises multiple streams 
of data simultaneously allocated to different users, using the same frequency bands.

Optimized MIMO schemes and processing for block transmission techniques 
are described in Chapter 4 for the orthogonal frequency division multiplexing 
(OFDM) transmission technique, and in Chapter 5 for single carrier–frequency 
domain equalization (SC–FDE), while Chapter 6 presents MIMO processing and 
optimization for wideband code division multiple access (WCDMA). Moreover, 
the description of the ultra-wideband (UWB) transmission technique* and corre-
sponding MIMO processing and optimizations are provided in Chapters 7 and 8. 
The MIMO optimizations for different transmission techniques include enhanced 
state-of-the-art receivers, in order to improve the overall system performance, 
capacity, and coverage.

Although all of these subjects are nonspecific to any particular system, Chapter 
9 focuses on the performance analysis of possible schemes for 4G systems using 
different combinations of MIMO schemes (SU-MIMO and MU-MIMO) and 
transmission techniques, cellular environments, relay techniques, and services. 

* UWB transmission technique is envisaged for 5G systems.
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To allow the deployment of the emergent services, such as video broadcast or video-
on-demand, the combination of these enhancements is accomplished by adaptive 
transmission techniques. In Chapter 9, the authors combine several of these tech-
niques for the purpose of implementing 4G services. A number of simulation results 
obtained using link level and system level simulations are presented, allowing for 
comparison among the several different techniques and schemes, and enabling the 
reader to identify the key factors required by emergent wireless systems.

In the final three chapters, the book presents very recent and exciting extensions 
to MIMO. After more than a decade of research on MIMO detection methods, an 
efficient way to put in practice a receiver for the 8 × 8 antenna configuration, as 
required by the LTE-Advanced standard, is still an issue that with which manu-
facturers have to deal. Chapter 10 shows that recent developments in detection 
algorithms (combined with the new nature of the problem when the number of 
dimensions becomes very high) actually open doors to the use of much larger 
antenna arrays. Then, in Chapters 11 and 12, the very recent concept of “add-
ing bits in the air” (now known as physical layer network coding) is explored and 
combined in different ways with multiple-antenna terminals. This brings together 
coding and signal processing in a way that will redefine the design of the physical 
layer. It seems that many more interesting discoveries in the history of radio com-
munications are still to come.

Mário Marques da silva
Francisco A. Monteiro

MATLAB• and Simulink• are registered trademarks of The MathWorks, Inc. For 
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The MathWorks, Inc.
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2 ◾ MIMO Processing for 4G and Beyond

1.1  Evolution of Cellular Systems and the 
New Paradigm of 4G

The first generation of cellular networks (1G) were analog, deployed between 1980 
and 1992. 1G included a myriad of cellular systems, namely, the total access com-
munication system (TACS), the advanced mobile phone system (AMPS), and the 
Nordic mobile telephony (NMT), among others. These systems were of low reli-
ability, low capacity, low performance, and without roaming capability between 
different networks and countries. The multiple access technique adopted was fre-
quency division multiple access (FDMA), where signals of different users are trans-
mitted in different (orthogonal) frequency bands.

The second generation of cellular networks (2G), like the global system for 
mobile communications (GSM), were widely used between 1992 and 2003. This 
introduced the digital technology in the cellular environment, with a much better 
performance, better reliability, higher capacity, and even with the roaming capabil-
ity between operators, due to its high level of standardization and technological 
advancements. The multiple access technique used by GSM was time division mul-
tiple access (TDMA), where signals generated by different users were transmitted 
in different (orthogonal) time slots.

Narrowband code division multiple access (CDMA) system was adopted in 
the 1990s by IS-95 standard, in the United States. IS-95 was also a 2G system. 
Afterward, the Universal Mobile Telecommunications System (UMTS), stan-
dardized in 1999 by the Third Generation Partnership Project (3GPP)* release 
99 (see Table 1.1), proceeded with its utilization, in this particular case using the 
wideband CDMA (WCDMA). The UMTS consists of a third-generation cellular 
system (3G).

The CDMA concept relies on different spread spectrum transmissions, each 
one associated with a different user’s transmission, using a different (ideally orthog-
onal) spreading sequence [Marques da Silva et al. 2010].

The long-term evolution (LTE) can be viewed as the natural evolution of 3G,† 
using a completely new air interface, as specified by 3GPP release 8, and enhanced 
in its release 9. Its initial deployment took place in 2010. The LTE comprises an 

* 3GPP is responsible for specifying and defining the architecture of the European 3G and 4G 
evolution.

† In fact, LTE is sometimes referred to as 3.9G.

1.3.3 Multiresolution Transmission Schemes ...........................................37
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air interface based on orthogonal frequency division multiple access (OFDMA)* in 
the downlink and single carrier–frequency division multiple access (SC-FDMA) 
in the uplink. This allows a spectral efficiency improvement by a factor of 2–4, 
as compared to the high-speed packet access† (HSPA), making use of new spec-
trum, different transmission bandwidths from 1.4 MHz up to 20 MHz, along with 
multiple-input–multiple-output (MIMO) systems and the all-over IP‡ architecture 
[Marques da Silva et al. 2010; Marques da Silva 2012].

With the aim of fully implementing the concept of “anywhere” and “anytime,” 
as well as to support new and emergent services, users are demanding more and more 
from the cellular communication systems. New requirements include increasing 
throughputs and bandwidths, enhanced spectrum efficiency, lower delays, and net-
work capacity, made available by the air interface.§ These are the key requirements 
necessary to deliver the new and emergent broadband data services. In order to meet 
these requirements, the LTE-Advanced¶ was initially specified in release 10 of 3GPP, 
and improved in its release 11 and 12. The LTE-Advanced consists of a fourth-gener-
ation cellular system (4G), being expected to be fully implemented in 2014. It aims to 
support peak data rates in the range of 100 Mbps for vehicular mobility to 1 Gbps for 
nomadic access (in both indoor and outdoor environments). 4G aims to support cur-
rent and emergent multimedia services, such as social networks and gaming, mobile 
TV, high-definition television (HDTV), digital video broadcast (DVB), multime-
dia messaging service (MMS), or video chat, using the all-over IP concept and with 
improved quality of service** (QoS) [Marques da Silva 2012].

The specifications for International Mobile Telecommunications–Advanced 
(IMT-Advanced††) were agreed upon at the International Telecommunications 
Union–Radio communications (ITU-R) in [ITU-R 2008]. ITU has determined 
that “LTE-Advanced” should be accorded the official designation of IMT-
Advanced. IMT-Advanced is meant to be the international standard of the next-
generation cellular systems.‡‡

New topological approaches such as cooperative systems, carrier aggregation, 
multihop relay, advanced MIMO systems, as well as block transmission techniques 
allow an improved coverage of high-rate transmission, and improved system per-
formance and capabilities, necessary to fit the advanced requirements of IMT-A 
[ITU-R 2008].

* In opposition to WCDMA utilized in UMTS.
† Standardized in 3GPP Releases 5, 6, and 7 (see Table 1.1).
‡ Internet protocol.
§ Where the bottleneck is typically located.
¶ LTE-Advanced is commonly referred to as LTE-A.
** Important QoS parameters include the definition of the required throughput, bit error rate, 

end-to-end packet loss, delay, and jitter.
†† IMT-Advanced is commonly referred to as IMT-A.
‡‡ Similarly, IMT2000 corresponds to a set of third-generation cellular system standards, namely, 

IEEE 802.16e, CDMA2000, WCDMA, and so on.
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1.1.1 Evolution from 3G Systems into Long-Term Evolution
The third generation of cellular system comprises different evolutions. The initial 
version, specified by 3GPP release 99, marked a sudden change in the multiple 
access technique (see Table 1.1). While the GSM was based on TDMA, the 3G 
makes use of WCDMA to achieve an improved spectrum efficiency and cell capac-
ity. This evolution allowed a rate improvement from a few dozens of kbps up to 
384 kbps for the downlink and 128 kbps for the uplink. These rates were improved 
in the following updates, achieving 28 Mbps in the downlink of HSPA+ (3GPP 
release 7). In order to respond to the increased speed demands of the emergent 
services, higher speeds became possible with the already deployed LTE, supporting 
160 Mbps in the downlink (as defined by 3GPP release 8), and even higher speeds 
with some additional improvements to the LTE baseline introduced in 3GPP 
release 9 (e.g., advanced MIMO systems). The LTE air interface was the result of 
a study item launched by 3GPP named Evolved UTRAN (E-UTRAN). The goal 
was to face the latest demands for voice, data, and multimedia services, improving 
spectral efficiency by a factor 2–4, as compared to HSPA release 7. The LTE can be 
viewed as a cellular standard for 3.9G (3.9 Generation).

The LTE air interface relies on a completely new concept that introduced sev-
eral technological evolutions as a means to support the performance requirements 
of this new standard. This includes block transmission technique using multicarri-
ers, multiantenna systems (MIMO), base station (BS) cooperation, multihop relay-
ing, as well as the all-over IP concept.

The air interface of LTE considers the OFDMA transmission technique in 
the downlink and SC-FDMA in the uplink. Depending on the purpose, differ-
ent types of MIMO systems are considered in 3GPP release 8. The modulation 
employed in LTE comprises quadrature phase shift keying (QPSK), 16-QAM, or 
64-QAM (quadrature amplitude modulation), using adaptive modulation and cod-
ing (AMC). In the presence of noisy channels, the modulation order is reduced and 
the code rate is increased. The opposite occurs when the channel presents better 
conditions.

The LTE comprises high spectrum flexibility, with different spectrum alloca-
tions of 1.4, 3, 5, 10, 15, and 20 MHz. This allows a more efficient spectrum usage 
and a dynamic spectrum allocation based on the bandwidths/data rates required by 
the users [Astely et al. 2009].

Intracell interference is avoided in LTE by allocating the proper orthogonal 
time slots and carrier frequencies between users in both uplink and downlink. 
However, intercell interference is a problem higher than in the case of UMTS,* 
especially for users at the cell edge. Intercell interference can be mitigated by imple-

* Owing to the lower-power spectral density of WCDMA signals, the level of interferences gen-
erated in UMTS tends to be lower.
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menting mechanisms such as interference cancelation schemes, reuse partitioning, 
and advanced BS cooperation.

Another important modification of the LTE, as compared to UMTS, is the all-
IP architecture (i.e., all services are carried out on top of IP), instead of the circuit* 
plus packet† switching network adopted by UMTS.

An important improvement of the LTE, compared to the UMTS, relies on its 
improved capability to support multimedia services.

The multimedia broadcast and multicast service (MBMS), already introduced 
in 3GPP release 6 (HSPA), aims to use spectrum-efficient multimedia services, by 
transmitting data over a common radio channel. MBMS is a system that allows 
multiple mobile network users to efficiently receive data from a single content pro-
vider source by sharing radio and transport network resources. While conventional 
mobile communications are performed in unicast‡ mode, multimedia services are 
normally delivered in either broadcast or multicast mode. In broadcast mode, data 
are transmitted in a specific area (MBMS service area) and all users in the specific 
MBMS service area are able to receive the transmitted MBMS data. Very often, 
broadcast communications are established in a single direction (i.e., there is no 
feedback from the receiver into the transmitter). In multicast mode, data are trans-
mitted in a specific area but only registered users in the specific MBMS service area 
are able to receive the transmitted MBMS data.

The LTE introduced a new generation of MBMS, titled evolved MBMS 
(eMBMS). This is implemented in LTE in two types of transmission scenarios 
[Astely et al. 2009]:

 ◾ Multicell transmission: multimedia broadcast over a single-frequency net-
work (MBSFN)§ on a dedicated frequency layer or on a shared frequency 
layer. The group of cells that receive the same MBSFN multicast data service 
is referred to as MBSFN area.¶

 ◾ Single-cell transmission: single cell–point to multipoint (SC-PTM) on a 
shared frequency layer.

Multicell transmission in single-frequency network (SFN) area is a way to 
improve the overall network spectral efficiency. In MBSFN, when different cells 
transmit the same eMBMS multimedia data service, the signals are combined, in 
order to provide diversity for user equipment (UE) located at a cell boundary. This 
results in an improved performance and better service quality.

* Circuit switching is employed in UMTS for voice service.
† Packet switching is employed in UMTS for data service.
‡ Unicast stands for a communication whose data destination is a single station.
§ The MBSFN allows delivering services such as mobile television.
¶ Within an MBSFN area, if one or more cells are not required to broadcast the multimedia data 

service, the transmission can be switched off and the corresponding resources can be released 
to regular unicast or other services.
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1.1.2 WiMAX—IEEE802.16
WiMAX stands for Worldwide Interoperability for Microwave Access and allows 
fixed and mobile access. WiMAX, standardized by the Institute of Electrical and 
Electronics Engineers (IEEE) as IEEE 802.16, was initially created in 2001 and 
updated by several newer versions. It consists of a technology that implements a 
wireless metropolitan area network (WMAN) [Eklund et al. 2002; Andrews et al. 
2007; Peters and Heath 2009]. WiMAX provides wireless Internet access to the 
last mile, with a range of up to 50 km. Therefore, it can be viewed as a complement 
or competitor of the existing asynchronous digital subscriber line (ADSL) or cable 
modem, providing service with the minimum effort in terms of required infra-
structures. However, fixed WiMAX can also be viewed as a backhaul for Wi-Fi 
(IEEE 802.11), cellular BS, or mobile WiMAX. Since the standard only defines the 
physical layer and medium access control (MAC) sublayer, it can be associated with 
either IP version 4 (IPv4) or IP version 6 (IPv6).

In order to allow the operation of WiMAX in different regulatory spectrum 
constraints faced by operators in different geographies, this standard specifies chan-
nel sizes ranging from 1.75 MHz up to 20 MHz, using either time division duplex-
ing (TDD) or frequency division duplexing (FDD), with many options in between 
[Yarali and Rahman 2008].

The initial version of WiMAX was updated by several newer versions, namely

 ◾ IEEE 802.16-2004, also referred to as IEEE 802.16d. This version only 
specified the fixed interface of WiMAX, without providing any support for 
mobility (IEEE 802.16-2004). This version of the standard was adopted by 
European Telecommunications Standards Institute (ETSI) as a base for the 
HiperMAN.*

 ◾ IEEE 802.16-2005, also referred to as IEEE 802.16e. It consists of an amend-
ment to the previous version. It introduced support for mobility, handover, 
and roaming, among other new capabilities (IEEE 802.16e). In addition, to 
achieve better performances, MIMO schemes were introduced.

 ◾ Relay specifications are included in IEEE 802.16j amendment. The incorpo-
ration of multihop relay capability in the foundation of mobile IEEE 802.16-
2005 is a way to increase both the available throughput by a factor of 3–5 
and/or coverage (and higher channel reuse factor), or even to fill the “coverage 
hole” of indoor coverage [Oyman et al. 2007; IEEE 802.16; Peters and Heath 
2009]. Multihop relay capability was also included in IMT-Advanced [Astely 
et al. 2009].

In addition to these versions, requirements for the next-version Mobile 
WiMAX titled IEEE 802.16 m (IEEE 802.16 m) were completed. The goal of 

* High-performance metropolitan area network.
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IEEE 802.16 m version is to reach all the IMT-Advanced requirements as pro-
posed by ITU-R in ITU-R 2008, making this standard a candidate for the IMT-
A. Advances in IEEE 802.16 m include wider bandwidths (up to 100 MHz, shared 
between uplink and downlink), adaptive and advanced TDMA/OFDMA access 
schemes, advanced relaying techniques (already incorporated in IEEE 802.16j), 
advanced multiple-antenna systems, adaptive modulation schemes such as hierar-
chical constellations and AMC, and frequency adaptive scheduling, among other 
advanced techniques.

The original version of the standard specified a physical layer operating in the 
range of 10–66 GHz, based on OFDM and TDMA technology. IEEE 802.16-
2004 added specifications for the 2–11 GHz range (licensed and unlicensed), 
whereas IEEE 802.16-2005 introduced the scalable OFDMA (SOFDMA) with 
MIMO (either space–time coding based, spatial multiplexing based, or beamform-
ing) or advanced antenna systems (AAS) (IEEE 802.16e), instead of the simple 
OFDM with 256 subcarriers considered by the previous version.

In terms of throughputs and coverage, these two parameters are subject to a 
trade-off (IEEE 802.16e): typically, mobile WiMAX provides up to 10 Mbps per 
channel (symmetric), over a range of 10 km in rural areas (line-of-sight [LOS]
environment) or over a range of 2 km in urban areas (non-LOS environment) 
[Ohrtman 2008]. With the fixed WiMAX, this range can normally be extended. 
Mobile version considers an omnidirectional antenna, whereas fixed WiMAX uses 
a high-gain antenna (directional). Throughput and ranges may always change. 
Nevertheless, by enlarging one parameter, the other has to reduce; otherwise, the 
bit error rate (BER) would suffer degradation. In the limit, WiMAX can deliver up 
to 70 Mbps per channel (in LOS, short distance and fixed access), and may cover 
up to 50 km (in LOS for fixed access), with a high-gain antenna [Ohrtman 2008], 
but not both parameters simultaneously. Contrary to UMTS where handover is 
specified in detail, mobile WiMAX has three possibilities but only the first one is 
mandatory: hard handover (HHO), fast base station switching (FBSS), and macro-
diversity handover (MDHO). FBSS and MDHO are optional, as it is up to the 
manufacturers to decide on their implementation specifications. Therefore, there is 
the risk that handover is not possible for these advanced handover schemes between 
two BS from different manufacturers. Another drawback on the use of WiMAX is 
the maximum speed allowed in mobility, which is limited to 60 km/h. For higher 
speeds, the user may experience a high degradation in performance.

The WiMAX version currently available (IEEE 802.16-2005) incorporates 
most of the techniques also adopted by LTE (from 3GPP). Such examples of tech-
niques are OFDMA, MIMO, advanced turbo coding, all-over IP architecture, and 
so on. In addition, the inclusion of multihop relay capabilities (IEEE 802.16j) aims 
to improve the speed of service delivery and coverage by a factor of 3–5. Moreover, 
IEEE 802.16 m integrates and incorporates several advancements in transmis-
sion techniques that meet the IMT-Advanced requirements, including 100 Mbps 
mobile and 1 Gbps nomadic access, as defined by ITU-R [ITU-R 2008].
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1.1.3 LTE-Advanced and IMT-Advanced
The 4G aims to support the emergent multimedia and collaborative services, 
with the concept of “anywhere” and “anytime,” facing the latest bandwidth 
demands. The LTE-Advanced (standardized by 3GPP) consists of a 4G system. 
Based on LTE, the LTE-Advanced presents an architecture using the all-over IP 
concept [Bhat et al. 2012]. The support for 100 Mbps in vehicular and 1 Gbps 
for nomadic access* is achieved with the following mechanisms:

 ◾ Carrier aggregation composed of multiple bandwidth components (up to 
20 MHz) in order to support transmission bandwidths of up to 100 MHz.

 ◾ AAS increasing the number of downlink transmission layers to eight and 
uplink transmission layers to four. Moreover, LTE-Advanced introduced the 
concept of multiuser MIMO, in addition to the single-user MIMO previ-
ously considered by the LTE.

 ◾ Multihop relay (adaptive relay, fixed relay stations, configurable cell sizes, 
hierarchical cell structures, etc.) in order to achieve a coverage improvement 
and/or an increased data rate.

 ◾ Advanced intercell interference cancelation (ICIC) schemes.
 ◾ Advanced BS cooperation, including macro-diversity.
 ◾ Multiresolution techniques (hierarchical constellations, MIMO systems, 

OFDMA multiple access technique, etc.).

Standardization of LTE-Advanced is part of 3GPP release 10 (completed in 
June 2011), and enhanced in its release 11 (December 2012) and in its release 12 
(March 2013).

The IMT-Advanced refers to the international 4G system, as defined by the 
ITU-R [ITU-R 2008]. Moreover, the LTE-Advanced was ratified by the ITU as an 
IMT-Advanced technology in October 2010 [ITU 2010].

Within 4G, voice, data, and streamed multimedia are delivered to the user 
based on an all-over IP packet-switched platform, using IPv6. The goal is to reach 
the necessary QoS and data rates in order to accommodate the emergent services.

Owing to the improvements in address spacing with the 128 bits made available 
by IPv6, multicast and broadcast applications will be easily improved, as well as the 
additional security, reliability, intersystem mobility, and interoperability capabili-
ties. Moreover, since the 4G system relies on a pool of wireless standards, this can 
be efficiently implemented using the software defined radio (SDR) platform, being 
currently an interesting R&D† area in many industries worldwide.

* 1 Gbps as a peak data rate in the downlink, whereas 500 Mbps is required for the uplink.
† Research and development.
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1.2 MIMO Techniques
The basic concept behind MIMO techniques relies on exploiting the multiple prop-
agation paths of signals between multiple transmit and multiple receive antennas. 
The use of multiple antennas at both the transmitter and receiver aims to improve 
performance or symbol rate of systems, without an increase of the spectrum band-
width, but it usually requires higher implementation complexity [Rooyen et  al. 
2000; Marques da Silva and Correia 2001, 2002a,b, 2003; Hottinen et al. 2003; 
Marques da Silva et al. 2012].

In the case of frequency selective fading channel, different symbols suffer inter-
ference from each other, whose effect is usually known as intersymbol interference 
(ISI). This effect tends to increase with the increase of the symbol rate.

By exploiting diversity, multiantenna systems can be employed to mitigate the 
effects of ISI. The antenna spacing must be larger than the coherence distance to 
ensure independent fading across different antennas [Foschini 1996, 1998; Rooyen 
et al. 2000]. Alternatively, different antennas should use orthogonal polarizations 
to ensure independent fading across different antennas.

The various configurations, shown in Figure 1.1, are referred to as single input 
single output (SISO), multiple input single output (MISO), single input multiple 
output (SIMO), or multiple input multiple output (MIMO). SIMO and MISO 
architectures are a form of receive and transmit diversity schemes, respectively. 
Moreover, MIMO architectures can be used for combined transmit and receive 
diversity, as well as for the parallel transmission of data or spatial multiplexing. 
When used for spatial multiplexing, MIMO technology promises high bit rates in 
a narrow bandwidth; therefore, it is of high significance to spectrum users. MIMO 
systems transmit different signals from each transmit element so that the receive 
antenna array receives a superposition of all the transmitted signals. Figure 1.2 
presents a generic diagram of a MIMO system.

For M transmit and N receive antennas, the spectral efficiency, expressed in bits 
per seconds per hertz (bit/s/Hz), is defined by [Telatar 1995; Foschini 1998]

 
C MEP = +











log det2 I HHN
β ′

 
(1.1)

SISO SIMO MISO MIMO

Figure 1.1 Multiple antenna configurations.
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where In is the identity matrix of dimension N × N, h is the channel matrix, h′ is 
the transpose-conjugate of h, and β is the signal-to-noise ratio (SNR) at any receive 
antenna. Foschini and Telatar demonstrated that the capacity grows linearly with 
m = min(M, N), for uncorrelated channels [Foschini 1996; Telatar 1999].

MIMO schemes are implemented based on multiple-antenna techniques. These 
multiple-antenna techniques can be of different forms:

 ◾ Space–time block coding (STBC)
 ◾ Multilayer transmission
 ◾ Space division multiple access (SDMA)
 ◾ Beamforming

STBC is essentially a MISO system. Nevertheless, the use of receive diversity 
makes it a MIMO, which corresponds to the most common configuration for this 
type of diversity. STBC-based schemes focus on achieving a performance improve-
ment through the exploitation of additional diversity, while keeping the symbol rate 
unchanged. Open-loop transmit diversity (TD) schemes achieve diversity without 
previous knowledge of the channel state at the transmitter side. On the contrary, 
closed-loop TD requires knowledge about the channel state information (CSI) at the 
transmitter side. STBC, also known as Alamouti scheme, is the most known open-
loop technique [Alamouti 1998] (see Figure 1.3). 3GPP specifications define several 
TD schemes, such as the standardized closed-loop modes 1 and 2 [3GPP 2003a], 
or the open-loop STBC [3GPP 2003b] for two transmit antennas. The selective 
transmit diversity (STD) is a closed-loop TD. This is not exactly an STBC scheme. 
Nevertheless, since this is also a TD scheme, this subject is dealt along with STBC.

However, multilayer transmission and SDMA belong to another group, titled 
spatial multiplexing (SM), whose principles are similar but whose purposes are 
quite different. The goal of the MIMO based on multilayer transmission* scheme 

* The same principle is applicable to SDMA, but where different transmit antennas correspond 
to different users that share the spectrum.
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Figure 1.2 Generic diagram of a MIMO scheme.
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relies on achieving higher symbol rates in a given bandwidth. This rate increase cor-
responds to the number of transmit antennas. Using multiple transmit and receive 
antennas, together with additional postprocessing, multilayer transmission allows 
exploiting multiple and different flows of data, increasing the throughput and the 
spectral efficiency. In this case, the number of receive antennas must be equal to 
or higher than the number of transmit antennas (although there is active research 
for underdetermined systems where that restriction is removed). The increase of 
symbol rate is achieved by “steering” the receive antennas to each one (separately) 
of the transmit antennas, to receive the corresponding symbol stream. This can be 
achieved through the use of the nulling algorithm.

Finally, beamforming is implemented by antenna array with certain array ele-
ments at the transmitter or receiver being closely located to form a beam array (typi-
cally separated half wavelength). This scheme is an effective solution to maximize 
the SNR, as it steers the transmit (or receive) beam toward the receive (or transmit) 
antenna. As a result, an improved performance or coverage can be achieved with 
beamforming.

1.2.1 Space–Time Coding
Although space–time coding is essentially a MISO system, the use of receiver 
diversity makes it a MIMO, which corresponds to the most common configuration 
for this type of diversity. The STBC is a TD technique, being particularly inter-
esting for fading channels, where it is difficult to have multiple receive antennas. 
A possible scenario for its application is the downlink transmission of a cellular 
environment, where the BS uses several transmit antennas and the mobile terminal 
typically has a single antenna [Alamouti 1998].

STBC-based schemes focus on achieving a performance improvement through 
the exploitation of additional diversity, while keeping the symbol rate unchanged 
[Alamouti 1998; Tarokh et  al. 1999]. Symbols are transmitted using an orthog-
onal block structure, which enables a simple decoding algorithm at the receiver 
[Alamouti 1998; Marques da Silva et al. 2004, 2009].

Space–time
block

encoder

Antenna M

Antenna 1

...

Channel M UE

Channel 1

Figure 1.3 Generic block diagram of an open-loop transmitter scheme.
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The Alamouti’s TD scheme requires some processing from the transmitter, and 
can be implemented either in the time domain or in the frequency domain. In this 
latter case, it is referred to as space–frequency block coding.* The current descrip-
tion focuses on the time-domain coding. The extension to frequency domain cod-
ing is straightforward.

Let us consider the lth transmitted symbol defined by

 s t a h t nTl l T S( ) ( )= −  (1.2)

where al refers to the symbol selected from a given constellation, TS denotes the symbol 
duration, and hT(t) denotes the adopted pulse-shaping filter. The signal sl(t) is trans-
mitted over a time-dispersive channel. The received signal is sampled, and the result-
ing time-domain block is yl, which is then subject to frequency domain equalization.

In the following, we will adopt the following notation: lower- and upper-case 
signal variables correspond to time and frequency domain variables, respectively. 
The mapping between one and the other is achieved through discrete Fourier 
transform (DFT) and inverse DFT (IDFT) operations (i.e., X xl l= { }DFT  and 
x Xl l= { }IDFT ).

The lth frequency-domain block before the receiver’s equalization process is 
Yl = DFT (yl), with

 
Y S H Nl l

m
l
m

m

M

l= +
=

∑ ( ) ( )

1  
(1.3)

In the above expression, Hl
m( )  denotes the channel frequency response for the 

lth time domain block (the channel is assumed invariant in the frame) and the mth 
transmit antenna. Nl is the frequency-domain block channel noise for the lth block.

1.2.1.1 Space–Time Block Coding for Two Antennas

Considering the STBC with two transmit antennas (STBC2), the lth time-domain 
block to be transmitted by the mth antenna (m = 1 or 2) is sl

m( ), with [Alamouti 1998]
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(1.4)

* The Alamouti transmit diversity scheme can also be applied simultaneously to space, time, and 
frequency. In this case, it is referred to as space–time–frequency block coding (STFBC).

 



14 ◾ MIMO Processing for 4G and Beyond

where al refers to the symbol selected from a given constellation (e.g., a QPSK 
constellation) under an appropriate mapping rule, to be transmitted in the lth time 
domain block. Considering the matrix–vector representation, we define sl

1 2,[ ] as
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(1.5)

where different rows of the matrix refer to transmit antenna order and different 
columns refer to symbol period orders.

The Alamouti postprocessing for two antennas becomes [Alamouti 1998; 
Marques da Silva et al. 2009]

 

�

�

A Y H Y H

A Y H Y H

l l l l l

l l l l l

2 1 2 1
1

2
2

2 2
1

2 1
2

− −
( ) ( )

( )
−

(

= +





= −

* *

* *

β
))



 β  

(1.6)

where β = ∑
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can be expressed in the matrix–vector representation as �A Y Hl l l
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Finally, the decoded symbols become
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(1.7)

where Nk l
eq
,  denotes the equivalent noise for detection purposes.

1.2.1.2 Space–Time Block Coding for Four Antennas

Orthogonal codes of rate one, using more than two antennas, do not exist for 
modulation orders higher than two. Schemes with 4 and 8 antennas with code 
rate one only exist in the case of binary transmission. If orthogonality is essential 
(fully loaded systems with significant interference levels), a code with R < 1 should 
be employed.

The current description focuses on a nonorthogonal scheme with M = 4 trans-
mit antennas (STBC4) [Marques da Silva et al. 2009], presenting a code rate one.
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The symbol construction for the STBC with four antennas can be generally 
written as [Marques da Silva et al. 2009]
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where sl
3 4,[ ] is the same as sl

1 2,[ ] (see Equation 1.5), by replacing the subscripts 1 by 3 
and 2 by 4, as well as by replacing 2l by 4l (e.g., a al l2 1 4 3− −→ ).

Similar to Equations 1.4 and 1.5, and considering the STBC with four transmit 
antennas as in Equation 1.8, the time-domain blocks to be transmitted by the mth 
antenna (m = 1, 2, 3, or 4) are sl

m( ) , which can be expressed in the matrix–vector 
representation as
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(1.9)

Note that in Equation 1.9, different rows of the matrix refer to different trans-
mit antennas and different columns refer to different symbol periods.

The lth frequency-domain block, before the receiver’s equalization process, is 
y Yl l= { }IDFT , with Yl as defined by Equation 1.3.

Let us define

 
� � � � �A l l l l l

T
A A A A[ , ]1 4

4 3 4 2 4 1 4=  − − −  
(1.10)

 
y

y y
y yl

l l

l l

[ , ]
[ , ] [ , ]*

[ , ] [ , ]*
1 4

3 4 1 2

1 2 3 4=
−
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with yl
[ , ]3 4  as defined for yl

[ , ]1 2  by replacing the subscripts 1 by 3 and 2 by 4, as well 
as by replacing 2l by 4l (e.g., Y Yl l2 1 4 3− −→ ).

The postprocessing STBC for four antennas (M = 4) becomes

 
�A Y Hl l l
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(1.13)
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Finally, the decoded symbols become [Marques da Silva and Dinis 2011]
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with j = 0,1,2,3, and p = 3 − j. We also define
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which stands for the residual interference coefficient generated in the STBC decod-
ing process of order four.

The signal processing for nonorthogonal scheme with eight transmit antennas is 
defined in [Marques da Silva et al. 2009] and in the references therein.

It is worth noting that although the described STBC scheme is a MISO, by 
adopting receive diversity, this can be viewed as a MIMO system.

1.2.2 Selective Transmit Diversity
The STD is a closed-loop TD, where the transmitter selects one out of multiple 
transmit antennas to send data, based on the one that presents a more beneficial 
propagation environment.

Assuming the downlink direction, the STD scheme comprises a low-rate feed-
back link from the receiver (MS) telling the transmitter (BS), which antenna should 
be used in transmission. It is worth noting that by adopting receive diversity this 
can also be viewed as a type of MIMO technique.

As depicted in Figure 1.4, the STD comprises a common or dedicated pilot 
sequence, which is also transmitted. Different antennas with specific pilot patterns/
codes enable antenna selection. Then, the transmitter has a link quality informa-
tion about the M (number of transmit antennas) links. Based on link information, 
it transmits a single symbol stream over the best antenna. Then, another decision 
process is made. The receiver is supposed to reacquire the carrier phase θk t( ) after 
every switch between antennas. The antenna switch (AS) has the capability to 
switch every slot duration.

The decision for the antenna selection of the STD using WCDMA signals com-
bined with the Rake receiver should select the signal from the transmit antenna 
whose multipath diversity order is higher. In other words, it should select the mth 
transmit antenna, experiencing a channel with L multipaths, which maximizes the 
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quantity max[ ].,∑ =l
L

m lh1
2| |  This process is similar to the selective combiner that can 

be employed in receive diversity.

1.2.3 Multilayer Transmission
The goal of the MIMO based on multilayer transmission scheme relies on achiev-
ing higher data rates in a given bandwidth, whose increase rate corresponds to the 
number of transmit antennas [Foschini 1996, 1998; Nam and Lee 2002].

Currently, MIMO systems are typically employed to improve the spectral effi-
ciency. This is achieved by increasing the throughput sent in a certain bandwidth. 
A widely employed technique for this purpose relies on the use of multilayer trans-
mission, as opposed to space–time coding (which aims to provide a performance 
improvement by exploiting diversity).

In multilayer transmission, the number of receive antennas must be equal to 
or higher than the number of transmit antennas. The increase of symbol rate is 
achieved by “steering” the receive antennas to each one (separately) of the transmit 
antennas, in order to receive the corresponding data stream. This can be achieved 
through the use of the nulling algorithm. With a sufficient number of receive anten-
nas, it is possible to resolve all data streams, as long as the antennas are sufficiently 
spaced so as to minimize the correlation [Marques da Silva et al. 2005].

Let us consider the generic scheme of the multilayer MIMO depicted in Figure 
1.5. The M × N MIMO scheme is spectral efficient and resistant to fading, where 
the BS uses M transmit antennas and the MS uses N receive antenna [Marques 
da Silva et  al. 2004, 2012]. As long as the antennas are located sufficiently far 
apart, the transmitted and received signals from each antenna undergo indepen-
dent fading.
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Figure 1.4 Scheme of a selective transmit diversity with feedback indication.
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As depicted in Figure 1.6, two different multilayer MIMO schemes can be 
considered: scheme 1 and scheme 2 [Marques da Silva et al. 2004]. Scheme 1* 
directly allows an increase of symbol rate whose increase rate corresponds to 
the number of transmit antennas. Scheme 2 allows the exploitation of diversity, 
without increasing the data rate. The diversity combining is performed using any 
combining algorithm, preferably the MSE-based (mean square error) combining 
algorithm. In case of the scheme 2 (depicted in Figure 1.6b), antenna switch-
ing is performed at a symbol rate, where gray dashed lines represent the signal 
path at even symbol periods, in case of two transmit antennas. Output signals 
are then properly delayed and combined to provide diversity using a combining 
algorithm.

Let us focus on the MIMO based on multilayer transmission, as depicted in 
Figure 1.5, where the system is equipped with M transmit and N receive anten-
nas (with N ≥ M). At the transmitter side, the data stream is demultiplexed 
into M independent substreams, and then each substream is encoded (modu-
lated) and transmitted by M antennas. Each spread data symbol xm is sent to the 

* Note that, in Figure 1.6, “Mod & Spr” stands for modulator and spreader.
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mth transmit antenna. It is considered that the radiated signals are propagated 
through multipath frequency selective fading channels. At the receiver, the detec-
tor estimates the transmitted symbols from the received signals at the N receive 
antennas.

The low pass equivalent transmitted signals at the M antennas are given by
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(1.16)

where sl refers to the symbol selected from a given constellation (e.g., a QPSK con-
stellation) under an appropriate mapping rule, to be transmitted in the lth time 
domain block from the mth transmit antenna (with 2 ≤ m ≤ M). Moreover, as in 
Equation 1.2, TS refers to the symbol interval and hT(t) is the pulse waveform. sl

( )1  
and sl

M( ) are the data symbols fed to the first and to the Mth transmit antenna. The 
baseband equivalent of the N-dimensional received vector y = [ ]y y yN

T
1 2�  at 

sampling instants is expressed by

 
y =

=
∑H x + zl
l

L

1  
(1.17)

where x = [x1 x2 … xM]T denotes the transmitted symbol vector, with each ele-
ment having the unit average power, and hl : h1 h2 … hL denotes the N × M 
channel matrix, whose elements hm,n at the nth row and mth column are the 
channel gain from the mth transmit antenna to the nth receive antenna, that is,
( ) ( ) ( ( ) )., , ,

,h e tm n l m n
j

l m n l
m n= −α δ τθ  L refers to the number of multipaths of the 

channel and the index l stands for the multipath order. It is considered a discrete 
tap-delay-line channel model where the channel from the mth transmit antenna 
to the nth receive antenna comprises discrete resolvable paths, expressed through 
the channel coefficients. The N × M sets of temporal multipaths corresponding to 
paths between the multiple transmit antennas and the receive antennas experience 
independent but identical distributed (i.i.d.) Rayleigh fading. The elements of the 
N-dimensional noise vector z = [z1, z2, . . ., zN]T are also assumed to be i.i.d. complex 
Gaussian random variables with zero mean and variance σ n

2.
Different types of detectors can be employed in multilayer MIMO systems. 

Linear detectors include the decorrelator and the minimum mean square error 
(MMSE). Nevertheless, the former presents the disadvantage of introducing 
noise enhancement. Among the suboptimal detectors, the successive interference 
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cancelation (SIC) or the vertical Bell laboratories layered space–time (V-BLAST) 
detector are two examples. A detector widely employed in multilayer transmission 
scheme is the V-BLAST detector, which typically comprises an SIC, alongside a 
decorrelator or an MMSE detector. The maximum likelihood sequence estimator 
(MLSE) detector is also an option. Nevertheless, since the complexity and process-
ing increases exponentially with the increase of the number of antennas, its real 
implementation tends to be limited to very specific scenarios.*

Lately, two types of decoders have been investigated: the lattice and the sphere 
detector. These types of detectors tend to achieve good performances with a 
reduced complexity. Different detectors for MIMO systems are dealt with in detail 
in Chapter 2.

1.2.4 Space Division Multiple Access
The goal of an SDMA scheme relies on improving the capacity (more users per cell), 
while keeping the spectrum allocation unchanged. In other words, the SDMA is a 
technique that allows multiple users exploiting spatial diversity as a multiple access 
technique, while sharing a common spectrum.

As referred to previously, both SDMA and multilayer transmission belong to 
the same group, titled spatial multiplexing. Therefore, the basic concept is com-
mon. Nevertheless, while in multilayer transmission an increase of the symbol 
rate is achieved by considering multiple antennas at the transmitter side, using 
the SDMA, it is assumed that each transmitter has a single antenna, and the 
multiple number of receive antennas allow steering the different flows of data 
corresponding to different users. Consequently, it is commonly employed in the 
uplink, where the transmitter (UE) has a single antenna, whereas the receiver (BS) 
has several antennas. Figure 1.7 depicts an SDMA configuration applied to the 
uplink. SDMA assumes that the number of antennas at the receiver is equal to 
or higher than the number of users who share the same spectrum. With such an 
approach, the receiver can decode the signals from each transmitter, while avoid-
ing the signals from the other transmitters (interfering signals). Similar to the 
decoding performed in multilayer transmission, this can be achieved through the 
use of the nulling algorithm.

In the V-BLAST detector, the symbols from the transmit antenna with the 
highest SNR are first detected using a linear nulling algorithm such as zero forcing 
(ZF) or MMSE detector. The detected symbol is regenerated, and the correspond-
ing signal portion is subtracted from the received signal vector using an SIC detec-
tor. This cancelation process results in a modified received signal vector with fewer 
interfering signal components left. This process is repeated until all symbols from 
all transmit antennas are detected. According to the detection-ordering scheme 

* Owing to this reason, the MLSE detector is commonly referred to as brute force detector.
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in [Foschini 1996], the detection process is organized so that the symbols from 
the transmit antenna with the highest SNR are detected at each detection stage. 
Clearly, the processing of SDMA is almost the same as that of the MIMO based 
on multilayer transmission. Therefore, the reader should refer to Chapter 2 for a 
detailed description of spatial multiplexing detectors.

1.2.5 Beamforming
In STBC and spatial multiplexing MIMO schemes, the antenna elements that form 
an array are usually widely separated in order to form a TD array with low correla-
tion among them. On the other hand, the beamforming is implemented by antenna 
array with array elements at the transmitter or receiver being closely located to form 
a beam. The beam is generated with the uniform linear antenna array (ULA). The 
ULA antenna elements spacing is typically half wavelength. Beamforming is an 
effective solution to maximize the SNR, as it steers the transmit (or receive) beam 
toward the receive (or transmit) antenna [Marques da Silva et al. 2009]. As a result, 
an improved performance or coverage is achieved with beamforming. In the cel-
lular environment, this translates in a reduced number of required sites to cover a 
given area.

Figure 1.8 depicts a transmitting station sending signals using the beamform-
ing, generated with the ULA. As can be seen, the beamforming allows transmit-
ting a higher-power signal directed toward the desired station, while minimizing 

Space division multiple access
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Figure 1.7 Example of SDMA scheme applied to the uplink.
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the transmitted power toward the other stations. This allows a reduction of the 
interference.

The beamforming consists of M identical antenna elements with 120° half-
power beam width (HPBW) [Schacht et al. 2003]. Each antenna element is con-
nected to a complex weight w m Mm ,1 ≤ ≤ . An analogy can be made with a 
receiving array antenna.

The weighted elementary signals are summed together making an output signal 
as follows [Schacht et al. 2003]:

 
y t w x t m

d
cm

m

M

( , ) ( ) sinθ θ= − −



=

∑ 1
1  

(1.18)

where x(t) is the signal sent by the first antenna element, d is the distance between 
elements, c is the propagation speed, and θ is the direction of arrival (or departure) 
for the main sector (−60° < θ < 60°). In the frequency domain, the output signal 
can be written as
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Figure 1.8 Simplified diagram of a beamforming transmitter.
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which makes the relationship between the output signal and the input signal to be
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For narrowband beamforming, f is constant and θ is variable. For the beam to 
be directed toward the desired direction θ1, we have

 w em
j f m

d
c= −( )2 1 1π θsin

 
(1.21)

in which, for the case of d = λ/2, Equation 1.21 results in [Schacht et al. 2003]

 w em
j m= −( )π θ1 1sin  (1.22)

In other words, for θ = θ1, H( f,θ1) reduces to

 H f M( , )θ1 =  (1.23)

which is the maximum attainable amplitude by beamforming.

1.2.6 Multiuser MIMO
The MIMO techniques previously exposed are employed in the concept of single-
user MIMO (SU-MIMO). This considers data being transmitted from a single 
user to another individual user. An alternative concept is the multiuser MIMO 
(MU-MIMO), where multiple streams of data are simultaneously allocated to dif-
ferent users, using the same frequency bands.

When the aim relies on achieving a performance improvement, an SU-MIMO 
is normally employed using an algorithm such as STBC. However, when the aim 
relies on achieving higher throughputs using a constrained spectrum, we have two 
options: in the downlink, the MU-MIMO is typically the solution; in the uplink, 
spatial multiplexing is normally employed (in this case, multilayer transmission).

The approach behind MU-MIMO is similar to SDMA. Nevertheless, while 
SDMA is typically employed in the uplink,* the MU-MIMO is widely imple-
mented in the downlink. This allows sending different data streams into differ-
ent UEs. In this case, instead of performing the nulling algorithm at the receiver 
side, the nulling algorithm needs to be performed using a preprocessing† approach 
at the transmitter side (BS). This is possible because the BS can accommodate a 

* Because the nulling algorithm requires a high number of receive antennas.
† This is commonly referred to as precoding.
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high number of transmit antennas and the UE can only accommodate a single or 
reduced number (lower) of receive antennas. In the downlink of an MU-MIMO 
configuration, the number of transmit antennas must be higher than the number 
of multiple data streams that are sent to multiple users, at the same time, and 
occupying the same frequency bands (the opposite of the SDMA approach). In 
this configuration, the nulling algorithm is implemented, at the transmitter side, 
using a preprocessing algorithm such as the ZF, MMSE, dirty paper coding, and so 
on. Alternatively, instead of implementing the above-described spatial multiplexing 
principle, the MU-MIMO can be performed using the beamforming algorithm. 
In any case, MU-MIMO requires accurate downlink CSI at the transmitter side. 
Obtaining CSI is trivial using TDD mode, being more difficult to be obtained 
when FDD is employed. In FDD mode, CSI is normally obtained using a feedback 
link.

It is worth noting that users located at the cell edge, served by MU-MIMO, may 
experience SNR degradation due to intercell interference, interuser interference,* 
additional path loss or due to limited BS transmit power (which results from the use 
of precoding). A mechanism that can be implemented to mitigate such limitation 
relies on employing a dynamic MIMO system, where MU-MIMO is employed 
everywhere (in the case of the downlink), except at the cell edge. In this area, the 
BS switches into SU-MIMO (using, e.g., space–time coding), which translates in 
an improvement of performance. Alternatively, coordinated multipoint (CoMP)† 
transmission is known as an effective mechanism that improves the performance 
at the cell edge, resulting in a more homogeneous service quality, regardless of the 
users’ positions.

1.3 Advanced MIMO Applications
The challenge facing the mobile telecommunications industry today is how to 
continually improve the end-user experience, to offer appealing services through a 
delivery mechanism that offers improved speed, service attractiveness, and service 
interaction. In order to deliver the required services to the users at minimum cost, 
the technology should enable better performances, higher throughputs, improved 
capacities, and higher spectral efficiencies.

The basic concept of MIMO relies on the transmission of signals through mul-
tiple paths, between multiple transmit and multiple receive antennas. Instead of 
representing an additional interference level, these multiple paths can be used as an 
advantage. While, in MIMO systems, the multiple transmit or the multiple receive 
antennas are colocated, advanced cellular network architectures may also achieve 

* Interference among users that share the spectrum and that are separated by the MU-MIMO 
spatial multiplexing.

† Sometimes also referred to as downlink base station cooperation.
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the same level of diversity, but using antennas belonging to different BSs or relay 
nodes. Nevertheless, a certain level of synchronization or coordination is normally 
required between those stations. These techniques are described in the following 
sections.

1.3.1 Base Station Cooperation
BS cooperation aims at improving the performance of UEs located at the cells edge, 
or to increase the throughput of UEs in an area covered by multiple BSs.

An important requirement of 4G systems is the ability to deliver a homoge-
neous service, regardless of the users’ positions [Lee et al. 2012]. Users located at 
the cell edge may experience a degradation of the SNR due to intercell interference, 
additional path loss, or limited eNode-B* transmit power. In case MU-MIMO is 
employed, the power constraint becomes more important† and the SNR degrada-
tion of UEs located at the cell edge can be even deeper than in SISO environments. 
In these scenarios, BS cooperation plays an important role, as it allows the exploi-
tation of additional diversity or the delivery of a high and constant throughput, 
regardless of the users’ positions.

BS cooperation stands for the ability to send or receive data from/to multiple 
adjacent BSs to/from UEs. Instead of employing the conventional HHO, with BS 
cooperation, independent antenna elements of different BSs are grouped together, 
forming a cluster, and the UEs may experience a throughput increase or perfor-
mance improvement (i.e., SNR increase).‡ Figure 1.9 shows the downlink BS coop-
eration using a cluster of three BSs. The dashed area corresponds to the area where 
the UE is able to simultaneously receive signals from three BSs. Using BS coop-
eration, adjacent BSs can simultaneously transmit the same data. In this case, a 
combining algorithm may be employed at the UE side, such as the maximum ratio 
combining (MRC), the MSE-based, or the selective combining. This technique is 
employed in macro-diversity, as described in Section 1.3.1.2. Alternatively, some 
type of preprocessing may be employed at the BSs side, such that the signals that 
reach the UE do not require any type of postprocessing. In this case, this coopera-
tion is commonly referred to as coordinated multipoint transmission, as described 
in Section 1.3.1.1.

BS cooperation can also be employed in the uplink, being also referred to 
as CoMP reception. In this case, traditional receive diversity is employed, using 

* Evolved Node-B (eNode-B) refers to the base station of LTE and 4G systems. This corresponds 
to the evolution of the Node-B, considered by UMTS.

† In MU-MIMO, the power at the transmitter side (i.e., at the BS, in case of downlink) 
becomes very demanding because the precoding may, instantly, require a high level of power. 
Consequently, using precoding, the dynamic range of signals tends to increase.

‡ A performance improvement can be achieved through the exploitation of additional diversity 
using, for example, space–time coding.
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combining algorithms such as the MRC, or the MSE. Alternatively, independent 
parallel streams of data can be sent out by different UE transmit antennas (typi-
cally, a different data stream is sent out by each transmit antenna element), while 
different BSs decode these different streams using the above-described SDMA 
algorithm.

1.3.1.1 Coordinated Multipoint Transmission

Using CoMP transmission, independent antenna elements of different BSs are 
grouped together, forming a cluster, and the UEs can experience a throughput increase 
or performance improvement. A preprocessing is typically employed at the BS side 
such that the signals that reach the UE do not require any type of postprocessing.

In case each BS uses the MIMO scheme, the resulting MIMO can be viewed 
as a “giant MIMO,” consisting of the combination of the independent antenna ele-
ments from different BSs (see Figure 1.10).

Coordinated multipoint transmission comprises the coordinated transmission 
of signals from adjacent BSs, and the corresponding reception from a UE. The 
signal received at the UE side consists of the sum of independent signals sent by 
different BSs.

CoMP transmission is an important technique that can mitigate intercell 
interference, improve the throughput, exploit diversity and, therefore, improve the 
spectrum efficiency. Note that CoMP transmission allows a spectrum efficiency 
improvement, even at the cell edge. CoMP transmission can be viewed as a special 
type of MU-MIMO.

Cell 1

BS

Cell 2

BS

Cell 3

BS

UE

Figure 1.9 Downlink base station cooperation using a cluster of three BSs.
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Similar to MU-MIMO, a preprocessing such as beamforming, ZF, MMSE, or 
dirty-paper coding [Peel 2003] is typically employed in order to assure that the UE 
receives a preprocessed signal coming from multiple BSs. In this case, the UE com-
monly employs a low-complexity and regular detector. Alternatively, noncoherent 
joint transmission and coordinated scheduling is employed. In this case, CoMP 
transmission can be associated with carrier aggregation, activating or deactivating 
some carriers in order to optimize the performance. This technique is employed in 
LTE-Advanced (3GPP Release 10).

Similar to MU-MIMO, accurate downlink CSI is required at BSs side, which 
consists of an implementation difficulty. In case of TDD, obtaining CSI is trivial, 
as the uplink and downlink channels are almost the same. Nevertheless, in case of 
FDD, obtaining CSI at the transmitter side is a complex task.

Depending on the way the coordination between different BSs is performed, 
and the way CSI is obtained (in FDD mode), two different architectures can be 
implemented:

 ◾ Centralized architecture: In this architecture, there is a central control unit 
(CU) that decides the transmission scheme and resources allocation to be 
used by different BSs. In this case, the CU is connected to different BSs of 
the cluster. Each UE estimates the downlink CSI of the signals received from 
each BS. Then, the CSI is sent back to the corresponding BS. At a third stage, 
CSI is sent from different BSs of the cluster to the CU through backhaul 
links. Based on CSI, the CU decides the transmission scheme and resources 
allocation to be used by each BS, and sends this information to different BSs 
of the cluster. A major limitation of this architecture relies on the latency, 
whose factor may result in performance degradation due to fast CSI varia-
tions [Diehm et al. 2010].

...BS 1

User
equipment

.. . BS 2

Tx
1

Tx
2

Tx
M

Tx
1

Tx
2

Tx
M

Figure 1.10 Base station cooperation (CoMP transmission) combined with 
downlink MIMO.
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 ◾ Distributed architecture: In this architecture, each BS is associated with a 
different CU, and the decision about the transmission scheme and resources 
allocation is performed independently at the BS level. This information is 
then exchanged among the cluster’s BSs. In this case, each UE estimates the 
downlink CSI to different BSs and sends this joint data back not only to 
the BS of reference, but to all BSs. This way the CU associated with each 
BS has information about different downlink CSI and makes the decision 
accordingly. An advantage of this architecture relies on the fact that latency 
is much reduced, and there is no need to use backhaul links for the purpose 
of exchanging CSI. Nevertheless, this architecture is more subject to errors 
caused by the uplink transmission [Papadogiannis et al. 2009].

It is finally worth noting that the use of CoMP transmission requires perform-
ing a cost–benefit analysis, as CoMP allows a performance/network improvement 
at the cost of a larger amount of overhead on the over-the-air feedback links and in 
the backhaul links used to interconnect different BSs.

1.3.1.2 Macro-Diversity

Macro-diversity refers to the transmission of the same information by different BSs 
to the UEs in the downlink. Therefore, this can be viewed as a particular type of 
downlink BS cooperation. Macro-diversity aims at supplying additional diversity* 
in situations where the terminal is far from the BSs. This allows compensating 
the path loss affecting the transmission to a UE located at the edge of the cell. 
Consequently, this allows a reduction of the amount of transmit power required 
to reach a distant receiver, thus increasing network capacity. Therefore, macro-
diversity can be viewed as a special type of BS cooperation.

There are two types of networks to be considered: the multifrequency networks 
(MFNs) and the SFNs. The BSs to which a terminal is linked to are referred to as 
the active sets.

In broadcast, the global channel impulse response (CIR) tends to be longer due 
to the longer distances between the transmitter (BS) and the farer of the different 
receivers (UEs). If the cyclic extension is long enough, the global CIR will be the 
sum of the independent CIRs. This can be seen from Figure 1.11. This enables the 
SFN concept exploiting the macro-diversity effect.

Macro-diversity is used during soft handover to ensure smooth transitions 
between two cells or two sectors of the same cell, increasing the multipath diversity 
and reducing the risk of call drop.

Using the same transmitting frequencies (from different BSs), diversity is 
exploited and deep fading tends to be avoided. In case the channel profile between 
each of the two BSs and the UE is single path, the resulting signal is viewed as 

* Since it provides transmit diversity, macro-diversity can be viewed as a MISO system.
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a two-path channel profile, and diversity is exploited. Nevertheless, since a sin-
gle receiver is employed, although diversity is exploited, the frequency selectivity 
increases. In fact, this effect can be viewed as one signal received from one BS 
interfered by the signal received from another BS. Nevertheless, this additional 
frequency selectivity is mitigated because OFDM signals make use of equalizers at 
subcarrier level, as long as the appropriate cyclic prefix is employed. Consequently, 
the macro-diversity presents overall benefits in terms of diversity.

The performance gain brought by macro-diversity depends on the diversity 
order of the channel. A two-path channel benefits more from macro-diversity than 
a six-path channel, because the latter already exhibits a high multipath diversity 
order. Since MBMS in SFN mode is simultaneously broadcasted in several cells, 
macro-diversity for MBMS in SFN mode does not consume network resources.

In the case of MFN, the UE is required to estimate the carrier of each BS it is 
linked to. This increases its power consumption. In this case, the signals received 
from different BSs (especially far ones) may be significantly delayed with regard to 
those received from near BSs. This requires extramemory at the terminal in order 
to store the received signals for further combining. Alternatively, an additional syn-
chronization procedure between the BS transmitters is required. In the downlink, 
the combining takes place at the UE, which has to demodulate and then combine 

t
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Figure 1.11 Global CIR (c) is composed of the sum of the CIR of the several 
transmitters (a + b).
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the signals received from the different BSs. The extracomplexity added by macro-
diversity then depends on the receiver type. In the case of an equalizer, the UE has 
to equalize the channel for each BS the UE is linked to. Moreover, the UE must 
estimate one transmission channel per BS.

In the special case of OFDM, two main cases for macro-diversity can be 
distinguished:

 1. BSs are synchronized, at least to allow UE’s receiving signals from two or 
more BSs with a time difference smaller than the cyclic prefix.

 2. BSs are not synchronized.

In the first case, the BSs can transmit identical signals to the UEs on the same 
time–frequency resource. This is possible because the signals will superimpose 
within the cyclic prefix. In this situation, no ISI occurs as long as the sum of the 
time differences plus the maximum delay of the CIR is shorter than the cyclic pre-
fix. Therefore, the terminal can employ a single receiver to demodulate the super-
imposed signals. This means that it will perform a unique DFT. In this scenario, 
macro-diversity behaves just like TD (from a unique transmitter with multiple 
spaced antennas). When different BSs transmit the same data over the same sub-
carriers, the resulting propagation channel is equivalent to the allegorical sum of all 
propagation channels, which increases the diversity gain (deep fading is avoided).

When BSs send the same data over different subcarriers (MFN), the maximum 
diversity can be achieved since each data symbol benefits from the summation of 
the propagation channel powers (i.e., frequency diversity).

If the BSs are not synchronized, the terminal will need separated receiver chains 
to demodulate the signals from the distinct BSs. Moreover, to avoid interference, 
orthogonal time–frequency resources have to be allocated to different BSs. This is 
still very complex to fulfill; thus, in the general case, interference will occur and 
spectral efficiency will decrease.

Fast cell selection is one option for macro-diversity in unicast mode (selective 
diversity). Intra-BS selection should be able to operate on a subframe basis. An alter-
native to intra-BS macro-diversity scheme for unicast consists of a simultaneous 
multicell transmission with softcombining. The basic idea of multicell transmission 
is that, instead of avoiding interference at the cell border by means of intercell inter-
ference coordination, both cells are used for the transmission of the same informa-
tion to a UE, thus, reducing intercell interference as well as improving the overall 
available transmit power. Another possibility of intra-BS multicell transmission 
relies on the exploitation of diversity between the cells with space–time processing 
(i.e., by employing STBC through two cells). Assuming BS-controlled schedul-
ing and that fast/tight coordination between different BS is not feasible, multicell 
transmission should be limited to cells belonging to the same BS. For multicell 
broadcast, soft combining of radio links should be supported, assuming a sufficient 
degree of inter-BS synchronization, at least between a subset of BSs.
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1.3.2 Multihop Relay
One important key to improve the coverage and capacity for high-quality multi-
media broadcast and multicast transmissions in mobile networks is to provide a 
homogeneous service, regardless of the users’ positions, that is, to allow high data 
rates for UEs even at the cell edge. Moreover, the distribution of UEs inside the 
cell can be heterogeneous. Multihop relay is a technique that can be employed to 
overcome these impairments.

UEs at the cell edge suffer from high propagation loss and high intercell interfer-
ence from neighbor cells. Other UEs reside in areas that suffer from strong shadowing 
effects or require indoor coverage from outdoor BS. These impairments originate a 
degradation of the SNR, which translates in a reduced service quality. Thus, the over-
all goal of multihop relay is to bring more power to the cell edge and into shadowed 
areas, while inducing minimal additional interference for neighbor cells. Moreover, 
increased cell capacity tends also to be achieved by using multihop relay. In addition, 
multihop relay may also represent an increased life cycle of UEs’ batteries.

There are several mechanisms that can be used to implement multihop relays 
[Sydir and Taori 2009]. As defined in the following, one technique employed in 
multihop relay consists of using TDD [Stencel et al. 2010], where the communica-
tion between the BS and the relay node (RN) is performed in a time slot different 
from the one utilized for the communication between the RN and the UE. On the 
contrary, [Schoene et al. 2008] proposed the use of multihop relay associated with 
FDD.

The next sections describe the most important methods utilized in multihop 
relay.

1.3.2.1 Adaptive Relaying

As previously described, UEs at the cell edge suffer from high propagation loss 
and high intercell interference from the neighbor cells. Other UEs reside in areas 
that suffer from strong shadowing effects. The obvious solution for this would be 
to decrease cell sizes by installing additional BSs, which represents an increase of 
network infrastructure costs. Contrarily, adaptive relay nodes can provide tempo-
rary network deployment, avoiding outage of service in the area, while keeping the 
investment cost at an acceptable level. The positioning of relay nodes is selected in a 
manner that an improvement of service quality or cell coverage is achieved.

In opposition to conventional repeaters working with the amplify-and-forward 
strategy, adaptive relays are understood to work in a decode-and-forward style. 
By performing this, relays amplify and retransmit only the wanted component of 
the signal they receive and suppress the unwanted portions (i.e., regeneration is 
performed). The disadvantage of an adaptive relay, compared to a conventional 
repeater, relies on the additional delay introduced into the transmission path 
between BS and UE. Moreover, depending on the algorithm, a signaling overhead 
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may also be required. The gain is based on the fact that the transmission path is 
split up into smaller areas representing a reduction of the propagation loss.

Fixed relay stations positioned at a specified distance from the BS (see Figure 
1.12) tend to increase the probability that a UE receives enough power from the 
BS. This deployment concept sectorizes the cell in an inner region where the UEs 
(e.g., UE 1 in the figure) receive signals from the BS plus some relay stations, and an 
outer region where only signals from relay stations are strong enough to be received 
by the UE (e.g., UE 2 in the figure).

1.3.2.2 Configurable Virtual Cell Sizes

Configurable virtual cell sizes were proposed in [Kudoh and Adachi 2003], consist-
ing of a wireless multihop virtual cellular network. This configuration includes the 
following components:

 ◾ Central port: this corresponds to a BS acting as a gateway to the core network.
 ◾ Wireless ports: these correspond to relay stations that may or may not com-

municate with the UEs, and relay the signals from and to the central port.

The wireless ports that are communicating directly with the UEs are called 
end wireless ports. The wireless ports are stationary and can act together with the 
central port as one virtual BS. The central port and the end wireless ports introduce 
additional diversity into the cell, such that the transmit power can be reduced. This 
also results in a reduced interference level for other virtual cells. The differences 
between conventional cellular networks and virtual cellular networks can be seen 
from Figures 1.13 and 1.14.

From the perspective of MBMS, configurable virtual cell sizes could be employed 
to adapt the cell size to the user distribution and service demands. Service needs 
may present spatial and temporal variations.
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Figure 1.12 Two-hop relaying architecture.
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1.3.2.3 Multihop Relay in 3GPP

Relay nodes were introduced in 3GPP release 9 [3GPP 2010a] as a special type of 
eNB* that is not directly connected to the core network. An RN receives data that 
was forwarded by an eNB† that is connected to the evolved packet core‡ (EPC). 

* eNB stands for evolved Node-B (eNode-B), that is, a Node-B employed in LTE. Note that a 
Node-B is a BS in the UMTS environment.

† This eNB is acting as Donor eNB (DeNB).
‡ Evolved packet core corresponds to the core of the LTE (all-IP) network.

Network

Figure 1.13 Conventional cellular network.

NetworkNetwork

Figure 1.14 Virtual cellular network.
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Upon receiving such data, the RN sends it to the UEs that are under its area of cov-
erage. This technique can be seen from Figure 1.15. This is a very interesting option 
for operators because, compared to eNB, RNs present structures less expensive to 
deploy and to maintain. They can provide temporary network deployment and new 
services in an area (e.g., when a sporadic event that concentrates a lot of people in 
the same geographical area, such as a summer festival). The use of an RN allows 
a fast-deploying and inexpensive way to solve the problem, and can also provide 
coverage in small areas not covered by eNBs.

In [3GPP 2010b], four relay architectures are proposed and studied. Those 
architectures differ from each other in terms of the expected behavior of the 
RN/DeNB and how the data are sent within the EPC until it reaches the UE. 
That study concludes that an architecture where an RN acts as a proxy for S1/
X2 has the most overall benefits, having been incorporated in 3GPP release 10 
(LTE-Advanced).

The detailed RN architecture chosen for LTE-Advanced can be seen from Figure 
1.16. In this architecture, we can see that the RN plays two roles simultaneously:

 ◾ From the network point of view (particularly for the DeNB), the RN acts as 
an ordinary UE (denoted as Relay-UE).

 ◾ From the UE point of view, the RN acts as a normal eNB.

This way the network can abstract itself from establishing a point-to-point con-
nection with each and every UE. In fact, it only has to establish a connection with 
the RN as it would normally perform with an ordinary UE, and then forward all 
data that were destined to UEs to the RN (see Figure 1.15). Then, the RN, on its 
own, will forward all the data received from the network to the respective UEs. 
The process of relaying is completely transparent, that is, a UE always assumes to 
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Figure 1.15 Example of relay node in E-UTRAN.
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be connected to an eNB because RNs are viewed as eNB from the UE side, and 
as a consequence, no changes to the communication protocol or interfaces used by 
UEs have to be made.

In the context of multiresolution for Evolved-MBMS (E-MBMS),* the use of 
relaying fits perfectly. With the introduction of RN in E-MBMS, we can have 
different zones with different grades of service. Let us consider again the example 
depicted in Figure 1.15. In areas covered by eNBs, UEs are expected to have high 
signal-to-interference plus noise ratio (SINR) when they are closer to the center of 
the cell, reducing as the UEs approach the cell edges. If a hierarchical 64-QAM 
modulation with coding rate 3/4 is being employed, UEs at the cell edge will expe-
rience low levels of QoS or even service outage due to low SINR. If an RN is strate-
gically positioned at the cell edge of existing eNBs, we can expect that area to have 
an improved coverage and the RN can adapt its transmitting conditions to provide 
a different resolution of the service in the area.† With such approach, the use of RNs 
means that, in E-UTRAN, when providing E-MBMS, UEs will experience higher 
coverage and different service resolutions for the same E-MBMS contents depend-
ing on their location and their receiving conditions.

* Evolved-MBMS (E-MBMS) framework constitutes the evolutionary successor of MBMS, and 
is envisaged to play an essential role for the LTE-A proliferation in mobile environments. 
E-MBMS was initially introduced in 3GPP release 8 (LTE), with further improvements to be 
implemented in LTE-A. The basic role of these techniques/mechanisms relies on the power 
and resources optimization during MBMS transmissions. The objective of E-MBMS is to 
provide services with different QoS requirements depending on the channel conditions expe-
rienced by different users.

† Instead of transmitting video with high frame rate and low resolution, we can half the frame 
rate and transmit with higher resolution.
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Figure 1.16 Relay architecture chosen for LTE-Advanced. (Adapted from 3GPP, 
Evolved Universal Terrestrial Radio Access (E-UTRA); Relay architectures for 
E-UTRA (LTE-Advanced), TR 36.806 V9.0.0, May 2010b.)
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According to [3GPP 2010a], RNs can operate in two different modes:

 ◾ Inband mode: the link between DeNB and the RN uses the same carrier 
frequency as the link between RN-UE and eNB-UE.

 ◾ Outband mode: the link between DeNB and the RN uses a different carrier 
frequency than that of the RN-UE link.

It is worth noting that the transmit power of RNs is lower than that of eNBs. 
The objective is to diminish intercell interference caused by the introduction of 
RNs operating in the same band and carrier frequency as eNBs (inband mode), and 
to limit the area of coverage of a given RN (since RNs are used to cover small areas 
that cannot be properly covered by existing eNBs).

In order to reduce intercell interference, RNs can also be employed in E-MBMS 
subframes to create “transmission gaps.” These transmissions gaps are illustrated in 
Figure 1.17. As can be seen, in the first instance where Time = t, the DeNB transmits 
a segment of data labeled “Data 1” to all the UE inside its area of coverage and also 
to the RN. At this instance, the RN stores “Data 1” in memory and is not transmit-
ting any data to the users inside its area of coverage, thus not creating any intercell 
interference. At the next instance Time = t + 1, a second set of data labeled “Data 2” 
is transmitted from DeNB to all the UEs within its area of coverage. On its turn, 
the RN is not receiving “Data 2” but, instead, is transmitting to the UEs within 
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Figure 1.17 Example of transmission gaps in E-MBMS.
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its area of coverage the “Data 1” that was stored in memory at Time = t, generating 
intercell interference.

As a result of this intercell interference pattern produced by RNs, the total inter-
cell interference is greatly reduced (RNs are only causing interference half of the total 
transmission times) with a trade-off between throughput and intercell interference.

1.3.3 Multiresolution Transmission Schemes
For MBMS services, it makes sense to have two or more classes of bits with dif-
ferent error protection, to which different streams of information can be mapped. 
Depending on the propagation conditions, a given user can attempt to demodulate 
only the more protected bits or also the other bits that carry the additional informa-
tion. By using nonuniformly spaced signal points in hierarchical modulations, it is 
possible to modify the different error protection levels [Vitthaladevuni and Alouini 
2001, 2004].

Multiresolution techniques are interesting for applications where the data being 
transmitted are scalable, that is, it can be split into classes of different importance. 
For example, in the case of video transmission, the data from the video source 
encoders may not be equally important. The same happens in the transmission 
of coded voice. The introduction of multiresolution in a broadcast cellular system 
deals with source coding and transmission of output data streams. In a broadcast 
cellular system, there is a heterogeneous network with different terminal capabili-
ties and connection speeds. For the particular case of video, scalable video consists 
of a common strategy presented in the literature that adapts its content within a 
heterogeneous communications environment [Li 2001; Liu et al. 2003; Vetro et al. 
2003; Dogan et al. 2004; Holma 2007].

Scalable video, depicted in Figure 1.18, provides a base layer for minimum 
requirements, and one or more enhancement layers to offer improved quality at 
increasing bit/frame rates and resolutions [Li 2001]. Therefore, this method signifi-
cantly decreases the storage costs of the content provider.

Besides being a potential solution for content adaptation, scalable video schemes 
may also allow an efficient usage of power resources in MBMS, as suggested in [Cover 
1972]. This is depicted in Figure 1.18, where three separate physical resource blocks 
(PRBs) are provided for one MBMS service (e.g., @384 kbps): one for the base layer, 
at 1/3 rate of the total bit rate (128 kbps), and with a power allocation that can cover 
the whole cell range (UE3); another PRB for the first enhanced layer, also at 1/3 rate of 
the total bit rate (but aggregate rate of 256 kbps), with less power allocation than that 
of the base layer (UE2); and the third PRB for the second enhanced layer transmitted 
with small power to be received near the BS (UE1 with aggregate rate of 384 kbps).

The system illustrated in Figure 1.18 consists of three QoS regions, where 
the first region receives all the information, whereas the second and third regions 
receive the most important data. The QoS regions are associated with the geometry 
factor that reflects the distance of the UE from the BS antenna.
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Scalable video transmission can also be implemented using different tech-
niques. One possibility relies on the use of hierarchical constellations. The system 
illustrated in Figure 1.19 consists of 64-QAM hierarchical constellation. Strong 
bits blocks are QPSK demodulated, medium bits blocks are 16-QAM demodu-
lated, and weak bits blocks are 64-QAM demodulated. Furthermore, hierarchical 

UE2

UE3

UE1Node B

Figure 1.18 Scalable video transmission.

QPSK

16-QAM

64-QAM

BS

Figure 1.19 Example of the type of demodulation used inside a cell for a trans-
mission of a 64-QAM hierarchical constellation.
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constellations may also be combined with different channel coding rates. This cor-
responds to the concept of AMC [Souto et al. 2007].

It is worth noting that the nonuniform QAM constellation concept has already 
been incorporated in the DVB Terrestrial (DVB-T) standard.

Another possibility to implement scalable video transmission relies on the use of 
spatial multiplexing MIMO technique, where each transmit antenna sends a differ-
ent data stream. The first data stream (most powerful) may include the base layer, 
whereas the enhancement layer may be sent by a second antenna (less powerful data 
stream). Depending on the power and channel conditions, a certain UE may suc-
cessfully receive either the two streams or only the base layer.

1.3.4 Energy Efficiency in Wireless Communications
The tremendous expansion of mobile network terminals has contributed to the 
increase of the environmental footprint. Currently, more than 4 billion subscribers 
are using mobile phones around the world. The operation of both mobile phones 
and network infrastructure requires huge quantities of electrical energy, which cur-
rently represents up to 50% of the operational costs.

Energy-efficient wireless transmission techniques along with energy-efficient 
network architecture and protocols, hardware optimization, and renewable energy 
sources contribute to the implementation of the green cell networks concept, as 
they allow a reduction in the carbon emission footprint. Summarizing, the carbon 
footprint reduction can be achieved through advancements in three main different 
dimensions:

 ◾ Architecture and protocols: improvements in the transmission techniques 
and network protocols and architectures.

 ◾ Components: more efficient hardware implementation in terms of energy 
dependency.

 ◾ Energy provisioning: including a new strategy based on the generalized use 
of renewable energy sources.

The architecture and protocols dimension can be implemented in two different 
fronts: the network level and the link level.

The network level comprises the dimensioning and adjustment of the network 
as a whole such that a reduction of the energy consumption is possible without 
radically compromising the network performance and the spectral efficiency 
[Correia et al. 2010; Ferling et al. 2010]. This is achieved through the implemen-
tation of network protocols such as BS cooperation, multihop relay (see Figure 
1.20), MIMO systems, hierarchical cellular structure,* or interference mitigation 

* Using macrocells, microcells, picocells, femtocells, and so on.
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schemes (including precoding). These techniques may support a reduction in the 
transmit power by both BSs and UE [Ericsson 2007].

Mobile adhoc networking (MANET) is a concept that allows the implementa-
tion of networks without making use of BSs, and therefore, achieving the same 
capability with less energy and with less visual impact and investment. Energy 
efficiency is also achieved by dynamically allowing an adaption of the cellular net-
work architecture to traffic load fluctuations. In this case, the network architecture 
should be sufficiently dynamic such that it adapts to variations of the number of 
UEs, variations of the throughputs required by different UEs, or to various UEs’ 
geographic densities. Cognitive radio brings flexibility to the network as it consti-
tutes a mechanism that allows a dynamic and more efficient use of the spectrum. 
This translates in higher throughput per user or higher number of users per cell by 
exploiting spectrum opportunities. Cognitive radio constitutes an efficient alter-
native to the traditional approach where the networks were dimensioned to peak 
traffic scenarios.

The link level front is associated with the individual energy utilization in the 
interface between a UE and a BS. This includes synchronization and channel esti-
mation techniques. Owing to multiplexing of pilot/training and data symbols, 
some of the available bandwidth and energy has to be consumed for accomplish-
ing the transmission of the pilot symbols. Since the CIR can be very long, espe-
cially for block transmission schemes, the required channel estimation overheads 
can also be high, namely, for fast-varying scenarios. This translates in a reduction 
of the useful bit rate, decreasing the spectral efficiency and increasing the energy 
needs. A promising method for overcoming this problem relies on the employ-
ment of implicit pilots, also known as pilot embedding or superimposed pilots, 

Fixed relay

Base station

Figure 1.20 Cooperative MIMO system with fixed relay station.
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which are added to the data block, instead of being multiplexed with it [Marques 
da Silva and Dinis 2011]. This means that we can significantly increase the pilots’ 
density, while keeping the system capacity. Note that the MIMO implementation 
constitutes a mechanism to improve the spectral efficiency, throughput, or num-
ber of users per cell. Nevertheless, it requires additional energy spent in pilots, as 
the channel estimation is independently performed for each antenna pair, using 
a different pilot stream per transmit antenna. This results in an energy efficiency 
degradation of the MIMO relating to the SISO. The implementation of embed-
ded pilots allows the MIMO system becoming an energy-efficient technique, as 
the energy spent in pilot symbols is very much reduced, and thus the MIMO can 
improve the SNR, coverage, or throughput, without additional transmit power (or 
even with a power reduction).

From the components’ perspective, the basic concept relies on the development 
of signal processing techniques for smart components in order to obtain a reduc-
tion of the energy consumption. Moreover, the relationship between the output 
power and the consumed power of an equipment or component (e.g., a transmit-
ter) should also be maximized. This can be viewed as power efficiency, and can 
also be improved by implementing a careful design and advanced signal process-
ing. It is known that the energy consumed in a power amplifier (PA) represents 
between 50% and 80% of the electrical energy consumed in a BS [Correia et al. 
2010]. OFDM transmission technique is characterized by high peak-to-average 
power ratio (PAPR)* levels, whose implementation requires a PA operating well 
below the saturation point. This results in poor power efficiency. A signal process-
ing technique commonly employed to improve the energy efficiency of a PA relies 
on decreasing the PAPR through the use of a precoding technique, which reduces 
the dynamic range of a block transmission signal. This technique allows a PA opera-
tion closer to the saturation threshold, which translates in an energetic efficiency 
gain. Another signal processing technique currently in research relies on the imple-
mentation of smart cooling.† It is also worth noting that cooling systems tend to 
be more demanding in high-power transmitters. Reducing the required transmit 
power allows a simpler and less powerful cooling system.

Finally, a new energy provisioning strategy based on the use of renewable energy 
sources is another dimension that can be exploited in order to achieve a reduction 
of the carbon emission footprint. This includes the implementation of photovol-
taic cells and/or wind generators in BSs. Moreover, photovoltaic cells can also be 
employed in mobile phones or in human clothes to charge it.

* Such PAPR level increases with the increase of the number of OFDM subcarriers.
† Cooling systems represent up to 30% of the consumed BS energy.
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2.1 Terminology: Old and New Signal Processing
Digital transmission has progressed during the last two decades of the twentieth 
century aiming at higher data rates, less bandwidth for a fixed data rate (i.e., higher 
spectral efficiency), while spending the least possible amount of energy per bit, given 
a certain additive noise. There is, however, a fourth dimension to the problem: the 
complexity involved in the “construction” of the transmitted signal (i.e., the com-
plexity associated with the modulation and the coding scheme), and the complexity 
involved in the detection and decoding of the signal at the receiver. Multiple-input 
multiple-output (MIMO) spatial multiplexing (SM) allows unprecedented spectral 
efficiencies at the expense of high detection complexity due to the fact that the 
underlying detection problem is equivalent to the closest vector problem (CVP) in a 
lattice. Finding better detection algorithms (also referred in the literature as detection 
methods or detection techniques) to deal with the problem has been a central topic 
since the last decade of research in MIMO SM and yet an efficient technique for the 
8 × 8 configuration in LTE-A is not a closed problem [Bai et al. 2012].

This chapter introduces the reader to the most prominent detection techniques 
for MIMO, namely, linear filtering-based receivers and nonlinear approaches, such as 
ordered successive interference cancellation (OSIC), lattice-reduction-aided, sphere 
decoding (SD) concept, among other more recent developments. We believe that the 
easiest way to cut through the MIMO detection methods is to understand the underly-
ing lattice problem and the type of manipulations that each of these methods executes 
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in the lattice. In addition to a unifying geometric interpretation, the lattice interpreta-
tion often offers additional insights. For example, the geometric relation between the 
primal and the dual lattice is clarified, leading to a simple interpretation of the optimal 
detection order of the layers (i.e., symbols at the receiver antennas) in OSIC.

Typically, progress toward Shannon capacity was achieved by means of chan-
nel coding concatenated with higher-order modulation, eventually at the expense of 
higher complexity, mostly at the receiver. Turbo-codes, low-density parity-check codes 
(LDPCs), and lattice-coded modulation are examples of that path of increasing com-
plexity (mostly in detection and decoding). As it will be seen in subsequent chapters, 
coding still plays a crucial role in any system.

The rapid rise in the computing power available at the handset now permits rather 
complex baseband processing. Over a decade, we have witnessed the core problems 
in communication engineering being much less electronics-centric and much more 
algorithmic-centric. Modern communication theory is now largely entwined with 
problems traditionally in the domain of theoretical computer science (e.g., machine 
learning, data structures, algorithms, and their complexity), or, more generally, in 
applied mathematics (related with matrix algebra, discrete mathematics, integer pro-
gramming, or combinatorics). Sometimes the separation is now only barely possible 
by looking at the application in mind and not by the nature of the problem itself. More 
generally, this can also be said of many of the aspects of information theory and cod-
ing theory. The fields of image communication or source coding (compression) always 
incorporated a wide variety of fundamental research. What is new is that this fusion 
propagated down to the physical layer, once clearly within electrical engineering.

The problem of detection in MIMO SM constitutes a clear example of an algo-
rithmic problem at the physical layer. The problem is analogous to the CVP in 
lattices (sometimes also called the nearest vector problem, e.g., [Lenstra 2008]). The 
study of the problem began in the realms of theoretic computer science, cryptogra-
phy, complexity theory, algorithmic number theory, and in some domains of applied 
mathematics. The curious reader may want to delve into details of the field. For 
example, a recent detection technique looks at lattices from a group theory perspec-
tive [Monteiro and Kschischang 2011]. It is shown that it is possible to approximate 
the typical lattices encountered in MIMO by a lattice having a trellis representation.

2.1.1 Diversity Order and Multiplexing Gain
From Shannon we know that, in the additive white Gaussian noise (AWGN) chan-
nel, a symbol error rate (SER) curve Ps (ρ) is a function of the signal-to-noise ratio 
(SNR), ρ, and can be as steep as one wants. In the limit, the curve Ps (ρ) can have an 
infinite negative slope. For the Rayleigh fading* channel, it is well known that Ps(ρ) 
exhibits a −1 slope in the uncoded single-input single-output (SISO) case, that is, 

* This limiting behavior is only characteristic for the Rayleigh fading assumption. Other fading 
statistics lead to different diversity orders.
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one finds that Ps (ρ) ∝ ρ−1. One door that MIMO opens is the possibility of increas-
ing (in modulo) that slope, that is, obtaining a faster reduction of the error rate as 
SNR increases. Formally, one defines the diversity order, corresponding to the slope

 
d

Ps= −
→∞

lim
log( ( ))

log( ) .
SNR

ρ
ρ  

(2.1)

This diversity order measures how many statistically independent copies of the 
same symbol the receiver is able to separate. In brief, this amounts to the number of 
independent fading coefficients that the receiver can average in order to produce a 
reliable estimate of a transmitted symbol. Not surprisingly, the maximum available 
diversity that can be attained is dmax = NT NR, in the case of uncorrelated fading, as 
in the model that will be introduced in Section 2.2.1.

The benefits of vector communication with spatial diversity are not limited to 
this increased slope. Think of a SISO setup where one switches from a 4-PAM con-
stellation (2 bps/Hz) to an 8-PAM constellation, in this case the same error rate can 
be obtained by increasing the SNR by 6 dB while 1 more bit/s can be transmitted 
(now 3 bps/Hz) using the same bandwidth. If one changes from a 16-QAM (4 bps/
Hz) to 64-QAM constellation, the same additional 6 dB are required to achieve 
the same SER, though the spectral efficiency is increased by a factor of 2. It is said 
that the multiplexing gain of the latter QAM constellation is higher than the one of 
PAM. In the MIMO general case, this gain is defined as
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→∞
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log( )
log( ) .

SER ρ  
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When plotting the symbol error rate (SER) versus the SNR, the existing diver-
sity d in the communication link is simply the slope (in the asymptotic regime) 
of the SER curve. However, the interpretation of the multiplexing gain in a typi-
cal SER plot is not so straightforward. The metric g indicates how the capacity 
increases with the SNR, which is a common representation in information theory 
since Shannon but is less useful in practice. In terms of the SER, the multiplexing 
gain g measures how fast spectral efficiency can increase with the increase of SNR 
while keeping the same error rate and corresponds to the maximum number of 
independent layers or parallel channels, being limited by

 g N NT Rmax min( , ).=  (2.3)

It was showed in [Zheng and Tse 2003] that there is a trade-off between d and 
g, that is, the famous diversity-multiplexing trade-off (DMT): increasing one leads 
to a decrease in the other. The only pairs (d, g) that are allowed lie on the following 
piecewise-linear function constructed by connecting the points defined by

 d k N k N k k gR T( ) ( )( ), .max= − − ≤ ≤for 0  (2.4)
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One interpretation of this trade-off is that some subset of the antennas provide 
for the existence of several layers, while the remaining ones assure the diversity, 
but they cannot all be contributing to both objectives. The operational informa-
tion conveyed by the DMT curve is very often confusing and misleading in the 
literature. The operational meaning of the DMT curve lies in the extremities con-
nected by each of the piecewise-linear segments. Each segment defines an operation 
“mode” with a pair (d, g) defined by the extremities of the segment, which then 
define the maximum value that each of the parameters can assume.

The practical relevance of the DMT has been much criticized though; some 
argue that it is only valid for the ideal (uncorrelated) Rayleigh channel and only 
at an impractically high SNR regime, while authors in the LTE literature rebuke 
the usefulness of DMT for ignoring other aspects of the transmission chain, which 
bring other sources of diversity, for example, from the frequency domain or from 
coding. Indeed, providing a physical interpretation of g in the finite SNR regions is 
impossible.

Despite the connection between the two gains, there is a division in system 
design between either (i) aiming at full diversity or (ii) aiming at maximizing 
the multiplexing gain, which in practice has been measured by the spectral effi-
ciency gain provided by the transmission over multiple layers. The development 
of space–time codes (STC) addresses the first objective, while the SM concept aims 
at the latter. Physical layer designers have to opt between STC and SM. Another 
attempt to match them under a unified system design was presented in [El-Hajjar 
and Hanzo 2010]. A pragmatic approach for switching between them according 
to the channel conditions was considered in [Heath and Paulraj 2005]. Which 
one is preferable is a question that was thoroughly investigated in [Lozano and 
Jindal 2010]. The authors have looked into the problem of considering MIMO 
in systems that combine MIMO with interleaving and coding, wideband chan-
nelizations with OFDM, link adaptation (adaptive modulation and rate control), 
and automatic repeat request (ARQ). Their work addresses precisely some of the 
criticism aimed at the somewhat idealized conditions in which DMT was defined 
[Tse and Viswanath 2005]. The conclusion was that with all the diversity available 
in time and frequency (including carrier aggregation), spatial diversity becomes 
redundant and SM should be the only objective when designing the MIMO aspects 
of the physical layer, especially when the channel is wider than 10 MHz. Note 
that LTE release 8 defines channel bandwidths up to 20 MHz, LTE-Advanced 
(i.e., release 10) already defines a bandwidth up to 100 MHz [Parkvall et al. 2011], 
and 100 MHz is possible in WiMAX by carrier aggregation [Ahmadi 2009], and 
802.11n is defined up to 40 MHz [Perahia and Stacey 2008].

2.1.2 Detection for Space–Time Codes
The celebrated Alamouti 2 × 1 space–time code (STC) was presented in 1998 
[Alamouti 1998]. The scheme achieves the same diversity as the traditional maximum 
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ratio combining (MRC) with two antennas at the transmitter while having only one 
antenna at the receiver, and transposing the burden of two antennas to the transmit-
ter.* The structure of the Alamouti code permits a very simple decoding method. This 
advantage was extended to larger dimensions by Tarokh, Jafarkhani, and Calderbank 
[Tarokh et  al. 1999], who discovered other orthogonal space–time block codes 
(OSTBC), which are also easy to decode owing to their structure. Interestingly, the 
Alamouti scheme realizes the optimal trade-off for the 2 × 1 configuration; the other 
OSTBC do not achieve that optimal diversity-multiplexing trade-off (DMT) [Tse 
and Viswanath 2005], nor does the Alamouti 2 × 2 system.

The computational complexity for their decoding was recently analyzed in 
depth [Ayanoglu et al. 2011]. Sadly, these constructions for STBCs were shown not 
to exist for configurations larger than 4 × 4. They are however instances of linear 
dispersion codes which, albeit not necessarily orthogonal, also spread the symbols 
in both space and time. The design and study of space–time codes constitutes a 
research field of its own [Larsson and Stoica 2003, Jafarkhani 2005, Giannakis 
et al. 2007]. Another family of codes, proposed earlier than STBC, is the space–
time trellis codes (STTC) [Tarokh et al. 1998], where the symbols emanating from 
the antennas not only depend on the new data but also on the state of an encoder 
(as in convolutional codes).

Lattices have been essential in coding for MIMO just as they had been for the 
AWGN channel and afterwards for the SISO flat Rayleigh channel. A fruitful line 
of research, mostly lead by Oggier, Viterbo, and Belfiori, uses algebraic number 
theory for finding good lattice codes for MIMO [Viterbo and Oggier 2004, Oggier 
2005, Oggier et al. 2006]. The 2 × 2 so-called Golden Code, which simultaneously 
achieves full diversity 4 and full multiplexing gain equal to 2, was created under 
that framework. One other example of STC with lattices was the discovery by 
[Gamal et al. 2004] of the so-called lattice space–time (LAST) codes, which real-
ize the DMT. These codes are grounded in the Erez and Zamir constructions [Erez 
and Zamir 2004]. The optimum detection algorithm for LAST codes was proposed 
in [Su et al. 2009].

2.1.3 Detection for Spatial Multiplexing
This technique focuses only on the objective of increasing the data rate, leaving 
behind rather than obtaining any spatial diversity in an NT × NR configuration. If 
the receiver is able to correctly estimate the channel matrix (although that informa-
tion is oblivious to the transmitter), signal processing at the receiver can extract the 
mutual interference and decouple min(NT, NR) streams of independent data.

* There is a power penalty though, given that only half of the power is collected with one antenna 
at the receiver rather than two. This results in an error probability curve translated by 3 dB 
with respect to the MRC performance curve. The extrapolation to a 2 × 2 configuration of the 
Alamouti space–time code is straightforward and that loss is recovered.
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The first spatial technique, proposed by Foschini, as mentioned in Chapter 1, 
was D-BLAST (diagonal Bell Labs layered space–time). This technique uses error 
correcting codes and “rotates” over time the distribution of the different code 
streams (the layers) across the antennas. Considering two-dimensional space–time 
frames, different layers end up associated with distinct diagonals of a space–time 
grid (or frame). This creates spatial diversity besides SM. However, owing to the 
detection complexity it incurred it was dropped very early in favor of a much sim-
pler approach known as vertical-BLAST (V-BLAST). One other downside with 
D-BLAST is that it wastes some space–time resources at the time extremities of a 
frame, although one can minimize that effect by appropriately dimensioning the 
frames [Goldsmith 2005, Section 10.6]. It should be noted that, despite its imprac-
ticability, when the number of antennas approaches infinity, D-BLAST is able to 
approach the capacity of the MIMO channel [Tse and Viswanath 2005, Section 
8.5]. Interestingly, the V-BLAST architecture is able to approach capacity by rate 
adaptation across the different layers, when there is channel state information at the 
transmitter (CSIT) [Bölcskei et al. 2006, Chapter 5] (for a practical example, see 
[Magarini 2007]). Near capacity MIMO open-loop SM has been achieved using 
soft SD (see Section 2.5.7) concatenated with linear codes by means of an inter-
leaver [Hochwald and ten Brink 2003].

V-BLAST does not make use of all the spatial diversity that exists in the MIMO 
channel as D-BLAST is able to. In the vertical version, there exists a fixed association 
between the parallel sub-channels and the antennas at both extremities of the link. 
Note that these sub-channels are also frequently called layers, even in uncoded sys-
tems, where each layer simply corresponds to the symbols from a particular transmit 
antenna. Consequently, the maximum spatial diversity V-BLAST offers is, at most, 
NR, and even so, only if maximum likelihood detection (MLD) is used. In the case 
of the OSIC detector, the diversity is only NT − NR + 1, that is, only one in the com-
mon case of symmetric configurations. This latter fact was conjectured about from 
very early on [e.g., Paulraj et al. 2003, p. 158] but has only very recently been proven 
[Jiang et al. 2011] (this will be further commented on in Section 2.5.4).

Unlike the Alamouti (and other OSTBCs), both V- and D-BLAST could be 
trivially extended to any number of antennas, as there is no structural constraint 
in their design. However, to optimally detect all layers (with an error performance 
curve that exhibits all the diversity that these schemes still provide and with no gain 
penalty), involves a computational complexity that grows exponentially with the 
number of antennas at the receiver.

The predominance of the V-BLAST architecture made it almost synonymous 
with SM. Furthermore, as Golden et al. presented a simple receiver based in inter-
ference cancellation for V-BLAST [Golden et al. 1999], the name became much 
associated with that particular detection technique. The name successive interfer-
ence cancellation (SIC) will subsequently be used in this work for the concept that 
underlies the detection method first proposed for V-BLAST in [Golden et al. 1999]. 
The V-BLAST architecture will be simply referred to throughout this work as SM.
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SM does not require CSIT (since it is an open-loop architecture) and the capacity 
grows linearly with min(NT, NR). In practice, the number of antennas in some equip-
ment is not only limited by the signal processing complexity at the receiver, but also 
by the physical dimension the antenna array may have; one should bear in mind that 
as the spacing between antennas diminishes, they become increasingly correlated and 
the capacity of the system diminishes [e.g., Paulraj et al. 2003, Section 4.6.1].

The major limitation in SM is the large algorithmic complexity involved in 
the optimum detection applying the MLD principle to achieve optimum detec-
tion. MLD captures the spatial diversity of the architecture while removing all the 
mutual interference between layers.

In the last decade, there was a burst of research on this problem: how to detect 
the received vector with a performance as close as possible to the optimal yet having a 
reduced complexity compared with MLD? The most abstract and general description 
of this problem is the CVP in a lattice, the applications of which go far beyond the 
MIMO detection problem in SM. The detection of some STC is also a CVP in a lat-
tice after vectorizing the space–time matrix code words [Viterbo and Oggier 2004].

Other communication problems such as inter-symbol interference (ISI) chan-
nels [Mow 1991] and multi-user detection (MUD) [Verdú 1998] are formally the 
same, and may be encapsulated as a general equalization problem (as proposed in 
[Zhang et al. 2009]) that can be mapped as a CVP. Table 2.1 lists some terminol-
ogy that is used in these different frameworks.

2.2 The Geometry of Lattices
The regularity of a lattice lends itself for the representation of problems where sig-
nals are interpreted as a point in a multidimensional space defined in some basis. 
One of the most important lattice problems is the CVP [Agrell et al. 2002], which 
consists in finding the point that is the one at the shortest distance from a given 
off-lattice target point.

The study of lattices began in the 1890s with Minkowski who created the then 
new field of geometry of numbers [Nguyen and Micciancio 2005, Cassels 1971]. 
Lattices are related with problems in the integer domain, such as continued frac-
tions, simultaneous Diophantine equations (systems of questions where one is solely 
interested in integer solutions) [Schrijver 1986]; simultaneous Diophantine approx-
imation [Lovász 1986, Lenstra 2008], (finding the closest rational numbers to a 
set of real numbers with the restriction that they all have the same denominator), 
and several other fundamental problems in number theory [Lenstra 2008, Kannan 
1987], and in integer programming [Schrijver 1986, Bertsimas and Weismantel 
2005]. These problems can usually be reduced to the CVP or to the shortest vector 
problem (SVP) in a lattice [Micciancio and Goldwasser 2002].

In the last three decades, one could have found applications of lattices in vec-
tor quantization and image coding [Dubois 1985, Zamir 1996, Agrell and Eriksson 
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Table 2.1 Different Names of Analogous Techniques

MIMO
Equalization for 

ISI Channels
Multi-User 

Communication

Inversion 
(linear)

•	 Zero-forcing (ZF)

•	 Channel inversion

•	 Decorrelation

Zero-forcing (ZF) 
equalization

Decorrelation

Minimum 
mean squared 
error (MMSE)

MMSE MMSE filtering MMSE 
detection

Interference 
cancellation

•	 Nulling and 
cancelling

•	 Successive 
interference 
cancellation (SIC)

•	 V-BLAST detection

Decision 
feedback 
equalization 
(DFE)

•	 Iterative 
multi-user 
detection 
(MUD)

•	 Successive 
interference 
cancellation 
(SIC)

Optimum 
detection

•	 Maximum likelihood 
detection (MLD)

•	 Exhaustive search

Maximum 
likelihood 
sequence 
detection (MLSD)

•	 ML detection

•	 Brute force

•	 SD (near 
optimum)

Precoding •	 Multiuser-MIMO

•	 Broadcast channel 
(BC)

•	 ISI Precoding

•	 Costas 
precoding

•	 Tomlinson–
Harashima 
precoding 
(THP)

Dirty paper 
coding (DPC)

Parallel 
sub-channels

•	 Closed-loop 
SU-MIMO

•	 SVD and water filling

•	 Communication 
over eigen-modes

•	 Eigen-beam spatial 
division multiplexing

•	 Precoding

•	 Beamforming

•	 OFDM

•	 Multi-tone 
modulation

•	 Filter bank 
multicarrier

Not defined
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1998], and the application of lattices in SISO communications has a long history in 
coding for the bandwidth-limited AWGN channel [Forney 1988] and in SISO fading 
channels [Boutros et al. 1996]. Despite that, it was only during the boom of research 
in MIMO in the last decade that lattices started to be thoroughly investigated in 
relation to communication problems as they are the mathematical object underly-
ing problems such as the broadcast channel [Taherzadeh et al. 2007], the design of 
STCs [Viterbo and Oggier 2004], and, of course, the CVP in SM detection [Larsson 
2009]. Interestingly, these MIMO communication problems triggered a series of re-
discoveries and novel uses of ideas previously studied in algorithmic number the-
ory. Examples of this are (i) the V-BLAST detection as proposed in [Wolniansky 
et al. 1998], which turns out to be the Babai nearest plane algorithm [Mow 2003, 
Galbraith 2013]; (ii) SD was already used in SISO [Viterbo and Boutros 1999] but 
improved ways for traversing a tree were rediscovered in [Agrell et al. 2002] making 
use of the much earlier findings of [Fincke and Pohst 1985] and by [Schnorr and 
Euchner 1994] in number theory; (iii) the use of lattice reduction techniques such as 
the Lenstra–Lenstra–Lovász (LLL or L3) algorithm or Seysen’s reduction remained 
unknown to the communications community until 2002 [Yao and Wornell 2002] 
and 2007, respectively (the advantages of Seysen’s reduction for MIMO were simul-
taneously indicated by [Seethaler et al. 2007] and [Niu and Lu 2007]). However, in 
2007 the 25th anniversary of the LLL algorithm was celebrated by the algorithmic 
number theory community with a special event and the publication of a book listing 
its profound implications in many problems [Nguyen and Vallée 2010].

Now that communication theory is evolving from point-to-point transmission 
problems to network coding ideas, lattices remain an essential tool [Feng et  al. 
2010, Nazer and Gastpar 2011].

Although lattices are simple to define mathematically, and have an apparent geo-
metrical simplicity, they are, as already mentioned, closely related to many of the 
most difficult algorithmic problems with NP-hard complexity. As a natural conse-
quence, lattice problems also assumed a central role in cryptography in the last decade 
[Micciancio and Goldwasser 2002, Micciancio and Regev 2009, Galbraith 2013], 
given the complexity of the algorithms and the difficulty they pose to an attacker who 
does not possess a trapdoor to solve the problem (such as a “good” basis for the lattice).

2.2.1 Definitions

2.2.1.1 Lattice

There are several ways of specifying a lattice* Λ. The most common method involves 
a set of linearly independent generator vectors hi [Nguyen and Micciancio 2005], 

* The term lattice has two meanings in mathematics. The same name appears in order theory 
(in discrete mathematics and abstract algebra) [Anderson 2003, Lidl and Pilz 2010], a subject 
totally unrelated to the lattices in number theory or geometry of numbers.
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which constitute a basis for the lattice. A (real) lattice is then defined as the infinite 
set defined by

 
Λ = ∈ = = ⋅ ∈ ∈
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The definition can be extended to complex lattices but, because it is possible to 
transform any complex lattice into a real lattice (as will be seen in Section 2.3.2), 
one can settle for limiting the description to real lattices.

The integer combination of real or complex n-dimensional vectors generates a dis-
crete set of points with the properties of a group, namely: closure, associativity, identity, 
and inversion [Biggs 2002, Chapter 20]. Indeed, the shortest possible definition of a 
(real) lattice is the following: a lattice is a discrete Abelian (i.e., additive or commuta-
tive) subgroup of Rn. The two definitions are equivalent [Siegel 1989, p. 44].

A consequence of the last definition given for Λ is that for any two elements 
x, y ∈ Λ, then the difference x – y ∈ Λ (i.e., a lattice is closed under subtraction). 
Notice that for a structure to be a lattice, the group property by itself does not suf-
fice; the structure also needs to be discrete (i.e., for each lattice point there exists 
a hyper-ball with radius ε > 0, which is centered at the lattice point and not con-
taining any other lattice point inside; that is, the distance between lattice points is 
larger than ε). This caveat is sometimes forgotten by some authors. For example, the 
group property is preserved as the linear projection operator. However, that projec-
tion is not necessarily constituted by discrete structure [Banihashemi 1997, p. 20].

According to Equation 2.5, a lattice is an infinite set of points resulting from 
integer combinations of the columns of the generator matrix h. It should be noted 
that some authors prefer to span the row space of a matrix, which then reflects alge-
braically in some of the definitions that follow.

There are other ways of specifying a lattice that do not have a set of generator 
vectors; however, Equation 2.5 is the most prevalent one while these other tech-
niques remain largely unmentioned in the literature on lattices. In MIMO litera-
ture, Equation 2.5 is the only way used for specifying a lattice, perhaps because 
it follows directly from the natural vector description of SM. In [Lenstra 2008, 
Section 4], Hendrik Lenstra describes several alternative ways of specifying a lattice 
but comments that some are recognizably difficult to convert into Equation 2.5 or 
even to convert between themselves. None of the unconventional techniques seem 
to have played any role so far in the study of MIMO.

One of the alternative techniques to define a lattice is only applicable to the so-
called cyclic lattices. These lattices are endowed with a specific structure that allows 
them to be defined by means of one modular equation (lattices with one cycle) 
[Paz and Schnorr 1987] or by d modular equations (said to have d-cycles) [Trolin 
2004]. Interestingly, there is a connection to the field of numerical integration of 
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multidimensional functions where cyclic lattices are closely related with the so-
called lattice rules [Sloan and Joe 1994].

2.2.1.2 Fundamental Region

Given a certain basis of a lattice, the fundamental region that is associated to that 
basis is defined as

 R( ) { : }.H Hx= < <0 1xi  (2.6)

The fundamental region cannot contain any lattice point inside it. If there was 
at least one point inside, it could not be represented by an integer combination of 
generator vectors, which are precisely the sides defining that fundamental region 
(c.f. Figure 2.1). If that happens, then the set of vectors is not a basis of the lattice 
but a basis of one of its sublattices. A sublattice Λ′ is also a lattice and the volume is 
vol(Λ′) > vol(Λ) (the technical definition of the volume of a lattice will shortly be 
given).

Note that different sets of vectors may generate the same lattice. Indeed, the num-
ber of admissible bases for a lattice is infinite; it is easy to infer from Figure 2.1 that 
it is always possible to select some point further distant from the origin to replace a 
generator and still have a fundamental region without including any lattice point in 
its interior. Moreover, all these different bases are related by unimodular transforma-
tions, as will be described below.

2.2.1.3 Voronoi Region

The region of the space where the lattice is embedded (i.e., in the continuous 
Euclidian space where the lattice exists) that contains all the points in the span of 

D
im

en
sio

n 
2

Dimension 10

h2

h1
R

Figure 2.1 A lattice in R2 and the fundamental region associated with a particu-
lar basis.
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the lattice which are closer to a given lattice point x than to any other point in the 
lattice is called the Voronoi region and is defined by

 
V( ) ( ) : .Λ Λ Λ= ∈ ∀ ∈ − < −{ }z y x z y zspan

 
(2.7)

This (open) region is a characteristic of the lattice and independent of any par-
ticular generating matrix, and is the most interesting fundamental region amid the 
infinite number of other possible fundamental regions one can define to tile the 
entire space as it constitutes the optimal decision region for the CVP in a lattice.

2.2.1.4 Gram Matrix

The Gram matrix of a lattice generated by the columns of h, as in Equation 2.5, is 
defined by (in the real case transposition replaces the Hermitian operator)

 G H H= H .  (2.8)

By construction, the Gram matrix contains all the possible inner products 
between all the generator vectors: gij = 〈hi, hj 〉; in particular, the diagonal elements 
are the squared norms hi

2. This fact implies that g is Hermitian and positive 
definite. Moreover, it defines a positive-definite quadratic form [e.g., Meyer 2000, 
Section 7.6] because
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where xi  denotes the conjugate of xi and 0 is the zero vector. Like the Voronoi 
region, the Gram matrix is another invariant of a lattice but only in respect to a 
particular basis.

2.2.1.5 Volume

When h is nonsingular, the lattice is full rank. In that case, the volume of the lat-
tice (the volume of R) is

 vol( ) det( ) ,Λ = h  (2.10)

however, for rectangular h, the following more general definition is required:

 vol( ) det( ) det( ).Λ = =H H GH
 (2.11)
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The volume of the lattice is also an invariant of the lattice, that is, is independent 
of the choice of basis.

2.2.1.6 Unitary, Orthogonal, and Unimodular Matrices

An n × n unitary matrix u has complex entries and uHu = I (i.e., the identity 
matrix) and its determinant is det(u) = ±1 (positive values account for rotations 
and negative values account for the existence of reflections). An orthogonal matrix 
q has real entries and qTq = I. Both unitary and orthogonal matrices form a 
group [Edelman et al. 1998]. A unimodular matrix M is a square matrix with integer 
entries and with determinant det(M) = ±1 [Schrijver 1986, Section 4.3, Banerjee 
1993]. The inverse of a unimodular matrix is also unimodular (this is because these 
matrices also form a group [Siegel 1989, Section XV, p. 148]). Unimodular matrices 
can always be generated by starting from an identity matrix and successively apply-
ing any of the following elementary column operations (or row operations according 
to the convention):

 1. Change the signs of all the elements in a column;
 2. Swap the two columns;
 3. Add and integer the multiple a of one column to another columns.

Examples for these three cases are, respectively:
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1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

iii      where 2.) =M =
















1 2 0
0 1 0
0 0 1

a

All these three elementary operations which can generate any unimodular 
matrix have clear geometric interpretations, but for that purpose the notion of lat-
tice equivalence up to scaling, orthogonal, and unimodular transformations will 
be first introduced.

2.2.1.7 Equivalent Lattices

It has already been mentioned that a basis is not unique. Furthermore, one can 
observe that a scaled or rotated version of a lattice is isomorphic to it, and there-
fore, in a geometric sense, is equivalent to it. One defines then the notion of lat-
tice equivalence. A complex lattice generated by a basis h is equivalent to a lattice 
defined by a matrix 

�
h  if and only if

 
�
H U H M= c ⋅ ⋅ ⋅ ,  (2.12)
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where u is a unitary matrix, M is a unimodular matrix, and c ∈R. By applying 
a real equivalent (to be defined in Section 2.3.2), one can henceforth deal instead 
with n × n orthogonal matrices q instead of unitary matrices u.

As pointed out in [Agrell and Eriksson 1998], if u is known and M is not 
known, it is easy to show that the lattices are the same. One option is to compute 
the (unique) Hermite Normal Form (HNF) for both bases and verify whether both 
HNF are the same [Schrijver 1986]. One alternative to this method would be to 
write each vector in one of the bases as an integer combination of the vectors in the 
other basis—as hinted by Micciancio in [Micciancio and Goldwasser 2002, p. 19]. 
Knowing M, it is also possible to find which orthogonal (unitary, in the complex 
model) matrix q would transform one basis into the other by framing the problem 
as the Procrustes orthogonal problem [Higham 1989, Gower et al. 2004, Gower 
2010]. Note that the QR decomposition is unique up to the sign of the elements 
in the diagonal [e.g., Agrell et al. 2002]. Hence, one alternative to the problem of 
finding q would be to compute the QR decomposition of both matrices (h and 
h� ) and verify that the r triangular matrix in both cases was the same up to the 
negation of its columns.

2.2.1.8 Geometry of Unimodular Transformations

While the first two kinds of elementary unimodular operations, (i) and (ii), change 
the sign of the determinant of the lattice, they do not change its modulo. In other 
words, they can include reflections but the volume remains the same. The concept 
of operation (iii) is illustrated in Figure 2.2 for a 2D case and with a = 2.

It is easy to see that the determinant of the lattice remains unchanged after the 
later type of elementary operation too. It should be noted that if the restriction on 
a ∈ � is dropped and a is allowed to be real, the volume of the associated region 
also remains unchanged. In fact, the volume is solely dependent on the length of 
the Gram–Schmidt orthogonalized vectors. However, it should be noted that when 
a ∉Z, the new set of vectors no longer constitutes a basis for the lattice as the vector 
may no longer lie on the lattice.

Volume independency for any vector on this line
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Figure 2.2 The elementary operation that skews the fundamental region of a 
lattice preserves the determinant. The two shaded areas are the same.
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2.2.1.9 Shortest Vector and Successive Minima

Lattices have a shortest vector (and at least its symmetrical with the same norm). 
Many times one is interested in finding the shortest vectors that are also linearly 
independent (so that a vector and its symmetrical cannot be both considered). 
Hence, λi is the ith successive minimum of a lattice if λi is defined as the smallest 
real number which is the smallest radius of a sphere containing i pairwise inde-
pendent vectors, all with norms smaller or equal to λi. The shortest vector clearly 
has norm λ1.

2.2.2 Dual Lattice
Every lattice has a dual lattice* (the first being known as the primal lattice). The dual 
lattice is traditionally defined for real lattices, though the definition has also been 
extended to complex lattices [Ling et al. 2006]. In the real domain, given a primal 
lattice Λ with a basis h, the dual lattice is defined as

 Λ ΛD = ∈ ∈ ∀ ∈{ }z z x x� �: , , .  (2.13)

The dual lattice can be expressed in terms of the dual basis h(D) as

 

ΛD
T n

D

= ∈ = ( ) ∈











+z z H x x

H

�
���

�: , ,
( )  

(2.14)

where h(D) involves the Moore–Penrose pseudo-inverse (to be defined in Section 
2.5.2).

 

h h h h h

h h h h h h

( ) ( ) (( ) )
(( ) ) ( ) .

D T T T T

T T T

= =
= =

+ −

− −

1

1 1
 (2.15)

Note that there is a unique dual lattice for each primal lattice. However, because 
a lattice holds an infinite number of bases, there is also an infinite number of bases 
for its dual, always observing h(D) = (h+)T , in the case of real lattices, as given in 
Equation 2.14.

* The dual lattice appears in the literature also as the polar lattice or, more commonly, as the 
reciprocal lattice. All these names were already in use in 1971 [Cassels 1971, p. 24]. Since then, 
the name polar fell into disuse, though reciprocal is a name that is still common to be found 
in the literature.

 



MIMO Detection Methods ◾ 63

Consider the case of full-rank real matrices. In fact, for x x1 2, ,∈�n
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It is also possible to show that each point in the dual lattice can be written as an 
integer combination of the columns of h(D). Denoting the rows of h−1 by r1, r2, . . ., 
rn, for any point z ∈ Λ(D) it is possible to write

 

z z HH

z h r z h r z h r

T T

T T T
n n

=
= + + +

−

∈ ∈ ∈

1

1 1 2 2( ) ( ) ( ) ,
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(2.16)

which shows that the point in the dual lattice is defined by a linear combination of 
the rows of h−1, that is, a linear combination of the columns of (h−1 )T. These argu-
ments can be extended to the cases where the Moore–Penrose inverse is required 
and also to complex lattices.

One interesting relation between the two bases is that

 ( )( )H H ID T = ,  (2.17)

which is equivalent to saying that h hi j
D

i j, ( )
,= δ , using the Kronecker delta.

The volumes of the primal and the dual lattice are related by

 
vol( ) vol( )Λ ΛD = 1

 
(2.18)

and their Gram matrices are related by
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 (2.19)

Obviously, the dual of the dual lattice is the primal lattice itself. The geom-
etry of the dual lattice is closely related to the geometry of the primal lattice. 
The connection is that each point in the dual lattice defines a family of parallel 
(n − 1)-dimensional hyperplanes, where translates of an (n − 1)-dimensional sub-
lattice lie. The union of those planes captures all the points of the primal lattice. 
This means that the shortest vector in the dual lattice will define the most distant 
(n − 1)-dimensional hyperplanes, whose union builds up the whole primal lat-
tice. These hyperplanes can be interpreted as parallel layers and (as a consequence 
of being the ones farthest apart) are the densest ones in the lattice. In MIMO 
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literature, the geometrical interpretation of the dual lattice as a tool for improving 
detection seems to have been first noted in [Agrell et al. 2002, p. 2207] for SD, and 
then in [Ling et al. 2006] for SIC [Ling and Mow 2009], though it is also implied 
in the detector in [Su and Kschischang 2007, p. 1944].

From the definition in Equation 2.13, for both Λ and Λ(D) in n dimensions, the 
inner product between some given point z in the dual lattice and any vector in the 
primal lattice is always an integer. Therefore,

  z x z x z x z xe, , , cos( ) ( ) ,( )∈ ∈ ∈ ⇔ = ∈� �Λ ΛD
z

θ Proj  (2.20)

where e z zz = / .
From Equation 2.20, it is then possible to define a family of parallel hyperplanes 

P( )ν , for ν ∈ �, such that Projez
( )x z= −1ν . These are planes in dimension n − 1 

with a distance D = ‖z‖−1 between them, as illustrated in Figure 2.3. Note that 
vectors a1, a2, a3 all have the same projection onto the vector z that defines the set 
of parallel hyperplanes that is shown. ν is then the index of the hyperplane with 
respect to the distance between hyperplanes, that is, D = ‖z‖−1.

Figure 2.4 shows an example of two different partitions (i.e., a family of parallel 
hyperplanes) of a lattice associated with two different choices of vectors of the dual 
lattice. The example is set for

 h h=
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Figure 2.3 A primal lattice in n dimensions as the union of translates of a sublat-
tice and these translates lie on (n − 1)-dimensional hyperplanes.
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2.3 Communication with Vectors
2.3.1 System Model
In MIMO SM with NT transmit antennas and NR receive antennas (with NR ≥ NT), the 
relation between the transmitted (input) vector xc c c c N

T Nx x x
T

T= … ∈ ×[ , , , ], , ,1 2
1�  

and the received (output) vector y c c c c N
T Ny y y

R
R= … ∈ ×[ , , , ], , ,1 2

1�  is modeled in 
the baseband as

 y H x nc c c c= + ,  (2.21)
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Figure 2.4 Identification of the hyperplanes in the primal lattice (on the left 
side) associated with a certain point in the dual lattice (on the right side). (a) 
Selection of (−2, 1) in the dual lattice. (b) Selection of (−1, 4) in the dual lattice.
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where hc
N NR T∈ ×�  is the channel matrix, with its entries hij representing the 

complex coefficient associated with the SISO link between the ith receive (Rx) 
antenna and the jth transmit (Tx) antenna, and with hi j c, ( , )∼ N 0 1 , that is, taken 
from a zero-mean circularly symmetric complex Gaussian distribution with uni-
tary variance (i.e., variance 1/2 in both the real and imaginary components). The 
phase of these elements is uniformly distributed in [0 2π], and their amplitude has 
a Rayleigh distribution. This corresponds to the i.i.d. (independent and identically 
distributed) Rayleigh fading channel model. The subscripts denote that the ele-
ments in the vectors and the entries in hc are all complex variables. Furthermore, 
there is noise added to each entry of the received vector, modeled by the column 
vector nc c c c N

T Nn n n
R

R= … ∈ ×[ , , , ], , ,1 2
1�  with independent circularly symmetric 

complex Gaussian random variables taken from Nc n( , )0 2σ , that is, with zero aver-
age and variance σ n

2  (corresponding to a variance σ n
2 2/  in both real and imaginary 

components). This noise model is often dubbed in MIMO literature as zero-mean 
spatially white (ZMSW) noise [e.g., Goldsmith 2005]. For independent input data, 
its covariance is R Ix c c

H
x nE= ={ }x x σ 2 . Similarly, the covariance of the indepen-

dent noise vector is R n n In c c
H

n nE= ={ } σ 2 . Henceforth, the subscript in In will be 
abandoned.

It should now be clear that with integer input symbols xi, any of these possible 
vectors is a point on the Zn  lattice. The effect of the channel is that of warping Zn  
according to the linear transformation hc (as illustrated in Figure 2.5).

Both phase shift keying (PSK) or quadrature amplitude modulation (QAM) 
constellations can be used in MIMO, however, only the latter lends itself for a lat-
tice interpretation and most of the literature on MIMO SM concentrates on QAM, 
which is also the modulation that is considered in this chapter. Consequently, the 
input symbols in each transmit antenna are taken from a finite complex constella-
tion Ac , which is some M-ary QAM (quadrature amplitude modulation). The sym-
bols have zero mean, so that E{xc} = 0. This complex constellation is constructed 
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from the Cartesian product A A A Ac = ×  where  is the real alphabet

 
A = − − − − − + + + + + −{ }( ) , , , , , , , , ( ) .M a a a a a a a M a1 5 3 3 5 1… �

 
(2.22)

Traditionally, a = 1, and the alphabet in each real dimension is

 
A = − − − − − + + + + + −{ }( ), , , , , , , , ( ) .M M1 5 3 1 1 3 5 1… �

 
(2.23)

Without loss of generality, one can assume Rx filters with impulse response h(t) 
normalized to ∫ =h t dt( ) 2 1, and therefore, the average energy of the complex 
symbols in A  is given by

 
E E x M x M x xs c i c i

x
c i c i
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2 2 2 21 1

A A
∑∑ ,

 
(2.24)

which coincides with their average power (Es x= σ 2 ). Table 2.2 lists the values of Es 
for the modulations used later in this work.

The “overall” SNR at the receiver is
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(2.25)

which is actually the same as NT times the SNR of a SISO channel. This 
comes from the fact that each antenna receives the incoming power from NT 
antennas, while each receive antenna perceives the same amount of noise as in 
SISO. The result is valid on average and only when hi j c, ( , )∼ N 0 1 , that is, each 
yi receives the sum of NT symbols weighted by unit power random variables 
(E[|hij|2] = 1). Particular channel realizations will lead to different instanta-
neous SNRs. In this chapter, when assessing the performance of a receiver, 
the SER will be plotted against the SNR as defined in Equation 2.25. One 

Table 2.2 Symbol Energy for the Used Modulations

QPSK 16-QAM 64-QAM

Es 2 10 42
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other important metric that will appear in the capacity formula is the SNR per 
transmit antenna, which is

 
ρ ρ σ

σa
T

x

nN= =
2

2 .
 

(2.26)

This latter normalized SNR is in fact the same as Es/N0 (where N0 is the unilat-
eral power spectral density of the noise) because, assuming the Nyquist bandwidth 
and a raised-cosine filter,
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(2.27)

Unlike what happens in SISO systems, in MIMO most performance results 
are given as a function of the SNR. However, some literature uses the average 
energy per bit,* Eb = Es/log2(M), and the unilateral spectral density of noise, N0. 
Accordingly, the SNR given by Equation 2.25 is the same as

 
ρ = =N

E
N N M

E
NT

s
T

b

0
2

0
log ( ) ,

 
(2.28)

which allows comparisons across the two different approaches seen in the literature.
It is also worth mentioning that an equivalent model for SM assuming unit 

noise variance and unit Es is also often found in the literature. Maintaining all that 
was said for the SNR, this model must be written as

 
y H x n y H x nc

T
c c c c

s

n
c c cN

E= + = +ρ
σ

or also as 2 ,
 

(2.29)

where now the real alphabet in each dimension is

 
A = − − − − − − + + + + + −{ }3

2 1 1 5 3 1 1 3 5 1( ) ( ), , , , , , , , ( )M M M… �
 

(2.30)

to assure that E x xi i{ }* = 1 and E{xH x} = NT.
The norms in Equation 2.25 are the Euclidian norm. Notice that for the case of 

matrices several norms may be defined [Stewart 1973, Chapter 4].

 

A A A AAF
H H

ij
ji

a= = = ∑∑trace( ) trace( ) 2

 
(2.31)

* The error rate is also sometimes given in the MIMO literature in terms of the bit error rate 
(BER), which is obtained from the SER taking into consideration the number of bits per com-
plex symbol.
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It is not difficult to see that in this norm

 
E N Nc F T Rh 2{ } = .

 
(2.32)

In this chapter, the uncorrelated channel is considered, as seen in the definition of 
hc. When correlation exists between the multipath components, a more general 
model is necessary and that implies a full characterization of the correlation matrix 
involving the cumbersome vectorization of hc [see, e.g., Oestges and Clerckx 2007, 
Section 3.1.1]. The Kronecker model is a popular way of avoiding this, by decou-
pling the effect of correlation at the transmit side (characterized by rc,Tx) from 
effects at the receive side (characterized by rc,Rx). Then, the model consists only of 
matrix multiplications*

 hc c c cR H= ,
/

,
/ .Rx ,ind Tx

1 2 1 2R  (2.33)

The separation of Tx and Rx effects can be interpreted as if the multipath com-
ponents at the receiver had “forgotten” about the effects of antenna coupling and 
scattering close to the Tx, which can be considered as separate from what happens 
in terms of antenna coupling and scattering close to the Rx.

For signals with symbol time T and bandwidth B, as a rule of thumb, the coher-
ence time and the coherence bandwidth are given by

 
Bcoh coh≈ ≈1 1

rms delay spread Doppler spread, .τ
 

(2.34)

When assessing the performance of SM systems, in this chapter we will always 
consider the channel to be (i) flat (nonselective in the frequency domain), that is, 
B < Bcoh, and (ii) slow (nonselective in time for a transmit vector), that is, T < τcoh. 
For typical values for the coherence time in different mobility scenarios in LTE, see 
[Ghosh et al. 2010, Section 2.4]. Typical descriptions of the wireless channels can 
be found in, for example, [Ghosh et al. 2010, Section 2.4], [Giannakis et al. 2007, 
Section 1.3] and a deeper discussion is offered by [Oestges and Clerckx 2007].

2.3.2 Real Equivalent Model
The model for SM was described in Equation 2.21 in terms of complex vector 
spaces, however it is not difficult to prove that, by stacking the real and complex 
parts of the vectors (respectively denoted by ℜ and ℑ), and by appropriate con-

* The square is root of a matrix defined as A U V1 2 1 2/ /= Σ H , where u and v are the unitary 
matrices of the SVD of A, with Σ the diagonal matrix made of the singular values of A [Biglieri 
and Taricco 2005, p. 18].
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struction of a modified channel matrix, the problem can equivalently be described 
by means of real variables as
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with y = … ∈ ×[ , , , ]y y y N
T N

R
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1 2 2
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1… ∈ ×�  and h ∈ ×�N NR T  (notice that the “c” subscripts in the 
variables will be dropped from now on). Expanding Equation 2.35, each compo-
nent of y is

 

y h x h x
h x h x n i N

i i i N N

i i N N i

T T

T T

= ℜ ⋅ ℜ + + ℜ ⋅ ℜ
− ℑ ⋅ ℑ − − ℑ ⋅ ℑ + ℜ ≤

, ,

, , ,
1 1

1 1

�
� RR

i i N i N N N

i N i N N

y h x h x
h x h

R R T T

R R

= ℑ ⋅ ℜ + + ℑ ⋅ ℜ
+ ℜ ⋅ ℑ + + ℜ

− −

− −

, ,

, ,

1 1

1 1

�
�

TT T R
x n N i NN i N R R⋅ ℑ + ℑ < ≤









 − , 2   

  (2.36)

and therefore these components have a χ2 distribution with 2NT degrees of free-
dom, before the noise is added.

The equivalent real model is the one that will be used throughout this work 
and, therefore, the transposition operator, T, will replace the Hermitian operator, 
H (conjugation followed by transposition). Moreover, orthogonal matrices play the 
role of singular matrices, for instance in the singular-value decomposition (SVD) or 
for performing orthogonal rotations on lattices. In this model, the discrete inputs 
in the elements of x that are considered in this chapter are taken from the real 
alphabet A , as defined in Equation 2.23. In this model, both real and imaginary 
components of n n nc c cj= ℜ + ℑ( ) ( )  have variance

 
σ ρn

T sN E2 1
2= .

 
(2.37)

Another consequence of this model is that, henceforth, full-rank real lattices 
will be considered to have n dimensions.

2.3.3  Capacity with Channel State Information 
at the Receiver

Assuming that there is perfect channel state information at the receiver (CSIR), that 
is, perfect knowledge of h, it can be proven that the maximization of the mutual 
information between the input and output in MIMO amounts to maximizing 
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log (det( ))2 πe yr . The output covariance is R yy HR H Iy
H

x
H

n NE
R

= { } = + σ 2  and 
therefore the capacity is

 C Nx T
x

H= +



max log det ,

R
2 I HR H

ρ
 (2.38)

where trace (rx) = E{xHx} < 1 is the transmit power constraint in the optimization 
problem. When the channel is known at the transmitter (Tx), that is, there is CSIT, 
the input covariance can be built to match the channel. When CSIT does not exist, 
the input is made to have R Ix x NT

= σ 2 , leading to a capacity

 
C NT

H= +



log det ,2 I HH

ρ
 

(2.39)

where CSIR is assumed. This implies that the receiver is able to accurately estimate 
the channel matrix.

The matrix hhH can be interpreted as the Gram matrix associated with the 
lattice generated by the rows of h. Therefore, as shown in Section 2.2.1, hhH 
is a semidefinite-positive matrix with r = rank(h) eigenvalues, whose values are 
λi is= 2, that is, they are the square of corresponding r singular values si. Applying 
the SVD to hhH, and remembering that a Gram matrix is symmetric, its left and 
right unitary matrices in the SVD are the same. Hence, Equation 2.38 becomes

 
log det log det2 2I U U U I U+



 = +











ρ ρ
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(2.40)

and

 
C NT

i
k

r

= +





=
∑ log .2

1

1 ρ λ
 

(2.41)

As known from Section 2.3.1, h is not deterministic but rather a random 
matrix. One should note that in the case of slow fading (when a code word does not 
span more than one coherence period of the channel), regardless the choice of rate 
and coding scheme, there will always be a nonzero probability that the rate is higher 
than the capacity of the channel. Hence, the capacity that the channel can commit 
to is zero [Tse and Viswanath 2005, p. 188]. Even in that case, one can speak of the 
instantaneous capacity C(h), as a function of the current channel.

This chapter assumes a channel with a block fading model (i.e., when a code-
word goes through many different and independent channel instances [Tse and 
Viswanath 2005, p. 199]). In this model, the channel remains constant over a 
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certain duration (the duration of a block), only changing from block to block. In 
this case, by taking the average of over many instances of the channel coefficients, 
a channel capacity can be obtained by applying an expectation to Equation 2.41:
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ρ λlog .2
1

1
 

(2.42)

This expectation depends on the eigenvalues λi, which are independent random 
variables, each with a Wishart distribution [Tulino and Verdú 2004, Oestges and 
Clerckx 2007, Appendix B], as Teletar first noted in [Telatar 1999]. While the 
number of receive antennas is not explicit in the capacity formula, its effect is hid-
den in the rank r of hhH, which is

 r N Nt R= min( , ).  (2.43)

It is not difficult to show [Tse and Viswanath 2005, Khan 2009, pp. 148–149, 
Section 8.2] that for low SNR, using the approximation log2(1 + x) ≈ xlog2e valid 
for small x, and noting that E{λi} = Trace(hhH), as seen in Equations 2.39 through 
2.40, then the capacity in Equation 2.42 is

 C N eRerg ≈ ρ log .2  (2.44)

This result shows that, for the low SNR, the number of transmit antennas does 
not play any role, because what is important is the fact that NR receive antennas 
can coherently combine the incoming signals working as a “spatial matched filter.” 
This result will be revisited in Section 2.5, when both linear receivers are shown to 
approach the matched filter when noise is high compared to the mutual interfer-
ence between layers. In the high SNR regime, it is also not difficult to conclude that 
expression (2.42) becomes

 
C r N E
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ierg ≈ 
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=
∑log {log ( )},2 2

1

ρ λλ

 
(2.45)

which, remembering Equation 2.43, shows the famous linear increase of the ergo-
dic capacity with the minimum number of antennas on each side.

In STC a code word spans more than one transmit vector, as a matrix assumes 
the role of xc in model (2.21) and several vectors may experience different channel 
realizations hi over time. Moreover, using outer-codes the code words may experi-
ence enough channel realizations and the average of the capacities of the channels 
may be close to the ergodic capacity. In the case of uncoded SM, those situations 
do not exist and therefore the outage capacity and the outage probability are the 
concepts best suited to describe these systems.
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In 2004, Guo, Verdú, and Shamai made a breakthrough in information the-
ory, finding a very simple relation between mutual information and the minimum 
mean square error at a receiver. Debbah in [Sibille 2011, Chapter 2] shows how 
that approach eventually leads to an elegant (average) geometrical interpretation for 
the capacity of a MIMO system, much similar to that of the traditional geometri-
cal interpretation of capacity of the binary symmetric channel, as first observed by 
Shannon. The determinant of the auto-correlation matrix of the transmitted sym-
bols measures the volume of space associated with a MIMO code word. The deter-
minant of the covariance matrix of the MMSE estimate measures the small volume 
around the received vector, where the signal is expected to lie with high probability. 
It can be proven that the MIMO capacity is

 C xx= log det( )
det( ),2

r
r MMSE  

(2.46)

which amounts to the sphere packing problem in lattices [Conway and Sloane 1999, 
Aste and Weaire 2000]. It is worth noting that Stoica et  al. have independently 
arrived at the exact same lattice interpretation solely by signal processing consider-
ations [Stoica et al. 2005].

2.4 Detection in MIMO Spatial Multiplexing
While in STC the central research problem is finding codes that maximize the code 
word pairwise distance and thus that minimizes pairwise error probability [e.g., 
Viterbo and Oggier 2004], the main research problem in SM in the last 10 years 
has been detecting x given the noisy observation y. For that problem, the maximum 
a posterior probability (MAP) of x is
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(2.47)

As all vectors x are equiprobable, P(x|y) is a sufficient statistics for the detec-
tion process. Therefore, MAP detection can be reduced to maximum likelihood (ML) 
without any performance loss. For the independent and identically distributed (i.i.d.) 
Rayleigh channel with i.i.d. transmitted symbols with R Ix x n= σ 2  and R In n n= σ 2 , 
one has the N-dimensional probability distribution
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and therefore the detection problem becomes that of minimizing the exponent of 
Equation 2.48:

 
�x y Hx

x
ML = −{ }

∈
argmax .
A

2

 
(2.49)

This problem now has a clear geometrical interpretation: the optimal x (the one 
that best explains the observation y) is the one that, among all possible input vec-
tors, and after the linear transformation, generates the closest vector hx (in the 
Euclidian sense) to the received vector y. This problem is known in integer opti-
mization as integer least squares and in lattice theory as CVP (as mentioned above): 
“given a target vector off the lattice, y, which point in the lattice is the closest one?” 
The problem is exemplified in Figure 2.6 for the simple cases of Z , Z2 , and Z3 
lattices (the CVP in these lattices is not NP-hard; for Zn lattices the algorithmic 
detection complexity of the optimal detector is actually polynomial O( )n3 , due to 
the orthogonal structure).

The solution of the CVP is equivalent to drawing a Voronoi cell around the target 
point and finding which single lattice point lies inside the region. Conversely, this 
is equivalent to having the lattice tiled by the Voronoi region and in selecting which 
region the target is. Obviously, computing the Voronoi region is also NP-hard.

Notice that the complex-valued lattice in a MIMO link with NT transmit 
antennas and an M-QAM modulation will have M NT  complex points within its 
border. In the equivalent real model the number is obviously the same, ( )M NT2 .
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Figure 2.6 The CVP in (a) one, (b) two, and (c) three dimensions, given an off-
lattice target point.
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2.4.1 Optimal Detection and Complexity
The algorithmic complexity of the CVP is proven to be NP-hard, which, in the cur-
rent state of understanding of the complexity of algorithms, places it in the worst tier 
in the hierarchy of complexity classes. One should not conclude from this that any 
hope of finding accurate solutions should be deemed unrealistic. In fact, very good 
approximations to the optimal solution can be found, especially when the number of 
dimensions is small [Hochba 1996]. As the number of dimensions grows, the com-
plexity of the problem, measured as the number of operations, grows exponentially 
(this is what is known as “the curse of dimensionality” [Bishop 2006]); however, 
the complexity of some approximate detection techniques grows only polynomi-
ally. Usually, the number of operations (flops or algebraic operations) required by 
an algorithm is expressed in the “big O” notation* and in practice this suffices for 
comparing the complexity of algorithms, when it is feasible to test them. However, 
the complexity theory of algorithms is a vast and convoluted topic [e.g., Talbot and 
Welsh 2006], and the precise definition of each of the complexity classes falls beyond 
the scope of this work. Nonetheless, there are simpler and insightful working defini-
tions describing these classes, for example, [Welsh 1988], [Cormen et al. 2001], and 
[Bertsimas and Weismantel 2005, Appendix B]. The most broad complexity classes 
are P, NP, NP-complete, and NP-hard and, according to what is known today, are 
related as shown in Figure 2.7 (if P ≠ NP, as is believed to be the most likely case).

The P class encompasses the problems that can be solved in polynomial time (mak-
ing a correspondence between the number of operations and time). NP stands for 
nondeterministic polynomial complexity. It means that, if a certain certificate is provided 

* For an input data of size n (e.g., n bits are necessary to represent the data, or, in the particular 
case of MIMO, n is the number of dimensions of the lattice), complexity O( ( ))f n  means that 
the function f(n) is an upper bound, up to a constant multiple factor, for the function of the 
number of operations as a function of n—a detailed description of this and other notations is 
given in [Epp 2011].

NP-hard

NP-complete

NP

P

Figure 2.7 Complexity classes.
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(i.e., a possible “solution” to the problem), it is then possible to verify in polynomial 
time if that certificate is a valid solution to the problem or not. This involves a mere yes/
no answer because the problem is formulated as a decision problem. As every problem in 
P can also be posed as a decision problem (one just needs to use the solution as a certifi-
cate), then P ⊂ NP. The problems in the NP-complete class all share the property that 
if one of them is proven to be in P, then all the other problems in the class would also 
be in P, unless the polynomial hierarchy collapses. (It is worth mentioning that the vast 
majority of NP problems are in fact NP-complete.) Technically, these “entanglements” 
are proven through a “P time” reduction of one problem to the other. A simple defini-
tion of the NP-hard class unavoidably ends up vague: it consists of the problems that are 
“at least as hard as the NP-complete ones.” NP-hard problems hold some property that, 
if solved in “P time,” would make any problem in class NP-complete to be solvable in 
“P time,” though they cannot be included in the NP-complete family. Obviously, given 
the definition, all problems in the NP-complete class are also NP-hard; however, there 
exist problems that are in the NP-hard class but not in NP-complete. A useful theorem 
states as follows: if an optimization problem has a decision version that is NP-complete, 
then the optimization version is NP-hard. In the CVP, one can think of the following 
decision version: “is there a lattice point at a distance shorter than some distance d from 
the target point?” Given a certificate, it is trivial to compute the distance and verify 
that such a point exists. The optimization version is the CVP itself: “what is the point 
at the shortest distance from the target point?” There are thousands of NP-hard prob-
lems [Bertsimas and Weismantel 2005, Appendix B], such as the subset sum problem 
(an example of a decision problem), the knapsack problem (a problem of combinatorial 
optimization, [Kreher 1999, Bertsimas and Weismantel 2005]), the binary optimiza-
tion problem, the traveling salesman problem, or the CVP.

The CVP was first proven NP-hard by van Emde Boas in 1981, but the tech-
nicalities of that proof are considered cumbersome. In 2001, [Micciancio 2001] 
was able to show a reduction from the subset sum problem (known to be NP-hard) 
to a CVP in a lattice, which finally proved, in a very simple and elegant way, the 
NP-hardness of the CVP.

As is the case of many problems in the class NP-hard, being in this class does 
not mean that the problem cannot ever be solved in an optimal manner. When 
both the number of dimensions n and the modulation order M are low, a “brute 
force” approach is affordable. Furthermore, when ML-type detection is no longer 
possible, the challenge of finding suboptimal affordable solutions can be quite suc-
cessful. The next section will describe how the geometry of lattice is closely related 
with the detection strategies used in MIMO.

2.5 Traditional Receivers
In the following, the most important type of MIMO receivers will be introduced with 
a geometric perspective in mind, which explains their performance loss in respect to 
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the optimum detector. The linear receivers, which are the simplest ones, but also the 
ones having the worst symbol error rate (SER), are the first ones to be geometrically 
interpreted. Then, the OSIC technique is described, followed by the lattice-reduction-
aided (LRA) approach, and finally the sphere-decoding concept is introduced.

2.5.1 Linear Receivers
Linear receivers consist of (i) a linear transformation W of the received vector which 
then is followed by (ii) a quantization to the symbol alphabet (also known as slic-
ing). The linear transformation is a filter that can be designed with two different 
criteria, leading to the zero-forcing (ZF) detector or to the minimum mean square 
error (MMSE) detector. These receivers constitute the simplest set of (nonoptimal) 
receivers to be widely used for MIMO receivers. The detected solution �x given by 
these techniques is obtained by applying

 xW  = Wy, (2.50)

 �x xW WQ= �[ ],  (2.51)

where Q�[ ]⋅  denotes rounding to the nearest integer and the subscript W in �xW  
indicates the filter design criterion: ZF or MMSE.

D-BLAST was the first technique to be proposed [Foschini 1996], followed 
by the more practical OSIC [Golden et al. 1999], but, as will be seen below, OSIC 
includes a linear inversion (either ZF or MMSE). As mentioned in Section 2.1.3, 
both ZF and MMSE techniques are well known in other contexts of detection and 
equalization in SISO (c.f. Table 2.1), but the formalism that is used in MIMO is the 
one that was first developed for multiuser detection [Verdú 1998].

In both types of linear receivers, the linear transformation W can be seen as 
a focusing process of the points in the received lattice back onto �n(or �n). This 
“backwards transformation” is of interest because it maps the received lattice back 
onto �n , which lends itself to simple orthogonal slicing. This is the primary motiva-
tion for this particular design. In [Monteiro and Kschischang 2011], the concept of 
having a linear transformation as the first stage of a detection technique has been 
generalized to the concept of focusing a received lattice onto some other given lat-
tice, whose geometric structure is also of interest.

Noticeably, despite the early use of both ZF and MMSE detectors, a thorough 
theoretical understanding of their performance seems not to have been pursued 
until [Jiang et al. 2011].

2.5.2 Zero-Forcing Detection
It is natural to think first of a solution to Equation 2.49 involving the linear trans-
formation that undoes the linear transformation, which is obviously the inverse 
matrix.
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The inversion of h is a trivial operation (e.g., by applying Gauss elimination to 
an extended matrix), but can only be defined for matrices with nonzero determinant 
(i.e., invertible or nonsingular matrices). Hence, the need for NT < NR. A geometrical 
interpretation for the cases with singular matrices is simple. A singular matrix that 
defines a lattice in �n (the extension to �n is always implied) performs a linear 
transformation whose outcome is a “flat” lattice that lies on a “flat subspace” of that 
space, that is, a lattice that does not fill all the dimensions in �n and consequently 
can be fully described in a smaller dimensional space. For example, think of lattices 
that lie on a 2D plane or on a straight line embedded in an n-dimensional real space. 
In the space in which they are defined, these lattices have zero volume (i.e., zero 
determinant). Even so, an inverse correspondence to the original lattice seems still 
impossible. This would only not be possible if NR < NT, since the higher dimensional 
transmit lattice in NT cannot, in general, be captured in a lower dimensional space.

The algebraic interpretation of the channel inversion problem of an n × n 
singular channel matrix h is related to its SVD h = uΣv T, where u and v are 
unitary matrices and Σ = diag( )λ λ λ1 2, , ,… r , the diagonal matrix with the sin-
gular values of v. The inverse is H V U= − − −( )T 1 1 1Σ , or H V U= − − −( )T 1 1 1Σ , 
or H V U= −Σ 1 T , as both u and v. Since the inverse of the diagonal matrix is 
Σ = diag( / / / )1 1 11 2λ λ λ, , ,… r , when there are only r < n nonzero singular values 
(i.e., the rank is r), then n − r singular values cannot be inverted in a finite domain.

The pseudo-inverse matrix, also known as the Moore–Penrose* (inverse) matrix, is 
the solution to the normal equation hHy = hHhx, obtained from Equation 2.35. 
The straightforward solution to this equation is to make (hHh)−1hHy = x, where 
hHh is invertible because it is positive definite (indeed, it corresponds to the Gram 
matrix of the lattice). The Moore–Penrose inverse of h ∈ ×�N NR T , when NR > NT, 
always exists and is defined as

 h h h h+ −= ( ) .H H1
 (2.52)

From Equations 2.50 and 2.51, the ZF receiver is formed by the pseudo-inverse 
matrix (the linear filter) followed by a quantization to the symbol alphabet by 
threshold decision, that is,

 W H H H x W y x xZF
H H

ZF ZF ZF ZFQ= = =−( ) , , [ ],1
A�  (2.53)

and therefore

 �x W Hx n x nZF ZF ZFQ Q= + = +A A[ ( )] [ ].W  (2.54)

The filtered noise is transformed by WZF = h+, which constitutes a noise 
enhancement factor. The receiver structure is shown in Figure 2.8.

* Discovered first by E. H. Moore in 1920 and later rediscovered by Roger Penrose in [Penrose 
1955].
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The detected vector �xZF , as obtained from Equation 2.54, is in fact the solution to

 
�x y HxZF

NT

= −{ }
∈

argmin .
x �  

(2.55)

Comparing Equation 2.55 with Equation 2.49, one should note how the search 
is now made in the continuous domain �n (or in �n, for complex lattices) instead 
of the discrete complex alphabet A  (or Ac ). This is the origin of the suboptimality 
of the ZF receiver. As mentioned previously after the inverse transformation, all the 
points in the lattice are matched to the initial �n . The orthogonal geometry of �n  
eliminates all the interference between the dimensions of the lattice, that is, between 
the MIMO layers; in a system with NT = NR, the ith antenna at the receiver “sees” 
the transmission from the corresponding ith antenna at the transmitter cleared from 
any interference from the other NT − 1 antennas. If NT < NR, the same happens in 
the appropriate subdimensions of y. The name zero forcing is due to the fact that the 
interference in each antenna is forced to zero. In a Euclidian signal space, the geo-
metrical interpretation is that ZF projects the received vector onto the space that is 
orthogonal to space where all the interferers lie (as illustrated in Figure 2.9).

This generalized pseudo-inverse transformation for singular matrices holds proper-
ties that are similar to the properties of the “true” inverse matrix of a nonsingular matrix 
(for an extensive description of the properties, see [Piziak and Odell 2007, Section 4.4]).

Any solution to Equation 2.49 involving the inversion of h will imply a number 
of operations that depends on the inversion methods used. The number of those 
operations is given in [Piziak and Odell 2007, p. 170] and is listed in Table 2.3. The 
common assumption in MIMO literature is that the number of operations involved 

WZF = H+ Slicing xy ˆ

Figure 2.8 Zero-forcing receiver.

y

Matched filter

Subspace with
the interferers

Zero-forcing

Figure 2.9 Geometric interpretation of ZF filtering in a signal space.

 



80 ◾ MIMO Processing for 4G and Beyond

in ZF (or in any stage involving channel inversion) is O( )n3  and Table 2.3 corrobo-
rates that this is the case for all the inversion methods listed.

2.5.2.1 Geometry of Zero-Forcing Detection

As is mentioned in the previous section, ZF solves the CVP by relaxing it to a 
search in a continuous neighborhood instead of computing the distance between 
the received vector (also called the target) and every point in the lattice. The geo-
metrical implication can be better understood thinking of the linear transforma-
tion of the hypercubic Voronoi regions of �n by h. The resulting regions are called 
the ZF decision regions and correspond to the space where a lattice point will be 
interpreted as being close to the lattice point associated with that region.

The decision regions associated with ZF criterion are simple to obtain as they 
are the fundamental region R( )H , as defined in Equation 2.6. Because the lattices 
in MIMO are the Gaussian lattices defined in Section 2.3.1, the basis generated by 
a channel may have some highly correlated vectors. Geometrically, this corresponds 
to lattices with very narrow fundamental regions, which are generated by ill-con-
ditioned matrices, that is, when one or more singular values are close to zero, and 
consequently the volume of the lattice vanishes. Figure 2.10 shows the ZF decision 
regions associated with the following equivalent bases:
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Let us concentrate in the case where the transmit point was the origin. The 
shaded areas indicate regions which will lead to wrong decisions when using the ZF 

Table 2.3 Number of Operations Involved in Solving y = Hx by Several 
Methods Based on Channel Inversion (with a Square H)

Additions and 
Subtractions

Multiplications and 
Divisions

Gauss elimination with 
back substitution

1
3

1
2

5
6

3 2n n n+ − 1
3

1
3

3 2n n n+ −

Gauss–Jordan 
elimination (reduced 
Echelon form)

1
3

1
2

5
6

3 2n n n+ − 1
3

1
3

3 2n n n+ −

Cramer’s rule [Westlake 
1968]

(n + 1)! (n + 1)!

Inversion of H , when it 
is nonsingular

n3 − n2 n3 + n2
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technique: either because the point is inside the Voronoi region and outside the ZF 
decision region or because the closest lattice point would be decided as being the 
origin while the Voronoi region shows that to be false. It is possible to observe in 
Figure 2.10 that different bases will output different decisions given a target point. 
For the examples at a given SNR, the SER with h1 will be always lower, because 
the coverage of the MLD (i.e., Voronoi) regions is larger than in the case of basis 
h2. The notion of coverage is essential to understand MIMO detection [Su and 
Kschischang 2007]. To simplify the operational meaning of coverage, [Ling 2011] 
was introduced the notion of proximity factors dependent on the notion of the larg-
est sphere that can be fitted inside the region of coverage. These spheres are also 
shown in Figure 2.10 for the two basis, having decoding radii ξ1 and ξ2, respectively.

Note that a receiver with a better performance is one whose decision regions better 
approximate the shape of the regions associated with MLD, that is, with a better cover-
age of the Voronoi regions. This is the central concept in the design of novel detection 
techniques such as [Su and Kschischang 2007] and [Monteiro and Kschischang 2011].

2.5.2.2 Algebraic Analysis of ZF

It is also possible to explain the behavior of ZF analytically. One starts by notic-
ing that the covariance matrix of the noise affecting the decisions after any linear 
transformation W is (for complex lattices)

 

R Wn Wn Wnn W

WR W
n

H H H

n
H

E E, {( )( ) } { }
.

W = =
=  (2.57)

–10 –8 –6 –4 –2 0 2 4 6 8 10 –10 –8 –6 –4 –2 0 2 4 6 8 10
–10

–8

–6

–4

–2

0

2

4

6

8

10

–10

–8

–6

–4

–2

0

2

4

6

8

10
(b)(a)

Dimension 1

ξ1
ξ2

D
im

en
sio

n 
2

D
im

en
sio

n 
2

Dimension 1

Figure 2.10 Decision regions associated with the two different bases of the 
same lattice. (a) H1 and (b) H2.
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The output SNR of ZF-detected vector (before slicing) at the ith layer is
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For WZF given by Equation 2.52 and for the model with R Ix x= σ 2  and with 
R In n= σ 2 , this SNR becomes
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This expression relates the input SNR per transmit antenna with the output SNR 
at each receive antenna and quantifies the noise enhancement that explains the poor 
performance of ZF detection when deciding for �xZF . One may note in Equation 
2.59 that the denominator (hH h)−1 is the inverse of the Gram matrix g, that is, it 
is the Gram matrix of the dual lattice, according to Equation 2.19. When this Gram 
matrix is close to the identity matrix, that means the lattice is generated by some uni-
tary matrix u (orthonormal in the real model), with uuH = uHu = I. In this case, 
the interference between all layers is zero, and no noise enhancement will happen 
in ZF detection. However, when the lattice is not orthogonal, ( )

,
( )H H GH

i i ii
D−  =1  

corresponds to the quadratic norm of the generators of the dual vector. According to 
the interpretation given in Section 2.2.2, when these generators of the dual are large, 
the lattice will have a narrow separation between the parallel hyperplanes where the 
lattice points lie, and so have a small decoding radius. This brings together the alge-
braic analysis and the geometrical interpretation.

The diversity order collected by the ZF is NR − NT + 1, as known since the early 
papers on MIMO, however, the analytical proof of that was only later given in [Ma 
and Zhang 2008].

2.5.3 Minimum Mean-Squared Error Detection
The other (and more sophisticated) linear receiver aims at finding the filter that 
minimizes the mean-squared error between the estimated vector and the original 
vector, that is, the filter should be
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 W Wy x
W

MMSE E= −{ }argmin 2 .  (2.60)

This criterion does not aim at cancelling all the interference between layers as does 
ZF. Instead, the MMSE criterion takes into consideration both the interference and 
the noise in order to minimize the expected error. This minimization implies find-
ing the point where the gradient of the objective function in Equation 2.60 is zero. 
There is however a fast track to finding this estimator by applying the orthogonality 
principle, well known in estimation theory and widely used in equalization problems 
in the ISI channel [Haykin 1996, Section 5.2, Fischer 2005, Sections 2.2.3 and 2.3.4, 
Madhow 2008, Section 5.6].* The optimum estimator for Equation 2.60 is the one 
that produces an error vector Δ = WMMSE y − x that is orthogonal to received signal, 
that is, the two vectors are uncorrelated (as illustrated in Figure 2.11).

The minimum norm ‖Δ‖ occurs when W yMMSE ⊥ ∆ , that is

 E MMSE
H{( ) } .W y x y− = 0  (2.61)

Applying this principle, WMMSE can be obtained from (using complex vectors)
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(2.62)

* The principle is valid for in general estimation theory and can be derived in a Bayesian frame-
work for linear estimation [Kay 1993, Chapter 12, Poor 1994, Sections V-C, VII-C1].

y

x

∆ = x – WMMSEy
WMMSEy

Figure 2.11 Orthogonality principle: the expected error is made orthogonal to 
the space where the solution lies.
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At this point most authors commonly invoke the matrix inversion lemma* [Kay 
1993, p. 571, Haykin 1996, pp. 565–566], and immediately obtain from it one of 
the two possible formulas of the MMMSE filter. That path is cumbersome and 
eventually ends with an expression for WMMSE that is not even the expression that 
is concluded from that derivation (although it will be proven later on that they are 
equivalent). In the following is presented a derivation of the filter involving much 
simpler algebra†:
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For the correlation models that were considered, Equation 2.63 is reduced to
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(2.64)

It should be highlighted that the final expression in Equation 2.64 is not the 
only one that appears in the literature. Just as often, one may encounter the follow-
ing distinct version for the MMSE filter:
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(2.65)

Expressions (2.64) and (2.65) are equivalent, although this is rarely men-
tioned in the literature. The equivalence is a consequence of the following matrix 
identity:

Theorem: (AB + I)−1 A = A(BA + I)−1.

Proof. The identity‡ A(BA + I) = (AB + I)A holds because

* The matrix inversion lemma, (A + BCd)−1 = A−1 − A−1B(dA−1C−1)−1 dA−1, is actually one of 
the several variants of the Woodbury identity [Petersen and Pedersen 2008, p. 17]. Moreover, 
the lemma is a particular case of the Hendersson–Searle formulas [Piziak and Odell 2007, 
Section 1.2.1].

† The steps taken here are mostly used when proving several of the Hendersson–Searle formulas.
‡ This identity can be seen as a particular case of one of the Searle identities [Petersen and 

Pedersen 2008, p. 18].

 



MIMO Detection Methods ◾ 85

 

A BA I ABA A AB I A
A BA I BA I AB I A B

( ) ( )
( )( ) ( ) (

+ = + = +
⇔ + + = +

new term
��� �� AA I

A AB I A BA I BA I BA I

AB I

+

⇔ = + + + +
⇔ +

− −

−

)

( ) ( )( ) ( )
( )

new term
��� ��

1 1

11 1 1

1
new new

� �� �� � �� ��A AB I AB I A BA I

AB I A A BA

= + + +

⇔ + =

− −

−

( ) ( ) ( )

( ) ( ++ −I) .1
 

(2.66)

Similarly to Equation 2.53, the filtering matrix WMMSE is given by Equations 
2.64 or by Equation 2.65,* and so the MMSE receiver can be described by

 x W y x xMMSE MMSE MMSE MMSEQ= =, [ ],�  (2.67)

with the block diagram as the one in Figure 2.12.
It should be mentioned that, as shown in [Hassibi 2000], expression (2.67) is in 

fact equivalent to Equation 2.53 if h is replaced by the extended matrix
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2
2

.
 

(2.68)

As it is often mentioned in the literature, a careful comparison of Equation 
2.64 or Equation 2.65 with Equation 2.53 allows one to conclude that the MMSE 
filter tends to the ZF filter at high SNR. Therefore, one could expect a similar 
performance for both of them in the high SNR regime. However, it is well known 
(from very early on) that this is not true and this fact seems to be forgotten when-
ever such comment is made. It was only in 2011 that the existing gap between ZF 
and MMSE detection was characterized in [Jiang et al. 2011]. The authors finally 
proved (for the ideal Rayleigh channel) several other assertions taken for granted 
in the last decade for the ZF, MMSE, and SIC receivers based on ZF or MMSE 
filters. Furthermore, analytical expressions for the BER for the correlated channel 
have been devised in [Hong and Armada 2011]. In [Kim et al. 2008], the MMSE 

* The simulations for the performance of the MMSE receivers to be presented at the end of this 
chapter make use of Equation 2.65 adapted for the real equivalent model.

WMMSE = (HHH + ρa
–1INT

) Slicing xy ˆ–1
HH

Figure 2.12 MMSE receiver.
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receiver had already been analytically studied but only for low number of antennas 
(and also for the ideal Rayleigh fading channel).

For low SNR, the effect of interference is less important than the effect of the 
Gaussian noise, hence the MMSE filter tends to hH, which corresponds to the 
matched filter to that channel. In this case, the detection is treated as a maximum 
correlation problem.

The covariance matrix of the noise after the MMSE transformation is

 R W R Wn MMSE MMSE n MMSE
H

, ,=  (2.69)

and, similarly to Equations 2.57 through 2.59,
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It is possible to show that the output SNRs at the ith layer after the MMSE 
filter becomes
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1 1
1 1

H H I  
(2.71)

It was seen before that the detection based in ZF is extremely problematic when 
its decision regions become too long and narrow. This happens for channels that 
are ill conditioned, with one or several of the eigenvalues very small in compari-
son to the others. This means that the (hyper-) ellipse associated with the linear 
transformation of an (hyper-) sphere is highly eccentric. In these cases, one may 
consider penalizing the solutions to the problem that would imply having a large 
norm for the detected �x. One other way of interpreting the MMME solution is in 
the context of the optimization problem generated from a relaxation of Equation 
2.49. Following the proposal in [Jaldén and Ottersten 2006], one may generalize 
the problem for binary symbols, to the problem with M  symbols per dimension. 
In doing this, the problem becomes equivalent to

 
y y Hx x

xMMSE
T s

a a

N E= − + −{ }∈
arg min

A

2 21
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(2.72)

noting that for x x∈ ⇒ +{ } =− −A E N Ea a T sρ ρ1 2 1 0( ) . The MMSE criterion 
in Equation 2.72 is attained by relaxing the search in x ∈A  to a search in the 
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continuous space where x ∈�n . As the last term in Equation 2.72 does not involve 
x, the minimization is also
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(2.73)

corresponding to the solution of the typical CVP but with a term that penalizes 
large ‖x‖ and is proportional to the energy of the noise. This explains why MMSE 
performs better than ZF for ill-conditioned channel realizations.

2.5.3.1 Projection Matrices

Denoting h j  as the matrix obtained from h by deleting the (column) generator hj, 
it is indicated in [Jiang et al. 2011] that Equation 2.59 can also be written as
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(2.74)

This expression can be better interpreted evoking the notion of projection matri-
ces. A projection matrix is always (i) symmetric, (ii) idempotent (i.e., the successive 
application of a projection, twice or more times, does not change the result), and 
(iii) positive semidefinite [e.g., Meyer 2000, p. 386].

Consider a linear space spanned by the columns of h, that is, span(h). The pro-
jection of a vector a onto that space is denoted as Projh (a), the projection onto the 
space orthogonal to span(h) is denoted as ProjH a⊥ ( ), and they are given by [Piziak 
and Odell 2007, Section 8.3]:

 
ProjH( ) ,a P a HH aH= = +

 
(2.75)

 ProjH⊥ ⊥= = − +( ) ( ) .a P a I HH aH  (2.76)

From Equations 2.75 and 2.76, the projection onto the span( )h j  is

 
P H HH j j j= +  (2.77)
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and the projection onto its orthogonal complement is

 

P I H H

I H H H H

H j
j j

j j
H

j j
H

⊥ = −

= − ( )
+

−1
,
 

(2.78)

where the Moore–Penrose pseudo-inverse was used in the last line.
The factor h P hHj

H
j

j
⊥  that appears in Equation 2.74 is a quadratic form, as defined 

in Equation 2.9, hence, h P hHj
H

j
j
⊥ ≥ 0 as it corresponds to the norm of the projec-

tion of generator hj onto space spanned by the remaining generators in the basis h j .
Figure 2.13 shows the geometry of these projections in the same bidimensional 

example of Figure 2.10, with basis h2, given in Equation 2.56. One can observe that 
the factor h P hHj

H
j

j
⊥  corresponds to the distance between parallel layers where the 

lattice points lie and it measures the separation between the decision thresholds for 
the jth layer, associated with hj. When that distance is ≥1, there is an SNR gain in 
that layer in respect to the SNR in the expected average layer.

It is worth mentioning that in the case with ZF, h P hHj
H

j
j
⊥  has a χ2 distribution 

with 2(NR − N + 1) degrees of freedom [Jiang et al. 2011]. A similar expression to 
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Figure 2.13 Geometry of the SNR relation factor in Equation 2.74. It includes 
the Voronoi regions and the ZF decision regions of the lattice Λ(H2), as given in 
Equation 2.56.
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Equation 2.74 can be obtained for MMSE if the factor ( )h hj
H

j
−1 is replaced by 

( )H H Ij
H

j a+ − −ρ 1 1 in Equation 2.74.

2.5.4  Geometry of Optimally Ordered Successive 
Interference Cancellation

As mentioned in Chapter 1, D-BLAST was the first scheme to be proposed by 
Foschini. Given its detection complexity, V-BLAST ended up being the standard 
architecture for SM. The detection algorithm first proposed in [Wolniansky et al. 
1998] and [Golden et al. 1999] uses the principles of SIC, already known in ISI 
control and MUD and is known as the V-BLAST detector (as mentioned, in this 
chapter the name V-BLAST is identified with that particular detection method). 
The general principle of SIC is that an initial “best” layer is detected and then, 
assuming that the symbol was correctly detected, the interference caused by that 
symbol is replicated and subtracted from all the other layers. The procedure is then 
applied to the “next best” layer: one symbol more is detected, its interference recre-
ated and then subtracted from the remaining ones.

One important question that arises is the one of determining the order of detec-
tion of the NR antennas. For a MIMO n × n system, one has to find the optimum 
permutation Π(k) of the column indexes {1,2, . . ., n} that minimizes the SER amid 
all the n! possible permutations. An exhaustive search over all the permutations 
would rapidly become unbearable as n increases. The optimal solution to this prob-
lem was found early on in [Wolniansky et al. 1998] and [Golden et al. 1999], in the 
first implementations of the V-BLAST detector.

The optimal criterion at each stage is to select the layer that less emphasizes the 
noise power after a ZF or an MMSE filter. Consider the following example (for one 
an alternative example see [Windpassinger 2004]) with input data x = [ ]1 1 1 T  
and a noise vector that does not induce an error in the MLD sense, that is, that does 
not take the point out of its Voronoi region:
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(2.79)

Considering that ZF is used,
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where the energy of each row in the filtering matrix is indicated on the right.
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The lowest noise enhancement factor is the one associated with the third row 
(i.e., the third layer), so this third symbol is decided via a decision threshold to the 
alphabet as* �x y( ) [ ] .( )3 11= =QA WZF  Next, the effect of that symbol, after, is sub-
tracted from the other layers:
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The third generator vector in the channel matrix is now nulled:

 

h( )

. .
. .
. .

,2

0 97 0 48 0
1 35 0 12 0
1 04 1 2 0

=
−

−

















and the associated ZF matrix is now

 

WZF
( )

. . .
. . .2

0 2185 0 6045 0 0270
0 0837 0 6279 0 7371

0 0 0
=

−















← ww

w

2
2

2
2

1 0 4139

2 0 9446

( , :) .

( , :) . .

=

← =

At this stage one observes that the first row is the one that less enhances the 
noise and thus x(1) (i.e., the element transmitted in the first layer) is now decided as 
�x y(1) Q[ ] 1= =WZF

( ) ( )2 2  and its interference subtracted from y(2):
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Now, the first generator of h is zeroed
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* The notation is slightly abused, as the quantization is applied only to the third element of 
WZF

( )1 y. Moreover, some Matlab will be used to denote matrices rows and columns.

 



MIMO Detection Methods ◾ 91

and the corresponding pseudo-inverse is

 

W wZF
( ) ( , :)3

2
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0 0 0
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0 0 0

0.2849 0.0712 0.7123
  

0.59366.

Finally, �x y( ) [ ] ,( ) ( )2 13 3= =Q WZF  that is once again a correctly detected symbol.
The ordering strategy described in this example by means of algebraic argu-

ments is in fact is a direct application of a fact that, until the paper by [Wolniansky 
et al. 1998], was known as a rule of thumb in the MUD literature, but whose opti-
mality had never been proven. The rule consists of selecting at each step the vector 
that minimizes noise enhancement and in [Wolniansky et al. 1998] the authors 
pointed out that the SNR at layer i is
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(2.80)

and used Equation 2.80 to justify the optimality of the criterion.
In the following, it is shown that further insight concerning this optimization 

process can be enlightened, and indeed proven to be optimal, if a geometric perspec-
tive is applied using the projection tools introduced in Section 2.5.3.1 and using the 
geometric ideas of the Babai nearest plane algorithm [Babai 1986, Micciancio and 
Goldwasser 2002, Chapter 2] in algorithmic number theory, which corresponds to 
SIC in MIMO, as first noticed by [Agrell et al. 2002] and [Mow 2003].

To minimize the error probability when deciding layer j, the generator vector hj 
has to be selected at any given decision step k, with k ∈{1,2, . . ., n}, should be the 
vector that maximizes the projection onto the orthogonal space to the space spanned 
by the matrix that remains after that same vector is taken out from h.

The initial step is to find the column vector h1 that, when removed from h, 
transforms h into h1 (as h j  denotes the matrix that is obtained from h after 
removing column j). h1 is the generator of an (n − 1)-dimensional lattice Λn−1. 
Hence, the original lattice can be written in the form

 Λ Λ= + ∈−n i i1 1h , ,�  (2.81)

signifying that Λ can be created from the union of translates of the Λn−1 sublattice.
Once a decision is produced for one layer, the subsequent step is to repeat the 

process, now in the sublattice with basis h j , that is, by removing generator hj from 
the set. The process repeats itself until a decision is made in a one-dimensional lat-
tice, corresponding to the decision of the last layer to be detected.
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Figure 2.14 depicts SIC applied to a lattice partitioned as in Equation 2.81. In 
a first stage, the nearest hyperplane is found and a decision for the layer associated 
to hj is produced. In a second stage, depicted at the bottom of Figure 2.14, the same 
procedure is applied but now conducted in the sublattice Λn−1.

Figure 2.15 shows the SIC decision region for the origin of the lattice with basis
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1 3
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(2.82)

The example shows a target point located in a region where SIC outputs an 
erroneous decision. The first SIC step in the example in Figure 2.15 is to select 
which plane is the nearest one to the target point. In the example, SIC would 
decide for plane 1 while the Voronoi region indicates that the correct point lies in 
plane 2.

The diversity attained by SIC is NR − NT + 1 and sorting the layers does not 
contribute to any improvement in this respect, as recently proven in [Jiang et al. 
2011]. Sorting can only yield a power gain in SM detection.

Proj(hj)
hj

–hj

hj+1

1st: select this 
hyperplane

2nd: select among the (n – 2)-D hyperplanes

(n – 1)-dimensional

jspan(H )

jspan(H )

Figure 2.14 The nearest plane algorithm with sorting. Choosing the jth genera-
tor vector that maximizes the distance between parallel hyperplanes. The lattice 
is the union of such translates.
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The decision regions associated to SIC are hyper-rectangular and it is not dif-
ficult to perceive (e.g., from Figures 2.14 and 2.15) that these decision regions are 
unequivocally defined by the Gram–Schmidt vectors on the basis of the lattice 
[e.g., Ling 2011].

The fastest implementation of the original OSIC idea was provided in [Shang 
and Xia 2008] and was made cubic in n, that is, with complexity O( )n3 , nevertheless 
other O( )n3  algorithms were known for OSIC much before (c.f. [Windpassinger 
2004, p. 39] and references therein). Ling et al. also proposed an OSIC algorithm 
with O( )n3  complexity based on the geometric insights offered by the dual lattice 
[Ling et al. 2006, 2009]. In doing that, the same optimal ordering known for OSIC 
[Golden et al. 1999] is proven and the same performance is attained without need-
ing a matrix inversion for each layer to be detected. This approach makes use of the 
shortest vector in the dual basis at each detection step.

One can now formalize SIC in a very concise manner; the hth index for the 
permutation is then selected from
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Figure 2.15 Error events in SIC. Plane 1 is selected because it is the closest 
plane, however, the closest lattice point lies in plane 2. The SIC decision region 
for the origin is shown.
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where Ak  is the set of columns that have not been chosen yet. From Section 2.5.3.1, 
Equation 2.83 becomes
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which is a very concise expression that summarizes the entire OSIC with optimal 
ordering [Trujillo et  al. 2009]. Starting with A1 = {1,2, . . ., n} (i.e., with all the 
columns of h), the set Ak is reduced by one element each time a column is selected, 
and continues until only one is left. Although concise, this formulation for finding 
the permutation Π (k) does not lead to a practical implementation.

There is however a very elegant way of finding Π (k) remembering that the dis-
tance between hyperplanes in the primal lattice is established by the lattice points 
in the dual (as proved in Chapter 2). Selecting the smallest basis vector in the dual 
basis ensures that the decision for that layer will be made from selecting between 
the most distant hyperplanes associated to that specific basis. Nonetheless, it is 
important to highlight that these are not necessarily the most distant hyperplanes 
in the lattice. This observation confirms why there is room for improving a receiver 
based on the OSIC principle.

It is thus natural to look for short vectors in the dual lattice rather than search-
ing among the generators constituting the basis. Shorter vectors in the dual lattice 
would maximize the distance between the parallel hyperplanes and thus minimize 
erroneous decisions. Finding shorter vectors in the dual lattice is accomplished by 
means of lattice-reduction-aided (LRA) techniques, which will be presented later. 
Lattice reduction provides an equivalent basis with shorter (and more orthogonal) 
generator vectors.

It is noteworthy that the geometric interpretation presented in this section 
also sheds light on the finding by Taherzadeh et al. that reducing the dual matrix 
is preferable to reducing the primal basis [Taherzadeh et al. 2007, Taherzadeh 
2008].

2.5.4.1  Gram–Schmidt Orthogonalization and QR 
Decomposition

The Gram–Schmidt (GS) orthogonalization (Algorithm 2.1) is a well-known 
method that takes one set of generating vectors of space and obtains another set 
of vectors that span the same space but which are all mutually orthogonal. Notice 
that although the new basis spans the same continuous real (or complex) space, it 
does not span the lattice. In general, the GS vectors are not members of the lattice 
and therefore cannot be members of any of its bases. Finding a basis that is close to 
orthogonal while still spanning the same discrete space is the much more difficult 
problem of lattice reduction, which will be described in Section 2.5.5.
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The Gram–Schmidt vectors process can create a matrix q, with all columns 
mutually orthogonal, that is, Q Q q q q qH H

n
H

n= diag( ,..., )1 1 . However, it is possible 
to make its column vectors orthonormal, that is, qH q = I and ‖qi‖ = 1. The two 
sets of vectors of the two versions are obviously related by the respective norms. The 
matrices that perform the transformation of the original matrices to the orthogonal 
or orthonormal forms are triangular in each of the two cases. The relation between 
the two triangular matrices is less obvious, though important in the MIMO context.

The orthogonal version is (i) relevant in lattice reduction techniques such as the 
LLL algorithm, and (ii) an essential tool in the interpretation of SIC. However, the 
orthonormal form of GS orthogonalization corresponds to the QR decomposition 
and is (i) much used in sorted or unsorted OSIC detection, and (ii) central to SD.

Algorithm 2.1 computes the set of orthogonal vectors as
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(2.85)

In matrix form, the original column vectors can be related with the GS vectors by
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Algorithm 2.1: gram–schmidt Orthogonalization

Input: linearly independent vectors h h h1 2, ,..., n
n∈�

Output: Orthogonal basis H h h h= ∈[ , ,..., ]1 2 n
n�  and coefficients µ j k, ∈�

h h1 1=
for j = 2:n

 h hj j=
 for k = 1:j –1

  µ j k
j k

k k

h h
h h, =

⋅
⋅

  h h hj j j k k
k

n

= − ⋅
=

∑µ ,
1

 end
end
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Note that det( ) det( ),h h=  as the upper triangular (u.t.) matrix has unit deter-
minant. An orthonormal basis can also be constructed from the GS vectors if they 
are normalized:
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(2.87)

GS orthogonalization can also be used to compute the QR decomposition of a 
channel matrix as

 h = qr, (2.88)

with q orthogonal and r upper triangular (u.t).
To compute Equation 2.88, one starts by computing the GS vectors using
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Moreover, each of the n vectors of the original basis h can be expressed in terms 
of the orthonormal vectors qj as

 h h q q h q q h qj j j j j j j= + + +− −, , .1 1 1 1�  (2.90)

This relation can be conveniently written in matrix form as
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 (2.91)

Since det(q) = 1, the volume of the lattice is the product of the orthogonal vectors

 
vol( ) ,Λ =

=
∏ h
i

n

1
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(2.92)

which corresponds to the volume of the hyper-rectangular decision regions in SIC.
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A comparison of Equation 2.85 with Equation 2.89 reveals that

 µ j k k j k jh
k, , ( ),= =h q hProjq  (2.93)

each of which is the projection of the original generator vector onto the one-dimen-
sional space spanned either by qk or hk.

2.5.5 Lattice-Reduction-Aided Detection
As was exemplified in Figure 2.10, the two bases given by Equation 2.56 generate 
the same lattice but their fundamental regions have different coverage. To maxi-
mize the coverage of the MLD region, one is interested in bases with vectors that 
are both short and close to orthogonal, which is called a reduced basis. Figure 2.16 
shows a lattice with a rather “skewed” basis and a reduced basis.

It was seen in Chapter 2 that two different bases of a lattice are related by a uni-
modular transformation M. In particular, the two basis in Equation 2.56 are related by
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and in this case it is easy to see that det (M) = 1.
As observed in Section 2.5.2.1, it is preferable to invert a well-conditioned chan-

nel matrix, and therefore having a more orthogonal basis contributes to a smaller 
noise enhancement factor whenever a ZF or an MMSE filter is applied (standalone 
or included in the OSIC stages). In LRA receivers, a preprocessing stage is intro-
duced before the detection algorithm, as shown in Figure 2.17.

The application of lattice-reduction-aided (LRA) techniques to MIMO 
detection was first brought to light in [Yao and Wornell 2002], and since then 
the research in LR applications to MIMO has boomed not only for the detec-
tion but also for precoding in the BC (as mentioned in Chapter 1). These authors 

0

b2

b1

b1

b2

Figure 2.16 A reduced basis (with short vectors) and a skewed basis (with longer 
vectors) for the same lattice.
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applied the Lenstra Lenstra Lovász reduction (LLL, also sometimes denoted 
as L3) [Yao 2003] to reduce the channel matrix. In 2007, Seysen’s reduction 
was simultaneously rediscovered for MIMO in [Seethaler et  al. 2007] and in 
[Niu and Lu 2007]. This technique is based on the simultaneous reduction of 
both the primal and dual basis. One other important lattice reduction approach 
(LR) that delivers a more reduced basis than the others is the Hermite–Korkin–
Zolotarev (HKZ) reduction [e.g., Banihashemi 1997, Chapter 3]; however, 
HKZ has not been used in MIMO until recently in [Zhang et al. 2012], prob-
ably due to its high complexity. The quality of the output of an LR algorithm 
can be measured by the orthogonality defect, defined as [e.g., Micciancio and 
Goldwasser 2002, p. 131]

 
OD

i
i

n

( ) det( ) .H
h

H= =
∏

1

 
(2.95)

Shorter generator vectors correspond to a lower orthogonality defect. Clearly, 
OD(h) ≥ 1, with equality attained only by the �n  lattice.

An overview of the applications of lattice reduction techniques in MIMO 
(including SM and BC) exists in [Wübben et al. 2011]. LRA detection achieves the 
maximum diversity available in SM, as proved in [Taherzadeh et al. 2007]* for the 
case of LLL reduction. (Seysen’s algorithm and HKZ also achieve that maximum 
diversity since, on average, they output bases even closer to orthogonal bases.)

The idea is that the system model can be rewritten as

 
y Hx n HMM x n H z n

H z
= + ⇔ + ⇔ +−

red
red��1 .

 
(2.96)

In this model, z is a modified data vector that can be detected with a lower SER 
than would x without LR. This is true regardless of the type of receiver that follows 

* The same result was also proved in [Ma and Zhang 2008] for the complex-LLL algorithm 
(CLLL), where the real equivalent model is not used and LLL is applied directly to the complex 
lattice.

Lattice reduction
(preprocessing)

Detection
algorithm x̂Λ

Λ red

Figure 2.17 MIMO detection with lattice-reduction preprocessing.
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the LR preprocessing (usually ZF, MMSE, or OSIC). The original data vector can 
then be recovered from z noting that

 z M x x Mz= ⇒ =−1 .  (2.97)

Because M-QAM constellations and their PAM equivalent alphabets are defined 
without the origin and have nonunitary distance between the symbols (c.f. Section 
2.3.1), in order to apply the lattice tools as in Equations 2.96 and 2.97, it is neces-
sary to make a translation of the constellation, creating the modified received vector

 y y H 1 Hx n H 1red = + ⋅ = + ⋅1
2

1
2( ) ( ),+  

(2.98)

where 1 is the column vector of n elements all equal to 1. This latter modification 
(2.98) applies to real lattices only and its extension to complex lattices is described 
in the next section.

Now, in the case of a ZF criterion,

 z H yred= +
red ,  (2.99)

and in performing

 
�

�
x M z

z
1= −2 Q��( ) ,

 
(2.100)

the symbol �z is detected and put back in the alphabet A .
The LLL algorithm was first derived for integer lattices and then applied to 

real lattices. It has also been shown that a complex-LLL (CLLL) algorithm can be 
defined and that by applying it directly to a complex hc (see the next section), the 
complexity becomes half of the one involved in the application of Algorithm 2.2 
to the real equivalent lattice [Mow 2004, Gan et al. 2009]. The LLL algorithm 
can be seen as an extension to higher dimensions of Gauss’s algorithm [Micciancio 
and Goldwasser 2002, p. 28], which operates in two dimensions only (c.f. exam-
ple in Figure 2.18). It is also noteworthy that the LLL algorithm can be derived 
by making appropriate changes to the GS orthogonalization (Algorithm 2.1), as 
shown in [Fischer 2010] and is also closely related to sorting in OSIC [Ling and 
Mow 2009].

Ling et al. proved that the complexity of the LLL reduction is O( log )n n4  not only 
for integer lattices [e.g., Park et al. 2011] but also proved that for Gaussian lattices 
[Ling et al. 2013]. They further proposed a change to the algorithm that maintains a 
similar performance while having complexity O( log( )).n n3  It was shown in [Jaldén 
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et al. 2008] that for some instances of lattices, the complexity of the LLL algorithm 
for noninteger matrices is not polynomial but that probability tends to zero.

2.5.5.1 Complex Lattice Reduction

Lattice reduction can also process directly complex numbers (i.e., the constellation 
symbols in the antennas) rather than using the real-valued equivalent model intro-
duced in Section 2.3.2. Let us now reconsider a complex-valued transmission model

 y H s nc c c c= + ,  (2.101)

Algorithm 2.2: lenstra lenstra lovász (lll)

Input: a basis h with generator vectors h h h1 2, ,..., n
n∈�  in its columns

Output: a ζ-LLL reduced basis hred hred, a unimodular matrix M

1: (Preliminaries)
Compute the GS orthogonal vectors h h h1 2, ,..., n  using Algorithm 2.1
Set M = In

2: (Reduction step)
for i = 2 to n
 for j = i − 1 down to 1

 

h h
h h

h h
h

m m
h h

h h
m

i i
i j

j j
j

i i
i j

j j
j

= −












= −












,

,

,

,

end
recompute the GS orthogonal vectors h h h1 2, , ,… n using Algorithm 2.1

3: (Swap step)

if there is i such that ζ µh h hi i i i i
2

1 1
2

> ++ + ,  then
 swap columns hi and hi+1

 swap columns mi and mi+1

 go to 1
end

4: return h1, h2, . . ., hn and M
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such as in Equation 2.21, where hc is the NR × NT complex channel matrix, s is 
the NT × 1 complex column vector whose elements are the complex-valued sym-
bols transmitted on the NT antennas and n is the NR × 1 complex column vector. 
Assuming that the transmitted symbols are drawn from a constellation isomorphic 
to a subset of the Gaussian integers (denoted as � �[ ] { : , }j a bj a b= + ∈ ), through 
shifting and scaling operations (e.g., M-QAM constellations) one can write

 
s x Ic c Nj

T
= − +











α 1
2

1
2 ,

 
(2.102)

where xc
NT j∈� [ ],  α represents the factor used for energy normalization, and INT

 
is the NT × NT identity matrix. One can rewrite Equation 2.101 as
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1
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1
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1
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1
2

1
2 ,

 
(2.103)

where

 h hc c= α .  (2.104)

1st step: Replace b2 by b2 – b1 which gives us b2

D
im

en
sio

n 
2

Dimension 1
0

2nd step: Replace b1 by b1 – b2 which gives us b1

Startb2 

1st step

2nd step

b2

b1

b1

Figure 2.18 The Gauss algorithm (i.e., LLL in 2D).
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A complex-valued lattice in the NR-dimensional complex space �NR  is therefore 
defined as

 

Λc i i
i

N

i i
Nx x j

T

R= ∈ [ ] ∈










=
∑ h h

1

: , ,� �

 
(2.105)

or in matrix form,

 
Λc c

N
c

N NT R Tj= ∈ [ ] ∈{ }×Hx x H: , ,� �
 

(2.106)

From Equation 2.103, it is easy to realize that, apart from the shifting opera-
tion, the received vectors correspond to noisy versions of the lattice points defined 
by the basis hc . One is interested in the estimate w H x� �c cc c=  which is closest to the 
shifted received vector y w w wc c c c c c− ≤ − ∀ ∈� y , .Λ

Let �hc be a new basis for the lattice obtained by right multiplying the original 
basis by a unimodular matrix u containing only Gaussian integers, that is,

 �h hc c= U, (2.107)

the received vector can be rewritten as

 
y H U x H U n H z H Uc c c c c c c cj j= − +



 + = − +





− − −� � � �1 1 11
2

1
2

1
2

1
2 ++ nc ,

 (2.108)

with zc = u−1 xc. Because u is unimodular, the elements of zc are also Gaussian 
integers. If the new basis has a smaller orthogonality defect, the performance of the 
detector gets improved. The complex LLL algorithm (CLLL) was proposed in [Gan 
et al. 2009] and outperforms the real LLL both, attaining smaller orthogonality 
defects while further reducing the complexity. It can also be combined with the 
linear receivers and with OSIC to accomplish the decoding. Note that the MMSE 
criterion can be applied as if it was a ZF detector by using an extended system 
model approach [Wübben et al. 2003, 2004]. The extended channel matrix and the 
extended received vector are (considering α = 1 for simplicity)

 
H

H

I
y

y
0c

c

N
c

c

NT T

=












=










×2 1σ
and ,

 
(2.109)

where 0NT ×1 is an all zeros size NT column vector (note that in Equation 2.109 one 
has a complex model while in Equation 2.68 the real complex model was consid-
ered, hence the 2 ). As suggested in [Wübben et al. 2004], one can apply LLL 
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reduction to the extended model and in this case the reduced basis �hc  can be “QR 
decomposed” as

 �H QRc = .  (2.110)

The extended received vector is multiplied by qT and added to 1
2

1
2+



jRU I−1

NT
 to allow rounding over �[ ],j  resulting in

 

�y Q y RU I Rz Q
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 = +

−












−1
2

1
2 2

1

σ
,
 

(2.111)

where the second term takes into account both noise and residual interference.
Since r is triangular, one can start by computing the estimate of �zNT

 as 
�y rN N NT T T,  (where �yi  and ri,j represent elements of �y c  and r, respectively, drop-
ping the c subscript) and then proceed to obtain the remaining elements through 
the successive application of

 

�
� �

z
y r z

ri

i i jj i

N
j

i i

T

=
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= +∑
round

,

,
.1

 

(2.112)

The function “round()” corresponds to standard rounding to the nearest Gaussian 
integers as proposed in the conventional SIC algorithm [Babai 1986]. The final 
transmitted vector estimate can then be achieved through shifting and rescaling as

 
� �s Uz Ic c Nj

T
= − +











α 1
2

1
2 .

 
(2.113)

As the decoding is performed assuming an infinite lattice, it is necessary to 
restrict the estimate to a valid constellation vector (this can be accomplished apply-
ing the restriction to Uzc� ).

2.5.6 Randomized Lattice Decoding
Lattice-reduction-aided decoding can achieve full diversity in MIMO transmissions, 
although its performance gap to ML decoding depends on the detection algorithm 
employed and on the dimension NT [Ling 2011, Liu et al. 2011]. In fact, while LLL 
lattice-reduction-aided MMSE detection can achieve near ML performance for small 
MIMO systems [Wübben et al. 2004], the performance gap widens as the dimension 
increases [Liu et al. 2011]. To narrow down this gap, a randomized version of SIC was 
proposed in [Liu et al. 2011], and based on [Klein 2000], leading to impressive per-
formance results. In the following, a description of this algorithm will be presented.
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In the SIC algorithm described in the previous section, standard rounding 
to the nearest Gaussian integers was applied in Equation 2.112. Instead, we can 
replace the standard rounding by Klein’s randomized rounding [Klein 2000] (see 
Algorithm 2.3) and implement a randomized lattice decoder. In this case, we com-
pute the elements zi�  using

 

�
�

z
y r z

ri c

i i j jj i

N

i i
i

T

=
−













= +∑
randround

�
,

,
.1

 

(2.114)

where function randroundc(r) rounds the real and imaginary parts of r (denoted as 
rre and rim) to integers qre and qim, respectively, according to the discrete Gaussian 
distribution defined as
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(2.115)

for the real part and
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(2.116)

for the imaginary part, and the parameter ci is computed as
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ρ
2

2

 
(2.117)

with ρ being another parameter whose optimum value is obtained from

 K e
NT

= ( ) ,ρ ρ
4

 
(2.118)

where K is the number of candidate lattice points that are considered in the algo-
rithm. The candidate list is built by repeating K times the procedure for comput-
ing a lattice point with Equation 2.114. If the transmission is uncoded, the final 
estimate will then correspond to the closest of the K lattice point candidates. Due 
to the randomized nature of the algorithm, to avoid the possibility of the final 
estimate being further away than the one produced by the MMSE-SIC decoder, 
one of the K candidates should be obtained through standard rounding. The final 
transmitted vector estimate is computed using Equation 2.113.
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Algorithm 2.3: randomized decoding

Inputs:  y c , hc , K, δ, ρ (the variable 1/2 < δ ≤1 selects the complexity perfor-
mance tradeoff of the CLLL algorithm)

Output: s�

1 �hc , U H← Complex LLL_ ( , )c δ
2 q, R H← QR Decomposition_ ( )� c

3 �y Q y RU Ic
T

c Nj
T

← + + −( )1 2 1 2 1/ /
4 for k = 1 to K do
5  for i = 1 to NT do
6   if k = =1

7    � �z Round y r z ri i i j j
j i

N

i i

T
1 1

1

← −










= +
∑�

, ,

8   else

9    c
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2
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    ˘ ˘, ,z randRound y r z ri
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c i i j j
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1

10   end if
11  end for
12 end for

13 � � �z y H z zc c c
Kj← + +( ) …( )Closest Vector_ , , ,1 2 1 2 1

14 � �s Uz Ic c Nj
T

← − +











α 1
2

1
2

15 Return �sc

2.5.7 Sphere Decoding
SD is an exact detection method (i.e., it achieves the same performance as MLD) 
with a complexity that, on average, is much lower than MLD. The idea is that a 
rigid rotation q can be applied to the ensemble {Λ, y} , for which the CVP needs to 
be solved, so that the lattice can be described by an equivalent lattice in u.t. form. 
The u.t. property allows describing the norm of any lattice point to be detected as 
a sum that can be computed incrementally, taking into consideration the cumula-
tive effect of each vector components. Consider now that an upper bound (UB) on 
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the norms is established. The u.t. property of the basis allows all the possible values 
in the last component of the data vector, x(n), to be detected. As the norm can be 
computed as a sum of “ordered” contributions, if some of the tested values in x(n) 
generates a total vector norm that is larger than the UB, then those values of x(n) 
need not be considered further as possible values in the solution. This procedure 
can be extended to the next layer x(n − 1), where only the possible values of x(n) 
are considered. In conclusion, finding vectors with norm smaller than the UB is 
a problem that can be solved by expanding and pruning a tree that represents the 
lattice points. All these ideas can be converted into the CVP, if the lattice is shifted 
to the target y.

A sphere decoder has the structure shown in Figure 2.19. After traversing 
the tree with a particular symbol enumeration, the MLD solution is always 
found if the initial radius that is chosen is large enough to contain a lattice 
point inside the hypersphere. Figure 2.20 gives an example tree associated with 
3 × 3 antenna and 4-PAM, showing the branches that have been expanded at 
each tree level.

As mentioned previously, one can define an UB for the radius (or, equivalently, 
for the squared radius) of the sphere around the received point, that is,

 y Hx− ≤2 2ξ ,  
(2.119)

Unitary matrix
(rigid rotation)

Upper
triangular

y Tree
exploration

H = QR x̂

Figure 2.19 Receiver based on SD.

–3 +3
+1

+1

+1

–1

Closest vector

Figure 2.20 Tree exploration of a tree with three layers, considering a 4-PAM 
alphabet.
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Applying the inverse rotation qH (remembering that q is unitary, or orthogo-
nal in the real case),
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If one defines ′ =y yQ H
1  and ′ = ′ −ξ ξ2 2

2
2

Q yH ,  then the CVP can be writ-
ten as

 ′ − ≤y Rx
2 2ξ .  

(2.122)

Finally, remembering that r is u.t., the problem can be written as the sum
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(2.123)

The complexity of SD is usually measured by the number of nodes that need to 
be visited in the tree until the MLD solution is found. The fact that the complexity 
is a random variable is a limitation of SD. To circumvent this problem, it is pos-
sible to expand only say, K branches at each level of the tree, as is the case in the 
K-best receivers and its variations [Detert 2007, Okawado et al. 2008, Roger et al. 
2010], which will be a central tool in Chapter 10. Nonetheless, there are different 
approaches as to how the tree should be traversed. Historically, the Fincke–Pohst 
method [Su 2005] was the first to be used, followed by the more efficient Schnorr–
Euchner node enumeration [Agrell et  al. 2002], which attains the same perfor-
mance, while expanding a smaller number of tree branches. Su showed in [Su and 
Wassell 2005] and [Su 2005] that a dramatically more efficient exploration of the 
tree could be made if not only the channel is taken into consideration when enu-
merating the symbols in the alphabet, but also the particular target point was also 
taken into account during that sorting process. Furthermore, Su’s ordered traversal 
of the tree also eliminated the need for an initial radius and provides automatic 
boundary control for spherical lattice codes [Su et al. 2009]. Recently, simplifications 
to the Fincke–Pohst and Schnorr–Euchner’s enumerations have been proposed, 
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eliminating about 75% of the operations previously required [Ghasemmehdi and 
Agrell 2011].

The average complexity of SD is exponential [Hassibi and Vikalo 2005], 
given by O( )M NTα  with 0 ≤ α ≤ 1 [Jaldén and Ottersten 2005], however, for 
low-dimensional lattices, that number is affordable. A celebrated improvement 
to SD was the development of fixed-complexity sphere decoding (FCSD) in 
[Barbero and Thompson 2008]. FCSD splits the tree exploration into two: one 
where all valid branches are further expanded, and a second phase, conducted 
for the remaining layers, where only one branch is expanded from any node. 
Recently, an automatic adjustment of the switching point was proposed in [Lai 
et  al. 2011]. The performance of FCSD was described analytically in [Jaldén 
et al. 2009].

SD is typically used to obtain the MLD performance curves for the more chal-
lenging configurations such as 4 × 4 with 64-QAM. The SD described here is a 
simple implementation of the Fincke–Pohst enumeration, such as the one given in 
[Hassibi and Vikalo 2005] or [Bölcskei et al. 2006, Chapter 15], where the output 
of the algorithm is not just one point but the set of all points inside the defined 
sphere. The implementation of this SD is given in Algorithm 2.4.

Algorithm 2.4: sphere decoding (Fincke–Pohst)

Input: q, orthogonal, r, upper triangular, a target vector y = q1 x, radius ξ
Output:  an MLD solution to the CVP, �xSD

1: Set k = m, ′ = −ξ ξm Q2 2
2

2x , y ym m m| + =1

2: (Bounds for sk) Set UB( ) ,| |x
y

r x
y

rk
k k k

kk
k

k k k

kk
=

′ + ′







 =

− ′ + ′







 −+ +ξ ξ1 1 1

3: (Increase xk) xk = xk + 1
4: (Increase k) k = k + 1
 if k = m + 1
  Terminate (no lattice point found)
 else go to 3
5: (Decrease k)
 if k = 1
  go to 6
 else
  k = k − 1

  ′ = ′ −+
= +
∑y y r xk k k kj j
j k

m

| 1
1
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  ′ = ′ − −+ + + + + +ξ ξk k k k k k ky r x2
1

2
1 2 1 1 1

2( )| ,

  go to 2
6: (Solution found)
 return �x xSD =
 go to 3

The algorithm starts by detection of the last element in x. Note that the sub-
script in ′ +yk k| 1 denotes the symbol ′yk , in the kth layer, incorporating the effect of 
the layers already detected, in agreement with Equation 2.123. In this algorithm 
the option was made to denote the elements in a vector by xn instead of x(n), in 
order to accommodate notation such as ′ +yk k| 1 that also reflects the updates of a vec-
tor over time or the updates of the radius over time.

2.6 Performance Comparison
In this chapter, one could find descriptions and insights about the most popu-
lar techniques for detecting MIMO signals, including complexity comparisons. 
This chapter ends with a graphical comparison of the performance of some of the 
algorithms described, namely, the ZF, MMSE, OSIC, SD (i.e., the same as MLD 
performance), LRA combined with ZF, MMSE, and with OSIC. The results of one 
receiver recently proposed in [Monteiro and Kschischang 2011] is also plotted in 
Figures 2.21 and 2.22.
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Figure 2.21 Detection in n = 8 real dimensions (4 × 4 antennas) with 16-QAM. 
(E[Φ] is the average of a complexity metric associated with the novel receiver.)
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3.1 Introduction to Precoding
3.1.1 SU-MIMO
In this chapter, we focus on the single-user MIMO (SU-MIMO) scenario, with 
short remarks on the closely related multi-user MIMO (MU-MIMO) broadcast 
channel. We state the model here again for convenience:

 y Hx n.= +  (3.1)

In Equation 3.1, y is the NR × 1 received vector, h an NR × NT matrix that rep-
resents the MIMO channel and x is the NT × 1 vector of transmitted data symbols. 
Throughout the chapter, white Gaussian noise is assumed, hence n is an NR × 1 
vector of complex Gaussian noise variables n 0, I∼ CN ( )N0 NR NR× .

3.1.1.1 Channel State Information

The MIMO channel depends on the environment, which determines how the 
channel changes over time and frequency. As soon as the channel variations are 
small, characterized by the coherence time TC and the coherence bandwidth BC, 
it is possible to track the channel and obtain reliable CSI. To obtain CSI at the 
receiver, a popular method is to send known pilot symbols from the transmitter to 
the receiver [Hassibi and Hochwald 2003]. Decoding them at the receiver makes it 
possible to obtain an estimate h�  of the channel h, which can be made accurate by 
devoting more resources to the training phase. The amount of pilot data that needs 
to be transmitted is a well-researched topic and has been analyzed in, for example 
[Hassibi and Hochwald 2003]. Note that transmitting pilot symbols, estimating 
the channel based on the pilot observations and using the estimate as if it is correct 
in the subsequent data detection phase, is not the optimal approach as it is inferior 
to performing a noncoherent detection. The ultimate limits of noncoherent detec-
tion have been studied in [Zheng and Tse 2002]. However, pilot transmission yields 
significantly less computational complexity at the receiver side. In order for the 
transmitter to obtain h, two common techniques are

 1. Feedback: In this approach, the estimated channel h�  is sent from the receiver 
to the transmitter on a feedback link. This feedback inherently gives rise to 
some delay δ. In order for h�  to be reliable at the transmitter, we must have 
δ ≪ TC. If the channel varies rapidly, this approach requires more frequent 
estimates h�  and feedback.

3.2.3.3 Applications ....................................................................150
3.2.4 Current Status and Future Research ............................................. 155
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 2. Channel Reciprocity: This technique uses the assumption that the estimated 
channel from the transmitter to the receiver is the same as the channel from 
the receiver to the transmitter. Problems with this technique include calibra-
tion issues as well as the fact that the forward and backward channels are not 
necessarily close in time and frequency [Paulraj et al. 2003].

 3. Despite the practical difficulties in obtaining perfect CSI, in situations when 
the channel varies slowly and the feedback link has sufficient capacity, the 
perfect CSI assumption is assumed to hold throughout this chapter.

3.1.1.2 Information Rate

An important performance measure for a MIMO system is its mutual information, 
which determines the achievable information rates for the MIMO channel. Assume 
that the MIMO channel does not change from one slot to another (quasistatic 
channel). Let pX(x) denote the joint pdf/pmf* of the vector X = [ , , ]1X X NT

T…  of 
NT random variables.† It is assumed that X has zero mean E{ }X 0= NT

 and covari-
ance matrix R XXX = E{ }H . The mutual information I( ; )Y X  between the input 
x and output y for a MIMO channel is defined as

 I H H( ; ) ( ) ( | ),Y X Y Y X= −
∆

 
(3.2)

where H (⋅) is the differential entropy operator [Cover and Thomas 2006]

 
H( ) ( ) ( ( )) .2Y y y y

y
Y Y= −∫ p plog d

I( ; )Y X  is the number of bits that can be carried by X through h, given the 
specified pdf pX(x).

definition 3.1

The information rate I(h, px) = I( ; )Y X  is the maximum number of bits per channel 
use that can be carried error free through the MIMO channel h, given the pdf pX(x).

If one maximizes I(h,pX) over the pdf pX(x), but keeps the correlation matrix rX 
fixed, one obtains the constrained capacity for the MIMO channel.

* Probability density function or probability mass function.
† Capital and bold symbols denote vectors of random variables, except for matrices which always 

are in capital and bold.
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definition 3.2

The constrained capacity for a MIMO channel is

 
C I p

p H
( , ) ( , ).

( ): { }=
H R HX

X x XX RX
X=

E
sup

Soon we will present a closed-form expression for the constrained capacity of 
the MIMO channel. Finally, maximizing C(h, rX) over rX yields the capacity for 
a MIMO channel. This maximization is valid only if there is a constraint on rX, 
and the average transmit power constraint is commonly used.

definition 3.3

The capacity for a MIMO channel is

 
C P C

P

� ( , ) = ( , ).0
: ( ) 0

H H R
RX RX

X
tr ≤
max

Note that the information rate per channel use is given by the mutual informa-
tion between two sequences of random variables, y and X.

Telatar derived exact analytical expressions for the constrained capacity C(h, rX) 
and the capacity C P� ( , )0 H  of a MIMO system [Telatar 1999]. The constrained capacity 
of a MIMO system is given by

  
C I p Np

NT
H

H
( , ) ( , ) = 1

( ): { }
2

0
H R H I HR HX

X XX RX
X X= +




=

∆

x E
max log det  .

 
(3.3)

The constrained capacity in Equation 3.3 is attained by a multivariate Gaussian 
distribution on X, with the correlation matrix rX. The capacity is obtained by sub-
sequent maximization of Equation 3.3 as in Definition 3.3. The solution to this 
optimization is the well-known waterfilling technique. Let h = usvH be the SVD 
decomposition of the channel h and R Q QX = Σ T  be the eigenvalue decomposition 
of rX. Further, let σj,j be the diagonal elements of Σ and sj,j the diagonal elements of 
s, respectively. The optimization in Definition 3.3 can be shown to be equivalent to
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where r is the rank of the channel h. The unitary matrix q is equal to v. The solu-
tion to Equation 3.4 is

 
σ µj j

j j

N
s,

0

,
= ,opt −





 +  

(3.5)

where one defines

 
x

x x
x+

≥



=
0

0 < 0

for a number x, and m is such that the power constraint is satisfied. Hence, to achieve 
the rate in Equation 3.4, the transmitted vector x is constructed as x V a= Σ , 
where a is a zero mean circularly symmetric complex Gaussian (ZMCSCG) with 
R IA = ×NT NT

. This transforms the linear channel in Equation 3.1 into a set of 
parallel channels,

 y s a n k rk k k k k k k= , = 1, , ., ,σ opt + …  (3.6)

Thus, optimal transmission over the linear channel occurs over its eigen-
modes {sj,j}. Note, however, that this is only true if the data can be a multivariate 
Gaussian. As soon as the symbols xj in x are drawn from a discrete constellation, 
which will be the main focus later in this chapter, signaling as in Equation 3.6 
is not optimal!

Transmitting at bit rates in Equations 3.3 and 3.4, the probability of detecting 
an erroneous message at the receiver can be made arbitrarily close to 0 with long 
data blocks, in theory. Assume that the transmitter wants to convey one out of 
2k different messages to the receiver. A bit pattern b of k bits is used to represent 
each message. This bit pattern is represented by a sequence of vectors {x1, . . . , xn}, 
which are sent through h in n different channel uses. The rate R of the system is 
defined as R k n=

∆
/  bits/channel use. Assuming that channel is used indefinitely, that 

is, k,n → ∞ but with a fixed ratio R = k/n, it is possible to recover the transmitted 
message with error probability tending to zero as long as R C P< � ( , )0 H , if the encod-
ing of the 2k messages to the sequence of n vectors is done in an optimal fashion.

However, signaling exactly at this rate in practice is impossible for several 
reasons. First of all, it requires that the transmitted symbols xj are taken from a 
Gaussian alphabet, which is not very practical. Moreover, the number of messages, 
k, has to be infinite (in theory), that is, the transmission has to occur for an indefi-
nite amount of time. Infinitely many vectors xi, i = 1, . . ., need to be transmitted, 
and the receiver has to receive the whole signal yi, i = 1, . . ., in order to make opti-
mal detection. Still, it is possible to come close to these rates by modern coding 
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systems. A popular method [Brink et al. 2004] is to code the bit stream b with, 
for example, a low-density parity-check (LDPC) code, into a new bit sequence c 
of length m > k. Thus, the rate of the encoder is Rc = k/m. Next, the bits in c are 
mapped onto a discrete alphabet X  (e.g., quadrature amplitude modulation— 
QAM) of cardinality | |X  = M. This creates a sequence of n = m/NT log2(M ) symbol 
vectors x j

T
j j NT

x x= [ , , ],1 ,… , j = 1, .. . ,n. The sequence of vectors is passed through 
a serial to parallel converter and then transmitted from the antenna array. Hence, 
there are n = m/NT log2(M ) channel uses, and the total rate of the system is R = 
Rclog2(M )NT bits per channel use. This transmitter is shown in Figure 3.1. At the 
receiver, an iterative decoding algorithm is applied, that iterates between decoding 
the MIMO channel and the LDPC encoder, in accordance with the Turbo prin-
ciple [Hagenauer 1997].

As soon as the alphabet for the symbols xj is constrained to be discrete, the rates 
in Equations 3.3 and 3.4 can never be reached exactly. Instead, the limit is I(h, px) 
in Definition 3.1. To achieve high rates, a large QAM alphabet is necessary. Beside a 
large QAM alphabet, long code words need to be produced by the encoder in order 
to reach I(h, px) and thereby approach C(h, rx). For an LDPC encoder, the needed 
block lengths can be as large as 105 [Brink et al. 2004; Lu et al. 2004; Bennatan and 
Burshtein 2006]. For some time-critical applications, it is of interest to send short 
code words and have less latency at the receiver side. This will inevitably lead to an 
error probability that is bounded away from 0. Furthermore, the alphabet X  is in 
practice discrete. Thus, minimizing error probabilities or quantities related to it, 
without taking advanced codes into account, is a practically important topic.

3.1.2 Precoding for Linear Channels
From the previous discussion, it follows that the interest is to find a discrete set of 
vectors that can achieve the highest mutual information rate. However, this is also 
a nontractable problem if no constraints are put on the discrete set, except for the 

LDPC QAM mapper
Binary source

b c S/P
x1, . . . , xn

H

Figure 3.1 A practical transmission system that can come close to the rates in 
Definitions 3.1 through 3.3. The bit sequence b is encoded into a much longer 
bit sequence c by an LDPC encoder. The bits in c are mapped onto a QAM con-
stellation, which results in a sequence of vectors {x1, . . .,xn}, each with NT sym-
bols. After the serial to parallel converter S/P, each vector is transmitted from the 
antenna array across the channel H.
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obvious energy constraint. A widely used technique to generate the discrete set of vec-
tors, which starts to lend analytical tractability, is to construct the symbol vector x as

 x = L( ),a  (3.7)

where a is a data vector that comes from a well-defined B-dimensional discrete 
alphabet A LB  , and  is a certain function/mapping. Note here that the mapping 
L Lis : C CB NT→ , where B ≠ NT can hold. In practice, the alphabet A is an 
M-QAM alphabet,

 A = + ∈ − + −∆ { : , {( 1) 2, ,( 1) 2}}κ ( ) ,z iz z z M Mr i r i / /…

where κ is a normalizing constant such that the average energy in A is one.
From now on, we will always let A be the QAM alphabet.
In general, to find the optimal mapping L  for a certain receiver structure 

and performance measure (e.g., information rate) is a very tough problem. The 
mappings can be divided into two classes: linear mappings and nonlinear map-
pings. The latter often give rise to higher complexity (either encoding or decoding 
complexity), but can in general perform better than linear mappings. However, 
linear mappings always have a linear encoding complexity, while the decoding 
complexity depends on the receiver. We will now describe these two classes of 
mappings.

3.1.2.1 Linear Precoding

When L  is a linear map, it can be represented by a matrix equation, that is, x = Fa 
for some matrix F. A linear map is called a linear precoder. Here, a is a B × 1 vec-
tor, and F is NT × B. Since a is discrete and structured, so will x be. We have 
already seen an application of linear precoding. To achieve the capacity C P� ( , )0 H  in 
Equation 3.4, the vector x is constructed as x = vΣa, where a 0 I∼ CN ( , )NT NT NT×  
(i.e., B = NT). Hence, in this case, F = vΣ. In general, since both the transmitter 
and receiver have perfect channel knowledge, it is possible to optimize over a linear 
transformation F of the data symbols a, in order to improve a performance measure 
imposed on Equation 3.1. Hence, a more general linear model than Equation 3.1 
arises from this consideration:

 y HFa n= + .  (3.8)

As in Equation 3.1, n ∼ CN ( , )0 INR NR NR× . Since x =  Fa, R Faa FX = =E{ }H H  
FrAFH, where the last equality follows from the linearity of the expectation opera-
tor E{ }⋅  and the fact that F is not stochastic. Assuming uncorrelated QAM symbols 
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(a practical assumption), rA = IB×B and rX = FFH. In this case, F determines the 
correlation matrix of x. The average transmit energy constraint is now

 tr( ) .0FFH P≤  (3.9)

3.1.2.2  Nonlinear Precoding and the Multiuser Broadcast 
Channel

If L  is a nonlinear function, then we obtain a nonlinear precoder. A common non-
linear precoding technique is vector perturbation [He and Salehi 2008, Ryan et al. 
2009, Razi et al. 2010], which perturbs the data vector a with another vector p that 
comes from a lattice, in order to reduce the transmit energy. The data symbols aj are 
assumed to belong to a bounded region in the complex-valued plane. Usually, this 
region is the cube K = { :| { }|< 0.5,| { }| 0.5}a a aRe Im < , that is, a j ∈K  and a ∈KB, 
the B dimensional cube. Next, a vector s is constructed as

 s H a p= ( ),+ +  (3.10)

where h+ is the Moore–Penrose pseudo inverse of h and p is the solution to

 
p H a q= ( ) .

[ ]

2arg min
q∈

+ +
Z i B
� �

 
(3.11)

In Equation 3.11, Z[ ]i B  denotes the set of B dimensional Gaussian integer vec-
tors. The transmitted vector x is then

 
x H s= ( ) ,0P

κ  
(3.12)

where κ (h) is the average energy

 κ ( ) = { }2H sEA � �  (3.13)

with respect to the data vector a. Hence, the received signal is

 
y H a p n= ( ) .0P

κ ( )+ +
 

(3.14)

Decoding a is now a simple matter. Since p ∈ Z[ ]i B  and a ∈KB ,  the lattice 
vectors p translate the cube KB  so that it tiles the complex-valued B dimensional 
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space CB ; that is, the translated cubes cover CB  and they do not intersect. Let a j�  
denote the jth decoded data symbol. Then

 a yj j� = ,modK  (3.15)

where mod K  means that yj is translated to K , that is, yj − zj ∈ K  for a (unique) 
zj. Thus, a simple modulo operation for each received stream yj recovers aj. Note 
that the decoded a j�  is corrupted by a modulo Gaussian noise, nk mod K .

Vector perturbation finds applications in MIMO broadcast channels as well 
[Hochwald et al. 2005]. A MIMO broadcast channel, with single-antenna users, is 
modeled as in Equation 3.1, where each entry in the vector y is the received symbol 
at a certain user. Each entry i, xi, in the vector x is the symbol intended for user 
i. Hence, in contrast to SU-MIMO, all other symbols except xi act as interference 
to user i. By applying vector perturbation at the transmitter, it is readily seen from 
Equation 3.14 that no interference occurs at the user terminals.

Vector perturbation gives rise to a simple decoding method, by inverting the 
channel and translating the data vector a to reduce the transmit energy. Moreover, it 
is shown in [Hochwald et al. 2005] that vector perturbation comes close to the sum 
capacity of a MIMO broadcast system. In [Taherzadeh et al. 2007], it is shown that 
vector perturbation achieves the maximum diversity in MIMO broadcast chan-
nels. The main bottleneck of vector perturbation is the computational complexity 
needed to find the optimal p in Equation 3.11, which is a well-known NP-hard 
problem [Razi et al. 2010]. Hence, an NP-hard problem needs to be solved online 
for every realization of h and a. Suboptimal low-complexity implementations of 
vector perturbation exist [Windpassinger et  al. 2004] that achieve performance 
close to the original vector perturbation.

3.1.3 Construction of Linear Precoders
The low encoding complexity of linear precoders is very desirable for practical 
applications. For this reason, linear precoders have been an active area of research 
throughout the history of MIMO communications and are, for example, incorpo-
rated in the long-term evolution (LTE) standard [Dahlman et al. 2011]. However, 
depending on the receiver and the different performance measures of interest, dif-
ferent optimal precoders are obtained. We will now review some linear precoding 
techniques for different receiver structures.

3.1.3.1 Optimal Linear Precoders for Linear Receivers

The Wiener filter is the optimal linear receiver for many performance measures of 
interest. Employing this filter at the receiver, the next task is to find linear precod-
ers that maximize different performance measures. A thorough investigation of 
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this problem is performed in [Palomar and Jiang 2007], [Palomar et  al. 2003], 
and [Scaglione et  al. 2002]. The optimization problems that arise are efficiently 
solved with majorization techniques, and it turns out that the optimum precoder 
can be derived in a relatively easy fashion. Let N ≤ min (NR, NT). If an arbitrary 
objective function f(e1,1, . . .,eN,N), where e1,1,. . .,eN,N are the MMSE values across 
each received antenna after the Wiener filter, is increasing in its arguments and 
minimized when its arguments are sorted in decreasing order, the solution to the 
optimization problem

 

F
min f e

e j N
P

j j

j j j
H

({ })

, = 1, ,
( )

,

,

0

subject to

tr
≤

≤
ρ …

FF  

(3.16)

is of the form F V p Q= ( )diag . Here, v is the right unitary matrix of h, q is a 
unitary matrix such that ej,j = ρj, j = 1, . . ., N, (q can be obtained by a rather simple 
algorithm, Palomar and Jiang 2007, Algorithm 2.2), and diag ( )p  is a diagonal 
matrix with the vector p  on its main diagonal.

It turns out that the BER function is convex as soon as it is below a certain 
threshold ≈10−3. Thus, the problem in Equation 3.16 becomes a convex optimiza-
tion problem, that is, minimizing the BER is a convex problem that can be solved 
efficiently with convex optimization techniques.

Instead, if the interest is to maximize the mutual information, the problem 
reduces to minimizing the determinant of the MMSE matrix [Palomar and Jiang 
2007], and the optimal F has Q I= NT NT,  and pi i= − −

+( ),
1µ λh , where m is such 

that ∑ =j
N

jp P=1 0  holds. Hence, it is thus possible to derive closed-form solutions to 
the optimal precoder in the case of simple functions f, and also optimal numerical 
solutions when f is convex.

3.1.3.2 Optimal Linear Precoders for the ML Receiver

The Wiener filter is after all a suboptimal receiver, which thus gives a subopti-
mal performance of a MIMO system. If instead the optimal ML decoding rule is 
employed at the receiver, the analysis of the optimal linear precoders is significantly 
tougher for discrete alphabets. For coded systems, the main goal is to maximize 
the information rates in Section 3.1.2, which describe the performance of the ML 
decoder. Henceforth, in all sections, we assume that the ML decoder is employed 
at the receiver. Note that since x = Fa, p p B

X Ax a( ) ( ) 1 /= = | |A  and RX = FFH. 
The information rate I(h,pX) in Definition 3.1 can be denoted as I(h, F), where 
the optimization variables are explicit. The information rate optimal precoder is 
found by solving
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F
maxI

PH

( , )

( ) .0

H F

FF
subject to

tr ≤  

(3.17)

Note that it is trivial to solve Equation 3.17 with C P� ( , )0 H  as objective func-
tion, that is, when the alphabet A  is Gaussian: the optimum linear precoder then 
performs waterfilling. However, since the alphabet A  is discrete, there is no closed-
form expression available for the objective function I(h, F). Finding the precoder F 
that solves Equation 3.17 is a challenging problem. In [Perez-Cruz et al. 2010], the 
Karush–Kuhn–Tucker (KKT) conditions were derived for Equation 3.17, which 
produced a fixed point equation for the optimal F. Based on this equation, an 
iterative optimization technique was developed that produced precoders providing 
high information rate. However, the problem with this approach is that the itera-
tive optimization technique is not guaranteed to converge to the optimum, since 
Equation 3.17 is a nonconvex problem in F.

In [Lozano et al. 2006], an optimal F adhering to a diagonal structure is derived. 
Combining this with the result in [Payaro and Palomar 2009], that the optimal F is 
such that its SVD factorization F = uF PF vF satisfies uF = v, where h = usvH is the 
SVD of h, it is concluded that the optimal F is known up the right unitary matrix in 
its SVD factorization. Furthermore, in [Perez-Cruz et al. 2010], it was shown that in 
the low SNR-regime, the right unitary matrix of the optimal precoder is the identity 
matrix. Thus, for low SNRs, the optimal precoder is of the form F = vhPF, with PF 
constructed as in [Lozano et al. 2006]. The work in [Lozano et al. 2006] showed that 
the diagonal elements in PF are obtained by a procedure named as mercury waterfill-
ing, which is the analogue of waterfilling for Gaussian alphabets, but now for discrete 
alphabets instead. In contrast to classical waterfilling for Gaussian alphabets, mercury 
waterfilling amounts to first pouring mercury in tubes corresponding to each data 
stream; the mercury is poured up to a certain precalculated level. Thereafter, water 
with a certain volume is poured on top of the mercury until the water level in all tubes 
is the same. The height of the water in each tube is the power to be allocated to each 
data stream. A graphical illustration of this process, as well as analysis, is presented in 
[Lozano et al. 2006]. A recent advance in [Xiao et al. 2011] shows that I(h,F) is con-
cave over the Gram matrix g = FHhHhF. This enables construction of an algorithm 
that converges to the optimal F. However, this algorithm is of very high complexity 
and is not very feasible for large QAM constellations and MIMO dimensions.

The work in [Perez-Cruz et al. 2010] showed an interesting connection between 
information rate and the minimum distance of the received signal vectors. Since 
the bit error rate (BER) at the receiver is decreasing with the minimum distance 
of the received signal vectors for high SNRs, it is desirable to maximize the min-
imum distance between the received vectors. Theorem 3.4 in [Perez-Cruz et  al. 
2010] shows that for high SNRs, the precoder solving Equation 3.17 is the one 
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maximizing the minimum distance. Thus, for high SNRs, the solution to Equation 
3.17 is obtained by optimizing the minimum distance. Hence, an interesting con-
nection exists among the three well-known optimization criteria: the minimum 
distance, BER, and information rate. The precoder that minimizes the BER at high 
SNRs maximizes the data rate and the minimum distance at the same time!

3.1.3.3 Linear Precoders for Minimizing the BER

Owing to difficulty in finding the precoder that maximizes the mutual information 
rate for moderate SNR, an alternative is to minimize the BER. This is also directly 
applicable to systems not using advanced error correcting codes. Since the BER 
expression for an ML decoder cannot be put in closed form, different approxima-
tions of it are minimized, such as the Chernoff upper bound. In [Lokesh et al. 2008], 
a general expression for the precoder that minimizes the BER was presented. Similar 
results are derived in [Payaro and Palomar 2009]. However, these expressions are 
given in terms of unknown matrices, and to determine these matrices is a nontrac-
table task in dimensions higher than two. Works such as [Lee et al. 2007], [Vu and 
Paulraj 2006], [Scaglione et  al. 2002], [Mohammed et  al. 2011], and [Jian et  al. 
2005] present suboptimal constructions to minimize the BER. In general, finding 
the precoder that minimizes the BER is a nontractable problem, and approximations 
to the BER are made, which relax the problem into a tractable one.

3.1.3.4 Linear Precoders without CSI at the Transmitter

When the transmitter has no knowledge about the channel coefficients h, the con-
struction of precoders is of a different nature than before. In many cases, the receiver 
has the capability to obtain a good enough estimate of the channel. One alternative 
then is to feed back the CSI to the transmitter, as mentioned in Section 3.1.1.1, 
so that the transmitter has a channel to work with. However, due to the inherent 
delay, and in the case of low rate feedback links, this method is not viable. Instead, 
in this scenario, it is desirable that the receiver only feeds back a small amount of 
information to the transmitter, which is sufficient for determining the precoder at 
the transmitter. In [Jindal 2006], it was shown that for MIMO broadcast* channel 
with a zero forcing precoder (ZF) at the base station, the number of feedback bits 
required increases linearly with the SNR.

Usually, the transmitter is equipped with an already static, finite collection of pre-
coders, a precoder codebook, and the receiver only feeds back a string of bits across the 
MIMO channel, that represent the position of the precoder in the codebook that the 
transmitter should use. This is known as limited feedback precoding, and is a part of 
the LTE standard [Dahlman et al. 2011]. Hence, the art of limited feedback precod-
ing is in designing the finite precoder codebook. Many different techniques exist for 

* MIMO broadcast is also refered to as MU-MIMO.
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this purpose. In [Love and Heath 2005], precoders with k orthogonal columns are 
designed, where k < NT. It is shown that the optimal such precoder, for many perfor-
mance measures, has its k columns isotropically (i.e., “evenly”) distributed across the 
unitary space U( , )N kT  of NT × k matrices with k orthogonal columns. Hence, the 
optimal codebook should consist of precoders that are evenly spread across U( , ).N kT  
By constructing different distance measures between the subspaces that each such 
precoder spans, it is possible to construct codebooks of different sizes containing 
evenly spread precoders. Beside orthogonal precoding, other methods exist that 
feedback a few bits representing different elements of a precoder that optimizes, for 
example, the minimum distance [Ghaderipoor and Tellambura 2006].

3.1.4 Linear Precoders for Maximizing the Minimum Distance
Owing to the difficulty in finding a precoder that minimizes the BER, a common 
method is to minimize a quantity directly related to the BER. As discussed ear-
lier, the minimum distance is the dominant factor in the BER for an ML decoder 
at high SNRs, and the precoder that maximizes it not only minimizes the BER, 
but also maximizes the information rate. There have been many attempts to con-
struct precoders that increase the minimum distance, see, for example, [Payaro and 
Palomar 2009], [Vu and Paulraj 2006], [Scaglione et al. 2002], [Bergman 2009], 
among many others. All of these attempt to produce suboptimal constructions for 
moderate dimensions of the MIMO system. However, in [Collin et al. 2007], the 
precoder that maximizes the minimum distance for MIMO channels with two 
data streams (B = 2 and NR ≥ 2) and 4-QAM alphabet was found. It is shown that 
there are essentially only two different precoder “structures” that are optimal. With 
“structure,” it is meant that the mathematical expression for the precoder takes on 
two different forms, but the precoder itself changes continuously with the channel, 
c.f. [Collin et al. 2007]. For any MIMO channel h with a ratio of its singular val-
ues that is above a certain threshold, one of these structures is always optimal, while 
for a channel with a ratio below the threshold, the other structure is optimal. Thus, 
in a way, the optimal precoder behaves in a discrete fashion. Later, this analysis 
was extended to 16-QAM alphabets in [Ngo et al. 2009], where it was found that 
there are only eight different precoder structures. Hence, these results hint upon 
a discrete structure of the optimal precoder. This chapter will reveal this optimal 
structure and provide new insights into the design of linear precoders F that maxi-
mize the minimum distance of the received signal vectors. The analysis for MIMO 
systems with two data streams is covered in Section 3.2.

3.1.5 Optimization Problem
Let Dmin

2 ( , )HF A  denote the minimum distance of the received signal points at the 
receiver. The problem of finding the NT × B precoder F that maximizes the mini-
mum distance can be formulated as
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Let e a a= − ∈ E B , where E  is the difference set of the alphabet A. We now have 
D B

H H H
min min2 ( , )HF e F H HFeA = ≠e 0 . Define

 G F H HF� H H  (3.19)

to be the Gram matrix of hF. Then Equation 3.18 becomes
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It is readily seen that the optimal Fopt is such that it minimizes tr(FFH) subject to 
a fixed constraint on the minimum distance, for example, e 0 e e≠ ∈ ≥B

B H
, 1Emin .Ge  

Thus, we can rewrite Equation 3.20 as
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(3.21)

Let h = usvH be the singular-value decomposition of h. From the defini-
tion of g in Equation 3.19, it follows that u has no impact on Dmin ,2 ( , )HF A  
and can therefore be removed at the receiver. Furthermore, the matrix v can be 
absorbed into F without changing the value of the objective function in Equation 
3.21. Only the N × N diagonal submatrix in s, that contains the singular values, 
is of interest, since the other elements are zero. Hence, an equivalent model to 
Equation3.1 arises:

 y SFa n= + ,  (3.22)

where s is an N × N diagonal matrix with nonzero diagonal entries, F is an N × B 
matrix subject to tr(FHF) ≤ P0, and a a B × 1 vector. Further, y is now N × 1 and so 
is n. In total, the system in Equation 3.1, where x = Fa, can without loss of general-
ity be reduced to Equation 3.22. g is now g = FHs2F, a B × B matrix. It is further 
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assumed that B ≤ N, that is, the number of spatially multiplexed data streams is 
determined by the rank. Thus, we can now rewrite Equation 3.21 as
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(3.23)

In [Payaro and Palomar 2009], it was shown that solving Equation 3.23 is an 
NP-hard problem. Thus, at first sight, this problem seems mathematically intrac-
table, and finding a solution to it online amounts to solving an NP-hard prob-
lem. Therefore, the first natural approach is to construct suboptimal solutions to 
Equation 3.23, as was done in [Scaglione et al. 2002] and [Vrigneau et al. 2008]. 
This is the rationale behind Section 3.1.7.

Assume that the Gram matrix g in Equation 3.23 is given. We will now find 
the F that solves Equation 3.23 for the given g. Since g is Hermitian, and thus a 
normal matrix, its eigendecomposition is

 G QDQ= .H
 (3.24)

The factorization in Equation 3.24 is unique if the diagonal elements of d are 
ordered in a decreasing order. From the definition of g and Equation 3.24, we 
see that F S D 0 Q= −

−
1

,( )B N B
T H  is a precoder such that FHs2F = g. The 0B,N−B 

matrix is a B × N − B zero matrix, accounting for the case when B < N. Next, we 
prove that this F has the lowest energy of all possible g satisfying g = FHs2F.

Theorem 3.1

Let g = qdqH where the diagonal elements of d are ordered in decreasing order. 
Then, of all F satisfying g = FHs2F,

 F S D 0 Q= −
−

1
,( )B N B

T H
 (3.25)

is the one with least energy tr(FHF).

Proof. Combining g = FHs2F and Equation 3.24 we get FHs2F = qdqH. 
Rewriting, we have

 Q F S FQ DH
H H 2 .=  (3.26)
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Assume that FHrF, where r is a positive semidefinite matrix, is equal to a 
diagonal matrix Λ, where the diagonal elements in Λ are in decreasing order (in 
our case Λ is B × B). Then, in [Palomar and Jiang 2007, Lemma 3.16], it is proved 
that we can always choose F V DR R= −1/2 Λ , where vr contains the B eigenvectors 
of r corresponding to the B largest eigenvalues of r and dr contains the B largest 
eigenvalues of r, respectively, in order to minimize tr(FHF). Hence in our case, 
we choose FQ S I 0 DB B= −

× −
1

,( )B N B
T  which gives F S D0 Q= −

−
1

,( )B N B
T H  and 

completes the proof.

3.1.6 Suboptimal Constructions
Numerous suboptimal constructions of F exist for maximizing the received mini-
mum distance. One of the first suboptimal approaches is presented in [Scaglione 
et al. 2002]. Therein, it is noted that
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where λB (.) is the B-th largest eigenvalue of its argument (since B is the dimension of 
the Gram matrix g, it is the smallest eigenvalue in this case). Hence, by constructing 
F such that the smallest singular value of hF is maximized, the lower bound on the 
minimum distance is maximized. It is shown that the optimal F takes on the form

 F VD= ,

where as before v denotes the right unitary matrix in the SVD decomposition of h. 
Although providing performance superior to no precoding, this method has been 
outperformed by later suboptimal constructions.

In [Vrigneau et al. 2008], a suboptimal construction based on the optimal two-
dimensional precoder in [Collin et al. 2007] is presented. The precoder in [Collin 
et al. 2007] is only optimal for 4-QAM alphabets. The idea is to pair off the largest 
and smallest singular values of the channel, and apply the optimal two-dimensional 
precoder for each pair. Namely, let s(i) denote the i:th largest singular values of 
h. The singular values are paired as (s(1), s(N )), (s(2), s(N−1)), . . ., (s(N/2), s(N/2+1)). Let 
s(i) denote the i:th pair. The optimal precoder Fi is constructed for each pair s(i), 
1 ≤ i ≤ N/2, and scaled such that the minimum distance for each channel s(i) Fi is 
the same. The performance of this precoding will be presented in later sections.

Another approach for constructing precoders is presented in [Bergman 2009]. 
Therein, a lattice theoretic approach is undertaken to construct precoders with large 
minimum distances. By using densest lattice packings in different dimensions, and 
optimizing the lattice basis, precoders with large minimum distances were found. It 
was shown with bounds and numerical observations that, in general, the performance 
of lattice precoders is close to the optimum. However, the precoder construction is 
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heuristic, and it is not known whether densest lattice packings are optimal or not. 
Section 3.2 will present a proof that, for MIMO systems with two input streams, 
well-known lattices are indeed optimal for precoding with large discrete alphabets. 
Recent works in [Kapetanović et al. 2012] shows that densest lattice packings are 
not always optimal for a higher number of input streams. Further suboptimal con-
structions can be found in [Rusek and Kapetanović 2009], [Mohammed et al. 2011], 
[Ngo et al. 2010, 2013], and [Kapetanović and Rusek 2011].

3.1.7 Summary of Precoding Techniques
In Table 3.1, we present current knowledge at hand when it comes to optimal linear 
precoding. The complexity of a decoder is measured by the conventional ordo nota-
tion, that is, the complexity is proportional to the argument of O( )⋅ . Complexity of 
preprocessing before decoding, that is, matrix/vector operations, is not considered. 
For the MMSE receiver, the decoding complexity does not depend on the alphabet 
size | |A , and for Gaussian alphabets, decoding complexity is not really a definable 
concept (Gaussian alphabets are approximated by discrete ones in practice).

As seen in the table, for the optimal ML receiver, the optimal precoder construc-
tion is found in [Xiao et al. 2011], which produces an optimal precoder maximizing 
the mutual information. However, due to the high computational cost in generating 
these precoders at the transmitter, it is of interest to study alternative methods, espe-
cially in the high/low SNR regime. For low SNRs, the solution is given by mercury 
waterfilling. For high SNRs, the optimal precoder is the one that maximizes the min-
imum distance of the received signal points. Moreover, this precoder is also useful for 
delay-sensitive applications not using advanced coding techniques. In Table 3.2, we 
list the current knowledge at hand for precoders maximizing the minimum distance.

Table 3.1 Summary of Current Results on Optimal Linear Precoders

Receiver SNR Constellation Optimal Precoder
Decoding 

Complexity

ML Any Gaussian Waterfilling NA

ML Low Discrete Mercury waterfilling 
[Lozano et al. 2006]

O A( | |)B

ML High Discrete Maximum min. dist. 
precoders

O A(| | )B

ML Any Discrete Precoding in [Xiao et al. 
2011]

O A(| | )B

Linear 
(MMSE)

Any Any Constructions in 
[Palomar and Jiang 2007]

O( )B

Note: The dimension of the MIMO system is arbitrary.
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Note that for infinite discrete alphabets (e.g., an infinite QAM alphabet), the 
optimal precoders are known by work presented in Section 3.2 and in [Kapetanović 
et al. 2012]. The infinity assumption comes from using lattice theoretic tools for 
characterization of the optimal solution, while in practice, as will be demonstrated 
in Section 3.2, this can be relaxed to large alphabets (≥16-QAM for MIMO sys-
tems with two input streams). The main result is that there are a discrete number 
of optimal Gram matrices g, from which the optimal precoder is obtained by 
means of the construction in Theorem 3.1. This implies that for small variations of 
the MIMO channel, the Gram matrix of the optimal precoder does not change. 
Hence, the Gram matrices can be enumerated offline for different sets of MIMO 
channels, and used for online precoder construction. This can be efficiently accom-
plished in the case of two input data streams (B = 2), while for a larger number of 
streams, efficient enumeration of the Gram matrices as well as identifying which 
ones are optimal for different channel sets remains a topic for future research.

3.2 Precoding from a Lattice Point of View
This section will explore the connection between optimal minimum distance pre-
coders and lattice theory. Hence, the minimum distance problem will be viewed 
from a lattice theoretic perspective, and this will enable us to explain the structures 
observed in [Collin et al. 2007] and [Ngo et al. 2009] for B = 2 data streams. For 
convenience, this section only focuses on the case N = B = 2, with the remark that 
the results also hold for all N × N MIMO channels with two input data streams, 
that is, N × B precoders with B = 2. This follows from the expression of the optimal 
precoder in Theorem 3.1, which shows that if B < N, the optimal precoder is an 
N × 2 matrix with an (N − 2) × 2 zero matrix in the last rows. Hence, effectively, 
this corresponds to employing a 2 × 2 precoder across the strongest eigenmodes of 
the MIMO channel.

Table 3.2 Current Status on Precoders Maximizing the Minimum Distance

No. of Input Streams B Constellation Size Optimal Precoder

2 4 Precoders in [Collin et al. 2007]

2 16 Precoders in [Ngo et al. 2009]

2 >16 Unknown

2 Infinite Presented in Section 3.2

>2 Small to moderate Unknown

>2 Infinite Precoders in [Kapetanović 
et al. 2012]
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3.2.1 Lattices
We now present a brief account on lattice theory (c.f. Section 2.2.1 in Chapter 2) 
needed for our purposes. All matrices and vectors in this section are assumed to 
be real-valued. This covers complex-valued matrices and vectors too, since any 
complex-valued matrix A is isomorphic to a real-valued matrix Ar through the 
transformation
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(3.27)

and similarly
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{ }
{ }
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(3.28)

for complex-valued vectors s, where, Re{ }⋅  and Im{ }⋅  denote the real and imaginary 
parts of a matrix/vector, respectively.

Let l ∈ ×RN N  and let the columns of l be denoted by l1, . . ., lN. A lattice Λl 
is the set of points

 ΛL = { : }.Lu u ∈ ZN
 (3.29)

In Equation 3.29, u is an integer vector and l is called a generator matrix for the 
lattice Λl. The squared minimum distance of Λl is defined as
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where u, v and e = u − v are integer vectors and gl is the Gram matrix for the 
lattice Λl. The fundamental volume is Vol(Λl) = |det(l)|, that is, it is the volume 
spanned by l1, . . .,lN. Let pj denote a lattice point in Λl. A Voronoi region around a 
lattice point pj is the set Vp L Lw w p p w p

j j k k( ) = { : , }Λ Λ� � � �− ≤ − ∈ . Due to 
the symmetry of a lattice, it holds that V Vp L Lp

j j( ) = ( )Λ Λ+ , where the Voronoi 
region around 0N is denoted by V( )ΛL .

As can be seen from the definition of ΛL, the column vectors l1, . . .,lN form a basis 
for the lattice. There are infinitely many bases for a lattice. Assume that l′ is another 
basis for Λl. It holds that l′ = lz, where z is a unimodular matrix, that is, z has 
integer entries and det (z) = ±1 [Conway and Sloane 1999]. Hence, the generator 
matrix l′ generates the same lattice as l, that is, Λl ≡ Λl′ where ≡ denotes equality 
between sets. Two Gram matrices G L LL1 1 1= T  and G L LL2 2 2= T  are isometric if there 
exists a unimodular z and a constant c such that G Z G ZL L1 2

= c T . Geometrically, 
this means that l1 and l2 are the same lattice up to rotation and scaling of the basis 
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vectors. Figure 3.2 shows a geometrical visualization of a hexagonal lattice and the 
definitions above.

From the definition of the different lattice measures, it follows that

 D Dmin min ,2 2( ) = ( )WLZ L  (3.30)

where W is any orthogonal matrix. Similarly, Vol(ΛWlz) = Vol(Λl).
A number of lattices are especially interesting and have been given formal 

names in the literature. In particular, the densest lattices in the sense that they 
maximize the quotient Dmin

2 ( ) ( )Λ Λ/Vol  are of interest. In 2, 4, 6, and 8 dimen-
sions, the densest lattices are the hexagonal A2, Schläfli D4, E6, and the Gosset E8 
lattices, respectively [Conway and Sloane 1999]. Apart from these 4, we will also 
make use of the two-dimensional square lattice Z2.

3.2.2 Introduction to Lattice Precoding
To study the minimum distance problem from a lattice point of view, the QAM 
alphabet A  has to be infinite, that is, a ∈AB B i= [ ]Z , the set of B-dimensional 
Gaussian integer vectors. We will use this assumption for the purpose of the anal-
ysis, while practically, as will be demonstrated by simulations, this corresponds 
to a large enough QAM alphabet. Hence, the error vectors e are B dimensional 
Gaussian integer vectors. From now on A  will not be explicitly written out, since 
it is implicit that it is equal to Z[ ]i . Thus, Dmin

2 ( , )SF A  will be denoted as Dmin .2 ( )SF  
Since there are infinitely many error vectors e, the B × B Gram matrix g must have 
rank B in order for the inequalities eHge ≥ 1 to hold. If not, then the minimum 

Vpj 
(ΛL)

Vol (ΛL)

L1

L2

pj

Figure 3.2 The hexagonal lattice depicted with a geometrical description of the 
introduced lattice quantities.
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distance D H
min
2 ( ) =SF e Ge is arbitrarily close to 0, since e can be arbitrarily close 

to the eigenvectors that corresponds to zero eigenvalues. Thus, g is a positive-def-
inite matrix, and N ≥ B must hold (the reader is reminded that the precoder F in 
Equation 3.22 has dimensions N × B, and g = FH s2 F).

Using notions from Section 3.2.1, we start by reformulating (3.23) as a lat-
tice problem. Let M = sF be the lattice generator matrix at the receiver, which, as 
described above, must have full rank. M can be factorized as M = WBz, where 
W is a unitary/orthogonal matrix, B is an N × N matrix and z is a unimodular 
matrix. The lattice structure of M is determined by the matrix B, while z is the 
basis through which the lattice is represented. The matrix W is merely a rotation 
of the lattice, but plays an important role in the optimization to follow. With this 
factorization of M, it follows that F can be written as

 F S M S WBZ= = .1 1− −  (3.31)

Hence, Equation 3.23 can be formulated as
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(3.32)

For completeness, we shall separate between two cases: (i) Real-valued precod-
ing, where all quantities in Equation 3.32 are real-valued, and (ii) complex-valued 
precoding, where all quantities, except s, are complex valued.

From Theorem 3.1, it follows that the optimization over W is straightforward 
once Bz is fixed: the optimal W equals the left unitary matrix of Bz. This leaves 
us with the optimization of B and z, and we shall start with B in Section 3.2.3.1, 
while optimization over z is treated in Section 3.2.3.2.

3.2.3 Optimal Two-Dimensional Lattice Precoders
In [Bergman 2009] and [Forney Jr. and Wei 1989], it is proposed to design F based 
on dense lattice packings. A lattice-based construction implicitly assumes that the 
signal constellation is a finite but sufficiently “large” set of lattice points, and the 
idea is that if the received constellation points sFa’s are arranged as a dense lattice 
packing, the minimum distance is expected to be “good.” However, no exact results 
on optimality have been presented in either of these articles.

To gain some insight into the problem, let us examine some simple special cases. 
First, we rewrite Equation 3.32 in its equivalent form

 

F
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FF
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PH

2

0

( )

( ) .subject to tr ≤  
(3.33)
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The formulation in Equation 3.33 turns out to be easier to analyze numerically. 
In real-valued precoding, some specific instances of the problem in Equation 3.33 
can be viewed geometrically. Assume that tr(FFH) = 4 and the elements of the input 
a are identically and independently distributed (i.i.d.) random variables. Normalize 
s to have s2,2 = 1, which only scales the optimal solution to Equation 3.33 with a 
constant, so that changing s corresponds to varying the value of s1,1. Since there are 
only four real-valued elements in F, and they are bounded by the energy constraint, 
it is possible to determine the optimal F to Equation 3.33 for some carefully chosen 
value of s1,1, say, by empirical means. When s = I (i.e., s1,1 = 1), one optimal solution 
to Equation 3.33 is F = I, while another one is

 
F =

1 0.5
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,
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which spans a hexagonal lattice. However, as soon as s deviates from I (even with 
a very small change, say, s1,1 = 1.01), the optimal F is unique (up to sign changes in 
the columns) and it gives rise to an sF that is a generator matrix for the hexagonal 
lattice. Varying s1,1 further, the optimal F changes in a continuous way, while the 
received lattice sF remains the same (up to scaling). This behavior continues until 
s1,1 reaches a certain value, for which the optimal F suddenly changes in a discon-
tinuous way, resulting in a discontinuous change in sF. However, surprisingly, sF 
still spans a hexagonal lattice, in spite of its subtle changes!

Figure 3.3 depicts such a behavior by plotting as vectors the columns of the 
optimal F and the corresponding sF for three different s with s1,1 = 1.5, 2.7 and 
2.8, respectively. The received constellation points sFa are shown as discrete points. 
The optimal F changes continuously as s1,1 increases from 1.5 to 2.7, and the col-
umns of sF are simply being scaled and always span the same hexagonal lattice (up 
to scaling). When s1,1 further increases from 2.7 to 2.8, there is a discontinuous 
change in the elements of the optimal F. The columns of sF also change discon-
tinuously, but they still span the hexagonal lattice (up to scaling and rotation). This 
intriguing behavior of the optimal precoder poses a challenging puzzle, and the aim 
of this section is to resolve this puzzle.

Although the following results are derived for infinite constellations, by using 
lattice theory, the results are applicable to “large” QAM constellations. In the 
numerical result section, we shall investigate how “large” a QAM constellation 
is sufficient for the presented results to be fruitfully applied. With the solution at 
hand, we are able to answer questions, such as the following:

 ◾ Is there a general underlying structure of the precoding optimization problem 
(3.32)?

 ◾ Under what conditions, does the solution to Equation 3.32 vary with the 
channel matrix s in a continuous (respectively, discrete) manner?
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 ◾ Is it possible to offline construct a codebook of optimal precoders so that 
there is no need to perform any online optimization?

The answers to these questions are that there is indeed a profound structure 
in the solution of Equation 3.32. Remarkably, there is a single precoder structure 
which is optimal, and it organizes the received constellation points as a hexagonal 
lattice for real-valued F’s, and as a Schläfli lattice for complex-valued F’s. However, 
the basis through which the lattice sF is observed changes (up to scaling) in a 

Optimal F HFx(b)(a)

(c) HFx

3

2

1

–3 –2 –1
–1

–2

–3

–2 –1 1 2

2

1

–1

–2

–3

1–1–2–3–4–5 2 3 4 5

3

2

1

–1

–2

1 2 3

Figure 3.3 Visualization of the solution to the precoding optimization problem 
in Equation 3.33 when E is Z, and H is a diagonal channel matrix S = diag([s1,1 1]). 
(a) Columns of the optimal real-valued precoding matrix F are depicted. Three 
different S are considered: s1,1 = 1.5 (solid line arrow); s1,1 = 2.7 (dashed line 
arrow); s1,1 = 2.8 (dotted line arrow). Columns of the same matrix are plotted as 
arrows with the same line style. (b) Columns of the matrices SF and their corre-
sponding received constellation points SFa’s for h1,1 = 1.5 (solid line arrows, filled 
circles) and for s1,1 = 2.7 (dashed line arrows, crosses) are plotted. (c) Columns 
of the matrices SF and their corresponding received constellation points SFa for 
s1,1 = 2.8 (dotted line arrows, filled triangles) are plotted.
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discrete fashion when s changes. This implies that Equation 3.32 is actually a dis-
crete optimization problem and not a continuous one.

3.2.3.1 Optimal Precoding Lattices

In this section, the optimal lattice B for the real-valued and the complex-valued 
cases is derived.

For the real-valued case, the main result is:

Theorem 3.2

For any non-singular channel matrix s, the optimal lattice B in Equation 3.32 is the 
hexagonal lattice, that is,

 

B =
1 1

2

0 3
2

.

















Proof. First, the constraint in Equation 3.32 will be made more manageable. It fol-
lows from Equation 3.30 that D Dmin min

2 2( ) = ( )WBZ B . Let b b1 2
2, ∈R  be the col-

umns of B and assume that � � � �b b1 2≤ . In 1801, C.F. Gauss noted [Gauss 1981] 
that if b1 and b2 fulfill, | | 22 1 1

2b b b⋅ ≤� � / , where “⋅” is the scalar product between 
vectors, then Dmin

2
1

2( )B b=� � . Given b1, the set of all b2 satisfying the inequality 
is the minimum distance region of b1. Figure 3.4 depicts this region geometrically.

b1 and b2 are actually the shortest basis for the lattice, since � �b1  is the length 
of the shortest vector in the lattice, and it can be shown that � �b2  is the length of 
the next shortest vector in the lattice. Hence, by putting � �b1 1=  and letting b2 be 

b2

–1 1
b1

Figure 3.4 The minimum distance region of b1 is shaded. All b2 inside the shaded 
region generate a lattice, spanned by b1 and b2, with a minimum distance equal 
to the length of b1.
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any vector in the minimum distance region of b1, the matrix B will be a generator 
matrix for any lattice in the plane with unit minimum distance.

Let r = 2� �b . The constraint Dmin
2 ( ) = 1WBZ  can be written as r  ≥ 1 and |cos 

(ϕ)| ≤1/2r where ϕ is the angle between b1 and b2. Hence, WB can be written as
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(3.34)

Optimization (3.32) can now be formulated over α, ϕ and r:

 α φ
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2( ) 1,| ( ) | 1 2 .
r

H H H r rmin costr subject to /Z B W S WBZ− ≥ ≤
 

(3.35)

It follows that the intervals for α and ϕ are 0 2 , | | (1 2 ).1≤ ≤ ≤ −α π φ cos / r
Let s1,1,s2,2 be the diagonal elements of s and assume s1,1 ≥ s2,2. For notational 

convenience, we let zjj be the elements in z. Define s s s= 2,2 1,1
∆

/  and
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(3.36)

To obtain easier expressions, we scale the objective function (3.35) with 
1 2,2

2/s � �z  which has no impact on the solution, and by doing so we get the fol-
lowing objective function:
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(3.37)

Since 0 ≤ s ≤ 1, it follows that 1/2 ≤ c ≤ 1.
First, we minimize f(α,ϕ,r) over α by making use of the following Lemma.

lemma 3.1

Let g x a xj
n

j j( ) = ( )=1∑ +cos θ  for some real-valued constants {aj} and {θj}. It holds 
that

 
x j k

n

j k j kg x a amin cos( ) = ( ).
=1, =1

− −∑ θ θ
 

(3.38)

 



144 ◾ MIMO Processing for 4G and Beyond

Proof. Rewrite g(x) as g x a e e a e e zj
n

j
i x j ix

j
n

j
i j ix( ) = { } = { ( )} = { },=1

( )
=1Re Re∑ ∑+θ θ R  

where z a ej j
i j� ∑ θ . The minimum occurs when z is rotated to the negative part 

of the real axis, that is, x = π − β, and the minimum value is then equal to −| z|. 
This gives expression (3.38).

Applying Lemma 3.1 to Equation 3.37 in order to minimize over α, we get
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Using the identity cos (2ϕ) = 2 cos2 (ϕ) − 1 and defining t � cos( )φ , we get
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 (3.39)

From the definition of t, it follows that −1/2r ≤ t ≤ 1/2r. It can be verified that 
q(t,r) is a concave function in t. This implies that the minimum of h(t,r) over t is 
attained at one of the two endpoints t = ±1/2r. For these values, and with the vari-
able substitution ρ = r2, we get
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where ρ ≥ 1. l+ (ρ) has “ + ” instead of ± and l− (ρ) has “ − .” The functions l± (ρ) 
are both concave in ρ. Now, since l± (ρ) is the objective function of Equation 3.35, 
it follows that it must always be positive. Therefore, the minimizer must be ρ = 1, 
which gives that r = 1 in Equation 3.39. This implies that the minimum over t 
in Equation 3.39 occurs at t = ±1/2, which corresponds to ϕ ∈ {± π/3, ±2π/3} in 
Equation 3.37. This shows that the minimum of f(α ,ϕ ,r) in Equation 3.37 occurs 
at r = 1 and ϕ ∈ {± π /3, ±2π/3}. Inserting these values in the generator matrix B, 
one obtains the generator matrix for the hexagonal lattice as stated in the Theorem. 
This completes the proof.

While the real-valued case is interesting for theoretical purposes, the com-
plex-valued case is more important for practical MIMO or OFDM applications. 
Nevertheless, the real-valued result has immediate applications to precoding for 
mitigation of I/Q imbalance in scalar complex-valued channels.
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For the complex-valued case, the main result is:

Theorem 3.3

For any nonsingular channel matrix s, the optimal lattice B in Equation 3.32 is the 
complex representation of the Schläfli lattice, that is,
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Proof. It turns out that there is a similar minimum distance preserving condition for 
complex-valued B as for real-valued ones. In [Yao and Wornell 2002], the authors 
prove that if � � � �b b1 2≤  and

 
|Re | and | |{ } 1

2 { } 1
2 ,1 2 1 2b b b bH H≤ ≤I

 
(3.41)

then Dmin
2

1
2( )B b=� � . The matrix W is now

 
W =

0

0

( ) ( )

( )

( 1 1)

( 3 1)

1 2e

e

e e

e

i

i

i iφ γ

φ γ

φ φα α

α

−

−

− −

−











sin cos

cos ii ieφ φα3 4( )−









−sin

 
(3.42)

and B is
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Hence, WB becomes
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where ϕ1 − ϕ2 ≡ ϕ3 − ϕ4 (mod 2π), θ1 = γ2 − γ1 and θ2 = γ3 − γ1 + ϕ1 − ϕ2. Conditions 
(3.41) become
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where r ≥ 1. Define f r sH H H( , , , , ) ( ) .1 2
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where c s s= (1 ( ) ) 22,2 1,1
2+ / / . First, we minimize over α. It is seen that f depends 
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where the constants a1, a2 , and a3 are easily read from Equation 3.46 and ψ is such 
that sin .( ) = 2 2

2
3
2ψ a a a/ +  The minimum of Equation 3.47 over α occurs at α = − π 

/4 − ψ /2, which gives f r a a a( 4 2, , , , )1 2 1 2
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3
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depends on θ2, minimizing f over θ2 implies maximizing a3
2  over θ2. We have
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It follows that the maximizing θ2 is such that eiθ2  rotates the expression it mul-
tiplies to the real axis. We get,
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(3.48)
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As in the real-valued case, it can easily be shown that the expression in Equation 
3.48 is concave in sin(ω). Thus, the minimum is attained at the endpoints of sin(ω). 
The constraints in Equation 3.49 can be written as |sin(ω) cos(θ1)| ≤ 1/2r and |sin(ω)
sin(θ1)| ≤ 1/2r. Assume |sin(θ1)| ≤ |cos(θ1)|. It follows that the interval for sin(ω) is 
−1/(2r cos(θ1)) ≤ sin(ω) ≤ 1/(2r cos(θ1)), while the interval for θ1 is −π/4 ≤ θ1 ≤ π /4. 
Inserting either one of these endpoints for sin(ω) in Equation 3.48 and using the 
trigonometric identity 1/cos2(x) = 1 + tan2(x), we get that l takes on the following 
form:
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where b1 and b2 are constants with respect to θ1. Again, it is clear that Equation 3.49 
is concave in tan(θ1), and thus the minimum is attained at one of the endpoints of 
θ1, which are −π/4 and π/4. If we instead assumed that | ( ) | | ( ) |1 1sin cosθ θ≥ , the 
only difference is that tan(θ1) becomes cos(θ1) and π/4 ≤ θ1 ≤ 3π/4. This gives rise 
to the same behavior of l(θ1 ,r) and thus the same results are obtained.

To recap, we showed that the minimum for l(θ1, ω, r) in Equation 3.48 over 
θ1, ω occurs when θ1 = ± π/4 and at the endpoints for sin(ω), which are then 
sin cos .( ) 1 (2 ( )) 1 21ω θ= ± = ±/ /r r  We now continue by inserting this expression 
for sin( ) 1ω θe i−  in Equation 3.48 and obtain a one-dimensional function in ρ = r2 
of the form
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where the kj are constants with regard to ρ and with k3 positive. If we instead study 
the function l k k c k k k2 1 2 3

2
4 5

2( ) ( 1) 2 | ( ) |ρ ρ ρ ρ= + + − + + − det z , it follows 
from the same concavity arguments as before that l2(ρ) is a concave function and 
thus the minimum is attained at the endpoints, which are ρ = 1 and ρ = ∞. From 
the concavity of l2(ρ) it follows that if the minimum is attained at ∞, then the 
minimum value is −∞, which is impossible since the trace function is always posi-
tive; thus the minimum of l2(ρ) must be attained at ρ = 1. Now comparing l2(ρ) 
with l(ρ), the only difference is the term | ( )| (2 4)2det z /ρ −  in the square root, 
with maximum value of 2 | ( )|2det z  attained at ρ = 1; hence l2(1) = l1(1). Since c − 1 
is always nonpositive, it follows that l2(ρ) ≤ l1(ρ) for ρ ≥ 1, which gives that the 
minimum of l1(ρ) occurs when ρ = r = 1 (because the minimum of l2(ρ) occurs for 
ρ = 1).
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We have now showed that the minimum of l(θ1, ω, r) in Equation 3.48 occurs 
for θ1 = ± π/4, sin ,( ) 1 2ω = ± / r  r = 1. Inserting these values into the lattice gen-
erator B in Equation 3.43, we arrive at the following optimal lattice generator:
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(3.51)

Extending B to its real-valued representation by means of Equation 3.27, it 
holds that for each realization of ± as + or −, that Br is a generator matrix for the 
Schläfli lattice D4.

Hence, by “real-valued representation,” it is meant that if the transformation 
Equation 3.27 is performed on B in Theorem 3.3, the Schläfli lattice in four real-
valued dimensions results. Its real-valued generator matrix is
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1 1 0 0
1 1 0 0
0 1 1 0
0 0 1 1
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−
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(3.52)

To summarize, the two-dimensional minimum distance optimal precoder for 
“large” input constellations is always an instance of the hexagonal or the Schläfli 
lattice for real-valued and complex-valued precoding, respectively.

3.2.3.2 Optimal Z Matrix

Since B is now known, it remains to find the optimal basis matrix z in order to 
solve Equation 3.32. This section describes the core idea of the algorithms that find 
the optimal real-valued and complex-valued z, respectively. A complete MATLAB 
code for the algorithms can be found at www.eit.lth.se/goto/Zalgorithm.

By inserting the optimal real-valued B and W into Equation 3.32, the optimi-
zation Equation 3.32 is equivalent to*

 
z z

z
= ( ),arg minµ±

r

* The optimization over W is treated in the proofs of Theorems 2 and 3.
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In the complex-valued case, we have the following optimization:
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The ± signs in both Equations 3.53 and 3.54 can be absorbed into 
the elements of z, without changing the unimodularity of z. Define 
βr z z z z z z z z� 11
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Re{(1 )( )}11 21 12 22+ +i z z z zH H , where we do not explicitly denote the dependency of βr 
and βc on z. Since | det (z)| = 1, Equations 3.53 and 3.54 become

 µ β β βr
r r rc c( ) = ( 1) 32+ − −  (3.55)

and

 µ β β βc
c c cc c( ) = ( 1) 2,2+ − −  (3.56)

respectively. The difference between Equations 3.55 and 3.53 (similarly between 
Equations 3.56 and 3.54) is that the former only depends on one variable, that 
implicitly depends on the elements {zij}, while the latter is directly expressed in the 
elements {zij}. Deriving the optimal βr and βc does not produce the optimal ele-
ments {zij}, however, it can provide easier optimality conditions for {zij}. If we for 
the moment drop the constraint that βr has to be integer-valued, the function mr 
(z) in Equation 3.55 will be minimized over βr. It can be verified that mr (z) is a 
convex function. Differentiating m (βr) with respect to β and setting the derivative 
to 0 gives that βr c c,

23 2 1opt /= −( )  is the optimal point. Since mr (z) is convex, 
the minimum of m (βr ) over unimodular matrices can only occur at two specific 
matrices. Either it is the z that produces the largest βr smaller than βr,opt, or it is the 
z that produces the smallest βr larger than βr,opt. A similar analysis can be applied 
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to the complex-valued Equation 3.56, and it follows that the largest βc smaller, or 
smallest βc larger, than βc c c, = 2 2 1opt / −  is optimal. Hence, in the real-valued 
case, an algorithm can be developed that traverses unimodular z’s and stops when 
two matrices z1 and z2 are found, such that z1 gives the βr that equals the largest 
integer smaller than βr,opt, and z2 gives the βr that equals the smallest integer larger 
than βr,opt. An algorithm for the complex-valued case works in the same way. For 
the purpose of clarity of this chapter and the fact that the algorithms are ad-hoc, we 
omit the implementation details and refer to www.eit.lth.se/goto/Zalgorithm, where 
the MATLAB code for both algorithms can be found.

Since we now know that solving Equation 3.32 is a discrete optimization prob-
lem, it is of interest to see how often the solution changes with varying s. Figure 
3.5 shows the ratio s1,1/s2,2 on the x-axis, and the markers show the ratios where z 
changes. As seen, the same solution can be used for a wide interval.

3.2.3.3 Applications

In this section, we consider a number of practical applications of the optimal mini-
mum distance lattice-based precoder and make comparisons to other schemes. As 
discussed in Section 3.1.3.2, minimum distance-based precoders are asymptoti-
cally optimal in the high SNR regime, but minimum distance plays little role at 
low SNR, so significant performance gains cannot be expected there.

Consider first the 2 × 2 channel studied in [Perez-Cruz et al. 2010],

 
s =

3 0
0 1

.










  

(3.58)

In [Perez-Cruz et  al. 2010], this channel was studied at asymptotically high 
SNR for binary baseband alphabets with real-valued precoding. The objective was 

100 101 102

Ratio between largest and smallest eigenvalue

Figure 3.5 Change in Z with respect to the ratio s1,1/s2,2. The solution to Equation 
3.32 is constant for all S with a ratio between any two consecutive markers. The 
scale on the x-axis is logarithmic.

 

http://www.eit.lth.se/


Precoding for MIMO ◾ 151

to find the real-valued precoder F that maximizes the mutual information. For high 
SNR, it is known that the optimal mutual information precoder converges to the 
optimal minimum distance precoder, and the numerical optimization framework 
in [Perez-Cruz et al. 2010] thus produced the optimal minimum distance precoder. 
The precoder is of the following simple form:
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2 2

2 2
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(3.59)

It can be verified by standard techniques that the combined channel–precoder 
matrix sF is an instance of the hexagonal lattice—which is precisely the result if an 
infinite lattice constellation was used. For such a lattice constellation, the strength 
of the results in Theorems 3.2 and 3.3 is that no numerical optimization of the 
precoder is necessary since it is known a priori that the hexagonal lattice must be 
the solution, and it only remains to find the optimal basis matrix z according to the 
algorithm mentioned in Section 3.2.3.2. By doing so, we find that the optimal z for 
asymptotically large constellations coincides with the basis matrix that is built into 
Equation 3.59. Altogether, for the particular channel (3.58) studied in [Perez-Cruz 
et al. 2010], a “large” constellation means binary and it is known beforehand what 
structure the solution must have.

In Figure 3.6, we continue to study the channel (3.58), but now by evaluating 
its mutual information that is achieved by 4-QAM inputs when the complex-valued 
minimum distance optimal precoder for large constellations is used. As comparisons, 
plots of the achieved mutual information for (1) no precoding at all, that is, F = I, (2) 
mercury waterfilling from [Lozano et al. 2006], and (3) capacity achieved by Gaussian 
inputs and waterfilling are presented. The performance of the optimal mutual infor-
mation precoder coincides with that of mercury waterfilling in the low SNR regime, 
while it coincides with that of the minimum distance precoder in the high SNR 
regime. As can be seen, there is a 2 dB gain offered by the minimum distance precoder 
over uncoded systems and mercury waterfilling at high SNR. At low SNR, the mer-
cury waterfilling policy is optimal and outperforms the minimum distance precoder.

For the channel in Equation 3.58, we observed that the large constellation 
assumption made in this section was not very critical as it produced the same result 
as a binary input constellation does. This is, however, not true in general, and 
it is necessary to investigate the impact of the cardinality of the input constel-
lation. Consider diagonal channel matrices h where each diagonal element is a 
zero-mean, unit-variance, circulary symmetric complex Gaussian random vari-
able ( (0,1)).CN  The average mutual information, against SNR, is computed for 
4-QAM and 16-QAM input constellations for (1) the minimum distance optimal 
precoder for large constellations, (2) minimum distance optimal precoders for the 
particular constellations used, and (3) no precoder. The average is evaluated over 
106 channel realizations by straightforward Monte Carlo simulation. For 4-QAM 
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and 16-QAM, the minimum distance optimal precoders have been reported in 
[Collin et al. 2007] and [Ngo et al. 2009], while the optimal precoder for 64-QAM 
has so far not been reported in the literature which is the reason why we do not go 
beyond 16-QAM. The results are shown in Figure 3.7.

The uppermost heavy solid line corresponds to the average capacity of the chan-
nel achieved by Gaussian inputs with waterfilling. The lower set of curves corre-
sponds to 4-QAM, while the upper corresponds to 16-QAM. Within each set of 
curves, the lower curve (without markers) shows the no precoder case, the middle 
curve (marked with asterixes) is the performance of the precoder constructed from 
a large constellation assumptions, and the upper curve (marked with circles) is 
the performance of the precoder explicitly constructed for the input constellation 
used. For 4-QAM inputs, a small loss of the large constellation construction can 
be seen, while for 16-QAM the ensuing mutual information from a large constella-
tion assumption is virtually indistinguishable from that of a construction explicitly 
made for 16-QAM. Hence, it can be concluded from this example that a 16-QAM 
input constellation can be replaced by an infinite lattice constellation without 
appreciably affecting the results. This greatly simplifies the precoder optimization 
problem since lattice theoretic tools can be applied.

In Figure 3.8, we turn our attention toward the error probability of 2 × 2 MIMO 
systems with (1) the minimum distance optimal precoder for large constellations, (2) 
minimum distance optimal precoders for the particular constellations used, and (3) 
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Figure 3.6 Mutual information for the channel (3.58) studied in Perez-Cruz et al. 
(2010) with 4-QAM inputs under different settings. The solid heavy line shows 
the capacity with waterfilling, the curve marked with asterixes shows the ensu-
ing mutual information from the lattice precoder in this section and the curve 
marked with circles shows the mercury waterfilling mutual information. The bot-
tom line is the no precoding case.
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Figure 3.7 Average mutual information for random diagonal channels with 
4-QAM (bottom set) and 16-QAM (upper set). The heavy solid line is the capacity 
with waterfilling. Within each set, the line marked with circles shows the per-
formance of a precoder constructed explicitly for the input constellation used, 
and the curve marked with asterixes shows the performance of the precoder 
constructed from an infinite lattice constellation assumption. These two curves 
are virtually identical for 16-QAM. The bottom line within each set corresponds 
to the no precoding case.
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Figure 3.8 ML receiver tests of various precoders with 4-QAM, 16-QAM, and 
64-QAM. Within each set, the rightmost curve is the no precoding case, the 
middle curve is the precoder constructed from an infinite lattice constellation 
assumption, and the leftmost curve is the performance of a precoder constructed 
explicitly for the input constellation used (not present for 64-QAM).
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no precoding. 4-QAM, 16-QAM, and 64-QAM input constellations, together with 
a maximum likelihood detector, are considered. The lines marked with circles corre-
spond to the minimum distance optimal precoder for large constellations, the lines 
marked with squares correpond to the optimal precoder designed for the particular 
input constellations used, and the unmarked lines correspond to the no-precoder 
case. As can be seen, there is a large gain from explicitly taking the input constel-
lation into account for 4-QAM. However, for 16-QAM inputs, this gain reduces 
significantly, so that the precoder designed for large constellations performs close 
to optimal. For 64-QAM, the gap to the optimal precoder designed explicitly for 
64-QAM cannot be determined. However, given the large reduction of the gap 
between the 4-QAM and 16-QAM cases, it is expected that the gap for 64-QAM 
is minor, so that the precoder designed for large constellations is virtually optimal.

As a final example, an OFDM system with N subcarriers { } =1Hk k
N  is investigated. 

For simplicity, all subcarriers are assumed to be independent zero-mean, unit-variance, 
circulary symmetric complex Gaussian random variables ( (0,1)).CN  In practice, 
adjacent carriers are strongly correlated but for the transceiver system to be considered, 
N is large and such correlations are immaterial. The approach taken in [Vrigneau et 
al. 2008] is pursued, but now with the 2 × 2 minimum distance optimal precoder 
constructed from the large constellation assumption. This precoder is then used as 
a building block to construct precoders of larger dimension. The N subcarriers are 
first grouped into N/2 pairs. The particular pairing used in [Vrigneau et al. 2008] is 
to combine the strongest subcarrier with the weakest subcarrier, the second strongest 
with the second weakest, and so on. Let { } =1

�Hk k
N  denote the subcarriers { } =1Hk k

N , but 
sorted according to their strengths so that | | | | | |1 1

� � � �H H HN≥ ≥ ≥ . We have N/2 inde-
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and we need to construct N/2 precoders { } =1
/2Fk k

N . A total energy of N P/2 is assumed, 
and we allocate a fraction γk to Fk under the constraint that ∑γk = N P/2. The power 
allocation policy undertaken here is that all channel–precoder pairs skFk should 
have equal minimum distances. We can find the precoders according to this policy 
as follows:

 ◾ Design { } =1
/2Fk k

N  according to the constraint Tr( ) = 1F Fk
H

k .
 ◾ From lattice theory, it is guaranteed that the minimum distance for each 

channel–precoder pair equals the length of the shortest vector of the lattice 
spanned by skFk. Let Dk

2  denote the minimum distance.
 ◾ The power allocation that equalizes all minimum distance is proportional to 

γ k
kD

∝ 1
2  and the overall power constraint ∑γ k NP= 2/  finally yields the 

set of precoders.
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The ensuing average mutual information of this strategy is compared with the 
no-precoder case, mercury waterfilling, and the capacity of the channel. The input 
constellation is 16-QAM in all cases (except for the capacity case where it is com-
plex Gaussian). The results are shown in Figure 3.9. Note that the average mutual 
information per channel–precoder pair is plotted. The top heavy solid curve is the 
average capacity of the channel, the curve marked by circles is the system based on 
the minimum distance optimal precoder described above, the curve marked with 
asterixes is the mercury waterfilling system, and the bottom curve shows the per-
formance of the no-precoder case. As in the previous examples, there are no gains 
at low-moderate SNR by the minimum distance optimal precoder, while the gains 
are significant at high SNR. Note that the mercury waterfilling is close to optimal 
at low SNR, while it suffers from large penalties at high SNR.

3.2.4 Current Status and Future Research
The results in this chapter show that in two dimensions, whether it is real-valued 
or complex-valued precoding, the optimal precoder produces well-known lattice 
structures at the receiver. Theoretically, this result only holds for an infinite alpha-
bet assumption. However, as confirmed by the simulation results in this chapter, 
for practical channels these results hold for 16-QAM or larger alphabets. Current 
research in this topic has revealed optimal lattice precoders in higher dimensions, 
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Figure 3.9 Average mutual information per sub-carrier pair with 16-QAM inputs 
under different settings. The solid heavy line shows the capacity with waterfill-
ing, the curve marked with circles shows the ensuing mutual information from 
the lattice precoder in this section and the curve marked with asterixes shows 
the mercury/waterfilling mutual information. The bottom line is the no precod-
ing case.
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as mentioned in Section 3.1.7. The analytical techniques used for two-dimensional 
precoding in this section are not easily extendable to higher dimensions. New ways 
to look at the problem were developed in [Kapetanović et al. 2012] to characterize 
optimal lattices for precoding. Namely, it is shown in [Kapetanović et al. 2012] 
that optimal precoders in any dimension give rise to perfect lattices at the receiver, 
that is, the optimal precoder is always generated by a perfect lattice. An elaborated 
analysis of these results can be found in [Kapetanović et al. 2012].

For small QAM alphabets, it can be beneficial to use a rank-deficient precoder 
which avoids data transmission across weak eigenmodes of the channel h. For two-
dimensional MIMO systems, the result in Section 3.2 can be combined with the 
optimal rank one precoder in [Collin et al. 2007] for 4-QAM alphabets and [Ngo 
et al. 2009] for 16-QAM, and further performance enhancements can be obtained. 
However, for larger dimensions of the MIMO channel, rank-deficient precoders are 
not always instances of lattices as presented in [Kapetanović et al. 2012], and their 
structure is not known. Thus, future research into this area should develop efficient 
methods that find optimal or close to optimal rank-deficient precoders.
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The ever-increasing demand of high transmission rates in broadband wireless sys-
tems poses major design challenges especially due to the severe time dispersion 
occurring in mobile radio channels. Emergent radio systems often resort to block 
transmission techniques with frequency domain equalization (FDE) methods in 
order to sustain the envisioned data rates. Owing to the capability of converting 
a frequency selective channel into several parallel flat fading channels allied to 
their implementation simplicity both at the transmitter and receiver, orthogonal 
frequency-division multiplexing (OFDM) schemes have become the most popular 
and were incorporated into numerous communications standards, for example, 
digital video broadcast (DVB) and 4G systems, namely, LTE-Advanced [3GPP 
2012] and WirelessMan-Advanced [IEEE 2011a]. Because of its popularity, 
OFDM has been frequently combined with the use of multiple-input multiple-
output (MIMO) techniques in order to improve its performance and/or capacity. 
As a consequence, 4G specifications such as 3GPP LTE-Advanced already include 
a wide variety of MIMO transmission modes [3GPP 2012; 3GPP 2013a] support-
ing both single-user MIMO (SU-MIMO) and multiuser MIMO (MU-MIMO) 
in uplink and downlink as well as coordinated multipoint (CoMP) transmission 
and reception.

This chapter describes the use of OFDM with MIMO schemes in severely time-
dispersive channels. Section 4.1 presents a general explanation of MIMO-OFDM 
signal representation and transmitter implementations as well as the combination 
with coding. Section 4.2 presents the application of several conventional MIMO 
detection methods and channel decoders in OFDM systems also taking into 
account the problem of channel estimation. Section 4.3 describes the use of itera-
tive receiver configurations while the use of lattice-based receivers is explained in 
Section 4.4. In Section 4.5, it is shown how signal space diversity based on complex 
rotation matrices (CRM) can provide good performance gains in MIMO-OFDM 
systems without sacrificing spectral efficiency.
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4.1 System Characterization
4.1.1 OFDM Signaling

4.1.1.1 SISO-OFDM

We will start this section by considering a SISO multicarrier transmission where 
a stream of N symbols is divided into N parallel streams, each mapped to a dif-
ferent subcarrier. Each of the N symbols is transmitted with a duration N times 
larger than what it would be if they were transmitted sequentially or, equivalently, 
the transmission rate of each subchannel is N times lower than in a single carrier 
transmission. In this case, the corresponding complex envelope can be written as

 
s t S r t j kFtk

k

N

( ) ( )exp( ),=
=

−

∑ 2
0

1

π
 

(4.1)

where F is the subcarrier spacing, Sk is the modulated symbol mapped onto the kth 
subcarrier and r(t) is the transmitted pulse. Applying the Fourier transform to this 
expression allows us to obtain the equivalent frequency domain representation as
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where R( f ) is the Fourier transform of r(t). In order to avoid intercarrier interfer-
ence (ICI), it is necessary to ensure that R( f ) obeys the orthogonality condition
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(4.3)

Although a conventional frequency domain multiplexing (FDM) transmission 
where R( f ) has an associated bilateral bandwidth smaller than F verifies the orthog-
onality condition, it is also possible to fulfill it even when the bandwidths of the 
translated R( f ) overlap [Marques da Silva et al. 2010]. This happens, for example, 
when we employ

 
R f

f
F( ) sinc ,= 



  

(4.4)

which corresponds to a rectangular pulse with duration 1/F in the time domain, 
that is

 r t F t F( ) rect( ).= ⋅ ⋅  (4.5)
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This type of FDM transmission where the total bandwidth is divided into sev-
eral parallel overlapping subbands allows a more efficient use of the bandwidth and 
is referred to as OFDM. According to Equation 4.1, an OFDM transmission could 
be simply implemented as N parallel single carrier transmissions, each working 
with a different subcarrier frequency fk = fc + kF, where k = 0,. . ., N − 1 and fc is the 
frequency of the first subcarrier. However, this approach is not practical for large 
N, due to the increasing number of oscillators and multipliers required. A simpler 
implementation can be obtained using a sampled version of Equation 4.1 followed 
by a digital-to-analog conversion (DAC) and a reconstruction filter applied to the 
in-phase and quadrature components of the samples. To understand how work-
ing with a sampled version of Equation 4.1 allows a simpler construction of the 
signal, let us assume a sampling frequency of Fa = NF. In this case, we can write the 
sequence of samples of Equation 4.1 as
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and IDFT is the inverse discrete Fourier transform (in this case of sequence Sk). Note 
that, according to Equations 4.6 and 4.7, apart from the scalar factor N, the sam-
pled version of the complex envelope s(t) can be simply obtained by multiplying the 
samples of the transmission pulse r(t) with the IDFT of the block of N-modulated 
data symbols Sk, which can be efficiently implemented using an inverse fast Fourier 
transform (IFFT) algorithm. The corresponding implementation is illustrated in 
Figure 4.1. The “Add CP” block represents the insertion of the cyclic prefix (CP), 
which will be explained further ahead while the “D/A” blocks correspond to a DAC.

1:N N:1IFFT Add
CP

Sk

rn

(Windowing)

D/Asn
.
.
.

.

.

.

Figure 4.1 OFDM transmitter implementation using IFFT.
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The use of the minimum sampling rate, Fa = NF, complicates the implementa-
tion of the reconstruction filter required for generating the wave shape s(t), and thus 
oversampling is often applied. A higher sampling rate can be simply obtained by 
using Nnull null subcarriers in each block, that is, using Sk = 0 for k = (N − Nnull)/2,
. . .,(N + Nnull)/2 − 1, which corresponds to an oversampling factor of

 
M

N
N Nos

null
= − .

 
(4.8)

Apart from the details of signal construction, the main idea of OFDM is to 
convert a large bandwidth channel into several parallel lower bandwidth subchan-
nels. Since in a typical wireless environment, a large bandwidth channel will often 
undergo frequency selective fading, which results in intersymbol interference (ISI), 
the use of lower bandwidth subchannels allows each of them to experience flat fading 
only, thus avoiding the ISI problem inside an OFDM block. Still, as shown in Figure 
4.2, it can exist ISI caused by the multipath propagation of the preceding block, 
which is often referred to as interblock interference (IBI). To cope with this problem, 
a guard period, TG, with duration longer than the channel delay spread, Tm, is usu-
ally added to the beginning of each OFDM block in the time domain as shown in 
Figure 4.3. Although the guard period can simply be an empty slot (denoted as zero 

OFDM
block

Multipath replicas of the
preceding block (IBI)

Figure 4.2 Interblock interference caused by the multipath propagation.

Useful
interval

Guard
period

Multipath replicas of the
preceding block

Figure 4.3 Use of an all-zero guard period to avoid IBI.
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padding—ZP), in order to simplify the equalization in the frequency domain at the 
receiver, a repetition of the last NCP samples of the OFDM block is often used instead. 
This allows the linear convolution of the channel with the OFDM block to be seen as 
a circular convolution. To avoid IBI, we must use NCP ≥ L − 1, with L = Fa Tm being 
the length of the channel impulse response. This type of guard period is denoted 
as cyclic prefix (CP) and is illustrated in Figure 4.4. Besides ZP- and CP-assisted 
schemes, it is also possible to use pseudonoise (PN) symbol sequences.

Taking into consideration the structure of the OFDM signal, after transmis-
sion through the channel, the time domain samples, yn(n = −NCP,. . .,N − 1), of the 
received OFDM block can be written as

 
y h s vn l n l
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n= +−
=

−

∑
0

1

,
 

(4.9)

where hl is the time domain channel coefficients (which we assume time invari-
ant inside the block) and vn represents independent and identically distributed 
Gaussian noise samples. Since only the CP samples will contain IBI and these are 
discarded at the receiver, we can neglect the preceding OFDM block and rewrite 
Equation 4.9 in a convenient matrix format as

 y C s v= +Ω in ,  (4.10)
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Figure 4.4 Use of CP to avoid IBI.
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where y and v are length N + NCP column vectors containing respectively yn and vn 
as elements and Ω is a (N + NCP) × (N + NCP) matrix defined as
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The length N column vector s contains the time domain-transmitted samples 
sj( j = 0,. . ., N − 1) as elements, which, following Equation 4.7, can also be written as
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N
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where s is a length N column vector whose elements are the modulated symbols 
Sk (k = 0,. . ., N − 1), and F represents the N × N discrete Fourier transform (DFT) 
matrix defined as
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with ω being an Nth primitive root of unity, ω = exp(−j2π/N). Note that in 
Equation 4.12 (⋅)H denotes the conjugate transpose operation, which, when applied 
on the scaled DFT matrix (1/N)F, converts it into an IDFT operation.

CP insertion is accomplished in Equation 4.10 through the (N + NCP) × N 
matrix Cin defined as
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(4.14)

with 0N N NCP CP× −( ) representing a size NCP × (N − NCP) matrix full of zeros and IN 
denoting an N × N identity matrix. The CP removal at the receiver can be per-
formed using an N × (N + NCP) matrix Crm defined as

 C 0 Irm N N NCP
= ×[ ],  (4.15)
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followed by the conversion of the samples to the frequency domain using a DFT 
(which can be efficiently implemented using an FFT) according to
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where

 N FC v= rm .  (4.17)

In Equation 4.16, size N × N matrix 
�
ΩΩ ΩΩ= C Crm in represents the combination 

of the channel with the CP insertion and removal operations. It is simple to verify 
that 

�
ΩΩ is a circulant matrix that can be written as
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(4.18)

Therefore, we can apply the well-known decomposition of circulant matrices 
into the product of a conjugate transpose DFT matrix, a diagonal matrix, and a 
DFT matrix and write

 

�
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N
HF HF,

 
(4.19)

where

 

H F=

=



















−

diag

H
H

H N

{ }

,

:,

�

�
� �

� � �
�

ΩΩ 1

0

1

1

0 0
0

0
0 0

 

(4.20)

 



MIMO Optimized for OFDM ◾ 167

with

 
H h h j
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Nk n n

n
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=
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∑DFT{ } exp .2
0

1

π
 

(4.21)

In Equation 4.20, ΩΩ:,1
�  represents the first column of ΩΩ.�  Note that in Equation 

4.21 we took into account that since the length of the channel impulse response 
is L, we have hn = 0 for n ≥ L. Bearing in mind that the DFT matrix defined in 
Equation 4.13 (which is not in a unitary form) follows the following property:

 FF IH
NN= ,  (4.22)

then, inserting Equation 4.19 into Equation 4.16 results in

 R HS N= + .  (4.23)

Since h is diagonal, the frequency domain samples in r can thus be simply 
expressed as

 R H S Nk k k k= + ,  (4.24)

which means that in the frequency domain, the channel in each subcarrier is 
equivalent to flat fading, represented by the single multiplicative coefficient Hk, 
and no ICI exists. This allows very simple equalization at the receiver end since 
it can be accomplished with a simple multiplication by 1/Hk. The processing just 
described, apart from the equalization, is illustrated in Figure 4.5. It is important 
to note that although OFDM is robust in frequency selective channels and can be 
implemented with low complexity both in the emitter and receiver, it still has some 
weaknesses. For example, being similar to a transmission in a flat fading chan-
nel, its uncoded performance is rather poor. Furthermore, its high peak-to-average 

1:N N:1FFTA/D
RkRemove

CP
yn .

.

.

.

.

.

Figure 4.5 OFDM receiver implementation using FFT.
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power ratio (PAR) leads to difficulties in transmitter amplification and receiver 
analog-to-digital conversion.

4.1.1.2 MIMO-OFDM

Let us now characterize the OFDM signal when combined with MIMO schemes 
with Mtx transmitting antennas and Nrx receiving antennas. In this case, the trans-
mitter can be implemented using Mtx parallel chains similar to the one presented in 
Figure 4.1. After the transmission through the channel, the time domain samples, 
yt

n  (t = −NCP,. . ., N − 1), of the received OFDM block in each receiver antenna n 
(n = 1,. . ., Mtx) can be written as

 
y h s vt
n

l
m n

t l
m

l

L

m

M

t
n

tx

= +−
=

−

=
∑∑ , ,

0

1

1  
(4.25)

where hl
m n,  represents the lth time domain channel coefficient between transmit 

antenna m and receive antenna n, sl
m  is the lth time domain sample transmit-

ted using antenna m and vt
n represents independent and identically distributed 

Gaussian noise samples in receive antenna n. Considering the use of a CP between 
adjacent OFDM blocks, we can rewrite Equation 4.25 in a matrix format as

 
y C s vn m n

in
m

m

M
n

tx

= +
=

∑ΩΩ , ,
1  

(4.26)

where yn  and vn are length N + NCP column vectors containing respectively yt
n  

and vt
n as elements, sm contains the time domain transmitted samples sl

m  and Ω is a 
(N + NCP) × (N + NCP) matrix defined as Equation 4.11 containing the time domain 
channel coefficients hl

m n,  between transmit antenna m and receive antenna n.
The received frequency domain samples for antenna n can be computed through 

multiplication by the pilot removal matrix Crm defined in Equation 4.15 and by the 
DFT matrix, that is, using

 R FC yn
rm

n= .  (4.27)

Using the same derivation presented for the SISO scheme, it is simple to verify 
that the frequency domain samples for each subcarrier k and receive antenna n can 
be expressed as
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(4.28)
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According to this expression, the transmission in each subcarrier is equivalent 
to a MIMO transmission in a flat fading channel without ICI, allowing the direct 
application of well-known MIMO detection methods as will be detailed in some 
of the following sections.

4.1.2 Transmitter Structure
Figure 4.6 shows a typical configuration for a MIMO-OFDM baseband transmit-
ter chain. According to this scheme, an information stream is first encoded, inter-
leaved, and mapped onto the constellation symbols from a specific modulation (e.g., 
QPSK, M − QAM). If spatial multiplexing is being used, the sequence of modu-
lated symbols is split into several smaller streams that are transmitted simultane-
ously by Mtx antennas. Conversely, if transmit diversity is being used, the sequence 
of modulated symbols can be coded using a space–time block code (STBC) like the 
Alamouti scheme for two antennas [Alamouti 1998]. When STBCs are employed 
in OFDM systems, the time domain is often replaced by the frequency domain 
and the resulting codes are referred to as space–frequency block codes (SFBC). In 
both cases, spatial multiplexing and transmit diversity modes, pilot symbols can 
be inserted into the parallel-modulated symbol sequences before conversion to the 
time domain using IDFTs. These pilot symbols can be used for channel estimation 
purposes, as will be explained in Section 4.2.3.

The sequences of symbols are then converted into the time domain through 
s i N S k Ni l
m

k l
m

, ,, , , , , , , , ,= −{ } = = −{ }0 1 1 0 1 1… …IDFT  where Sk l
m
,  is the sym-

bol transmitted by the kth subcarrier of the lth OFDM block using antenna m. 
Although not detailed in the chain of Figure 4.6, as explained in Section 4.1.1, 
before being transmitted, windowing is applied to the time domain samples si l

m
, , 

followed by CP insertion (with s si l
m

N i l
m

− −=, , , i = 1,. . ., NCP), DAC, and reconstruc-
tion filtering.

The transmit chain just described corresponds to a unicast transmission but 
can be easily extended to broadcast schemes, as presented in [Souto et al. 2008] 
for the case of MIMO-OFDM systems combined with hierarchical modulations, 

SFBC/
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Figure 4.6 Generic baseband MIMO-OFDM transmitter chain.
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where multiple data streams with different error protection levels are transmitted 
in parallel.

4.1.3 Channel Coding
As explained in Section 4.1.1, OFDM allows us to convert a frequency selective chan-
nel into several parallel flat fading channels. Although this solves the ISI problem 
in severely time-dispersive channels, OFDM does not take advantage of frequency 
diversity and, therefore, some subcarriers may experience deep fades thus compro-
mising the reliable detection of the respective symbols. As a result, the performance 
of OFDM is rather poor when compared with other schemes like single carrier block 
transmission [Marques da Silva et al. 2010]. To circumvent this problem, OFDM 
is usually combined with the use of channel codes. As examples of codes used in 
OFDM systems, we have tail-biting convolutional codes that are specified for LTE-
Advanced [3GPP 2013b] and WirelessMan-Advanced [IEEE 2011a] (for control 
channels), convolutional turbo codes (CTC), which are specified for 4G systems, 
namely, LTE-Advanced [3GPP 2013b] and WirelessMan-Advanced [IEEE 2011a], 
block turbo codes, which are used as optional coding in mobile WiMax [IEEE 
2006], and low-density parity check codes (LDPC), which have been incorporated 
into WiMax [IEEE 2006], DVB-T2 [ETSI 2009b], DVB-S2 [ETSI 2009a], and 
IEEE Std 802.11n-2009 [IEEE 2011b]. Owing to their importance nowadays, we 
will briefly describe CTCs and LDPC codes in the following sections.

4.1.3.1 Convolutional Turbo Encoder

A CTC is formed by the parallel concatenation of recursive systematic convolutional 
(RSC) codes. As an example, Figure 4.7 portrays the turbo encoder employed in LTE-
Advanced [3GPP 2013b], which is composed by two RSC encoders and an interleaver 
represented by the permutation function Π1(⋅). The same information block is applied 
at the input of both constituent encoders but one of them sees an interleaved version 
of the block. This way, although both encoders are processing the same information 
bits, the output code words are different. According to the encoder of Figure 4.7, if 
the input block has size Nb, the interleaver will have the same size and the output code 
word will be composed of Nb systematic bits and 2Nb parity bits generated by the two 
constituent encoders. However, after encoding the input sequence, both constituent 
encoders are terminated into the all-zeros state as detailed in [3GPP 2013b], thus 
generating 12 additional tail bits. The overall coding rate is thus slightly lower than 
1/3. Nevertheless, similar to the convolutional codes, the output of the turbo encoder 
can be punctured, usually the parity bits, to increase the coding rate.

If the memory of each component encoder e (in Figure 4.7 e = {1,2}) is ν, 
the feed-forward and feedback connections can be defined as ge

f
e
f

e
fg g=  , ,0… ν  

and ge
b

e
b

e
bg g=  , , ,0… ν  respectively, with ge i

f b
,
/ { , }.= 0 1  For the specific case 

of Figure 4.7, and since both constituent encoders are identical, we have 
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ge
f = [ ]1 1 0 1  and ge

b = [ ].1 0 1 1  Considering that the input sequence 
of bits is b =  b bNb1… , the systematic and parity sequences will be
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(4.29)

In Equation 4.29, the coefficients ae,t are expressed as

 
a b g ae t t e i
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e t i

i
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− ∑1
1

1
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(4.30)

where b
e t∏ −
−

1
1 ( ) is the tth bit at the input of encoder e (after the interleaver). The 

interleaver is denoted by the permutation function ∏e(⋅). For the first encoder, since 
there is no interleaver, it simply encodes the input sequence directly, which is equiv-
alent to having a permutation function ∏0(t) = t. In all these expressions, the sums 
are modulo-2 additions.

Although the interleaver can be a block pseudorandom interleaver, other types are 
possible as described in Heegard and [Wicker 1999]. The information sequence fed 
to the second component encoder is reordered in such a way that it becomes decor-
related from the original input sequence as much as possible. In fact, the use of such 
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Figure 4.7 LTE-Advanced turbo encoder scheme.
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type of concatenation of two convolutional encoders separated by an interleaver has 
the objective of producing a set of code words where very few of them have low weight. 
This does not necessarily mean that the resulting code will have a particularly large 
free distance but at least the number of nearest neighbors of each code word will be 
substantially reduced. The substantially improved weight distribution of the resulting 
code words is one of the main reasons for the good performances of turbo codes. This 
weight distribution is also responsible for the typical turbo code performance curve 
in additive white Gaussian noise (AWGN), which can be seen in Figure 4.8. These 
curves are usually divided in two main zones. The first is located in the low SNR 
region and is characterized by an abrupt decrease in the bit error rate (BER), which is 
mostly caused by the existence of a low number of nearest neighbors surrounding each 
code word. The second zone is located in higher SNR regions and is characterized by 
a slower descent of the performance curve. This is caused by the not particularly high 
free distance of the turbo code due to the few low-weight code words.

4.1.3.2 LDPC Codes

LDPC codes were initially proposed by Robert Gallager in 1962, in [Gallager 
1962], who showed that with a careful design of the parity check matrix, they 
could achieve near Shannon limit performance using iterative probabilistic-based 

0 1 2 3 4 5 6
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EB/N0 (dB)
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R

Uncoded
Turbo code (R = 1/3)

Figure 4.8 BER performance of 3GPP rate-1/3 turbo code [3GPP 2013b] in AWGN.
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decoders. However, the high complexity associated with the encoding and decod-
ing processes made them computationally impractical at the time, and for 30 years, 
they did not attract the attention of the research community. After the advent 
of the turbo codes, the interest in these codes reappeared with the rediscovery of 
Gallager codes in [MacKay and Neal 1995, 1996] who showed that they could 
achieve similar performances. For this reason, LDPCs have been incorporated into 
several standards: WiMax [IEEE 2006], DVB-T2 [ETSI 2009b], DVB-S2 [ETSI 
2009a, IEEE Std 802.11n-2009] [IEEE 2011b], and so on.

LDPC codes are (n,k) linear block codes (although it is also possible to build 
LDPC convolutional codes) defined through very sparse (n − k) × n parity check 
matrices h* that satisfy

 H d 0⋅ =T  (4.31)

for any code word d = −[ ].d d dk0 1 1…  Each line of matrix h represents an 
equation that must be verified by a sequence d in order to be a valid code word. For 
example, regarding a (7,4) Hamming code whose parity check matrix is displayed 
in Figure 4.9, its parity check equations can be written as

 

c d d d d
c d d d d
c d d d d

1 1 4 6 7

2 2 4 5 6

3 3 5 6 7

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕









,

 

(4.32)

where ⊕ represents modulo-2 addition. In this case, d is a code word as long as 
c1 = c2 = c3 = 0.

* Although in the previous sections and in most of the chapters, we use h for representing the chan-
nel matrix, in this subsection, we use symbol h for representing parity check matrices due  to its 
widespread use in the literature. However, this representation is only required in this subsection 
and in Section 4.2.2 and thus there is no risk of confusion in the remainder of the chapter.

1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

H =

d1 d2 d3 d4 d5 d6 d7

c1 c2 c3

Figure 4.9 Hamming code (7,4) parity check matrix and respective Tanner 
graph.
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Since LDPC codes are defined through a parity check matrix h, it is necessary 
to obtain the k × n generator matrix g from this one in order to perform the encod-
ing process using

 d b G= ⋅ .  (4.33)

The traditional method used in block codes consists of transforming matrix h 
into a systematic form using Gaussian elimination method and column permuta-
tions resulting in

 ′ = −H P I[ ],� n k  (4.34)

where P is a (n − k) × k parity submatrix and In−k is the (n − k) × (n − k) identity 
matrix. From Equation 4.34, it is simple to obtain the generator matrix as

 G I P= [ ].k
T�  (4.35)

Although this method seems straightforward, it does not take into account the 
sparseness of the original matrix h and, as such, the resulting generator matrix G is 
likely to be dense. As a consequence, the encoding complexity can become significant, 
especially for large matrices (which are usually associated with better performances). 
Other lower-complexity approaches have been proposed, which take advantage of the 
sparseness of h. For example, as proposed in [Richardson and Urbanke 2001b], it 
is possible to transform h into an almost lower triangular form using only row and 
column permutations, thus preserving the sparseness of the matrix. Then, Gaussian 
elimination is applied to the rows that do not match the triangular form. These rows 
are called the gap since they will be associated with the high-density part (higher 
complexity) of the encoding process. The presence of the other low-density rows 
allows the use of back substitution for the corresponding parity bits.

The LDPC code specified for WiMax [IEEE 2006] is defined using a parity 
check matrix h built from circulant submatrices and allows the encoding process 
to be efficiently implemented using back substitution with a gap of n/24.

In [Tanner 1981], the use of bipartite graphs, named Tanner graphs, was pro-
posed as a simple approach for characterizing a (n,k) linear code. As an example, 
Figure 4.9 shows the Tanner graph associated with a (7,4) Hamming code. The 
graph is composed of two types of nodes: parity check nodes (cj) and variable nodes 
(di). Each parity check node is associated with a parity check equation while each 
variable node is associated with a code bit. The construction of the graphs is sim-
ple. Each parity check node (cj) is connected to all the variable nodes (di) that are 
involved in the respective parity check equation (according to Equation 4.32).

From the Tanner graph, it is possible to know the degree of each node by simply 
counting the number of connections to that node. Since LDPC codes are defined 
through very sparse matrices, the degrees of the nodes are much smaller than n. 
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If the degrees of all variable nodes are equal and the same happens to the degrees 
of all parity check nodes, then the LDPC code is called regular, otherwise it is an 
irregular LDPC code [Richardson and Urbanke 2001a]. Tanner graphs are use-
ful to find the length of closed cycles. For example, in Figure 4.9, the existence 
of a length four closed cycle associated with path c1 → d4 → c2 → d6 → c1 is vis-
ible. When constructing LDPC codes, it is important to avoid short-length cycles, 
which are associated with worse performances of the decoder algorithm.

4.2 Conventional Receivers
4.2.1  Zero-Forcing, Minimum Mean Squared Error, 

and Maximum Likelihood Detector
In this section, we will focus on conventional OFDM receivers assuming that 
spatial multiplexing is being used. As previously explained, OFDM allows simple 
equalization in the frequency domain where the channel can be seen as flat fading. 
Therefore, the use of conventional MIMO decoders in an OFDM receiver with 
Nrx receiving antennas is straightforward as we show in Figure 4.10. According to 
the figure, the signal, which is considered to be sampled and with the cyclic prefix 
removed, is converted into the frequency domain after an appropriate size-N DFT 
operation. If the cyclic prefix is longer than the overall channel impulse response, 
the resulting sequence received in antenna n can be expressed as

 
R S H Nk l
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k l
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k l
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k l
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, , ,
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, ,= +
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∑
1  

(4.36)

with Hk l
m n
,
,  denoting the overall channel frequency response between transmit 

antenna m and receiving antenna n for the kth frequency of the lth time block and 
Nk l

m
,  denoting the corresponding channel noise sample. The sequences of samples 

(Equation 4.36) enter the MIMO equalizer (spatial demultiplexer block), which 
separates the streams transmitted simultaneously by the multiple antennas, while 
the other blocks basically reverse the operations applied at the transmitter.

In the following, we will briefly describe conventional methods that can be 
used in the spatial demultiplexer block for separating the simultaneous transmitted 
streams. Details about the channel estimator block will be discussed in Section 
4.2.3.

The most direct decoding technique is the zero-forcing (ZF), which simply uses 
a straight channel matrix inversion

 S H H H�
k l k l

H
k l k l

H
k l, , , , ,( ) ,= ⋅ −� � � 1R  

(4.37)
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where k is the subcarrier index, l is the OFDM, S� k l,  is the Mtx × 1 estimated trans-
mitted signal vector with one different transmit antenna in each position, H� k l,  is 
the Nrx × Mtx channel matrix estimate with each column representing a different 
transmit antenna and each line representing a different receive antenna, and rk,l is 
the Nrx × 1 received signal vector with one different receive antenna in each posi-
tion. The ZF approach can result in poor performance for some channel conditions 
and, therefore, a minimum mean squared error (MMSE) linear receiver is often 
used instead. The MMSE estimate is computed so that the minimum squared error, 
E | |s s− � 2 , is minimized. In [Kay 1993], it is shown that the MMSE estimate is 
given by

 S H H H�
k l k l

H
k l k l

H
k l, , , , , ,= ⋅ +( )−� � � σ 2 1

I R  (4.38)

where σ 2 is the noise variance. Note that the ZF estimate (Equation 4.37) can be 
obtained from Equation 4.38 by setting σ 2 = 0.

A well-known alternative detector for MIMO systems is the vertical Bell Labs 
layered space–time (V-BLAST) architecture [Foschini 1996]. In this scheme, the 
data bits to be transmitted are divided equally between the transmitting antennas 
and are then coded, modulated, and transmitted independently, as seen in Chapter 2. 
The decoder employs a relatively low-complexity approach based on nulling and 
cancelation, which is an equivalent technique to the successive interference can-
celation often used for multiuser detection in CDMA systems. The difference is 
that the first performs the separation in the spatial channel domain while the latter 
works on the code domain. A brief description of this method is given next. First, 
the receiver performs a QR factorization [Friedberg et al. 2002] of the estimate of 
the channel matrix H� k l, , that is

 H� k l, ,= QR  (4.39)

where r is an Mtx × Mtx upper triangular matrix (rm,n = 0, m > n) with nonnegative 
real-valued elements in the diagonal and q is an Mrx × Mtx matrix composed of 
orthonormal column vectors (and thus Q Q I IH

M Mtx tx
= ,  is the Mtx × Mtx identity 

matrix). Multiplying the received vector by the Hermitian of q results in

 

y Q R Q QRS N
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= = +
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,  (4.40)

where v = qH nk,l is a column of independent complex Gaussian variables. In 
[Foschini 1996], it was shown that instead of multiplying y by r−1 (completing a 
zero-forcing operation), the transmitted symbols can be better estimated through 
quantization and cancelation. This operation is performed taking into account the 
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upper triangular structure of r, which allows a direct estimation of the Mtxth trans-
mitted symbol from the last element of y according to
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where Q{} represents a quantization operation, which depends on the modulation 
in use. In the case of element Mtx − 1 of y, it will suffer from interference of symbol 
Mtx, which has to be canceled for obtaining an estimate of the respective transmit-
ted symbol using
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This approach can then proceed successively for the other elements of y accord-
ing to
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(4.43)

Note that the order of the nulling and cancelation operations affects the per-
formance of this decoder, and, therefore, a permutation specifying the order in 
which the symbols are extracted has to be applied before these steps are executed, 
as explained in [Foschini 1996].

Another alternative decoding method is the optimal maximum likelihood 
detector (MLD), which compares the received signal to all the possible transmitted 
combination of symbols according to

 
� �S Hk l k l k l k l

k l

, , , ,arg min .
,

= −
S

R S
 

(4.44)

This method can become extremely complex as the number of antennas increases 
or when high-order modulations are employed. The MLD generates hard decisions 
for the modulated symbols but, when coding is used, it is important to work with 
soft decisions so as to avoid a performance loss of the channel decoder. Therefore, 
one can use other alternatives to the MLD such as a maximum likelihood-based 
soft output (MLSO) decoder. In the MLSO decoder, we use the following estimate 
for each symbol:
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where si corresponds to a constellation symbol from the modulation alphabet Λ, E[⋅] 
is the expected value, P(⋅) represents a probability, and p(⋅) is a probability density 
function (PDF). Considering equiprobable symbols, we have P S s Mk l

m
i, ,=( ) = 1/  

where M is the constellation size. The PDF values required in Equation 4.45 can 
be computed as
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where Sk l,
interf  is a (Mtx − 1) × 1 vector representing a possible combination of symbols 

transmitted simultaneously by all antennas except antenna m, s is an Mtx × 1 vector 
composed by Sk l,

interf  and si and �Hk l n, ( , :) is the nth line of channel matrix �Hk l, .

4.2.2 Channel Decoder

4.2.2.1 Turbo Decoder

Although the code word weight distribution of the turbo code is important to 
achieve good performances, it is also necessary to have a decoder algorithm that 
is not excessively complex to be implemented. In fact, this is one of the key ideas 
behind the success of these codes. Let us consider a turbo code composed of two-
component RSC (like the one of Figure 4.7). In theory, the turbo code can be mod-
eled using a single Markov process but due to the existence of the interleaver at the 
input of one of the constituent codes, this representation is extremely complex and 
does not allow the direct implementation of computationally tractable algorithms. 
Consequently, a maximum likelihood decoder for turbo codes cannot be employed 
and some suboptimal decoder must be used in its place.
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Instead of modeling the whole code using a single Markov process, each of the 
constituent codes can be associated with an individual Markov process and both 
can be linked by an interleaver. A trellis-based decoding algorithm can be used for 
estimating each of the Markov processes and, to improve the estimates, these two 
processes can exchange information iteratively. A basic turbo decoder accomplish-
ing this is shown in Figure 4.11, where �b denotes the information bits sequence 
estimate, �bΠ the respective interleaved sequence, y s the systematic observations, 
and y p,1 and y p,2 the two parity observations sequences. The two soft-input soft-
output blocks implement a trellis decoding algorithm for the respective component 
RSC encoders. Each of these blocks has three inputs and one output. Two of the 
inputs correspond to the systematic and parity observations, both weighted by the 
channel reliability factor Lc (Lc = 4Ec/N0). The third input is the a priori informa-
tion obtained from the other decoder, which is represented in the form
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The output of the soft-input soft-output decoders is the sequence of log-like-
lihood ratios (LLRs) of the information bits, which can be written as the sum of 
three terms:
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(4.49)

In this expression, L be
t1 2| ( ) is the extrinsic information produced by either 

decoder 1 or 2. While the first two terms are inputs to the component decoders, 
this third term represents new information derived in the decoder, which is used as 
a priori information, Lap(bt), by the other decoder. To obtain L be

t1 2| ( ), it is only nec-
essary to subtract the weighted systematic observation and the a priori information 
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Figure 4.11 Turbo decoder block diagram.
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from the output (Equation 4.49) of the decoder. After passing this information 
to the interleaver (or de-interleaver, depending on the target decoder), the other 
decoder uses this extrinsic information as new a priori information and computes 
new estimates for the log-likelihoods of the information bits. The exchange of 
extrinsic information between the two decoders can proceed until the information 
sequence is correct (checked using CRC) or until a certain number of iterations is 
completed. The output of the second decoder is then interleaved and some decision 
function can be applied for obtaining the final estimates of the information bits. 
This decoding process can be easily extended to multiple turbo codes as presented 
in [Divsalar and Pollara 1995].

Each soft-input soft-output decoder can be implemented using a trellis decod-
ing algorithm like the optimal maximum a posterori (MAP) algorithm [Bahl et al. 
1974], its simplification max-log-MAP [Robertson et al. 1995], or the soft output 
Viterbi algorithm (SOVA) [Hagenauer and Hoher 1989]. In [Robertson et al. 1995], 
these three algorithms were compared and it was concluded that the MAP algorithm 
clearly has the best performance but at the cost of a substantial complexity. The SOVA 
exhibits a slight performance degradation compared with the max-log-MAP but has a 
lower decoding complexity. Nevertheless, it was shown in [Fossorier et al. 1998] that 
the SOVA can become equivalent to the max-log-MAP algorithm after a simple mod-
ification. The MAP algorithm can also be used to compute a posteriori probabilities of 
the encoder output symbols, as was shown in [Benedetto and Montorsi 1997] allow-
ing the implementation of a soft-input soft-output module with four ports, as shown 
in Figure 4.12. The two input ports correspond to the a priori probabilities of the 
information symbols, Pin{bt}, and the probabilities of the coded symbols, Pin{dt}. The 
other two ports output the probabilities associated with the input symbols, Pout{bt} 
and with the coded symbols, Pout{dt}. This soft-input soft-output module capable of 
outputting encoded symbols probabilities is useful in several applications where feed-
back from the turbo decoder to other blocks of the receiver is required, as for example, 
when implementing iterative joint estimation schemes.

4.2.2.2 LDPC Decoder—Sum-Product Algorithm

Tanner graphs are useful for implementing iterative probabilistic decoding algo-
rithms where the different types of nodes exchange messages (probabilities) accord-
ing to the graph connections. In the following, we will briefly describe the iterative 
sum-product algorithm (also known as belief propagation algorithm) assuming 

APP
block

Pin dt

Pin bt

dtPout

btPout

Figure 4.12 Soft-input soft-output APP module. 
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binary codes and working with log likelihood ratios (LLRs). The sum-product algo-
rithm is a message passing-based algorithm with two types of messages:

 ◾ Message from variable node dj to parity check node ci, which takes into 
account all the messages coming from the other check nodes connected to 
dj, with the exception of the message coming from the target check node ci:
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 ◾ Message from parity check node ci to variable node dj, which takes into 
account all the messages coming from the variable nodes connected to ci, 
with the exception of the message coming from the target variable node dj:
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In these expressions, hi j′  represents an element of parity check matrix h*. 
Furthermore, the following logarithms of probability ratios are used:
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where pj
1 is the likelihood probability associated with bit dj being 1, that is

 p p y dj j j
1 1= =( ).|  (4.55)

In AWGN, Equation 4.52 can be written as
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* In this subsection, we are repeating the use of symbol, h, for representing the parity check 
matrix as in Section 4.1.3.
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with Lc corresponding to the reliability factor defined as
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and

 E R Ec b= ⋅  (4.58)

(R is the code rate and Eb is the bit energy).
In Equation 4.51, the following hyperbolic functions are used:
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The algorithm starts with L(rij) = 0 for all i and j, followed by the computation 
of L(qij) using Equation 4.50 and then L(rij) using Equation 4.51. The a posteriori 
log probability ratios for each variable node dj can then be computed as
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If the Tanner graph did not have closed cycles, these a posteriori log probabilities 
would correspond to the exact ones. With the existence of cycles, it is necessary to 
repeat the computation of L(qij) and L(rij) for several iterations and the estimates 
computed using Equation 4.61 will be only approximations. These approximations 
are accurate as long as the cycles have long lengths.

In the computation of the message from parity check node ci to variable node 
dj, it is possible to avoid the use of hyperbolic functions as well as of the products of 
terms present in Equation 4.51 by using the following approximation:
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where γi is the degree of check node i and sign (.) represents the sign function 
defined as
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When using this approximation, the algorithm is named min-sum algorithm.
Figure 4.13 presents some simulation results obtained using DVB-S2 [ETSI 

2009a] LDPC codes and employing the sum-product algorithm with a maximum 
of 50 iterations. Different coding rates are shown. It is visible that very high coding 
gains can be obtained using these codes.

4.2.3 Channel Estimation
In wireless communications, the propagation conditions lead to channels that 
distort the amplitude and phase of the transmitted signal. This distortion has to 
be estimated and tracked when performing coherent detection at the receiver. As 
an alternative, it is possible to design systems that employ noncoherent detection 
[Hanzo et al. 2010]. However, although the use of noncoherent systems eliminates 
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Figure 4.13 BER performance of several DVB-S2 [ETSI 2009a] LDPC codes.
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the need for channel estimation, the cost is a significant performance degradation. 
Therefore, most mobile communications systems employ coherent detection and 
require that the amplitude and phase distortions caused by the channel be correctly 
estimated to avoid severe performance degradation.

Typically, the channel estimates are obtained with the help of training sym-
bols that are multiplexed with the data symbols, either in the time domain or in 
the frequency domain [Cavers 1991, Hoher et al. 1997, Sanzi and Speidel 2000, 
Deneire et al. 2001], though the later approach is more common in OFDM systems. 
Regarding the transmission of pilot symbols in the frequency domain, it is pos-
sible to insert them into all the subcarriers of an OFDM symbol (block-type pilot 
arrangement) or periodically inserting the pilot tones inside some OFDM symbols 
(comb-type pilot arrangement) [Coleri et al. 2002]. In 3GPP LTE-Advanced, the 
later approach is used [3GPP 2013a]. The following description concerns the use 
of pilot symbols multiplexed with data in the frequency domain (inserted accord-
ing to the transmitter scheme of Figure 4.6) and is valid for both block-type and 
comb-type arrangements. The assumed frame structure is shown in Figure 4.14. 
According to this structure, in a MIMO-OFDM system with N carriers, pilot sym-
bols are multiplexed with data symbols using a spacing of ΔNT OFDM blocks in 
the time domain and ΔNF subcarriers in the frequency domain. To avoid interfer-
ence between pilots of different transmitting antennas, frequency-division multi-
plexing (FDM) is often employed for the pilots, which means that pilot symbols 
cannot be transmitted over the same subcarrier in different antennas. Data symbols 

P 0D ... D D P 0D ... D D
D DD D D D D DD D DD

... ... ... ... ..................... ...
0PDDD...0PDDDD

... ...... ... ... ... ... ...... ... ... ...
DDDDDDDDDDDD

ΔNF

ΔNT

Freq.

Time

Tx ant. 1

IDFT

0 PD ... D D 0 PD ... D D
D DD D D D D DD D DD

... ... ... ... ..................... ...
P0DDD...P0DDDD

... ...... ... ... ... ... ...... ... ... ...
DDDDDDDDDDDD

Tx ant. 2

IDFT

.

.

.

N·TS

Figure 4.14 Frame structure for a MIMO-OFDM transmission with data multi-
plexed pilots (P—pilot symbol, D—data symbol, Ts—symbol duration).
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are not transmitted on subcarriers reserved for pilots in any antenna and, therefore, 
the minimum spacing allowed in the frequency domain is (ΔNF)min = Mtx.

With the pilot tones present in the transmitted signal, it is possible to use sev-
eral different channel estimation techniques. As an example, we describe a typical 
approach where, to obtain the frequency channel response estimates for each trans-
mitting/receiving antenna pair, the receiver applies the following steps:

 1. The channel estimate between transmit antenna m and receive antenna n for 
each pilot symbol position is simply computed as
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  where Sk l
m Pilot
,
,  corresponds to a pilot symbol transmitted in the kth subcarrier 

of the lth OFDM block using antenna m. The specific indexes k and l that 
correspond to pilot symbols depend on the periodicity of pilot insertion, that 
is, it depends on the values defined for ΔNT and ΔNF.

 2. Channel estimates for the same subcarrier k, transmit antenna m, and receive 
antenna n but in time domain positions (index l) that do not carry a pilot 
symbol can be obtained through interpolation using a finite impulse response 
(FIR) filter with length W as follows:
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where t is the OFDM block index relative to the last one carrying a pilot (which is 
block with index l) and ht

j  are the interpolation coefficients of the estimation filter, 
which depend on the channel estimation algorithm employed. There are several 
proposed algorithms in the literature like the optimal Wiener filter interpolator 
[Cavers 1991] or the lowpass sinc interpolator [Kim et al. 1997]. Note that interpo-
lation can also be applied between different OFDM symbols with pilots.

4.3 Iterative Receivers
4.3.1 Receiver Structure
A typical receiver is composed of several signal processing blocks dedicated to 
specific tasks. Examples of these tasks are channel estimation, MIMO decoding, 
equalization, multiuser detection, channel decoding, and so on. This division in 
several separate processing blocks is necessary since a joint processing of all these 
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tasks, although optimal, is too complex to implement. Nevertheless, if these blocks 
work with soft decisions, the performance of the receiver can be improved if the 
first processing blocks make use of feedback information derived in the last blocks. 
This cyclic exchange of information between the various processing blocks can 
occur for several iterations although after a certain number of iterations, the gains 
can become negligible. By analogy with turbo codes, this type of techniques is 
usually referred to as turbo-processing techniques. One interesting application of 
these techniques is turbo equalization [Douillard et al. 1995] where equalization is 
combined with channel decoding. The task of the equalizer is to compensate inter-
symbolic interference (ISI) present in frequency selective channels. The optimal 
equalizer is a trellis-based detector employing maximum likelihood sequence esti-
mation (MLSE) algorithm similar to the Viterbi decoder although other algorithms 
are available. Iterating the equalization and channel decoding task can result in 
substantial improvements in the error rate.

In [Moher 1998], [Reed 1998], and [Wang and Poor 1999], the turbo prin-
ciple was used for joint multiuser detection and channel decoding for obtaining 
near single user performance. The multiuser detector is implemented as a soft-input 
soft-output that uses a priori information from the previous channel decoder itera-
tion to improve its performance and produces extrinsic information for the turbo 
decoders. Another possible application is turbo estimation [Valenti 2001] where the 
channel is reestimated after each iteration of the turbo code using the estimated 
transmitted symbols as additional pilots. In this section, we will explain how the 
turbo-processing concept can be applied to MIMO-OFDM receivers.

Figure 4.15 presents the basic structure of an iterative receiver capable of jointly 
performing channel estimation and data detection through iterative processing. Nrx 
receiving antennas are assumed to be used. The details about the channel estima-
tion task will be discussed in the following section.

The sequence of steps applied to the received sequence is the same as the con-
ventional receiver from Figure 4.10 up to the channel decoder block. In the iterative 
receiver, the channel decoder has two outputs: one is the estimated information 
sequence and the other is the sequence of LLR estimates of the code symbols (see 
Figure 4.12 and the description provided in Section 4.2.2). These LLRs go through 
the decision device, which outputs either soft-decision or hard-decision estimates 
of the code symbols, and enter the transmitted signal rebuilder, which performs 
the same operations of the transmitter (interleaving, modulation, and conversion of 
serial to parallel streams). The reconstructed symbol sequences can then be used for a 
refinement of the channel estimates and for improvement of the spatial demultiplex-
ing task for the succeeding iteration. This can be accomplished using an interference 
canceler (IC) inside the spatial demultiplexer block, which can be represented as
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where q is the iteration number and �Sk l
m q
,

( )( ) −1
 represents the data symbols estimates 

of the previous iteration for transmit antenna m, subcarrier k, and OFDM block l.

4.3.2 Iterative Channel Estimation
In this section, we consider again the same receiver structure of the previous sec-
tion but devote our attention to the task of estimating the amplitude and phase of 
the channel. Two pilot transmission schemes will be considered: data multiplexed 
pilots, which were already discussed in Section 4.2.3 and implicit pilots.

4.3.2.1 Data Multiplexed Pilots

When using an iterative receiver in a MIMO-OFDM transmission based on data 
multiplexed pilots, in the first iteration the channel estimates are computed as 
described in Section 4.2.3. However, after the first iteration, the data estimates can 
also be used as additional pilots for channel estimation refinement [Valenti 2001]. 
In this case, the respective channel estimates are computed as
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4.3.2.2 Implicit Pilots

The transmission of training symbols multiplexed with data, either in the time 
domain or in the frequency domain, can result in an inefficient use of the available 
bandwidth, especially when the channel impulse response is very long. Therefore, it 
is often desirable to reduce the overheads required for channel estimation purposes. 
A promising method for overcoming this problem is to employ implicit pilots, also 
known as pilot embedding or superimposed pilots, which are added to the data 
block instead of being multiplexed with it [Farhang 1995, Ho et  al. 2001, Zhu 
et al. 2003, Lugo et al. 2004]. This means that we can significantly increase the 
pilots’ density, while keeping the system capacity. In fact, we can even have a pilot 
for each data symbol. However, the interference levels between the data symbols 
and pilots might be high. This means that the channel estimates are corrupted by 
the data signal, leading to irreducible noise floors (i.e., the channel estimates can-
not be improved beyond a given level, even without channel noise). Moreover, there 
is also interference on the data symbols due to the pilots, leading to performance 
degradation. Therefore, this approach usually requires extra signal processing at the 
receiver to reduce the cross interference between pilots and data. In the following, 
we will describe how this type of pilot transmission can be used in MIMO-OFDM 
systems.
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The frame structure and pilot insertion process are shown in Figure 4.16. 
According to this structure, the implicit pilots are generated using a grid with a 
spacing of ΔNT symbols in the time domain and ΔNF symbols in the frequency 
domain. Similar to the data multiplexed pilots method, to avoid interference 
between implicit pilots of different transmitting antennas, FDM can be employed 
for the pilots, so that pilot symbols in different antennas are not transmitted over 
the same subcarrier. In this case, the minimum allowed spacing in the frequency 
domain is (ΔNF)min = Mtx and the transmitted sequences are given by

 X S Sk l
m

k l
m

k l
m Pilot

, , ,
, ,= +  (4.68)

where Sk l
m Pilot
,
,  is the implicit pilot transmitted over the kth subcarrier, in the lth OFDM 

block using antenna m. The resulting sequences are converted into the time domain 
through the usual process, x i N k NXi l

m
k l
m

, ,, , , , , , , , ,= −{ } = = −{ }0 1 1 0 1 1… …IDFT  
before being transmitted.

To reduce the mutual interference between pilots and data, which will be par-
ticularly high in MIMO systems with implicit pilots, and achieve reliable channel 
estimation and data detection, we can modify the previous iterative receiver struc-
ture according to Figure 4.17. The main difference from the previous receiver lies in 
the addition of the “remove pilots” and “remove data” processing blocks.
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Figure 4.16 Frame structure for MIMO-OFDM transmission with implicit pilots 
(P—pilot symbol, D—data symbol).
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In this case, after conversion to the frequency domain, the received sampled 
sequence can be expressed as
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The pilot symbols are removed from the sequence according to
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where �Hk l
m n q
,
, ( )( )  is the channel frequency response estimate and q is the current 

iteration. Considering the pilot distribution of Figure 4.16 where only one of the 
antennas can transmit a pilot over each subcarrier, the summation in Equation 
4.70 has only one term. The sequences of samples (Equation 4.70) enter the spatial 
demultiplexer block, which can apply any of the methods discussed in Section 4.2.1. 
With the existence of implicit pilots, in each iteration, the receiver can apply the 
following steps in order to obtain the estimates of the frequency channel response 
for each transmitting/receiving antenna pair:

 1. Data symbols estimates are removed from the pilots using
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  where �Sk l
m q
,

( )′ −( ) 1
 and �Hk l

m n q
,
, ( )( ) −1

 are the data and channel response estimates 
of the previous iteration. This step can only be applied after the first iteration. 
In the first iteration, we set �R Rk l

n
k l
n

,
( )

, .( ) =
1

 2. The channel frequency response estimates is computed using a moving aver-
age with size W as follows:
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(4.72)

 3. After the first iteration, if a fully dense pilot distribution is not employed 
(i.e., ∆ ∆N NF T≠ ∨ ≠1 1), the data estimates can also be used as additional 
pilots for channel estimation refinement.

 4. These channel estimates can be enhanced by ensuring that the cor-
responding impulse response has a duration NG. This is accomplished 
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by computing the time domain impulse response of Equation 4.72 
through � �h Hi N k Ni l

m n
q

k l
m n q

,
,

( )

,
, ( )

; , , , ; , , ,( ){ } ( ){ }= … − = = … −0 1 1 0 1 1DFT ,, 

followed by the truncation of this sequence according to 
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m n q

i i l
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q

,
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,
,
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; , , ,( ) = ( ){ }= … −� 0 1 1  with wi = 1 if the ith time 

domain sample is inside the cyclic prefix duration and wi = 0 otherwise. 
The final frequency response estimates are then simply computed using 
�H hk N i Nk l
m n q

i l
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,
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,
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One of the advantages of using implicit pilots is that it allows us to significantly 
increase the density of pilots without sacrificing system capacity. In fact, we can have 
a pilot for each data symbol, which can be important for fast-fading channels. As an 
example, Figures 4.18 and 4.19 show the performances of a 16-HQAM (nonuniform 
hierarchical QAM modulation with parameter k1 =0.4, as defined in [Marques da 
Silva et al. 2010] transmission for different speeds employing data multiplexed pilots 
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 = − dB). These results were obtained using 

an UTRA LTE-Advanced-based Monte Carlo simulator for a 10 MHz bandwidth 
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Figure 4.18 Performance of a 2 × 2 MIMO 16-HQAM (k1 = 0.4) transmission 
with data multiplexed pilots (ΔNF = 7, ΔNT = 7) for different speeds.
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configuration whose corresponding parameters are shown in Table 4.1. The channel 
impulse response is based on the Vehicular A environment [from ETSI, 1998] with 
Rayleigh fading adopted for the different paths. The channel encoders were rate-
1/2 turbo codes based on two identical recursive convolutional codes as defined in 
[3GPP 2013b] with individual data block sizes of 4024 bits.
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Figure 4.19 Performance of a 2 × 2 MIMO 16-HQAM (k1 = 0.4) transmis-

sion with implicit pilots (ΔNF = 2, ΔNT = 1, E S E Sk l
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Table 4.1 Simulation Parameters for 10 MHz Bandwidth

Transmission BW 10 MHz

CP length (samples) 72

FFT size 1024

Number of occupied subcarriers 600

Subframe duration (ms) 0.5

Subcarrier spacing (kHz) 15

OFDM symbols per subframe 7
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Note that the modulation employed, 16-HQAM, is a hierarchical one, allow-
ing the transmission of two data streams with different error protection levels, as 
explained in [Marques da Silva et al. 2010]. Therefore, in the graph legends, MPB 
curves refer to the most protected bits and LPB corresponds to the least protected 
bits. According to the results, the performance for the data multiplexed transmis-
sion is almost insensitive to speeds up to 300 km/h, being visible only a small 
degradation in the performance of the LPB at these speeds. For higher velocities, 
the performance quickly degrades for both bit streams, becoming completely unre-
liable. With the use of implicit pilots, it is clear that the performance becomes more 
robust. In this case, the results are also practically insensitive to velocity for both 
streams until v = 300 km/h. For v = 600 km/h, the performance degrades substan-
tially but it is still possible to obtain BLERs below 1% for the MPB, which means 
that even at such speeds it would be possible for a user to extract the basic informa-
tion stream (e.g., a low-quality video).

4.4 Lattice-Reduction-Aided Receivers
4.4.1 Soft Metrics from LRA Receivers
As it was described in Chapter 2 for both real and complex lattices, there are several 
relatively low-complexity detection methods that can be applied to MIMO and 
those detection techniques can be easily extended to MIMO-OFDM. However, 
most of those methods often perform quite far from ML detection and since the 
use of ML detectors is only viable for a reduced number of antennas and small sig-
nal constellations, other solutions must be applied. As described in Chapter 2, one 
of the most promising approaches is the use of lattice reduction using for example 
the LLL algorithm [Lenstra et al. 1982] combined with either a linear equalizer, a 
successive interference cancelation (SIC) equalizer [Babai 1986], or a randomized 
version of SIC [Liu et al. 2011]. As explained in Chapter 2, lattice reduction is one 
of the most useful tools of lattice theory that allows us to find a new basis with 
improved mathematical properties that result in a gain in performance when a low-
complexity detection method is applied.

In order to apply a lattice-reduction-aided receiver in a MIMO-OFDM system, 
we can start by writing the Nrx × 1 received vector y for a subcarrier frequency as

 Y HS N= + ,  (4.73)

where H is the Nrx × Mtx channel matrix for that frequency with each column 
representing a different transmit antenna and each line representing a different 
receive antenna, s is the Mtx × 1 column vector whose elements are the complex-
valued symbols transmitted on the Mtx antennas and n is the Nrx × 1 column vector 
containing the noise samples at each receiving antenna. Similar to the procedure 
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described in Chapter 2, if the constellation of transmitted symbols can be mapped 
to a subset of the Gaussian integers space �Mtx j[ ] through shifting and scaling (e.g., 
M-QAM constellations), we can write

 
S x I= − +











α 1
2

1
2 j Mtx

,
 

(4.74)

where x ∈ �Mtx j[ ], α represents the factor used for energy normalization, and IMtx
 

denotes an Mtx × Mtx identity matrix. In this case, a lattice basis can be represented 
by matrix h defined as

 H H= α .  (4.75)

The transmitted vector estimate can then be achieved through shifting and 
rescaling as
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(4.76)

where u is a unimodular matrix (with |det u| = 1) containing only Gaussian inte-
gers that allows us to obtain a new improved basis �H (namely, shorter basis vectors 
and better orthogonality) using

 
�H HU= ,  (4.77)

and �z is an Mtx × 1 column vector whose elements can be computed using the round-
ing and subtraction procedure of the SIC algorithm [Babai 1986], as described in 
Chapter 2. As also detailed in Chapter 2, instead of the ZF criterion, we can use 
the MMSE criterion by applying the SIC algorithm to the extended channel matrix 
and the extended received vector defined as
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(4.78)
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where 0Mtx ×1 is an all zeros size-Mtx column vector. Furthermore, to narrow the 
performance gap to the ML decoder, instead of the standard rounding to the near-
est Gaussian integers employed in the SIC algorithm, we can replace it by Klein’s 
randomized rounding [Klein 2000] (c.f. Chapter 2) and implement a randomized 
lattice decoder.

As explained in Section 4.1.3, due to its poor uncoded performance, OFDM 
systems are usually combined with coding. However, to avoid a performance loss 
in the channel decoding task, the MIMO detector should be able to output LLRs 
for the demodulated bits. The use of randomized rounding in the randomized 
lattice decoder eases the computation of the required LLRs. Indeed, these can be 
obtained as
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(4.79)

where p(ci|y) is the probability of coded bit ci conditioned on y, ϒci =1 (ϒci =0) repre-
sents the set of all possible transmitted vectors from the candidates’ list containing 
ci = 1 (ci = 0) and p(y|s) is the likelihood probability, which can be computed using
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(4.80)

4.4.2 Performance Results
To compare randomized lattice decoding against some of the MIMO-OFDM 
receivers described previously in this chapter, we present in Figure 4.20 the per-
formance results for a 4 × 4 MIMO configuration, which were obtained using an 
UTRA LTE-Advanced-based Monte Carlo simulator for a 10 MHz bandwidth 
configuration whose corresponding parameters are the same as shown in Table 4.1 
of Section 4.3.2. The channel impulse response is based on the Vehicular A envi-
ronment [from ETSI, 1998] with Rayleigh fading adopted for the different paths. 
The channel encoders were rate-1/2 turbo codes based on two identical recursive 
convolutional codes as defined in [3GPP 2013b] with individual data block sizes of 
4196 bits. At the receiver, 12 turbo decoding iterations are applied, but in the case 
of the iterative receiver, we used four receiver iterations with three turbo decoding 
iterations per receiver iteration (giving still a total of 12 turbo decoding iterations). 
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In the case of the randomized lattice decoder, the MMSE criterion was employed 
combined with a candidate list size of K = 25. Perfect channel estimation and syn-
chronization was assumed.

We can see that the iterative receiver achieves the best performance as it is the 
only one where the channel decoder also contributes to the MIMO decoding task. 
Regarding the non-iterative receivers, as expected, the best performance is achieved 
by the MLSO followed closely by the randomized lattice decoder. However, the 
MMSE receiver shows a considerable performance gap compared with the MLSO.

Although the randomized lattice decoder can achieve performances close to 
ML decoding, due to the random nature of the sampling, unnecessary complex-
ity is often added (repetition of sampled points) and some performance loss can 
occur as a result of some points with low probabilities on the first elements being 
missed. To avoid these issues, a deterministic version of the algorithm, referred to 
as derandomized sampling algorithm, has been recently proposed in [Wang and 
Ling 2012].

12 turbo iter., MLSO
12 turbo iter., MMSE
3 turbo iter., iterative (1 × MMSE + 3 × IC)
12 turbo iter., rand. lattice

100
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Figure 4.20 Performance of a 4 × 4 MIMO QPSK transmission with R = 1/2 
turbo coding and different receivers.
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4.5 MIMO-OFDM with Signal Space Diversity
4.5.1 Complex Rotation Matrices
When powerful channel coding schemes are employed, OFDM schemes can have 
excellent performance. However, the required code rate must be low, reducing the 
system’s spectral efficiency. However, for uncoded systems or when high rate codes 
are employed, the performance of OFDM systems can be very poor. In this case, 
we can associate a given symbol to different subcarriers so as to take advantage of 
the diversity effects inherent to a severely frequency selective channel, which is typi-
cal in mobile communication environments. This alternative diversity technique is 
often named signal space diversity as proposed in [Boutros and Viterbo 1998] and 
is accomplished without additional power or bandwidth required. A simple way of 
doing this is to employ real rotation matrices (RRM) [Rainish 1996], which allows 
significant gains. Unfortunately, RRM were only designed to spread a symbol over 
two subcarriers, which is accomplished using

 X A S= ⋅RRM ,  (4.81)

with

 
ARRM =

−










cos( ) sin( )
sin( ) cos( )

,
ϕ ϕ
ϕ ϕ

 
(4.82)

and s being a 2 × 1 vector containing two modulated symbols.
Spreading a symbol over a larger number of subcarriers can be accomplished 

using the Hadamard matrix (HM) adopted in fully loaded multicarrier code 
division multiplexing schemes. The HM for spreading over two symbols can be 
obtained from RRM using φ = π/4. A more general alternative lies on the use of 
CRM. CRM is a technique for achieving signal space diversity (SSD) in SISO 
and MIMO-OFDM/OFDMA systems and can be easily combined with turbo or 
LDPC codes in order to improve the system performance without a substantial 
reduction of the spectral efficiency.

The process of applying CRM is similar to RRM where a rotated supersymbol 
is obtained using

 X A S= ⋅MCRM
,  (4.83)

with S being an MCRM × 1 vector with a set of modulated symbols composing a 
supersymbol. Matrix AMCRM

 belongs to the family of the orthonormal (OCRM) or 
nonorthonormal (NCRM) complex matrices, which are defined as
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(4.85)

with M nCRM
n

M MCRM CRM
= =≥2 1( ), det( ),A A  and φ being the rotation angle 

[Correia 2002].

4.5.2 Transmitter for OFDM Schemes with CRM
CRM can be easily incorporated into OFDM systems. Figure 4.21 shows the block 
diagram of an OFDM transmitter with CRM and multiple transmitting antennas.

An information block is encoded, interleaved, and mapped according to the con-
stellation symbols. A rotation matrix (RM) is then applied by grouping the symbols 
into MCRM-tuples and multiplying them by rotation matrix AMCRM

. The result-
ing sequence is split into Mtx parallel streams, which are interleaved in the symbol 
interleaver. The objective of the symbol interleaver is to explore the characteristics 
of OFDM transmissions in severe time-dispersive environments whose channel fre-
quency response can change significantly between different subcarriers. The inter-
leaver ensures that samples of a supersymbol are mapped to distant subcarriers, thus 
taking advantage of the diversity in the frequency domain. Pilot symbols are inserted 
into the modulated symbols sequence, which is then converted into the time domain 
using an IDFT and transmitted as a conventional OFDM transmission (with the 
insertion of the CP, which is not explicitly shown).

4.5.3 Receivers for OFDM Schemes with CRM
Figure 4.22 represents the receiver block diagram for MIMO-OFDM transmis-
sions with CRM. Nrx receiving antennas are assumed to be used. Although the 
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structure presented in Figure 4.22 corresponds to a noniterative receiver and 
assumes data multiplexed pilots, we could easily adopt an iterative receiver as well 
as implicit pilots from Section 4.3, since the only blocks that need to be modified 
and added are the ‘spatial demultiplexer and RM inverter’ block and the ‘symbol 
interleaver’ blocks.

According to Figure 4.22, the signal is sampled, the cyclic prefix removed, and 
the resulting signal is converted into the frequency domain with an appropriate 
size-N DFT operation. The sequence of symbols is then de-interleaved. If the cyclic 
prefix is longer than the overall channel impulse response, each received MCRM-
sized supersymbol can be expressed using matrix notation as

 R H X N= ⋅ + ,  (4.86)

where r is a (Nrx. MCRM/Mtx) × 1 vector containing the samples of a supersymbol 
received in all the antennas and h is the frequency response channel matrix defined 
as a blockwise diagonal matrix
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Index k represents a subcarrier position. It is important to note that due to the 
presence of the symbol interleaver, the different subcarriers denoted by index k may 
not be necessarily adjacent. To simplify the following explanations, we will assume 
that MCRM is a multiple of the number of transmitting antennas Mtx. n is a (Nrx. 
MCRM/Mtx) × 1 vector containing AWGN samples.

The supersymbol’s samples enter the spatial demultiplexer and CRM inverter 
block, which has the purpose of separating the streams transmitted simultaneously 
by the multiple antennas and invert the rotation applied at the transmitter.

In the following, some of the methods that were presented for traditional 
MIMO-OFDM systems in Sections 4.2.1 and 4.4 will be extended to MIMO-
OFDM with CRM: the MMSE equalizer, the MLSO detector, and lattice-reduc-
tion-aided decoders.
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The MMSE criterion can be applied to each individual subcarrier using

 
�X k k
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H
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 (4.89)

where �X k  is the Mtx × 1 vector with the estimated subset of coordinates from the 
supersymbol mapped to subcarrier k, rk is the Nrx × 1 received signal vector in 
subcarrier k with one different receive antenna in each position and σ 2 is the noise 
variance. Using the rotated supersymbol estimates, �X k , the component symbol 
estimates are computed through
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In the case of using the MLSO criterion, each symbol estimate is computed as
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with si representing a constellation symbol from the modulation alphabet Λ, E[⋅] 
denoting the expected value, P(⋅) denoting a discrete probability, and p(⋅) denot-
ing a probability density function (PDF). Considering equiprobable symbols, we 
have P(Sl = si) = 1/M, where M is the constellation size. The PDF values required in 
Equation 4.91 can be computed as
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(4.93)

where Sl
compl is a (MCRM − 1) × 1 vector representing a possible combination of sym-

bols transmitted together with Sl in the same supersymbol, s is an MCRM × 1 vector 
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comprising Sl
compl and si, Rn is the nth received sample in Equation 4.86, and h(n,:) 

is the nth line of channel matrix H.
Finally, regarding the use of lattice-reduction-aided decoders, we start by 

rewriting Equation 4.86 as

 Y HA S N= +MCRM
,  (4.94)

where y is the same received vector as r in Equation 4.86 and H is the same 
frequency response channel matrix defined as a blockwise diagonal matrix in 
Equation 4.87 (we just changed the symbols in order to match the definitions used 
in Section 4.4). With the received vector represented as Equation 4.94, it is easy to 
conclude that all the expressions in Section 4.4, including the randomized lattice 
decoder algorithm (detailed in Chapter 2) and the corresponding expressions for 
computation of LLRs, can be directly applied. The only difference is the definition 
of h, which becomes

 H HA= α MCRM
.  (4.95)

Independent of the decoding method used, the resulting symbol estimates are 
serialized, demodulated, and de-interleaved before entering the channel decoder 
block, which produces the final estimate of the information sequence.

Although CRM is usually studied for usage with multiple transmitting anten-
nas, the fast-varying channel frequency response of severe time-dispersive environ-
ments typical in OFDM systems can make the use of CRM very attractive even for 
single antenna transmissions. Figure 4.23 shows the BER performance of a SISO-
OFDM transmission with QPSK modulation, LDPC codes with different coding 
rates, and two different CRM matrix sizes: MCRM = 2 and MCRM = 16. The angle 
used for the CRM matrices, which can affect the system performance as studied in 
[Seguro et al. 2011], was φ = 30°. The results we obtained using an UTRA LTE-
Advanced Monte Carlo simulator for a 10 MHz bandwidth configuration whose 
corresponding parameters are the same as shown in Table 4.1 of Section 4.3.2. 
The channel impulse response is based on the typical urban (TypU) environment 
[3GPP 2011c] with Rayleigh fading assumed for the different paths. It is visible that 
the SSD gain provided by CRM increases with the size of the CRM matrix but is 
strongly dependent on the coding rate of the LDPC code. The SSD gain is higher 
for higher coding rates because of the lower coding gain of these codes (less chan-
nel bit redundancy). When the redundancy of the channel code increases, the SSD 
gain is not so noticeable due to the higher diversity gains that channel coding can 
offer compared to SSD.

Figure 4.24 illustrates the impact of the type of receiver on a MIMO-OFDM 
system with CRM. These curves were obtained for a 2 × 2 MIMO configuration 
combined with CRM16, 64-QAM modulation, and without coding. Curves for 
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Figure 4.24 BER performance of an uncoded 2 × 2 MIMO 64-QAM transmis-
sion, with CRM16 and different receivers, VehA channel.
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Figure 4.23 BLER performance of a SISO QPSK transmission with LDPC and 
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MMSE and randomized lattice decoder (applying MMSE with a candidate list size 
of K = 25) are shown. As a reference, performance curves of the receivers without 
CRM are also included. It is visible that, besides the large gap between the per-
formances of the MMSE receiver and the randomized lattice decoder, which was 
already realized in Section 4.4.2, the performance gain achieved with the use of 
CRM is substantially larger than with the MMSE receiver.
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5.1 Introduction
Future wireless systems are required to support high quality of service at high data 
rates. Moreover, owing to power and bandwidth constraints, these systems are also 
required to operate with small transmit powers, especially at the mobile terminals 
(MTs), and to have high spectral efficiencies.

It is well known that, by employing multiple antennas at both the transmit-
ter and the receiver, we can substantially increase the capacity of a given system 
[Foschini 1996]. To exploit this potential, several Bell Laboratory layered space–
time (BLAST) architectures have been proposed for flat fading multiple-input, mul-
tiple-output (MIMO) channels [Foschini and Gans 1998; Wolniasky et al. 1998]. 
BLAST techniques were extended to frequency-selective channels through the use 
of time-domain MIMO decision feedback equalizers (MIMO-DFE) [Al-Dhahir 
and Sayed 2000; Lozano and Papadias 2002].

This concept can be extended to space-division multiple access (SDMA) tech-
niques where we employ multiple antennas at the base station (BS) to increase the 
number of simultaneous users in a given cell, allowing a significant increase in the 
system spectral efficiency, while reducing the transmit power requirements for the 
MTs [Winters et al. 1992; Gitlin et al. 1994; Tidestav et al. 1999; Ariyavisitakul 
2000; Abe and Matsumoto 2003; Roy and Falconer 2003; Sfar et al. 2003].

However, for the high data rates of broadband wireless systems, we can have 
severe time-dispersion effects associated with the multipath propagation. In this 
case, conventional time-domain equalization schemes are not practical, since the 
number of operations per symbol is proportional to the intersymbol interference 
(ISI) span. This can be more serious when conventional time-domain equalization 
methods are employed in high data rate MIMO systems.

Block transmission techniques, with appropriate cyclic extensions and employ-
ing frequency-domain equalization (FDE) techniques, have been shown to be suit-
able for high data rate transmission over severe time-dispersive channels, since the 
number of operations per symbol grows logarithmically with the block duration 
(and, therefore, the ISI span), due to the fast Fourier transform (FFT) implementa-
tion [Gusmão et al. 2000; Wang and Giannakis 2000; Falconer et al. 2002].

Orthogonal frequency division multiplexing (OFDM) schemes [Cimini 1985; 
Bingham 1990] are the most popular modulations based on this technique. Since 
an OFDM transmission over time-dispersive channels can be regarded as a paral-
lel transmission over a set of nondispersive channels, one for each subcarrier, the 
extension of MIMO/BLAST techniques to OFDM schemes is straightforward, 
eventually with some preprocessing at the transmitter and/or employing adaptive 
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loading schemes [Raleigh and Cioffi 1998; Raleigh and Jones 1999]. However, 
OFDM signals have high envelope fluctuations and a high peak-to-mean envelope 
power ratio (PMEPR) leading to amplification difficulties. For this reason, several 
techniques have been proposed for reducing the envelope fluctuations of OFDM 
signals [Jones and Wilkinson 1996; Müller et al. 1997; Dinis and Gusmão 2004]. 
However, these PMPER-reducing techniques require an increased signal-processing 
effort, especially at the transmitter side, and, possibly, some signal distortion when 
a nonlinear signal processing is employed. Moreover, even for the most sophisti-
cated techniques, the transmitted signals still have PMEPRs higher than those for 
single-carrier (SC) signals based on similar constellations.

SC modulations, using block transmission techniques and FDE [Sari et  al. 
1994], are an alternative approach for broadband wireless systems. Similar to OFDM 
modulations, the data blocks are preceded by a cyclic prefix (CP), long enough to 
cope with the channel length. The received signal is transformed into the frequency 
domain, equalized in the frequency domain, and then transformed back to the 
time domain. The achievable performances as well as the overall implementation 
complexities are similar for SC schemes with FDE and OFDM schemes [Gusmão 
et al. 2000; Montezuma and Gusmão 2001a; Falconer et al. 2002]. However, the 
signal-processing effort is concentrated at the receiver for the SC case. This, com-
bined with the lower envelope fluctuations of SC signals, makes them preferable for 
the uplink transmission (i.e., the transmission from the MT to the BS), while the 
OFDM schemes might be a better choice for the downlink transmission (i.e., the 
transmission from the BS to the MT). For this reason, a mixed OFDM plus SC 
mode air interface was proposed, employing an SC scheme with FDE in the uplink 
and an OFDM scheme in the downlink [Gusmão et al. 2000; Falconer et al. 2002].

Usually a linear FDE is employed at the receiver [Sari et  al. 1994; Gusmão 
et al. 2000]. However, it is well known that nonlinear equalizers can significantly 
outperform linear equalizers [Proakis 1995]. For this reason, it is advantageous to 
design nonlinear equalizers for SC-FDE schemes [Benvenuto et al. 2010]. Among 
several different nonlinear equalizers, decision feedback equalizers (DFE) are espe-
cially popular due to its good performance/complexity trade-offs. A hybrid time–
frequency SC-DFE was proposed employing a frequency-domain feedforward filter 
and a time-domain feedback filter [Benvenuto and Tomasin 2001]. The hybrid 
time–frequency-domain DFE can have better performance than a linear FDE but, 
as with conventional time-domain DFEs, it can suffer from error propagation, 
especially if the feedback filter has a large number of taps.

A promising iterative block DFE (IB-DFE) approach for SC transmission was pro-
posed in [Benvenuto and Tomasin 2002] and extended to diversity scenarios [Dinis 
et  al. 2003, 2004b] and spatial multiplexing schemes [Dinis et  al. 2004; Kalbasi 
et al. 2004]. The IB-DFE schemes were also shown to allow excellent performance 
in many other scenarios, ranging from reduced cyclic prefix SC-FDE [Gusmão et al. 
2007a, 2007b], code division multiple access (CDMA) scenarios [Dinis et al. 2004a; 
Silva and Dinis 2006a,b; Dinis et al. 2007a], network diversity schemes [Dinis et al. 
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2007b; Ganhão et al. 2011, 2012, 2013; Pereira et al. 2012, 2013a,b; Marques da 
Silva et al. 2012], and offset modulations [Luzio et al. 2012, 2013]. We can also define 
highly efficient techniques based on the IB-DFE concept for joint detection and esti-
mation [Araújo and Dinis 2004; Lam et al. 2006; Dinis et al. 2008, 2010a; Pedrosa 
et al. 2010, 2012a,b; Silva et al. 2013] and to cope with severe nonlinear distortion 
effects [Silva and Dinis 2008, 2009; Dinis and Silva 2009; Dinis et al. 2009].

With IB-DFE schemes, both the feedforward and the feedback parts are imple-
mented in the frequency domain. Since the feedback loop takes into account not 
just the hard decisions for each block but also the overall block reliability, the error 
propagation problem is significantly reduced. Consequently, the IB-DFE tech-
niques offer much better performances than noniterative methods [Benvenuto and 
Tomasin 2002; Dinis et al. 2003]. In fact, IB-DFE techniques can be regarded as 
low-complexity turbo equalization schemes [Tüchler et al. 2003], since the feed-
back loop uses the equalizer outputs instead of the channel decoder outputs.

Earlier IB-DFE implementations considered hard decisions (weighted by the 
blockwise reliability) in the feedback loop. To improve the performance and to 
allow truly turbo FDE implementations, IB-DFE schemes with soft decisions 
were proposed [Benvenuto and Tomasin 2005; Gusmão et al. 2006, 2007a]. Usual 
IB-DFE implementations only consider QPSK constellations. However, larger con-
stellations such as quadrature amplitude modulation (QAM) and phase shift keying 
(PSK) are often required when we want to increase the system’s spectral efficiency. 
Furthermore, hierarchical constellations (which may be composed of nonuniformly 
spaced constellation points) are particularly interesting for broadcast/multicast sys-
tems since they are able to provide unequal bit error protection [Cover 1972; Jiang 
and Wilford 2005]. In this type of constellation, there are two or more classes of 
bits with different error protection, to which different streams of information can 
be mapped. Depending on the channel conditions, a given user can attempt to 
demodulate only the more protected bits or also the other bits that carry additional 
information. An application of these techniques is in the transmission of coded 
voice or video signals, where we can have different error protection associated with 
different resolutions [Ramchandran 1993; Jiang and Wilford 2005].

An important drawback of large constellations, in general, and nonuniform 
constellations, in particular, is that they are very sensitive to interference, namely, 
the residual ISI at the output of a practical equalizer that does not invert com-
pletely the channel effects (e.g., a linear equalizer optimized under the minimum 
mean squared error (MMSE) [Proakis 1995]). Therefore, we can expect significant 
performance improvements when we employ IB-DFE receivers with large constel-
lations. However, there are some difficulties in the design of IB-DFE receivers for 
any constellation, namely, on the computation of the reliability of each block, as 
well as problems on the computation of the average symbol values conditioned on 
the FDE and/or the channel decoder output.

In this chapter, we consider MIMO SC-DFE schemes for different constella-
tions. We start by characterizing the basic SC-FDE and IB-DFE schemes. Then 
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we present a pragmatic approach for designing the receiver that employs a general 
method for the computation of the receiver parameters for any constellation. Our 
approach follows [Dinis et al. 2010b,c; Silva et al. 2012] and relies on an analytical 
characterization of the mapping rule where the constellation symbols are written as 
a linear function of the transmitted bits. This method is then employed to design 
turbo receivers implemented in the frequency domain for systems with both con-
ventional constellations and multiresolution hierarchical constellations where we 
have different error protections. Finally, we describe MIMO receivers based on the 
IB-DFE concept.

5.2 SC-FDE Schemes
As already mentioned in Chapter 4, OFDM schemes are suitable for high data 
rate transmission over severely time-dispersive channels, since they have excellent 
performance with low-complexity receiver implementations. However, OFDM sig-
nals suffer from large envelope fluctuations, which lead to amplification difficulties. 
As an attractive alternative, SC-FDE schemes are also suitable for severely time-
dispersive channels and the single-carrier nature of the transmitted signals means 
that they have much lower envelope fluctuations than OFDM signals based on the 
same constellation.

To understand SC-FDE schemes, let us consider an SC-based block transmis-
sion with N useful data symbols per block {sn; n = 0, 1, . . ., N–1} resulting from 
the direct mapping of the original data into a selected signal constellation. As with 
OFDM schemes, a suitable CP is appended to the useful block, which corresponds 
to the repetition of the last NG data symbols. The transmitted signal is then

 
s t s h t nTn T S

n NG

N

( ) = ( ),
=

−
−

−

∑
 

(5.1)

with TS denoting the symbol duration, NG denoting the number of samples at the 
cyclic prefix, and hT(t) denoting the adopted pulse shape. The transmitted sym-
bols sn belong to a given alphabet S  (i.e., a given constellation) with dimension 
M = #S and are selected according to the corresponding bits βn

m( ), m = 1,2, . . ., 
m (m = log2(M)) that is, s f b b bn n n n= ( , , )(1) (2) ( )..., µ , with bn

m
n
m( ) ( )= 2 1β −  (throughout 

this chapter, we assume that βn
m( ) is the mth bit associated with the nth symbol and 

bn
m( ) is the corresponding polar representation, i.e., βn

m( ) = 0 or 1 and bn
m( ) = 1−  or 

+1, respectively). As with other cyclic-prefix-assisted block transmission schemes, it 
is assumed that the time-domain block is periodic, with period N, that is, s sn

m
N n
m

− −
( ) ( )= .

If we discard the samples associated with the cyclic prefix at the receiver, then 
there is no interference between blocks, provided that the length of the cyclic pre-
fix is higher than the length of the overall channel impulse response. Moreover, 
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the linear convolution associated with the channel is equivalent to a cyclic con-
volution relatively to the N-length, useful part of the received block, {yn; n = 0,1, 
. . ., N–1}. This means that the corresponding frequency-domain block (i.e., the 
length-N DFT (discrete Fourier transform) of the block {yn;n = 0,1, . . ., N–1}) is 
{Yk; k = 0,1, . . ., N–1}, where

 Y S H Nk k k k= + ,  (5.2)

with Hk denoting the channel frequency response for the kth subcarrier and Nk 
the corresponding channel noise. Clearly, the impact of a time-dispersive channel 
reduces to a scaling factor for each frequency.

The simplest FDE is the linear FDE depicted in Figure 5.1, where the frequency-
domain signal at the FDE output is given by { = ; = 0,1, , 1}� …S F Y k Nk k k −  
and the detection is based on the corresponding time-domain block 
{ ; = 0,1, , 1} { = ; = 0,1, , 1}� … � …s n N S F Y k Nn k k k− = −IDFT . If the FDE coef-
ficients Fk are given by

 
F Hk

k
= 1 ,

 
(5.3)

we eliminate completely the ISI at the FDE output (i.e., the FDE is optimized 
under the zero forcing (ZF) criterion). However, for a typical frequency-selective 
channel, we can have deep notches in the channel frequency response that lead to 
significant noise enhancement effects when the ZF criterion is employed. To mini-
mize the combined effect of ISI and channel noise on the equalized samples, the 
FDE coefficients should be selected according to the MMSE criterion (minimum 
mean-squared error), which corresponds to using
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where the SNR (signal-to-noise ratio) is given by
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Figure 5.1 Basic structure of a linear FDE.
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Contrary to OFDM schemes where ZF and MMSE criterions yield the same 
performance, the SC-FDE performance is typically much better for the MMSE 
criterion [Gusmão et al. 2003]. An FDE optimized under the MMSE criterion does 
not attempt to fully invert the channel when we have a deep fade, reducing noise 
enhancement effects and allowing better performances. However, owing to the 
residual ISI, the performance of a linear FDE optimized under the MMSE crite-
rion is still far from the matched filter bound (MFB), given by [Amaral et al. 2012]
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(5.6)

(see Figure 5.2).

5.3 IB-DFE Receivers
5.3.1 Basic IB-DFE Structure
Although the equalization can be accomplished employing a linear FDE, as 
explained in Section 5.2, the performance can be substantially improved with the 
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Figure 5.2 BER performance for SC-FDE with QPSK constellations and a linear 
FDE optimized under the ZF or MMSE criterion, together with the corresponding 
MFB. For the sake of comparisons, we also include the uncoded BER performance 
for the corresponding OFDM schemes.
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use of an IB-DFE, whose structure is depicted in Figure 5.3. For a given iteration, 
the output samples are given by

 
�S F Y B Sk k k k k= ,− �

 (5.7)

with {Fk; k = 0,1, . . ., N–1} and {Bk; k = 0,1, . . ., N–1} denoting the feedforward 
and the feedback coefficients, respectively. �{ ; = 0,1, , 1}S k Nk … −  is the DFT of 
the block �{ ; = 0,1, , 1}s n Nn … − , with �sn denoting the “hard” estimate of sn from 
the previous FDE iteration.

As shown in [Dinis et al. 2003],* the coefficients Fk and Bk that maximize the 
overall SNR in the samples �Sk  are given by

 
F

H
Hk

k

k
=

(1 ) | |

*

2 2
κ

α ρ+ − ;
 

(5.8)

and

 B F Hk k k= 1ρ( ),−  (5.9)

respectively, where

 α = [| | ]/ [| | ]2 2E N E Sk k  (5.10)

and κ is selected so as to ensure that

 k

N

k kF H N
=0

1

= 1.
−

∑ /
 

(5.11)

* It should be noted that, contrary to [Dinis et al. 2003], we are considering a normalized feed-
forward filter.
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Figure 5.3 Basic structure of an IB-DFE.
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The correlation coefficient ρ, which can be regarded as the blockwise reliability 
of the decisions used in the feedback loop (from the previous iteration), is given by

 
ρ = [ ]

[| | ]
= [ ]

[| | ]

*

2

*

2

� �E S S
E S

E s s
E s

k k

k

n n

n  
(5.12)

and can be estimated as described in [Dinis et al. 2003, 2007a] and [Silva et al. 
2011].

It is important to note that although the IB-DFE just described is usually 
denoted as “IB-DFE with hard decisions,” it would probably be more adequate to 
refer to it as “IB-DFE with blockwise soft decisions,” as we will see in the following. 
In fact, Equation 5.7 could be written as

 
�S F Y B Sk k k k k= ,− ′

Block

 (5.13)

with ρ ′B Bk k=  and S k
Block

 denoting the average of the block of overall time-domain 
chips associated with a given iteration, given by S Sk k

Block
= ρ �  (as mentioned earlier, ρ 

can be regarded as the blockwise reliability of the estimates �{ ; = 0,1, , 1}S n Mk … − ).

5.3.2 IB-DFE with Soft Decisions
In order to improve the performance, we can replace the “blockwise aver-
ages” used in the IB-DFE structure described earlier by “symbol aver-
ages,” leading to what is usually denoted as “IB-DFE with soft decisions” 
[Benvenuto and Tomasin 2005; Gusmão et  al. 2006, 2007a]. A simple way of 
achieving this is to replace the feedback input { ; = 0,1, , 1}S k Nk

Block
… −  by 

S S k N s n Nk k n
Symbol Symbol

= ; = 0,1, , 1 ; = 0,1, , 1… …−{ } = −{ }DFT , with snSymbol 

denoting the average symbol values conditioned to the FDE output of the previous 
iteration �sn, with { =; = 0,1, , 1}� …s n Nn −  denoting the IDFT of the frequency-
domain block { ; = 0,1, , 1}� …S k Nk − . To simplify the notation, we will use sn (and 
S k) instead of snSymbol (and S k

Symbol
) in the rest of the chapter.

For normalized QPSK constellations (i.e., sn = ±1 ±  j) with Gray mapping, it is 
easy to show that [Gusmão et al. 2006, 2007a]
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with the log-likelihood ratios (LLR) of the “in-phase bit” and the “quadrature bit,” 
associated with s Re sn

I
n= { } and s Im sn

Q
n= { }, respectively, given by

 L sn
I

n
I= 2 / 2� σ  (5.15)
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and

 L sn
Q

n
Q= 2 / ,2� σ  (5.16)

respectively, where
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The hard decisions �snI = 1±  and �sn
Q = 1±  are defined according to the signs of LnI  

and Ln
Q , respectively, and ρnI  and ρn

Q  can be regarded as the reliabilities associated 
with the “in-phase” and “quadrature” bits of the nth symbol, given by
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and

 
�ρnI n

Q
n
Q

n
Q

n
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(5.19)

(for the first iteration, ρ ρn
I

n
Q= = 0 and sn = 0).

The feedforward coefficients are still obtained from Equation 5.8, with the 
blockwise reliability given by

 
ρ ρ ρ= 1
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Q
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(5.20)

Therefore, the receiver with “blockwise reliabilities” (hard decisions) and the 
receiver with “symbol reliabilities” (soft decisions) employ the same feedforward 
coefficients; however, in the first, the feedback loop uses the “hard decisions” on 
each data block, weighted by a common reliability factor, while in the second, the 
reliability factor changes from bit to bit. The receiver structure when we have soft 
decisions is depicted in Figure 5.4, which is closely related to the IB-DFE with hard 
decisions (Figure 5.3).

We can also define a frequency-domain turbo equalizer that employs the chan-
nel decoder outputs instead of the uncoded “soft decisions” in the feedback loop. 
The receiver structure is similar to the IB-DFE with soft decisions, but with a soft-in, 
soft-out (SISO) channel decoder employed in the feedback loop. The SISO block, 
which can be implemented as defined in [Vucetic and Yuan 2002], provides the LLRs 
of both the “information bits” and the “coded bits.” The input of the SISO block is 
LLRs of the “coded bits” at the FDE. Once again, the feedforward coefficients are 
obtained from Equation 5.8, with the blockwise reliability given by Equation 5.20.
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5.3.3 Multiresolution Systems
In a multiresolution system, we can have m streams, each one associated with a dif-
ferent resolution and with a suitable error protection. Figure 5.5 illustrates the basic 
structure of a transmitter. According to this figure, the data stream associated with 
the mth resolution is encoded by a different channel encoder and the correspond-
ing bits are interleaved, leading to the block { , = 0,1, , 1}( )b n Nn

m … − . The different 
blocks { , = 0,1, , 1}( )b n Nn

m … − , m = 1,2,. . .,m, are mapped onto the block of time-
domain symbols {sn,n = 0,1,. . .,N–1} and the rest of the transmitter is similar to the 
transmitter for conventional constellations.*

The receiver can be the one depicted in Figure 5.6. Essentially, we have an 
IB-DFE receiver where the demapping block provides LLRs of the bits associated 
with each error protection level. The operations of detection/decoding and compu-
tation of average bit values are preformed separately for each resolution bit stream.

* Without loss of generality, we are assuming that the bit rate associated with each resolution is 
identical. The extension to the case where we have different bit rates for different resolutions is 
straightforward.
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Figure 5.5 Transmitter structure for SC-FDE with multiresolution.
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5.3.4 Analytical Characterization of Mapping Rules

5.3.4.1 General Mapping

As shown in [Montezuma and Gusmão 2001a,b], it is possible to express the con-
stellation symbols as a function of the corresponding bits using*
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(5.21)

for each sn ∈ S, where (γm,i γm–1,i . . . γ2,i γ1,i) is the binary representation of i. Since 
we have M constellation symbols in S and M coefficients gi, Equation 5.21 is a 
system of M equations that can be used to obtain the coefficients gi, i = 0,1,. . .,m–1. 
Writing Equation 5.21 in matrix format, we have

 s Wg= ,  (5.22)

* It should be noted that in this section sn denotes the nth constellation point, but in the previ-
ous section, sn denotes the nth transmitted symbol; the same applies to bn

m( ) (or βn
m( )) that here 

denotes the mth bit of the nth constellation point (instead of the mth bit of the nth transmitted 
symbol).
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Figure 5.6 Iterative FDE receiver structure for SC-FDE with multiresolution (the 
dashed part corresponds to the SISO decoders and is only required for a turbo 
FDE).

 



MIMO Optimized for Single-Carrier Frequency-Domain ◾ 223

with

 s = [ ... ] ,1 2s s sM
T

 (5.23)

 g = [ ... ]0 1 1g g g T
µ− ,  (5.24)

and W is a Hadamard matrix with dimensions M × M. Clearly, the vector of 
constellation points s is the Hadamard transform of the vector of coefficients g. 
Therefore, for a given constellation, we can obtain the corresponding coefficients gi 
from the inverse Hadamard transform of the vector of constellation points.

5.3.5 Special Cases
In this section, we present some special cases where the mapping is particularly 
simple, avoiding the computation of Hadamard transforms.

5.3.5.1 PAM Constellations

For a uniform M-PAM constellation, we have S = { 1, 3 , }± ± ± −, ( )… M 1 .
If we have a natural binary mapping, the only nonzero coefficients are g1,g2,g4, 

. . . ,gM/2 (i.e., the coefficients g i2
, i = 0,1, . . . ,m – 1). Moreover, g i

i
2

= 2µ− , which 
means that
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(5.25)

For a Gray mapping, the only nonzero coefficients are the ones with binary 
representations (0 … 001), (0 … 011), … , (111 … 1), that is, the coefficients 
g ii2 1

0 1 1− = −, , ..., )µ . Moreover, g i
i

2 1
1= 2−

− −µ , which means that
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(5.26)

For uniform 4-PAM constellations, we have

 s b bn n n= 2 (1) (2)+  (5.27)

for a natural binary mapping and

 s b b bn n n n= 2 (1) (1) (2)+  (5.28)

for a Gray mapping. For uniform 8-PAM constellations, we have

 s b b bn n n n= 4 2(1) (2) (3)+ +  (5.29)
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for a natural binary mapping and

 s b b b b b bn n n n n n n= 4 2(1) (1) (2) (1) (2) (3)+ +  (5.30)

for a Gray mapping.
The same approach can be employed for nonuniform hierarchical constellations 

such as the ones adopted in multiresolution schemes [Jiang and Wilford 2005]. In 
fact, from Equations 5.25 and 5.26, an M-PAM constellation with either natural 
binary mapping or Gray mapping can be regarded as the sum of μ binary subcon-
stellations, each one with twice the amplitude of the previous one. By reducing 
the amplitude of successive subconstellations, we obtain hierarchical constellations 
with different error protections.

5.3.5.2 QAM Constellations

The mapping of the bits on an M-QAM constellation is often performed inde-
pendently to the in-phase and quadrature components, that is, half the bits are 
used to define the in-phase component (as in the previous case, for Gray mapping 
or natural binary mapping) and the other half is used to define the quadrature 
component. Therefore, an M-QAM constellation can be written as the sum of two 

M -PAM constellations, one for the in-phase (real) component and the other 
for the quadrature (imaginary) component. For instance, for 16-QAM with Gray 
mapping, we have

 s b b b jb jb bn n n n n n n= 2 2(1) (1) (2) (3) (3) (4)+ + +  (5.31)

and for 64-QAM with Gray mapping, we have

 s b b b b b b jb jb bn n n n n n n n n n= 4 2 4 2(1) (1) (2) (1) (2) (3) (4) (4) (5)+ + + + ++ jb b bn n n
(4) (5) (6).  (5.32)

The extension to other mapping rules and/or nonuniform QAM constellations 
is straightforward.

5.3.5.3 M-PSK Constellations

Whereas the characterization of a BPSK constellation is trivial and QPSK constel-
lations with Gray mapping are simply a special case within the aforementioned 
QAM class, characterizing analytically a given M-PSK constellation is in general 
complex* and we need to employ directly Equation 5.22.

* Naturally, we could define a PSK constellation as a complex exponential of a suitable PAM 
constellation, but this does not help us in the receiver design since the constellation symbols 
are not a linear function of the corresponding bits.
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In the following, we present the analytical characterization of 8-PSK constella-
tions (it is better to employ the Hadamard transform, as described earlier when we 
want to characterize larger PSK constellations). Let us assume that the constellation 
is defined by two points, s1 and s2, as well as their reflections in the real and imagi-
nary axis, that is, S = − − − −∗ ∗ ∗ ∗{ , , , , , , , }1 2 2 1 1 2 2 1s s s s s s s s , corresponding to the “tri-bits” 
010, 011, 111, 110, 000, 100, 101, 001, respectively (Gray mapping). Clearly, for a 
regular 8-PSK constellation, s1 = exp( j3π/8) and s2 = exp( jπ/8). By using other val-
ues of s1 and s2, we can define 8-PSK constellations with two or three different error 
protections; we can also define some 8-APSK constellations (e.g., for s1 = exp( jπ/4) 
and s1 = 2exp( jπ/4)).

If we define s s s s j s Re s Im sR I I= ( )/2 = = { } = { }1 2+ +  (  s sR and ) and 
s s s s js s Re s s Im sR I R I
∆ ∆ ∆ ∆ ∆ ∆ ∆= = = { } = { }1 − +  (  and ), then the constellation 

point associated with the bits of bn
(1), bn

(2), and bn
(3) is

 s s b j s b s b b js b bn
R

n
R

n
R

n n
I

n n= .(1) (2) (1) (3) (2) (3)+ + +∆ ∆  (5.33)

This means that g s R
1 = , g j s bR

n2
(2)= , g sR

5 = ∆ , and g js I6 = ∆, with the remain-
ing being equal to zero.

5.3.6 Computation of Receiver Parameters
Taking into account the description provided in the previous sections, an IB-DFE 
receiver with soft decisions (as described in Section 5.3.2) has to carry the following 
constellation-dependent tasks (see Figure 5.7):

 ◾ Demapping the time-domain samples at the output of the FDE, �sn, into the 
corresponding bits. This can be implemented by computing the log-likeli-
hood ratios associated with each bit of each transmitted symbol.

 ◾ Computation of the average symbol values conditioned to the FDE output of 
the previous iteration �sn, denoted by sn ,.

 ◾ Computation of the blockwise reliability ρ, required for obtaining the feed-
forward coefficients (see Equation 5.8).

The log-likelihood ratio of the mth bit for the nth transmitted symbol is given 
by
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where Ψ1
( )m  and Ψ0

( )m  are the subsets of S where βn
m( ) = 1 or 0, respectively (clearly, 

Ψ Ψ1
( )

0
( ) =m m∪ S and Ψ Ψ1

( )
0
( ) =m m∩ ∅). As an example, Figure 5.4 shows the 

regions associated with Ψ0
( )m  and Ψ1

( )m  (m = 1,2,3) for a uniform 8-PAM constella-
tion with Gray mapping.

For obtaining the average symbol values conditioned on the FDE output, sn, we 
need to obtain the average bit values conditioned on the FDE output, bn

m( )
. These 

are related to the corresponding log-likelihood ratio as follows:

 
bn

m n
m( ) ( )

= 2 .tanh λ



  

(5.35)

By taking advantage of the analytical characterization of the mapping rules 
Equation 5.21 (or, equivalently, the specific formulas of Section 5.3.5) and assum-
ing uncorrelated bits (e.g., thanks to the adoption of suitable interleaving), we can 
write
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Figure 5.7 IB-DFE with soft decisions.
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Finally, the reliability of the estimates to be used in the feedback loop is given 
by
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where ρn
m( ) is the reliability of the mth bit of the nth transmitted symbol, given by

 ρn
m

n
m

b( ) ( )
=| | .  

(5.38)

For QPSK constellations, these results reduce to the ones presented in Section 
5.2.2.

As an example, let us consider a uniform 4-PAM constellation with Gray map-
ping (i.e., the symbols are characterized by Equation 5.31). Figure 5.8 shows the 
LLR values of the different bits, λn

m( ), as a function of the output of the FDE, �sn, for 
different SNR values and Figure 5.9 shows the average value of each bit conditioned 
on the FDE output, bn

m( )
 in the same condition. The regions where each bit is 0 or 

1 are well defined when we have a high SNR, but for low SNRs, these regions are 
not so evident.
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Figure 5.8 Evolution of the LLR of the different bits, λn
m( ), for a uniform 4-PAM 

constellation with Gray mapping.
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Figure 5.10 shows the average symbol value conditioned on the FDE output, sn , 
for the same settings of Figures 5.8 and 5.9. Once again, the four levels are clear 
for high SNR and the transition between levels becomes smoother as we reduce 
the SNR. The corresponding symbol reliability ρn is depicted in Figure 5.11. As 
expected, the reliability is lower between levels, becoming 0 for �sn = 0. For �sn ≈ 0 
or ±3, the reliability is close to 1, unless the SNR is very small.

5.3.7 Performance Results
In this section, some performance results concerning IB-DFE receivers with soft 
decisions for generalized constellations are presented. Blocks with N = 256 sym-
bols plus an appropriate cyclic prefix are considered. The results assume a severely 
time-dispersive channel with perfect synchronization and channel estimation at 
the receiver.

Let us first consider a uniform 64-QAM constellation with Gray mapping 
based on two separate 8-PAM constellations characterized by g7/g3 = g3/g1 = 0.5. 
Figure 5.12 shows the BER performance for the IB-DFE receivers described in 
the previous sections. When compared with a conventional linear FDE, the per-
formance improves significantly with the iterations, with a gain around 7 dB for 
BER = 10−4 after four iterations.

Let us consider now a nonuniform 64-QAM constellation based on two 
8-PAM constellations characterized by g7/g3 = g3/g1 = 0.4 (Gray mapping). These 
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Figure 5.9 Evolution of the average value of the different bits conditioned to the 
FDE output, bn
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, for a uniform 4-PAM constellation with Gray mapping.

 



MIMO Optimized for Single-Carrier Frequency-Domain ◾ 229

3

SNR = 5 dB
SNR = 10 dB

SNR = 15 dB
2

1

0

–1

–2

–3–4 –3 –2 –1 0
sn

1 2 3 4
~

sn
–

Figure 5.10 Evolution of sn for a uniform 4-PAM constellation with Gray mapping.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3 SNR = 5 dB

ρn

SNR = 10 dB
SNR = 15 dB0.2

0.1

0
–4 –3 –2 –1 0

sn

1 2 3 4
~

Figure 5.11 Evolution of ρn for a uniform 4-PAM constellation with Gray 
mapping.
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constellations allow bits with three different error protection levels, denoted LPB 
(least protected bits), IPB (intermediate protected bits), and MPB (most protected 
bits).

Figure 5.13 shows the uncoded BER performance for the different type of bits 
when we have a conventional IB-DFE receiver. These results are expressed as a 
function of Es/N0, with Es denoting the average symbol energy and N0 the noise 
power spectral density. Clearly, performance improves significantly with the num-
ber of iterations, outperforming significantly the linear FDE. This improvement 
is higher for LPB (more than 10 dB for BER = 10−4), since they are more sensitive 
to the residual ISI that is inherent to a linear FDE optimized under the MMSE 
criterion.

Let us now consider the impact of channel coding on a conventional IB-DFE as 
well as on a turbo FDE (i.e., an IB-DFE where the channel decoder is involved in 
the feedback loop). We consider a rate-1/2 turbo code [Berrou et al. 1993] based on 
two identical recursive convolutional codes with two constituent codes character-
ized by G(D) = [1(1 + D2 + D3)/(1 + D + D3)] and interleaving depth correspond-
ing to a single FFT block. We also assume three iterations of the turbo decoder 
for each iteration of the IB-FDE. Figure 5.14 shows the BER performance for the 
different types of bits. As expected, the turbo FDE outperforms the conventional 
IB-DFE (where the channel decoder is not involved in the feedback loop), with 
gains around 3 dB for BER = 10−4.
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Figure 5.12 BER for a uniform 64-QAM with Gray mapping.
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Figure 5.13 BER for the different bits of a nonuniform 64-QAM modulation with 
Gray mapping.
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Figure 5.14 Coded BER performance for the bits with different error protections.
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5.4  Iterative Frequency-Domain Detection 
for MIMO-SC

5.4.1 System Model
Let us now consider a MU-MIMO (multiuser MIMO) scenario where we have 
P MTs employing SC-FDE schemes and transmitting simultaneously to a BS 
equipped with R receive antennas, as depicted in Figure 5.15. For the sake of sim-
plicity, we assume that each MT has a single transmit antenna, although we could 
easily extend it to the case where we have multiple antennas at one or several MTs. 
The time-domain block transmitted by the pth user is {sn,p; n = 0,1, . . .,N–1}, with 
sn,p denoting the nth data symbol of the pth user, which is selected from a given 
constellation (e.g., a QPSK (quadrature phase shift keying) constellation), under 
an appropriate mapping rule. A cyclic prefix, preceding each block, is used to avoid 
interblock interference and to make the linear convolution associated with the chan-
nel equivalent to a cyclic convolution with respect to the useful, length-N, part of 
the block. At the receiver, the cyclic prefix is discarded.

The time-domain block at the rth receive antenna is { ; = 0,1, , 1}( )y n Nn
r … −

. The corresponding frequency-domain block, obtained after an appropriate size-
N DFT operation (discrete Fourier transform), is { ; = 0,1, , 1}( )Y k Nk

r … − , where

 
Y S H Nk

r

p
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k p k p
r

k
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(5.39)

with Hk p
r
,

( )  denoting the overall channel frequency response from the pth transmit-
ting antenna to the rth receiver antenna, for the kth frequency, and Nk

r( ) denot-
ing the corresponding channel noise. The block {Sk,p;k = 0,1,. . .,M–1} is the size-N 
DFT of the pth user’s data block {sn,p;n = 0,1,. . .,N–1}.
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Figure 5.15 System model.
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We consider a frequency-domain iterative multiuser detection that combines 
IB-DFE principles with interference cancelation. Each iteration consists of P detec-
tion stages, one for each user. When detecting a given user, the interference from 
previously detected users is canceled, as with conventional layered space–time 
(LST) receivers. However, in contrast to conventional LST receivers, we also cancel 
the residual ISI from the user that is being detected. Moreover, these interference 
and residual ISI cancelations take into account the reliability of each of the previ-
ously detected users. For a given iteration, the receiver structure for the detection of 
the pth user is illustrated in Figure 5.16. We have R frequency-domain feedforward 
filters (one for each receive antenna) and P frequency-domain feedback filters (one 
for each user). The feedforward filters are designed to minimize both the ISI and 
the multiuser interference that cannot be canceled by the feedback filters, due to 
decision errors in the previous detection steps. This structure can be regarded as an 
equalizer with multiuser interference suppression properties. After an IDFT opera-
tion, the corresponding time-domain outputs are passed through a hard-decision 
device so as to provide an estimate of the data block transmitted by the pth user.

We can employ two different iterative approaches for detecting the different users:

 ◾ A parallel interference cancelation (PIC) approach where we detect all users 
simultaneously at a given iteration, while removing interuser interference as 
well as residual ISI using data estimates from the previous iteration.

 ◾ A successive interference cancelation (SIC) approach where we cancel the 
interference from all users (using the most updated version of each user), 
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Figure 5.16 Detection of the pth user, for a given iteration.
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as well as the residual ISI from the user that is being detected. In this case, the 
users should be detected according to their average received power, although 
our receiver is robust enough to cope with a wrong detection order (eventu-
ally requiring an additional iteration for convergence).

5.4.2 Computation of Receiver Coefficients
The frequency-domain samples associated with the pth user at the output of the 
equalizer/multiuser detector are given by
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(5.40)

where F k N r Rk p
r
,
( ) = 0,1, , 1 = 1,2, ,( ; )… …−  denotes the feedforward coefficients 

and B k N p Pk p
p
,

( ) = 0,1, , 1 = 1,2, ,′ −( ; )… …  denotes the feedback coefficients. The 
coefficients { ; = 0,1, , 1},

( )B k Nk p
p … −  are used for residual ISI cancelation and the 

coefficients { ; = 0,1, , 1},
( )B k N pk p

p′ − ≠… ( )p′  are used for interference cancelation. 
The block �{ ; = 0,1, , 1},S k Mk p′ −…  is the DFT of the block �{ ; = 0,1, , 1},s n Nn p′ −… , 
where the time-domain samples �s n Nn p, , = 0,1, , 1′ −…  are the latest estimates for the 
p′th user transmitted symbols, that is, the hard decisions associated with the block of 
time-domain samples { ; = 0,1, , 1} { ; = 0,1, , 1}, ,� … � …s n N S k Nn p k p′ ′− = −IDFT . 
For the ith iteration of an SIC receiver, �sn p, ′ is associated with the ith iteration for 
p′ < p and with the (i – 1)th iteration for p′ ≥ p (in the first iteration, we do not have 
any information for p′ ≥ p and �sn p, = 0′ ); for the PIC receiver, �sn p, ′ is always associ-
ated with the previous iteration (for the first iteration, �sn p, = 0′ ).

Owing to decision errors, we have �s sn p n p, ,≠  for some symbols. Consequently, 
�S Sk p k p, ,≠ . However, the frequency-domain estimates, �Sk p, , can be written as

 
�S Sk p p k p k p, , ,= ρ + ∆ ,  (5.41)

where ρp denotes the correlation coefficient for the pth user, which can be obtained 
as described in the previous section, and Δk,p denotes a zero-mean error term. For 
the computation of the receiver coefficients, it is assumed that E Sk p k p[ ] 0, ,∆ ′ ≈ , 
regardless of k and k ′. Therefore,

 E NEk p p S p[| | ] = (1 ) .,
2 2

,∆ − ρ  (5.42)

By combining Equations 5.39, 5.40, and 5.41, we obtain
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denoting the average overall channel frequency response for the pth user, after com-
bining the outputs of the R feedforward filters.

This means that �Sk p,  has a “signal” component, γp Sk,p, and four “noise” 
components:
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( ) ( )∑  comes from the channel noise.

The forward and backward coefficients, { ; = 0,1, , 1},
( )F k Nk p
r … − , r = 1,2,. . .,R, 

and { ; = 0,1, , 1},
( )B k Nk p

p ′ −… , p′ = 1,2, . . .,P, respectively, are chosen so as to maxi-
mize the “signal-to-noise plus interference ratio” (SNIR) for the pth user, defined as
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with ε γn p
eq

n p p n ps s, , ,= � −  denoting the overall noise. The SNIR can also be written 
as
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where SNIRk p
F
,  denotes the SNIR associated with the corresponding frequency-

domain samples, defined as
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with the block { ; = 0,1, , 1},εk p
Eq k N… −  denoting the DFT of the block 

{ ; = 0,1, , 1},εn p
eq n N… − . Clearly, the maximization of the SNIR in the time-

domain samples �sn p,  is equivalent to the maximization of the SNIR in the corre-
sponding frequency-domain samples, SNIRk p

F
, .

It is simple to verify that
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with σ N k
rN E N2 ( ) 2= 1 2 [| | ]( / )  denoting the variance of both the in-phase and 

quadrature components of the channel noise at the input of each receive antenna.
The optimum feedforward and feedback coefficients are obtained by maximiz-

ing SNIRk p
F
, , which is equivalent to minimizing E k p

Eq[| | ],
2ε  when γp = 1. This can be 

accomplished by solving the following set of R + P equations for each frequency:
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and
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These equations can be rewritten in the form
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and
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where SNR Ep S p N= 2,
2( / )σ .

From Equation 5.9, the optimum values of Bk p
p
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with δ p p, 1′ =  for p = p′ and 0 otherwise.
This leads to the set of R equations
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where κp is selected to ensure that we have a normalized FDE output with γp = 1. 
These feedforward coefficients can be used for obtaining the feedback coefficients 
Bk p

p
,

( )′  and Bk p
p
,

( )′ , p′ ≠ p, respectively.
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It can be shown that the solution of this system of equations can be written in 
the form
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with the set of coefficients { ; = 1,2, , }( )C p Pk
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The computation of the feedforward coefficients from Equation 5.57 is simpler 
than the direct computation from Equation 5.56, especially when P < R.

For the special case where P = 1 (and p = 1), it can be shown that

 

F
SNR H

SNR H
rk

r k
r

k
r

r

N,1
( ) 1 ,1

( )*

1 1
2

,1
( ) 2

=1

=
1 (1 ) | |

, = 1,2,
⋅

+ − ′
′∑ρ

……, ,R

 
(5.58)

which corresponds to the feedforward coefficients of an IB-DFE with R-branch 
space diversity [Dinis et al. 2003]. For the first iteration
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corresponding to a linear FDE with R-branch space diversity [Gusmão et al. 2003].
It should be noted that, for the first iteration (i = 0), we do not have any infor-

mation about Sk,p′ for p′ ≤ p, for the SIC receiver, or all Sk,p′, for the PIC receiver. 
Therefore, the corresponding correlation coefficients are zero, leading to Bk p

p
,

( ) = 0′ . 
After the first iteration, and if the residual BER (bit error rate) is not too high, 
�s sn p n p, ,=′ ′  for most of the data symbols, and �S Sn p k p, ,′ ′≈ ; this means that we can 
use the feedback coefficients to eliminate a significant part of the residual ISI, as 
well as the residual multiuser interference.

5.4.3 Soft Decisions
The previous IB-DFE receiver considered hard decisions in the feedback loop (or 
symbolwise soft decisions). The receiver can be easily modified for soft decisions 
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by following the approach described in the previous section. Essentially, the FDE 
output is given by
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where the average transmitted frequency-domain block conditioned to the FDE 
output S k p, ′ can be computed as described in the previous section. It can be easily 
shown that the optimum feedback coefficients are still given by Equation 5.52 and 
the feedback values are given by
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5.4.4 Complexity Issues
Both SIC and PIC receivers require R size-N DFT operations, one for each receiver 
antenna, and a pair of DFT/IDFT operations (with size N) for the detection of 
each user at each iteration. For the equalization/interference cancelation, we need 
NRP multiplications for the first iteration of a PIC receiver and NRP + P(P–1)N/2 
multiplications for the first iteration of an SIC receiver. For the remaining itera-
tions, we need (R + P)PN multiplications for both SIC and PIC receivers.

The most complex part of the algorithm is the computation of the feedforward 
coefficients, since we need to solve R systems of P equations, for each iteration and 
each user. Naturally, for slow-varying channels, this operation is not required for 
all blocks.

5.4.5 Performance Results
In this section, we consider the use of the proposed receiver in an SDMA system 
where each user has one transmit antenna and the base station has R receive anten-
nas. The data block consists of N = 256 QPSK data symbols, plus an appropriate 
cyclic prefix. We consider an uncoded scenario, with square-root raised-cosine fil-
tering with zero roll-off and a severely time-dispersive channel with rich multipath 
propagation. We have perfect synchronization and channel estimation conditions.

Figure 5.17 shows the BER performances for different users and different itera-
tions, when we have P = 4 users with the same average receive power and N = 4 
receive antennas at the BS. An SIC receiver is assumed. For the sake of compari-
sons, we also include the MFB performance.

From this figure, we can observe that, for the first iteration, the users have very 
different performances: more than 6 dB from user 1 to user 4, at BER = 10−4. This 
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difference decreases as we increase the number of iterations, with all users having 
almost the same performance after three iterations. Moreover, the resulting perfor-
mance is very close to the MFB after four iterations. This shows that the proposed 
receiver is able to eliminate a significant part of the ISI and multiuser interference.

Figure 5.18 shows the average BER performances (averaged over all the users) 
for SIC and PIC receivers for the different iterations. After the first iteration, the 
performance of the PIC receiver is almost 2 dB worse than the performance of the 
SIC receiver. After iteration 3, this gap reduces to less than 1 dB and after iteration 
4 to 0.2 dB. Once again, the BER performances after four iterations are very close 
to the corresponding MFB for both structures. It should be mentioned that, for the 
PIC receiver, all users have the same average BER.

Figure 5.19 shows the average BER performance after four iterations, for differ-
ent values of R and P. Once again, the BER performances after four iterations are 
close to the corresponding MFBs, regardless of R and P.

Let us consider now a scenario where the received powers are not the same 
for all users (e.g., due to a wrong power control and/or different uncoded BER 
requirements for the different users). We consider P = 4 users and an SIC receiver 
with R = 4 receive antennas. The average received power for users 1 and 2 is 6 dB 
larger than the received powers for users 3 and 4. For a given iteration, the receiver 
detects first the high-power and then the low-power users. Figure 5.20 shows the 
BER performances for the different users. Once again, the iterative detection pro-
cedure allows significant performance gains and after four iterations, the BER 
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Figure 5.17 BER for the different users and the different iterations, as well as the 
corresponding MFB, for R = P = 4.
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Figure 5.18 Average BER of an SIC receiver or a PIC receiver, as well as the cor-
responding MFB, for R = P = 4.
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Figure 5.19 Average BER performance for different values of N and P, after four 
iterations.
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Figure 5.21 Average BER performance for R = 4 and P = 6.

 



MIMO Optimized for Single-Carrier Frequency-Domain ◾ 243

performances are similar for users with the same average power. Clearly, the perfor-
mance of low-power users asymptotically approaches the MFB when we increase 
the number of iterations. However, for the high-power users, we are still 2 dB from 
the MFB at BER = 10−4. This somewhat unexpected behavior can be explained 
from the fact that the BER is much lower for the high-power users, allowing an 
almost perfect interference cancelation of its effects on low-power users and per-
formances close to the MFB. The lower BERs for the low-power users preclude an 
appropriate interference cancelation on the high-power users.

Figure 5.21 refers to the situation where R = 4 and P = 6, that is, an overloaded 
scenario where the number of users is larger than the number of receive antennas 
at the BS. In this case, a perfect multiuser separation is not possible since we have 
R = 4 degrees of freedom to separate P = 6 users. However, the iterative receiver 
structure presented here has an acceptable performance, with significant interfer-
ence cancelation, although, even after 10 iterations, the achievable performance is 
still about 4 dB from the MFB.
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In this chapter, we will study the use of linear equalizers for wideband code divi-
sion multiple access (W-CDMA) using multiple-input multiple-output (MIMO) 
systems. The W-CDMA concept will be introduced and the minimum mean 
square error (MMSE) alongside the zero-forcing (ZF) methods will be studied 
and analyzed.

The well-known RAKE receiver is not sufficient to cope with the interfer-
ence of fully loaded systems [Brunner et al. 1999]. One of the main problems 
consists in the uncanceled multipath components pertaining to the same mes-
sage; since the ratio of used channels per spreading factor (SF) is close to one, 
the cross-correlation between sequences is very significant, and left uncanceled. 
By employing an MPIC (multipath interference canceler), substantial perfor-
mance gains were observed, although still very far from the single user bound 
for fully loaded scenarios. Since the MPIC has its operation stemmed from the 
RAKE, it is only able to cancel part of the inter-symbolic interference (ISI) (the 
RAKE leaves a  significant noise component attached). However, for higher-order 
modulations than quadrature phase shift keying (QPSK) and/or MIMO systems, 
where interference from other transmitting antennas (ICI—interchannel inter-
ference) significantly increases the multiple access interference (MAI) and ISI, a 
more powerful receiver needs to be employed.

Equalization-based receivers try to take into account all effects that the sym-
bols are subject to in the transmission chain, namely, the joint compensation 
of MAI, ICI, and ISI. In this chapter, linear equalizers were employed, namely, 
MMSE and ZF.
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6.1 W-CDMA Fundamentals
The fundamentals of W-CDMA are addressed in this section. To begin with, the 
CDMA concept is analyzed and compared to the alternative multiple access tech-
niques, such as time division multiple access (TDMA) and frequency division mul-
tiple access (FDMA). The direct-sequence (DS) spread-spectrum (SS) technique is 
also compared to other methods, including the time hopping (TH) and frequency 
hopping (FH) methods. Narrowband and wideband channels are also discussed, 
with the multipath effect being explained in the latter case.

After defining the W-CDMA model, the conventional RAKE receiver is 
described, and the concept of maximal ratio combining (MRC) is analyzed. In 
order to obtain better performance results by canceling a substantial part of ISI/
MPI (intersymbolic/multipath interference), the standard MPIC is also discussed.

6.1.1 CDMA Concept
Multiple access (MA) communications refer to a communication system that allows 
more than one user to transmit over one physical channel resource at the same time. 
This does not imply that the multiple signals are necessarily overlapping in time; 
users only need to feel that they are accessing the channel all the time (for instance, 
user 1 may be transmitting and receiving short bursts of 100 ms every 1 ms, but the 
900 ms gap is imperceptible and of no consequence, as long as all the information 
he needs to transmit is accommodated within his periodic 100 ms bursts—this is 
the principle of TDMA, explained later on).

MA is distinct from multiplexing, though the two concepts are very similar. 
MA is reserved for dynamic systems of channel sharing in which users occupy part 
of the channel only if they need to transmit; multiplexing refers to a fixed allocation 
of channel resources such as FM radio broadcasting, and the splitting of a given 
bandwidth into two segments for uplink and downlink communications (FDD—
frequency division duplexing).

The MA techniques can be divided into two classes:

 ◾ Fixed assignment—a central controller (base station) assigns channels to 
users, who request channels through a common reservation protocol when 
they need to establish a connection.

 ◾ Random access—users in the system transmit whenever they need to, based 
on a common protocol. If two or more data packets are sent at the same time, 
collisions occur and the lost packets must be retransmitted.

6.1.2 Fixed Assignment Multiple Access Techniques
Three of the most popular forms of fixed assignment MA are

 ◾ TDMA—In TDMA, users must be time-synchronized, and are assigned 
time slots within a frame in which they can transmit. The entire frequency 
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bandwidth is used by each user, but there is no interference because time slots 
are nonoverlapping.

 ◾ FDMA—In FDMA, users transmit all the time, but each one is allowed only 
one segment of the total system bandwidth. Like TDMA, there is no interfer-
ence from other users in FDMA, as long as the bandwidth segments of each 
user are separated by a frequency guard wide enough to prevent adjacent-
band interference. A filter at the receiver is employed to use solely the data 
contained in the wanted frequency segment.

 ◾ CDMA—In CDMA, users transmit over all the time over the same fre-
quency, being separated on the basis of their different symbol-pulse wave-
forms (or codes). CDMA requires that the bandwidth occupied by each user 
be several times that of the data bandwidth; hence CDMA is possible only 
with SS modulation.

Both TDMA and FDMA signals can be made noninterfering or orthogonal. In prac-
tice, this requires the insertion of guard intervals and guard bands between users, 
respectively, to account for nonidealities such as synchronization error and delay 
spread caused by the channel. CDMA signals can be made orthogonal only when 
the users are perfectly synchronized in time, and the channel has no delay spread.

For the uplink, the first requirement is impossible to meet; the users are not syn-
chronized with each other, but even if they were, since they have different channels, 
it would be impossible to have the received signals orthogonal to each other. Also, in 
wireless channels, the delay spread is usually significant—especially in W-CDMA, 
characterized by frequency-selective fading and different delay spreads. Therefore, 
CDMA is necessarily a nonorthogonal form of MA and suffers from MAI.

There are, however, several advantages to the usage of CDMA, namely

 ◾ Capacity (measured as bits/second/Hz/user). In fact, since all of the band-
width is used for all the time, the systems’ potential is effectively exploited 
[Viterbi 1995].

 ◾ Robustness to frequency-selective fading (multipath diversity helps reduce 
the channel fading effect—this is also common to TDMA).

 ◾ Asynchronous nature of the system (contrary to TDMA).
 ◾ Universal frequency reuse (eliminating the need for cell planning in FDMA).
 ◾ Linear performance degradation with loading. There is no hard limit on the 

number of users allowed—more users can be admitted as long as the quality 
of service (QoS) for the existing users remains adequate.

 ◾ No periodic on–off switching (huge problem in hospitals for TDMA equip-
ment, due to their regular on–off switching), and less peak power require-
ment on the amplifiers.

Comparing the three fixed assignment MAs, FDMA is clearly the least attrac-
tive scheme. Between CDMA and TDMA, it could seem that CDMA would be the 
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obvious choice, although practical implementations of CDMA and TDMA exhibit 
little advantages over each other. The European 3G standard, universal mobile tele-
communication system (UMTS), has both a CDMA and TDMA standard, whereas 
the American standard, CDMA2000, has just CDMA.

6.1.3 Spread-Spectrum Communications
SS signals are characterized for having a bandwidth, W, much greater than the 
information rate (in bps) [Proakis 2001]. Therefore, if the information bit rate is R, 
the bandwidth expansion factor, usually called processing gain or spreading factor 
(SF—the main designation adopted in UMTS and this chapter), is defined as

 
SF

W
R= >> 1

 
(6.1)

The concept of SS was introduced by the United States for military communica-
tions after World War II, primarily because of its antijamming capabilities. At the 
time, an enemy would attempt to jam your communications by sweeping a powerful 
narrowband signal (just a tone, for instance) over all likely frequencies. However, with 
SS, a matched-filter (MF) detector is just another SS modulator (the narrowband 
jamming signal appears at the MF output as a low-level wideband signal, but the 
wideband desired signal appears as a high-power narrowband signal). After lowpass 
filtering, the desired signal is recovered, while the jamming signal is severely attenu-
ated by the filtering. The power level of the jamming signal is reduced by the SF of the 
system. The greater the value of SF, the more robust the system is against narrowband 
jamming, and frequency-selective fading. A very good introduction to SS is given in 
[Proakis and Salehi 2002]. SS communications can be employed using different types 
of techniques; the most common techniques are portrayed in Figure 6.1:

 ◾ DS—The information symbols are encoded by a high-rate channel code (usu-
ally between 1/2 and 1/3), after which they are spreaded (with a low-rate 
code, 1/SF, normally using orthogonal spreading sequences in order to distin-
guish between users/physical channels), and then modulated in combination 
with a pseudorandom sequence (commonly referred to as scrambling, with 

DS-CDMA Rate Rb Coding
(rate Rc)

Coding-spreading
(rate Rcs)

Spreading
(rate 1/SF)

Modulation and
scrambling

Modulation and
scrambling

Rate
Rb/Rc

Rate
SF·Rb/Rc

Rate
Rb/RcsRate RbCS-CDMA

Figure 6.1 DS-CDMA and CS-CDMA schemes.
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unitary rate and generally used to distinguish between transmitters). In the 
receiver, the received signal is descrambled, demodulated, despreaded, and, 
finally, decoded.

 ◾ Code spread (CS)—An alternative to DS is to perform all the spreading of 
the signal using a low-rate code (equivalent to Rc/SF, Rc < 1) and then add-
ing the scrambling code to the signal. In [Viterbi 1995], it is shown that this 
technique can achieve a greater performance level than the DS technique (if 
optimal decoding is employed by the receiver).

 ◾ FH—In this case, the available bandwidth is divided into several contiguous 
subband frequency slots. A pseudorandom sequence is used for selecting the 
frequency slot for transmission in each signaling interval.

 ◾ TH—In this method, a time interval is divided into several time slots and 
the coded information symbols are transmitted in a time slot selected accord-
ing to a pseudorandom sequence. The coded symbols are transmitted in the 
selected time slot as blocks of one or more code words.

 ◾ Hybrid techniques—DS, CS, FH, and TH can be combined to obtain other 
types of SS signals. For example, a system can use a combination of DS and 
FH, where the transmitted signal is associated with two code sequences. One 
of the sequences is multiplied by the signal to be transmitted while the second 
is used to select the frequency slot for transmission in each signaling interval.

6.1.4 Narrowband versus Wideband CDMA
In CDMA communications, several users share the same channel bandwidth for 
transmitting information simultaneously. Assuming that all the users employ the 
same channel encoder, the transmitted signals use the same frequency band and may 
be distinguished from one another by using a different pseudorandom (DS-CDMA)/
coded pseudorandom (CS-CDMA) sequence for each transmitted signal.

CDMA systems can be considered narrowband or wideband depending on the 
mobile propagation conditions. If the transmitted signal bandwidth is lower than 
the coherence bandwidth of the channel, there will be only one macroscopic dis-
tinguishable received replica of the signal. In this case, the system is narrowband 
CDMA. If the transmitted signal bandwidth is greater than the coherence band-
width of the channel, then it will be possible to resolve several multipath compo-
nents resulting in a W-CDMA system.

Formally, the transmitted CDMA signal xT(t) can be described as

 x t Re x tT T, ( ) { ( )}.modulated =  (6.2)

where
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is the baseband representation of the signal transmitted by the user k. { },′bk i  is a 
sequence of complex symbols, where each consecutive set of SF symbols is the 
repetition of the same modulated symbol (SF is given by SF = Tb/Tc). Tb = 1/Rb 
is the bit period and Tc is the chip period. The original sequence of unrepeated 
symbols is {bk,i}, and the function p(t) represents a pulse having a limited band-
width. {ck,i} is the sequence of values of the combined spreading, scrambling, and 
modulation code (usually periodic) for user k, being composed of two compo-
nent sequences cIi and cQi (with amplitudes varying between –1 and +1) for the 
in-phase and the in-quadrature components, respectively. To keep the absolute 
value of the complex code equal to 1, the sequence is constructed as (QPSK is 
considered)

 
c c jci I Qi i

= +2
2 [ ].

 
(6.4)

There is a significant difference between narrowband and wideband CDMA, 
namely, in the channel effect and the appearance of MPI—multipath interference. 
A brief discussion on both concepts is given below.

6.1.5 Narrowband CDMA
In a narrowband CDMA system, admitting that there are K users transmitting 
simultaneously, the decision variable for symbol {b0,i} of user 0 obtained in the 
receiver (Figure 6.2) is
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Figure 6.2 DS-CDMA receiver scheme.
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where αu i,
*  is the complex conjugate of the channel coefficient of user k. To simplify 

the notation, it was considered that there were no delays between the received sig-
nals of all the users. Since c ci i⋅ =* ,1  the expression simplifies to
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In this expression, the second term represents the interference component,Ii, 
from the other users
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Admitting that the channel is approximately constant during SF chip period 
results in
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Therefore, to minimize the interference in the received signal, the cross-correla-
tion of the spreading sequences, given by
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should have an absolute value as low as possible. Ideally, this value should be equal 
to zero so that no interference appears in the decision variable but that is only pos-
sible when using orthogonal spreading sequences and the users’ received signals are 
all synchronized (like the downlink connection of a mobile cellular radio commu-
nication system). In the uplink, since there is no synchronization and each user has 
a different channel, usually pseudo-noise (PN) sequences are used, which exhibit 
small cross-correlation values between misaligned sequences. Figure 6.2 represents 
the DS-CDMA receiver scheme.

6.1.6 Wideband CDMA
In W-CDMA systems, replicas arrive at the receiver during a certain (continuous) 
period of time, due to temporal dispersion. In order to facilitate the handling of 
the channel, the tapped delay line (TDL) channel model was created, where the 
replicas are modeled as being discrete (intervals of Tc), being dubbed as multipaths. 
The multipath replicas carry the information about the transmitted signal and suf-
fer fading that is uncorrelated between them. So, when a replica is severely attenu-
ated due to the fading, there is the possibility that the others are received in good 
conditions and can be used to recover the transmitted signal. Owing to the good 
autocorrelation properties of the spreading codes usually used in CDMA systems, 
it is possible to distinguish and extract the strongest replicas present in the received 
signal.

After the transmission, the signal passes through the channel. The channel 
impulse response hc(τ,t) can be described using the previously referred TDL model, 
where the multipaths are considered discrete and their number is L(t):
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This model represents the response of the channel at instant t to an impulse 
applied at t − τ. This formulation does not correspond to the usual impulse response 
formulation for time-variant linear systems h(t,t0′) that represents the response at 
time t to an impulse applied at time t0. These two formulations are related through 
hc(τ,t) = h(t,t0) with τ = t − t0. Admitting a channel with a fixed number of discrete 
multipath components, L, and respective delays τl, results in the following channel 
impulse response:
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The signal after the channel is given by

 x t h t x tc Tchannel ( ) ( , ) ( ).= ⊗τ  (6.12)
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The symbol ⊗ in the last expression represents a superposition integral for time-
variant linear systems:
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In the case of time-invariant systems, it is reduced to a convolution integral 
(with the symbol *). At the receiver, the signal yR(t) is expressed by
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where I(t) represents the overall MAI, while n(t) is Gaussian noise.
The replicas at the receiver can be combined using a RAKE receiver, as shown in 

Figure 6.3, thus obtaining diversity. According to the RAKE scheme, the received 
signal is first filtered using a matched filter. Then, each of the L branches of the 
receiver, also called “fingers,” is used to detect separately one of the L strongest 
replicas. The L estimates of the signal obtained by the “fingers” are then added to 
compute the final estimate of the transmitted signal. MRC is assumed to be used, 
which means that each of the L estimates is weighted using the complex conjugate 
of the corresponding channel coefficient α i t*( ). This technique results in the highest 
mitigation of fading effects.

For correct operation, the RAKE receiver must be able to identify the strongest 
multipath components present in the received signal and also estimate their relative 
delays, amplitudes, and phases. This can be accomplished by transmitting periodic 
preambles or pilot codes.

r(t) Matched
filter

α1*(t)

Correlator
Delay

Delay
Correlator
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c *(t–τ1)

τmax–τ1

τmax–τ2

Delay
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c *(t–τ2)

c *(t–τL)

α2*(t)
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Figure 6.3 RAKE receiver scheme.
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Usually, only one sample per chip is used after the filter, in order to reduce com-
plexity and simulation time. These samples are obtained at the optimum sampling 
instants according to the Nyquist pulse-shaping criterion. If the multipath com-
ponents (taps) are not aligned with the sampling time (real-life scenario), then the 
work done in [Silva et al. 2003] should be taken into account, in order to continue 
working with only one sample per chip.

In each “finger” of the RAKE, the samples suffer an advance τl identical to 
those specified by an environment model and are then multiplied by the samples 
of the complex conjugate of the correspondent channel coefficient αl so that the 
original signal phase is recovered. For theoretical, perfect synchronization is admit-
ted so the delay values, τl, are directly used in the RAKE. After the multiplication 
by the conjugates of the channel coefficients, the signal (with components in-phase 
and in quadrature since it can be QPSK or M-QAM modulated) enters the cor-
relator where it is multiplied by the complex conjugate of the spreading code c(t) 
synchronized with the respective replica. The result is then integrated for each bit 
period, thus achieving the despreading of the signal. The resulting symbols are then 
demodulated to obtain “soft” estimates of the transmitted symbols. These symbols’ 
estimates are then summed with the respective estimates of the other “fingers.” 
Note that this addition is weighted due to the previous multiplication of the esti-
mates by the respective complex conjugate of the channel coefficients.

In the RAKE receiver, the signal is sampled and the resulting sequence is mul-
tiplied in each “finger” by the samples of the complex conjugate of the respective 
channel coefficient. Then, it is multiplied by the complex conjugate of the spread-
ing code { }*ci  with a delay equal to the delay of the replica being extracted by the 
“finger,” and each set of SF symbols is integrated, thus resulting in a despreaded 
sequence. The estimates of symbol sequences obtained in each “finger” are all time 
aligned and summed, thus obtaining a combined estimate.

The decision variable associated with each despreaded QPSK symbol i obtained 
in “finger” l is given by
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where |ci| = 1. α l i SF m, ,⋅ +

           
 Il i SF m, ,⋅ +  and nl i SF m, ⋅ +  represent the samples of the 

channel coefficients, MAI overall and noise, respectively, at time instants 
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t i SF m Tc l= ⋅ + ⋅ −( ) .τ  Zl i SF m, ⋅ +  corresponds to the samples of the interference 
created by the replicas of the transmitted signal
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Note that after the receiver filter and before the sampling, the noise power is
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where Gw( f ) is the spectral density function, which for additive white Gaussian 
noise (AWGN) is Gw = N0/2. HR( f ) is the frequency response of the receiver filter. 
So, in the case of AWGN and square-root raised cosine receiver filter (which outputs 
the same noise power of an ideal lowpass filter with bandwidth 1/(2Tc)) results in
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After summing the decision variables of each finger at the output of the RAKE, 
we get
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In this expression, the first term represents the transmitted symbol that must 
be decoded at the receiver. The second term represents the interference from other 
users and multipath components that degrade the decoding of the transmitted 
symbols and the third term is noise.

This type of signal combination is denominated by “MRC” and results in the 
maximization of the received signal-to-noise ratio (SNR). In fact, for the general 
case of a received signal y obtained by the combination of L replicas of the transmit-
ted signal suffering fading αk(t) that are uncorrelated between them, we have
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Gk(t) are complex weights that are multiplied by each received signal replica at 
the receiver. The received SNR is (assuming a simple binary phase shift keying—
BPSK modulation)
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with Eb denoting the average energy per transmitted bit. The weights Gk(t) that 
maximize S/N can be obtained through the Cauchy–Schwarz inequality:
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in which the equality is verified when ak = c ⋅ bk, for any c.
Applying this theorem to the SNR expression results in
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for which the equality Gk = αk results in an SNR that is equal to the sum of the 
SNR of the individual “fingers,” that is
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The average SNR is
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where E{|αk (t)|2} is the average value of the channel coefficient |αk (t)|2.
When using QPSK modulation, for example, for the downlink transmission of 

the UMTS, we have:

 T T Rc b= ⋅ ⋅2  (6.26)

(the 2 factor is due to the modulation being QPSK; log2 M for M-QAM modulations),
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(Ec is the average energy by complex chip),
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or, equivalently,
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In these expressions, Ec and Tc correspond to the average complex chip energy 
and chip period, respectively. R is the ratio between the total number of informa-
tion bits over the total number of transmitted chips, thus including the code rate 
and the spreading factor.

In the uplink connection of the UMTS, since each bit is transmitted simultane-
ously in the “I” and “Q” branches, we have:

 T T Rc b= ⋅ ,  (6.30)
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Note that after demodulation, the expression for the SNR is the same of a regu-
lar polar transmission, that is, the SNR doubles
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In the case of the UMTS HSDPA connection using 16-QAM modulation, we 
obtain:

 T T Rc b= ⋅ ⋅4 ,  (6.35)
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In the case of a RAKE receiver, the expression to compute the necessary noise 
power to achieve certain average bit energy to noise spectral density value is different:
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For the downlink connection, the noise power becomes
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Care must be taken when speaking of either receive or transmit Eb/N0, since 
both values are different. The receive Eb/N0 is related to the transmit Eb/N0 by a 
diversity order factor (DOF), which essentially accounts for all types of diversity in 
the transmission, assuming that there is no free-space power loss and normalizing 
the most powerful tap to one (wideband system).

Defining txdiv as the transmit diversity (number of transmit antennas), rxdiv as 
the receive diversity (number of receive antennas), and mpdiv as the channel diver-
sity, that is, the diversity provided by the channel multipaths, given by
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(6.41)

the DOF is heuristically given by

 DOF tx rx mp= ⋅ ⋅div div div .  (6.42)

Some DOF values are presented in Table 6.1. The multipath diversity of the 
main UMTS channels is presented in Table 6.1a. The transmit diversity may be 
accounted for in terms of number of antennas and multipath components, weighed 
by their transmit power levels. For illustration purposes, the transmit diversity of 
three transmit diversity arrangements is presented in Table 6.1b.

For the receive diversity, it suffices to consider the total number of receive anten-
nas for most number of cases. As an example, for the SIMO (single input, multiple 
output) case of Figure 6.4, where a two-tap channel is assumed, a DOF equal to 4 
would be obtained:

Table 6.1 Multipath Diversity for the Main UMTS Channels (a) and 
Different Transmit Diversity Schemes (b)

(a)

Channel

Pedestrain A Pedestrain B Indoor A Vehicular A

1.05 2.46 1.1 2.02

(b)

Transmit Diversity

1 antenna 2 antennas equal 
power

2 antennas 3 dB 
difference

1 2 1.5
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 DOF tx rx mp= ⋅ ⋅ = ⋅ ⋅ =div div div 1 2 2 4.  (6.43)

The relationship between the transmit and receive Eb/N0 is simply
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Differently from most of the other chapters, in this chapter, the received Eb/N0 
is used in all simulation results, unless stated otherwise. MIMO simulation results 
will reveal comparable system performance for similar values of Eb/N0, unaffected 
by the order of the receive diversity. Another advantage of using the receive Eb/N0 
value is the possibility of extrapolating coding results from the performance curves, 
since the decoder’s performance depends on the received Eb/N0.

6.2  MMSE System Matrices for a MIMO DS-CDMA 
System

The design of the system matrices for the MF and the ZF/MMSE schemes are pre-
sented in this section (note that the MF is also discussed since it is an integral part 
of both ZF and MMSE schemes). A MIMO arrangement is assumed, in which the 
data streams for each user are either split into different streams for each transmit 
antenna to increase the bit rate/capacity, or replicated (with interleaving) for each 
antenna, to increase the transmit diversity, reducing the necessary transmit power 
for nominal operations.

The transmitted signal associated with the kth spreading code and the txth 
transmit antenna is given by
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Reflector

Transmitter Receiver

Figure 6.4 SIMO case with two receivers and two equal-channel taps.
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where N is the number of data symbols to be transmitted by each antenna, 
Atx

k
kE( ) =  (admitting fT ( ) ,0 1=  E k| |b( ) 2 1  =  and E k| |c ( ) 2 1  = ), with Ek 

denoting the symbol energy, SF is the spreading factor, K is the total number of 
spreading codes per antenna/physical channels (or users, if each user uses only one 
physical channel), and RC = 1/TC is the chip rate. The nth chip associated with 
the kth user and the txth antenna is βn tx

k
n SF tx
k

n
kb c,

( )
/ ,

( ) ( ) .=  
 The data symbols to be 

transmitted at the txth transmit antenna are bn tx
k
,

( ) , n = 1,2,. . ., N, and the combined 
spreading and scrambling signature is cn

k( ), n = 1,2,. . ., N ⋅ SF. fT(t) is the adopted 
pulse shape filter (a square-root raised cosine filtering is assumed).

At the receiver, we have NRX antennas. The signal for any given receive antenna 
rx, prior to the reception filter, is given by
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with n(t) denoting the channel noise, assumed Gaussian, with zero mean and 
the variance of the real and imaginary components denoted by σ 2. The channel 
impulse response between the transmit antenna tx and the receive antenna rx is
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with L denoting the total number of the channel’s multipath components, αn tx rx l
k
, , ,

( )  
denoting the complex attenuation (fading) factor for the lth path, and τ l

k( ) is the 
propagation delay associated with the lth path (for the sake of simplicity, it is 
assumed that this delay is constant; the generalization to other cases is straightfor-
ward). The received signal associated with each antenna is submitted to a reception 
filter, with impulse response fR(t), which is assumed to be matched to fT(t) (i.e., 
f t f tR T( ) ( )*= − ), leading to the signal

 
r t A b c hrx tx

k

k

K

tx

N

n K tx
k

n
k

n rx tx l
k

Tx

( ) ( )
/ ,

( ) ( )
, , ,

( )=
==

 ∑∑
11

pp t nTC l
k

n

N SF

l

L

( ),( )− −
=

⋅

=
∑∑ τ

11  
(6.48)

where p(t) = fT(t) * fR(t) (for the Nyquist pulses considered in this work, 
p t f t f t f t f tT R T T( ) ( ) ( ) ( ) ( )*= ∗ = ∗ −  is such that p(nTC) = 0 for integer n ≠ 0).

This signal is sampled at the chip rate and the corresponding samples can be 
written as
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with
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It should be noted that n ∈ �, but in practical terms, it is enough to con-
sider just a few components in the vicinity of τ τl

k k( ) ( ).− 0  The above formulas are 
valid for both the downlink and uplink transmissions. In the case of the uplink 
transmission, special care must be taken, namely, in the introduction of different 
delays per user (that can be accounted for in the symbols from different transmit 
antennas).

6.2.1 Main System Matrices
Using matrix algebra, the received vector is as follows:

 r SCAb nv = +  (6.51)

where s, C, and A are the spreading, channel, and amplitude matrices, respectively, 
built in such a way that the expression in Equation 6.49 is reproduced. The receive 
vector rv encompasses the messages for all receive antennas, such that
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Note that the channel matrix encompasses not only the channel coefficients 
but also the filter’s coefficients. The spreading matrix accounts for the spreading 
and scrambling codes, as well as for the delays between users and channel replicas. 
The channel matrix accounts for the fading coefficients for all links between each 
transmit and receive antenna. For simplicity, the spreading matrix for the downlink 
will be described, and the assumption that the spreading and scrambling codes are 
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the same for all the transmit antennas will be made, having a direct effect on both 
the spreading and the channel matrix. The other structures remain the same, for 
both the downlink and uplink transmissions.

6.2.1.1  Downlink with Equal Scrambling for All Transmit 
Antennas—S and C Matrices

The downlink spreading matrix s has dimensions (SF ⋅ N ⋅ NRX + ψMAX ⋅ NRX) × 
(K ⋅ L ⋅ N ⋅ NRX) (ψmax is the maximum delay of the channel’s impulse response, 
normalized to the number of chips, ψmax max ,=  τ /Tc  where Tc is the chip 
period), and it is composed of submatrices sRX in its diagonal for each receive 
antenna s s s= = =diag( ).RX 1 RX NRX

, ,…  Each of these submatrices has dimensions 
(SF ⋅ N + ψmax) × (K ⋅ L ⋅ N), and they are further composed of smaller matrices 
sn

L , one for each bit position, with size (sF + ψMAX) × (K ⋅ L). The sRX matrix struc-
ture is made of s s sRX =[ ],1 ,Nε ε, ,…  with
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L  matrices are made of K ⋅ L columns s s sn

L
k l n k K L n=[ ]col( =1, =1), col( ,l= ),, , .… =  

Each of these columns is composed of

 
s ccol( ), 1 delay( ) delay=kl n l n SF lk

MAX
0 0( ) ( ( ( ))), ( ) ,× × × − 1 1 ψ 

T
,

where cn(k) is the combined spreading and scrambling for the bit n of user k.
These sL matrices are either all alike, if no long scrambling code is used, or dif-

ferent, if the scrambling sequence is longer than the SF. The sL matrices represent 
the combined spreading and scrambling sequences, conjugated with the channel 
delays. The shifted spreading vectors for the multipath components are all equal to 
the original sequence of the specific user
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Note that, to correctly model the multipath interference between symbols, there 
is an overlap between the sL matrices, of ψmax. As opposed to the SISO multipath 
case, the matrix is not trimmed for the last multipath components.
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The channel matrix C is a (K ⋅ L ⋅ N ⋅ NRX) × (K ⋅ NTX ⋅ N) matrix, and it is 
composed of NRX submatrices, each one for a receive antenna
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Each CRX matrix is composed of N matrices CKT alongside its diagonals.
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Each Cn RX
KT
,  matrix is (K ⋅ L) × (K ⋅ NTX) and represents the fading coefficients 

for the current symbol of each path, user, transmit antenna, and receive antenna. 
The matrix structure is made up of further smaller matrices alongside the diagonal 
of Cn RX
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, , C C Cn RX

KT
n RX K
T

n RX K K
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, , , , ,, , ,= ( )= =diag 1…  with CT of dimensions L × NTX, 
representing the combination of fading coefficients and filters’ coefficients for the 
user’s multipath and txth antenna component.

By defining
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we have
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The A matrix is a diagonal of dimension (K ⋅ NTX ⋅ N) and represents the ampli-
tude of each user per transmission antenna and symbol, A A A= … …diag ( 111 11, , , ,, , , ,NTX

 
A AN K N K NTX TX, , , ,, , .1 … )

 



270 ◾ MIMO Processing for 4G and Beyond

6.2.1.2  Different Scrambling for All Transmit Antennas and 
Uplink Modifications—S and C Matrices

The previous s and C matrices assume that all antennas use the same spreading and 
scrambling code. However, when not operating under full-loading conditions, best 
results are obtained when different scrambling sequences are used at each transmit 
antenna, in order to increase diversity.

Therefore, the main changes to the matrices would be the sn
L  submatrix for the 

s matrix
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and the CKT submatrix for the C matrix
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For the uplink transmission, the s matrix should also portray the delays between 
different users (in this case, different transmit antennas). The sn

L should thus be 
adjusted, with the columns being shifted either upwards or downwards, depending 
on the offsets between users. Note that the size (number of lines) of the sn

L matrix 
can be increased, to account for the delays between users. Although the final s 
matrix can have a bigger number of lines than for the downlink case, its overall 
structure remains the same.

6.2.1.3 Design of the Remaining Structures

The resulting matrix from the sCA operation (henceforth known as sCA matrix) 
is depicted in Figure 6.5. It is an NRX ⋅ (N ⋅ SF + ψmax) × NTX ⋅ K ⋅ N matrix, and it 
is the reference matrix for the decoding algorithms. Note that the SCA matrix is 
sparse in nature.

The resulting sCA matrix will have the same size as before; only the number of 
operations increases while constructing the sCA matrix (the sC multiplication has 
an increase in complexity equal to the number of transmit antennas), since values 
from different antennas must be treated differently.

Vector b represents the information symbols. It has length (K ⋅ NTX ⋅ N), and it 
has the following structure:

 
b b b b b b= 1,1,1 ,1,1 1, ,1 ,1, , , , , , , , ., , ,… … … …N K N K N K N

T

TX TX TX
   

(6.53)

Note that the bits of each transmit antenna are grouped together in the first 
level, and the bits of other interferer in the second level. This is to guarantee that 
the resulting matrix to be inverted has all its nonzero values as close to the diagonal 
as possible. Also note that there is usually a higher correlation between bits from 
different antennas using the same spreading code than between bits with different 
spreading codes.

SF+ψmax

NSF+ψmax

NSF+ψmax

SF

NtxKN

NtxK

rx antenna 1

rx antenna Nrx

Nrx(NSF+ψmax)

Figure 6.5 Layout of the SCA matrix.
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Finally, the n vector is a (N ⋅ SF ⋅ NRX + NRX ⋅ ψmax) vector with noise compo-
nents to be added to the received vector rv, which is partitioned by NRX antennas

 
r r r r r r rv SF N N SF N NRX

= 1,1,1 1, ,1 ,1,1 ,1 ,1,, , , , , , , , , ,,… … … … …+ψmax NN , ,SF N
T

RX+ ψmax  
(6.54)

(the delay ψmax is only used for the final bit, though its effects are present through-
out rv). Figure 6.6 illustrates the main blocks from which the receiver is compiled.

If transmit diversity is applied, the b vector should be arranged accordingly, 
with replicas (after multiplexing) for each antenna.

6.2.2 Receiver Schemes Using the System Matrices
Equalization-based receivers such as the MMSE and ZF take into account all 
effects that the symbols are subject to in the transmission chain, namely, the MAI, 
ISI, and the channel effect. Using as basis the (unnormalized) matched filter output 
(obtained by applying the Hermitian to the sCA matrix and multiplying by the 
received vector)

 y SCA rMF
H

v= ( )  (6.55)

and defining r as

 R A C S S C A= ⋅ ⋅ ⋅ ⋅ ⋅H H
 (6.56)

the equalization matrix (EM) for the MF and ZF can be written as

 E RM MFZF, = ,  (6.57)

where the normalized MF estimate is given by

Amplitude estimator

MIMO
receiver

Channel estimator

Compile matrices

Receiver algorithm

Noise estimator

Spreading codes

Demultiplex and
Demodulate

Bit decision

Figure 6.6 MIMO receiver for W-CDMA schemes.
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 y E yNMF M MFZF MF= ( )−diag , ,1
 (6.58)

and the ZF estimate as

 
y E yZF MFM MFZF

= −
,

,1

 (6.59)

which is simply applying the inverse of all effects the message was subject to. Once 
again, to prevent an ill-conditioned matrix for inversion (the EM might become ill-con-
ditioned when the system is fully loaded [Divsalar et al. 1998], depending on the cross-
correlations between the users’ signature sequences), a small value (e.g., 1e−6) should 
be added to all elements in the main diagonal of the EM. In order to avoid round-off 
problems, the EM should be rounded at a value above the minimum machine precision.

The MMSE estimate aims to minimize E( ).| |b b− � 2  From [Kay 1993], the EM 
includes the estimated noise power σ 2, and is represented by

 E R IM MMSE, = + σ 2 .  (6.60)

The MMSE estimate is thus

 
y b E yMMSE MFM MMSE

= =�
,

.−1

 
(6.61)

Both the ZF- and MMSE-based receivers are seldom used due to their perceived 
complexity, especially for wideband MIMO systems (with frequency-selective fading 
channels). Owing to the multipath-causing ISI, the whole information block is usu-
ally decoded at once (although there are some decoding variants in which the block is 
divided into smaller blocks [Shoumin and Zhi 2004; Silva et al. 2005], requiring some 
overlapping between symbols, in order to provide the best results), requiring the use 
of a significant amount of memory and computing power for the algebraic operations.

However, if the sparseness of the matrices is taken into account, only a fraction 
of the memory and computing power is required. As can be inferred from the pre-
viously described matrices, all system matrices are sparse in nature and consist of 
submatrices that are sparse themselves.

The most troublesome matrix to deal with is the EM, due to its inversion 
(more precisely, the resolution of the equation system leading to the final esti-
mate). Fortunately, the EM is also sparse, being possible to handle it with sim-
plicity. For instance, considering a maximum-loading simulation case using 
16-QAM modulation, SF = 16 (i.e., 16 physical channels), L = 2 multipaths (with 
the second multipath with a 1 chip delay, resembling the Indoor A or Pedestrian 
A channel), a MIMO of 2-transmit/2-receive antenna system, and a block size of 
1024 bits (N = 256 symbols, with 4 bits per symbol) per each physical channel 
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of each transmit antenna, the matrix’s diagonal width (MDW), which in this 
case is ( ) / 96,K L NTX⋅ ⋅ ⋅ 3 2 =  is roughly 1.2% of the matrix’s width (MW) of 
(K = 16) ⋅ (NTX = 2) ⋅ (N = 256) = 8192, MDW = 1.2% MW.

Another aspect of the EM is that it is Hermitian positive definite, and thus it can 
be decomposed using the Cholesky decomposition. Since it is a banded matrix (with 
all elements concentrated on its diagonal), there is no Cholesky fill-in since the band 
is dense (cases with small chip delays (Figure 6.7)), and thus it presents itself as if the 
sparse reverse Cuthill–McKee ordering algorithm [Liu et al. 1981] had been applied 
to it (a good preordering for lower upper factorization of matrices (LU) or Cholesky 
factorization of matrices that come from long, skinny problems). The next section 
introduces a detailed description of the EM, and enhanced algorithms to solve it.

6.3  Enhanced Algorithms for Solving the Equalization 
Matrix

In this section, the complexity of the solution to the LMMSE and the ZF receiver’s 
equations is studied. It will be shown that the equation can be solved with opti-
mized Gauss, Cholesky, or block-Fourier algorithms, and thus saved some opera-
tions when using the normal Gauss method, which has a complexity of d3, d being 
the number of lines/columns of the matrix to be inverted. Some of these solutions 
are very computationally efficient and thus allow for the use of the LMMSE in fully 
loaded MIMO systems.

6.3.1 Matrix Reordering
Matrix reordering is used in order to simplify solving the MMSE equation. While 
in the original version, the sCA matrix is devised in such a way as to make the 
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Figure 6.7 Equalization matrix for a two-tap channel, K = 16, NTX = 2 (a), and 
diagonal close-up for the same case (b).
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received vector partitioned per receive antenna in order to make the system matri-
ces more perceivable, the reordering of the structure of the sCA matrix is done 
solely to simplify the processing.

Replacing T = order(sCA); n = σ 2I; d y� = MMSE  and e r= order( )V  in the 
MMSE equation, a simpler version is obtained:

 d T T N T e� = + −( )H H1 ,  (6.62)

where order(x) represents a line reordering of vector or matrix x, where the lines 
of each antenna are intercalated with the purpose of making a more compact and 
almost block-circulant matrix
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(6.63)

Figure 6.8 shows the reordering result for a two-antenna matrix.
For high SNRs, Equation 6.62 becomes the ZF detector equation:

 d T T T e� = −( )H H1 . (6.64)

Since usually τMAX ≤ SF, the THT product results in a square matrix with the 
structure presented in Figure 6.9 with a = 2 KNTX and n = KNTXN. It can be shown 
that TH T is a positive-definite Hermitian matrix.

Earlier works [Machauer et al. 2001; Vollmer et al. 2001] dealt only with the 
ZF detector equation for constant-channel situations. Here, the validity of those 
algorithms for unsteady channels situations will be evaluated. New algorithms for 
unsteady channel situations will be proposed and some optimizations will also be 
presented in pseudo-code form. Finally, all the algorithms will be adapted to the 
LMMSE detector.

6.3.2 Standard Algorithms for the Exact Solution
Equation 6.64 can be written as an Ax = b system with A being a positive-definite 
Hermitian matrix, where A = TH T, x = d�, and b = THe. It can be solved for x using 
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the Gauss elimination or the Cholesky algorithm. Since the Ax = b system needs to 
be solved for a particular b vector only, there is no need to invert the A matrix. The 
Gauss elimination can be used to transform the Ax = b system in a ux = b′ where 
u is an upper triangular matrix and then x can be obtained by direct substitution. 
The Cholesky method is a little bit more complex: first A is factorized in A = uHu 
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Figure 6.8 Line reordering sample of SCA matrix for NTX = 2.
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Figure 6.9 Typical correlation matrix of the EM.
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by the Cholesky algorithm, then uHux = b can be decomposed in uHc = b and 
ux = c; these two systems can be solved by direct substitution. The Cholesky algo-
rithm can save almost half of the floating point operations needed in the Gauss 
elimination because it takes advantage of the symmetry of the A matrix, but the 
Gauss elimination is less complex and requires no square roots to be calculated.

Table 6.2 shows the number of floating point operations required by both meth-
ods. The additions are separated into real and complex (R+ and C+, respectively). 
The extra operations wasted by the Gauss algorithm are partially recovered in the 
substitution phase, where the Cholesky method requires the solution of two trian-
gular systems and hence twice the operations of the Gauss algorithm. The number 
of operations required in this phase is also included in Table 6.2. The “Order” col-
umn presents the highest power of the total number of operations considering each 
multiplication–addition pair as a single operation.

6.3.2.1 Optimizations

A generic positive-definite Hermitian matrix that is nonzero only in equally over-
lapped squares centered along the diagonal is represented in Figure 6.10.

Table 6.2 Number of Floating Operations Needed to Solve the Ax = b 
System with Standard Methods

÷ × C+ R+ √ Subs÷
Subs
×/C+ Order

Gauss n n2

2
− n n3

3
− n n3

3
− 0 0 n n n2

2
− n3

3

Cholesky n n2

2
− n n3

6
− n n n3 23 2

6
− + n n2

2
+ n 2n n2 – n n3

6

a b

1

2

3

d-1

d

a–b

n

Figure 6.10 Generalized EM.
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The number of overlapped squares is d n a b= − +( ) ./ 1  The Gauss algorithm 
can be optimized for this type of matrix by eliminating the operations involving 
zero elements. The idea is presented in Figure 6.11.

First, the standard Gauss algorithm is applied to the r1 square submatrix. There 
is no need to change the r4 rectangle. The next step is the elimination of the r2 
block using the last a–b pivots of r1 (the pivots are the diagonal elements after the 
elimination phase). During this phase, r3 is updated. Finally, the standard algo-
rithm is applied to r3. This process is repeated until all blocks are updated. During 
this process, as each line is updated, the correspondent element of vector b is simul-
taneously updated. Note that the matrix diagonal is fully contained in the diagonal 
squares. Table 6.3 presents the number of floating point operations required in each 
of the three described phases.

n

b

a–b
d–1

d

a r1

r4

r3r2

1

2

3

Figure 6.11 Optimized Gauss algorithm for the EM.

Table 6.3 Number of Floating Point Operations 
Needed for the Optimized Gauss Algorithm

Phase ÷ ×/C+

r1 a a2

2
− a a3

3
−

r2 b(a–b) 3 6
16

3 2a a−

r3 b b2

2
− b b3

3
−
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The total number of operations can be calculated from

 
N N d N NGaussOpt Gauss r Gauss r Gauss r= + − +( )1 2 31( ) ,

 
(6.65)

leading to

 
N n a

b a a b
GaussOpt
÷ = − −



 − −

2
1
2 2

( ) ,
 

(6.66)

and

 

N N

n
a a b b

b a
a a b

GaussOpt GaussOpt
C× +=

=
− + −( )

−
− +9 18 16 1

48
9 2 8 93 2 2 3 2 (( ) + 16

48

3b
b .

 

(6.67)

A similar adaptation can be developed for the column-Cholesky factorization 
algorithm (link node), portrayed in Figure 6.12 (note that similar results could be 
achieved for the line version of that algorithm). The algorithm is optimized accord-
ing to the specific matrix structure of the EM in Figure 6.13.

In this case, only the upper triangle has to be accessed. First, the standard 
column-Cholesky algorithm is applied to the r1 triangle. In a second step, the rect-
angle r2 is calculated accessing only the elements of r2 and r1. In the next step, the 
triangle r3 is computed using only elements of r2 and r3. The last two steps are 
repeated for all remaining blocks, using only elements of the last and current block. 
As in the optimized Gauss algorithm, the rectangular blocks do not contain the 
diagonal. Table 6.4 presents the number of floating point operations of the three 
phases described.

for j n
for k j

for i j n
a a a a

a a

for k j n

ij ij ik jk

jj jj

=
= −

=
= − ⋅

=
= +

1
1 1

1

,
,

,

,
aa a akj kj jj= /

Figure 6.12 Column-oriented Cholesky factorization.
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The total number of operations can be calculated from

 
N N d N NCholOpt Chol r Chol r Chol r= + − +( )1 2 31( ) ,

 
(6.68)

leading to

 
N n a

b a a b
CholOpt
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 − −

2
1
2 2

( ) ,
 

(6.69)
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Figure 6.13 Optimized Cholesky algorithm for the EM.

Table 6.4 Number of Floating Point Operations Needed for the Optimized 
Cholesky Algorithm

Phase ÷ × C+ R+ √

r1 a a2

2
− a a3

6
− a a a3 23 2

6
− + a a2

2
+ a

r2 b(a – b) b
a b a b

2
2( )− − + 

b
a b a b

2
2( )− − + 

0 0

r3 b b2

2
− a

b b
b

b b
2 6

2 3 12 2( ) ( )− − − +
a
b b

b
b

2 3
12 2( ) ( )− − − ab

b b− +
2

2 2

b
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2 2 2

2 2 2 6 2
1
3 3 2 1 6

1( ) 22












,
 

(6.71)

 
N n a

b a
b aCholOpt

R+ = − +



 + −2

1
2 2 ( ),

 
(6.72)

 
N n.CholOpt =

 
(6.73)

Both Gauss and Cholesky methods need final substitution phases. These substi-
tutions can also be optimized since the resulting matrices have a structure similar 
to the original A matrix but with nonzero elements only above (or below) the diago-
nal, as shown in Figure 6.14.

The solution of a system Ax = b with A having a structure similar to the struc-
ture presented in Figure 6.14 requires one division for each line of the matrix and 
one pair multiplication–addition for each nonzero element.

Since there are d a a d a b a b(( ) ) ( )(( ) ( ))2 22 1 2/ /− − − − − −  nonzero elements, 
the needed number of floating point operations can be written as:

 
N nSubsOpt

÷ =
 (6.74)

 
N N n a

b a a b
SubsOpt SubsOpt

C× += = − −



 −

−( )
2 1 2 .

 
(6.75)
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Figure 6.14 Resulting matrix structure after Gauss elimination/Cholesky 
factorization.
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We are interested in a special type of block-diagonal positive-definite Hermitian 
matrices, with

 b a= /2,  (6.76)

as the one represented in Figure 6.9. Rewriting the above equations for this special 
case and keeping only the n-dependent terms (n ≫ a) results in Table 6.5. Figure 
6.15 presents the optimized version of the Cholesky algorithm. A block version of 
the optimized Cholesky algorithm was developed to take advantage of the basic 
linear algebra subprograms (BLAS). In this version, element-by-element and vector-
by-vector operations were transformed in matrix operations that can be more easily 
optimized by sublayer software or even be executed in dedicated hardware. Figure 
6.16 presents such an approach.

The optimized Cholesky algorithm can save almost 30% of the number of oper-
ations required for the optimized Gauss algorithm, despite its increased complexity 
and need of square root operations.

6.3.3 Partial Cholesky Approximation
The Cholesky decomposition of block-Toeplitz matrices is an upper (or lower) 
matrix approximately block-Toeplitz with the same block size as the original matrix. 
This means that the u matrix can be approximated by calculating only the first L 
block-rows and assuming that the remaining block-rows are identical to the last 
calculated block-row.

Looking at u in Figure 6.17, only the dark shaded part is computed. The last 
computed block (marked as L) is then repeated until the full matrix is completed. 
This approximation is very effective when the channel is constant. Figure 6.18 
shows the maximum relative error to the solution without any approximation, for 
each approximation level (L), that is, the number of calculated blocks, for different 
speeds in a Pedestrian A channel with 1 antenna.

As can be seen for a constant channel, calculating only the first one or two 
blocks allows approximations in the system solution with relative error below 10−4 
or 10−9. This can be used to greatly reduce the number of operations necessary to 
solve the system. If only two blocks are calculated, the number of operations can be 
reduced approximately by a factor of a/n. When the channel changes, even slowly, 
this approach cannot be used due to the high errors.

6.3.4 Partitioning
Partitioning the block-diagonal system Ax = b would be very useful to reduce 
the number of floating point operations needed to solve the system (if no overlap 
is used; i.e., in good channel conditions) and could also permit the introduction 
of parallelism in algorithms that are intrinsically sequential, like the algorithms 
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presented in the previous sections. In this section, different partitioning approaches 
will be discussed.

Since A is block-diagonal and has generally decreasing values as we get farther 
from its diagonal, it is expected that it can be divided into smaller matrices that 
produce smaller systems whose combined solutions would approximate the solution 
of the original system.

Figure 6.19 presents a sample solution of a system divided into two (Figure 6.19a), 
with the division sketched in Figure 6.20, and four (Figure 6.19b) subsystems. Note 

Figure 6.15 Matlab code for the optimized Cholesky algorithm for the EM.

for j=1:NB:n-NB

JNB = j+NB;
JNB1 = JNB-1;
J2NB1 = j+2*NB-1;

M(j:JNB1 , j:JNB1)  = ccholesky(M(j:JNB1, j:JNB1), NB);

M(j;JNB1, JNB:J2NB1)  = M(j:JNB1, j:JNB1)' \M(j:JNB1, JNB:J2NB1|;

M(JNB:J2NB1, JNB:J2NB1) =
M(JNB:J2NB1, JNB:J2NB1)  -M(j:JNB1, JNB:J2NB1)'  * M(j:JNB1, JNB:J2NB1);

end

j = j+NB;
JNB1 = j+NB-1;
M(j:JNB1, j:JNB1) = ccholesky(M(j:JNB1,j:JNB1), NB);

Figure 6.16 Matlab code for the block version in the optimized Cholesky 
algorithm.
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that there are two m × m blocks completely ignored at the middle of the A matrix. 
Surprisingly, the maximum relative error is only 12% of the exact solution. Figure 
6.19b shows the same data when the A matrix is divided into four slices. The maxi-
mum error level is approximately the same as in the previous case, but now there 
are three high error regions.

1

2

L

L

L

L

L

n

a

a/2

Figure 6.17 Structure of the U matrix for the partial Cholesky approximation.
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Figure 6.18 Relative error to the ZF solution when using the partial Cholesky 
approximation, for the Pedestrian A channel with k = 1.
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Although the error obtained with the last partitioning method is not extremely 
high and appears only around the division lines, much better results can be obtained 
if overlapping partitions are considered.

This proceeding is sketched in Figure 6.21. Each slice overlaps the last in 2 × lap 
blocks (where lap is the number of blocks that are discarded from each overlapping 
side of each computed slice). Note that the last slice can be smaller. From each 
slice (D − 2lap)m values are obtained for the solution vector x, except in the case 
of the first and last slices, where (D − lap)m and M − ((L − 1)D + lap)m values are 
obtained, respectively.
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Figure 6.19 Relative error to the ZF solution for the Pedestrian A channel, 
obtained solving a (nonoverlap) partitioned system when M = 192, m = 12, for the 
cases of D = 8 (192/(8 ×12) = 2 blocks) and v = 10 km/h (a), D = 4 (192/(4 × 12) = 4 
blocks) and v = 10 km/h (b).
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M

Figure 6.20 Partitioning without overlapping scheme.
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As seen in Figure 6.19, the error level rises at the beginning and end of each 
slice, so the overlapping method should discard these values. In each interaction, 
lap × m values are discarded from the beginning and lap × m values from the end, 
except in the first end last slice, where only the last lap × m and first lap × m values 
are discarded, respectively. The algorithm is presented in detail in Figure 6.22. An 
alternative to have a final slice with size smaller than the early ones is to extend the 
b vector with zeros until M/m − 2lap becomes a multiple of D − 2lap.

Several simulations were run for different channel changing speeds (using the 
Pedestrian A channel). Similar results were obtained for all matrices tested. Sample 
results are presented in Table 6.6 and Figure 6.23, for a v = 10 km/h condition. All the 
values presented should be multiplied by the corresponding column factor to obtain 
the maximum error of the partition algorithm relative to the exact solution of the 
original Ax = b system. The column for lap = 0 corresponds to the lap-less situation.

Table 6.6 shows that the maximum error level depends almost exclusively from 
the overlapping level, so the proper overlapping can be easily selected just by know-
ing the maximum error allowed in the real system. The number of blocks D pro-
cessed by each thread can be selected from the total number of threads L that can 
be executed simultaneously by the hardware, using the relation

 
L

M m lap
D lap= −

−






/ 2
2 ,

 
(6.77)

where x   represents the smallest integer greater than or equal to x.

(L–1)DM

DM

M-(L-1)Dm

m

M

2 lap

Figure 6.21 Partitioning with overlapping scheme.
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6.3.5  Solving the Equalization Matrix with the Block-Fourier 
Algorithm

The block-Fourier algorithm is introduced in this section. The concept of circulant and 
block-circulant matrices is boarded, in order to explain the Fourier algorithm in detail.

6.3.5.1 Diagonalizing Circulant Matrices

A circulant matrix is a square Toeplitz matrix with each column being a rotated 
version of the column to the left of it:

 

C =
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−

c c c c
c c c c
c c c c

c c c c

n n

n

n n
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2 1 3

3 2 1 4
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.

 

(6.78)

The interesting property of circulant matrices is that its eigenvectors matrix 
is equal to the orthonormal discrete Fourier transform (DFT) matrix ′Fn  of cor-
responding dimension n. ′Fn  can be written as

 ′ = ⋅F Fn nn ,  (6.79)

Figure 6.22 Pseudo-code for partitioning with overlapping algorithm.
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where Fn is the nonorthonormal DFT matrix:
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(6.80)

with ω π= −e j n2 / ; j = −1.

Table 6.6 Maximum Relative Error for the Partitioning Algorithm; 
v = 10 km/h

Lap

0 1 2 3 4 5 6 7

Factor 1.E + 00 1.E–04 1.E–07 1.E–11 1.E–15 1.E–15 1.E–15 1.E–15

D

1 0.506

2 0.459

3 0.152 0.911

4 0.221 0.494

5 0.127 0.494 0.090

6 0.082 0.494 0.123

7 0.459 0.105 0.123 0.247

8 0.221 0.494 0.021 0.063

9 0.083 0.640 0.042 0.038 0.898

10 0.099 0.194 0.123 0.063 0.637

11 0.079 0.190 0.037 0.222 0.817 0.505

12 0.033 0.082 0.020 0.038 0.646 0.623

13 0.159 0.059 0.015 0.036 0.642 0.552 0.416

14 0.459 0.494 0.018 0.047 0.572 0.432 0.504

15 0.127 0.845 0.090 0.033 0.420 0.284 0.252 0.378

16 0.009 0.005 0.066 0.479 0.232 0.432 0.504
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Using this property, a circulant matrix C can be decomposed in

 C F F F F= ′ ′ =− −
n n

1 1Λ Λ ,  (6.81)

where Λ is a diagonal matrix that contains the eigenvalues of C. The Λ matrix can 
be easily computed from

 Λ = diag( (:, ))FC 1  (6.82)

where diag(x) represents the diagonal matrix whose diagonal elements are taken 
from the x vector. Substituting C by Equation 6.81 in the linear system

 Cx b=  (6.83)

and solving for x results in

 x F Fb= − −1 1Λ  (6.84)

Equation 6.84 can be computed efficiently with three discrete Fourier transforms 
and the inversion of the diagonal matrix Λ. The complete solution would require 
3n2 complex multiplication–addition pairs for the three DFT matrix/vector multi-
plications; n complex divisions to invert Λ; and n complex multiplications to mul-
tiply Λ−1 by Fb.
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Figure 6.23 Relative error to the ZF solution for the Pedestrian A channel, 
obtained solving an overlapped partitioned system, for the conditions of (a) D = 4, 
lap = 1, v = 10 km/h and (b) D = 8, lap = 2, v = 10 km/h.
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Using the Cooley and Tukey fast Fourier transform algorithm [Vollmer et al. 
2001], the complex multiplication–addition operation pair needed to compute a 
size n DFT is

 
nFFT

C n n⊕⊗ =
log2

2  
(6.85)

This means that Equation 6.84 can be computed spending only n n3
2 2 2log +( ) 

complex floating point operations (considering each multiplication–addition pair 
as one operation). The memory requirements to solve the system using such algo-
rithm are also very modest. It is only necessary to keep in memory two size n vec-
tors: the b vector and the first column of C. All operations can be made in-place 
as the solution vector x replaces b. Further economy can be achieved if C is sparse 
(band or block–diagonal, for example).

6.3.5.2 Application to Block-Circulant Matrices

A block-circulant matrix can be visualized as a circulant matrix where each ele-
ment is a matrix instead of a scalar value. Consider a block-circulant matrix C(PQ) 
composed of N × N blocks of size P × Q. If C( )PQ

NP NQ∈ ×�  is block-circulant, it 
must satisfy

 
C C( ) , ( ) , ,PQ i j PQ i j= � �  (6.86)

with

 

�

�
i i P NP

j j Q NQ

= + − +
= + − +

(( )mod )

(( )mod ) .

1 1

1 1  
(6.87)

This means that each element of C(PQ) is repeated P rows below and Q columns 
to the right of it. Indices that exceed the NP lines or NQ columns wrap around 
to the first lines and first columns, respectively. From now on, only square block 
matrices with N × N blocks will be considered, so the N index will be omitted 
for simplicity. The block dimensions of the matrix will be represented in subscript 
between curve brackets, and in the case of square blocks matrices, only a dimension 
is represented.

To deal with block-circulant matrices, the block-Fourier transformation needs 
to be introduced. The block-Fourier matrix is defined as [Joy and Tavsanoglu 1995]

 F F I( ) ,K N K= �  (6.88)
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where FN is a nonorthonormal DFT matrix of dimension N as defined in Equation 
6.79, IK is the K size identity matrix, and ⊙ denotes the Kronecker product.
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(6.89)

with X ∈ ×�M N ; y ∈ ×�P Q ; z ∈ ×�MP NQ . Similar to the last section, a block-
circulant matrix can also be decomposed using block-Fourier transforms:

 C F F( ) ( ) ( ) ( ),PQ P PQ Q= −1 Λ  (6.90)

where Λ(PQ) is a block-diagonal matrix computed from

 Λ( ) ( ) ( ) ( )( (:, : )),PQ PQ Q PQ Q= diag F C 1  (6.91)

with diag(PQ)(x) representing the block-diagonal matrix whose block elements are 
the P × Q-sized blocks of x. Similar to the circulant systems, a block-circulant 
system can also be efficiently solved using the block-Fourier decomposition. The 
block-circulant system

 C x b( )P = ,  (6.92)

with C( ) ;P
NP NP∈ ×�  x ∈�NP ; b ∈�NP . It can be solved with

 x F F b= − −
( ) ( ) ( )P P P

1 1Λ .  (6.93)

If the blocks are not square, the Moore–Penrose [Ben-Israel and Greville 
1977] pseudoinverse concept can be used. Consider a block-circulant matrix 
C( ) ,PQ

NP NQ∈ ×�  with P × Q-sized blocks.

 C x b C x b( ) ( ), ; ; .PQ PQ
NP NQ NQ NPQ P= ∈ ∈ ∈ ≤×   � � �  (6.94)

The system (6.94) can be solved using the Moore–Penrose pseudoinverse of the 
complex matrix C(PQ)

 
x C C C b= ( )−

( ) ( ) ( )PQ
H

PQ PQ
H1

,
 

(6.95)
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if C C( ) ( )PQ
H

PQ  is invertible. This solution is the least squares solution (ZF) to the 
system (6.94), as previously shown. Applying the block-Fourier decomposition of 
Equation 6.90 to Equation 6.95 results in

 
x F F F F F F= ( )



 ⋅− −

−
−

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (P PQ Q
H

P PQ Q P PQ Q
1 1

1
1Λ Λ Λ ))( )H

b,
 

(6.96)

with Λ( )PQ  defined as in Equation 6.91. Equation 6.96 can be simplified, consider-
ing that F F( ) ( ) :K

H
K= −1

 
x F F b=  

− −
( ) ( )Q PQ

H
PQ PQ

H
P

1 1
Λ Λ Λ( ) ( ) ( ) .

 
(6.97)

This solution can be computed with only three block-Fourier transforms, the 
inversion of Λ Λ( ) ( )PQ

H
PQ  and the multiplication of two block-diagonal matrices by a 

column vector. The multiplication

 
Λ Λ Λ( ) ( ) ( )PQ

H
PQ PQ

H
P  ⋅ ⋅( )−1

F b( ) ,
 

(6.98)

must be performed from right to left to minimize the number of operations 
required, since a matrix–vector multiplication is faster than a matrix–matrix one. 
Regarding that

 

Λ Λ
Λ

( ) ( )

( )

PQ
H

PQ
NQ NQ

PQ
H NQ NP

P
NP

  ∈

∈
∈

− ×

×

1
�

�

�F b( ) ,  

(6.99)

the multiplication (6.98) requires (NP + NQ)NQ pairs of complex multiplications/
additions. From the definition of block-Fourier transform in Equation 6.88, it can 
be shown that given

 y F x= ( )K ,  (6.100)

with

 x y F, ; ( )∈ ∈ ×� �NK
K

NK NK ,

one has

 y F xi N K i i K N K iN: : ( ) : : ( ) ,K − +( ) = − +( )1 1  (6.101)
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with 1 ≤ i ≤ K, where FN represents a nonorthonormal DFT matrix of dimension N 
as defined in Equation 6.80. This simply means that each block-Fourier transform 
of block size K can be decomposed in K Fourier transforms of size N. Furthermore, 
each Fourier transform can be executed independently of each other and thus the 
advantage of parallel hardware implementations can be taken. Taking this into 
consideration, recalling Equation 6.85 and considering that are needed two block-
Fourier transforms of block-size Q and one of block-size P to compute Equation 
6.97, the number of operations required for that three Fourier transforms is

 
N Q P

N N
block FFT

C
3

22 2−
⊕⊗ = +( )

log
.
 

(6.102)

There are two options to calculate [ ] :Λ Λ( ) ( )PQ
H

PQ
−1

 ◾ Start by using the already-calculated Λ(PQ) defined in Equation 6.91; then 
compute ∑ Λ Λ( ) ( ) ( )QQ PQ

H
PQ=  in the frequency domain; and finally invert the 

resultant block-diagonal matrix.
 ◾ Compute S C C= ( ) ( )PQ

H
PQ  in the time domain; apply the Fourier transform 

∑( ) diagQQ QQ Q Q= ( ) ( )( (:, : ));F S 1  and then invert ∑( )QQ .

In both cases, the inversion of the ∑( )QQ  block-diagonal matrix is needed. Since 
Λ(PQ) always has to be computed for the solution of Equation 6.97, the second case 
needs an extra block-fast Fourier transform (FFT) to calculate ∑( )QQ  but because 
this extra block-FFT only uses the first Q columns of S there is no need to compute 
the remainescence. The calculation of the first Q columns of C C( ) ( )PQ

H
PQ  is equiva-

lent to C C( ) ( )(:, : )PQ
H

PQ Q1  and requires N2PQ2 operations, while the calculation of 
Λ Λ( ) ( )PQ

H
PQ  requires only NPQ2 complex operations because Λ(PQ) is block-diagonal. 

Table 6.7 compares the number of operations required in both methods.
In general, the first method is less complex, but the number of operations needed 

to compute the first Q columns of C C( ) ( )PQ
H

PQ  can be reduced if C is sparse (band 
or block-diagonal, for example). In that case, method 2 can become advantageous 
for some matrices. Σ(QQ) is block-square matrix with N × N blocks of size Q × Q.

Since Σ(QQ) is also block-diagonal, it can be inverted by inverting each one of the 
N Q × Q block submatrices separately. Because Σ(QQ) is Hermitian positive-definite, 
each block matrix is also Hermitian positive-definite and therefore can be inverted 
using the Cholesky decomposition. Let Σk be the kth block of the diagonal of Σ(QQ). 
It can be decomposed using the Cholesky algorithm into

 ∑k k
H

k k N= ≤ ≤r r , ,1  (6.103)

where each rk is an upper triangular matrix. Each Σk can then be easily inverted by 
inverting the corresponding rk:
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 Σk k
H

k k k
H− − − −= ( ) = ( )1 1 1 1r r r r .  

(6.104)

At this point, the straightforward way would be compute each Σ k
−1 by multiply-

ing each pair r rk k
H− −1 1( )  independently. This would require N multiplications of 

Q × Q matrix pairs, which absorb NQ3 complex scalar multiplications.
A better approach is to compose r ( )QQ

−1  as

  r r( ) ( ) : ,( ) : , .QQ kk Q kQ k Q kQ k N− −− + − +( ) = ≤ ≤1 11 1 1 1 1  (6.105)

In other words, r ( )QQ
−1  is a block-diagonal matrix composed of the N r k

−1 matri-
ces sequentially disposed along its diagonal. r(QQ) can be viewed as the Cholesky 
decomposition of Σ(QQ):

 Σ( )QQ QQ
H

QQ= r r( ) ( ).  (6.106)

Therefore, Σ(QQ) can be inverted as

 
Σ( ) ( ) ( ) .QQ QQ QQ

H− − −= ( )1 1 1r r
 

(6.107)

Table 6.7 Number of Operations Required to Compute Λ Λ( ) ( )
1

PQ
H

PQ 
−

 Using 
Two Distinct Methods

Method 1 Number of Operations

Λ( ) ( ) ( )( (:, ))PQ PQ P Q= diag :F C 1 0 (previously calculated)

Σ Λ Λ( ) ( ) ( )QQ PQ
H

PQ= NPQ2

Method 2 Number of Operations

S C C= ( ) ( )( )PQ
H

PQ Q1st columns N2PQ2

Σ( ) ( ) ( )( (:, ))QQ QQ Q Q= diag :F S 1 NQ N2
2

2
log
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Some operations can be saved by first multiplying ( )( )r QQ
H−1  by the already-cal-

culated vector obtained from Λ( )PQ
H

P( ).( )F b  Next, r ( )QQ
−1  is multiplied by the result-

ing vector in a similar fashion as is done in Equation 6.98. In the multiplication of 
r ( )QQ

−1  by an NQ size vector, only NQ2 operations are spent, in opposition to the N2 
Q3 operations necessary to compute all N Σk

−1 blocks of Σ ( )QQ
−1  as in Equation 6.104.

In fact, it was ignored that each r k
−1  is a triangular matrix. This means that 

multiplying by its transpose conjugate requires only ( ) )6 9 3 163 2Q Q N+ + /(  
operations. In the same way, r ( )QQ

−1  is block-diagonal with triangular blocks. Its 
multiplication by a column vector requires ( ) )Q Q2 2+ /(  per block. This means 
that the first method requires N Q Q N⋅ + +( ) )6 9 3 163 2 /(  while the second con-
sumes only N Q Q⋅ +( ) )2 2/(  operations. Therefore, the best solution is to compose 
the r ( )QQ

−1  matrix and ban the matrix–matrix multiplications, as deduced initially. 
Rewriting Equation 6.97, we obtain

 
x F R R F b= ( )− − −

( ) ( ) ( ) ( )Q QQ QQ
H

PQ
H

P
1 1 1 Λ ( ) .

 
(6.108)

To minimize the number of operations, Equation 6.108 must be computed 
from right to left, avoiding matrix–matrix multiplications. Finally, the number of 
operations involved in the inversion of each r k

−1 block must be calculated. The 
inversion of an r k

−1 block involves a Cholesky factorization and a triangular matrix 
inversion. Table 6.8 presents the number of floating point operations necessary to 
compute the Cholesky factor of an n × n complex matrix and required to invert an 
n × n triangular complex matrix. The order column presents the highest n power 
of the total operation number, considering each multiplication–addition pair as a 
single operation.

Considering the data of Table 6.8, it is easy to see that the number of operations 
needed to compute r ( )QQ

−1  is N Q Q Q⋅ + +( ) ( ),3 29 2 6/  approximately. To sum it 
up, the shortest-length least squares solution of Equation 6.94 can be computed 
with the algorithms of Figure 6.24, depending on the calculation method used for 
Σ(QQ). The complexity of the algorithms of Figure 6.24 is given in Table 6.9.

Table 6.8 Number of Operations Required by Triangular Matrix Inversion 
and Cholesky Factorization of n × n Complex Matrices

�÷ �× �+ R+ �√ Order

Cholesky 
decomposition

n n2

2
− n n3

3
− n n n3 23 2

6
− + n n2

6
+ n n3

6

Triangular 
matrix inversion

n n2

2
− n n2

2
− — — n3

6
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Considering expression (6.101) and keeping in memory only the nonzero parts 
of the matrices, algorithms of Figure 6.24a and b can be simplified as presented in 
Figures 6.25 and 6.26, respectively.

Owing to finite precision round errors, the rk matrices may not be Hermitian 
positive-definite even if C C( ) ( )PQ

H
PQ  is Hermitian positive-definite. This can be 

(a)
Λ
∑ Λ Λ

( ) ( ) ( ) ( )

( ) ( )

( )(:, )PQ ←
=

=

diag :

( )

PQ P PQ

QQ PQ
H

PQ

Q

for k

F C 1

1 tto

chol
Trian

: :

N

k QQ

k k

k

k Q kQ k Q kQ∑ ∑←
← ∑
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−
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1 1 1 1

1
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R ggInv
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( )

( )

( ) ( ) (

(( ) ,( ) )

R

R

x F R R

k

QQ

Q QQ

k Q kQ k Q kQ−

− −

− + − +

←

1

1 1

1 1 1 1

QQQ
H

PQ
H

PQ PQ P PQ

) ( )

( ) ( ) ( ) ( )( (:,

−( ) ( )( )( )( )
←

1 Λ F b

F C

(P)

(b)
Λ diag 11

1

1

1

:

( )

diag

Q

QQ PQ
H

PQ

QQ QQ Q

)

(:, : )

(:, :

)

(
(:, : ) ( )

( ) ( ) ( )

S C C

F S

=
=∑ QQ

k Q kQ k Q kQ

for k N

k QQ

k k

)

(( ) ,( ) )

)

( )
( )

=
←
←

− + − +

1
1 1 1 1

to
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: :∑ ∑

∑R

Rkk k

QQ kk Q kQ k Q kQ

−
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←
=

←

− + − +

1

1 11 1 1 1

TriangInv
: :

( )

( )(( ) ,( ) )

R

R R

x F(( ) ( ) ( ) ( ) ( )Q QQ QQ
H

PQ
H

P b− − −( ) ( )( )( )( )1 1 1R R FΛ

Figure 6.24 Pseudo-codes of block-Fourier algorithms to compute the shortest-
length least square solution of a block-circulant system, for (a) method 1 and (b) 
method 2.
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Table 6.9 Number of Operations Required for the Algorithms of 
Figure 6.24 (Direct Correspondence between (a) and (b))

Step Rep Number of Operations

Method 1

F(P) C(PQ)(:,1:Q) 1 PQN Nlog2

2

Λ Λ( ) ( )PQ
H

PQ
1 NPQ2

chol(∑k) N Q Q Q3 23 2
6

+ +

TriangInv(Rk) N Q2

F(P)b 1 PN Nlog2

2

Λ( ) (...)PQ
H ⋅ 1 NQP2

( ) (...)( )R QQ
k− ⋅1 1

N
Q Q2

2
+

R( ) (...)QQ
− ⋅1 1

N
Q Q2

2
+

F( ) (...)Q
− ⋅1 1 QN Nlog2

2

Total = + + + + + + +








N

Q Q Q
PQ QP Q QP P

N3 2
2 2 215 8

6 2
( )

log

Method 2

F(P)C(PQ)(:,1:Q) 1 PQN Nlog2

2

C C( ) ( )(:, )PQ
H

PQ Q1: 1 N2PQ2

F(Q)S(:,1:Q) 1 Q N N2
2

2
log
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corrected simply by removing the imaginary part of the diagonal elements and 
zeroing all other elements that have complex modulus below some threshold value, 
before applying the Cholesky factorization. This new simplified versions require the 
same number of floating point operations as derived before because null element 
operations were not considered from the beginning.

6.3.5.3 Application to the Zero-Forcing Detector

The solution of the ZF detector is [Machauer et al. 2001]

 d T T T e= ( )−H H1

 
(6.109)

This is the shortest-length least squares solution of

 e Td=  (6.110)

Table 6.9 (Continued) Number of Operations Required for the 
Algorithms of Figure 6.24 (Direct Correspondence between (a) and (b))

chol(∑k) N Q Q Q3 23 2
6

+ +

TriangInv(Rk) N Q2

F(P)b 1 PN Nlog2

2

Λ( ) (...)PQ
H ⋅ 1 NQP2

( ) (...)( )R QQ
k− ⋅1 1

N
Q Q2

2
+

R( ) (...)QQ
− ⋅1 1

N
Q Q2

2
+

F( ) (...)Q
− ⋅1 1 QN Nlog2

2

Total = + + + + + + + +








N

Q Q Q
NPQ QP Q Q QP P

N3 2
2 2 2 215 8

6 2
( )

log
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where T is not square, in general. Figure 6.27 represents different structures of T 
matrices. Figure 6.27a represents the normal structure of T. T is a block matrix 
with Vn blocks disposed along its diagonal.

All N blocks are equal in a constant-channel condition. Even if the channel 
varies slowly, it can be a reasonable approximation to consider all Vn block equal 
as will be investigated later. In a constant-channel condition, it is easy to extend 
matrix T to become block-circulant, simply by adding extra block-columns to it, as 
shown in Figure 6.27b. The elements below the last Va block wrap around the top 
of the columns.

The number of extra columns needed to make T block-circulant is

 E N n H P= − =   −/ 1.  (6.111)

The resulting matrix is block-circulant with N × N blocks of P × Q size. This 
new matrix will be represented as T(PQ). Now, Equation 6.109 can be trans-
formed in

for k P

f PQk P N P k Q k P N P k Q

=

← ( )− + − +( )
1

1 1 1 1

to

FFT : : :C C: :( ) , : ( ( ) , )( )

bb b

C

f

K

k P N P k k P N P k

for k N

: :( ) , ( ( ) )− + − +( ) ← ( )






=

←

1 1 1

1

FFT

to

: :

∑ ff
H

f

k K

k

k P kP Q k P kP Q( ) , ( ) , )− + − +( )( ) ( )
← ( )
←−

1 1 1 1 1 1

1

: : : :

chol

C

R

R

∑

TTriangInv

::

( )

( )( ) , ) (( ) (( (

R

x R R C

k

f k k
H

fk Q kQ k P− + ←( − +− −1 1 1 1 1 1 1 kkP Q

for k Q

k Q N

H

f k P kP

, )

( )

)

( )

)
( ) )

1

1

1

1 1

:

to

: :

:×
















=

−

− +b

x QQ k k Q N Q kf+( ) ← − +( )( ), ( )1 1IFFT : :x

Figure 6.25 Pseudo-code for the optimized block-Fourier algorithm for the EM—
method 1.
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d T T T e T� �≈ − ×= ( ) ′ ∈ ∈ ′ ∈( ) ( ) ( ) ( ) ; ; ,PQ

H
PQ PQ

H
PQ

NP NQ NQ NP1
, � � �d e

 
(6.112)

and solved with the Fourier method, as done for Equation 6.94 in the last section. 
The e′ vector can be obtained from e by padding at its end with (N − n + 1)P − H 
zeros, and d�  can be extracted from the first nQ elements of d�.

There are two approximations in the transformation of T in T(PQ):

 ◾ All Vn blocks were made equal.
 ◾ Extra columns/lines were added to the matrix.

for k P

f PQk P N P k Q k P N P k Q

=

← ( )− + − +( )
1

1 1 1 1

to
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to

: : ←← − +( )( )IFFT : :x f k Q N Q k( )1

Figure 6.26 Pseudo-code for the optimized block-Fourier algorithm for the EM—
method 2.
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The error level introduced by each approximation will be determined next. 
Figure 6.28 shows the relative error introduced in the solution of Equation 6.109 
by considering that the Vn blocks are all equal to the first block V1. This error was 
determined comparing the solution of Equation 6.109 using the original T matrix 
with the solution of the same system using the block-constant version of T.

The e vector was obtained from Equation 6.110 using a random d vector:
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Figure 6.28 Relative error to the ZF solution for a constant-channel approxima-
tion using the first block and the Pedestrian A channel for (a) k = 1, SISO and (b) 
k = SF, MIMO 2 × 2.
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Figure 6.27 Block structure of the T matrix (a) and structure of the extended T 
matrix for a constant-channel condition (b).
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d i j i nQ( ) , .= ± ±( ) ≤ ≤2

2
1 1

 
(6.113)

As it can be seen, the higher the speed, the higher the error introduced and the 
quickest the divergence from the correct value as we get farther from the initial 
block position. The approximation is acceptable for the first blocks, but never for 
the whole d�  vector, even if low speeds are considered. For high speeds, the relative 
error level rises quickly above 100%.

In Figure 6.28, all the Vn blocks were made equal to the first block V1. A better 
approximation would be expected if a middle block was used. Let us use the middle 
block of T if n is even or the left-middle block if n is odd:

 
V V n= /2 ( ) 

(6.114)

Using this method, better approximations in a wider central range can be 
attained, as shown in Figure 6.29.

Nevertheless, the approximation is very poor for the first and last elements of the 
d�  vector. The last figures make it obvious that the methods presented in [Vollmer 
et al. 2001] or [Machauer et al. 2001], although valid for constant-channel condi-
tion, are not very useful if the channel changes, even if low speeds are considered.
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Figure 6.29 Relative error to the ZF solution for constant-channel approxima-
tion, using the middle block for the Pedestrian A channel, k = 1 and MIMO 4 × 4.
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Constant-channel conditions will be considered for the remainder of this sec-
tion. First, the error level introduced by the addition of extra columns/lines to the 
T matrix, transforming it in the block-circulant matrix T(PQ), will be determined, as 
was previously explained, alongside the error of the block-Fourier algorithm. Later, 
we will return to the more general case of the varying channel.

6.3.5.4 Constant-Channel Conditions

Table 6.10 shows the error level introduced in the determination of vector d�  by 
each phase of the detection process in 12 constant-channel situations. Each value is 
the maximum complex modulus of the relative difference between the estimated �d  
and the real d obtained in 100 runs with distinct random d vectors.

The correlated values described in Table 6.10 were taken from [3GPP 2003]. 
A squared matrix disposition was considered for the 4 × 4 case. The “Estimation” 
column indicates the maximum error of the estimation if Equation 6.109 is solved 
directly. The “Circulant” column shows the maximum error introduced by the 
extension of the T matrix to become T(PQ) relative to the estimated solution. The 
“Fourier1” and “Fourier2” columns show the maximum error introduced by the use 
of the Fourier algorithms 1 and 2 compared with the circulant system solution.

Table 6.10 Maximum Absolute Error to the ZF Solution Introduced by Each 
Phase of the Zero-Forcing Detector

Maximum Absolute Error

Antennas Load Correlated Estimation Circulant Fourier1 Fourier2

Pe
d

es
tr

ai
n

 A

1 × 1 Min — 4.E–16 5.E–16 2.E–15 3.E–15

Max — 9.E–14 1.E–13 1.E–13 1.E–13

2 × 2 Min — 8.E–15 6.E–15 1.E–14 1.E–14

Max — 4.E–14 5.E–14 5.E–14 4.E–14

Min Yes 1.E–14 1.E–14 2.E–14 2.E–14

4 × 4 Min — 4.E–14 2.E–14 7.E–14 5.E–14

Min Yes 5.E–14 3.E–14 8.E–14 7.E–14

V
eh

ic
u

la
r 

A

1 × 1 Min — 7.E–16 8.E–16 3.E–15 3.E–15

Max — 1.E–14 3.E–14 3.E–14 3.E–14

2 × 2 Min — 2.E–14 7.E–15 3.E–14 2.E–14

Max — 1.E–12 2.E–12 2.E–12 2.E–12

4 × 4 Min — 5.E–14 3.E–14 8.E–14 7.E–14
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Since an SF of 16 is considered, the minimum load situation corresponds to 0 
interferers while the maximum load situation corresponds to 15 interferers (with 
each user having only one physical channel).

As can be seen, the errors are very low for all the tested matrices and are only 
slightly above the floating point precision used. Furthermore, the T matrix exten-
sion is not the main error cause. Figure 6.30 shows the error at the end of the block-
Fourier algorithm relative to the original d vector for a sample case.

It can be seen that the error level is constant along the entire symbol vector and 
no beginning or end high error levels appear, since no multipath interference from 
adjacent blocks is being considered. Excluding the midamble from the detection 
and splitting the process into two independent detections, each one involving only 
data symbols, some errors can be introduced at the beginning of the second data 
chunk. This can be corrected by including some symbols of the midamble in the 
second detection process.

Figures 6.31 and 6.32 show the used algorithms, and Table 6.11 their complex-
ity. The algorithm of Figure 6.31 is similar to that of Figure 6.25 but the algorithm 
of Figure 6.32 makes use of the structure of T to save some operations. This is done 
using only the nonzero elements of T and regarding that

 ( ) .A B B AH H H=  
(6.115)

This saves the computation of the last E blocks of S(:, ).1:Q
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Figure 6.30 Relative error to the ZF solution introduced by the block-Fourier 
algorithm (sample case).
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Comparing the two methods, it can be seen that method 2 is advantageous if

 
NPQ NQ

N
Q H HE P

E E2 2 2 2
2

2 2> + + − +





log
.
 

(6.116)

Since N ≫ Q and N ≫ H ≥ P, the last inequality usually resumes to

 
P

N
>

log
.2

2  
(6.117)

Since P is the number of antennas multiplied by the spreading factor, it is easily 
greater than the right side of inequality (6.117) and the block-Fourier method 2 is 
in general advantageous.

6.3.5.5 Block-Fourier Algorithm with Partitioning

The algorithms proposed in last section reveal already many parallel paths that 
could be exploited for parallel processing in adequate hardware. Nevertheless, the 
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Figure 6.31 Pseudo-code of the block-Fourier algorithm.
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algorithm remains globally sequential since it only determines the estimated d�≈ 
vector at the end.

Figure 6.33 illustrates an approach to split the extended ZF Equation 6.112 
in smaller systems. Figure 6.33 represents S T TQ PQ

H
PQ= ( ) ( )  and the estimated vec-

tor d�≈ .  The idea is to split the sQ matrix in smaller ones. This can be a reason-
able approximation because the sQ has the greater values concentrated around the 
diagonal and decreasing modulus as the values are further from the diagonal. This 
means that each element of vector d� depends mainly on the same index value of 
vector T e( )PQ

H ′ and it depends increasingly less on the values as we get farther from 
that same index value.

Since each partition just approximates well the middle values, the d� values of 
the beginning and end of each partition can be discarded. The first l− and last l+ 
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Figure 6.32 Pseudo-code for the optimized block-Fourier algorithm.
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Table 6.11 Number of Operations Required by the Block-Fourier 
Algorithm

Step Rep Number of Operations

Block-Fourier Algorithm in Figure 6.31

Tf P QN Nlog2

2

ef P N Nlog2

2

∑k N PQ2

Rk N Q Q Q3 23 2
6

+ +

R1
1− N Q2

df N Q2 + Q + QP2

d Q N Nlog2

2

Total = + + + + + + +








N

Q Q Q
PQ QP Q QP P

N3 2
2 2 215 8

6 2
( )

log

Block-Fourier Algorithm in Figure 6.32

Tf P QN Nlog2

2

ef P N Nlog2

2

S(IQ, IQ) 1 HQ2

Sk 1
Q HE P

E E2
2

2
− +





Sf Q QN Nlog2

2
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Table 6.11 (Continued) Number of Operations Required by the Block-
Fourier Algorithm

Step Rep Number of Operations

Rk N Q Q Q3 23 2
6

+ +

R1
1− N Q2

df N Q2 + Q + QP2

d Q N Nlog2

2

Total = + + + + + + +










+ − +
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E E

3 2
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2
2

15 8
6 2

2

( )
log
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QI+

(E–1)Q

NQ
nQ

EQ

Figure 6.33 Partitioning for the block-Fourier algorithm for d�  and SQ.
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elements of each d� partition are thus discarded. Note that since the block-Fourier 
algorithm will be applied at each partition, and because each partition has to be 
approximated as a block-circulant matrix, high error will also appear in the first ele-
ments of the first partition and in the last elements of the last partition. This would 
not happen if each partition would be solved with an exact method like Gauss or 
Cholesky. This is the reason why those elements are also discarded in Figure 6.33. 
Figures 6.34 and 6.35 represent such algorithms, based on the two versions pre-
sented earlier. Table 6.12 analyzes their computational requirements.

The overlapping length must be carefully selected according to the precision 
required. The bigger the overlapping, the more expensive the computation will 
be. In the derivation of the algorithms, a prelap l− and postlap l+ were defined 
in a similar way as done in [Machauer et al. 2001], but in the simulations, it will 
always be used l− = l+ since there is no advantage of defining dissimilar overlapping 
lengths; in fact, the best results are obtained with equal overlapping as could be 
easily guessed from symmetry considerations.

The partition length can be selected according to the number of intended parti-
tions and the overlapping selected, and this is usually determined by the hardware 
structure.

6.3.5.6 Solving the EM for the Unsteady Channel

As can be seen in the next section, the block-Fourier algorithms presented so far work 
well just under constant-channel conditions or with very slow changing speeds. Even 
at v = 1 km/h, significant errors arise. The standard block-Fourier algorithm cannot 
be adapted for unsteady-channel conditions because it just works for block-circulant 
matrices, but the partitioned version can be easily adapted just by using in each par-
tition a different block of the original T matrix. If the middle block in each partition 
of the original T matrix is used to construct each extended approximate T(PQ), the 
block-Fourier algorithm can be used for each partition as done in the last section, 
and �d  obtained from the middle elements of each partition computation.

Figures 6.36 and 6.37 represent the two versions of such an algorithm. Table 
6.13 analyzes the respective computational requirements.

The overlapping length must be selected according to the precision required as 
for the constant channel. The bigger the overlapping, the better the approximation 
but more expensive will the computation be.

The partition length now must also be selected according to the precision 
required: bigger partitions will yield faster results with small precisions, whereas 
smaller partitions will require too much computational power. Partition and over-
lapping length can also be determined by the hardware structure available, if some 
kind of parallel processing is available in an already-developed hardware platform. 
Also, very small partitions or very long overlapping can become incompatible, 
making the required error level just not attainable for high-speed channels.
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Figure 6.34 Pseudo-code for the block-Fourier partitioned algorithm for con-
stant channels—method 1.
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function BFPC O T LP Q e n Q P H L l l

N n H P

 : :

/

d =

= +

( )( )
[ ]

− +2 1 1, , , , , , , , ,

− 11

1

1

l L l l
F N l
E H P

Pl Fl l n P H

=
=
←

[ ]
[ ]

′ = 


− ++ − + −( )

− −

−

− +

/
/

e e 00( ) ( ); ;



=

( ) ← ( )(− + − +

for k P

f k P L P k Q k P L P k Q

1

1 1 1 1

to

FFT: : : : : :T T( ) , ( ) , ))
← ( )( ) ( )

=

← −

S T T

S T

( , ) , ,

,

1 1 1 1 1 1

1 1

1

: : : : : :

: :

to

Q Q H Q H Q

H kP

H

k

for k E

QQ kP H Q

kQ k Q Q

L k Q L k

H

k

( )( ) ( )
( ) ←

+

+ +

− + − +

T

S S

S

1 1

1 1 1

1 1

: :

: :

:

,

( ) ,

( ) ( )QQ Q

k Q L Q k Q k Q L

k
H

f

for k Q

,

( ) , (

1

1 1

1

:

: : :

to

FFT

( ) ←













=

( ) ←− + −

S

S S 11 1

1 1 1

1

) ,

( ) ,
( )

Q k Q

k Q kQ Q

for k L

k f

k k

k

+

− +

( )( )
=

← ( )
← ∑

:

: :

to

chol

∑ S

R

R−− ←










=
=

− +

1

1

1

1 1

TriangInv

to

to

: :

( )

( ) ,

R

for k F

for k P

k

f k P L P ke (( ) ← ′ − + + + − +( )
=

− +

− +

FFT

to

e (( ) : : ( ) )

( )

f lP k P fl l l P k

for k L

f k Q

1 1

1

1d 11 1

1 1

1 1 1 1 1: : :kQ

k P

k k
H

f
H

f

k P kP Q, )

( )

(( ) ( )
(

( )(( ) , )←( − +

×

− −

− +

R T

e

R

::

: :

to

IFFT

kP

k Q L Q k k Q L Q k

f

for k Q

l f

))

( ) , ( )

(

=

( ) ← ( )( )
′

− + − +

1

1 1 1d d

d −− + − + − +( ) ← ( )






















= ′

1 1 1
1

) ( )
(

lQ flQ l Q l l Q
nQ

l: :
:

d

d d ))

Figure 6.35 Pseudo-code for the block-Fourier partitioned algorithm for con-
stant channels—method 2.

 



MIMO Optimized for W-CDMA ◾ 313

Table 6.12 Number of Operations Required by the Partitioned Block-
Fourier Algorithm

Step Rep Number of Operations

Method 1

Tf P QL Llog2

2

∑k L PQ2

Rk L Q Q Q3 23 2
6

+ +

R1
1− L Q2

ef FP L Llog2

2

df FL Q2 + Q + QP2

d2 FQ L Llog2

2

Total = + + + + + + + + + +








L

Q Q Q
F Q Q QP PQ Q QF QP FP

L3 2
2 2 2 2 29 2

6 2
( ) ( )

log


Method 2

Tf P QL Llog2

2

S(IQ, IQ) 1 HQ2

Sk 1
Q HE P

E E2
2

2
− +





Sf Q QL Llog2

2

Rk L Q Q Q3 23 2
6

+ +

continued
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6.3.5.7 Application to the LMMSE Detector

The equation of the LMMSE detector is

 
d T T I T e� = +( )−H

nQ
Hσ 2 1

.
 

(6.118)

As done for the ZF detector, a block-circulant version of the MMSE detector 
equation can be obtained just by adding some extra columns and lines to matrix T. 
In this case, the noise matrix n = σ 2 InQ also has to be extended. This can be done 
just by adding E (defined in Equation 6.111) lines/columns to it, obtaining the new 
noise matrix

 N INQ NQ= σ 2 . (6.119)

The block-circulant version of the MMSE detector becomes

 

d T T N T e T N� = +( ) ′ ∈ ∈
− × ×

( ) ( ) ( ) ( )PQ
H

PQ NQ PQ
H

PQ
NP NQ

NQ
NQ NQ1

, ; ; � �

dd e� ∈ ′ ∈� �NQ NP;  
(6.120)

Table 6.12 (Continued) Number of Operations Required by the Partitioned 
Block-Fourier Algorithm

Step Rep Number of Operations

R1
1− L Q2

ef FP L Llog2

2

df FL Q2 + Q + QP2

d2 FQ L Llog2
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function BFP T n Q P H L l l

N n H P
l L l l

 

 /  

d e=

= +
=

( )

[ ]

− +

− +

1

1

, , , , , , , ,

−
− −

FF N l
E H P
m l

Pl Fl l n P H

=
←
←

[ ]
[ ]
[ ]

′ = 
− ++ − + −( )

 /
 /  
 /

− 1
2

1e 0 e 0( ) ( ); ;





=
=

( ) ←− + +

for f F

for k P

f k P L P k Q mP k P

1

1

1 1

to

to

FFT: : : : :T T( ) , ( (mm L P

k mQ m Q

k P L P k f lPf

+ −

+ + +

− + − +

(

( ) ← ′

1

1 1

1 1 1

)

, ( ) ))

( ) , (( )

:

: : FFTe e kk P fl l l P k

k P kP Q

for k L

k f

: :

: :

to

( ) )

( ) ,

+ − + + − +

− +

( )









=

← (

1

1 1 1

1

∑ T ))( ) ( ) +

←
←

− +

−

H
f Q

k k

k

k P kP Q

k

T I

R

R R

( ) , )

( )
(

1 1 1 2

1

: :

chol
TriangInv

σ

∑
))

( ) , )( ) , ) (( ) ( )( )(d f k k
H

f
Hk Q kQ k P kP Q− + ←( − +

×

− −1 1 1 1 1 1 1 1: : :R R T

e ff

l

k P kP

k Q L Q k

for k Q

( )( )

( ) ,

)− +

− +
















=

( ) ←

1 1

1 1

1

:

:

to

IFFTd dd

d d

f

l

k Q L Q k

f lQ flQ l Q l l Q

m

:

: :

( )

( ) ( )

min

− +

− + − + − +

( )( )
′ ( ) ← ( )
←

1

1 1 1

(( , )

( )

m l n

nQ

+ −
































= ′
1

1d d :

Figure 6.36 Pseudo-code for the block-Fourier partitioned algorithm for unsteady 
channels, using method 1.
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Figure 6.37 Pseudo-code for the block-Fourier partitioned algorithm for unsteady 
channels, using method 2.
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Table 6.13 Number of Operations Required by the Algorithms in (a) 
Figure 6.36 and (b) Figure 6.37

Step Rep Number of Operations

Method 1

Tf FP QL Llog2

2

ef FP L Llog2

2

∑k FL PQ2

Rk FL Q Q Q3 23 2
6

+ +

R1
1− FL Q2

df FL Q2 + Q + QP2

d FQ L Llog2

2

Total = + + + + + + +








FL

Q Q Q
PQ QP Q QP P
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6 2
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Method 2

Tf FP QL Llog2
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ef FP L Llog2
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S(IQ, IQ) F HQ2

Sk F
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E E2
2

2
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Sf FQ QL Llog2

2

continued
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As before, the block-circulant matrices can be decomposed using the block-
Fourier transform as

 T F F( ) ( ) ( ) ( )PQ P PQ Q= −1 Λ  (6.121)

 N F FNQ Q N Q= −
( ) ( ),1 Λ  (6.122)

where

 Λ ( ) ( ) ( ) ( )( (:, ))PQ PQ Q PQ Q= diag :F T 1  (6.123)

 Λ ΛN QQ Q NQ N
NQ NQQ= ∈ ×diag  ( ) ( )( (:, : )), .F N 1 �  (6.124)

Replacing Equations 6.121 and 6.122 in Equation 6.120 results in

 
d F F F F F F� = ( ) +



 ⋅− − −

−

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P PQ Q
H

P PQ Q Q N Q
1 1 1

1

Λ Λ Λ FF F e( ) ( ) ( )P PQ Q
H−( )1 Λ

 
(6.125)

Table 6.13 (Continued) Number of Operations Required by the 
Algorithms in (a) Figure 6.36 and (b) Figure 6.37

(b)

Step Rep Number of Operations

Rk FL Q Q Q3 23 2
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Considering that F F( ) ( ),K
H

K= −1  Equation 6.125 can be simplified to

 
d F F e� = +( ) ⋅− −

( ) ( ) ( ) ( ) ( )Q PQ
H

PQ N PQ
H

P
1 1

Λ Λ Λ Λ
 

(6.126)

Since NNQ is a diagonal matrix, and from the definition of the block-Fourier 
matrix (6.88), it can be shown that

 diag( ) ( )( (:, : ))QQ Q NQ NQQF N N1 =  (6.127)

This is true only when the NNQ matrix is a block-diagonal matrix composed of 
N equal blocks of size Q.

Now, Equation 6.126 can be rewritten as

 
d F I F e� = +( ) ⋅− −

( ) ( ) ( ) ( ) ( )Q PQ
H

PQ NQ PQ
H

P
1 2 1

Λ Λ Λσ
 

(6.128)

This equation can be used in the derivation of new algorithms based on the 
work already done for the ZF detector. The extension is very obvious since σ 2INQ 
is a real positive diagonal matrix, which added to Λ Λ( ) ( )PQ

H
PQ  results in a block-

diagonal matrix whose blocks remain positive-definite Hermitian. This means that 
they can be inverted with the Cholesky algorithm as done for the ZF detector. The 
MMSE algorithms require more NQ real floating point additions in the nonparti-
tioned case, more LQ real floating point additions in the constant-channel parti-
tioned case, and more FLQ real floating point additions in the partitioned unsteady 
channel case. The resulting algorithms and respective computational requirements 
are presented from Figures 6.38 through 6.42.

6.3.5.8 Zero-Forcing Results

One hundred different T matrices were created for a Pedestrian A without interfer-
ers. The simulator created 100 random data vectors and used each of them with 
each of the T matrices to create the corresponding e vectors from e = Td. Then all 
the algorithms were applied in turn to estimate d from each e vector. Finally, the 
estimated and original d vectors were compared and the wrong bits count up. The 
large number of bits used was necessary to reach valid statistical results. This pro-
cedure was repeated for different velocities and antennas configuration as presented 
in Table 6.14.

Tables 6.15 and 6.16 present the BER results for the different algorithms. 
Note that, for the stationary case, no errors would be obtained. Simulations for 
the v = 0 km/h (stationary situation) were also run, but the results were omitted 
from the tables since there were no errors with any of the algorithms. The “Est” 
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algorithm represents the “exact” solution of the ZF equation, that is, its solution 
with an algorithm that does not include extra approximations further than the 
numeric floating point precision of the simulator. It can represent the Gauss or 
Cholesky algorithms as well as their optimized versions. As expected, the “Est” 
algorithm always estimated the correct data vector, since no noise was considered 
in the simulation.

The “Fourier1” and “Fourier2” algorithms correspond to the two versions 
of the unpartitioned Fourier algorithm described earlier. The “Fourier1m” and 
“Fourier2m” are the same algorithms but using the middle block of the T matrix, 
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method 2.
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while “Fourier1” and “Fourier2” use the first block. As can be seen in the tables, 
both versions (1 and 2) have identical results, since they are numerically equivalent. 
Also, as expected, the use of the middle block gives the best results except for low 
speeds, where both methods are equivalent.

“FourierP2c” refers to the partitioned Fourier algorithm for constant channels 
based in the second version of the basic Fourier algorithm, while “FourierP2v” 
is the corresponding unsteady channel version. As expected, “FourierP2v” always 
gives better results, except for very low speeds, where “FourierP2c” can give equiva-
lent results with less floating point operations. The numbers after “FourierP2c” or 
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Figure 6.41 MMSE block-Fourier partitioned algorithm for unsteady channels—
method 2.
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“FourierP2v” indicate the number of blocks used in each partition and the prelap 
and postlap blocks number. For example, “FourierP2v_008_002_002” refers to 
an eight-block partition with two blocks prelap and two blocks postlap algorithm. 
From Tables 6.15 and 6.16, it can be concluded that it is advantageous to reduce 
the size of partitions, especially for high speeds (as expected, since in each partition, 
the channel is approximated as constant). It is also easy to see that, for a particular 
partition size, better results are attained as larger laps are used. For low speeds, the 
size of the partitions does not have a very strong influence on the correctness of the 
estimation, but greater lap sizes are also advantageous as noticed for high speeds. 
The conjunction of these two factors makes it hard to find the best algorithm for 
high speeds, since small partitions cannot have large overlaps. In a similar way, 
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Figure 6.42 Number of operations required by the algorithm of (a) Figure 6.38, 
(b) Figure 6.39, (c) Figure 6.40, and (d) Figure 6.41.

Table 6.14 Simulated Conditions for the ZF Detector

Channel Pedestrain A

Interferers 0

Number of antennas 1; 2; 3; 4

Velocity 0; 1; 10; 100 (km/h)
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for low speeds, large overlaps imply very large partition and a compromise has to 
be made in each situation. Nevertheless, it is clear that for high speeds, the most 
important factor is the size of the partitions, while for low speeds, the overlap size 
is the key factor.

6.3.5.9 LMMSE Results

A Pedestrian A channel with v = 100 km/h, k = 16, and a MIMO 2 × 2 arrange-
ment was considered, and the performance results for the BER and BLER are por-
trayed in Figure 6.43. The “standard” method in the figures refers to estimation 
obtained by solving the LMMSE equation with the standard Gauss algorithm. 
The legend “EstPr_xx_yy_yy” represents the results of the application of an “exact” 
partitioned algorithm (Gauss or Cholesky, for example), with partitions of size xx 
and prelaps and postlaps of size yy.

As expected, the constant-channel approximations are useless for a v = 100 km/h 
situation. This is evident from the two block flourier simulations (curves above 10−1 
for the BER, and of 1 for the BLER) for constant channels run. The partitioned 
algorithms revealed to be very effective, since their solutions are only distinguish-
able from the standard Gauss algorithm solution for high Eb/N0 values. Note also 
that the Fourier-partitioned algorithms for variable channels are only slightly worse 
than the corresponding partitioned “Est” algorithms.

The “FourierP2vr_04_01_01” and the “EstPr_32_04_04” methods provide 
almost identical results as the full Gauss method, while the “FourierP2vr_32_04_04” 
and the “EstPr_32_00_00” provide worse results only for high Eb/N0 values.
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Figure 6.43 BER (a) and BLER (b) performance results for MMSE, under the 
Pedestrian A channel with v = 100 km/h, k = 16, and MIMO 2 × 2.

 



334 ◾ MIMO Processing for 4G and Beyond

6.3.6 Final Remarks
In this section, optimized versions of the Gauss and Cholesky algorithms were pre-
sented, for usage for the solution of a ZF or LMMSE detector in MIMO/BLAST 
systems. The optimizations were based simply on the removal of the unnecessary 
operations regarding the structure of the involved matrices. However, the simula-
tion of an MMSE receiver for a real-life MIMO setting (e.g., a standard-sized block 
for a specific channel quality indicator (CQI) in the UMTS) would be very compli-
cated to perform without these optimizations.

The block-Fourier algorithms presented in [Vollmer et al. 2001] and [Machauer 
et  al. 2001] for the ZF algorithm under constant-channel conditions were also 
tested under unsteady channel situations, having revealed to be useless in con-
ditions of medium or high speeds. New versions of those algorithms, capable of 
dealing with detection in unsteady channels with speeds until v = 100 km/h, were 
derived and tested. These new algorithms were based on the partitioned block-
Fourier algorithms of earlier works [Vollmer et al. 2001; Machauer et al. 2001], 
but extra steps were added to take into consideration the channel change from 
partition to partition. Inside each partition, the channel is considered constant. The 
new algorithms, although more computationally expensive than the original block-
Fourier ones, are not as expensive as the Gauss or Cholesky ones (even if optimized 
versions are considered).

The best algorithm must be selected according to the channel conditions; 
for almost constant channels, constant block-Fourier algorithms could be used 
with good results, while for high speeds, the new block-Fourier algorithms pro-
posed must be used, preferably with small-sized partitions. An optimized Gauss 
or Cholesky approach could also be employed if sufficient computational power 
becomes available, with the advantage of being a velocity-independent solution. 
Also, the benefit of parallel processing that can be exploited with the block-Fourier 
algorithms can be extended to the Gauss and Cholesky methods (at least partially) 
with the introduction of partitioning.

6.4  Performance Results of the Equalization 
Techniques

Both the MF and the ZF/MMSE schemes were simulated. Since the ZF/MMSE 
results are based on the equalization of the MF results, it is interesting to compare 
the three schemes. Simulations were run considering block sizes of 1024 bits, and 
the reference UMTS channels. A MIMO setting with an equal number of trans-
mitters and receivers was implemented. An SF of 16 was used (hence 16 physical 
channels per transmit antenna). Minimum (usage of 1 physical channel per trans-
mit antenna) and maximum (usage of 16 physical channels per transmit antenna) 
loading conditions were considered.
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6.4.1 MF Results
The MF results (Figure 6.44) are important for the MMSE receiver, since it is a 
crucial part of the algorithm. It can be seen that, for the minimum loading case 
(Figure 6.44a), results of Vehicular A are best and of Pedestrian A are worse, due 
to multipath diversity. The diagonal of the EM was used for normalization of yMF, 
instead of using just the estimated channel coefficients as is usually done for stan-
dard RAKE receivers. The extra information from the EM allows minimizing the 
correlation effect, and thus the multipath diversity can be exploited for higher-order 
modulations when there is little interference, contrary to the normal RAKE.

Owing to interference from other antennas, and the fact that the simple MF 
algorithm does not perform any type of interference canceling nor equalization, 
the lowest MIMO orders provide the best results. For the fully loaded case (Figure 
6.44b), results for Pedestrian A are better than the Vehicular A channel, due to the 
high amount of multipath interference. The lowest MIMO orders still provide the 
best results, due to the reduced interference.

The uplink transmission of the MF receiver (Figure 6.45) yields worse results, 
due to the increased interference caused by the correlation of the spreading codes, 
which are no longer orthogonal. Note that the error floor is now over 10%, making 
it virtually impossible to operate at full loading with this scheme.

6.4.2 MMSE and ZF Results
Figure 6.46 portrays some BER results for the MMSE receivers. As expected, the 
best results were obtained for the minimum loading case (Figure 6.46a) of the 
highest MIMO orders (highest receive diversity). Since the Vehicular A channel 
has greater number of taps, best results are obtained for this channel (note that 
perfect channel estimation is assumed). Indoor A is the second-best, since it has a 
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Figure 6.44 DL BER performance for MF, using (a) k = 1 and (b) k = SF.
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second tap of greater power than the pedestrian A channel, which is predominantly 
a one-tap channel.

For the fully loaded system (Figures 6.46b and Figure 6.47), it can be seen 
that the situation is quite different, with the lowest MIMO orders yielding the 
best results, due to the reduction of interference. Thus, for both modulations, the 
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best and worst channel’s performance are still Vehicular A and Pedestrian A, for 
high values of Eb/N0. For the 16-QAM case with low values of Eb/N0, the channel’s 
performance order is modified, with the worst being Vehicular A. This is due to the 
nature of the 16-QAM modulation, which is dependent on the symbol’s amplitude, 
being highly influenced by high levels of multipath interference. Note also that the 
performance of both Pedestrian A and Indoor A are much closer for the 16-QAM 
case, due to the modulation’s inaptness to exploit multipath when compared to the 
QPSK modulation.

The MMSE results are much better than for the MF alone, due to the equaliza-
tion. The only performance curves from both receivers that are closer to each other 
are for the case with no interferers and SISO, where interference is minimal, caused 
only by the channel’s wideband effect (ISI).

Regarding the ZF results, it can be seen that these are significantly worse that 
those of the MMSE algorithm, with differences of performance over 10 dB. Noise 
estimation plays a determining role in the MMSE algorithm, especially in fully 
loaded systems, where the interference is high.

Some uplink results for both the MMSE and ZF are presented in Figure 6.48. 
The performance is also worse than for the downlink, due to the added interfer-
ence between spreading sequences. The ZF results are disastrous (above 10%), 
augmenting the importance of the estimation of the noise component for the 
MMSE.
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Ultrawideband (UWB) technology uses extremely wide bandwidth signals with 
low-power spectral density. This approach changes the wireless communications 
paradigm fundamentally because the large signal bandwidth leads to the emer-
gence of some interesting and unique channel properties [Allen et al. 2006, Sipal 
et al. 2012d]. There has been an enormous interest in the technology during the 
last 20 years because UWB, and specifically UWB multiple-input and multiple-
output (MIMO), enables very high data-rate wireless communications, wireless 
asset localization, and microwave medical imaging, with properties and capabili-
ties unmatched by conventional wireless technologies. The objective of the chapter 
is to introduce UWB MIMO technology and to provide an overview of its major 
potential and constraints for these three fields.

7.1 UWB for Wireless Communication: Introduction
As the name suggests, UWB systems are wireless systems with a very large 
bandwidth. Based on the current generally accepted definition and industry 
specifications, a wireless system can be described as UWB if it uses an abso-
lute bandwidth larger than 500 MHz, or a relative bandwidth larger than 20% 
[Allen et al. 2006].

In this section, we discuss the motivation for UWB wireless systems. This is 
followed by a brief overview of the history of UWB systems and their outlook for 
the future. Finally, the main modulation schemes and the worldwide regulatory 
framework for UWB regulation are discussed.

7.1.1 Motivation for UWB
The history of wireless communication started with Hertz’s experimental transmis-
sion of short “UWB-like” impulses in the 1880s [Allen et al. 2006]. The practical 
applications of these experiments emerged in 1895 when Marconi demonstrated 
the transmission of information over a distance of a mile for nonline of sight condi-
tions [Falciasecca et al. 2009]. Since then, the advances in wireless communications 
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technology have been rapid. For wireless engineers, this presents many interesting 
challenges, of which two key challenges are the following:

 ◾ Currently, the radio spectrum suitable for wireless transmission is almost 
fully allocated; therefore further expansion of the bandwidth for wireless ser-
vices is limited [Goldsmith et al. 2009].

 ◾ Despite all the progress we have made in the past 100 years, the main force 
behind the increase of data rate in a single link is the increase of bandwidth.

UWB addresses both issues. In terms of the allocated spectrum, UWB uses the 
same spectrum that is being used by the primary users. However, due to the strict 
regulations on the effective isotropic-radiated power (EIRP) spectral density, for 
example [Sipal et al. 2012d], the wideband radiation causes only negligible interfer-
ence with the primary users. For the primary user, the UWB radiation appears to 
be white noise, and due to its low power UWB does not significantly deteriorate 
the performance of the primary user [Allen et al. 2006]. For the UWB user, the 
primary user represents an interference source which, due to its narrowband nature, 
corrupts only a small part of the UWB signal so that coexistence is possible [Allen 
et al. 2006].

In terms of the second statement about bandwidth being the main force for 
data-rate increase, we use the example of the IEEE802.11 systems and discuss the 
main forces behind the increase in its capacity in the evolution of the system.

In the IEEE802.11a standard enacted in 1999, the single stream data rate was 
54 Mbps and multiple users were accommodated by frequency division multiplex 
(IEEE802.11). With the IEEE802.11ac standard of 2013, a single stream data 
rate in the IEEE802.11ac systems is now capable of offering up to 866.7 Mbps 
(IEEE802.11). In other words, the data rate per single stream increased by a factor 
of 16 over 14 years.

The contributors toward this development are: bandwidth and MIMO; reduc-
tion of the guard interval; increase of the modulation level; and increase of the code 
rate. The contribution of these to the overall factor of 16 is illustrated in Figure 7.1.
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IEEE802.11a and IEEE802.11ac.
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Note that bandwidth and MIMO are the main contributors to the increase in 
capacity by a factor of 9.9. Multiuser MIMO-enabled users share the same frequency 
band. As a result, the bandwidth of the orthogonal frequency-division multiplexing 
(OFDM) symbol is increased from 20 to 160 MHz. This alone gives an increase by 
a factor of 8. Furthermore, the relative number of pilot and guard subcarriers has 
been reduced. As a result, the number of data subcarriers in IEEE802.11ac is 476 
compared to 48 in IEEE802.11a.

The reduction of the guard interval from 800 to 400 ns means that the symbol 
repetition rate, and hence the data rate, has increased by a factor of 1.1. The increase 
of modulation order from 64-QAM to 256-QAM represents a significant challenge 
for analogue-to-digital conversion but contributes only by a factor of 4/3 = 1.33. 
Finally, the increase of code rate from 3/4 to 5/6 has provided a data rate increase 
by factor of 1.11.

The numbers in Figure 7.1 confirm the importance of bandwidth and MIMO. 
Multiple-user MIMO enables the reuse of spectral resources by multiple users but 
one still requires bandwidth to provide data rate in the single data link. In the 
logarithmic sense, the bandwidth in IEEE802.11ac is closer to UWB (factor 3.125) 
than to its predecessor IEEE802.11a (factor of 8). This underlines the importance 
of studying UWB channels and UWB MIMO. On the one hand, the large band-
width represents a challenge. On the other, the bandwidth offers a higher temporal 
resolution which enables a better understanding of the underlying physical prin-
ciples in a wireless channel.

7.1.2 History and Current UWB Standards
The pioneering experiments of Hertz and Marconi employed electric sparks and 
are often considered as the first UWB experiments [Allen et al. 2006]. Wireless 
technology, however, soon realized the advantage of heterodyne narrowband 
transmission and the art of wireless using extremely short pulses was forgotten 
until the 1960s. In the 1960s, this interest was revived by a US military proj-
ect mainly due to an interest in radar applications, as radar resolution increases 
with bandwidth [Allen et al. 2006]. Commercial interest in UWB technology 
for communications began in the 1990s. However, the real trigger for the inten-
sive research efforts had been marked by the Part 15 ruling of the US FCC that 
allowed unlicensed UWB radiation subject to strict EIRP requirements [Allen 
et al. 2006].

Standardization efforts started in 2002, and are sometimes considered to be 
one of the reasons for the premature commercial failure of the technology [Sipal 
et al. 2012d]. The high data-rate UWB standard was deliberated upon by the IEEE 
802.15.3a task group. However, two opposing industrial alliances, WiMedia alli-
ance and UWB forum, were unable to find a compromise and as a consequence the 
standardization efforts within the IEEE were stopped in early 2006 [Heidari 2008, 
Sipal et al. 2012d].
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The UWB forum was dismantled soon after Motorola left it in 2006 [Heidari 
2008]. The WiMedia alliance brought their proposal forward to the European 
Association for Standardizing Information and Communication Systems (ECMA), 
and their multiband OFDM scheme was standardized by the ECMA-368 standard. 
The ECMA-368 standard foresees data rates ranging from 53.3 to 480 Mbps using 
OFDM symbols with 128 subcarriers and 528 MHz bandwidth. More details of 
the WiMedia’s ECMA standard can be found in the standard itself (ECMA 368) 
or in [Heidari 2008].

The dismantling of the IEEE 802.15.3a task group has, however, not been 
the end of UWB standardization within the IEEE. Two low-data-rate standards 
have since been approved, namely, the IEEE802.15.4a for personal area networks 
(IEEE802.15.4) and IEEE802.15.6 for body area networks (IEEE802.15.6).

These standards are attractive because they offer the possibility to implement 
communication systems with properties desirable for wireless sensor networks. 
The systems have low-power consumption, they are robust against the impact of 
frequency selective fading, their inherently low range combined with time hop-
ping enables dense spatial reuse of the frequency resources, and in the case of 
IEEE802.15.4 they also provide ranging capabilities required by location-aware 
wireless sensor networks.

The IEEE802.15.4a for personal area networks relies on the combination 
of burst-position modulation (BPM) and binary-phase-shift-keying (BPSK) 
(IEEE802.15.4). The symbol structure is presented in Figure 7.2. Each sym-
bol transmits two information bits. The first bit is defined by the position of the 
burst of pulses in the symbol—in the first or in the second half of the symbol as 

Transmit: 0X

Tb

Tb

Transmit: 1X

TGuard

Tsym

Tsym

Hopping for multiuser—activate one slot out of NHOP

TGuard

Figure 7.2 The symbol structure in the 802.15.4a UWB standard. The light shade 
of gray is used to show the PPM modulation. To enable spectrum sharing, time 
hopping is used and transmitted only in one time slot Tb (dark gray) is used for bit 
transmission.
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shown in Figure 7.2. The second data bit is coded by the polarity of the pulse burst. 
Additionally, the pulse burst can be positioned in one of NHOP bins (NHOP is integer 
representing the number of bins/slots for time-hopping sequence) as the standard 
foresees time hopping to enable spectrum sharing among multiple users. The num-
ber of chips (pulses per burst) and the number of bins for hopping are defined by 
the standard and vary between different data rates (IEEE802.15.4). The manda-
tory bandwidth of the pulses is 499.2 MHz, but optionally can also reach 1081.6, 
1331.2, and 1354.97 MHz (IEEE802.15.4).

The IEEE805.15.4a UWB standard foresees nonmandatory ranging capability 
which relies on time-of-arrival estimation (IEEE802.15.4). The range is determined 
using the roundtrip duration of a signal between two nodes, and the known dura-
tion of the processing at the distant transceiver (IEEE802.15.4). The ranging preci-
sion as defined by the standard can achieve resolution of up to 1 cm (IEEE802.15.4).

The IEEE802.15.6 system for body-area-networks is a low complexity low data-
rate standard providing data rates from 0.3948 to 12.636 Mbps (IEEE802.15.6). 
The mandatory modulation is impulse radio (IR) using on–off-keying (OOK) and 
low complexity energy detection. Optional IR with differential BPSK/QPSK or 
frequency modulation UWB can be implemented (IEEE802.15.6).

In OOK IR UWB, the data bits are modulated on a symbol as presented in 
Figure 7.3. For the transmission of “0,” the pulse is transmitted in the first half of 
the symbol; for the transmission of “1,” the pulse is transmitted in the second half 
of the symbol, as shown in Figure 7.3. Within each half of the symbol, there are 16 
bins with duration TW, which are used for multiuser access by time hopping. The 
duration of the pulse TW can be equal to 2, 4, 8, 16, 32, or 64 ns. The increase of the 
pulse duration reduces the data rate by a factor of 2, but it improves the sensitivity 

Transmit: 0

Tw

Tw

Transmit: 1

Tsym

Tsym

Hopping for multiuser—activate one slot out of 16

Figure 7.3 The symbol structure in IEEE802.15.6. The light gray color shows the 
information carried in the first or the second half of the symbol. Each half consists 
of 16 time slots for time-hopping is employed and only one time slot (dark gray) 
per symbol is actively used for communication.
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of the receiver by 3 dB. The pulse bandwidth is 499.2 MHz (IEEE802.15.6). The 
standard does not define the pulse waveform, but chirp pulses or chaotic waveforms 
to create pulses long in the time domain yet satisfying the UWB criteria in the 
frequency domain are suggested (IEEE802.15.6).

7.1.3 UWB Regulations Worldwide
The standards described in Section 7.1.2 define the framework for communica-
tions, but the transmitters are also required to comply with the local regulations 
on the EIRP spectral density. The corresponding regulations in Europe, the United 
States, Korea, and Japan are presented in Figure 7.4. As can be seen, the maximum 
emission limit in all regions is the EIRP spectral density of −41.3 dBm/MHz. More 
details on the regulations can be found, for example, in [Sipal et al. 2012d].

These regulatory limits have significant impact on the design and operation of 
MIMO in UWB systems because all UWB regulations are EIRP spectral density 
bound. It means that UWB MIMO systems must ensure the maximum transmit-
ted power spectral density in any direction does not exceed the limit. In contrast, 
for the IEEE802.11, the radiation is power bound. Hence, as long as the total gain 
of transmission does not exceed 6 dBi, the power spectral density radiated in a 
selected direction can be increased [Vithanage et al. 2009].
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Figure 7.4 Spectral emmission masks for UWB region in Europe, the United 
States, Japan, and Korea. In bands denoted as DAA, radiation is permissible only 
for transmitters equipped with detect-and-avoid capability. In bands denoted as 
LDC, only low-duty-cycle operation is allowed.
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In summary, the understanding of the regulations for UWB systems is impor-
tant as these regulations set a different framework. In some cases, UWB sys-
tems, therefore, have to resort to different MIMO optimization strategies than 
IEEE802.11, making UWB system design and implementation rather specific 
[Vithanage et al. 2009].

7.2 UWB Wireless SISO Channel
The UWB wireless channel differs significantly from the narrowband channel 
because its bandwidth enables the emergence of some unique and interesting chan-
nel properties. These properties represent the main opportunity for the technology, 
but at the same time they can also be seen as its main limitation. Hence, the UWB 
wireless channel is introduced here.

In this section, the path gain, channel impulse response in SISO UWB wireless 
channel, and the robustness of UWB wireless channel to fading are discussed. The 
main objective of this section is to demystify the UWB wireless channels.

7.2.1 Path Gain in the UWB Wireless Channel
Path gain is the most important component in the link budget. It enables designers 
to perform initial range and feasibility estimates. Here, only the general concept 
of path gain is introduced and readers interested in more details on path gain are 
referred, for example, to [Molisch et al. 2004] and [de la Roche et al. 2013].

Path gain is the mean expected attenuation a signal experiences during propaga-
tion over range r in a particular environment, and is defined as [de la Roche et al. 2013]
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where E{⋅} is the expected value excluding fading (see Section 7.2.5); H( f, r) is 
the channel transfer function for range r; B is the bandwidth; and fc is the center 
frequency.

The reader should note the inverse relationship between path gain and path loss. 
As a result, path loss increases with range, whereas path gain is reduced.

Path gain is expressed in decibel (dB) scale as
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where PG0 is the mean path gain for reference range r0 (for UWB channels r0 is 
typically selected as 1 m [de la Roche et al. 2013]); n is the path-gain coefficient 
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(in free space n = 2, for line-of-sight condition in an indoor environment its value 
is lower since the path gain is increased by the energy carried by the multipaths 
[de la Roche et al. 2013]).

In contrast with narrowband channels, the UWB channel occupies a wide 
range of frequencies and H( f, r) depends strongly on frequency. Thus, path gain 
depends on the bandwidth and center frequency of the channel [Molisch et al. 
2004].

Practical systems introduced in Section 7.1.2 have typical bandwidths of 
500 MHz (with exception of IEEE802.15.4 which considers bandwidths of 500–
1355 MHz). Therefore, only the impact of center frequency has to be considered 
and variations within the symbol bandwidth can be neglected [de la Roche et al. 
2013].

7.2.2  Channel Impulse Response of the SISO UWB 
Wireless Channel

In principle, the impulse response of a UWB channel does not differ from that of 
a narrowband channel and can be expressed as the sum of consecutive multipath 
components (rays). For simulations that explore system performance, it is impor-
tant to know what the typical statistical properties of the channel impulse response 
are, that is, the typical delays of consecutive rays, the typical number of rays, and 
so on [de la Roche et al. 2013].

It is important to have a model that describes the channel accurately but remains 
understandable and simple. Unfortunately, most models reported in the literature, 
including the IEEE802.15.4a channel model for UWB, are rather complex and 
error prone. It can be shown that due to a systematic error in measurement process-
ing, an error was embedded in the IEEE802.15.4a channel model and the number 
of rays was overestimated by factor of 4 or 5 [Sipal et al. 2010].

7.2.3 Systematic Errors in Wireless Channel Measurements
Owing to the vast bandwidth, UWB channel measurements are often performed 
in the frequency domain by vector network analyzers (VNA). These measurements 
provide the measured channel transfer function HM( f ). The application of inverse 
Fourier transform on HM( f ) to obtain the channel impulse response introduces 
artifacts which we discuss next.

As noted above, the actual channel impulse response, hC(t), without the impact 
of the antennas, is a real function and can be described as a sum of N multipath 
components:
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where τi is the delay of the ith multipath component; δ(t) is the Dirac delta func-
tion; αi(t) is the real amplitude of the ith multipath component; and * denotes 
convolution.

Since practical communication systems (including practical UWB systems) 
are bandpass systems, the baseband descriptors are often preferred [Molisch et al. 
2004]. In the baseband equivalent, the channel impulse response hCB(t) is a com-
plex function and the relationship between hC(t) and hCB(t) is known to be [Ohm 
and Lueke 2006]:

 h t h t j f tC CB C( ) ( ) exp( )= ⋅{ }ℜ 2π  (7.4)

where fC is the center frequency of the system and ℜ{⋅} takes the real component 
of {⋅}.

Using Equation 7.3, it is possible to express the measured channel transfer func-
tion HM(f) as
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where B is the bandwidth of the measurement around the center frequency fC; 

rect( )
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<
; and HA,i( f ) is the combined channel transfer function 

of the transmit and receive antenna.
HA,i( f ) is specific to each multipath component to reflect the fact that the radia-

tion properties of antennas are dependent on the angle-of-departure and angle-
of-arrival (AoD and AoA), that is, the gain of the antenna is different in different 
directions. HA,i( f ) also includes the variation of antenna gain as a function of 
frequency.

Equation 7.5 represents the data obtained from a measurement with a VNA. 
The inverse Fourier transform of Equation 7.5 yields
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where sinc( ) /x x x= sin( ) .π π
Let us compare Equation 7.3 with Equation 7.6. In Equation 7.3, each ray has 

a simple form δ(t − τi). In the measured impulse response in Equation 7.6, each 
ray is represented by hA,i(t − τi) * [sinc(Bt) cos(2πfCt)] which includes the impact of 
antenna impulse responses hA,i(t) and the impact of the measurement with limited 
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bandwidth around the center frequency [sinc(Bt) cos(2πfCt)]. This is a systematic 
error which has an impact on the observation of the number of rays.

First, the [sinc(Bt) cos(2πfCt)] term produces multiple peaks which are not inde-
pendent multipath components. The impact of cos(2πfCt) can be removed by trans-
formation into equivalent baseband, but even then the sinc(Bt) term remains and 
its artifacts can be erroneously interpreted as independent multipaths. The first two 
sidelobes in sinc(Bt) are spaced 1.5/B around the main lobe attenuated by 13.3 dB. 
Further, sidelobes are then spaced by 1/B. It is possible to reduce the impact of the 
sinc-function by applying different windowing functions, but at the cost of filtering 
out some information about the channel.

Second, even if the impact of the sinc function is eliminated by advanced sig-
nal processing, this is not always true about the impact of manifestation of the 
antenna impulse responses hA,i(t), which is a convolution of the impulse response 
of the transmit antenna and the impulse response of the receiving antenna. Figure 
7.5 shows a simulated antenna impulse response hA,i(t) for transmission between 
two example antennas in free space, that is, the impulse response corresponds to a 
single ray. Thus, Figure 7.5 shows the difficulty of telling apart the manifestation of 
antenna impulse response hA,i(t) and independent rays.
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Figure 7.5 Manifestation of antenna impulse responses for free-space transmis-
sion between two discone antennas (top) and between two circular monopole 
antennas facing broadside (bottom).
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The removal of hA,i(t) from Equation 7.6 is possible, as shown in [Sipal et al. 
2010] where the known antenna impulse response was deconvolved from a mea-
sured channel to leave only the sinc function present. However, the deconvolution 
requires perfect knowledge of hA,i(t) for each ray, which is only possible when the 
AoD and AoA for each ray are known. This is not the case for a general channel 
measurement [Malik et al. 2008].

To conclude, this section shows that the traditional channel measurements are 
subject to systematic error which can result in overestimation of the number of 
independent rays in the channel. With this knowledge, it is possible to correct and 
simplify many channel models as is shown in the subsequent section simplifying 
the IEEE802.15.4a channel model.

7.2.4  Removal of Systematic Measurement Error 
from Channel Models

The IEEE802.15.4 channel model is the most widely used channel model for UWB 
system modeling. The channel impulse response, according to the IEEE802.15.4a, 
is defined for the equivalent baseband channel, that is, it is a complex variable, and 
it defines that the rays arrive in NK clusters, each of which consists of up to NL rays 
[Molisch et al. 2004]:
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where Tk is the cluster delay; τk,l is the delay within the cluster; θk,l is the phase of 
the ray.

The intercluster delays Tk − Tk−1 are a Poisson process [Molisch et al. 2004]. The 
intracluster delays τk,l − τk,l−1 are the mixture of two Poisson processes. However, 
when this mixture of Poisson processes is critically studied under the consideration 
of the systematic error from the preceding section, it becomes apparent that only 
one of the Poisson processes represents the actual ray, whereas the second one is 
caused by the systematic error in evaluation of the measured results.

For instance, in the office environment, the two Poisson processes are reported 
to have mean ray arrival times 0.337 and 5.26 ns [Molisch et al. 2004] and the pro-
cess with mean ray arrival time of 0.337 ns dominates with relative occurrence of 
98% [Molisch et al. 2004]. Based on the previous section, it is reasonable to argue 
that the IEEE802.15.4a channel model overestimates the number of paths [Sipal 
et al. 2010].

Thus, it is possible to conclude that the mean arrival time of a ray in a cluster 
is a single Poisson process. In the office environment, the mean ray arrival time is 
5.26 ns. For other environments, it is the Poisson process with the longer mean 
ray arrival time from the two offered by the IEEE802.15.4a channel model. This 
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significantly simplifies the channel model as the number of independent rays is 
significantly reduced [Sipal et al. 2010] and it enables us to reuse the results of the 
IEEE802.15.4a channel model.

7.2.5 Multipath Fading in UWB Wireless Channels
Fading in the wireless channels is caused by multipath superposition at the receiver. 
The superposition of multiple signal copies can be either constructive or destruc-
tive. As a result, the received signal strength can vary significantly from values 
expected based on path gain. Similarly, even a small displacement of the transmit-
ter or receiver can convert constructive superposition into destructive interference 
and vice versa [de la Roche et al. 2013].

UWB systems are often quoted to be robust against multipath fading. This 
statement is generally true but robustness to multipath fading also depends on the 
architecture of the UWB system [de la Roche et al. 2013]. Thus, this section dis-
cusses frequency-selective fading in more detail.

The channel transfer function H( f ) is obtained as the Fourier transform of 
Equation 7.3:
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The received channel energy for a channel with center frequency fc and band-
width B can be determined as follows:
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Some basic algebra results in
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where sinc( )x
x

x= sin( ) .π
π

Equation 7.10 can be used to explain fading in narrowband and UWB chan-
nels. The single-sum is the energy carried by the multipath and represents the mean 
path gain. The double-sum represents the fading and the superposition of the mul-
tipath components in the time domain. Depending on the delay between mul-
tipath components as well as the amplitudes of αi, the components in the double 
sum either increase or reduce the channel energy.

Owing to the sinc term, the contribution of the second sum in Equation 7.10 
is reduced with bandwidth. For narrowband channels, sinc[B(τk − τi)] ≈ 1, and the 
variation of path gain can be significant because even for a small displacement, the 
terms cos[2πfc(τk − τi)] can change the amplitude significantly. However, for a large 
bandwidth B the second term is weighted by sinc[B(τk − τi)] ≈ 0. As a result, the 
channel energy from Equation 7.1 does not change for small displacements. This is 
illustrated in Figures 7.6 and 7.7.
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Figure 7.6 Example of the spatial variation of the channel energy for various band-
width B in Equation 7.10, measurements obtained for a laboratory environment as 
described in Sipal (2012). (Adapted from V. Sipal, Impact of the wireless channel on 
the performance of ultrawideband communication systems, PhD thesis, University 
of Oxford, Dec. 2012.)
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Figure 7.6 presents the measured channel energy (normalized to a local mean) 
evaluated according to Equation 7.10 for bandwidths 5, 50, 500, and 5000 MHz. 
All measurements were performed for the same 1600 channels (grid 40 × 40) in a 
laboratory environment. The details about the measurement can be found in [Sipal 
et al. 2011]. In terms of fading, Figure 7.6 shows the variation of the channel energy 
for a small spatial displacement and it also illustrates the increasing impact of the 
sinc term as the bandwidth in Equation 7.10 is increased.

Figure 7.7 focuses in more detail on the impact of the scaling of the sinc term 
with bandwidth. It analyzes the measurement from Figure 7.6 for bandwidths from 
1 MHz to 6 GHz. For each bandwidth, the normalized energy for each data point 
of the 40 × 40 grid is calculated. Then, the standard deviation of these energies is 
determined and used to calculate the fade depth, which is defined as three times the 
standard deviation of the spatial variation of the channel energy [Malik et al. 2007, 
Allen et al. 2008, Sipal et al. 2011]. Figure 7.7 shows how this measure scales with 
increasing bandwidth. It shows that for bandwidths beyond 1 GHz the channel 
energy variation in an indoor channel is negligible.

On the basis of Figures 7.6 and 7.7, it is apparent that systems with larger 
bandwidth are less prone to the impact of fading. However, this statement should 
be used with caution as the impact of fading depends on the modulation and 
other factors.

For IR systems such as those described by IEEE802.15.4 and IEEE802.15.6 
standard, the impact of fading is negligible and fade margin does not need to be 
considered in link budget. In terms of MIMO, the fact that the energy of the 
received signal is independent of small spatial displacement means that IR UWB 
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Figure 7.7 Fade depth scaling for channel from Figure 7.6 for various center fre-
quencies. Fade depth is defined as three times the standard deviation of the nor-
malized channel energy in dB.
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systems cannot benefit from spatial diversity systems, however, they still can benefit 
from spatial filtering techniques.

For OFDM systems, the mean energy of the received signal is independent 
of the small spatial displacement, but this does not apply to individual subcarri-
ers. In fact, the energy variation among individual subcarriers can be up to 20 dB 
[Sipal et  al. 2012b]. As a result, even though the mean received signal power is 
10 dB above the receiver sensitivity, a significant number of weak subcarriers may 
have negative SNR [Sipal et al. 2012b]. These subcarriers often cause a significant 
increase of the overall BER and lead to failure of the communication for UWB 
OFDM systems with fixed modulation [Sipal et al. 2013b].

This property, however, means that OFDM systems can benefit from both spa-
tial filtering and spatial diversity schemes. Both spatial filtering and spatial diversity 
in UWB OFDM systems are performed at the subcarrier level. Thus, there is little 
conceptual difference between a UWB OFDM system and a narrowband OFDM/
single-carrier system.

7.3 MIMO UWB Wireless Channel
The preceding section introduced the channel impulse response model for a UWB 
channel. In this section, it is shown how the model can be extended to describe 
MIMO channels.

First, let us assume that the observations are performed in the far field of the 
transmit antenna. Then, the rays in the antenna impulse response are manifes-
tations of plane waves and each ray manifests itself at all antenna elements of a 
MIMO system.

This assumption that the channel impulse response in adjacent channels con-
tains the same rays is confirmed by Figures 7.8 and 7.9. Data for Figures 7.8 and 7.9 
were obtained in a rigorous channel measurement campaign reported in [Sipal et al. 
2010, 2011]. The transmitter had a fixed position and the receiver was positioned 
in a grid of 40 × 40 points spaced by 6 mm. The measurement was performed in a 
laboratory environment across frequencies 3–20 GHz.

Figure 7.8 shows the channel impulse response of five adjacent channels. The 
channel impulse response was determined for the real channel (i.e., no baseband 
transformation) and therefore contains the artifacts discussed and described in 
Section 7.2.2 in Equation 7.6. It is apparent that the same rays with the same 
artifacts can be observed in all five channels. The gray dashed lines show that the 
delay of the rays is changing linearly with linear displacement. Figure 7.9 presents 
a time snapshot of the entire grid of 1600 channels to show the first two rays 
from Figure 7.8. It is apparent that if the measurement artifacts were removed, a 
single wave would be propagating across the plotted grid. It is also apparent that 
the wave is spherical (due to range of 1.1 m) but for small displacements, that is, 
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smaller than 100 mm, the error due to plane wave approximation is acceptably 
small.

To conclude, Figures 7.8 and 7.9 confirm the hypothesis that for a small dis-
placement matching rays can be identified in the impulse responses of the wireless 
channels and that it can be assumed that many of these rays are plane waves.

Thus, the channel impulse response of a MIMO channel with NR receiver 
antennas and NT transmitter antennas can be mathematically formulated as fol-
lows [Malik et al. 2005]:
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Figure 7.8 Channel impulse response for five adjacent channels spaced by 42 mm 
each, showing that the same rays, with a linear shift in delays, can be identified 
in each channel. (Reprinted from V. Sipal, Impact of the wireless channel on the 
performance of ultrawideband communication systems, PhD thesis, University of 
Oxford, Dec. 2012.)
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where hC,m,n(t) is the channel impulse response between antennas m and n and τi,m,n 
are the delays incurred due to the small displacement of the antennas.

Under the plane wave assumption, τi,m,n can be expressed using simple path 
delay geometry as a function of antenna spacing and AoA/AoD when the geometry 
and orientation of the transmitter and receiver arrays are known.

As mentioned earlier, these equations are valid only for a small displacement. 
In most cases for an indoor environment and range larger than 1 m, displacements 
below 10 cm are usually sufficiently small so that the path gain of individual rays 
does not change significantly, that is, change in αi due to change in path gain, shad-
owing, or antenna gain (due to changed AoA/AoD) can be neglected. For ranges 
below 1 m, the limit of what counts as a small displacement is smaller because the 
same absolute displacement results in larger relative change of path loss, that is, the 
αi coefficient change faster with displacement.

The overall MIMO channel impulse response comprises the individual chan-
nels from Equation 7.11. The specific results, however, depend on the MIMO oper-
ation applied to the signals received by individual antenna elements.

7.4 UWB Antenna Arrays
Antenna arrays are a fundamental component of most MIMO systems. Owing to 
the available bandwidth, UWB antenna arrays possess some specific properties not 
present in conventional antenna arrays [Kaiser et al. 2009]. For practical applica-
tions, however, caution is required because as with fading in UWB channels, many 
statements about UWB arrays are not general. They are applicable to certain array 
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geometry and certain signal types with specific bandwidth. These limitations will 
be discussed in more detail here.

7.4.1  Difference between Narrowband and UWB Array, 
Beam Patterns

There are two basic differences between a UWB and a narrowband antenna array 
behavior—the duration of the signals processed by the array and the bandwidth of 
the signal.

In narrowband systems, signal bandwidths are on the order of up to a few 
MHz. For instance, the IEEE802.11 standard specifies the subcarrier bandwidth of 
0.3125 MHz (IEEE802.11). The duration of such a signal multiplied by the speed 
of propagation is significantly larger than the physical dimension of typical arrays. 
Antenna arrays are thus described by array factors [Balanis 2005]. The array factor 
description assumes a signal at a single frequency being radiated/received by each 
array element. To describe the array reception/radiation in different directions, the 
signals are summed in the complex domain considering the phase shifts caused by 
geometric path differences [Balanis 2005].

For UWB arrays, the signal can be extremely short, that is, less than 1 ns. Hence, 
it is possible that for some antenna geometries and azimuth angles, the received/
transmitted signal is a pulse train. In other words, the signals do not superpose in 
the time domain. Additionally, due to the large bandwidth, a single phase shift as 
a descriptor for the geometrical path differences between rays received/transmitted 
by different antenna elements cannot be used.

As a result, time-domain descriptors for UWB antenna arrays, referred to as 
beam patterns, have been introduced, for example, in [Kaiser et al. 2009]. Consider 
Figure 7.10 showing a uniform linear array with N elements spaced by a distance d. 
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Figure 7.10 UWB antenna array transmitting signal s(t) with limited duration.
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The transmitted signal s(t) is delayed by delays τi which can be adjusted to control 
the direction of the main beam.

The transmitted signal y(t,φ) in direction φ in the far-field can then be described as

 
y t s t i
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1  
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For far-field beam steering in direction φ0, that is, τ τ ϕi i d c+ = +1 0/ sin , it is 
possible to rewrite Equation 7.12 as follows [Malik et al. 2006]:
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The beam patterns then characterize the properties y(t,φ) as a function of 
azimuth angle. These properties can be: the maximum power; the total radi-
ated energy; or the peak signal amplitude [Kaiser et al. 2009]. Here, the total 
radiated energy criterion is investigated in more detail to show the relationship 
between narrowband and UWB arrays. We define beam pattern ε(φ, φ0) as 
follows:
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Using Equation 7.13 and some basic algebra, it is possible to express ε(φ, φ0) as
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where R s t s t dtss ( ) ( ) ( )τ τ= −∗
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∫  is the autocorrelation function with * denoting 
complex conjugation, and ∆τ ϕ ϕd c/ (sin sin ).− 0

Considering that autocorrelation is a Hermitian function ( ( ) ( )),R Rss ssτ τ= −∗  it 
is possible to further simplify Equation 7.15 into
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Assuming that s(t) is a bandpass signal s(t) = b(t)cos(2πfct) with pulse envelope 
b(t). This is a realistic assumption, because the IEEE802.15.4 and IEEE802.15.6 
standards indeed use bandpass signals. The final expression for ε(φ, φ0) can be 
obtained as
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Equation 7.17 can be used to explain the behavior of narrowband and UWB 
arrays. For narrowband antennas, the geometric path delay in the array is negligible 
compared to the duration of the signal. Thus, it is possible to use the approximation 
Rbb(iΔτ) ≈ Rbb(0). As a result, the beam pattern is defined only by the phase shifts in 
the term cos(2πfcΔτ). Indeed, the result from Equation 7.17 for this case equals to 
the square of the classical array factor.

For UWB signals, specifically for the impulse system, the properties of the array 
also depend on the shape of the envelope signal b(t). As bandwidth increases, the 
impact of the cos term in Equation 7.17 is reduced. This dependency is typically 
manifested as smoothing of nulls in the beam pattern as shown in Figure 7.11.

From Equation 7.17, it is apparent that for large bandwidth and azimuth 
angles far from the main beam, the beam pattern assumes a constant level 
10 log10N, which is due to the fact that for these angles it is possible to approxi-
mate Rbb(iΔτ) = 0 for all i ≥ 1. This is observed for the sparse array and bandwidth 
of 4 GHz in Figure 7.11.
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Figure 7.11 Beampatterns for six element UWB antenna array transmitting sig-
nal Gaussian pulse b(t) with various bandwidths modulated at center frequency 
of 7.25 GHz. Elements spaced by (a) 2 cm and (b) 5 cm (enabling the existence 
of grating lobes). (Reprinted from V. Sipal, Impact of the wireless channel on the 
performance of ultrawideband communication systems, PhD thesis, University of 
Oxford, Dec. 2012.)
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7.4.2 Impact of Beam Patterns on Practical Systems
From Equation 7.17, it is apparent that the radiation patterns of an array depend 
strongly on the properties of the signal envelope Rbb(iΔτ), however from previous 
Section 7.4.1 it is apparent that the bandwidth of the signal plays a crucial role.

First, for OFDM systems, array factors can be used since the array actually 
transmits a large number of narrowband signals in parallel, rather than a short 
UWB impulse. However, the impact of the center frequency must be noted. In the 
language of the classical array factors, the phase shift between antenna elements is 
a variable of frequency. Thus, the array has different radiation properties for each 
subcarrier of the OFDM symbols. The practical implication is that MIMO beam-
forming has to be performed on a subcarrier basis.

In terms of IRs, it is noticed in Figure 7.11 that even for bandwidths of 500 MHz 
and 1 GHz, there is a little difference between the narrowband and UWB beam 
patterns. Consequently, [Sipal et al. 2012a] explored the upper bandwidth limit of 
array factor as a descriptor for IR. The work concluded that for impulse signals with 
bandwidth below BUL, array factors can be used without a significant error. The 
bandwidth BUL was empirically found to be [Sipal et al. 2012a]
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As observed in Equation 7.18, the upper limit in bandwidth is inversely pro-
portional to the physical dimensions of the array. Thus, it can be shown that for 
practical arrays and bandwidths below 1 GHz, the classical array factors, evaluated 
at the signal’s center frequency, can be used.

Grating lobe suppression is another interesting feature of sparse UWB arrays. 
Grating lobes appear in antenna arrays with element spacing larger than a half-
wavelength. For spacing larger than a wavelength, the energy radiated in the 
direction of the grating lobes equals the energy radiated in the main lobe. The 
beamforming ability of the array is compromised because the grating lobes cannot 
be controlled independently of the main lobe. However, [Kaiser et al. 2009] reports 
that UWB arrays do not manifest grating lobes.

[Sipal et  al. 2012c] studied this property in more detail and found that the 
transmitted pulse requires a relative bandwidth of more than 100% to effectively 
suppress grating lobes. Such a bandwidth is often used in theoretical works, but 
in current practical systems such as IEEE802.15.4 and IEEE802.15.6, the relative 
bandwidths are below 30% for the lowest center frequency in the US band. In fact, 
relative bandwidth of 100% is not currently allowed by the EIRP limits in Europe, 
Japan, and Korea.

To conclude the section on UWB arrays, it is noted that the case of UWB 
antenna arrays is different from the narrowband case. The UWB arrays therefore 
exhibit many interesting properties, but it is equally important to understand that 
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these properties cannot be found in all UWB systems with bandwidths greater 
than 500 MHz. In other words, one should be aware of the limitations of state-
ments relating to UWB arrays.

7.5 UWB MIMO
MIMO-based UWB OFDM can be considered similar to narrowband systems. 
This is the case especially for the high-speed UWB OFDM where multiple slower 
data streams are transmitted in parallel. In principle, the algorithms are the same as 
in narrowband OFDM systems because they are performed on the subcarrier basis, 
that is, the performance is optimized for multiple narrowband channels in paral-
lel. In other words, many algorithms discussed in other chapters of this book can 
be directly applied to UWB OFDM systems. Rather than repeating information 
contained elsewhere in the book, some of the distinctive specifics associated with 
UWB MIMO systems are discussed here.

7.5.1 EIRP-Constrained Radiation
The first and foremost difference between UWB MIMO and IEEE802.11 MIMO 
is the fact that the transmitter for UWB is EIRP constrained, whereas in IEEE802.11 
the transmitter is power constrained. Power-constrained systems cannot exceed 
the total radiated power but they may choose the spatial distribution of the radia-
tion, that is, they can increase the radiation in a certain direction and reduce it in 
another (within certain limits). EIRP-constrained systems, however, can reduce the 
radiation in undesired direction but they cannot allocate more power to the desired 
direction [Vithanage et al. 2009].

This difference means that while UWB can benefit from transmit beamform-
ing such that individual paths are summed constructively at the receiver, the algo-
rithms for power-constrained MIMO systems cannot be used directly [Vithanage 
et al. 2009]. The optimum solution to the EIRP-constrained problem is a complex 
convex optimization not suitable for practical implementation [Vithanage et  al. 
2009].

UWB receivers are not limited by EIRP. Thus, a UWB SIMO system can use 
algorithms different from a UWB MISO system. Due to the limitations on the 
EIRP, a SIMO system can be expected to provide better performance enhancement 
than a MISO system.

7.5.2 Grating Lobes, Element Spacing, and Antenna Selection
Another challenge for UWB systems is antenna spacing for systems operating in 
the entire UWB band. The UWB band in the United States spans from 3.1 to 
10.6 GHz. With spacing that optimizes performance at the lower end of the band, 
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grating lobes appear at the upper end of the band which compromises the benefits 
of beamforming. With spacing that prevents grating lobes at the upper end of the 
spectrum, the antenna elements are too close at the lower end of the spectrum so 
that beamforming is effectively nonexistent and channel correlation is strong.

One approach to UWB MIMO not affected by grating lobes is antenna selec-
tion. This is a diversity scheme in which each subcarrier is transmitted by exactly 
one antenna. Through channel sounding, the system determines which antenna 
is more suitable for transmission of each subcarrier and the subcarriers are then 
assigned as required [Vithanage et al. 2009].

This approach has multiple advantages. First, it is inherently EIRP constrained 
[Vithanage et al. 2009]. Second, there are no issues with grating lobes [Vithanage 
et al. 2009]. Third, it is a spatial diversity scheme which improves performance by 
mitigating the impact of fading. Fading, as described in Section 7.2.5, is the main 
limiting factor for UWB OFDM systems. Due to fading, a nonnegligible number 
of subcarriers have very low or even negative SNR, even for mean signal energy 
well above the noise floor. These subcarriers contribute mostly to the overall BER 
[Sipal et al. 2012b]. Antenna selection can, despite its simplicity, address this issue 
and significantly improve the performance of an OFDM UWB system. This is 
illustrated in Figure 7.12.

Figure 7.12 shows the BER improvement a WiMedia OFDM system operating 
at 200 Mbps would achieve in a measured channel with a 4 × 1 antenna selection. 
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Figure 7.12 Gross BER performance of a WiMedia OFDM system at 200 Mbps 
for four SISO channels and a 4 × 1 antenna selection. The figure uses measured 
wireless channel in an office environment. The dashed line represents strength of 
the forward error correction in the WiMedia standard. (Reprinted from V. Sipal, 
Impact of the wireless channel on the performance of ultrawideband communi-
cation systems, PhD thesis, University of Oxford, Dec. 2012.)
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Considering the highlighted strength of forward error correction, Figure 7.12 shows 
that increasing the number of antennas by a factor of 4 approximately doubles the 
range of the system from 3 m for a SISO system to 6 m with 4 × 1 antenna selec-
tion system.

Antenna selection is not suitable for IR systems because, due to the ability to 
resolve individual multipath components in the time domain, the energy received 
by all antennas is the same and spatial diversity typically cannot provide any sig-
nificant performance boost.

7.5.3 Complexity of MIMO for OFDM Systems
Another challenging issue for OFDM-based UWB MIMO is implementation com-
plexity. The optimum MIMO solution for UWB OFDM system (as well as other 
OFDM system) is performed in the frequency domain, that is, on the subcarrier 
basis. This means that a system with N antenna elements requires N OFDM chips.

The number of OFDM chips as well as the per-subcarrier optimization can 
be associated with a significant complexity/cost increase of the UWB OFDM 
system. Therefore, a cost–benefit analysis needs to be performed. The question 
of feasibility is not specific to UWB MIMO. However, the complexity/cost of an 
OFDM communication system is proportional to bandwidth [Sipal et al. 2012d]. 
As a result, a UWB OFDM chip is already more than 25-times more complex/
costlier than the IEEE802.11a chip, and 65-times more complex than DVB-T 
chips. Thus, many MIMO techniques increase the cost of narrowband systems 
by a few cents, but they may not be feasible for UWB because they increase the 
cost on the order of a few dollars, which may be prohibitive for many consumer 
electronics applications.

7.6 UWB Localization
It has been suggested that we are about to enter an era of technological revolu-
tion triggered by the advent of machine-to-machine communications [Evans et al. 
2012]. With the decrease of cost of wireless communication, billions of devices are 
expected to be equipped with the capability to communicate and share information 
and to be controlled wirelessly [Evans et al. 2012]. It is conceivable that for many 
of these applications, the localization of individual devices will play an important 
role. Therefore, much research effort has recently focused on localization in wire-
less sensor networks. UWB and UWB MIMO play a pivotal role in these activities 
because the properties of UWB signals and UWB wireless channels are suitable for 
these applications.

In this section, the main concepts of localization in wireless sensor networks 
will be introduced and it will be shown how localization can benefit from the prop-
erties of UWB and UWB MIMO systems.
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There are three main localization principles considered in the literature which 
can all benefit from the properties of UWB systems. These are [Gezici et al. 2005]

 ◾ Received signal strength (RSS) methods
 ◾ Time-of-arrival (TOA) and time-different-of-arrival (TDOA)
 ◾ Angle-of-arrival (AOA) methods

7.6.1 RSS Ranging
The objective of ranging is to determine the unknown distance between an anchor 
and a node. The position of the node can be uniquely determined by triangulation 
if the range to three anchors with known positions [Gezici et al. 2005]: Such sys-
tems based on RSS exploit the fact that the path gain, introduced in Section 7.2.1, 
depends on the range between the transmitter and the receiver (7.2). The range can 
be calculated from the RSS. The main systematic errors limiting the precision of 
the RSS method are fading, shadowing, and unknown path-gain properties (exact 
PG0 and n in Equation 7.2 are unknown for a specific channel). As a result, RSS is 
typically used in conjunction with complex RSS fingerprinting [Malik and Allen 
2006]. In other words, the RSS is measured for the entire area of interest. Later, 
measurements are compared to this database to determine the location.

UWB is typically not considered as a candidate technology for RSS ranging, 
but UWB and UWB MIMO can help to improve its precision. The first advan-
tage of UWB systems compared to narrowband systems is the fact that wideband 
signals are robust to fading (see Section 7.2.5). In an indoor environment, the use 
of wideband signals with bandwidths exceeding 500 MHz effectively eliminates 
fading, removing one of the most significant sources of systematic errors in RSS 
systems.

If the RSS ranging system is employed in connection with MIMO, the preci-
sion further increases because beamforming can enable simplification of the com-
plex multipath channel into a single-path directional channel [Malik and Molisch 
2006]. This has two benefits. First, a single path channel does not suffer from 
fading. Second, the path gain in a single-path channel corresponds to free-space 
propagation, that is, PG0 and n are known.

Despite the performance improvements UWB can provide to RSS systems, it is 
typically not considered because the precision of the other two localization meth-
ods is superior.

7.6.2 TOA Ranging
The principle of TOA-based ranging is the measurement of the propagation delay 
between the anchor and the node [Tarique et al. 2006a,b]. As with RSS methods, 
localization is performed when the range of the node to three anchors is known. It 
is immediately apparent that TOA methods are suitable only for LOS conditions as 
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the delay in NLOS condition does not correspond to range. Complex algorithms 
have therefore been developed to identify NLOS conditions in order to reduce sys-
tematic error in localization [Gezici et al. 2005].

UWB systems are highly suitable for this type of localization, because the 
extremely short duration of UWB impulses enables very high precision in measure-
ment of delay. The precision limit of TOA-based ranging arrival is given by the 
Cramer–Rao-lower-bound (CRLB), which is derived from the Fisher information 
matrix. Here, we present the CRLB for TOA ranging in free space. The minimum 
ranging error var( )d  given by CRLB is given as follows [Gezici et al. 2005]:
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where c is the speed of light; SNR is the signal-to-noise ratio; and 
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Free-space ranging represents only a very simple case and practical UWB local-

ization systems achieve precision above the CRLB. However, Equation 7.19 pro-
vides a good intuitive understanding of the main issues of ranging in practical 
systems.

Assuming that the ranging signal S( f ) is a bandpass signal, the first observation 
is that the precision of ranging increases with center frequency and bandwidth of 
S( f ). The second observation is that range d is not present in Equation 7.19.

Although both observations are correct, the impact of SNR in Equation 7.19 has 
to be considered. First, SNR decreases with range with an adverse effect on ranging 
precision. Second, the path-gain, that is, SNR, decreases with frequency. Third, due 
to the higher attenuation of higher frequency components, adding extra bandwidth 
increases β but also reduces SNR.

Since additional bandwidth also typically has adverse effect on noise figure of 
amplifiers [Sipal et al. 2012d], it is concluded here that while bandwidth enables 
precise ranging, for practical systems, a compromise between β (bandwidth and 
center frequency) and SNR must be considered. Also, even though CRLB offers 
high theoretical precision even for negative SNR (in dB), the establishment of com-
munication for such a situation is highly challenging and for practical systems often 
require pulse bursts with hundreds of chips.

In practical systems, the ranging precision of TOA is further impaired by other 
factors. The first and most important factor is the multipath. Only the direct path 
carries the relevant information about range. Thus, not only do later multipath 
components in the channel act as noise and have adverse effect on the SNR, in some 
cases they may be stronger than the direct path making the detection of the direct 
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path more challenging. These issues can, to some extent, be alleviated by the use 
of MIMO systems which employ spatial filtering to attenuate the later multipath 
components and enable improved detection of the direct path.

Another issue of TOA systems is clock synchronization between the transmit-
ter and the receiver. Therefore, the practical ranging system in IEEE802.15.4a uses 
measurement of roundtrip delay. In principle, the transmitter initiates ranging and 
sends a message. This message is received by the node, which sends back confirma-
tion of receipt followed by information about the delay incurred at the receiver due 
to processing of the ranging request. The initiator can then determine the round 
trip delay with high precision. For details about the scheme, the reader is referred 
to the IEEE802.15.4 standard (IEEE802.15.4).

An alternative solution to the synchronization problem is the use of the TDOA 
scheme [Gezici et al. 2005], where the node compares relative delays between sig-
nals received by the anchors. This scheme is used, for example, in the global posi-
tioning system.

7.6.3 AOA Localization
AOA localization aims to detect the direction of the incoming wave. If the direction 
of the node with respect to three anchors is known, the location can be determined. 
At first, it would appear that the precision of this localization scheme depends 
mainly on the physical dimensions of the array as these define the beam-width. 
However, the advantage of UWB is the fact that the wide bandwidth enables 
extremely short delays between the pulses received by adjacent antenna elements to 
be determined [Mallat et al. 2006].

In other words, the large bandwidth enables more precise detection of the AOA 
because the AOA problem is transformed into TDOA. As a result, the same chal-
lenges as in the case of the TOA/TDOA methods are faced by the AOA systems. 
In fact, the situation is more challenging as the AOA system must not match pulses 
originating from the direct path and indirect paths. Otherwise, fundamentally 
incorrect results are obtained.

7.6.4 UWB Localization: Summary
This section has introduced the fundamental concepts used in wireless localization, 
and explained the principles as well as their drawbacks and limitations of the meth-
ods. It is noted that despite the drawbacks the precision offered by UWB for node 
localization is significantly superior to the precision of any narrowband system. 
Thus, UWB localization remains one of the most interesting wireless technologies 
that can be seen as an enabler for many wireless sensor networks.

It is also noted that this section has barely scratched the surface of the topic 
of UWB localization. For instance, improvement in the precision of localization 
is achieved when cooperative localization is used, that is, the nodes also use and 
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share the information about the relative position with other nodes to reduce the 
uncertainty of localization. Readers interested in the topic are referred to review the 
works of [Gezici et al. 2005] and [Zekavat et al. 2012].

7.7 Microwave Imaging
The use of UWB MIMO systems in microwave imaging is as exciting as its ability 
of precise localization. Microwave imaging for breast cancer detection has attracted 
significant attention from the research community for almost two decades and 
the research has moved from theoretical simulations to clinical trials with patients 
[Fear et al. 2003, Nikolova 2011].

The conventional techniques for breast cancer detection are mammography and 
MRI [Fear et al. 2003, Nikolova 2011]. The main issues of mammography are the 
use of ionizing radiation and patient discomfort due to breast compression. The dis-
advantage of MRI is the cost of the scan. Microwave imaging is of interest due to its 
potential to deliver a low-cost nonionizing method for breast cancer detection, but 
numerous obstacles have to be overcome before the potential of microwave imaging 
is fully achieved. In this section, we discuss some microwave imaging techniques 
and their limitations as well as the limitation of microwave imaging in general.

7.7.1 Techniques of Microwave Imaging
Most microwave imaging techniques rely on the contrast between the electromag-
netic properties of malignant and healthy tissues. While the level of contrast is still 
subject to research especially due to differences found between in vivo and ex vivo 
samples [Nikolova 2011], there is a general agreement that malignant tissue has 
higher permittivity and conductivity than healthy tissue, for example, [Fear et al. 
2003] and [Nikolova 2011]. Most microwave-imaging techniques aim to detect this 
contrast. The objective of most techniques is to achieve imaging with resolution 
below the diffraction limit of half-wavelength [Nikolova 2011].

The most promising microwave techniques that are capable of beating the 
diffraction limit and that have reached the stage of clinical trials are micro-
wave tomography and UWB-pulsed radar [Fear et al. 2003, Klemm et al. 2009, 
Nikolova 2011].

The principle of microwave tomography is the following. A MIMO measure-
ment is performed by antennas in the proximity of the breast, for instance one 
of the first practical setups from Dartmouth College consists of 32-channels and 
records data at multiple frequencies [Fear et  al. 2003]. The measured channel 
matrix is then compared to a simulated channel matrix that is obtained using a 
breast model. The comparison is used in an iterative process to match the model 
parameters with the measured signals in order to obtain an accurate image of the 
breast [Fear et al. 2003]. This process is computationally challenging but it enables 
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achieving precision on the order of a tenth of the wavelength [Fear et al. 2003, 
Nikolova 2011].

Pulsed radar is a time-domain technique using synthetic focusing. The tech-
nique relies on the assumption that reflections from significant scatterers will be 
present in all measured impulse responses [Klemm et  al. 2009, Nikolova 2011]. 
In its simplest form, the technique can be explained using Figures 7.8 and 7.9. In 
Figures 7.8 and 7.9, the reflections in the channel impulse response originating 
from the same reflector can be matched. From the knowledge of the geometrical 
position of the antennas and the delays of the reflection footprints received by the 
antennas, the 3D angle of arrival of each ray can be determined. In microwave 
imaging, the same principle is applied considering more complex wave propagation 
in the heterogeneous medium of a breast.

Despite conceptually being a time-domain technique, the measurements are 
typically performed in the frequency domain using a VNA similar to the channel 
measurements described in Section 7.2.3. The precision of the method is given by 
the measurement bandwidth and the number of antennas. However, as will be dis-
cussed in Section 7.7.2, there are limits beyond which it is not feasible to increase 
the bandwidth or the number of antennas.

It is noted that, apart from the techniques mentioned above, there is a pleth-
ora of other microwave-imaging techniques that are being investigated, such as 
hybrid techniques. An example of a hybrid method is the thermoacoustic method 
[Nikolova 2011], which is based on the observation that various tissue types heat 
up differently (malignant tissue heats more rapidly due to higher conductivity). As 
a result of heating and cooling, the expansion and contraction of the tissue induces 
acoustic waves analyzed by ultrasound sensors.

7.7.2 Limitations of Microwave Imaging
The main limitations of microwave imaging are the impact of lossy tissue and 
antenna design [Fear et al. 2003, Nikolova 2011]. The first and perhaps the main 
challenge for microwave imaging is the fact that the tissues in human body are lossy 
as shown in Figure 7.13 presenting the electromagnetic properties of human tissue 
according to the Gabriel model [Gabriel 1996]. The wave coupled into the conduc-
tive medium is attenuated and has limited penetration depth. The skin depth for 
human tissue as a function of frequency is presented in Figure 7.14. For muscle and 
dry skin, the skin depth is less than 10 mm for frequencies above 2 GHz. Thus, the 
detection of signals reflected from small scatterers is challenging even for systems 
with a link budget as high as 120 dB [Fear et al. 2003].

This has a direct impact on the resolution and the application of these imaging 
systems. Practical systems typically do not use frequencies above 3 GHz [Klemm 
et al. 2009]. In the case of the pulsed radar, adding additional bandwidth above 
3 GHz would actually reduce the SNR of the processed signal, in other words 
the resolution would not increase for increased signal bandwidth. In terms of 
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parameters according to [Gabriel 1996].
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applications, the losses in tissue mean that microwaves are not suitable for imag-
ing of deep tissues and the applications are limited only to breast cancer imaging 
because breasts mainly consist of fatty tissue with relatively low conductivity 
(compared to other tissues in the human body) [Fear et al. 2003, Nikolova 2011].

In terms of antennas, there are two main challenges. As shown above, the elec-
tromagnetic properties of human tissue differ significantly from those of free space. 
Therefore, the antenna designs have to be matched in order for the signal to be radi-
ated into the human body [Sipal et al. 2013a]. To increase the efficiency of radiation, 
a matching liquid is typically used. For breast placed directly on the antenna, the 
contact area between the antenna and the tissue depends on the patient, impacting 
the antenna efficiency. With the breast immersed in a matching liquid, this issue is 
resolved [Ruvio et al. 2010].

The second challenge is the physical size of the antennas and the coupling of 
adjacent antenna elements. It is noted that antennas designed to radiate into high 
permittivity tissue are significantly smaller than their free-space counterparts. 
However, the precision of the imaging depends strongly on the number of antennas 
employed. In typical proof of concept systems, two antennas are moved around the 
phantom by a positioner. For practical systems, the duration of these scans is not 
acceptable as the image would be distorted due to the movement of the patient. 
Thus, antenna arrays are typically used, but there is only a limited space around 
the breast and arrays with a large number of elements will be impacted by mutual 
coupling between antenna elements, which reduces the resolution capabilities.

There are numerous other challenges relating to microwave imaging. For 
instance, it is desirable to reduce the duration of the measurement to mitigate the 
impact of the patient’s movement. This requires fast multichannel VNA. Another 
challenge is the design of low-loss fast-switching matrices so that a 4-channel VNA 
can service a 32-antenna imaging system [Fear et  al. 2003]. Despite these chal-
lenges, microwave imaging remains a highly interesting research avenue. In the last 
20 years, we have witnessed an enormous progress from theoretical simulations to 
clinical trials and it appears only a matter of time until microwave tomographic 
imaging based on UWB technology will find its way to the clinic.

7.8 Future Perspectives
The relevance of UWB technology for communications, localization, and medi-
cal imaging, among other applications, should not be underestimated. The main 
opportunity offered by UWB technology is the vast bandwidth. UWB bandwidth 
enables the emergence of many unique and interesting properties of the wireless 
channel and antenna arrays, including unprecedented resolution for localization 
and imaging systems.

The second opportunity is the possibility to reuse the system front-ends (ampli-
fiers and antennas) that are already present in the handsets and base stations. In 
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other words, from the system perspective, the integration of UWB in an existing 
system is easier than integration of a second front-end for mm-waves.

It has been 11 years since the U.S. Federal Communications Commission 
granted permission for unlicensed UWB radiation. During this time the under-
standing of the theoretical, practical, and economic challenges associated with the 
deployment of the technology has matured considerably.

Indeed, we are beginning to see the deployment of UWB-based technology in 
large-scale consumer applications. Not only can the IEEE802.11ac with 160 MHz 
bandwidth be considered almost a UWB system, but practical UWB chips for 
wireless communication and localization are entering the phase of mass production 
[DecaWave 2013].

With the massive performance boost offered by the synergy of UWB and 
MIMO technologies, it is reasonable to expect that UWB MIMO systems will 
enable advanced future wireless systems with wide-ranging applications.
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8.1 Introduction
Currently, there is a big effort to standardize ultra wideband (UWB)-based com-
munication systems for both military and civil applications (see [Siwiaik 2002] 
and the references therein). The reduced power spectral density (PSD) levels of the 
transmitted signals allow the coexistence of UWB signals with other narrowband 
systems without significant interference of the narrowband systems. Such reduced 
PSD results from the low transmit power and from the high bandwidth [Siwiak 
2002] (UWB signal bandwidths may exceed 25% of the central frequency).

Initially, UWB systems were spread-spectrum based, with extremely high 
bandwidths and very high processing gains. This results in a system very effective 
against multipath propagation impairments, namely, fading and time-dispersion 
effects [Win and Scholtz 1998]. Spread-spectrum UWB-based systems can be 
implemented either in baseband or using a continuous wave. In the latter case, the 
carrier frequency should be of the order of the signal bandwidth.

Afterwards, impulse radio technique was widely adopted in UWB signals. This 
employs short pulses (typically with a duration below 1 ns), with zero mean and 
a small number of zero crossings, combined with time-hopping multiple access 
(TH-MA). These pulses are sent directly to the transmit antenna (i.e., a “baseband” 
transmission is employed), which results in a low implementation complexity. 
Nevertheless, since the achievable spectral efficiencies with impulse radio tech-
niques are typically low, UWB systems employing continuous-wave techniques 
have received much attention [Ishiyama and Ohtsuki 2004]. Since these pulses are 
sent directly to the transmit antenna (i.e., a “baseband” transmission is employed), 
the implementation complexity at both the transmitter and the receiver can be 
relatively low.

Moreover, the despreading operations are usually simpler than for contin-
uous-wave UWB options. However, since the achievable spectral efficiencies 
with impulse radio techniques are typically low, there is an increased interest on 
UWB systems employing continuous-wave techniques [Ishiyama and Ohtsuki 
2004, Popescu et  al. 2005]. Owing to the high signaling rates, the time-dis-
persion effects associated with multipath propagation can be severe in UWB 
systems. For this reason, continuous-wave UWB systems should employ block 
transmission techniques, with appropriate cyclic extensions and be combined 
with FDE techniques (frequency-domain equalization) [Gusmão et  al. 2000, 
Falconer et al. 2002].

Orthogonal frequency division multiplexing (OFDM) schemes are the most 
popular modulations based on this concept, but the transmitted signals have high 
envelope fluctuations and a high peak-to-mean envelope power ratio (PMEPR), 
leading to amplification difficulties. For this reason, single-carrier with frequency-
domain equalization (SC-FDE) schemes are particularly interesting for low-cost 
UWB terminals, especially when iterative receivers are employed [Benvenuto and 
Tomasin 2002, Dinis et al. 2003].
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Block transmission techniques, with appropriate cyclic prefixes and employing 
FDE techniques, have been shown to be suitable for high data rate transmission 
over severely time-dispersive channels [Gusmão et al. 2000, Falconer et al. 2002]. 
Two possible alternatives based on this principle are OFDM and single carrier (SC) 
modulation using FDE (or SC-FDE). Owing to the lower envelope fluctuations of 
the transmitted signals (and, implicitly a lower PMEPR), SC-FDE schemes are espe-
cially interesting for the uplink transmission (i.e., the transmission from the mobile 
terminal to the base station) [Gusmão et al. 2000, Falconer et al. 2002], being con-
sidered for use in the upcoming LTE (long-term evolution) cellular system.

A promising iterative block–decision feedback equalization technique (IB-DFE) 
for SC-FDE was proposed in [Benvenuto and Tomasin 2002] and extended to 
other diversity [Marques da Silva and Dinis 2011] and spatial multiplexing scenar-
ios [Vutecic and Yuan 2002, Gusmão et al. 2003]. These IB-DFE receivers can be 
regarded as iterative DFE receivers with the feedforward and the feedback operations 
implemented in the frequency domain. Since the feedback loop takes into account 
not just the hard decisions for each block but also the overall block reliability, error 
propagation is reduced. Consequently, IB-DFE techniques offer much better per-
formance than noniterative methods [Benvenuto and Tomasin 2002, Dinis et al. 
2003]. Within these IB-DFE receivers, the equalization and channel decoding pro-
cedures are performed separately (i.e., the feedback loop uses the equalizer outputs 
instead of the channel decoder outputs). However, it is known that higher perfor-
mance gains can be achieved if these procedures are performed jointly. This can be 
done by employing turbo equalization schemes, where the equalization and decod-
ing procedures are repeated in an iterative way [Marques da Silva and Dinis 2011], 
being essential in multiple-input multiple-output (MIMO) schemes with high-order 
modulations. For these reasons, SC-FDE schemes are particularly interesting for 
low-cost UWB terminals, especially when iterative receivers are employed.

It is well known that channel noise can lead to packet errors. This problem is 
particularly serious in wireless systems since fading and shadowing effects can lead 
to significant decrease in the received power and, consequently, significant packet 
error rates. The traditional approach to cope with an erroneous packet is to dis-
card it and ask for their retransmission, which corresponds to employ conventional 
automatic repeat request (ARQ) techniques. The major problem with conventional 
ARQ schemes is that they can have very poor performance when the errors are 
due to unfavorable propagation conditions that remain for some time, since packet 
errors are likely to occur for several transmission attempts.

To cope with this type of scenarios, hybrid ARQ/forward error correction 
(FEC) strategies have been proposed [Hagenauer et al. 1988, Gusmão et al. 1999]. 
The basic idea behind these techniques is to retain the signal associated with an 
erroneous packet and to ask for additional redundancy. This is usually done by 
employing a basic error correction code that is very powerful and has low rate. 
This code is punctured, leading to a code with higher rate, but smaller error correc-
tion capabilities that is used in the first transmission attempt of the packet. If we 
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have an error in the packet detection, the additional bits that were punctured are 
 transmitted, instead of a conventional packet retransmission, increasing the error 
correction capabilities of the code. The major problem with these techniques is that 
we are limited by the performance of the basic code that was adopted. If we want a 
very powerful basic code, we need codes that are too complex and/or require very 
long blocks (e.g., turbo codes [Vucetic 2002]). The basic code needs to be designed 
for a worst-case scenario that is seldom used.

An alternative is to take advantage of the last received packets (regardless of the 
reason of the packet loss) and combine them until we end up receiving a packet suc-
cessfully. In terms of the implementation complexity, the simplest way is to employ 
soft packet combining techniques that can be regarded as Hybrid-ARQ type II 
techniques based on repetition codes. They allow improved performance with the 
number of retransmission attempts. Hybrid-ARQ techniques are currently used in 
3GPP’s high-speed downlink packet access (HSDPA), high-speed uplink packet 
access (HSUPA), and LTE. In diversity combining techniques (DC), the usage of 
repetition codes with soft decision can be regarded as a low-complexity version of 
the conventional Hybrid-ARQ.

Moreover, soft packet combining techniques proposed in [Hagenauer et  al. 
1988] can be an alternative to conventional ARQ schemes. Within these tech-
niques, packets associated with different transmission attempts are combined in 
a soft way, allowing improved performances [Hagenauer et al. 1988]. These tech-
niques can be regarded as hybrid ARQ/FEC schemes based on repetition codes 
with soft decision, with low encoding/decoding complexity. Moreover, their per-
formance is not bounded by the performance of the basic code, since it is not 
a conventional punctured code. A promising soft combining ARQ technique for 
SC-FDE was proposed in [Dinis et al. 2008], which was shown to be very effective 
to cope with fading effects.

However, when very severe fading conditions affect the transmission of several 
packets, the number of retransmissions can be very high, which compromises both 
spectral and energy efficiencies of the system. In the majority of dispersive environ-
ments, the antenna diversity is widely used to reduce the multipath fading and 
increase reliability. In addition, by using diversity, having multiple transmit/receive 
antennas should increase data throughput.

Diversity schemes can be applied either to the transmitter or to the receiver, the 
most common scheme being the use of several antennas in the receiver together with 
one combining method to enhance the quality of the received signal [Proakis and 
Salehi 2007]. However, in wireless mobile systems, constraints on size and power 
consumption of mobile devices can impose limitations to the implementation of 
this technique. However, from the base station’s side, these limitations are less wor-
rying because one of them can give service to hundreds of mobile subscribers.

Using multiple antennas can result in a smaller probability of error for the same 
throughput because of the diversity gain. A particularly elegant scheme for MIMO 
coding was developed by Alamouti [Alamouti 1998]. The MIMO Alamouti scheme 
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is a transmit diversity scheme for two transmit antennas that does not require trans-
mit channel knowledge. The main objective of space–time codes is to achieve the 
maximum possible diversity. Space–time codes provide a diversity gain equal to 
the product of the number of transmit and receive antennas. Also, the maximum 
throughput of the space–time codes is one symbol per channel use for any number 
of transmit antennas. The use of multiple antennas results in increasing the capac-
ity of MIMO channels. Therefore, one may transmit at a higher throughput, com-
pared to single-input single-output (SISO) channels, for a given probability of error.

The idea behind using a transmit diversity scheme is that maybe some of the 
redundant-sent signals can arrive in a better state to the receiver than others, and by 
exploiting them all together, the result should be better. The Alamouti scheme can 
also be easily generalized to two transmit antennas and Nr receive antennas, in a 
MIMO system. One of the biggest advantages is that the scheme requires no band-
width increase because redundancy is applied in space and time across multiple 
antennas. It does not require higher transmit power either. These restrictions are 
the most important for wireless communication systems. The new scheme is able 
to improve error performance, data rate, or capacity of wireless systems without 
increasing bandwidth or transmit power. The smaller sensitivity to fading permits 
the system to use a higher-level modulation (a modulation that transmits more bits 
per symbol) to increase the bit rate or a smaller reuse factor to increase the capacity.

8.2  Single Carrier with Frequency-Domain 
Equalization

To explain the SC-FDE schemes, we start with a brief introduction where we con-
sider an SC-based block {an; n = 0,1, . . ., N − 1} transmission with N useful symbols 
per block resulting directly from a mapping operation of the original data into a 
selected signal constellation plus a suitable cyclic prefix (CP) longer than the overall 
delay spread of the channel. Let us consider block transmission schemes where the 
lth transmitted block has the form

 
s t a h t nTl n l T s

n N

N

G

( ) ( ),,= −
=−

−

∑
1

 
(8.1)

with Ts denoting the symbol duration, NG denoting the number of samples in the 
cyclic prefix, and hT(t) representing the adopted pulse-shaping filter. The signal sl(t) 
is transmitted over a time-dispersive channel. At the receiver, the received signal is 
sampled and after removing the samples associated with the CP results the follow-
ing block in the time domain

 { ; , , , },y n Nn l = −0 1 1…  (8.2)
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The samples of the block are passed to the frequency domain by an N-point 
discrete Fourier transform (DFT), leading to the corresponding frequency-domain 
block samples {Yk,l;k = 0,1,. . .,N − 1}, where Yk,l = Hk,lAk,l + Nk,l. To minimize the 
effects of ISI (intersymbol interference) and channel noise, the equalized sam-
ples of the signal � …A k Nk l, ; , , ,= −{ }0 1 1  are obtained based on the coefficients 
{Fk;k = 0,1, . . ., N − 1} that are optimized under the minimum mean square error 
(MMSE), which leads to the set of FDE coefficients
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H
k Nk
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(8.3)

where α is the inverse of the signal-to-noise ratio (SNR) given by

 
α σ

σ
= N

s

2

2
 

(8.4)

with α = 



E Nk

2 2 and σ s kE S2 2 2= 



  denoting the variances of the real 

and imaginary parts of the channel noise {Nk,l;k = 0,1, . . ., N − 1} and the data 
samples {Ak,l; k = 0,1, . . ., N − 1}, respectively.

In SC modulations, the data contents of a given block are transmitted in the 
time domain. Therefore, the equalized samples � …A k Nk l, ; , , ,= −{ }0 1 1  are con-
verted again into time domain by an inverse DFT (IDFT) operation leading to 
the block of time-domain-equalized samples � …a n Nn l, ; , , ,= −{ }0 1 1 . Then, these 
equalized samples are used in the decision process about the transmitted symbols or 
block.

In IB-DFE scheme (iterative block DFE), both the feedforward and feedback 
parts are implemented in the frequency domain. Thus, for a given itth iteration, the 
output samples are given by

 
�A F Y B Ak

it
k

it
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it
k
it

k
it( ) ( ) ( ) ( ) ( )= − −1�

 (8.5)

where F k Nk
it( ); , , ,= −{ }0 1 1…  and B k Nk

it( ); , , ,= −{ }0 1 1…  denote the feed-
forward and feedback coefficients, respectively, and {Ak,l;k  = 0,1, . . ., N − 1} is the 
DFT of the hard decision of the lth block ˘ ; , , ,,

( )a n Nn l
it = −{ }0 1 1…  for the ith itera-

tion, associated with the transmitted time domain of the lth block {an,l; n = 0,1, . . ., 
N − 1}. The feedforward and feedback coefficients are still chosen to maximize the 
signal-to-interference plus noise ratio (SINR), with the optimum coefficients given by
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and

 
B F Hk

it it
k

it
k
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(8.7)

respectively, where ΚF
it( ) is selected to assure that 1 10

1/N F Hit
N

k
it

k∑ ==
− ( )  and ρ(it) is 

a measure of the reliability of the decisions used in the feedback loop. Since block 
estimates are used by the “feedback” filter (weighed by the log-likelihoods), the 
IB-DFE coefficients take into account the overall block reliability on the feedback 
loop, which leads to a small error propagation effect. In fact, IB-DFE has a turbo-
like behavior and can be regarded as a low-complexity turbo equalizer [Tüchler and 
Hanenauer 2001].

8.3  Iterative Frequency-Domain Packet Combining 
Techniques Optimized for UWB

A promising soft combining ARQ technique for SC-FDE was proposed in [Dinis 
et al. 2008], which was shown to be very effective to cope with fading effects. We 
consider the uplink transmission in UWB wireless systems employing SC-FDE 
schemes. The basic receiver structure is depicted in Figure 8.1, where the DFT 
and IDFT blocks refer to implementations of discrete Fourier transform and its 
inverse. The time-domain block is associated with a given user (i.e., the corre-
sponding packet) is {an; n = 0,1,. . ., N − 1} where an is selected from a given con-
stellation and N is the fast Fourier transform (FFT) size. As usual, for SC-FDE 
block transmission techniques, a suitable cyclic prefix longer than the overall delay 
spread of the channel is added to each time-domain block. For the sake of sim-
plicity, we assume a one-to-one correspondence between time-domain blocks and 
user packets.

If errors are detected in a received packet, we ask for its retransmission, but we 
store the signal associated with each transmission attempt. Although we could keep 
trying to transmit the packet until there were no errors, in practice, there is a maxi-
mum number of transmission attempts NR. If we fail after NR attempts, we need 
to change the transmission parameters (transmit power, carrier frequency, base sta-
tion, etc.) since the channel is too bad. The packet associated with the rth trans-
mission attempt of {an; n = 0,1,. . .,N − 1} is a n Nn

r( ); , ,...,= −{ }0 1 1 . The received 
signal associated with the rth transmission attempt is sampled and the cyclic prefix 
is removed, leading to the time-domain block y n Nn

r( ); , ,...,= −{ }0 1 1 . If the cyclic 
prefix is longer than the overall channel impulse response, then the corresponding 
frequency-domain block is Y k Nk

r( ); , ,..., ,= −{ }0 1 1  where

 Y A H Nk
r

k
r

k
r

k
r( ) ( ) ( ) ( ) ,= +  (8.8)
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with Nk
r( ) denoting the channel noise. A k Nk

r( ); , ,...,= −{ }0 1 1  is the DFT of 
a n Nn

r( ); , ,...,= −{ }0 1 1  and H k Nk
r( ); , ,...,= −{ }0 1 1  is the overall channel fre-

quency response for the rth transmission attempt.

8.4 Conventional Soft Packet Combining ARQ
Let us assume that we have R versions of the packet (i.e., there were R transmission 
attempts). Our receiver, depicted in Figure 8.1, consists of an iterative frequency-
domain receiver where, for a given iteration i, the frequency-domain samples at the 
output are given by
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where { , , ,..., }( , ,..., )( , )F k N r Rk
r i = − =0 1 1 1 2  and { , , ,..., }( )B k Nk

i = −0 1 1  are the feed-
forward and the feedback coefficients, respectively. { , , ,..., }( )A k Nk

i− = −1 0 1 1  denotes 
the DFT of the average data estimates { , , ,..., } ,( ) ( )A k N ak

i
n

i− −= − =1 10 1 1 DFT{
k N= −0 1 1, ,..., }, where an denotes the average symbol values conditioned to the 
FDE output. For quadrature phase shift keying (QPSK) constellations, these average 
values are given by [Marques da Silva et al. 2010]
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(without loss of generality, we assume that an
2 2= , i.e., a jn = ± ±1 ), with
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denoting the log-likelihood ratios (LLRs) of the “in-phase bit” and the “quadrature 
bit,” associated with an, respectively, and { ; , ,..., } ;( ) ( )� �a n N An

i
k
i= − =0 1 1 IDFT {  

k N= −0 1 1, ,..., }. The variance σ eq
2  is given by
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where a jn
i( ) = ± ±1�  are the hard decisions associated with �an

i( ). The simplest way 
to design the receiver is to consider only the channel noise, which corresponds to 
ignore the interference in its design. Under these conditions, the optimum feedfor-
ward coefficients, for a given iteration, can be written as

 
F

F
k

r i k
r i

i
( , )

( , )

( ) ,=
�

γ  
(8.14)

with γ (i) and 
�
Fk

r i( , )  as defined in [Dinis et al. 2008]. Moreover, the optimum feed-
back coefficients Bk

i( ) are also defined in [Dinis et al. 2008].
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8.4.1 Packet Combining with Strong Interference Levels
The receiver can be designed taking into account the characteristics of the inter-
ference, which is added to the thermal channel noise.* This means that the FDE 
output is still given by Equation 8.9, with the feedforward coefficients given by 
Equation 8.14, but with
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where
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with Ik
r( ) denoting the interference at kth subcarrier and the rth retransmission 

attempt (i.e., α k
eq r( ) can be regarded as the inverse of the equivalent SINR). The cor-

relation coefficient ρ(i) is given by
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The optimum feedback coefficients are the same as defined in [Gusmão et al. 
2003].

8.5 Packet Combining with Diversity
The MIMO Alamouti code is a simple space–time block code (STBC), where the 
different replicas sent for exploiting diversity are generated by a space–time encoder, 
which encodes a single stream through space using all the transmit antennas and 
through time by sending each symbol at different times.

The Alamouti STBC scheme uses two transmit antennas and Nr receive anten-
nas and can accomplish a maximum diversity order of 2Nr [Alamouti 1998]. 
Moreover, the Alamouti scheme has full rate (i.e., a rate of 1) since it transmits 
two symbols every two time intervals. Next, a description of the Alamouti scheme 

* For the sake of simplicity, we will assume that the interference is Gaussian with zero mean and 
uncorrelated from subcarrier to subcarrier. The extension to other cases is straightforward.
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is provided for both one and two receive antennas, followed by a generalization 
for Nr receive antennas. For an Alamouti STBC with two transmit antennas, the 
time-domain block to be transmitted by the mth antenna are sn,i and the encoding 
operation can be described in time domain as (see also Chapter 1, for a description 
of the STBC scheme)

 

Time Antenna Antenna
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, 11
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(8.18)

where we assume that the rows of each coding scheme represent a different time 
instant, while the columns represent the transmitted symbol through each different 
antenna, as shown in Figure 8.2. In this case, the first and second rows represent 
the transmission at the first and second time instant, respectively.

Rx antenna 1

+n1, n2

h1 = h1,1

h1

h1 C1
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C2h2

h2

Tx antenna 2

S2S1

S1
*–S2

*

Tx antenna 1

Channel
estimator Combiner

Maximum likelihood detector

∧ ∧
S2

Δ h2 = h2,1
Δ

Figure 8.2 STBC with two transmit and one receive antenna.
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Let us define s sn i,2 1�  and s sn i, .2 1 2+ �  Considering the matrix–vector representa-
tion, the Alamouti scheme encoding operation becomes [Marques da Silva et al. 2012]
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At a time t = (2i − 1)T, symbols s1 and s2 are transmitted from antenna 1 and 
antenna 2, respectively. Assuming a symbol duration of T, at time t = 2iT are trans-
mitted the symbols −s2

*  and s1* from antenna 1 and antenna 2, respectively.
For one receive antenna, the received signals are
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where yn i
l
,

( ) denotes the received signal at antenna l (for one receive antenna, we have 
l = 1) at time iT, and hn i

m l
,

( , ) denotes the channel response for the path between the 
mth transmit antenna and lth receive antenna. For the sake of simplicity, we assume 
h hn i

Ntr Nr
Ntr Nr,

( , )
,� , where Ntr and Nr are the number of transmit and receive anten-

nas, respectively. The subscript and superscript associated with the receive antenna 
are omitted when we have only one antenna at the receiver, so in this case, we may 
assume h hn i,

( )1
1�  and h hn i,

( )2
2� . Before being sent to the equalizer, the received sig-

nals are combined as follows:
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with the corresponding representation in frequency domain given by
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where { ; , ,..., } { ; , ,..., }( ) ( )H k N h n Nk
m

n
m= − = = −0 1 1 0 1 1DFT  represents the 

channel frequency response for the kth subcarrier and the mth transmit antenna, 
N nk i i, { }= DFT  is the noise term and { ; , ,..., } { ; , ,..., }, ,Y k N y n Nk i n i= − = = −0 1 1 0 1 1DFT  
0 1 1, ,..., }.N −  Assuming for now a linear FDE for SC schemes, the Alamouti post-
processing becomes
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where A k N a n Nk i n i, ,; , ,..., ; , ,...,= −{ } = = −{ }0 1 1 0 1 1DFT  and α can be 
regarded as the inverse of the equivalent SNR.

Let us consider now the case of two receive antennas, as depicted in Figure 8.3, 
in which the received signals are given by
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Figure 8.3 STBC for two transmit and two receive antennas.
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where y l
1
( ) and y l

2
( ) denote the received signal by the lth antenna at time 2iT and 

(2i + 1)T, respectively (the same notation applies to the noise terms n l
1
( ) and n l

1
( )). 
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with the resulting signals after the combiner
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and in the matrix–vector representation results
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Now, for the conventional SC-FDE decoding, the postprocessing STBC for 
two transmit antennas and two receive antennas becomes (for the lth branch of 
receiver)
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and
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with � �A Ak i l
Ntr

k i
l

, ,
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2 1 1 2 1+ = +∑=  and � �A Ak i l
Ntr
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, ,
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As mentioned earlier, the Alamouti STBC can be used with two transmit 
antennas and one receive antenna accomplishing the full diversity of 2, and for 
two transmit and receive antennas the full diversity of 4. This is an important 
characteristic of Alamouti STBC as it reduces the effect of fading at mobile sta-
tions while only requiring extra antenna elements at the base station, where it 
is more economical than having multiple antennas at the receivers [Alamouti 
1998].

However, if having more antennas at the receivers is not a problem, this scheme 
can be used with two transmit antennas and Nr receive antennas, while accom-
plishing a 2Nr full diversity.

The definition of the channels between transmit (Tx) and receive antennas (Rx) 
and the notation for the received signals in the antennas along symbol periods are 
those presented in Tables 8.1 and 8.2, respectively.

The transmission sequence is the same as in both cases explained earlier. Analyzing 
the received signals for the case of two transmit antennas and two receive antennas, 
it is possible to generalize for the case of M receive antennas. Therefore, similar to 

Table 8.2 Received Signals Time Definition

Rx1 Rx2 Rx Nr

t + 2iT y1,2i y2,2i . . . yNr,2i

t + (2i + 1)T y1,2i+1 y2,2i+1 . . . yNr,2i+1

Table 8.1 Channel Definition

Rx1 Rx2 Rx Nr

Tx1 Hk i,
( , )
2

11 Hk i,
( , )
2
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the previous case, the received signals by each receiver are described by the set of 
equations:
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which results in matrix–vector notation

 y = Hs + w (8.32)
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and
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It should be mentioned that the combined symbol still is a linear combination 
of the received signals and the channel coefficients. That fact makes very simple the 
receiver’s design of the Alamouti scheme, independently of how many antennas are 
deployed in the receiver since we have
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that is
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This scheme can be applied to the structure of the receiver previously defined 
in Figure 8.1. The resulting structure, the IB-DFE for an Alamouti scheme 2XNr, 
is presented in Figure 8.4. The postprocessing to be adopted in the SC-FDE in 
the receiver at each retransmission for the branch associated with the lth receive 
antenna will be
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and
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Therefore, after R retransmissions, we will have � �A Ak i k i
r l
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The FDE output is still given by Equation 8.9, with the feedforward coefficients 
for each retransmission given by

 F H C r R l Nrk
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k
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with N Nk
r

l
Nr

k
r l( ) ( , )= ∑ =1  and I Ik

r
l
Nr

k
r l( ) ( , )= ∑ =1 .

8.5.1 Dealing with Fixed Channels
When strong interference remains over the several retransmission attempts, the 
performance can be rather poor unless we change our working band, as with fre-
quency-hopping systems. Since changing the frequency leads to additional difficul-
ties and delays, this is not practical in most UWB systems. In this case, we could 
assume that the frequency-domain block associated with the rth retransmission of 
a given packet A k Nk

r( ); , ,...,= −{ }0 1 1  is an interleaved version of {Ak; k = 0,1,. . ., 
N − 1}. Since this is formally equivalent to assume that H k Nk

r( ); , ,...,= −{ }0 1 1  is 
an interleaved version of {Hk; k = 0,1,. . .,N − 1}, the interference correlations for 
each frequency can be very small.
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However, to avoid transmitting signals with very large envelope fluctuations, it 
is better to assume that { ; , , , }( )A A k Nk

r
k r

= = −+ζ 0 1 1… , that is, corresponds to a 
cyclic-shifted version of {Ak; k = 0,1,…, N − 1}, with shift ζr. This means that the 
corresponding time-domain block is { exp( ); , , , },( )a a j n N n Nn

r
n r= = −2 0 1 1πζ / … , 

with a suitable ζr. It should be noted that this technique is formally equivalent to 
having A Ak

r
k

( ) =  and Hk
r( ) a cyclic-shifted version of Hk

( )1 , with shift −ζr. Moreover, 
we also have a cyclic shift in the interference, which means that when the interfer-
ence characteristics remain constant, the mostly affected subcarriers will, in general, 
be different.* In general, the larger the ζr, the smaller the correlation between Hk

r( ) 
and Hk

( )1  and the smaller the correlation between α k
eq r( ) and α k

eq( )1 , provided that 
ζr < N/2 (since we consider cyclic shifts, ζr = N is equivalent to having ζr = 0). In 
this chapter, we assume that the different ζr are the odd multiples of N/2, N/4, N/4, 
and so on, that is
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This allows small correlation between different Hk
r( ) and α k

eq r( ), for each fre-
quency (naturally, as r increases the correlations are higher). Moreover, envelope 
fluctuations associated with a n Nn

r( ); , , ,= −{ }0 1 1…  are not too different from 
the ones associated with {an; n = 0,1,…, N − 1}. One advantage of this approach 
relies on the fact that, for QPSK constellations, the constellation associated with 
a n Nn

r( ); , , ,= −{ }0 1 1…  is also a QPSK constellation for r = 2, 3, and 4.

8.6 Performance Analysis
This section derives the analytical expression for the performance of ARQ schemes. 
It is assumed that the maximum number of transmission attempts for a given 
packet is NR. This means that a packet is lost when it is not successfully decoded 
after NR transmissions. We will assume that the probability of error detection (erro-
neous packet) after combining R packets is PF(R). For conventional ARQ schemes 
and a fixed channel, we may write

 P R PF F
R( ) [ ( )] .= 1  (8.44)

The probability of detecting a packet successfully after NR transmission attempts 
is

* Naturally, we are assuming that the interference only affects part of the spectrum. Otherwise, 
the “cyclic shift” would not have any impact on the performance.
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 P P NS F R= −1 ( ),  (8.45)

with the average number of transmitted packets given by
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The first term accounts for the packets that might require an additional trans-
mission. The second term accounts for the packets that cannot have more retrans-
missions (regardless of being successfully detected or not). The average number in 
Equation 8.46 is closely related with the average packet delay.

8.6.1 Performance Results
In this section, a set of performance results are presented concerning the pro-
posed ARQ techniques. The uplink of a continuous-wave UWB system employing 
SC-FDE schemes is considered using the proposed IB-DFE receiver. Each packet 
has N = 256 data QPSK symbols, corresponding to blocks with length 4 ms.

It is assumed to be a severely time-dispersive channel with rich multipath prop-
agation and uncorrelated Rayleigh fading on the different paths.

Coded transmissions are considered, using the well-known 64-state, 
rate-1/2 convolutional code with generators 1 + D2 + D3 + D5 + D6 and 
1 + D + D2 + D3 + D6. The coded bits associated with a given FFT block are inter-
leaved before being mapped into the QPSK constellation symbols and a suitable 
deinterleaver is employed before the channel decoder. Moreover, strong interference 
levels are considered, occupying 1/8 of the transmission band (i.e., we have very 
high interference levels). Also assumed are perfect synchronization and channel 
estimation conditions at the receiver.

As described previously, the proposed iterative receiver presents three different 
basic forms:

 ◾ Turbo receivers, corresponding to using the channel decoder output in the 
feedback

 ◾ IB-DFE receivers, corresponding to using uncoded data only in the iterative 
receiving chain

 ◾ Linear FDE, corresponding to the IB-DFE with a single iteration

With regard to the ability to mitigate the interferences, the proposed receiver pres-
ents two different configurations:

 ◾ Without knowledge of the interference characteristics (denoted “conven-
tional FDE”)

 ◾ With perfect knowledge of interference characteristics (denoted “ideal FDE”)
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With respect to the retransmissions, we have two different scenarios:

 ◾ Equal channels (EC): same channels for each packet retransmission
 ◾ Shifted channels (SC): same channels for each packet retransmission but dif-

ferent packet shifts for each retransmission

Figure 8.5 shows the average BER (bit error ratio) for a single transmission 
attempt, with or without interference. As can be seen, when the receiver does not 
know the interference characteristics, the performance can be far from the ones 
without interference. Notwithstanding, this difference is significantly reduced if 
the FDE receiver has knowledge about the interference characteristics, especially 
after four iterations.

Figures 8.6 and 8.7 show the packet error rate (PER) performance of the turbo 
FDE with four iterations for EC and SC cases, with strong interference levels. For 
the sake of comparison, we also include the PER for the linear FDE. In Figure 
8.6, it is assumed that the receiver does not have knowledge about the PSD of the 
interference (i.e., we assume that E Ikr[ ]| |( ) 2 0=  in the computation of the feedfor-
ward coefficients), while in Figure 8.7 we assume that we use this knowledge in the 
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Figure 8.5 BER performance for a single packet transmission.
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computation of the feedforward coefficients (to avoid crowding these figures, we 
did not include the results with R = 3). Comparing both figures, the performance 
improvement achieved by the turbo FDE relating to the linear FDE becomes evi-
dent. Moreover, it is clear that a better performance tends to be achieved with the 
SC, relating to EC. Additionally, the PER performance is improved when the PSD 
of interference is taken into account by FDE coefficients (ideal receiver). In both 
cases, using the proposed ARQ technique, the performance improves significantly 
with R (transmissions attempts). From Figure 8.7, it is seen that, for two transmis-
sion attempts (R = 2) and EC, the performance tends to be worse than for R = 1. 
This results from the fact that combining packets using the same channel (EC) does 
not bring any added value (it even degrades, as we are combining multiple corrupted 
packets). Contrarily, when SC is employed, since the shift applied to the packets 
places the corrupted bits in different relative positions within the combined packets, 
the increase of the number of transmission attempts tends to achieve a performance 
improvement. Note that when an error is detected in the packet (using the punc-
tured code), the additional bits that were punctured are requested for transmission.

The best overall performance is achieved with the turbo FDE associated with 
SC, for R = 4, using the “ideal receiver” receiver. Clearly, even when the turbo FDE 
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Figure 8.6 PER results for “conventional FDE” receiver.
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is employed, the knowledge of the PSD of the interference is critical for the pro-
posed receiver to achieve a good performance.

The performance results show that this technique is able to cope with strong 
interference levels as well as deep fadings, even for fixed channels. Moreover, the 
improvement of performance is obtained at the cost of very low complexity from 
both the transmitter and receiver.

Next, a set of figures are presented regarding a MIMO 2X2, that is, an Alamouti 
coding scheme at the transmitter and at the receiver with diversity of order 2. Only 
uncoded transmissions are considered, with the same conditions adopted for simu-
lation proposed on previous cases. However, here we have a slight difference with 
respect to the retransmissions, since the studied scenarios are

 ◾ Uncorrelated channels (UC): uncorrelated channels for each packet 
retransmission

 ◾ Shifted channels (SC): same channels for each packet retransmission but dif-
ferent packet shifts for each retransmission
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10–1
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100
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Figure 8.7 PER results for “ideal FDE” receiver.
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Figures 8.8 and 8.9 show the average BER behavior with transmission 
attempts in the presence of strong interference. It can be seen for each retransmis-
sion, the improvement associated with the successive iterations on the IB-DFE 
receiver, with a power gain of approximately 5 dB for four iterations in the first 
transmission attempt. Notwithstanding, when the number of combined pack-
ets increases with the number of retransmissions, the improvement due to itera-
tions decreases for both channel types (as can be seen from Figures 8.8 and 8.9, 
for more than two retransmissions, there is no obvious advantage increasing the 
number of iterations from three to four). Again, for both cases, using the pro-
posed ARQ technique, the performance improves significantly with R (transmis-
sions attempts). As expected, the results for UC are better than those for SC, but 
the assumption of uncorrelated channels can be unrealistic in real conditions. 
From the comparison of these results with those from Figure 8.5, it is possible 
to conclude that the adopted MIMO technique assures a power gain near to 
2.2 dB, even without the convolutional code adopted in the simulation scenario 
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Figure 8.8 BER performance for an uncorrelated channel between 
retransmissions.
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of Figure 8.5. Obviously, if a coded transmission is adopted, we can expect higher 
power efficiency improvements.

Figures 8.10 and 8.11 show the PER performance behavior of the IB-DFE with 
different iterations for UC and SC cases, with strong interference levels. In both 
figures, it is assumed that the receiver has knowledge about the PSD of the interfer-
ence, and uses this knowledge in the computation of the feedforward coefficients. 
Comparing both figures, it becomes clear about the performance improvement 
achieved by the IB-DFE relating to the linear FDE. Again, a better performance 
tends to be achieved with the UC relating to SC. Contrary to the EC case previ-
ously analyzed in Figures 8.6 and 8.7, the increase of the number of transmission 
attempts tends to achieve a performance improvement since, for both cases depicted 
in Figures 8.10 and 8.11, the proposed ARQ technique improves the performance 
significantly with R (transmissions attempts).

As expected, the best overall performance is achieved with UC, for R = 4. 
Clearly, when the IB-DFE is employed, the knowledge of the PSD of the 
interference is still critical for the receiver with diversity to achieve a good 
performance.
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Figure 8.9 BER performance for a fixed channel between retransmissions.
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9.1 Requirements and Scenarios
In this section, some important aspects related to long-term evolution (LTE), LTE-
Advanced, and multiple-input and multiple-output (MIMO) requirements and 
scenarios are described. The baseline LTE radio access network (RAN) and evolved 
packet core (EPC) network were defined in 3GPP Release 8. This provided the 
world with a comprehensive and highly capable new cellular communications stan-
dard that, in November 2012, has been successfully launched in 113 commercial 
networks and in 51 countries. The main attributes that differentiate this new stan-
dard from previous standards are

 ◾ Single-channel peak data rates of up to 300 Mbps in the downlink and 
75 Mbps in the uplink.

 ◾ Full integration of frequency division duplexing (FDD) and time division 
duplexing (TDD) access modes.

 ◾ Packet-based EPC network to eliminate cost and complexity associated with 
legacy circuit-switched networks.

Other key technologies introduced in Chapter 1 that enable the new capabili-
ties include

 ◾ Adoption of orthogonal frequency-division multiple access (OFDMA) and 
single-carrier frequency-division multiple access (SC-FDMA) for the down-
link and uplink air interfaces, respectively, to enable narrowband scheduling 
and efficient support of spatial multiplexing.

 ◾ Support for six channel bandwidths from 1.4 to 20 MHz to enable high data 
rates.

 ◾ Baseline support for spatial multiplexing (MIMO) of up to four layers on the 
downlink.

 ◾ Faster physical layer control mechanisms leading to lower latency.

Despite the substantial capabilities of LTE in Release 8, the 3GPP standard has 
continued to evolve through Releases 9, 10, 11, and 12.

Most LTE radio network designs prefer complying with the continuous net-
working principle. Continuous networking can improve cell edge user experience, 
reduce inter-radio access technologies (RAT) handover requirement, and facilitate 
evolution from 3G to LTE [3GPP 2010a]. LTE continuous networking needs con-
sidering continuous coverage of the reference signal received power (RSRP). This 
consists of the average of the power of all resource elements which carry cell-specific 
reference signals over the entire bandwidth. The reference signal received quality 
(RSRQ) measurement provides additional information when RSRP is not sufficient 
to make a reliable handover or cell reselection decision. RSRQ is the ratio between 
the RSRP and the received signal strength indicator (RSSI) and, depending on the 
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measurement bandwidth, represents the number of resource blocks. RSSI is the 
total received wideband power including all interference and thermal noise. Best 
service cells, traffic channel for uplink and downlink, physical uplink shared chan-
nel (PUSCH), and physical downlink shared channel (PDSCH) are also required.

Special scenarios like femtocells may need LTE discontinuous coverage. 
Discontinuous coverage may dig out the advantages of high-order modulation and 
coding in good radio environment. Therefore, it improves cell throughput and cell 
center user experience.

The femtocell concept is not unique to LTE or LTE-Advanced [3GPP 2012a], 
but there was an opportunity for LTE to incorporate this technology from the start. 
From a radio deployment perspective, the femtocell operates over a small area within 
a larger cell. The radio channel can be the same as that of the macrocell (known as 
co-channel deployment) or on a dedicated channel. The femtocell concept is funda-
mentally different from relaying since the femtocell connection back into the core 
network is provided locally by an existing wired Internet connection rather than 
over the air back to the macrocell. Most femtocell deployments cover indoor areas, 
which helps provide isolation between the femtocell and the macrocell radio chan-
nels. There is also femtocell outside the coverage area of macrocell. This could be, 
for example, a way to provide local cellular coverage in rural areas where digital 
subscriber line exists but there is no cellular coverage provided by any operator.

It must be decided whether the femtocells are operated for closed subscriber 
group (CSG), user equipment (UE), or for open access. Other practical consid-
erations such as pricing can be considered commercial issues, although in the co-
channel CSG case, the probability that areas of dense femtocell deployment will 
block macrocells becomes an issue.

Several 3GPP studies have shown that increases in average data rates and 100 
times greater capacity are possible with femtocells over what can be achieved from 
the macronetwork. However, femtocells do not provide the mobility of macrocel-
lular systems, and differences exist in the use models of these systems.

The evolved multimedia broadcast and multicast service (E-MBMS) television 
service was specified at the physical layer in Release 8 but was not functionally com-
plete until Release 9. The features in Release 9 provide a basic MBMS service car-
ried over an MBMS single frequency network (MBSFN). One limitation of Release 
9 definition was the lack of a feedback mechanism from the UEs that would inform 
the network if sufficient UEs were present in the target area to justify turning on 
the MBSFN locally. In Release 11, further MBMS enhancements for service con-
tinuity were specified including support on multiple frequencies, reception during 
radio resource control (RRC) idle and RRC connected states, and support to take 
UE positioning into account for further optimization of the received service.

E-MBMS is performed either in single cell or multicell mode. In single cell trans-
missions, E-MBMS traffic is mapped to the downlink shared channel (DL-SCH). 
In multicell mode, transmissions from cells are carefully synchronized to form an 
MBSFN [3GPP 2010b, Marques da Silva et al. 2010, 2012].
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MBSFN is an elegant application of OFDM for cellular broadcast. The prin-
ciple of operation is quite simple. Identical transmissions are broadcast from closely 
coordinated cells simultaneously on a common frequency [Marques da Silva et al. 
2012]. Signals from adjacent cells arrive at the receiver and are dealt with in the 
same manner as multipath delayed signals. In this manner, UE can combine the 
energy from multiple transmitters with no additional receiver complexity.

If the UE is at a cell boundary, the relative delay between the two signals is quite 
small. However, if the UE is close to one base station and relatively distant from 
a second base station, the amount of delay between the two signals can be quite 
large. For this reason, MBSFN transmissions might be supported using 7.5 kHz 
subcarrier spacing (instead of 15 kHz) and a longer CP [3GPP 2010b], as depicted 
in Figure 9.1. MBSFN networks also use a common reference signal from all trans-
mitters within the network to facilitate channel estimation. As a consequence of 
the MBSFN transmission scheme, UE can roam between cells with no handover 
procedure required. Signals from various cells will vary in strength and in relative 
delay, but in aggregate the received signal is still dealt with in the same manner as 
a conventional single channel OFDM transmission.

Synchronized eNodeBs
transmitting MBMS data

Signals from different eNodeBs
arrive within cyclic prefix at UE

Cyclic
prefix

ISI-free window

OFDM symbol duration

Figure 9.1 MBSFN transmission with long cyclic prefix to avoid intersymbol 
interference.
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Figure 9.2 illustrates MBSFN transmission scheme including also an illustra-
tion of the single-cell point-to-multipoint (SC-PMP) transmission. The other sce-
nario will be evaluated later in this chapter.

According to 3GPP specifications [3GPP 2007, 2009a,b,c], the deployment 
scenario where a dedicated carrier is used for broadcast only (MBSFN) has the 
following properties:

 ◾ E-UTRA MBMS is envisaged to achieve a cell edge spectrum efficiency of 
1 bit/s/Hz, equivalent to the support of, at least, 16 mobile TV channels, at 
around 300 kbps per 5 MHz channel (in an urban or suburban environment).

E-MBMS transmitting cell

(a)

(b)

Cells not transmitting E-MBMS

UEs receiving E-MBMS data

UEs not receiving E-MBMS data

MBSFN area

Cells not transmitting E-MBMS

UEs receiving E-MBMS data

UEs not receiving E-MBMS data

Figure 9.2 (a) SC-PMP transmission and (b) MBSFN transmission.
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 ◾ In the deployment scenario, where a carrier is shared between broadcast and 
unicast traffic, the target performance at cell edge for broadcast traffic should 
be in line with the existing target performance for the unicast traffic.

9.1.1 Intercell Interference Coordination Schemes
Since the LTE system employs OFDMA in the downlink and SC-FDMA in the 
uplink, intracell interference is mitigated due to orthogonality between subcarriers 
[Marques da Silva 2012]. However, intercell interference remains as the main source 
of interference, especially at cell edges. Intercell interference occurs when multiple 
eNBs* are transmitting using the same frequency. Under these circumstances, the 
transmitted signals interfere with each other, collisions occur, and the UEs might not 
receive the packets correctly. Figure 9.3 depicts a situation where S1.1 is the signal 
sent from eNB1 to UE1, S2.1 is the signal sent from eNB2 to UE1, and S2.2 is the 
signal sent from eNB2 to UE2. Since UE1 is at the cell border, the signal S1.1 might 
suffer interference from S2.1. This occurs when there is no intercell interference 
coordination, such as in SC-PMP scenario. However, in MBSFN scenario, signals 
S1.1 and S2.1 are soft combined and therefore UE1 receives S1.1 + S2.1 correctly.

The ability of cells to coordinate their narrowband scheduling offers some 
potential for interference avoidance. Support for coordination of resource block 

* Evolved Node-B (eNode-B) refers to the base station of LTE and 4G systems. This corresponds 
to the evolution of the node-B, considered by UMTS.
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Figure 9.3 Example of potential intercell interference.

 



Link and System Level Simulation for MIMO ◾ 411

(RB) allocation between cells in the downlink was introduced in Release 8 with 
the inclusion of the relative narrowband transmit power (RNTP) indicator. This 
support feature is a bitmap that can be shared between base stations over the X2 
interface. It represents those RB for which the base station intends to limit its out-
put power to a configurable upper limit for some period of agreed-upon time. This 
allows schedulers to agree on how cell-edge RB will be used so that, for instance, 
cell-edge users who cause the most interference can be restricted to certain parts of 
the channel. This coordination could be implemented using a semistatic agreement 
for partial frequency reuse at the cell edge or might involve more dynamic schedul-
ing based on real-time network loading. The next section covers partial frequency 
reuse schemes and hybrid reuse (HR), also referred to as soft reuse schemes.

9.1.2 Soft and Hybrid Reuse
To solve the limitations in terms of spectral efficiency of traditional frequency reuse 
schemes, HR, or soft fractional frequency reuse (SFFR), as it is sometimes mentioned 
in the literature, was proposed by several authors [Simonsson 2007, Sarperi et al. 2008, 
Zhou and Zein 2008, Fodor et al. 2009]. This consists of defining different zones 
within each cell where different reuse factors are applied. Figure 9.4 shows an example 
of HR 1 + 1/3 (reuse 1 + reuse 1/3), in which there is an area where all frequency 
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Figure 9.4 Example of HR with reuse 1 + reuse 1/3.
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spectrums are used and another area at the border of the cells where only a fraction 
of the frequency is used. This way we can achieve maximum spectral efficiency in the 
center of each cell, and reduced intercell interference levels at the border of cells.

This technique is implemented using the same methodology used for normal 
fractional frequency reuse, but this time different levels of power P are applied to 
different frequencies, for each sector of every cell, as defined in the following.
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The assignment of different power levels to different frequencies fn is related to 
the characteristics of radio signals, more precisely the average path losses (Lpath) that 
radio signals suffer over the air. This has direct impact on the total power received 
at the UE (PRxUE). This way, at the center of the cell, all frequencies transmitted with 
power P < ptx will be received and, at the edge of cells, only frequencies transmitted 
with power P > ptx will be received and will interfere with each other.

To determine the power levels that each frequency should use, we first need to 
determine the location of the different reuse zones. This can be somewhat tricky, 
because it is hard for the UE to determine with precision its position, therefore 
making it hard to know when it should be using one or another reuse. To solve this, 
we can define certain levels or targets for carrier-to-interference ratio (C/I), and 
based on those target values the UE knows that it should apply for one type of reuse 
(e.g., if UE C/I is higher than the target C/I) or another (e.g., if UE C/I is below 
target C/I). However, the level of C/I received at UE is associated with a certain 
distance to the center of the cell (i.e., eNB site). This allows us to define distances 
of reuse (DR) that are directly related to a certain level of C/I and, in turn, these 
levels of C/I can be determined from the received power of pilot subcarriers at UEs.

Let us analyze the example depicted in Figure 9.5, in which HR 1 + 1/3 is 
considered, meaning that reuse 1 is used within a certain area (the small inner 
hexagons) and reuse 1/3 is used outside that area (outer region) for each cell sector. 
R is the cell radius and D is the distance between the center of cells using the same 
frequencies, and R1 is the radius of the reuse 1 zone inside each cell, being D1 the 
distance between reuse 1 zones inside each cell.

The carrier–interference ratio (C/I) in hexagonal cellular topologies is expressed as
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where i0 is the number of interfering cells interfering at distance D, and α is the 
average exponent of propagation path loss that can take values between 2 and 5 
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(based on 3GPP specifications we use α = 2.2). According to Figure 9.5, both reuse 
1 and reuse 1/3 have i0 = 6 interfering cells at distance D. If we want the DR to be 
1/3 of R, for reuse 1 we have R1 = DR = R/3 and D1 = 2R. The C/I for users at DR is
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We know that for a UE located at DR = R/3, the C/I target should be 9.34 dB, 
meaning that UEs with C/I equal or higher than this value will be using reuse 1, 
and UEs with C/I lower than that will be using reuse 1/3.

Next, we must find out what is the power that should be allocated to frequen-
cies meant to be received within reuse 1, and the power that must be used by 
frequencies meant to be received on the entire cell (especially in the border of the 
cell). To do so, we need to first know the C/I level received at the edge of the cell; in 
our example the edge of the cell at the distance R from the center of cell. We have
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The C/I for frequencies supposed to be received by UEs at the edge of the cell will 
be 2.71 dB. If we consider that for that C/I level the power is Pmax 46 dBm = 40 W, 
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Figure 9.5 Hexagonal cellular topology, using HR 1 + 1/3 scheme.
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the frequencies that are not supposed to be received must be transmitted with infe-
rior power Ptx. This way we have
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Looking at Equation 9.5, we conclude that, at the center of the cells, frequencies 
will be transmitted with Pmax = 3.57 W and, at the border of the cells, frequencies 
will be transmitted using Pmax = 40 W. The example described can be applied to 
other configurations such as HR 1 + 1/2 or HR 1/2 + 1/3. Furthermore, more than 
just two reuse zones can exist.

The following section describes another technique to improve the cell-edge 
spectral efficiency.

9.1.3 Coordinated Multipoint Transmission
The concept of cooperative MIMO was briefly introduced in Chapter 1, also named 
as network MIMO or CoMP [3GPP 2011]. The goal of CoMP is to improve the 
coverage of high data rates and cell-edge throughput, and also to increase system 
throughput.

The primary difference between standard MIMO and CoMP is that for the 
latter, the transmitters are not physically colocated. In the case of downlink CoMP, 
however, there is the possibility of linking the transmitters at baseband to enable 
sharing of payload data for the purposes of coordinated precoding. This sharing is 
not physically possible for the uplink, which limits the options for uplink CoMP. 
For the standard network topology in which the eNBs are physically distributed, 
the provision of a high capacity and low latency baseband link is challenging and 
would probably require augmentation of the X2 inter-eNB interface using fiber. 
However, a cost-effective solution for inter-eNB connectivity is offered by a net-
work architecture in which the baseband and RF transceivers are located at a cen-
tral site with distribution of the RF to the remote radio heads (RRHs) via fiber.

Four downlink deployment scenarios were defined for the feasibility study in 
Release 11 [3GPP 2011]:

 ◾ CoMP scenario 1 is a homogeneous macronetwork (all cells have the same 
coverage area) with intrasite CoMP. This is the least complex form of CoMP 
and is limited to eNBs sharing the same site (see Figure 9.6).

 ◾ CoMP scenario 2 is also a homogeneous network but with high Tx-power 
RRHs. This is an extension of scenario 1 in which the six sites adjacent to the 
central site are connected via fiber optic links to enable baseband cooperation 
across a wider area than is possible with scenario 1 (see Figure 9.7).
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Scenario 1

Figure 9.6 CoMP scenario 1 (considered in LTE Release 11).

Scenario 2

Figure 9.7 CoMP scenario 2 (considered in LTE Release 11).
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 ◾ CoMP scenario 3 is a heterogeneous network in which low power RRHs with 
limited coverage are located within the macrocell coverage area (see Figure 
9.8).

 ◾ CoMP scenario 4 is a heterogeneous network in which low power RRHs with 
limited coverage are located within the macrocell coverage area. The trans-
mission/reception points created by the RRHs have the same cell identity as 
the macrocell (see Figure 9.9).

Scenario 3

Figure 9.8 CoMP scenario 3 (considered in LTE Release 11).

Scenario 4

Figure 9.9 CoMP scenario 4 (considered in LTE Release 11).
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Scenarios 3 and 4 are expected to be used in metropolitan areas where network 
deployment is dense and RRHs of different transmission power levels coexist.

The introduction of CoMP enables several new categories of network opera-
tion, which are defined for the downlink as follows [Lee et al. 2012, Rumney 2013, 
3GPP 2011]:

 ◾ Joint processing (JP): Data for a UE is available at more than one point in the 
CoMP cooperating set for the same time–frequency resource.

 ◾ Joint transmission (JT): This is a form of spatial multiplexing that takes 
advantage of decorrelated transmissions from more than one point within the 
cooperating set. Data to a UE is simultaneously transmitted from multiple 
points to coherently improve the received signal quality or data throughput.

 ◾ Dynamic point selection (DPS): The UE data is available at all points in the 
cooperating set but is only transmitted from one point based on dynamic 
selection in time and frequency. The DPS includes dynamic cell selection 
(DCS). DPS may be combined with JT, in which case multiple points can be 
selected for data transmission in the time–frequency resource.

 ◾ Coordinated scheduling and beamforming (CS/CB): Data for a UE is only 
available at and transmitted from one point in the CoMP cooperating set but 
user scheduling and beamforming (BF) decisions are made across all points 
in the cooperating set. Semistatic point selection (SSPS) is used to make the 
transmission decisions. Dynamic or semistatic muting may be applied to 
both JP and CS/CB.

9.2 Evaluation Methodology
Radio networks resources are obviously finite and scarce (i.e., limited bandwidth 
for transmission). As the number of services that use the available bandwidth 
increases, it is essential to have techniques that optimize the usage and allocation of 
such limited resources. Scheduling consists precisely in performing the allocation 
of resources taking into consideration different factors. This allocation is typically 
performed in the time domain, meaning that scheduling algorithms divide the 
time domain in small pieces (time slots [TS]), and then allocate every one of those 
TS to different users.

With the introduction of LTE and OFDMA, the paradigm of scheduling has 
slightly changed since resources can be allocated not only in time domain but 
also in the frequency domain. This flexibility of allocation both in time and fre-
quency will, in theory, enable OFDMA-based schedulers to allocate resources more 
efficiently, for example, allocating more time and bandwidth to users with more 
demanding needs.

With multiuser MIMO (MU-MIMO) specified for LTE-Advanced, the 
downlink of a MIMO broadcast channel requires both scheduling and BF. The 
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well-known orthogonal random beamforming (ORBF) exploits properly the avail-
able MIMO spatial channel dimensions of the system.

A single simulation that takes into consideration both the link-level simulation 
(LLS) and system-level simulation (SLS) would be preferable. Nevertheless, that 
implies a significant increased degree of complexity, and huge simulation times. 
Therefore, two separate but interconnected approaches are the best solution.

The LLS objective is to model a radio link between a UE and an eNB, includ-
ing channel estimation, interleaving, decoding, and so on, operating at symbol 
level frequency or time resolution. The output that is expected consists of one or 
more figures which show the relation between the minimum required signal-to-
noise ratio (SNR) that the link should experience to achieve a given block error rate 
(BLER).

For the SLS, a 19-cell network topology with wrap-around will be used as the 
baseline network topology for all SLSs, with the following features [ITU-R 2008]:

 1. The system is modeled as a network of 7 clusters. Each cluster has 19 hex-
agonal cells with 6 cells in the first tier and 12 cells in the second tier sur-
rounding the central cell of each cluster. Each cell has 3 sectors. Frequency 
reuse is modeled by planning frequency allocations in different sectors in the 
network.

 2. Users are dropped independently with uniform distribution throughout the 
system. Each mobile corresponds to an active user session that runs for the 
duration of the drop.

 3. Mobiles are randomly assigned channel models. Depending on the simula-
tion, these may be in support of a desired channel model mix, or separate 
statistical realizations of a single type of channel model.

 4. Users are dropped according to the specified traffic mix.
 5. For sectors belonging to the center cluster, sector assignment to a user is based 

on the received power at a user from all potential serving sectors. The sector 
with best path to the user, taking into account slow fading characteristics 
(path loss, shadowing, and antenna gains) is chosen as the serving sector.

 6. Mobile stations are randomly dropped over the 57 sectors such that each 
sector has the required numbers of users. Although users may be in regions 
supporting handover, each user is assigned to only one sector for count-
ing purposes. All sectors of the system shall continue accepting users until 
the desired fixed number of users per sector is achieved everywhere. Users 
dropped within 35 m of a sector antenna shall be redropped. User locations 
for six wrapping clusters are the same as the center cluster.

 7. For simulations that do not involve handover performance evaluation, the loca-
tion of each user remains unchanged during a drop, and the speed of a user is 
only used to determine the Doppler effect of fast fading. Additionally, the user 
is assumed to remain attached to the same eNB for the duration of the drop.
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 8. Fading signal and fading interference are computed from each mobile sta-
tion into each sector and from each sector to each mobile for each simulation 
interval.

 9. Packets are not blocked when they arrive into the system (i.e., queue depths 
are infinite). Users with a required traffic class shall be modeled according to 
the traffic models defined in this document. Start times for each traffic type 
for each user should be randomized, as specified in the traffic model being 
simulated.

 10. Packets are scheduled with a packet scheduler using the required fairness 
metric. Channel quality feedback delay and protocol data unit (PDU) errors 
are modeled and packets are retransmitted as necessary. The hybrid auto-
matic repeat request (HARQ) process is modeled by explicitly rescheduling 
a packet as part of the current packet call after a specified HARQ feedback 
delay period.

 11. Simulation time is chosen to ensure convergence in user performance met-
rics. For a given drop, the simulation is run for this duration, and then the 
process is repeated with the users dropped at new random locations. A suf-
ficient number of drops are simulated to ensure convergence in the system 
performance metrics.

 12. Performance statistics are collected for users in all cells according to the out-
put matrix requirements.

 13. All 57 sectors in the system shall be dynamically simulated.

The system level simulators used in this chapter were based on the above 13 
requirements (for this study only the downlink is considered). Another general 
description of an SLS is presented in Chapter 5 of [Marques da Silva et al. 2012].

9.2.1 Link-Level Simulations
For the LLSs, the urban macropropagation channel was used to simulate the 
point-to-point (PtP) and the point-to-multipoint (PMP) scenarios radio link. 
Since the number of subcarriers allocated to each user vary along the simulation, 
an extensive study had to be performed, testing all the possible number of sub-
carriers. Starting with one physical resource block, each one with 12 subcarriers, 
every time (12, 24, 36, 48 subcarriers, and so on) until reaching the maximum 
subcarrier value of 600 (corresponding to the total usage of the subcarriers avail-
able with a 10 MHz transmitting bandwidth).

The size of the transmitted block depends on the number of subcarriers used 
and the number of OFDM symbols per subframe, being expressed by

 L N NTBcod symb sc= ×  (9.6)
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where LTBcod denotes the total size of the block transmitted in a single subframe 
including coding and cyclic redundancy check (CRC) bits, Nsymb is the number of 
OFDM symbols per subframe and per subcarrier, and Nsc is the number of occu-
pied subcarriers during one subframe.

The size of the effective data transmitted block LTB (i.e., without the coding and 
correction bits) is inferior to LTBcod, being expressed by

 L L RTB TBcod c=  (9.7)

where Rc is the respective coding rate.
For the different combinations of environment (hierarchical modulation, cod-

ing rate, etc.), the LLS produced figures with the evolution of the BLER as a func-
tion of the link ES/N0. ES/N0 represents the ratio of the energy of each symbol (ES) 
over the spectral noise density (N0). For the PMP modes (SC-PMP and MBSFN 
scenarios), the target BLER to be achieved is 1% (BLER = 0.01). For PtP scenario, 
the target BLER is 10% (BLER = 0.1), that is, in every 10 transmitted packets only 
one of those is not correctly decoded at the receiver and needs to be retransmitted. 
The SNR values used in SLS are obtained using

 
SNR

E
N

R
M B

S b

w
= +





0

10
2

10 log log ( )
 

(9.8)

where ES/N0 is obtained from the figures produced by LLS, Rb is the specific bit-rate 
considered in the simulation run, M is the index of the hierarchical modulation 
used (e.g., for 16QAM, we have the modulation order M = 16), and Bw is the total 
bandwidth available for transmission (i.e., 10 MHz for all the cases). As defined in 
Equation 9.9, the Rb value is obtained by dividing the size of the block of bits being 
transmitted (before coding) over the duration in seconds that is needed to transmit 
the entire block of bits (typically this is the subframe duration or time transmission 
interval equal to 0.5 ms).
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Some results from LLSs are presented in Figure 9.10 for one of the environ-
ments under consideration. The presented ES/N0 (and SNR values obtained from 
them) are required to receive the totality of the bits for each modulation and coding 
scheme (MCS). The target SNR values required to receive only a part of those bits 
(i.e., only the strong bits, or strong and average bits) are obviously lower than those.

Figure 9.10 plots the BLER performance of single-user MIMO (SU-MIMO) 
2 × 2 with frequency diversity, as a function of ES/N0 values, for different fre-
quency reuse R, two different streams transmitted by antennas A1 and A2 (in 
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case of multiresolution, the BER of each spatial multiplexing* stream might be 
different) and coding rate Cod. The receiver is an iterative minimum mean square 
error (MMSE), as described in Chapter 2. Taking as reference the BLER = 0.01 (or 
BLER = 0.1 for PtP communications) then the corresponding ES/N0 values would 
provide the SNR values to correctly receive a block of N bits, being used as an input 
to run the system level simulator.

9.2.2 System-Level Simulations
The ITU-R IMT-Advanced MIMO channel model for SLS is a geometry-based 
stochastic model. It can also be called double-directional channel model. It does 
not explicitly specify the locations of the scatters, but rather the directions of the 
rays, like the well-known spatial channel model (SCM) [3GPP 2009a]. Geometry-
based modeling of the radio channel enables separation of propagation parameters 
and antennas.

The channel parameters for individual snapshots are determined stochastically 
based on statistical distributions extracted from channel measurements. Antenna 
geometries and radiation patterns can be defined properly by the user of the model. 
Channel realizations are generated through the application of the geometrical prin-
ciple by summing contributions of rays (plane waves) with specific small-scale (SS) 
parameters such as delay, power, angle-of-arrival (AoA) and angle-of-departure 
(AoD). Superposition results to correlation between antenna elements and tempo-
ral fading with geometry-dependent Doppler spectrum.

* A multilayer MIMO transmission is assumed (spatial multiplexing), as described in Chapter 1.
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Figure 9.10 BLER versus Es/No MIMO (2 × 2), QPSK, urban macrochannel.
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A number of rays constitute a cluster. In the terminology of this document, we 
equate the cluster with a propagation path diffused in space, either or both in delay and 
angle domains. Elements of the MIMO channel, for example, antenna arrays at both 
link ends and propagation paths, are illustrated in Figure 9.11. The generic MIMO 
channel model is applicable to all scenarios, for example, indoor, urban, and rural.

The time-variant impulse response matrix of the U × S MIMO channel is given by
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where t is time, τ is delay, N is the number of paths, and n is path index.
The IMT-Advanced channel model for the evaluation of IMT-Advanced candi-

date technologies consists of a primary module and an extension module. Only the 
primary module is described, which is mandatory for IMT-Advanced evaluation.

The generic channel model is a stochastic model with two (or three) levels of 
randomness. First, large-scale (LS) parameters such as shadow fading, delay, and 
angular spreads are drawn randomly from tabulated distribution functions. Next, 
SS parameters such as delays, powers, and directions of arrival and departure are 
drawn randomly according to tabulated distribution functions and random LS 
parameters. At this stage, the geometric setup is fixed and the only free variables 
are the random initial phases of the scatters. By picking (randomly) different initial 
phases, an infinite number of different realizations of the model can be generated. 
When the initial phases are also fixed, there is no further randomness left.

Figure 9.12 shows the overview of the channel model creation. The first stage 
consists of two steps. First, the propagation scenario is selected. Then, the network 
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Figure 9.11 MIMO channel.
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layout and the antenna configuration are determined. In the second stage, LS and 
SS parameters are defined. In the third stage, channel impulse responses (ChIRs) 
are calculated.

The generic model is based on the drop concept. When using the generic model, 
the simulation of the system behavior is carried out as a sequence of drops, where a 
drop is defined as one simulation run over a certain time period. A drop (or snap-
shot or channel segment) is a simulation entity where the random properties of the 
channel remain constant except for the fast fading caused by the changing phases 
of the rays. The constant properties during a single drop are, for example, the pow-
ers, delays, and directions of the rays. In a simulation, the number and the length of 
drops have to be selected properly by the evaluation requirements and the deployed 
scenario. The generic model allows the user to simulate over several drops to get 
statistically representative results. Consecutive drops are independent.

Several different scenarios will be evaluated, some considering E-MBMS ser-
vices in PtP mode and PMP modes. The scenario where PtP mode is evaluated will 
serve as reference result when comparing the results in PMP, which are expected to 
outperform the results of PtP mode.

The SU-MIMO, MU-MIMO, and finally CoMP scenarios will also be evalu-
ated in the next section.

The most important parameters used for the different scenarios based on 3GPP 
recommendations [3GPP 2010c, 3GPP 2010d] can be observed from Table 9.1.

The average propagation loss with distance is dependent on the probability of 
line-of-sight (LOS). This is presented in Equation 9.11, where mobile users must be 
distant from the eNB antennas more than 18 m.

 
Pr( ) ( ) /LOS d e e d md d= − + >− −18 1 1863 63/

 
(9.11)
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Figure 9.12 Channel model creation process.
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Table 9.1 Parameterization for SLS Simulations

Parameter Values

Cell radius 500, 750, 1000, 2250 m

Schedulers RR, Max C/I, FT, PF

Traffic model CBR

Simulation time 500 (seg)

Subframe duration (TTI) 0.5 ms

Carrier frequency 2 GHz

Propagation model 3GPP urban macro

Distance attenuation (d = distance 
in meters)

PNLOS = −40.45 + 39.09 log(d) (dB)

PLOS = 34.04 + 22 log(d) if d < 360 m (dB)

PLOS = −11.02 + 40 log(d) if d > 360 m (dB)

L = Pr(LOS)PLOS + (1–Pr(LOS))PNLOS (dB)

Channel model Urban macro

Number of base station sites 19

Number sectors per base station 
site

3 sectors/site

User mobility Random walk inside sector

UE antenna height 1.5 m

eNB antenna height 25 m

% of transmitted power by other 
cells

90

Modulations QPSK, H-16QAM, H-64QAM

Coding rate 1/2, 3/4

Frequency reuse 1,1/3, HR: 1 + 1/3

Sites layout 19 eNBs

eNB base station power/sector 46 dBm or 40 W

RRH power/sector 34 dBm or 2.5 W

Number UEs per sector Variable
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9.3 Simulation Results
The problem of intercell interference is illustrated in Figure 9.13, which shows a 
cumulative distribution function plot of the geometry factor within a typical mac-
rourban cell.

The geometry factor was the term used in universal mobile telecommunication 
system (UMTS) to indicate the ratio of the wanted signal relating to the inter-
ference plus noise. This corresponds to the signal-to-interference-plus-noise ratio 
(SINR). From the figure, it is viewed that 10% of the users experience better than 
10.5 dB geometry factor but 50% of users experience worse than 1.5 dB. The exact 
shape of the curve varies significantly depending primarily on the frequency reuse 
factor followed by the cell size and cell loading. An isolated cell would exhibit a 
shift to the right, indicating that most users are experiencing very good signal con-
ditions. A cell in an urban area with significant cochannel inter-cell interference 
would shift to the left. Penetration loss through buildings, as experienced when 
indoor coverage is provided from an external cell, would also cause a shift to the 
left. When the deployment in a particular area has resulted in a certain geometry 
factor distribution, the challenge becomes how to deal with the interference to 
improve cell-average and cell-edge performance.
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9.3.1 Results for PMP Scenarios
In 3G systems, the frequency reuse was optimized at one, and methods such as 
scrambling and spreading were used to minimize the impact of interference with 
resulting gains in average spectral efficiency. Later systems employed receive diver-
sity, equalizer, transmit diversity, and limited spatial multiplexing (MIMO). For 
LTE-Advanced, the planned performance enhancement techniques will take fur-
ther steps by using more advanced MIMO and BF, interference cancellation, frac-
tional frequency reuse, and other advanced methods.

It is worth explaining how the cell-edge performance targets used by ITU-R and 
3GPP were developed based on simulated geometry-factor distributions for the tar-
get deployment environments. Ten users were randomly distributed within each cell 
and the resulting geometry factor was calculated for each UE. This information was 
converted into a data throughput rate that was in turn used to plot a distribution of 
throughput. The process was repeated many times in a multidrop simulation to cre-
ate a smooth throughput distribution. The cell-edge performance was then defined 
as the fifth percentile of the throughput distribution. It is not straightforward to take 
the cell-edge figure per user and multiply by 10 to predict the cell-edge average since 
the distribution is complicated by the type of scheduler used. The scheduler may 
have allocated more resources to the cell-edge users in a proportionally fair system.

The following six figures present several geometry distributions (SINR), illus-
trating several intercell interference cancellation (ICIC) schemes. The system simu-
lated has 19 sites (eNBs), where each cell has 3 sectors, 57 sectors in total, and 
mobile users are distributed within the inner 7 cells but suffer intercell interference 
from all the eNBs. The cell radius is 2250 m.

In Figure 9.14, the spatial geometry distribution of the SC-PMP scenario with 
full frequency reuse of 1 is presented. As reuse 1 is considered, no ICIC is employed 
and as a result the SNR is low almost everywhere. The higher values of SNR occur 
closer to the sites aligned with the directions of the three sector antennas. The 
places with SNR≤ −2 dB correspond to about 10% of the total area. There are no 
places with SNR≥ 22 dB.

The simple form of reducing intercell interference is employing fractional fre-
quency reuse. In Figure 9.15, the spatial geometry distribution of the SC-PMP 
scenario with fractional frequency reuse of 1/3 is presented. As a result, the SNR 
increases everywhere. As expected, the higher values of SNR continue to occur 
closer to the sites aligned with the directions of the three sector antennas. The places 
with SNR≤ −2 dB have disappeared and were replaced by 0 dB ≤ SNR ≤ 2 dB cor-
responding to about 10% of the total area. The places with SNR ≥ 22 dB corre-
spond to about 10% of the total area. Due to the significant co-channel intercell 
interference reduction, there is a shift to the right in terms of geometry curve pre-
sented in Figure 9.13.

In Figure 9.16, the spatial geometry distribution of the SC-PMP scenario with 
soft frequency reuse of 1 + 1/3 is presented. When compared with the case of simple 
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Figure 9.14 Spatial signal-to-interference-noise ratio of SC-PMP scenario with 
frequency reuse 1.

Figure 9.15 Spatial signal-to-interference-noise ratio of SC-PMP scenario with 
frequency reuse 1/3.
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reuse 1, the SNR increases everywhere. The higher values of SNR continue to occur 
closer to the sites aligned with the directions of the three sector antennas. However, 
despite the higher available spectrum, when compared with the case of reuse 1/3, 
there is a decrease in SNR values close to eNBs due to the use of reuse 1 in those 
areas. The places with 0 dB ≤ SNR ≤ 2 dB correspond to about 10% of the total 
area, which is identical to simple reuse 1/3. However, the places with SNR ≥ 22 dB 
have decreased and correspond to about 3% of the total area.

In Figure 9.17, the spatial geometry distribution of the MBSFN scenario 
with full frequency reuse of 1 is presented. In spite of employing reuse 1, there 
is ICIC due to the considered MBSFN scenario. For reuse 1, MBSFN compared 
with SC-PMP presents spatial SNR higher due to coordination of the synchro-
nized transmissions. The higher values of SNR continue to occur closer to the sites 
aligned with the directions of the three sector antennas. The places with values 
−2 dB ≤ SNR ≤ 0 dB correspond to about 5% of the total area. The places with 
values SNR ≥ 22 dB correspond also to about 5% of the total area.

To further reduce the intercell interference, we consider the fractional fre-
quency reuse. In Figure 9.18, the spatial geometry distribution of the MBSFN 
scenario with fractional frequency reuse of 1/3 is presented. As a result, the SNR 
increases substantially everywhere. As expected, the higher values of SNR continue 

Figure 9.16 Spatial signal-to-interference-noise ratio of SC-PMP scenario with 
soft frequency reuse 1 + 1/3.
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Figure 9.17 Spatial signal-to-interference-noise ratio of MBSFN scenario with 
frequency reuse 1.

Figure 9.18 Spatial signal-to-interference-noise ratio of MBSFN scenario with 
frequency reuse 1/3.
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to occur closer to the sites aligned with the directions of the three sector anten-
nas. The places with −2 dB ≤ SNR ≤ 0 dB have disappeared and were replaced by 
6 dB ≤ SNR ≤ 8 dB, corresponding to about 10% of the total area. The places with 
values SNR ≥ 22 dB have increased and correspond to about 20% of the total area.

In Figure 9.19, the spatial geometry distribution of the MBSFN scenario with 
soft frequency reuse of 1 + 1/3 is presented. When compared with the case of simple 
reuse 1, the SNR increases everywhere. The higher values of SNR continue to occur 
closer to the sites aligned with the directions of the three sector antennas. However, 
when compared with the case of reuse 1/3, there is a decrease in SNR values close to 
eNBs due to the use of reuse 1 in those areas. The places with 6 dB ≤ SNR ≤ 8 dB 
correspond to about 10% of the total area, which is identical to simple reuse 1/3. 
However, the places with values SNR ≥ 22 dB have decreased and correspond to 
about 15% of the total area.

9.3.2 Results for PtP Scenarios
In PtP scenario, every UE is served individually, and the link established by any 
given UE. If a user does not receive a packet properly, there is the option to retrans-
mit the lost packet. Therefore, coverage in this type of system is assured. In this 

Figure 9.19 Spatial signal-to-interference-noise ratio of MBSFN scenario with 
soft frequency reuse 1 + 1/3.
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scenario, service delay or outage can be experienced (e.g., due to large waiting times 
when scheduling), outage being one of the aspects analyzed here. Another impor-
tant aspect is the overall system capacity (i.e., how many users per cell can the 
system serve).

Since every UE is individually allocated with resources, and once these are 
finite, some sort of scheduling mechanism is necessary. Different scheduling mech-
anisms are tested, using different numbers of UEs in the system to better under-
stand how every scheduling algorithm performs [Gomes 2010].

The following results only cover the traffic model, with constant bit-rate (CBR)* 
at 37,800 kbps. The CBR traffic model, as the name says, always generates the 
same amount of data, with exactly the same time intervals between consecutive 
data. This is the traffic model that comes closer to type of traffic generated in PMP 
transmissions. The CBR traffic model generates a packet of 37,800 bits every 1 ms 
(millisecond). This represents a traffic generator offering a load of 37,800 kbps per 
UE and a maximum spectral efficiency per user of 3.7 bps/Hz in a 10 MHz band 
with MIMO 4 × 4 [3GPP 2012b]. As we previously described, the exact shape of 
the geometry curve varies significantly depending on the frequency reuse factor fol-
lowed by the cell size and cell loading. The influence of the type of employed sched-
uler, the cell size, and the cell loading will all be analyzed in the following sections.

9.3.2.1 Results for PtP with SU-MIMO

Figure 9.20 shows the cumulative distribution function of throughput (CDF(x)) as 
a function of the throughput, for SU-MIMO 4 × 4, with 10 channel quality indi-
cators (CQIs) QPSK modulated, and five CQIs 16QAM modulated. The CDF(x) 
is the probability of the random variable% of UEs with throughput value less than 
or equal to x. Three different schedulers are analyzed, where the number of users 
per sector is 10, as recommended by ITU-R [ITU-R 2008] and by 3GPP [3GPP 
2012a]. The CDF of throughput was chosen as the basis of comparison of differ-
ent schemes in ITU-R and 3GPP. In this figure, the cell radius R is 750 m, the 
coding rate is 1/2 and the frequency reuse is one (high levels of intercell interfer-
ence at cell borders). As can be seen, the results vary significantly depending on 
the scheduler. There are two “fair” schedulers, the simple round robin (RR) and 
the fair throughput (FT). In RR, users form a circular queue and the scheduler 
allocates equal timeslots for each and every user in the queue. The FT algorithm 
consists of serving users equally accordingly to the average throughput. Therefore, 
the FT scheduling aims at fairness in terms of user throughput (all users, no mat-
ter what their receiving conditions or position are inside cell will have the same 
average throughput). This is done by scheduling first users who have lowest average 
throughputs. The scheduler maximum carrier-interference (MCI), also referred to 
in the literature as “maximum SINR,” or simply as “Max C/I,” is a channel aware 

* CBR stands for constant bit rate.
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scheduling algorithm where it is given more priority to users with good channel 
(users located closer to the base-station). The scheduler chooses the user k with 
maximum SINR at instant t. The measurement of SINR is performed via constant 
periodic CQI feedback done by every single user. The MCI is not fair.

Only RR and FT are able to transmit successfully to users located at cell bor-
ders. Remind that the cell-edge performance is defined as the fifth percentile of the 
CDF of the throughput. In this case, the cell-edge performance of RR and FT is 
125 kbps. The average throughput (50% CDF) is 650 kbps for MCI, 2150 kbps for 
FT and 2650 kbps for RR. However, it can be viewed that 10% of users experience 
a better than 7600 kbps for MCI, 3700 kbps for FT, and 5000 kbps for RR.

The throughput distribution versus the geometry of SU-MIMO 4 × 4 is illus-
trated in Figure 9.21, for different schedulers, and corresponds to previous Figure 
9.20. The geometry factor is the term used in UMTS to indicate the ratio of the 
wanted signal relating to the interference plus noise, and corresponds to the SINR. 
As expected the results depend on the scheduler. The curves corresponding to the 
two “fair” schedulers, RR and FT are less dependent of the parameter geometry. 
Indeed the FT algorithm aims at achieving a straight line along the geometry axe. 
Independent of the mobile position within the cell, each one gets the same average 
throughput. Due to the way it works, the RR scheduler presents the expected varia-
tion of the throughput with the geometry. Users located close to the base station, 
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Figure 9.20 CDF of throughput versus throughput, SU-MIMO (4 × 4), different 
schedulers, Nu = 10.
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with high values of geometry (expressed in dB), achieve higher throughput than 
users at the border of the cell. The unfair scheduler MCI, giving more priority to 
users with good channel conditions, amplifies the difference of throughput versus 
the geometry. It has very small throughput for users at the cell edge and very high 
throughput for users located close to the base station.

The throughput distribution versus the geometry of SU-MIMO 4 × 4 is illus-
trated in Figure 9.22, for the RR scheduler, where the parameter cell radius is vari-
able. As can be seen from Table 9.1 and Equation 9.11, the average propagation loss 
with the distance depends on the existence of LOS (or non-LOS [NLOS]). The prob-
ability of LOS decreases with the distance, and the probability of NLOS increases 
with the distance. In the model used for LOS at d < 320 m, there is an exponential 
power decay with 3.4 and for LOS at d ≥ 320 m the power decay increases to 4. 
When we consider the cell with radius equal to R = 500 m, there is a predominance 
of places that are in LOS. In this case, there is a strong intercell interference, even 
for mobiles close to the base station. Increasing the cell radius to R = 750 m and to 
R = 1000 m decreases the probability of LOS and reduces the intercell interferences 
for users close to the base station increasing the throughput. This can be seen from 
Figure 9.22. However, for users located at the cell edge increasing the cell radius 
reduces the throughput due to decreasing levels of received power, while keeping 
the same geometry (the same signal to interference plus noise ratio).
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Figure 9.21 Throughput distribution versus geometry, SU-MIMO (4 × 4), differ-
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The CDF of throughput results for SU-MIMO 4 × 4, the RR scheduler, for dif-
ferent cell radius, Nu = 10, is illustrated in Figure 9.23, and corresponds to Figure 
9.22. As expected, the case R = 750 m is the intermediate one. For R = 1000, there 
is a reduction of the maximum throughput, and less than 10% of the users have 
throughput higher than 4500 kbps. For R = 500 m, there are 10% of the users with 
throughput higher than 5350 kbps. However, there is an average throughput (50% 
of users) of 2650 kbps for R = 1000 m, while for R = 500 m the average value is 
2500 kbps. For cell edge users, the throughput is also higher for R = 1000 m com-
pared to R = 500 m (or R = 750 m).

The throughput distribution versus the geometry of SU-MIMO 4 × 4, where the 
number of users per cell is Nu = 50, is illustrated in Figure 9.24, for different schedul-
ers. As expected, there is a substantial throughput reduction per user when we increase 
the number of users from 10 (Figure 9.22) to 50. For MCI, only 30% of the users 
are served but 10% of these users get more than 2000 kbps. For RR and FT, 50% of 
the users get 525 kbps which is around 10/50 of the throughput achieved when there 
were 10 users. For FT, 10% of the users get more than 600 kbps and for RR there are 
10% of users with more than 1000 kbps. In conclusion, there is a linearly proportional 
decrease of the throughput for a linear increase of the number of users.
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The CDF of throughput results for SU-MIMO 2 × 2 with 10 CQIs QPSK 
modulated and five CQIs 16QAM modulated are illustrated in Figure 9.25. The 
same schedulers are analyzed, namely, RR, MCI, and FT. The number of users per 
sector is 10 and the cell radius R is 750 m, the coding rate is 1/2 for QPSK and 3/4 
for 16QAM, the frequency reuse is one. This figure should be compared to Figure 
9.22 with MIMO 4 × 4.

RR and FT are able to transmit successfully to users located at cell borders and 
MCI continues to not serve 30% of the users. The cell-edge performance (5% CDF) 
of RR and FT is 125 kbps. The average throughput (50% CDF) is 450 kbps for 
MCI, 1200 kbps for FT, and 1400 kbps for RR. However, 10% of users experience 
a throughput better than 7500 kbps for MCI, 1900 kbps for FT, and 3800 kbps for 
RR. When we compare the MIMO 2 × 2 results with MIMO 4 × 4, the cell edge 
throughput has not changed, but the average throughput is about half, independent 
of the scheduler. For the 90% CDF, the throughput results depend on the schedul-
ers. For FT, this throughput is halved, for the RR scheduler is 76%, and for MCI 
is 96%. It should be noticed that the highest bit rate of the CQIs for MIMO 2 × 2 
is almost the same as the CQIs for MIMO 4 × 4 because both employ 16QAM but 
the coding rates are different 3/4 and 1/2, respectively.
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Figure 9.24 CDF of throughput versus throughput, SU-MIMO (4 × 4), Nu = 50.
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Figure 9.25 CDF of throughput versus throughput, SU-MIMO (2 × 2), Nu = 10.
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9.3.2.2 Results for MU-MIMO

BF is a suboptimal strategy that can serve multiple users at a time, but with 
reduced complexity. In BF, each user stream is coded independently and multi-
plied by a BF weight vector for transmission through multiple antennas. Careful 
selection of weight vectors can reduce (or eliminate) mutual interference among 
different streams by taking advantage of spatial separation between users and 
thereby supporting multiple users simultaneously. This multiuser communication 
scheme is called space-division multiple access (SDMA).* In [Sharif and Hassibi 
2005], the authors propose an orthogonal random beamforming (RBF) scheme. 
Another suboptimal BF strategy is zero-forcing beamforming (ZFBF) [Yoo and 
Goldsmith 2006], where the weight vectors are chosen to avoid interference 
among user streams. Both scheduling strategies essentially combine TDMA/
OFDMA with SDMA.

In industry, SDMA with orthogonal BF, under the name “per user unitary 
and rate control” (PU2RC) [Samsung 2006], was proposed to the 3GPP-LTE 
standard. The main feature of PU2RC is limited feedback, where multiuser pre-
coders or beamformers are selected from a codebook of multiple orthonormal 
bases. Based on limited feedback, PU2RC supports SDMA, scheduling, and 
adaptive modulation and coding. Because of its versatility and advanced fea-
tures, PU2RC is one of the most promising solutions for high-speed downlink 
in 3GPP-LTE.

The cumulative distribution function of throughput results for MU-MIMO 
with M = 4 transmitting antennas, with the same adaptive MCSs of SU-MIMO 
are illustrated in Figure 9.26. Four different schedulers are analyzed, where the 
number of users per sector is 10. In current and next figures, the cell radius R is 
750 m and perfect channel state information is assumed. All schedulers include 
beamformers selected from multiple orthonormal bases. There is a new scheduling 
algorithm named proportional fair (PF). Similar to Max C/I, PF is channel aware. 
In fact, we can look at PF as a less aggressive version of Max C/I scheduling algo-
rithm. PF uses CQI feedback sent by users to determine the instantaneous possible 
data rate a user k can achieve at a given instant t, and also the average throughput 
a user k had until instant t. This way, users that have instantaneous throughputs 
higher than their average throughput are scheduled first. The unfairness of Max 
C/I scheduler, where only users with good SNR have resources allocated, is avoided 
[Ishizaki and Hwang 2009]. As expected, the results are varying depending on the 
scheduler type. The comparison with Figure 9.20 indicates that MCI increases the 
highest throughput achieved by 10% of users, better than 8000 kbps. However, 
there is a reduction of the highest throughput for FT (and RR), which was com-
pensated by the increase of average throughput, specially the throughput for users 
at cell edge. The throughput performance curve of PF is following the MCI curve 

* See Chapter 1.
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but with much more fairness. As a result, the average throughput of PF is more than 
the double of the MCI.

The throughput distribution versus the geometry of MU-MIMO, for M = 4 
transmitting antennas, is illustrated in Figure 9.27, for different schedulers, and 
corresponds to Figure 9.26. As expected, the results depend on the scheduler and 
should be compared with Figure 9.21. An increase of throughput is observed for 
MCI and users with highest geometry. There is a reduction of throughput for RR 
and users with higher geometry. The performance of PF is between these two 
schedulers for all geometry values. The throughput of FT is the less dependent of 
the geometry parameter and presents an increase for the smaller geometry.

The throughput distribution versus the distance of MU-MIMO, M = 4 trans-
mitting antennas, is illustrated in Figure 9.28, for different schedulers, and cor-
responds to previous Figure 9.27. As expected there is a strong correlation with 
the results presented in Figure 9.27. The correlation is due to the strong relation 
between geometry and location inside the cell of the users. Users at smaller dis-
tance of the base station are those with higher geometry. Inversely, users at the 
border of the cell (R = 750 m) are the ones with the smallest geometry. For MCI 
and users at R = 50 m, the throughput is higher than 8000 kbps, which should 
correspond to less than 10% of the users. For PF, RR, and FT algorithms, the 
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schedulers, Nu = 10.
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Figure 9.27 Throughput distribution versus geometry, MU-MIMO (M = 4), dif-
ferent schedulers, Nu = 10.
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Figure 9.28 Throughput versus distance, MU-MIMO (M = 4), different schedul-
ers, Nu = 10.
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highest throughput is 6200 kbps, 4350 kbps, and 2900 kbps, respectively. At cell 
edge, there is an inversion and for MCI, PF, RR, and FT the throughput achieved 
is 90 kbps, 350 kbps, 650 kbps, and 1600 kbps, respectively.

The CDF of throughput results for MU-MIMO with M = 4 transmitting 
antennas and the same MCSs of SU-MIMO are illustrated in Figure 9.29, where 
the number of users per sector is 50. The same four different schedulers are ana-
lyzed. The comparison with Figure 9.24 indicates that MCI increases the highest 
throughput achieved by 10% of users, better than 2300 kbps. However, there is a 
reduction of the highest throughput for RR (and FT) which was compensated by 
the increase of the average throughput, specially the throughput of FT for users at 
cell edge. Again, the performance curve of PF is following the MCI curve but with 
much higher percentage of users served, in spite of small throughput. As a result, 
more than 55% of the users are scheduled by PF, while for MCI, only 28% are 
scheduled.

The throughput distribution versus the geometry of MU-MIMO, M = 4 trans-
mitting antennas, for Nu = 50 users per sector is illustrated in Figure 9.30, and cor-
responds to CDF results of previous Figure 9.29. These results should be compared 
with Figure 9.27 for Nu = 10. For the FT algorithm with Nu = 50, there is an aver-
age throughput of 500 kbps that multiplied by 50/10 = 5 gives 2500 kbps which 
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Figure 9.29 CDF of throughput versus throughput, MU-MIMO (M = 4), different 
schedulers, Nu = 50.
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is the average throughput when Nu = 10. There is no throughput gain (unitary 
gain) with this scheduler. For MCI with Nu = 50, in the region of higher geom-
etry (interference-limited region), there is an average throughput of 3600 kbps that 
multiplied by 5 gives 1800 kbps which is three times the average throughput of 
6000 kbps when Nu = 10. So there is a throughput gain of 3 for this scheduler. 
In the region of smaller geometry (interference plus noise-limited region), there is 
no throughput gain. In fact, a loss of throughput is observed. For PF in the inter-
ference-limited region, the throughput gain is 1.5. In the interference plus noise-
limited region, the gain is unitary. With RR, there is a unitary gain in both regions. 
This is similar to FT.

To increase the spectral efficiency on average and/or at the cell borders, or when 
the number of users is increasing, the MU-MIMO with PF scheduling should be 
employed.

9.3.3 Results for CoMP with MU-MIMO
To allow a comparison with previous results, only CoMP scenario 2 is analyzed 
in this section. Data to a UE is simultaneously transmitted (joint transmission) 
from multiple points to coherently improve the received signal quality or data 
throughput. A combination of MU-MIMO with CoMP is employed. We take the 
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Figure 9.30 Throughput distribution versus geometry, MU-MIMO (M = 4), dif-
ferent schedulers, Nu = 50.
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simplification of assuming that the quality of channel state information is very 
good (perfect estimation).

The cumulative distribution function of throughput results for CoMP with 
MU-MIMO with M = 4 transmitting antennas per site, with the same adap-
tive MCSs of SU-MIMO are illustrated in Figure 9.31. The same four different 
schedulers are analyzed, where the number of users per sector is 10 and the cell 
radius R is 750 m. As expected, the results are varying depending on the scheduler. 
The comparison with Figure 9.26 indicates overall improvements independently 
of the schedulers. For MCI, the highest throughput achieved by 10% of users is 
around 8500 kbps. For PF, RR, and FT the corresponding values are 7750 kbps, 
5900 kbps, and 4100 kbps, respectively. The average throughput has also increased 
for all the schedulers. There is an obvious increase of throughput of cell edge users 
for schedulers MCI and PF. There are also throughput increments at cell edge users 
for the FT and RR due to improvement of the received signal-to-noise ratio.

The throughput distribution versus the geometry of CoMP with MU-MIMO, 
M = 4 per site, for Nu = 10 users per sector is illustrated in Figure 9.32, and cor-
responds to CDF results of previous Figure 9.31. These results should be compared 
with Figure 9.27. There is an overall performance improvement independently of 
the schedulers. For the FT algorithm, there is an obvious increase of throughput of 
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Figure 9.31 CDF of throughput versus throughput, CoMP with MU-MIMO, dif-
ferent schedulers, Nu = 10.
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3000/2500 kbps = 1.2. For the other algorithms, it is not easy to compute the gain 
because we need to consider the performance improvement in all geometry values, 
but the same 20% increase seems to apply.

The CDF of throughput results for CoMP with MU-MIMO, and with M = 4 
transmitting antennas per site, is illustrated in Figure 9.33, where the number of 
users per sector is 50. The comparison with Figure 9.29 indicates overall improve-
ments independently of the schedulers. For MCI, PF, RR, and FT the highest 
throughput achieved by 10% of users is 3300 kbps, 2050 kbps, 1200 kbps, and 
800 kbps, respectively. The performance curve of PF is following the MCI curve, 
but there is no improvement for users served with small throughput. In all, 55% 
of the users (the same percentage as without CoMP) are scheduled by PF while for 
MCI, 33% are now scheduled (5% increase).

The throughput distribution versus the geometry of CoMP with MU-MIMO, 
for Nu = 50 users per sector, is illustrated in Figure 9.34, and corresponds to CDF 
results of previous Figure 9.33. These results should be compared with Figure 9.32 
for Nu = 10. For the FT algorithm, with Nu = 50, there is an average through-
put of 700 kbps that multiplied by 50/10 = 5 gives 3500 kbps which is 500 kbps 
above the average throughput when Nu = 10. There is a throughput gain of 1.17 
with this scheduler. For MCI with Nu = 50, in the region of higher geometry 
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Figure 9.32 Throughput distribution versus geometry, CoMP with MU-MIMO, 
different schedulers, Nu = 10.

 



444 ◾ MIMO Processing for 4G and Beyond

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�roughput (kbps)

%
 U

Es
 <

=�
ro

ug
hp

ut

RR
MCI
FT
PF
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(interference-limited region), there is an average throughput of 4300 kbps that, 
multiplied by 5, gives 21,500 kbps, which is 3.3 times the average throughput of 
6500 kbps when Nu = 10. The throughput gain is 3.3 for this scheduler. In the 
region of smaller geometry (interference plus noise-limited region), there is no 
throughput gain, but there is a loss. For PF in the interference-limited region, the 
throughput gain is 1.67. In the interference plus noise-limited region, the gain is 
unitary. With RR, there is a unitary gain in all regions. When these results are 
compared with Figure 9.30, for Nu = 50 but without CoMP, we get the follow-
ing conclusions: for FT, the throughput gain is around 1.4 within both interfer-
ence regions; for RR the gain is 1.25 within both interference regions; for MCI, in 
the interference-limited region, the gain is 1.15 and is unitary in the interference 
plus noise-limited region; for PF, in the interference-limited region, the gain is 1.4, 
being 1.10 in the interference plus noise-limited region. Due to the use of joint 
coordinated multipoint transmission, independently of the schedulers employed, 
throughput gains are observed. However, the gains achieved depend on the sched-
ulers. The performance results indicate also that the criterion of proportional fair-
ness is important when the number of users is increasing.

9.4 Conclusions
The main goal of this chapter was to describe a set of techniques that may be 
implemented in future LTE-Advanced networks, using PMP and PtP scenarios. 
These techniques use spatial multiplexing and introduce the concept of coordinated 
multipoint transmission.

The use of fractional reuse schemes helps to reduce intercell interference suf-
fered by users, especially those at cell border. The disadvantage of this technique 
is that by partitioning the existing frequencies available, every cell will only have 
access to a part of the total available bandwidth, and this is unfair to UEs closer 
to the center of the cell (with good channel conditions) that could achieve higher 
throughputs if using the total bandwidth.

To increase the spectral efficiency on average and/or at the cell borders, or when 
the number of users is increasing, the MU-MIMO with fair scheduling should 
be employed. The use of joint coordinated multipoint transmission achieves addi-
tional throughput gains. However, the gains obtained depend on the schedulers 
employed. The performance results also indicate that the criterion of proportional 
fairness is important when the number of users is increasing.
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10.1  Introduction and Motivation
MIMO techniques have gained considerable attention in modern wireless communi-
cations because of their high spectrum efficiencies and extended coverage. By trans-
mitting data streams via multiple antennas and exploiting diversity gains offered by 
distinct channel propagations, MIMO techniques boost the data rate and enhance 
the data reception. Thanks to these benefits, MIMO systems have been widely 
adopted by modern wireless systems. For example, current long-term evolution (LTE) 
standard allows up to eight antennas equipped at the base station to transmit four 
streams simultaneously. To further harvest the benefits of MIMO systems, massive 
MIMO techniques have been proposed by installing a large number of antennas at 
base stations, possibly in the order of tens or hundreds. With the large number of 
antennas, massive MIMO offers several unique benefits for wireless communications:

 ◾ Massive MIMO provides high orders of degrees of freedom of channels, 
and thus allows the base station to serve more terminals at the same time– 
frequency resources.

 ◾ Massive MIMO can reap the benefits of rich propagation paths such that 
the fading effects can be averaged out, that is, diversity order goes to 
infinity.

 ◾ When the number of antennas at the base station is much larger than at 
the terminals, massive MIMO enables simple precoding/detection with near-
optimal performance.

To efficiently operate the communication systems with a large number of anten-
nas, massive MIMO also imposes a number of challenges in hardware and signal 
processing, including

 ◾ Fast and efficient detection algorithms given the massive channel matrices.
 ◾ Stringent channel estimation issue, where the channel parameters grow lin-

early in terms of the number of antennas and the number of terminals.
 ◾ Pilot contamination caused by the interference from the adjacent cells, which 

is becoming a bottleneck of multicell massive MIMO systems.
 ◾ Low-cost/energy-efficient RF frontend.

This chapter introduces detection algorithms for Massive MIMO. We provide a 
brief introduction to massive MIMO and discuss its mutual information and pre-
coding designs in Section 10.2. Then, the detection designs for massive MIMO are 
provided in Section 10.3. Hardware implementation concerns of massive MIMO 
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detectors are stated in Section 10.4, and other issues of massive MIMO such as 
channel estimation and synchronization will be mentioned in Section 10.5.

10.2  System Model
Consider an uplink MIMO transmission model

 y Hs wu u u= + ,  (10.1)

where yu is an M × 1 received signal vector at the base station with M being the 
number of antennas at base station, su is an N × 1 transmit signal vector with N 
being the number of antennas at the terminals, h is an M × N channel matrix, 
and wu is the additive white Gaussian noise vector with zero mean and covariance 
matrix N0IM.

For the downlink MIMO transmission, we assume time-division duplex (TDD) 
transmission so that the downlink channel is the reciprocal of that of the uplink 
one [Rusek et al. 2013]. The corresponding downlink transmission model is

 y H s wd T d d= + ,  (10.2)

where superscript T denotes the matrix transpose, yd is an N × 1 received signal vec-
tor at the terminals, sd is an M × 1 transmitted signal at the base station, and wd is 
the additive white Gaussian noise vector with zero mean and covariance matrix N0IN. 
The reason for using TDD here is to allow the base station to perform precoding 
which can obtain channel state information (CSI) with reciprocity. The CSI can also 
be acquired using the feedback from terminals, but it is expensive due to the large 
number of channel parameters of massive MIMO.

For massive MIMO, the number of antennas at both ends can be up to hun-
dreds or even thousands. Since each terminal typically employs antennas less 
than 10 due to limited space, massive MIMO generally applies a large number 
of antennas at the base station, that is, M ≫ 0. However, for multiuser MIMO 
(MU-MIMO), it is also possible that a group of synchronized terminals transmit 
simultaneously, which forms a large number of antennas at the mobile side such 
that N ≫ 0. For example, for the LTE-A systems, each user may have four anten-
nas. With more than 10 users, the total number of antennas becomes large if the 
base station needs to decode them simultaneously. Therefore, based on the number 
of antennas employed at the base station and the terminals, we categorize the fol-
lowing two general cases of massive MIMO.

 ◾ Case 1: M ≫ N, which accounts for SU-MIMO or MU-MIMO when the 
number of serving terminal antennas is small.

 ◾ Case 2: M ≈ N, which accounts for MU-MIMO when the total number of 
serving terminal antennas is close to the number of antennas at the base station.
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These two setups have different impacts on MIMO transceiver designs. In 
general, the complexity of optimal symbol detection for MIMO grows exponen-
tially in terms of the number of independent data streams for diversity and spatial 
multiplexing gains. However, when M ≫ N, under the favorable channel propaga-
tion condition, the channel orthogonalization or channel hardening takes effect such 
that the columns of h become asymptotically orthogonal as in [Rusek et al. 2013]

 

H H
D

H

M N
M







≈
�

,
 

(10.3)

where the small-scale fading effect is averaged out and d is an N × N diagonal matrix 
with Di,i accounting for path loss and large-scale fading effects from the ith antenna 
to the base station (the superscript H in the expression is the Hermitian operator). 
The main benefit of channel orthogonality is that it allows efficient simple precoding 
and detection (e.g., zero-forcing detector) without losing “too much” performance 
(see [Ma and Zhang 2008a]). Another reason is that the diversity orders collected by 
optimal detector and linear detectors are M and M − N + 1, respectively. When M 
≫ N, M − N + 1 approaches M with negligible difference if M is large.

When M ≈ N, the transceiver designs of massive MIMO systems are quite dif-
ferent because the linear detectors do not perform well and Equation 10.3 does not 
hold. Optimal detection such as sphere decoding algorithms (SDAs) is clearly unaf-
fordable due to its high complexity (e.g., the search space for a 50 × 50 MIMO with 
256-QAM (quadrature amplitude modulation) is 25650 ≈ 2.5 × 10120). Note that 
even for the first case, when N is 10 or 20, sphere decoding or maximum likelihood 
detector (MLD) does not have affordable complexity. Detection becomes one of 
the major obstacles to prevent applying massive MIMO in real systems. In Section 
10.3, the recent development of low-complexity high-performance large MIMO 
detectors will be introduced.

10.2.1  Different Types of Massive MIMO

10.2.1.1  Single-User MIMO

An illustration of SU-MIMO systems is depicted in Figure 10.1. Owing to the 
physical limitation of terminals, the number of antennas N at the terminal is gener-
ally much less than M. Therefore, SU-MIMO systems fall into case 1 when a large 
number of antennas are equipped at the base station, and thus reap the benefits 
of channel orthogonalization if favorable channel propagation condition holds. 
However, the SU-MIMO channels could be highly correlated because of the com-
pact distance of antennas at the terminal side and possible line-of-sight environ-
ment. From the power efficiency point of view, using a large antenna array to serve 
a single or a small number of users may not be wise. Hence, in this case, the gain of 
massive MIMO for SU-MIMO may be limited.
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10.2.1.2 Multiuser MIMO

An illustration of MU-MIMO systems is depicted in Figure 10.2. When multiple 
terminals are allowed to access the same time–frequency resource, MU-MIMO 
provides higher system efficiency compared to SU-MIMO. Here, we consider 
 single-cell MU-MIMO systems, where a base station is serving T terminals with 
each terminal being equipped with Q antennas (i.e., N = TQ). The transmission 
model of an uplink MU-MIMO system is

 

y H s w

Hs w

u
t

t

T

t
u u

u u

= +

= +
=

∑
1

,  (10.4)

Base station Terminal 1

Figure 10.1 An illustration of SU-MIMO systems.

Base station

Terminal 1

Terminal 2

Terminal 3

Figure 10.2 An illustration of MU-MIMO.
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where ht is an M × Q channel matrix from terminal t to the base station, st
u is a Q × 1 

transmitted signal from terminal t, h = [h1, . . ., ht], and s s su u T
T
u T T= [( ) , ,( ) ] .1 �

When T = 1, the MU-MIMO reduces to SU-MIMO. When K ≥ 2, the received 
signal of each terminal is interfered with those of the other terminals, and thus 
we could expect that the mutual information of each terminal for MU-MIMO is 
smaller than that for SU-MIMO given the same transmitted power at each termi-
nal. However, when M ≫ N, the channel orthogonalization kicks in such that the 
received signal of each terminal is almost orthogonal, that is, interference-free in 
the desired signal space under favorable channel propagation condition. In addi-
tion, since the terminals are autonomous, the favorable channel propagation condi-
tion is usually satisfied since the antennas at the terminals are almost uncorrelated 
and uncoupled [Gao et al. 2011, 2012]. This again shows that the massive MIMO 
is in favor of the MU-MIMO setup.

10.2.1.3  Distributed Massive MIMO

Distributed massive MIMO (Figure 10.3) can be treated as a special case of 
MU-MIMO to further provide higher system capacity by employing distributed-
deployed antennas to transmit and receive signals. One form of distributed mas-
sive MIMO is to enable cooperation between the base stations in different cells 
that reduces the intercell interference. However, synchronization becomes a critical 
issue even for distributed antennas at the same base station. In some cases, the large 

BS

BS

BS

Figure 10.3 An illustration of distributed massive MIMO systems.
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number of antennas at the base station can also be placed in different places (e.g., 
on tops of buildings) [Rusek et al. 2013]. In this case, synchronization is one issue, 
and the low-cost RF frontend may introduce more issues.

10.2.2  Mutual Information for Massive MIMO Uplink
Since SU-MIMO is a special case of MU-MIMO when T = 1, in this section, we 
focus on the mutual information of MU-MIMO systems. Unless stated otherwise, 
we assume that CSI is known at the receiver (CSIR), that is, the terminals for 
downlink transmissions, and the base station for uplink transmissions, and we 
impose power constraint at each terminal as

 E E t Tt
u u{|| || } , ,s 2 1= ∀ = �  (10.5)

and at the base station as

 E Ed d{|| || } .s 2 =  (10.6)

The signal-to-noise ratios (SNRs) for uplink and downlink are defined as Eu/
N0 = ρ u and Ed/N0 = ρ d, respectively.

To quantify the benefit of massive MIMO in information theory, we adopt 
achievable sum rate from [Rusek et al. 2013]. Achievable sum rate is defined as the 
mutual information between the received signal and transmitted signals. For the 
uplink MU-MIMO systems by assuming Gaussian-independent input su, the sum 
rate is given as

 
C I

E
QN

u u
M

u H

= = +





( ; ) log det .y s I
HH

2
0  

(10.7)

When M ≫ N, that is, uplink transmission with massive antennas at the base 
station and relatively small total number of antennas of all terminals, the asymp-
totic sum rate becomes
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where we employ channel orthogonalization in Equation 10.8, dt is the path loss 
and large-scale fading effect from the tth terminal to the base station, and we 
assume that all antennas at the same terminal experience the same path loss and 
large-scale fading effect dt, that is, D(t−1)Q+q,(t−1)Q+q = dt, ∀q = 1,. . .,Q.

From Equation 10.8, the gains of massive MIMO for uplink transmission are 
twofold: (i) the effective SNR at the receiver (ρu dtM/Q) is linearly boosted as M 
increases and (ii) by rewriting Equation 10.8 as
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we could observe that the sum rate equals the rate summation of each terminal 
( ) ,Ct

u
M N�  which is the rate of the terminal for SU-MIMO. Thus, with channel orthog-

onalization approximation, all terminals can simultaneously transmit the signals using 
the same time/frequency resource without interfering with each other, and as a result, 
the sum rate of massive MIMO for uplink MU-MIMO can be significantly increased.

10.2.3 Precoding Designs for Massive MIMO Downlink
For massive MIMO downlink transmissions, since each terminal cannot collectively 
process its received signal (because the system is underdetermined), MU-MIMO 
downlink usually precodes the transmit signals so that each terminal can decode their 
own signal separately (c.f. Chapter 3). The optimal precoding is the so-called dirty 
paper coding (DPC) [Caire and Shamai 2003, Vishwanath et al. 2003, Weingarten 
et al. 2006], which requires high complexity. To alleviate the complexity, some practi-
cal precoding schemes such as zero-forcing (ZF) precoding and matched filter (MF) 
precoding are found to be more efficient for massive MIMO systems.

The ZF precoding basically inverts the channel effects at the transmitter, where 
the transmitted signal is obtained as

 sd = (hT)† dd, (10.10)

where superscript T denotes the matrix transpose, (hT)† = h*(hT h*)−1 is the 
Moore–Penrose pseudo inverse of hT with superscript * being the complex conju-
gate, and dd are the downlink data symbols. When M ≈ N, the performance gap of 
ZF precoding to the optimal one is significant. However, as the number of antennas 
at the base station grows, the performance of ZF precoding approaches the optimal 
and is almost the same if M is sufficiently greater than N [Rusek et al. 2013].

One observation of the pseudo inverse in Equation 10.10 is that h*(hT h*)−1 ≈ 
h* d−1 under favorable channel propagation condition, and therefore, we can 
obtain an approximated ZF precoding, namely, MF precoding as

 s H dDd d= −* ,1  (10.11)
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which does not require the computation of the inversion of matrix hT h* and d−1 
can be treated as a power normalization matrix. One drawback of MF precoding is 
that when M is not large enough, the approximation by favorable channel propaga-
tion condition may not be accurate, that is, hT h* cannot be approximated as a 
diagonal matrix. As a consequence, the MF may experience error floor at high SNR 
regime if symbolwise detector is adopted at the receiver side.

10.3 Detection of MIMO Systems with Large Arrays
In this section, we introduce and compare the massive MIMO detection methods 
for uplink transmissions with QAM constellations. To simplify the notation, we 
drop the superscript of the received signal yu, transmitted signal su, and noise wu in 
this section. Given the model in Equation 10.1, the MLD is
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where S is the set of QAM constellation. In general, finding the solution of 
Equation 10.12 is a nondeterministic polynomial hard (NP-hard) problem (as 
described in Chapter 2), which suggests that no algorithm can guarantee to find 
the optimal solution efficiently, especially when N and/or the constellation size |S| 
is large. Since S is a finite set, one could resort to the exhaustive search to solve 
Equation 10.12, which suffers from exponential complexity with respect to prob-
lem size N. SDAs have been proposed to reduce the searching complexity, but the 
variance of the complexity is still high and the performance is degraded by fixing 
the complexity for large MIMO systems [Jaldén and Ottersten 2005, Rusek et al. 
2013].

10.3.1  Linear Detectors
As seen in Chapter 2, linear detectors (LDs) are adopted in practical systems for 
their polynomial complexity. When M ≥ N, the zero-forcing linear detector (ZF-
LD) for the model in Equation 10.1 is given as

 �sZF = = −Q Q( ) ( ),( )H x H H H y† H H1
 (10.13)

where h† = (hH h)−1 hH is the Moore–Penrose pseudo inverse of channel matrix 
h and Q(⋅) is the symbolwise quantizer to the constellation set S. ZF-LD is the 
most straightforward detector. However, it has inferior performance and does not 
exist when M < N.

 



458 ◾ MIMO Processing for 4G and Beyond

The other widely used LD is minimum-mean-square-error linear detector 
(MMSE-LD), which aims at minimizing E{ } x Hs− 2  as
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where E E QH u
N{ } .ss I= /

By exploiting some prior information of symbols, the MMSE-LD generally 
offers better error performance than ZF-LD. In addition, the MMSE-LD can have 
the same formula as in an extended model as
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Regarding the performance and complexity of LDs for MIMO systems, 
although LDs (ZF-LD and MMSE-LD) have lower complexity than the MLD 
and SDAs, their error performance degrades for MIMO systems by only collecting 
diversity order M − N + 1 [Winters et al. 1994, Gore et al. 2002, Ma and Zhang 
2008b]. However, in the case of massive MIMO systems with M ≫ N, we could 
expect LDs to exhibit close error performance (similar diversity order) to MLD, 
since M − N + 1 is approaching M and the diversity order M − N + 1 looks the 
same as M in the error performance plot.

10.3.2  Successive Interference Cancelation 
and K-Best Detectors

Another class of polynomial-complexity detectors is hard-output decision feedback 
detectors, including successive interference cancelation (SIC) and K-best detectors. 
Since SIC can be treated as a special case of K-best, this section will mainly focus 
on K-best detectors.

A K-best detector first performs QR decomposition on the channel matrix as 
h = qr, where q is an M × N orthonormal matrix and r is an N × N upper tri-
angular matrix. Then, the problem in Equation 10.12 is reformulated as
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where �y Q y= H .
Thanks to the upper triangular structure of r, the K-best detector performs a 

layered search from the Nth layer to the first layer to find suboptimal solutions to 
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Equation 10.16. To better illustrate layered search, we introduce some common 
terms used in the K-best detector:

 ◾ Partial candidate of the nth layer, si
n( ), which is defined as
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 ◾ Cost associated with the partial candidate si
n( ), costi

n( ), which is
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 ◾ Child of a partial candidate si
n( ), s j

n( ),−1  which is a partial candidate of the 
(n − 1)th layer and has the form s sj

n
j n
n

i
n T T

j n
ns s( )

,
( ) ( )

,
( )[ ,( ) ] ,− − −= ∈1 1 1 S .

Then, the K-best detector performs a breadth-first search from the Nth layer 
to the first layer. For each layer (e.g., the nth layer), the algorithm computes the 
K-best partial candidates [ , , , ],( ) ( ) ( )s s s1 2

n n
K
n…  that is, the K partial candidates with 

the minimum costs among all the possible children of the K partial candidates 
[ , , , ]( ) ( ) ( )s s s1

1
2

1 1n n
K
n+ + +…  in the previous (n + 1)th layer. The search procedure termi-

nates once the first layer is reached, and the candidate with minimum cost in the 
first layer is denoted as the hard output of the K-best detector.

The complexity of the K-best detector is O S( | |),N K NK2 +  and it is fixed 
when the number of candidates K and the constellation size |S| are constant, 
which is in favor of hardware complexity [Guo and Nilsson 2006]. In addition, 
when K = 1, the K-best detector reduces to the SIC detector. The performance of 
general K-best detector is hard to quantify. When K = 1, the SIC detector collects 
the same diversity as LDs (Ma and Zhang 2008a,b). One major issue of hard-
output decision-feedback detectors is that the erroneous detected symbol could 
propagate to the successive layers and thus degrade the search performance. To 
combat this error propagation issue, one method is to apply sorted QR decom-
position so that the detection starts from the stronger layers. Another way is to 
perform soft interference cancelation, which will be introduced in the following 
section.

10.3.3 Iterative Soft Interference Cancelation
To enhance the error performance, the iterative soft interference cancelation (ISIC) 
[Wang and Poor 1999, Liang et al. 2008] detectors incorporate soft information 
from the previous iteration to mitigate the interference.

 



460 ◾ MIMO Processing for 4G and Beyond

Given the soft estimates of su
N

Ts s= − −[ , , ], ,� … �1 1 1� �  in the previous (ℓ − 1)th 
iteration, the ISIC detector reformulates the system model in Equation 10.1 to 
detect symbol sk as
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Then, the ISIC detector obtains an M × 1 optimal MMSE filter vector wk,ℓ 
that minimizes the MSE between the filter output w yk k, ,� �

H  and the information 
symbol sk as
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where dk,ℓ is the variance of the difference s sk k− −� �, 1 normalized by the variance of 
sk (see [Wang and Poor 1999 and Liang et al. 2008] for details). The performance 
gain comes from the soft information, but there still exists a performance gap with 
the optimal detector, especially for high-order modulations.

10.3.4  Lattice-Reduction-Aided Linear Detectors
The performance gap between the MLD and LDs is mainly due to the nonorthogo-
nality of the channel matrix h when M ≈ N (Ma and Zhang 2008a,b). As seen in 
Chapter 2, the motivation of lattice-reduction-aided (LRA) LDs is based on the 
fact that if channel matrix h is “close” to orthogonal, the decision region of LDs 
is also “close” to that of the MLD [Ma and Zhang 2008a,b, Ling 2011]. Hence, to 
improve the error performance of LDs, LR finds another “more orthogonal” basis 
�H statistically that defines the same lattice as h. As a result, LRA LDs yield error 
performance close to the MLD and have the same error performance as the MLD 
if the lattice-reduced basis is orthogonal. That is, the so-called reducing basis h 
is equivalent to finding a “more orthogonal” basis �H HT=  [Agrell et al. 2002], 
where T is a unimodular matrix, such that all entries of T and T−1 are Gaussian 
integers, and the determinant of T is ±1 or ±j (c.f. Chapter 2). Thus, the key of LRA 
detectors is to find the unimodular matrix T with low complexity while enabling 
better performance.

To find the unimodular matrix T, there are several existing LR algorithms, 
including Minkowski reduction, Korkin–Zolotarev (KZ) reduction [Agrell et  al. 
2002], the LLL algorithm and its complex valued counterparts [Lenstra et  al. 
1982, Ma and Zhang 2008b, and Gan and Mow 2009], the Seysen’s algorithm 
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(SA) [Seysen 1993, Zhang et al. 2010], and element-based lattice-reduction (ELR) 
algorithms [Zhou and Ma 2013a,b]. Among these algorithms, the LLL algorithms 
are well adopted because they allow worst-case polynomial complexity and yield a 
basis with certain orthogonality guaranteed, that is, the orthogonality deficiency is 
bounded. However, as shown in [Zhou and Ma 2013a], the LLL algorithms do not 
aim at minimizing the asymptotic error performance of LRA LDs and thus may 
exhibit unsatisfactory performance when N is large. To achieve better performance, 
ELR algorithms are proposed to minimize the asymptotic error performance and 
show considerable performance gain over LLL algorithms when N is large. In the 
following text, we provide the general framework for LRA detectors and the details 
of the LR algorithms can be referred to in the aforementioned papers.

The application of LRA to massive MIMO does not differ from the concept 
presented in Chapter 2: given the unimodular matrix T based on h, the model in 
Equation 10.1 can be rewritten as

 

y HTT s w

HTz H1 w

= +
= + + +

−

×

1

12 1( ) .j N  (10.21)

The equivalent model becomes

 � �y Hz w= + ,  (10.22)

where �H HT= 2 , � �s Tz 1= + +×2 11N j( ), z T s= −1  contains the information 
symbols in the lattice-reduced domain, and �y y H1= − + ×( ( ) ) .1 21j N /  Since T is 
unimodular and the entries of s are drawn from QAM constellations, the entries 
of z are Gaussian integers in �[ ].j  Note that matrix T is obtained at the receiver 
and does not perform as a precoder.

Given the model in Equation 10.21, the LRA ZF-LD is given as

 �z = =−Q Q(( ) ) ( ).� � � � � �H H H y H yH H1 †

 (10.23)

Then, the estimate of s is obtained by

 � �s z= + + ×Q( ( ) ).2 1 1T 1j N  (10.24)

Similar to the LRA ZF-LD, LRA MMSE-LD can be derived by applying 
LR algorithms on the MMSE-extended model in Equation 10.15 to offer bet-
ter performance than LRA ZF-LD. LR can also be applied to SIC, which fur-
ther boosts the performance. For certain LR techniques (e.g., LLL), it has been 
proved that LRA detectors collect the same diversity as MLD does [Ma and 
Zhang 2008a].
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10.3.5 Lattice-Reduction-Aided K-Best Algorithms
As the number of antennas grows, LR algorithms should also be combined with 
K-best detectors to boost the performance. Since the LRA detection assumes infi-
nite lattice, LRA K-best detector relaxes the boundary constraints in Equation 
10.12 to infinite lattice as
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where U is the unconstrained constellation set with the form ( ) ( ) .2 1 2 1� �+ + + j
By applying an LR algorithm to obtain a more “orthogonal” matrix �H HT= , 

Equation 10.25 can be rewritten as
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Similar to the K-best detector described in Section 10.3.2, by performing QR 
decomposition on � � �H QR= , where �Q  is an M × N orthonormal matrix and �R  is 
an N × N upper triangular matrix, the problem in Equation 10.26 can be reformu-
lated as
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where �
� � �y Q y= H . Therefore, LRA K-best detector performs a breadth-first search 

from the Nth layer to the first layer, and for each layer, only K-best candidates sur-
vive and are served as the parents of the next layer.

Compared to the conventional K-best detector, the main difference of the LRA 
K-best is that the information symbol in the LR domain z is unbounded while 
s is constrained in a finite QAM constellation set. This results in a challenging 
problem to the LRA K-best algorithm, that is, how to efficiently find K-best candi-
dates among all infinite children of K parents for each layer. This problem can be 
addressed by using the Schnorr–Euchner (SE) strategy [Shabany and Gulak 2008] 
and priority queue [Zhou and Ma 2012, Wen et al. 2013] such that the overall com-
plexity of LRA K-best detector (not including the LR algorithm) is on the order of 
O( log ( )).N K NK K2

2+  This method has great potential on hardware realization 
with controllable performance and complexity trade-offs.

10.3.6  Local Neighborhood Search Methods
Local neighborhood search methods [Datta et al. 2010, Srinidhi et al. 2011] start 
with an initial symbol vector, and iteratively improve the current symbol vector by 
moving to the best symbol vector in the neighborhood of the current vector. The 
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best symbol vector means the symbol vector with the minimum cost in the neigh-
borhood N ( )�sk  of current symbol vector �sk
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To allow simple enumeration of all neighbors with low complexity, a vector �s  
is defined as a neighbor of the symbol vector �s  if the vector �s  has only one sym-
bol that is different from the corresponding symbol of �s, that is, ∃ ≠i s si i, � �  and 
∀ ≠ =i s s� � �

� �,  while the different one �si  is the neighbor of �si  in the constellation 
set S (see [Datta et al. 2010, Srinidhi et al. 2011] for details). After the search is 
terminated, the symbol vector with the minimum cost among the vectors visited 
during the search becomes the estimate of s.

One issue of local neighborhood search methods is that the search process can 
be easily trapped in a local minimum. To address this issue, tabu search [Datta et al. 
2010] is proposed to allow a worse move (i.e., the best symbol vector in the neigh-
borhood has higher cost than the current one) to jump out of the local minima. 
However, to prevent cycle search paths, tabu search maintains a tabu table of past 
moves and prohibits some duplicated visits by looking up the table. To further 
improve the performance of tabu search methods, layered tabu search algorithm is 
proposed in [Srinidhi et al. 2011].

One drawback of local neighborhood search methods is that their complexity 
has a large variance with respect to channel, noise, and/or symbol realizations, and 
thus may pose great challenges in hardware implementation.

10.3.7 Performance and Complexity Comparisons
In this section, we show the performance and complexity of various detectors for 
massive MIMO via Monte-Carlo simulations. We consider an uplink MU-MIMO 
transmission with one base station equipped with M = 32 antennas and serving 
T = M terminals such that Q = 1 and N = M. The entries of channel matrix h 
are modeled as independent and identically distributed (i.i.d.) complex Gaussian 
variables with zero mean and unit variance. We consider the following detectors for 
comparisons: (i) MMMSE-LD; (ii) dual ELR-shortest-longest-basis-aided MMSE 
sorted-variance SIC (D-ELR-SLB-aided MMSE SV-SIC) detector; (iii) LTS detec-
tor; (iv) MMSE-ISIC detector with five iterations; (v) K-best detector with sorted 
QR decomposition (SQRD) preprocessing [Wübben et  al. 2003]; and (vi) LLL-
aided MMSE K-best detector. The performance of interference-free (IF), that is, 
K = 1, is also considered as a benchmark.

Figures 10.4 and 10.5 demonstrate the error performance of various detectors 
with different SNR ρus. From the figures, we have the following observations: 
(i) MMSE-LD shows inferior performance compared to the rest of the detectors 
and IF case, and its diversity order is just 1. (ii) D-ELR-aided MMSE-SV-SIC 
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Figure 10.4 Performance comparisons of various detectors for MIMO systems 
M = N = T = 32, Q = 1, 16-QAM, and different ρus.
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Figure 10.5 Performance comparisons of various detectors for MIMO systems 
M = N = I = 32, Q = 1, 64-QAM, and different ρus.
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improves the performance of MMSE-LD, especially for high SNR and outper-
forms MMSE-ISIC and LTS when ρu is large (e.g., ρu > 19 dB for 64-QAM). (iii) 
LTS and MMSE-ISIC exhibit almost the same performance for 16-QAM, while 
for 64-QAM, LTS shows superior performance to MMSE-ISIC. However, both 
of them lose some diversity orders as SNR increases. (iv) K-best detector with 
K = 25 and SQRD preprocessing generally yields better performance than LTS 
and MMSE-ISIC for medium-to-high SNR, and its gain over LTS at BER = 10−4 is 
about 4 dB for 16-QAM. However, it still cannot achieve the same diversity order 
as MLD at high SNR, as demonstrated by the case with 64-QAM. (v) By exploit-
ing the LR algorithm, the LLL-aided MMSE K-best detector with K = 25 achieves 
the best performance among all detectors for medium-to-high SNR (e.g., ρu ≥ 11 
for 64-QAM). The performance gains of the LLL-aided MMSE K-best detector 
over K-best at BER = 10−4 are about 2 dB and 4 dB for 16-QAM and 64-QAM, 
respectively. In addition, the gaps of the LLL-aided MMSE K-best to IF case are 
about 2 dB and 4 dB at BER = 10−5, respectively.

Figure 10.6 illustrates the number of arithmetic operations of various detectors. 
Several remarks about the complexity of the detectors can be drawn: (i) Although 
the instantaneous complexity of the D-ELR-SLB and LLL algorithms depends 
on the channel realizations, the worst-case complexity (99.9% upper percentile) 
of the D-ELR-SLB-aided MMSE-SV-SIC and LLL-aided MMSE K-best detectors 
is the closest to their average complexity, respectively. (ii) The complexity of the 
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Figure 10.6 Number of arithmetic operations of various MIMO detectors with 
M = N = T = 32, Q = 1, 64-QAM, and different ρus for MU-MIMO systems.
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D-ELR-SLB-aided MMSE-SV-SIC detector is only slightly higher than that of 
the low-complexity MMSE-LD. The reason for similar levels of complexity of the 
D-ELR-SLB-aided MMSE-SV-SIC detector is that, while the complexity of the 
D-ELR-SLB detector constitutes only a small portion of the overall detection com-
plexity, the main computational complexity consists of the preprocessing opera-
tions (i.e., matrix inversion of the Gram matrix and QR decomposition), which 
requires the same polynomial order complexity of the MMSE-LD. (iii) The number 
of arithmetic operations of LLL-aided MMSE K-best detector is about twice higher 
than that of the D-ELR-SLB-aided MMSE-SV-SIC detector. The price for the 
extra complexity mainly comes from the K-best algorithm. For illustration pur-
pose, we do not plot the complexity of the K-best algorithm without LR, which is 
almost the same as that of LLL-aided MMSE K-best detector. (iv) The MMSE-ISIC 
detector requires higher complexity than the LLL-aided MMSE K-best detector. 
LTS requires highest average complexity when ρu is small (ρu ≤ 15), but its aver-
age complexity decreases as ρu increases. However, when ρu is large, the worst-case 
complexity of LTS, which makes a critical contribution to the error performance of 
the LTS [Zhou and Ma 2013a], becomes much higher than the average one because 
of the neighborhood search nature of the algorithm.

Figure 10.7 illustrates the performance of various detectors for MIMO sys-
tems with M = 48, N = 32, Q = 1, and 64-QAM. Compared to the results with 
M = N = 32 in Figure 10.5, all detectors obtain considerable performance gain by 
equipping additional antennas at the base station. For example, the MMSE-LD 
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Figure 10.7 Performance comparisons of various detectors for MIMO systems 
with M = 48, N = 32, Q = 1, 64-QAM, and different ρus.
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exhibits about 4 dB loss compared to IF case at BER = 10−2 (in contrast, the loss is 
20 dB for M = N = 32). The D-ELR-SLB-aided MMSE-SV-SIC detector has about 
2.5 dB gain over the MMSE-LD at BER = 10−5. The LTS, MMSE-ISIC, K-best, 
and LLL-aided MMSE K-best detectors have almost the same performance and 
reach the performance of IF at BER = 10−5. In addition, K = 5 candidates are suf-
ficient for both K-best and LLL-aided to have near-optimal performance.

10.3.8 Detection for Other Channels
In the previous sections, we focussed on detector designs for uncoded systems with 
i.i.d. channels. However, for massive MIMO systems, the antennas may not be 
spaced enough and thus the channels may be correlated. At the same time, in 
practical systems, error control codes have to be considered. As one may observe 
from the previous sections, the LRA detectors have great potential on hardware 
realization for massive MIMO. In the literature, LRA detectors have been extended 
to other channel conditions. In [Zhang and Ma 2010], LRA detectors with soft 
output are proposed, which show low complexity and high performance for coded 
systems. In [Gestner et al. 2012], correlated channels are considered and again LRA 
detectors show great performance. In [Zhang and Ma 2009] and [Zhou and Ma 
2013c], LRA precoders are developed when the CSI is available at the transmitter. 
Although these results have shown that LRA detectors are strong candidates for 
MIMO systems, there are still many open issues for massive MIMO. For example, 
when the channels are correlated, how are the performance and complexity of the 
detectors going to change?

10.4   Hardware Implementation of Massive 
MIMO Detectors

To realize the detectors in hardware, one faces several fundamental challenges 
[Zhang et  al. 2009]. One of these challenges is that hardware realizations nec-
essarily have only finite numerical resolution. Furthermore, in practical systems, 
 floating-point representations are abandoned for the improved efficiency afforded 
by fixed-point operations. Fixed-point signal-processing solutions have generally 
been chosen due to advantages in speed, power consumption, cost, and suitabil-
ity for portable applications. However, so far, the existing theoretical analysis 
of detectors is derived within the real or complex field. There are only a limited 
number of tractable equalizer algorithms that have been adequately characterized, 
implemented, and measured as to the performance for fixed-point applications (see 
[Zhang and Ma 2008, Gestner et al. 2011]).

In the literature, people have prototyped different types of detectors. However, 
the major discrepancy here is that those who developed the algorithms do not have 
enough knowledge of hardware on VLSI-integrated circuits, and those who try 
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to prototype the detection algorithms do not know much about the math behind 
it. The applicable and practical detectors should be implemented with low com-
plexity in hardware while keeping the performance as high as possible. Note that 
blindly reducing the complexity of an algorithm without considering the effects on 
numerical precision, parallelism, and memory requirements can result in a poor 
hardware realization and similarly, blind application of hardware optimizations 
can result in an unexpected increase in algorithm complexity and a reduction in 
system performance. By carefully considering both perspectives, one will realize 
reduced-complexity LR algorithms that take into consideration the finite hardware 
resources and processing constraints of real-time communication systems.

10.5 Other Issues of Massive MIMO Systems
Massive MIMO has shown great potential benefit for future wireless communica-
tions. It also reveals “massive” challenges that deserve further research.

10.5.1  Channel State Information
The benefit of massive MIMO highly relies on the perfect CSI at the receiver and/or 
transmitter. Channel models have to capture the new behavior/phenomenon of the 
radio channel so that the performance assessment can be more realistic. For exam-
ple, due to the large number of antennas, the channels may be correlated. How to 
quantify the correlation deserves more efforts on measurements and analysis. At 
the same time, owing to the large number of antennas and possible time variation 
and frequency selectivity of the channels, channel estimation (either training based 
or semiblind) becomes challenging—large number of parameters in three dimen-
sions. Furthermore, how the channel estimation error affects the detection and also 
the precoder design is an interesting topic for research.

10.5.2 Synchronization
Massive MIMO requires hundreds of RF chains, ADC/DAC, and power amplifiers 
connecting to the antennas. Synchronization is critical in this case to guarantee the 
performance of massive MIMO systems. For example, if the antennas are distrib-
uted at different places, the timing offsets due to propagation delays and processing 
delays of RF chains will degrade the performance of the detectors since the aggre-
gated streams are not aligned. Together with the phase noise, frequency offsets, and 
DC offset, the performance is severely affected by the synchronization errors.

10.5.3  Hardware Issues
In practice, RF chains introduce DC offset, phase noise, I/Q imbalance, power 
amplifier (PA) nonlinearity, and other nonideal issues. Since massive MIMO 
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systems require large numbers of components, to enable economic designs, usually 
low-cost devices are adopted. In this case, the PA nonlinearity may redirect the 
beams and introduce the interference to other cells. The nonideal characteristics of 
the hardware will also reduce the efficiency of massive MIMO. To support the high 
data rate transmissions, the connection from the RF frontend to baseband (e.g., in 
the common public radio interface) is also important. Massive MIMO makes it 
more challenging and has higher demand on the RF designs.
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Chapter 11

MIMO Two-Way Relay 
Channel with 
Superposition Coding

Ioannis Krikidis and John S. Thompson

11.1 Two-Way Relay Channels
The two-way relay channel is an important information theoretic network structure 
[Shannon 1961], and it is becoming a central concept in the design of the physical 
layer of future communication systems. It consists of two users who are unable 
to communicate directly, hence they establish communication via a shared relay 
node. This scenario characterizes networks with central controllers as well as ad 
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hoc networks with limited relaying resources. In two-way relay channels, the two 
terminals exchange messages with each other via the relay, and the objective of a 
two-way relay protocol design is to maximize the spectral efficiency of the two 
communication links that are formed between the two links.

Recently, there is a lot of interest in the design of efficient cooperative protocols 
for two-way relay channels. The proposed schemes can be divided into two main 
categories based on the number of the required time phases: (a) in the two-phase 
protocol, called multiple access broadcast (MABC) protocol [Kim et  al. 2008], 
both users simultaneously transmit their data to the relay during the first phase 
and then the relay transmits during the second phase, while (b) in the three-phase 
protocol the two users sequentially transmit to the relay followed by a transmis-
sion from the relay [Saleh et al. 2009]. Furthermore, each protocol category can be 
combined with any relaying strategy resulting in numerous two-way protocols with 
different complexities and performance. In [Kim et al. 2011], the authors highlight 
the most significant two-way relaying protocols and characterize their achievable 
rate region from an information theoretic point of view. An interesting MABC 
two-way scheme that employs superposition coding (SPC) at the relay node has 
been proposed in [Hammerstrom et al. 2007], where the authors analyze its capac-
ity performance for a general multiple-input multiple-output (MIMO) two-way 
relay channel with different channel side information (CSI) requirements. The use 
of SPC as a broad cast approach for two-way relay configurations has been reported 
in several studies for different contexts [e.g., Chen and Yener 2010; Chen et  al. 
2010; Oechtering and Boche 2008]; in addition a combination of SPC with net-
work coding appropriate for asymmetric two-way relay topologies is discussed in 
[Park and Oh 2009].

Although there is a lot of work on the design of efficient two-way relay proto-
cols, the majority of them assume perfect channel estimation, which is not always 
a realistic assumption. The impact of imperfect channel estimation on the achiev-
able system performance is a classical problem in the literature. In [Medard 2000], 
the authors characterized the Shannon capacity of a conventional single-input 
 single-output (SISO) network under imperfect channel estimation. A related power 
allocation strategy that maximizes the achieved capacity of SISO with imperfect 
channel estimation has been proposed in [Klein and Gallager 2001]. The impact 
of an imperfect channel estimation on the capacity performance of a MIMO net-
work as well as a related waterfilling power allocation (WF-PA) strategy have been 
proposed in [Yoo and Goldsmith 2006]. However, the effects of channel estima-
tion error on the reception reliability of a decode-and-forward two-way relay chan-
nel with physical layer network coding have been reported in [Ding and Leung 
2011] in terms of error probability. In addition, different channel-estimation tech-
niques for a two-way relay channel are discussed in [Jiang et al. 2010 and references 
therein], while the achieved sum rate for a two-way relay channel with AF and 
imperfect channel estimation is investigated in [Panah and Heath 2010] and [Jia 
and Vosoughi 2011]. However, the impact of imperfect channel estimation on the 
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achievable performance (rate) of a MIMO two-way relay protocol with SPC from 
an information theoretic standpoint is still an open problem in the literature.

This chapter analyses the effects of imperfect channel estimation on the achievable 
rate region of a MIMO MABC-SPC two-way relay protocol. By extending the work 
presented in [Hammerstrom et al. 2007] and [Yoo and Goldsmith 2006], we char-
acterize the information theoretic performance of the MIMO MABC-SPC protocol 
under imperfect channel estimation for two main CSI assumptions: (a) without CSI 
at the users where a symmetric power allocation between the two data flows is used 
and (b) with an imperfect CSI at both users where a WF-PA is employed. Another 
issue that is discussed through this chapter is the impact of the SPC power split on 
the achievable system performance. We show that an appropriate power split between 
the two data flows can maximize the achievable performance by simultaneously sup-
porting user fairness. In addition, a power split that maximizes the achievable sum 
rate is presented, and a theoretical framework that calculates the optimal SPC power 
split between the two data flows for both optimization targets (fairness, sum rate) 
is proposed. It is shown that the optimal SPC allocation is common for both CSI 
assumptions and independent of the instantaneous channels; a result that makes the 
proposed scheme suitable for applications with critical complexity constraints.

The remaining part of the chapter is organized as follows. In Section 11.2, we 
present the system model and we describe the considered MIMO MABC-SPC 
protocol as well as its related achievable rate region. In Section 11.3, we present the 
two CSI assumptions and we introduce an SPC power split under a user fairness 
constraint as well as for sum-rate maximization. Numerical results are shown and 
discussed in Section 11.4, followed by concluding remarks in Section 11.5.

Note that in this chapter log(⋅) denotes the logarithm of base 2.

11.2 Communication Model
We assume a three-node MIMO two-way relay channel consisting of two users A 
and B and a shared relay node R. All nodes are equipped with M > 1 antennas and 
both users can establish communication using an MABC-SPC cooperative pro-
tocol. Figure 11.1 depicts the system model and the two phases of the cooperative 
protocol. We consider flat fading spatially uncorrelated Rayleigh MIMO chan-
nels where hRi

M M∈ ×C  with i ∈ {A, B} denotes the channel matrix for the i → R 
link. The entries of the channel matrices hRi are independently and identically 
distributed (i.i.d.) zero-mean circularly symmetric complex Gaussian (ZMCSCG) 
random variables with unit variance (i.e., rank(hRi) = M). In addition, the chan-
nel matrices remain constant for the whole transmission (during the two phases 
of the adopted cooperative protocol) and change to an independent realization for 
the next transmission. We assume that the channel matrices are subject to a chan-
nel estimation error and therefore are imperfectly known at the receivers with an 
MMSE estimation error E H Hi Ri Ri� − �  for the i → R link, where the entries of 
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Ei are ZMCSCG with variance σ εi
2  and the entries of �hRi  are also i.i.d. ZMCSCG 

with variance 1 2− σ ei
 [Yoo and Goldsmith 2006]. The two phases of the MABC-

SPC cooperative protocol are described as follows:
Phase 1: In the first phase of the protocol, both users transmit their messages to 

the common relay by forming a conventional MIMO multiple-access channel. At 
the relay node the received signal can be expressed as

 r H x H x nR RA A RB B R= + + ,  (11.1)

where xi
M∈ ×C 1 denotes the transmitted message for the ith user, n IR n M~ ( , )CN 0 2σ  

represents a noise vector having ZMCSCG entries of variances σ n
2  and both users 

transmit subject to a power constraint trace( )Pi P≤  where P x xi i i
H� E[ ]  denotes 

the input covariance matrix. Due to the considered channel estimation error at the 
relay node, the instantaneous rate region is the closure of the convex hull of the set 
points ( , )R RA B1 1

 satisfying [Tse 2005, Section 10.1.2]:
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where the above expressions consist of a generalization of the analysis presented in 
[Yoo and Goldsmith 2006, Eq. (7)].
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Figure 11.1 The system model: (a) the first phase of the protocol, (b) the second 
phase of the protocol. (Adapted from Krikidis I. and J. S. Thompson, J. Netw. 
Comput. Appl., 35(1), 510–516, January 2012.)
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Phase 2: In the second phase of the protocol, the relay node re-encodes the users’ 
messages using the same or a different codebook with the first phase of the protocol 
and broadcasts them to both users via an SPC scheme [Tse 2005, Section 6.2.2; 
Cover and Thomas 2006, Section 15.6]. With SPC, the relay node superposes the 
sources’ messages in the modulation domain [Larsson and Vojcic 2005] (e.g., linear 
combination of the two signals) with an appropriate power split and broadcasts the 
resulting signal without further processing. It is worth noting that SPC is an effi-
cient approach in order to boost the broadcast performance and achieve capacity.

Given that each user knows its own transmitted message (self-interference), it 
suppresses its contribution from the received signal subject to the imperfect channel 
estimate and decodes the message of the opposite user. More specifically, the SPC 
scheme is defined as

 u G u G uR B A A B= + ,  (11.5)

where ui
M∈ ×C 1 and gi

M M∈ ×C  denote respectively the re-encoded message and 
a precoding matrix (unitary matrix), respectively, for the ith user. The received 
signals are expressed as

 
r H G u H G u vA RA B A RA A B A= + +

self-interference
� �� �� ,

 
(11.6)

 
r H G u H G u vB RB B A RB A B B= + +

self-interference
� �� �� ,

 
(11.7)

where ri
M∈ ×C 1 represents the receiver signal at ith user and v Ii v M~ ( , )CN 0 2σ  

represents a noise vector having ZMCSCG entries of variances σ v
2 . The relay node 

transmits with a total power P which is split between the two data flows with 
trace 1( ) ( )G P GB A B

H P′ ≤ − α  and trace( ) ,G P GA B A
H P′ ≤ α  where ′P u ui i i

H� E[ ] and 
α ∈ [0 1] denote the power split factor. Due to imperfect channel estimation, the 
self-interference terms cannot be perfectly removed from the received signals and 
affect the rate region computation related to the second phase of the protocol. By 
using the analysis presented in [Yoo and Goldsmith 2006, Eq. (7)] and taking into 
account the power split that characterizes the SPC design (for user A the imperfect 
self-interference suppression corresponds to E[ ] ,E G uA B A A

P= σ αε2  which is added 
to the channel estimation error of the main-link σ αεA

P2 1( )−  [Yoo and Goldsmith 
2006] resulting in a total degradation of σ εA P2 ), we can prove that the rates of the 
second phase of the protocol satisfy the constraints:
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By intersecting the above instantaneous rate regions related to the two phases 
of the protocol and by averaging over many independent fades of the channels [Tse 
2005], we define the overall achievable (average) rate region of the system as
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where the factor 1/2 represents the rate loss caused by the two phases of the coop-
erative protocol.

11.3 SPC and Power Split
In this section, we deal with the impact of the CSI on the SPC design and investi-
gate a power-split technique that (a) maximizes the achievable rate region under a 
user-fairness constraint and (b) maximizes the achievable sum rate.

11.3.1  Conventional SPC without CSI at the Users
The conventional SPC (C-SPC) design does not apply a precoding processing to the 
bidirectional data at the relay node and therefore corresponds to gi = IM for i ∈ {A, 
B}. In this case, the power allocated to each data flow is symmetrically distributed 
among the spatial direction of the MIMO channels. If we use the single-value 
decomposition (SVD) of the channel matrices HRA

�  and HRB ,�  the (instantaneous) 
maximum user rates during the second phase of the protocol can be written as

 
I

P
M PA

m

M
m

v A
2

1

2

2 21( )( ) log ,C-SPC α α λ
σ σ ε

�
=

∑ +
+





  

(11.13)

 
I

P
M PB

m

M
m

v B
2

1

2

2 21 1( )( ) log ( ) ,C-SPC α α µ
σ σ ε

�
=

∑ + −
+





  

(11.14)

 



MIMO Two-Way Relay Channel with Superposition Coding ◾ 479

where λm and mm (with m = 1,. . .,M) denote the mth singular values for the channel 
matrices HRA

�  and hRB ,�  respectively.

11.3.2 SPC with CSI at the Users
This SPC technique (called WF-SPC) assumes that imperfect channel knowl-
edge is available to all the nodes of the network and elaborates a WF-PA in 
each bidirectional link. More specifically, we assume that the relay node has 
a global knowledge of the estimated channels HRA

�  and HRB
�  (this estimation 

is performed during the first phase of the protocol) while each user has a local 
channel knowledge (HRi

�  is available at ith user). This CSI assumption enables a 
power allocation (PA) optimization for each bidirectional link and therefore the 
power assigned to the ith data flow is distributed among the spatial directions 
(eigenmodes) of the HRi

�  channel according to the principles of the WF-PA. 
We note that in the WF-SPC scheme the precoding matrix gi is given by the 
right-hand matrix of the SVD of the HRi

�  while its left-hand matrix defines the 
postprocessing matrix applied at the ith user [Hammerstrom et  al. 2007; Tse 
2005]. By using a similar analysis with the C-SPC scheme, the instantaneous 
user rates achieved during the second phase of the cooperative protocol with 
WF-SPC are given as
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where P Pm
A

m
B( ) ( ), , denote the WF power allocated to mth eigenmode of the R → A 

and R → B links, respectively, which are equal to
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where [ ] max[ , ]x x+ � 0  and the constant parameters νA, νB are chosen to satisfy the 
total power constraints ∑ ==m

M
m

AP P0
( ) α  and ∑ = −=m

M
m

BP P0 1( ) ( ) ,α  respectively.
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11.3.3  Fairness and SC Power Split
As it can be seen from the instantaneous user rates for both the C-SPC and the 
WF-SPC schemes, the power split between the two data flows is a critical parameter 
for the overall performance of the system. In this subsection, we wish to identify an 
SPC power-split technique that jointly maximizes the achievable rate region of the 
system and supports data-rate fairness between the two users. To focus our analysis 
on the second phase of the protocol, which refers to the SPC power split, we assume 
that I IA B1 2

> ( )α  and I IB A1 2
> ( )α  for all the channel realizations which indicates 

that the single-user rate constraints in Equations 11.10 and 11.11 are dominated by 
the second-phase user rates. In this case, a power split factor α* that maximizes the 
minimum instantaneous single-user rate jointly achieves a maximization of the rate 
region and ensures data-rate fairness between the two users. More specifically, the 
power split factor that ensures user fairness is defined as

 
α α αα

*
[ ]arg max min ( ), ( ) ,[ ]= ∈ 01 2 2

I IA B  
(11.19)

where the solution of the above optimization problem requires that both single-user 
instantaneous rates become equal. Therefore, the optimal power split can be found 
by solving the following equation in respect to the parameter α*

 I IA B2 2
( ) ( ).* *α α=  (11.20)

It is obvious that the above solution requires Equation 11.20 to be solved for 
the optimal power split for each channel realization, which will increase complexity 
and is undesirable for real-time applications.

However, as the adopted performance metric is the average achievable data 
rate, we can approximate the solution of the optimization problem by replacing the 
instantaneous rates with their average values. More specifically, the SPC power split 
based on the average rates can be found by equating the average single-user rates 
and solving the resulting equation in respect to the parameter α *

 E E[ ] [ ]( ) ( )* *I IA B2 2
α α= .

 
(11.21)

For the C-SPC policy, we can solve Equation 11.21 as follows:
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where α *  denotes the optimal power split which can be shown to be equal to 
α α* *[ ]= E  and the operator diag(X) gives Xi,j = 0 if i ≠ j (matrix diagonalization). 
This proposed power split does not require an instantaneous adjustment of the allo-
cated power and requires less complexity than adjusting the power for each channel 
realization. The simulation results to be presented in Section 11.4 will show that 
this simplification does not significantly affect the (average) achievable rate region.

Although the above optimal power split given by Equation 11.22 refers to the 
C-SPC scheme, it is a good approximation for the WF-SPC scheme. The simula-
tions in Section 11.4 show that the above optimal value can be applied to both 
C-SPC and WF-SPC schemes in order to identify the optimal power split from 
a user-fairness standpoint. This main observation reveals that the optimal power 
split can be calculated for the C-SPC technique, whose corresponding equation is 
simpler than the WF-SPC scheme, and can be used for both SPC schemes.

11.3.4 Optimization
The question now is to find the SPC power split that maximizes the achievable 
(average) sum rate. Based on the rate region of the SPC scheme given in Equations 
11.10 through 11.12, the achievable sum rate is written as [Hammerstrom et al. 
2007]

 
R RA B A B A BI I I I I+ ≤ +1

2 1 2 2 1
E[ [ ]]min min[ , ( )] min[ ( ), ], ,α α sum

 
(11.23)

Following the approach of Section 11.3.3, by assuming that I IA B1 2
> ( )α  and 

I IB A1 2
> ( ),α  Equation 11.23 can be simplified to

 
R RA B B AI I I+ ≤ +1

2 2 2
E[ [ ]]min ( ) ( ), ,α α sum

 
(11.24)
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where the parameter α (power split) affects only the term I IB A2 2
( ) ( );α α+  given 

that the optimization criterion is the average sum rate, the optimal power split for 
the second phase of the SPC protocols is given by

 
α α αα

*
[ ]arg max ( ) ( ) .[[ ]]= +∈ 01 2 2
E I IB A  

(11.25)

The above optimization problem can be solved numerically and the simula-
tions presented in the next section show that the optimal solution is common for 
both the C-SPC and WF-SPC schemes. It is worth noting that for scenarios where 
E E E[ ( )] [ ( )] [ ],* *I I IA B2 2

α α+ > sum
 the achievable sum rate is independent on the 

power split; Isum dominates the sum rate.

11.4 Numerical Results
Monte Carlo simulations were carried out in order to validate the performance of 
the proposed schemes. The simulation system follows the system model described 
in Section 11.2, and the performance metric considered is the achievable average 
user rate; the simulation parameters are defined in the following discussion for 
each simulation example and summarized in Table 11.1. It is worth noting that 
the main contribution of this chapter is to characterize the achievable rate of a 
MIMO MABC-SPC protocol with imperfect channel estimation for different CSI 
assumptions and study the optimal power allocation for different optimization 
targets. The simulation results are in line with this main purpose of the chapter 

Table 11.1 Simulation Examples and Corresponding Parameters
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and therefore a comparison of the considered protocol (MIMO MABC-SPC) with 
other MIMO–MABC approaches is beyond the scope of this work.

Simulation 1: In Figures 11.2 and 11.3, we plot the max−min achievable (average) 
single-user rate, which is half the sum-rate expression for both users shown in Equation 
11.24. This is plotted versus the SPC power split factor for a simulation setup with 
σ n

2 0 01= . , σ v
2 1= , σ εA

2 0 1= . , σ εB
2 0 1= . , P = 5 dB and M = 2, 4, 6, 8 antennas. We 

note that these simulation parameters correspond to a low SNR scenario and ensure 
that the second phase of the cooperative protocol determines the maximum single-
user rates (e.g., σ σn v A BI I2 2

1 2
> >⇒  and I > IA  B1 2

). This simulation scenario is not 
a symmetric one since σ σε εB A

> 2 , which means that selecting α = 0.5 to split the relay 
transmit power equally between the links is not optimal in this case. More specifically, 
Figure 11.2 deals with the C-SPC scheme and plots the max−min achievable user rate 
for different values of α while the maximum average achievable rate for both A and B 
users as well as the max−min achievable user rate corresponding to an instantaneous 
power split adjustment α* are used as reference curves.

As can be seen the power split that maximizes the max−min user performance is 
equal to α = 0.42; a power split value that corresponds to equal maximum average 
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rates for both users. Therefore, by equating the maximum average user rates, we 
can calculate the optimal power split value; an observation that validates the effi-
ciency of the proposed power-split technique, given in Equation 11.21. Furthermore, 
the performance of the instantaneous power-split technique (corresponding to α*) 
validates the fact that the fixed α value, obtained from the solution of Equation 
11.21, is equal to E[ ].*α  In addition, we can see that the proposed fixed power-split 
technique efficiently approximates the optimal max−min performance with a per-
formance loss almost equal to 0.2 bits per channel use (BPCU). However, Figure 
11.3 deals with the WF-SPC scheme and shows the impact of the power split on 
the max–min achievable single-user rate. The first important observation is that the 
WF-SPC scheme outperforms the C-SPC scheme for the considered low SNR sce-
nario. This observation is in line with conventional MIMO configurations where the 
WF is beneficial for low SNRs [Tse 2005]. As for the performance of the proposed 
SPC power-split techniques, we can see that the main observations follow the previ-
ously reported conclusions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

α

A
ve

ra
ge

 ra
te

 (B
PC

U
)

Min (RAR, RBR)

RAR

RBR

M = 2

M = 8

M = 6

Optimal PA (α*)

E[α *] ≈ 0.42

Figure 11.3 Achievable (average) user rates versus α for WF-SPC; 
σ σ σ σn v A B

2 2 2 20 01 1 0 01 0 1,= = = =. , , . , .ε ε  M = 2,4,6,8 antennas and P = 5 dB; the 
dotted line denotes the achievable user rates for an instantaneous SPC power 
split (α*). (Adapted from Krikidis I. and J. S. Thompson, J. Netw. Comput. Appl., 
35(1), 510–516, January 2012.)

 



MIMO Two-Way Relay Channel with Superposition Coding ◾ 485

Another significant observation is that the optimal fixed power split value 
for the WF-SPC scheme is equal with this one used for the C-SPC scheme 
(α ≈ 0.42). This result motivates the use of the C-SPC scheme for the computa-
tion of the optimal α in order to further reduce the computational complexity. 
Furthermore, it is worth noting that due to the asymmetric channel estimation 
error for the R → A, R → B links, the optimal SPC power split is not symmetric 
(α = 0.5) and assigns more power to the link with the higher channel estimation 
error (R → B).

Simulation 2: Figure 11.4 follows the parameter settings used in Figures 11.2 
and 11.3 but with a fundamental change; P = 30 dB which refers to a high SNR 
scenario. As can be seen from the curves corresponding to the C-SPC and the 
WF-SPC schemes, both SPC schemes achieve a similar performance. This observa-
tion is in line with conventional point-to-point MIMO systems where WF is useful 
only for the low SNR regime while it converges to a symmetric PA for high SNRs. 
As for the power-split techniques, we can see that both the instantaneous and aver-
age power allocations yield virtually the same data-rate performance.
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Simulation 3: In addition, it can be seen that for P = 30 dB the optimal fixed 
power split corresponds to α ≈ 0.1 and therefore the 90% of the available power is 
allocated to the R → B link that suffers from the higher channel estimation error. 
It is worth noting that for the low SNR regime the optimal power split factor 
is closer to the symmetric power allocation as the Gaussian noise dominates the 
system performance degradation. In addition, in Figure 11.5, we plot the opti-
mal fixed SPC power split ( [ ])*E α  for both the C-SPC and the WF-SPC schemes 
versus different channel estimation errors of the R → A link for P = 5, 30 dB, 
σ σn v M2 20 01 1 4= = =. , ,  antennas and σ εB

2 0 1= . . The curves show that both 
SPC schemes correspond to the same optimal power split allocation while more 
power is allocated to the link with the higher channel estimation error. We note 
that the optimal SPC power split is more sensitive to high SNR regime and there-
fore the interval value as well as the variability of E[ ]*α  are higher for high SNRs 
than low SNRs. Furthermore, Figure 11.5 validates the analytical derivation of the 
optimal power split given by Equation 11.22; as can be seen in the curves corre-
sponding to Equation 11.22 that match the simulation results.
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Simulation 4: Figure 11.6 shows the impact of the SPC power split on the 
achievable (average) sum rate for both the C-SPC and the WF-SPC schemes. More 
specifically, Figure 11.6 plots the achievable sum rate versus α (power split) for a 
simulation setup with σ σ σ σn v B

2 2 2 20 01 1 0 01 0 1= = = =. , , . , . ,ε εA
 M = 2, 4 anten-

nas and (a) P = 0 dB, (b) P = 5 dB, (c) P = 10 dB, and (d) P = 30 dB; the sum rate 
1 2/ sumE[ ]I  in Equation 11.12 is also depicted as a reference curve. As can be seen, 
for the low and intermediate SNR (P = 0, 5, 10 dB) the 1 2

2 2
/ E[ ( ) ( )]I IA Bα α+  

dominates the achievable sum rate for all α and therefore the SPC power split 
becomes a critical issue. We can see that the power split that maximizes the achiev-
able sum rate is equal to α * .= 0 6  for P = 0 dB, α * .= 0 56  for P = 5 dB, α * .= 0 55 
for P = 0 dB; these values are common for both the C-SPC and WF-SPC schemes. 
On the other hand, for high SNRs (P = 30 dB), although 1 2/ sumE[ ]I  dominates the 
achievable sum rate, the maximization of the 1 2

2 2
/ E[ ( ) ( )]I IA Bα α+  guarantees the 
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maximization of the achievable sum rate (i.e., α * .= 0 9 results in a significant loss 
on the achievable sum-rate performance). As for the C-SPC and WF-SPC schemes, 
we can see that the WF-SPC scheme outperforms C-SPC at low SNRs, an observa-
tion that is in line with our previous remarks.

11.5 Chapter Summary
This chapter investigated the achievable rate region as well as the power-split process 
for a MIMO bidirectional network with superposition coding relaying and imper-
fect channel estimation. A power-allocation technique that incorporates the average 
channel statistics and maximizes the achievable rates under a user-fairness constraint 
has been described, and it was shown that an optimal power allocation strategy 
allocates more power to the link with the higher channel estimation error while it is 
more sensitive at high SNRs. A power split that maximizes the achievable sum rate 
has also been investigated. It was seen that, in contrast to the fairness target, the 
power allocation becomes less sensitive to estimation errors and thus the optimal 
power allocation is close to the symmetric power allocation. Additionally, it was 
demonstrated that the SPC power allocation is independent of the CSI and therefore 
both C-SPC and WF-SPC schemes are optimized with the same power split.
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12.1  Introduction to Bidirectional Communication/
PLNC

In wireless communication, the concept of cooperation is a very promising aspect 
in realizing enhanced system performance, reliability, and coverage extension. For 
example, relaying nodes have been introduced to support communication between 
terminals such that the source transmits its message to the relay, which then for-
wards a processed message to the destination. As full-duplex relays, that is, relays 
transmitting and receiving at the same time and frequency, are difficult to imple-
ment, it is common to restrict to the application of half-duplex transceivers causing 
a substantial loss in spectral efficiency. This drawback has to be compensated by the 
performance improvements achieved by cooperative communication techniques.

In order to compensate this drawback, such a one-way relaying system can 
be expanded in a bidirectional manner based on the concept of network coding 
by allowing the intermediate node to perform operations on the incoming data 
[Ahlswede et al. 2000]. In this two-way relaying system setup, both terminals (also 
denoted as sources) intend to exchange information with each other with the help 
of a relay. The direct approach is to let the sources send their messages succes-
sively to the relay, and the relay transmits a network-coded signal containing, for 
example, the bit-level exclusive-or (XOR) of both received messages back to the 
sources in a third time slot by exploiting the broadcast nature of wireless channels 
[Fragouli et al. 2006, Katti et al. 2006]. Since both sources are aware of what they 
have transmitted previously, they can use this a priori information to estimate the 
message of the other source without ambiguity. As a result, doubled amount of data 
can be maximally transmitted in three time slots compared to one-way relaying 
requiring two time slots. Furthermore, the number of required time slots can be 
reduced to two by allowing both sources to transmit simultaneously to the relay. As 
the information of the sources are then combined during the transmission to the 
relay, such a scheme is termed physical-layer network coding (PLNC) [Zhang et al. 
2006], which maps the receive signal at the relay directly to the network-coded 
signal. Additionally, an essentially identical concept termed denoise-and-forward 
(DNF) was proposed in [Popovski and Yomo 2006] and [Koike et al. 2009]. In 
these literatures, the impact of channel coding is not considered. Extensions to 
joint consideration of channel decoding and PLNC are referred to [Zhan and He 
2008]. More generalized approaches herein requiring modified decoders are intro-
duced in [Zhang and Liew 2009] for repeat accumulate codes and in [Wübben and 
Lang 2010, Wübben 2010, and Pfletschinger 2011] for low-density parity-check 
(LDPC) codes with a modified sum-product algorithm (SPA). For convolutional 
codes jointly considered with PLNC, an extended Trellis diagram is applied [To 
and Choi 2010]. Furthermore, precoding strategies are investigated in [Schmidt 
et al. 2013a,b] to combat multipath fading for PLNC.

The above-mentioned literatures are focused on single-antenna relay nodes. 
When multiple antennas are available at the relay, the increased spatial degrees of 
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freedom basically lead to a multiuser MIMO configuration for the two-way relay-
ing system using PLNC. Therefore, common MIMO processing techniques can 
be adopted in this context and thus provide a variety of design flexibility. In [Xu 
et al. 2010], the uplink transmissions from both sources to the relay are treated as a 
conventional multiuser MIMO channel, where different multilayer MIMO detec-
tion techniques are applied. After this separate detection of the source messages, 
a network-coded signal is generated for broadcasting. The joint consideration of 
MIMO detection and PLNC is investigated in [Zhang and Liew 2010] and [Chung 
et al. 2012] for linear detection and in [Zhang et al. 2012] for nonlinear detection. 
However, the impact of channel coding is ignored in these works. In this chapter, 
the existing schemes for PLNC in bidirectional communications as well as the 
MIMO-related extensions are studied and compared in detail with the emphasis 
on multiple-antenna relays and channel coding.

In bidirectional relaying systems, two source nodes A and B intend to exchange 
information with each other supported by a relaying node R. The communication 
consists of two phases as shown in Figure 12.1. In the multiple-access (MA) phase, 
both sources transmit their packets of the same length to the relay simultaneously, 
resulting in a superimposed receive signal yR at relay R. Upon reception, R estimates 
a network-coded message xR from the receive signal and broadcasts it back to the 
sources in the broadcast (BC) phase. Here, both sources A and B are assumed to be 
equipped with a single antenna, whereas the relay is equipped with J ≥ 1 antennas. It 
is noted that the direct link between A and B is not available due to the half-duplex 
constraint.

The binary information words of the same length K for source A and B are 
denoted as bA and bB, respectively. These two information words are encoded by the 
same linear channel code Γ with code rate RC = K/N into binary source codewords 
cA = Γ(bA) and cB = Γ(bB) of length N at the sources. Applying a mapper M with 
an M-ary modulation alphabet, the source codewords are mapped to the symbol 
vectors xA A= M{ }c  and x cB B= M{ } of length L = N/m with m = log2 M. Both 
symbol vectors are transmitted to the relay simultaneously in the MA phase. The 
symbol vector x A A A A= [ ( ) ( ) ( )]x x x L1 2 �  of source A consists of L symbols 

(a) Multiple-access (MA) phase

yR (ℓ) xR (ℓ)

yB (ℓ)yA (ℓ)xA (ℓ) xB (ℓ)

(b) Broadcast (BC) phase

BA

R

BA

R

Figure 12.1 A two-way relaying network where two sources A and B exchange 
information with each other via the relay R. The communication consists of an 
MA phase and a BC phase.
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xA (ℓ), ℓ = 1, 2, . . ., L, where the symbol x cA A( ) { ( )}� �= M  depends on m code 
bits that are collected to the code bit tuple c c c c mA A A A( ) [ ( ) ( ) ( )]., , ,� � � �= 1 2 �  
Here, m denotes the number of bits contained in one modulated symbol xA ( )�  with 
index υ = 1, . . ., m.

The ℓth receive signal yR,j(ℓ ) on the jth antenna at relay R, j = 1,2, . . ., J, is 
given by

 y h x h x nj j j jR A A B B R, , , ,( ) ( ) ( ) ( ) ( ) ( ).� � � � � �= + +  (12.1)

When flat fading channels are considered, hA,j(ℓ) and hB,j(ℓ) represent the chan-
nel coefficients in time domain. In case of frequency selective fading channels using 
orthogonal frequency division multiplexing (OFDM), the channel coefficients are 
defined in frequency domain for the ℓth subcarrier. The additive white Gaussian 
noise (AWGN) nR,j(ℓ) is circularly symmetric complex, which has zero mean and 
variance σ n

2 .
With the definition of the 2 × 1 transmit symbol vector x( ) [ ( ) ( )] ,� � �= x x T

A B  
the corresponding J × 1 receive signal vector yR R R R( ) [ ( ) ( ) ( )], , ,� � � �= y y y J

T
1 2 �  

at relay R is given by

 yR R( ) ( ) ( ) ( ),� � � �= +H x n  (12.2)

where H h h h( ) [ ( ) ( ) ( )]� � � �= 1 2 � J
T  denotes the J × 2 MIMO channel 

matrix and nR(ℓ) denotes the noise vector at R. Note that h j j j
Th h( ) [ ( ) ( )], ,� � �= A B  

holds. In order to represent the complete receive signals at the relay for ℓ = 1,2, . . ., L, 
we additionally define the receive signal matrix Y y y yR R R R= [ ( ) ( ) ( )]1 2 � L  
of dimension J × L that collects the L receive signal vectors.

Upon receiving the superimposed signal, the relay performs an estimation 
with respect to the XOR of the source codewords cA⊕B = cA ⊕ cB based on yR. 
This estimated relay codeword cR A B= ⊕�c  is further mapped to the symbol vec-
tor x cR R= M{ }, which is broadcasted toward both sources in the BC phase. In 
case of multiple antennas at the relay, diversity-exploiting schemes can be applied, 
for example, orthogonal space-time block code (OSTBC) [Alamouti 1998, Tarokh 
et al. 1999], space-time trellis code (STTC) [Tarokh et al. 1998], linear dispersion 
code (LDC) [Hassibi and Hochwald 2002], and so on. For example, assuming that 
OSTBC is applied in the BC phase while ignoring the data rate loss due to orthogo-
nal code designs for J > 2, the equivalent system equation on the ℓth element from 
relay R to source A is given by [Tarokh et al. 1999]

 

y J h x nj
j

J

A A R A( ) ( ) ( ) ( ),,� � � �= ′ +
=

∑1 2

1  
(12.3)
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where yA (ℓ) represents the receive signal after OSTBC detection. Here, ′h jA, ( )�  
denotes the channel coefficient for the link from the jth antenna at relay R to 
source A. As can be observed in Equation 12.3, a diversity gain of order J can be 
achieved. After reception and OSTBC detection in the BC phase, both source 
nodes A and B estimate the relay codeword �cR A,  and �cR B,  from the receive sig-
nals y A A A A= [ ( ) ( ) ( )]y y y L1 2 �  and yB B B B= [ ( ) ( ) ( )],y y y L1 2 �  
respectively. Based on the fact that each source knows what it has transmitted in 
the MA phase as a priori information, the information from the counterpart can 
be obtained by simply performing XOR operation again at the sources between the 
estimated relay codeword and this a priori knowledge. Specifically, the estimated 
codeword from source B at source A is achieved by � �c c cB R A A= ⊕, . The estimate 
� �c c cA R B B= ⊕,  is obtained similarly at source B.

The above decode-forward (DF)-based approach for PLNC requires decod-
ing at relay R to estimate the relay codeword. However, when decoding errors 
occur at R, that is, �c cA B A B⊕ ⊕≠ , these errors will then propagate to the sources 
in the BC phase, which severely degrades the end-to-end performance of the 
bidirectional communication. Therefore, the overall system performance is 
highly dependent on the decoding results at the relay. To this end, we focus 
on the crucial MA phase in the sequel, where different detection and decod-
ing schemes at the single-antenna or multiple-antenna relay are presented and 
compared with respect to the error rate performance of the estimated relay 
codeword.

12.2 APP-Based Detection Schemes
12.2.1 Calculation of APPs
In this section, several a posteriori probability (APP)-based detection and decoding 
schemes are presented to estimate the relay codeword cR from the receive signal 
yR at the relay. We may either estimate the source messages explicitly or directly 
estimate the relay message. In order to simplify the description, we will first intro-
duce some basic relations between the occurring signals and their corresponding 
probabilities. Note that the element index ℓ  is omitted in the sequel for the sake of 
simplicity unless otherwise stated.

Since source A and B transmit simultaneously to relay R in the MA phase, each 
receive signal yR,j at the jth antenna defined in Equation 12.1 is determined by both 
source messages x cA A= M{ } and x cB B{ }.=M  This leads to M2 different noise-
free receive signals at R

 sAB A A B B, , , ,j j jh x h x= +  (12.4)
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where each of these hypothesis is defined by the bit tuples c c c c mA A A A= [ ], , ,1 2 �  
and c c c c mB B B B= [ ]., , ,1 2 �  As a short-hand notation, we define the combined 
bit tuple c c cAB A B= [ ] and introduce the polynomial description with indetermi-
nate D as

 

c
c
c c c c c c

c D c D
m m

m
m m

AB A A A B B B

A A B

=
= + + + + +−

[ ], , , , , ,

, , ,

1 2 1 2

1
1

1

� �

� � cc Dm
m

B, .2 1−
 

(12.5)

Thus, cAB belongs to a Galois field CAB = FM 2  and c iAB AB= C ( ) represents the 
jth event in FM 2 , 0 12≤ ≤ −i M . Based on the instantaneous channel knowledge 
hA,j and hB,j, the relations between these notations are shown in Tables 12.1 and 
12.2 for BPSK and QPSK modulation as examples, respectively. For the later deri-
vations, we also include the element-wise XOR combination of cA and cB given by

 c c c c c c c c cm mA B A B A B A B A B⊕ = ⊕ = ⊕ ⊕ ⊕[ ]., , , , , ,1 1 2 2 �  (12.6)

It is noted that  = −1 in the tables denotes the imaginary unit. Additionally, 
graphical examples are presented in Figure 12.2 to illustrate the complex constel-
lation set for the noise-free receive signal s jAB,  on the jth antenna at the relay for 
one fading channel realization. As can be observed, BPSK and QPSK lead to 4 and 
16 hypotheses, which correspond to Tables 12.1 and 12.2, respectively. Note that 
some hypotheses can be completely superimposed in certain channel conditions, 
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(a) BPSK (b) QPSK

Figure 12.2 Graphical example for the noise-free receive signal constellation 
set on the jth antenna at the relay for one fading channel realization, (a) for BPSK 
with h jA, 0.8 0.6 , = +   h jB, 0.3 ,= +   i = 0,. . .,3 and (b) for QPSK with h jA, , =   
h jB, 0.2 0.5 ,= − +   i = 0,. . .,15.
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for example, only three hypotheses for BPSK and nine hypotheses for QPSK are 
present in AWGN channels, as shown in Figure 12.9.

Since all transmitted code symbols are assumed to be equally likely, the a priori 
probabilities for cAB AB= C ( )i  are given by

 
Pr{ ( )} .c i

MAB AB= =C
1

2  
(12.7)

Furthermore, the probability density for yR conditioned on the code bit com-
bination cAB AB∈ C  with deterministic channel gains can be deduced from AWGN 
channels as

 
p c i i

n
K

n
{ | ( )} exp || ( ) || .y HR AB AB R= =

( )
− −








C X
1 1

2 2
2

πσ σ
y

 
(12.8)

Here, X M M M( ) { } [ { } { }]i c c c= =AB A B  denotes the ith modulated symbol 
tuple from the sources given that cAB AB= C ( )i  is transmitted. Applying Bayes’ rule, 
the a posteriori probability Pi that cAB AB= C ( )i  was transmitted, given the current 
receive signal vector yR, is

 

P c i

p c i
c i

i = =

= = =

=

Pr{ ( ) | }

{ | ( )} Pr{ ( )}
Pr{ }

AB AB R

R AB AB
AB AB

R

C

C
C

y

y
y

pp c i{ | ( )} .yR AB AB= C α  (12.9)

The constant α = ==Pr{ ( )}
Pr{ } Pr{ }

c i
M

AB AB
R R

C
y y

1
2  can be calculated using the complete-

ness condition ∑ =i iP 1  to normalize the probabilities Pi.

Table 12.1 Mapping Rules of Code Bit Tuple (cA,cB), Transmit 
Signals (xA,xB), and Noise-Free Receive Signal sAB,j on the jth 
Antenna at Relay R for BPSK Modulation

i cA cB cA⊕B cAB xA xB sAB,j

0 0 0 0 0 1 1 hA,j + hB,j

1 1 0 1 1  −1 1  −hA,j + hB,j

2 0 1 1 D 1  −1 hA,j − hB,j

3 1 1 0 1 + D  −1  −1  −hA,j − hB,j
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The APPs determine the probabilities of different transmit code bit combina-
tions cAB based on the receive signal yR. These APPs can be used to calculate log-
likelihood ratios (LLRs) for the individual code bits cA and cB, or the XORed code 
bit cA⊕B. In the sequel, the LLRs are obtained from the APPs that facilitate different 
detection and decoding schemes, which are termed APP-based schemes.

Table 12.2 Mapping Rules of Code Bit Tuple (cA,cB), Transmit Signals 
(xA,xB), and Noise-Free Receive Signal sAB,j on the jth Antenna at Relay 
R for QPSK Modulation

i cA cB cA⊕B cAB xA xB sAB,j

0 00 00 00 0 1 1 hA,j + hB,j

1 10 00 10 1  1 h hj jA B, ,+

2 01 00 01 D  −1 1  − h_A,j + hB,j

3 11 00 11 1 + D − 1 − +h hj jA B, ,

4 00 10 10 D2 1  h hj jA B, ,+ 

5 10 10 00 1 + D2    h hj jA B, ,+

6 01 10 11 D + D2  −1  − +h hj jA B, ,

7 11 10 01 1 + D + D2  −  − + h hj jA B, ,

8 00 01 01 D3 1  −1 hA,j − hB,j

9 10 01 11 1 + D3   −1 h hj jA B, ,−

10 01 01 00 D + D3  −1  −1  − hA,j − hB,j

11 11 01 10 1 + D + D3 −  −1 − −h hj jA B, ,

12 00 11 11 D2 + D3 1 − h hj jA B, ,− 

13 10 11 01 1 + D2 + D3  −  h hj jA B, ,−

14 01 11 10 D + D2 + D3  −1 − − −h hj jA B, ,

15 11 11 00 1 + D + D2 + D3 − − − − h hj jA B, ,
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12.2.2 Separated Channel Decoding
The estimation of the source information at the relay can be interpreted as a tra-
ditional MA problem, which targets at estimating the individual messages cA and 
cB explicitly by separated channel decoding (SCD). Based on the APPs defined in 
Equation 12.9, the probability for cA, ,υ  υ = 1, . . ., m, given the receive signal vector 
yR, can be calculated as

 

Pr{ | } ,,

,

c Pi

i

A R

A

υ = =
∈
∑ξ

υ
ξ

y
Ω  

(12.10)

where ΩA,υ
ξ  denotes the set of indices with code bit cA,υ equal to ξ ∈ { , }0 1  accord-

ing to Tables 12.1 and 12.2. For example, ΩA, { , }1
0 0 2=  collects all events i with 

cA,1 = 0 for BPSK. Correspondingly, the LLR LA,υ for the code bit cA,υ can be for-
mulated as
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which is fed to a soft-input channel decoder for each code bit of the codeword. 
In this way, the estimated �cA for the source codeword transmitted by source 
A is achieved. In a similar manner, LLR calculation and channel decoding 
are performed with respect to the codeword from source B, resulting in the 
estimate �cB .

Graphical Illustration

In Figure 12.3, graphical examples are given that illustrate the set ΩA,υ
ξ  and ΩB,υ

ξ  
used to calculate LLRs in Equation 12.11 for BPSK. Here, the event sets are defined 
as ΩA, { , }1

0 0 2=  and ΩA, { , }1
1 1 3=  for the calculation of LA,1 by

 
L

P P
P PA, ln ,1

0 2

1 3
= +

+




  

(12.12)

which correspond to the solid lines and dashed lines in the figure, respectively. 
Similarly, ΩB, { , }1

0 0 1=  and ΩB, { , }1
1 2 3=  hold for calculating LB,1 leading to

 
L

P P
P PB, ln .1

0 1

2 3
= +

+




  

(12.13)
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It is noted that for QPSK, the graphical illustration for LLR calculations 
is focused on the first code bit in one modulated symbol, that is, cA,1 and cB,1, 
as visualized in Figure 12.4. Specifically, ΩA, { , , , , , , , }1

0 0 2 4 6 8 10 12 14=  and 
ΩA, { , , , , , , , }1

1 1 3 5 7 9 11 13 15=  are used to calculate the LLR LA,1, whereas LB,1 is cal-
culated using ΩB, { , , , , , , , }1

0 0 1 2 3 8 9 10 11=  and ΩB, { , , , , , , , }.1
1 4 5 6 7 12 13 14 15=

Furthermore, it can be observed in Figure 12.4 for QPSK that SCD will lead to 
relatively larger LLR for cA,1 as the sets ΩA,1

0  and ΩA,1
1  are spatially separated for this 
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Figure 12.4 Graphical example of the LLR calculation for SCD with QPSK. The 
receive signal yR,j on the jth antenna at R is represented by “x.” Solid lines and 
dashed lines correspond to entries sAB,j with code bit equal to 0 and 1, respec-
tively, (a) for code bit cA,1 and (b) for code bit cB,1, i = 0, . . . ,15.
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Figure 12.3 Graphical example of the LLR calculation for SCD with BPSK. The 
receive signal yR,j on the jth antenna at R is represented by “x.” Solid lines and 
dashed lines correspond to entries sAB,j with code bit equal to 0 and 1, respec-
tively, (a) for code bit cA,1 and (b) for code bit cB,1, i = 0, . . . ,3.
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channel realization. In contrast, ΩB,1
0  and ΩB,1

1  are not well distinguished and thus 
result in smaller LLRs. A closer look on the LLR distributions taking into account 
the fading channel characteristic is presented in the upcoming section.

Finally, XOR-based network coding is applied to combine the decoding output 
vectors and generate the relay codeword as c c cR A B= � �⊕ , which is then modu-
lated and broadcasted back to the sources in the BC phase.

Note that in the above approach, the source codewords cA and cB are decoded 
in parallel. Therefore, such a separated decoding scheme is termed P-SCD with 
the block diagram shown in Figure 12.5. Alternatively, the decoding result of 
the channel with larger signal-to-noise ratio (SNR) can be subtracted from the 
receive signal and a common decoding for the second codeword with respect to 
this interference-reduced signal is performed. Such a successive decoding scheme 
is termed S-SCD.

12.2.3  Joint Channel Decoding and Physical-Layer 
Network Coding

For PLNC, the functionality of the relay node is to generate a network-coded mes-
sage cR from the receive signal yR. In order to build such a relay codeword, it is not 
necessary that the relay has to estimate the source codewords cA and cB explicitly as 
performed by SCD presented in the previous section. Alternatively, the relay code-
word cR = cA⊕B can be directly estimated from yR without knowing the individual 
messages cA and cB, which is termed joint channel decoding and physical-layer 
network coding (JCNC) [Zhan and He 2008, Zhang and Liew 2009].

Based on the assumption that both sources apply the same linear channel 
code, the modulo-2 sum cA⊕B = cA ⊕ cB is also a valid codeword of the code Γ. 
In this case, the APPs for each XOR code bit cA⊕B,υ = 0 and cA⊕B,υ = 1 can be 
determined as

 

Pr{ | } ,,c Pi
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A B R⊕
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= = ∑υ ξ
υ
ξ

y
Ψ  
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Figure 12.5 Block diagram for parallel separated channel decoding (P-SCD), 
which estimates cA and cB individually and subsequently applies network coding 
c c c .R A B= � �⊕
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using the APPs Pi in Equation 12.9. Here, Ψυ
ξ  defines the set of indices with 

the XOR code bit cA⊕B,υ = cA,υ ⊕ cB,υ equal to ξ ∈ { , }0 1  For example, the set 
Ψ1

0 0 3= { , } indicates all events i with cA⊕B,υ = 0 for BPSK. Thereafter, the cor-
responding LLR
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is fed to the channel decoder, which produces the relay codeword c cR A B= � ⊕  
directly.

Graphical Illustration

The LLR calculation based on the set Ψυ
ξ  is illustrated graphically in Figure 12.6 

for both BPSK and QPSK modulation according to the occurrence of the XOR 
code bit cA⊕B in Tables 12.1 and 12.2. The event sets Ψ1

0 0 3= { , } and Ψ1
1 1 2= { , } 

are used to calculate the LLR LA⊕B,1 for BPSK by
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Figure 12.6 Graphical example of the LLR calculation for JCNC. The receive 
signal yR,j on the jth antenna at R is represented by “x.” Solid lines and dashed 
lines correspond to entries sAB,j with the first bit in the XOR code bit tuple cA⊕B,1 
equal to 0 and 1, respectively, (a) for BPSK with i = 0, . . . ,3 and (b) for QPSK with 
i = 0, . . . ,15.
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which is only different from the LLR calculations (Equations 12.12 and 12.13) for 
SCD in summation of the APPs. Contrarily, for QPSK, the LLR of the first bit 
in the XOR code bit tuple is calculated using Ψ1

0 0 2 5 7 8 10 13 15= { , , , , , , , } and 
Ψ1

1 1 3 4 6 9 11 12 14= { , , , , , , , }. Note that for this channel realization, JCNC will pro-
duce relatively smaller LLRs for cA⊕B since the sets Ψ1

0  and Ψ1
1 are not well separated 

in space. This will also be elaborated and compared to SCD subsequently by con-
sidering the distribution of the LLRs.

Finally, the estimated relay codeword cR is modulated and broadcasted to both 
sources in the BC phase. Compared to SCD with two decoding chains, JCNC 
requires channel decoding only once per MA channel use and, thus, computational 
efforts are reduced. The block diagram for JCNC is depicted in Figure 12.7.

LLR Distributions

The LLRs (Equations 12.11 and 12.15) calculated using the APPs are fed to a chan-
nel decoder for SCD and JCNC, respectively. It is noted that larger amplitude 
of LLRs provides more reliability and thus is able to benefit more from channel 
decoding. Therefore, the distributions of the LLR amplitudes of the individual 
code bit cA for P-SCD and XOR code bit cA⊕B for JCNC are investigated as follows. 
As an example, the cumulative distribution function (CDF) of the absolute LLRs 
(denoted as |LLR|) at the relay is shown in Figure 12.8 for both AWGN channels 
and fading channels. QPSK modulation is adopted at both source nodes A and B.

As can be observed in the figure, approximately half of the LLRs for P-SCD 
are extremely small (close to 0) in AWGN channels. This is because some constel-
lation points in the noise-free receive signal plain are completely superimposed and 
therefore cannot be distinguished by SCD at all due to this ambiguity. These super-
imposed points can be observed in Figure 12.9 for BPSK and QPSK modulation. 
When BPSK is applied at the sources, the transmit symbol tuple (xA,xB) = (1, − 1) 
and (xA, xB) = (−1,1) lead to the same hypothesis sAB,j = 0 at each antenna. For 
QPSK, 16 different transmit symbol tuples (xA, xB) lead to only 9 points in the 
complex plain. For example, the events i = 3,6,9,12 all result in sAB,j = 0, which 
degrades the performance of SCD significantly. However, these hypotheses cor-
respond to the same XOR code bit tuple cA B⊕ = [ ],1 1  all of which belong to the 
set Ψ1

1 or Ψ2
1 . Therefore, JCNC is immune to this ambiguity and produces larger 

LLRs compared to SCD as shown Figure 12.8a.

APP
LA⊕B cR = cA⊕BYR

∑
ˆ

D

Figure 12.7 Block diagram for joint channel decoding and physical-layer network 
coding (JCNC), which estimates c cR A B= ⊕�  directly from the receive signal YR.
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When fading channels are considered, we investigate the LLR distribution with 
respect to one flat fading realization used in Figure 12.2, where the channel coef-
ficients lead to distributed noise-free constellation points sAB,j at the relay. In this 
case, SCD benefits from this spatial separation and thus produces larger LLRs com-
pared to JCNC, as visualized in Figure 12.8b. For practical concerns, frequency-
selective fading channels in combination with OFDM are considered, resulting in 
different constellation maps over the subcarriers. It can be observed in Figure 12.8c 
that SCD still achieves larger LLR amplitudes compared to JCNC by averaging 
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Figure 12.8 |LLR| distributions (CDF) of code bits before decoding for P-SCD and 
JCNC in (a) AWGN channels, (b) fading channels with one channel realization 
h jA,  =   and h jB, 0.2 0.5 , = − +  and (c) multipath fading channels using OFDM 
averaged over different channel realizations, SNR = 5 dB and QPSK modulation.
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Figure 12.9 Graphical example for the noise-free receive signal constellation set 
on each antenna at the relay in AWGN channels, (a) for BPSK with i = 0, . . . ,3 and 
(b) for QPSK with i = 0, . . . ,15.
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over different channel realizations. This scenario will also be considered later on in 
Section 12.4 for performance evaluations. Furthermore, multiple antennas at the 
relay lead to improved CDF curves while the comparison between SCD and JCNC 
remains unchanged.

12.2.4  Generalized Joint Channel Decoding and Physical-
Layer Network Coding

The separated decoding of both source codewords cAand cB as well as the joint decod-
ing of the XOR codeword cA⊕B from the receive signal yR are operated in binary bit 
level. Alternatively, the decoding at the relay can be performed with respect to the 
nonbinary field FM 2  such that the M2-ary code combination cAB is estimated from 
yR. Subsequently, PLNC is executed that maps the estimated �cAB to the relay code-
word cR. This approach is able to fully exploit the coding gain of both channel codes 
at the sources and is termed generalized joint channel decoding and physical-layer 
network coding (G-JCNC) (Wübben and Lang 2010, Wübben 2010].

In order to examine the validity of the G-JCNC scheme operated in nonbi-
nary field, the code structure for cAB applied to the MA phase is observed. Here, 
the encoding process is assumed to be slightly different compared to the system 
defined in Section 12.1, where m identical encoders are applied to the information 
bit streams bA,1 to bA,m, that is, the encoding process, for example, at source A reads 
c bA A A A A, , , , ,[ ( ) ( ) ( )] ( ).υ υ υ υ υ= =c c c L1 2 � Γ  In this way, the code bits cA,υ(ℓ ) 
with υ = 1, . . ., m contained in one modulated symbol xA(ℓ ) have similar connec-
tions in the code structure of the applied channel code Γ. The encoding at source B 
is performed likewise. Basically, each code bit of a linear channel code consists of 
the modulo-2 sum of some information bits, for example, the code bit cA,υ(ℓ ) in the 
codeword is achieved by the sum of the uth and the wth information bits, that is

 c b u b wA A A, , ,( ) ( ) ( ).υ υ υ� = ⊕  (12.17)

Since both sources employ the same channel code, the ℓth element in the code 
bit polynomial can be written as
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It can be observed that the code bit polynomial cAB (ℓ) is given by the modulo-2 
sum of the information bit polynomials b u b u b u b umAB A A B( ) [ ( ) ( ) ( ), , ,= 1 1� �  
b umB, ( )] and b u b w b w b w b wm mAB A A B B( ) [ ].( ) ( ) ( ) ( ), , , ,= 1 1� �  Similarly, a code 
bit equal to the modulo-2 sum of more than 2 information bits can be calcu-
lated by nesting the operation in Equation 12.18, which still belongs to FM 2 .  
Correspondingly, channel decoding is performed at the relay with respect to the 
codeword cAB.

In [Wübben and Lang 2010] and [Wübben 2010], a modified SPA at the 
relay is applied considering LDPC codes at the sources for the G-JCNC scheme. 
The modified SPA is based on the investigations in [Kschischang et  al. 2001] 
and [Davey and Mackay 1998]. As shown in Figure 12.10 for the block diagram, 
instead of the LLRs, the APPs are directly fed to the channel decoder in FM 2  
and updated iteratively within the modified SPA. As a result, the APP vector 
p = −[ ]p p pM0 1 12�  with p c ii = =Pr{ ( ) | }AB AB RC y  is generated from the 
decoding algorithm. Finally, PLNC is performed that maps the updated APPs 
p to the binary code bit cR(ℓ) in the relay codeword. Exemplarily, the mapping 
rules are given by
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for BPSK and for QPSK, respectively.

APP
cAB cRYR

PLNCD
ˆ

Figure 12.10 Block diagram for generalized joint channel decoding and physi-
cal-layer network coding (G-JCNC). The estimation �cAB  is mapped to the cor-
responding network-coded signal after a channel decoding in FM 2 .
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Compared to SCD and JCNC, G-JCNC takes into account both channel 
codes from the sources and therefore is able to fully exploit the available informa-
tion about the superimposed receive signal yR at the relay. This leads to improved 
system performance, as can be observed in Section 12.4 later on. Since the decod-
ing process is performed in FM 2  instead of in binary field for SCD and JCNC, 
higher computational complexity is required for G-JCNC.

12.3 MIMO Detection Techniques
The APP-based detection and decoding schemes presented in the previous sec-
tion can be applied to systems with an arbitrary number of antennas J at the relay. 
Specifically, introducing multiple antennas at relay R only influences the APP calcu-
lations defined in Equation 12.9, whereas the decoding schemes based on the APPs 
remain unchanged. However, when equipping J > 1 antennas at R, the MA phase 
corresponds to a 2 × J MIMO channel, which allows the application of MIMO 
processing techniques. In the sequel, several common multilayer MIMO detection 
techniques are applied to two-way relaying networks with two time slots, which esti-
mate cA and cB explicitly from the received signal yR. Network coding is then applied 
to generate the relay codeword cR A B= ⊕� �c c  for broadcasting. Although common 
MIMO detection techniques also fall into the category “separated channel decod-
ing” presented in Section 12.2.2, since cA and cB are individually estimated, the 
term “SCD” still indicates the APP-based scheme exclusively. Note that the MIMO 
detection techniques are applied independently to PLNC in this chapter. Alternative 
schemes with joint consideration of MIMO detection and PLNC are referred to 
[Zhang and Liew 2010, Chung et al. 2012, and Zhang et al. 2012].

12.3.1 Linear Equalization
For linear equalization (LE) schemes, the receive signal vector yR is filtered by a 
2 × J matrix g, resulting in the filtered signal vector � � �x GyR A B R= =[ ] .x x T  The 
filter matrix g for linear detectors employing the zero-forcing (ZF) or minimum 
mean squared error (MMSE) criteria are given as
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Here, the operator (⋅)+ denotes the pseudo-inverse of a matrix. Note that MMSE 
corresponds to ZF for the extended system, which has an extended channel matrix 
h of dimension ( J + 2) ×2
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Furthermore, the receive signal vector also has to be extended for MMSE to fit 
the dimension as
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y
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The corresponding estimation errors of different layers are determined by the 
diagonal elements of the error covariance matrix Φ, which is given by
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Applying the filtering matrix to the receive signal vector, the filtered signal vec-
tor �x H yR R= +  for ZF or �x H yR R= +  for MMSE of dimension 2 × 1 contains 
the estimated messages for xA and xB in each layer, respectively. When ZF is per-
formed, the cross-layer interference is removed completely with greater noise ampli-
fication. For MMSE, a compromise between the interference and the amplified 
noise is achieved. Subsequently, the filtered signal �xR is demodulated and decoded 
for both layers to estimate the source codewords �cA  and �cB , separately. This further 
leads to the relay codeword c c cR A B= ⊕� �  for broadcasting.

12.3.2 Successive Interference Cancellation
The linear estimation schemes detect different layers in parallel. Alternatively, the 
layers can be detected successively, where the cross-layer interference resulting from 
the layer already detected in the layer to be detected is reconstructed and elimi-
nated. Such a nonlinear detection technique is termed successive interference can-
cellation (SIC). In this section, we emphasize on SIC based on QR decomposition 
(QRD) of the channel matrix [Wübben et al. 2003].

Employing QR matrix decomposition, the 2 × J channel matrix h in the MA 
phase can be decomposed into h = qr, where q denotes a J × 2 matrix with ortho-
normal columns and r denotes a 2 × 2 upper triangular matrix. The matrix qH is 
used as the filter matrix, yielding �x Q yR R= H . Owing to the upper triangular 
structure of r, the second layer of the filtered signal vector �xR is free of interference. 
This estimated symbol is decoded and then used to reconstruct the interference 
contributing to the first layer. After subtracting this cross-layer interference, com-
mon decoding is performed to the first layer. In this way, the source codewords cA 
and cB are estimated successively, which are further network coded to generate the 
relay codeword cR broadcasted in the BC phase. Note that the above SIC approach 
with QRD is based on the ZF criterion as the interference is completely removed 
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in the second layer. When the MMSE criterion is considered, QRD is applied to 
the extended channel matrix as H QR=  while the subsequent operations are per-
formed according to Q  and R  instead.

Since erroneous decisions of the layer detected first will propagate to the second 
detection step, the performance of SIC can be improved by first detecting the layer 
with higher reliability. Note that for OFDM systems with channel coding applied 
to each OFDM symbol, the same detection order is required on all subcarriers. 
For such an ordered SIC (OSIC) detection scheme, we take the ordering criteria 
based on SINR optimization from [Wübben and Kammeyer 2006] for perfor-
mance evaluations later on. With this concern, the layer with the smaller averaged 
estimation error φκ over all subcarriers of one OFDM symbol is detected first. Here, 
φκ  is defined as

 
φκ κ κ=

=
∑1

1
L

L

[ ] ,,ΦΦ( )�
�  

(12.25)

with Φ(ℓ ) denoting the error covariance matrix on the ℓth subcarrier defined in 
Equation 12.24. The operator [⋅]κ,κ indicates the κth diagonal term of a squared 
matrix with κ = 1,2.

12.4 Performance Analysis
For performance evaluations, a two-phase two-way relaying system is considered 
where the relay is located in the middle of the two sources and the three nodes 
are on a line. In the link-level simulations, all links are assumed to be multipath 
Rayleigh block fading with NH = 5 normalized equal power taps in time domain. 
In order to ease the equalization efforts for such frequency selective channels, 
OFDM is applied for all transmissions, where each OFDM symbol is individu-
ally encoded by an optimized LDPC code and contains L = 1024 subcarriers with 
QPSK modulation. The optimized degree distributions of the LDPC code are 
achieved from [Urbanke 2010] and the progressive edge growth (PEG) algorithm 
[Hu et  al. 2005] is performed to construct the parity-check matrix. This code 
with both a medium code rate (RC = 0.5) and a high code rate (RC = 0.875) is 
considered. Additionally, a maximum number of 100 iterations are employed for 
both binary and nonbinary channel decoding. The iterative decoding process is 
terminated when the parity-check condition is fulfilled or the maximum num-
ber of iterations is reached. For performance evaluations, the dependency of the 
frame error rate (FER) for the relay codeword on SNR /= 1 2σ n  assuming normal-
ized transmit power at both sources is presented for the detection and decoding 
schemes investigated in Sections 12.2 and 12.3.
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12.4.1 Single-Antenna Relay
For the single-antenna relay scenario, the FER performance of the relay codeword 
for the APP-based detection and decoding schemes presented in Section 12.2 is 
shown in Figure 12.11. It can be observed that G-JCNC achieves the best perfor-
mance due to full exploitation of both channel codes from the sources. When an 
LDPC code of medium rate RC = 0.5 is applied, P-SCD performs approximately 
1 dB better than JCNC. This is because P-SCD produces for the individual code 
bits LLRs with larger amplitude compared to JCNC for the XOR code bits, as 
demonstrated by the LLR distributions in Figure 12.8c. Therefore, P-SCD is more 
capable of exploiting the coding gain from the frequency selective fading channel 
environment compared to JCNC. Furthermore, S-SCD improves the performance 
by approximately 2 dB in contrast to P-SCD and is still 1 dB worse than G-JCNC. 
For a high code rate scenario, for example, RC = 0.875, JCNC approaches P-SCD 
with a very slight performance degradation as shown in Figure 12.11b, whereas 
G-JCNC still achieves tremendous performance gain.

12.4.2 Multiple-Antenna Relay
When the relay employs multiple antennas, the common multilayer MIMO detec-
tion techniques can be applied in addition to the APP-based schemes to estimate the 
source messages separately, which is followed by network coding as cR A B= ⊕� �c c . 
In Figure 12.12, the FER performance at the relay is presented for several common 
multilayer MIMO detection techniques demonstrated in Section 12.3 with J = 2 
antennas at the relay. It is shown that MMSE outperforms ZF and SIC outperforms 
LE in general. It is also well known and verified in the figure that the MMSE-OSIC 
scheme with ordering criterion (12.25) achieves significant performance gain in 
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Figure 12.11 FER performance of the estimated relay codeword for APP-based 
schemes. The relay is equipped with J = 1 antenna. The code rate is RC = 0.5 in (a) 
and RC = 0.875 in (b).
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contrast to the other schemes for both the medium and high code rate scenarios, 
which is employed for comparison with the APP-based schemes subsequently.

In Figure 12.13, the FER performance of the APP-based schemes is compared 
to MMSE-OSIC when the relay is equipped with J = 2 antennas. In contrast to 
Figure 12.11, the performance loss of P-SCD to G-JCNC is getting smaller with 
increasing number of antennas at the relay. Furthermore, MMSE-OSIC approaches 
G-JCNC for the medium code rate case with RC = 0.5 but requires less computa-
tional complexity. However, the performance degrades significantly for the high 
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Figure 12.12 FER performance of the estimated relay codeword for common mul-
tilayer MIMO detection techniques. The relay is equipped with J = 2 antennas. 
The code rate is RC = 0.5 in (a) and RC = 0.875 in (b).
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Figure 12.13 FER performance of the estimated relay codeword for APP-based 
schemes and MMSE-OSIC. The relay is equipped with J = 2 antennas. The code 
rate is RC = 0.5 in (a) and RC = 0.875 in (b).
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rate scenario, which indicates that the code rate results in dramatic influence on the 
system performance for different schemes.
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AAS, see Advanced antenna systems (AAS)
Active sets, 28
Adaptive modulation and coding (AMC), 5
Additive white Gaussian noise (AWGN), 49, 

494
spectral density function, 260
weight distribution use, 172

ADSL, see Asynchronous digital subscriber line 
(ADSL)

Advanced antenna systems (AAS), 8
Advanced mobile phone system (AMPS), 2
Alamouti scheme, 11, 52

IB-DFE for, 396
MIMO, 380–381
STBC scheme, 386–387

AMC, see Adaptive modulation and coding 
(AMC)

AMPS, see Advanced mobile phone system 
(AMPS)

Angle-of-arrival (AoA), 350, 421
localization, 368

Angle-of-departure (AoD), 421
Antenna switch (AS), 16
A posteriori probability-based detection 

(APP-based detection), 495; 
see also Physical-layer network 
coding (PLNC)

calculation, 495
element-wise XOR combination, 496
LLR, 498
mapping rules, 497, 498
noise-free receive signal constellation, 496
SCD, 499–501

APP-based detection, see A posteriori 
probability-based detection (APP-
based detection)

ARQ, see Automatic repeat request (ARQ)
AS, see Antenna switch (AS)
Asynchronous digital subscriber line 

(ADSL), 7
Automatic repeat request (ARQ), 51, 379

Hybrid-ARQ techniques, 380
soft packet combining, 384–386

AWGN, see Additive white Gaussian noise 
(AWGN)

B

Backwards transformation, 77
Base station (BS), 5, 212

BS cooperation, 25
CoMP transmission, 25, 26–28
downlink BS, 26
macro-diversity, 28–30

Basic linear algebra subprograms (BLAS), 
282

BC phase, see Broadcast phase (BC phase)
Beamforming (BF), 21, 417

output and input signal, 23
transmitter, 22
weighted elementary signals, 22

Beam pattern, 359, 360
impact on practical systems, 362–363
for UWB antenna array, 361

Belief propagation algorithm, see Iterative sum-
product algorithm

Bell Laboratory layered space–time 
(BLAST), 212

BER, see Bit error rate (BER)
BF, see Beamforming (BF)
Binary phase shift keying (BPSK), 261, 345
Bit error rate (BER), 8, 68, 129, 172

for fixed channel, 401

Index
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Bit error rate (Continued)
linear precoders for minimizing, 130
for low-power and high-power users, 242
for MF, 335, 336
for MMSE, 333, 336, 338, 377
performance of WiMedia OFDM 

system, 364
of SIC or PIC receiver, 241
for single packet transmission, 397
for uncorrelated channel, 400
for ZF, 325–332, 336, 338, 377

Bits per channel use (BPCU), 484
BLAS, see Basic linear algebra subprograms 

(BLAS)
BLAST, see Bell Laboratory layered space–time 

(BLAST)
BLER, see Block error rate (BLER)
Block-circulant matrices, 291

block-diagonal matrix, 292
block-FFT, 294
block-Fourier matrix, 291, 293, 297
Hermitian positive-definite, 297, 299
least squares solution, 293
Q × Q matrix N multiplications, 295
triangular matrix inversion, 296

Block-diagonal system partitioning, 282
block-Fourier algorithm, 306–310
channel changing speeds, 287
without overlapping, 286
with overlapping, 287
pseudo-code for, 288
relative error, 286, 289, 290

Block-fast Fourier transform (Block-FFT), 294
Block-Fourier algorithm, 288; see also Gauss 

algorithm
circulant matrices, 288–291
diagonalizing circulant matrices, 288–291
with partitioning, 306–310
pseudo-codes of, 297, 298, 306
for ZF algorithm, 334

Block-Fourier matrix, 291, 319
Block-Fourier partitioned algorithm

constant channels, pseudo-code for, 
311, 312

number of operations, 313–314
for steady channels, 320, 321
unsteady channels, pseudo-code for, 

315, 316
for unsteady channels, 322, 323

Block error rate (BLER), 418
Es/No MIMO, QPSK, urban 

macrochannel vs., 421

for MMSE, 333
for SISO QPSK transmission, 206

Block fading model, 71
BPCU, see Bits per channel use (BPCU)
BPM, see Burst-position modulation (BPM)
BPSK, see Binary phase shift keying (BPSK)
Broadcast phase (BC phase), 493
BS, see Base station (BS)
Burst-position modulation (BPM), 345

C

C-SPC design, see Conventional SPC design 
(C-SPC design)

Carbon footprint reduction, 39
Carrier–interference ratio (C/I), 412
Cauchy–Schwarz inequality, 261
CBR, see Constant bit-rate (CBR)
CDF, see Cumulative distribution function 

(CDF)
CDMA, see Code division multiple access 

(CDMA)
Cell-edge performance, 426, 432, 435
Cellular network

advanced, 24–25
conventional, 33
first generation, 2
second generation, 2
virtual, 33

Cellular system evolution; see also Multiple-
input–multiple-output system 
(MIMO system)

cellular network generations, 2
4G, 4
IMT-Advanced, 9
LTE-Advanced, 9
3GPP releases, 3
from 3G systems, 5–6
WiMAX—IEEE802. 16, 7–8

Centralized architecture, 27
Central port, 32
Channel coding, 170

CTC, 170–172
LDPC codes, 172–175

Channel decoder, 179
LDPC decoder, 181–184
turbo decoder, 179–181

Channel estimation, 184; see also Iterative 
channel estimation

distortion, 184
frame structure for MIMO-OFDM 

transmission, 185
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receiver steps, 186
training symbols, 185

Channel hardening, see Channel 
orthogonalization

Channel impulse response (CIR), 28, 349, 
423

Channel model creation process, 423
Channel orthogonalization, 452
Channel quality indicator (CQI), 334, 431
Channel reciprocity, 121
Channel state information (CSI), 11, 120–121, 

451, 468
Channel state information at receiver 

(CSIR), 70
capacity with CSIR, 70–73

Channel state information transmitter 
(CSIT), 53

Channel transfer function, 353
ChIR, see Channel impulse response (CIR)
C/I, see Carrier–interference ratio (C/I)
CIR, see Channel impulse response (CIR)
CLLL algorithm, see Complex-LLL algorithm 

(CLLL algorithm)
Closed subscriber group (CSG), 407
Closest vector problem (CVP), 48, 74
Co-channel deployment, 407
Code division multiple access (CDMA), 2
Code division multiple access (CDMA), 213
Coded pseudorandom-code division multiple 

access (CS-CDMA), 254
Code spread (CS), 254
Column-Cholesky algorithm, 279
Communication model, 475

overall achievable rate region, 478
SPC scheme, 477
system model, 476
three-node MIMO two-way relay 

channel, 475
Complex-LLL algorithm (CLLL algorithm), 

99, 102
Complex lattice reduction, 100

CLLL, 102
complex channel matrix, 101
round() function, 103

Complex rotation matrices (CRM), 160, 
199–200

CoMP transmission, see Coordinated 
multipoint transmission (CoMP 
transmission)

Configurable virtual cell sizes, 32–33
Constant-channel conditions, 304–306
Constant bit-rate (CBR), 431

Control unit (CU), 27
Conventional SPC design (C-SPC design), 

478
Convolutional turbo codes (CTC), 170

BER performance, 172
block pseudorandom interleaver, 171–172
feed-forward and feedback connections, 

170, 171
LTE-Advanced turbo encoder scheme, 171
RSC codes, 170

Coordinated multipoint transmission (CoMP 
transmission), 24, 25, 160, 414; 
see also Multilayer transmission

centralized and distributed 
architectures, 27, 28

downlink deployment scenarios, 414–417
with downlink MIMO, 27
intercell interference mitigation, 26
MU-MIMO, 27
network operation categories, 417

Coordinated scheduling and beamforming 
(CS/CB), 417

CP, see Cyclic prefix (CP)
CQI, see Channel quality indicator (CQI)
Cramer–Rao-lower-bound (CRLB), 367
CRC bits, see Cyclic redundancy check bits 

(CRC bits)
CRLB, see Cramer–Rao-lower-bound 

(CRLB)
CRM, see Complex rotation matrices (CRM)
CS-CDMA, see Coded pseudorandom-

code division multiple access 
(CS-CDMA)

CS, see Code spread (CS)
CS/CB, see Coordinated scheduling and 

beamforming (CS/CB)
CSG, see Closed subscriber group (CSG)
CSI, see Channel state information (CSI)
CSIR, see Channel state information at receiver 

(CSIR)
CSIT, see Channel state information 

transmitter (CSIT)
CTC, see Convolutional turbo codes (CTC)
CU, see Control unit (CU)
Cumulative distribution function (CDF), 503

of absolute LLRs, 503, 504
of throughput, 431–432, 434–436, 438

Curse of dimensionality, 75
CVP, see Closest vector problem (CVP)
Cyclic lattices, 57
Cyclic prefix (CP), 162, 164, 213, 381
Cyclic redundancy check bits (CRC bits), 420
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D

D-BLAST, see Diagonal Bell Labs layered 
space–time (D-BLAST)

DAC, see Digital-to-analog conversion (DAC)
Data multiplexed pilots, 189

frame structure for MIMO-OFDM 
transmission, 185

MIMO 16-HQAM transmission 
performance, 193

DCS, see Dynamic cell selection (DCS)
DC techniques, see Diversity combining 

techniques (DC techniques)
Decision feedback equalizers (DFE), see 

Iterative block–decision feedback 
equalization (IB-DFE)

Decode-forward-based approach (DF-based 
approach), 495

Denoise-and-forward (DNF), 492
Derandomized sampling algorithm, 198
DF-based approach, see Decode-forward-based 

approach (DF-based approach)
DFE, see Decision feedback equalizers (DFE)
DFT, see Discrete Fourier transform (DFT)
Diagonal Bell Labs layered space–time 

(D-BLAST), 53
Different pseudorandom-code division multiple 

access (DS-CDMA), 253, 254
MIMO, 265–267
receiver scheme, 255, 257

Digital-to-analog conversion (DAC), 162
Digital video broadcast (DVB), 4, 160
Digital video broadcast Terrestrial 

(DVB-T), 39
Dirac delta function, 350
Direct-sequence (DS), 251
Dirty paper coding (DPC), see Precoding 

lattices, optimal
Discrete Fourier transform (DFT), 13, 

288, 382
conjugate transpose, 166
N × N, 165
nonorthonormal, 289, 292, 294
orthonormal, 288

Discrete Gaussian distribution, 104
Distributed architecture, 28
Diversity-multiplexing trade-off (DMT), 

50, 52
Diversity combining techniques (DC 

techniques), 18, 380
Diversity order, 49–51
Diversity order factor (DOF), 264

DL-SCH, see Downlink shared channel 
(DL-SCH)

DMT, see Diversity-multiplexing trade-off 
(DMT)

DNF, see Denoise-and-forward (DNF)
DOF, see Diversity order factor (DOF)
Double-directional channel model, see System-

level simulation (SLS)
Downlink shared channel (DL-SCH), 407
DPS, see Dynamic point selection (DPS)
DS-CDMA, see Different pseudorandom-

code division multiple access 
(DS-CDMA)

DS, see Direct-sequence (DS)
Dual ELR-shortest-longest-basis-aided MMSE 

sorted-variance SIC (D-ELR-SLB-
aided MMSE SV-SIC), 463

Dual lattice, see Primal lattice
DVB-T, see Digital video broadcast Terrestrial 

(DVB-T)
DVB, see Digital video broadcast (DVB)
Dynamic cell selection (DCS), 417
Dynamic point selection (DPS), 417

E

E-MBMS, see Evolved multimedia broadcast 
and multicast service (E-MBMS)

E-UTRAN, see Evolved UTRAN 
(E-UTRAN)

EC, see Equal channels (EC)
ECMA, see European Association for 

Standardizing Information 
and Communication Systems 
(ECMA)

Effective isotropic-radiated power (EIRP), 343
EIRP-constrained radiation, 363
spectral density, 347

EIRP, see Effective isotropic-radiated power 
(EIRP)

Element-based lattice-reduction algorithms 
(ELR algorithms), 461

Elementary column operations, 60
ELR algorithms, see Element-based lattice-

reduction algorithms (ELR 
algorithms)

End wireless ports, 32
Energy efficiency in wireless communications, 

39–41
EPC network, see Evolved packet core network 

(EPC network)
Equal channels (EC), 397
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Equalization matrix (EM); see also Wideband 
code division multiple access 
(W-CDMA)

algorithms for exact solution, 275
application to ZF detector, 299–304
block-circulant matrices, 291–299
block-Fourier algorithm, 288, 300, 301, 

306–310
circulant matrices, 288–291
column-Cholesky algorithm, 279
constant-channel conditions, 304–306
correlation matrix of EM, 276
EM, 277
enhanced algorithms for solving, 274
floating point operations, 277, 278, 283
Gauss algorithm, 278
LMMSE detector, 314–319, 333
matrix reordering, 274–275
MMSE block-Fourier partitioned 

algorithm, 320, 321, 322, 323
optimizations, 277
optimized Cholesky algorithm, 280, 284
partial Cholesky approximation, 282
partitioning, 282–288
relative error, 302, 303
resulting matrix structure, 281
SCA matrix line reordering, 276
T matrix, 302
for two-tap channel, 274
U matrix, 285
for unsteady channel, 310–314
zero-forcing results, 319–333

Equalization techniques, 334
BER for MMSE and ZF, 337
DL BER for MF, 335
MF results, 335
MMSE and ZF results, 335–337
UL BER for MF, 336
UL BER for MMSE and ZF, 338

European Association for Standardizing 
Information and 
Communication Systems 
(ECMA), 345

European Telecommunications Standards 
Institute (ETSI), 7

Evaluation methodology, 417; see also 
Multiple-input and multiple-output 
(MIMO)

LLS, 418–421
MU-MIMO, 417–418
19-cell network topology, 418–419
SLS, 421–424

Evolved multimedia broadcast and multicast 
service (E-MBMS), 6, 35

RNs, 36
television service, 307
transmission gaps in, 36

Evolved packet core network (EPC network), 
33, 406

Evolved UTRAN (E-UTRAN), 5
Exclusive-or (XOR), 492

F

Fade depth scaling, 355
Fairness

criterion of proportional, 445
and SC power split, 480–481

Fair throughput (FT), 431
Fast base station switching (FBSS), 8
Fast cell selection, 30
Fast Fourier transform (FFT), 383
FBSS, see Fast base station switching 

(FBSS)
FCSD, see Fixed-complexity sphere decoding 

(FCSD)
FDD, see Frequency division duplexing 

(FDD)
FDE, see Frequency-domain equalization 

(FDE)
FDM, see Frequency-division multiplexing 

(FDM)
FDMA, see Frequency division multiple access 

(FDMA)
FDM transmission, see Frequency domain 

multiplexing transmission (FDM 
transmission)

FEC, see Forward error correction (FEC)
Femtocells, 407
FER, see Frame error rate (FER)
FFT, see Fast Fourier transform (FFT)
FH, see Frequency hopping (FH)
Fincke–Pohst method, 107, 108–109
Finite impulse response (FIR), 186
First generation of cellular networks (1G), 2
Fixed-complexity sphere decoding (FCSD), 108
Fixed assignment, 251
Fixed assignment multiple access techniques, 251

European 3G standard, 253
usage of CDMA advantages, 252

Forward error correction (FEC), 379
Fourth-generation cellular system (4G), 4
Frame error rate (FER), 509
Frequency-division multiplexing (FDM), 185
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Frequency-domain detection, iterative
average BER performances, 240, 241
complexity issues, 239
computation of receiver coefficients, 

234–238
low-power and high-power users, 

242, 243
for MIMO-SC, 232
performance results, 239–243
for pth user, 233
soft decisions, 238–239
system model, 232–234

Frequency domain equalization (FDE), 
160, 212

Frequency division duplexing (FDD), 7, 
251, 406

Frequency division multiple access (FDMA), 
2, 251

Frequency domain multiplexing transmission 
(FDM transmission), 161

Frequency hopping (FH), 251
FT, see Fair throughput (FT)

G

Gauss algorithm, 101
optimized, 278, 279
standard, 278, 333

Generalized joint channel decoding and 
physical-layer network coding 
(G-JCNC), 505

decoding process, 507
encoding process, 505
LDPC codes, 506

Generator matrix, 137
Geometry factor, 425
Global system for mobile communications 

(GSM), 2
Golden code, 52
Gram matrix, 59, 71, 133

of dual lattice, 82
of HF, 132

Gram–Schmidt orthogonalization (GS 
orthogonalization), 94–97

Grating lobe suppression, 362
Gray mapping

64-QAM with, 224, 228, 230
nonuniform 64-QAM modulation, 231
uniform 4-PAM constellation, 227, 229
uniform 8-PAM constellation, 221, 226

GSM, see Global system for mobile 
communications (GSM)

GS orthogonalization, see Gram–Schmidt 
orthogonalization (GS 
orthogonalization)

H

Hadamard matrix (HM), 199
Half-power beam width (HPBW), 22
Hard handover (HHO), 8
Hermite–Korkin–Zolotarev (HKZ), 98
Hermite Normal Form (HNF), 61
HHO, see Hard handover (HHO)
High-definition television (HDTV), 4
High-speed downlink packet access 

(HSDPA), 380
High-speed packet access (HSPA), 4
High-speed uplink packet access (HSUPA), 380
Hybrid automatic repeat request (HARQ), 419
Hybrid reuse (HR), 411

I

IB-DFE, see Iterative block–decision feedback 
equalization (IB-DFE)

IBI, see Interblock interference (IBI)
IC, see Interference canceler (IC)
ICIC, see Intercell interference cancelation 

(ICIC)
IDFT, see Inverse discrete Fourier transform 

(IDFT)
IEEE, see Institute of Electrical and Electronics 

Engineers (IEEE)
IEEE802.15.4 channel model, 352
IEEE 802.16–2004, 7
IEEE 802.16–2005, 7
IEEE 802.16d, see IEEE 802.16–2004
IEEE 802.16e, see IEEE 802.16–2005
IFFT, see Inverse fast Fourier transform (IFFT)
IMT-Advanced (IMT-A), 4, 9

for IMT-Advanced candidate technologies 
evaluation, 422

ITU-R IMT-Advanced MIMO channel 
model, 421

Infinite set, 57
Information rate, 121

constrained capacity for MIMO 
channel, 122

MIMO channel, 121
optimal transmission, 123
practical transmission system, 124

Institute of Electrical and Electronics 
Engineers (IEEE), 7
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Inter-radio access technologies (RAT), 406
Interblock interference (IBI), 163
Intercell interference cancelation (ICIC), 9, 426
Intercell interference coordination schemes, 

410–411
Interference canceler (IC), 187
International Telecommunications Union–

Radio communications (ITU-R), 4
Intersymbol interference (ISI), 10, 54, 163, 

187, 212, 250, 251, 382
Intracell interference, 5–6
Inverse discrete Fourier transform (IDFT), 

13, 382
Inverse fast Fourier transform (IFFT), 162
ISI, see Intersymbol interference (ISI)
ISIC, see Iterative soft interference cancelation 

(ISIC)
Iterative block–decision feedback equalization 

(IB-DFE), 213, 217, 379
ARQ technique for SC-FDE, 383
average value of bits, 228
coded BER performance, 231
computation of receiver parameters, 

225–228
correlation coefficient, 219
evolution of LLR, 227
frequency-domain turbo equalizer, 220
hard decisions, 220
M-PSK constellations, 224–225
mapping, 222–223
multiresolution system, 221, 222
nonuniform 64-QAM modulation, 231
PAM constellations, 223–224
performance results, 228–231
QAM constellations, 224
receiver structure and alternative format, 384
with soft decisions, 219–220, 226
structure, 217, 218
uniform 64-QAM with Gray 

mapping, 230
Iterative channel estimation, 189

data multiplexed pilots, 189
frequency channel response, 192–193
implicit pilots, 189–195
MIMO-OFDM transmission, 190
MPB curves, 195
simulation parameters, 194

Iterative soft interference cancelation (ISIC), 
459–460

ITU-R, see International Telecommunications 
Union–Radio communications 
(ITU-R)

J

Joint channel decoding, 501
graphical illustration, 502, 503
LLR calculation for, 502
LLR distributions, 503–505
noise-free receive signal constellation, 504
for PLNC, 501

Joint channel decoding and physical-layer 
network coding (JCNC), 501

Joint processing (JP), 417
Joint transmission (JT), 417

K

K-best detectors, 458–459
Karush–Kuhn–Tucker (KKT), 129
Korkin–Zolotarev reduction (KZ 

reduction), 460
Kronecker model, 69

L

L3 algorithm, see Lenstra–Lenstra–Lovász 
algorithm (LLL algorithm)

Large-scale parameters (LS parameters), 422
LAST, see Lattice space–time (LAST)
Lattice-reduction-aided detection (LRA 

detection), 77, 94, 97; see also 
Optimal detection and complexity; 
Zero-forcing detection (ZF 
detection)

complex lattice reduction, 100–103
Gauss algorithm, 101
K-best algorithms, 462
LLL, 100
M-QAM constellations, 99
MIMO detection with, 98
orthogonality defect, 98
reduced basis, 97

Lattice-reduction-aided linear detectors (LRA 
LD), 460–461

Lattice-reduction-aided receivers, 195; see also 
Receivers, iterative

performance results, 197–198
soft metrics from, 195–197

Lattices, 54, 136; see also Multiple-input 
multiple-output (MIMO); 
Precoding for MIMO

complex-valued matrices and vectors, 137
discrete Abelian, 57
dual lattice, 62–65
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Lattices (Continued)
elementary operation, 61
equivalent lattices, 60–61
fundamental region, 58
generator vectors, 56
Gram matrix, 59
hexagonal lattice, 138
names of analogous techniques, 55
orthogonal matrix, 60
precoding, 138–139
rules, 58
shortest vector, 62
squared minimum distance, 137
successive minima, 62
unimodular matrix, 60
unimodular transformations, 61
unitary matrix, 60
volume, 59–60
Voronoi region, 58–59

Lattice space–time (LAST), 52
Layered space–time receivers (LST receivers), 

233
Layers, 53
LD, see Linear detector (LD)
LDC, see Linear dispersion code (LDC)
LDPC, see Low-density parity-check code 

(LDPC)
LE, see Linear equalization (LE)
Lenstra–Lenstra–Lovász algorithm (LLL 

algorithm), 56, 100
Limited feedback precoding, 130
Line-of-sight (LOS), 8, 423
Linear channels, precoding for, 124; see also 

Lattices
linear precoding, 125–126
multiuser broadcast channel, 126–127
nonlinear precoding, 126–127

Linear detector (LD), 457–458
Linear dispersion code (LDC), 494
Linear equalization (LE), 507
Linear precoders, 127

without CSI, 130–131
for linear receivers, 127–128
for maximizing minimum distance, 

131, 136
for minimizing BER, 130
for ML receiver, 128–130

Linear precoding, 125–126
Linear receivers, 77

MMSE, 177
optimal linear precoders for, 127–128

Linear transformation, 77

Link-level simulation (LLS), 418; see also 
System-level simulation (SLS)

BLER, 420, 421
Es/No MIMO, 421
urban macropropagation channel, 419

LLL algorithm, see Lenstra–Lenstra–Lovász 
algorithm (LLL algorithm)

LMMSE detector, 314
block-circulant version, 314
block-diagonal matrix, 319
using block-Fourier transform, 318

Local neighborhood search methods, 462–463
Log-likelihood ratio (LLR), 180, 182, 219, 

385, 498
Long-term evolution (LTE), 2, 4, 406, 450

air interface, 5
all-IP architecture, 6
eMBMS, 6
femtocell concept, 407
LTE-Advanced, 9
relay architecture for, 35

LOS, see Line-of-sight (LOS)
Low-density parity-check code (LDPC), 49, 

124, 170, 492
Hamming code, 173
parity check matrix, 172
WiMax, 174

LRA detection, see Lattice-reduction-aided 
detection (LRA detection)

LRA LD, see Lattice-reduction-aided linear 
detectors (LRA LD)

LS parameters, see Large-scale parameters 
(LS parameters)

LST receivers, see Layered space–time receivers 
(LST receivers)

LTE-Advanced (LTE-A), 4, 9, 160, 170
MU-MIMO, 417–418
performance enhancement techniques, 426
RN architecture, 34, 35
3GPP, 185
turbo encoder scheme, 171

LTE, see Long-term evolution (LTE)

M

M-QAM constellations, 99, 196, 224
MA, see Multiple access (MA)
MABC protocol, see Multiple access broadcast 

protocol (MABC protocol)
MAC, see Medium access control (MAC)
Macro-diversity, 28

fast cell selection, 30

 



Index ◾ 523

global CIR, 29
OFDM, 30
two-path channel benefit, 29

Macrodiversity handover (MDHO), 8
MAI, see Multiple access interference (MAI)
MANET, see Mobile adhoc networking 

(MANET)
MAP algorithm, see Maximum a posterori 

algorithm (MAP algorithm)
Massive MIMO, 450

CSI, 468
detection algorithms, 450
distributed, 454, 455
hardware implementation, 467–468
hardware issues, 468–469
MU-MIMO systems, 453, 454
mutual information, 455–456
precoding designs, 456–457
SU-MIMO systems, 452, 453
synchronization, 468
system model, 451–452

Matched-filter (MF), 253, 456
Matrix inversion lemma, 84
Matrix reordering, 274–275
Matrix’s diagonal width (MDW), 274
Matrix’s width (MW), 274
Max C/I, see Maximum carrier-interference 

(MCI)
Maximal ratio combining (MRC), 251
Maximum a posterori algorithm (MAP 

algorithm), 181
Maximum carrier-interference (MCI), 431
Maximum likelihood-based soft output 

(MLSO), 178
Maximum likelihood (ML), 73
Maximum likelihood detector (MLD), 

178, 452
Maximum likelihood sequence estimator 

(MLSE), 20
Maximum ratio combining (MRC), 25, 52
Maximum SINR, see Maximum carrier-

interference (MCI)
MBMS, see Multimedia broadcast multicast 

service (MBMS)
MBSFN, see Multimedia broadcast single 

frequency network (MBSFN)
MCI, see Maximum carrier-interference 

(MCI)
MCS, see Modulation and coding scheme 

(MCS)
MDHO, see Macrodiversity handover 

(MDHO)

MDW, see Matrix’s diagonal width (MDW)
Medium access control (MAC), 7
Mercury waterfilling, 129, 151, 155
MF, see Matched-filter (MF)
MFN, see Multifrequency network (MFN)
Microwave imaging, 369

challenges, 372
electromagnetic properties, 371
limitations, 370–372
skin depth, 371
techniques, 369–370
of UWB MIMO system use, 369

MIMO-DFE, see MIMO decision feedback 
equalizers (MIMO-DFE)

MIMO, see Multiple-input–multiple-output 
(MIMO)

MIMO decision feedback equalizers (MIMO-
DFE), 212

MIMO detection techniques, 48, 507
arithmetic operations, 465
capacity with CSIR, 70–73
diversity order, 49–51
ISIC, 459–460
K-best detectors, 458–459
with large arrays, 457
lattice-reduction-aided K-best 

algorithms, 462
LD, 457–458
LE, 507–508
linear receivers, 77
local neighborhood search methods, 

462–463
LRA detection, 97–103, 460–461
in MIMO spatial multiplexing, 73–76
MMSE, 82–89, 507
multiplexing gain, 49–51
optimally OSIC, 89–97
for other channels, 467
performance comparison, 109–110, 

463–467
randomized lattice decoding, 103–105
real equivalent model, 69–70
SD, 105–109
SIC, 458–459, 508–509
signal processing, 48
for spatial multiplexing, 52–54
for STC, 51–52
system model, 65–69
traditional receivers, 76
ZF detection, 77–82

Minimum-mean-square-error linear detector 
(MMSE-LD), 458
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Minimum mean square error (MMSE), 19, 
77, 421, 507; see also Wideband 
code division multiple access 
(W-CDMA)

block-Fourier partitioned algorithms, 
320–323

downlink with equal scrambling, 268–269
equalization matrix for two-tap channel, 

274
FDC coefficients, 382
matrix inversion lemma, 84
for MIMO DS-CDMA system, 265
MIMO receiver for W-CDMA, 272
orthogonality principle, 83
projection matrices, 87–89
receiver, 85, 177, 272–274
reception filter, 266
SCA matrix, 271–272
scrambling for transmit antennas, 270–271
system matrices, 267
transformation, 86

MISO, see Multiple input single output 
(MISO)

ML, see Maximum likelihood (ML)
MLD, see Maximum likelihood detector 

(MLD)
MLSE, see Maximum likelihood sequence 

estimator (MLSE)
MLSO, see Maximum likelihood-based soft 

output (MLSO)
MMS, see Multimedia messaging service 

(MMS)
MMSE-LD, see Minimum-mean-square-error 

linear detector (MMSE-LD)
MMSE, see Minimum mean square error 

(MMSE)
Mobile adhoc networking (MANET), 40
Mobile terminal (MT), 212
Modulation and coding scheme (MCS), 420
Monte Carlo simulations, 482
Moore–Penrose (inverse) matrix, see Pseudo-

inverse matrix
Moore–Penrose inverse, 78
Moore–Penrose pseudo-inverse, 62
MPI, see Multipath interference (MPI)
MPIC, see Multipath interference canceler 

(MPIC)
MRC, see Maximal ratio combining (MRC); 

Maximum ratio combining (MRC)
MT, see Mobile terminal (MT)
MU-MIMO, see Multiuser multiple-input–

multiple-output (MU-MIMO)

Multi-user detection (MUD), 54
Multicell transmission, 6

intra-BS, 30
in SFN, 6

Multifrequency network (MFN), 28
Multihop relay, 31

adaptive relaying, 31–32
configurable virtual cell sizes, 32–33
conventional cellular network, 33
for LTE-Advanced, 35
node in E-UTRAN, 34
using TDD, 31
in 3GPP, 33–37
transmission gaps in E-MBMS, 36
two-hop relaying, 32
virtual cellular network, 33

Multilayer transmission, 17
baseband equivalent, 19
increase of symbol rate, 17
linear detectors, 19
M × N multilayer MIMO, 17, 18
MLSE detector, 20
2 × 2 multilayer MIMO, 18

Multimedia broadcast multicast service 
(MBMS), 6; see also Evolved 
multimedia broadcast and multicast 
service (E-MBMS)

configurable virtual cell sizes, 32
multiresolution transmission schemes, 37

Multimedia broadcast single frequency 
network (MBSFN), 6, 407, 408

properties, 409–410
spatial geometry distribution, 428
spatial signal-to-interference-noise ratio, 

429–430
transmissions, 408, 409

Multimedia messaging service (MMS), 4
Multipath fading, 353–356
Multipath interference (MPI), 251
Multipath interference canceler (MPIC), 250
Multiple-antenna relay, 510

APP-based schemes and MMSE-OSIC, 511
FER performance, 511
high rate scenario, 511, 512
MIMO detection techniques, 510

Multiple-input and multiple-output-
orthogonal frequency-division 
multiplexing (MIMO-OFDM), 
199; see also Orthogonal frequency-
division multiplexing (OFDM)

BER performance, 206
BLER performance, 206
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complex rotation matrices, 199–200
lattice-reduction-aided decoders, 205
PDF values, 204
receivers for, 200, 202
supersymbol’s samples, 203
transmitter for, 200, 201

Multiple-input–multiple-output (MIMO), 4, 
10, 48, 250, 406, 474

advanced MIMO applications, 24
attributes, 406
beamforming, 21–23
BS cooperation, 25–30
C/I, 412
CoMP with MU-MIMO, results for, 

441–445
E-MBMS, 407
energy efficiency, 39–41
femtocells, 407
geometry factor distribution, 425
hexagonal cellular topology, 413
intercell interference coordination schemes, 

410–411
key technologies, 406
MBSFN transmission, 408, 409, 428
MU-MIMO, results for, 437–441
multihop relay, 31–37
multilayer transmission, 17–20
multiple antenna configurations, 10, 11
multipoint transmission, 414–417
multiresolution transmission schemes, 

37–39
multiuser, 23–24
open-loop transmitter, 12
PMP scenarios, results for, 426
PtP scenarios, results for, 430–436
SC-PMP transmission, 409
SDMA, 20–21
signals multiple propagation paths, 10
simulation results, 425
soft and hybrid reuse, 411
spatial signal-to-interference-noise ratio, 

427–430
STBC, 11, 12–16
STD, 16–17
two-way relay channel, 474

Multiple access (MA), 2
bidirectional relaying systems, 493
communications, 251
fixed assignment, 251–252

Multiple access broadcast protocol (MABC 
protocol), 474

Multiple access interference (MAI), 250

Multiple input single output (MISO), 10
space–time coding, 12
STBC, 11

Multiplexing gain, 49–51
Multiresolution system, 221

IB-DFE, 222
transmitter structure for SC-FDE, 221

Multiresolution transmission, 37
in cellular system, 37
64-QAM, 38
QAM constellation, 39
scalable video transmission, 38

Multiuser broadcast channel, 126–127
Multiuser multiple-input–multiple-output 

(MU-MIMO), 23–24, 120, 232, 
453–454

and massive MIMO, 451
MIMO broadcast channel downlink, 

417–418
MW, see Matrix’s width (MW)

N

Nearest vector problem, 49
Noise-free receive signal constellation, 496, 504
Nondeterministic polynomial hard (NP-hard), 

457
Nonlinear precoding, 126–127
Nonorthonormal rotation matrices (NCRM), 

199
Nordic mobile telephony (NMT), 2

O

OCRM, see Orthonormal rotation matrices 
(OCRM)

OFDM, see Orthogonal frequency-division 
multiplexing (OFDM)

OFDMA, see Orthogonal frequency division 
multiple access (OFDMA)

1G, see First generation of cellular networks (1G)
Open-loop transmit diversity, 11, 12; see also 

Selective transmit diversity (STD)
Optimal detection and complexity, 75; see 

also Zero-forcing detection (ZF 
detection); Lattice-reduction-aided 
detection (LRA detection)

curse of dimensionality, 75
CVP, 76
nondeterministic polynomial complexity, 

75, 76
NP-hard problems, 76
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Optimal Z matrix, 148–150
Optimization problem, 131

Gram matrix, 132, 133
theorem, 133–134

Optimized block-Fourier algorithm, pseudo-
codes for, 300, 301, 307

Optimized Cholesky algorithm; see also Gauss 
algorithm

for EM, 280
floating point operations for, 280
Matlab code for, 284

ORBF, see Orthogonal random beamforming 
(ORBF)

Ordered successive interference cancellation 
(OSIC), 48, 509; see also Successive 
interference cancellation (SIC)

error events in SIC, 93
GS orthogonalization, 94–97
nearest plane algorithm with sorting, 92
optimally, 89
OSIC implementation, 93
pseudo-inverse, 91
QR decomposition, 94–97
SIC decision region, 92
Voronoi region, 89
ZF matrix, 90

Orthogonal frequency-division multiplexing 
(OFDM), 160, 212, 344, 378, 494

channel coding, 170–175
iterative receivers, 186–195
lattice-reduction-aided receivers, 195–198
SISO-OFDM, 161–168
transmitter structure, 169–170

Orthogonal frequency division multiple access 
(OFDMA), 4, 406

Orthogonality principle, 83
Orthogonal matrix, 60
Orthogonal random beamforming (ORBF), 418
Orthogonal space–time block code (OSTBC), 

52, 494
Orthonormal rotation matrices (OCRM), 199
OSIC, see Ordered successive interference 

cancellation (OSIC)
OSTBC, see Orthogonal space–time block 

code (OSTBC)

P

P-SCD, see Parallel separated channel decoding 
(P-SCD)

PA, see Power allocation (PA); Power amplifier 
(PA)

Packet combination with diversity; see 
also Ultra wideband-based 
communication systems (UWB-
based communication systems)

Alamouti STBC scheme, 386–389
channel definition, 391
conventional SC-FDE decoding, 390
dealing with fixed channels, 394–395
IB-DFE structure, 393
MIMO Alamouti code, 386
received signals time definition, 391

Packet error rate (PER), 397
PAPR, see Peak-to-average power ratio (PAPR)
PAR, see Power ratio (PAR)
Parallel interference cancelation receiver (PIC 

receiver), 233, 239–241
Parallel separated channel decoding (P-SCD), 

501
Partial candidate of nth layer, 459
Partial Cholesky approximation, 282, 285
Path gain, 348, 367

mean, 354
in UWB wireless channel, 348–349

PDF, see Probability density function (PDF)
PDSCH, see Physical downlink shared channel 

(PDSCH)
PDU, see Protocol data unit (PDU)
Peak-to-average power ratio (PAPR), 41
Peak-to-mean envelope power ratio (PMEPR), 

213, 378
PEG algorithm, see Progressive edge growth 

algorithm (PEG algorithm)
PER, see Packet error rate (PER)
Per user unitary and rate control (PU2RC), 437
PF, see Proportional fair (PF)
Phase shift keying (PSK), 66, 214

constellation, 224, 225
Physical-layer network coding (PLNC), 492

channel coefficients, 494
cooperation, 492
DF-based approach, 495
G-JCNC, 505–507
joint channel decoding and, 501–505
MIMO detection techniques, 507–509
performance analysis, 509–512
two-way relaying network, 493

Physical downlink shared channel (PDSCH), 
407

Physical uplink shared channel (PUSCH), 407
PIC receiver, see Parallel interference 

cancelation receiver (PIC receiver)
Pilot embedding, 40–41, 189
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PLNC, see Physical-layer network coding 
(PLNC)

PMEPR, see Peak-to-mean envelope power 
ratio (PMEPR)

PMP, see Point-to-multipoint (PMP)
PN, see Pseudonoise (PN)
Point-to-multipoint (PMP), 419
Point-to-point (PtP), 419
Poisson process, 352
Power allocation (PA), 479
Power amplifier (PA), 41, 468
Power ratio (PAR), 168
Power spectral density (PSD), 378
Precoder codebook, 130
Precoding for MIMO

linear channels, 124–127
linear precoder construction, 127–131
optimization problem, 131–134
results on optimal linear precoders, 135
status on precoders, 136
SU-MIMO, 120–124
suboptimal constructions, 134–135

Precoding lattices, optimal, 142, 456
lemma, 143–145
minimum distance region, 142
real-valued case, 142
Schläfli lattice, 145–148

Primal lattice
geometry, 63
hyperplanes identification, 65
Moore–Penrose pseudo-inverse, 62
in n dimensions, 64

Probability density function (PDF), 179, 204
Processing gain, 253
Progressive edge growth algorithm (PEG 

algorithm), 509
Projection matrices, 87

orthogonal complement, 88
SNR relation factor, 88, 89

Proportional fair (PF), 437
Protocol data unit (PDU), 419
PSD, see Power spectral density (PSD)
Pseudo-code

of block-Fourier algorithms, 297, 306
for block-Fourier partitioned algorithm, 

311–312, 315–316
for optimized block-Fourier algorithm, 

300, 301, 307
for partitioning with overlapping 

algorithm, 288
Pseudo-inverse matrix, 78
Pseudonoise (PN), 164, 257

PSK, see Phase shift keying (PSK)
PtP, see Point-to-point (PtP)
PU2RC, see Per user unitary and rate control 

(PU2RC)
Pulsed radar, 370
PUSCH, see Physical uplink shared channel 

(PUSCH)

Q

QAM, see Quadrature amplitude modulation 
(QAM)

QoS, see Quality of service (QoS)
QPSK, see Quadrature phase shift keying 

(QPSK)
QR decomposition (QRD), 508

GS orthogonalization and, 94–96
K-best detector, 458, 462
SIC on, 508
SQRD preprocessing, 463

16-quadrature amplitude modulation 
(16-QAM), 5, 38, 152

256-quadrature amplitude modulation 
(256-QAM), 344, 452

64-quadrature amplitude modulation 
(64-QAM), 5, 38, 228

BER performance, 206, 230, 231, 337
input constellations, 154
M-QAM constellation, 224
ML receiver tests, 153
mutual information per sub-carrier pair, 155

Quadrature amplitude modulation (QAM), 
66, 214

constellations, 224
M-ary, 66
MIMO SM concentration on, 66
multiplexing gain, 50
nonuniform, 39
uplink transmissions with, 457

Quadrature phase shift keying (QPSK), 5, 232, 
250, 385

bits blocks, 38
BPSK and, 496, 497
with Gray mapping, 224
IB-DFE implementation, 214
LLR calculation for SCD with, 500
SISO-OFDM transmission with, 205, 206

Quality of service (QoS), 4, 9, 252

R

Radio access network (RAN), 406
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Radio resource control (RRC), 407
Raised-cosine filter, 68, 239
RAKE receiver, 258, 263, 335
RAN, see Radio access network (RAN)
Random access, 251
Randomized lattice decoding, 103

algorithm, 105
discrete Gaussian distribution, 104

RAT, see Inter-radio access technologies 
(RAT)

RB, see Resource block (RB)
Real equivalent model, 69–70
Real rotation matrices (RRM), 199
Received signal strength indicator (RSSI), 

406, 407
Received signal strength ranging (RSS 

ranging), 353, 366
Receivers, conventional, 175, 176; see also 

Orthogonal frequency-division 
multiplexing (OFDM)

channel decoder, 179–184
channel estimation, 184–186
MLD, 178
MMSE, 177
PDF values, 179
quantization operation, 178
V-BLAST, 177
ZF, 175

Receivers, iterative, 186
iterative channel estimation, 189–195
signal processing blocks, 186
structure, 188
turbo principle, 187

Recursive systematic convolutional codes 
(RSC codes), 170, 179, 180

Reduced basis, 97
LR, 98
and skewed basis, 97

Reference signal received power (RSRP), 406
Reference signal received quality (RSRQ), 406
Relative narrowband transmit power 

(RNTP), 411
Relaying, adaptive, 31–32
Relay node (RN), 31

adaptive, 31
BS and, 31
in E-UTRAN, 34
functionality in PLNC, 501
single-antenna, 492
SPC, 474
3GPP release 9, 33

Remote radio heads (RRHs), 414, 416, 417

Resource block (RB), 410, 411
coordination, 410, 411
PRB, 37

RM, see Rotation matrix (RM)
RN, see Relay node (RN)
RNTP, see Relative narrowband transmit 

power (RNTP)
Rotation matrix (RM), 200, 203
RRC, see Radio resource control (RRC)
RRHs, see Remote radio heads (RRHs)
RRM, see Real rotation matrices (RRM)
RSC codes, see Recursive systematic 

convolutional codes (RSC codes)
RSRP, see Reference signal received power 

(RSRP)
RSRQ, see Reference signal received quality 

(RSRQ)
RSSI, see Received signal strength indicator 

(RSSI)
RSS ranging, see Received signal strength 

ranging (RSS ranging)

S

SA, see Seysen’s algorithm (SA)
S and C matrices; see also System matrices

downlink with equal scrambling, 
268–269

transmit antennas and uplink 
modifications, 270–271

SC-FDE, see Single-carrier with frequency-
domain equalization (SC-FDE)

SC-FDMA, see Single carrier–frequency 
division multiple access 
(SC-FDMA)

SC-PMP transmission, see Single-cell point-to-
multipoint transmission (SC-PMP 
transmission)

SC-PTM, see Single cell–point to multipoint 
(SC-PTM)

SC, see Shifted channels (SC); Single-carrier 
(SC)

Scalable video transmission, 38, 39
SCD, see Separated channel decoding (SCD)
Schläfli lattice, 145–148
Schnorr–Euchner strategy (SE strategy), 107, 

462
SCM, see Spatial channel model (SCM)
Scrambling, 253

downlink with equal, 268–269
sequence of values, 255
spreading matrix and, 267, 426
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transmit antennas and uplink 
modifications, 270–271

SD, see Sphere decoding (SD)
SDA, see Sphere decoding algorithms (SDA)
SDMA, see Space division multiple access 

(SDMA)
SDR, see Software defined radio (SDR)
Second generation of cellular networks (2G of 

cellular networks), 2
Selective transmit diversity (STD), 11

closed-loop TD, 16
with feedback indication, 17
using WCDMA signals, 16

Semistatic point selection (SSPS), 417
Separated channel decoding (SCD), 499; 

see also Joint channel decoding
with BPSK, 500
graphical illustration, 499, 500
MA problem, 499
P-SCD, 501
with QPSK, 500
XOR-based network coding, 501

SER, see Symbol error rate (SER)
SE strategy, see Schnorr–Euchner strategy (SE 

strategy)
Seysen’s algorithm (SA), 460–461
SF, see Spreading factor (SF)
SFBC, see Space–frequency block codes (SFBC)
SFFR, see Soft fractional frequency reuse 

(SFFR)
SFN, see Single-frequency network (SFN)
Shifted channels (SC), 397, 399
Shortest vector problem (SVP), 54
SIC, see Successive interference cancellation 

(SIC)
Signal-to-interference plus noise ratio (SINR), 

35, 235, 382, 425
Signal-to-noise ratio (SNR), 11, 49, 216, 261, 

382, 418, 501
degradation, 25
in SLS, 420
for uplink and downlink, 455
ZF-detected vector, 82

Signal space diversity (SSD), 199
on CRM, 160
MIMO-OFDM with, 199

SIMO, see Single input multiple output 
(SIMO)

Single-antenna relay, 492, 510
Single-carrier (SC), 213
Single-carrier with frequency-domain 

equalization (SC-FDE), 215, 378

BER performance for, 217
DFT, 382
IB-DFE, 379, 382
linear FDE, 216
OFDM schemes, 215
SC-based block, 381

Single-cell point-to-multipoint transmission 
(SC-PMP transmission), 409

and MBSFN transmission, 409
spatial geometry distribution, 426
spatial SINR, 427, 428

Single-cell transmission, 6
Single-frequency network (SFN), 6, 28, 29
Single-user MIMO systems (SU-MIMO 

systems), 23, 160, 452, 453
BLER performance, 420
CSI, 120–121
information rate, 121–124
results for PtP with, 431–436

Single carrier–frequency division multiple 
access (SC-FDMA), 4, 406

Single cell–point to multipoint (SC-PTM), 6
Single input multiple output (SIMO), 10, 

264, 363
Single input single output-OFDM (SISO-

OFDM), 161
all-zero guard period, 163
circulant matrix, 166
conjugate transpose operation, 165
using CP, 164
FDM transmission, 161, 162
using FFT, 167
using IFFT, 162
interblock interference, 163

Single input single output (SISO), 10, 49, 
381, 474

Singular-value decomposition (SVD), 70, 478
Singular matrix, 78
SINR, see Signal-to-interference plus noise 

ratio (SINR)
SISO-OFDM, see Single input single output-

OFDM (SISO-OFDM)
SISO, see Single input single output (SISO); 

Soft-in, soft-out (SISO)
Slicing, 77
Slow fading model, 71
SLS, see System-level simulation (SLS)
SM, see Spatial multiplexing (SM)
Small-scale (SS), 421
SNR, see Signal-to-noise ratio (SNR)
Soft-in, soft-out (SISO), 220
Soft fractional frequency reuse (SFFR), 411
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Soft output Viterbi algorithm (SOVA), 181
Soft reuse schemes, see Hybrid reuse (HR)
Software defined radio (SDR), 9
Sorted QR decomposition (SQRD), 463
SOVA, see Soft output Viterbi algorithm 

(SOVA)
Space-time trellis code (STTC), 52, 494
Space division multiple access (SDMA), 11

on improving capacity, 20
multiple antennas, 212
multiuser communication scheme, 437
to uplink, 21
V-BLAST detector, 20

Space–frequency block codes (SFBC), 13, 169
Space–time block coding (STBC), 11

Alamouti’s TD, 13
MIMO Alamouti code, 386
in OFDM systems, 169
STBC2, 13–14
STBC4, 14–16
TD technique, 12
with transmit and receive antenna, 387, 389

Space–time codes (STC), 51
detection for, 51–52
diversity providing, 381

Spatial channel model (SCM), 421
Spatial multiplexing (SM), 11, 48

D-BLAST, 53
detection for, 52
detection in MIMO, 73–76
in optimum detection, 54
uncoded, 72

Spatial signal-to-interference-noise ratio
of MBSFN scenario, 429, 430
of SC-PMP scenario, 427, 428

SPC, see Superposition coding (SPC)
Sphere decoding (SD), 48, 105

complexity, 107
detection method, 105
FCSD, 108
Fincke–Pohst method, 107, 108–109
MLD solution, 106
receiver, 106
tree exploration of tree, 106

Sphere decoding algorithm (SDA), 452
Spread-spectrum (SS), 251

communication, 253–254
UWB-based system, 378

Spreading factor (SF), 250
bandwidth expansion factor, 253
combined channel–precoder matrix SF, 151

SQRD, see Sorted QR decomposition (SQRD)

Squared minimum distance, 137
SS, see Small-scale (SS); Spread-spectrum (SS)
SSD, see Signal space diversity (SSD)
SSPS, see Semistatic point selection (SSPS)
STBC, see Space–time block coding (STBC)
STC, see Space–time codes (STC)
STD, see Selective transmit diversity (STD)
STTC, see Space-time trellis code (STTC)
SU-MIMO systems, see Single-user MIMO 

systems (SU-MIMO systems)
Suboptimal constructions, 134–135

lattice theoretic approach, 134–135
to minimize BER, 130
on optimal two-dimensional precoder, 134

Successive interference cancellation (SIC), 19, 20
average BER of SIC receiver, 241
error events in, 93
as K-best detector, 458–459
LLL algorithm combination, 195
MMSE-SV-SIC detector, 466, 467
ordered SIC, 509
QR matrix decomposition, 508
used in detection method, 53
users detection, 233, 234

Successive minima, 62
Sum-product algorithm

a posteriori log probability ratios, 183
BER performance, 184
LDPC decoder—SPA, 181, 492
messages, 182
modified SPA, 506
reliability factor, 183
Tanner graphs, 181

Sum-product algorithm, iterative, 181
Superimposed pilots, see Pilot embedding
Superposition coding (SPC), 474; see also Two-

way relay channels
C-SPC and WF-SPC scheme, 487
C-SPC without CSI, 478–479
MIMO MABC-SPC protocol, 475, 

482–483
optimization, 481–482
SC power split, 480–481
SPC with CSI, 479

SVD, see Singular-value decomposition (SVD)
SVP, see Shortest vector problem (SVP)
Symbol error rate (SER), 49, 77

multiplexing gain, 50
SNR vs., 50

Synchronization
clock synchronization, 368
of massive MIMO system, 468
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System-level simulation (SLS), 418
channel model creation process, 423
ITU-R IMT-Advanced MIMO channel 

model, 421
MIMO channel, 422
parameterization for, 424
time-variant impulse response matrix, 422

System matrix, 267
downlink with equal scrambling, 268–269
matrix algebra, 267
for MF and ZF/MMSE schemes, 265, 266
receiver schemes using, 272–274
SCA matrix, 271–272
scrambling for transmit antennas, 270–271
uplink modifications, 270–271

System model
distributed massive MIMO, 454–455
massive MIMO downlink, 455–457
MIMO-SC, 232–234
MIMO SM, 65–69
MU-MIMO, 453–454
SU-MIMO, 452–453

T

Tabu search, 463
TACS, see Total access communication system 

(TACS)
Tanner graphs, 173

iterative probabilistic decoding algorithm, 
181

linear code characterization, 174
Tapped delay line (TDL), 257
TD, see Transmit diversity (TD)
TDD, see Time division duplexing (TDD)
TDL, see Tapped delay line (TDL)
TDMA, see Time division multiple access 

(TDMA)
TDOA, see Time-different-of-arrival (TDOA)
TH-MA, see Time-hopping multiple access 

(TH-MA)
TH, see Time hopping (TH)
Third-generation cellular system (3G), 2

European 3G standard, 253
evolution from, 5–6
frequency reuse, 426

Third Generation Partnership Project (3GPP), 2
BER performance, 172
LTE-Advanced, 9, 185
multihop relay in, 33–37
specifications, 11
type comparison, 3

3G, see Third-generation cellular system (3G)
3GPP, see Third Generation Partnership 

Project (3GPP)
Throughput distribution

CDF throughput vs., 435, 436, 438, 440
CoMP geometry, 442, 443, 444
SU-MIMO 4 × 4 geometry vs., 433, 434, 

439, 441
Time-different-of-arrival (TDOA), 366
Time-hopping multiple access (TH-MA), 378
Time-of-arrival (TOA), 366

clock synchronization, 368
CRLB for, 367
ranging precision of, 367
TOA-based ranging, 366–367

Time division duplexing (TDD), 7, 406
Time division multiple access (TDMA), 2

fixed assignment MA, 251–252
GSM based, 5

Time hopping (TH), 251
TH-MA, 378
time interval, 254

Time slots (TS), 417
TOA, see Time-of-arrival (TOA)
Total access communication system (TACS), 2
Transmit antennas

Alamouti STBC scheme using, 386
downlink with equal scrambling, 268–269
scrambling for, 270–271
STBC2, 13–14
STBC4, 14–16

Transmit diversity (TD), 11
Alamouti scheme, 380
multipath components, 264
open-loop TD, 11
redundant-sent signals, 381
STD, 11, 16–17

TS, see Time slots (TS)
Turbo-processing, 187
Turbo decoder

iteration of IB-FDE, 230
MAP algorithm, 181
using single Markov process, 179
soft-input soft-output decoders, 180, 181

2G of cellular networks, see Second generation 
of cellular networks (2G of cellular 
networks)

Two-dimensional lattice precoders, 139; 
see also Lattice; Linear channels, 
precoding for

applications, 150–155
change in Z, 150
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Two-dimensional lattice precoders (Continued)
ML receiver tests, 153
mutual information for channel, 152, 

153, 155
optimal precoding lattices, 142–148
optimal Z matrix, 148–150
QAM constellation, 140
visualization of solution, 141

Two-hop relaying, 32
Two-way relay channels, 473

C-SPC and WF-SPC, 485, 488
communication model, 475–478
cooperative protocols, 474
effects of imperfect channel estimation, 475
max−min achievable user rate, 483, 484
numerical results, 482
optimal fixed power split, 486
simulation examples and parameters, 482
SPC power split impact, 487

U

UB, see Upper bound (UB)
UC, see Uncorrelated channels (UC)
UE, see User equipment (UE)
ULA array, see Uniform linear antenna array 

(ULA array)
Ultrawideband technology (UWB technology), 

342
antenna array, 358–359
antenna impulse responses, 351
antenna selection, 363–365
beam pattern, 360, 361, 362–363
channel impulse response, 349, 357
complexity of MIMO, 365
continuous-wave UWB uplink, 396
contribution of factor, 343
EIRP-constrained radiation, 363
element spacing, 363–365
fade depth scaling, 355
frequency-domain packet combining 

technique, 383–384
grating lobes, 363–365
gross BER performance, 364
history and standards, 344–347
IEEE802.15.6 symbol structure, 346
localization, 365–369
microwave imaging, 369–372
MIMO, 356–358
motivation for, 342–344
multipath fading, 353–356
narrowband systems, 359

OFDM systems, 356
path gain, 348–349
plane wave assumption, 358
regulations worldwide, 347, 348
802.15.4a symbol structure, 345
spatial variation of channel energy, 354
spectral emission masks, 347
systematic errors, 349–352
systematic measurement error removal, 

352–353
for wireless communication, 342
wireless SISO channel, 348

UMTS, see Universal mobile 
telecommunication system (UMTS)

Uncorrelated channels (UC), 399
Uniform linear antenna array (ULA array), 21
Unimodular matrix, 60
Unitary matrix, 60

of optimal precoder, 129
precoding matrix, 477

Universal mobile telecommunication system 
(UMTS), 253, 425

channels, 264
geometry factor using, 432
HSDPA connection, 263
by 3GPP, 2
uplink connection, 262

Unsteady channel
block-Fourier partitioned algorithm, 315, 

316, 317
MMSE block-Fourier partitioned 

algorithm, 322, 323
Uplink modification, 270–271
Upper bound (UB), 105
User equipment (UE), 6, 407

cell boundary, 408
data for, 417
relay-UE, 34
RN-UE and eNB-UE, 36
signals from BS, 25
single path, 28
transmission channel estimation, 30

UWB-based communication systems, 378
BER performance, 397, 400, 401
block transmission techniques, 379
characteristics of interference, 386
continuous-wave, 378
conventional FDE receiver, 398
conventional soft packet combining ARQ, 

384–386
IB-DFE, 383–384
ideal FDE receiver, 399
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performance results, 396
SC-FDE, 381–383
soft packet combining techniques, 380

UWB technology, see Ultrawideband 
technology (UWB technology)

V

Vector network analyzers (VNA), 349
4-channel, 372
time-domain technique, 370

Vector perturbation, 126
decoding method, 127
in MIMO broadcast channels, 127

Vertical Bell laboratories layered space–time 
(V-BLAST), 20, 177

detector, 20, 89
predominance, 53

Virtual cellular network, 32, 33
Voronoi region, 58

characteristic of lattice, 59
lattice point, 137
NP-hard, 74
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